
Advanced Information and Knowledge Processing

Series Editors
Professor Lakhmi Jain
lakhmi.jain@unisa.edu.au

Professor Xindong Wu
xwu@cs.uvm.edu

Also in this series

Gregoris Mentzas, Dimitris Apostolou, Andreas Abecker and Ron Young
Knowledge Asset Management
1-85233-583-1

Michalis Vazirgiannis, Maria Halkidi and Dimitrios Gunopulos
Uncertainty Handling and Quality Assessment in Data Mining
1-85233-655-2

Asunción Gómez-Pérez, Mariano Fernández-López and Oscar Corcho
Ontological Engineering
1-85233-551-3

Arno Scharl (Ed.)
Environmental Online Communication
1-85233-783-4

Shichao Zhang, Chengqi Zhang and Xindong Wu
Knowledge Discovery in Multiple Databases
1-85233-703-6

Jason T.L. Wang, Mohammed J. Zaki, Hannu T.T. Toivonen and Dennis Shasha (Eds)
Data Mining in Bioinformatics
1-85233-671-4

C.C. Ko, Ben M. Chen and Jianping Chen
Creating Web-based Laboratories
1-85233-837-7

Manuel Graña, Richard Duro, Alicia d’Anjou and Paul P. Wang (Eds)
Information Processing with Evolutionary Algorithms
1-85233-886-0

Colin Fyfe
Hebbian Learning and Negative Feedback Networks
1-85233-883-0

Yun-Heh Chen-Burger and Dave Robertson
Automating Business Modelling
1-85233-835-0

Dirk Husmeier, Richard Dybowski and Stephen Roberts (Eds)
Probabilistic Modeling in Bioinformatics and Medical Informatics
1-85233-778-8

Ajith Abraham, Lakhmi Jain and Robert Goldberg (Eds)
Evolutionary Multiobjective Optimization
1-85233-787-7

K.C. Tan, E.F. Khor and T.H. Lee
Multiobjective Evolutionary Algorithms and Applications
1-85233-836-9

Nikhil R. Pal and Lakhmi Jain (Eds)
Advanced Techniques in Knowledge Discovery and Data Mining
1-85233-867-9

Amit Konar and Lakhmi Jain
Cognitive Engineering
1-85233-975-6

Miroslav Kárný (Ed.)
Optimized Bayesian Dynamic Advising
1-85233-928-4

Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos and
Yannis Theodoridis
R-trees: Theory and Applications
1-85233-977-2

Sanghamitra Bandyopadhyay, Ujjwal Maulik, Lawrence B. Holder and Diane J. Cook (Eds)
Advanced Methods for Knowledge Discovery from Complex Data
1-85233-989-6

Marcus A. Maloof (Ed.)
Machine Learning and Data Mining for Computer Security
1-84628-029-X

Sifeng Liu and Yi Lin
Grey Information
1-85233-995-0

Vasile Palade, Cosmin Danut Bocaniala
and Lakhmi Jain (Eds)

Computational
Intelligence in
Fault Diagnosis
With 154 Figures

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006922573

Advanced Information and Knowledge Processing ISSN 1610-3947
ISBN-10: 1-84628-343-4 Printed on acid-free paper
ISBN-13: 978-1-84628-343-7

© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

Printed in the United States of America (MVY)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Vasile Palade, PhD Lakhmi Jain, PhD
Oxford University Computing Laboratory KES Center
Oxford University of South Australia
UK Australia

Cosmin Danut Bocaniala, Phd
Department of Communication Systems
Lancaster University
Lancaster
UK

Contributors

Viorel Ariton
“Danubius” University of Galati
Lunca Siretului no. 3, 800416
Galati, Romania
Email: variton@univ-danubius.ro

Cosmin Danut Bocaniala
Computer Science and Engineering Department
“Dunarea de Jos” University of Galati
Domneasca 47, Galati, Romania
Email: cosmin.bocaniala@ugal.ro

João Calado
IDMEC/ISEL, Polytechnic Institute of Lisbon
Mechanical Engineering Studies Centre
Rua Conselheiro Emídio Navarro, 1950-062
Lisbon, Portugal
Email: jcalado@dem.isel.ipl.pt

Kok Yeng Chen
School of Electrical and Electronic Engineering
University of Science Malaysia
Engineering Campus, 14300
Nibong Tebal, Penang, Malaysia

Florin Ionescu
Department of Mechatronics
University of Applied Sciences in Konstanz
Brauneggerstraße 55, 78462 – Konstanz, Germany
Email: ionescu@fh-konstanz.de

Weng Kin Lai
MIMOS Berhad
Technology Park Malaysia
57000 Kuala Lumpur, Malaysia

vi V Palade, CD Bocaniala and L Jain (Eds.)

Chee Peng Lim
School of Electrical and Electronic Engineering
University of Science Malaysia
Engineering Campus, 14300
Nibong Tebal, Penang, Malaysia
Email: cplim@eng.usm.my

Ar nas Lipnickas
Kaunas University of Technology
Department of Control Technology
Student 48-317, Kaunas LT-51367, Lithuania
Email: arunas.lipnickas@ktu.lt

Luca Marinai
Department of Power, Propulsion & Aerospace Engineering
Cranfield University
Beds. MK43 OAL, United Kingdom
Email: l.marinai@cranfield.ac.uk

Luis Mendonça
Technical University of Lisbon
Dept. of Mechanical Engineering, GCAR/IDMEC
Pav. Eng. Mecânica III, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Email: mendonca@dem.ist.utl.pt

Stephen Ogaji
Department of Power, Propulsion and Aerospace Engineering
School of Engineering
Cranfield University
Beds. MK43 OAL, United Kingdom
E-mail: s.ogaji@cranfield.ac.uk

Vasile Palade
Oxford University
Computing Laboratory
Wolfson Building, Parks Road
Oxford, OX1 3QD, United Kingdom
Email: vasile.palade@comlab.ox.ac.uk

José Sá da Costa
Technical University of Lisbon
Department of Mechanical Engineering, GCAR/IDMEC
Pav. Eng. Mecânica III, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Email: sadacosta@ist.utl.pt

Computational Intelligence in Fault Diagnosis vii

Riti Singh
Department of Power, Propulsion and Aerospace Engineering
School of Engineering
Cranfield University
Beds. MK43 OAL, United Kingdom

João Sousa
Technical University of Lisbon
Dept. of Mechanical Engineering, GCAR/IDMEC
Pav. Eng. Mecânica III, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Email: jsousa@dem.ist.utl.pt

Dan Stefanoiu
Department of Automatic Control and Computer Science
“Politehnica” University of Bucharest
313 Splaiul Independen ei, 060042–Bucharest, Romania
Email: danny@indinf.pub.ro

Foreword

With the increased complexity of industrial machines and processes, the task of
fault diagnosis is becoming increasingly difficult and its complexity almost
unmanageable using conventional techniques. Therefore, in the past decade, intense
research was dedicated to find alternative solutions using methods that mirror
human reasoning as well as involve complex problem solving techniques inspired
from nature, to cope with the need for adaptation of the diagnostic methodology to
the inherent changes occurring in the diagnosed process.

The automatic diagnosis requires the ability to identify the symptoms
automatically and map them to their causes as well as, eventually, to prescribe
solutions for repairing/restoring the good functionality of the device, machine or
plant. Some methods can prove suitable for certain systems while being totally
inappropriate for others.

Computational intelligence attempts to emulate human and biological
reasoning, decision-making, learning and optimization via a series of techniques
that mirror the adaptive evolutionary nature of living beings. Such techniques can
be either used individually or combined into more complex hybrid methodologies,
resulting in systems with enhanced capabilities, e.g., the same system can benefit
from the decision-making under uncertainty enabled by fuzzy logic as well as from
learning and adaptation that neural networks provide, or from the evolutionary
optimization inherent in genetic algorithms.

Since the early 1990s, attempts to apply various computational intelligence
methods to fault diagnosis, sometimes used to augment traditional methods, were
made mainly in research laboratories. Given their success, these are now moving
into industrial settings. Big companies such as Siemens and ABB have embraced
such novel technologies very early.

Most successful attempts proved that fault diagnosis can greatly benefit
from computational intelligence techniques. Neural networks can ease fault
identification through model matching and learning of new symptoms. Fuzzy logic
can improve the diagnostic decision-making under the uncertainty inherent in the
diagnostic information: vague symptoms, ambiguous mapping of symptoms to their
causes as well as capturing the gradual degradation of systems and processes in
appropriate (fuzzy) models. Genetic algorithms are capable of optimizing the
diagnostic models as well as the diagnostic process itself by tracking the
(sometimes gradual) changes occurring in the diagnosed system in various ways.

We welcome this new book for offering us a very good overview of the
state of the art in the development of computational intelligence techniques
pertaining to fault diagnosis. Covering all computational intelligence techniques
both in theory as well as illustrating how they work by clear examples and/or

x V Palade, CD Bocaniala and L Jain (Eds.)

practical applications on a relatively broad range of problems, the book gradually
exposes the reader to these various methods in its eleven chapters.

Structurally, the book is a comprehensive collection of works arranged in a
progressive manner, to ease the gradual grasping of concepts. Starting with a very
good overview of computational intelligence and its suitability to the difficult task
of fault diagnosis, in Chapter 1, it continues (in Chapters 2 to 5) with four
applications involving fuzzy logic to solve various real-world diagnosis problems,
then Chapters 6 and 7 illustrate successful neural network-based diagnostic models,
to progress in Chapter 8 to a generic computational intelligence approach. Hybrid
neuro-fuzzy diagnostic approaches are further illustrated in Chapters 9 and 10. The
last chapter presents a novel distributed causal model for diagnosing complex
systems.

Overall, I salute this work for marking the progress made in this significant
area of fault diagnosis, which can be very useful to a broad audience, ranging from
industrial users to graduate students. Enabling the use of these techniques in
industrial applications as well as for training and teaching purposes, the book can be
regarded as both a repository of knowledge for practitioners and a basis for a course
on computational intelligence in diagnosis.

 Professor Mihaela Ulieru,
 Canada Research Chair

Preface

In one of his recent commentaries, called “Integration automation”, Mark Venables,
editor of the IEE Manufacturing Engineer Journal, predicts that “there are five
technologies that will drive the future of industrial automation. These are control
and diagnosis, communication, software, electronics, and materials – with the
former trio being the most important” (http://www.iee.org/oncomms/
sector/computing/commentary.cfm). Indeed, one of the main current trends in
solving problems in manufacturing industry is developing fault-tolerant control
schemes. Fault-tolerant control is concerned with making the controlled system able
to maintain control objectives, despite the occurrence of a fault. Hence, fault
diagnosis represents the main ingredient of a fault-tolerant control system.
Diagnosing the faults that occurred in a system permits triggering control
mechanisms to keep a plant working sufficiently well until the necessary
maintenance may be performed. In practice, this feature results in a significant
improvement in industrial plant safety, productivity and time in service.

There are two main categories of fault diagnosis techniques currently in
use and each has its own basic support theory. The first class of methodologies used
for fault diagnosis-related problems were based on mathematical models of the
monitored plant. The differences between the plant model and its actual behaviour
are called residuals and form the basis for deciding if a fault did or did not occur;
and if a fault has occurred, deciding which particular fault occurred. Unfortunately,
these techniques provide satisfactory results only when plants exhibit linear
behaviour or when the modelling errors can be kept within acceptable limits.
Accurate mathematical models can be obtained only for plants with low behavioural
complexity.

Recent research efforts have concentrated on finding suitable techniques to
model plants with high nonlinear behaviour, noise and uncertainty. These three
characteristics have been successfully mastered by using computational intelligence
methodologies. These solutions are based on models such as fuzzy systems, neural
networks, and genetic algorithms, to name only the most important of them. The
above methods are commonly combined to give the desired result. Besides using
residuals for diagnosis purposes, the computational intelligence methods may also
be used to directly map the sensor measurements to the faults’ space. These
methods allow an understanding of plant behaviour using rules obtained directly
from sensor measurements. However, even if these techniques can solve the
difficult problems posed by nonlinearity, noise and uncertainty, if the complexity of
the plant behaviour is very high, the computational load becomes too large for
practical purposes.

xii V Palade, CD Bocaniala and L Jain (Eds.)

Finding consistent solutions for large-scale complex systems diagnosis
problems is currently one of the major interests of industrial research. It presents a
challenge to researchers in the field too. The preoccupation of the European
researchers in the area of fault diagnosis is illustrated by the existence of three large
projects, recently funded by the European Commission. One of these is MAGIC
(Multi-Agents-Based Diagnostic Data Acquisition and Management in Complex
Systems, http://magic.uni-duisburg.de/). The other two are IFATIS (Intelligent
Fault Tolerant Control in Integrated Systems, http://ifatis.uni-duisburg.de/) and
NeCST (Networked Control Systems Tolerant to faults, http://www.strep-
necst.org/). The usual approach to the problem is by distributing the diagnosis task
over a set of subsystems of the monitoring system. The global diagnosis is then
formulated by combining the output of the individual local diagnosis processes.

In this book we offer a collection of the latest contributions to the area of
computational intelligence applications to fault diagnosis. These have been written
by members of a number of well-established fault diagnosis research groups. There
is also a special section which deals with the latest issues in fault diagnosis of
complex systems. The book contains 10 chapters and is preceded by a review and
state-of-the-art introductory chapter. Each of the chapters focuses on some
theoretical aspects of computational intelligence methodologies applied to real-
world fault diagnosis problems. Four of the chapters deal with fuzzy sets
applications. Three chapters deal with neural network applications to fault
diagnosis. Two chapters are concerned with neuro-fuzzy techniques for fault
diagnosis. The last chapter considers the problem of diagnosing complex systems
using local agents. These agents may be implemented by using computational
intelligence-based fault diagnosis techniques.

The book has a unifying content as most of the chapters revolve around
two main applications. These are aero-engines fault diagnosis, and the diagnosis
benchmark proposed within the European Commission’s FP5 DAMADICS project
(http://www.eng.hull.ac.uk/research/control/damadics1.htm), respectively. The
aeroengines applications, described in Chapters 2 and 6, have been developed by
the research group at Cranfield University, UK, led by Professor Riti Singh. The
applications to the DAMADICS diagnosis benchmark problem, which feature the
flow control valve, are described in five chapters and have been developed by the
research group at Instituto Superior Técnico, Lisbon, Portugal, led by Professor
José Sá da Costa.

In Chapter 1, Bocaniala and Palade present an overview of the main
computational intelligence techniques and their applications to the fault diagnosis
field. The advantages and disadvantages of each methodology when applied to
diagnosis of systems featuring lower or larger complexity are discussed. The
methodologies reviewed include neural networks, fuzzy systems, neuro-fuzzy
systems, and genetic algorithms, and are the methodologies employed for diagnosis
in the remaining chapters. This chapter also introduces the benchmarks used
throughout the book.

The next four chapters, from Chapter 2 to Chapter 5, deal with fuzzy sets
applications to fault diagnosis. In Chapter 2, Marinai and Singh present an
application of fuzzy sets to gas path diagnostics of aero-engines. The objective is to
estimate the changes in engine components’ performance resulting from the engine

Computational Intelligence in Fault Diagnosis xiii

degradation over time. It uses only few measurable parameters, which are inevitably
affected by noise. The use of fuzzy logic permits the noisy measurements to be
successfully used. Fuzzy rules are used to map input sets of measurements into
faulty output classes of performance parameters in a constrained search space. This
enables problem reduction and is aimed at overcoming the difficulty of analytical
formulation. The arrangement of the diagnostics model and its outcome can be
attained in a relatively short time. This makes the technique suitable for on-board
use.

Mendonça, Sousa and Sá da Costa describe in Chapter 3 the application of
optimised fuzzy models to fault detection and isolation systems. In this approach,
fuzzy models or observers are used for both normal operation and faulty operation.
The fuzzy observers are obtained from simulated data driven by real data. The
inputs of the fuzzy models are selected using a regularity criterion algorithm. The
parameters of the fuzzy models are optimised using a real-coded genetic algorithm.
The scheme uses these fuzzy observers to compute the residuals. The application of
this approach to a pneumatic servomotor actuated industrial valve, which is the
benchmark problem studied within the DAMADICS project, has the ability to
detect and isolate a large number of faults. The data also contains noise, which
increases the difficulty in detecting and isolating the faults.

In Chapter 4, Bocaniala and Sá da Costa present a fuzzy classifier
employed for fault diagnosis purposes that is applied with good results to the
DAMADICS diagnosis benchmark problem. The fuzzy classifier identifies the
areas in the sensor measurements space corresponding to normal and faulty
operating states by using fuzzy subsets. The main advantages of the developed
fuzzy classifier are the high accuracy with which it delimits the areas corresponding
to different system states, and the high precision of the discrimination within
overlapping areas.

In Chapter 5, the last chapter concerned with fuzzy logic applications,
Stefanoiu and Ionescu introduce a nonconventional method of fault diagnosis. It is
based upon some statistical and fuzzy concepts. The intention is to automate a part
of human reasoning when performing the detection and classification of defects by
the use of vibrations. The defect classification maps obtained allow the user to
perform reliable detection and isolation of defects, independent of their nature.
Signal prefiltering is not mandatory; the fuzzy model is able to work with the raw
vibration as well as with prefiltered data.

The following three chapters are concerned with neural network
applications to fault diagnosis. In Chapter 6, Ogaji and Singh present a hierarchical
approach to gas path diagnostic for aero-engines and use multiple neural networks.
The networks involved are trained to detect, isolate and assess faults in some
components of a single-spool gas turbine. The level of accuracy achieved by this
decentralised application of ANNs shows benefits over techniques that require only
a single network for fault detection, isolation and assessment.

In Chapter 7, Lipnickas gives the description of a two-stage neural
network-based classifier system for the fault diagnosis of industrial processes. The
first-stage neural network classifier operates as primary fault detection unit, and is
used to distinguish between normal operating state and abnormal operating states.
In order to reduce the number of false alarms, a penalty factor is introduced in the

xiv V Palade, CD Bocaniala and L Jain (Eds.)

training error cost function. The second-stage neural network classifier is used to
differentiate between different faults. The performance of the proposed approach is
validated by application to the DAMADICS diagnosis benchmark problem.

In Chapter 8, Ariton focuses on fault diagnosis of artefacts occurring in
industry that execute various tasks involving conductive flows of matter and
energy. The proposed multifunctional conductive flow systems abstraction is close
to that of a human diagnostician when conceiving entities and relations on physical,
functional and behavioural structures, that is, reasoning that is intrinsically
abductive. This chapter presents the use of abduction by its plausibility and
relevance using a neural network-based approach. The case study on a hydraulic
installation of a rolling mill plant exemplifies the knowledge elicitation process and
diagnostic expert system building and running.

The subsequent two chapters discuss neuro-fuzzy applications to fault
diagnosis. In Chapter 9, Chen, Lim and Lai apply Fuzzy Min-Max (FMM) neural
networks to the diagnosis of heat transfer and tube blockage conditions of the
circulating water system in a power generation plant. If the FMM neural network is
integrated with a rule extraction algorithm, then it is able to overcome the “black-
box” phenomenon by justifying its predictions with fuzzy if-then rules that are
compatible with the domain information as well as the opinions of the experts
involved in the maintenance process. To assess the effectiveness of the FMM
network, real sensor measurements are collected and used for diagnosis. The FMM
network parameters are systematically varied and tested.

In Chapter 10, Calado and Sá da Costa describe a fault diagnosis approach
based on Hierarchical Fuzzy Neural Networks (HFNNs). In contrast to conventional
feed-forward neural networks, the employed HFNN has an additional layer that
converts the increment in each on-line measurement into fuzzy sets. Thus, on-line
measurement data are compressed into qualitative values whose semantics are
represented by fuzzy sets and, hence, the training of the HFNN and the diagnosis of
the faults can be carried out more efficiently. The methodology is applied to the
DAMADICS diagnosis benchmark.

Finally, in Chapter 11, Bocaniala and Sá da Costa describe a novel
framework for using causal models in distributed fault diagnosis. The causal model
associated with the monitored system is split into minimally separated and causally
independent regions. The fact that each region is causally independent from the rest
of the model allows performing the diagnosis of that region locally, without
needing to communicate with the rest of the model. This property allows
maintaining the diagnosis focus exclusively on those regions of the map that are
affected by faults. Each local diagnosing agent can be implemented using
computational intelligence approaches described in previous chapters or more
traditional techniques, like observers. Hence, monitoring a complex system
becomes a tractable problem.

In summary, the book contains an illustrative selection of chapters on fault
diagnosis approaches using computational intelligence methodologies. The book is
intended mainly for doctoral students and researchers who wish to find out the
latest developments and research results in the area. They will need this book to
enhance their knowledge and to provide a foundation for further study.

Computational Intelligence in Fault Diagnosis xv

The editors wish to use this opportunity to thank all the authors for their
valuable contributions to this book. Considerable thanks are due to reviewers for
providing extremely useful comments that helped so much when deciding the final
form of the book. Not lastly, special thanks go from Vasile Palade and Cosmin
Danut Bocaniala to Professor Ron J. Patton, the Head of the DAMADICS project
and one of the most respected and brilliant researchers worldwide in the area of
fault diagnosis, for opening up to us this fascinating domain of fault diagnosis.

We very much enjoyed editing this book and hope that it will prove useful
to its readers.

January 2005 Vasile Palade
 Cosmin Danut Bocaniala
 Lakhmi Jain

Contents

Contributors v

Foreword ix

Preface xi

1 Computational intelligence methodologies in fault diagnosis:
Review and state of the art 1

Cosmin Danut Bocaniala and Vasile Palade

2 A fuzzy logic approach to gas path diagnostics in aero-engines 37
Luca Marinai and Riti Singh

3 Fault detection and isolation of industrial processes using
optimized fuzzy models 81

Luis Mendonça, João Sousa and José Sá da Costa

4 A fuzzy classification technique applied to fault diagnosis 105
Cosmin Danut Bocaniala and José Sá da Costa

5 Fuzzy-statistical reasoning in fault diagnosis 125
Dan Stefanoiu and Florin Ionescu

6 Artificial neural networks in fault diagnosis: A gas turbine
scenario 179

Stephen Ogaji and Riti Singh

xviii V Palade, CD Bocaniala and L Jain (Eds.)

7 Two-stage neural networks based classifier system for fault
diagnosis 209

Ar nas Lipnickas

8 Soft computing models for fault diagnosis of conductive
flow systems 231

Viorel Ariton

9 Fault diagnosis in a power generation plant using a neural
fuzzy system with rule extraction 287

Kok Yeng Chen, Chee Peng Lim and Weng Kin Lai

10 Fuzzy neural networks applied to fault diagnosis 305
João Calado and José Sá da Costa

11 Causal models for distributed fault diagnosis of complex
systems 335

Cosmin Danut Bocaniala and José Sá da Costa

Index 357

1. Computational Intelligence
Methodologies in Fault Diagnosis: Review
and State of the Art

Cosmin Danut Bocaniala and Vasile Palade

This first chapter of the book introduces the reader to the area of computational
intelligence techniques and to their significant and abundant applications to fault
diagnosis. Fault diagnosis represents an important contemporary research field, due
to the ever-increasing need for safety, maintainability and reliability of industrial
plants. The research in this field influences important areas of our day-to-day life by
increasing security when using safety-critical devices, extending the lifetime of
many expensive devices, and improving efficiency of manufacturing lines, which
leads to smaller production expenses and lower prices for the end user.

The main problems raised by the processes taking place within modern
industrial plants are their high nonlinearity, noisy signals, and uncertainty.
Computational intelligence techniques – neural networks, fuzzy techniques, genetic
algorithms, etc. – are the very answer of the fault diagnosis research community to
these problems. This book represents a collection of recent results on applying
various computational intelligence techniques to fault diagnosis. In this introductory
chapter, the reader is presented with a short description of the main computational
intelligence techniques together with a literature review on their applications to
fault diagnosis.

Another major problem raised by the modern industrial plants is their high
level of complexity. The complexity of a plant is understood here as the
impossibility to model its global emergent behavior using state-of-the-art modeling
techniques. Unfortunately, even if they offer better performance than mathematical
models when modeling processes with reasonable complexity, the computational
intelligence techniques cannot successfully model very complex processes.

The answer given by the research community to this problem is to develop
distributed fault diagnosis methodologies. The main idea is to partition the
monitored system in subsystems having a reasonable complexity level and, then, to
successfully apply state-of-the-art methodologies on each one of them. The global
diagnosis of the system is going to be based on all these local diagnosis processes.
Implementing the local diagnosis processes using computational intelligence
methodologies retains their ability to treat the local nonlinearities, noise and
uncertainty. The book contains a special chapter dealing with distributed fault
diagnosis methodologies.

2 V Palade, CD Bocaniala and L Jain (Eds.)

1.1. Fault Diagnosis, Techniques and
Approaches

Fault diagnosis research deals with real-world problems as plant efficiency,
maintainability and reliability. For safety-critical systems, such as nuclear plants
and aircrafts, the problem of detecting the occurrence of faults is of high
importance. The consequences of faults in such systems could be disastrous in
terms of human mortality and environmental impact. To a lesser extent, fault
detection in process and manufacturing industries is also crucial in order to improve
production efficiency, quality of the product and cost of production.

There are two main directions for development of fault diagnosis systems:
using hardware redundancy or using analytical redundancy. Hardware redundancy
uses multiplication of physical devices and, usually, a voting system to detect the
occurrence of a fault and its location in the system. The main problem in this
approach is the significant cost for the necessary extra equipment. Analytical
redundancy uses instead redundant functional relationships between variables of the
system. The main advantage of this approach compared to hardware redundancy is
that no extra equipment is necessary. This chapter reviews fault diagnosis schemes
based on analytical redundancy.

The early 1970s mark the beginning of analytical redundancy-based fault
diagnosis research. Beard (1971) developed at MIT an observer-based fault
detection scheme. Jones (1973) continued his work. Their contribution is known as
the Beard-Jones Fault Detection Filter. Mehra and Peschon (1971) and Willsky and
Jones (1974) were the first to use statistical approaches to fault diagnosis. Clark and
his colleagues (Clark, Fosth and Walton, 1975) applied for the first time Luenberger
observers. Also, Mironovsky (1980) proposed a residual generation scheme based
on consistency checking on the system input and output over a time window.

The 1980s and early 1990s represent a period of time during which the
major approaches on quantitative fault diagnosis were developed: observer-based
approach, parity relation method, parameter estimation method, etc. Some
important tutorial papers from this period are Frank (1987), Isermann (1991),
Basseville and Nikiforov (1993). It is to be noted that these methodologies are well-
established theoretically. For this reason, in this book they are called the classical
fault diagnosis methodologies. These methodologies have in common the use of a
set of analytical redundancy relationships that represents the model of the system
describing the desired performance of the monitored system. The system is
monitored for possible digressions from this model, that indicate occurrences of
faults and that may assist in isolating the faulty components. The research
community grouped around this general approach is known as the Fault Detection
and Isolation (FDI) community.

In 1991, a Steering Committee called SAFEPROCESS (Fault Detection,
Supervision and Safety for Technical Processes) has been created within IFAC
(International Federation of Automatic Control). Due to its importance, in 1993,
SAFEPROCESS became a Technical Committee within IFAC. One important
initiative of this committee was to define a common terminology in the FDI field
(Isermann and Ballé, 1997).

Computational Intelligence in Fault Diagnosis 3

During the last decade, the research focused on fault diagnosis for
nonlinear systems. Computational intelligence techniques – neural networks, fuzzy
logic, neuro-fuzzy systems, and genetic algorithms – have been extensively and
successfully applied to fault diagnosis. A recent tutorial on the use of these methods
in the FDI community is provided in (Patton et al., 1999; 2000).

In the late 1980s a group of Artificial Intelligence researchers
independently proposed a fault diagnosis theory based on First-Order Logic. The
system is modeled using the set of basic components of the system and the
connections between them. The diagnosis consists in identifying the possible faulty
components via an inference process. The papers laying the foundations of this
theory are (Reiter, 1987) and (de Kleer and Williams, 1987). A more recent survey
on this approach may be found in (Hamscher et al., 1992). The research community
that follows this approach is known as the Model-Based Diagnosis (MBD)
community. The relationship between the FDI approach and the MBD approach is
studied in (Cordier et al., 2000) and (de Kleer and Kurien, 2003).

The content of this introductory chapter is organised as follows. Section
1.1 contains a general discussion on fault diagnosis, including basic terminology
and its relation to control systems. It also briefly surveys classical fault diagnosis
methodologies. Section 1.2 provides a short description of the main computational
intelligence techniques – neural networks, fuzzy techniques, neuro-fuzzy systems,
genetic algorithms – together with a literature review on their applications to fault
diagnosis. The section includes discussions on the advantages and disadvantages of
each methodology, which can help the user to decide which method is the best for
his specific case study. It is noteworthy that many times hybrids of computational
intelligence methodologies are used in practice, in order to sum up their advantages
and to overcome their disadvantages. For a recent review on hybrid intelligent
systems, see (Negoita et al., 2005). Section 1.3 contains concise descriptions of the
benchmarks used in the book. Specific details regarding these benchmarks are
discussed in individual chapters. The last section draws some conclusions on the
practical benefits of the surveyed methodologies.

1.1.1. Basic Definitions

The basic notions presented in this subsection follow the IFAC Technical
Committee – SAFEPROCESS – terminology in the field (Isermann and Ballé,
1997) as used by Chen and Patton (1999).

1.1.1.1. Fault Diagnosis. Fault-Tolerant Control
A fault represents an unexpected change of system function, although it may not
represent a physical failure. The term failure indicates a serious breakdown of a
system component or function that leads to a significantly deviated behavior of the
whole system. The term fault rather indicates a malfunction that does not affect
significantly the normal behavior of the system.

An incipient (soft) fault represents a small and often slowly developing
continuous fault. Its effects on the system are in the beginning almost unnoticeable.
A fault is called hard or abrupt if its effects on the system are larger and bring the
system very close to the limit of acceptable behavior.

4 V Palade, CD Bocaniala and L Jain (Eds.)

A fault is called intermittent if its effects on the system are hidden for
discontinuous periods of time (Isermann, 1997). Although a fault is tolerable at the
moment it occurs, it must be diagnosed as early as possible as it may lead to serious
consequences in time.

A fault diagnosis system is a monitoring system that is used to detect faults
and diagnose their location and significance in a system. The system performs the
following tasks:

fault detection – to indicate if a fault occurred or not in the
system
fault isolation – to determine the location of the fault
fault identification – to estimate the size and nature of the fault

The first two tasks of the system - fault detection and isolation - are
considered the most important. Fault diagnosis is then very often considered as fault
detection and isolation (FDI).

A fault-tolerant control system is a controlled system that continues to
operate acceptably following faults in the system or in the controller. An important
feature of such a system is automatic reconfiguration, once a malfunction is
detected and isolated. Fault diagnosis contribution to such a fault-tolerant control
system is detection and isolation of faults in order to decide how to perform
reconfiguration.

1.1.1.2. Diagnosis Based on Analytical Models
“The model based fault diagnosis can be defined as the determination of the faults
in a system by comparing available system measurements with a priori information
represented by the system’s analytical/mathematical model, through generation of
residuals quantities and their analyses. A residual is a fault indicator that reflects
the faulty condition of the monitored system” (Chen and Patton, 1999).

The problem that occurs when using an analytical model for the given
system is that it cannot perfectly model uncertainties due to disturbances and noise.
This results in differences between the analytical model output and the system
output due to nonmodeled dynamics and other uncertainties. These differences may
cause the residuals to indicate erroneously faults. A robust FDI scheme represents a
FDI scheme that provides satisfactory sensitivity to faults, while being robust
(insensitive or even invariant) to modeling uncertainties (Frank, 1991; Patton and
Chen, 1996; 1997) and to noise. One of the main challenges in designing a robust
FDI scheme is to make it able to diagnose incipient faults. The effects of an
incipient fault on a system are almost unnoticeable in the beginning, thus effects of
uncertainties on the system could hide these small effects.

A fault diagnosis task consists of two main stages: residual generation and
decision-making (Chow and Willsky, 1980) (Figure 1.1). Residual generation is a
procedure for extracting fault symptoms from the system, using available input and
output information. A residual generator represents an algorithm used to generate
residuals (Chen and Patton, 1999). Decision-making represents examining the
residual signals in order to establish if a fault occurred and isolate the fault.

Computational Intelligence in Fault Diagnosis 5

SYSTEM

RESIDUAL

GEN ERATION

DECISION

Figure 1.1. The two main stages of fault diagnosis.

1.1.2. Modeling Systems with Faults

This subsection provides the general analytical description of a system considered
with all possible faults. The residual generation structure is given and analytical
conditions for fault detectability and isolability discussed. For the sake of
simplicity, it will be assumed that a linear model reproduces the system dynamics.
In the case of a nonlinear dynamics, it is assumed that the model used will be a
linearized model around a few operating points. The state space model presented in
the first subsection stands only for the cases when a linear model can represent the
system. The nonlinear systems can be modeled using a set of linear models built
around a set of operating points. The transition between different operating regions
is performed using for instance fuzzy logic. The technique has been introduced by
Takagi and Sugeno (1985).

The information used for FDI is the measured input to the actuators and
the output of the sensors (Figure 1.2). The measured output y(t) is used by the
feedback control, and the controller generates the measured input u(t). If the input
u(t) is available, then FDI uses the open-loop model of the system, even if it is in a
control loop. If the input is not available, then FDI needs to use, as input, the
reference command uC(t). In this case, the system model used for FDI is the closed-
loop model. In this situation, the controller plays an important role because a robust
controller can hide the effects of the faults, therefore making FDI very difficult.
This problem is addressed in (Patton, 1997).

1.1.2.1. General Structure of Faulty Systems
The state space model of the monitored system shown in Figure 1.2 is

() () ()
() () ()

R

R R

x t Ax t Bu t
y t Cx t Du t

(1)

where x Rn is the state vector, uR Rr is the input vector to the actuator and yR Rm

is the system output vector; A, B, C and D are known matrices with known
dimensions.

The faults in the system could occur due to actuators, system components
and sensors. When considering faults, the dynamics of the system change as
follows:

actuator fault

6 V Palade, CD Bocaniala and L Jain (Eds.)

uR(t)=u(t)+fa(t) (neglecting actuator dynamics), fa Rr is the actuator
vector fault

system dynamics (components) fault
x(t)=Ax(t)+BuR(t)+fc(t), fc Rn is the component vector fault

sensor fault
y(t)=yR(t)+fs(t) (neglecting sensor dynamics), fs Rm is the sensor
vector fault

Actuators
System

Dynamics

Sensors Controller

Fault Detection

and Isolation

u
C
(t) u(t) y(t)

Figure 1.2. The information used by a fault diagnosis system.

If the previous three fault categories are considered simultaneous, the
system model changes to:

() () () () ()
() () () () ()

a c

a s

x t Ax t Bu t Bf t f t
y t Cx t Du t Df t f t

(2)

In a more general case, the state-space model describes a system with all
possible faults as:

1

2

() () () ()
() () () ()

x t Ax t Bu t R f t
y t Cx t Du t R f t

(3)

where f(t) Rg is a fault vector, whose elements fi(t) (i=1,…,g) correspond to
specific faults, and R1 and R2 are faults entry matrices which represent the effect of
faults on the system.

Equation 3 gives the general model for a faulty system in the time domain.
For the frequencies domain, the input - output model transfer matrix will
consequently be:

y(s)=Gu(s)u(s)+Gf(s)f(s) (4)
where

1

1
1 2

() ()

() ()
u

f

G s C sI A B D

G s C sI A R R
(5)

1.1.2.2. General Structure of Residual Generation
The input values of a residual generator are the input and the output of the
monitored system. This fact is expressed mathematically by Eq. 6, where Hu(s) and
Hy(s) are transfer matrices realizable using stable linear systems:

r(s)=Hu(s)u(s)+Hy(s)y(s) (6)

Computational Intelligence in Fault Diagnosis 7

The residual must be designed (in the ideal case) to be zero for the fault-
free case and non-zero when faults occur:

r(t)=0 if and only if f(t)=0 (7)
Therefore, the matrices Hu(s) and Hy(s) must satisfy next constraint

condition:
Hu(s)+Hy(s)Gu(s)=0 (8)

The above equation is called the generalized representation of all residual
generators (Patton and Chen, 1991). The design of a residual generator consists
simply in choosing two matrices Hu(s) and Hy(s), which satisfy Eq. 8. According to
the parameterization chosen for Hu and Hy, a different way to generate the residuals
is obtained.

Fault detection is performed comparing the residual evaluation function
J(r(t)) with a threshold function T(t) using the next test:

(()) () for () 0
(()) () for () 0

J r t T t f t
J r t T t f t (9)

1.1.2.3. Fault Detectability. Fault Isolability
In the presence of system faults, the residual vector will be:

1 21 2

() () () () () ()

() () () () () () ()
y f rf

rf rf rf gg

r s H s G s f s G s f s

r s G s f s G s f s G s f s (10)

where Grf(s)=Hy(s)Gf(s) represents the relation between residual and faults, [Grf(s)]i
is the i-th column of matrix Grf and fi(s) is the i-th component of f(s).

The fault fi is detectable in the residual r(s) if the corresponding column of
Grf(s) is nonzero, [Grf(s)]i 0; this is called the fault detectability condition of the
residual r(s) to the fault fi (Chen and Patton, 1999). There are cases when a fault is
present in the system, but a residual that satisfies the detectability condition does
not indicate the fault as a continuous signal. This condition is not enough for
detecting such faults, as noticed in (Patton and Kangethe, 1989) and (Frank et al.,
1993).

The fault fi is called strongly detectable in the residual r(s) if the steady-
state gain [Grf(0)]i 0. This is called the strong fault detectability condition of the
residual r(s) to the fault fi (Chen and Patton, 1999).

A fault is called isolable using a residual vector set, if it is distinguishable
from other faults using this set. Usually, each residual from the considered set is
designed to be sensitive to a subset of faults and insensitive to the others. There are
three main approaches to design residual sets.

A residual set is called a structured residual set, if it has the required
sensitivity to specific faults and insensitivity to the remaining faults (Gertler, 1991).
If all the faults are to be isolated, the residual set is called a dedicated residual set,
which was inspired by the dedicated observer scheme (Clark, 1978). A residual
vector is called a generalized residual set if each residual component is sensitive to
all faults but one.

Another approach to perform fault isolation is to design a directional
residual vector, which lies in a fixed and fault-specified direction (or subspace) in
the residual space, in response to a specific fault. In this case, each fault is assigned

8 V Palade, CD Bocaniala and L Jain (Eds.)

a constant vector called the signature direction of that fault (Chen and Patton,
1999).

1.1.3. Classical Diagnosis Methods

The central issue in model-based fault diagnosis is residual generation. Each
residual generation method has its associated specific technique of computing the
residual vector. In this section, three closely correspondent methods are briefly
presented first: observer-based, parity relation and factorization. The parameter
estimation method is also shortly presented.

The goal of an observer-based approach is to estimate system output using
Luenberger observers in a deterministic setting (Frank, 1987; Patton and Kangethe,
1989), or Kalman filter in the stochastic case (Tzafestas and Watanabe, 1990). Then
the output estimation error is used as a residual.

In the deterministic case, a functional Luenberger observer is used to
estimate the output as a linear function of the state, Lx(t):

() () () ()
() () () ()

x t Fz t Ky t Ju t
w t Gz t Ry t Su t

(11)

where x(t) Rq is the state vector of this functional observer; F, K, J, R, G and S are
matrices with appropriate dimensions. The output w(t) of this observer is called an
estimate of Lx(t), for the system given in Eq. 11, in an asymptotic sense, if in the
absence of faults (Chen and Patton, 1999):

lim () () 0
t

w t Lx t (12)
The parity relation method consists in checking the consistency of the

measurements of the monitored system (Chen and Patton, 1999). If we consider the
measurements of an n-dimensional vector using m sensors, the equation is:

y(k)=Cx(k)+f(k)+e(k) (13)
where y(k) Rm is a measurement vector, x(k) Rn is the state vector, f(k) is the
vector of sensor faults, e(k) is the noise vector and C is an m x n measurement
matrix.

In order to perform fault detection and isolation, the vector y(k) can be
combined into a set of linearly independent equations to generate the parity vector
(residual) (Eq. 14). The residual r(k) must have zero value for the fault-free case.
Therefore, the matrix V must satisfy the constraint VC=0. If the constraint holds, the
residual depends only on the faults and noise (Eq. 15),

r(k)=Vy(k) (14)
r(k)=v1[f1(k)+e1]+...+ vm[fm(k)+em] (15)

where vi is the i-th column of V, fi is the i-th element of f(k) which stands for the
fault in the i-th sensor.

The factorization method synthesizes the residual generator in the
frequency domain by factorization of the Gu(s) matrix from the input-output model
of the monitored system. The method was initiated by Viswanadham, Taylor and
Luce (1987) and extended by Ding and Frank (1990). The factorization method
proposed by Vidyasagar (1985) states that for any m x r proper rational matrix, in

Computational Intelligence in Fault Diagnosis 9

our case Gu(s), there are two stable, rational and realizable matrices M(s) and N(s)
so that

1() () ()uG s M s N s (16)
The residual generator is considered as

r(s)=Q(s)[M(s)y(s)-N(s)u(s)] (17)
The input-output model in the frequency domain is

y(s)=Gu(s)u(s)+Gf(s)f(s) (18)
Using Eq. 17 in Eq. 18, the residual takes the form:

r(s)=Q(s)M(s)Gf(s)f(s) (19)
that is only affected by faults.

The matrix Q(s) could be used to improve the residual performance
responding to faults in a particular frequency region.

System identification techniques could also be used in model-based FDI
(Isermann, 1991; 1997). The premise in parameter estimation methods is that the
faults are reflected in the physical system parameters. The system parameters are
estimated using parameter estimation methods and afterwards compared to the
parameters offered by the reference model obtained in fault-free condition. Any
substantial difference between the two sets of parameters indicates a system fault.

The input-output model is used under the form:
y(t)=f(P,u(t)) (20)

where P is the vector comprising information about system parameters and f is a
function that could be both linear or nonlinear. If the estimation of the P vector at
step k-1 is , then the residual can be defined as in Eq. 21. The isolation task
cannot be easily performed (Isermann, 1984).

1k̂P

1
ˆ() () (, ())kr k y k f P u k (21)

The practice shows that the quantitative methodologies presented in this
section perform well on reasonably small systems. The modeling errors in the case
of small systems do not consistently affect the diagnosis process. Unfortunately,
trying to model accurately enough a complex system proves to be a difficult task.
The main problem is the large number of components of such a system and the even
larger number of interactions between them. There is also a high probability of
obtaining large modeling errors that will affect significantly the diagnosis process.
In this case, it is either impossible to model the behavior of the system, or the model
obtained is too large to be used in practice or even for research purposes.

1.2. Overview of Computational Intelligence
Methodologies in Fault Diagnosis

In order to obtain good performance, analytical approaches to FDI systems require
very accurate mathematical models of the monitored systems. As a result, modeling
errors will affect the performances of the FDI systems; especially when the
monitored system is nonlinear. Using computational intelligence approaches, i.e.,
neural networks, fuzzy logic-based systems, neuro-fuzzy hybrids, or evolutionary

10 V Palade, CD Bocaniala and L Jain (Eds.)

computing techniques, such as genetic algorithms, may compensate for modeling
errors, as these methodologies offer good approximations of non-linear systems.

In their survey on soft computing approaches in fault diagnosis, Patton et
al. (1999) recommend that “a robust FDI system should combine both numerical
(quantitative) and symbolic (qualitative) information”. The class of hybrid systems
called neuro-fuzzy systems, combinations between neural networks and fuzzy
systems, represents an example of such robust systems. Another class of robust FDI
systems, in the previously defined sense, represents combinations between classical
approaches, i.e., observer-based or parameter estimation, used for residual
generation phase, on the one hand, and neural networks, fuzzy logic, or
evolutionary computing techniques, used for decision-making phase, on the other
hand.

The purpose of this section is to provide a review on the recent
computational intelligence approaches to fault detection and isolation. The first
subsection presents recent neural network applications. The second subsection
brings in the latest fuzzy logic contributions. The neuro-fuzzy systems are discussed
in the fourth subsection. The last subsection describes the way genetic algorithms –
the most known and, at the same time, the most commonly used evolutionary
computing technique – are employed for diagnosis purposes. Besides genetic
algorithms, there are other emerging evolutionary computing techniques used, with
very good results, for solving fault diagnosis problems. The most promising one is
the particle swarm optimization (PSO) technique (Unland and Ulieru, 2005).

1.2.1. Neural Network Applications

Neural networks represent information processing systems formed by
interconnecting simple processing units called neurons. Each neuron is an
independent processing unit that transforms its input via a function called activation
function. The connections between neurons are characterized by weight values that
represent the memory of the network. There are three important characteristics of
neural networks that make them a suitable tool for modeling the behavior of a
system: generalization ability, noise tolerance and fast response once trained
(Puscasu et al., 2000). Generally, the input-output vectors of a system represent
values measured by sensors, a fact that introduces a certain level of noise. Even if
the training data are affected by noise, a neural network is still able to generalize the
system behavior, the level of accuracy being proportional to the level of noise.

SYSTEM

NN

u
y

z r

Figure 1.3. Residual generation using a neural network.

Computational Intelligence in Fault Diagnosis 11

 NN.

.

.

.

.

r1

r2

rn

fault1

faultm

normal

Figure 1.4. Residual vector r=(r1,…,rn) mapping into a normal or faulty class.

Table 1.1. Frequently used neural network architectures in recent papers

Neural Networks for Modeling Neural Networks for Classification

Multilayer Perceptron Networks Multilayer Perceptron Network

Recurrent Neural Networks Radial Basis Function Networks

Dynamic Neural Networks SOM (Self-Organizing Map) Networks

Counter Propagation Networks Probabilistic Neural Networks

GMDH (Group Method of Data Handling)

Networks

CMAC (Cerebellar Model Articulation

Controller) Networks

Neural networks may be applied in FDI systems for both detection and
isolation. For the detection phase, the normal behavior of the monitored system is
modeled using a neural network. Residual signals are generated by comparing the
output of the neural network with the output of the system (Figure 1.3). For the
isolation phase, a neural network is used to perform the classification of the
residuals into the corresponding classes of faults (Figure 1.4).

There are FDI systems that employ neural networks for both detection and
isolation, but also hybrid FDI systems that use neural networks for either detection
or isolation phase only. A list of neural network architectures frequently used in
recent fault diagnosis applications is given in Table 1.1, which shows that most of
the recent research effort focused on the use of neural networks for system
modeling purposes.

1.2.1.1. Multilayer Perceptron Networks
Multilayer Perceptron (MLP) Networks have a simple architecture shown in Figure
1.5 and they may be used for both modeling and classification tasks. The layers are

12 V Palade, CD Bocaniala and L Jain (Eds.)

fully interconnected in one direction, from the input layer toward the output layer.
The commonly used training algorithm is backpropagation, that seeks to update the
weights of the network so that a sum-squared-error decreases toward a desired
minimum value. The MLP networks do not contain dynamics in their structure.
Therefore they are not suitable for modeling systems with large dynamics.
However, due to their simplicity, they are used for modeling the monitored system
behaviour when the transient error is not important (Paton et al., 1999).

. . .

input layer 1st hidden layer output layer

Figure 1.5. Multilayer Perceptron Network architecture.

An MLP network used for classification encodes the mapping between the
residual vector, which feeds the input of the network, and the faulty vector, which
represents the output of the network. An MLP classifier establishes the boundaries
between the areas occupied by the different states of the system (Haykin, 1999).
Therefore, the performance of an MLP classifier, which represents the percentage
of the well-classified inputs per state, will be influenced by the degree of
overlapping between the states of the system. The current state of the system will be
identified according to the area that the input symptoms vector belongs to.
However, this approach is too rigid. Take, for instance, an incipient fault that,
shortly after occurring in the system, can hardly be distinguished by the normal
state. The temporal development of such a fault can be rather described as a gradual
passing from normal operating conditions to the plain manifestation of the fault.
That is, the trajectory of the input symptoms vector moves gradually from the area
corresponding to the normal behavior to the area corresponding to that incipient
faulty behavior.

In order to model the behavior of dynamic systems using an MLP network,
one can extend its architecture adding tapped delay lines. The tapped delay lines
used with an input of the neural network allow the network to consider not only the
current value of an input, but also a given number of past values of that input. This
allows modeling the behavior of the system by taking into consideration the
dynamics of the considered input over a time window. Bendtsen and Izadi-
Zamanabadi (2002) used an MLP network enhanced with tapped delay lines not
only to model the monitored system, but also to estimate an adaptive threshold to be
applied on the residual signals. The authors prove that, given a bounded
perturbation of the input of the neural network, there are calculable bounds for all
possible outputs.

Computational Intelligence in Fault Diagnosis 13

An interesting neural network implementation of diagnosis tasks, based on
MLP and Counterpropagation networks, is presented in (Ariton and Palade, 2005).
Some details on this approach are presented in Chapter 8 of this book.

1.2.1.2. Recurrent Neural Networks
The class of Recurrent Neural Networks (RNNs), with the general structure shown
in Figure 1.6, possesses internal dynamic constituents that allow them to model the
dynamics of the monitored system. The dashed lines in the figure represent the
internal recurrent connections of the network. Their role is to provide feedback
from the next layers of neurons and, usually, their weights are set to unity value.

. . .

input layer 1st hidden layer output layer

Figure 1.6. Recurrent Neural Network architecture.

The RNNs can also be used to perform classification tasks. Roverso (2000)
used ensembles of RNN classifiers to diagnose faults in a Pressurized Water
Reactor (PWR) Nuclear Plant. The use of ensembles addresses the problem of
output stability when using RNNs. The training algorithm for the same RNN
architecture can end up in different local minima if trained with the same training
data but randomly initialized weights. As a result, different versions of the same
RNN can provide different outputs for the same inputs. In the mentioned paper, the
ensemble of RNNs combines the outputs of its constituents into one single result
using the bagging method (Breiman, 1996). The quality of the results obtained
using an ensemble is directly proportional to the level of disagreement among its
constituents (Krogh and Vedelsby, 1995).

Elman Neural Networks (ENNs) are a particular case of RNNs. An ENN
has only one hidden layer fully interconnected with the input and output layers,
with the addition of a feedback connection from the output of each neuron in the
hidden layer to the input of the network. This special feedback feature allows

14 V Palade, CD Bocaniala and L Jain (Eds.)

Elman networks to learn and recognize temporal or spatial patterns. Fuente and
Saludes (2000) employ a bank of ENNs to perform fault isolation.

1.2.1.3. Dynamic Neural Networks
Dynamic Neural Networks (DNNs) have the same architecture as MLPs except that
the usual neurons are replaced by dynamic neurons. The structure of a dynamic
neuron (Ayoubi, 1994) is shown in Figure 1.7. The behavior of a dynamic neuron is
described in Eq. 22 (Korbicz et al., 1999). The output of the adder component, x(k),
represents the weighted summation of the input of the neuron. The internal filter is
the component that introduces dynamics to the neuron transfer function. The past
internal states and outputs of the neuron activity are considered when determining
the current activity of the neuron. Due to this special feature, a DNN needs neither
tapped delay line as the MLPs, nor feedback from the hidden layer neurons as
RNNs, in order to enhance its input with past values. A DNN will model the
dynamics of a system taking as inputs only its current measurements. Therefore, a
DNN will model better than other types of neural networks the dynamics of the
monitored system using the same training data as an MLP network. Finally, the last
component of the neuron (activation) computes the neuron output via the nonlinear
function F and the slope parameter g of this function.

w1

w2

wp

.

.

.

+

linear

dynamics

G F(.)

u1(k)

u2(k)

up(k)

x(k) y’(k) y(k)

adder internal

filter

activation

Figure 1.7. Dynamic neuron structure.

1

1 1

() ()

'() '() ()

() ('())

p
i i

i
n n

i i
i i

x k w u k

y k a y k i b x k i

y k F g y k

(22)

The unknown parameters of a DNN are, besides its weights, the vectors
a=[a1,…,an]T and b=[b1,…,bn]T, and the slope g of each neuron (Eq. 22). Therefore,
the training process of a DNN must incorporate methods for adjusting the weights
as well as methods to estimate these parameters. Korbicz et al. (1999) discuss two
training methods for DNNs in a fault diagnosis application, the Extended Dynamic
Backpropagation (EDBP) algorithm and the Evolutionary Search with Soft
Selection (ESSS) algorithm. In (Patan and Parisini, 2002), stochastic methods are
applied to DNN training for fault diagnosis tasks. Compared to MLP networks or

Computational Intelligence in Fault Diagnosis 15

RNNs, the training of a DNN requires more time, memory, and computational
effort.

Marcu et al. (1999) study the mixing of three variations of DNNs and their
application to generating residuals for a three-tank laboratory system. Marcu et al.
(2000) apply two types of DNNs to model the evaporation station from the Lublin
sugar factory using real process data. The two types of DNNs are the Dynamic
Multilayer Perceptron Networks (DMLPs), previously described, and Dynamic
Radial Basis Function (DRBF) Networks that have dynamics provided by the
ARMA filters in the hidden layers structure (Ayoubi, 1994). A comparative study
of the performance of the two types of networks has been done.

Mirea and Marcu (2002) present a neural network architecture for system
identification, Functional-Link Neural Networks (FLNNs) with dynamic neurons in
the hidden layer. The FLNNs are one-layer perceptron networks that contribute the
inputs of each neuron on the hidden layer with functional transformations of the
common inputs (Patra et al., 1999). The performance of this architecture is
demonstrated on a three-tank laboratory system and on real data from the
evaporation station at the Lublin sugar factory in Poland.

1.2.1.4. Radial Basis Function Networks
These networks are single-layer perceptron networks and they are commonly used
to perform classification tasks. The general architecture of an RBF classifier for
FDI purposes is shown in Figure 1.8. The input of the network is the residual vector
r. The output of the neural network, the faulty vector f, has the components fi=g(r-
ci), i=0,…,m, where the domain of the g function is the [0,1] interval. The first
component of the faulty vector f, f0, stands for the normal state. The interpretation
of the output is that the input residual vector r is as close to the vector ci as is the i-
th component of f to 1, and as far from the vector cj as the j-th component of f to 0 is
close. The vectors ci , i=0,…,m, are called the centers of the neural network.

g

g

g

.

.

.

r
1

r
2

r
n

||r - c
0
||

||r - c
1
||

||r - c

m

||

.

.

.

.

.

.

f 0

f
1

f
m

.

.

.

Figure 1.8. The architecture of an RBF classifier for FDI purpose.

The most frequently used activation function for the hidden layer of RBFs
has the general form given in Eq. 23.

2

2() exp()
2
ug u (23)

16 V Palade, CD Bocaniala and L Jain (Eds.)

Figure 1.9. The influence of parameter on the shape of the activation function.

The parameter represents the width factor, and its influence on the
function is shown in Figure 1.9. The arrow shows the width of the graph of the
function increasing as the parameter increases.

The components of the output of the RBF classifier can be seen as degrees
of belongingness of the residual vector to clusters corresponding to the centers.
Each center also corresponds to a system state and, therefore, the output vector
represents the degrees of assignment of the residual vector to the system states. The
degree of belongingness is gradual and its measure is given by a value in the [0,1]
interval via the g function. As noted at the end of the discussion regarding the MLP
classifiers, expressing the belongingness of the input residual vector to a system
state gradually seems to offer a better description than using the belongingness to a
classical set. Thus, an RBF classifier can express better than an MLP classifier the
assignment of the residuals to the faulty states.

The performance of an RBF classifier depends on the success of tuning the
weights and the centers using the training set. An RBF classifier performs a
clustering operation on the residual vectors in the training set (Haykin, 1999). There
are as many centers as the number of faulty states of the system. If the residual
vectors corresponding to a state naturally group themselves in more than just one
cluster, then the RBF classifier needs as many centers per state as the number of
natural clusters associated with that state.

Another problem of the RBF networks is that they can cope only with
faulty states specified during the training phase. However, if one of the faulty states
that were not specified occurs, it also needs to be detected and isolated. In
(Terstyánszky and Kovács, 2002; Dalmi et al., 2002), a general method is proposed
for improving the fault diagnosis by taking into account these faults that are not
specified during the training of the RBF network. When an unspecified fault occurs,
the architecture of the RBF network used will be updated through introducing a
new neuron on the hidden layer. The new neuron corresponds to the unspecified

Computational Intelligence in Fault Diagnosis 17

faulty behavior. Also, once a new neuron has been introduced, the parameters of the
network must also be updated accordingly.

1.2.2. Fuzzy Logic Applications

Fuzzy logic is used for both fault detection via modeling, and fault isolation via
classification for nonlinear systems. Mamdani (1976) proposed a linguistic tool to
build the fuzzy model of a system. He proposed to model the system behavior using
if-then rules connecting linguistic terms that captured the intuitive understanding of
the available signals by human subjects. For instance, the values associated with a
signal can be placed into three overlapping intervals: small, medium and large.
Takagi and Sugeno (1985) proposed a mathematical tool to build the fuzzy model
of a system. This type of models is more accurate than the Mamdani-type models
for modeling real-world processes. In exchange, the transparency offered by the use
of linguistic terms to human subjects is lost somehow. Another important advantage
of the Takagi-Sugeno approach is the fact that nonlinear systems can be modeled
using a set of linear models built around a set of operating points. The transition
between different operating regions, defined by the previous set of operating points,
is performed using fuzzy logic.

Fuzzy logic is very often used to perform fault isolation tasks. The
relationships between residuals and the faulty states of the monitored system are
expressed by a set of if-then rules. The Mamdani-type models are preferred for this
task due to the transparency offered by using linguistic terms. The training phase
has the purpose of adjusting the shape of the fuzzy membership functions of the
fuzzy sets, by using residuals-faults associations present in the training set. During
the test phase, the residuals presented at the input of the fuzzy classifier are mapped
into the corresponding faulty state using fuzzy inference.

This subsection introduces first the Takagi-Sugeno (1985) fuzzy modeling
technique. Next, it presents the Mamdani-like fuzzy classifier for residual
evaluation used by Frank (1996). This classifier does not represent a practical
choice when dealing with a complex system, as the number of rules that describe
the relationships between residuals and faults is very large. The solution proposed
in (Koscielny et. al., 1999) to overcome the curse of dimensionality is discussed at
the end of this subsection.

1.2.2.1. Fuzzy Modeling of Systems with Faults
Takagi and Sugeno (1985) use fuzzy rules, with the general form given by Eq. 24,
to build the fuzzy model of a system.

R: IF x1 is A1 and … and xk is Ak THEN y=p0+p1x1+…+pkxk (24)
where y is the output of the system whose value is inferred, x1, …, xk are input
variables of the system, A1, …, Ak represent fuzzy sets with linear membership
functions standing for a fuzzy subspace, in which the rule R can be applied for
reasoning.

If the system is described by a set of rules {Ri / i=1,…,n} having the
previous form, and the values of input variables x1, x2, …, xk are x1

0, x2
0,…, xk

0,
respectively, the output value y is inferred following the next three steps.

Step 1. For each Ri, the value yi is computed as follows:

18 V Palade, CD Bocaniala and L Jain (Eds.)

yi=p0
i+p1

ix1
0+…+pk

ixk
0 (25)

Step 2. The truth value of the proposition y=yi is computed as follows:
|y=yi|=| x1

0 is A1 and … and xk
0 is Ak | |Ri|=A1

i(x1
0) …

Ak
i(xk

0) |Ri| (26)

where |*| means the truth value of the proposition *, stands for the min operation,
and A(x)=|x is A|, and it represents the grade of membership of x in A. The value |Ri|
is called the confidence level in the i-th rule and is usually considered to be 1.

Step 3. The output y is computed as the average of all yi with the weights
|y=yi|,

1

1

n i i

i
n i

i

y y y
y

y y
(27)

Let us consider the fuzzy model of a system formed by the next two rules:
1

2

: _ 0.2
: _ 0

R IF x is medium big THEN y x
R IF x is medium small THEN y x

9
.6 2

(28)

Figure 1.10 shows the two linear models corresponding to the two rules
and the output of the fuzzy model. The previously described fuzzy inference insures
a smooth transition between the two fuzzy subspaces corresponding to the rules R1
and R2. It is this property that is appealing when trying to model nonlinear systems.

It is not only the input-output model of a system (Eq. 4) that may be
represented in the framework of the Takagi-Sugeno approach, but also the state
space model of a system (Eq. 1). For this purpose, Ma et al. (1998) use a set of r
fuzzy rules having the form

1 1
() () ()

() ()
() ()

i i
i g ig

i i

x t A x t B u t
IF z t is F and z t is F THEN

y t C x t
(29)

where i=1,…,r, Fij (j=1,…,g) are fuzzy sets, x(t) is the state vector, u(t) is the input
vector, yi(t) is the output vector, and z1(t),…,zg(t) are some measurable system
variables.

In order to perform fault diagnosis of a nonlinear system using its
corresponding state space Takagi-Sugeno model, Lopez-Toribio et al. (2000)
design a fuzzy observer to estimate the system state vector. For the fuzzy observer
design, it is assumed that the fuzzy system model is locally observable, i.e., all (Ai,
Ci), i=1,…,r, pairs are observable. Each fuzzy rule in the Takagi-Sugeno model has
an observer rule associated with itself, with the following general form (Ma et al.,
1998):

1 1() ()

ˆ ˆ ˆ() () () () ()
ˆ ˆ() ()

i g ig

i i i

i i

IF z t is F and z t is F

x t A x t B u t G y t y t
THEN

y t C x t

(30)

where Gi, i=1,…,r, are observation error matrices, and y(t) and ˆ()y t are the final
output of the fuzzy system and the fuzzy observer, respectively.

Computational Intelligence in Fault Diagnosis 19

Figure 1.10. The output of a Takagi-Sugeno fuzzy model.

1.2.2.2. Fuzzy Evaluation of Residuals
Frank (1996) proposes the use of Mamdani-type fuzzy logic for residual evaluation,
in order to isolate the faults that occurred. Let R={r1, r2,…, rm} be the set of
residuals. Each residual ri, i=1,…,m, is described by a number of fuzzy sets {ri1,
ri2,…,ris}, whose membership functions are identified using methods like domain
expert knowledge and learning with neural networks. The causal relationships
between the residuals and faults are expressed by if-then rules having a form similar
to Eq. 31.

ip jqIF (effect = r) AND (effect = r)... THEN (cause is the k - th fault) (31)
The output of the fuzzy classifier is the faulty vector F. The fuzzy

inference process will assign to each component Fi, i=1,…,m, a value between 0
and 1 that indicates the degree with which the normal state (the corresponding
component is F0), or the j-th fault, affects the monitored system, j=1,…,m. If there
is the premise that the system can be affected only by a fault at a time, then the
faulty vector contains only one component larger than a preset threshold value, and
whose corresponding faulty state represents the actual state of the monitored
system. If multiple faults can affect the monitored system, then the components of
the classifier output, which are larger than a preset threshold, indicate the faults that
occurred in the system.

The advantage of using the previous fuzzy classifier is the fact that fuzzy
rules provide details on the mapping of residuals to a faulty state. The disadvantage

20 V Palade, CD Bocaniala and L Jain (Eds.)

is that this fuzzy system does not represent a practical choice when dealing with a
complex system, as the number of rules that describe the relationships between
residuals and faults is very large. A solution to overcome this curse of
dimensionality is presented in the following.

1.2.2.3. Fuzzy Isolation of Faults in Complex Systems
Koscielny et al. (1999) define a fault isolation system as the quadruple
FIS=<F,R,V, >, where F={f0, f1,…,fK} is the set of normal and faulty states (f0

denotes the normal state), R={r1, r2,…, rJ} is the set of residuals,
j

j
r R

V V ,

Vj={v1, v2,…, vI}, Vj is the linguistic variable describing residual rj having as
possible values attributes v1, v2,…, or vI, and

: (), (,)k j kj ji j jF S V f r V v V V (32)
The value of a residual rj is defined by the fuzzy membership function

values corresponding to the attributes of the linguistic variables considered,

ji i jv V (33)
The diagnostic fuzzy inference is done by performing for each rule the

firing degree. The firing degree (Eq. 34) is computed using the values of the
degrees of agreement between a residual rj and its values obtained for fault fk (Eq.
35):

maxkj ji i kjv V (34)

1,...,

1,..., 1,..., 1,...,

hj
j J

k
nj jP

n K j J j J

(35)

The diagnosis consists of the faults, for which the firing degree is the
largest,

max max for 1, ,k kDGN f k K (36)
For diagnosis of complex systems, the dimensions of the sets of faults and

residuals are very large and the previous approach does not represent a practical
choice. Koscielny et al. (1999) simplify the diagnosis procedure noticing that it is
not necessary to analyze all residuals. Instead, a subset of residuals R*, which are
useful for fault identification, and a subset of possible faults F*, need to be
dynamically defined.

1.2.3. Neuro-Fuzzy Systems Applications

Palade et al. (2002) identify two categories of combinations between neural
networks and fuzzy systems. First, there are neuro-fuzzy combinations where each
methodology preserves its identity. The system is composed of a set of neural
networks and fuzzy systems that work independently but their inputs/outputs are
interconnected in order to augment each other’s capabilities. These neuro-fuzzy
systems belong to the class of combination hybrid intelligent systems (Palade et al.,
2002). Second, there are neuro-fuzzy systems where one of the two methodologies

Computational Intelligence in Fault Diagnosis 21

is fused into the other. The neuro-fuzzy systems in this category belong to the
fusion hybrid intelligent systems class. Two subcategories can be distinguished.
There are systems where the neural networks represent the basic methodology and
fuzzy logic the secondary one. In this case, the inputs and/or the outputs and/or the
weights of the neural network are fuzzy sets. Also, there are systems where fuzzy
logic represents the basic methodology and neural networks the secondary one.
These systems feature a set of fuzzy rules put in the form of a neural network in
order to make use of the learning, adaptation and parallelism capabilities provided
by neural networks.

The neuro-fuzzy systems may be used either for modeling (fault detection)
or for classification (fault isolation) purposes. This subsection first presents the
neuro-fuzzy systems used for identifying the parameters of Takagi-Sugeno fuzzy
models, which may be used for fault detection (Babuska, 2002; Palade et al., 2002;
Uppal et al., 2002). Next, a neuro-fuzzy structure used for fault isolation is
discussed, more precisely, the neuro-fuzzy hierarchical structure proposed in
(Calado et al., 2001). Lastly, the B-spline neural networks (Chen and Patton, 1999;
Patton et al., 1999) are shortly presented at the end of this section.

1.2.3.1. Neuro-Fuzzy Systems for Takagi-Sugeno Fuzzy Model
Implementation
The most general Takagi-Sugeno model has as consequence of the fuzzy rules
ARMA (AutoRegressive Moving Average) models of higher order (Palade et al.,
2002), as shown in Eq. 37.

1 2

1 1

1 1

:

 () () ()

i i k ik
n n

i i i
i j j

j j

R IF x is A and x is A

THEN y t c p x t j s y t j (37)

where i=1,…,r, r is the number of rules, x=(x1, x2, …, xk) is the input vector,
pj

i=(pj1
i, …, pjk

i), sj
i=(sj1

i, …, sjk
i), and x(t-j), y(t-j), j=1,…,n1 or n2, represent the past

values for the inputs and output of the system. If the two sums in the consequent of
the rule given in Eq. 37 are missing, we obtain the well-known form of a Takagi-
Sugeno model of order zero.

In order to design a Takagi-Sugeno model, the following three sets of
parameters need to be identified using the available input-output data measurements
(Takagi and Sugeno, 1985):

The actual input variables (x1,…,xk) composing the antecedent of
the rule.
Ai1,…,Aik – the membership functions of the fuzzy sets in the rule
antecedent.
ci, pi, si – the parameters in the consequence of the rule.

The number and the membership functions of the fuzzy sets Ft
s, t=1,…,rs,

associated with each input variable xs, s=1,…,k, must be determined before building
the neural network. The space associated with each variable can be empirically
partitioned into fuzzy sets by analyzing the way the system operates. This can be a
very difficult task when dealing with complex systems. Other techniques that can
be employed are clustering and genetic algorithms. The fuzzy sets in the antecedent
of the rules for input s, s=1,…,k, are elements of the set {Ft

s | t=1,…,rs}.

22 V Palade, CD Bocaniala and L Jain (Eds.)

The first set of parameters (actual inputs used in the antecedent) represents
a subset of all inputs of the system and it can be determined using the heuristic
search algorithm proposed in (Takagi and Sugeno, 1985). The method is concerned
with making two choices. The first choice represents the choice of the variables that
will appear in the antecedent of the rules. Each variable has associated with itself a
fuzzy partition on its space. The second choice represents the number of fuzzy sets
in the partition.

. . .

x1

. . .

xk

.

Fr1

1

F1

k

Frk

k

Π Π . . . Π

. . .

Layer 1

(Input layer)

Layer 2

(Membership function layer)

Layer 3

(Rule layer)

Layer 4

(Model layer)

Layer 5

(Defuzzification layer)

x1 x2
xk

R1 R2
Rs

F1

1

Figure 1.11. Neuro-fuzzy network for Takagi-Sugeno fuzzy model implementation.

The third set of parameters is identified using training algorithms for
neuro-fuzzy systems for Takagi-Sugeno model implementation. These systems put
the set of fuzzy rules of the model under the form of a neural network (Palade et al.,
2002; Babuska, 2002) (Figure 1.11, Figure 1.12). The parameters are identified
during the training of the neuro-fuzzy network. The ARMA model in the
consequence of a fuzzy rule is implemented by a subnetwork as shown in Figure
1.12.

For an example of neuro-fuzzy systems for Mamdani-type fuzzy model
implementation, and a comparison with the neuro-fuzzy systems for Takagi-Sugeno
fuzzy model implementation, see (Palade et al., 2002). The Takagi-Sugeno fuzzy
model is preferred for the residual generation phase, when the accuracy of the
model represents the main concern. For the residual evaluation phase, neuro-fuzzy
classifiers implementing a Mamdani fuzzy model are preferred, because they
provide fuzzy rules meaningful to human subjects via the employed linguistic terms
in the consequence of the rules.

The disadvantage of the neuro-fuzzy systems is that the architecture of the
neuro-fuzzy network can become large for complex systems. This fact poses
difficulties for the neuro-fuzzy network training process. The previous fact
represents the so-called curse of dimensionality and it is inherited from the fuzzy
component of the neuro-fuzzy system.

Computational Intelligence in Fault Diagnosis 23

1

c
i

p
1

i

x(t) x(t-n
1
) y(t) y(t-n

2
)

.

y
i

p
n1

i

s
1

i

s
n2

i

Figure 1.12. The subnetwork corresponding to the i-th neuron in the 4th layer.

1.2.3.2. Neuro-Fuzzy Hierarchical Structures for Fault Isolation
Details on how to use Mamdani-type neuro-fuzzy networks for fault isolation are
presented in (Palade et al., 2002). Calado et al. (2001) propose a hierarchical
architecture of several neuro-fuzzy structures (called by the authors fuzzy-neural
networks (FNNs)) for fault isolation purposes. The structure aims to correctly
classify input symptoms corresponding to both abrupt and incipient faults (single or
multiple), using only abrupt faults symptoms and normal state symptoms during the
training phase. The symptoms are generated by selecting from residuals, and their
combinations, those signals that provide the best distinction between different
operating states of the system.

The hierarchical structure has the three levels shown in Figure 1.13. The
first-order differences for all available measurements are used as symptoms. The
lower level consists of one FNN that receives as input the considered symptoms.
The output of this FNN determines which of the FNNs on the medium level will be
activated. That is, if the i-th component of the output has a value close to 1, then the
i-th FNN on the medium level will be activated. The number of the FNNs on the
medium level is equal to the number of faults considered. Each one of them is also
fed with all symptoms considered. The upper level is used to perform an OR
operation on the outputs of the activated FNNs on the medium level. The
components of the outputs considered for the OR operation must have a value close
to 1.

Let us consider the case when the previous methodology is applied to a
very complex system. Such a system will usually provide a large number of sensor
measurements and, therefore, the number of input symptoms will be very large.
Also, such a system will usually feature a large number of faults. In order to
increase the number of faults that can be diagnosed, the number of fuzzy sets used
must increase too. If the complexity of the rule base is too large, the neuro-fuzzy
systems will experience the curse of dimensionality too.

24 V Palade, CD Bocaniala and L Jain (Eds.)

.

.

.

.

.

.

.

.

. . .

∆

∆

∆

.

.

.

.

.

.

.

.

. . .

∆

∆

.

.

.

.

.

.

.

.

. . .

∆

∆

∆

.

.

.

.

.

.

.

.

. . .

∆

∆

∆

.

.

.

.

.

.

.

.

.

OR

Figure 1.13. A hierarchical structure of neuro-fuzzy networks.

1.2.3.3. B-Spline Neural Networks
The B-spline neural networks are one-layer neural networks with B-spline functions
in the hidden layer. A study on the B-spline neural networks and their applications
in system modeling is given in Brown and Harris (1995). If the input of the neural
network is n-dimensional, there is an interval Xi=[xmin

i, xmax
i] for the i-th dimension,

i=1,…,n, where all possible input values for the i-th dimension lay. Each of these
intervals is partitioned into Ni subintervals , i=1,…,n. For each subinterval j,
j=1,…,Ni, the recurrence relationships used to compute a univariate B-spline
function of order k are given by Eq. 38.

The univariate B-spline functions previously defined possess the following
two properties. First, the functions are defined on a bounded support and the output
of the function is positive on its support (Eq. 39). Second, the sum of the outputs of
the functions is always one (Eq. 40).

1
, 1

1 1

1,

() () ()

1, if
()

0, otherwise

j k jj j
k i k k

j j k j j k

jj
i

x x
B x B x B x

x I
B x

1
j

(38)

, ,() 0, , , () 0, ,j j
j k j kk i k iB x x j B x x j (39)

min max,
1

() 1, ,
iN j i i

k i
j

B x x x x (40)

Computational Intelligence in Fault Diagnosis 25

The multivariate B-spline functions are formed by taking the tensor
product of n univariate B-spline functions, where one and only one univariate
function is defined on each input dimension (Eq. 41). Because the tensor product is
used, the properties of the univariate functions are all extended to the multivariate
functions.

,
1

() ()
i

nt t
k k i

i
B x B xi (41)

A B-spline neural network with n-dimensional input and p neurons on the
hidden layer, standing for as many B-spline univariate (n=1) or multivariate
functions, is shown in Figure 1.14.

B1

B2

Bp

.

.

.

Σ

x1

x2

xn

.

.

.

w1

w2

wp

Figure 1.14. The general structure of a B-spline neural network.

The two properties of B-spline functions underlined above show that the
output of the neural network, which represents a weighted sum of the p functions in
the hidden layer, is always a value in the [0,1] interval. This property is used to
perform fault detection on a B-Spline neural network model of the monitored
system. Patton et al. (1999) and Chen and Patton (1999) use, as input of the neural
network, the inputs and the outputs of the system inside a time window. The output
of the neural network, the residual r(t), is forced to be 0 when the system operates
in normal state, and 1 when a fault occurs in the system.

The fault isolation task can be performed modifying the B-spline neural
network model as shown in Figure 1.15 (Patton et al., 1999; Chen and Patton,
1999). The m+1 output values of the network correspond to the normal state (F0)
and the faulty states (F1-Fm) of the system. When the system operates in normal
state, the corresponding output value, F0, is one and all other output values are zero.
If the j-th fault occurs, then the value of F0 moves towards zero and the value of Fj
moves towards one.

26 V Palade, CD Bocaniala and L Jain (Eds.)

B1

B2

Bp

.

.

.

Σ
x1

x2

xn

.

.

.

Σ

Σ

F0

F1

Fm

Figure 1.15. The general structure of a B-spline neural network for fault isolation.

x
1

x
2

λ
1

2λ
1

1

λ
2

2

λ
2

1

small medium large

s
m

a
l
l

m
e
d
i
u
m

l
a
r
g
e

Figure 1.16. The fuzzy sets corresponding to the univariate B-spline functions.

The structure of a B-spline neural network can be interpreted as a set of
fuzzy rules. To each (multivariate) B-spline function, it may be associated a fuzzy
rule with the general form

i iIF x is A THEN y is w (42)
The fuzzy set Ai represents the fuzzy interpretation of the (multivariate)

function Bi. A multivariate function is formed of n univariate functions. Each i-th
univariate function can be interpreted as a fuzzy set corresponding to the i-th input
(Figure 1.16). The tensor product (Eq. 41) of the univariate functions corresponds
to the logical intersection (AND) of their corresponding fuzzy sets, i.e., the hatched

Computational Intelligence in Fault Diagnosis 27

area in the figure corresponds to the logical intersection (x1 is large) AND (x2 is
medium).

The previous equivalence may be used to insert in the B-spline neural
network knowledge from human experts expressed as fuzzy rules (Chen and Patton,
1999; Brown and Harris, 1995). The fact that the (multivariate) B-spline functions
can be interpreted linguistically allows the set of fuzzy rules to provide the operator
with an explicit description of the causes of the faults. Unfortunately, for a large
number of inputs, the set of derived rules becomes too large and the previous
advantage is lost (Patton et al., 1999). Also, the B-spline neural networks need a
very large learning time even for a modest number of inputs (Patton et al., 1999).

1.2.4. Genetic Algorithms

Genetic algorithms represent the best known and the most commonly used
Evolutionary Computing technique. When used for fault diagnosis purposes, in the
large majority of cases, genetic algorithms represent a support methodology for
other soft computing techniques, especially for parameter tuning tasks. There also
are approaches that use genetic algorithms as a stand-alone technique to perform
diagnosis.

Genetic algorithms are search procedures based on the mechanisms of
natural selection (Goldberg, 1989). Given a population of individuals, natural
selection promotes the survival of the fittest individuals from one generation to
another. An individual is characterized by a set of chromosomes, which represents
the encoding of its features. A chromosome is a string of symbols called genes. A
gene is, in its turn, characterized by its position in the string called locus, and a set
of possible values called alleles. The fitness of an individual is measured via a
function called the objective function. Any individual from each new generation
represents the result of applying natural genetics mechanisms to the individuals
from the previous generation. The natural genetics mechanisms combine the strings
of two individuals in order to obtain new strings of genes. The use of natural
genetics mechanisms insures that, after a number of generations, the population will
contain individuals with maximum fitness, i.e., the objective function reaches the
maximum value.

Usually the genes of an individual are Boolean variables. In this case, the
alleles of every gene are the two Boolean values 0 and 1. One of the advantages of
this representation is that, if the features of an individual can be characterized by the
numerical values fi, i=1,…,p, then the strings of that individual can binary encode
these values. Since an individual is distinguished by the set of its features, which
can be numerically characterized, it represents a point (f1,…,fp) in a p-dimensional
space. Another advantage of using the binary representation is that the strings of
genes of the individuals can be easily combined to produce new individuals. The
large diversity of individuals in this case can be understood as a randomized walk
through the p-dimensional space provided by the features of the individuals. This
randomized walk can be seen rather as a random search guided by the natural
genetics mechanisms towards finding the points (the individuals) with maximum
fitness. Genetic algorithms with genes represented as real or integer numbers are
also very popular.

28 V Palade, CD Bocaniala and L Jain (Eds.)

If an individual is described using the values of the m features, it means
that it will have associated a set of m strings. The strings encode the binary
transformation of the m features. As the length of the i-th string must be the same
for all individuals in the population, an interval of possible values must be set for
each parameter. Setting the right landmarks for each parameter must take into
account the fact that the dimensions of these intervals determine the size of the
search space.

The number of individuals in the population is usually kept to a constant
value n. Each new generation is obtained from the previous one by applying the
natural genetics mechanisms. Three largely used such mechanisms are elitism,
reproduction via crossover, and mutation. The elitism mechanism chooses the most
fit e (e<n) individuals from the previous generation and transfers them in the new
one. The rest of n-e individuals of the new generation are obtained by applying the
reproduction mechanism. This mechanism selects two individuals from the
population and combines their features via crossover and mutation, in order to
obtain new individuals.

The selection of the parents of the new individuals is made taking into
account the fitness values. More precisely, the percent obtained by dividing the
fitness of an individual to the sum of fitness values of all individuals represents the
probability with which that individual will be selected to perform reproduction.
Therefore, the probability for selecting the most fit individuals for reproduction is
larger than the probability of selecting the less fit individuals.

The new individuals are obtained combining the features of selected
individuals. The features combination is done by applying the crossover operation
for the pairs of strings of genes corresponding to the same feature. The location of
the crossing site is selected uniformly random between the first position and the end
of the string. During reproduction, the genes of the two new individuals may suffer
mutations. That is, a gene having the Boolean value 1 can change its value to 0, and
vice versa.

There are two different manners to employ genetic algorithms for fault
diagnosis purposes: directly and indirectly. Indirectly, genetic algorithms are used,
in a large majority of cases, for tuning the parameters of soft computing-based
diagnosis systems, i.e., neural networks (Marcu et al., 2003) or fuzzy logic-based
classifiers (Bocaniala et al., 2004; 2005). Metenidis et al. (2004) proposed the use
of genetic programming (Michalewicz, 1996) for selecting nonlinear systems
models to be used for diagnosis purposes. Sun et al. (2004) use genetic
programming in order to perform feature selection so that the performance of
diagnosis achieved via classification reaches a maximum level. In (Spanache et al.,
2004), genetic algorithms are used to determine the optimal sensor placement in a
plant, in order to achieve the best possible diagnosability. However, genetic
algorithms can be used to directly tackle diagnosis problems. Yangping et al.
(2000) express the diagnosis problem as a function inversion problem, where
S=g(F) represents the function to invert, S the available signals from the plant and F
the set of faults associated with different parts of the plant. The elements in F
represent binary values indicating if the corresponding fault occurred or not.
Genetic algorithms are used to simulate g-1 in order to estimate which faults
occurred.

Computational Intelligence in Fault Diagnosis 29

The main advantage when using genetic algorithms is their capacity to find
optimal solutions when searching throughout spaces having unknown and
complicated topologies. However, genetic algorithms share the same “black box”
feature that neural networks possess. They do not provide information on the
behavior of the approached system, as they belong to the class of optimization
techniques guided by an objective function. Moreover, in order to construct the
function to be optimized, consistent understanding of the behavior of the diagnosed
system is required. Besides the two previous facts, another drawback when using
genetic algorithms is the usually large computational effort needed to reach a
satisfactory optimal solution. It is also important to mention that, when dealing with
complex systems, the dimension of the search space is usually very large. This fact
has a considerable impact on the amount of resources and the computational time
needed by the search process.

1.3. Benchmark Applications

The applications of computational intelligence techniques to fault diagnosis tasks
presented in this book have been validated using five benchmarks. The book
revolves around two main benchmarks: aero-engines gas path faults (Chapters 2 and
6), and the control valve faults used in the European Commission’s FP5
DAMADICS project (Chapters 3, 4, 7 and 10), respectively. Other three chapters
are concerned with diagnosis of a power generation plant (Chapter 9), a rolling mill
plant (Chapter 8), and electrical engines using vibrations (Chapter 5).

The performance of the gas turbine of an aero-engine can be expressed in
terms of a series of performance parameters for the various components of the
system. The two main characteristics of the performance of a gas turbine are the
efficiency and flow function of compressors and turbines, and the discharge
coefficient of nozzles. It is important to mention that these characteristics cannot be
directly measured. However, they can be estimated using related measurable
parameters, i.e., spool speeds, averaged pressures and temperatures, thrust and air
flows. The performance degradation of a component will be reflected by changes in
these measurable parameters. The relationship between measurement parameters
and performance parameters is highly nonlinear and it can be described using the
aerothermodynamics of the gas turbine's components. However, the main difficulty
when modelling this nonlinear relationship is the fact that the sensors used to
collect the measurement parameters operate in an extremely harsh environment. As
a consequence, there is large noise in the measurements and the probability of
sensor failure is very high. Therefore, an effective diagnostic method needs to be
able to cope with the large noise and measurements uncertainty. This chapter
indicates that soft computing methodologies became the preferred tools when
dealing with problems of this type. Chapters 2 and 6 employ for diagnosis purposes
fuzzy logic and neural networks, respectively. More details on this benchmark
problem can be found in these two chapters.

The control valve studied in the European Commission’s FP5
DAMADICS project is used as part of the process at sugar factory Cukrownia
Lublin S.A., Poland. The valve is used to supply water to the steam generator boiler

30 V Palade, CD Bocaniala and L Jain (Eds.)

of an evaporation station. The main technological task of the evaporation station is
to thicken the beet juice following the filtering and cleaning processes. It consists of
seven evaporators: the first five evaporators work with natural juice circulation, and
the last two with juice circulation forced by pumps. The juice condensation process
is performed using steam and vapour, which are the same quantities but come from
different sources. Steam is produced by a water steam boiler and is delivered
mainly to the first evaporator. The vapour is produced in each evaporator and it is
used as a heating medium. The evaporation station produces a condensate, which is
delivered to the next steam boiler. From this short description, the importance, in
economical terms, of monitoring the correct operation of the water supply control
valve can be readily assessed. For more information on DAMADICS benchmark,
visit the web site, http://www.eng.hull.ac.uk/research/control/ damadics1.htm. The
valve was extensively modeled, and a MATLAB/SIMULINK program was
developed for simulation purposes (Sá da Costa and Louro, 2003; Bartys et al.,
2004). The input to the simulation represents real data, normal behavior and some
faulty conditions, collected at the plant. This method provides more realistic
conditions for generating the behavior of the system while undergoing a fault. It
also makes the FDI task more difficult because the real data input causes the system
to feature the same noise conditions as those in the real plant.

1.4. Conclusions

This chapter surveyed the applications of computational intelligence
methodologies to fault diagnosis. Throughout the chapter, a special emphasis has
been put on the practical limitations of the applicability of these methodologies.
Even if computational intelligence methodologies successfully address difficult
problems – such as high nonlinearity of the monitored plant, large noise levels in
the available sensor measurements, uncertainty – they are able to perform
reasonably well only on systems having a reasonable level of complexity. Here, a
complex system represents a system whose global behaviour, which emerges from
the interactions between its usually large number of basic components, is difficult
to accurately describe via an analytical model. The weakness that state-of-the-art
computational intelligence methodologies share is their inability to cope with
complex systems.

Isermann and Ballé (1997) underline the fact that a single diagnosis
method is inadequate for matching all challenges posed by a complex system.
Therefore, in the last few years, the fault diagnosis community concentrated its
research efforts on distributed fault diagnosis methodologies. The main idea is to
partition the monitored system in subsystems having a reasonable complexity level
and then to successfully apply state-of-the-art methodologies on each of the
subsystems. The global diagnosis of the system is going to be based on all these
local diagnosis processes. Implementing the local diagnosis processes using
computational intelligence methodologies retains their ability to treat the local
nonlinearities, noise and uncertainty. A noteworthy research effort in this direction
is the recent European Commission’s FP5 MAGIC Project (http://magic.uni-
duisburg.de).

Computational Intelligence in Fault Diagnosis 31

It may be concluded that, currently, there are two main trends in the fault
diagnosis research field: (i) the earlier trend of finding methodologies suitable for
fault diagnosis of systems having a reasonable level of complexity, and (ii) the later
trend of finding distributed methodologies able to partition a complex system into
small enough subsystems so that the local diagnosis may be performed with state-
of-the-art methodologies, and so that the global diagnosis may be obtained in a
coherent manner from local diagnosis. The last chapter of the book, Chapter 11,
presents a novel distributed fault diagnosis methodology for complex systems,
based on the use of causal models.

References

1. Ariton V and Palade V (2005) Human-like fault diagnosis using a neural
network implementation of plausibility and relevance. Neural Computing &
Applications 14(2):149-165

2. Ayoubi M (1994) Fault diagnosis with dynamic neural structure and
application to a turbocharger. In: Proceedings of 1st IFAC Symposium
SAFEPROCESS’94, Espoo, Finland, vol. 2, pp. 618-623

3. Babuska R (2002) Neuro-fuzzy methods for modeling and identification. In:
Abraham A, Jain LC and Kacprzyk J (eds) Recent Advances in Intelligent
Paradigms and Applications, pp. 161-186, Springer-Verlag, Heidelberg

4. Bartys M, Patton RJ, Syfert M, De las Heras S and Quevedo J (2004)
Introduction to the DAMADICS Actuator FDI Benchmark Study. Control
Engineering Practice, in print (see Articles in Press section of this title on
ScienceDirect)

5. Basseville M and Nikiforov IV (1993) Detection of abrupt changes: theory and
application. Information and System Science. Prentice Hall, New York

6. Beard R V (1971) Failure accommodation in linear system through self-
reorganization (PhD thesis). MIT, Massachusetts, USA

7. Bendtsen JD and Izadi-Zamanabadi R (2002) FDI using neural networks –
application to ship benchmark engine gain. In: Preprints of the 15th IFAC
World Congress, Barcelona, Spain

8. Bocaniala CD, Sa da Costa J and Palade V (2004) A Novel Fuzzy
Classification Solution for Fault Diagnosis. International Journal of Fuzzy and
Intelligent Systems 15(3-4):195-206

9. Bocaniala CD, Sa da Costa J and Palade V (2005) Fuzzy-based refinement of
the fault diagnosis task in industrial devices. International Journal of Intelligent
Manufacturing, 16(6): 599-614

10. Bonnisone PP and Decker KS (1986) Selecting uncertainty calculi and
granularity: an experiment in trading off precision and complexity. North-
Holland, Amsterdam

11. Breiman L (1996) Bagging predictors. Machine Learning 24(2): 123-140
12. Brown M and Harris C (1995) Neurofuzzy Adaptive Modeling and Control.

Prentice Hall International

32 V Palade, CD Bocaniala and L Jain (Eds.)

13. Calado JMG, Korbicz J, Patan K, Patton RJ and Sa da Costa JMG (2001) Soft
Computing Approaches to Fault Diagnosis for Dynamic Systems. European
Journal of Control 7: 248-286

14. Chen J and Patton RJ (1999) Robust Model-Based Fault Diagnosis for
Dynamic Systems. Asian Studies in Computer Science and Information
Science. Kluwer Academic Publishers, Boston

15. Chow EY and Willsky AS (1980) Issues in the development of a general
algorithm for reliable failure detection. In: Proceedings of the 19th Conference
of Decision and Control, Albuquerque, NM, USA

16. Clark RN (1978) Instrument fault detection. IEEE Transactions on Aerospace
and Electronic Systems AES-14: 456-465

17. Clark RN, Fosth DC and Walton WM (1975) Detecting instrument
malfunctions in control systems. IEEE Transactions on Aerospace and
Electronic Systems AES-11: 465-473

18. Cordier MO, Dague P, Dumas M, Levy F, Montmain J, Staroswiecki M and
Traves-Massuyes L (2000) AI and automatic control approaches of model-
based diagnosis: Links and underlying hypothesis. In: Proceedings of the 4th

IFAC Symposium SAFEPROCESS’00, Budapest, Hungary, vol. 1, pp. 274-
279

19. Dalmi I, Kovács L, Loránt I and Terstyánszky G (2000) Diagnosing priori
unknown faults by radial basis function neural network. In: Proceedings of the
4th IFAC Symposium SAFEPROCESS’00, Budapest, Hungary, vol. 1, pp. 405-
409

20. Ding X and Frank PM (1990) Fault detection via factorization approach.
Systems Control Letters 14(5): 431-436

21. Forbus KD (1984) Qualitative process theory. Artificial Intelligence 24: 85-168
22. Frank PM (1987) Fault diagnosis in dynamic system via state estimation – a

survey. In: Systems fault diagnostics, reliability and related knowledge-based
approaches. D. Reidel Press, Dordrecht, Germany

23. Frank PM (1991) Enhancement of robustness in observer-based fault detection.
Preprints of IFAC/IMACS Symposium SAFEPROCESS’91, Baden-Baden,
Germany, vol.1, pp. 275-287

24. Frank PM (1996) Analytical and qualitative model-based fault diagnosis – a
survey and some new results. European Journal of Control 2: 6-28

25. Frank PM, Ding X and Köppen B (1993) A frequency domain approach for
fault detection at the inverted pendulum. In: Proceedings of International
Conference on Fault Diagnosis TOOLDIAG’93, Toulouse, France, pp. 987-994

26. Fuente MJ and Saludes S (2000) Fault detection and isolation in a non-linear
plant via neural networks. In: Proceedings of the 4th IFAC Symposium
SAFEPROCESS’00, Budapest, Hungary, vol. 1, pp. 472-477

27. Gertler J (1991) Analytical redundancy methods in failure detection and
isolation. In: Preprints of IFAC/IMACS Symposium SAFEPROCESS’91,
Baden-Baden, Germany, vol. 1, pp. 9-21

28. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley, Boston, USA

29. Hamscher WC, de Kleer J and Console L (1992) Readings in model-based
diagnosis. Morgan Kaufmann, San Mateo, CA, USA

Computational Intelligence in Fault Diagnosis 33

30. Haykin S (1999) Neural networks. A comprehensive foundation. Prentice-Hall
31. Isermann R (1984) Process fault detection based on modeling and estimation

methods: A survey. Automatica 20(4): 387-404
32. Isermann R (1991) Fault diagnosis of machine via parameter estimation and

knowledge processing – tutorial paper. In: Preprints of IFAC/IMACS
Symposium SAFEPROCESS’91, Baden-Baden, Germany, vol. 1, pp. 121-133

33. Isermann R (1997) Supervision, fault-detection and fault-diagnosis methods –
an introduction. Control Engineering Practice 5(5): 639-652

34. Isermann R and Ballé P (1997) Trends in the application of model-based fault
detection and diagnosis of technical processes. Control Engineering Practice
5(5): 709-719

35. Jones HL (1973) Failure detection in linear systems (PhD thesis). MIT,
Massachusetts, USA

36. Kay H (1996) Refining imprecise models and their behaviors (PhD thesis). The
University of Texas at Austin, USA

37. de Kleer J and Brown JS (1987) A qualitative physics based on confluences.
Artificial Intelligence 24: 7-83

38. de Kleer J and Kurien J (2003) Fundamentals of model-based diagnosis. In:
Proceedings of the 5th IFAC Symposium SAFEPROCESS’03, Washington,
USA, pp. 25-36

39. de Kleer J and Williams BC (1987) Diagnosing multiple faults. Artificial
Intelligence 32: 97-130

40. Koscielny JM, Sedziak D and Zackroczymsky K (1999) Fuzzy-logic fault
isolation in large-scale systems. International Journal of Applied Mathematics
and Computer Science 9(3): 637-652

41. Krogh A and Vedelsby L (1995) Neural networks ensembles, cross validation,
and active learning. In: Advances in neural information processing systems.
MIT Press, Cambridge, MA, USA

42. Korbicz, J, Patan K and Obuchowicz A (1999) Dynamic neural networks for
process modeling in fault detection and isolation systems. International Journal
of Applied Mathematics and Computer Science 9(3): 519-546

43. Kuipers B (1984) Common sense reasoning about causality: deriving behavior
from structure. Artificial Intelligence 24: 169:204

44. Kuipers B (1986) Qualitative simulation. Artificial Intelligence 29: 289-338
45. Lopez-Toribio CJ, Patton RJ and Daley S (2000) Takagi-Sugeno Fault-Tolerant

Control of an Induction Motor. Neural Computation and Applications 9: 19-28,
Springer-Verlag, London, UK

46. Ma XJ,Sun ZQ and He YY (1998) Analysis and design of fuzzy controller and
fuzzy observer. IEEE Transactions on Fuzzy Systems 6(1): 41-51

47. Mamdani EH (1976) Advances in the linguistic synthesis of fuzzy controllers.
International Journal of Man-Machine Studies 8:669-678

48. Marcu T, Mirea L and Frank PM (1999). Development of dynamic neural
networks with application to observer-based fault detection and isolation.
International Journal of Applied Mathematics and Computer Science 9(3): 547-
570

49. Marcu, T, Köppen-Seliger B, Frank PM and Ding SX (2003) Dynamic
functional-link neural networks genetically evolved applied to fault diagnosis.

34 V Palade, CD Bocaniala and L Jain (Eds.)

In: Proceedings of the 7th European Control Conference ECC’03, September
1-4, University of Cambridge, UK

50. Marcu T, Mirea L, Ferariu L and Frank PM (2000) Miscellaneous neural
networks applied to fault detection and isolation of an evaporation station. In:
Proceedings of the 4th IFAC Symposium SAFEPROCESS’00, Budapest,
Hungary, vol. 1, pp. 352-357

51. Mehra RK and Peschon J (1971) An innovations approach to fault detection
and diagnosis in dynamic systems. Automatica 7: 637-640

52. Metenidis MF, Witczak M and Korbicz J (2004) A novel genetic programming
approach to nonlinear system modelling: application to the DAMADICS
benchmark problem. Engineering Applications of Artificial Intelligence
363-370

17(4):

53. Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution
Programs. Springer, Berlin

54. Mirea L and Marcu T (2002) System identification using functional-link neural
networks with dynamic structure. In: Preprints of the 15th IFAC World
Congress, Barcelona, Spain

55. Mironovsky LA (1980) Functional diagnosis of linear dynamic systems – a
survey. Automation Remote Control 41: 1122-1143

56. Negoita M, Neagu D and Palade V (2005) Computational Intelligence:
Engineering of Hybrid Systems. Springer-Verlag

57. Palade V, Patton RJ, Uppal FJ, Quevedo J and Daley S (2002) Fault Diagnosis
of An Industrial Gas Turbine Using Neuro-Fuzzy Methods. In: Proceedings of
the 15th IFAC World Congress, 21–26 July, Barcelona, pp. 2477–2482

58. Patan K and Parisini T (2002) Stochastic approaches to dynamic neural
network training. Actuator fault diagnosis study. In: Preprints of the 15th IFAC
World Congress, Barcelona, Spain

59. Patra JC, Pal RN, Chatterji BN and Panda G (1999) Identification of non-linear
dynamic systems using functional-link artificial neural networks. IEEE
Transactions on Systems, Man and Cybernetics – part B 29(2):254-262

60. Patton RJ (1997) Fault tolerant control: the 1997 situation (survey). In:
Proceedings of the IFAC Symposium SAFEPROCESS’97, Pergamon,
University of Hull, UK, pp. 1029-1052

61. Patton RJ and Chen J (1991) A review of parity space approaches to fault
diagnosis. In: Preprints of IFAC/IMACS Symposium SAFEPROCESS’91,
Baden-Baden, Germany, vol.1, pp. 239-255

62. Patton RJ and Chen J (1996) Robust fault detection and isolation (FDI)
systems. Dynamics and Control (vol. 74): Techniques in discrete and
continuous robust systems. Academic Press

63. Patton RJ and Chen J (1997) Observer-based fault detection and isolation:
robustness and applications. Control Engineering Practice 5(5): 671-682

64. Patton RJ and Kangethe SM (1989) Robust fault diagnosis using eigenstructure
assignment of observers. In: Fault diagnosis in dynamic systems, theory and
application. Control Engineering Series. Prentice Hall, New York

65. Patton RJ, Lopez-Toribio CJ and Uppal FJ (1999) Artificial intelligence
approaches to fault diagnosis for dynamic systems. International Journal of
Applied Mathematics and Computer Science 9(3): 471-518

Computational Intelligence in Fault Diagnosis 35

66. Patton RJ, Lopez-Toribio CJ and Uppal FJ (2000) Soft computing approaches
to fault diagnosis for dynamic systems: a survey. In: Proceedings of the 4th

IFAC Symposium SAFEPROCESS’00, Budapest, Hungary, vol. 1, pp. 298-
311

67. Puscasu G, Palade V, Stancu A, Buduleanu S and Nastase G (2000) Sisteme de
conducere clasice si inteligente a proceselor. MATRIX ROM, Bucharest,
Romania

68. Raiman O (1991) Order of magnitude reasoning. Artificial Intelligence 51: 11-
38

69. Reiter R (1987) A theory of diagnosis from First Principles. Artificial
Intelligence 32: 57-95

70. Roverso D (2000) Neural ensembles for system identification. In: Proceedings
of the 4th IFAC Symposium SAFEPROCESS’00, Budapest, Hungary, vol. 1,
pp. 478-483

71. Sá da Costa J and Louro R (2003) Modelling and simulation of an industrial
actuator valve for fault diagnosis benchmark. In: Proceedings of the Fourth
International Symposium on Mathematical Modelling, Vienna, pp. 1212-1221,
Agersin-Verlag.

72. Spanache S, Escobet T and Travé-Massuyès L (2004) Sensor Placement
Optimisation Using Genetic Algorithms. In: Proceedings of the Fifteenth
International Workshop on Principles of Diagnosis DX'04, June 23-25,
Carcassonne, France

73. Sun R, Tsung F and Qu L (2004) Combining bootstrap and genetic
programming for feature discovery in diesel engine diagnosis. International
Journal of Industrial Engineering 11(3): 273-281

74. Takagi T and Sugeno M (1985) Fuzzy identification of systems and its
application to modeling and control. IEEE Transactions on Systems, Man and
Cybernetics 15(1): 116-132

75. Terstyánszky G and Kovács L (2002) Improving fault diagnosis using
proximity and homogeneity measure. In: Preprints of the 15th IFAC World
Congress, Barcelona, Spain

76. Tzafestas SG and Watanabe K (1990) Modern approaches to system/sensor
fault detection and diagnosis. Journal A 31(4): 42-57

77. Unland R and Ulieru M (2005) Swarm Intelligence and the Holonic Paradigm:
A Promising Symbiosis for Medical Diagnostic Systems Design. In:
Proceedings of the 9th International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems, KES2005, September 14-16,
Melbourne, Australia

78. Uppal FJ, Patton RJ and Palade V (2002) Neuro-Fuzzy Based Fault Diagnosis
Applied to an Electro-Pneumatic Valve. In: Proceedings of the 15th IFAC
World Congress, 21–26 July, Barcelona, Spain, pp. 2483-2488

79. Vidyasagar M (1985) Control systems synthesis: a factorization approach.
System and Control Series. North-Holland, MIT Press, Cambridge, MA, USA

80. Viswanadham N, Taylor JH and Luce EC (1987) A frequency-domain
approach to failure detection and isolation with application to GE-21 turbine
engine control systems. Control-Theory and Advanced Technology 3(1): 45-72

36 V Palade, CD Bocaniala and L Jain (Eds.)

81. Waltz D (1975) Understanding line drawings of scene with drawings. In: The
psychology of computer vision. McGraw-Hill, New York

82. Willsky AS and Jones HL (1974) A generalized likelihood approach to state
estimation in linear systems subjected to abrupt changes. In: Proceedings of the
1974 IEEE Conference on Control and Decision, Arizona, USA

83. Yangping Z, Bingquan Z and DongXin W (2000) Application of genetic
algorithms to fault diagnosis in nuclear power plants. Reliability Engineering
and Systems Safety 67: 153-160

2. A Fuzzy Logic Approach to Gas Path
Diagnostics in Aero-engines

Luca Marinai and Riti Singh

Engine-related costs contribute a large fraction of the direct operating costs (DOCs)
of an aircraft, because the propulsion system requires a significant part of the
overall maintenance effort. Thus, to ensure competitive advantage in the aero-
engine market, health monitoring systems with gas path diagnostics capability are
highly desirable.

In this chapter, an application of fuzzy logic technology to gas path
diagnostics for aero-engines performance analysis is presented and the setup
procedure for a modern civil turbofan is described, as an example. The objective is
to estimate the changes in engine component performance due to the engine
degradation over time from the knowledge of only a few measurable parameters,
inevitably affected by noise. This is a novel process that achieves effective
diagnosis by means of a rule-based pattern-recognition methodology founded on
fuzzy algebra, developed to provide an alternative technology versus conventional
estimation algorithms.

The inherent capability of fuzzy logic to deal with gas path diagnostics
difficulties, thanks to the use of fuzzy set theory and its rule-based nature, is
highlighted. First, the problem of noisy measurements is treated at a fuzzy-set level.
Second, at the system level the definition of fuzzy rules is used to map input sets of
measurements into output faulty classes of performance parameters in a constrained
search space; this enables a problem reduction aimed at overcoming the fact that the
analytical formulation is undetermined.

The process quantifies the performance parameters’ deteriorations through
a nonlinear approach, even in the presence of noisy measurements that typically
complicate the diagnostic assessment. The diagnostics model’s setup as well as its
outcome can be attained in a relatively short time, making this technique suitable
for on-board use. The accuracy of the technique relative to simulated turbofan data
is tested and its advantages and limitations are discussed.

2.1. Introduction

The performance of an aero-engine deteriorates over time as a consequence of its
components’ degradation. The identification of the exact component(s) responsible
for the performance loss facilitates the choice of the recovery action to be
undertaken. An engine gas-path diagnostic process calculates changes in the
magnitude of the component performance parameters (e.g., efficiency and flow
capacity) given a set of measurements (e.g., temperatures, pressures, shaft speed
and fuel flow) through the engine. However, accurate assessment is complicated by

38 V Palade, CD Bocaniala and L Jain (Eds.)

(i) only having relatively few measurements available and (ii) errors in the
measurements.

A recent update of gas-path diagnostics (GPD) methodologies is reported
in the Von Karman Institute lecture series 2003-01 on gas-turbine condition
monitoring and fault diagnosis edited by Mathioudakis and Sieverding (2003).
Many pertinent tools have been devised during the last three decades and a critical
review of the most used techniques and their applications is provided in (Marinai et
al., 2004), highlighting similarities, differences and limitations.

This chapter presents a new gas path diagnostics method. The novelty of
this technique lies in the use of fuzzy logic to provide secure isolation and
quantification of gas path component faults. Fuzzy logic is introduced because of its
inherent capability of dealing with GPD problems due to its rule-based nature and
its fuzzy approach. The rule-based architecture is used to perform pattern
recognition of measurement fault signatures, while the fuzzy approach is
advantageous in dealing with the uncertainties that typically affect the GPD
problem, namely, the measurement errors and the undetermined mathematical
formulation. These features created a research opportunity; and an application of
the method to a modern three-shaft turbofan engine and its encouraging results will
show, in this chapter, that the promises of fuzzy logic were not burnt out. A
software was devised – see (Marinai, 2004). First, its SFI (single fault isolation)
capability was proved – see section 2.5. Then a partial MFI (multiple fault
isolation) capability, with up to 2 gas path components considerably faulty
simultaneously, was tested – see section 2.6.

2.1.1. A Guide through the Chapter

Section 2.2 is aimed at guiding the reader through the fuzzy logic process step by
step from an introduction to the theory to the application to gas-path diagnostics.
Section 2.3 introduces the three-spool turbofan configuration involved in the
development of the diagnostics methodology and the instrumentation set used.
Section 2.4 is then dedicated to the development of the fuzzy diagnostics system for
a three-spool engine and to the sensitivity studies carried out for a pertinent setup of
the methodology. The graphical user interface (GUI) devised for this purpose is
introduced as well. The accuracy of the SFI capability of the system in the presence
of noisy measurements and a method used to enhance such a capability is discussed
in section 2.5. This section also describes an additional feature of the system whose
rules can be tuned over a global deterioration baseline to enhance the SFI role in
GPD. A fuzzy diagnostics system able to perform partial MFI and its accuracy are
discussed in section 2.6. A second GUI was devised to make use of the fuzzy
diagnostics model to compute the diagnoses and plot the results; this is described in
section 2.7. The conclusions are presented in section 2.8.

Computational Intelligence in Fault Diagnosis 39

2.2. Fuzzy Logic Systems

2.2.1. Background

Fuzzy logic is a new rule-based approach, founded on the formulation of a novel
algebra, typically used in the analysis of complex systems and to enable decision-
making processes (Zadeh, 1969).

Fuzzy engineering is the specific research area investigated aimed at
modelling engineering processes with fuzzy systems. These are able to provide
appropriate approximations of various phenomena if enough rules are defined. The
quality of the approximation is strictly related to the quality of the rules. This is not
a standard view of fuzzy systems but it is the view taken in this chapter according to
the definition of fuzzy engineering given by (Kosko, 1997). A different view is that
fuzzy logic is a linguistic theory that models human reasoning with vague rules of
thumb and common sense. This holds without any doubt in many applications.
Fuzzy systems, as described in the next section, rely on the formulation of fuzzy
algebra. This is a generalization of the abstract set theory, based on new definitions
concerning fuzzy sets and logical operators (Zadeh, 1969).

Fuzzy logic is used in this research to provide the capability of
approximating the relationships between the N-dimensional input space of the gas-
path measurements and the P-dimensional output space of the performance
parameters by using a number of fuzzy rules. The rules in turn depend on fuzzy sets
able to deal with uncertain or vague estimations of the process variables.

Fuzzy logic is all about the relative importance of precision. It is a
convenient way to map inputs into outputs (Zadeh, 1969) and the primary
mechanism for doing this is a list of if-then statements called fuzzy rules. All the
rules are evaluated in parallel and the order of the rules is unimportant. To set up a
system that interprets rules, we first have to define all the elements of a fuzzy
system (i.e., fuzzy sets, membership functions, logical operators and architecture of
the rules) and then the elements of the inference process, namely, the algorithms for
implication, aggregation and defuzzification phases. The fuzzy inference process
interprets the values in the input vector and, based on a set of fuzzy rules, assigns
values to the output vector.

2.2.2. Fuzzy Algebra: Basic Elements of a Fuzzy System
Architecture

Engineering science typically deals with uncertain variables and approximations to
a fixed number of decimal places that depend on the accuracy capability but also on
the necessity and costs of being accurate. When a decision has to be made based on
uncertain values of a set of variables, a binary logic based on either-or laws can
become a limitation.

A fuzzy system based on multivalue logic can help in modelling a process
when a mathematical model of how the system’s outputs depend on the inputs is not
available or is not accurate, or when it is necessary to deal with the uncertainty
present in the inputs. Besides, a fuzzy model is beneficial in order to introduce

40 V Palade, CD Bocaniala and L Jain (Eds.)

different sources of information in the decision-making process (data fusion) and
when it is advantageous to include expert knowledge or statistical inputs.

Fuzzy logic systems rely on the formulation of a novel abstract set theory
and algebra: a generalization of the set theory, based on fuzzy sets as well as logical
operators, will be considered below. The four main elements of a fuzzy logic
inference process are listed in Figure 2.1 and discussed in the following sections.

 FUZZY

 ALGEBRA

 1. Fuzzy sets

 2. Membership Functions

 3. Fuzzy operators

4. if-then rules

FUZZY

LOGIC

Inference

Figure 2.1. Fuzzy algebra and fuzzy logic inference.

It will be proved that fuzzy set theory, introduced by Zadeh in 1965, is a
generalization of abstract set theory. In other words, the former always includes the
latter as a special case; definition theorems, and proofs of fuzzy set theory always
hold for non-fuzzy sets. Because of this generalization, fuzzy set theory has a wider
scope of applicability than traditional set theory in solving engineering problems
that involve high degrees of uncertainty and, to some degree, subjective evaluation
(Kandel, 1986).

2.2.2.1. Fuzzy Sets
The basic concept behind fuzzy algebra and fuzzy logic systems is the definition of
fuzzy sets. A fuzzy set does not have distinctly delineated boundaries and contains
elements with a partial degree of membership.

In standard algebra a traditional set includes elements with a Boolean or
two-value logic. This means that an element belongs or does not belong to the set.
The degree of membership of an element can be only 0 or 1, or 0 or 100%. If we
consider the example in Figure 2.2, the numbers A=51, B=60 and D=69 are
elements of the set S, while the number D=71 is not.

A= 51

B=60

C=69

D=71

S

Figure 2.2. Standard set.

This concept is graphically described in Figure 2.3. The numbers included
in the range between 50 and 70 belong to the set of cool air temperature.

Computational Intelligence in Fault Diagnosis 41

On the other hand, a fuzzy set admits elements with a partial degree of
membership according to a defined membership function (MF). In the example
shown in Figure 2.3 and 2.4, the membership function is triangular; therefore the
degree of membership decreases as we approach the margins of the set.

In Figure 2.4 the two overlapping fuzzy sets of cool and right air
temperature are considered. A value of temperature such as 68 degrees has distinct
values of degree of membership to the two sets and consequently activates the two
MFs with two different degrees of activation.

Air Temperature

50 70

0%

100%

M
e
m
b
e
r
s
h
i
p

Cool air

Air Temperature

50 70

0%

100%

M
e
m
b
e
r
s
h
i
p

Cool air

Figure 2.3. Diagrams of a standard set (left) and a fuzzy set (right).

50 70

0%

100%

M
e
m
b
e
r
s
h
i
p

Cool

60
80

Right

68

Air Temperature

Figure 2.4. Two overlapping fuzzy sets.

Going from the graphical representation to the analytical form, let X
denote the space of objects. Then a fuzzy set A in X is a set of ordered pairs

(1) A = {x, (x)}, x XA
where (x) is the degree of membership of x in A and the function A A is called the
membership function (MF). Usually, A(x) is a number in the interval [0,1], with the
grades 1 and 0 representing, respectively, full membership and non-membership in
a fuzzy set. It maps each element of the input space X to a membership value. The
input space is sometimes referred to as the universe of discourse. The membership
function itself can be an arbitrary curve whose shape is defined as a function that
suits the problem from the point of view of simplicity, convenience, speed, and
efficiency.

Summarizing, the following concepts have been introduced so far:
Fuzzy set
Degree of membership
Membership function (MF)
Degree of activation (d.o.a.)

42 V Palade, CD Bocaniala and L Jain (Eds.)

The next subsection will consider the logical operators, the third element
of the fuzzy inference process – see Figure 2.1.

2.2.2.2. Logical Operators
Fuzzy logic is a generalization of standard Boolean logic. This means that the
logical operations, as defined in this section, will hold in standard algebra as well.
As far as the logical operators AND, OR, and NOT are concerned, Figure 2.5 shows
the truth tables according to traditional logic.

Figure 2.5. Standard logical operations.

.a

.b

Figure 2.6. Two-valued and multi-valued logic.

Figure 2.6.a shows a graphical representation of the logical operators in a
two-value logic. Many methods are available in the literature for their
implementation in a multi-valued logic or fuzzy logic. In this work the following
algorithms are considered:

AND using minimum or product (a b)
OR using maximum or algebraic sum (a+b-a b)
NOT using the complement

An example of fuzzy operators using the first options in the list above is
shown in Figure 2.6, where we replace A AND B, where A and B are limited to the
range (0,1), by using the function min(A,B). Using the same reasoning, we can
replace the OR operation with the max function, so that A OR B becomes equivalent
to max(A,B). Finally, the operation NOT A becomes equivalent to the operation (1 –
A). Once the logical operators are defined, any construction using AND, OR, and
NOT applied to fuzzy sets can be resolved.

It can be proved that these definitions still hold in traditional algebra,
considering Figure 2.7. As an example, considering the AND operator in the table

Computational Intelligence in Fault Diagnosis 43

we can see that: min(0,0)=0, min(0,1)=0, min(1,0)=0 and min(1,1)=1. Similarly, we
can reason for the second options in the list of possible algorithms provided above
(e.g., change min with product to implement the AND operator).

Figure 2.7. Example of logical operators, fuzzy algebra.

In fuzzy algebra AND, OR, and NOT are known as the fuzzy intersection
or conjunction (AND), fuzzy union or disjunction (OR), and fuzzy complement
(NOT), but as said before their definitions are by no means unique.

2.2.2.3. Fuzzy Rules
Fuzzy rules play a key role in the fuzzy inference process – see Figure 2.1. Fuzzy
systems are universal approximators if enough rules are stated. Fuzzy sets and fuzzy
operators that constitute the fuzzy algebra are the elements of if-then rule
statements. A single fuzzy if-then rule assumes the form “if z is in the fuzzy set A
then x is in the fuzzy set B”. The if-part of the rule “z is in A” is called the
antecedent, while the then-part of the rule “x is in B” is called the consequent.

If A1 then B1

If A2 then B2

If Am then Bm

Z � A

B1’

B2’

Bm’

Σ

w1

 w2

wm

B Defuzzifier

X=F(Z)

Figure 2.8. Additive fuzzy system architecture.

With reference to Figure 2.8, an N-dimensional input space (in
performance diagnostics, the measurements) is mapped into a P-dimensional output
space (performance parameters) by means of m rules. Each input vector partially
activates all the rules in parallel, the rule can be associated with different rule-
weights wi, and eventually a defuzzifier calculates the outcome solution based on
the activation of the MFs. It can be proved that an additive fuzzy system computes a
conditional expectation E(X|Z) and therefore an optimal nonlinear estimation
(Kosko, 1997).

44 V Palade, CD Bocaniala and L Jain (Eds.)

Interpreting an if-then rule involves the following phases: (i) evaluating
the antecedent (which involves the fuzzification of the input and applying any
necessary fuzzy operators) and (ii) applying that result to the consequent (known as
implication). In the case of two-valued or binary logic, when the if-part of the rule
is true, the then-part is true. In a multi-valued logic the antecedent is a fuzzy
statement, so if the antecedent is true to some degree of activation, then the
consequent is also true to that same degree.

Therefore, interpreting one if-then rule is a three-part process:
Fuzzify inputs: resolve all fuzzy statements in the antecedent to a
degree of membership between 0 and 1.
Apply fuzzy operator to multiple part antecedents: If there are
multiple parts to the antecedent, apply fuzzy logic operators and
resolve the antecedent to a single number between 0 and 1. This is
the degree of support for the rule.
Apply implication method: Use the degree of support for the
entire rule to shape the output fuzzy set. The consequent of a
fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set
is represented by a membership function that is chosen to indicate
the qualities of the consequent. If the antecedent is only partially
true (i.e., is assigned a value less than 1), then the output fuzzy set
is truncated according to the implication method.

In general, one rule by itself does not do much good. What is needed are a
number of rules that can play off one another. The output of each rule is a fuzzy set.
The output fuzzy sets for each rule are then aggregated into a single output fuzzy
set. Finally, the resulting set is defuzzified, or resolved to a single number (Zadeh,
1969).

2.2.3. Fuzzy Inference Systems

Fuzzy engineering can be implemented according to a three-step procedure aimed at
defining the system architecture. The first step is the identification of the input and
output variables Z and X. In a diagnostics system the input variables are the
elements of the set of measurements and the outputs are the performance
parameters representative for the health of the engine. The second step is aimed at
selecting the right membership functions for these variables. The third step relates
the output sets to the input sets through fuzzy rules. The way in which the rules are
stated depends on the learning algorithm. Rules in this work are generated running a
whole-engine steady-state simulation code (engine model). The choice of the right
learning algorithm has a big impact on the accuracy of the fuzzy system.

Once the system architecture is defined, fuzzy inference is the process that
computes the outcome provided an input to the system. There are two main types of
inference methods known in the literature as Mamdani and Sugeno. A Mamdani-
type inference is based on the fact that fuzzy sets are defined for inputs and outputs.
Therefore, after the aggregation process there is a fuzzy set for each output variable
that needs to be defuzzified.

Computational Intelligence in Fault Diagnosis 45

On the other hand, a Sugeno-type system is based on the definition of the
output MFs as single spikes rather than distributed fuzzy sets. The single spike is
also known as singleton output membership function and can be considered as a
pre-defuzzified fuzzy set. This improves the efficiency of the process simplifying
the computation. The outcome is just the weighted average of a few data points.
The GPD method developed in this work uses the Mamdani inference strategy.

A typical fuzzy logic system (Figure 2.9) involves fuzzification, rules
evaluation and defuzzification phases:

A fuzzifier turns numeric values (input measurements) into
degree of activation of input MFs.
An inference engine accumulates the effects of each rule on the
output MFs; it includes logical operations, implication and
aggregation phases.
A defuzzifier calculates the outcome based on the activation of
the output MFs.

Output

Fuzzification

FUZZY

LOGIC

Inference

Process

Defuzzification

Input

Rules

(IF/THEN)

Figure 2.9. Configuration of a rule-based fuzzy logic system.

2.2.4. Comments on Fuzzy Rules for a Diagnostics System

Among the various gas path diagnostics methods, a distinction can be made
(Volponi, 2003) between techniques more suitable for estimating gradual
deteriorations and techniques for estimating rapid deteriorations, i.e., where
deteriorations represent the faults occurred. We referred to such methods as MFI
(multiple-fault isolation) and SFI (single-fault isolation), respectively. The former
implies that all the engine components (whose shifts in performance we are
estimating) deteriorate slowly whereas the latter implies a rapid trend shift probably
due to a single entity (or perhaps two) going awry. AI-based methods such as fuzzy
logic systems are more suitable for SFI problems, because they are based on an
approximation of all the possible solutions for the limited number of combinations
used to train the system. The extension to all possible combinations (even in a
limited search-space) is theoretically possible, but extremely burdensome from a
computational point of view. In this work, a fuzzy logic diagnostics system was
firstly set up to secure an effective SFI capability – see sections 2.4 and 2.5. Then a
partial MFI capability was tested considering up to four health parameters (two
components) simultaneously deteriorated – see section 2.6.

The number of necessary fuzzy rules grows exponentially with the number
of system variables. Any attempt to reduce the number of rules is inevitably

46 V Palade, CD Bocaniala and L Jain (Eds.)

associated with less precise approximation capability. In general, we must trade
some accuracy for ease of computation.

In this work, a diagnostic system for the three-shaft turbofan was
developed – see section 2.4. The six gas path components investigated are: FAN,
intermediate pressure compressor (IPC), high pressure compressor (HPC), high
pressure turbine (HPT), intermediate pressure turbine (IPT) and low pressure
turbine (LPT) – see second column of Table 2.1. When these six components are
considered for GPD, the number of possible combinations C of components
degraded can be calculated as:

!
!()!

nC
k n k (2)

that gives the number of combinations of n=6 components taken k at a time.
According to Eq. (2, all the possible combinations are listed in Table 2.1.

Table 2.1. Combinations C of six gas path components taken k at a time
 k
C

1 at a
time

2 at a time 3 at a time 4 at a time 5 at a time 6 at a
time

1 FAN FAN - IPC FAN - IPC - HPC FAN - IPC - HPC- HPT FAN - IPC - HPC- HPT-IPT
2 IPC FAN - HPC FAN - IPC - HPT FAN - IPC - HPC- IPT FAN - IPC - HPC- HPT-LPT
3 HPC FAN - HPT FAN - IPC - IPT FAN - IPC - HPC - LPT FAN - IPC - HPC- IPT-LPT
4 HPT FAN - IPT FAN - IPC - LPT FAN - IPC - HPT- IPT FAN - IPC - HPT- IPT-LPT
5 IPT FAN - LPT FAN - HPC- HPT FAN - IPC - HPT - LPT FAN - HPC – HPT- IPT-LPT
6 LPT IPC - HPC FAN - HPC - IPT FAN - IPC - IPT - LPT IPC - HPC- HPT-IPT-LPT

FAN-
IPC-
HPC-
HPT-
IPT-
LPT

7 IPC - HPT FAN - HPC - LPT FAN - HPC - HPT - IPT
8 IPC - IPT FAN - HPT - IPT FAN - HPC - HPT- LPT
9 IPC - LPT FAN - HPT - LPT FAN - HPC - IPT - LPT
10 HPC - HPT FAN - IPT - LPT FAN - HPT - IPT - LPT
11 HPC - IPT IPC - HPC - HPT IPC - HPC- HPT - IPT
12 HPC - LPT IPC - HPC- IPT IPC - HPC - HPT - LPT
13 HPT - IPT IPC - HPC - LPT IPC - HPC- IPT - LPT
14 HPT - LPT IPC - HPT- IPT IPC - HPT - IPT - LPT
15 IPT - LPT IPC - HPT - LPT HPC - HPT - IPT - LPT
16 IPC - IPT - LPT
17 HPC - HPT - IPT
18 HPC - HPT - LPT
19 HPC - IPT - LPT
20

Considering that the number of parameters representative of the health of
each component is always 2, 2k is the number of parameters deteriorated
simultaneously in each rule (each run of the engine model) when we simulate k
degraded components at a time.

For example, if two degraded components at a time are simulated, four
parameters are changed in the generation of each rule.

On the other hand, the equation
2g kN f f (3)

computes the number of permutations of f (=3 in the example of Table 2.2) fault
levels (e.g., 0, 1, 2% change in performance parameters) taken g=2k (=4 in Table
2.2) at a time with repletion. The parameter g=2k represents the number of
parameters changed at a time. In the case of Table 2.2 the number of permutations
with repetitions are N=f2k 4=3 =81. As we have six components, we have C=15
combinations of 2 components (and 4 parameters) taken at a time: the final number

Computational Intelligence in Fault Diagnosis 47

of rules to generate in this example would be the product TotalCombinations = CN
= 15·81 = 1215.

Table 2.2. Example of 4 deteriorated parameters at a time

ηi Γi ηj Γj

0
1
2
0
1
2
..

0
0
0
1
1
1
..

0
0
0
0
0
0
..

0
0
0
0
0
0
..

Summarizing, the number of TotalCombinations for a three-spool engine
with six gas path components, and so the number of rules to generate, is given by:

2 6!
!(6)!

kTotalCombinations C N f
k k (4)

where k is the number of degraded components simulated at a time, and f is the
number of fault levels, as performance parameters percentage changes from the
clean engine.

Given six components and two health parameters per component, we have
12 performance parameters (and of the components). We define the search
space as the 12-dimensional space of the ranges of variability of the 12 parameters
in percentage changes from the clean value. The solution of the diagnostic problem
will be looked for within the constrained search space.

The learning algorithm devised in this work builds the fuzzy-logic-based
diagnostic system with a number of rules equal to TotalCombinations as defined
above, noting that there is no justification to omit some combinations if the purpose
is to approximate the dependency between measurements and performance
parameters when the latter vary in a given search space. Nevertheless, the values of
the f fault levels can either be chosen as uniformly distributed in the ranges of the
search space or not. This work is dedicated to the study of a fuzzy system with
uniformly distributed fuzzy rules, so the density of the fuzzy rules is left unchanged
through a given search space, though it is varied from system to system to trade
accuracy towards computational burden as discussed before.

2.2.4.1. Fuzzy Systems and Neural Networks
A last comment can be made about the strong analogy that exists between fuzzy
systems and neural networks. Neural networks, as fuzzy systems, can approximate a
function or process that represents a relation of cause and effect and can act as
universal approximators. A neural network, instead of stating rules, trains its
synapses. The numerical synaptic values change when input data make the neurons
fire. This makes a net able to learn to recognise patterns and therefore to map inputs
into outputs. The major difference is that, in the case of a neural network, a user has
no way to know what the net has learnt or forgotten during the learning process.
When the network is trained with new information there is an inevitable tendency to

48 V Palade, CD Bocaniala and L Jain (Eds.)

forget the old ones. On the other hand, fuzzy rules are modular and the user can
always put them in or take them out at will.

Figure 2.10. Three-shaft turbofan engine configuration.

Table 2.3. Measurement set

1 N2 : IP Shaft Speed
2 N3 : HP Shaft Speed
3 FF : Fuel Flow
4 P13 : FAN tip exit Total Pressure
5 P25 : HPC entry Total Pressure
6 P3 : HPC exit Total Pressure
7 T25 : HPC entry Total Temperature
8 T3 : HPC exit Total Temperature
9 T45 : IPT exit Total Temperature

10 T5 : LPT exit Total Temperature

2.3. A Three-Spool Engine Configuration and Its
Instrumentation

The engine involved with the development of the technique described in this
chapter is a three-shaft turbofan and its configuration is shown in Figure 2.10
highlighting the typical sensor locations. The set of measurements available for the
diagnostics process within this project is listed in Table 2.3 using the measurements
listed in Table 2.4 as power setting and environmental parameters. Sensor noise is
assumed to follow a normal distribution whose standard deviation in terms of
percentage deviation from the nominal value can be used as a parameter
representative of the noise level. Accurate values of standard deviations are
provided by the sensor manufacturers but, for the scope of this project, the sensor
noise standard deviations listed in Table 2.5 are considered sufficiently accurate and
realistic. The performance simulations are undertaken mainly using Turbomatch, a
steady-state performance simulation code developed at Cranfield University. The
simulations are carried out at a condition of 10000 m of altitude, 0.85 Mach and

Computational Intelligence in Fault Diagnosis 49

0.8% PCN1 (which identifies the percentage of accomplishing the design point
condition by low-pressure shaft speed N1).

Table 2.4. Power setting and environmental parameters

1 N1 : LP Shaft Speed
2 M : Mach Number
3 Z : Altitude

Table 2.5. Sensor noise standard deviations in % of the measured value

SENSOR TYPE STDV
i

Temperature 0.4%
Pressure 0.25%
Fuel Flow 0.5%
Shaft Speed 0.05%

2.4. A Fuzzy-Logic-Based Diagnostics System for
a Three-Spool Engine

2.4.1. Objectives and Scope

Considering the advantages of fuzzy logic as illustrated in Section 2.2, and
according to a thorough literature study reported in (Marinai, 2004; Marinai et al.,
2004), the research objectives were precisely to develop a procedure that is:

Based on a nonlinear model.
Designed specifically for SFI and/or MFI.
Capable of detecting with reasonable accuracy significant
changes in performance.
Able to provide a “concentration” capability on the actual fault.
Competent to make a worthwhile diagnosis using only few
measurements (N>M).
Able to deal with random noise in the measurements.
Light in computational requirements.
Fast in undertaking diagnosis for on-wing applications.
Able to be adapted to similar systems in a reasonably short time:
exempt from training and tuning uncertainties, difficulties and
dependences for setting-up parameters.
Free from a lack of comprehensibility due to “black-box”
behaviour.

The scope of this section is to illustrate an application of the devised
method to a three-spool engine. The most important parameters in the process are
identified and optimised through a sensitivity study. Then, the accuracy of the
methodology in this specific application is assessed with simulated case studies in
section 2.5. Section 2.6 extends the applicability of the method to the MFI problem.

50 V Palade, CD Bocaniala and L Jain (Eds.)

2.4.2. The Methodology and Identification of the Key
Parameters

Gas path analysis is formulated here as a problem of recognition of deteriorated
measurements patterns by using a rule-based method that has its foundation in
fuzzy algebra (Marinai et al., 2003a, 2003b).

The inherent capability of fuzzy systems, previously pointed out in section
2.1, to deal with GPD problems is exploited here in two ways. Firstly, we take into
account the uncertainty in the measurements that affects the fault pattern
characterization, at a set level. Secondly, at a system level, the learning algorithm
devised in this project states fuzzy rules to map input sets of measurements into
output sets of performance parameters, in a constrained search space. This enables
diagnoses even though the formulation of the diagnostics problem is analytically
undetermined.

The diagnostic process, as shown in Figure 2.11, is designed to assess
performance parameters percentage changes from a clean engine condition (12
outputs) given the knowledge of the measurement changes (10 inputs) calculated as
percentage deviations with respect to a baseline determined by means of an engine
model run at a specific power setting and environmental conditions. The fuzzy
system F=R10 R12 uses m rules to map the vector of input delta measurements z to
a vector of output delta performance parameters x=F(z). The analysis is undertaken
at the operating condition characterised by the following parameters: N1=0.8%,
Mach= 0.85, Altitude=10000 m.

Figure 2.11. Layout of the fuzzy logic diagnostic system.

Diagnostics is made through a Mandami-type fuzzy inference process. The
ranges of variability of the outputs – and for the six components – define the
search space, where the solution is sought. A sensible choice of these ranges for a

Computational Intelligence in Fault Diagnosis 51

real-life application would be between -5% and 0 for all the efficiency deltas and
for the flow capacity deltas of the compressors, while they can cover positive values
for the turbine flow capacity deltas going for example between -5% and +3%. The
range of variability of each input variable is evaluated according to the sought
output ranges through the engine model.

2.4.2.1. Fault Levels Combinations and If-Then Rules
The learning algorithm proposed in this work states if-then rules that are generated
running the engine model and therefore are strictly related to the aero-thermal
equations. The use of data obtained from the engine model to generate the rules
preserves the linearity of the problem.

The rules have the general form IF condition-1 AND condition-2 …THEN
statement. The if-part of the rule refers to the fault signature in the measurements,
represented through input MFs, evaluated by running the engine model at a defined
deteriorated condition within the search space. The statement in the then-part of the
rule refers to this condition characterised with output MFs.

The procedure to state fuzzy rules starts with the definition of the search
space for the performance parameters. According to section 2.2.4 the search space
includes all the combination of changes in efficiency and flow capacities of the 6
components that the system is meant to deal with. The parameters that characterise
the search space are: (i) the number of components that are considered deteriorated
simultaneously (1 at a time for SFI), (ii) the maximum and minimum values of the
ranges of variability of the performance parameters, and (iii) the increment value
that divides each range in a finite number of constant variations (fault levels). For
the purpose of illustrating the methodology, we consider the following search
space:

Number of components simultaneously deteriorated = 1 (SFI)
Maximum variation in compressors’ efficiencies = 0%
Minimum variation in compressors’ efficiencies = -3%
Maximum variation in compressors’ flow capacities = 0%
Minimum variation in compressors’ flow capacities = -3%
Maximum variation in turbines’ efficiencies = 0%
Minimum variation in turbines’ efficiencies = -3%
Maximum variation in turbines’ flow capacities = 1%
Minimum variation in turbines’ flow capacities = -3%
Increment Value= 0.5%

The features of this search space are the followings:
It defines the 12-dimensional space of the ranges of variability of
the 12 parameters in % changes from the clean value.
It takes into account positive variation of turbines’ flow capacity.
We consider C=6 combinations of one gas path component
deteriorated at a time – see section 2.2.4.
The increment value in the search space is 0.5%. This means that
the engine model is run for all the combinations of variations of
the performance parameters within the ranges defined above,
obtained going from the minima to the maximum in 0.5% steps.

52 V Palade, CD Bocaniala and L Jain (Eds.)

For example, going from 0 to 3% of FAN efficiency the
following 7 conditions of deterioration are generated: 0, -0.5, -1, -
1.5, -2, -2.5, -3%.
We note that with 0.5% steps, all the ranges are divided in 7
combinations except for the turbine flow capacity ranges, which
are divided into 9 fault levels.
The number of if-then statements generated is equal to 331.

The solution of the diagnostic problem will be looked for within the
constrained search space, so we define a number of fuzzy rules equal to the if-then
statements generated running the engine model. Note that the use of a constant
increment value implies that the values of the f fault levels are chosen uniformly
distributed in the ranges.

2.4.2.2. Input and Output Membership Functions
Fuzzy sets are defined for the inputs and the outputs. Each of the input ranges is
spanned with a number Mi of MFs where the index i=1,…,n identifies the i-th
measurement. These MFs centred, for each measurement, in the outcome of the
engine model run for all the combinations identified in the search space, or in the
mean value of a cluster of values grouped according to the procedure. On the other
hand, the deviations in performance parameters of the table are always associated
with an MF. Similarly, Nj MFs for j=1,…,p are designed for the i-th performance
parameter centred in fault level values specified in the search space.

Two types of MFs were considered: triangular, or Gaussian according to
equation (5), where m is the midpoint of the function and RMS= . The two types of
MFs are shown in Figure 2.12.

2
0.5

()
x m

MF x e (5)

The optimal type of output MFs is not known a priori and therefore a
sensitivity study (section 2.4.5) was undertaken to identifying the choice that
contributes to an optimal accuracy of the diagnostics system. An example of seven
Gaussian MFs spanning the range for FAN is shown in Figure 2.13.

On the other hand, a preliminary comment can be made here regarding the
input MFs. The degree to which the measurement value z belongs to a given MF, in
fuzzy algebra, was named a(z). Alternatively, a(z) can be interpreted as the
probability that the measurement is the midpoint of the MF given that the
measurement value is z. Therefore, we can view the input fuzzy set as a random set
of two-point conditional probability densities, where the set degree a() =
degree(z A) becomes the local conditional probability prob{Z=A Z=z}. In this
sense we can use Gaussian MFs for the input measurements with values of RMS
equal to realistic values of sensor noise RMSs. In the opinion of the authors, this
choice is an effective and consistent way of designing measurement MFs oriented
to tackle the measurement uncertainty problem. However, at this level of the
investigation, the possibility of using triangular MFs, generally considered very
effective in designing highly dimensional fuzzy systems, is left also for the input
variables. This leaves open the opportunity to compare the two input MF types –
see section 2.4.5 – to identify the best system layout.

Computational Intelligence in Fault Diagnosis 53

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
eg

re
e

of
 m

em
be

rs
hi

p

Range
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
eg

re
e

of
 m

em
be

rs
hi

p

Range

a

Figure 2.12. Triangular membership function (left) and Gaussian membership function
(right).

Figure 2.13. Example of 7 Gaussian MFs in a fixed performance parameter range for the
output FAN .

2.4.2.3. Fuzzy Rules Generation
Each rule is composed of two parts: (i) the if-part that contains the fault signature in
the measurements represented with MFs linked with the AND operator, and (ii) the
then-part that contains the MFs of the output performance parameters that
characterise the fault condition. Table 2.6 and Table 2.7 contain an example of data
necessary to set up a rule generated by running the engine model. The use of data
obtained from the engine model to generate the rules preserves the linearity of the
problem. A rule states in terms of MFs, what in terms of numerical values can be
read as follows: if the pattern in the measurements shows the deviations from a
baseline listed in Table 2.6, then the combination of deterioration levels is in Table
2.7.

54 V Palade, CD Bocaniala and L Jain (Eds.)

Table 2.6. Example of % changes in measurements from the baseline

∆N2 ∆N3 ∆FF ∆P13 ∆P25 ∆P3 ∆P5 ∆T25 ∆T3 ∆T45
0.460 -0.008 -0.949 -0.907 -1.117 -1.115 -0.804 0.169 0.111 0.182

Table 2.7. Example of % deltas in performance parameters from the clean engine

∆ηFAN ∆ΓFAN ∆ηIPC ∆ΓIPC ∆ηHPC ∆ΓHPC ∆ηHPT ∆ΓHPT ∆ηIPT ∆ΓIPT ∆ηLPT ∆ΓLPT

-2 -1.5 0 0 0 0 0 0 0 0 0 0

In general, a rule will be formulated according to Table 2.8 and Table 2.9
created from Table 2.6 and Table 2.7. Table 2.8 shows the formulation of the if-part
of the rule where the mfi is the MF of the i-th input that is either centred in the i-th
value of Table 2.6 or centred in the mean value of a cluster of values defined as
follows. The algorithm that generates the input MFs for a number m of rules starts
with the choice of K, the maximum number of input MFs (based on the experience).
Then, for the i-th input measurement, the values of deviations (outcomes of the
engine model for a number m of rules) are sorted and if two values are overlapped
one of them is discharged. Then, the values are counted; if their number is less or
equal than K (the maximum number of MFs required) one MF is centred in each of
these values that at the most are m (number of rules). Otherwise, the difference
between each value and its consequent value, in the sorted list, is computed. The
smallest value of difference between two measurement deviations is identified and
these two values are substituted with their average value. An MF is then centred in
this average value. This is repeated until the number of values that are centres of the
input MFs is equal to K. In the tables, the symbol + represents the AND operator.
Accordingly, Table 2.9 contains the then-part of the rule with the output MFs that
identify the deteriorated condition.

Table 2.8. If-part of the fuzzy rule

If-part – ∆ measurements MFs
mf1 + mf2 + mf3 + mf4 + mf5 + mf6 + mf7 + mf8 + mf9 + mf10

Table 2.9. Then-part of the fuzzy rule

Then-part – ∆ performance parameters MFs
mf1 , mf2 , mf3 , mf4 , mf5 , mf6 , mf7 , mf8 , mf9 , mf10 , mf11 , mf12

2.4.2.4. Fuzzy Inference: Functional and System Parameters
Fuzzy inference is the process used to perform pattern recognition and therefore to
compute mapping between input values and output values.

The inference process consists of feeding an input set of % changes of the
10 measurements that are taken along the gas path (or simulated with the engine
model to generate a test case) into the fuzzy logic system that calculates the output
performance parameters % changes. The fuzzy inference process includes the
following five phases: (i) fuzzification of the input variables, (ii) application of the
AND fuzzy operator in the if-part of the rule, (iii) implication from the if-part to the

Computational Intelligence in Fault Diagnosis 55

then-part of each rule, (iv) aggregation of the then-parts across the rules, and (v)
defuzzification.

The following parameters are referred to as functional parameters and can
be combined in several ways in designing a fuzzy system:

AND operator, implemented as: product, minimum.
Implication method, implemented as: product, minimum.
Aggregation method, implemented as: summation, maximum
Defuzzification method, implemented as: centroid, centre of
maximum.

The functional parameters were identified as those parameters that
characterise the functionality of the inference process. A first sensitivity study is
described in section 2.4.5 to identify the combination of parameters most suitable to
design a fuzzy-logic-based diagnostic system. There is no reason to think that when
the type of engine diagnosed changes this optimal combination of functional
parameters should vary. So, the outcome of this first investigation is the choice of
the fuzzy functional parameters for a generic diagnostics system.

On the other hand, we define the following system parameters:
Number, type, width of the input MFs. To take into account
sensor noise the value of amplitude (s or) for the i-th
measurement can be expressed as a multiple of its sensor noise
RMSi (a·RMSi).
Number, type, width of the output MFs. The number of output
MFs is always a result of the search space definition. For each of
the 12 performance parameters (involved in this application), for
a given range of variability, this number depends on the
increment value (as defined in section 2.4.2.1) once the search
space is defined. This number corresponds to the number f of
fault levels that the range is divided into.

Summarizing, for the application described in this chapter, with fixed
inputs and outputs, the system parameters to be optimised are six: number, type and
width of the input MFs, type and width of output MFs and increment value in the
search space.

A second sensitivity study will be carried out in section 2.4.5 aimed at
identifying the best values to set up a system for the three-spool engine considered
in this work. When implementing a new diagnostic system, a new sensitivity study
may be required to identify their optimal values. Nevertheless, the logic and the
procedure to choose the parameters remains suitable and the parameters chosen in
this work can be used as first attempt values.

2.4.3. Automated Procedure

The procedure to generate fuzzy rules was automated via the graphical user
interface (GUI) shown in Figure 2.14. This GUI constitutes the first of two
windows of the diagnostics module based on fuzzy logic described in (Marinai,
2004). This first GUI is aimed at setting up fuzzy logic diagnostics models for a

56 V Palade, CD Bocaniala and L Jain (Eds.)

given engine. A second interface is aimed at operating the diagnostics models
created to estimate the possible faults – see section 2.7.

Figure 2.14. Fuzzy diagnostic model setup GUI.

The first GUI of the diagnostics module, as shown in Figure 2.14, is able
to setup a diagnostics model given an engine model (Turbomatch), an operating
condition and a search space.

In the GUI the main elements that must be specified are:
In the engine model setup frame of the GUI: engine model used,
operating condition, selection of the measurement set (number
and type).
In the search space definition frame of the GUI: the ranges of
variability of the performance parameters, the number of
components simultaneously degraded and the increment value in
the ranges.
In the system parameters definition frame of the GUI: number,
type and width of the input MFs, type and width of output MFs.
(Note that the increment value is defined with the search space.)

Computational Intelligence in Fault Diagnosis 57

In the functional parameters definition frame of the GUI: AND
operator, implication, aggregation, and defuzzification algorithms
among the techniques listed in section 2.4.2.4.

Once these selections are made, a fuzzy logic inference system (FIS) is
generated and saved. An additional frame of the GUI was designed to test FISs by
simulating test data with implanted faults as well as measurement noise.

An ulterior feature of this interface is its capability of generating a
diagnostics FIS able to diagnose component faults in the presence of systematic
errors in the measurements (bias) while identifying the faulty sensor as well. A
checkbox in the search space definition frame of the GUI enables the input of an
ulterior system parameter called sigma NOT. This feature is discussed in detail in
(Marinai, 2004) but not described in this chapter.

2.4.4. Sensitivity Study: Strategy

2.4.4.1. Reasons for the Study. Anticipation of the Results
Section 2.4.5 will present a sensitivity study aimed at identifying our choice of
optimal combination of system and functional parameters for an optimal
approximation capability of the diagnostics system. The approximation capability is
defined as the ability of the method to model and approximate the functional
relationship between sets of inputs (fault signature in the measurements) and the
right sets of outputs (variations in the performance parameters), without
considering, for the moment, the additional complication of measurement errors.
Subsequently, in section 2.5, noise is added to the test cases and our optimal
selection of the system parameters is modified accordingly, to achieve an enhanced
accuracy of the diagnosis.

The sensitivity study (to evaluate the method’s approximation capability)
includes two sets of tests aimed at carrying out: (i) optimization of the functional
parameters, and (ii) optimization of the system parameters. For the benefit of the
reader, we anticipate here the results that are justified throughout the next
subsection. Our choice of optimal functional parameters is the following:

AND operator, implemented as: product.
Implication method, implemented as: product.
Aggregation method, implemented as: summation.
Defuzzification method, implemented as: centroid (centre of
maximum as second best).

These features identify a fuzzy logic system commonly known as SAM
(standard additive model).

On the other hand, the optimal selection of system parameters is:
Gaussian MFs for input and output.
Maximum N of MFs fixed to 500. It was found that the more
input MFs are defined the better, in fact this value is greater than
the number of input MFs that correspond to the combinations in
the search space identified for an SFI capability. Nevertheless, in
the case of a system with MFI capability, in the opinion of the

58 V Palade, CD Bocaniala and L Jain (Eds.)

authors, a sensible value (e.g., 500) must be given to limit the
computational burden.
Width of MFs equal to 0.15 for the input MFs and equal to 0.5 for
the output MFs. Note that the optimal value of the input MFs
width to achieve an effective approximation capability is different
from the case in which noise is added. In the presence of noise the
optimal value for each measurement is different and corresponds
to the values of the sensors’ noise RMSs assuming that noise is
normally distributed, as discussed in section 2.5.
The number of output MFs is identified by the choice of the
increment value in the search space. A smaller increment value is
associated with a higher number of rules. Even though it is
proved that this is advantageous for the accuracy of the system, it
considerably reduces the speed of the calculation.

2.4.4.2. Description of the Case Studies
Test cases were generated, implanting 1771 combinations, deteriorating the six
components independently (two parameters at a time) in the ranges of variability
defined for the examined search space (see section 2.4.2.1) with an increment value
of 0.2.

Table 2.10. Combinations of functional parameters

case AND Implication Aggregation Defuzzification

1 Product Product Summation Centroid

2 Minimum Product Summation Centroid

3 Product Minimum Summation Centroid

4 Minimum Minimum Summation Centroid

5 Product Product Maximum Centroid

6 Minimum Product Maximum Centroid

7 Product Minimum Maximum Centroid

8 Minimum Minimum Maximum Centroid

9 Product Product Summation C.O.M

10 Minimum Product Summation C.O.M

11 Product Minimum Summation C.O.M

12 Minimum Minimum Summation C.O.M

13 Product Product Maximum C.O.M

14 Minimum Product Maximum C.O.M

15 Product Minimum Maximum C.O.M

16 Minimum Minimum Maximum C.O.M

In the sensitivity study reported in section 2.4.5, a first series of 16 tests
were performed to identify the optimal functional parameters. The test cases were
used to assess the approximation capability of 16 different systems whose layouts
were designed according to the combinations of functional parameters listed in
Table 2.10. For these 16 systems, the system parameters were fixed to the following
first-guess values: Gaussian MFs in input and output, maximum N of MFs fixed to
500, width of input MFs equal to 0.25, width of output MFs equal to 0.5, increment
value of the search space equal to 0.5%.

Computational Intelligence in Fault Diagnosis 59

Once a best choice of functional parameters was found, it was kept
unchanged in the subsequent tests: the second group of tests was undertaken using
the same 1771 test cases to evaluate the optimal system parameters among the
following possible selections.

Input MFs type= Gaussian, Triangular.
Input MFs width= 0.1, 0.15, 0.25, 0.5.
Output MFs type= Gaussian, Triangular.
Output MFs width= 0.25, 0.5, 1%.
Increment value= 0.25, 0.5, 1%.
Input MFs number= 50, 100, 500.

The strategy used to carry out these tests follows: starting from the first-
guess values of system parameters used in the first series of tests (Gaussian MFs in
input and output, maximum N of MFs fixed to 500, width of input MFs equal to
0.25, width of output MFs equal to 0.5, increment value of the search space equal to
0.5%), the changes listed in Table 2.11 were made in sequence. For each change in
system parameters, the system so generated was tested. The change was carried
forward to the successive test only if it outperformed the results from the previous
system.

Table 2.11. List of system parameters changes for the sensitivity study

N. Change to system parameters

1 Input MFs type changed to triangular (from Gaussian)

2 Output MFs changed to triangular

3 Input MFs width increased to 0.5 (from 0.25)

4 Input MFs width reduced to 0.15

5 Input MFs width reduced to 0.1

6 Output MFs width reduced to 0.25 (from 0.5)

7 Output MFs width increased to 1

8 Increment value increased to 1 % (from 0.5%)

9 Increment value reduced to 0.25 %

10 Input MFs number reduced to 100

2.4.4.3. Three Methods to Estimate the System Accuracy
This section introduces three methods that were used to assess the performance
parameters’ estimation error and therefore the capability of a given diagnostics
system to meet the requirements, as discussed below.

For each input set of 10 measurement deviations, the diagnostics process
computes 12 deviations in performance parameters. The difference between the
implanted deviation in each performance parameter and the corresponding
calculated one is computed according to the following equation:

Delta = Implanted – Calculated (6)
Method 1. This method computes, for each test case, the max Delta

(maximum value of Delta) calculated for the 12 parameters estimated. Then it
assigns to this value different levels of severity according to its amount. Three
severity ranges were considered:

Low severity (LS): max Delta < 0.5%
Medium severity (MS): 0.5%<max Delta < 1%
High severity (HS): max Delta > 1%

60 V Palade, CD Bocaniala and L Jain (Eds.)

Therefore for the 1771 test cases created, for each system assessed is
calculated: number and % of MS cases and number and % of HS cases (the number
and % of LS cases can be obviously deduced).

This method is aimed at evaluating local errors of the system in estimating
the performance parameters, pointing out when in each test case the maximum error
overcomes fixed thresholds.

Method 2. This technique is used only to assess SFI capability when a
fault is implanted in only one component at a time (two parameters simultaneously
faulty). The 1771 test cases are divided into six groups characterised by a different
faulty component, the number of components being six. This method considers, in
each group, only the two parameters affected by deterioration and computes the
Deltas for them only. For each parameter in which deterioration is implanted this
method computes:

 = the mean value of the Deltas across the group of test cases
relative to the same component deteriorated.
 = the standard deviation of those Deltas.

Cl95%+ = + 1.96 , the corresponding 95% upper confidence
limit.
Cl95%– = – 1.96 , the corresponding 95% upper confidence
limit.

This approach computes a local error because it considers only the
parameters where the deterioration is implanted. It undertakes for these parameters
a statistical analysis of the results and therefore it can be used to provide an
expected accuracy of the system on them.

Method 3. This method computes, for each test case, the RMS of the
Deltas for the N=12 parameters estimated for each calculation, according to the
equation

2()
N

i
i i

Delta
RMS

N
(7)

The average value, mean(RMS)=RMS, of the RMSs calculated for all test
cases (1771 in the sensitivity study) is identified as a global parameter to estimate
the accuracy of the diagnosis. This method is particularly useful to highlight a
smearing tendency (see section 2.2.3) or else the propensity of some of the
diagnostics methods to distribute the faults over many engine components even
when only a limited number of components are affected by faults.

The three methods are employed in this work in the following cases:
Methods 1 and 3 are used in the sensitivity study reported in the
next section (2.4.5) to provide a quick way of estimating a global
accuracy of each system assessed.
Methods 1, 2 and 3 are then used in section 2.5 to investigate in
detail (local and global errors) the approximation capability of the
fuzzy diagnostics system and successively its accuracy, in the
presence of noisy measurements, for the diagnostics system with
the chosen layout.

Computational Intelligence in Fault Diagnosis 61

Methods 1 and 3 are used in section 2.6 to assess the partial MFI
capability of the system.

2.4.5. Sensitivity Study: Results

2.4.5.1. Choice of the Functional Parameters
This section is dedicated to reporting the results of the first part of the sensitivity
study to identify the best choice of functional parameters. The 16 different layouts
listed in Table 2.10 (section 2.4.4.2) were investigated and the results are
summarized in Table 2.12, the number of cases in the two tables being the same.
The table contains the results from two techniques to assess the diagnostics system
accuracy: Methods 1 and 3 as defined in section 2.4.4.3. In the table, for each
system, the results from Method 1 are the number (N) and the percentage (%) of the
cases with medium severity (MS) and high severity (HS) errors. Besides, Method 3
provides the average value of the RMS error, for the 1771 test cases.

Table 2.12. Results from Methods 1 and 3 to assist the best choice of functional
parameters

Method 1 Method 3

case

MS cases (N. // %) HS cases (N. // %) RMS

1 27 // 0.0152 0 // 0 0.048

2 79 // 0.0446 2 // 0.0011 0.065

3 35 // 0.0198 0 // 0 0.084

4 96 // 0.0542 3 // 0.0017 0.097

5 43 // 0.0243 1 // 0.0005 0.058

6 48 // 0.0271 2 // 0.0011 0.060

7 57 // 0.0322 1 // 0.0005 0.068

8 106 // 0.0599 2 // 0.0011 0.079

9 31 // 0.0175 8 // 0.0045 0.046

10 103 // 0.0582 20 // 0.0113 0.055

11 80 // 0.0452 0 // 0 0.065

12 134 // 0.0757 6 // 0.0034 0.095

13 51 // 0.0288 7 // 0.004 0.074

14 49 // 0.027 8 // 0.0045 0.075

15 50 // 0.028 7 // 0.004 0.076

16 51 // 0.0288 10 // 0.0056 0.075

The outcome of this analysis highlighted two optimal combinations of
functional parameters that show a minimum number of MS and HS cases and a
minimum average value of RMS. These best layouts are for the cases 1 and 9 that
correspond respectively to the following layout:

Best choice: AND=Product, Implication=Product, Aggregation=
Summation, Defuzzification=Centroid.
Second best choice: AND=Product, Implication=Product,
Aggregation=Summation, Defuzzification=Centre of Maximum.

62 V Palade, CD Bocaniala and L Jain (Eds.)

Case 1 was selected as best choice because it showed: minimum number of
MS and zero HS cases. As far as the RMS is concerned, case 1 does not outperform
case 9 that is considered to be the second best selection. Nevertheless the difference
in RMS for the two systems is negligible. It is worthwhile noticing that the small
value of RMS for case 9 indicates a strong concentration capability on the actual
fault.

2.4.5.2. Choice of the System Parameters
The procedure to identify the most suitable combination of system parameters was
presented in section 2.4.4.2. It consists of a sequence of 10 modifications to the
first-guess values. After each change in system parameter, the layout was tested
with the 1771 test cases introduced in section 2.4.4.2 and the change was kept in the
successive layout only if it outperformed the results from the previous system.

Table 2.13. Results from Methods 1 and 3 to assist the best choice of system parameters

Method 1 Method 3

case
MS cases (N. // %) HS cases (N. // %) RMS

Set up time

Keep (K) /

Reject (R)

the change

1 339 // 0.1914 310 // 0.175 0.282 1 min, 12 sec R

2 29 // 0.016 0 // 0 0.049 unchanged R

3 305 // 0.1722 24 // 0.0136 0.112 unchanged R

4 26 // 0.0147 0 // 0 0.045 unchanged K

5 41 // 0.0232 4 // 0.0023 0.064 unchanged R

6 26 // 0.0147 2 // 0.0011 0.048 unchanged R

7 58 // 0.0327 2 // 0.0011 0.237 unchanged R

8 334 // 0.1942 44 // 0.0248 0.129 23 sec R

9 10 // 0.0056 0 // 0 0.117 4 min, 8 sec R

10 28 // 0.0158 2 // 0.0011 0.055 1 min, 12 sec R

This procedure was applied starting from the best choice of layout
identified in section 2.4.5.1. The outcome of this sensitivity study is summarized in
Table 2.13. The table case number corresponds to the layout change number of
Table 2.11. Table 2.13 presents the results from Methods 1 and 3 (see section
2.4.4.3) and the setup time or else the time to generate a new fuzzy logic inference
system, with the new layout, for the search space under investigation. In the last
column of the table is reported whether the layout with the change outperforms or
not the previous one.

The following change was introduced in the system parameters:

Computational Intelligence in Fault Diagnosis 63

Input MFs width reduced to 0.15 (case 4), because it reduces the
number of MS cases and the RMS.

It is worthwhile noticing that the changes associated with case 9
(increment value reduced to 0.25%) were not introduced. The reasons are that even
though the corresponding number of MS cases appreciably drops, the RMS
increases indicating a higher tendency to smear the fault in the 12 parameters.
Moreover, the setup time increases significantly. It is an ambition of this work to
extend the SFI capability of the system to an MFI capability; therefore concerns
about the setup time are vital to enable this additional feature in a reasonable time.
In fact, the number of rules that needs to be generated increases dramatically in
implementing a system able to identify more than two components simultaneously
faulty, and so does the setup time accordingly.

Similarly, this procedure was applied starting from the second best layout
identified in section 2.4.5.1 to complete the identification of a second optimal
layout. The outcome of this second sensitivity study is summarized in Table 2.14.
The table case number corresponds to the layout change number of Table 2.11. The
following two changes were introduced in the system parameters:

Input MFs width reduced to 0.15 (case 4).
Output MFs width increased to 1 (case 7).

Table 2.14. Results from Methods 1 and 2 to assist the best choice of system parameters
for the second optimal selection of the functional parameters

case

Keep (K) /

Reject (R)

the change

1 R

2 R

3 R

4 K

5 R

6 R

7 K

8 R

9 R

10 R

2.5. SFI Accuracy and Tuning

This section is dedicated to a thorough analysis of the SFI accuracy of the fuzzy-
logic-based diagnostic system in the following cases:

To approximate and model the functional relationship between
sets of inputs (fault signature in the measurements) and sets of
outputs (variations in the performance parameters), without the
additional complication of measurements errors. The best layout

64 V Palade, CD Bocaniala and L Jain (Eds.)

identified in section 2.4.5.2 is studied in more detail in section
2.5.1.
To diagnose a fault in one component (SFI) in the presence of
noise in the measurements. The accuracy of the system is tested,
and how this accuracy can be enhanced changing the input MFs
amplitude according to realistic values of sensor noise RMSs is
shown in section 2.5.2.
To diagnose considerable changes in the two health parameters of
one component with respect to a previously assessed deteriorated
condition. A way of tuning the diagnostics system capable of SFI
to estimate such changes and the method’s accuracy are reported
in section 2.5.3.

2.5.1. Approximation Capability: Accuracy

In section 2.4.5.2 an optimal layout for a fuzzy diagnostics system was identified
via a sensitivity study. The system has the following features:

Functional parameters: AND=Product, Implication=Product,
Aggregation=Summation, Defuzzification=Centroid.
System parameters: Gaussian MFs in input and output, Maximum
N of MFs fixed to 500, width of input MFs equal to 0.15, width of
output MFs equal to 0.5, increment value of the search space
equal to 0.5% (this identifies indirectly the output MFs number –
see section 2.4.2.4)

This section presents a more in-depth study of the accuracy of the devised
diagnostics process by means of two techniques, introduced in section 2.4.4.3, to
assess the system estimation error: Methods 1 and 3. This section is entirely
dedicated to the analysis of system’s capability of approximating and modelling the
functional relationship between inputs and outputs without considering
measurement errors.

2.5.1.1. Accuracy Results: Method 2
Figure 2.15 presents Deltas between implanted and calculated performance
parameter deteriorations for the 1771 cases.

For each case, efficiency and flow capacity changes were implanted
simultaneously for one component: starting from the FAN, on the left of the
diagram, to the LPT on the right. Therefore, for each test case shown on the x axis,
two values are plotted on the y axis: the corresponding Deltas (errors) in estimating
the efficiency and the flow capacity of the component simulated as faulty (the name
of the component appears on the top of the diagram for each group of test cases).
For each component, a statistical analysis of the result was carried out according to
Method 2 and summarized in Table 2.15.

Computational Intelligence in Fault Diagnosis 65

-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

1771 Test Cases

%
 D

el
ta

FAN E

FAN FC

IPC E

IPC FC

HPC E

HPC FC

HPT E

HPT FC

IPT E

IPT FC

LPT E

LPT FC

FAN IPC HPC HPT IPT LPT

Figure 2.15. SFI capability of the diagnostics system. Results for 1771 test cases.

Table 2.15. Statistics of the diagnostics results, Method 2

ηFAN ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT

µ -0.009 -0.003 -0.007 -0.007 -0.009 0.001 0.006 -0.026 -0.040 0.014 -0.032 0.017
σ 0.231 0.136 0.091 0.075 0.089 0.065 0.127 0.131 0.175 0.123 0.165 0.184
CI95%+ 0.444 0.264 0.173 0.141 0.166 0.129 0.256 0.230 0.302 0.255 0.292 0.377
CI95% - -0.461 -0.269 -0.186 -0.154 -0.184 -0.127 -0.243 -0.282 -0.382 -0.227 -0.355 -0.344

For each component degraded, the table reports, for each health parameter:
the mean value () of the errors between the calculated and the implanted
performance parameter changes, over the test cases relative to that specific
component, the standard deviation () of such an error, and the derived 95%
confidence intervals (CI95%). For each parameter it can be concluded that, with 95%
confidence, the error is contained between CI + and CI –.95% 95%

2.5.1.2. Accuracy Results: Method 3
A second performance parameters’ estimation error is introduced by computing, for
each test case, the RMS of the Deltas for the 12 parameters at each calculation,
according to the procedure previously described in Method 3. This analysis reveals
that the fuzzy logic system has a good accuracy on the parameters not affected by
the implanted faults, or else it has a good “concentration” capability on the actual
fault. The average value of the RMS error, for the 1771 test cases, was 0.045, which
is a considerably low value.

2.5.1.3. Computational Time Required
One of the most favourable aspects of using fuzzy logic to implement a system
capable of SFI, is its speed: once an automated setup procedure is designed (see
GUI section 2.4.3) such a system is quick and easy to setup and equally fast when
operated to diagnose a fault. The computational time obviously depends on the
computer used but sensible figures for a current average computational capability

66 V Palade, CD Bocaniala and L Jain (Eds.)

are listed in Table 2.16. The table reports the setup time and the diagnostics time
relating them respectively to the number of rules to setup and the number of test
cases to diagnose. These represent the elements on which the computational time
has a stronger dependency. The diagnostics time for a single calculation is on the
order of 0.1 second, as seen in the table.

Table 2.16. Computational time with current computational capability

Processing Time Dependency

Setup time 1 min, 12 sec 331 rules

Diagnostic Time 2 min, 50 sec

(0.1 sec/case)

1771 test cases

2.5.2. Diagnostics Capability in the Presence of Noisy
Measurements: Accuracy

The sensitivity study illustrated in section 2.4.5 provided us with two best choices
of layout for a fuzzy diagnostics system that required approximating and modelling
the input–output functional relationship as defined in section 2.4.2. This section
studies how these two systems perform when they are demanded to diagnose a fault
given a set of measurements affected by noise. Moreover a way to enhance the
accuracy changing the input MFs amplitude according to sensor noise RMSs is
discussed. The systems have the following features:

System 1 (best choice):
Functional parameters: AND=Product, Implication=
Product, Aggregation=Summation, Defuzzification=
Centroid.
System parameters: Gaussian MFs in input and output,
maximum N of MFs fixed to 500, width of input MFs
equal to 0.15, width of output MFs equal to 0.5,
increment value of the search space equal to 0.5% (this
identifies indirectly the output MFs number – see section
2.4.2.4).

System 2 (second best choice):
Functional parameters: AND=Product, Implication=
Product, Aggregation=Summation, Defuzzification=
Centre of Maximum.
System parameters: Gaussian MFs in input and output,
maximum N of MFs fixed to 500, width of input MFs
equal to 0.15, width of output MFs equal to 1, increment
value of the search space equal to 0.5%.

As far as the functional parameters are concerned, System 1 belongs to the
category of SAM systems. On the other hand, System 2 is a quasi-SAM system: the
main difference lies in the defuzzification algorithm, implemented as center of
maximum (COM) function. The 1771 test cases were modified adding to the i-th
element of the measurement set a random number that represents a realistic noise

Computational Intelligence in Fault Diagnosis 67

level according to the type of sensor required. The random number is generated as
follows. Table 2.17 lists, for different types of sensors, realistic values of sensor
noise standard deviations SDTVi as a percentage of the measured value, the noise
being assumed to follow a Gaussian distribution. For each measurement of the
1771 test cases, a random number is generated from a normal distribution with
mean zero, and standard deviation SDTVi , according to the value in the table. This
random number represents the % deviation the corresponding measurement must be
varied to simulate the noise.

Table 2.17. Sensor noise standard deviations in % of the measured value

Sensor type STDV
i

Temperature 0.4%
Pressure 0.25%
Fuel Flow 0.5%
Shaft Speed 0.05%

Once the random component is added to the measurements of the 1771 test
cases to simulate the presence of noise, they are used to test Systems 1 and 2.

Figure 2.16 represents the Deltas between implanted and calculated
performance parameter deteriorations for the 1771 cases.

Table 2.18. Statistics of the diagnostics results for System 1, Method 2

ηFAN ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT

µ -0.08 -0.03 -0.04 -0.05 -0.14 -0.09 -0.12 0.02 -0.08 0.04 -0.04 -0.01
σ 0.64 0.30 0.39 0.35 0.58 0.34 0.41 0.37 0.41 0.30 0.33 0.29
CI95%+ 1.16 0.56 0.72 0.64 1.01 0.57 0.68 0.75 0.73 0.62 0.61 0.56
CI95% - -1.33 -0.62 -0.81 -0.74 -1.28 -0.75 -0.92 -0.70 -0.89 -0.54 -0.70 -0.58

The test cases are divided into six groups characterised by a different
faulty component. Figure 2.16 considers, in each group, only the two parameters
affected by deterioration and shows the Deltas only for them. Moreover, for each
parameter in which deterioration is implanted, Table 2.18 reports the statistical
results according to Method 2. It can be seen in Figure 2.16 how the values of
Deltas are much higher compared to the case without noise. This can also be
observed in Table 2.18 where high values of are reported. The RMS increased as
well up to 0.147 (Method 3) and the results showed 483 cases (27%) with MS
errors and 105 cases (5.9%) with HS errors (Method 1) – see Table 2.19.

Table 2.19. Summary of accuracy results for System 1 via Methods 1 and 3 over 1771
cases

Method 1 Method 3

case

MS cases (N. // %) HS cases (N. // %) RMS

1 483 // 0.27 105 // 0.059 0.147

68 V Palade, CD Bocaniala and L Jain (Eds.)

Table 2.20. Statistics of the diagnostics results for System 1 with enhanced capability of
dealing with noisy data, Method 2

ηFAN ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT

µ -0.07 -0.02 -0.03 -0.02 -0.12 -0.03 -0.09 0.02 -0.07 0.04 -0.02 -0.01
σ 0.42 0.24 0.26 0.17 0.40 0.17 0.25 0.31 0.24 0.20 0.26 0.20
CI95%+ 0.75 0.46 0.48 0.30 0.67 0.29 0.41 0.64 0.40 0.44 0.49 0.39
CI95% - -0.89 -0.49 -0.54 -0.35 -0.90 -0.36 -0.58 -0.59 -0.55 -0.36 -0.53 -0.40

-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

1771 Test Cases

%
 D

el
ta

FAN E

FAN FC

IPC E

IPC FC

HPC E

HPC FC

HPT E

HPT FC

IPT E

IPT FC

LPT E

LPT FC

FAN IPC HPC HPT IPT LPT

Figure 2.16. SFI capability of System 1. Results for 1771 test cases.

To improve the system accuracy that is dramatically affected when noisy
data are analysed, the input MFs amplitudes were modified. It was proved to be
advantageous to differentiate them: different values of amplitude were used for
different input. The most suitable choice was found to be to use as input MFs
amplitude for the different measurement types exactly the values of sensor noise
standard deviation listed in Table 2.17.

The improved results obtained with System 1 with enhanced capability of
dealing with noisy data are shown in Figure 2.17. The deltas are considerably more
localised within 0.5 %, and considering that this is also the order of magnitude of
the noise introduced in some of the measurements, it is in the opinion of the authors
a positive outcome. The improvement can also be appreciated in Table 2.20,
noticing the considerable reduction of the values of . The RMS obtained with the
enhanced system was reduced to 0.08 (Method 3) and the results showed 201 cases
(11%) with MS errors and 33 cases (1.8%) with HS errors (Method 1) – see Table
2.21.

Computational Intelligence in Fault Diagnosis 69

-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

1771 Test Cases

%
 D

el
ta

FAN E

FAN FC

IPC E

IPC FC

HPC E

HPC FC

HPT E

HPT FC

IPT E

IPT FC

LPT E

LPT FC

FAN IPC HPC HPT IPT LPT

Figure 2.17. SFI capability of System 1 with enhanced capability of dealing with noisy
data. Results for 1771 test cases.

Table 2.21. Summary of accuracy results for enhanced System 1 via Methods 1 and 3 over
1771 cases

Method 1 Method 3

case

MS cases (N. // %) HS cases (N. // %) RMS

1 201 // 0.11 33 // 0.018 0.08

Due to the fact that Systems 1 and 2, as defined at the beginning of this
section, provided similar type of outcomes, it was considered here worthwhile to
also study the behaviour of System 2 in the presence of noise in the measurements.
In the same way that System 1 was adapted to deal with noisy data, also for System
2 it was necessary to change the amplitudes of the input MFs according to the noise
level implanted. Figure 2.18 shows the results obtained with the enhanced System
2. The outcome as expected is similar to the one previously reported for the
enhanced System 1. The values of detailed in Table 2.22 (Method 2) are
comparable in magnitude to the values of Table 2.20 for the enhanced System 1
even though slightly worse. The RMS obtained with the enhanced System 2
calculated for the 1771 cases was equal to 0.09 (Method 3) but the results showed
183 cases (10%) with MS errors and 30 cases (1.6%) with HS errors outperforming
the enhanced System 1 when evaluating the system accuracy with Method 1 – see
Table 2.23.

Table 2.22. Statistics of the diagnostics results for System 2 with enhanced capability of
dealing with noisy data, Method 2

ηFAN ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT

µ -0.06 -0.02 -0.03 -0.02 -0.10 -0.04 -0.08 0.02 -0.08 0.04 -0.02 0.00
σ 0.44 0.25 0.28 0.17 0.43 0.17 0.27 0.32 0.26 0.21 0.27 0.21
CI95%+ 0.81 0.47 0.51 0.31 0.74 0.31 0.44 0.65 0.43 0.45 0.51 0.40
CI95% - -0.92 -0.51 -0.58 -0.35 -0.95 -0.38 -0.61 -0.60 -0.58 -0.37 -0.56 -0.41

70 V Palade, CD Bocaniala and L Jain (Eds.)

Table 2.23. Summary of accuracy results for enhanced System 2 via Methods 1 and 3 over
1771 cases

Method 1 Method 3

case

MS cases (N. // %) HS cases (N. // %) RMS

1 183 // 0.10 30 // 0.016 0.09

-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

1771 Test Cases

%
 D

el
ta

FAN E

FAN FC

IPC E

IPC FC

HPC E

HPC FC

HPT E

HPT FC

IPT E

IPT FC

LPT E

LPT FC

FAN IPC HPC HPT IPT LPT

Figure 2.18. SFI capability of System 2 with enhanced capability of dealing with noisy
data. Results for 1771 test cases.

2.5.2.1. Remarks
It may be concluded that in this section an important milestone in this project was
proved. Two fuzzy system layouts were identified as capable of performing SFI
capability in the presence of noisy measurements and their accuracy was evaluated
with the three different methods introduced in section 2.4.4.3. The enhanced
System 1 outperformed the enhanced System 2 in the accuracy tests provided by
Methods 2 and 3, but underperformed when the accuracy was estimated with
Method 1.

2.5.3. Tuning Capability to Enhance the SFI Role in GPD

An SFI system is used to evaluate considerable changes in only two performance
parameters of one component. The application of an SFI approach in a real-life case
becomes useful under the assumption that only one component can be faulty. This
assumption becomes more realistic if the changes are estimated in a short space of
time, or else the diagnosis is made to assess only changes in the performance
parameters from a very recent known condition. In fact, if on the contrary the time
scale increases, it is more likely that two or more gas path components are
degraded.

Computational Intelligence in Fault Diagnosis 71

These considerations create a new opportunity of using SFI systems
coupled with MFI systems (e.g., linear estimation methods). MFI approaches are
limited when estimating considerable changes (i.e., > 1%) but are advantageous
when calculating small deteriorations that inevitably affect all the parameters
simultaneously over the engine operating time. The procedure represented in Figure
2.19 is an attempt at suggesting how this coupling could be implemented. The
procedure described relies on the idea that SFI and MFI systems compute a solution
in parallel for every flight mission of the engine. The two systems at flight n
calculate deltas in measurements from a baseline not of a clean engine but of the
global deterioration level estimated at flight n-1. Therefore the two systems do not
calculate the absolute changes in performance parameters, with respect to a clean
engine, but the relative changes with respect to the deteriorated condition evaluated
at the previous flight. The relative changes computed at flight n are then added to
the global deterioration level to obtain the absolute changes with respect to the
clean condition.

 SFI MFI

∆ Measurements (t)

(baseline condition estimated at the

time t- ∆ respect to the Global

deterioration level)

check

1) If SFI outcome is <0.5% changes

in all the components ignore SFI

outcome.

2) If SFI outcome is >0.5% add it to

the global deterioration levels

Global

deterioration

level

Figure 2.19. MFI and SFI coupling.

Let us assume that at flight number one the engine is clean and no
deterioration is detected. At a given point in time (flight n) the MFI system detects
small deteriorations in all performance parameters, no considerable changes (<0.5)
are detected by the SFI and therefore it is ignored. At flight n+1 instead something
happens and one component gets severely damaged. The SFI estimates changes >
0.5% (in a real application the value 0.5% should be replaced with a more correct
value obtained in validating the suggested procedure), therefore the SFI outcome is
used to update the global deterioration level instead of the MFI result.

In the light of this proposed framework, in this work an automated
procedure (see GUI from section 2.4.3) was devised to tune the rules of the fuzzy
diagnostics system on top of a known deterioration level for all the 12 performance
parameters (baseline). This baseline is assumed to be calculated at the previous
flight with an MFI method and represents the global deterioration level in Figure
2.19. Let us assume, for example, that the values listed in Table 2.24 represent the
baseline of deterioration. The SFI is now required to assess whether there are
considerable changes from this already existing level of deterioration.

The results shown in Figure 2.20 were obtained using the enhanced
System 1 as defined in the previous section that was tuned to the baseline of Table

72 V Palade, CD Bocaniala and L Jain (Eds.)

2.24. A new set of 1771 test cases were generated with fault implanted in the ranges
defined by the search space identified in section 2.4.2.1 but superimposed on the
global deteriorations of Table 2.24; the measurements calculated running the engine
model were disturbed adding a random component according to the same procedure
described in the previous section. It is important to observe that these results cannot
precisely (i.e., case by case) be compared to the results from the previous set of test
cases because, having added a random component, the two sets could have slightly
different severity of noise level. But a comparison can be made looking at the
statistical figures. Table 2.25 presents analogous results to Table 2.22 (Method 2).
The RMS obtained with the tuned diagnostics system calculated for the 1771 cases
was equal to 0.089 (Method 3) and the results showed 172 cases (9%) with MS
errors and 22 cases (1.2%) with HS errors (Method 1) – see Table 2.26.

2.6. A Fuzzy Diagnostics System with Partial MFI
Capability

In section 2.5.3, it was discussed how an SFI system can be used in a real-life
application to evaluate considerable changes in only two performance parameters,
under the assumption that only one component can become significantly faulty in
the considered time interval. It was recognised that this assumption becomes more
realistic if the diagnosis is made to assess only changes from a very recent known
condition. In fact, if on the contrary the time scale increases, it is more likely that
two or more gas path components are degraded. With the intention of making the
procedure summarized in Figure 2.19 more robust, in this section a fuzzy
diagnostics system with partial MFI capability was devised, to substitute the SFI
process in the coupling procedure (Figure 2.19).

Table 2.24. Global deterioration level, baseline

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-0.5 -0.4 -0.2 -0.5 -0.3 -0.2 -0.3 0.5 -0.4 0.3 -0.6 0.5

Table 2.25. Statistics of the diagnostics results for tuned enhanced System 1, Method 2

ηFAN ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT

µ -0.07 -0.02 -0.03 -0.02 -0.07 -0.01 -0.09 0.00 -0.06 0.02 -0.04 -0.02
σ 0.36 0.22 0.28 0.18 0.32 0.16 0.27 0.30 0.20 0.19 0.23 0.19
CI95%+ 0.64 0.40 0.52 0.32 0.56 0.30 0.44 0.58 0.34 0.39 0.41 0.35
CI95% - -0.78 -0.45 -0.58 -0.37 -0.70 -0.32 -0.62 -0.58 -0.46 -0.34 -0.50 -0.38

Computational Intelligence in Fault Diagnosis 73

-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

1771 Test Cases

%
 D

el
ta

FAN E

FAN FC

IPC E

IPC FC

HPC E

HPC FC

HPT E

HPT FC

IPT E

IPT FC

LPT E

LPT FC

FAN IPC HPC HPT IPT LPT

Figure 2.20. SFI capability of the tuned enhanced System 1. Results for 1771 test cases.

Table 2.26. Summary of accuracy results for tuned enhanced System 1 via Methods 1 and
3 over 1771 cases

Method 1 Method 3

case

MS cases (N. // %) HS cases (N. // %) RMS

1 172 // 0.09 22 // 0.012 0.089

The process with partial MFI capability is in principle similar to the SFI
systems described so far. It is able to quantify considerable deviation in
performance parameters and it uses the nonlinear approach based on fuzzy logic.
Moreover it is able to quantify changes in more than two parameters
simultaneously: in this work the system was tested with up to two components
degraded at a time, four parameters simultaneously deteriorated. In the context of
section 2.5.3, this allows relaxing the previously stated assumption requiring that no
more than two components can become considerably degraded in one mission.

2.6.1. System Layout

A fuzzy diagnostics system with partial MFI capability was devised in this work for
a three-shaft turbofan engine. The inputs and outputs of the diagnostic process are
the same shown in Figure 2.11 (section 2.4.2). The system is designed to assess
performance parameters percentage changes from a clean engine condition (12
outputs) given the knowledge of the measurement changes (10 inputs) calculated as
percentage deviations with respect to a baseline determined by means of an engine
model run at the specific power setting and environmental conditions (defined in
section 2.4.2).

This section describes a system able to quantify considerable changes in up
to two components degraded simultaneously (four performance parameters)

74 V Palade, CD Bocaniala and L Jain (Eds.)

according to the considerations made in section 2.2.4 – see Table 2.1. The search
space was defined as follows:

Maximum variation in compressors’ efficiencies = –1%
Minimum variation in compressors’ efficiencies = –3%
Maximum variation in compressors’ flow capacities = –1%
Minimum variation in compressors’ flow capacities = –3%
Maximum variation in turbines’ efficiencies = –1%
Minimum variation in turbines’ efficiencies = –3%
Maximum variation in turbines’ flow capacities = –1%
Minimum variation in turbines’ flow capacities = –3%

Besides, the following additional parameters were fixed:
Number of components simultaneously deteriorated = 2
Step of increment = 0.5%
Number of rules = 19440

To limit the number of rules and therefore the complexity of the system no
rules were stated to provide the input–output functional relationship corresponding
to fault levels between 0% and –1%. Note that even though the ranges in the search
space are defined between –1% and –3%, the 0% fault levels are always included in
the search space. Therefore, the above definition of search space only excludes the -
0.5% fault level compared to the search space defined in section 2.4.2. This choice
slightly affects the accuracy at low deterioration levels (around 0.5%) but it was
recognised that a higher accuracy is required when assessing higher changes in the
performance parameters (e.g., 3%). Besides, in this work a strong commitment was
devoted to meeting the requirement of devising a fast system for on-wing
applications, and therefore a reduction in the number of rules (excluding the –0.5%
fault level) was driven by time-related concerns.

2.6.2. Partial MFI Capability: Results

2.6.2.1. Test Cases
A series of 1201 test cases resulting from the combinations of three fault levels (0, -
1.2, -2.7) taken 4 at a time (4 parameters deteriorated at a time) was generated. A
random component was added to the measurements of the test cases to simulate the
presence of noise, according to the procedure described in section 2.5.2.

2.6.2.2. Results: Accuracy and Computational Time
Method 1 and 3 introduced in section 2.4.4.3 were used here to assess the system
accuracy in performing partial MFI capability. The RMS obtained considering only
the 12 outputs relative to the performance parameters, for the 1201 cases, was equal
to 0.1123 (Method 3) and the results showed 201 cases (16.7%) with MS errors and
70 cases (5.8%) with HS errors (Method 1) – see Table 2.27.

A typical result, in addition to the 1201 cases, is presented in Table 2.28
and Table 2.29. Table 2.28 lists the implanted faults in the FAN and HPC. The 12
outputs of the diagnostics system are shown in Table 2.29. A remarkable
concentration capability of the fuzzy diagnostics system can be noted.

Computational Intelligence in Fault Diagnosis 75

As far as the computational time is concerned, Table 2.30 reports the setup
time and diagnostics time together with the number of rules stated and the number
of test cases diagnosed, representing the elements on which the computational time
has a stronger dependency. A system with partial MFI capability requires a
considerably increased number of rules (19440 in this example) that inevitably
affects the computational time. The diagnostics time for a single calculation is
approximately 12 seconds, about 100 times the time required by the corresponding
system with SFI.

Table 2.27. Summary of accuracy results for System 1 via Methods 1 and 3 over 1201
cases

Method 1 Method 3

case

MS cases (N. // %) HS cases (N. // %) RMS

1 201 // 0.1674 70 // 0.0583 0.1123

Table 2.28. Implanted deterioration (partial MFI)

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-1.8 -2.2 0 0 -2.3 -2.7 0 0 0 0 0 0

Table 2.29. Estimated deterioration (partial MFI), typical result

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-1.51 -2.43 -0.01 0.00 -2.38 -2.54 0.00 0.02 0.00 -0.00 0.01 0.03

Table 2.30. Computational time with current computational capability

Processing Time Dependency

Set-up time 18 min, 35 sec 19440 rules

Diagnostics Time 240 min

(12 sec/case)

1201 test cases

2.7. Operating the Diagnostics Model through the
GUI

The diagnostics software developed within this work is constituted by two GUIs.
The first one, presented in Figure 2.14 of section 2.4.3, was devised to
automatically set up a fuzzy diagnostics model. Figure 2.21 shows the second
graphical user interface that operates the fuzzy diagnostic model previously set-up
and assesses the changes in the 12 performance parameters. Once the engine and its
simulation model are selected, the readings from the engine can be input and the
diagnosis made by means of the diagnostic system previously generated and saved.
Alternatively, a fault can be implanted simulating the corresponding measurements
deviations using the engine model. These are used to test a new generated fuzzy
diagnostics system with simulated data. This interface can be used to operate
models either with or without capability of dealing with biases (Marinai, 2004), as

76 V Palade, CD Bocaniala and L Jain (Eds.)

mentioned in section 2.4.3, but this is not covered in this chapter. The results can be
eventually plotted.

Figure 2.21. GUI that operates the fuzzy diagnostic models.

2.8. Conclusions

Fuzzy logic is introduced in this work because of its inherent capability of dealing
with GPD problems due to its rule-based nature and its fuzzy approach. This
created a research opportunity, and a novel diagnostics procedure was devised; an
application of the method to a three-shaft turbofan engine and its promising results
were discussed in this chapter.

In the light of the technical requirements identified for advanced gas path
diagnostics (see section 2.4.1), it can be concluded that fuzzy logic showed
significant advantages and inherent features well suited to GPD problems, as
discussed below.

Volponi (2003) pointed out the necessity to develop different
algorithms to address the problem of estimating gradual and rapid
deteriorations, namely, MFI (multiple fault isolation), generally
based on linear approaches, and SFI (single fault isolation)

Computational Intelligence in Fault Diagnosis 77

methods necessarily based on nonlinear approaches, respectively.
The fuzzy diagnostics system described above was proved to
preserve the nonlinearity present in the aero-thermal relationships
between the performance parameters and the gas path
measurements.
Fuzzy diagnostics, as conceived in this chapter, in order to be
effective, relies on the statement of an exhaustive number of rules
defined within a performance parameters search space. This
becomes cumbersome when the number of parameters that are
considered simultaneously and that are changing increases (tests
were performed with one gas path component degraded at a time
– SFI, and with up to two components and so four performance
parameters deteriorated at a time – partial MFI).
Fuzzy diagnostics system with SFI or partial MFI capability can
operate coupled with a linear MFI algorithm as long as a global
deterioration level is updated every flight. The rules must be
tuned over the calculated global deterioration level estimated at
the previous flight; this is enabled by the significantly rapid set-
up phase devised for the fuzzy diagnostics system presented
above.
Fuzzy diagnostics systems do not show a tendency to smear the
results over all the performance parameters (that for example
affects Kalman filter-based diagnostics methods), demonstrating
on the contrary good concentration capability.
Fuzzy diagnostics systems do not require completely observable
systems with the same number of inputs and outputs. (A system
Z=h(X) is said to be completely observable if every state X
(vector) can be determined from the observation of Z (vector) –
Marinai, 2004.)
A considerable enhancement of the diagnostics accuracy in the
presence of noisy data can be obtained choosing the input
measurement MFs amplitudes according to the different values of
sensor noise standard deviations available for different sensors.
Marinai (2004) formulates a statistical interpretation of the fuzzy
systems. An analogous fuzzy diagnostics system was described in
Marinai (2004) that was able to diagnose component faults in the
presence of systematic errors in the measurements (bias) while
identifying the faulty sensor as well. This result was achieved by
means of a procedure that introduces the NOT operator in the
statement of the rules.
As far as the computational time is concerned, fuzzy diagnostics
systems show:

Considerably fast setup phase (e.g., approximately 1 minute
for an SFI system), especially when compared with the very
long training period required by a neural network with
comparable diagnostics features. This enables the setup of a

78 V Palade, CD Bocaniala and L Jain (Eds.)

new system for a new operating condition or over a
calculated deterioration baseline in a short period of time.
Fast diagnostics time suitable for on-line applications.

The computational time depends on the number of rules stated
and, therefore, on the number of parameters simultaneously
deteriorated at a time.
Fuzzy logic diagnostics models are advantageous when different
sources of information (e.g., oil analysis, oil debris analysis,
vibration analysis, expert knowledge, statistical inputs, etc.) need
to be combined in the decision-making process (data fusion).
Such a feature can also be used to combine results computed with
different GPD techniques gaining in accuracy and reliability of
the results. Once the diagnosis is performed, a prognostics
algorithm (Marinai et al., 2003b) can be introduced to assess and
predict into the future health condition of the engine or one of its
components for a fixed time horizon or predict the time to failure.
The modular nature of the fuzzy rules stated to devise a
diagnostics system enables the user with a high level of system
comprehensibility.
The adaptation of a fuzzy diagnostics system to different gas
turbines is expected to be simple according to the procedures
described above. However, a sensitivity study to optimise the
fuzzy system parameters is strongly advisable.

References

1. Kandel A (1986) Fuzzy mathematical techniques with applications. Addison-
Welsey, USA.

2. Kosko B (1997) Fuzzy engineering. Prentice Hall, New Jersey.
3. Marinai L, Ogaji S, Sampath S and Singh R (2003a) Engine Diagnostics -

Fuzzy Logic Approach. In: Proceedings of the Seventh International
Conference on Knowledge-Based Intelligent Information & Engineering
Systems – KES’03, Oxford, 3-5 September.

4. Marinai L, Singh R and Curnock B (2003b) Fuzzy-logic-based diagnostic
process for turbofan engines. In: Proceedings of ISABE 2003, XVI
International Symposium on Air Breathing Engines, Cleveland, Ohio, 31
August - 5 September.

5. Marinai L, Singh R, Curnock B and Probert D (2003c) Detection and
prediction of the performance deterioration of a turbofan engine. In:
Proceedings of the International Gas Turbine Congress 2003, Tokyo, 2-7
November.

6. Marinai L (2004) Gas path diagnostics and prognostics for aero-engines using
fuzzy logic and time series analysis (PhD Thesis). School of Engineering,
Cranfield University.

Computational Intelligence in Fault Diagnosis 79

7. Marinai L , Probert D and Singh R (2004) Prospects for aero gas-turbine
diagnostics: a review. Applied Energy.

8. Mathioudakis K and Sieverding CH (2003) Gas Turbine Condition Monitoring
& Fault Diagnosis. In: Von Karman Institute Lecture Series 2003-01, Brussels,
Belgium, 13-17 January.

9. Volponi A (2003) Extending gas-path analysis coverage for other fault
conditions. In: Von Karman Institute Lecture Series 2003-01, Gas Turbine
Condition Monitoring & Fault Diagnosis, Brussels, Belgium, 13-17 January.

10. Zadeh LA (1969) Toward a theory of fuzzy systems. NASA CR-1432,
Washington, DC.

11. Fuzzy Logic Toolbox User’s Guide. The MathWorks Inc., Natick, MA.

3. Fault Detection and Isolation of
Industrial Processes Using Optimized Fuzzy
Models

Luis Mendonça, João Sousa and José Sá da Costa

Model-based fault detection and isolation represents an approach that has received
increasing attention in the academic and industrial fields, due to economical and
safety-related matters. This approach has a large variety of methods in the literature
considering mathematical models and modern control theory. However, in practice
it is very difficult to achieve accurate models for complex nonlinear plants. If the
plant structure is not completely known, the diagnosis has to be based primarily on
data or heuristic information. The inherent characteristics of fuzzy logic theory
make it suitable for fault detection and isolation (FDI). Fault detection can benefit
from nonlinear fuzzy modelling and its fast and robust implementation, its capacity
to embed apriori knowledge and its ability of generalization. Consequently fault
diagnosis can profit from a transparent reasoning system, which can embed operator
experience, but also learn from experimental and/or simulation data. Thus, fuzzy
logic-based diagnostic is advantageous since it allows the incorporation of apriori
knowledge and lets the user understand the inference of the system. This chapter
proposes the application of optimised fuzzy models to FDI systems, using a
regularity criterion to select the relevant model inputs and a real-coded genetic
algorithm to optimise the fuzzy models. An industrial valve simulator is used to
obtain abrupt and incipient faults in the system. The optimised fuzzy models used in
the FDI system were able to detect and isolate the twelve abrupt and incipient faults
considered.

3.1. Introduction

A system that includes the capacity of detecting, isolating and identifying faults is
called a fault diagnosis and isolation system (FDI) (Chen and Patton, 1999). Fault
detection and isolation methods are used to detect any discrepancy between the
system outputs and model outputs. It is assumed that these discrepancy signals are
related to a fault. However, the same difference signals respond to model plant
mismatches or noise in real measurements, which are erroneously detected as a
fault. For a simple fault that can be detected by a single measurement, a
conventional threshold check may be appropriated. However, since in complex
industrial systems it is usually very difficult to directly measure the state of the
process, more sophisticated solutions are needed. In this case a model-based
approach will be more suitable. This requires process modelling, which proves to be
a very demanding task, especially when dealing with a nonlinear process.

82 V Palade, CD Bocaniala and L Jain (Eds.)

The idea of model-based fault detection is to compare output signals of the
model with the real measurements available in the process, thereby generating the
residuals, which are fault indicators giving information about the location and
timing of a fault. There is an increasing demand for man-made dynamical systems
to become safer and more reliable. These requirements extend to process industrial
plants, which are basically controlled by servo-actuated flow control valves. Taking
into consideration that malfunction of a valve in many hazardous applications can
cause serious consequences, the fault diagnosis of industrial servo-actuated valves
is a very important task. When the malfunction is detected and isolated, a quick
response might prevent the monitored system from expensive damages and loss of
efficiency and productivity.

The developments of model-based fault diagnosis began at various places
in the early 1970s. This approach to fault diagnosis in dynamic systems has been
receiving more and more attention over the last two decades. The availability of a
good model of the monitored system can significantly improve the performance of
diagnostic tools, minimizing the probability of false alarms. The inconsistency
between the data from the system measurements and the corresponding signals of
the model is called a residual. The residual generation is then identified as an
essential problem in model-based FDI, since if it is not performed correctly, some
fault information could be lost. Therefore, the model-based FDI approach requires
precise mathematical relationships relating the model to the process, to allow
detection of small abrupt and incipient faults quickly and reliably.

Different analytical estimation methods are available, such as Kalman
filters (Eide and Maybeck, 1996) and Luenberger observers (Clark, 1979), among
others (Chen and Patton, 1999). However, the requirements for precise and accurate
analytical models imply that any resulting modelling error will affect the
performance of the resulting FDI system. This is particularly true for dynamically
nonlinear and uncertain systems, which represent the majority of real processes.
Therefore, the main assumption made when using the model-based FDI approach is
that a precise mathematical model of the plant is required. This makes quantitative
model-based approaches very difficult to use in real systems, since any non-
modelled dynamics can affect the performance of the FDI scheme. A way to
overcome this problem is to design robust algorithms, where the effects of
disturbances on the residual are minimized, and the sensitivity to faults is
maximized. Many approaches have been developed including unknown input
observers (Duan and Patton, 2001; Frank, 1990) and eigenstructure assignment
observers (Shen et al., 1998), as well as frequency domain techniques for robust
FDI filters (Gertler, 1998), such as minimization of multiobjective functions that
did not prove to be successful for nonlinear cases.

Recently, soft computing methods like neural networks, expert systems,
fuzzy systems and neuro-fuzzy systems have been used with relative success
(Calado et al., 2001). Fuzzy techniques have received special attention due to their
fast and robust implementation, their capacity to embed apriori knowledge, their
performance in reproducing nonlinear mappings, and their ability of generalization.
The description of some nonlinear systems can be very difficult to achieve by
means of analytical equations. The use of fuzzy systems theory is a natural tool to
handle nonlinear and uncertain conditions. The use of fuzzy models increases the

Computational Intelligence in Fault Diagnosis 83

capability of FDI to work with systems characterized by incomplete information
and noise. Thus, fuzzy logic techniques are now being investigated in the FDI
research community as a powerful modelling and decision-making tool (Borner and
Isermann, 2003), along with neural networks (Schwarte et al., 2003) and other more
traditional techniques such as nonlinear and robust observers (Chen and Patton,
1999), parity space methods (Gertler, 1998; Kinnaert, 2003), and hypothesis-testing
theory (Laengst et al., 2003). The key advantage of fuzzy logic is that it enables the
system behaviour to be described by “if-then” relations. The main trend in
developing fuzzy FDI systems has been to generate residuals using either parameter
estimation or observers, and allocate the decision-making to a fuzzy-logic inference
engine. By doing so, it has been possible to combine symbolic knowledge with
quantitative information and, thereby, minimize the false alarm rate. Indeed, the key
benefit of fuzzy logic is that it lets the operator describe the system behaviour or the
fault–symptom relationship with simple “if-then” rules (Koscielny and Syfert,
2003).

In this chapter, a model-based fuzzy FDI approach is presented. The
symptoms are generated using fuzzy observers and plant measurements. The
underlying idea is to predict the system outputs from the available inputs and
outputs of the process, thus identifying a fuzzy model directly from data. The
residual is then a weighted difference between the predicted and the actual outputs.
In our approach, fuzzy observers are built for normal and faulty operations allowing
the detection and isolation of the considered faults. The structure of the fuzzy
models for FDI is determined using the regularity criterion (RC) to find,
automatically, the relations between input and output variables, as presented in
(Sugeno and Yasukawa, 1993). The obtained model is optimised by using a real-
coded genetic algorithm (GA) introduced in (Setnes and Roubos, 2000). This
chapter proposes the use of RC and GA for identifying fuzzy models of an
industrial valve, to be used for detection and isolation of abrupt and incipient faults.

The chapter is organized as follows. Section 3.2 presents a brief overview
of methods for fault detection and isolation. In this section, classical and fuzzy
methods for FDI are presented. Further, a fuzzy model-based architecture for FDI is
proposed. Fuzzy modelling is briefly presented in Section 3.3, where the regularity
criterion is described. The GA for optimal parameter estimation is described in
Section 3.4. The case study and the obtained results are presented in Section 3.5.
Finally, the conclusions are drawn in Section 3.6.

3.2. Fault Detection and Isolation

Different approaches have been developed in FDI. One of the first ones was the
failure detection filter, which is applied to linear systems (Beard, 1971). After that,
different methods and approaches were developed such as the application of
identification methods to fault detection of jet engines (Rault et al., 1971) and the
correlation methods applied to leak detection (Siebert and Isermann, 1976). Some
years later, Isermann (1984) presented a survey on process fault detection methods
based on modelling parameters and state estimations. Model-based methods for
fault detection and diagnosis applied to chemical processes are presented in

84 V Palade, CD Bocaniala and L Jain (Eds.)

(Himmelblau, 1978), the first book about this approach. In the frequency domain,
FDI is applied using the frequency spectra as criterion to isolate the faults (Ding
and Frank, 2000). Other FDI approaches are based on residual generators. These
generators are based on approaches like physical or hardware redundancy methods,
or analytical or functional redundancy methods (Chen and Patton, 1999).

Physical or hardware redundancy methods are a traditional approach to
fault diagnosis, which use multiple sensors, actuators and components to measure
and control a particular variable. The major problems encountered with these
methods are the extra equipment and maintenance cost, as well as the additional
space required to accommodate this equipment (Isermann and Ballé, 1997). These
disadvantages increase the necessity of using other methods, easier to use and with
small costs. Therefore, analytical or functional redundancy methods can be used
instead. These methods use redundant analytical relationships among various
measured variables of the monitored system (Chen and Patton, 1999).

3.2.1. Analytical Redundancy Methods

In the analytical redundancy scheme, the resulting difference generated from the
comparison of different variables is called the residual or symptom signal. These
variables are measured signals with estimated values, generated by a mathematical
model of the considered system. When the system is in normal operation the
residual should be close to zero, and when the fault occurs the residual should be
larger than zero. This property of residuals is used to determine whether or not
faults have occurred. Some examples of residual generators based on the analytical
redundancy scheme are the Kalman filter, Luenberger observers, state and output
observers and parity relations, among others (Chen and Patton, 1999).

Figure 3.1. Diagram of model-based fault detection.

The model-based FDI method can be defined as the detection and isolation
of faults in a system by means of methods that extract features from residual
signals. Setting fixed or variable thresholds on residual signals generated from
differences between actual measurements and their estimates obtained by using the
process model thus detect faults. A number of residuals can be designed, where
each one of them must be sensitive to individual faults occurring in different

Computational Intelligence in Fault Diagnosis 85

locations of the system. The analysis of each residual, once the threshold is
exceeded, leads to the fault isolation. The general principle of model-based FDI is
presented in Figure 3.1, where the two main stages are: residual generation and
residual evaluation, which can be described as follows:

(1) Residual generation – generates residual signals using available
inputs and outputs from the monitored system.

(2) Residual evaluation – examines residuals for the likelihood of faults
and the decision rule is then applied to determine if a fault occurred.

The accuracy of the model describing the behaviour of the monitored
system is crucial in model-based fault detection. However, the impossibility of
obtaining complete knowledge and understanding of the monitored process
increases the uncertainty in the model. Therefore, methods to reduce sensitivity to
modelling uncertainty are used in FDI. However, sensitivity reduction sometimes
does not solve the problem, since the sensitivity reduction may be associated with a
reduction of the sensitivity to faults (Chen and Patton, 1999; Gertler, 1998). Thus,
the main reliability problem of FDI is modelling uncertainty, which is unavoidable
in real industrial systems. The design of an effective and reliable FDI scheme for
residual generation should take into account modelling uncertainty with respect to
sensitivity to faults. The problems introduced by model uncertainties, disturbances
and noises in model-based FDI have been considered in (Gertler, 1998).

The generation of symptoms is therefore the main issue in model-based
fault diagnosis. When the systems are in faulty state, the symptoms present the fault
behaviour. Considering two different types of behaviour, the faults used in this
chapter are either abrupt or incipient.

Figure 3.2. Abrupt and incipient faults behaviour.

Abrupt faults are faults modelled as stepwise function and incipient faults
are faults modelled by using smooth functions, i.e., functions that vary slowly with
time. Figure 3.2 presents the behavior of abrupt and incipient faults. Considering
the problems concerning modelling of industrial processes, the diagnosis of
incipient faults using model-based FDI is sometimes very difficult. This situation is
the consequence of a small visibility in the first moments of residuals when an
incipient fault occurs, because they can be hidden by the uncertainty. The
increasing interest in incipient fault detection demands finding new approaches. The
developed FDI techniques present different properties with respect to diagnosis of
different faults. This development achieved a reliable FDI technique because it
includes the advantages of integrating different methods. In (Isermann and Ballé,

86 V Palade, CD Bocaniala and L Jain (Eds.)

1997) some basic FDI methods are evaluated, and the trends in the application of
model-based FDI to technical processes are presented.

When information about relations between symptoms and faults is
available in the form of diagnostic models, various methods of reasoning can be
applied. Typical approximate reasoning methods are:

Probabilistic reasoning;
Possibilistic reasoning with fuzzy logic;
Reasoning with artificial neural networks.

Methods like neural networks, expert systems, fuzzy systems and neuro-
fuzzy systems have been used with success in model-based FDI (Calado et al.,
2001). From the several described possibilities, fuzzy logic is a natural tool to
handle complicated and uncertain conditions, considering that the characteristics of
the systems are not precisely known. Sometimes, noise contamination and
uncertainty effects affect the residuals in fault-free conditions. The consequence of
this influence is the residual variation around the zero. This situation is very
dangerous because it hides faulty effects. The capability to describe vague and
imprecise facts and work with systems when complete information is not available
makes fuzzy logic a powerful tool in this case. The fuzzy approach in FDI is used to
generate symptoms, i.e., fuzzy descriptions, to detect and to isolate the fault (Dexter
and Benouarets, 1997; Isermann, 1998). Takagi-Sugeno fuzzy models can be used
to describe nonlinear dynamics of a plant where faults can occur, see e.g.
(Hellendoorn et al., 2001; Mendonca et al., 2003).

3.2.2. Fuzzy Methods in FDI

The fuzzy approach supports in a natural way the direct integration of a human
operator in the fault detection process. Fuzzy logic can use expert knowledge in the
form of a rule-based knowledge format (Patton et al., 2000). Some application areas
of fuzzy logic in FDI include process industry (Himmelblau, 1978; Koscielny and
Syfert, 2003), electromechanical systems (Insfran et al., 1999), and traffic and
avionics control (Eide and Maybeck, 1996) among others. These possible
application areas use different approaches of fuzzy logic FDI. The frequency
spectrum is one of them, presented in (Mechefske, 1998), where fuzzy logic is used
to classify the frequency spectra of various rolling element bearing with faults.

The use of model-based FDI is another approach, as presented in (Lu et
al., 1998), where diagnostic models containing a fast fuzzy rule generation
algorithm and a rule-based inference engine are used. The use of fuzzy reference
models is proposed in (Dexter and Benouarets, 1997). In this approach, fuzzy
models describe faulty and normal operation, and a classifier based on fuzzy
matching performs diagnosis. In (Lopez-Toribio et al., 2000), an approach is
proposed where identification of local linear models using the TS fuzzy modelling
strategy is solved using a convex optimisation technique involving linear matrix
inequalities in order to find the optimum set of fuzzy models. The approach
presented in this chapter is also based on fuzzy models. The fuzzy models to be
used in FDI are obtained using the automatic approach proposed in (Vieira et al.,
2004, 2005).The next section presents the proposed architecture for FDI used in this
chapter, as introduced in (Mendonca et al., 2003).

Computational Intelligence in Fault Diagnosis 87

3.2.3. Proposed Architecture for FDI

This chapter uses a straightforward architecture to detect, isolate and identify faults.
The FDI system is based on fuzzy models identified directly from data and
optimised using genetic algorithms. The model-based technique uses an optimised
fuzzy model for the process running in normal operation, and one optimised model
for each of the faults to be detected. Suppose that a process is running, and n
possible faults can be detected. The fault detection and isolation system proposed
for these n faults is depicted in Figure 3.3.

Figure 3.3. Fault detection and identification scheme.

The multidimensional input of the system, u, enters both the process and
an optimised model (observer) in normal operation. The vector of residuals is
defined as

ˆy y , (1)
where y is the output of the system and ŷ is the output of the optimised model in
normal operation. When any component of is larger than a certain threshold , the
system indicates a fault occurrence, i.e., a fault is detected. In this case, n optimised
models, one for each fault, are activated, and n vectors of residuals are computed.
Each residual i, with i=1,...,n, is computed as

F Fˆy y
i i

, (2)
where Fŷ

i
is the output of the observer for fault i. The residuals F F, ...,

i n
are

evaluated, and the fault or faults isolated are the outputs of the FDI system. In this
chapter, all models, i.e., the model for normal operation and the models for the n
faults, are fuzzy models reproducing the dynamic behaviour of the process, for each
considered situation, i.e., normal operation and system operating while any of the n
faults occurred. This technique proved to be adequate to identify models extracted
from real data, as in the example described in this chapter, which is an industrial
servo-actuated pneumatic valve with six abrupt faults and six incipient faults.

Considering that this chapter proposes a fuzzy model-based FDI technique,
the next section presents briefly fuzzy modelling.

88 V Palade, CD Bocaniala and L Jain (Eds.)

3.3. Fuzzy Modelling

Fuzzy modelling often follows the approach of encoding expert knowledge
expressed in a verbal form in a collection of if-then rules, creating a model
structure. Parameters in this structure can be adapted using input–output data. When
no prior knowledge about the system is available, a fuzzy model can be constructed
entirely on the basis of system measurements. In the following, we consider data-
driven modelling based on fuzzy clustering. This approach avoids the well-known
bottleneck of knowledge acquisition (Babuska, 1998; Sousa and Kaymak, 2002).
Fuzzy models are acquired from sampled process data, utilizing the functional
approximation capabilities of fuzzy systems. Assume that data from an unknown
system y = F(x) is observed. The aim is to use this data to construct a deterministic
function y = f(x) that can approximate F(x). The function f is represented as a
collection of fuzzy if-then rules.

The system to be identified can be represented as a multiple-input
multiple-output (MIMO) nonlinear autoregressive (NARX) model. This MIMO
system can be decomposed into several multiple-input single-output (MISO)
models, without loss of generality (Sousa and Kaymak, 2002)

(1) (())y k + = f x k ,ˆ (3)
where is the state of the system, and contains previous inputs and
outputs. Only MISO models are considered in the following, for the sake of
simplicity. We consider rule-based models of the Takagi-Sugeno (TS) type (Takagi
and Sugeno, 1985). The representation of (3) as an affine TS model is given by

n()kx R

1 1

1 1 (1)

: is ... is i i n in

i i in n i n+

R x A x A

y = a x + + a x + a

If and and

then
(4)

with i = 1,2,…,K, where K is the number of fuzzy rules. Here, Ri is the i-th rule, Ai1,
…, Ain are fuzzy sets defined in the antecedent space, x = [x1, …,xn]T is the
antecedent vector, and yi is the rule output variable. The aggregated output of the
model, , is calculated by taking the weighted average of the rule consequents: ŷ

K
i= i i

K
i= i

y
y = 1

1
ˆ , (5)

where i is the degree of activation of the i-th rule:
() 1,2

ij
n
j=1i A j= x , i = ,...,K (6)

and () : 0,1
ijA jx R is the membership function of the fuzzy set Aij in the

antecedent of Ri. The nonlinear identification problem is solved in two steps:
structure identification and parameter estimation.

3.3.1. Structure Identification

In this step, the designer must choose first the order of the model and the significant
state variables x of the model. To identify the model (4), the regression matrix XT =
[x1, …, xN] and an output vector yT = [y1, …, yN] are constructed from the available

Computational Intelligence in Fault Diagnosis 89

data. Here N >> n is the number of samples used for identification. The objective
of identification is to construct the unknown nonlinear function y = f(x) from the
data, where f is the TS fuzzy model in (3).

Considering complex processes with a large number of controlled
variables, the use of an automatic approach to obtain the structure identification of
fuzzy models is an interesting approach, because it is difficult to find the relations
between input and output variables. As the relations between the process variables
are not well known, an automatic criterion is used to determine which input
variables influence each output. In this chapter, a regularity criterion (RC) is used
to choose the fuzzy model structure (Sugeno and Yasukawa, 1993). To apply this
criterion, the identification data must be divided into two groups, A and B. The
regularity criterion is used e.g. for group method of data handling, and it is defined
as follows:

2 2

1 1
() ()

A Bk kA AB B BA
i i A i i B

i= i=
RC = y - y /k + y - y /k / 2 (7)

where kA and kB are the number of data points of groups A and B, respectively, A
iy

and are the output data of groups A and B, respectively, B
iy ABy is the model

output for group A estimated using the data from group B, and is the model
output for group B estimated using the data from group A.

BAy

Thus, using two groups of data, A and B, two fuzzy models are built for
each group, starting with only one input. The RC is computed for each model, and
the one that minimizes RC is selected as the best one. In the next step, the input
already selected is fixed, i.e., it belongs to the system's structure, and different input
candidates are added to the previous fuzzy model from the remaining ones. When
this second step finishes, the fuzzy model has two inputs. This second input is
chosen as the one that minimizes the value of RC, as before. This procedure repeats
until the value of RC increases. This method implies that a fuzzy model must be
created each iteration. The number of fuzzy rules (or clusters) that best suits the
data must be determined for that identification. The criterion to determine the
number of clusters is based on the evaluation of the cost function S(c) proposed in
(Sugeno and Yasukawa, 1993):

2 2

1 1
() ()

N c m
ik k i i

k= i=
S c = x - v - v - x (8)

where N is the number of data to be clustered, c is the number of clusters (c 2), xk
is the kth data point, x is the mean value for the inputs, vi is the center of the ith
cluster, ik is the grade of the kth data point belonging to the ith cluster and m is an
adjustable weight. The number of clusters c is increased from 2 up to the number
that gives the minimum value for S(c). Note that this minimum can be local.
However, this procedure diminishes the number of rules and consequently the
complexity of the fuzzy model. The parameter m has a great importance in this
criterion. The bigger the m is the bigger the optimum number of clusters. This value
is adjustable and is usually between 1.5 and 2, see (Sugeno and Yasukawa, 1993).

Having the inputs selected by the RC algorithm and the number of clusters
from Eq. (8), a fuzzy model using the Gustafson-Kessel (GK) fuzzy clustering

90 V Palade, CD Bocaniala and L Jain (Eds.)

algorithm (Gustafson and Kessel, 1979) is built. Using this algorithm it is possible
to exclude variables with poor performance. Summarizing, the structure of fuzzy
models is obtained using the following algorithm:

1. Cluster the data using fuzzy c-means with 2 initial clusters and
compute (8);

2. Increase the number of clusters until (8) reaches its minimum;
3. Divide the data set into two groups A and B;
4. REPEAT for each state in the state vector that does not belong to

the inputs of the model;
5. Build two models, one using data group A and other using data

group B;
6. Compute (7);
7. Select the input with the lowest RC as a new input of the model;
8. UNTIL RC increases or the end of the state vector is reached;
9. Select the final inputs;
10. Using the number of clusters given from (8) and the inputs selected

by (7), build a fuzzy model using GK clustering algorithm.

3.3.2. Parameter Estimation

The number of rules, K, the antecedent fuzzy sets, Aij, and the consequent
parameters, ai = [ai1, …, ain, ai(n+1)] are determined in this step, by means of fuzzy
clustering in the product space of X X Y. Given ZT=[X, y] to be clustered and an
estimated number of clusters K, the GK clustering algorithm proposed in
(Gustafson and Kessel, 1979) is applied to compute the fuzzy partition matrix U.
Unlike the popular fuzzy c-means algorithm (Bezdek, 1981), the Gustafson-Kessel
algorithm applies an adaptive distance measure.

The fuzzy sets in the antecedent of the rules are obtained from the partition
matrix U, whose ikth element 0,1ik is the membership degree of the data
object zk in cluster i. One-dimensional fuzzy sets Aij are obtained from the
multidimensional fuzzy sets defined pointwise in the ith row of the partition matrix
by projections onto the space of the input variables xj:

() proj ()
ijA jk j ikx = , (9)

where proj is the pointwise projection operator (Kruse et al., 1994). The pointwise
defined fuzzy sets Aij are approximated by suitable parametric functions in order to
compute

ijA jx for any value of xj. The consequent parameters for each rule are

obtained using a common weighted least-square estimation. Let Xe denote the
matrix [X;1] and let Wi denote a diagonal matrix in having the degree of
activation, , as its kth diagonal element as defined in (6). Assuming that the
columns of X

NxNR
()i kx

e are linearly independent and > 0 for()i kx 1 k N , the
weighted least-squares solution of y = Xe ai + becomes

-1
a X W X X W yT T

i e i e e i . (10)

Computational Intelligence in Fault Diagnosis 91

3.4. Optimal Parameter Estimation Using Genetic
Algorithms

Fuzzy models obtained using the identification method presented in the previous
section are usually not optimal. This section presents the optimisation method for
fuzzy models that uses a real-coded genetic algorithm proposed in (Setnes and
Roubos, 2000).

Among the techniques especially suitable for constrained, nonlinear
optimisation problems are the evolutionary computation techniques, which include
evolutionary strategies (Rault et al., 1971), evolutionary programming (Fogel,
1991) and genetic algorithms (GA). In the following, we concentrate on GA since
they are the most studied and described methodology (Michalewicz, 1999).

Genetic algorithms can be used for a variety of purposes, their most
important application being in the field of optimisation because of their ability to
search efficiently in large search spaces, which makes them more robust with
respect to the complexity of the optimisation problem compared to the more-
conventional optimisation techniques (Michalewicz, 1999). Since Holland (1971)
first proposed the idea of genetic algorithms, many researchers have suggested
extensions and variations to the basic genetic algorithm. With the advent of
artificial intelligence techniques, many applications of the genetic algorithms have
been reported, especially in combination with other artificial intelligence techniques
such as neural networks and fuzzy systems. Gradually, genetic algorithms are
becoming an important part of hybrid intelligent systems.

GA are inspired by the biological process of natural selection, performing
selection, crossover and mutation over a population, in order to achieve a global
optimum. Instead of searching from general-to-specific hypotheses or from simple-
to-complex, genetic algorithms generate successor hypotheses by repeatedly
mutating and recombining parts of the best currently known hypotheses. GA are
applied to an existing population of individuals, the chromosomes. At each iteration
of the genetic process, an evolution is obtained by replacing elements of the
population by offspring of the most fitted elements of that same population. In this
way, the best fit individuals have a higher probability of having their offspring (that
represent variations of itself) included in the next generation. GA evaluates the
individuals in the population by using a fitness function. This function indicates
how good a candidate solution is. It can be compared with an objective function in
classical optimisation. Inspired by the “survival of the fittest” idea, the genetic
algorithms maximise the fitness value, in contrast with classical optimisation, where
one usually minimises the objective function. It has been observed that genetic
algorithms are valuable optimisation tools, especially for nonconvex optimisation in
the presence of constraints (Michalewicz, 1999).

The fitness of the individuals within the population is assessed, and new
individuals are generated for the next generation. The following genetic operators
are available for this purpose:

Selection – chooses chromosomes according to their fitness for
mating, i.e., for producing offspring. Fitter individuals get a
higher probability to mate, and their genetic material is exploited.

92 V Palade, CD Bocaniala and L Jain (Eds.)

Crossover – exchanges genetic material in the form of short
allele strings (a part of a chromosome) between the parent
chromosomes. This reordering or recombination includes the
effects of both exploration and exploitation.
Mutation – introduces new genetic material by random changes
to explore the search space.

The chromosome representation determines the GA structure. With a
population size equal to L, the parameters of each fuzzy model are encoded in a
chromosome Sl, with l = 1, …, L as a sequence of elements describing the fuzzy sets
in the rule antecedents followed by the parameters of the rule consequents.
Considering a model with M fuzzy rules, an n-dimensional premise and n + 1
parameters in each consequent function, a chromosome is encoded as:

1 1l M Ms = ant ,...,ant , ,..., ,a a (11)
where ai contains the consequent parameters of rule Ri, and anti contains the
parameters of the antecedent fuzzy sets Aij, j = 1, …,n. In the initial population

0 0 0
1 LS = s ,...,s , 0

ls is the initial model, and 0
2

0
Ls ,...,s are created by random

variation (uniform distribution) around 0
ls within the defined constraints (Setnes

and Roubos, 2000).
The evolutionary process presented in this chapter is supported by a

roulette wheel elitist selection method. This means that the chromosomes which
yield a better fitness have a higher chance to survive and generate offspring and that
the best fit chromosome in a certain generation always survives and evolves to the
following generation. In order to establish a relation between the fitness of the
chromosomes and the probability of their selection for operation (manipulation by a
genetic operator) or deletion the following formula is used:

min ()
1j j

i
i

 J
P = ,i, j = ,...,L,

J
(12)

where Ji is the performance of an individual measured in terms of the mean squared
error (MSE):

N 2
i k

k=1

1
kJ = y - y

N
ˆ , (13)

where yk is the real output of the system, and ˆky is the output estimated by the
fuzzy model. When a chromosome is selected for an operation, the chance of its
manipulation by a crossover operator is 95% and the probability of a mutation
occuring is 5%.

To promote the evolution of the population towards a better fitness in the
concerned domain, two major types of genetic operators are used: crossover and
mutation. In this chapter, when a chromosome is selected for a genetic operation,
each of the two operators has equal chance of being applied.

Let t = 0,1,…,Ng be the generation number, su and sv be chromosomes
selected for operation, 1,k ...,L is the position of an element in the chromosome

and and are the lower and upper bounds on the parameter
encoded by element k. Real-coded GA is used because binary-coded or classical

min = 0ku max = 1ku

Computational Intelligence in Fault Diagnosis 93

GAs (Goldberg, 1989) are less efficient when applied to multidimensional or high
precision problems. The bit strings can become very long and the search space
blows up (Michalewicz, 1999). In this chapter, three different types of crossover
operations are considered:

Simple arithmetic crossover, where t
us and t

vs are crossed over at
the th position (being chosen randomly), thus creating two
offsprings:

1
1 1

t+
u g+s = u ,...,u ,v ,...,v (14)

and
1

1 1
t+
v g+s = v ,...,v ,u ,...,u . (15)

Whole arithmetic crossover, where 0,1r is a random number

with uniform distribution, and a linear combination of t
us and t

vs
results in:

1 () (1-)t+ t t
u u vs = r s + r s (16)

and
1 () (1)t+ t t

v v us = r s + - r s . (17)

Heuristic crossover, where t
us and t

vs are combined creating two
offsprings:

1 ()t+ t t t
u u v us = s + r s - s (18)

and
1 ()t+ t t t

v v u vs = s + r s - s . (19)
These operators revealed to be the most appropriate for the current

optimisation. Three mutation operators have been considered, which are the
following:

Uniform mutation, where a random selected element v is

replaced by which is a number in the range 'v min max,u u .

Multiple uniform mutation, which is a uniform mutation of
randomly selected elements.
Gaussian mutation, where all elements of a chromosome are
mutated such that

1 '
1()t+ ' '

u k gs = u , ...,u , ...,u , (20)

where , with 'u = u + f = 1,..., g , and f is a random number
drawn from a Gaussian distribution.

The genetic algorithm for fuzzy model optimisation, as used in this
chapter, is summarized as follows (Setnes and Roubos, 2000):

Given the data matrix Z and the structure of the fuzzy rule base derived
using the RC in (7), select the number of generations Ng and the
population size L.

1. Create the initial population based on the derived fuzzy
model structure.

94 V Palade, CD Bocaniala and L Jain (Eds.)

2. Repeat genetic optimisation for t = 1, …,Ng:
a) Select the chromosomes for operation and

deletion.
b) Create the next generation: operate on the

chromosomes selected for operation and
substitute the chromosomes selected for
deletion by the resulting offspring.

c) Evaluate the next generation by computing the
fitness for each individual.

3. Select the best individual (solution) from the final generation.
The next section presents the application of fuzzy models, which use the

inputs selected with the RC criterion, are identified using GK fuzzy clustering and
are optimised by real-coded GA, to a servo-actuated industrial valve.

3.5. Case Study

A pneumatic servo-actuated industrial control valve is used as test bed for the fault
detection and diagnosis approach proposed in this chapter. This valve is situated on
the outlet of thick juice from the fifth section of the evaporation station of the
Lublin Sugar Factory in Poland that is associated with the DAMADICS project
(http://www.eng.hull.ac.uk/research/control/damadics1.htm).

Figure 3.4. Diagram of the industrial servo-actuated pneumatic valve considered.

3.5.1. Description of the System

The actuator-valve used in this chapter is depicted in Figure 3.4. The actuator
consists of three main parts: body of the valve, actuator (e.g., spring-and-diaphragm
pneumatic servomotor) and positioner controller. Furthermore, each of the three
main parts contains the components shown in Figure 3.4, which are the following:
positioner supply air pressure, PSP; air pressure transmitter, PT; volume flow rate

Computational Intelligence in Fault Diagnosis 95

transmitter, FT; temperature transmitter, TT; rod position transmitter, ZT; electro-
pneumatic converter, E/P; cut-off valves, V1 and V2; by-pass valve, V3; pneumatic
servomotor chamber pressure, Ps; and controller output, CVI.

The valve body is the component that determines the flow through the
valve. A change of the restricted area in the valve regulates the flow. There are
many types of valve bodies, and the differences between them relate to the form by
which the restricted flow area changes. This chapter addresses the globe valve case,
but the FDI method can easily be applied to other types of valve bodies. Modelling
of the flow through the valve body is not an easy task since most of the underlying
physical phenomena are not fully understood (Sa da Costa and Louro, 2003). The
most common approach to determine the flow through a valve is to use dimensional
analysis (White, 1994) based on the model of the flow through a sharp-edged
orifice.

There are many types of actuators: electrical motors, hydraulic cylinders,
spring-and-diaphragm pneumatic servomotor, etc. The most common type of
actuator is the spring-and-diaphragm pneumatic servomotor due to its low cost.
This actuator consists of a rod that has, at one end, the valve plug, and at the other
end the plate. The plate is placed inside an airtight chamber and connects to the
walls of this chamber by means of a flexible diaphragm.

The positioner controller, shown in Figure 3.5, determines the flow of air
into the chamber. The positioner is the control element that performs the position
control of the rod. It receives a control reference signal from a computer controlling
the process, passes it through a second order filter, prior to the PID control action
that leads the rod's displacement to that reference signal. The positioner comprises,
as well, a position sensor and a electrical-pneumatic (E/P) transducer. The first
determines the actual displacement of the rod so that the error between the actual
and desired position (reference signal) can be obtained. The E/P transducer receives
a signal from the PID controller transforming it in a pneumatic valve-opening signal
that adds or removes air from the pneumatic chamber. This transducer is also
connected to a pneumatic circuit and to the atmosphere. If the controller indicates
that the rod should be lowered, the chamber is connected to the pneumatic circuit.
If, on the other hand, the rod should be raised, the connection is established with the
atmosphere, thus allowing the chamber to be emptied.

3.5.2. Valve Modelling

The valve simulator presented in (Sa da Costa and Louro, 2003) is used to obtain
the data for each of the abrupt and incipient faults tested in this chapter. Table 3.1
presents the faults considered in this chapter and their description. Each of the
presented faults is used considering their abrupt and incipient behaviours.

From a complete analysis of the variables described in subsection 3.5.1, it
can be concluded that for FDI purposes the most relevant variables are the flow
process value, PV, and the servomotor rod displacement, X. Therefore, these
variables have been considered as outputs of the fuzzy model. Moreover, the
variables found to be relevant for this model are the following: pressure inlet valve,
P1; pressure outlet valve, P2; temperature at the inlet, T1; and control value for the

96 V Palade, CD Bocaniala and L Jain (Eds.)

inlet valve, CV. The mean squared error is used as the performance index to
measure the residuals of fuzzy models:

F
1

1MSE
i

N 2
i

k=
= y - y

N
ˆ , (21)

where y is a system output and is the correspondent fault model i output. Fi
ŷ

The variance accounted for (VAF) is a widely used measure to test the
validity of a model, and it is defined as

0
0

1 cov()
VAF 100

cov()
i i

i

- y - y=
y

ˆ . (22)

Let the real output be yi, the predicted output by the model be , and cov
be the covariance of the respective vector. When VAF = 100%, the model explains
all the variability in the real outputs.

iŷ

The set of identification data used to build the valve model in normal
operation contains 2000 samples. Figures 3.6 and 3.7 present both outputs of the
process under normal operation.

Two fuzzy models have been identified using the fuzzy modelling
approach described in this chapter for flow and rod displacement. The MSE
obtained from (21) is 0.09 for flow and 0.03 for rod displacement when the system
is without faults. The obtained VAF values are 81.2% and 57.6% for flow and rod
displacement, respectively.

Using the fuzzy modelling approach described in this chapter, fuzzy
models have been identified for each fault considered. The performance of the
obtained models for each output in terms of VAF is shown in Table 3.2 for abrupt
faults and for incipient faults. This table shows that it was possible to obtain
accurate models for each fault. Moreover, the RC was able to select properly the
most relevant inputs for the fuzzy models.

Figure 3.5. Positioner controller.

Table 3.1. Faults description

Faults Description

F1 Valve clogging

F5 External leakage

F7 Medium evaporation or critical flow

F17 Unexpected pressure change across the valve

F18 Fully or partly opened bypass valves

F19 Flow rate sensor fault

Computational Intelligence in Fault Diagnosis 97

Figure 3.6. Top: Flow output. Bottom: Flow residuals.

Figure 3.7. Top: Rod displacement output. Bottom: Rod displacement residuals.

Table 3.2. VAF of the fuzzy models for abrupt (left) and incipient (right) faults models
of the servo-actuated valve

 RC GA

Faults flow disp. flow disp.

F1 74.0 74.9 75.2 75.3

F5 74.1 57.6 74.8 58.3

F7 97.3 99.9 97.8 99.9

F17 79.8 62.1 80.5 62.7

F18 73.1 59.3 74.3 60.6

F19 75.4 60.9 76.0 61.4

 RC GA

Faults flow disp. flow disp.

F1 99.9 98.0 99.9 98.3

F5 94.6 62.7 95.4 63.6

F7 97.4 96.4 98.3 96.9

F17 95.9 84.9 96.5 85.6

F18 98.4 60.7 99.4 62.3

F19 99.9 84.3 99.9 85.6

3.5.3. FDI Results

The FDI scheme proposed in this chapter, which is presented in Figure 3.3, has
been applied to the industrial valve to detect and isolate the abrupt and incipient
faults F1, F5, F7, F17, F18 and F19.

98 V Palade, CD Bocaniala and L Jain (Eds.)

Tables 3.3 and 3.4 present the MSE of residuals, for flow and rod
displacement, as defined in (21) when each abrupt fault occurs in the system. The
faulty residuals, as defined in (2), are obtained after the fault detection. Each row in
the tables corresponds to the fault that occurs during the simulation, and each
column indicates the model of the fault used to isolate the fault. The residual for the
fault considered in each row is depicted in bold. The fault isolation is made
considering the residuals of two outputs: flow and rod displacement. The FDI
system used in this chapter is able to detect and isolate correctly all six abrupt faults
considered. By checking the values in bold, it can be seen that they are most often
the smallest in the respective row. In some cases the isolation needs the two
outputs. As an example, row 5 in Table 3.4 indicates that fault F18 has been
simulated, and the isolation system has very similar values for F17, F18 and F19
(0.03, 0.04 and 0.03, respectively). Recall that Table 3.4 presents the MSE for the
rod displacement output. However, by checking the output of the other variable, the
flow, in row 5 of Table 3.3, it becomes clear that the fault isolated is F18, because
its residual is clearly smaller than all the others in that row.

Table 3.3. Residuals of fuzzy models for abrupt faults (flow output)

Fuzzy Model

Faults F1 F5 F7 F17 F18 F19

F1 16.2 2.38x10
3

 2.1x10
3

 2.2x10
3

 440.1 9.6x10
3

F5 2.4x10
3

0.31 52.1 7.38 713.7 2.2x10
3

F7 17.2 2.15x10
3

0.07 2.2x10
3

 439.4 9.6x10
3

F17 12.8 3.3 27.9 3.7 242.7 12.8

F18 416.3 794.3 672.9 687.5 6.1 5.9x10
3

F19 9.6x10
3

 2.5x10
3

 2.8x10
3

 2.7x10
3

 6.1x10
3

24.8

Table 3.4. Residuals of fuzzy models for abrupt faults (rod displacement output)

Fuzzy Model

Faults F1 F5 F7 F17 F18 F19

F1 16.3 2.2x10
3

 2.8x10
3

 2.2x10
3

 2.2x10
3

 2.2x10
3

F5 2.1x10
3

0.13 0.65 0.24 0.16 0.14

F7 661.1 5.1x10
3

2.72 5.1x10
3

 5.1x10
3

 5.1x10
3

F17 1.2 1.23 1.12 0.34 51.8 0.34

F18 2.1x10
3

 0.037 0.15 0.03 0.04 0.03

F19 2.1x10
3

 0.037 0.15 0.03 0.03 0.02

Figure 3.8 (left) shows the output data collected from the simulator of
industrial servo-actuated valve when the abrupt fault F1 occurs. The sampling time
is equal to 1s. The residuals obtained using the fuzzy models in normal operation
when valve clogging (fault F1) occurs are shown in Figure 3.8 (right). The occurred
fault is detected; in the figure it can be seen that both residuals and, for flow and rod
displacement respectively, present one zone with large values. When the block
Fault Detection in Figure 3.3 detects faults, the faulty models, in our case the fuzzy
observers for F1, F5, F7, F17, F18 and F19, are activated. The simulated residuals
obtained for abrupt fault F1 are depicted in Figure 3.9 (left). These residuals are
very close to zero, and thus the abrupt fault F1 is isolated using the fuzzy observer.
Figure 3.9 (right) presents the residuals of the model for another fault, F5, when the

Computational Intelligence in Fault Diagnosis 99

same abrupt fault F1 occurs. In this case, the fault is not isolated because the
obtained residuals present large values for each of the output variables, as expected.
Large residual values are also obtained for the other models of faults considered.

Besides abrupt faults, six incipient faults have also been simulated. Tables
3.5 and 3.6 present the results obtained when each incipient fault occurs in the
system. These tables, as in the abrupt faults case, present the MSE of the fuzzy
models for the residuals. The values in bold contain the residual for the fault
considered. The six incipient faults proposed in this chapter are isolated correctly
with the proposed FDI scheme.

The output of the system when incipient fault F1 occurs is shown in Figure
3.10 (left). The detection of incipient fault F1, when this fault occurs after 500 s, is
presented in Figure 3.10 (right). In this case, both residuals present large values,
which confirm that the system is faulty. The residuals obtained when the incipient
fault F1 occurs are depicted in Figure 3.11 (left). Both residuals are very close to
zero, and thus incipient fault F1 is correctly isolated.

Further, the residuals of another fault model, when the incipient fault F1
occurred in the system, are depicted in Figure 3.11 (right). In this case, the fault is
not isolated because the obtained residuals present large values for both output
variables. As for the abrupt faults, some faults can only be isolated when both
outputs are considered. Thus, using only one output is not enough to isolate
incipient faults correctly.

Table 3.5. Residuals of fuzzy models for incipient faults (flow output)

Fuzzy Model

Faults F1 F5 F7 F17 F18 F19

F1 0.05 1.7x10
3

 1.5x10
3

 1.4x10
3

 481.7 1.2x10
3

F5 3 0.12 13.5 0.39 266.6 0.22

F7 2.7x10
3

 2.2x10
3

0.17 2.2x10
3

 2.2x10
3

 2.8x10
3

F17 3.5 1.02 8.3 0.43 38.6 2.3

F18 0.79 584.5 475.3 390.7 3.35 3.5x10
3

F19 35.8 1.5x10
3

 1.9x10
3

 1.5x10
3

 3.1x10
3

0.08

Table 3.6. Residuals of fuzzy models for incipient faults (rod displacement output)

Fuzzy Model

Faults F1 F5 F7 F17 F18 F19

F1 5.8 1.7x10
3

 1.7x10
3

 1.75x10
3

 1.74x10
3

 1.75x10
3

F5 352.9 0.03 1.22 0.04 0.03 0.043

F7 4.9x10
3

 4.9x10
3

5.5 5.1x10
3

 5x10
3

 5x10
3

F17 0.5 0.2 4.22 0.09 12.3 602.2

F18 1.6x10
3

 0.04 1.7 0.046 0.03 0.046

F19 2.6x10
3

 0.15 3.3 0.03 0.14 0.03

100 V Palade, CD Bocaniala and L Jain (Eds.)

Figure 3.8. Left: Flow and rod displacement output data (abrupt fault F1). Right:
Detection of abrupt fault F1.

Figure 3.9. Left: Isolation of abrupt fault F1. Right: Model of abrupt fault F5 residuals
when abrupt fault F1 occurs.

Figure 3.10. Left: Flow and rod displacement output data (incipient fault F1). Right:
Detection of incipient fault F1.

Computational Intelligence in Fault Diagnosis 101

Figure 3.11. Left: Isolation of incipient fault F1. Right: Model of incipient fault F5
residuals when incipient fault F1 occurs.

3.6. Conclusions

This chapter proposed an FDI scheme based on fuzzy models. In this approach,
fuzzy models (observers) are used both for normal operation and for each faulty
operation. The fuzzy observers are obtained from simulated data driven by real
data. The inputs of the fuzzy models are selected using the RC algorithm, and the
parameters of the fuzzy models are optimised using a real-coded genetic algorithm.
The FDI scheme uses these fuzzy observers to compute the residuals. The
application of this approach to a pneumatic servomotor actuated industrial valve has
shown its ability to detect and isolate six abrupt and six incipient faults. Note that
the data contains noise, which increases the difficulty to detect and isolate the
faults.

Future research will consider the extension of the proposed FDI scheme to
a larger number of faults, and the inclusion of intermittent faults to be detected and
isolated.

Acknowledgements

This work is supported by the “Programa do FSE-UE, PRODEP III, acção 5.3, no
âmbito do III Quadro Comunitário de apoio”.

References

1. Hellendoorn J, Ichtev A and Babuška R (2001) Fault detection and isolation
using multiple Takagi-Sugeno fuzzy models. In: Proceedings of IEEE International
Fuzzy Systems Conference, vol. 3(2-5), pp. 1498-1502.

102 V Palade, CD Bocaniala and L Jain (Eds.)

2. Babuška R (1998) Fuzzy Modeling for Control. Kluwer Academic Publishers,
Boston, MA.
3. Beard VR (1971) Failure Accommodation in Linear System Through Self
Reorganization (PhD thesis). Massachusetts Institute of Technology, USA.
4. Bezdek JC (1981) Pattern Recognition With Fuzzy Objective Functions.
Plenum Press, New York.
5. Borner M and Isermann R (2003) Supervision, fault detection and sensor fault
tolerance of passenger cars. In: SAFEPROCESS'2003, Preprints of the 5th IFAC
Symposium on fault detection, supervision and safety for technical processes,
Washington, USA.
6. Calado JMF, Korbicz J, Patan K, Patton RJ and Sa da Costa JMG (2001) Soft
computing approaches to fault diagnosis for dynamic systems. European Journal of
Control 7(2-3): 169-208.
7. Chen J and Patton R (1999) Robust Model-Based Fault Diagnosis for Dynamic
Systems. Kluwer Academic Publishers, Boston, MA.
8. Clark RN (1979) The dedicated observer approach to instrument failure
detection. In: Proceedings of the 18th IEEE Conference on Decision Control, Fort
Lauderdale, Florida, pp. 237-241.
9. Sa da Costa JMG and Louro R (2003) Modelling and simulation of an
industrial actuator valve for fault diagnosis benchmark. In: Proceedings of the
Fourth International Symposium on Mathematical Modelling, Vienna, 5-7
February.
10. Dexter AL and Benouarets M (1997) Model-based fault diagnosis using fuzzy
matching. IEEE Transactions on Systems, Man, and Cybernetics. Part A 27(5):
673-682.
11. Ding X and Frank PM (2000) Fault detection via factorization approach.
Systems Control Letters 14(5): 431-436.
12. Duan GR and Patton RJ (2001) Robust fault detection using Luenberger-type
unknown input observers: a parametric approach. International Journal of Systems
Science 32(4): 533-540.
13. Eide P and Maybeck B (1996) An MMAE failure-detection system for the F-
16. IEEE Transactions on Aerospace and Electronic Systems 32(3): 1125-1136.
14. Fogel D (1991) System Identification Through Simulated Evolution: A
Machine Learning Approach to Modeling. Ginn Press.
15. European Community's FP5. Research training network DAMADICS project,
http://www.eng.hull.ac.uk/research/control/damadics1.htm.
16. Frank PM (1990) Fault diagnosis in dynamic systems using analytical
knowledge based redundancy: A survey of some new results. Automatica 26(3):
459-474.
17. Gertler J (1998) Fault Detection and Diagnosis in Engineering Systems. Marcel
Dekker, New York.
18. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, New York.
19. Gustafson DE and Kessel WC (1979) Fuzzy clustering with a fuzzy covariance
matrix. In: Proceedings of the 18th IEEE Conference on Decision and Control, pp.
761-766, San Diego, CA, USA.

Computational Intelligence in Fault Diagnosis 103

20. Himmelblau DM (1978) Fault Detection and Diagnosis in Chemical and
Petrochemical Processes. Elsevier, Amsterdam.
21. Holland JH (1971) Adaptation in Natural and Artificial Systems. The
University of Michigan Press.
22. Insfran AHF, da Silva APA and Lambert Torres G (1999) Fault diagnosis using
fuzzy sets. Engineering Intelligent Systems for Electrical Engineering and
Communications 7(4): 177-182.
23. Isermann R (1984) Process fault detection based on modelling and estimation
methods: A survey. Automatica 20(4): 387-404.
24. Isermann R (1998) On fuzzy logic applications for automatic control,
supervision and fault diagnosis. IEEE Transactions on Systems, Man, and
Cybernetics Part A 28(2): 221-235.
25. Isermann R and Ballé P (1997) Trends in the application of model-based fault
detection and diagnosis of technical processes. Control Engineering Practice 5(5):
709-719.
26. Kinnaert M (2003) Fault diagnosis based on analytical models for linear and
nonlinear systems - a tutorial. In: SAFEPROCESS'2003, Preprints of the 5th IFAC
Symposium on fault detection, supervision and safety for technical processes,
Washington, USA.
27. Koscielny JM and Syfert M (2003) Fuzzy logic applications to diagnostics of
industrial processes. In: SAFEPROCESS'2003, Preprints of the 5th IFAC
Symposium on fault detection, supervision and safety for technical processes,
Washington, USA, pp. 771-776.
28. Kruse R, Gebhardt J and Klawonn F (1994) Foundations of Fuzzy Systems.
John Wiley and Sons, Chichester, UK.
29. Laengst W, Lapp A, Stuebbe K, Schirmer J, Kraft D and Kiencke U (2003)
Automated risk estimation based on fault trees and fuzzy probabilities. In:
SAFEPROCESS'2003, Preprints of the 5th IFAC Symposium on fault detection,
supervision and safety for technical processes, Washington, USA.
30. Lopez-Toribio CJ, Patton RJ and Daley S (2000) Takagi-Sugeno fuzzy fault-
tolerant control of an induction motor. Neural Computing and Applications 9(1):
19-28.
31. Lu Y, Chen TQ and Hamilton B (1998) A fuzzy diagnostic model and its
application in automotive engineering diagnosis. Applied Intelligence 9(3): 231-
243.
32. Mechefske CK (1998) Objective machinery fault diagnosis using fuzzy logic.
Mechanical Systems and Signal Processing 12(6): 855-862.
33. Mendonca LF, Sa da Costa JMG and Sousa JM (2003) Fault detection and
diagnosis using fuzzy models. In: Proceedings of European Control Conference,
ECC'2003, pp. 1-6, Session Fault Diagnosis 2, Cambridge, UK.
34. Michalewicz Z (1999) Genetic Algorithms + Data Structures = Evolution
Programs. Springer, Berlin, 3rd edition.
35. Patton RJ, Frank PM and Clark RN (2000) Issues of Fault Diagnosis for
Dynamic Systems. Springer-Verlag, London.
36. Rault A, Richalet A, Barbot A and Sergenton JP (1971) Identification and
modelling of a jet engine. In: DISCOP’91, IFAC Symposium on Digital Simulation
of Continuous Processes.

104 V Palade, CD Bocaniala and L Jain (Eds.)

37. Schefel HP (1995) Evolution and Optimum Seeking. Wiley.
38. Schwarte A, Kimmich F and Isermann R (2003) Model-based fault detection of
a diesel engine with turbo charger – a case study. In: SAFEPROCESS'2003,
Preprints of the 5th IFAC Symposium on fault detection, supervision and safety for
technical processes, Washington, USA.
39. Setnes M and Roubos JA (2000) GA-fuzzy modeling and classification:
complexity and performance. IEEE Transactions on Fuzzy Systems 8(5): 509-522.
40. Shen LC, Chang SK and Hsu PL (1998) Robust fault detection and isolation
with unstructured uncertainty using eigenstructure assignment. Journal of Guidance,
Control & Dynamics 21(1): 50-57.
41. Siebert H and Isermann R (1976) Fault diagnosis via on-line correlation
analysis. Technical Report 25-3, VDI-VDE, Darmstadt, Germany.
42. Sousa JM and Kaymak U (2002) Fuzzy Decision Making in Modeling and
Control. World Scientific, Singapore.
43. Sugeno M and Yasukawa T (1993) A fuzzy-logic-based approach to qualitative
modeling. IEEE Transactions on Fuzzy Systems 1(1): 7-31.
44. Takagi T and Sugeno M (1985) Fuzzy identification of systems and its
applications to modelling and control. IEEE Transactions on Systems, Man, and
Cybernetics 15(1): 116-132.
45. Vieira S, Sousa JMC and Durão F (2004) Combination of fuzzy identification
algorithms applied to a column flotation process. In: Proceedings of IEEE
International Conference on Fuzzy Systems FUZZ-IEEE'2004, pp. 421-426,
Budapest, Hungary.
46. Vieira S, Sousa JMC and Durão F (2005) Fuzzy modeling of a column flotation
process. Minerals Engineering. (in print)
47. White F (1994) Fluid Mechanics. McGraw-Hill.

4. A Fuzzy Classification Technique
Applied to Fault Diagnosis

Cosmin Danut Bocaniala and José Sá da Costa

This chapter describes a novel fuzzy classification methodology for fault diagnosis.
There are three main directions of applying fuzzy classifiers to fault diagnosis:
neuro-fuzzy classifiers, classifiers based on collections of fuzzy rules, and
classifiers based on collections of fuzzy subsets. The contributed fuzzy
classification methodology described in this chapter follows the last direction. The
main advantages of the developed fuzzy classifier are the high accuracy with which
it delimits the areas corresponding to different system states, i.e., the normal state
and the different faulty states, and the fine precision of discrimination inside
overlapping areas. In addition, the classifier needs to tune only a small numbers of
parameters, i.e., the number of parameters equals the number of system states
considered. The methodology is validated by application with very good results to
fault diagnosis of a control flow valve from an industrial device.

4.1. Introduction

The goal of fault diagnosis research is improving the security, efficiency,
maintainability and reliability of industrial plants. There are two main types of
systems that are addressed: safety-critical systems such as nuclear plants and
aircraft, and lower safety-critical systems such as process and manufacturing plants.
A fault diagnosis system is a monitoring system that is used to detect faults and
diagnose their location and significance in a system (Chen and Patton, 1999). The
diagnosis system performs mainly the following tasks: fault detection – to indicate
if a fault occurred or not in the system, and fault isolation – to determine the
location of the fault.

According to Duda and Hart (1973), classification represents “the
assignment of a physical object or event to one of several prespecified categories.”
Fault diagnosis represents a suitable application field for classification methods, as
its main purpose is to achieve an optimal mapping of the current state of the
monitored systems into a prespecified set of system states. The set of system states
includes the normal state and the faulty states (Ariton and Palade, 2005). A general
framework for applying classification methods to fault diagnosis problems is given
in (Leonhardt and Ayoubi, 1997). Fault diagnosis is described as “a sequential
process involving two steps: the symptoms extraction and the actual diagnostic
task.” The symptoms are extracted on the basis of the measurements provided by
the actuators and sensors in the monitored system. The actual diagnostic task is to
map the points in the symptoms space into the set of considered faults. For this

106 V Palade, CD Bocaniala and L Jain (Eds.)

reason, the use of classification techniques represents a natural choice when
designing a fault diagnosis system.

There are three main ways for applying fuzzy classifiers to fault diagnosis
that can be found in the literature. Fault diagnosis may be performed using
collections of fuzzy rules (Frank, 1996; Koscielny et al., 1999). Let R={r1, r2,…,
r } be the set of residuals. Each residual rm i, i=1,…,m, is described by a number of
fuzzy sets {ri1, ri2,…,ris}. The causal relationships between the residuals and faults
are expressed by if-then rules having a form similar to

ip jqIF (effect = r) AND (effect = r)... THEN (cause is the k - th fault) (1)
The output of the fuzzy classifier is the faulty vector F. The fuzzy

inference process will assign to each component Fi, i=0, 1,…,n, where n is the
number of faults – a value between 0 and 1 that indicates the degree with which the
normal state (the corresponding component is F0) or the j-th fault affects the
monitored system, j=1,…,m. If there is the premise that the system can be affected
only by a fault at a time, then the faulty vector contains only one component larger
than a preset threshold value, and whose corresponding faulty state represents the
actual state of the monitored system. If multiple faults can affect the monitored
system, then the components of the classifier output, which are larger than a preset
threshold, indicate the faults that occurred in the system. The main advantage of
using sets of fuzzy rules is that they make transparent the relationships between
symptoms and faults via the use of linguistic terms. However, notice that if the
number of fuzzy sets used is increasing, the number of linguistic terms used to label
them also increases. It follows that the linguistic informational burden of the
operator may increase too beyond reasonable limits.

Combinations between fuzzy logic and neural networks, i.e., neuro-fuzzy
systems, are used to create diagnosis systems robust to uncertainties and noise
(Palade et al., 2002; Uppal et al., 2002). Calado et al. (2001) propose a hierarchical
structure of several fuzzy-neural networks (FNN) for fault isolation purposes. The
hierarchical structure has three levels. The first order differences for all available
measurements are used as symptoms. The lower level consists of one FNN that
receives as input the considered symptoms. The output of this FNN determines
which of the FNNs on the medium level will be activated. That is, if the i-th
component of the output has a value close to 1, then the i-th FNN on the medium
level will be activated. The number of the FNNs on the medium level is equal to the
number of faults considered. Each one of them is also fed with all symptoms
considered. The upper level is used to perform an OR operation on the outputs of
the activated FNNs on the medium level. The components of the outputs considered
for the OR operation must have a value close to 1. The main advantage of the
neuro-fuzzy systems is that the learning, adaptation and parallelism capabilities
provided by neural networks may be used to tune the fuzzy rules parameters. The
main drawback of the neuro-fuzzy classifiers, like the one presented before, is
represented by a possible too large number of parameters to be tuned, i.e., fuzzy
membership functions and neural network weights.

A third direction is to represent the normal state and each faulty state of
the system as a fuzzy subset of the symptoms space (Boudaoud and Masson, 2000).
The quality of this last direction is given by its capabilities to learn the topological
structure of the space. Boudaoud and Masson (2000) propose two main steps for the

Computational Intelligence in Fault Diagnosis 107

design of such a pattern recognition diagnosis system: analysis and exploitation.
The analysis phase is performed off-line and it transforms the available
measurements, labelled with the corresponding operating state of the system, into a
collection of fuzzy subsets standing for regions in the measurements space
describing the operating states into the measurements space. The exploitation phase
corresponds to the on-line diagnosis process using classification into the regions
found before.

The fuzzy subsets defining the normal state and the faulty states of the
system represent hyperboxes B defined by a minimum point m and a maximum
point M in the symptoms space (Boudaoud and Masson, 1996). Figure 4.1 shows a
hyperbox in R3. This type of fuzzy subsets has been used with the fuzzy min-max
clustering algorithm proposed by Simpson (1993). The maximal size of each
hyperbox is tuned so that the misclassification rate is minimal. The particularities of
the fuzzy subsets defined by hyperboxes, i.e., full membership inside hyperboxes
and partial membership around hyperboxes boundaries, allow diagnosis to consist
of three possible cases: (i) the system state is stationary, (ii) the system is in
transition between two possible states, and (iii) the system is stabilizing in a new
state. It is important to mention that the hyperboxes used during the diagnosis
process are not allowed to overlap (Simpson, 1993). This does not mean that the
areas in the symptoms space corresponding to different states do not overlap, but
that the hyperboxes delimit the sub areas where points have full membership.
Diagnosing the partial membership areas as transitions between two states
compensates the loss of diagnosis information due to this approach.

Notice that the dimension of each hyperbox depends on only three
constraints: its minimum point, its maximum point, and a parameter that controls
the decreasing rate of membership to B value when the distance between a test point
u and B increases. Thus, the main advantage of the third direction compared to the
previous two directions is the smaller number of parameters to be tuned, i.e., three
times the number of system states considered, which leads to a smaller designing
time for the classifier. However, the transparency of relationships between
symptoms and faults given by the use of linguistic terms is lost.

minimum point

m

maximum point

M

Figure 4.1. A hyperbox in R3 defined by minimum and maximum points.

108 V Palade, CD Bocaniala and L Jain (Eds.)

The classification methodology described in this chapter follows the last
direction mentioned. The methodology is described in detail in our previous papers
(Bocaniala et al., 2004; 2005). The main property of this methodology is the large
accuracy with which it learns the topological structure of the symptoms space. The
fuzzy subsets built by the classifier approximate with a very small error the areas in
the symptoms space corresponding to different system states. Its accuracy also
manifests through handling with fine precision the discrimination inside
overlapping areas.

The fuzzy subsets defined by this methodology express better the
topological properties of the symptoms space than hyperboxes used in (Boudaoud
and Masson, 1996). Details are given further in the chapter. Also, similar to the
methodology proposed in (Boudaoud and Masson, 1996), the methodology in this
chapter also needs to tune only a small numbers of parameters, i.e., the number of
parameters equals the number of system states considered. Details are given further
in the chapter as well.

The chapter is organized as follows. Section 4.2 presents the theoretical
aspects of the described fuzzy classification methodology. The case study,
DAMADICS benchmark (http://www.eng.hull.ac.uk/research/control/damadics1.
htm), is concerned with fault diagnosis of a valve intended to supply water to a
steam generator boiler. Section 4.3 provides a detailed analysis of the faults studied
by the benchmark. Section 4.4 presents the detection and isolation of the valve
faults using the contributed fuzzy classifier. Section 4.5 summarizes the original
contributions of this chapter and mentions possible directions for future work.

4.2. Theoretical Aspects of the Contributed Fuzzy
Classification Methodology

The fuzzy subsets used by the classification methodology described in this chapter
are induced (built) on the basis of a point-to-set similarity measure between a point
and a set of points in the measurements space (Baker, 1978). The point-to-set
similarity is built at its turn on the basis of a point-to-point similarity measure
between points in the measurements space.

One of the particularities of the methodology is the fact that one may
choose those point-to-point and point-to-set similarities that provide the best
classification performance for the problem at hand. Thus, the methodology may be
seen as a template that may be instantiated so that it fits the specific characteristics
of the problem to solve. One may criticize this aspect as it implies searching by
trials the most suitable similarity measures. However, hints on what measures
should be used may be obtained by analysis of the measurements used. For
instance, the trends in the available sensor measurements may reflect in the same
way the effects of a fault on a system. Therefore, the use of a measure of similarity
between the trends in the sensor signals over a time window may prove to be a good
choice.

In order to facilitate the understanding of the theoretical concepts
presented in the following, a simple problem shown in Figure 4.2 is used. The

Computational Intelligence in Fault Diagnosis 109

figure shows the points corresponding to two categories characterized by two
measurements.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

1st category
2nd category

Figure 4.2. The simple problem used to illustrate the theoretical aspects.

4.2.1. Point-to-Point Similarity Measure Based on Distance
Functions

The similarity between two points u and v, s(u,v), may be expressed using a
complementary function, d(u,v), expressing dissimilarity. Baker (1978) expresses
dissimilarity by using the distance function in Eq. 2. Notice that, in this case, the
functions s and d are complementary with regard to unit value, s(u,v)=1-d(u,v). The
 parameter plays the role of a threshold value for the similarity measure. For a data

point u, all points v residing at a distance (u,v) smaller than will bear some
similarity with u. As for the points residing at distances larger than or equal to , the
similarity s(u,v) is null. The contour plot of the point-to-point similarity function
when Eq. 2 is used is shown in Figure 4.3. The distance measure used is the
Euclidean measure.

, / , for ,
,

1, otherwise
u v u v

h u v (2)

4.2.2. Point-to-Point Similarity Measure Based on Pearson
Correlation

The Pearson correlation (Weisstein, 1999) measures the similarity in the trends of
two signals. Let us suppose that s and t represent the measurements of two signals
over the same time window. The formula used to compute the correlation between
the vectors s and t is given in Eq. 3. The terms zs and zt represent the z-scores of s

110 V Palade, CD Bocaniala and L Jain (Eds.)

and t, respectively. The z-score of a vector is obtained by first subtracting the mean
value and then dividing by its standard deviation. The product between zs and zt is
the dot product and n represents the length of the time window.

(,) 1 () /p s t zs zt n (3)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

0.1 0.1

0.
1

0.1
0.10.1

0.
1

0.
3

0.3 0.3
0.3

0.3

0.3

0.3

0.
5

0.5

0.5

0.50.5

0.7

0.
7

0.7
0.9

test point
1st category
2nd category

Figure 4.3. The point-to-point similarity measure for =5 in Eq. 2.

The values of this correlation measure fall in [0,2] interval, where 0 stands
for perfect correlation and 2 stands for perfect anticorrelation. Figure 4.4 shows two
pairs of shapes corresponding to these two cases. There is a parallel between the
terms “correlation”/“anticorrelation” and the terms “similarity”/“dissimilarity.”
Indeed, the function p may play the same role as the dissimilarity function d in the
previous subsection. In this case, the maximum value for d(s,t), which is equal to
p(s,t), is 2. The functions s and d are complementary with regard to this value; thus,
s(u,v)=2-d(u,v).

4.2.3. Point-to-Set Similarity Measure

The similarity measure between two data points may be extended to a similarity
measure between a point and a set of points (Baker, 1978). In this chapter, if the
point-to-point similarity is given by Eq. 2, the similarity between a given point u
and a set of points S is computed as the mean value of the point-to-point similarity
values between u and each v in S (Eq. 4, where n denotes the number of elements in
S). Notice that the value of r(u,S) stays inside [0,1] interval, as s(u,v) also stays
inside [0,1] interval and the cardinal of S is n.

(,)
, v S

s u v
r u S

n
(4)

Computational Intelligence in Fault Diagnosis 111

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

(b) t=1-s, p(s,t)=2, n=5

1 2 3 4 5
0

0.5

1

(a) t=0.5*s, p(s,t)=0, n=5

s
t

s
t

Figure 4.4. Perfect Pearson correlation (a) and perfect Pearson anticorrelation (b).

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

0.1

0.
1

0.1
0.

1

0.1

0.1

test point
1st category
2nd category

Figure 4.5. The contour plot of the point-to-set similarity for the first category (=3).

The effect of using the parameter is that only those data points from S,
whose distance to u is larger than , contribute to the point-to-set similarity value.
The explanation is that only these points have a nonzero similarity with u. It follows
that the similarity value between u and S is decided within the neighborhood
defined by .

It has been observed in practice that, if different (dedicated) parameters
are used for different categories to express the point-to-point similarity (Eq. 2), the
performance of the classifier increases substantially. Let us consider that the value
of the parameter is 3 for both categories in the problem. The contour plots of the

112 V Palade, CD Bocaniala and L Jain (Eds.)

point-to-set similarity functions for the two categories are shown in Figures 4.5 and
4.6 (left), respectively. The two plots are drawn for all the points in the Cartesian
product [0,16]x[0,16]. If we decrease the value of to 1.8 for the second category,
the contour plot for this category matches more accurately the topology of the area
occupied by points in the category (Figure 4.6, right).

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

0.1 0.1

0.1

0.1

0.10.1

0.1

0.1

0.
3

0.3

0.
3

0.3

test point
1st category
2nd category

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

0.1
0.1

0.1

0.
1

0.
10.1

0.1

0.1

0.1

0.1

test point
1st category
2nd category

Figure 4.6. The contour plot of the point-to-set similarity for the second category when
=3 (left) and when =1.8 (right)

Figure 4.7. The surfaces generated when the same value is used (left) and when
different values are used (right)

4.2.4. Fuzzy Subsets Induced by Single Point-to-Set
Similarity Measures

Let C={Ci}i=1,…,m be the set of all points in the measurements space, associated with
the problem to solve, where Ci, i=1,…,m, represents the set of all points
corresponding to the i-th considered category. The membership function of the
fuzzy subset Fuzzi induced by Ci, computed on the basis of a given point-to-set
similarity measure, is given in Eq. 5. The n value represents the cardinal of C, and
the ni value represents the cardinal of Ci.

Computational Intelligence in Fault Diagnosis 113

(,)
(,)

i
i

r u Cu
r u C (5)

If the values of the parameters considered are the same: 3 for both
categories, the obtained fuzzy subsets (surfaces) corresponding to the two
categories are shown in Figure 4.7 (left). If different values for the parameters are
used: 3 for the first one and 1.8 for the second one, the surface corresponding to the
second category shrinks to match better the topology of the area occupied by the
points in that category (Figure 4.7, right).

A point u presented at the input of the classifier is assigned to the category
Cz whose corresponding degree of assignment z(u) is the largest (Eq. 6). In case of
ties, the assignment to a category cannot be decided and the point is rejected.

1,...,
-th category maxz i

i m
u z u u (6)

4.2.5. Fuzzy Subsets Induced by Multiple Point-to-Set
Similarity Measures

The practice showed that there are problems for which classifiers designed by using
only one point-to-set similarity measure does not provide satisfactory results
(Bocaniala et al., 2004). When situations like these are met, the advantages brought
by two or more similarity measures may be combined in order to improve the
performance of the classifier (Bocaniala e. al., 2004), i.e., a hybrid approach is
used. This aspect has also been noticed by Baker (1978).

In the following, a few possible approaches, when trying to combine the
use of two or more similarity measures, are suggested:

similarity measures: the parameter may be applied only to one
of the similarity measures used; if more than one similarity
measure is used, then there is a parameter for each one of them.
cluster affinity measures: there may be only one cluster affinity
measure resulting from the combination of all similarities used;
or, there may be one cluster affinity measure for each similarity
used.
fuzzy membership functions: the fuzzy membership functions
represent combinations of cluster affinity measures if more than
one such measure exists.

If the parameter is applied to only one of the similarity measures used,
then all other cluster affinity measures will be computed for the neighbourhood
defined by this parameter.

In this chapter, a hybrid approach based on Euclidean distance and Pearson
correlation is used. For details see the case study in Section 4.3.

4.2.6. Designing and Testing the Classifier

Let m be the number of the categories considered for the problem to be solved. The
proposed methodology first groups the set of all available data C into clusters
according to the category they belong to, Ci, i=1,…,m. In order to design and test

114 V Palade, CD Bocaniala and L Jain (Eds.)

the classifier, each subgroup Ci is split in three representative and distinct subsets,
Ci

ref, Ci
param, and Ci

test. On the basis of these subsets three sets unions, REF, PARAM
and TEST, are defined (Eq. 7). They are called the reference patterns set, the
parameters tuning set, and the test set, respectively. A subset is considered
representative for a given set if it covers that set in a satisfactory manner. In the
following, the semantic for the expression satisfactory covering subset adopted in
this thesis is explained. Then, the role of each one of the three unions is detailed. It
is to be noticed that the union of subsets having the satisfactory covering property
for a set represents also a satisfactory covering subset of that set.

1

1

1

m ref
i

i
m param

i
i

m test
i

i

REF C

PARAM C

TEST C

(7)

4.2.6.1. Satisfactory Covering Subsets
For the work presented in this thesis, a satisfactory covering subset represents a
subset of data that preserves (with a given order of magnitude) the distribution of
the data associated with the problem. Selecting the elements that compose a
satisfactory covering subset for a given data set can be costly. Therefore, it is more
convenient to use selection methods that provide convenient approximations for
satisfactory covering subsets. Such a method is proposed in the following.

Let us consider a given finite data set A that contains r points in a
multidimensional space. First, the maximum distance, max, between two elements
is computed. During this computation a pair of elements, (a,b), with maximum
distance between them is memorized. Then, one of the elements, let it be a, is
considered as the centre of s hyperspheres, Si, i=1,...,s. The user must provide the s
value. Each one of the Si hyperspheres has a radius equal to

, 1,...,i
maxr i i s

s
(8)

The next step is to consider the partition induced by the next subsets,
0 1

1

/

/ , 1,..., 1j j+ j

P a A a inside S

P a A a inside S - S j s
(9)

The cardinal of the subset that approximates the satisfactory covering
subset is set to a previous given percent t of elements from A. The distribution of
elements from A in the partition elements P , …, Ps-10 is not equal. This distribution
is taken into account when distributing the percent t among the partition members.
Each partition member Pj, j=1, …, s-1, will be allocated a number of pj elements.
The approximation subset is composed by randomly selecting pj elements from the
Pj subset, j=1, …, s-1.

Computational Intelligence in Fault Diagnosis 115

4.2.6.2. Reference Patterns Set (REF)
The point-to-set similarity measures are defined for the representative subsets Ci

ref,
i=1,…,m. Therefore, when using a single point-to-set similarity measure, the fuzzy
membership functions are computed as

),(
),(

Cur
Cur

u
ref
i

i (10)

4.2.6.3. Parameters Tuning Set (PARAM)
The shape of the membership functions i, associated to the fuzzy sets Fuzzi,
depends not only on the representative subset Ci

ref, but also on the value of the i

parameter, i=1,…,m. The algorithm for tuning the parameters i, i=1,…,m, of the
classifier represents a search process in an m-dimensional space for the parameter
vector (1, 2,..., m) that meets, for each category, the maximal correct
classification criterion and the minimal misclassification criterion. In order to
perform this search, different methodologies may be used, i.e. genetic algorithms
(Bocaniala et al., 2003), hill-climbing (Bocaniala and Sa da Costa, 2004a) and
particle swarm optimisation (PSO) (Bocaniala and Sa da Costa, 2004b). In practice,
the PSO methodology proved to be the fastest.

The search for optimal parameters when using genetic algorithms and hill-
climbing may be accelerated by using an optimised initial population (Sa da Costa
et al., 2003). An optimised initial population can be obtained by performing an
iterative search that starts with an individual whose parameters have very small
values. Then, at each next step, the values of the parameters will be
increased/decreased so that the fitness of the obtained individual, i.e., the classifier
performance, increases.

4.2.6.4. Testing Set (TEST)
The performance of the classifier is measured according to its generalization
capabilities when applied on the TEST set. It is to be noticed that the TEST set
contains data that were not presented before at the input of the classifier and that is
representative for the whole data set C. The practice showed that the performance
of the classifier may improve if the testing is performed after adding the data in the
PARAM set to the REF set.

4.3. Detailed Analysis of Faults in the Case Study

The DAMADICS benchmark (http://www.eng.hull.ac.uk/research/control/dama
dics1.htm) is concerned with fault diagnosis of a valve intended to supply water to a
steam generator boiler. The valve is used as part of the process at sugar factory
Cukrownia Lublin S.A., Poland. It is made up of three parts: a valve body, a spring-
and-diaphragm pneumatic actuator and a positioner (Figure 4.8). The valve body is
the equipment that sets the flow through the pipe system. The flow is proportional
to the minimum flow area inside the valve (2), which, in turn, is proportional to the
position of a rod (5). The spring-and-diaphragm actuator determines the position of
this rod. The spring-and-diaphragm actuator is composed of a rod, which at one end

116 V Palade, CD Bocaniala and L Jain (Eds.)

is connected to the valve body and the other end has a plate, which is placed inside
a pneumatic chamber (8). The plate is connected to the walls of the chamber by a
flexible diaphragm. This assembly is supported by a spring. The position of the rod
is proportional to the pressure inside the chamber, which is determined by the
positioner. The positioner is basically a control element. It receives three signals: a
measurement of the position of the rod (x), a reference signal for the position of the
rod (CV) and a pneumatic signal from a compressed air circuit in the plant. The
positioner returns an airflow signal, which is determined by a classic feedback
control loop of the rod position. The airflow signal changes the pressure inside the
chamber.

There are several sensors included in the system that measure the variables
that influence the system, namely, the upstream and downstream water pressures,
the water temperature, the position of the rod (x) and the flow through the valve (F).
These measurements are intended for controlling the process but they can also be
used for FDI purposes. This means that the implementation of this sort of system
will not imply additional hardware. The first three measurements, as well as the
control value (CV), may be seen as the inputs to the system whilst the latter two
may be seen as its outputs. The two output values, the sensor for measuring the
position of the rod (x) and the sensor for measuring the water flow through the
valve (F), provide variables that contain information relative to the faulty
behaviours.

Figure 4.8. The valve studied by DAMADICS benchmark.

The sensor measurements corresponding to some faults cannot be obtained
directly from the real process as the occurrence of these faults may have disastrous
consequences on the system. Therefore, the valve needed to be extensively
modelled using the physical laws that govern its behaviour (Louro, 2003; Sa da
Costa and Louro, 2003). The MATLAB/SIMULINK model obtained may be used
to simulate any faulty behaviour.

The faults in the benchmark have been simulated for 20 different values of
fault strength, uniformly distributed between 5% and 100%, and different input
values for the reference signal. The previous set of fault strengths represents a good
approximation of all possible faulty situations involving the faults in the
benchmark. All faults have been simulated two times for all their fault strengths.
The simulation lasted for 70 seconds the first time and for 20 seconds the second
time. The fault has been introduced at the 50th second the first time and at the 10th
the second time. The data obtained during the first simulation have been used to

Computational Intelligence in Fault Diagnosis 117

design the classifier, i.e., 50% for the REF set and 50% for the PARAM set. The
data obtained during the second simulation have been used as the TEST set. For the
second round of simulation a shorter time has been chosen, i.e., the fault is
introduced in the system for only 10 seconds, as good fault diagnosis
methodologies need to have very short time intervals for detection and isolation of
abrupt faults.

The input to the simulation is taken from real data collected at the plant.
This method provides more realistic conditions for generating the behaviour of the
system while undergoing a fault. It also makes the FDI task more difficult because
the real data input causes the system to feature the same noise conditions as those in
the real plant.

The valve is affected by a total of 19 faults that may have abrupt and/or
incipient behaviour (Table 4.1). In this chapter only the abrupt manifestation of the
faults has been considered. The large majority of faults, 14 out of 19, manifest an
abrupt behaviour.

Table 4.1. The set of faults considered in DAMADICS benchmark

Abrupt behavior Fault Description

small medium big

Incipient

behaviour

F1 Valve clogging x x x

F2 Valve plug or valve seat sedimentation x x

F3 Valve plug or valve seat erosion x

F4 Increase of valve or bushing friction x

F5 External leakage (leaky bushing, covers,

terminals)

 x

F6 Internal leakage (valve tightness) x

F7 Medium evaporation or critical flow x x x

F8 Twisted servo-motor’s piston rod x x x

F9 Servomotor’s housing or terminals

tightness

 x

F10 Servomotor’s diaphragm perforation x x x

F11 Servomotor’s spring fault x x

F12 Electro-pneumatic transducer fault x x x

F13 Rod displacement sensor fault x x x x

F14 Pressure sensor fault x x x

F15 Positioner feedback fault x

F16 Positioner supply pressure drop x x x

F17 Unexpected pressure change across the

valve

 x x

F18 Fully or partly opened bypass valve x x x x

F19 Flow rate sensor fault x x x

As mentioned in the introduction of this chapter, the sensor that measures
the rod position (x) and the sensor that measures the flow (F) provide variables that
contain information relative to the faults. The difference dP between the upstream
pressure measurement (P1) and the downstream pressure measurement (P2) is also
considered (besides x and F) as it permits to differentiate F17 from the other faults.
For the rest of the faults, the previous difference always has negligible values (close
to zero).

The effects of three out of the 14 abrupt faults on these three sensor
measurements are not distinguishable from the normal behaviour (N), {F8, F12,

118 V Palade, CD Bocaniala and L Jain (Eds.)

F14}. Therefore, in the following, these cases are not studied. They can be dealt
with if further sensors are added to the system. There can be distinguished three
groups of faults, {F2, F19}, {F7, F10}, and {F11, F15, F16}, for which exists a
strong similarity between their effects on the measurements, i.e., large overlapping.
There is also noncritical overlapping between the groups of faults {F1, F7} and
{F13, F18}.

4.4. Results of Fault Diagnosis Using the Fuzzy
Classifier

The previous section indicated the three sensor measurements, x, F and dP, that
provide the best distinction among the faults. In order to provide the classifier with
information on the dynamics of the system, the state of the system is described
using the aggregate of these values over a time window of 5 time-steps. More
precisely, the state of the system represents a point in a 15-dimensional space, (xt-4,
…, xt, F , …, Ft-4 t, dP , …, dPt-4 t), where t is the time instance when the system state
is recorded. The classifier performs detection and isolation in one single step. If the
classifier outputs the same fault label for two consecutive states then the system is
diagnosed as being affected by that fault.

The classifier employed in this chapter is built using a hybrid approach
based on Euclidean distance and Pearson correlation. Pearson correlation allows the
trends in the x and F signals to provide supplementary separation between different
faults. As mentioned before, a point in a 15-dimensional space describes the system
state, i.e. the record over 5 consecutive time-steps for dP, x and F values. Therefore,
the point has associated two vectors that represent the trend for x and F signals over
the 5 time-step window. Three point-to-set similarity measures are used, based on
the three similarity measures induced by the Euclidean distance (rE), Pearson
correlation for x (rP_x), and Pearson correlation for F (rP_F), respectively. The
parameters are applied only to the point-to-point similarity measure based on the
Euclidean distance. If the parameters are applied only to one of the point-to-point
similarity measures used, then all other point-to-set similarity measures will be
computed for the neighbourhood defined by these parameters. The point-to-set
similarity measures corresponding to each of the two Pearson correlations are given
by Eq. , where p and p11 x F stand for the point-to-point similarities based on Pearson
correlation for x and F, respectively. Finally, the fuzzy membership functions
represent a combination of the three point-to-set similarity measures (Eq. 12). The
terms , and weight the contribution of each point-to-set similarity measure to
the overall value. The search process for the optimal parameters may be extended
to also tune the values of these terms.

_
all in the
neighbourhood
defined by

_
all in the
neighbourhood
defined by

(,) 2 (,)

(,) 2 (,)
i

i

P x i x
v

P F i F
v

r u C - p u v

r u C - p u v
(11)

Computational Intelligence in Fault Diagnosis 119

_ _

_ _

(,) (,)(,)
(,) (,) (,)

()

P x i P F iE i

E P x P F
i

r u C r u Cr u C
r u C r u C r u C

u
(12)

The process of fault detection and isolation will follow the next two steps.
First, only one category per fault is considered, containing all the points associated
with all possible fault strengths. Second, more than one category for one fault is
considered. These categories are formed by allowing for single fault strengths or
groups of fault strengths to form distinct categories (Bocaniala et al., 2004). The
second step is taken in order to increase even more (if possible) the isolation
capabilities of the classifier until distinguishing between different fault strengths.

For the first step, one category per fault is considered and a classifier is
built for this particular set of categories. The isolation matrix obtained is shown in
Table 4.2. The normal state (N) is separable/well-classified from the faulty states in
proportion of 99.60%. The comment “not visible” stands for situations when the
effects of the corresponding fault strengths are not visible. Analysing the content of
Table 4.2 the following facts may be deduced. The classifier correctly recognizes
the five groups of overlapping faults mentioned in Section 4.3. Notice that the large
overlapping between F11, F15 and F16 is almost completely solved. Notice also
that in the case of faults F1, F10, F18 and F19, the effects of the small fault
strengths are not distinguishable from the normal state. The previous analysis
proves the high accuracy with which the classifier is able to delimit the areas
corresponding to different categories, and the fine precision of discrimination inside
overlapping areas. However, the content of Table 4.2 raises questions like the next
one: if the classifier outputs the label F15, then is this fault in the system really F15
(and if it is which fault strength does it have), or is it fault strength 95% of F11, or
is it fault strength 75% of F16? The second step of the process of detection and
isolation investigates the answers to questions like the previous one, i.e., tries to
improve the isolation.

For the second step, more than one category per fault is considered. These
categories are formed by allowing for single fault strengths or groups of fault
strengths to a distinct category (Bocaniala et al., 2004). As will be seen, this
refinement increases the isolation between different faults and between different
fault strengths of the same fault. The effects of the refinement are studied
considering the faults grouped according to the overlapping between them, i.e.,
{F1, F7}, {F2, F19}, {F7, F10}, {F11, F15, F16}, {F13, F18} and {F17}. For
each group of faults the next analysis is performed. First, for each fault, the
clustering into groups of fault strengths is found by considering the fault strengths
as separate categories and building the corresponding classifier. For each fault, the
identified groups of fault strengths represent the new set of categories per fault.
Second, using the previous sets of categories per fault, another classifier is built in
order to check the isolation properties. The result of these analyses is presented in
Tables 4.3 to 4.7. The notation used is FiFSj, where i and j respectively stand for
the fault label and fault strength (given as a number between 0 and 100). The
labelling convention for the clusters formed by more than one fault strength is to
use the label corresponding to the smallest fault strength in the group, i.e., the two
clusters for F2 are labelled F2FS70 and respectively F2FS80.

120 V Palade, CD Bocaniala and L Jain (Eds.)

Table 4.2. The isolation matrix for the case when only one category per fault is
considered

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F1 [- - - N - -] [- - - - F1 - - - -] F7

F2 [- - - not considered in the benchmark - - - -] F2 F2 F19 F2 F2 F19 F2

F7 [- - - - - - - - - F7 - - - - - - - -]

F10 [- - - N - -] F10 F10 (not

visible)

F10 F10 F10 F10 [- F7 -]

F11 [- - - not considered in the benchmark - - - -] (not

visible)

F11 F11 F11 F15 F11 F11

F13 F18 F18 F13 F18 [- - - - - - F13 - - - - - - -]

F15 [- - - not considered in the benchmark - - - -] F15 F15 F15 (not

visible)

F15 F16 F15

F16 [- - - - - - N - - - - -] F15 [- F16 -]

F17 [- - - not considered in the benchmark - - - -] [- - F17 - -]

F18 N [- - F13 -] [- - - - - F18 - - - - -]

F19 N N [F19] F2 [- - - - - - - F19 - - - -]

Table 4.3. The isolation matrix for the group of faults {F1, F7} in case when more than
one category per fault is considered

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F1 [- - - N - -] F1FS45 F1FS50 F1FS55 F1FS60 F1FS65 F1FS70 F1FS75 F1FS80 F1FS85 F1FS90 F1FS95 F7

F7 [- - - - - - - - - F7 - - - - - - - -]

Table 4.4. The isolation matrix for the group of faults {F2, F19} in case when more than
one category per fault is considered

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F2 [- - - not considered in the

benchmark

- - - - -] F19FS15 F2FS70 F19FS30 F2FS80 F2FS70 F19FS30 F2FS80

F19 N N [- F19FS15] F19FS30 [- - - F19FS35 - -] F19FS80 [- F19FS35]

Table 4.5. The isolation matrix for the group of faults {F7, F10} in case when more than
one category per fault is considered

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F7 [- - - - - - - - - F7 - - - - - - - -]

F10 [- - - N - -] F10FS45 F10FS45 (not

visible)

F10FS45 F10FS45 F10FS70 F10FS70 [- F7 -]

Table 4.6. The isolation matrix for the group of faults {F13, F18} in case when more
than one category per fault is considered

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F13 F13FS5 F18FS10 F13FS5 F18FS10 F13FS5 F13FS5 [- - - - - - F13FS40 - - - - -]

F18 N F18FS10 F13FS5 [- F18FS10] [- - - - - F18FS40 - - - - -]

Table 4.7. The isolation matrix for the group of faults {F11, F15, F16} in case when
more than one category per fault is considered

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F11 [- - - not considered in the

benchmark

- - - -] (not

visible)

F11 F11 F11 F11 F11 F11

F15 [- - - not considered in the

benchmark

- - - -] F15FS70 F15FS75 F15FS80 (not

visible)

F15FS70 F15FS80 F15FS70

F16 [- - - - - - N - - - - -] F15FS75 [- F16FS85 -]

Notice that the isolation results have improved radically. For instance, the
medium and large fault strengths of F19, 40-100%, are separated from the small
ones, 5-35%; while misclassification of F19 with F2 occurs only for the small
strengths of F19. The overlapping between faults F13 and F18 occurs now only
between small fault strengths, i.e., between 5% and 30% for F13 and 10% and 35%

Computational Intelligence in Fault Diagnosis 121

for F18. The medium and large strengths of both faults are now perfectly separated
from each other.

4.5. Conclusions

This chapter presented a novel fuzzy classification methodology applied to fault
diagnosis. There are three main directions of applying fuzzy classifiers to fault
diagnosis: neuro-fuzzy classifiers, classifiers based on collections of fuzzy rules,
and classifiers based on collections of fuzzy subsets. The fuzzy classification
methodology described in this chapter follows the last direction. The main property
of this methodology is the large accuracy with which it learns the topological
structure of the symptoms space. The fuzzy subsets built by the classifier
approximate with a very small error the areas in the symptoms space corresponding
to different categories. Its accuracy also manifests through handling with fine
precision the discrimination inside overlapping areas.

The technique of building fuzzy subsets used with the contributed
methodology is based on the work of Baker (1978). The original contributions are
(i) the use of different (dedicated) parameters for different categories to express
the point-to-point similarity in order to increase the performance of the classifier,
(ii) developing the idea acknowledged by Baker (1978) that the use of fuzzy subsets
induced by multiple point-to-set similarity measures may increase the performance
of the classifier, (iii) for the case study, the use of a 5 time-step time window that
allows information on the system dynamics to be used with the classifier, and (iv)
also for the case study, the improvement in the isolation capability by allowing
single fault strengths or groups of fault strengths to form distinct categories used
with the classifier.

Future research on the fuzzy classification methodology needs to
concentrate on obtaining a computational complexity of both design and test phase
that is small enough to make the classifier suitable for application to fault diagnosis
of real systems. The computational complexity of the design phase has already been
significantly reduced by using the particle swarm optimisation technique (Bocaniala
and Sa da Costa, 2004a; 2004b). Also, it has been observed in practice that the
classifier generalises reasonably well even for small dimensions of the REF and
PARAM sets (Bocaniala, 2003). Or, the computational complexity of both the
design and test phase depends heavily on the sizes of these two sets. This leads to
the conclusion that a technique might be found so that the sizes of these two sets
drop substantially and so that the performance of the classifier stays at least the
same. An answer might be found by studying the kernel methods (Shawe-Taylor
and Cristianni, 2004).

Acknowledgements

This work was partially supported by the European Commission’s FP5 Research
Training Network Program – Project “DAMADICS – Development and

122 V Palade, CD Bocaniala and L Jain (Eds.)

Application of Methods for Actuator Diagnosis in Industrial Control Systems,” and
by Fundação para a Ciência e a Tecnologia, Minister of Science, Innovation and
Technology, Portugal, grant number SFRH/BD/18651/2004

References

1. Ariton V and Palade V (2005) Human-like fault diagnosis using a neural
network implementation of plausibility and relevance. Neural Computing &
Applications 14(2):149-165.
2. Baker E (1978) Cluster analysis by optimal decomposition of induced fuzzy
sets (PhD thesis). Delftse Universitaire Pres, Delft, Holland.
3. Bocaniala CD (2003) Tehnici de inteligen artificial aplicate în diagnoza
defectelor: Aplica ii ale tehnicilor de clasificare (Technical Research Report within
doctoral training). University “Dunarea de Jos” of Galati, Romania, 2003.
(available in English for download at www.gcar.dem.ist.utl.pt/pessoal/cosmin/
index.htm)
4. Bocaniala CD and Sa da Costa J (2004a) Tuning the Parameters of a Fuzzy
Classifier for Fault Diagnosis. Hill-Climbing vs. Genetic Algorithms. In:
Proceedings of the Sixth Portuguese Conference on Automatic Control
(CONTROLO 2004), 7-9 June, Faro, Portugal, pp. 349-354.
5. Bocaniala CD and Sa da Costa J (2004b) Tuning the Parameters of a Fuzzy
Classifier for Fault Diagnosis. Particle Swarm Optimization vs. Genetic
Algorithms. In: Proceedings of the 1st International Conference on Informatics in
Control, Automation and Robotics ICINCO 2004, 25-28 August, Setubal, Portugal,
vol. 1, pp. 157-162.
6. Bocaniala CD, Sa da Costa J and Louro R (2003) A Fuzzy Classification
Solution for Fault Diagnosis of Valve Actuators. In: Proceedings of 7th
International Conference on Knowledge-Based Intelligent Information &
Engineering Systems, Oxford, UK, September 3-5, Part I, pp. 741-747, LNAI
Series, Springer-Verlag, Heidelberg, Germany.
7. Bocaniala CD, Sa da Costa J and Palade V (2004) A Novel Fuzzy
Classification Solution for Fault Diagnosis. International Journal of Fuzzy and
Intelligent Systems 15(3-4): 195-206.
8. Bocaniala CD, Sa da Costa J and Palade V (2005) Fuzzy-based refinement of
the fault diagnosis task in industrial devices. International Journal of Intelligent
Manufacturing 16(6): 599-614.
9. Boudaoud N and Masson M (1996) The diagnosis of technological system: on-
line fuzzy clustering using gradual confirmation of prototypes. In: Proceedings of
CESA’96, France.
10. Boudaoud N and Masson M (2000) Diagnosis of transient states using pattern
recognition approach. JESA – European Journal of Automation 3: 689-708.
11. Calado JMG, Korbicz J, Patan K, Patton RJ and Sa da Costa JMG (2001) Soft
Computing Approaches to Fault Diagnosis for Dynamic Systems. European Journal
of Control 7: 248-286.

Computational Intelligence in Fault Diagnosis 123

12. Chen J and Patton RJ (1999) Robust Model-Based Fault Diagnosis for
Dynamic Systems. Asian Studies in Computer Science and Information Science,
Kluwer Academic Publishers, Boston.
13. Duda RO and Hart PE (1973) Pattern classification and scene analysis. John
Wiley & Sons, New York.
14. European Community’s FP5, Research Training Network DAMADICS
Project, http://www.eng. hull.ac.uk/research/control/damadics1.htm.
15. Frank PM (1996) Analytical and qualitative model-based fault diagnosis – a
survey and some new results. European Journal of Control 2: 6-28.
16. Koscielny JM, Sedziak D and Zackroczymsky K (1999) Fuzzy-logic fault
isolation in large-scale systems. International Journal of Applied Mathematics and
Computer Science 9(3): 637-652.
17. Leonhardt S and Ayoubi M (1997) Methods of fault diagnosis. Control
Engineering Practice 5(5): 683-692.
18. Louro R (2003) Fault Diagnosis of an Industrial Actuator Valve (MSc
dissertation). Instituto Superior Técnico, Lisbon, Portugal.
19. Palade V, Patton RJ, Uppal FJ, Quevedo J and Daley S (2002) Fault Diagnosis
of An Industrial Gas Turbine Using Neuro-Fuzzy Methods. In: Proceedings of the
15th IFAC World Congress, 21–26 July, Barcelona, pp. 2477–2482.
20. Sa da Costa J, Bocaniala CD and Louro R (2003) A Fuzzy Classifier for Fault
Diagnosis of Valve Actuators. In: Proceedings of IEEE Conference on Control
Applications CCA 2003, Istanbul, Turkey.
21. Sa da Costa J and Louro R (2003) Modelling and simulation of an industrial
actuator valve for fault diagnosis benchmark. In: Proceedings of the Fourth
International Symposium on Mathematical Modelling, Vienna, pp. 1212-1221,
Agersin-Verlag.
22. Shawe-Taylor J and Cristianini N (2004) Kernel methods for pattern analysis.
Cambridge University Press.
23. Simpson PK (1993) Fuzzy min-max neural networks – Part 2: Clustering. IEEE
Transactions on Fuzzy Systems 1(1): 32-45.
24. Uppal FJ, Patton RJ and Palade V (2002) Neuro-Fuzzy Based Fault Diagnosis
Applied to an Electro-Pneumatic Valve. In: Proceedings of the 15th IFAC World
Congress, 21–26 July, Barcelona, Spain, pp. 2483-2488.
25. Weisstein EW (1999) Correlation Coefficient. From MathWorld--A Wolfram
Web Resource, http://mathworld.wolfram.com/CorrelationCoefficient.html.

5. Fuzzy-Statistical Reasoning in Fault
Diagnosis

Dan Stefanoiu and Florin Ionescu

When searching for faults threatening a system, the human expert is sometimes
performing an amazingly accurate analysis of available information, frequently by
using only elementary statistics. Such reasoning is referred to as “fuzzy reasoning,”
in the sense that the expert is able to extract and analyse the essential information of
interest from a data set strongly affected by uncertainty. Automating the reasoning
mechanisms that represent the foundation of such an analysis is, in general, a
difficult attempt, but also a possible one, in some cases. The chapter introduces a
nonconventional method of fault diagnosis, based upon some statistical and fuzzy
concepts applied to vibrations, which intends to automate a part of human reasoning
when performing the detection and classification of defects.

5.1. Introduction

Nowadays, the classical fault tolerant design paradigm is enriched by new methods
and techniques (Wilsky, 1976; Reiter, 1987; Isermann, 1993; 1997). The trade-off
between costs involved by ignoring fault prevention and costs of hyper-safety of
systems is improved. The effort in designing satisfactory modules aptly to prevent
failures is decreased, due to important technological advances. In a complete
structure of fault detection and diagnosis, a module concerned with monitoring of
system symptoms and anticipation for possible failures is included. In general, the
symptoms are detected by using two kinds of methods: analytical and heuristic.

The analytical methods are involved with systems for which the
characteristic parameters are measurable (or quantifiable). These parameters are
determined by analysing either some signals or the system itself. For instance, the
basic parameters of monitored signals are: the amplitude, the variance, the auto-
correlation, the power spectral density, etc. Basically, the system analysis is
founded on an identification model, in general parametric (Söderström and Stoica,
1989). Various models are used, such as: (auto)regressive, state representation,
described by some parity equations, etc. The model parameters are deduced from
measured input-output data by system identification techniques. In both cases, a
quantitative expertise has to be performed. This consists mostly of comparisons
between the measured values and a set of tolerated values assigned to normal
behaviour of the system. The malfunction symptoms appear when the parameters
start to systematically provide values beyond tolerances. Moreover, a classification
of symptoms can be realized, depending on the difference between the measured
and tolerated values.

126 V Palade, CD Bocaniala and L Jain (Eds.)

Sometimes, the analytical approach is not sufficient or cannot be
performed (especially because the characteristic parameters are not quantifiable).
Moreover, the symptoms meaning is important for interpretation of associated
faults. Often, this relies on the qualitative assessment of a human operator as expert.
The expert experience plays an important role in symptoms investigation. For this
reason, one says that the detection of symptoms is performed by using heuristic
methods (from heuriskein (Greek) – to search, to investigate). The nonquantifiable
information observed from the system could be reflected for example by: colours,
smells, noise tones, etc. However, some quantifiable parameters, but with “fuzzy”
values, represented by linguistic terms like: “small,” “medium,” “large,” “about
null,” etc., belong to this category as well. The human operator integrates this
information in a quasi-empirical history of system functioning. Qualitative
comparisons are performed between the observed information and the information
specified by the history. The history includes not only information about the normal
functioning states, but also about the maintenance process, repairs, fault types, life-
time, fatigue, etc. The decision concerning the symptoms and faults is based on
operator’s skills, experience or flair and is affected by uncertainty. However, the
experience about the system can be improved through a learning mechanism.

Like in medicine, fault prevention remains a demanding task that requires
both self-anticipation from the system and intelligent approach from the user.
Usually, a self-anticipatory system transmits information about its behaviour
through some anticipating signals. For example, human or animal muscles have
different electrochemical activity just before they are damaged, due to high
intensity and long effort (von Tscharner, 2000). Another example is issued from
mechanical systems, for which the vibrations are anticipating signals (Angelo,
1987; Bedford and Drumheller, 1994; McConnell, 1995; Wowvk, 1995). Their
intimate structure changes some time before a failure occurs (Braun, 1986). But this
change is so fast and sometimes so difficult to distinguish that, without special
detection and decoding techniques, it could be ignored. These techniques focus on
the extraction of vibration main characteristics (features), in order to classify the
possible faults. In general, the strategy adopted within a fault detection method
starting from vibrations consists of the following stages: signal acquisition, signal
analysis (in order to extract features), features grouping, faults classification
(eventually adaptively, through a continuously learning mechanism), fault
identification (if present).

Vibration acquired from mechanical systems is interesting mainly for its
capacity to encode information about the defects or faults threatening them. Several
distinct efforts in detection of machinery defects can be noticed, but only in the last
few decades has vibration become crucial for automating this process. The earliest
method, which dates back to the first days of machinery (and which is still in use
today), is founded on a trained observer or listener referred to as (expert) analyst. A
person with a great deal of experience in working with a particular machine or
engine can detect flaws in operating machinery, by simply “watching” or
“listening” to it. Very often, the resulting diagnosis, based on empirical
observations and deductions, is amazingly accurate, but difficult to model. Other
subsequent attempts became more systematic and used some parameters, such as:
the lubricant temperature (which, unfortunately, provides too late a diagnosis, after

Computational Intelligence in Fault Diagnosis 127

the defects are already severe), the oil cleanness (which requires an exhaustive and
often inefficient analysis), the noise level of acoustic emission (which is often
enabled only by already fatigued elements), etc.

The most efficient methods in early detection of defects are using signal
processing (SP) techniques (Oppenheim and Schafer, 1985; Proakis and Manolakis,
1996). These methods differ from many typical SP applications where the noise
attenuation is a fundamental requirement. When using vibrations, exactly the noise
is the most concerned part in the analysis. This is due to the fact that not only the
natural oscillations of machinery could encode the defective behaviour, but also the
noise corrupting them. Moreover, the applications revealed that the signal-to-noise
ratio (SNR) is extremely small for vibrations encoding information about defects.
Therefore, the models of vibration used in fault detection and diagnosis (fdd) are, in
fact, models of their noisy parts, encoding all the information about defect types
and their severity degrees.

One of the most interesting applications in fdd is concerned with bearings,
due to their simple structure and large integration within mechanical systems
(Howard, 1994; FAG OEM and Handel AG, 1996; 1997). By inspecting the
spectrum of vibration acquired from bearings, some researchers believed that its
irregular shape is mainly due to the environmental noise and correlation between
different components. Hence, they introduced techniques to “remove” the white
noise and decorrelate the data, based on SP concepts such as: autocorrelation,
backstrum, or cepstrum, but the irregularities are only slightly smoothed and the
defect severity is difficult to derive. Perhaps the most popular method to extract
information about defects in bearings (and geared coupling) is the (spectral)
envelope analysis (EA). Some of these techniques (especially EA) are described in
(Stefanoiu and Ionescu, 2002). They are poorly modelling the humanlike diagnosis,
which probably requires nonconventional approaches. Actually, one can notice that
experienced analysts perform a kind of fault classification, by simply inspecting the
spectrum. Moreover, they are able to improve the accuracy of classification for
every new case they analyse. It is by far not completely known what kind of
reasoning lies behind their diagnosis, but one has assumed that the brain performs a
qualitative statistical assessment inputting some pattern recognition mechanisms
towards this goal. A very interesting approach combining statistics and pattern
recognition has been introduced in (Xi et al., 2000). This is in fact an attempt of
automating human reasoning, which resulted in a quite efficient and simple fdd
algorithm, though with unavoidable limitations.

In this research, one started from the largely accepted idea that human
reasoning is also fuzzy. This means that a solution to a problem could be issued
even from unclear, vague or ambiguous information, i.e., from information strongly
affected by uncertainty. Usually, the analyst considers the solution the most
“plausible” one, according to the available data. When an fdd or/and classification
has to be performed from vibrations, the analyst’s experience is crucial for the
accuracy of subsequent analysis. Unfortunately, the analyst has to cope not only
with external perturbations affecting the data, but also with his/her own
subjectivism when performing such an analysis. Usually, this analysis is based on
some simple statistical assessments aiming to increase its objectivity. Therefore, the
reasoning hidden behind data analysis could be automated by performing a

128 V Palade, CD Bocaniala and L Jain (Eds.)

combination between spectral statistics and fuzzy clustering (in entropy sense (Klir
and Folger, 1988)), which should decrease both the subjectivism and the
perturbations influence. Moreover, comparisons between the tested vibration and a
standard (defect free) vibration could be performed, without specifying from the
beginning the number of classes and/or their meaning, which has to be discovered
later. In fact, this approach combines analytic and heuristic points of view, in order
to build a model of human reasoning when performing fdd.

The chapter is structured as follows. The fuzzy-statistical reasoning
method is presented in depth in the next section, which has two main parts: the first
one is devoted to vibration acquisition and preprocessing, whereas within the
second one, the fuzzy-statistical model is described. The resulting algorithm is
practically listed in Section 5.2 as well, simultaneously with the method description.
The simulation results and their interpretations are given in Section 5.3. The
graphical simulations are presented in the Appendix. Some concluding remarks
complete the chapter.

5.2. The Fuzzy-Statistical Reasoning Method

One (but probably not unique) way to overcome some fdd limitations when using
spectral or envelope analysis is to combine the spectral representation with statistics
and subsequently to use a fuzzy model aiming to minimize the diagnosis
uncertainty. This approach is described next.

5.2.1. Method Overview

When measuring vibrations of a mechanical system, several signals are combined
together within the resulting data, such as: natural oscillations, interference signals
(due to interactions between its different parts); defect encoding noise, indicating
that something is wrong with one or more of its parts and environmental noise. The
crude mechanical vibration is converted into an electrical vibration signal (v) by
means of a sensor connected to a transducer (which could induce slight distortions).
For example, in the case of a bearing, if data are rich enough (few thousands of
rotations), the vibration spectrum

v
V looks like that in Figure 5.1. Two cases could

be discussed here.

)2(πνV

[
d
B
]

ν

LF MF HF

Resonance0

Figure 5.1. Overall vibration spectrum in case of defects.

Computational Intelligence in Fault Diagnosis 129

When the bearing is defect free, the spectral energy is mainly concentrated
inside the low-frequency band (LF) encoding information about oscillations and
their natural frequencies (derived from bearing geometry, depending on shaft
rotation speed). Few multiples of natural frequencies are replicated within the
spectrum, but their power has an exponential decay (due to damping). In the case of
defective bearing, the idea that the defect noise is basically generated by visible or
microscopic quasi-random shocks has been largely accepted today. Shocks are
modelled by trains of impulses and they put the sensor into resonance state.
Usually, sensor resonance appears at (very) high frequency, but, by convolution
with a train of impulses, it is replicated towards low frequency as well. In Figure
5.1, this is suggested by the energy concentration around some peaks located in
middle-frequency band (MF). Usually, a resonance peak is mixed with basic LF
spectrum as well, such that it could hardly be distinguished. The high-frequency
band (HF) rather encodes information about resonance corrupted by environmental
noises. The spectrum could change (even dramatically), depending on the applied
load, sensor locations, shaft speed, bearing mounting, etc.

The EA principle is easy to explain now: select one of the resonance
peaks, apply a bandpass filter on the vibration around the selected resonance, take
the envelope of the resulting signal and zoom the LF part of the spectral envelope.
If isolated, the defect appears now as distinctive peaks at locations depending again
on natural frequencies. The higher the peaks are, the more severe the defect.

But the analyst just looks at the spectrum and provides the diagnosis by
observing the changing parts relatively to the standard spectrum, though the latter
has no constant shape. This means he/she is focusing on some spectral subbands
that reveal significant shape and energy differences from the standard. Moreover,
the similar differences are grouped in classes and each class points to a certain
defect or combination of defects (with some confidence degree).

Therefore, when automating this kind of reasoning, the following
operations could be involved: define a set of statistical parameters (sp) that quantify
the information about shape and energy of a signal; split the spectrum into a number
of subbands; compare the tested and standard subbands in terms of sp; group the
results in similarity classes, by using a global fuzzy relation between them; select
the best fault class, according to an entropy-based criterion aiming to minimize the
information uncertainty. This constitutes the kernel of the method described
hereafter. The presentation covers two main parts. The first one is concerned with
vibration acquisition and preprocessing. The second one is devoted to the fuzzy-
statistical model.

5.2.2. Vibration Data Acquisition and Pre-processing

Let us denote the raw vibration data by v . In practice, v is a finite length, finite
bandwidth and discrete time signal encoding the information about defects that
could exist within the tested component. In this case, the signal is acquired from
bearings. The acquisition and preprocessing procedure encompasses several steps
that are described next.

Step 1: Set the acquisition parameters.

130 V Palade, CD Bocaniala and L Jain (Eds.)

The first parameter employed in data acquisition is the sampling rate, denoted by
s . The selection of s is extremely important for the next analysis. On the one

hand, s should be large enough, in order to avoid aliasing (Oppenheim and
Schafer, 1985; Proakis and Manolakis, 1996). On the other hand, large s values
involve expensive devices. Therefore, a suitable value should be selected, such that
the resulting signal encode most part of the desired information about defects and
the acquisition costs be affordable.

The sensor characteristic usually extends beyond 140–150 kHz. If defects
exist, the sensor resonance is replicated towards LF and MF bands within the
vibration spectrum (see Figure 5.1). At least 3 or 4 resonance peaks are located in
the 0–20 kHz band and at least 2 of them lie inside the 0–10 kHz subband. In fact,
the analyst focuses on this LF subband. Usually, the vibration spectrum extends
beyond the limit of 20 kHz, but the band of interest remains 0–10 kHz (the SNR
decreases rapidly beyond 10–12 kHz, because of HF noises that dominate the other
fast decaying vibration components). All these arguments lead to the following
trade-off in vibration acquisition:

a. Prefilter the sensor signal by using a low-pass analogic anti-
aliasing filter (Proakis and Manolakis, 1996) that removes the HF
components beyond 150 kHz;

b. Use the sigma-delta modulation technique (Proakis and
Manolakis, 1996), in order to restrict the signal in the range 0–12
kHz, to attenuate the quantization noise and to avoid aliasing (a
new low-pass analogic filter is applied in the end);

c. Sample the resulting analogic signal by setting a rate of at least
20–24 kHz (i.e., kHz20s), according to Shannon-Nyquist
Sampling Theorem (Oppenheim and Schafer, 1985; Proakis and
Manolakis, 1996).

A standard sampling rate that has been employed for example in (Maness
and Boerhout, 2001) is kHz6.25s , which yields accurate vibration spectra in
the range 0–12.8 kHz. Observe the powers of 2 hidden behind these values:

 and , which avoids some computational errors
due to division by multiples of 2.

100260025 8 100280012 7

Another parameter of interest is the vibration length, denoted by .
Normally, this is set according to the main rotation frequency

N
r and sampling rate

s . The vibration data should include a minimum number of complete rotations,
 (usually,). Then, obviously: rn 2000rn

rsrnN / (1)

For example, if 2000rn , Hz50r (3000 rpm) and kHz6.25s ,

the number of vibration data is: samples, which takes 40
s. Usually, is also set as a power of 2 multiple and this is the reason, in Eq. 1,

000,024,1102 310N
N

s is sometimes set with the same property. This setting is very useful in

Computational Intelligence in Fault Diagnosis 131

evaluation of spectrum, when using a fast fourier transform (FFT) algorithm
(Oppenheim and Schafer, 1985; Proakis and Manolakis, 1996).

Usually, the apparatus performing the vibration acquisition (connected to
the sensor) could be tuned by only specifying these two parameters: s and or
the duration of acquisition. The corresponding operations necessary to store the data
in a memory are transparent for the user.

N

Step 2: Construct the raw vibration.
The sensor capacity of perception is determined by its bearing position. Different
data could be obtained for different locations on the same bearing. When the
bearing is under load, this variability is even more accentuated. This gives rise to
the problem of appropriate sensor location, which is uncertain. The uncertainty
could be attenuated if several sensors are located in different positions (instead of a
single one). Unfortunately, in this case, other problems occur. For example, the
acquired signals have to be mixed in a unique raw vibration, by synchronizing them
appropriately. Another problem is that the number of sensors could increase the
cost of acquisition solution. Sensors should be as light as possible, in order to
introduce insignificant distortions into the genuine vibration. But, the lighter the
sensor, the more expensive. Also, in general, sensors have slightly different
characteristics. The bigger the sensor number, the more difficult to denoise the data.
Hence, a suitable number of sensors should be employed, such that the acquired
signals be easy to synchronize and the cost of acquisition be affordable.

An interesting and efficient solution is introduced in (Maness and
Boerhout, 2001), as illustrated in Figure 5.2. Two sensors are employed to acquire
the horizontal and the vertical vibrations, denoted by and, , respectively.
These are, in fact, two quadrature signals easy to synchronize, by considering them
the real and the imaginary part of raw vibration:

xv yv

yx jvvv (2)

v

v ≡ v + j v

v

Figure 5.2. Construction of raw vibration from two quadrature signals.

The resulting signal is complex valued, but its sensitivity to sensors
location is attenuated. In the absence of load, there are no significant differences
between quadrature signals in terms of magnitude. If a load is applied, these

132 V Palade, CD Bocaniala and L Jain (Eds.)

differences become important and should be accounted. In this case, Eq. 2 should
be replaced by:

yx jbvavv (3)
where and are two constants selected such that and have
approximately the same range of variation. For example, in the case of vertical load,

 could be set to 1 (no horizontal load), whereas b should be set inside (0,1)
interval, since the load amplifies the defect noise of vibration.

0a 0b xav ybv

a

Step 3: Vibration segmentation and windowing.
1,0][NnnvThe vibration data set is quite large. If the Fourier transform (FT)

were to be applied on this set, the evaluation could be very slow. Moreover, the
resulting spectrum is practically useless since the vibration signals are also non-
stationary (Cohen, 1995). In other words, the spectrum is time varying. This
involves the overall spectrum reflecting the intimate behaviour of vibration only on
average, whereas, on the contrary, the spectrum variations are important for
learning as much as possible about how the bearing runs. Therefore, the vibration
segmentation becomes a necessity. In this context, one operates with two concepts:
(vibration) frames and (vibration) segments.

A frame is a subset of successive samples that could not be further
segmented. Frames could or could not be overlapped. In this approach, the frames
are nonoverlapping, but the overlapping effect is hidden behind the concept of
segment. One can denote by the m-th frame of vibration (where Mm ,0mv) and
by the frame length (constant for all frames). Obviously, the number of
nonoverlapped frames is:

NN f

fNNM /1 (4)

where is the smallest integer superior or equal to a a . It is suitable that
be a divisor of . For example, if is a power of 2 multiple (as suggested within
the previous step), then could be 512, 1024, 2048, etc. For the model
constructed next, one requires that

fN
N N

fN
2M (i.e., at least 3 frames should be

available). The frame length should be selected not only according to , but also
to the minimum resolution of frame spectrum (at least 400 rays for vibration in the
range 0–10 kHz). The statistical part of the model constructed later is sensitive to

, since it determines the precision of corresponding sp.

N

fN
A vibration segment includes three successive (nonoverlapping) frames:

the previous frame (), the current frame () and the next frame (), for 1mv mv 1mv

1,1 Mm 1M. Thus, the vibration data could generate up to segments of
length each. Unlike frames, segments are overlapping (two of the three frames
in a segment are identical within the next segment), in order to prevent marginal
effects when filtering. Actually, the characteristic frame of a segment is the current
one, located in the middle. Its left and right neighbours are only playing the role of

fN3

Computational Intelligence in Fault Diagnosis 133

background signals, which avoids zero-padding and performs a smooth passage
from a frame to another, when filtering.

The samples of neighbour signals could or could not be as important as the
samples of current frame in a segment. This feature is controlled through
windowing. The windowing technique is very simple, in fact. Let be a

length window that slides along the vibration data with a step of samples. Then
the current segment is extracted from raw vibration by simply multiplying

w fN3 -

fN
v and

 in a certain position (0, , , ...,). The sliding effect is
suggested in Figure 5.3, where the window support is given by three successive
frames (a segment, in fact). The window symmetry axis should be centred on the
current frame middle point.

w fN fN2 fNM)2(

Several windows are usually employed in SP (Proakis and Manolakis,
1996). Some of them are weighting not only the neighbour frames but also some
samples of central frame (like the window in Figure 5.3). The most utilized
windows are the following nine, expressed next only for their -length support wN

1,0 wNn , with .2wN

Raw vibration support: 0...N-1

Segment support:

(m-1)N ...(m+1)N

Sliding

window

v v v

Figure 5.3. Windowing the raw vibration.

1. Rectangular (Oppenheim and Schafer, 1985; Proakis and Manolakis,
1996): 1][nw .
2. Bartlett (or triangular) (Oppenheim and Schafer, 1985; Proakis and

Manolakis, 1996):
1
2

12
1][

w

w

N

Nn
nw .

3. Blackman (Oppenheim and Schafer, 1985; Proakis and Manolakis,

1996):
1

4cos8.0
1

2cos5.042.0][
ww N
n

N
nnw .

4. Chebyshev: recursive algorithm (see MATLAB function chebwin).
Besides the support length (), a second parameter is necessary: ,
which stands for the attenuation in decibels (dB) of the window spectrum
side lobe with respect to the main lobe. As increases, the window
aperture decreases, but below 70 dB, significant marginal errors are

wN 0wr

wr

134 V Palade, CD Bocaniala and L Jain (Eds.)

introduced. A good trade-off between the window aperture and its
marginal errors is obtained for dB]100,80[wr .
5. Hamming (Oppenheim and Schafer, 1985; Proakis and Manolakis,

1996):
1

2cos46.054.0][
wN
nnw .

6. Hanning (Oppenheim and Schafer, 1985; Proakis and Manolakis,

1996):
1

2cos1
2
1][

wN
nnw .

7. Kaiser (Kaiser, 1974; Proakis and Manolakis, 1996):

2
1sinh

2
1

2
1sinh

][

22

w

ww

N

NnN

nw , where sinh stands for the

hyperbolic sine (
2
eesinh

xx
x

def
0) and the parameter is the

height in dB of the window spectrum side lobe. Sometimes (see MATLAB
function kaiser), is replaced by another parameter, , defined as

follows:

21,0
]50,21[,)21(07886.0)21(5842.0

50,)7.8(1102.0
4.0

6As increases, the window aperture decreases, but below ,
significant marginal errors are introduced. A good trade-off between the
window aperture and its marginal errors is obtained for 9 .
8. Lanczos (Proakis and Manolakis, 1996):

L

N
Nn
N

Nn

nw

w

w

w

w

)1(2
122

)1(2
122sin

][, where the exponent controls the

window aperture. As

0L

L increases, the window aperture decreases, but
below the unit value (1L), significant marginal errors are introduced. A
good trade-off between the window aperture and its marginal errors is
obtained for 1L .
9. Tukey (Proakis and Manolakis, 1996):

Computational Intelligence in Fault Diagnosis 135

2
1

2
1

2
1

,

2
1

)1(

2
1

)1(
cos1

2
1

2
1

2
1

,1

][
www

w

w

ww

NN
n

N
N

N
n

NN
n

nw

)1,0(where the parameter controls the percentage of rectangular
window centred inside. For the vibration segment, a good choice is

3/1 , since the central frame takes only one third of the whole
segment.

0 50 100
-0.5

0

0.5

1

1.5 Rectangular

0 50 100
-0.5

0

0.5

1

1.5 Triangular (Bartlett)

0 50 100
-0.5

0

0.5

1

1.5 Blackman

0 50 100
-0.5

0

0.5

1

1.5 Chebyshev

r
w

 = 90 dB

0 50 100
-0.5

0

0.5

1

1.5 Hamming

0 50 100
-0.5

0

0.5

1

1.5 Hanning

0 50 100
-0.5

0

0.5

1

1.5 Kaiser
β = 9

0 50 100
-0.5

0

0.5

1

1.5 Lanczos
L = 1

0 50 100
-0.5

0

0.5

1

1.5 Tukey
α = 0.333333

0 50 100
-0.5

0

0.5

1

1.5 Rectangular

0 50 100
-0.5

0

0.5

1

1.5 Triangular (Bartlett)

0 50 100
-0.5

0

0.5

1

1.5 Blackman

0 50 100
-0.5

0

0.5

1

1.5 Chebyshev

r
w

 = 90 dB

0 50 100
-0.5

0

0.5

1

1.5 Hamming

0 50 100
-0.5

0

0.5

1

1.5 Hanning

0 50 100
-0.5

0

0.5

1

1.5 Kaiser
β = 9

0 50 100
-0.5

0

0.5

1

1.5 Lanczos
L = 1

0 50 100
-0.5

0

0.5

1

1.5 Tukey
α = 0.333333

Figure 5.4. Nine of the most utilized signal processing windows.

All windows above are symmetric, as shown in Figure 5.4, where, beside
the window shape, the parameter values are also depicted for Chebyshev, Kaiser,
Lanczos and Tukey windows. But not all windows of this collection have the same
performances when using them in SP applications. Their efficiency depends on the
specific criteria that have to be matched. Although some windows seem to have the
same shape, they are actually quite different. The differences are better emphasized
by their spectra, as drawn in Figure 5.5. The graphics are plotted by using the
spectral power expressed in dB and on all horizontal axes normalized frequencies
are represented. The main lobe lies in LF subband, whereas the side lobes extend to
MF and HF subbands. The main lobe is best emphasized for windows like
Blackman, Chebyshev or Kaiser. (For the last two, the main lobe height relative to
the first side lobe can be controlled.) One of the most employed criterions in
selection of the appropriate window is the attenuation performed by the side lobes.
Since the window multiplies the data, their corresponding FT are convoluted
(according to the Inverse Convolution Theorem (Oppenheim and Schafer, 1985;
Proakis and Manolakis, 1996)). Hence, the genuine data spectrum is distorted by

136 V Palade, CD Bocaniala and L Jain (Eds.)

the window spectrum. Ideally, the window spectrum is not distorting the genuine
one only if it is identical to the unit (or Dirac) impulse. In another words, only the
main lobe should be present (not the side lobes) and its aperture should be null in
spectral images below. But, as one can see from the windows’ spectra, none of them
verify this (ideal) property.

0 0.2 0.4

-300

-200

-100

0

Rectangular

[d
B

]

0 0.2 0.4

-300

-200

-100

0

Triangular (Bartlett)

[d
B

]
0 0.2 0.4

-150

-100

-50

0

50
Blackman

[d
B

]

0 0.2 0.4

-100

-50

0

Chebyshev

[d
B

]

0 0.2 0.4

-100

-50

0

50
Hamming

[d
B

]

0 0.2 0.4
-150

-100

-50

0

50
Hanning

[d
B

]

0 0.2 0.4

-100

-50

0

Kaiser

[d
B

]

0 0.2 0.4
-80
-60
-40
-20

0
20
40

Lanczos

[d
B

]

0 0.2 0.4
-100

-50

0

50
Tukey

[d
B

]

0 0.2 0.4

-300

-200

-100

0

Rectangular

[d
B

]

0 0.2 0.4

-300

-200

-100

0

Triangular (Bartlett)

[d
B

]
0 0.2 0.4

-150

-100

-50

0

50
Blackman

[d
B

]

0 0.2 0.4

-100

-50

0

Chebyshev

[d
B

]

0 0.2 0.4

-100

-50

0

50
Hamming

[d
B

]

0 0.2 0.4
-150

-100

-50

0

50
Hanning

[d
B

]

0 0.2 0.4

-100

-50

0

Kaiser

[d
B

]

0 0.2 0.4
-80
-60
-40
-20

0
20
40

Lanczos

[d
B

]

0 0.2 0.4
-100

-50

0

50
Tukey

[d
B

]

Figure 5.5. Spectra of the nine signal processing windows above.

Thus, one can say that a “good” window (in terms of attenuation criterion)
should have a small aperture of the main lobe and a rapid attenuation over the side
lobes. In this way, a minimal distortion is introduced into the genuine data. But one
may easily guess that these two properties are opposite, as a direct consequence of
the Gabor-Heisenberg Uncertainty Principle (Cohen, 1995; Proakis and Manolakis,
1996). Actually, except the rectangular window, all the other windows are
performing a trade-off between the main lobe aperture and the side lobes
attenuation.

The rectangular window, which anyone is tempted to select for its
simplicity, is, in fact, the worst one in terms of side lobes attenuation, but probably
one of the best in terms of main lobe aperture. The triangular window improves in
some respect this trade-off, but not essentially. Among the other windows,
Blackman, Hanning and Kaiser prove very good performances. (the Hanning
window is actually employed in many filter design methods.)

But, for the purpose of our model, the Tukey window is very likely the
most appropriate. As one can see, its shape in the time domain (Figure 5.4) is very
well adapted to the manner in which the vibration segments are constructed: one
important central frame and two lateral auxiliary frames (that should gradually be
weighted). In frequency, a good trade-off between main lobe aperture and side
lobes attenuation is realized (see again Figure 5.5). Therefore, the vibration
segments are built by windowing the data with a Tukey window (for 3/1).
Note that all the other eight windows have been tested by simulation, but none of
them could overtake the Tukey window in terms of final defect classifications

Computational Intelligence in Fault Diagnosis 137

properties. But, actually, the method presented here is not very sensitive to the
employed window, which constitutes an advantage.

1,1 MmDenote by (for ms) the current segment resulting after
windowing the data by . Then the windowing effect could be described by: w

wvvvs mmmm][11 (5)

Step 4: Digital filtering of vibration data.
The vibration segments are utilized next in a filtering procedure aiming to
remove the LF oscillatory part and, eventually, some HF noise. The filters are
digital. Unlike many approaches regarding vibrations filtering, here, one takes
benefits from the modern and powerful finite impulse response (FIR) filters design
procedures described, for example in (Proakis and Manolakis, 1996).

ms

Two types of digital FIR filters could be employed: high-pass and band-
pass. The first one just removes most of the harmonic natural oscillations. The
second one could moreover remove the HF noise inherited by vibration data
especially from environmental sources. For these filters, some parameters should be
set, in order to perform the design: the filter length (), the left cutoff frequency
(

hN

lc) and the right cutoff frequency (rc , in case of high-pass filters).
The filter length should be large enough to yield good filters

characteristics, but it should not overtake the segment length. A suitable choice is
, provided that the frame length is sufficiently large.

(According to FIR procedure design, in the case of high-pass filters, the length must
be odd. If is even, then should be set to .)

1, ffh NNN

hNfN 1fN

The left cutoff frequency lc has to be set such that the decaying natural
harmonics in raw vibration are strongly attenuated or removed. Thus, on the one
hand, , where the inferior limit min,lclc min,lc is set to 7-10 times the
maximum natural frequency of oscillation. On the other hand, increasing the left
cutoff frequency beyond a limit of 2 kHz may result in a loss of information about
possible defects. Thus, in should be set in the range]2000,[min,lc [Hz].

Unlike within the EA method, here, the right cutoff frequency rc should
ensure a sufficiently wide pass band, in order to extract all information encoding
defects. If the anti-aliasing analogic filters do not remove some HP noises, then rc

should be selected such that they are attenuated in subband 2/, src . Normally,
the width of this subband should not be larger than lc , but this is not a
requirement. Sometimes, the right cutoff is imposed by a central symmetry
frequency, usually selected according to a resonance peak in vibration spectrum.

In Figure 5.6, the characteristics of two filters have been depicted: a high-
pass one (to the left) and a band-pass one (to the right). For both filters,

, but the high-pass one must have an odd number of coefficients. 2048fN

138 V Palade, CD Bocaniala and L Jain (Eds.)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.2

0

0.2

0.4

0.6

0.8

High-pass filter impulse response

Normalized time

M
ag

n
it

u
d

e

Filter length: 2049

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-0.2

0

0.2

0.4

Band-pass filter impulse response

Normalized time

M
ag

n
it

u
d

e

Filter length: 2048

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.2

0

0.2

0.4

0.6

0.8

High-pass filter impulse response

Normalized time

M
ag

n
it

u
d

e

Filter length: 2049

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-0.2

0

0.2

0.4

Band-pass filter impulse response

Normalized time

M
ag

n
it

u
d

e

Filter length: 2048

0 2000 4000 6000 8000 10000 12000
-20

-15

-10

-5

0

5
x 10

4

Frequency (Hz)

P
h

as
e

(d
eg

re
es

)

* Sampling frequency: 25600 [Hz]

0 2000 4000 6000 8000 10000 12000
-200

-150

-100

-50

0

50

Frequency (Hz)

M
ag

n
it

u
d

e
(d

B
)

Frequency characteristics of high-pass filter

Cut-off: 1932 [Hz]

0 2000 4000 6000 8000 10000 12000
-20

-15

-10

-5

0

5
x 10

4

Frequency (Hz)

P
h

as
e

(d
eg

re
es

)

* Sampling frequency: 25600 [Hz]

0 2000 4000 6000 8000 10000 12000
-200

-150

-100

-50

0

50

Frequency (Hz)

M
ag

n
it

u
d

e
(d

B
)

Frequency characteristics of high-pass filter

Cut-off: 1932 [Hz]

Normalized time

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-0.2

0

0.2

0.4

Band-pass filter impulse response

Normalized time

M
ag

n
it

u
d

e

Filter length: 2048

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-0.2

0

0.2

0.4

Band-pass filter impulse response

Normalized time

M
ag

n
it

u
d

e

Filter length: 2048

0 2000 4000 6000 8000 10000 12000
-15

-10

-5

0

5
x 10

4

Frequency (Hz)

P
h

as
e

(d
eg

re
es

) * Sampling frequency: 25600 [Hz]

0 2000 4000 6000 8000 10000 12000
-300

-200

-100

0

100

Frequency (Hz)

M
ag

n
it

u
d

e
(d

B
)

Frequency characteristics of band-pass filter

Cut-off: 1932 [Hz] Cut-off: 9876 [Hz]

Central: 5904 [Hz]

0 2000 4000 6000 8000 10000 12000
-15

-10

-5

0

5
x 10

4

Frequency (Hz)

P
h

as
e

(d
eg

re
es

) * Sampling frequency: 25600 [Hz]

0 2000 4000 6000 8000 10000 12000
-300

-200

-100

0

100

Frequency (Hz)

M
ag

n
it

u
d

e
(d

B
)

Frequency characteristics of band-pass filter

Cut-off: 1932 [Hz] Cut-off: 9876 [Hz]

Central: 5904 [Hz]

Figure 5.6. High-pass (left) and band-pass (right) filter characteristics.

The time domain characteristics (the impulse responses) are less
suggestive than the frequency domain characteristics (magnitude and phase of
frequency responses). “Good” filters should have an abrupt change at the cut-off
frequency, a strong attenuation in stop band(s), no ripples on the main lobe and
linear phase. In this figure, the left and right cutoff frequencies have been set to

Hz1932lc and Hz9876rc , whereas the sampling frequency is
kHz6.25s . Actually, the band-pass filter was centred on 5.9 kHz. The

attenuation in stop bands is quite strong, thanks to the large filter lengths.
Segments are one by one filtered. If is the impulse response of the

selected filter, then any filtered segment is simply obtained by convolution:
h

hsm .

Since , its length is as well. This involves 1, ffh NNN hsmfN3 could

also be split into three frames with same length ():fN

][1,,1, mhmhmhm vvvhs (6)
The reason the filtered segment is split again into three frames in Eq. 6 is

very simple. The filter was not actually applied to all frames in but to its main
frame, the central one. The lateral frames are only context signals that tell to the
filter there are nonnull signal values before and after the main frame. Since filters
are shift invariant linear systems (Oppenheim and Schafer, 1985; Proakis and
Manolakis, 1996), the main frame in Eq. 6 is also the central one. Therefore, from
the filtered segment, only one frame is extracted for the next step: . Note that,
in general, is different from

ms

mhv ,

hvmmhv , and it is closer to the real behaviour of
filtered vibration, due to the lateral frames. Also, the first and the last raw vibration
frames (and) are only involved as context signals aiming to avoid marginal
errors. They are not furthermore transmitted.

0v Mv

Computational Intelligence in Fault Diagnosis 139

The resulting filtered frames could be considered as nonoverlapping, since
the main frame of the segment becomes the context (auxiliary) frame for the next
segment. There are 1,1, Mmmhv1M filtered frames . These are inputs for the

fuzzy-statistical model described next. Note that a set of standard (defect free)
vibration preprocessed data 1,1

0
, Mmmhv is also provided by the same technique.

5.2.3. The Fuzzy-Statistical Model

The steps aiming to construct the fuzzy-statistical model are grouped into two
categories: construction of the spectral statistic information about the filtered
frames 1,1, Mmmhv and utilization of this information in a fuzzy approach.

Step 1: Spectrum evaluation and segmentation.
The spectrum of each frame (or) is evaluated by using one of the
powerful existing FFT algorithms (Oppenheim and Schafer, 1985; Proakis and
Manolakis, 1996). Denote by (respectively by) the spectrum of current

(filtered) frame (

0
,mhvmhv ,

0
,mhVmh,V

1,1 Mm), i.e., the magnitude of its FT. Since the spectrum is
symmetric for real valued data sequences, it follows that only the first rays

could be accounted, which corresponds to a bandwidth of

2/fN

2/s .
The main difference between spectra encoding information about defects

 and defect-free spectra is that the former have a bigger variability
among frames, whereas the later vary within some minimum and maximum bounds,
close to each other. The variability could be expressed in various ways, but, for this
model, sp are employed to quantify the spectral behaviour.

0
,mhVmh,V

By convention, let stand for any of two spectra above (or

). The full frequency band of each spectrum is uniformly segmented next
into

mh,V mh,V
0
,mhV mh,V

1K subbands, in order to evaluate a set of local sp. Such a frequency
segment (subband) should include between 5 and 10 rotations of main shaft, in
order to construct a consistent set of sp. Thus, the segment bandwidth should be set
between Kr5 r10 rs /]20/1,10/1[and (i.e., should vary in the range). The
minimum bound yields a good frequency resolution (i.e., narrow subbands), but a
smaller sp accuracy than the maximum bound, where, however, the resolution is
worst. Obviously, the sp consistency (accuracy) depends on the number of
accounted data. In this case, the consistency depends on the number of rays
included in a segment, that is, on the segment bandwidth. The bigger the
bandwidth, the more consistent the sp, but the less focused on local spectral
variation. A good compromise is realized for r8 :

rsK 16/ (7)
The number of rays within each frequency subband (except possibly the

one located at the highest frequency) is:

140 V Palade, CD Bocaniala and L Jain (Eds.)

KNN fK 2/ (8)

2048fN Hz50rFor example, , (3000 rpm), and kHz6.25s

lead to: subbands (of 400 Hz bandwidth each) and 32K 32KN rays/sub-band,
according to Eqs. 7 and 8.

1K .By convention, sub-bands are indexed from 0 to
Splitting the spectrum in a number of equally spaced subbands may not be

the best solution to focus on spectral power local variation. However, the trade-off
between frequency resolution (or K) and sp accuracy (or) determines the
minimum bandwidth for carrying out the statistical analysis. Nonuniform
segmentations could be realized by compacting together two or more adjacent
subbands with minimum bandwidth. But the fdd method described here is
independent on the type of frequency segmentation. Therefore, for the sake of
simplicity, the segmentation is kept uniform hereafter.

KN

To conclude this step, a final remark should be noted. Filtering the
vibration segments involves a separation of frequency stop subbands and pass
subbands. The statistical parameters might not be similarly employed for any of
these 2 subband types, because the information encoded inside the stop subbands is
probably extremely poor and noisy compared to the information inside the pass
subbands. Since the whole band was practically quantified by K values, separation
lines between stop and pass subbands have to be defined. Obviously, the cut-off
frequencies lc and rc belong to some subbands as follows:

K
KK s

lclclc 2
1, and

K
KK s

rcrcrc 2
,1 (9)

where

slclc KK /2 and srcrc KK /2 (10)

For example, if, like previously, Hz1932lc and Hz9876rc ,
whereas 32KkHz6.25s and , then: and 4lcK 25rcK .

0 1 2 3

Stop

sub-bands

Pass sub-bands

ν

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 31 31

ν

Stop

sub-bands

0 ν /2

24

Figure 5.7. An example of frequency segmentation.

Normally, the transition subbands (i.e., including the cutoff frequencies)
should be pass type, in order to avoid removing useful side information. Therefore,
the stop subbands are: {0, 1, ..., 1K1lcK , , ..., rcK }. Consequently, the pass
subbands are: { , ..., lcK 1rcK }. For the previous example, the stop and pass sub-

Computational Intelligence in Fault Diagnosis 141

bands are: {0, 1, 2, 3, 25, 26, ..., 31}, respectively {4, 5, ..., 23, 24}, as depicted in
Figure 5.7.

Step 2: Definition of sp and construction of relative statistical vectors.
Using statistics to extract information about defects from raw vibration is not a new
idea. Many analysts perform diagnosis with the help of some parameters such as the
root mean square (RMS) or the peak value evaluated either from vibration data or
their spectrum.

A quasi-complete statistical set of parameters includes the following 12
parameters: peak (to valley) (v); average (v); absolute average (v); energy

(); normalized energy (); root mean square (); peak to average ratio
(); crest factor (); impulse factor (); shape factor (); clearance
factor (); Kurtosis (). Their definitions are listed in Eq. 11, for any N-
length data series,

vE N
vE vRMS

vPAR vCF vIF vSF

vCLF vK

1,0][Nnnv (such as vibrations or their spectra):

][min][max
2
1

1,01,0
nvnvv

NnNn

def 1

0
][1 N

n

def
nv

N
v

1

0
][1 N

n

def
nv

N
v; ; ;

1

0

2][1 N

n

def

v vnv
N

RMS
1

0

2][1 N

n

def
N

v nv
N

E
1

0

2][
N

n

def

v nvE ; ; ;

][max1
1,0

nv
v

PAR
Nn

def

v
v

def

v RMS
vCF

v
vIF

def

v; ; ; (11)

4

1

0

4][1

v

N

n
def

v RMS

vnv
N

K21
][1 N

def

v

nv

vCLF
v

RMSSF v
def

v ; ;

0nN
The first six parameters are concerned with energetic characteristics,

whereas the other six quantify different shape properties. Obviously, the number of
data, , is a measure of sp accuracy. (The accuracy increases with .) N N

Usually, the values of parameters defined in Eq. 11 are compared to
standard values corresponding to defect-free systems. Their biases could indicate
the desired information about defects (including estimations of severity degree).
Though the number of parameters to account for is large enough, no one is able to
extract all the necessary information about defects.

Once the frequency segmentation has been realized, some sp should be
evaluated within every subband. Note that the set of 12 sp above is redundant. For
example, in (Xi et al., 2000), one states that peak-to-valley is similar to RMS, to
energy and to absolute average; impulse factor is similar to shape factor; kurtosis is
similar to crest factor. These similarities are not realized in sense of similarity
measure from physics, but in terms of some features ad hoc defined in the context
of that research. Therefore, a safe approach is to take into consideration as much sp
as possible. An obvious remark is that, for nonnegative data (like spectral powers),

142 V Palade, CD Bocaniala and L Jain (Eds.)

the absolute average is identical to the average. Also, it is better to evaluate the
normalized energy instead of pure energy, especially in the case of nonuniform
frequency segmentation (when subbands have different numbers of rays and, thus,
their energy becomes noncomparable). Thus, only 10 sp are retained in this context.
They are denoted according to time and frequency segmentations performed so far:

peak (to valley) (); average (mh,Vmh,V); normalized energy (); root mean

square (); peak to average ratio (); crest factor (); impulse

factor (); shape factor (); clearance factor (); kurtosis ().
As usual, the employed in notations points to any of 2 vibration data types:
acquired from the tested bearing (* vanishes) or from the standard (defect free)
bearing (* is replaced by 0).

,
,
N
mhE

mhRMS , mhPAR , mhCF ,

mhIF , mhSF , mhCLF , mh,K

1,1 MmK values for every frame Any of the sp above takes (one
value for each subband). The number of rays per subband determines their
consistency, . For example, could be evaluated as follows: mhRMS ,KN

1

0

2

,,,][][1][
KN

n
mhKmh

K

def

mh knkN
N

kRMS VV 1,0 Kk (12) ,

where the local average is:
1

0
,,][1][

KN

n
Kmh

K

def

mh nkN
N

k VV 1,0 Kk, (13)

A statistical matrix could be constructed for every spectral

frame , by stacking the sp values in successive row vectors, as enumerated
above. Thus, for example, the RMS value in Eq. 13 is the element

mh,SK10

mh,V
]1,4[k of

matrix , i.e., , whereas the fourth row of the matrix

packs all RMS values among subbands. The generic element of matrix is

, where

][]1,4[,, kRMSk mhmhSmh,S

mh,S

],[, jimhS 10,1i 1,1 MmKkj ,11, and .
When the tested bearing is defect-free (standard), the statistical values of

matrices vary within some acceptable tolerances among frames. Thus, in this
case, the values of every sp are located inside a min-max domain, whose bounds
depend on the evaluation subband. More specifically, let be the i-th sp in the

list above (for

0
,mhS

iP

VP210,1i). (For example, , , etc.) Then its

value for the m-th frame and the k-th sub-band is . For the standard

vibration, could vary in the range

RMS4P

],[kmiP

][,][maxmin kk ii PP],[0 kiP among frames, but
within the same subband (k). A natural manner to evaluate the min-max bounds is
to account for all frames:

Computational Intelligence in Fault Diagnosis 143

],[min][0

1,1

min kmk i
Mm

i PP],[max][0

1,1

max kmk i
Mm

i PP 1,0 Kk, , (14)

This involves that two remarkable matrices could be constructed, by
gathering together all minimum or maximum values evaluated in Eq. 14:

]1[],[minmin jji iPS , ,]1[],[maxmax jji iPS Kj ,110,1i , (15)
The same result is obtained if the min and max operators are applied

elementwise on matrices 1,1
0
, MmmhS . In practice, the min and max values are

furthermore corrected by multiplication with constants and ,
respectively, , in order to avoid diagnosing as defective the defect-free bearings. For
example, and . The lower bound is, however, less important

than the upper bound and this is the reason the constant is not 0.9 (the

symmetrical value of), but 0.6. By convention, hereafter, one preserves

the same notations and for corrected bounds as well.

1min 1max

6.0min 1.1max

min

1.1max

][min kiP][max kiP
Defective bearings provide vibrations that exceed some or all the

(corrected) bounds in matrices defined by Eq. 15. The biases of sp outside the
standard range could indicate the desired information about defects, including
estimations of severity degree. Note that defects could be detected not only when
maximum bound is overtaken, but also if the minimum bound is undertaken. The
second effect is especially induced by lubrication defects, excessive wear or
multiple-point defects (when the phases of FT could lead to energy attenuation
inside some subbands). In order to quantify the severity degree of defects, the sp are
replaced by the relative statistical parameters (rsp), defined as explained next.

iP

There are two types of assessments when performing the comparison
between sp and their bounds: by accounting for both min and max limits or by
considering only the max limit. Both limits should be accounted for pass subbands,
whereas only the max limit is sufficient for the stop bands. In the first case, for each
sp (10,1i) one defines a corresponding rsp as follows:iP iR

][],[0if],,[/][

][,][],[if,1

][],[if],[/],[

10
1],[

minmin

maxmin

maxmax

kkmkmk
kkkm

kkmkkm
km

iiii

iii

iiii
def

i

PPPP
PPP

PPPP
R ,

(16)

1,0,1,1 KkMm
Similarly, in the second case, the definition of rsp can be expressed as:

][],[if,1

][],[if],[/],[
10
1],[

max

maxmax

kkm
kkmkkm

km
ii

iiii
def

i PP
PPPP

R ,
(17)

1,0,1,1 KkMm
The same philosophy was employed in both definitions of Eqs. 16 and 17:

if the maximum bound is exceeded, evaluate how many times the parameter

144 V Palade, CD Bocaniala and L Jain (Eds.)

overtakes the bound; if the minimum bound is exceeded, evaluate how many times
the bound overtakes the parameter; set by 1 the rsp when the parameter stays within
the tolerance limits.

Note that, independently of the sp type, the values of different rsp could
now be compared, thanks to their relative nature. Thus, for example, although RMS
() is not comparable with kurtosis (), the relative RMS () has values
varying in a similar range to the relative kurtosis (). Therefore, the rsp values of
the same frame within the same subband could be packed in a 10-length column
vector . The purpose of the

4P 10P 4R

10R

T],,,[1021 RRRR 10/1 factor employed in

both definitions above is to normalize the vector R in the following sense:
1,1 Mm 1,0 Kk1],[kmR (18) , ,

1],[kmRand if the spectrum of the m -th frame behaves normally within the
-th subband (as for the defect-free bearing). Starting with the next step, Euclidean

norms
k

],[kmR are actually employed. For a more general approach, other norms
could be considered as well. For example, one can consider that not all sp have the
same weight and thus a weighting matrix 1010Q (eventually diagonal) has to
multiply left the rsp vector R . The norm of the resulting vector QR is in fact a
generalized Euclidean Q -norm.

Returning to Eqs. 16 and 17, a special case remains to be considered: the
null parameter values, when both bounds have to be accounted. If one recalls the sp
definitions in Eq. 11, it is easy to see that not all parameters could be null, even
when the input data consists of a finite length null signal. This property is proven by
those parameters quantifying the signal shape, since a part of the shape information
is the signal length (denoted by in Eq. 11). In fact, simple algebraic
manipulations lead to the following interesting limits when the signal

N
v tends to the

null signal:

0
2
0lim

0
v

v
00lim

0 N
v

v
00lim

0 N
v

v
 ; ; ;

001lim
0 N

NRMSvv
00lim

2

0 N
N

vv
E ; ; ;00lim 2

0 vv
E

(19)

12
lim

0 N
NCFvv 2

lim
0

NIFvv
NPARvv 0

lim ; ; ;

1
33lim

2

0 N
NN

vv
K

2
lim

0

NCLFvv
1lim

0
NSFvv

 ; ;

Thus, the shape parameters are null if and only if the signal is empty.
Practically, in context of spectral frames, they are always nonnull. But the energetic
parameters could be null inside some subbands, if and only if all corresponding rays
are null. Usually, if in a pass subband all rays are null, either a severe defect is
announcing or there are some important errors within the available data. The second
hypothesis could be confirmed when the spectrum is null for many pass subbands.
But, if only few isolated pass subbands provide null data, then the first hypothesis is

Computational Intelligence in Fault Diagnosis 145

more plausible. In this case, the rsp should be set to a value equal to or more than
, for all subbands where . The reason for this setting will

become obvious in the next step.
][10 max kiP 0],[kmiP

miki ,1],[RAn average set of norms is also evaluated for each sub-

band, after every 1,1 Mm processed frames:
m

i

def
ki

m
km

1
],[1],[RR 1,0 Kk, (20)

This entity is extremely useful for initialising the fuzzy model. In fact, one
can consider that the processing starts from a virtual frame that provides the
average information about rsp norms at any moment. Set the index of virtual frame
by and change notation],[kmR0m],0[kR by . In the new notation, the
current number of frames was omitted, in order to unify all notations regarding the
rsp norms. But, hereafter, one can consider by convention that the set of rsp norms

miki ,0],[R always starts with the average of currently processed frames

miki ,1],[R in the first position. This average could recursively be upgraded,

from a frame to another, according to the equation below:

1
],1[],[

],1[
m

kmkmm
km

RR
R (21) 1,0 Kk,

],1[kRAfter processing the first frame, the average is identical to , but
starting from the second processed frame, the average and the other rsp norms are,
in general, different. Therefore, within the next steps, one shall assume that the
average starts to be evaluated after at least two frames have been processed.

Step 3: Definition and construction of a statistical network.
],[kmRLet be the value of expressed in dB (for dB],[kmR

1,0 Mm , i.e., including the average (Eq. 20). Then the severity degree of defect
could be expressed in terms of a grid, in dB as well. Usually, there are 4 severity
types: normal (when no defect seems to be detected), incipient, medium and severe.
The separation values between severity types could be set as follows: 1,

 and dB62 dB dB2010 dB],[kmR. Thus, if varies in the range [1,1.22), no
defect is present; for range [1.22,2), the defect is incipient; inside the range [2,10),
the defect is medium and if],[kmR is more than 10, the defect is severe. The grid

could refine the severity levels for every type as follows: 0, 1, 2 dB 3 ,

, , dB3 dB4 dB9 2010 dB62 dB 12L, ..., , [dB] (levels). Let
L

Lll 1,0
][be the L-length vector of all severity levels expressed in dB and

set L .

146 V Palade, CD Bocaniala and L Jain (Eds.)

All settings above aimed to build a map like the one depicted in Figure 5.8
and referred to as the statistical network (sn). Thus, for each subband, a box cell is
assigned to every severity degree. Each value dB],[kmR is uniquely located
inside such a box, as suggested by the diamonds in figure. In this example, the
location of rsp norms of a frame is depicted. The maximum rsp norm is reached
inside subband #5, where an incipient-medium defect is announced. Its severity
degree is 5.89 dB (at least one sp is about 1.97 times out of standard min-max
range). Note that the box cells corresponding to severe defects are open, in the
sense that their height varies depending on maximum pointed severity degree (if
applicable). On the contrary, the other box cells have fixed heights (but differ from
one severity degree to another).

0 5 10 15 20 25 30
0

5

10

15

20

Frequency sub-bands [indexes]

S
ev

er
it

y
d

eg
re

es
 [

d
B

]

6

1

(1.97073 times out of range).
Sub-band [6]. Severity degree: 5.89254 [dB].

Severity type: incipient-medium.

0 5 10 15 20 25 30
0

5

10

15

20

Frequency sub-bands [indexes]

S
ev

er
it

y
d

eg
re

es
 [

d
B

]

6

1

(1.97073 times out of range).
Sub-band [6]. Severity degree: 5.89254 [dB].

Severity type: incipient-medium.

Normal

Incipient

Medium

Severe

Figure 5.8. A statistical network example.

The sn provides in fact a statistical map of possible defects, simpler than
the spectrum image. And yet, it is difficult to perform a good fdd by only inspecting
this map. Therefore, a technique of grouping network cells in similarity classes
could make this task easier.

Step 4: Covering the statistical network with clusters.
The previous steps prepared the fuzzy model construction. Starting from this step, a
fuzzy approach is combined with statistics in order to provide defect classifications
expressed as partitions of sn above. This approach is based on concepts of fuzzy
relations and fuzzy entropy (Klir and Folger, 1988) and its kernel has already been
integrated into another (but very different) method concerned with identification of
main structures inside Multi-Agent Systems (Ulieru et al., 2000).

In context of vibrations, the fuzzy model relies on the fact that every frame
encodes the same information about existing defects (if the frame length is large
enough to induce a good accuracy of sp). Consequently, the statistical maps
resulting from every frame reveal about the same correlation between those box
cells that actually encode the defect, whereas the remaining cells are less correlated.
More specifically, the rsp norms from different frames “fall” more often into the

Computational Intelligence in Fault Diagnosis 147

same boxes for those subbands that seem to be directly affected by the defect. One
can say that rsp norms occur more often inside box cells that apparently encode the
systematic spectrum biases caused by a specific defect.

Therefore, the basic idea is first to construct a similarity fuzzy relation
between box cells within sn and then to unpack the result as different classifications
comprising similarity classes. A similarity class is actually a group of box cells that
seem to point to the same fault or group of faults (with some confidence degree).

In construction of a fuzzy relation between box cells, the first action is to
specify how the sn could be covered by collections of box cells for every spectral
frame. Any collection of box cells is referred to in this context as a cluster. Denote
by the generic box-cell of sn, where 1,0 LlklB , is the severity level and

1,0 Kk is the frequency subband. A natural way to construct clusters is to
consider two types of sn covers as follows:

a. a horizontal one, H , ith w L clusters, each of which includes
only constant severity level box cells:

1,0,kll BC
Kk

1,0 Ll();
b. a vertical one, G , with K clusters, each of which includes

only box cells corresponding to the same frequency subband:
1, K

,0, lklk BD (
1L

0k

L

lCH
K

kDG

).

Thus:
1

 and
0l 0k

Note that the covers in Eq. 22 are independent of frame index (they
preserve the same structure for all frames), since, at this stage, one focuses only on
the structural information about how the sn could be roughly organized. The
information about defects encoded by rsp norms will be accounted for in a future
stage.

1

(22)

An example of horizontal and vertical clusters is displayed in Figure 5.9.
Other structures of sn covering could be considered as well, for example,

the one consisting of cross-clusters obtained by taking the union between horizontal
and vertical clusters (also illustrated in Figure 5.9). But the main advantage of
coverings above is that they lead to one of the simplest fuzzy relation construction
algorithms.

The box cells that belong to the same cluster are in fact entities verifying
the same elementary crisp (binary) relation. Two crisp relations could thus be
stated: (a) two box cells are in the same relationship if they reveal the same severity
level; (b) two box cells are in the same relationship if they point to the same
frequency subband. The characteristic (index) functions describing these crisp
relations are KLKL binary matrices, where the element is unitary only if
the box cells i and j are in relation to each other (otherwise, the element),(ji is
null). These matrices could be expressed only after linearization of sn indices. Thus,
the box cell located in plane by the indices is equivalently located on a

),(ji

),(kllB ,k

148 V Palade, CD Bocaniala and L Jain (Eds.)

lineal by the index . There are two possibilities to derive the expression of index
: by enumerating all columns or by enumerating all rows of sn. In this approach,

one selects to enumerate the sn rows, starting from bottom to top (see Figure 5.10).
Thus, the first group of box cells is associated with normal behaviour. The
incipient, medium and severe defect box cells follow (in this order).

kli ,

kli ,

0 5 10 15 20 25 30
0

5

10

15

20

Frequency sub-bands [indexes]

S
ev

er
it

y
d

eg
re

es
 [

d
B

]

6

1

(1.97073 times out of range).
Sub-band [5]. Severity degree: 5.89254 [dB].

Severity type: incipient-medium.

0 5 10 15 20 25 30
0

5

10

15

20

Frequency sub-bands [indexes]

S
ev

er
it

y
d

eg
re

es
 [

d
B

]

6

1

(1.97073 times out of range).
Sub-band [5]. Severity degree: 5.89254 [dB].

Severity type: incipient-medium.

V
e
r
t
i
c
a
l

c
l
u
s
t
e
r

Horizontal cluster

Figure 5.9. Horizontal and vertical clusters inside the statistical network.

Row 0

…

Row 1

Row L-1

Row 0 Row 1 Row L-1
…

Figure 5.10. Linear enumeration of box cells in a statistical network.

1,0 Ll 1,0 KkThe index is then: kli , klKi kl , , , .

Conversely: Kil kl /, 1,0, LKi kl aKik kl %, and , , where is the
integer part of a and is the rest of division between integers and .nNn% N

Since any of the two sn covers provided by a frame is a union of its
(disjoint) clusters, the associated global binary crisp relation is also a union of
elementary crisp relations. Hence, the global characteristic matrix is obtained by
summing together all corresponding elementary matrices. The specific form of the
selected covers leads to the global characteristic matrices given in Eq. 23.

2L 3KAs a toy example, set and . The corresponding sn looks as in
Figure 5.11 and its covers are:

121110020100 ,,,, BBBBBBHa. Horizontal:

120211011000 ,,, BBBBBBGb. Vertical:

Computational Intelligence in Fault Diagnosis 149

Horizontal cover Vertical cover

blocks
LLIII

III
III

G

KKKKKK

KKKKKK

KKKKKK

blocks
LLUOO

OUO
OOU

H

KKKKKK

KKKKKK

KKKKKK

(23)

KKwhere , and are the KKU KKO KKI all unit, all zero and identity
matrices, respectively, expressed as:

KK

U KK

111

111
111

,

KK

O KK

000

000
000

(24)

KK

I KK

100

010
001

B

B

B

B

B

B

L=2

K=3

Figure 5.11. A toy statistical network.

Then Eqs. 23 and 24 imply:

111
111
111

33U , ,
000
000
000

33O
100
010
001

33I

Horizontal cover Vertical cover

100100
010010
001001
100100
010010
001001

3333

3333

II
II

G

111000
111000
111000
000111
000111
000111

3333

3333

UO
OU

H

(25)

The matrices in Eq. 23 (or Eq. 25) are actually binary maps of the two
crisp relations that every frame provides. The position of every unit value shows
which couple of box cells are in relation to each other. These relations are in fact
rough approximations of the following relation directly related to defects: two box
cells are in relation to each other if they point to the same fault. Of course, at this
time, we don’t know exactly which box cells verify this property and this is the
reason one operated with two approximations. Any horizontal or vertical cluster

150 V Palade, CD Bocaniala and L Jain (Eds.)

could include abnormal box cells pointing to the subband affected by a specific
defect or, respectively, to the severity degree proved by a specific defect. The
approximations are refined next by using the rsp norms, until specific defect classes
are obtained.

Step 5: Evaluating the occurrence degrees.
The covers constructed above do not partake in the fuzzy relation that one intends
to construct, but their clusters do. Recall that, unlike within crisp relations, two
entities are in a fuzzy relation to each other only if they belong to a crisp relation
with some membership degree (Klir and Folger, 1988). The membership values
express the uncertainty regarding the specific relationship between entities. Within
the crisp approach, this relationship is either certainly existing or certainly not
existing. There are no other possibilities. Within the fuzzy approach, two entities
could be in a relationship, but this assertion has a degree of uncertainty varying
from 0 (certainly not) to 1 (certainly yes).

The relationships between sn box cells should also be fuzzy, for two main
reasons. Firstly, the horizontal and vertical clusters could not be totally reliable
since, in general, they gather together boxes inside of which some rsp norms fall
and boxes that are untouched by these norms, even for long strings of vibration
data. These act in fact as different entities inside the sn. They were only roughly
gathered together, according to structural criteria of same severity level or
frequency subband, but without accounting for the information provided by the
vibration itself. Secondly, the structure of selected clusters (horizontal, vertical)
could not be certain, but only intuitively more plausible than another structure.
Fortunately, the final fuzzy relation is not that sensitive to the initial clustering of
box cells and refines these approximations.

The horizontal and vertical clusters encode no information about defects
unless they are put into correspondence with the rsp norms. In reality, after
processing Mm ,11 frames (including the virtual one naturally associated with
the average information about rsp norms – see Eq. 20), inside every box cell a
number of rsp norms could occur. Refer to this number as (occurrences) counter
and denote it by . Obviously, since for each subband

klB ,

1,0 Kk],[klNm a unique

severity level 1,0 Lll ()exists such that:

1dB],[ll kmR (26)
it follows that:

1,0 Ll 1,0 Kk1,0 Mm (27) 1],[0 mklNm , , ,
Null counter values are associated with those box cells for which no rsp

norms occurred so far. Furthermore, another obvious property holds:

)1(],[
1

0

1

0
mKklN

L

l

K

k
m 1,0 Mm, (28)

i.e., the total amount of counters equals the number of subbands touched by all
currently processed frames, including the virtual one.

Computational Intelligence in Fault Diagnosis 151

After processing a new frame, the counters are upgraded following a rule
given by Eq. 27:

1,0

1,0

2,0

Kk

Ll

Mm

otherwise],,[

],1[if,1],[
],[1dB

1
klN

kmklN
klN

m

llm
m

R , (29)

which means: increment by 1 only those counters corresponding to box cells where
the rsp norms occurred. However, this rule is not that simple. The virtual frame
gives the initial values of these counters and, thus, they could change depending on
the number of currently processed frames, Mm ,11 . So, Eq. 29 must be
understood as a recursive recipe where the initial values are also dependent on the
current step of upgrading. Consequently, a counter could even be incremented by 2
and not by 1, or decreased by 1, when the average moves its position.

A consistent set of occurrence degrees is constructed and one-by-one
associated with the collection of sn box cells, by using counters. Denote by],[klm

the occurrence degree uniquely associated with box cell , after processing klB ,

Mm ,11 frames (starting from the virtual one). Two possible definitions could
be used to set],[klm , according to Eqs. 27 and 28:

1
],[],[

m
klNkl m

def

m or
)1(
],[],[

mK
klNkl m

def

m (30)

In both cases]1,0[],[klm , but for the first one:

1],[
1

0

L

l
m kl and Kkl

L

l

K

k
m

1

0

1

0
],[(31)

whereas for the second one:

K
kl

L

l
m

1],[
1

0
 and 1],[

1

0

1

0

L

l

K

k
m kl (32)

From a probabilistic point of view, Eqs. 31 and 32 show that only the
second definition in Eq. 30 could be associated to the occurrence frequency of rsp
norms inside box cells. But, in the context of fuzzy logic theory, requirements like
the last one in Eq. 32 are often not necessary (Klir and Folger, 1988). The only
requirement is to include the occurrence degree variation in range [0,1]. One of the
main drawbacks of the second definition is the rapid decay towards null values of
all occurrence degrees, due to product)1(mK . No occurrence degree could
increase. Even if a counter is upgraded, its value is only increased by maximum 2,
whereas the corresponding occurrence degree is decreased about K times. In
contrast, the first definition keeps the occurrence degrees more balanced and,
furthermore, the occurrence degrees could increase. The last remark is due to a very
simple algebraic property:

1
1

1 m
n

m
n

m
n

1
2

1
1

m
n

m
n

m
n0,mn mn0, , but , if (33)

152 V Palade, CD Bocaniala and L Jain (Eds.)

Since the first definition provides occurrence degrees that are more
sensitive to counters upgrading than the second one, it will be selected for the next
steps. In fact, the occurrence degree is only raw information about rsp norms
distribution over the statistical map. More processing operations are necessary in
order to derive the uncertainty degrees associated with the elementary crisp
relations previously constructed.

An example of the two-dimension occurrence degrees distribution is
displayed in Figure 5.12. The distribution is improved after every new processed
frame.

0
5

10
15

20
25

30
35

0

5

10

15

20
0

0.005

0.01

0.015

0.02

0.025

0.03

Frequency sub-bands [indexes]

Severity degrees [dB]

O
cc

u
rr

en
ce

 d
eg

re
es

0
5

10
15

20
25

30
35

0

5

10

15

20
0

0.005

0.01

0.015

0.02

0.025

0.03

Frequency sub-bands [indexes]

Severity degrees [dB]

O
cc

u
rr

en
ce

 d
eg

re
es

Figure 5.12. An occurrence distribution over the statistical network.

At this point, one can say that box cells supporting the biggest occurrence
degrees are very likely directly associated to the defect type. But it is not that
simple to build a group of such box-cells, based only on a set of occurrence degrees,
because the attempt is rather empirical and affected by uncertainty. A systematic
method to construct similarity classes by using statistical information is then
necessary. Also, as already mentioned, it is desirable that every class be associated
with some confidence degree.

The occurrence degrees are in fact values of some membership functions
that change the nature of clusters from crisp to fuzzy. More specifically, consider
the generic horizontal and vertical clusters, and , respectively. Then their
associated membership functions are:

lC kD
],[)(,, klB mkllm for any box cell

 and lkl CB ,],[)(,, klB mklkm kkl DB , for any box cell .

lmlC ,, kmkD ,,Thus, and are now fuzzy sets. The new definitions
are superior to the former ones, since the rsp norms have been accounted. Now, if
the box cell that belongs to a crisp cluster has a null occurrence degree, it
cannot belong to the fuzzy cluster

lCklB ,

lmlC ,, . For simplicity, denote the values of
membership functions by][, klm and][, lkm , respectively (i.e., and lm, km,

could also be treated as vectors from nd , respectively). K]1,0[a L]1,0[

Computational Intelligence in Fault Diagnosis 153

Note that the membership functions change from a frame to another,
though the crisp clusters are independent of frames. Hence, the fuzzy clusters have
variable structure depending on the number of processed frames, which is closer to
the real behaviour of sn (variable) structure.

Step 6: Associating certainty degrees with elementary crisp relations.
A unique certainty degree should be associated with every cluster or . This
is a number that expresses, on the one hand, the certainty in considering the
corresponding cluster and, on the other hand, the degree of box cells affiliation with
the elementary fuzzy relation the cluster naturally generates. The membership
matrix of elementary fuzzy relation is simply derived by multiplication between the
cluster certainty degree and its characteristic matrix. This idea is developed next,
but, first, the certainty degrees have to be evaluated.

lC kB

The evaluation of certainty degrees is based on the concepts of fuzzy and
uncertainty measures (Klir and Folger, 1988). Obviously, certainty is opposite to
uncertainty. An interesting fuzzy/uncertainty measure is the Shannon Fuzzy
Entropy (SFE). Its definition relies on the multidimensional Shannon function
below:

N

n
nnnn xxxxx

1
22)1(log)1(log)(S , NT

nxxx]1,0[]...[1 (34)

The Shannon function originated from the concept of entropy, first utilized
in physics. Thus, if one restricts the sum in Eq. 34 to the first half, replaces “ ”

by “ ” (John Nepper’s natural logarithm) and sets as a discrete

probability density (i.e., verifying), then the entropy is obtained:

2log
Nx]1,0[ln

1
1

N

n
nx

N

n
nn xxx

1
ln)(H (35)

1NWhen , the entropy from Eq. 35 is associated with the event for
which the probability was considered. The opposite event is described by the
opposite probability: x1 . Hence, the second half of the sum in Eq. 34 becomes
the entropy of the opposite event. The Shannon function thus expresses the total
entropy of an entity, by accounting for not only its classical entropy, but also the
entropy of its opposite. Note that, in Eq. 34, no restriction (like the one verified by
probability densities) is imposed. The Shannon function is an instrument utilized in
many domains, but was defined in the context of information theory, as a concept
quantifying the information encoded or transported by an entity. Its unit is the bit.
This is the reason the natural logarithm was replaced by in the original
definition of entropy.

2log

Several interesting properties of the Shannon function could be noted. For
this approach, the following two are of the most concern. Firstly, the function is
bounded and reaches several null minima, but only one maximum. No other minima
are possible, but the null ones are reached on the border of definition domain (the

154 V Palade, CD Bocaniala and L Jain (Eds.)

hypercube). Secondly, the maximum value is exactly the dimension of input
argument, i.e., . It is reached for the middle point argument, the function being
symmetrical. For example, in Figure 5.13, the graphics of the only two Shannon
functions that could be viewed are drawn.

N]1,0[
N

When the argument in Eq. 34 is provided by values of the membership
function describing a fuzzy set, the SFE is obtained. In this case, SFE has several
interpretations. As a general fuzzy measure, SFE quantifies how close to the crisp
state is the fuzzy set (or its fuzziness). The bigger the SFE value is, the less crisp the
set (i.e., the fuzzier). But SFE could also play the role of uncertainty measure.
Uncertainty has two major facets: vagueness and ambiguity (Klir and Folger, 1988;
Ulieru et al., 2000).

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5
One dimension Shannon function

x

S

Max: S(0.5) = 1

0
0.5

1

0

0.5

1
0

1

2

x
1

Two dimensions Shannon function

Max: S(0.5,0.5) = 2

x
2

S

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5
One dimension Shannon function

x

S

Max: S(0.5) = 1

0
0.5

1

0

0.5

1
0

1

2

x
1

Two dimensions Shannon function

Max: S(0.5,0.5) = 2

x
2

S

Figure 5.13. One- and two-dimension Shannon functions

The SFE is a vagueness measure. The bigger the SFE value is, the more
vague the fuzzy set description, i.e., the more uncertain (or unreliable) the
information about that set. Thus, maximum entropy means maximum uncertainty
and fuzziness. The smaller the SFE values, the better.

Let us now get back into the context of previous steps. The certainty
degree of a cluster should be opposite to its entropy (uncertain (vague) clusters
should have small certainty degrees). Also, another property should be verified: the
bigger the occurrence degrees of its box cells, the smaller its entropy. Since SFE
has one maximum and several null minima (pointing to the lack of uncertainty), the
values of membership functions and lm, km, must be translated from [0,1] to
[0.5,1] by a simple affine transformation, before using them subsequently:

2
1],[],[klkl m

m (36)

(By convention, one preserves the same notation for the translated values.)
Denote by lm, the certainty degree of horizontal cluster , after

processing frames (where

lC

1,0 Mm1,0 Ll1m and). Similarly, lm,

stands for the certainty degree of vertical cluster , after processing 1mkD frames

(where 1,0 Kk 1,0 Mm and). The values of and lm, lm, are then
evaluated in three steps (by accounting for all previous remarks): compute the SFE
of fuzzy clusters lmlC ,, kmkD ,, K and ; normalize the SFE by and,

Computational Intelligence in Fault Diagnosis 155

Lrespectively, by ; subtract the result from 1. This is summarized in Eqs. 37 and
38.

The normalization applied in Eqs. 37 and 38 is necessary because the
certainty degrees have to vary only in the range [0,1], as well. This restriction is
imposed by another meaning of a certainty degree, regarding the covers: any cluster
belongs to an sn fuzzy cover with some membership degree. Actually, the crisp
covers and G are transformed into fuzzy covers, by a similar mechanism
employed to transform crisp clusters into fuzzy clusters. Their membership
functions are the following:

H

HlClmlm C ,)(for any cluster and
 and m,G. Thus, m,HGkDkmkm D ,)(for any cluster are now fuzzy

sets, but their elements are other fuzzy sets (the fuzzy clusters, in fact). Like for
fuzzy clusters, covers membership functions depend on the number of processed
frames () (where 1,0 Mm1m).

1

0
,2,,2,,

,
,

])[1(log])[1(][log][)(

)(
1

K

k
lmlmlmlmlm

lm
lm

kkkk

K

S

S

(37)

1

0
,2,,2,,

,
,

])[1(log])[1(][log][)(

)(
1

L

l
kmkmkmkmkm

km
km

llll

L

S

S

(38)

Step 7: Constructing the -sharp cuts of fuzzy relation.
Every fuzzy cluster generates, in association with its certainty degree, an
elementary fuzzy relation between the box cells it includes. The membership matrix
describing this relation is simply obtained by multiplication between the
characteristic matrix of crisp cluster and the corresponding certainty degree. More
specifically, if and are the generic horizontal and vertical clusters (as
usual), then, after processing

lC kD
1m frames, their corresponding certainty degrees

are lm, and km, , respectively. One can denote by and the characteristic
matrices of and , respectively. Then, obviously:

lH kG

lC kD
Horizontal cluster Vertical cluster

blocks
LLOOO

OUO

OOO

H

KKKKKK

KKKKKK

KKKKKK

l

blocks
LLIII

III
III

G

k
KK

k
KK

k
KK

k
KK

k
KK

k
KK

k
KK

k
KK

k
KK

k (39)

where the block is located on the main diagonal in position of matrix

, whereas the block consists of one unit value on the main diagonal in
position of matrix (all remaining values being null).

KKU),(ll
k

KKIlH
),(kk kG

156 V Palade, CD Bocaniala and L Jain (Eds.)

The elementary fuzzy relations are described by the following membership
matrices: llm H, kkm G, (horizontal) and (vertical). The corresponding relations
are 1m-sharp cuts of fuzzy relation after processing frames (where

1,0 Mm). (See the definition of -sharp cut in (Ulieru et al., 2000.) In fact,
this definition is similar to the definition of -cut (Klir and Folger, 1988), but the
inequality sign was replaced by the equality one.)

For example, recall the toy sn in Figure 5.11. For that structure, two
horizontal and three vertical elementary fuzzy relations are available after every
processed frame:

000000
000000
000000
000
000
000

0,0,0,

0,0,0,

0,0,0,

00,
mmm

mmm

mmm

m H

1,1,1,

1,1,1,

1,1,1,
11,

000
000
000

000000
000000
000000

mmm

mmm

mmm
m H

000000
000000
0000
000000
000000
0000

0,0,

0,0,

00,
mm

mm

m G

000000
0000
000000
000000
0000
000000

1,1,

1,1,

11,

mm

mm

m G (40)

2,2,

2,2,
22,

0000
000000
000000

0000
000000
000000

mm

mm
m G

Equation 40 reveals another interesting property: the box cells that are very
far from each other could not be in the same relation, even in the case of fuzzy
relations. This is the case, for example, of box cells located at different severity
levels and opposite subbands, such as and or and . Practically,
it is very unlikely that these box cells could associate together to reveal the same
defect. But this property could be cancelled for the global fuzzy relation providing
defect classifications, since such limitations are only intuitive.

0,0B 2,1B 0,1B 2,0B

Step 8: Constructing the fuzzy relation.
Two operations are applied in order to build the final fuzzy relation between sn box
cells: aggregation of the (elementary) -sharp cuts and evaluation of the transitive
cover. The aggregation is simply performed through the max fuzzy union (Klir and
Folger, 1988):

Computational Intelligence in Fault Diagnosis 157

1

0
,

1

0
,

K

k
kkm

L

l
llmm GHR (41)

Thus, the membership matrix describing the crude fuzzy relation is
constructed by means of the elementwise max operator (“

mR
max ”) applied on all

matrices corresponding to fuzzy relation of the right term in Eq. 41:

kkm
Kk

llm
Ll

m GH ,
1,0

,
1,0

max,maxmaxM (42)

Note that the same max operations like in Eq. 42 have been applied to
obtain the characteristic matrices in Eq. 23, but by using unit certainty grades (since
the relations were crisp). Obviously, the dimension of matrix is KLKL .mM

For the toy example above, the membership matrix is:mM

2,1,1,1,2,

1,1,1,1,1,

1,1,0,1,0,

2,2,0,0,0,

1,0,1,0,0,

0,0,0,0,0,

,max00
,max00

,max00
00,max

00,max
00,max

mmmmm

mmmmm

mmmmm

mmmmm

mmmmm

mmmmm

mM

As one can see, some box cells are (co)related with various (un)certainty
degrees, but between some other box cells no relationship seems to exist. The null
values inside matrix are always the same, independently of how many frames
are processed (because of the horizontal and vertical crisp clusters), whereas the
nonnull values vary from a frame to another (because of the occurrence degrees).
Denote the generic element of (i.e., the membership degree) by

(where

mM

],[jimMmM

KLji ,1,).
The resulting matrix is symmetric and reflexive (since the elementary

matrices and verify these two properties). Thus is a proximity relation,
but it is not necessarily fuzzy transitive. (See (Klir and Folger, 1988) for
definitions.) Even though all elementary matrices and would describe
(crisp) equivalence relations (i.e., all of them would be transitive as well), it is
possible that m is nontransitive. This means, in general, mR is not a similarity
(fuzzy) relation. However, the similarity is a very important property, because the
defect classes should also be (nonoverlapped) similarity classes. The direct
involvement of similarity property in the construction of defect classes is revealed
at the next step. Let us focus now on the transitivity property.

mM

lH kG mR

lH kG

R

Actually, the transitivity property is the most difficult to insure in the case
of fuzzy relations, because it is expressed (for example) as follows, differently from
the crisp case (Klir and Folger, 1988; Ulieru et al., 2000):

],[,],[minmax],[
,1

jnniji mm
KLn

m MMM KLji ,1,, (43)

This is the max-min (fuzzy) transitivity. An equivalent matrix form of Eq.
43 can straightforwardly be derived:

158 V Palade, CD Bocaniala and L Jain (Eds.)

mmm MMM (44)
where “ ” points to fuzzy multiplication (product) between matrices with
compatible dimensions (involving the composition of the corresponding fuzzy
relations). This multiplication is expressed starting from classical matrix
multiplication, where max operator is used instead of summation and min operator
is used instead of product. Also, “ ”in Eq. 44 means that the ordering relation
focuses on matrix elements and not globally, on matrices.

The lack of transitivity can be corrected by generating the transitive
closure of , which is defined as the smallest transitive fuzzy relation including

 (according to fuzzy inclusion) (Klir and Folger, 1988). A simple procedure
allows us to compute this closure for any fuzzy relation :

mR

mR
R

)(RRRRStep 1. Compute the following fuzzy relation: .
RR RR, replace by , i.e., Step 2. If RR and go to

Step 3. Otherwise, RR is the transitive closure of the initial
.R

It is not so difficult to prove that this procedure preserves the reflexivity
and symmetry of (Ulieru et al., 2000), so that the transitive closure mRmR is a
similarity relation. Also, in terms of membership matrices, is replaced by mM

mM , derived according to the procedure above (but with max instead of union
operator and with (max-min) fuzzy multiplication instead of composition operator).

The procedure is very efficient. The only limitation in terms of network
granularity is here the dimension of (i.e., KLKLmM), which could be very
large. But, nowadays, the existing computing performances could yield reasonable
running time for matrices with more than one million elements.

The main difference between and is that mR mRmR is defined by means
of a smaller number of membership degrees than . In general, small grades
vanish. This is very suitable, since, probably, small membership degrees are mostly
due to various noises still affecting the vibration data, even after filtering. In other
words, by computing the transitive closure, the statistical data have been denoised.
Another difference between the two fuzzy relations is that box cells previously
unrelated (according to) could now be related (according to

mR

mRmR). This means
the nonnull values in could overwrite the null ones. In general, inside the
matrix

mM

mM , null values could seldom appear. This effect is correcting the initial
rough assumption that some box cells could never be related to each other.

Step 9: Generating the defect classifications.
The values in mM are referred to as (fuzzy) confidence degrees. The number of

distinctive confidence degrees is 1,1 Mm2/)1(KLKLPm , for each (due to
symmetry). They could decreasingly be sorted: 1,1,0, mPmmm (by using

natural new notations instead of). For each confidence degree],[jimM pm,

Computational Intelligence in Fault Diagnosis 159

1,0 mPp(), a partition of statistical network is generated, by evaluating the
corresponding -cut of fuzzy relation (Klir and Folger, 1988). Every mR -cut
plays the role of defect classification and is actually a partition of sn. Any class in
such a partition gathers the cells with similar statistical properties and, therefore, is
a similarity class. Obviously, all box cells with null occurrence degrees (see, for
example, some high severity box cells in Figure 5.8) are grouped in an inactive
cluster and do not actually partake in the classification. The inactive cluster is the
same for any classification, if the number of processed frames, 1m , is constant,
but its topology could change as varies. m

1,0,,,
, pmQqqpmpm FCLet be the defect classification corresponding to

confidence degree (1,0 mPppm,). Inside, there are defect classes

generically denoted by . Usually, the classifications are listed in decreasing
order of their confidence degrees. Moreover, it is well known that such an
arrangement reveals a holonic behaviour (Ulieru et al., 2000). That is, the
confidence is also a measure of classifications granularity: as confidence decreases,
a larger number of classes group more and more together. For maximum
confidence, every cell is also a class, which means maximum of granularity as well
(equals the number of box cells with nonnull occurrence degrees). For
minimum confidence, all cells are grouped in a single class, the granularity being

also minimum (). Thus the trend of finite string

pmQ ,

qpm ,,F

0,mQ

1,0,
mPppmQ11, mPmQ is

decreasing when the confidence degree is decreasing. Only one classification shall
be selected from this collection, as described in the next step.

Some examples of defect classes together with their confidence degrees
are described in the section devoted to simulation results.

Step 10: Selecting the optimum classification.
Besides the confidence degree, the SFE of every class could also be evaluated.
Actually, like in case of covers and G , every classification (an sn partition, in
fact) is a fuzzy set with fuzzy sets (the defect classes) as elements. The membership
functions associated with defect classifications are denoted by

H

 (where pm,

1,1 Mm 1,0 mPp and). Thus, pmpm ,, ,C is a fuzzy set and the

membership function could be derived by means of a similar argument like in
Step 6. There is, however, an important difference here. The entropy of a fuzzy set
comprising fuzzy sets as elements should depend on the entropy of every element.
If all elements would have small/large entropy values, then the set should also have
small/large entropy. Consequently, the membership function

pm,

pm, has to reflect the
normalized entropy of each defect class:

160 V Palade, CD Bocaniala and L Jain (Eds.)

qpmNqpm

def

qpmpmqpm

pmpm

,,,,,,,,,

,,

2
1

]1,0[:

FFF

C

S
(45)

qpmN ,,FSIn Eq. 45, is the normalized entropy of defect class

(where

qpm ,,F

qpmN ,,FS1,0 , pmQq). To evaluate , first identify all the box cells that

belong to (together with their translated occurrence degrees – see Eq. 36),
then use the definition in Eq. 34 and finally divide the result by the number of box
cells. For example, consider that the following classification has been obtained
inside the toy sn in Figure 5.11:

qpm ,,F

1,0,,, qqpmpm FC , where the defect classes are

 and 1,10,00,, , BBpmF 2,12,01,01,, ,, BBBpmF . (The box cell belongs to
the inactive cluster.) Then:

0,1B

;]1,1[1log]1,1[1]1,1[log]1,1[

]0,0[1log]0,0[1]0,0[log]0,0[
2
1

22

220,,

mmmm

mmmmpmN FS (46
)

]2,1[1log]2,1[1]2,1[log]2,1[
]2,0[1log]2,0[1]2,0[log]2,0[

]1,0[1log]1,0[1]1,0[log]1,0[
3
1

22

22

221,,

mmmm

mmmm

mmmmpmN FS
(47
)

The division by 2 in Eq. 45 is required because SFE is nonmonotonic
(recall Figure 5.13). The values of qpmN ,,FS varying in the range [0,1] are now
restricted to the range [0,1/2], which involves the final entropy increases when the
(translated) occurrence degrees decrease.

After the membership function pm, has been evaluated, the entropy of

classification is computed by using again the definition stated in Eq. 34: pm,C
1

0
,,2,,,,2,,,

,

)1(log)1(log)(
pmQ

q
qpmqpmqpmqpmpmS (48)

Note that the normalization is meaningless in Eq. 48, since the entropy
also encodes information about the number of defect classes (clusters). Therefore,
in general, the entropy values

1,0,)(
mPppmS prove a decreasing trend, since the

number of defect classes (i.e., the maximum of entropy) decreases when the
confidence degree decreases. This involves the entropy values

1,0,)(
mPppmS

and the confidence degrees
1,0,

mPppm are opposite.

A “good” classification should have high confidence degree and low
entropy. This could be selected by means of a cost function that encodes the
opposite behaviour of entropy and confidence degree. In order to define such a

Computational Intelligence in Fault Diagnosis 161

function, it is first necessary to transform the entropy and the confidence degrees
into maps comparable to each other. Before this operation, the comparison between
them is impossible, because they vary in different ranges. The transformation is
affine:

pm
Pp

pm
Pp

pm
Pp

pmdef

pm

mm

m

,
1,0

,
1,0

,
1,0

,
01

,
minmax

min
(49)

)(min)(max

)(min)(
)(

,
1,0

,
1,0

,
1,0

,

,
01

pm
Pp

pm
Pp

pm
Pp

pmdef

pm

mm

m

SS

SS
S (50)

Obviously, both normalized maps and vary in the range [0,1] and,
moreover, they are reaching the extreme values 0 and 1.

)(,
01

pmS01
, pm

Define the cost function as the geometric mean between the values of
the map defined by Eq. 49 and the opposite values of the map defined by Eq. 50,
over the classification indexes set:

mS

)(1][

]1,0[1,0:

,
0101

, pmpm

def

m

mm

pp

P

SS

S
(51)

In this context, expresses the opposite entropy weighted by
confidence degrees. Other cost functions could also be employed in this aim (such
as the arithmetic mean or another algebraic combination between and

). But, in any case, this function could only have a finite number of
maxima (or minima) that realize the trade-off between entropy and confidence
degree. In the case of cost function , the best compromise is reached for its

global maximum. Thus, the best classification is selected by solving

the following simple optimisation problem:

mS

01
, pm

)(,
01

pmS

mS

opt
mpm

opt
m ,

CC

][maxarg
1,0

pp m
Pp

opt
m

m

S (52)

An example of how the optimum classification is selected by solving the
problem stated by Eqs. 51 and 52 is displayed in Figure 5.14, where only 51 frames
have been processed (including the virtual one). The opposite variation between the
confidence degree and the (opposite) entropy, as well as the shape of their
geometric mean are clearly drawn. In this example, 32 classifications are available
and the optimum resulting index is , which points to the 15th
classification as being the optimum one. Note that the 19th classification is a sub-
optimal one, though its entropy–confidence compromise is also maximum, but
locally (and close to the global maximum). The number of classes inside the
optimum classification is 82 (most of them being singletons). As one shall see in
the section devoted to simulation results, the optimum classification constitutes an

14opt
mp

162 V Palade, CD Bocaniala and L Jain (Eds.)

image map about the specific fault(s) distorting the standard spectrum. Also, the
classification confidence is and its entropy is . The
entropy is quite high (close to its maximum, 82), since the number of processed
frames is modest (only 51) and thus the occurrence degrees are inaccurate. As the
number of processed frames increases, the entropy goes down, farther from its
maximum.

7.014,50 81.06)(14,50S

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Confidence degrees
Opposite entropy
Geometric mean

Optimal index: 15
Fuzzy confidence: 0.700012
Fuzzy entropy: 81.0832
Optimal cluster(s) entropy: 0.650022

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Confidence degrees
Opposite entropy
Geometric mean

Optimal index: 15
Fuzzy confidence: 0.700012
Fuzzy entropy: 81.0832
Optimal cluster(s) entropy: 0.650022

Figure 5.14. Selecting the optimum defect classification.

The most difficult part of the fuzzy model is the classification map
interpretation (or analysis). This means that specific defects should be put into
direct correspondence with map topologies. The subsequent analysis is more
rigorous and simpler to perform than by inspecting the vibration spectrum, since a
part of analyst reasoning has already been automated. Accounting for all classes in
a map is sometimes sufficient to perform an accurate diagnosis. But, sometimes,
this attempt leads to a rather complicated analysis. Therefore, some specific class
(or a reduced number of classes) should be emphasized as representing the
defect(s). One option is to consider the biggest class as revealing all subbands
affected by the defect(s). A different option is to extract the minimum entropy class,
which, in general, is smaller than the biggest class and, therefore, more focused on
few subbands. These are very likely the most affected by defect(s). (Recall that
minimum entropy means maximum occurrence degree of rsp norms.) Other
representing classes could also be selected.

In order to complete the method, it is perhaps useful to show how an
optimum cluster (or group of clusters) could be selected inside the best
classification by using the normalized SFE as cost function. Thus, the index
of optimum defect class(es) is (are) evaluated by solving the following optimisation
problem:

opt
mC

qpmN
Qq

opt
m opt

m
opt
mpm

q
,,

1,0
,

minarg FS (53)

For the example in Figure 5.14, the minimum (normalized) entropy of the
optimum defect class inside the best classification is about 0.65. All the other

Computational Intelligence in Fault Diagnosis 163

classes have entropy values at least as large as this value. Therefore, the
corresponding cluster is representing in the best manner a specific defect.

But selecting an optimum defect class is less important than selecting the
optimum classification. As already mentioned, sometimes, the classification
configuration is itself a good image about defects, provided that its interpretation is
not too difficult to perform. A very desirable property of such an interpretation is to
reveal multiple defects by simple combinations of single defect maps. In general,
this property is difficult to achieve. But the interpretation principle could be the
same, independently of single or multiple-point defects generating the maps.

Note that, in this approach, the number of processed frames was
considered variable. Though the notations are more complicated (the index is
omnipresent), one can clearly see how the concepts utilized inside are varying
depending on this variable. The main reason the method was presented in terms of
processed frames number is to show that its implementation could be performed by
following either an on-line or an off-line strategy. For the on-line implementation
the best classification should be provided after every processed frame (or group of
frames). Step 8 is the critical one, since the evaluation of transitive cover could be
time consuming when the product

m

KL is too big (over 1500, with the actual
computing performances). In this case, the best solution is to perform the defect
classification only after several frames have been processed. This means the
strategy is quasi-off-line (or even off-line). In general, the number of processed
frames improves the method accuracy, since the estimation of occurrence degrees is
more and more precise.

5.3. Simulation Results and Discussion

The two algorithms previously described constitute the kernel of a simulator
designed to test the fuzzy-statistical reasoning method. The testing platform and the
simulation results are described next.

5.3.1. The Testing Platform

The vibration data are acquired from bearings through a platform designed on
purpose. Three main systems are connected, as illustrated by the pictures in Figure
5.15: a mechanical stand, a vibration data acquisition and pre-processing apparatus
and a personal computer (PC).

The mechanical stand consists of the following elements:
1. A three-phase electrical engine, Siemens type, with maximum rotation
speed of 2740 rot/min (about 45.67 Hz), working at 380 V and with a
power of 370 W.
2. A couple of bearings mounted into mechanical seats, appropriately
designed to fit to their geometry. The seats are easy to dismount in order to
change the bearings, when necessary. The bearing near the engine is a
standard high-quality one, without defects. The other bearing could also be
standard (identical to the first one, in order to acquire the standard

164 V Palade, CD Bocaniala and L Jain (Eds.)

vibration data) or a tested one, with possible defects (for raw vibration
acquisition). All bearings are provided by Romanian and German
industries. (See their geometry in Figure 5.16.).
3. A couple of metallic discs mounted between bearings, on the same
axis, which play a double role. On the one hand, they produce a load of
about 200 N applied in a radial-axial manner on bearings. This leads to a
contact angle of 40° inside the bearings. On the other hand, they are
creating an inertial momentum that rejects some external perturbations and
keeps the rotation speed constant.
4. An elastic coupling between engine axis and load axis, aiming to
attenuate the engine self-sustained vibrations or shaft wobbling that could
corrupt the data.

Figure 5.15. The bearings testing platform.

7
2
5

9

�# of balls: 13

�contact angle: 40°

Figure 5.16. Geometrical characteristics of tested bearings.

The geometrical characteristics of tested bearings (illustrated in Figure
5.16) lead in fact to a very small variation of natural frequencies, depending on
contact angle. Thus, even the contact angle is not accurately set, and its influence
over the natural frequencies is not decisive. The biggest natural frequency is about
325 Hz.

The vibration is acquired by using two light accelerometers. The definition
in Eq. 2 is adopted to provide the complex valued vibration data, because both
sensors are far enough from the direction of applied load. A very powerful
apparatus has been employed to acquire vibration data: an LMS Roadrunner (LMS
International, 1999). Its capabilities extend far beyond the minimal ones required by
this method: accurate prefiltering of data, simultaneous acquisition on at least two
channels and selectable recording format. The Roadrunner integrates a

Computational Intelligence in Fault Diagnosis 165

microcomputer with a user-friendly interface that allows the user to work as
comfortably as with any PC. It is also endowed with at least four channels (their
number could be extended), compatible with a large number of sensors. The
maximum allowed sampling frequency is 100 kHz. In this application, the sampling
frequency has been set to kHz6.25s . Data are saved in ASCII format, with 22
digits of representation. From Roadrunner, data are transferred to a PC, via floppy
discs. The PC has the following main characteristics: 1 GHz (frequency), 256 Mb
RAM (memory), 40 Gb (hard disk capacity). They rate the PC at the average of
actual (public) technological level (years 2001, 2002). A laptop could also be
successfully employed to implement the method.

5.3.2. Initial Simulation Parameters

In the description of the platform above, the shaft rotation speed and the sampling
frequency were given: Hz67.45r and Hz60025s . Thus, a complete
rotation takes about 21.9 ms, encoded by 560 vibration data samples. The vibration
data length is set to samples, which takes 163.84 s in 7482 full
rotations (see Eq. 1).

304,194,4222N

The vibration frame length is set to samples (320 ms,
~15 full rotations). The number of nonoverlapped frames is then 512 (see Eq. 4),
whereas every data segment includes three successive frames, as explained in the
previous section. The frame length involves a frequency resolution of 3.125 Hz.

8192213
fN

The window selected to smooth the overlapping between segments is
Tuckey type, with 33.33% rectangular shape (see Figures 5.4 and 5.5). A high-pass
filter will be applied to windowed segments. The LF cutoff frequency is set 7 times
the largest natural frequency: Hz22753257lc .

32KThe vibration spectrum is segmented into subbands. Every
subband includes 128 rays for a bandwidth of 400 Hz. This setting realizes a good
compromise between sp accuracy (each one is computed by using 128 spectral
values) and bandwidth. The severity levels are set as already explained (12L
levels).

5.3.3. Comparative Discussion on Simulation Results

The experiments have been organized according to the following scenario:
1. Collect raw vibration data from four tested bearings: a standard
(defect free) one (labelled S720913, according to its geometry); one with
a chop on the inner race (I720913); one with a spall on the outer race
(O720913); one with chops on both inner and outer races (M720913).
2. Apply EA to detect the severity degree of defects and to check if
multiple defects on bearing M720913 are visible or not. The following
settings are performed in this aim: consider vibration segments of more
than 1 s length; operate with 1/3-octave filters appropriately designed (as
described in (Barkov et al.,1995a,b)); take full rectified envelope; focus on

166 V Palade, CD Bocaniala and L Jain (Eds.)

the LF sub-band of envelope spectrum, for a bandwidth at least equal to 2
kHz.
3. Apply the fuzzy reasoning method.

A. Envelope analysis results
A standard horizontal vibration data segment of about 1.3 s (32,768 samples, 4
frames) and a zoom on the portion between 0.2 s and 0.25s are represented Figure
5.17a. The shape is almost harmonic, as expected. In Figure 5.17b, the
corresponding spectrum is represented in dB, with a resolution of 0.78125 Hz
(16,384 rays on half band 0-12.8 kHz). The energy of vibration is practically
concentrated in LF-MF subband 0-5 kHz. The sensor resonance is insignificant.
The peaks into the LF band are due to bearing natural frequencies. The envelope of
standard signal, as well as a similar zoom as before, is drawn in Figure 5.18a.
Signals appear very close to the white noise. Actually, the LF part of the envelope
spectrum in Figure 5.18b reveals a quasi-constant variation on all frequencies
around the spectral acceleration of 102.7 cm/s2 (the spectrum average).

0 0.2 0.4 0.6 0.8 1 1.2

-5

0

5

Vibration segment (defect free)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2] # Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

-4

-2

0

2

4

Zoom on the vibration signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 0.2 0.4 0.6 0.8 1 1.2

-5

0

5

Vibration segment (defect free)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2] # Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

-4

-2

0

2

4

Zoom on the vibration signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 2000 4000 6000 8000 10000 12000
-80

-60

-40

-20

0

20

40

60

Defect free vibration spectrum

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 [

d
B

]

0 2000 4000 6000 8000 10000 12000
-80

-60

-40

-20

0

20

40

60

Defect free vibration spectrum

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 [

d
B

]

(a) (b)

Figure 5.17. Standard vibration (a) and its spectrum (b) (bearing S720913).

0 0.2 0.4 0.6 0.8 1 1.2

0

2

4

Envelope signal for a segment of vibration (defect free)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

0

1

2

3

4

Zoom on the envelope signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 0.2 0.4 0.6 0.8 1 1.2

0

2

4

Envelope signal for a segment of vibration (defect free)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

0

1

2

3

4

Zoom on the envelope signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

Envelope spectrum (defect free)

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 a

cc
el

er
at

io
n

 [
cm

/s
2]

Sampling frequency: 25600 Hz

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

Envelope spectrum (defect free)

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 a

cc
el

er
at

io
n

 [
cm

/s
2]

Sampling frequency: 25600 Hz

(a) (b)

Figure 5.18. Standard envelope vibration (a) and its spectrum (b) (bearing S720913).

For the next three cases, the length of vibration data segments is identical
to the standard set above. The vibration segments are represented in Figures 5.19a,
5.20a and 5.21a, while their corresponding spectra are found in Figures 5.19b,
5.20b and 5.21b (see Appendix). The time variations appear to be more irregular
than previously. The harmonic behaviour is distorted by a noise encoding the defect

Computational Intelligence in Fault Diagnosis 167

type. The effect of modulation could be seen in the zoomed portions of these
signals, especially for the outer race defect. The sensors are forced to resonate and
this effect is replicated towards LF and MF bands in all spectra. A significant
resonance peak is located in band 6-10 kHz for all defective bearings, while it is
missing for standard bearing. Also, peaks are more emphasized within the LF
spectral zone for defective bearings than for standard.

The 1/3-octave filter (specific to EA) has been designed such that its
central frequency is located somewhere in the median spectral valley between 4 and
6 kHz. Actually, it is selected as the minimum point of the spectral median in
subband 4-6 kHz. This corresponds to the selection performed in (Barkov et
al.,1995a,b) where the central frequency is located in a subband corresponding to
the flattest zone of spectrum. In this specific case, the bandwidth is determined by
the resonance peak flanking the valley to the right (in subband 6-10 kHz). The
bandwidth is set as 3/2 times the difference between the location of this peak and
the central frequency. The filter length is set to 2048 coefficients, in order to
preserve high accuracy of filtering.

Figures 5.19, 5.20 and 5.21 are also concerned with the envelope signals
(c) and the corresponding (envelope) spectra (d). In the case of single-point defects
(Figures 5.19c and 5.20c), the abnormal behaviour is illustrated by the spectral
envelope prominent peaks located around the multiples of natural frequency
corresponding to the defective part: Hz061.325BPFI (Ball Pass Frequency on
the Inner race) or Hz606.268BPFO (Ball Pass Frequency on the Outer race).
The peaks decay exponentially, such that starting from the 9th multiple, they are
practically sunk into the noisy part of spectrum. The severity degree is quite easy to
estimate from these graphics, if the height of the largest peak is compared to the
average standard envelope spectrum: about 3.5 (i.e., 10.88 dB) for inner race defect
and about 4.5 (i.e., 13.06 dB) for outer race defect. This rates the defects as medium
ones. Note, however, that the estimation could not be extremely accurate, since the
vibration segments lengths are small (only 1.3 s, i.e., about 59 full rotations). An
accurate estimation requires at least 100 rotations, but this increases the noisy part
in all spectra, such that spectral estimation techniques should be employed
(Oppenheim and Schafer, 1985; Proakis and Manolakis, 1996), in order to provide
readable spectra.

Refer now to the multiple-point defect (Figure 5.21c). The envelope
spectrum is so noisy that, practically, it is impossible to isolate some characteristics
related to the defect type, though the spectrum in Figure 5.21b does not look very
different from the spectra in Figures 5.19b and 5.20b. The energy increase revealed
by the envelope spectrum is mainly due to the vibration signal itself (see Figure
5.21a), which has a larger energy level than in the case of single-point defects
(Figures 5.19a and 5.20a). But the general level of noise is also increased. The EA
failure in this case could have some plausible explanations. Besides the 1/3-octave
filter selection (note that EA is very sensitive to this filter), perhaps the vibration
model considered here cannot match the interpretation principle that worked well in
the case of single-point defects (i.e., associate the natural frequencies directly to
defect nature and location).

B. Fuzzy-statistical reasoning results

168 V Palade, CD Bocaniala and L Jain (Eds.)

The three vibration signals have been entered into two MATLAB programs
implementing the method described in the previous section. Thus, after collecting
all information about rsp norms occurrences in box cells of sn, three occurrence
degrees distributions have been obtained. For single point defects, there are two
main rsp norms concentrations: one for MF and one for HF zones, but the most rsp
norms seem to occur in the MF zone. On the contrary, for multiple defects, they
occur rather in the HF zone. Thus, a first criterion for discriminating between
single- and multiple-point defects is revealed.

After constructing the fuzzy model, a number of faults classifications
resulted, for each tested bearing: 30 for I720913, 32 for O720913 and 27 for
M720913. The selection of an optimum faults classification is automatically
performed (as described). The trade-off between the confidence degree (Eq. 49) and
the classification entropy (Eq. 50) is quantified by means of geometric mean
criterion (Eq. 51) that points to the optimal classification index. The variation of
confidence degree and entropy among classifications as well as the shape of the
geometric mean are illustrated in Figures 5.22, 5.25 and 5.28, for each bearing. The
optimum classification indexes are: #20 for I720913, #20 for O720913 and #17
for M720913. The corresponding optimum classification maps are pictured in
Figure 5.23 (inner race defect), Figure 5.26 (outer race defect) and Figure 5.29
(multiple defects). For each classification, the representation is illustrated by using
the grey levels scale to the right. One recognizes the sn by looking at the grid of
each map. Thus, box cells that belong to the same class (cluster) have the same
colour. Moreover, inside every box, the index of class the box belongs to is written,
except the boxes that do not partake in the classification and belong to the inactive
cluster. Besides the numerical parameters describing the classification minimum
entropy (optimal) cluster, the average of rsp norms is represented as a curve passing
through the map. Obviously, clusters are more or less grouped around this curve for
all classifications.

As already mentioned, the most difficult part of the fuzzy model is the
interpretation (or analysis) of classification maps. This means specific defects
should be put into direct correspondence with map topologies. Such an analysis is
more rigorous and simpler to perform than by inspecting the vibration spectrum,
since a part of analyst reasoning has already been automated.

The shape of inactive cluster or of the rsp norms average could already
constitute an image of defect types. For the three optimum classifications described
above, the inactive clusters are all different, though their shapes are closer to each
other for single-point defects. But this effect is noticed in EA as well: Figures 5.19d
and 5.20d are not very different, since the values of the two corresponding natural
frequencies are close to each other (BPFI=325.061 Hz and BPFO=268.606 Hz).
The inactive cluster for multiple defects seems to be quite different, but the same
interpretation principle or rules as for single-point defects could be used. In the case
of EA, the interpretation rule that worked very well for single-point defects is
useless in the case of multiple-defect spectrum (Figure 5.21d).

Another entry yielding map interpretation is to focus not on the inactive
cluster, but rather on the active ones. Of course, one could consider all classes in a
map (optimal or suboptimal). But this involves a complicated analysis. Therefore,
some specific class (or a reduced number of classes) should be emphasized as

Computational Intelligence in Fault Diagnosis 169

representing the defect(s). An option is to consider the biggest class as revealing all
subbands affected by the defect(s). A different option is to extract the minimum
entropy class (optimal cluster), which, in general, is smaller than the biggest class
and, therefore, more focused on a few subbands. These are very likely the most
affected by defect(s). (Recall that minimum entropy means maximum occurrence
degree of rsp norms.) Other representing classes could also be selected.

The optimal detected clusters are the following:
a. for bearing I720913 (inner race defect): cluster #13,

with normalized entropy 0.516168, focusing on subband
5200-5600 Hz (MF);

b. for bearing O720913 (outer race defect): cluster #20,
with normalized entropy 0.711234, focusing on subband
4800-5200 Hz (MF);

c. for bearing M720913 (inner and outer race defects):
cluster #27, with normalized entropy 0.709225, focusing
on subband 12.4-12.8 kHz (very HF).

That the optimal clusters #13 and #20 are located in adjacent box cells is
not coincidental, but is due to the fact that the corresponding natural frequencies
have values close to each other. The extreme HF subband pointed by the multiple
defects is somehow surprising. A better interpretation could be given by
considering other sub-optimal classifications (see the next discussion). But, in any
case, a good insight concerning the “full optimality” (optimal clusters into optimal
classifications) is the following: single-point defects are indicated by optimal
clusters around the LF or MF peaks of rsp norms average (and there is a correlation
between natural frequencies and focused subbands), while the optimal clusters of
multiple-point defects seem to be located around the HF peak of average. A more
refined frequency segmentation, with a larger number of subbands than here
() could probably help the user to make a sharper distinction between
focused subbands in the case of single-point defects. Practically, the EA results are
obtained by the fuzzy reasoning method as well. Concerning the multiple-point
defects, it is possible that a frequency interpretation in terms of natural frequencies
cannot be performed, but increasing

64K

K should lead to the same effect: the
distinction between different defects should be easier to achieve. Unfortunately, the
number of subbands (K) can only be increased at the expense of running time,
especially due to the procedure evaluating the fuzzy transitive closure, which is the
most time-consuming part of the algorithm (exponential type).

The severity degree estimated here is located on the 4th level (between 6
and 9.54 dB) – the first medium severity one – for single-point defects and on the
5th level (between 9.54 and 12.04 dB) for multiple defects. The first location is
close to the severity degree estimated by EA for inner race defect (10.88 dB), but
quite different from the outer race defect estimated severity (13.06 dB). For
multiple defects, EA offers no severity degree estimation, but in this case the
location of multiple defects optimal cluster is closer to the outer race severity (13.06
dB). Both estimations here are below the estimations proposed by EA. Since the
severity degrees are conventionally set and in both methods the raw vibrations have
been affected by filtering, the comparison in terms of severity degree is probably
irrelevant. One could only note that, for the fuzzy-statistical method, the estimated

170 V Palade, CD Bocaniala and L Jain (Eds.)

severity degree for multiple defects seems to be plausible, because the general level
of vibration noise has been increased. This effect is proven by Figures 5.17a, 5.19a,
5.20a and 5.21a, where the amplitude of corresponding raw vibrations is about 3
cm/s2 2 for standard and inner race defect, 2 cm/s for outer race defect, but 5 cm/s2

for multiple defects.
In order to extract more insights concerning classification map

interpretation, several classifications should be depicted around the optimal ones.
Their confidence and granularity are decreasing with classification index (according
to the holonic phenomenon). In this context, some suboptimal classifications have
been represented in Figure 5.24 (inner race defect), Figure 5.27 (outer race defect)
and Figure 5.30 (multiple defects). They are selected according to the geometric
mean values of Figures 5.22, 5.25 and 5.28. Thus, the suboptimal classifications
have the best geometric mean values under the maximum one in every case.
Sometimes, this requirement is fulfilled by local maxima, as in the case of bearings
O720913 and M720913. One could notice how box cells are more and more
grouped together as the classification index increases.

An interesting observation could be noted with regard to all these maps:
the optimal cluster (indicated by the optimal classification) is also optimum (with
minimum entropy) for a large number of suboptimal classifications surrounding the
optimal one, in the case of single-point defects. Though its index is changing (due
to holonic phenomenon), its location is identical. The optimal cluster persistence
among faults classifications is another good insight about the single-point defect
nature, because, for multiple defects, the optimum cluster changes among
classifications. However, in the case of multiple defects, it seems that another
optimal cluster could also be considered, but extracted from suboptimal
configurations. This is in fact the cluster #11 in classification #16 (as well as in
classifications #13, #14, and #15, although not shown here). If one revisits Figure
5.27, one could notice that all these classifications, though suboptimal, prove a
good compromise between confidence and entropy (they are only slightly below the
optimal classification). Their unique optimum cluster focuses on the subband 7200-
7600 Hz (still on the HF peak), but points to a lower severity degree (on level 3-6
dB, incipient).

One can infer from this analysis that selecting the cluster detected as
optimal for the maximum number of classifications could be a good hint about the
defect nature. But a reliable diagnosis requires a whole set of inference rules (and
not isolated ones), in order to associate classification maps with specific defects and
their severity degrees. A good achievement is that, by fuzzy-statistical reasoning,
defects could be classified regardless of their nature as single- or multiple-point
ones.

5.4. Concluding Remarks

Although with some obvious limitations, the method presented above aims to
automate a part of human reasoning when detecting and classifying defects and to
improve the multiple defect diagnosis. The main advantage of this method is that
the defect classification maps could allow the user to perform a reliable detection

Computational Intelligence in Fault Diagnosis 171

and diagnosis of defects, independently of their nature. Another advantage is its
generality. On the one hand, the natural oscillation frequencies of the tested
component play only a secondary role. On the other hand, gears, belt transmissions,
or other vibration sources could replace bearings, provided that at least a good
description of possible defects is a priori known in each case. Note that prefiltering
is not mandatory: the fuzzy model could work with the whole raw vibration as well
as with prefiltered data. The method’s main drawbacks are the complexity (slightly
bigger than EA complexity) and the difficulties in finding appropriate
interpretations for classification maps.

Approaching the human reasoning in fault diagnosis is a demanding task.
Not only because human reasoning is a complex mechanism (far to be completely
understood nowadays), but also because such an attempt is mostly concerned with
the inexplicable part of reasoning.

5.5. Appendix. Graphical Simulation Results

0 0.2 0.4 0.6 0.8 1 1.2
-5

0

5

Vibration segment for a defect located on inner race

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25
-4

-2

0

2

4
Zoom on the vibration signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 0.2 0.4 0.6 0.8 1 1.2
-5

0

5
Vibration segment for a defect located on inner race

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2] # Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25
-4

-2

0

2

4
Zoom on the vibration signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 2000 4000 6000 8000 10000 12000

-60

-40

-20

0

20

40

60

80

Vibration spectrum for a defect located on inner race

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 [

d
B

]

0 2000 4000 6000 8000 10000 12000

-60

-40

-20

0

20

40

60

80

Vibration spectrum for a defect located on inner race

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 [

d
B

]

0 0.2 0.4 0.6 0.8 1 1.2
-1

0

1

2

3

4

Envelope signal for a segment of vibration (inner race defect)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

0

1

2

3

Zoom on the envelope signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 0.2 0.4 0.6 0.8 1 1.2
-1

0

1

2

3

4

Envelope signal for a segment of vibration (inner race defect)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

0

1

2

3

Zoom on the envelope signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

Low frequency envelope spectrum (inner race defect)

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 a

cc
el

er
at

io
n

 [
cm

/s
2]

Sampling frequency: 25600 Hz

BPFI = 325.061 Hz

2*BPFI

3*BPFI
4*BPFI

5*BPFI

6*BPFI
7*BPFI

8*BPFI

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

Low frequency envelope spectrum (inner race defect)

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 a

cc
el

er
at

io
n

 [
cm

/s
2]

Sampling frequency: 25600 Hz

BPFI = 325.061 Hz

2*BPFI

3*BPFI
4*BPFI

5*BPFI

6*BPFI
7*BPFI

8*BPFI

(a) (b)

(c) (d)

Figure 5.19. Envelope analysis for bearing I720913.

172 V Palade, CD Bocaniala and L Jain (Eds.)

0 0.2 0.4 0.6 0.8 1 1.2

-2

0

2

Vibration segment for a defect located on outer race

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

-2

-1

0

1

2

Zoom on the vibration signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 0.2 0.4 0.6 0.8 1 1.2

-2

0

2

Vibration segment for a defect located on outer race

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2] # Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

-2

-1

0

1

2

Zoom on the vibration signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 2000 4000 6000 8000 10000 12000

-80

-60

-40

-20

0

20

40

60

80

Vibration spectrum for a defect located on outer race

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 [

d
B

]

0 2000 4000 6000 8000 10000 12000

-80

-60

-40

-20

0

20

40

60

80

Vibration spectrum for a defect located on outer race

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 [

d
B

]
0 0.2 0.4 0.6 0.8 1 1.2

0

1

2

Envelope signal for a segment of vibration (outer race defect)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

0

0.5

1

1.5

2

Zoom on the envelope signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 0.2 0.4 0.6 0.8 1 1.2

0

1

2

Envelope signal for a segment of vibration (outer race defect)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

0

0.5

1

1.5

2

Zoom on the envelope signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

Low frequency envelope spectrum (outer race defect)

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 a

cc
el

er
at

io
n

 [
cm

/s
2]

Sampling frequency: 25600 Hz

BPFO = 268.606 Hz

2*BPFO

3*BPFO

4*BPFO

5*BPFO
6*BPFO

7*BPFO
8*BPFO

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

Low frequency envelope spectrum (outer race defect)

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 a

cc
el

er
at

io
n

 [
cm

/s
2]

Sampling frequency: 25600 Hz

BPFO = 268.606 Hz

2*BPFO

3*BPFO

4*BPFO

5*BPFO
6*BPFO

7*BPFO
8*BPFO

(a) (b)

(c) (d)

Figure 5.20. Envelope analysis for bearing O720913.

0 0.2 0.4 0.6 0.8 1 1.2

-5

0

5

10

Vibration segment for defects located on inner and outer races.

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

-5

0

5

Zoom on the vibration signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 0.2 0.4 0.6 0.8 1 1.2

-5

0

5

10

Vibration segment for defects located on inner and outer races.

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

-5

0

5

Zoom on the vibration signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 2000 4000 6000 8000 10000 12000

-60

-40

-20

0

20

40

60

80

Spectrum for defects located on inner and outer races.

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 [

d
B

]

Sampling frequency: 25600 Hz

0 2000 4000 6000 8000 10000 12000

-60

-40

-20

0

20

40

60

80

Spectrum for defects located on inner and outer races.

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 [

d
B

]

Sampling frequency: 25600 Hz

0 0.2 0.4 0.6 0.8 1 1.2

0

2

4

6

Envelope signal for a segment of vibration (inner and outer races defects)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

0

2

4

6

Zoom on the envelope signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 0.2 0.4 0.6 0.8 1 1.2

0

2

4

6

Envelope signal for a segment of vibration (inner and outer races defects)

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2] # Number of samples: 32768

0.2 0.205 0.21 0.215 0.22 0.225 0.23 0.235 0.24 0.245 0.25

0

2

4

6

Zoom on the envelope signal

Time [s]

A
cc

el
er

at
io

n
 [

cm
/s

2]

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

Low frequency envelope spectrum (inner and outer races defects)

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 a

cc
el

er
at

io
n

 [
cm

/s
2]

Sampling frequency: 25600 Hz

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

Low frequency envelope spectrum (inner and outer races defects)

Frequency [Hz]

S
p

ec
tr

al
 p

o
w

er
 a

cc
el

er
at

io
n

 [
cm

/s
2]

Sampling frequency: 25600 Hz

(a) (b)

(c) (d)

Figure 5.21. Envelope analysis for bearing M720913.

Computational Intelligence in Fault Diagnosis 173

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The trade-off between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Confidence degree
Opposite entropy

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The trade-off between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Confidence degree
Opposite entropy

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geometric mean between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Optimal index: 20
Fuzzy confidence: 0.691379

Fuzzy entropy: 44.5126
Optimal cluster(s) entropy: 0.516168

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geometric mean between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Optimal index: 20
Fuzzy confidence: 0.691379

Fuzzy entropy: 44.5126
Optimal cluster(s) entropy: 0.516168

Figure 5.22. Selecting the optimum defect classification for bearing I720913.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #20 inside the statistical network for bearing I720913. Optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.691379 * Classification entropy: 44.5126

* Number of clusters: 45
* Optimum cluster: 13 * Entropy: 0.516168

1

1

1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1 1 1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #20 inside the statistical network for bearing I720913. Optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.691379 * Classification entropy: 44.5126

* Number of clusters: 45
* Optimum cluster: 13 * Entropy: 0.516168

1

1

1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1 1 1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

Figure 5.23. Optimum defect classification # 20 for bearing I720913.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classification #19 inside the statistical network for bearing I720913. Sub-optimal.

* Confidence degree: 0.691487 * Classification entropy: 47.4777

* Optimum cluster: 16 * Entropy: 0.516168

1

1

1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1 1 1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4

5 6 7 8 9 10

11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 48

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Entropy scale

* Number of clusters: 48 = Average statistical parameters

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classification #19 inside the statistical network for bearing I720913. Sub-optimal.

* Confidence degree: 0.691487 * Classification entropy: 47.4777

* Optimum cluster: 16 * Entropy: 0.516168

1

1

1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1 1 1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4

5 6 7 8 9 10

11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 48

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Entropy scale

* Number of clusters: 48 = Average statistical parameters

Frequency [Hz]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #21 inside the statistical network for bearing I720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.661388 * Classification entropy: 34.524

* Number of clusters: 35
* Optimum cluster: 13 * Entropy: 0.516168

1

1

1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #21 inside the statistical network for bearing I720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.661388 * Classification entropy: 34.524

* Number of clusters: 35
* Optimum cluster: 13 * Entropy: 0.516168

1

1

1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

Figure 5.24. Suboptimal defect classifications #19 and #21 for bearing I720913.

174 V Palade, CD Bocaniala and L Jain (Eds.)

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The trade-off between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Confidence degree
Opposite entropy

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The trade-off between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Confidence degree
Opposite entropy

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geometric mean between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Optimal index: 20
Fuzzy confidence: 0.658506

Fuzzy entropy: 35.7052
Optimal cluster(s) entropy: 0.711234

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geometric mean between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Optimal index: 20
Fuzzy confidence: 0.658506

Fuzzy entropy: 35.7052
Optimal cluster(s) entropy: 0.711234

Figure 5.25. Selecting the optimum defect classification for bearing O720913.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #20 inside the statistical network for bearing O720913. Optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.658506 * Classification entropy: 35.7052

* Number of clusters: 36
* Optimum cluster: 20 * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #20 inside the statistical network for bearing O720913. Optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.658506 * Classification entropy: 35.7052

* Number of clusters: 36
* Optimum cluster: 20 * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

Figure 5.26. Optimum defect classification # 20 for bearing O720913.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

v e
ls

 [
d

B
]

Classification #19 inside the statistical network for bearing O720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.696495 * Classification entropy: 46.6996

* Number of clusters: 47
* Optimum cluster: 20 * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #19 inside the statistical network for bearing O720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.696495 * Classification entropy: 46.6996

* Number of clusters: 47
* Optimum cluster: 20 * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #23 inside the statistical network for bearing O720913.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.60544 * Classification entropy: 20.7728

* Number of clusters: 21
* Optimum cluster: 17 * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 1718 19 20 21

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #23 inside the statistical network for bearing O720913.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.60544 * Classification entropy: 20.7728

* Number of clusters: 21
* Optimum cluster: 17 * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 1718 19 20 21

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

Figure 5.27. Suboptimal defect classifications #19 and #23 for bearing O720913.

Computational Intelligence in Fault Diagnosis 175

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The trade-off between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

e s

Confidence degree
Opposite entropy

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The trade-off between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Confidence degree
Opposite entropy

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geometric mean between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Optimal index: 17
Fuzzy confidence: 0.78313

Fuzzy entropy: 45.6546
Optimal cluster(s) entropy: 0.709225

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geometric mean between confidence degree and opposite entropy

Classification index

N
o

rm
al

iz
ed

 m
ag

n
it

u
d

es

Optimal index: 17
Fuzzy confidence: 0.78313

Fuzzy entropy: 45.6546
Optimal cluster(s) entropy: 0.709225

Figure 5.28. Selecting the optimum defect classification for bearing M720913.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #17 inside the statistical network for bearing M720913. Optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.78313 * Classification entropy: 45.6546

* Number of clusters: 46
* Optimum cluster: 27 * Entropy: 0.709225

1

1

1

1

1 1 1 1 1

1

1 1

1

1 1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #17 inside the statistical network for bearing M720913. Optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.78313 * Classification entropy: 45.6546

* Number of clusters: 46
* Optimum cluster: 27 * Entropy: 0.709225

1

1

1

1

1 1 1 1 1

1

1 1

1

1 1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

Figure 5.29. Optimum defect classification # 17 for bearing M720913.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

v e
ls

 [
d

B
]

Classification #16 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.785887 * Classification entropy: 52.3645

* Number of clusters: 53
* Optimum cluster: 11 * Entropy: 0.492732

1

1

1

1

1 1 1 1 1

1

1 1

1

1 1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #16 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.785887 * Classification entropy: 52.3645

* Number of clusters: 53
* Optimum cluster: 11 * Entropy: 0.492732

1

1

1

1

1 1 1 1 1

1

1 1

1

1 1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

2 3 4 5 6

7 8 9 10 1112 13

14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #22 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.704344 * Classification entropy: 14.8632

* Number of clusters: 15
* Optimum cluster: 10 * Entropy: 0.767531

1

1

1

1

1 1 1 1 1

1

1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y
d

eg
re

e
le

ve
ls

 [
d

B
]

Classification #22 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.704344 * Classification entropy: 14.8632

* Number of clusters: 15
* Optimum cluster: 10 * Entropy: 0.767531

1

1

1

1

1 1 1 1 1

1

1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

Figure 5.30. Suboptimal defect classifications #16 and #22 for bearing M720913.

176 V Palade, CD Bocaniala and L Jain (Eds.)

References

1. Angelo M (1987) Vibration Monitoring of Machines. Bruel & Kjiaer Technical
Review 1:1–36
2. Barkov AV, Barkova NA, Mitchell JS (1995a) Condition Assessment and Life
Prediction of Rolling Element Bearings – Part 1. Journal of Sound and Vibration
6:10–17, June 1995 (http://www.inteltek.com/articles/sv95/part1/index.htm)
3. Barkov AV, Barkova NA, Mitchell JS (1995b) Condition Assessment and Life
Prediction of Rolling Element Bearings – Part 2. Journal of Sound and Vibration
9:27–31, September 1995 (http://www.inteltek.com/articles/sv95/part2/index.htm)
4. Bedford A, Drumheller DS (1994) Introduction to Elastic Wave Propagation.
John Wiley & Sons, Chichester, UK
5. Braun S (1986) Mechanical Signature Analysis. Academic Press, London, UK
6. Cohen L (1995) Time-Frequency Analysis. Prentice Hall, New Jersey, USA
7. FAG OEM & Handel AG (1996) Wälzlagerschäden – Schadenserkennung und
Begutachtung gelaufener Wälzlager. Technical Report WL 82 102/2 DA
8. FAG OEM & Handel AG (1997) Rolling Bearings – State-of-the-Art,
Condition-Related Monitoring of Plants and Machines with Digital FAG Vibration
Monitors. Technical Report WL 80-65 E
9. Howard I (1994) A Review of Rolling Element Bearing Vibration: Detection,
Diagnosis and Prognosis. Report of Defense Science and Technology Organization,
Australia
10. Isermann R (1993) Fault Diagnosis of Machines via Parameter Estimation and
Knowledge Processing. Automatica 29(4):161-170
11. Isermann R (1997) Knowledge-Based Structures for Fault Diagnosis and its
Applications. In: Proceedings of the 4th IFAC Conference on System, Structure and
Control, SSC’97, Bucharest, Romania, pp.15-32
12. Kaiser JF (1974) Nonrecursive Digital Filter Design Using the I0–sinh Window
Function. In: Proceedings of the IEEE Symposium on Circuits and Systems, pp.20-
23
13. Klir GJ, Folger TA (1988) Fuzzy sets, Uncertainty, and Information. Prentice
Hall, New York, USA
14. LMS International (1999) LMS Scalar Instruments Roadrunner. User Guide.
LMS Scalar Instruments Printing House, Leuven, Belgium
15. Maness PhL, Boerhout JI (2001) Vibration Data Processor and Processing
Method. United States Patent No. US 6,275,781 B1 (http://www.uspto.gov/go/ptdl/)
16. McConnell KG (1995) Vibration Testing. Theory and Practice. John Wiley &
Sons, New York, USA
17. Oppenheim AV, Schafer R (1985) Digital Signal Processing. Prentice Hall,
New York, USA
18. Proakis JG, Manolakis DG (1996) Digital Signal Processing. Principles,
Algorithms and Applications (third edition). Prentice Hall, Upper Saddle River,
New Jersey, USA
19. Reiter R (1987) A Theory of Diagnosis from First Principles. Artificial
Intelligence 32: 57-95
20. Söderström T, Stoica P (1989) System Identification. Prentice Hall, London,
UK

Computational Intelligence in Fault Diagnosis 177

21. Stefanoiu D, Ionescu F (2002) Mathematical Models of Defect Encoding
Vibrations. A Tutorial. Journal of the American-Romanian Academy (ARA),
Montréal, Canada, Vol. 2001-2002
22. von Tscharner V (2000) Intensity Analysis in Time-Frequency Space of
Modelled Surface Myoelectric Signals by Wavelets of Specified Resolution,
preprint
23. Ulieru M, Stefanoiu D, Norrie D (2000) Identifying Holonic Structures in
Multi-Agent Systems by Fuzzy Modeling. In: Kusiak A & Wang J (eds) Art for
Computational Intelligence in Manufacturing, CRC Press, Boca Raton, Florida,
USA
24. Willsky AS (1976) A Survey of Design Methods for Failure Detection
Systems. Automatica 12:601-61
25. Wowk V (1995) Machinery Vibration. Balancing. McGraw-Hill, Upper Saddle
River, New York, USA
26. Xi F, Sun Q, Krishnappa G (2000) Bearing Diagnostics Based on Pattern
Recognition of Statistical Parameters. Journal of Vibration and Control 6:375–392

6. Artificial Neural Networks in Fault
Diagnosis: A Gas Turbine Scenario

Stephen Ogaji and Riti Singh

Gas turbines are used for aero and marine propulsion, power generation and as
mechanical drives for a wide range of industrial applications. Often, they are
affected by gas path faults, which have hitherto been diagnosed by techniques such
as fault matrixes, fault trees and gas path analysis. In this chapter, an artificial
neural network approach to fault diagnosis is presented. The networks involved are
trained to detect, isolate and assess faults in some of the components of a single
spool gas turbine. The hierarchical diagnostic methodology adopted involves a
number of decentralised networks trained to handle specific tasks. All sets of
networks were tested with data not used for the training process. The results, when
compared with available diagnostic tools, show that significant benefits can be
derived from the actual application of this technique.

6.1. Gas Turbine Faults

Gas turbines (GT) are mechanical devices operating on a thermodynamic cycle with
air as the working fluid. The air is compressed in a compressor, mixed with fuel and
burnt in a combustor, with the gas expanded in a turbine to generate power used in
driving the compressor and external loads (thrust or shaftpower) depending on
requirements.

The main gas path components of the GT, which are compressor,
combustor and turbines, are usually very reliable, but could result in low
availability of the whole unit if a forced unexpected outage is encountered, as it can
take some considerable time to repair them. This is made worse if the breakdown
occurred when the maintenance crew was unprepared for it. Improving availability
and reducing life cycle costs of the GT require maintenance schemes, such as
condition-based maintenance (CBM), which advocates maintenance only when it is
necessary and at the appropriate time rather than after a fixed number of operating
hours or cycles. For the operational health of the engine to be regularly monitored
for gas path faults, such measurable parameters as shaft speed, pressures,
temperatures, fuel flow and shaftpower/thrust are required.

The gas path of a gas turbine is affected by a number of faults, which
degrades its performance. The following succinctly presents the most common
faults that affect the gas path.

a. Fouling: This is one of the most common causes of engine
performance deterioration facing users of gas turbines and it can
account for more than 70% of all engine performance loss
accumulated during operation (Diakunchak, 1992). Fouling is the

180 V Palade, CD Bocaniala and L Jain (Eds.)

accumulation of deposits on the blade surfaces causing an
increase in surface roughness, changes in shape of airfoil/airfoil
inlet angle and reduction in airfoil throat opening (Diakunchak,
1992; Zaita et al., 1998). Fouling primarily results in mass flow
and compressor delivery pressure (CDP) reduction, and
ultimately in power reduction and increased heat rate
(Diakunchak, 1992; Aker and Saravanamuttoo, 1989;
Lakshminarasimha et al., 1994), with a slight change in
compressor efficiency (Agrawal et al., 1978).

b. Tip Clearance: Tip clearance has the effect of reducing both
efficiency and flow capacity in a compressor. There is a much
greater response of efficiency drop to tip clearance than fouling.

c. Erosion: Materials exposed to particle impacts are eroded and
subjected to deterioration of their surface quality, changes in
airfoil profile and throat openings, with increases in blade and
seal clearances. With the gas turbine, the result of this on the gas
path component is a decrease in performance. In the compressor,
the eroded blade leads to loss of compressor delivery pressure and
mass flow rate while on turbine nozzles/blades erosion has the
effect of increasing turbine flow function and reducing efficiency,
and hence output power.

d. Corrosion: When loss of materials from flow path components is
caused by the chemical reaction between the components and
contaminants that enter the gas turbine with the inlet air, fuel or
injected water/steam, the process is called corrosion. Corrosion is
experienced more at the hot end with the presence of elements
such as vanadium, sodium and lead enhancing high-temperature
corrosion of turbine airfoils. The effect is a reduction of engine
performance.

e. Object Damage: This is the result of an object striking the gas
path components of the gas turbine engine. The origin of such
particles could be via the inlet section with the working fluid
(foreign object damage (FOD)) or particles from the engine itself
breaking off and being carried downstream (domestic object
damage (DOD)). Here, again, the effect is a deterioration of the
engine’s performance. The fault signature with respect to its
effect on performance is sometimes identical to that of fouling.

6.2. Engine Reliability, Availability and
Diagnostic Techniques

Operation and maintenance costs of a gas turbine contribute a major portion of the
annual maintenance budget of a company. In view of the changes in world economy
towards globalisation and openness of the market, any efforts that can reduce the

Computational Intelligence in Fault Diagnosis 181

total cost of ownership and life cycle cost of the equipment will be added
advantages.

The primary objectives of all maintenance strategies are to reduce
equipment downtime, increase reliability and availability of the equipment, which
at the same time optimise the life cycle costs of the equipment. Normally, costs
associated with the design and manufacture of the engine are fixed and rarely
influenced by the users. Therefore, in order to increase the overall profit and be
competitive in the open market, the users are left to manage the life cycle costs of
the engine during its operation and maintenance.

Reliability is generally described in terms of the failure rate or mean time
between failures (MTBF), while availability is normally associated with total
downtime. In general, current technology has ensured that the gas turbines for
industrial application, especially for base load power plant operation, have high
levels of reliability. However, when the turbines are removed from operation due to
forced outages, the downtime incurred depends on the time required to complete the
necessary repair or maintenance action, hence affecting its availability (Singh,
2001).

Figure 6.1 illustrates the comparison of forced outage rate and total
downtime for major components of a typical gas turbine. Overall outage rate of a
gas turbine is normally affected by unreliability of “soft components” such as
instrumentation and control systems. However, their downtime can be managed to
acceptable levels, as they are either easily replaceable or generally designed with
redundancy. On the other hand, gas path components such as compressor and
turbine reliability are high. However, when a forced outage is caused by these
components, the maintenance downtime can be excessive. This is because these
components are normally not held in spares, either by the users or manufacturers,
due to their high costs but low demand. The long time for maintenance action
results in low availability of the engine for usage, when required. As shown in
Figure 6.2, if the time between maintenance actions is 10,000 hours, but the engine
downtime is 3 months due to unavailability of spare parts, then the engine overall
availability achieved would be only 80%. If, however, an appropriate technique to
predict the failure of these components is used, the parts can be preordered some
months ahead. The new maintenance downtime is then only due to actual repair
time. If the downtime were reduced to 3 days, then the availability would be 99.5%.
This improvement clearly provides significant impact to plant overall economics
(Singh, 2001) and can only be brought about if better knowledge of plant
performance is available. Enhanced knowledge of the gas path components of the
gas turbine would help to optimally schedule maintenance and, in fact, is a key
feature of an engine health monitoring (EHM) scheme.

Gas path fault diagnostic techniques can be grouped into two categories:
qualitative and quantitative approaches.

Qualitative techniques: This includes all approaches that try to ascertain
the presence of a fault without placing a value on the level of fault. Examples of this
technique include fault matrix and fault trees (Singh, 1999). The procedure here is
to take measurements from the engine and try to match them against predetermined
patterns of known faults. A major limitation of this technique is that only one fault

182 V Palade, CD Bocaniala and L Jain (Eds.)

can be identified at a time and, because of the nature of results obtained, the extent
of deterioration may not be known.

0

5

10

15

20

25

Control System Fuel System Compressor Turbine

F
o

rc
ed

 O
ut

ag
e

[%
]

Outage Rate (Reliability) Total Down-time (Availability)

Figure 6.1. Gas turbine major components’ outage rates and total downtimes.

Figure 6.2. Availability vs. downtime.

Quantitative techniques: with the inherent limitations of the qualitative
techniques, there was a need for quantitative methods. The work of Urban (Urban,
1972) gave rise to what is now commonly known as gas path analysis (GPA). The
theory behind this is simple. The analytical performance of gas turbine engine is
based upon component characteristics and aerothermo relationships. For a well-
defined characteristic, an aerothermo model can provide the engine performance in
terms of dependent or measurable parameters such as pressures, temperatures, spool
speed, etc. and independent nonmeasurable parameters such as efficiencies and
flow capacities. During the operation of an engine, the performance deteriorates
because of gas path degradation and faults. Each of these faults affects the
independent parameters and because they cannot be directly measured, the faults
need to be detected, isolated and quantified by using the relationship between the

Computational Intelligence in Fault Diagnosis 183

dependent and independent parameters (Figure 6.3). Artificial neural networks
(ANN) and genetic algorithms (GA) are other quantitative techniques being
explored for engine diagnostics.

Gas Path Faults

Measurable

Variables Shift

Independent

Variables Change

Results in

Producing

Allowing

Isolation of

Figure 6.3. Principles underlying gas path analysis.

Intake

Compressor Combustor

Core

Turbine

Power

Turbine

Figure 6.4. Typical two-shaft aeroderivative gas turbine with power turbine.

In the following sections, we review the need for engine diagnostics and
maintenance, introduce ANNs, present some aspects of the ANNs application to
diagnostic problems, highlight some features of ANNs that make them amenable to
GT diagnostics, as well as their limitations, and finally discuss their application to
gas path fault diagnosis of a developed case study. The engine used for this analysis
is a two-shaft aeroderivative gas turbine, thermodynamically similar to the Rolls
Royce Avon. A sectioned picture of this engine’s configuration is shown in Figure
6.4 with some of the gas path components indicated.

6.3. Artificial Neural Networks

Eustace and Merrington. (1995) described a neural network as a diagrammatic
representation of a mathematical equation that receives values (inputs) and gives
out results (outputs). Neurobiology estimates the human brain to consist of one

184 V Palade, CD Bocaniala and L Jain (Eds.)

hundred billion nerve cells or neurons. These communicate via electrical signals
that are short-lived impulses or “spikes” in the voltage of the cell wall membrane.
Biological neurons (Figure 6.5) have three principal components: the dendrites, the
cell body (soma) and the axon. A neuron's dendritic tree is connected to about a
thousand neighbouring neurons. When one of those neurons fires, a positive or
negative charge is received by one of the dendrites. The strengths of all the received
charges are added together through the processes of spatial and temporal
summation. Spatial summation occurs when several weak signals are converted into
a single large one, while temporal summation converts a rapid series of weak pulses
from one source into one large signal. The aggregate input is then passed to the cell
body or soma. If the aggregate input is greater than the axon hillock's threshold
value, then the neuron fires, and an output signal is transmitted down the axon. The
strength of the output is constant, regardless of whether the input was just above the
threshold, or a hundred times as great. The output strength is unaffected by the
many divisions in the axon; it reaches each terminal button with the same intensity
it had at the axon hillock.

Dendrites

Nucleus

Axon

Terminal

Buttons

Axon

hillock

Soma

Synapse

Signal Flow

Input

Output

A typical biological neuron. Figure 6.5.

Although ANNs have been around since the late 1950s, it was not until
mid-1980 that algorithms became sophisticated enough for general applications.
Also referred to as connectionist architectures, parallel-distributed processing
systems, an ANN is an information-processing paradigm inspired by the way the
densely interconnected, parallel structure of the mammalian brain processes
information. ANNs are collections of mathematical models that emulate some of
the observed properties of biological nervous systems and draw on the analogies of
adaptive biological learning. The key element of the ANN paradigm is the novel
structure of the information processing system. It is composed of a large number of
highly interconnected processing elements that are analogous to neurons and are
tied together with weighted connections that are analogous to synapses. A typical
neuronal model is thus comprised of weighted connectors, an adder and a transfer
function (Figure 6.6).

Computational Intelligence in Fault Diagnosis 185

Σ F (.)
w an

b

p

Figure 6.6. A single mathematical neuronal model.

The basic relationship here is:
n = wp + b (1)

a = F (wp + b) (2)
where

a = network output signal
w = weight of input signal
p = input signal
b = neuron specific bias
F = transfer/activation function
n = induced local field or activation potential
Learning in biological systems involves adjustments to the synaptic

connections that exist between the neurons. This is true for ANNs as well. Learning
typically occurs by example through training, or exposure to a truthed set of
input/output data where the training algorithm iteratively adjusts the connection
weights (synapses). These connection weights store the knowledge necessary to
solve specific problems. From Eqs. 1 and 2, it can be seen that a simple neuron
performs the linear sum of the product of the synaptic weight and input with the
bias, which value is then passed through an activation or transfer function that
limits the amplitude of the output of a neuron. Activation functions can take various
forms ranging from hard limit, through pure linear to sigmoid and the choice of
which to use depends on the desired output from the network and the characteristics
of the system being modelled.

Typical and practical networks are normally multi-input and probably
multilayered and in such cases, the variables in Eqs. 1 and 2 now take a different
format with w being the matrix of weights and a, p and b representing vectors of
their respective definitions.

Two key similarities between biological and artificial networks (Haykin,
1999) are:

1. Their building blocks are highly interconnected computational devices
though the artificial neurons are much inferior to their biological
counterparts.
2. The function of the network is determined by the nature of connection
between the neurons.
The inherent nonlinearity in GT performance and diagnostic relationships

and the obvious limitations of the analytical model-based technique otherwise
known as GPA, make the need for consideration of alternative techniques such as
ANNs inevitable.

186 V Palade, CD Bocaniala and L Jain (Eds.)

The basic steps involved in obtaining a typical supervised feedforward
ANN include:

1. Assessing the problem to be solved in a bid to seek the possibility of
discretising it.
2. Generating training and test data.
3. Defining and training various network architectures in order to seek
the optimal architecture(s). The training process joggles the weights and
biases to obtain the set that optimises performance via reduced errors and
good generalisation. The weight adjustment for the case of a back
propagation network that operates on the gradient descent technique is
done via the relation:

1nw
w

E(n)w ij
ij

ij (3)

where E is the difference between the outputs and the targets for the nth
input otherwise called the “error” to be minimised, and are the
learning rate and momentum constants, respectively.
4. Testing the ANNs with enough data to ascertain generalisation
abilities.
Barschdorff (1991) states that the use of ANNs can significantly improve

symptom interpretation in scenarios of malfunctions of mathematically difficult to
describe systems and processes.

6.4. Artificial Neural Networks and Fault
Diagnosis

The possibility of incorporating ANNs in engine health monitoring has recently
been the subject of much research after its successful application to other
endeavours of life such as medicine (diagnosis of diseases), finance (prediction of
stocks) amongst others. ANNs have been applied by a number of authors to fault
diagnostic activities. Such areas include:

Sensor(s) faults. Single sensor fault diagnosis for industrial
power plants (Simani and Fantuzzi, 2000). Single sensor fault
diagnosis for a space shuttle main engine (Guo and Nurre, 1991).
Prediction of a failed sensor and actuators in automobile engines
(Dong et al., 1997).
GT faults. Aeroengine fault and sensor bias detection (Kobayashi
and Simon, 2001; Zedda and Singh, 1998). Fault diagnosis of
fleet engines (Eustace and Merrington, 1995). Faulty sensor and
component isolation for a single spool GT (Kanelopoulos et. al.,
1997). Jet engine parameter trending and engine malfunction
prediction (Denney, 1993). Diagnosis and prognosis for the fuel
system faults of an AGT-1500 military tank’s GT (Illi et al.,
1994).

Computational Intelligence in Fault Diagnosis 187

Jet and rocket engines. Detection of bearing failure and fuel
interruptions in real time as well as stipulating the severity and
duration of the fault (Dietz et al., 1989).
Nuclear power plant. Nuclear power plant diagnostics (Guo and
Uhrig, 1992; Parlos et al., 1994; Tsai and Chou, 1996), signal
validation (Upadhyaya and Eryurek, 1992; Fantoni and Mazzola,
1996), control (Jous and Williams, 1990; Bakal et al., 1995),
plant state identification (Barlett and Uhrig, 1992; Tsoukalas,
1994), prediction of plant parameters (Sofa et al., 1990) and
optimisation (Fukuzaki et al., 1992).
Mechanical damage. Detection of rotating machinery gearbox
and bearing housing faults (Paya et al., 1997). Prediction of
propulsion system rotor unbalance (Huang et al., 2001), GT blade
fault diagnosis (Angelakis et al., 2001).

Some developed GT diagnostic approaches involving the use of ANNs
include the following reviewed works.

-Zedda and Singh (1998) proposed the use of a modular based diagnostic
framework for a twin spool turbofan GT with low bypass, thermodynamically
similar to the Garret TFE 1042. In their work, the authors considered the possibility
of using multiple nets in the detection and quantification of faults within three of
the four (FAN, HPC, HPT and LPT) components of this GT unit. Seven sensors
were considered for the isolation of fault in eight performance parameters. The
analysis considered a single operating point and component faults were split into
two categories – soft and hard, which required that a different diagnostic path be
traversed for the detected category. Single component faults were also considered.
The diagnostic procedure modules consisted of preclassification, classification, data
validation, training set selection and net training. The results were reportedly
encouraging by the authors.

Kobayashi and Simon (2001) proposed a hybrid neural network - genetic
algorithm technique for engine performance diagnostics. A General Electric
simulation programme for the XTE46 – a scaled unclassified representation of an
advanced military twin spool turbofan engine – was used to generate data for
constructing the diagnostic process. Faults were modelled by adjustments to
efficiencies and/or flow coefficient scalars of the fan (FAN), booster (BST), high
pressure compressor (HPC), high pressure turbine (HPT) and low pressure turbine
(LPT). This gave nine health parameters to be estimated. The authors chose twelve
sensed parameters to monitor the engine and compute the health parameters. In their
approach, a neural network estimator was designed to estimate the engine health
parameters from sensor measurements while the genetic algorithm was applied to
the sensor bias detection task. The authors claimed that the approach of
incorporating genetic algorithms would reduce the size of the network training set
significantly while inferring that ANN will not perform well if sensor bias is
present in the measurements used to train it. In general, the results showed good
estimation capabilities of the designed system with estimation errors below the 30%
level considered by the authors to be their satisfactory mark. The authors suggested
that an area of further work would require a systematic way of selecting and/or

188 V Palade, CD Bocaniala and L Jain (Eds.)

locating sensors for health estimation, as simply increasing the number of sensors
does not guarantee improved estimation performance.

Kanelopoulos et al. (1997) applied multiple neural networks in the
simulation of performance and qualitative diagnosis of faults in a single shaft GT.
The authors suggested that two networks with the first used to isolate sensor faults
and the subsequent one to isolate component faults would provide better results
than applying a single network for the combined task. This work amongst others
gave impetus to the idea of using a specialised network for a specialised task.

Eustace and Merrington (1995) applied a probabilistic neural network to
diagnose faults in any engine within a fleet of 130 engines. This idea is interesting
especially when one considers the fact that even for healthy engines, measured
parameters vary naturally from engine to engine within a fleet. The General Electric
F404 low-bypass-ratio afterburning turbofan engine was chosen for consideration.
This engine has six modules – fan, compressor, HPT, LPT and afterburner/final
nozzle section. The authors used a statistical correlation technique to select five
from eight available engine-monitoring parameters as inputs to the network.
Residuals obtained from the difference of a measured parameter and its baseline –
which was computed from correlative relationship with another parameter - were
used to train the network. Faulty data were generated by fault implantation on a
single engine and superimposed linearly on the fault-free data of the fleet, of which
60 were used to generate the network and 70 to test the network. This
superimposition was done to reduce the time and cost involved in fault implant
tests. Implanted faults were in the form of off-nominal adjustments to both the
compressor variable geometry (CVG) and exhaust nozzle final area. Results from
the network tests showed that an average accuracy of 87.6% was achieved with test
patterns of about 4900. Considering the variability in the baseline used, the obtained
result can be deemed acceptable.

Cifaldi and Chokani (1998) discussed the use of ANN with the
backpropagation and delta learning rule in predicting the performance of six
components (diffuser, compressor, burner, turbine, nozzle and mechanical shaft) of
a turbojet engine while simultaneously giving an overview of its possible
application to vibration-related faults. Ten thousand training patterns were
generated with the simulation programme and another twenty-five patterns were
used to test the trained network. Each of these patterns represented an operating
point. The result of their study showed that the mechanical, burner, compressor and
turbine efficiency trends were well predicted while the efficiency trends of the
diffuser and nozzle were poorly predicted. The authors attributed this poor
performance to the choice of the instrumentation.

Green and Allen (1997) discussed the need to incorporate ANNs with
other AI tools to obtain a cognitive (awareness), ontogenetic (learning organism),
engine health monitoring (EHM) system or COEHM with estimation of lifing,
diagnostic and prognostic capabilities.

Guo et al. (1996) applied an autoassociative neural network (AANN) for
sensor validation. The authors in their analysis assumed a redundancy in the
instrumentation set. This may imply that a nonredundant instrumentation set cannot
be successfully applied with AANN for sensor validation since according to the
authors, the number of neurons in the bottleneck must not be less than the minimum

Computational Intelligence in Fault Diagnosis 189

number of sensors required to generate all sensor estimates in case of a detected
failure.

Napolitano et al. (1996) while comparing the approaches of Kalman filters
(KF) and ANN for sensor failure detection, isolation and accommodation (SFDIA),
used units without physical redundancy in the sensory capabilities. Basing their
analysis on soft failures/faults, the authors applied multiple ANNs in the form of
main and decentralised networks (MNN, DNNs) to perform SFDIA. The
application of multiple nets makes it possible to infer that if errors are to be
minimised for this and other complex applications, then more than one net need be
employed with each, applied to a specific aspect of the problem.

Weidong et al. (1996) and Lu et al. (2000) used the relativity of inputs and
outputs of an ANN to detect the presence, or otherwise, of faults in sensors, with
the output said to represent a better approximation of the sensors’ correct
measurements. This network output can then be fed to other networks, probably, for
component fault diagnosis.

In the present analysis, however, we intend to develop a methodology for
fault diagnostics of the gas path of a two-shaft gas turbine. We shall consider faults
that affect the components (turbines and compressor) as well as the sensors, using
ANNs. Table 6.1 shows some of the strengths of ANNs that are juxtaposed with
their perceived weaknesses. The strengths make ANNs very useful for integration
in engine diagnostics, while the weaknesses create challenges that will need
solutions as more research is focussed on improving ANN applications to
diagnostics systems.

Table 6.1. Comparison of the strengths and weaknesses of ANNs in engine diagnostics

ANN STRENGTHS ANN WEAKNESSES

• It has the ability to handle nonlinear
relationships, which are characteristics of
engine parameter interrelationships. This
feature can be extended to include such
cases where ANN is applied to represent
relationships where no analytical model
exists.

• It is tolerant to measurement
nonrepeatability problems or noise.

• It can operate satisfactorily even in the
presence of limited information.

• It can be applied online due to its
extremely fast convergence when in the
recall mode.

• The optimal network structure for a given
problem is generally not known.

• The criteria for the validation of a network
are not well defined.

• The criteria for the selection of the best
training algorithm for fast convergence of
given or new patterns is not understood.

• The rules for selecting the amount and type
of data for training as to improve quality of
network are minimal.

• The convergence of training algorithms is
not guaranteed.

• Long training/ adaptation times.
• Data effusive, which could be difficult to

obtain in some actual situations.

6.5. Measurable Parameters and Measurement
Uncertainties/Errors

It is obvious that the ability to accurately determine engine health largely depends
on the accuracy of measurements available. Many sensors installed on the engine

190 V Palade, CD Bocaniala and L Jain (Eds.)

operate in very hostile environments at extremes of temperature and/or pressure.
Unfortunately, sensor measurements are often distorted by noise and bias, thereby
masking the true condition of the engine and leading to incorrect estimation results.
This creates the situation where sensor reliability may be lower than component
reliability, and causes incorrect component fault diagnosis.

Measurement errors may be broken down into two distinct components, a
random error and a fixed error (Abernethy and Thomson, 1973). Random error is
the difference in values between repeated measurements of the same item. This can
be described as instrument nonrepeatability or precision error, and can be of the
same order of magnitude as changes induced by a real engine fault. The fixed error
is called the sensor bias and remains constant. In repeated measurements, each
measurement will have the same amount of bias. Sensor failures can be viewed as
either hard catastrophic failures or soft uneasy-to-detect failures. Hard failures are
generally assumed to be easy to detect. Soft failures may generally not degrade the
system performance for some time but if left undetected can eventually cause
catastrophic results. An undetected sensor bias can either point to a nonexistent
fault or point to a fault in an engine component.

For simplicity, and to be able to communicate the level of uncertainty
associated with a measurement, an “uncertainty” term may be used to describe the
measurement instrument. The most widely used convention is a hybrid of bias and
precision error. Uncertainty may be centred about the measurement and is defined
as:

(4) U = (B + t95s)
where B is the bias limit, s is the precision error index (standard deviation of the
sampled population) and t95 is the 95th percentile point for the two-tailed “t”
distribution (Figure 6.7).

Largest

Negative Error

- [B + t
95

S]

Largest

Positive Error

+ [B + t
95

S]

MEASUREMENT

MEASUREMENT SCALE

RANGE OF

PRECISION ERROR

± t
95

S

-B +B

UNCERTAINTY INTERVAL

(The true value should fall within this interval)

Figure 6.7. Instrument uncertainties (Abernethy and Thomson, 1973).

Six measurable parameters (the process of determining them is presented
later) are used in the current analysis, and their precision values are given in Table

Computational Intelligence in Fault Diagnosis 191

6.2, together with the levels of deviations for which they could be considered as
producing faulty readings. The precision values were applied to all simulated data
before introduction to the ANN programme for training and testing purposes.

Table 6.2. Measurable parameters nonrepeatability errors

Sensor Description Precision

Values

(% span)

Fault Level

Considered (%)

1 N1 Gas generator relative shaft speed 0.03 + (0.06 to 10)

2 WFE Gas generator fuel flow 1 + (2 to 10)

3 P2 Gas generator compressor delivery total pressure 0.1 + (0.2 to 10)

4 T2 Gas generator compressor delivery total temperature 0.4 + (0.8 to 10)

5 P4 Gas generator exhaust pressure 0.1 + (0.2 to 10)

6 T4 Gas generator exhaust temperature 0.4 + (0.8 to 10)

6.6. Case Study

Gas path faults can occur during the operation of a gas turbine, and because they
affect performance and life, it is necessary to diagnose and correct them. It is
important to note that in addition to component faults, measurement noise and
sensor bias are other sources of parameter changes in the gas path of a gas turbine.
A stochastic approach would therefore seek not to undermine this fact. Application
of artificial neural networks has the capability to deal with inaccuracies of
conventional diagnostic tools. Such inaccuracy effects include undermodeling
(where a simplified model is used for convenience to appropriate the real system),
linearization errors and measurement noise. Figure 6.8 presents a first level
schematic of the diagnostic strategy being proposed. The procedures adopted
include:

(1) Obtaining an aerothermodynamic model of the engine from
which simulation data would be generated for training and testing
the networks. This approach was applied because it is extremely
expensive to sacrifice actual engines for such an analysis and the
probability of obtaining erroneous data from actual fault
implantations cannot be ruled out.

(2) Determining the sensors to be monitored. This can be done by
making use of the sensor information available for the given
engine or applying such techniques as gas path analysis to
determine the optimum combinations that would be effective to
diagnose the desired faults (Ogaji and Singh, 2002b). The latter
approach was used.

(3) Implanting faults in the engine model and generating data to
cover all the possible fault scenarios as well as the required
operating conditions defined by the power setting parameter and
ambient conditions.

(4) Training and testing various network architectures and
determining the best data flow framework for the required
diagnostic purpose.

192 V Palade, CD Bocaniala and L Jain (Eds.)

Largest

Negative Error

- [B + t
95

S]

Largest

Positive Error

+ [B + t
95

S]

MEASUREMENT

MEASUREMENT SCALE

RANGE OF

PRECISION ERROR

± t
95

S

-B +B

UNCERTAINTY INTERVAL

(The true value should fall within this interval)

Figure 6.8. Schematic of diagnostic strategy.

CLASS1

CLASS3

F

AUTOASSOC1

APPROX1

CLASS2

CLASS4

CLASS5

NF

%∆N %∆WFE %∆P2 %∆T2 %∆P4 %∆T4

SF

(SSF + DSF)

SCF DCF

CF

MCF

ENGINE MEASUREMENTS

C PCT

APPROX2 APPROX3

%η %Γ %η %Γ%Γ APPROX6 APPROX5 APPROX4

C&CT CT&PT C&PT

%η %η%Γ %Γ

%η %Γ %η %Γ

%η %Γ %η %Γ

APPROX7

%η %Γ %η %Γ %η %Γ

%η

Figure 6.9. Gas path diagnostic framework for single-spool gas turbine.

Computational Intelligence in Fault Diagnosis 193

The diagnostic framework (ANN model from Figure 6.8) applied is shown
in Figure 6.9, and its functioning is given below:

Measured patterns from the engine sensors are fed into the first
classification network denoted by CLASS1. These patterns are
classified into either faulty (F) or not faulty (NF).
If there is no fault detected in the patterns and if the network is
sufficiently accurate, then there is no need for further diagnostic
checks. If a fault is detected, the patterns are passed on to
CLASS2 where they are classified into either sensor faults (SF) or
component faults (CF). The sensor faults considered in this case
are single (SSF) and dual (DSF).
If a sensor fault is detected, the pattern is passed on to an
autoassociative network (AUTOASSOC1), whose output has
been constrained during training, to give nonfaulty results. Thus
the percentage deviation between input to this network and its
output provides an indication of the amount of bias/fault or even
noise present in each of the sensors.
Alternatively, if the pattern from CLASS2 is classified as a CF,
then the patterns are passed on to another classification network
called CLASS3 which classifies the patterns into any of the three
categories: single-component faults (SCF), dual-component faults
(DCF) and multi-component faults (MCF). It necessary to note
that the engine under consideration has four basic components –
one compressor, one combustor and two turbines. The combustor
is excluded in this analysis because its efficiency is relatively
stable with time (Diakunchak, 1992) and thus its performance
deterioration does not provide sufficient information from the
measurable parameters which is a requirement for assessing its
health using our technique.
A pattern identified as SCF is passed on to another network,
CLASS4, which attempts to isolate the affected component,
which could be the compressor (C), compressor turbine (CT) or
power turbine (PT). If the faulty component is successfully
isolated, the pattern is passed on to an approximation network that
assesses the extent of fault by determining the changes in
efficiency () and flow capacity (). Interpretation of the nature
of the fault is left to the user.
The approach to DCF and MCF fault assessment is similar to that
of SCF described above.

The anatomy and results of these networks as well as results obtained from
tests carried out are presented in the next section. A possible alternative diagnostic
structure to that shown in Figure 6.9 is also presented.

194 V Palade, CD Bocaniala and L Jain (Eds.)

6.7. Network Anatomy and Results

In Table 6.3 a summary of the classification networks developed in this work is
presented including results obtained in terms of correctly classified test patterns.
The network type is the probabilistic neural network (PNN), which can be set up in
less than two minutes when data is available. This network requires no “training,”
but its hidden layer takes up processing units or neurons equal to the number of
training patterns while the input and output layers are respectively equal, in terms of
the number of neurons, to the number of sensors and the expected output groups.
The PNN was applied to all pattern classification tasks except CLASS3, because in
addition to the quick setup time, it also has the basic advantage of novelty detection
(assigning previously unseen patterns to the most probable fault class). Appendix 2
offers a succinct description of the networks used in this work including the PNN.

Table 6.3. Anatomy of classification networks and results

NETWORK Type TTRP/TTP RESULTS (%CCP)

CLASS1 PNN 13526

NF

100

F

99.9

CLASS2 PNN 12026

SF

100

CF

99.7

CLASS3 PNN 9926

SCF

99.1

DCF

90.1

MCF

76.3

CLASS4 PNN 1330

C

100

CT

100

PT

100

CLASS5 PNN 4096

C&CT

98.6

C&PT

96.8

CT&PT

97.2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SCF DCF MCF

FAULT AFFECTED COMPONENT(S)

%
C

C
P

 A
N

D
 %

 IC
P

SCF DCF MCF

Figure 6.10. Distribution of classification results from CLASS3 using a PNN.

CLASS1 data set comprised representations from all the possible fault
scenarios, thus patterns in all the other CLASS networks are also members of
CLASS1. The classification accuracy of CLASS1 is very high which indicates the
network’s ability to adequately distinguish between a faulty (F) and nonfaulty (NF)

Computational Intelligence in Fault Diagnosis 195

engine. The philosophy of first ascertaining the condition of an engine before
diagnosing its fault is considered a novel development.

Generally, all classification networks performed well except CLASS3
where some DCFs were misclassified as either SCF or MCF. This is because when
one or both components included in the DCF are lightly affected by fault, the fault
pattern becomes basically similar to that of an SCF and is classified as such. If both
components in the DCF are heavily affected by fault, the pattern created becomes
very similar to that of an MCF and is thus classified as such. Also, most of the
MCFs were classified as DSF for the same reason (Figure 6.10). This problem led
to application of a trained network to this aspect of the diagnostic framework. Using
a fully connected feedforward network with architecture 6-35-35-3, resilient
backpropagation (RB) as training algorithm and tanh sigmoid transfer function
(Demuth and Beale, 2001) on all nodes, we obtained improved classification
accuracy for this class (Table 6.4). The lesson to be derived here is that a modular
diagnostic structure like the one proposed in Figure 6.8 allows for optimisation of
each aspect of the structure, by using the best network configuration suitable for
that aspect.

Table 6.4. Comparison of classification from PNN and RB for CLASS3

NETWORK TYPE SCF DCF MCF

PNN (%CCP) 99.10 90.06 76.31

RB (%CCP) 98.95 95.00 90.44

An alternative to the classification section of the ANN framework
proposed in Figure 6.9 is shown in Figure 6.11. Here, a CLASS network created
on the PNN principle is used to diagnose any of the nine possible engine conditions,
a task hitherto performed by five CLASS networks. The classification accuracy
achieved (Table 6.5) is similar to that from Figure 6.9 when the percentages are
compounded down the chain, but the possibility of optimising any section of the
classification network structure is ruled out as is possible with Figure 6.8.

CLASSΩ

NF SF C CT PT C&CT C&PT CT&PT C, CT&PT

AUTOASSOC1

APPROX1 APPROX3 APPROX5 APPROX7

APPROX2 APPROX4 APPROX6

ENGINE MEASUREMENTS

Figure 6.11. Alternative classification structure.

196 V Palade, CD Bocaniala and L Jain (Eds.)

Table 6.5. Classification accuracy for alternative structure

FC NF SF C CT PT C+CT C+PT CT+PT MCF

%CCP 100.00 99.62 99.82 98.42 98.42 89.06 87.76 86.72 76.02

The implanted component faults ranged from a 0.5% to 3.5% drop in
efficiency while various levels of flow capacity changes were combined with each
level of efficiency drop depending on the type of fault being simulated. This is
expected to cover the range of faults of interest during engine operation. Test
patterns were generated at positions between the training patterns that account for
the equality of test and training patterns. In Table 6.6, a summary of the
approximation networks is presented. It should be recalled that approximation
networks are created to quantify the amount of changes in independent variables for
component(s) diagnosed to be faulty. The sizes of network deemed optimal from
the number of networks trained for each category are also shown. All the networks
here were trained with RB training algorithm (Demuth and Beale, 1992) with the
transfer function for all nodes tan sigmoid. The last two columns of Table 6.6 show
the MSE obtained from training and testing these networks. The MSE and RMS
defined by Eqs. 5 and 6 respectively are the statistical parameters used to examine
the performance of the networks as well as make comparisons with other diagnostic
techniques in this work.

The very low MSE obtained during training and testing of the APPROX
networks vis-à-vis the close similarity between the MSE from the training and
testing process in the presence of measurement noise indicates the high estimation
quality of the networks for the faults being diagnosed.

Table 6.6. Anatomy of approximation networks and results

NETWORK NTRALG TTRP/TTP SIZE MSE

(TRAINING)

MSE (TEST)

APPROX1 RB 1830 6-15-15-2 0.009 0.010

APPROX2 RB 1220 6-10-10-2 0.003 0.003

APPROX3 RB 1220 6-10-10-2 0.002 0.003

APPROX4 RB 23064 6-30-30-4 0.032 0.032

APPROX5 RB 23064 6-35-35-4 0.018 0.018

APPROX6 RB 15376 6-30-30-4 0.018 0.018

APPROX7 RB 20736 6-40-40-6 0.137 0.146

n

n

i 1

2
Detectedimplanted FaultFault

MSE
(5)

MSERMS (6)

Computational Intelligence in Fault Diagnosis 197

Table 6.7. Correlation of APPROX4 test output with target and analysis of prediction
error

Parameter
Correlation

Coefficient (r)

ηc 0.9721

Γc 0.9993

ηct 0.9787

Γct 0.9992

?ηc ?Γc ?ηct ?Γct

Mean

Error
0.01 0.00 0.01 0.00

σ 0.21 0.18 0.18 0.14

1σ 75 70 81 69

2σ 95 95 95 95

%
 o

f
po

in
ts

w
ith

in
 th

e
gi

ve
n

st
d.

3σ 99 99.5 98 99.5

12(a)

12(b)

12(c) 12(d)

0

300

600

900

1200

-0.9 -0.6 -0.3 -0.1 0.2 0.5 0.8 1.1

Test Error Range

F
re

q
u

en
c

y

C. Effic iency Error

0

200

400

600

800

-0.7 -0.5 -0.3 -0.2 0.0 0.2 0.4 0.5 0.7

Test Error Range

Fr
eq

ue
nc

y

C. Flow Capacity

0

500

1000

1500

2000

-1.3 -1.0 -0.7 -0.3 0.0 0.3 0.6 0.9 1.3

Test Error Range

F
re

q
u

en
cy CT. Efficiency

0

200

400

600

800

-0.6 -0.5 -0.3 -0.2 0.0 0.1 0.2 0.4

CT. Flow Capacity

F
re

q
u

en
cy

CT. Flow Capacity

Figure 6.12. Distribution of actual error in ANN prediction of compressor turbine
performance parameters

A close view at one of these approximation networks presented in Table
6.6, say APPROX4, shows that it has architecture of 6-30-30-4 with 23,064 patterns
used for training while another 23,064 patterns were involved in the testing of the
network. This network was designed to assess the amount of DCF present in the
compressor and compressor turbine. Figure 6.12a-d shows the prediction error
distribution from testing of this network. Considering the level and complexity of
the faults being diagnosed, especially with the level of noise added, this degree of
accuracy is satisfactory even in actual applications. From the correlation
coefficients (Table 6.7, left), we show the degree of matching obtained from the
ANN predicted fault level and the target or true values for each of the independent
variables. From Table 6.7, right, it is shown that over 70% of the test patterns fall

198 V Palade, CD Bocaniala and L Jain (Eds.)

within one standard deviation of the mean error, with the mean effectively equal to
zero in this case.

Other networks showed similar performance to those presented above, but
generally, as the complexity of the problem being addressed increased, the degree
of accuracy of the network in addressing the problem decreased.

In Table 6.8, the anatomy of the autoassociative network used to determine
changes from a working baseline for sensor fault(s) is shown. The MSE error, both
for training and testing of the network here, again, indicate a very high level of
prediction accuracy. The amount of sensor noise that may be present is also
determined.

Table 6.8. Anatomy of autoassociative network and results

Label NTRALG TTRP/TTP SIZE MSE

(TRAINING)

MSE (TEST)

AUTOASSOC1 RB 2100 6-15-3-15-6 1.245E-10 1.245E-10

6.8. Comparison of Developed Approach with
Other Techniques

Tables 6.9 and 6.10 show a comparison between the diagnostic results from two gas
path analysis (GPA) techniques and those of the trained networks for compressor
and gas generator turbine faults, respectively. GPA as a tool for engine diagnostics
was initially introduced by Urban (1972) and involves the thermo-mathematical
matching of engine measurements (dependent variables) to performance parameter
(independent variables) changes. This is based on the premise that faults in the gas
path of a gas turbine cause changes in efficiencies and flow capacities which are not
directly measurable but because a relationship exists between the measurements
such as pressures, temperatures, speeds, etc. taken from different stations of an
engine and the performance parameters, it is exploited to determine the magnitude
of changes in the independent variables. Urban (1972) considered this relationship
from a linear perspective and his work is now more commonly termed linear gas
path analysis (LGPA). In reality, gas turbine parameter interrelationships are highly
nonlinear, hence, Escher and Singh (1995) developed an iterative approach to the
problem with the principles based on Urban’s formulation. This new approach is
termed nonlinear gas path analysis (NLGPA).

In Table 6.9, the implanted fault in the compressor component and the
diagnostic results from three diagnostic techniques, LGPA, NLGPA and ANN, are
compared. It should be noted that the presence of a fault is indicated by a change in
the independent variables which would thus affect the measurements taken from the
engine. The ANN module involved in estimating the fault in this component is
APPROX2 (see Figure 6.9). The mean RMS errors from the three techniques show
that the estimation accuracy depreciates from NLGPA through ANN to LGPA; in
fact the mean error from the ANN is twice that from NLGPA. A similar conclusion
can be drawn from Table 6.10, where APPROX2 is called to estimate compressor
turbine fault from the ANN module in Figure 6.9. In Table 6.10, however, NLGPA

Computational Intelligence in Fault Diagnosis 199

failed to converge on some fault scenarios. This nonconvergence is due to a
convergence feature in the NLGPA algorithm that causes instability when it is
perceived that a solution is not possible with the current instrumentation suite. This
is in contrast with the ANN results, which show that the instrumentation suite is
sufficient. In addition, the results from the GPA techniques (LGPA and NLGPA) do
not include measurement noise, unlike those from ANN. Had noise been included
in the NLGPA measurements, the ANN diagnostic results may have compared
favourably with those from NLGPA, or even better since no noise filtering
algorithm exists in the NLGPA tool.

Table 6.9. Comparison between ANN and GPA diagnostic results for compressor

IMPLANTED

FAULTS

LINEAR GPA NONLINEAR GPA ANN

η
c

Γ
c

η
c

Γ
c

RMS η
c

Γ
c

RMS η
c

Γ
c

RMS

-0.5 -0.5 -0.81 -0.33 0.251 -0.50 -0.47 0.022 -0.59 -0.50 0.062

-0.5 -1.0 -0.83 -0.86 0.253 -0.50 -1.00 0.003 -0.53 -0.94 0.045

-0.5 -1.5 -0.92 -1.50 0.299 -0.50 -1.55 0.037 -0.55 -1.49 0.034

-0.5 -2.0 -1.22 -1.69 0.555 -0.62 -1.53 0.340 -0.59 -2.04 0.071

-1.0 -1.0 -1.62 -0.65 0.503 -1.00 -0.98 0.012 -1.04 -1.00 0.030

-1.0 -2.0 -1.66 -1.72 0.506 -1.00 -2.00 0.002 -0.80 -1.83 0.189

-1.0 -3.0 -2.07 -2.52 0.832 -1.13 -2.49 0.373 -1.01 -3.03 0.020

-1.0 -4.0 -2.46 -3.42 1.111 -1.01 -3.97 0.025 -1.02 -4.04 0.032

-1.5 -1.5 -2.46 -0.88 0.811 -1.50 -1.47 0.019 -1.34 -1.40 0.130

-1.5 -3.0 -2.46 -0.88 1.647 -1.49 -3.00 0.007 -1.54 -3.04 0.042

-1.5 -4.5 -3.13 -3.81 1.251 -1.50 -4.48 0.015 -1.35 -4.35 0.151

-1.5 -6.0 -3.72 -5.11 1.693 -1.51 -5.99 0.006 -1.81 -6.29 0.302

-2.0 -2.0 -3.51 -0.80 1.365 -2.00 -1.99 0.008 -1.79 -1.87 0.177

-2.0 -4.0 -3.49 -3.09 1.236 -2.08 -3.73 0.201 -1.81 -3.85 0.170

-2.0 -6.0 -4.19 -5.11 1.673 -2.00 -6.00 0.005 -1.93 -5.99 0.048

-2.0 -8.0 -5.01 -6.88 2.270 -2.01 -7.99 0.012 -1.91 -7.93 0.080

-2.5 -2.5 -4.30 -1.02 1.648 -2.50 -2.48 0.015 -2.74 -2.74 0.243

-2.5 -5.0 -4.24 -4.07 1.393 -2.53 -4.96 0.038 -2.59 -5.10 0.097

-2.5 -7.5 -5.28 -6.24 2.156 -2.50 -7.49 0.010 -2.62 -7.55 0.090

-2.5 -10.0 -6.33 -8.69 2.862 -2.52 -9.99 0.014 -2.48 -9.87 0.093

-3.0 -3.0 -5.25 -0.98 2.138 -3.01 -2.99 0.006 -2.81 -2.97 0.137

-3.0 -6.0 -5.09 -4.85 1.690 -3.04 -5.96 0.039 -3.14 -6.05 0.107

-3.0 -9.0 -6.37 -7.45 2.623 -3.01 -8.99 0.009 -3.08 -9.00 0.054

-3.0 -12.0 -7.60 -10.41 3.440 -2.99 -11.99 0.006 -3.06 -12.05 0.057

Mean Error 1.425 Mean Error 0.051 Mean Error 0.102

200 V Palade, CD Bocaniala and L Jain (Eds.)

Table 6.10. Comparison between ANN and GPA diagnostic results for compressor turbine
module

IMPLANTED

FAULTS

LINEAR GPA NONLINEAR GPA ANN

η
CT

Γ
CT

η
CT

Γ
CT

RMS η
CT

Γ
CT

RMS η
CT

Γ
CT

RMS

-0.5 0.5 -0.99 0.38 0.358 -0.51 0.47 0.021 -0.53 0.55 0.038

-0.5 1.0 -1.01 0.86 0.373 -0.51 0.97 0.023 -0.53 1.13 0.098

-0.5 1.5 -1.04 1.30 0.403 -0.51 1.44 0.041 -0.60 1.61 0.109

-0.5 2.0 -1.06 1.75 0.434 -0.49 1.97 0.023 -0.59 1.97 0.065

-1.0 1.0 -2.11 0.69 0.814 -1.01 1.01 0.007 -1.00 1.06 0.040

-1.0 1.5 -2.17 1.13 0.866 -0.99 1.48 0.014 -1.06 1.59 0.075

-1.0 2.0 -2.37 1.55 1.021 -1.00 1.99 0.008 -0.94 1.96 0.053

-1.0 2.5 -2.58 1.95 1.184 -1.00 2.50 0.003 -0.94 2.39 0.085

-1.5 1.5 -3.96 1.01 1.775 -1.51 1.50 0.004 -1.47 1.49 0.020

-1.5 2.5 -4.32 1.73 2.069 -1.67 2.48 0.118 -1.50 2.45 0.033

-1.5 3.5 -4.36 2.46 2.152 -1.52 3.48 0.023 -1.53 3.53 0.028

-1.5 4.5 -4.65 3.16 2.421 -1.49 4.49 0.008 -1.44 4.38 0.097

-2.0 2.0 -5.45 1.17 2.507 -2.01 2.00 0.006 -2.04 1.95 0.042

-2.0 3.0 -5.76 1.89 2.770 -2.02 2.99 0.013 -2.00 3.06 0.041

-2.0 4.0 -6.07 2.58 3.048 -2.01 4.00 0.006 -2.01 4.02 0.018

-2.0 4.5 -6.22 2.91 3.190 -2.01 4.49 0.011 -1.91 4.39 0.096

-2.5 2.5 -6.82 1.34 3.166 NC NC - -2.42 2.39 0.097

-2.5 3.0 -7.01 1.69 3.318 NC NC - -2.43 2.95 0.061

-2.5 3.5 -7.18 2.03 3.469 NC NC - -2.56 3.55 0.059

-2.5 4.5 -7.79 2.69 3.951 NC NC - -2.55 4.56 0.055

-3.0 3.0 -11.53 1.42 6.134 NC NC - -2.95 3.07 0.057

-3.0 3.5 -12.23 1.70 6.648 NC NC - -3.04 3.63 0.095

-3.0 4.0 -11.44 1.98 6.139 NC NC - -3.02 4.16 0.111

-3.0 4.5 -12.37 2.21 6.822 NC NC - -2.99 4.61 0.081

Mean Error 2.710 Mean Error 0.021 Mean Error 0.065

6.9. Conclusion

A hierarchical approach to gas path diagnostic for a two-shaft simple gas turbine
involving multiple neural networks has been presented. The described methodology
has been tested with data not used for training, and generalisation is found to be
appropriate for actual application of this technique. In addition, the level of
accuracy achieved by this decentralised application of ANNs shows derivable
benefits over techniques that require just a single network to perform fault
detection, isolation and assessment. The technique presented, combined with
inference tools such as expert system or fuzzy logic, could be expanded to produce
an engine health monitoring scheme since ANNs also have the ability to fuse data
from other associated performance monitoring techniques such as vibration and oil
analysis.

Generally, as the number of simultaneously faulty components is
increased, the reliability of the network to accurately assess the fault decreases. One
way of improving this reliability would be the increase of sensory information by
considering data at different operating points, otherwise known as multiple
operating point analysis (MOPA).

The ANN structure described above forms a part of the diagnostic tool that
includes other aspects involved in parameter corrections, as well as aspects that

Computational Intelligence in Fault Diagnosis 201

provide linguistic information on the nature and type of fault, since ANNs only give
qualitative and quantitative results without any explanation for their significance.

References

1. Abernethy RB and Thomson JW Jr (1973) Uncertainty in Gas Turbine
Measurements. In: Proceedings of the AIAA/SAE 9th Propulsion Conference, 5-7
November, Las Vegas, NV, USA, AIAA 73-1230
2. Agrawal RK, MacIsaac BD and Saravanamuttoo HIH (1978) An Analysis
Procedure for Validation of On-Site Performance Measurements of Gas Turbines.
ASME Journal of Engineering for Power, paper no. 78-GT-152
3. Aker GF and Saravanamuttoo HIH (1989) Prediction Gas Turbine Performance
Behaviour Due to Compressor Fouling Using Computer Simulation Techniques.
ASME Journal of Engineering for Gas Turbines and Power 111:343-350
4. Angelakis C, Loukis EN, Pouliezos AD and Stavrakakis GS (2001) A Neural
Network Based Method for Gas Turbine Blading Fault Diagnosis. International
Journal of Modelling and Simulation 21(1)
5. Bakal B, Adali T, Fakory R, Sonmez MK and Tsaoi O (1995) Neural Network
Simulation of Real Time Core Neutronic Model. In: Proceedings of the SCS
Simulation Multiconference, Phoenix, AZ, USA
6. Barlett EB and Uhrig RE (1992) Power Plant Status Diagnostics Using
Artificial Neural Network. Nuclear Technology 97:272-281
7. Cifaldi ML and Chokani N (1998) Engine Monitoring Using Neural Networks.
American Institute of Aeronautics and Astronautics, AIAA-98-3548
8. Demuth H and Beale M (1992) Matlab Neural Networks Users Guide Ver. 4.
MathWorks
9. Denney G (1993) F16 Jet Engine Trending and Diagnostics with Neural
Networks. SPIE Applications of Artificial Neural Networks IV 1965:419-422
10. Diakunchak IS (1992) Performance Deterioration in Industrial Gas Turbines.
ASME Journal of Engineering for Gas Turbines and Power 114:161-168
11. Dietz WE, Kiech EL and Ali M (1989) Jet and Rocket Engine Fault Diagnosis
in Real Time. Journal of Neural Network Computing 1(1):5-18
12. Dong DW, Hopfield JJ and Unnikrishnan KP (1997) Neural Networks for
Engine Fault Diagnostics. In: Proceedings of the 1997 IEEE Workshop, pp. 636-
644
13. Escher PC and Singh R (1995) An Object-Oriented Diagnostics Computer
Program Suitable for Industrial Gas Turbines. In: Proceedings of the United 21st
International Congress on Combustion Engines (CIMAC), Interlaken, Switzerland,
15-18 May
14. Eustace R and Merrington G (1995) Fault Diagnosis of Fleet Engines Using
Neural Networks. In: Proceedings of the Twelfth International Symposium on Air
Breathing Engines, Melbourne, Australia , September 10-15, paper no. ISABE 95-
7085
15. Fantoni PF and Mazzola A (1996) Multiple Failure Signal Validation in
Nuclear Power Plants Using Artificial Neural Networks. Nuclear Technology
113(3)

202 V Palade, CD Bocaniala and L Jain (Eds.)

16. Fukuzaki T, Ohga Y and Kobayashi Y (1992) Feasibility Studies on Applying
Neural Network Techniques in Nuclear Power Plants. In: Proceedings of the
OECD-NEA/IAEA International Symposium on NPP Instrumentation and Control,
Tokyo, Japan
17. Green A and Allen D (1997) Artificial Intelligence for Real Time Diagnostics
and Prognostics of Gas Turbine Engines. In: Proceedings of the 33rd
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, Seattle,
WA, 6-9 July, paper no. AIAA 97–2899
18. Guo Z and Uhrig RE (1992) Use of Artificial Neural Networks to Analyze
Nuclear Power Plant Performance. Nuclear Technology 99:36-42
19. Guo T-H and Nurre J (1991) Sensor Failure Detection and Recovery by Neural
Networks. International Joint Conference on Neural Networks, Seattle, Washington,
8-12 July, paper no. NASA-TM-104484
20. Guo T-H, Saus J, Lin C-F and Ge J-H (1996) Sensor Validation for Turbofan
Engines Using an Autoassociative Neural Network. AIAA Guidance Navigation
and Control Conference, San Diego, CA, 29-31 July, paper no. AIAA-96-3926
21. Haykin S. (1999) Neural networks. A comprehensive foundation. Prentice-Hall
22. Huang H, Vian J, Choi J, Carlson D and Wunsch D (2001) Neural Network
Inverse Models for Propulsion Vibration Diagnostics. In: Proceedings of SPIE
4390:12-21
23. Illi OJ, Greitzer FL, Kangas LJ and Reeve TJ (1994) An Artificial Neural
Network System for Diagnosing Gas Turbine Engine Fuel Faults. In: Proceedings
of the 48th Meeting of the Mechanical Failure Group, April 19-21. Wakefield, MA,
paper no. MFPG 48
24. Jouse WC and Williams JG (1990) Neural Control of Temperature and
Pressure during PWR Start-up. American Nuclear Society Transactions 61:219-220
25. Kanelopoulos K, Stamatis A and Mathioudakis K (1997) Incorporating Neural
Networks into Gas Turbine Performance Diagnostics. In: Proceedings of the
International Gas Turbine and Aeroengine Congress and Exhibition, Orlando,
Florida, June 2-5, paper no. 97-GT-35
26. Kobayashi T and Simon DL (2001) A Hybrid Neural Network-Genetic
Algorithm Technique for Aircraft Engine Performance Diagnostics. In: Proceedings
of the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt
Lake City, Utah, paper no. AIAA-2001-3763
27. Lakshminarasimha AN, Boyce MP and Meher-Homji CB (1994) Modelling
and Analysis of Gas Turbine Performance Deterioration. ASME Journal of
Engineering for Gas Turbines and Power 116:46-52
28. Lu P, Hsu T, Zhang M and Zang J (2000) An Evaluation of Engine Faults
Diagnostics Using Artificial Neural Networks. In: Proceedings of ASME Turbo
Expo 2000: Land, Sea and Air, Munich, Germany, 8-11 May, paper no. 2000-GT-
0029
29. Napolitano M, Windon D, Casanova J and Innocenti M (1996) A Comparison
between Kalman Filter and Neural Network Approaches for Sensor Validation. In:
Proceedings of the AIAA Guidance Navigation and Control Conference, San
Diego, CA, July 29-31, paper no. AIAA-96-3894
30. Ogaji SOT and Singh R (2002a) Advanced Engine Diagnostics Using Artificial
Neural Networks. In: Proceedings of the IEEE International Conference on

Computational Intelligence in Fault Diagnosis 203

Artificial Intelligence Systems, 5-10 September, Gelendzhik, Black Sea Coast,
Russia, pp. 236-241
31. Ogaji SOT and Singh R (2002b) Study of the Optimisation of Measurement
Sets for Gas Path Fault Diagnosis in Gas Turbines. In: Proceedings of ASME Turbo
Expo 2002, Amsterdam, The Netherlands, 3-6 June, paper no. GT-2002-30050
32. Ogaji SOT, Singh R and Probert SD (2002a) Multiple-sensor fault-diagnoses
for a 2-shaft stationary gas-turbine. Applied Energy 71:321-339
33. Ogaji S, Sampath S and Singh R (2002b) Gas Turbine Faults: Detection,
Isolation and Assessment Using Neural Networks. In: Proceedings of the Sixth
International Conference on Knowledge-Based Intelligent Information &
Engineering Systems, 16-18 September, Crema, Italy, pp. 141-145
34. Parlos AG, Muthusami J and Atiya AF (1994) Incipient Fault Detection and
Identification in Progress Systems Using Accelerated Neural Network Learning.
Nuclear Technology 105(2): 145-161
35. Paya BA, Esat II and Badi MNN (1997) Artificial Neural Network Based Fault
Diagnostics of Rotating Machinery Using Wavelet Transforms as a Pre-processor.
Mechanical Systems and Signal Processing 11(5): 751-765
36. Simani S and Fantuzzi C (2000) Fault Diagnosis in Power Plant Using Neural
Networks. Information Sciences 127:125-136
37. Singh R (1999) Managing Gas Turbine Availability, Performance and Life
Usage via Advanced Diagnostics. In: Proceedings of the 44th Gas Turbine Users
Association Annual Conference, Dubai, UAE, 9-14 May
38. Singh R (2001) Managing Gas Turbine Availability, Performance and Life
Usage Via Advanced Diagnostics. In: Proceedings of the Symposium for Diesel and
Gas Turbine Engineers (IDGTE), Milton Keynes, United Kingdom, September 27-
28
39. Sofa T, Eryurek E, Uhrig RE, Dodds HL and Cook DH (1990) Estimation of
HFIR Core Flow Rate Using a Backpropagation Network. American Nuclear
Society Transactions 61
40. Tsai TM and Chou HP (1996) Recurrent Neural Networks for Fault Detection
and Isolation. In: Proceedings of the 1996 American Nuclear Society International
Topical Meeting on Nuclear Plant Instrumentation, Control and Human-Machine
Interface Technologies, Pennsylvania, USA, pp. 921-926
41. Tsoukalas LH (1994) Virtual Measurement and Prediction in Human-Centered
Automation. In: Proceedings of the Topical Meeting on Computer-Based Human
Support Systems: Technology, Methods, and Future, The American Nuclear
Society's Human Factors Division, Pennsylvania, USA, pp. 235-241
42. Upadhyaya BR and Eryurek E (1992) Application of Neural Networks for
Sensor Validation and Plant Monitoring. Nuclear Technology 97(2):170-176
43. Urban LA (1972) Gas Path Analysis Applied to Turbine Engine Condition
Monitoring. In: Proceedings of the AIAA/SAE 8th Joint Propulsion Specialist
Conference, New Orleans, Louisiana, paper no. AIAA-72-1082
44. Weidong H, Kechang W and Qizhi C (1996) Sensor Failure Detection and Data
Recovery Based on Neural Network. In: Proceedings of the 32nd
AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Lake Buena Vista, FL ,
July 1-3, paper no. AIAA-96-2932

204 V Palade, CD Bocaniala and L Jain (Eds.)

45. Zaita AV, Buley G and Karlsons G (1998) Performance Deterioration
Modelling in Aircraft Gas Turbine Engines. ASME Journal of Engineering for Gas
Turbines and Power 120:344-349
46. Zedda M and Singh R (1998) Fault Diagnosis of a Turbofan Engine Using
Neural Networks: A Quantitative Approach. In: Proceedings of the 34th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cleveland, OH,
13-15 July, paper no. AIAA 98-3602

Appendix 1

Nomenclature
Component efficiency
Component flow function/capacity
Standard deviation

n Number of measured patterns

Abbreviations
APPROX Function approximation network
AUTOASSOC Autoassociative neural network
C Compressor
CBM Condition based maintenance
CCP Correctly classified patterns
CF Component fault
CLASS Pattern classification network
CT Compressor turbine
DCF Dual component fault
DSF Dual sensor fault
EHM Engine health monitoring
F Fault
FC Fault class
GT Gas turbine
ICP Incorrectly classified patterns
MCF Multicomponent fault
MSE Mean square error
NC No convergence
NF No fault
NTRALG Network training algorithm
PNN Probabilistic neural network
PT Power turbine
RB Resilient backpropagation network training algorithm
RMS Root mean square
SCF Single component fault
SF Sensor fault
SSF Single sensor fault
TTP Total test patterns

Computational Intelligence in Fault Diagnosis 205

TTRP Total training patterns

Glossary of terms
(including jargon)
Advanced diagnostic
technique (ADT)

A diagnostic approach that applies state-of-the-art tools.

APPROX A network that is designed to provide quantitative estimates.
Architecture A graph describing the layout of a neural network.
Artificial neural
network (ANN)

A collection of mathematical models that emulates some of
the observed properties of biological nervous systems and
draws on the analogies of adaptive biological learning.

Bias A fixed component of measurement error, which remains
constant no matter how many times the measurement is
taken.

CLASS A network that is designed to provide qualitative results.
Dimensionality The number of independent units contained in a given layer

of a network.
Epoch The presentation of a set of training (input and/or target)

vectors to a network and the calculation of the new weights.
Expert system (ES) A computer program that contains a knowledge base and a

set of algorithms or rules that infer new facts from that
knowledge and from incoming data.

Feedforward network A form of network connectivity in which outputs go to
following but not preceding neurons.

Fuzzy logic (FL) A form of algebra applied in decision making with imprecise
data. It employs a range of values between extremes of
perfection, i.e., “true” or “false.”

Gas path analysis
(GPA)

A commonly used term for performance analysis.

Gas path faults (GPF) Faults that affect the working fluid’s flow path in a gas
turbine. They include fouling and erosion.

Gas path fault
diagnostics (GPFD)

The process of isolating and assessing faults in an engine’s
gas path.

Generalisation The ability of a network to produce a required output from
an input vector, similar to its training set.

Kalman filter (KF) An algorithm for producing best estimates of the component
changes and sensor biases that produced an observed set of
gas-path measurement differences from expectation.

Noise A random component of measurement error caused by
numerous small effects, which cause disagreements between
repeated measurements of the same parameter.

Pattern A vector of inputs.
Testing The process of ascertaining the generalisation ability of a

trained network.
Training A procedure whereby a network is adjusted to do a

particular job.

206 V Palade, CD Bocaniala and L Jain (Eds.)

Appendix 2 – Neural Network Structures

Figure 6.13 shows a typical probabilistic neural network (PNN) with m hidden layer
neurons and k output classes. PNNs are simple on design, and with sufficient data
are guaranteed to generalize well in classification tasks. When a pattern is
introduced to the network, distances are computed between the inputs and the
training patterns. The sum of each contribution is obtained and arranged into a
vector of probabilities by the radial basis layer (middle layer). This vector of
probabilities is then passed as an argument to a compete transfer function which
allocates a one to the class of the candidate with the highest probability, because it
has the maximum probability of being correct while other classes are allocated zero.
A drawback, however, is that PNN networks are slower to operate in the recall
mode because more computations are required each time they are called.

∆N1

Fault

classes

∆WFE

∆P2

∆T2

∆T4

1

2

3

m-1

m

1

2

k

∆P4

Figure 6.13. Probabilistic neural network

Performance

Changes, ∆x

1

2

k

∆N1

∆WFE

∆P2

∆T2

∆T4

∆P4

Figure 6.14. Two-hidden-layer feed forward network.

Computational Intelligence in Fault Diagnosis 207

Mapping

Layer

De-Mapping

Layer

Bottleneck

Layer

∆N1

∆WFE

∆P2

∆T2

∆T4

∆P4

∆WFE΄

∆N1΄

∆P2΄

∆T2΄

∆P4΄

∆T4΄

Figure 6.15. Autoassociative network.
Figures 6.14 and 6.15 show typical supervised network architectures that

require training before application in the recall mode for the intended purpose.
Previous works by Ogaji and Singh (2002a) and Ogaji et al. (2002a) show that
engine parameter estimation tasks are best handled by a two-hidden-layer network.
Because of its speed of convergence during training, and efficiency in memory
usage, resilient backpropagation training algorithm was used for our entire network
training process. Also, because gas turbine parameter relationships are inherently
nonlinear, a tangent sigmoid transfer function, which takes input in the range of
plus and minus infinity and squashes the output to the range {-1, 1}, is used for all
network nodes. This transfer function is differentiable and thus suitable for engine
diagnostic purposes.

The autoassociative network presented in Figure 6.15 has been shown to
perform well in sensor fault detection and isolation (Guo et al., 1996; Lu et al.,
2000; Zedda and Singh, 1998; Ogaji et al., 2002b). This network has three hidden
layers with the central layer called a bottleneck. The network requires that the
number of neurons in the bottleneck be greater than or equal to the number of
principal components required in constructing the output in the case of failed
sensor(s) or noisy inputs. Also, in this kind of network, the dimensionality of the
input and output patterns is the same, and various input sets may be required to give
a particular output pattern. This makes it distinct from the hetero-associative
networks, where various input patterns are mapped into various output sets, with the
dimensionality of the input and output not necessarily being identical.

7. Two-Stage Neural Networks Based
Classifier System for Fault Diagnosis

Ar nas Lipnickas

This chapter gives a description of a two-stage classifier system for fault diagnosis
of industrial processes. The first-stage classifier is used for fault detection and the
second one is used for fault isolation and identification. The first stage classifier
operates as primary fault detection unit, and it is used to distinguish between normal
operating state and abnormal operating states. In order to reduce the number of false
alarms, a penalizing factor is introduced in the training error cost function. The
second-stage classifier is used to differentiate between different detectable faults. In
order to increase the reliability of fault identification, the probabilities of
classification performed by this classifier are averaged within the fault duration
time. The performance of the proposed approach is validated by application to a
valve actuator fault diagnosis problem.

7.1. Introduction

In today’s highly complex industrial systems, one of the main problems is the
occurrence of faults in equipment. These faults usually have a significant
economical impact due to loss of productivity and breakdown of the equipment. In
extreme cases occurrence of faults may even endanger human lives. Recently, early
fault detection has received increasing attention, as it is connected with the rising
demand for higher performance as well as for more safety and reliability of
industrial systems.

The most commonly used fault diagnosis approach is based on building the
model of the real system in order to provide estimates of certain measured signals.
Then, the estimates of the measured signals are usually compared with the real
measured signals, i.e., differences between real signals and their estimates are used
to form residual signals (Figure 7.1). These residuals are eventually employed for
fault detection and isolation (FDI) (Calado et al., 2001; Isermann, 1997; Frank and
Ding, 1997; Chiang et al., 2001; Lipnickas and Korbicz, 2004; Angeli and
Chatzinikolaou, 2004). The successful detection of a fault is followed by a fault
isolation procedure whose aim is to classify the fault. The fault diagnosis
performance is degraded if the identified model is not accurate.

However, in many FDI problems, the information encoded by residual
signals is sufficient for robust fault detection, but it is insufficient for fault isolation
and identification. Therefore, pattern recognition techniques seem to be an
alternative solution for the model-based FDI.

210 V Palade, CD Bocaniala and L Jain (Eds.)

text

PROCESS

PROCESS

MODEL

RESIDUAL

GENERATION

FAULT

DETECTION

X Y

DECISION: Normal behaviour OR Faulty state

Figure 7.1. General scheme for process model-based fault detection.

The data space with measured process signals and heuristic symptoms
provided by experienced human operators is called features space. A diagnosis task
consists of transforming the quantitative information from the features space into a
qualitative statement about the cause of a given disturbance (Chen and Patton,
1999). The assignment of the proper category to each point in the features space is
basically one of the tasks of pattern recognition.

Various classification techniques might be used for pattern recognition and
classification. A wide variety of approaches have been taken towards the
classification task. According to Raudys (2001), the number of classification
algorithms already published exceeds two hundred.

The artificial neural networks (NNs) are powerful tools for handling
complex pattern recognition problems. One of the most important advantages of
feedforward NNs is their ability to implement nonlinear transformations for
function approximation problems, i.e., given a sufficiently large number of hidden
nodes, any continuous function from input to output can be approximated arbitrarily
well by an NN (Bishop, 1996; Duda et al., 2000; Narendra and Parthasarthy, 1990;
Wang, 1992).

Neural networks have been extensively used in many engineering domains
and one of the application fields is fault diagnosis (see Chen and Patton (1999) for a
list of references). According to Chen and Patton (1999) NNs are properly aimed at
processes that are ill defined, complex, nonlinear and stochastic. Therefore, neural
networks have many advantages and can be used in a number of ways to tackle fault
diagnosis of nonlinear dynamic systems.

From the theoretic point of view, data classification represents a static non-
linear mapping between inputs and outputs. Without modifications, an NN classifier
cannot be used to represent dynamic systems. Therefore, for identification of
dynamic systems, classifiers need to have some dynamic elements involved in the
structure (Patton et al., 1999). The most common way of dynamics identification is

Computational Intelligence in Fault Diagnosis 211

the use of tapped delay lines (TDL) such as the Nonlinear Auto Regressive
(NARX) model with exogenous input (Narendra and Parthasarthy, 1990).

This chapter describes a two-stage classifier system for fault diagnosis of
small and medium-size FDI problems. The first classifier is trained to distinguish
normal operating state of the analyzed process from malfunctioning states. Notice
that this classifier performs the three main FDI tasks (Figure 7.1) for fault detection
in the “black box” manner, i.e., identifying process model, residual generation, and
detection of changes into residuals. However, due to neural networks’ “black box”
characteristics, the identified model is not explicit. In the case when recognizing
one of the process operating states normal or malfunction is more important than
recognizing the other one, a penalizing factor in the classifier training cost function
is proposed. To build a reliable fault detection unit, a calculation methodology for
false alarm reduction is proposed.

When the first-stage classifier detects a fault occurrence, then the second-
stage classifier is used to identify the type and the strength of the fault. In order to
increase the reliability of the fault identification unit the probabilities of
classification performed by this classifier are averaged within the fault duration
time.

The performance of the proposed approach is validated by applying the
proposed methodology to a valve actuator fault diagnosis problem, i.e., the multi
disciplinary and complementary EU Research Training Network project
DAMADICS. The project is focused on development and application of methods
for actuator fault diagnosis in industrial control systems.

The chapter is organized as follows. In Section 7.2, the background on data
classification and on the MLP classifier is given. Section 7.3 presents the
background on the proposed two-stage classifiers FDI. The case study,
DAMADICS benchmark, is described in Section 7.4. The experimental results are
presented in Section 7.5. Finally, Section 7.6 presents some conclusions.

7.2. Pattern Recognition and Data Classification

Pattern recognition is the research area that studies the operation and design of
systems that recognise and classify patterns in data. The classification decision in
such systems is made on the basis of observed attributes or features, and each
datum is assigned to one class from a set of predefined classes. In the following, a
few basic classification techniques, i.e., statistical or Bayesian classifiers,
classification by decision trees and neural networks are reviewed.

Statistical approaches are generally characterised by having an explicit
underlying probability model, which provides a probability of being in each class
rather than simply a classification. One of the statistical approaches is building a
classifier based on Bayes decision theory, i.e., the Bayesian classifier. Bayes'
formula, used for classification, allows one to calculate a posteriori class
probabilities of input pattern x based on the a priori class c(|)jP c x j probabilities

()jP c and the conditional class densities distribution (|)jp cx :

212 V Palade, CD Bocaniala and L Jain (Eds.)

(|) ()
(|)

(|) ()
j j

j
j j

j

p c P c
P c

p c P c
x

x
x (1)

For the classification problem, the classification is done by choosing the
class cj with the highest a posteriori probability .(|)jP c x

The classifiers based on Bayes’ formula, are optimal, i.e., no other
classifiers have a lower expected classification error rate. However, in practise this
error rate is nearly unattainable because the classifier assumes that complete
information is known about the statistical distributions in each class. Statistical
procedures try to supply the missing information on distribution of class
probabilities in a variety of ways, but there are two main directions: parametric and
nonparametric. Parametric methods make assumptions about the nature of the
distributions (commonly it is assumed that the distributions are Gaussian), and the
problem is reduced to estimating the parameters of the distributions (means and
covariance matrices in the case of Gaussians). Nonparametric methods make no
assumptions about the specific distributions involved and, therefore, they can be
described more accurately as distribution-free.

There are two basic approaches to nonparametric estimation for pattern
classification: in one the class densities are estimated (and then used for
classification), in the other one the class is chosen directly (direct estimation of the
a posteriori probabilities). The former approach may be exemplified by Parzen
windows, which are implemented in the probabilistic neural networks (PNNs)
(Bishop, 1996). The latter approach may be exemplified by the k-nearest-
neighbours algorithm (Bishop, 1996; Duda et al., 2000), in which the k nearest
prototypes are used to label an unknown pattern. If the size of the training data set
used increases towards infinity, the nearest-neighbour classifier is almost as good as
a Bayes classifier, and its error rate is bounded from above by twice as much as the
Bayes error rate (Duda et al., 2000). In spite of the merits of the k-nearest-
neighbours methodology, the technique is very time consuming for large data sets
and especially when k>1 (Duda et al., 2000; Michie et al., 1994).

The other non-parametric technique, which is not based on the formalism
of Bayes decision theory, is the decision tree approach. This approach can be easily
used to classify objects characterised by continuous and/or discrete features. Such
situations arise often in real applications.

The decision tree classifier is particularly useful for nonmetric data where
all of the questions can be answered in a "yes/no," "true/false" or "value from a set
of values" style that does not require any notion of metric. The classification is
carried out through a sequence of questions about object features, in which the next
question asked depends on the answer to the current question.

Such a sequence of questions can be displayed in a directed decision tree
or simply tree, where by convention the first or root node is displayed at the top,
connected by successive (directional) links or branches to other nodes. These are
similarly connected until terminal or leaf nodes are reached, which have no further
links. The growing procedure for decision trees is based on logical operations,
which learn a task from a series of examples.

Computational Intelligence in Fault Diagnosis 213

The simple decision tree in Figure 7.2 illustrates one benefit of trees over
many other classifiers, i.e., interpretability. It is straightforward to render the
information contained by such trees under the form of logical expressions built
using logical conjunctions and disjunctions. For instance, the tree shows Apple =
(green AND medium) OR (red AND medium) or simplified rule Apple = (medium
AND NOT yellow).

Figure 7.2. An example of decision tree for fruit classification.

In practice, the decision tree is useful when the classification problem is
fairly simple, the training set is small and expert knowledge might be incorporated.

The neural network approach for classification is one of the most
competent in terms of performance, and it is preferred over the other classification
approaches due to its nonparametric adaptive learning and high nonlinearity. In
general, a neural network consists of layers of interconnected nodes, each node
producing a nonlinear function of its input. The input to a node may come from
other nodes or directly from the input data (Figure 7.3). Also, some nodes may be
identified with the output of the network. The complete network therefore
represents a very complex set of interdependencies, which may incorporate any
degree of nonlinearity, allowing any kind of function to be modelled. Given a
sufficiently large number of hidden nodes, any continuous function from input to
output can be approximated arbitrarily well by such a network (Duda et al., 2000).

For this reason, the multilayer perceptron (MLP) neural networks are used
in the study.

Unfortunately, there are two main drawbacks in the use of neural network
techniques: complexity adjustment and selection of neural network model. The
input feature space and number of predefined classes define the number of inputs
and outputs, respectively. Therefore, the total number of weights or parameters in
the network depends on the number of nodes in the hidden layer. If too many free
parameters (hidden nodes) are used, generalisation will be poor; conversely, if too
few parameters are used, the training data will not be learned adequately. Usually
neural network-based modelling involves trying multiple networks with different

214 V Palade, CD Bocaniala and L Jain (Eds.)

architectures, learning techniques, and training parameters in order to achieve
“acceptable” model accuracy. Typically, one of the trained networks is later chosen
as “the best,” while the rest are discarded.

7.2.1. The MLP Neural Networks Used in the Study

The MLP neural networks are parallel-distributed information processing structures
of processing elements interconnected via signal channels called connections.
Figure 7.3 shows a typical MLP neural network with explicit division of processing
elements into three layers. The type of function performed by a network depends on
values of weights that are determined by minimising some error function and type
of processing elements. The estimation process of network weights, which is most
often done by using the error backpropagation algorithm (Bishop, 1996; Duda et
al., 2000), is called learning or training.

Let ()q
jo denote the output signal of the jth neuron in the qth layer induced

by presentation of an input pattern, and is the connection weight coming from
the ith neuron in the (q-1) layer to the jth

()q
ijw

neuron in the qth layer. Then
() ()q q
j jo f net (2)

1() () (1)

0

qn
q q

j ij i
i

net w o q (3)

where stands for the activation level of the neuron, is the number of
neurons in the q-1 layer and f(net) is a neuron's transfer function.

()q
jnet 1qn

In most often applications, the sigmoid neuron's activation function is
used:

() 1 1 exp()f net net (4)
where is a slant parameter.

When an augmented input vector 1 21, , ,..., t
nx x xx is given in the input

(0th) layer, the output signal of the jth neuron in the output (Hth) layer is given by

() () (1) (1)() ...()H H H
j ij ki

i k t
o f w f w f w xx tm t (5)

When the output values ()H
njo induced by presentation of a particular input

pattern xn are compared with the desired output values , a mean squared output
error cost function is formed as

njd

2()

1 1

1
2

QN H
o on nj nj

n n j
E E d o (6)

where N is the number of learning samples and Q is the number of classes.
During the network training, the actual output of the network is compared

to the required output or target, and the error is backpropagated through the network
such that the weighted connections between all the units are adjusted in the right
direction. Training the network is done by minimising the error function (Eq. 6).

Computational Intelligence in Fault Diagnosis 215

During the network testing, the weights are no longer adjusted and the
performance of the network can be tested by presenting new data, and comparing
the actual outputs with the desired ones. The ability of the network to produce a
correct response to the new (unseen) data is called generalisation. The
generalisation is poor when the network overfits (or underfits) the training data.

The degree to which network overfits (underfits) the training data is related
to the number of training patterns and the number of parameters in the model. In
general, with a fixed number of training patterns, overfitting can occur when the
model has too many parameters (too many degrees of freedom). Or, for the selected
model of network, the number of training data is too small. Haussler (1992) has
shown that, for nonlinear regressors, the required number of training examples
necessary for good generalization is *log(), where is the total number of
weights in the model. According to the exhaustive experiments reported in the
literature, for the MLP network it is sufficient to have at least the 3* training data.

Figure 7.3. A feedforward multilayered neural network with one hidden layer, where W(1)

is the weight vector between the input and the hidden layer and W(2) is the weight vector
between the hidden and the output layer.

However, neural network models produce only static input-output
mapping. In order to maintain dynamic system modelling, the tapped delay lines
(TDL) should be introduced to the neural network model (Figure 7.4) (Calado et al.,
2001; Patton et al., 1999). Unfortunately, this kind of network has an input space
dimensionality problem. This problem is overcome if the order of the process to be
modelled is known and all necessary inputs/outputs are fed to the NN. Otherwise
the input space of the network becomes very large (depending on the past history
horizon). The essential features extraction or input features selection should be
introduced before neural network design. The literature on features reduction is
very rich (Bishop, 1996; Jollife, 1986; Baldi and Hornik, 1989; Teeuwsen et al.,
2002; Verikas and Bacauskiene, 2002). Only a few works are related to the
dimensionality reduction problem for time-series data, for an example see (De Mers
and Cottrell, 1993). The reduction of the dimensionality of neural network input
space is an important task. It leads to better generalisation and less computational
task.

216 V Palade, CD Bocaniala and L Jain (Eds.)

Figure 7.4. Process modelling using feedforward NNs and tapped delay lines (TDL).

7.3. Proposed Approach for Fault Diagnosis

A two-stage classifier system for FDI problems is proposed. The first NN classifier
is trained to distinguish normal operating state of the process from the
malfunctioning state. During training, the classifier learns both the system
behavioural model and the adaptive threshold at the same time. In the case a fault
occurrence is detected, then and only then the second-stage unit is engaged for the
fault identification and classification. When recognizing one operating state of the
system is more important than recognizing the other one, the first-stage classifier is
trained by minimizing the error cost function using an additional penalizing factor.

The structure of the proposed approach is depicted in Figure 7.5. As shown
in Figure 7.5 first the process measurements go to the fault detection block
consisting of classifier (MLP_1) and fault detection calculation procedure
(Primary-Fault-Detection and Final-Fault-Detection). In the case the plant is
operating in normal state (NS), then classifier MLP_1 indicates the state NS. If a
fault occurred and the plant is operating in the faulty state, MLP_1 indicates the
occurrence of a faulty state (FS). Sequentially, the proposed procedure calculates
the frequency of fault occurrences in predefined time window. When the number of
fault occurrences exceeds the threshold, then the final-fault-detection signal is
triggered and process measurements from the fault detection moment are passed to
the second-stage classifier (MLP_2).

The MLP_2 is trained to identify and classify system faults. To increase
the reliability of the fault identification and isolation, the probabilities of
classification by MLP_2 are averaged within the fault duration time. A detailed
description of the approach is given in the following sections.

7.3.1. Fault Detection Unit

To train first-stage classifier MLP_1, the data is collected from process data
operating in NS stage and in all possible malfunction stages (FS). The trained
MLP_1 classifier is further used as the primary fault detection (PFDk) component.

Computational Intelligence in Fault Diagnosis 217

The dashed lines in Figure 7.5 show the possible getaway from the FS to the NS in
the fault disappearance case. Practically, every noisy process measurement in such
fault detection system might cause false alarms. Therefore, in order to reduce the
amount of false alarms the final-fault-detection (FFDk) system based on two sliding
windows is introduced. The FFDk computes the occurrence of the PFDk binary
signal within a prespecified time window. The final fault decision signal FFDk is
produced when the number of PFDk overcomes a constant value :

1 2
1 1 1 (FS), if

0 (NS), otherwise

w wT T
k i k ji j

k
PFD FFD

FFD (7)

where k is the process time index, Tw1 is the size of the time window for the PFDk
signal, is a constant and Tw2 is the size of the time window for FFDk. The PFDk is
computed in such manner that it eliminates false alarms and increases the successful
fault detection with proper values of , Tw1 and Tw2. Thus values are dependent on
the performance of the MLP_1 and are determined experimentally with the property
Tw1>> Tw2. The time interval Tw2 serves as a holdout of alarm and in the case of fault
disappearance (PFDk=0 for the time period ~ Tw1), the FFDk signal will be switched
off.

The final fault detection rule is written as:
if 0 then {Fault occurred at moment }kFFD k (8)

Input

features

MLP_1

PFD
k

Normal

state

FS NS

FFD
k

Fault isolation

(MLP_2)

Fault

detection

Figure 7.5. Fault detection.

An example performance of the fault detection unit is demonstrated in
Figure 7.6. The panel depicts the PFD signal generated by MLP_1 classifier with
the binary values “0” for the normal state (NS) and “1” for the faulty state (FS).
Necessary values of parameters to calculate FFD were set as following: Tw1 =80 s,
Tw2 =6 s and =8. The middle panel presents calculations of the inequality in Eq. 7;

218 V Palade, CD Bocaniala and L Jain (Eds.)

the dotted line gives the calculation for the left-hand site and the solid line for the
right- hand side. As is seen, till the moment k=190 s the system operation was
treated as normal state but with the increased primary fault detection occurrences
the system state has been changed to faulty and later, after the disappearance of
PFD occurrences, the fault detection unit has switched the system status back to
normal state.

Figure 7.6. Performance demonstration of fault detection unit with Tw1 =80 s, Tw2=6 s and
=8.

The successful fault detection triggers the second-stage unit, used for fault
isolation and classification.

7.3.1.1. Proposed Error Cost Function
A false alarm is an indication of a fault, when no fault has occurred. A missed
detection is no indication of fault occurrence. For fault detection, there is an
intrinsic trade-off between minimisation of the false alarms and missed detection
rate. In the statistical hypothesis theory, the tight classification threshold of an
instance would result in high false alarm and low fault misdetection rate, while
limits which are too spread, for normal state, will result in a low false alarm and a
high misdetection rate. Consider the case with two classes: normal state (NS) and
faulty state (FS). Using a certain given threshold value, the statistical hypothesis
theory might be applied to predict NS and FS states based on statistical properties
of the collected training data (Figure 7.7). The conditional class densities
distribution p(x|cNS) and p(x|cFS) are calculated from normal and faulty states data,
respectively. Using Bayesian decision theory (Section 7.2) and appropriate
threshold value the faulty state can be detected. As seen in Figure 7.7, increasing
the threshold (shifting the threshold to the right) decreases the false alarm rate but
the rate of misdetection is increased. This is the trade-off between false alarms and
misdetection rate (Trunov and Polycarpou, 2000).

Computational Intelligence in Fault Diagnosis 219

Figure 7.7. The conditional class densities distributions of two classes, normal state and
faulty state. By moving the threshold value from left to right, the false alarm rate is

decreased while at the same time the misdetection rate is increased.

The nonparametric classifiers such as neural networks do not estimate
conditional class densities distributions, but try to find appropriate classification
hyperplanes based on the applied training error cost function. Usually, such an error
function is equally weighted for all classes.

Most often in practice, one operating state of the plant is more important
than the other one due to safety requirements or due to unreliable ways of collecting
data for one of the operating states. For these reasons, a penalizing factor might be
introduced in the training cost function (Lipnickas et al., 2004). Then the neural
network classifier is trained through minimisation of the classification error rate
with a penalising factor:

1

P
p p

p
E e (9)

where ep is classification error of data point p and p is the penalising factor defined
as:

1, if 0

, if 1 AND misclassified 1

1, if 1 AND misclassified 2

p

p p

p

e

e

e C

C_

_
(10)

The penalising factor is equal to 1 if classification is correct, to the
constant for misclassified class C_1, and to “1” for misclassified C_2. When
0< <1 then misclassification of class C_1 is less important than misclassification of
C_2 and in the case >1 the class importance is the opposite.

7.3.2. Fault Isolation and Identification

The second-stage classifier (MLP_2) is trained to operate for the fault isolation and
identification purpose. The training data used correspond only to the faults detected
by MLP_1. The detectable faults might not be separable based on the input
measurement; therefore some additional heuristic symptoms should be found and
added to the original data measurements. When several different faults behave
identically and there is no way to distinguish them then these faults must be
grouped into the same class. Each collected datum must be labelled with class
numbers standing for individual faults or groups of them.

220 V Palade, CD Bocaniala and L Jain (Eds.)

The MLP_2 is trained to separate the labelled data by minimising
classification error rate using the random search technique (Verikas and Gelzinis,
2000).

7.3.2.1. Increased Reliability of Fault Isolation and Identification
In real application the classes of faults are usually highly overlapped and therefore
by performing on-line fault identification the classification decision about detected
faults most often fluctuates in time. For that reason it is preferable to use a time
window for selection of the most frequently output class. The other way is to use
class probability averaging within a prespecified time window.

Wan (1990) has shown that MLP neural networks for classification are
able to approximate the Bayes optimal discriminant function (Bayes a posteriori
probabilities) on given training data. Therefore, in order to increase the fault
identification reliability of MLP_2 classifier, the averaged probability for every
classified datum is computed starting with fault detection time j, FFDj. The
computations of the averaged class probabilities are finished and they are reset to
zero from the moment when FFDk signal goes to zero (NS state). The averaged
class probabilities are computed according to the formula:

_ 2() (1)
(1)

1
i i

i

MLP
c c

c

P t t p t
P t

t
, 0,... until the end of faultt (11)

where i is an index of considered class with class probability ._ 2
i

MLP
cp ()

icP t is the

averaged class probability with the property i(0) 0, c
icP and ci is the class label.

The class label c of the measured data at a time t is then determined as
follows:

() arg max ()
ici

c t P t (12)

where ()
icP t is the averaged class probability and i is class index.

7.4. Case Study: DAMADICS Benchmark

DAMADICS – Development and Application of Methods for Actuator Diagnosis in
Industrial Control Systems – is a Research Training Network funded by the
European Commission under Framework V.

The studied valve actuator block can be considered as a four-input and
two-output system, as shown in Figure 7.8. Data sampling and storage is performed
using a 1s sampling interval. The input measurements xk at time moment k are
defined as follows:

x [1,2,3,4,5,6], k = (CV; P1; P2; T1; F; X) (13)
where process variables are: CV - control value, P1 - pressure at the inlet of the
valve, P2 - pressure at the outlet of the valve, T1 - juice temperature at the inlet of
the valve, F - juice flow at the outlet of the valve, and X - servomotor rod
displacement.

Computational Intelligence in Fault Diagnosis 221

Figure 7.8. The actuator block.

Table 7.1. Set of faults specified for benchmark. Incipient faults – I. Abrupt faults: S -
small, M - medium, B - big

Fault Description S M B I

f1 Valve clogging * * *

f2 Valve plug or valve seat sedimentation * *

f7 Medium evaporation or critical flow * * *

f8 Twisted servomotor’s piston rod * * *

f10 Servomotor’s diaphragm perforation * * *

f11 Servomotor’s spring fault * *

f12 Electropneumatic transducer fault * * *

f13 Rod displacement sensor fault * * * *

f14 Pressure sensor fault * * *

f15 Positioner feedback fault *

f16 Positioner supply pressure drop * * *

f17 Unexpected pressure change across the valve * *

f18 Fully or partly opened bypass valves * * * *

f19 Flow rate sensor fault * * *

Within the DAMADICS project, the valve actuator simulator has been
developed under MATLAB Simulink. This tool makes it possible to generate
normal operating mode data, as well as faulty data for 19 faults. The considered
faults are presented in Table 7.1. The faults can be considered either as abrupt or
incipient. The asterisks denote combinations of faults and failure modes that have
physical backgrounds and are specified for benchmark. A comprehensive
description of DAMADICS benchmark is available at http://www.eng.hull.ac.uk/
research/control/damadics1.htm.

7.5. Experimental Investigation

In the case of flow valve diagnosis, the only information about system state is
available from measurements generated by the sensors. In this work a 3s TDL
sliding window (Xk=[xk, xk-1, xk-2]) of the original measurements has been used. The
initial input vector consists of 18 measured signals.

222 V Palade, CD Bocaniala and L Jain (Eds.)

Besides the original measurements, in order to increase the accuracy of
fault isolation and identification, four additional heuristic fault symptoms derived
from the process input data xk have been introduced. These heuristic symptoms
have been derived through human expert observation and inspection of the
behaviour of faulty data.

To detect the abrupt increase of fluid temperature DT1, the value T1k=x[4],k
from the input measurements is used. This signal is used only for isolating the f7.
DT1=1 when the fluid temperature is higher than the maximum admission
temperature Tadm:

 1, 1
1

0,
k ad

k
 if T T

DT
 otherwise

m

st

2

(14)

To detect the unexpected abrupt pressure change across the valve case, the
values of upper stream pressure P1k=x[2],k and downstream pressure P2k=x[3],k are
used. The derived signals are used only for isolating the f17: when pressure drops
rapidly then DP2=1,

 1, 1 2
2

0,
k k con

k
 if P P P

DP
 otherwise

(15)

In the case of incipient fault f17 development the symptom DP2in will be
set to “1”. For the incipient fault f17 detection a symptom extracted by the line
approximation 2 2

3 ,*P P
k k kk

Py a x b in sliding time window TwP2=50 s has been

used. The parameters 2P
ka and 2P

kb are computed by least-squares method:
2 2 1 if 2

0 otherwise

P P
k con

k
, a aDP in
,

st

onst

(16)

Finally, another heuristic symptom is calculated as the derivative of Rod
displacement and it marks the rapid changes in the measurement of Rod
displacement. For fault isolation and identification purposes, the most informative
is the sign of the computed derivative. This symptom is very sensitive to noise and
therefore a detection threshold has to be used:

6 , 6 , 1

k 6 , 6 , 1

1, until 250; if

0,until 250; if

0 otherwise

constk k

constk k

k x x Xdt

Spike_POZ k x x Xdt

,

(17)

6 , 6 , 1

6 , 6 , 1

1, until 250; if

0, until 250; if

0 otherwise

constk k

k ck k

k x x Xdt

Spike_NEG k x x Xdt

,

(18)

One important feature of Rod displacement spikes is that such spikes are
never equal to 1 at the same time k, i.e., Spike_POZk=1 Spike_NEGk=1.

The positive spike (Spike_POZ) is relevant for faults f11 and f13. This
helps to distinguish such faults from all other faults, but the amplitude of the spike
is very large only in the “Big” fault case.

Computational Intelligence in Fault Diagnosis 223

The negative spike of Rod displacement (Spike_NEG) is relevant to faults
f7, f10, and f17. Faults f7 and f17 are identified by other additional signals and the
Spike_NEG signal is redundant for them. The Spike_NEG signal is useful to
distinguish “Medium” and “Big” cases for fault f10 {M,B}.

The usage of Rod displacement derivative is related to real spikes in the
process measurements. Therefore a 250s time interval has been selected to keep
spike signal “ON” unchanged, hoping that this time interval will be sufficient for
fault isolation and fault maintenance, but not too long so that to cause false fault
identification (in the case of noise spike in the process measurement).

The values of the constants used in the study have been found to be as
follows: Tadm =0.75 (150˚C), Pconst=0.2 (0.8 MPa), and Xdtconst=0.5 (50% of rod
displacement motion amplitude). It is noteworthy that these values are object and
process dependent.

7.5.1. Fault Detection

The first classifier MLP_1 for fault detection is trained to classify the labelled data
corresponding to plant operating states NS and FS. For this task, an MLP with one
hidden intermediate layer has been trained. The training and testing data sets
consisted respectively of 2000 samples (50%) for NS and another 2000 samples
(50%) for FS. The FS data set consists of all faults specified within the
DAMADICS benchmark. The MLP network structure has been chosen according to
the author’s experience together with a trial-and-error procedure. The optimal
number of hidden neurons with a logarithmic sigmoid transfer function has been
found to be 15.

The MLP_1 network has been first trained to minimise the classification
error of the training data. With the chosen structure, the classifier was able to
separate the operation states with 13.0% error for the training set and 14.3% for the
testing set. The confusion matrix obtained after performing the test is shown in
Table 7.2. The diagonal elements of the matrix represent data that has been
correctly classified. The results in nondiagonal places show the classification errors.
An approximately equal percentage of classification error has been obtained for
both classes. This means that the fault detection system will cause frequent false
alarms during normal operating state. Therefore, for the second trial the network
has been trained with the proposed error cost function (Eq. 9). The penalising factor

 (Eq. 10) was set to “0.75” to penalise the network performance more for the
misclassified NS and less for the misclassified FS.

The idea behind the penalising factor in Eqs. 9 and 10 is that recognising
the system operation in normal state is more important than recognising its
operation in faulty state. This is also due to the way the data points from different
system behavioural states have been collected, i.e., some faults in DAMADICS
benchmark are only dynamically detectable and the system response in FS state to
the static control value is identical to the NS behaviour.

With the same structure of MLP neural network, but introducing the
penalising factor, the classifier MLP_1 is able to separate the two operation states
with 14.1% error for the training set and 15.3% for the testing set. The confusion
matrix obtained after performing the test is shown in Table 7.3. The performance of

224 V Palade, CD Bocaniala and L Jain (Eds.)

fault detection is a little bit worse, but the amount of misclassification of NS is
drastically reduced.

Table 7.2. The confusion matrix of MLP_1

NS FS

NS 84.8 13.2

FS 15.2 86.8

Table 7.3. The confusion matrix of MLP_1 trained with the proposed error cost function

NS FS

NS 98.7 29.3

FS 1.3 70.7

The MLP_1 classifier trained with the proposed error cost function is
further used as the primary fault detection (PFDk) unit (Figure 7.5). For the final
fault detection (Eq. 1) the values of constants have been searched for within the
ranges: Tw1 [50,…,150], Tw2 [4,…,10] and [4,…,10] and the values found are
Tw1=80 s, Tw2=6 s, and =8. The set of faults detectable by FFD is shown in Table
7.4. Faults f8 and f14 are undetectable because the effect of the faults is at the same
level as the uncertainty in the MLP_1 and fault f16 (“Small” and “Medium” cases)
is only dynamically detectable.

The increased NS recognition performance in Table 7.3 compared to Table
7.2 is not surprising since, from Table 7.4, it is obvious that about 15% of the
collected data from FS are undetectable. Undetectable means that the behaviour of
the analysed process in FS state is almost equivalent to NS and therefore this data
might be considered actually mislabelled. By forcing the classifier to minimise the
proposed error cost function, the influence of the mislabelled data is reduced.

7.5.2. Fault Isolation and Identification

The purpose of this section is to investigate the possibilities of isolating the faults
that are successfully detected, i.e., faults denoted by "D" in Table 7.4. The detected
faults have been grouped into 20 classes according to the authors’ experience
together with a trial-and-error procedure. Equally shaded squares in Table 7.4 mean
that faults have similar symptoms and without additional process measurements
cannot be properly distinguished, i.e., faults {f13S, f13M, f18S, f18M} form one
class and the other larger class consists of the group of faults {f1S, f10S, f12S,
f12M, f12B}. The dotted squares denote classification of incipient faults. These
faults are a special class of slowly developing faults and they can be detected only
after fault strength signal passes a certain value.

For fault identification task the MLP_2 network with one hidden
intermediate layer has been trained through minimisation of classification error. The
optimal number of hidden neurons for MLP_2 with a logarithmic sigmoid transfer
function has been found to be 15. The data set consisted of at least 200 samples per
class. The whole data set has been split into two equal parts for training and testing
the classifier.

Computational Intelligence in Fault Diagnosis 225

With the chosen structure the classifier MLP_2 was able to classify the
occurred faults with 11.0% error for the training set and 11.3% classification error
for the testing set. The worst fault identification is for fault f18B, approximately
36% of data is assigned to the class with f18S and f18M. This is not a serious
problem since classifier correctly identifies the fault type and only misses the
identification of the fault strength. Fault f7M has been found to be in a similar
situation: 37% of data is misidentified as smaller (f7S) or larger (f7B) strength of
the same fault.

7.5.3. On-Line FDI Application

The proposed two-stage classifiers FDI has been applied to detect and identify
faults on-line using the methodology detailed in section 7.2.1.

It was found that the MLP_2 classifier is unable to recognise dynamically
developing faults. This is not surprising, since the data for MLP_2 training was
collected from the static parts of the faults. Therefore it has been proposed to
suspend fault identification during dynamic behaviour of faults. The short time of
dynamic fault development is observed in the cases of occurrence of faults f7, f10,
f11, f13, and f17. The fault dynamic is based on the physical processes within
actuator valve (see DAMADICS website). For instance in the case of f7 fault, the
temperature of the fluid is so high that during the first moments when fault occurs
the fluid possesses physical characteristics similar to the steam. Later the
characteristics change back to fluid characteristics. Similar behaviour is observed
for fault f10 (pneumatic servomotor’s diaphragm perforation). The abrupt
perforation of diaphragm causes fast changes in valve rod displacement
(Spike_NEG). Until the moment when pressure outflow in the servomotor’s
chamber equals the pressure flow income, the fault has the dynamic characteristics
for about 25 seconds (Figure 7.10).

In the case a fault is detected along with a spike occurrence (Spike_POZ or
Spike_NEG), the fault identification system is triggered only 25s after the fault
detection moment. Such a situation is demonstrated in Figures 7.9 and 7.10. The
real fault occurred at the time moment 100s and the FFDk reports fault occurrence
(FS) at the moment 106s. Due to the detected spike, fault identification by MLP_2
is forced to suspend the output by 25 s. Later MLP_2 produces outputs with stable
and correct fault identification.

In the case a spike has not occurred, MLP_2 identifies a fault as soon as
the fault is detected by fault detection system (FFDk). Such a situation is
demonstrated in Figure 7.11 for incipient fault f13. The fault occurred at the time
moment 100s, the FFDk reported the occurrence of fault (FS) at the moment 178s,
and the correct fault identification has been obtained starting with at the moment
420s. As may be seen from Figure 7.11, the occurred incipient fault changes its
characteristics all the time and it is continuously misidentified till the moment fault
reaches a specific fault kernel. It is obvious that the more time is given for the
development of incipient fault the better fault identification is obtained.

226 V Palade, CD Bocaniala and L Jain (Eds.)

Table 7.4. Results of fault detection (D - detectable, N - not detectable) for abrupt faults:
S - small, M - medium, B - big, and I - incipient

Fault S M B I

f1 D D D

f2 D D

f7 D D D

f8 N N N

f10 D D D

f11 D D

f12 D D D

f13 D D D D

f14 N N N

f15 D

f16 N N D

f17 D D

f18 D D D D

f19 D D D

50 100 150 200

0

0.5

1

50 100 150 200

0

0.5

1

50 100 150 200

0

0.5

1

50 100 150 200

5
10
15

Discrete time, s

C
l
a
s
s

l
a
b

e
l

CV
X
F

PFD

FFD

MLP2 classification

NS

FS

f10B

NS

FS

Spike detection

Identification delay 25s

Figure 7.9. Symptoms of fault f10B and its classification.

Computational Intelligence in Fault Diagnosis 227

Figure 7.10. Symptoms of fault f13B and its classification.

Figure 7.11. Symptoms of incipient fault f13 and its classification.

228 V Palade, CD Bocaniala and L Jain (Eds.)

7.6. Conclusions

The proposed FDI system is based on a two-stage classification system: the first
classifier is used for fault detection and the second one for fault identification. In
order to reduce the number of false alarms during fault detection, the penalising
factor is introduced in the error cost function for MLP_1 network training. Also, a
methodology to compute the final fault occurrence is introduced. The simulation
results have shown that a satisfactory fault detection rate is obtained. Therefore, the
proposed technique provides an alternative approach to the model-based FDI. The
approach in this study has been applied for on-line fault identification in order to
examine the capabilities of the proposed technique.

It is well known that analytical redundancy of the FDI system can ensure
more reliable fault detection and isolation. For the proposed FDI system, it might be
used an additional two-out-of-three voting system (Isermann et al., 2002) for
triggering an alarm, in order to obtain a lower rate of misclassification. Also a
committee of classifiers might be applied to ensure better fault identification
(Lipnickas and Korbicz, 2004; Verikas and Lipnickas, 2002).

Acknowledgements

This work has been partially performed at Technical University of Lisbon
(Portugal), Instituto Superior Tecnico, Dept. of Mechanical Engineering under the
supervision of Prof. J. Sá da Costa and it has been funded by EU FP 5 Research
Training Network project DAMADICS: Development and Application of Methods
for Actuator Diagnosis in Industrial Control Systems.

References

1. Angeli C and Chatzinikolaou A (2004) On-Line Fault Detection Techniques for
Technical Systems: A Survey. International Journal of Computer Science &
Applications 1(1):12 - 30

2. Baldi P and Hornik J (1989) Neural networks and principal component
analysis: learning from examples without local minima. Neural Networks 2:53–
58

3. Bishop CM (1996) Neural Networks for Pattern Recognition. Clarendon Press,
Oxford

4. Calado JMF, Korbicz J, Patan K, Patton RJ and Sa da Costa JMG (2001) Soft
Computing Approaches to Fault Diagnosis for Dynamic Systems. European
Journal of Control 7:248-286

5. Chen J and Patton RJ (1999) Robust Model-based Fault Diagnosis for Dynamic
Systems. Kluwer Academic Publishers, London

6. Chiang LH, Russell EL and Braatz RD (2001) Fault Detection and Diagnosis in
Industrial Systems. Springer Berlin

Computational Intelligence in Fault Diagnosis 229

7. DeMers D and Cottrell GW (1993) Non-linear dimensionality reduction. In:
Giles CL, Hanson SJ and Cowan JD (eds) Advances in Neural Information
Processing Systems 5, Morgan Kaufmann, San Mateo, CA, pp. 580-587

8. Duda RO, Hart PE and Stork DG (2000) Pattern Classification. John Wiley &
Sons, New York, 2nd Edition

9. EC FP5 Research Training Network DAMADICS Development and
Application of Methods for Actuator Diagnosis in Industrial Control Systems,
http://www.eng.hull.ac.uk/ research/control/damadics1.htm

10. Frank PM and Ding X (1997) Survey of robust residual generation and
evaluation methods in observer-based fault detection systems. Journal of
Process Control 7(6):403-424

11. Haussler D (1992) Decision theoretic generalisations of the PAC model for
neural net and other learning applications. Information and Computation
100:78-150

12. Isermann R (1997) Supervision, fault-detection and fault-diagnosis methods –
an introduction. Control Engineering Practice 5(5):639-652

13. Isermann R, Schwartz R and Stoltz S (2002) Fault-Tolerant Drive-By-Wire
Systems. IEEE Control Systems Magazine 22(5):64-81

14. Jollife IT (1986) Principal Component Analysis. Springer Series in Statistics.
Springer-Verlag, New York

15. Lipnickas A, Korbicz J (2004) Adaptive Selection of Neural Networks for a
Committee Decision. International Scientific Journal of Computing 3(2):23-30.

16. Lipnickas A, Sa da Costa J and Bocaniala C (2004) FDI based on two stage
classifiers for fault diagnosis of valve actuators. Application to DAMADICS
benchmark. In: Proceeding of the 11th International Conference EPE-
PEMC'2004, 2-4 September, Riga, Latvia, vol. 3, pp. 147-153

17. Michie D, Spiegelhalter DJ and Taylor CC (1994) Machine Learning, Neural
and Statistical Classification. Ellis Horwood, New York

18. Narendra KS and Parthasarthy K (1990) Identification and control of
dynamical systems using neural networks. IEEE Transactions on Neural
Networks 1(1):4-27

19. Patton RJ, Lopez-Toribio CJ, Uppal FJ (1999) Artificial intelligence
approaches to fault diagnosis for dynamic systems. International Journal of
applied mathematics and computer science 9(3):471-518

20. Raudys Š (2001) Statistical and Neural Classifiers: An Integrated Approach to
Design. Advances in Pattern Recognition. Springer Berlin

21. Teeuwsen SP, Erlich I and El-Sharkawi MA (2002) Feature reduction for
neural network based small-signal stability assessment. In: Proceedings of the
14th PSCC, Sevilla, 24-28 June, session 14

22. Trunov A and Polycarpou M (2000) Automated Fault Diagnosis in Nonlinear
Multivariable Systems Using a Learning Methodology. IEEE Transactions on
Neural Networks 11(1):91-101

23. Verikas A and Bacauskiene M (2002) Feature selection with neural networks.
Pattern Recognition Letters 23:1323-1335

24. Verikas A and Gelzinis A (2000) Training neural networks by stochastic
optimisation. Neurocomputing 30: 153-172

230 V Palade, CD Bocaniala and L Jain (Eds.)

25. Verikas A and Lipnickas A (2002) Fusing neural networks through space
partitioning and fuzzy integration. Neural Processing Letters 16(1):53-65

26. Wan E (1990) Neural network classification: A Bayesian interpretation. IEEE
Transactions on Neural Networks 1(4):303-305

27. Wang LX (1992) Fuzzy systems are universal approximators. In: Proceedings
of IEEE Fuzzy Systems Conference, pp. 1163-1170

8. Soft Computing Models for Fault
Diagnosis of Conductive Flow Systems

Viorel Ariton

This chapter focuses on the fault diagnosis of artefacts often met in industry, but not
only, that execute various functions involving conductive flows of matter and
energy, i.e., multifunctional conductive flow systems (MCFSs). The proposed
MCFS abstraction is close to the human diagnostician way of conceiving entities
and relations on physical, functional and behavioural structures. Diagnosis
reasoning, performed by human diagnosticians, is intrinsically abductive reasoning.
This chapter presents the abduction by plausibility and relevance in a connectionist
approach. The case study on a hydraulic installation of a rolling mill plant gives
examples on the knowledge elicitation process and on the diagnostic expert system
building and running.

8.1. Introduction

Fault diagnosis of complex systems is often a difficult task, due to the incomplete,
imprecise and uncertain knowledge on behaviours and interactions encountered in
the real-life context. Diagnostic reasoning is abductive reasoning, thus it is different
from the common (deductive) reasoning. The latter starts from causes and leads to
effects, hence the “explanation” is based on a definite space of causes to a definite
set of effects, while the first starts from effects to reveal causes. Hence, the
“explanation” is based on a presumed space of causes with many-to-many links to a
(reduced) space of effects. In real life, the diagnosis itself proceeds differently for
similar target systems running in different contexts. On top of those difficulties, one
may notice that computer applications for fault diagnosis face the modelling and the
parameter identification burdens, both after a challenging knowledge elicitation
effort on the target area.

Consequently, fault diagnosis of complex systems often relies on human
diagnosticians, who usually perform knowledge acquisition on faulty behaviours,
later used to “recognize” faults from (some) instance effects. In a simple view, they
use a mapping of faults to effects, for searching causes possibly linked to the
instance effects, and sequentially refining the diagnostic based on knowledge in the
area and from practice.

The artificial intelligence community concerned with diagnosis obtains the
mapping either by methodical experiments – exhausting the faults’ space and
collecting the effects – or by means of some knowledge of human experts from
practice. However, the computational models for fault diagnosis also require
methods to reduce the many-to-many relations of the reverse mapping from effects
to faults, which commonly are known as human diagnostician’s deep knowledge.

232 V Palade, CD Bocaniala and L Jain (Eds.)

The diagnostic is then obtained: (1) using a matching procedure from actual effects
to possible faults – as in the case-based diagnosis or in the neural/causal network-
based diagnosis, (2) using a transformed effects space regarding the difference from
the expected and the actual behaviour labelled with faults – as in the model-based
diagnosis, or (3) using an "intelligent" look up procedure performed through a
combined effects space, according to human diagnostician knowledge on
phenomena specific to the target system in normal and faulty running – as in
knowledge-based fault diagnosis.

Computational models of the above approaches have shortcomings at both
phases above, most of them revealed when the target system runs in a real context:

a) For the faults-to-effects mapping phase: cases (1) and (2) above
involve experiments which are barely possible for (all) faults, hence
no complete mapping is possible, while in case (3), the mapping
involves additional structures on causal relations between faults and
effects, coming from some explanations of phenomena taking place.

b) For the diagnostic decision phase: in cases (1) and (2), the
computational models are simpler but the diagnostic not entirely
reliable, while in case (3) the backward chaining from effects to faults
is applied in specific ways to the various running contexts.

Knowledge handled in cases (1) and (2) is often identified as “shallow
knowledge,” while that in case (3) is considered “deep knowledge.” In usual cases,
target systems involve flow conduction; hence the effects propagate throughout the
(entire) system and thus make the diagnosis much more difficult. In that case, the
combinatorial growth of the faults-effects mapping – cases (1) or (2), and because
the deep knowledge refers to the model of the entire system – case (3). However,
for systems in real life, neither the complex mapping nor the (many) complex
models are possible, and that’s why the human diagnostician’s role is crucial. It is
worth noting that running contexts of real systems are of greatest importance, while
identical systems may behave differently – due to age, environment, maintenance.

The present chapter first states some considerations on the diagnosis as an
abduction problem solving which exhibits an intrinsic connectionist nature: the
many-to-many relations of the effects to causes may get forward (excitatory) links
meant for activation of plausible causes, then relevant causes result from
competition between the plausible ones. The artificial neural network (ANN)
implementation of the connectionist model is enriched with specific architectural
features (structures of neural sites) meant to solve all types of abduction problems
met in the literature.

The nodes of the connectionist model are manifestations, symptoms and
faults. Human diagnosticians handle such concepts in a discrete and qualitative
way. In order to obtain a sound representation of the concepts and their qualitative
relations, the chapter develops the analysis on modelling means that lead to discrete
knowledge pieces and their relations, as human diagnosticians handle, regarding
normal and faulty behaviour of a target system.

The chapter focuses on the class of conductive flow systems that perform
more functions at a time; such systems are most encountered in technical and
economical domains, and due to their multifunctional and flow conduction natures
they are termed multifunctional conductive flow systems (MCFS). Sections 8.4 and

Computational Intelligence in Fault Diagnosis 233

8.5 develop appropriate knowledge elicitation schemes, in a multi-modelling
approach, to discriminate concepts and relations, as knowledge pieces involved in
fault diagnosis.

All concepts and relations take part in appropriate Computational
Intelligence models which combine human diagnosticians’ deep and shallow
knowledge on the target system behaviour, based on fuzzy logic and possibilistic
modelling of incomplete and imprecise deep knowledge on manifestations, and
based on neural network blocks for abductive problem solving of both fault
diagnosis and next best test policy in refining the diagnostic.

The neural networks embed the shallow knowledge as data sets from
practice and experiments for the plausibility links between faults and
manifestations. Deep knowledge helps finding the relevant causes (from the
plausible ones), and it is embedded in the neural sites of the specific abduction
problems on manifestations and faults in the target system. Also, it is embedded in
the links between faults and their specific symptoms corresponding to the four
“orthogonal transport anomalies” (first introduced in (Ariton, 2003)). Additionally,
the deep knowledge on the physical structure of the target system is embedded as
the projection structure of neural blocks, each corresponding to a Bond Graph
junction of the flow conduction system (Ariton, 2001).

Whilst deep and shallow knowledge are combined and embedded in the
neural network, the training does not require exhaustive experiments on faults in the
complex target system (which are barely possible in real life), and the diagnosis
exploits the common view on the whole system as an interconnection of modules;
to each module a neural network block is attached, thus easier to handle and train.
The architectural features that embed the deep knowledge allow a better and
comprehensive diagnostic, and also offer the opportunity to generate dedicated
diagnosis applications for each concrete complex target system and its real-life
running context. That opportunity is of most importance for the diagnosis task
while two identical target systems may behave differently. While for the control
task of a system it is natural to provide all homeostatic conditions to obtain the
intended aim, the diagnosis task deals with the system as it is, in its real context and
local conditions.

8.2. Diagnostic Problem Solving by Abduction

Abductive reasoning is a challenge for philosophy, science and practice. Abduction
is sometimes creative while it puts effects before causes (Bylander et al., 1991;
Schurz, 2002). Computer applications require effective computational models,
commonly focusing on the connectionist nature of the abduction problems (Peng
and Reggia, 1990; Ayeb et al., 1998).

8.2.1. Abduction Problems in Diagnosis

In the real world, fault diagnosis involves open spaces of manifestations and faults,
while both are not completely known in real contexts. Unlike deductive reasoning ,

234 V Palade, CD Bocaniala and L Jain (Eds.)

which focuses a definite aim and may consider the targeted part isolated from the
whole, abductive reasoning (e.g., in diagnosis) may not ignore causes (and effects)
without corrupting the result (i.e., the diagnostic). For example, if the excessive
heat of the air around a hydraulic installation is neglected, one may assert that
abnormal running is due to a faulty component – which may be false; a similar case
arises when ignoring the quality of the mineral oil flow.

In fault diagnosis, the cause may represent one or more faults occurring at
a moment, and the effects are subsequent deviations from the normal running that
appear. A huge number of causes come from combinations of various faults and
various external events, so the set of all possible causes is never taken into
consideration (it is not realistic). On the other hand, some effects are observed and
become manifestations, and some are not “visible” – due to the lack of information
(e.g., no sensors).

Both aspects presented in the previous paragraph are facts of the intrinsic
knowledge incompleteness of the diagnosis, actually of abductive reasoning in
general. So, diagnosis always deals with open spaces of causes and effects;
moreover, it deals with imprecise and uncertain knowledge of human experts on the
real behaviour of the target system. However, for feasibility reasons, both the space
of causes and the space of effects should be closed spaces. In this respect, special
classes of causes and effects should be introduced – e.g., the “normal” situation or
“unknown” causes.

Studies of Bylander et al. (1991) on abductive reasoning reveal four
categories of abduction problems:

a) independent abduction problems – no interaction exists
between causes;

b) monotonic abduction problems – an effect appears at
cumulative causes;

c) incompatibility abduction problems – pair of causes are
mutually exclusive;

d) cancellation abduction problems – pair of causes cancel
some effects, otherwise explained separately by one of them.

Ayeb et al. (1998) have a sound approach in this respect. They introduce a
fifth category:

e) open abduction problems – when observations consist of
three sets: present, absent and unknown observations.

The discrimination of the abduction problem type is specific to the
particular behaviour of the target system and it is a matter of deep knowledge of the
human diagnostician on causes and effects in the local context. For each type of
abduction problem, Section 8.2.4.2 presents a suitable architectural feature, which
may enter the neural network implementation for the abductive problem solving.

8.2.2. Abductive Reasoning through Plausibility and
Relevance

Direct causal links between effects and causes may represent plausibility criteria
(Bylander et al., 1991). From the set of all plausible causes, only a subset represent
actual causes, usually obtained through a parsimonious principle. Konolige (1992)

Computational Intelligence in Fault Diagnosis 235

considers the minimum cardinality as a relevance criterion, and applies it to the set
of plausible faults to obtain the diagnostic subset.

In the presented approach the concept of relevance gets a specific
representation, namely, it assumes some grouping of plausible causes – following
specific points of view, then selecting the most relevant causes from a group –
following competition or sorting/choosing procedures (Ariton and Ariton, 2000). In
the connectionist implementations, plausibility links get direct representations as
forward links between specific effects to specific causes As a concept, the
“relevance” is not often discussed in the literature, so below a special attention is
given to the subject.

A relevance group is a set of causes that are hardly likely to occur the
same time – e.g., the set of faults for a particular component in the target system; in
other words, a faulty component may exhibit only a small number of faults at a time
(usually, only one). The point of view from which causes may enter a relevance
group is the relevance scope, and it reflects the human diagnostician’s deep
knowledge on the faulty behaviour of the target system. The relevance criterion is
the method used in selecting relevant cause(s). In order to perform selection, a
quantitative quotient (e.g., “certainty” or “activation”) is provided to rank causes.
Following the relevance criterion (usually “minimum cardinality”), the selection of
“most relevant” causes proceeds, e.g., by competition inside the group – for the
connectionist implementation, or by choosing the cause with greatest activation.
Other relevance criteria may state specific order of causes or specific quantitative
relations between activations.

In the case of fault diagnosis, the minimum cardinality is usually applied
as a relevance scope for the single fault diagnosis, disregarding it refers to a
component or to the whole target system. However, the concept of relevance may
be extended to the selected aspects met in real-life situations, i.e., to other
“relevance features.” For example, in conductive flow systems, a group of faults
may indicate “leakage” symptom, so they all form a relevance group; if some of
such faults in the group are plausible, the most relevant will be the one exhibiting
the maximum relevance feature (in that case “leakage”).

The abduction problem solving proceeds by applying plausibility and
relevance criteria to the sets of all effects and causes, as further described; the input
is the set of instance effects and the output is the set of plausible and relevant causes
– which form the diagnostic. In Sections 8.2.4 and 8.2.5, the plausibility and the
relevance get connectionist models adequate to computational implementation.

8.2.3. Connectionist Approach to Abduction

Many-to-many causal relations between faults and manifestations get reversed
when reasoning by abduction. However, no inverse exists for the complex relations
when real problems are under concern – e.g. fault diagnosis of a real complex
installation. In such a case, one fault evokes many manifestations and the same
manifestation is evoked by many faults. Moreover, manifestations may enter
conjunction grouping to one fault, whereas disjunction grouping for others.

236 V Palade, CD Bocaniala and L Jain (Eds.)

8.2.3.1. Qualitative Plausibility and Quantitative Relevance
It is worth noting two interesting characteristics of the above concepts: plausibility
is qualitative and relevance is quantitative. So, in order to find:

plausible causes, one should use some qualitative processing to
select all causes complying with the observed current situation,
e.g., asserting the faults related to the instance manifestations that
appeared;
relevant causes, one should use some quantitative processing to
select only causes exhibiting a certain degree (e.g., greater than a
given threshold value) from the set of plausible ones.

The practical conclusions on issuing a connectionist model for abductive
reasoning by plausibility and relevance are:

the activation mechanisms involved in plausibility criteria should
allow a “logical overload” of numbers toward the qualitative
processing on causes;
the competition mechanisms for relevance criteria should assess
(numerical) degrees which enter the quantitative processing on
relevance of causes.

The logical overload is meant for affecting “quantities” (e.g., numbers) in
order to become “qualities” (i.e., meanings) thus suited for plausibility criteria; the
meaning is attached to each range of values, corresponding to the significance of
that range taken from the deep knowledge of domain experts. The simplest logical
overload attaches two complementary meanings for the two ranges of numerical
values obtained after splitting the whole domain based on a border value (i.e., a
threshold) with certain significance for the variable.

That simplest logical overload is actually used in the neural network
implementation of the plausibility: if the link strength to a fault-neuron, coming
from a manifestation-neuron, is greater than 0.5 (the doubt threshold), then the link
is “important” and gets that meaning. Therefore, it has to pass the gates into the
fault-neuron, i.e., enter the input function (the stimuli sum). Otherwise, it is “not
important” and hence the gate to the fault-neuron is blocked, i.e., the input stimulus
does not enter the input function (actually, the input value is set to 0). Practical
examples on how to use the logical overload in specific abduction problems in
neural network implementation are presented in the next subsections.

8.2.3.2. Parallel Plausibility and Sequential Relevance
Relations between causes and effects (in this direction) correspond to the deductive
explanations and indicate which causes determine which effects. The many-to-
many relations between effects and causes (in the reverse direction) show which
effects may evoke which causes, but instance effects do no indicate instance causes
(that really occurred), while no inverse of the direct relations exists. Therefore, in
the general case, complex relations between effects and causes naturally lead to a
connectionist model which, in an artificial neural network (ANN) implementation,
will present excitatory links for the plausibility and competition links for relevance.

In a general approach, abduction problem solving proceeds by multiple
applications of the following functions (Ariton and Ariton, 2000):

Computational Intelligence in Fault Diagnosis 237

plausibility(P_CRITERIA, EFFECTS) – which originates the
plausibility of each element from the set of CAUSES, based on
the set of instance EFFECTS, and according to plausibility
criteria P_CRITERIA.
relevance(R_CRITERIA, CAUSES) – which yields the subset of
CAUSES selected from the set of plausible ones, observing
R_CRITERIA specific to each relevance grouping resulted from
the relevance scopes.

Note that entities in CAUSES and EFFECTS sets exhibit values in [0,1]
interval. The above functions apply to each entire set of entities: first, all instance
EFFECTS contribute to activation of plausible causes (so they attain nonzero
values), then the entire set of CAUSES enters the relevance competition (repeatedly)
while the less plausible causes already have near-zero values, thus eliminated. That
assures a “classical” connectionist implementation in the ANN approach.

P_CRITERIA refer to deep knowledge of human experts (related to known
causal relations between effects and causes) or they refer to shallow knowledge
after the ANN train, following data collected from experiments on causes and
effects. Plausibility may operate in parallel on EFFECTS to activate the related.

R_CRITERIA refer solely to deep knowledge of human experts on the
various cases where causes show specific relations between them, specific links to
running contexts or particular behaviours. Relevance processing is repeatedly
(sequentially) applied, until a final definite set of causes (i.e., the diagnostic)
achieve the highest stationary activation. In single fault diagnosis, the cardinality
accepted for the diagnostic set is 1, in multiple fault diagnosis cardinality is greater
than 1. How sequential diagnosis proceeds is presented in Section 8.7.3.

8.2.4. Neural Models of Plausibility for the Abduction
Problems

In the neural network model, plausibility refers to forward (excitatory) links
between effects and causes. A cause (e.g., fault) becomes the output neuron Fi and
an effect (e.g., manifestation) becomes an input neuron Mj. The activation of a
cause is the result of cumulative action effects associated to it, and it may be
expressed by the well-known neural activation function applied to inputs Mj:

Fi = f(M
| |

1

M
ij

j
w j + i) (1)

i.e., each manifestation from the set M (with |M| the cardinality) evokes, in a
specific measure (i.e., weight) wji, the fault Fi, if the sum becomes greater than the
threshold i.

However, human diagnosticians often take into account a manifestation
linked to a fault in a simple, “logical manner” (Ariton and Palade, 2004):
manifestation Mj is “valid” (as a witness) for a fault Fi only if its activation is
greater than a threshold, specific to the given manifestation-to-fault link. In the
simplest way, if any two neurons M and F have activations in [0, 1] and the weight
on their link is w, the maximum contribution of M to F is w (when M=1) and it is

238 V Palade, CD Bocaniala and L Jain (Eds.)

still “valid” when M>0.5 (when M is above the doubt value) – i.e., its contribution
is greater than w/2.

The logical overload consists in attaching certain linguistic attributes to the
generic input I of a cause neuron, e.g., exceeding the doubt level, w/2:

if I > w/2 then I = “valid” else I = “not valid” (2)
This way, each link’s strength is logically overloaded, and it makes

possible the logical aggregation of effects to (evoked) causes, as required by each
type of abduction problem.

8.2.4.1. Neural Sites and Specific Logical Aggregation
The ANN computational model of abduction for plausibility of the logical
aggregation of input-effects to cause-neurons is performed by means of dedicated
“neural sites,” as specific architectural features that may embed deep knowledge in
the connectionist model, beside the native shallow knowledge – which is embedded
by training. The logical aggregations envisaged are (Ariton and Palade, 2004):

i) disjunctive aggregation, performed by the “disjunctive site”
through the default cumulative processing (that is already the
input function of the “classical” neuron), i.e., all m inputs
cumulate their activation Ij:

1

m
j

j
O I (3)

ii) conjunctive aggregation, performed by the “conjunction site,”
whose output O obeys the rule given by Eq. 4. After the logical
overload, the inputs I1, I2 are aggregated according to the truth
table from Figure 8.1f:

if I1 > w /2 AND I1 2 > w2/2 then O = I1 + I2 else O = 0 (4)
iii) negation, performed by the “negation site”. The output O is
obtained from input I according to Eq. 5 and the truth table in
Figure 8.1g:

O = w - I (5)
Note that the logical aggregation upon links’ strengths modifies only the

input value of the cause-neuron; it does not affect the usual processing inside the
neurons in the original neural network (i.e., input or activation neuron functions).
So, the training and the recall procedures do not change (e.g. for perceptron or
counterpropagation neural networks).

8.2.4.2. Structures of Sites and Neurons for Different Abduction Problems
Each type of abduction problem in Section 8.2.1is solved through a

specific structure of neural sites, involving forward links from effects to causes as
follows:

Computational Intelligence in Fault Diagnosis 239

Mj

Fi

wji

∧
I1

I2

O
Conjunctive site (∧) AND

O I1≤ w1/2 I1≤ w1/2

I2≤ w2 /2 0 0

I2> w2 /2 0 I1 + I2

Truth table for inputs I1, I2

a)

f)

¬

I

O
Negation site (¬) NOT

O I ≤ w/2 I > w/2

w-I w-I

Truth table for input I

g)

Fi Fl

Mj

Fi Fl

Mj

b) c)

w1 w2 w

Fl

Mj

absent

e)

Fi Fl

Mj

d)

wji wjl

wji wji
wjl wjl

wjl

1

1

1

Figure 8.1. Various abduction problems solved by neural network features using logical
overload of the links between neurons.

a) For independent abduction problems – excitatory links apply
directly from the effect Mj to the corresponding cause Fi (see
Figure 8.1a). If there also exists a conjunction grouping of
the effects to the cause, conjunction site(s) are used at the
input of the cause-neuron. Note that, by default, the neuron
implements a disjunctive grouping of inputs through its input
(sum) function (Eqs. 1 and 3).

b) For monotonic abduction problems – the causes Fi and Fl
both evoke the same effect Mj, hence they suffer conjunction
with one another and with the common effect through
conjunction sites, as shown in Figure 8.1b, and expressed by
the rule:

(6)Fi Fl AND Mj, Fl F AND Mj
c) For incompatibility abduction problems – the pair Fi and Fl

of causes are mutually exclusive (i.e., they are not both active
at the same time), both evoking the same effect Mj. Each of
them suffers conjunction with the negation of the other cause
and with the common effect, as shown in Figure 8.1c, and
expressed by the rule:

(7)Fi NOT Fl AND Mj, Fl NOT Fi AND Mj
d) For cancellation abduction problems – the pair of causes Fi

and Fl reduce the effect Mj when both occurred, although
each of them evokes it separately. They suffer conjunctions
as in Figure 8.1d, according to the following rule:

(8)Fi Fl AND NOT Mj, Fl Fi AND NOT Mj
e) For open abduction problems – the difficulty is dealing with

absent effects, so the cause Fi is activated if no effect Mj
exists (Figure 8.1e), according to the rule:

240 V Palade, CD Bocaniala and L Jain (Eds.)

(9)Fi NOT Mj
Links between cause-neurons in abduction problems of types b, c, d, have

all weights between cause-neurons equal to 1 if they are symmetric (one to
another), else they are set according to deep knowledge of the human expert.

Plausibility criteria are now embedded in:
weights of the forward links between effects and causes – shallow
knowledge;
neural sites structures attached to cause-neurons (according to
respective abduction problem) – deep knowledge;
thresholds set for the site’s inputs – deep knowledge.

The training procedure embeds the shallow knowledge by strengthening
links between effects and causes as from the training patterns. At the recall phase,
the sites trigger the inputs of the neurons just to obtain plausible causes; so, they
only avoid activating less plausible causes, but do not modify the values of
activations of the plausible ones – according to instance values of the (input) effects
appearing. Even the structure of the neural network looks different, the original
training procedure of the (two-layer) neural network does not change (no matter the
type of the neural network used – e.g., perceptron, counterpropagation).

8.2.5. Neural Models of Relevance and Layered
Modularization

The neural model of the relevance is competition. Relevance assumes a numerical
value attached to causes, and the relevant cause(s) have the highest values that also
exceed a given threshold. The cardinality of the relevant set of causes is 1 if
“winner takes all” competition applies, or greater (if a relaxed competition applies).
So, the relevant causes observe the minimum cardinality condition.

Relevance is a sequential processing: each relevance criterion is applied
one after another in a given order, each criterion assuming the following steps:

i) Consider plausible causes in the current relevance group whose
values exceed the given threshold.
ii) Start competition between causes inside the relevance group.
iii) Select relevant cause(s) observing the given cardinality (1 for
single fault diagnosis).

Both pieces of information, the order of the relevance criteria applied and
the causes belonging to each relevance group, are a matter of the human
diagnostician’s deep knowledge on refining the diagnostic. The numerical values
involved in competition and the selection of causes come from the plausibility
processing of causes based on instance effects.

Due to the fact that plausibility activates in various degrees the causes,
competition always proceeds on the whole relevance group of cause (not only on
the plausible ones); less plausible have lower (or zero) values and are easily
eliminated, so the computational procedure is applied identically.

Computational Intelligence in Fault Diagnosis 241

8.2.5.1. Relevance Scope
Any cause should enter a relevance group, i.e. no cause is relevant by itself

while it is either already known or permanent. A relevance group usually consists of
causes that share the same characteristics (Ariton and Ariton, 2000). For example,
faults occurring at a given component form a relevance group, faults exhibiting
“leakage” symptom at a given module form a relevance group, etc. Note that one
cause (e.g. fault) may take part in more relevance groups, due to its properties.

The groups of causes are actually obtained by performing some
modularisation on the entire set of causes observing relevance criteria that fall into
one of the following categories:

Scope on physical structure – concerning the physical units as
locations for causes: all the faults at the module level form a
relevance group, and all the faults at the component level form a
relevance group;
Scope on functional structure – concerning the specific running
contexts (i.e., activities or process phases) in which causes are
“visible”: all the faults whose effects appear only when the piston
of a hydraulic cylinder is moving form a relevance group;
Scope on generic effects – usually concerning the same symptom:
all faults evoking “leakage” symptom form a relevance group,
while those evoking “clogged” symptom form another relevance
group.

The relevance criterion is usually the minimum cardinality on plausible
causes, meaning that causes are unlikely to appear simultaneously. It is applied at
the various unit levels (physical or functional). Other relevance criteria are: faults
more likely to occur (due to component’s age or state – as from human
diagnostician’s experience), faults requiring further observations (by means of
human operator tests), etc. In such cases, to each cause is attached a numerical
value necessary in the processing presented above.

8.2.5.2. Layered Modularisation of Causes
A cause may enter various relevance groups of the same set of causes, in a layered
modularisation. Each layer refers to a scope – regarding the modularisation of the
set of causes, for each relevance scope obtaining two (or more) “relevance groups.”
For example, some layers refer to the physical structure: one layer contains groups
of causes associated to modules and another one to components; other layers refer
to generic symptoms associated to faults: those producing “leakage” and those
producing “obstruction.” For each layer a specific modularisation occurs,
corresponding to the scope it represents.

Suppose that the layered modularisation of causes is performed according
to n relevance scopes, so n-times partitioning of the same set of causes is obtained.
Each layer L of relevance induces a specific modularisation of causes and has a
specific weight WL in the economy of the diagnosis. A layer (and its scope) may be
more relevant than another, provided weights are normalized, i.e.:

1
1

n L

L
W (10)

242 V Palade, CD Bocaniala and L Jain (Eds.)

The relevance criteria, scopes and layers, groups and weights of layers all
come from the deep knowledge of human diagnosticians, and they are indicated
during knowledge elicitation time. The competition that takes place over causes in a
relevance group, is independent of the forward plausibility processing in the neural
network structure, no matter what ANN implementation is chosen. So, the
relevance may be added without altering the original neural network functioning to
an appropriate feedforward ANN architecture.

8.2.5.3. Relevance of the Faulty Situation Against the Normal Situation
A component is the final location in fault isolation, corresponding to the set of all
faults as possible causes of some faulty behaviour of that component. However, the
space of faults should be completed with the “normal” situation. The neural
network output layer will contain F0, F1,…, Fn-1 neurons indicating faults, and the
Fn neuron indicating the normal situation.

The Fn cause (and neuron) is of capital importance, while the NORMAL
situation enters the relevance competition along with the FAULTY situation. So,
before fault isolation proceeds, the fault detection attests the FAULTY situation
against the NORMAL one. The relevance group is the set of F0, F1,… Fn causes, and
the relevance criterion (Eq. 11) asserts the FAULTY situation:

if then FAULTY
1

0
)1-n,1,0,i(5.0 Fnn

n

i
FiFi (11)

In other words, if any of the activated faults has a truth value greater than
the “doubt value,” and the relative level of the NORMAL situation is greater than all
current (activated) faults, then the FAULTY situation is credited.

In conclusion, the connectionist model for abduction problem solving,
using plausibility and relevance presented in this paper, is fully functional for all
categories of abduction problems, as well as for disjunctive and conjunctive
groupings of effects to a cause.

The proposed neural network model for abduction is a two-layer feed-
forward neural structure, similar to perceptron or counterpropagation, that is
completed with neural site structures for plausibility and relevance grouping /
competition for relevance. The presented approach is more natural and simpler than
the unified connectionist model for abduction presented by Ayeb et al. (1998). It
also allows various “classic” ANN implementations, if appropriate feedforward and
competition links are provided.

8.3. Aspects of Human Knowledge Usage in Fault
Diagnosis

Fault diagnosis deals with concepts as fault, fault mode, manifestation, symptom or
anomaly. The diagnostic problem solving is commonly conceived in two stages:
Fault Detection, then Isolation of the actual faults (Palade et al., 2002; Uppal et al.,
2002; Bocaniala et al., 2004; 2005). The literature in the field defines the above
concepts slightly different from one researcher to another, depending on the

Computational Intelligence in Fault Diagnosis 243

approach or the actual implementation or method proposed. Diagnosis (DX)
approaches deal with Artificial Intelligence (AI) and Cognitive Sciences concepts
(Cordier et al., 2000) and are closer to the human diagnostician way of acting.

In real life, fault diagnosis faces three types of inconveniences with respect
to the faulty behaviour of a target complex system (Davis, 1993):

Incomplete knowledge – the set of all (single or multiple) faults,
effects and relations between them is not completely known.
Diagnosis relies on a small set of causal relations (deductive) and
empirical associations between faults and causes, and on a vague
idea on how to proceed in FDI. Some manifestations are not
known, while the human operator may supply information from
test points, if required. When propagated effects exist, they
increase the uncertainty on the faulty behaviour (e.g., in
conductive flow systems (Ariton, 2001)).
Imprecise knowledge – there is perpetually a drift in any
measured value of a variable, the human expert having only a
clue on abnormal ranges of values for each variable.
Uncertain knowledge – when they have occurred, manifestations
may not be entirely “abnormal”; that is, faults and manifestations
occur “with some degree,” they have truth values attached.

Aiming the computational modelling, the present approach is pragmatic: it
considers definite meanings for the concepts above, allowing the representation of
knowledge incompleteness, imprecision and uncertainty, assuming it comes from
human diagnosticians’ deep and shallow knowledge on faulty behaviour of a target
real-world system.

8.3.1. Knowledge Pieces Involved in Diagnosis

Human diagnosticians’ deep knowledge refers to the structure of the system under
diagnosis and to the expected normal behaviour, while shallow knowledge refers to
faulty behaviour at module and/or component levels. The structure of the target
system consists of modules and components, as units conceived by designers, and
accepted by diagnosticians to master the system’s complexity. Modules and
components are usually conceived as functional units. In the literature, the module
is a structure of components, but the component does not have a clear meaning. It
may suffer further decompositions (see Section 8.6.2.1), but nevertheless a
component is conceived as the final location for faults or manifestations.

In the following definitions, we make use of the term piece of knowledge,
stressing that the concept defined is obtained through an appropriate processing on
the physical reality to extract (discrete) objects and logical meanings. A cognitive
neutral numerical value Xk gets meanings (depending on the value range or
particular situations) that are expressed by truth values X [0,1], where Xk k = 1
means that the concept is certain or complete. The concept may be a state
(expressed by a noun) or a grade (expressed by an adjective or an adverb).

244 V Palade, CD Bocaniala and L Jain (Eds.)

8.3.1.1. Component
A component is “a piece of equipment accepted by the human diagnostician as
being sufficient for fault isolation” (Ariton and Ariton, 2000). Of course, it is a
convention how much “detailed” a component is, while the human diagnostician
decides what unit exhibits “pointed” causes for abnormal behaviours. After all, it is
a matter of troubleshooting: deciding the location of the cause is the first step in
removing the faulty unit (for further removing the disorder). How “small” (or how
“low”) the components are is a decision of the elicitation made upon the system
under the diagnosis, when the fault isolation granularity is established.

8.3.1.2. Disorder
A disorder refers to nonconformities in the actual behaviour of the target system,
against the expected one – which is designed and considered “normal.” In order to
obtain a feasible diagnosis system, the space of causes has to be a closed space, so it
includes: disorders taking place at components (e.g., damages or ill tuning), flow
(e.g., bad quality), environment (e.g., abnormal surrounding conditions) and human
operation (technological discipline). Note that environment includes all neighbour
systems: technical systems ambient atmosphere, etc., which may affect the target
system’s running.

8.3.1.3. Fault
A fault is a simple piece of knowledge regarding a physical nonconformity located
at a component. Fault is a human concept with intrinsic discrete and logical natures:
it has a name, usually expressed as a proposition about the disorder, and a degree of
uncertainty – usually expressed in terms of a truth value Fl [0,1]. If Fl 0.5, then it
is above doubt that fault Fl occurred. From the human diagnostician point of view,
the truth value is a measure of plausibility of a fault. The set F of all “known” faults
should be decided at the elicitation time, each for a specific disorder or for a class of
disorders, and reflecting the open space of effects induced by the incomplete
knowledge. Open spaces should be closed by completing with generic “disorders”
of the kind “not known” or “undecided,” also with locations of the kind “out of
target system limit.” The fault mode refers to a specific disorder induced by a
certain fault in a given process phase.

8.3.1.4. Manifestation
A manifestation is a simple piece of knowledge attesting to an abnormal value of an
observed variable, during a certain running context of the target system. In the
entire set M of manifestations, some may reach the diagnosis system by sensors
(from continuous or binary variables), and others by human operator tests on
observed variables in the process (from human senses – as adjectives, or from test
points – as numbers). The manifestation’s truth value Mr [0,1] indicates how
certain is the state or a grade exhibited, and it reflects our knowledge imprecision
and uncertainty.

8.3.1.5. Symptom
A symptom is a complex piece of knowledge that refers to a certain behaviour
coming from the deep knowledge on the target system and the domain. Symptoms

Computational Intelligence in Fault Diagnosis 245

evoke classes of faults and induce some partition S on the entire set of faults F.
Some symptoms provoke disjunctive partitions (e.g., faults in the “leakage”
class/symptom do not belong to the “clogged” class/symptom), others provoke non-
disjunctive partitions. A fault that evokes more than one nondisjunctive symptom
cumulates its plausibility (it is more relevant). The primary and secondary effects,
witnessed in conduction flow systems, are symptoms: primary effect is the one
located at the faulty component, secondary effect is the one located at the nonfaulty
component due to propagated deviations of variables values (deviations from the
expected “normal” values).

8.3.1.6. Process
Process phase is a complex piece of knowledge that refers to a certain state of the
process, with certain duration in the functioning of the target system. From the
human diagnostician point of view, a process phase characterizes the context in
which the diagnosis takes place. While in the real system’s running the process
phase is “expected” to happen, its truth value P asserts the degree to which the
context is really known, during the current slice of time in the process evolution.
Process phases induce partitions on the set M of all manifestations and on the set S
of all symptoms.

All the “evaluations” made by the (automated) diagnosis system to obtain
truth values for manifestations, symptoms, process phases, and faults evoke some
processing performed on observed variables’ values (Calado et. al., 2001). Note that
the human diagnostician deals with “linguistic variables” when referring to
manifestations and symptoms. By default, knowledge pieces are discrete and
qualitative in nature, the latter reflecting knowledge imprecision or knowledge
incompleteness regarding the human diagnostician view on the (faulty) behaviour
of the target system. Therefore, any processing should comply with these aspects.

8.3.2. Observed Variables

Let us consider now a computerized diagnosis system that deals with manifestations
and faults with graded values of truth as described above. If the observations made
upon the target system’s behaviour are linguistic or binary variables, they already
have a “logical meaning” – present/absent. The observations made upon the target
system come to the diagnosis system from the human operator (thus meaningful) or
from sensors, as numerical values, thus cognitivly neutral. To obtain a common
denominator, they should undergo some processing to become manifestations, so
they undergo some "intelligent encoding" indicated by Cherkassky and Lari-Najafi
(1992) as being crucial in diagnosis.

The preprocessing performed by the diagnosis system on the raw acquired
values depends on the observed variable’s type:

a) Binary variable from digital sensor – no processing required. By
default, such a variable has two values, attached to a logical
meaning (e.g., present/absent, open/shut). The manifestation
results immediately, and Mr {0,1}.

b) Continuous variable from analogical sensor/device – processing
required. To obtain some discrete piece of knowledge

246 V Palade, CD Bocaniala and L Jain (Eds.)

(manifestation with some truth value Mr [0,1]) from primary
data, the continuous signal supplied by the sensor is sampled and
the series of values undergoes some processing according to the
current process phase.

c) Discrete variable from human operator tests – no processing
required. For example, the linguistic variable “noisy” is by default
a logical variable with two values; thus manifestation results
immediately: Mr {0,1}. Note that variables like “not hot,” “hot,”
“very hot” should be reduced to more manifestations of the same
type Mr {0,1}.

d) Continuous variable from human operator test performed in a
test-point – processing required. The numerical pointwise value,
entered by the human operator, should be evaluated if normal or
not. Abnormal situation results as a (discrete) manifestation,
according to the current process phase (e.g., fuzzification of
point-wise numerical values, obtaining a fuzzy attribute with a
graded value of truth Mr [0,1]).

So, intelligent encoding depends on the type of observed variables. The
specific processing brings them to a uniform representation. Knowledge
incompleteness, imprecision and uncertainty, specific to human diagnostician
qualitative way of thinking, come from the abstractions made on the real continuous
running of the target system (Mosterman and Biswas, 2002) and from the
complexity of real phenomena. These aspects of human knowledge are melted into
discrete and logical representations of manifestations, both useful in the neural
network approach of the diagnosis, further presented in this chapter.

8.3.3. Semiqualitative Encoding of Manifestations

Fuzzy logic deals with associating logical meanings to numbers. It copes with the
qualitative way of thinking of human experts, and quantities become sets, or
intervals with imprecise edges, but specific meanings. In the present approach, a
manifestation is a fuzzy attribute of an observed continuous variable V during the
process phase P, i.e., it is a fuzzy subset over its universe of discourse (V), as
shown in Figure 8.2.

8.3.3.1. Prototype Manifestations
The attributes refer to the qualitative subdomains related to the abnormal values
"too low" (lo) and "too high" (hi) in the current running context. Fuzzification is
chosen as the "intelligent encoding" meant for manifestations. In Figure 8.2, the
subdomains between landmarks Lm(no) - Lm(lo) and Lm(no) - Lm(hi), respectively,
refer to the qualitative subdomains of Kuipers’s approach (Kuipers, 1994) on
quantifying values of a variable, in qualitative physics.

Pairwise neighbour subdomains form the fuzzy attributes “too low” and
“too high” for the generic manifestations lo and hi corresponding to the given
variable V and the given process phase P. Note that the fuzzy attribute “normal”
(no) refers to the range of “expected values” for the observed variable, which
indicates a normal behaviour; it is essential for obtaining a closed space of causes.

Computational Intelligence in Fault Diagnosis 247

The overlapped intervals of the fuzzy attributes (see Figure 8.1) reflect the
knowledge incompleteness and imprecision of the human diagnostician, which is
linked to the specificity of the manifestation (Turksen, 1996).

The attributes lo or hi – as triangular membership functions in the semi-
qualitative representation – are prototype manifestation set by the human
diagnostician at knowledge elicitation on the system under the diagnosis.

The effective landmarks and the fuzzy subsets for generic manifestations
lo, no, hi are provided at elicitation time. The knowledge engineer uses deep
knowledge from the domain expert to assign qualitative landmarks for each
observed variable from sensors. In this case, the CAKE (Computer Aided
Knowledge Elicitation) tool is useful for the human diagnostician (see Section 8.6).

The triangular membership functions of the generic manifestations fit well
to the semiqualitative representation usually encountered by human diagnosticians
(Kruse et al., 1994). Due to the linear and baricentric encoding, such representation
offers some advantages for logical processing in a human-like way, also for fuzzy
arithmetic with ranges when assessing propagated effects (Ariton, 2003). That
simple semiqualitative representation best captures the human diagnostician’s
knowledge on manifestations of any kind, when the system is faulty.

8.3.3.2. Handling Uncertainty on Instance Manifestations
The manifestations linked to a continuous variable (type b or d from the above
classification) actually refer to the pointwise value v that enters the diagnosis
system during a process phase P. After fuzzification, each attribute lo, no, hi gets a
truth value.

The instance manifestations obtained reflect the uncertainty of the
situation occurring when for example both truth values hi(v)>0 and no(v)>0 appear
(see Figure 8.2) – the last one reflecting the opinion on “normal” behaviour of the
current situation. The preprocessing block of the diagnosis system should assert, for
any variable instance, the appearing manifestations and their extent (the truth
value).

8.3.3.3. Types of Manifestations
The set of all instance manifestations MP for a given process phase P comprises: the
instance manifestations for all sensor-observed continuous variables MC

P (truth
values in [0,1]), the instance manifestations for all sensor-observed binary variables
M P

B (truth values in {0,1}) and the instance manifestations for all human operator-
observed variables M P (truth values in {0,1}). O

Taking into consideration all variables of any kind, and for all process
phases, will lead to the set M of all manifestations as distinct knowledge pieces. It
comprises the set MM of manifestations obtained by permanent measurements
through sensors mounted in the process:

MM = { MC
P MB

P (12) | for all process phases P }
and the set OM of manifestations obtained by human operator observations:

OM = { MO
P | for all process phases P } (13)

Hence, the set M of all discrete manifestations entering the diagnosis system
is:

(14) M = MM OM

248 V Palade, CD Bocaniala and L Jain (Eds.)

and comprises all pieces of knowledge of the kind lo, no, hi for manifestations at
continuous variables, or present / absent for binary variables.

Overall, the cardinality of the set of all observed variables is lower than the
cardinality of the set of manifestations M, since the sensor-observed binary
variables may have two “pieces of knowledge” (i.e., one manifestation of type
“present” and, afterwards, one of type “absent”), and the human operator-observed
variables may have three “pieces of knowledge” (i.e., two manifestations lo, hi and
one of type no – as “absent” or “normal”). Some “absent” manifestations are quite
important in diagnosis (see below), as they require a specific type of abduction
problems to be solved.

Some continuous operator-observed variables may be “measurements on
the fly,” i.e., they are not permanently observed by sensors, but supplied
occasionally by the human operator when required, following a best next test
procedure (de Kleer and Kurien, 2003). In this case, the diagnosis system should
perform the fuzzification or other processing, after the operator supplies the
required value. This is a usual approach to finding logical meanings for
manifestations (with truth values), and the obtained unified and discrete
representation will be used in the connectionist implementation for diagnosis
described in the next sections.

8.3.4. Intelligent Encoding of Instance Manifestations

Depending on the source of the observation, the obtained manifestation requires
more complex or simpler processing, for example when observation comes from
analogical sensors or from binary sensors, respectively. In the latter case, values as
close/shut are already discrete and have a meaning – thus no processing required.

For an observed pointwise value v the truth value results from regular
fuzzification (Kruse et al., 1994) – e.g., in Figure 8.2 the instance manifestations hi
and no get truth value hi(v) and no(v). The representation is semiqualitative while
it exhibits qualitative attributes (i.e., lo, no, hi) and truth (numerical) values for
each. However, human diagnosticians judge manifestations for the activity as a
whole, hence the instance manifestation refers to the set of values (not the pointwise
one) acquired during the current process phase P. Thus, straight fuzzification is not
suited to encode manifestations (Dubois and Prade, 1998). An appropriate
processing is further used.

8.3.4.1. Instance Domain for an Observed Variable
The sampling and the conversion of the V variable during P time period of the P
activity produce NP binary numbers, further denominated instance domain (see the
solid line in Figure 8.3a). A pointwise (quantified) value vi appears P

i times in the
instance domain. If divided by NP, it becomes the frequency of vi during P, with a
maximum P

m at value vm: P
m = P

i
max i .The value vm is a meaningful value but it

does not evoke a manifestation, while it does not refer to the entire set of values,
hence a special encoding scheme is needed, which is further presented.

Computational Intelligence in Fault Diagnosis 249

Figure 8.2. Semiqualitative representation of generic manifestations expected at a sensor-
observed variable V.

The frequency distribution P
V for all values is the collection:

P
V = { P

i | i = 0 .. NP (15) }
and the normalized frequency distribution (to the maximum P

m) – see Figure 8.3a
– is:

P
V = { P

i / P
m | i = 0 .. NP (16) }

8.3.4.2. Instance Membership Function for Series of Acquired Values
Instead of a pointwise value, the diagnosis system will use the normalized
frequency distribution P

V to assert manifestations for the variable V over the
process phase P, as shown below. So, the instance domain (solid line in Figure
8.3a) may be seen as a fuzzy set in the statistical approach (as from (Kruse et al. ,
1994)), and P

V is the actual instance membership function.

Figure 8.3. Possibility measure (a) and necessity measure (b) of the instance membership
function upon the prototype manifestations for the continuous variable V, during the activity

P

250 V Palade, CD Bocaniala and L Jain (Eds.)

The instance membership function P
V is not like the probability

distribution pV, while pV = P
i / P

i , thus it is obvious that pV
P
V . On the other

hand, sampling V during the period P is not a random process, hence the approach
is not stochastic. Frequencies do not change the proportions between the values
after normalization, so that frequency distribution is scalable, but the probability
distribution is not.

8.3.4.3. Instance Manifestation
The instance membership function of the observed variable V will reveal instance
manifestations that appeared during the actual activity P. Manifestation is an
attribute a {lo, no, hi}, which results from the possibility and the necessity
measures (Ayeb et al., 1998) of the instance membership function over the partition
in Figure 8.3a:

PossV(a) = supv a v
p , NecV(a) =1- PossV(a) = infv a (1- v

p (17))
Inference of the instance manifestations proceeds as follows:

i) Calculate the membership function P
V of the V variable’s instance

domain.
ii) Calculate the set P

V of possible manifestations:
 P
V = { a | a {lo, no, hi} and Possa(P (18) V) > 0.5}
iii) Calculate the set P

V of necessary manifestations:
 P
V = { a | a {lo, no, hi} and Neca(P (19) V) > 0}

iv) Assert which instance manifestation MP
V actually occurred,

applying:
MP

V = { a | a P
V

 P
V and Neca(P

V) is maximum from all in P (20) V }
In the example from Figure 8.3, the possibility measures are: Posslo(P

V) =
0, Possno(P

V) = 0.75, Posshi(P
V) = 0.55 and the necessity measures are: Neclo(P

V) =
0, Necno(P

V) = 0.45, Nechi(P
V) = 0.25, hence the instance manifestation is no

(see Figure 8.3b).
At elicitation time, the set of all instance manifestations M P, for a given

activity P, comprises: instance manifestations for sensor-observed continuous
variables MC

P P (truth values in [0,1]), binary variables MB (truth values in {0,1}),
and human operator-observed variables M P (truth values in {0,1}). O

8.4. Concepts and Structures on Normal Running

Deep and shallow knowledge, embedded in the connectionist model, comes from
concepts that human diagnosticians deal with regarding the target system. However,
diagnosis of real complex systems is a difficult task, while it involves a huge
number of variables and events to handle, so computer-aided diagnosis is of great
help.

The following section presents some principles on discriminating the
concepts and their relations for the fault diagnosis following a human-like
diagnosis, and using connectionist models for abduction. In that endeavor, means-
end modelling approach seems best suited for the analysis and representation of

Computational Intelligence in Fault Diagnosis 251

physical and functional structures. The approach makes use of bond graph models,
adapted to cope with human-like qualitative view on the faulty behaviour of
conductive flow systems, and also to the modular way of thinking when isolating
faults.

8.4.1. Means-End Abstractions of Physical and Functional
Structures

Real systems are multifunctional systems, while they perform many functions at the
same time. Functions refer to tasks performed by modules and components toward
specific utilities envisaged by the artefact. Each module performs a sequence of
activities, and all modules perform activities in parallel – each module one activity
at a time, during the given slice of time in the whole installation running. As a term,
“multifunctional” is introduced in (O’Brien, 1970) on complex systems’ safety, and
it is used in fault diagnosis in (Okuda and Miyasaka, 1991; Shibata et al., 1991).

Most encountered systems in technical or economical domains are
conductive flow systems (CFSs) (Cellier, 1995) – i.e., they transport matter, energy
and information as flows passing through pipe-like paths. Through the effects
propagation, same effects may appear at many faults, located at faulty and non-
faulty units. In such cases, the human diagnostician deals with primary and
secondary effects, i.e., effects located at the faulty component and effects spread to
nonfaulty components, respectively.

Means-end modelling approach is a view on artefacts from the utility
perspective: the ends (concrete goals of the artefact) are those structuring the means
(functional structures) supported by physical components. In (Larsson, 1992) a
component performs a “flow function” (and a module a network of flow functions)
– acting upon the flow.

8.4.1.1. Multifunctional Systems
A multifunctional system (MFS) under the diagnosis is the 5-tuple C, G, S, T, H :

C is the set of all physical components, each component meant as the final
location for fault isolation, each completing certain functions;

G is the set of functions components may accomplish;
S is the set of ends, each end characterized by performance of a certain

utility that the system must accomplish;
T is the set of time durations in accomplishing (each of all) ends;
H is the set of modules, each module hi comprising a subset Ci of

components and accomplishing a subset Si of ends.
An elementary end sik is achieved during (and corresponds to) an activity –

from the Discrete Event System abstraction of the hi module’s running. A module
may accomplish more ends. For example, a hydraulic conveyor executes four
activities corresponding to the four ends of the actuator (the hydraulic cylinder):
still left, move left-to-right, still right, move right-to-left, each being a function of
the actuator component.

The set of modules H is a disjunctive partition upon the set S of ends, each
module accomplishing a specific subset of ends Si but only one end sik at a time. In
the example above, the module comprises components as pipes, control valve,

252 V Palade, CD Bocaniala and L Jain (Eds.)

damper, hydraulic cylinder. The ends are the “move” or “stay still” services, and the
durations in accomplishing those ends are either specified – e.g., the expected
duration for each movement of the piston, or derived – e.g., the stay-still duration
(between movements). The relations between cardinalities |S|=|T| and |S|>|H| hold;
in other words, each end has a certain duration (in normal and abnormal situations)
and a module exhibits at least two activities (idle/active) to a certain end.

8.4.1.2. Multifunctional Conductive Flow Systems
Multifunctional conductive flow system (MCFS) is the 7-tuple C,G,S,T,U,H, :

C, G, S, T are as above;
U is the set of flow types; a certain flow type ut is processed by

components of a module toward a specific end by means of specific functions of
components;

H is as above, but restricted to the subset Ci of components that act upon
the same flow type ut .

 is the weak upstream relation taking place between components cij, and
between modules hi along the flow paths in the conductive flow system.

The (matter/energy) flow conduction is ruled by specific laws that are not
captured in the definition above but will be discussed later (see Section 8.4.2) in the
discrimination of primary from secondary effects at faults.

Note that upstream relations of neighbour components depend on the
activity; for example, the “hydraulic cylinder” has an upstream relation with a
component when the piston moves left-to-right (filling its left chamber) and
downstream relation with the same component when the piston moves right-to-left
(filling its right chamber).

In the proposed approach, MCFS appears as a multiple layered structure of
conductive flow systems, each of them handling a certain type of flow and acting
toward some definite ends on the same set of components. For example, the
“mineral oil flow” in the hydraulic installation of a rolling mill plant is an auxiliary
flow beside the “long steel plate flow” meant for the (main) technological end –
plate extrusion.

8.4.1.3. Means-End Abstraction on Functions
Each component cij fulfills a certain flow function during a certain activity, upon a
certain type of flow ut, but it may fulfill simultaneously more flow functions, each
upon different flow types “passing” through the component. For example, a control
valve in a hydraulic system may complete a “barrier” flow function (when blocking
the flow for “piston stay-still” end) or a “transport” flow function (when letting
through flow for “piston move” end); on the other side, the control valve always
exhibits a “transport” flow function for the electric current through the control coil
of the valve.

Each module hi H achieves a certain end by means of the functions gij
specific to the components in the set Ci of the given module. Other aspects of the
flow functions follow:

a) the component cij fulfills a unique “flow function” upon a certain
flow type, during a certain activity of the module hi (according to
Larsson (1992));

Computational Intelligence in Fault Diagnosis 253

b) the end sik of a module is accomplished by the set Ci of
components by means of the “network” of “flow functions”
(Larsson, 1992);

c) the module is actually a functional unit, comprising only
components that process the same ut flow type (in the presented
approach).

8.4.1.4. Qualitative View on Flow Functions
The detailed flow functions (transport, barrier, distribution, etc.) in (Larsson, 1992)
may be reduced to three qualitative functions, sufficiently relevant for the diagnosis
task, while it is somehow simpler and more qualitative than the control task. In
(Opdahl and Sindre, 1994) three orthogonal operational facets of real-world systems
are proposed, as in Table 8.1.

Table 8.1. Functional orthogonal facets of real-world systems

Concept Process Flow Store

Activity Transformation Transportation Preservation

Aspect Matter Location Time

The concepts refer to physical or chemical processing (see Process), the
space location change (see Flow) and the time location change (see Store), i.e., time
delay.

The activities associated with the three concepts suggest three primary
flow functions, suited to the qualitative modelling of components’ faulty
behaviours. For each concept in Table 8.1 the corresponding primary flow function
is:

i) flow processing function (fpf) – like chemical or physical
transformation of the piece of flux (to a certain utility);
ii) flow transport function (ftf) – like space location change of the
piece of flux (by pipes, conveyors, etc.);
iii) flow store function (fsf) – like time delay of the piece of flux, by
accumulation of mass or energy in some storing or inertial
components.

A real component achieves several primary flow functions, but solely one
during a given activity. Note that components that directly accomplish ends of the
target system, fulfill processing (fpf) and store (fsf) primary flow functions; most
components fulfill transport (ftf) primary flow function. Flow function’s
misbehaviour is easily associated with some generic anomalies that may appear at
faults (see Section 8.5.2).

8.4.2. Bond-Graph Modelling and MCFS’s Structures

Conductive flow modelling of real systems observes Kirchkoff’s laws, no matter
the type of flow (matter, energy or information). Bond graphs are appropriate and
general modelling tools for conductive flow systems, with the great advantage of
Kirchkoff's laws applied in a modular way, and not for the whole system as in the

254 V Palade, CD Bocaniala and L Jain (Eds.)

classical way (Cellier, 1995; Mosterman et al., 1995). Moreover, bond-graph
modelling offers general concepts useful for behavioural abstractions of the flow
functions for every type of flow (see below).

8.4.2.1. Modularisation by Bond Graph Junctions in the Target MCFS
Bond graph modelling deals with flow power variables: the intensive (pressure like)
and the extensive (flow-rate like) variables, called effort (e) and flow (f),
respectively (Cellier, 1995).

fn

fn-1

fi

f1

0

cn

cj

c1

e

e

e

e

e

f

f

f

f

f

1

cn

cj

c1

e1

e 0

e

en

e

f

0

..

1

j

21

=∑

===

=

n

j

f

eee

a) 0-junction

0

..

1

0

j

21

=∑

===
+

=

n

j

e

fff

b) 1-junction

Figure 8.4. The bond graph 0-junction (a), and 1-junction (b).

Components, along flow paths in CFS, form bond graph junctions:
type 1 junction – that corresponds to a loop of interconnected
components,
type 0 junction – that corresponds to a node of interconnected
components.

Each junction’s common variables are: effort in 0-junction and flow in 1-
junction; the noncommon power variable is specific to each component and all
enter a sum (e.g., the flow in the 0-junction), as in Figure 8.4a,b.

In the present approach, the 1-junction corresponds to a given activity of a
module, i.e., the 1-junction is the bond graph model of the activity, so it may play
the role of the “module” – in the multifunctional abstraction (Ariton, 2003). The 1-
junction is already a network of flow functions – complying with the means-end
point of view.

The conclusions above are useful in knowledge elicitation of modules,
during MCFS hierarchical decomposition. In this view, the 0-junction is the
interconnection of modules, and the structure of the whole target system is made of
0-junctions.

8.4.2.2. Primary Flow Functions and Bond-Graph Components
The large generalization specific to the bond graph approach is synthetically
illustrated in the tetrahedron of state in Figure 8.5 (Cellier, 1995). Variables on flow
conduction may have specific meanings to specific domains: the effort e may
correspond to force (in mechanics), to voltage (in electricity), to pressure (in

Computational Intelligence in Fault Diagnosis 255

hydraulics), flow f may correspond to velocity, to current, to volume flow rate (in
the respective domains). Other general concepts in bond graph modelling approach
are: the generalized momentum p (momentum in mechanics, flux in electricity,
etc.), and the generalized displacement q (distance, charge, etc.).

The presented approach extensively uses the concepts of bond graph
components:

power flow components: Resistance R, Capacitance C, Inductance
I, corresponding to dissipative, storage and inertial elements,
respectively;
power transfer components: transformer TR (effort-effort and
flow-flow ratios) and gyrator GY (effort-flow and flow-effort
ratios).

Figure 8.5. The tetrahedron of state and the bond graph components R, C, I.

Components of MCFSs have projections on bond-graph and means-end
perspectives:

R component corresponds to transport function (ftf);
C and I components correspond to storing function (fsf);
TR and GY components correspond to processing function (fpf).

This result is useful in the faulty behaviour modelling (see Sections 8.5.1
and 8.5.2) and in the hierarchical decomposition of the target system toward
components (see Section 8.6.2.1).

8.4.2.3. Upstream Relations between Modules and Components
The bonds (half-arrows in Figure 8.4) indicate the flow but do not refer to the
upstream/downstream relations between components. Those relations are important
in locating the effects along flow paths (see Section 8.5.3.3).

In Figure 8.4 the indices j 1 n show the components’ upstream order
between components ci1, ci2, ci3 hi (belonging to the same module) and direct
neighbours (which input / output ports are directly coupled). Neighbour modules
also exhibit upstream relations.

The upstream relation is strong (<<) at 1-junction: ci1<< c << ci2 i3 when the
order of two neighbours is strict, while they are output-input coupled and the flow
strictly gets out from one component and gets in the neighbour one.

256 V Palade, CD Bocaniala and L Jain (Eds.)

The upstream relation is weak () at 0-junction: ci1 ci2 ci3 when two
neighbour components’ ports are input-input or output-output coupled, so for both
neighbour components the flow either gets out or gets in the coupled ports.

The two bonds of indices 0 and n+1of the 1-junction indicate effort at the
input and at the output of the series of components, and actually represent links to
the upstream and downstream 0-junctions, respectively.

8.5. Concepts and Structures on Faulty Running

Elicitation defines knowledge pieces (some of them discriminated above) but also
prepares corresponding data for further processing. The chapter introduces
knowledge pieces related to faulty behaviour and their representation for the
computational model.

8.5.1. Generic Faulty Behaviour of CFS’s Components

Following the above approach, the faulty behaviour of components of the target CFSs
is conceived as human-like symptoms attached to various faults of the real
components:

Faults in R component affect the transport function (ftf);
manifestations refer to R parameter changes, and the symptoms
refer to propagation of power deviations along the paths in the
system (discussed in Section 8.5.2.2).
Faults in C and I components affect the storing function (fsf);
manifestations refer to changes in time delays in the process
running.
Faults in TR and GY components affect the processing function (fpf);
manifestations and symptoms are specific to each end of flow
processing.

Faults may occur at any components but only R components are involved
in power propagation along the system. Consequently, deviations of the power
variables e and f propagate from the faulty component to other components, where
they indirectly affect specific parameters – for example the delay for C and I, or the
transferred effort and flow for TR and GY.

An important conclusion is drawn from the statements above: the
anomalies of R bond-graph components are primary effects, and they provoke
secondary effects by means of flow power variables deviations propagated
throughout the flow path in the target CFS. Another important conclusion, from the
point of view of diagnosis, is that the discrimination of primary effects from
secondary effects leads to fault isolation.

The TR and GY components correspond to actuators in the target system,
and they decouple flows or modules. Hence, the two components are, usually, the
final components in the network of flow functions, i.e., they are components at the
border between two modules. For example, the carrier of a conveyor is not part of
the module, while the hydraulic cylinder is a transformer from the effort of the

Computational Intelligence in Fault Diagnosis 257

mineral oil towards displacement (of the carrier). Actually, the carrier and its load
are part of another module, decoupled by the hydraulic cylinder (as a transformer).
So, the b) item from the Section 8.4.1.3 is observed.

8.5.2. Anomalies Related to Primary Flow Functions

Anomaly is a piece of knowledge indicating a class of abnormal behaviours; it is
another word for symptom, which is used in the present approach to restrict the
meaning of the symptom to a deviation from the expected behaviour of one of the
three primary flow functions defined above. The anomaly is located at the faulty
unit, i.e., it is a “primary effect.” This way, the fault isolation procedure benefits
from some additional information useful when the location of the fault is of
concern.

8.5.2.1. Anomalies and Primary Flow Functions
Flow process anomaly, flow store anomaly and flow transport anomaly are
disorders of respective flow functions, located at the faulty component or module:

a) Process anomaly (AnoP) appears at the actuator components
– bond-graph gyrator GY or transformer TR components.
Process anomalies refer to abnormal values of performance
parameters of the end envisaged.

b) Store anomaly (AnoS) appears at storage or inertial
components – bond-graph capacitance C and inductance I
components. The store anomaly refers to abnormal values of
the time delay appearing at faults in storage or inertial
elements.

c) Transport anomaly (AnoT) appears at dissipative component,
in the bond-graph view resistance R components. In fault
diagnosis literature and practice “leakage” or “clogged pipe”
are usual terms for such anomalies.

8.5.2.2. Transport Anomalies
Ariton (2003) introduces four orthogonal transport anomalies that completely cover
the faulty behaviour of a component involved in the flow transport, namely:

d) Obstruction (Ob) – consists in change (increase) of the
transport R parameter of a component, without flow path
modification (e.g., clogged pipe).

e) Tunnelling (Tu) – consists in change (decrease) of the
transport R parameter of a component, without flow path
modification (e.g., broken-through pipe).

f) Leakage (Le) – consists in structure changing (output flow
too low) of a flow transport component, involving flow path
modification.

g) Infiltration (In) – consists in structure changing (output flow
too high) of a flow transport component, involving flow path
modification.

258 V Palade, CD Bocaniala and L Jain (Eds.)

Transport anomalies are orthogonal (see Figure 8.6): inside the pair and
between pairs. In Figure 8.6 the axes’ names indicate the “main” power flow
variable for the pair, the one mainly involved in the effect at the respective pair of
transport anomalies. Note that the effort for Ob/Tu pair is meant at the input, and
the flow for In/Le pair is meant at the output of the given flow transport unit
(component or module), so the signs depicted in Figure 8.6 are specific to those
situations.

effort

f
l
o

w

−

−

+

+

Obstruction Tunneling

Infiltration

Leakage

Figure 8.6. Orthogonal transport anomalies.

Solely, one transport anomaly may appear at a time vis-à-vis a faulty
component.

The four transport anomalies are effective concepts in the qualitative
modelling of faulty behaviour and in effects propagation. As later shown, transport
anomalies are of seminal importance in the discrimination of primary effects from
secondary ones, in detection and isolation of faults.

Various components in real systems are involved in flow transport, i.e.,
they act as R bond-graph components and may exhibit transport anomalies at faults.

The transport anomalies Ob/Tu are symptoms similar to events as “clogged
paths” or broken-through paths, and In/Le are symptoms similar to flow exchange
with the environment. The first pair observes the (expected) flow balance equations,
while the second does not. Transport anomalies play a central role in fault detection,
while they have the meaning of “primary effects” – i.e., effects located at the faulty
component (or module). Asserting a transport anomaly means detecting a fault and
also isolating the fault – while the transport anomaly location is asserted.

Process anomalies AnoP and store anomalies AnoS may appear as
secondary effects when induced by the flow power deviations propagated through
components with flow transport functions, along the flow paths, while the
deviations appeared at the location of a transport anomaly AnoT that occurred as a
primary effect.

Computational Intelligence in Fault Diagnosis 259

8.5.3. Qualitative Deviations Induced by Transport
Anomalies

The following study focuses on deviations of the effort e and the flow f of bond-
graph power variables at faulty and nonfaulty bond-graph R type components.

8.5.3.1. Qualitative Behaviour of R Components
The qualitative relation between the power variables for a nonfaulty component is e
= M+ f, according to the general qualitative Ohm's law (Struss, 1997). The flow
variables’ deviations from expected values at the input port comply:

e = M+ (21) f
where M+ is a class of increasing monotonic functions (according to qualitative
physics and notations from (Kuipers, 1994)). e and f refer to power variable
finite deviations (due to some external causes of the nonfaulty component. The
qualitative relation Eq. 21 also holds for the flow variables at the output port (note
that no concern exists in the extent of the relation).

8.5.3.2. Power Deviations at Faulty and Non-faulty R Components
As presented in Section 8.5.2.2, the faulty flow transport components induce one of
the four orthogonal symptoms (transport anomalies) shown in Table 8.2.

The deviations of effort and flow variables from the expected (normal)
values are specific to R bond-graph component for the given transport anomaly
(Ob/Tu, In/Le). The deviations’ signs (i.e., the qualitative values) simply result from
the affected parameters of R and of the main variable in the context of the transport
anomaly.

Table 8.2. Flow power variables’ deviations at input and output ports of R bond-graph
components for each transport anomaly occurrence

Transport

anomaly

 “Main”

variable

deviation for the

anomaly class

Effort deviation

at the input

(output) ports

Flow deviation

at the input

(output) ports

Qualitative

effort-flow

relations

Obstruction

(Ob)
e
in-out

> 0

∆e
(in)

> 0

(∆e
(out)

< 0)

∆f
(in)

< 0

(∆f
(out)

< 0)

M
−

(M
+

)

Tunneling

(Tu)
e
in-out

< 0

∆e
(in)

< 0

(∆e
(out)

> 0)

∆f
(in)

> 0

(∆f
(out)

> 0)

M
−

(M
+

)

Infiltration

(In)
f
out

> 0

∆e
(in)

> 0

(∆e
(out)

> 0)

∆f
(in)

< 0

(∆f
(out)

> 0)

M
−

(M
+

)

Leakage

(Le)
f
out

< 0

∆e
(in)

< 0

(∆e
(out)

< 0)

∆f
(in)

> 0

(∆f
(out)

< 0)

M
−

(M
+

)

As shown in the last column of Table 8.2, the qualitative relation between
the deviations of flow variables at the input port is:

e = M (22) f
where M is a class of negative monotonic (decreasing) functions. It seems that the
relation does not comply with the general Ohm’s law; note that Eq. 22 refers to

260 V Palade, CD Bocaniala and L Jain (Eds.)

deviations from expected values, so it is not the Ohm’s law in question but
variables’ deviations.

Equations 21 and 22 are the basis of the qualitative modelling for the
effects’ propagation along the flow paths in the conductive flow system.

8.5.3.3. Signatures of Qualitative Deviations at Flow Transport Anomalies
The transport flow function reflected by R bond-graph generic component is
involved in the propagation of flow power and also in propagation of the deviations
of the flow power variables when faults occur. The propagated flow power
deviation reaches a neighbour nonfaulty component involved in the flow transport,
and affects the effort (at input port) and the flow (at output port) values depending
on the bond-graph junction they share.

Table 8.3 presents the signatures of manifestations for the effort and flow
variables corresponding to each transport anomaly and to each type of bond-graph
junction. The signatures are patterns expressed in terms of qualitative deviations (lo
– “too low” and hi – “too high”) for the flow variables at a nonfaulty component
sharing the same bond-graph junction with the faulty one. Note that both (faulty and
nonfaulty) components are flow transport (R bond-graph) components; hence they
are both involved in the flow power deviation’s propagation (from the AnoT
“cause” location).

Table 8.3. Signatures of the transport anomalies as effort-flow manifestations at the
input-output ports (respectively), in each type of bond-graph junction

1-junction

shadowed item is AnoT

(the faulty component)

0-junction

fault downstream

(of Kirchkoff’s

node)

0-junction

fault upstream

(of Kirchkoff’s

node)

Transport

anomaly

(AnoT)

1 >> 2 3 << 2 1 >> 2 4 ≥≥ 2 2 << 1 3 ≤≤ 1

Obstruction (Ob) hi-lo lo-lo hi-hi hi-lo lo-hi lo-lo

Tunneling (Tu) lo-hi hi-hi lo-lo lo-hi hi-lo hi-hi

Infiltration (In) hi-lo hi-hi hi-lo hi-lo hi-lo hi-hi

Leakage (Le) lo-hi lo-lo lo-lo lo-lo hi-hi lo-lo

≥≥

>>

3

1 2

4

>>

3

≤≤
1 2

4

 1>>2>>3

If the flow power deviation reaches the location of GY/TR bond-graph
(actuator) component, or of C/I (store/inertial) bond-graph component, a secondary
effect appears, expressed by the AnoP or AnoS anomalies. Those effects actually
reflect the AnoT anomaly propagated as power flow deviations along the flow paths
throughout the target system.

Manifestations at nonfaulty components are expressed in terms of
qualitative deviation of the effort – at the input port, and of the flow – at the output
port, in pairs (hi-lo, lo-lo, etc.), and they result from the qualitative relations of the
flow power variables at faulty (Eq. 22) and nonfaulty (Eq. 21) components (Ariton,

Computational Intelligence in Fault Diagnosis 261

2003), in the corresponding behaviour contexts (the triplet: junction type, upstream
relation, transport anomaly).

The signatures with manifestations at the components upstream/
downstream from the faulty one are specific to the transport anomaly (AnoT) and
the junction type; the only exceptions are Tunnelling and Infiltration in 0-junction
(column 3 of the Table 8.3), which cases should be decided based on relations in
neighbour 1-junction(s). Note that weak relations (/) are equivalent for the
meant study of qualitative signatures.

8.6. Knowledge Elicitation and the CAKE Tool

Diagnosis performed by human experts involves deep knowledge and shallow
knowledge on a real target system comprising many modules and components,
many activities, many faults, manifestations and symptoms.

It is difficult to manage the huge amount of information if no adequate
instrument exists, i.e., a Computer Aided Knowledge Elicitation (CAKE) tool. Such
a tool assists the human diagnostician in the knowledge acquisition phase and in
managing the information on the concrete target system. Therefore, the knowledge
acquisition is performed more easily and the computational model is easily adapted
to specific situations on the place. The CAKE (software) tool takes the place of the
knowledge engineer, who is the essential human expert in the design phase of a
dedicated diagnosis system. So, human diagnosticians and human operators do not
need a knowledge engineer to build their own diagnosis system (for the target
system) but they simply put all the information into it guided by the software tool.

8.6.1. Elicited Concepts with the Aim of Fault Diagnosis

The concepts’ representation involves a combination of models presented above
and concisely noted below, along with their role and use:

a) Means-end modelling of hierarchical structures for the multifunctional
aspect:

i. role – identifies deep knowledge on physical and functional
structures (components and simplified functions, modules
and ends);

ii. use – define behavioural patterns at faults based on proposed
primary flow functions.

b) Discrete event modelling of the running context for the
multifunctional aspect:

i. role – identifies deep knowledge on activities toward ends of
modules;

ii. use – determines current activity of a module and its time
limits.

c) Bond-graph modelling of components for the flow conduction aspect:
i. role – identifies deep knowledge on flow conduction as

bond-graph junctions and components;

262 V Palade, CD Bocaniala and L Jain (Eds.)

ii. use – associates functions to bond-graph components and
generic anomalies observing effects propagation.

d) Qualitative modelling of concepts and relations for the faulty
behaviour:

i. role – describes deep knowledge on faulty behaviour: faults
(at component level), symptoms (as generic anomalies),
observations and manifestations (with prototype and instance
attributes);

ii. use – detects faults (by instance manifestations and
symptoms) and hierarchically isolate faults (at module and
then component levels) by recognizing cause-effects as from
deep and shallow knowledge of human diagnosticians.

The models follow the human expert’s common view on diagnosis: items a
and b cover the discrete view on the structure and the behaviour in normal
situations, while item d covers the discrete view on the behaviour in faulty
situations. Item c. covers the continuous view on fault effects propagation by flow
conduction. The paper proposes a qualitative view on faulty behaviour of
components and a procedure to assert primary effects from the propagated
(secondary) effects.

The data on real running of the target system have a close representation to
the human diagnostician’s view, through:

e) Fuzzy logic – for the “intelligent encoding” of observations to
manifestations:

i. role – encodes “prototype manifestations” as
meaningful intervals according to the deep
knowledge of human diagnostician;

ii. use – obtains “instance manifestations” from the
actual values collected from sensors during
installation running.

The diagnosis follows modular and incremental procedures, carried out by:
f) Inference engine – for fault detection and sequential diagnostic

refinement:
i. role – detects abnormal behaviour (symptoms) and

sequentially performs diagnosis for temporal sliding
windows and for newly observed variables;

ii. use – locates a transport anomaly at module level,
then starts the neural network recognition process
for further fault isolation.

g) Artificial Neural Networks – for recognition of the faults:
i. role – embeds shallow knowledge from practice and

experiments as links between manifestations and
symptoms to faults;

ii. use – isolates faults by recognizing patterns of
manifestations and anomalies.

The diagnostic is obtained by recognizing patterns of manifestations and
symptoms associated with faults. Items e to g are computational models that
emulate the human diagnostician’s way of acting, and directly embed human

Computational Intelligence in Fault Diagnosis 263

concepts in their native form. The diagnosis proceeds incrementally, following the
sequence of activities of the modules during the target system’s running and adding
new observation meant to refine the diagnostic.

The knowledge pieces for diagnosis involve a large amount of data that
should enter the diagnosis expert system (Patton et al., 2000). Each concept
addresses a set of specific information:

module – name, ends, activities, specific set of components, up-
stream relations to neighbour modules, junctions and signatures
for each transport anomaly identification, nonspecific
observations (e.g., mud);
activities – code, next activity, time limits;
component – name, primary flow function and bond-graph
component for each activity of the host module, set of specific
faults, component and module located manifestations;
fault – name, (deep knowledge) links from manifestations and
anomalies of the flow function in the host component, abductive
relations to causes from the target system or environment,
(shallow knowledge) links from other manifestations in the host
module;
manifestation – name, source type (sensor or human operator
observations), prototype attributes and ranges of values (specific
to the activity of the host module), abductive relations to causes;
anomaly – type (AnoP, AnoS, AnoT), host component or module,
end parameters values for abnormal behaviour, etc.

Knowledge elicitation will provide data for building the structures of ANN
blocks (e.g., data on layers of neurons for manifestations and faults, for the
abductive links between them, for training with patterns). Knowledge elicitation
provides data for the inference engine of the diagnosis expert system: the series of
activities for each module, order of 0-junction for which signatures of neighbour
modules identify the transport anomaly, etc.

The knowledge pieces enter the Knowledge Base for consistency checking
and for storing concrete data in the appropriate representation. After elicitation, the
training of ANN blocks follows, then the diagnosis expert may be generated as a
dedicated software for the given target MCFS.

All knowledge pieces, presented in previous sections, are specific
knowledge structures that the CAKE tool deals with. The structures refer, for
example, to the physical and functional units of the target system, to the systems
interconnected with the targeted one, to all situations that may disturb or originate
faulty situations.

The feasibility condition, meant for the computational model of the fault
diagnosis system, is to assure closed spaces for causes and effects. Abnormal
behaviours are not only caused by faults at components but also by any other
abnormal situation inside the target system or coming from outside. To cope with
such cases, the concept of disorder is introduced. Disorder refers to any cause that
will induce an abnormal situation: human operator mishandling (e.g., ill tuning,
infringement of technological rules, etc.), ill state of matter or energy flows (e.g.,

264 V Palade, CD Bocaniala and L Jain (Eds.)

the quality), abnormal conditions in the environment (e.g., too hot or too cold), and
negative influences from the neighbour systems.

Fault diagnosis deals with various aspects of the target system, each of
them identified as a subsystem:

a) Physical Subsystem – refers to all physical units (e.g., modules and
components) and hierarchical structures (e.g., the whole installation
and the modules) as means for achieving the ends of the system.
Regarding the diagnosis, they represent the locations for faults.

b) Functional Subsystem – refers to all functional units (primary flow
functions) and hierarchical structures (process phases and activities),
which actually achieve the ends of the system. Regarding the
diagnosis, they represent locations for the behavioural aspects of the
target system.

c) Behavioural Subsystem – refers to all concepts related to the abnormal
running of the target system: observations, manifestations, symptoms
and faults, along with their links.

d) Operational Subsystem – refers to the human operator actions that
may provoke an abnormal situation.

e) Flow Subsystem(s) – all types of matter or energy flow that may
induce abnormal situations (e.g., the “foaming oil” in a hydraulic
installation).

f) Environment – refers to all systems out of the diagnosis contour (i.e.
the target system): the ambient atmosphere, the mounting conditions,
and the neighbour systems.

All knowledge pieces become entities related to each other that should be
indicated by the knowledge engineer and should enter the computational model for
fault diagnosis, as further presented. The structures of knowledge pieces are further
presented in the entity-relationship diagrams that follow.

8.6.2. Elicitation Aspects on Normative and Faulty Models

The normative model consists of physical and functional structures that support the
ends’ achievement. They comprise entities specific to their corresponding
subsystems, presented in the previous sections.

The diagrams in Figures 8.7 and 8.8 are UML representations of entities
relations elicited for the corresponding subsystems. Having in mind fault diagnosis,
in each diagram will appear the two entities Disorder and Fault – the last inheriting
the first one. The dashed ellipses indicate borders of the other subsystems.

8.6.2.1. The Physical Subsystem
The entities involved in the Physical Subsystem are Component (the entire set C),
Module (the entire set M), and Installation; all of them are locations of
faults. However, there are disorders that may produce similar effects as faults,
which are located in other systems (Flow, Operational or Neighbour systems).

The discrimination of the physical units proceeds from the means-end
view (as MFS) and from the bond-graph view (as CFS), following the hierarchy of
physical/functional units. For each flow type ut, the knowledge engineer should

Computational Intelligence in Fault Diagnosis 265

assert the end of the modules, then the primary flow functions of the comprised
components along with the associated bond-graph generic component. So,

Modules – result from ends (and activities) accomplished towards
products / services achieved, and correspond to bond-graph 1-
junctions.
Components – result from primary flow functions completed in
each activity, and correspond to certain bond-graph components.

Fault isolation granularity is the extent of the decomposition of the
physical structures into components, hence the cardinality of C. The fault isolation
granularity reflects human diagnostician’s troubleshooting pragmatism regarding
the sufficient location of disorders for their removal; it also reflects the
incompleteness of human knowledge on physical structures and on the
environment. Usually, a component may exhibit more faults, so C induces a
disjunctive partitioning over F.

The discrimination of physical components – sufficient for fault isolation –
follows the hierarchical structure of the target system, and proceeds to a combined
decomposition observing the physical and the functional structures:

i. from the entire Installation – which is also the whole
Process,

ii. decomposition proceeds to Modules – each referring to a
Subprocess with two or more Activities,

iii. then each Activity is decomposed in primary Flow Functions
– each being attached to a Component.

The relations between entities – with the corresponding multiplicity
attached to each relation – are illustrated in Figure 8.7 and they represent:

Association «loc» (located to) directs to the location of the
Disorder;
Dependency «evo» (evokes) directs to the anomaly evoked by
the Disorder;
Inheritance Fault from Disorder;
Composition of Component to Module, and to
Installation.

The physical units (in the physical structures) present hierarchical relations
and also upstream (strong) and (weak) relations, depending on the bond-
graph junction the physical units enter. Upstream and downstream relations appear
in the diagrams representing the bond-graph junctions of the target system, for each
combination of activities of the participating modules, and for the components
inside the module. While specific, those diagrams are not shown here.

8.6.2.2. The Functional Subsystem
The functional structure is also a hierarchical structure: activities (of each module)
comprise flow functions (of each component) and each flow function is linked to a
specific faulty behaviour. All knowledge on physical and functional structures is
deep knowledge, while it comes from human experts’ acquaintance with the domain
and with the design issues of the target MCFS.

266 V Palade, CD Bocaniala and L Jain (Eds.)

Disorder

Process

Activity

Operator

Module

Component

Environment

Flow Type Flow Function

Installation*

«loc»«loc»

«
l
o
c
»

«
l
o
c
»

«loc» «loc»

*

*

*

*

*

1

1

1

1

2..*

2..*

*

1

1

Operational

Subsystem

Neighbour

Systems

Flow

Subsystem

Behavioral Subsystem

Functional Subsystem

Physical Subsystem

*

*

1

1

Fault

Transport
Anomaly

Process
Anomaly

*

*

«evo»

* *

11

«evo» «evo»

Store
Anomaly

*

*

*

Figure 8.7. The UML diagram for entities and relations of the Physical Subsystem.

The entities of the Functional Subsystem are: Process and
Subprocess (as general concepts related to the running of the whole
Installation and of each Module). Activity is defined in Section 8.4.1.1,
and – from the means-end point of view – corresponds to the network of flow
functions for the components that leads to a certain (processing) end of the module.
The Process phase is the current set of activities existing at a moment during
the whole installation running. The Operational Mode indicates a state of the
Component that leads to a primary flow function or to another, depending on the
control action meant for the components (e.g., valve is open or shut). The fact that a
Disorder depends on the Activity it appears, is represented by the
constraint{and} upon the respective relations (note that {} stands for {and}, reduced
because of the limited space).

8.6.2.3. The Behavioural Subsystem
The human diagnostician’s view on manifestations and symptoms concerns:

i) deviations of the observed variables from the expected
(“normal”) values – where observations may refer to ends, effort
and flow variables, linguistic values from human operator;
ii) deviations of functions that lead to abnormal ends – anomalies
in the end’s accomplishment, in the flow store or flow transport;
iii) propagation of the effects from the fault location – deviations
of flow variables appear as primary effects (transport anomalies)
and provoke secondary effects.

Entities on the faulty behaviour come from the deep knowledge of human
experts in the domain and on the target MCFS, as presented in Section 8.5.

The relation «evo» indicate that a Manifestation evokes a
Disorder, while «rev» indicates that an Observation reveals a
Manifestation.

Computational Intelligence in Fault Diagnosis 267

The {and} constraints between respective dependencies and associations
indicate that the Disorder is specific to the Anomaly and the Activity that
appear.

A causal relation that has an explanation represents deep knowledge.
Relations that come from experiments or practice represent shallow knowledge that
is embedded in the Artificial Neural Network (ANN) blocks. Shallow knowledge is
embedded into the diagnosis expert system during the training procedures, based on
known patterns acquired from practice (off line) or from experiments (on-line).

Installation

Module

Operator

Subprocess

Operational
Mode

Component

Process

«loc»

«
l
o
c
»

1

0..2 1

Operational

Subsystem

Neighbor

systems

Flow

Subsystem

Behavioral Subsystem

Physical Subsystem

Functional Subsystem

DisorderEnvironment

Flow Type

1

1

Fault

*

*

Process phase

Activity

Transport
Anomaly

Store
Anomaly

Process
Anomaly

*

*

*

*

* * *

*

*

{and}

{}

{}

«loc»

«evo»

«evo»

«evo»

1 1

*

fpf

ftf

fsf

* *

*

*

1

1

1

*

1

1

*

1

1

0..4 0..2

**

*

**

*

*

*

Figure 8.8. The UML diagram for entities and relations of the Functional Subsystem.

fpf

fsf

Observation

Store
Anomaly

Transport
Anomaly ftf

Process
Anomaly

«rev»

«
r
e
v
»

«rev»
*

1

0..2 1

12..3

1

Operational

Subsystem

Neighbor

systems

Flow

Subsystem

Physical

Functional Subsystem

Behavioral Subsystem

Disorder

Ob In ScTu

1

1

1

1

1

1

1

1

2..3
0..4

2..3

2..3
*

*Observation

Observation

Observation

*

*

*

Manifestation

«evo»

Fault

«rev»

*

*

*

1

*

1

Activity «
e
v
o
»

«
e
v
o
»

«
e
v
o
»

{and}

{and}

{and}

Figure 8.9. The UML diagram for entities and relations of the Behavioural Subsystem.

268 V Palade, CD Bocaniala and L Jain (Eds.)

8.6.3. The CAKE Tool

Knowledge elicitation and knowledge acquisition are assisted by the Computer
Aided Knowledge Elicitation (CAKE) software tool, which actually replaces the
knowledge engineer who is involved in the design and implementation of the
diagnosis expert system (Ariton and Baciu, 2002).

Knowledge elicitation proceeds by asking the operator about entities,
values and relations, namely, on specific concepts of the subsystems in the target
system. Knowledge elicitation activity consists of three phases: the top-down phase
– which performs means-end discrimination of modules to components in the
normative model, then the bottom-up phase – for collection of specific data on the
faulty model, and finally the join phase – for establishing relations between all
entities.

Figure 8.10. Screenshot for the CAKE screen for knowledge acquisition.

The top-down phase scans the layered structure of flows in the target
MCFS, considering each flow type and “asking” for: modules (with activities and
junction types), components (with flow functions and bond-graph components),
faults and observed variables along with manifestations attached. The functional
structure results from the functions attached to each physical unit: for each module
– ends and activities they accomplish, for each component – the appropriate flow
functions and the corresponding bond-graph generic component for each activity.

The bottom-up phase scans in the reversed order the physical and the
functional structures, attaches faults to components, performs intelligent encoding

Computational Intelligence in Fault Diagnosis 269

of manifestations, attaches manifestations to appropriate faults (from the shallow
knowledge), and finally attaches anomalies to faults (from the deep knowledge).

The join phase puts together the existing modules in the respective bond-
graph junctions (as from deep knowledge), attaches signatures to each junction, and
indicates specific tasks for the inference engine (e.g., the order of bond-graph
junctions to scan for transport anomalies).

The knowledge acquisition in the three phases refers to all knowledge
pieces and relations for the target MCFS. The information is stored in the CAKE
tool’s Knowledge Base, which is specific to the target system. This way, data are
prepared for the generation of a dedicated diagnosis application. Figure 8.10 shows
a screenshot of the CAKE tool for MCFS building involved in the second phase.

The result of the knowledge acquisition is the complete description of the
target system as text and data stored in the knowledge base. Following the text
description and the knowledge base, the CAKE tool generates the code for a
dedicated diagnosis expert system. The “Fault Isolation” (neural) blocks are later
trained with faults-manifestations and faults-symptoms patterns, based on
previously collected data from practice and/or experiments.

8.7. Fault Diagnosis System by Abduction

As already shown, the human diagnostician combines deep and shallow knowledge
on the target system, and then isolates faults following hierarchical decomposition
and incremental procedures in refining the diagnostic (i.e., finally locating the
fault). The deep knowledge is more compact and it rapidly reduces the searching
space based on laws from the domain (“explanations”). However, deep knowledge
captures only general causal links and hardly refers to the diversity of effects and
causes in the real running. So, shallow knowledge comes to describe the detailed
behaviour in the uncertain and incomplete context of the complex real system.

8.7.1. Diagnosis Expert System’s Structure

In Figure 8.11 is depicted the block structure of the Diagnosis Expert system and
the place of the CAKE tool – which, actually, is not part of the diagnosis system.
The diagnosis approach mainly focuses the knowledge regarding the faulty
behaviour of the target MCFS, while knowledge regarding the normative model is
only meant for the physical and the functional structures that will support the
behavioural model in locating anomalies and faults.

All knowledge enters the “Knowledge Base” block, which in the proposed
approach is simply a data base, while the normative and the faulty models are sets
of behavioural units with parameters and links between them.

The “Knowledge Base” is the central block of the diagnosis expert system;
data structures come from the “Knowledge elicitation” block (the CAKE tool
included).

The actual data (values) come from the “Target MCFS” through the “Data
acquisition and pre-processing” block which performs scanning, sampling and

270 V Palade, CD Bocaniala and L Jain (Eds.)

intelligent encoding of data from sensors and from human operators; data channels
are depicted as in Figure 8.11.

The “Incremental diagnosis” block is the inference engine of the expert
system; it controls the other blocks through control channels (depicted as simple
arrows in Figure 8.11). The inference engine’s tasks are presented in Section
8.7.2.3.

The “Fault isolation” blocks are Artificial Neural Networks (ANN)
dedicated and trained each for a given module faults recognition, based on patterns
of manifestations and anomalies. The ANN blocks are connectionist models for
abduction of faults from effects that embed deep knowledge on “abductive
problems” of causes and effects (see (Ariton and Palade, 2004)), and also shallow
knowledge on effects-to-causes pattern relations.

The “Human operator interface” block interacts with the human operator
by asking and providing operator observations to “Data acquisition and pre-
processing” block (arrow in Figure 8.11) and displays the diagnostic.

The “Knowledge elicitation and acquisition” block provides the
knowledge (see in Figure 8.11) for the “Knowledge Base” block, prototype
manifestations for the “Data acquisition and pre-processing” block and faults-
manifestations patterns for the ANN blocks. The “Knowledge elicitation and
acquisition” is the CAKE tool (see Section 8.6) and it is actually the subject of the
present work.

The

Target

MCFS

Data acquisition

and

pre-processing

Fault isolation

blocks

(per module)

Knowledge elicitation

and acquisition

CAKE tool

Knowledge

Base

Human operator

interface

Incremental

diagnosis inference

engine

Figure 8.11. Diagnosis expert system and the place of the CAKE tool.

Computational Intelligence in Fault Diagnosis 271

8.7.2. Modular and Incremental Diagnosis

Diagnosis proceeds by locating faults hierarchically, like the human diagnostician
does:

first discriminating the module with a transport anomaly,
then recognizing fault(s) inside the module.

The transport anomaly is detected using signatures of manifestations on
effort and flow variables at each module’s input/outputs – see Table 8.3 – which
leads to isolation of the faulty module. The existence of the transport anomaly is a
confirmation of the faulty state and valuable information for further isolation of the
concrete faults inside the module.

At the module level, it is possible to proceed the same way, i.e., to locate
the faulty component detecting it by signatures of power variables’ deviations.
However, it is hardly the case that effort and flow are measured at every component
in real installations. So, at the module level, fault isolation is performed by
recognizing “pattern faults” from “pattern manifestations and symptoms,” based on
a dedicated ANN block provided for the module.

8.7.2.1. Parallel Processing for Modular Diagnosis
Manifestations (i.e., lo, no, hi linguistic values at the observed variables) and
symptoms (i.e., process, store and transport anomalies) are input neurons and the
faults are the output neurons of the ANN. All concepts have the appropriate
representations as presented above: discrete (i.e., linguistic) knowledge and logical
meanings (i.e., truth values). This way, the abductive reasoning of the human
diagnostician may be described by the connectionist model proposed in Section
8.2.3.

The main advantage of the presented connectionist approach in diagnosis
is the embedding of the human diagnostician’s shallow knowledge by ANN
training, using manifestations-to-faults patterns as from the actual behaviour of each
module in the target system. It is worth mentioning that it is unrealistic to use a
unique ANN block for an entire real system, while it deals with enormous numbers
of combined causes and training patterns. By using the modular approach
presented, the combination of manifestations-to-faults patterns is drastically
reduced, and the fact that the human expert’s shallow knowledge usually refers to
the module level, even experiments on site or in laboratory conditions are
conducted at the module level.

8.7.2.2. Testing Policy as an Abduction Problem Solving
The testing policy aims to indicate the best next test the result of which allows the
optimal diagnostic refining, in other words the shortest path (as steps) to the
diagnostic.

The “next best test problem” can be formulated as an abduction problem,
and it can be solved in the same way as the diagnosis itself, i.e., as a connectionist
implementation of plausibility and relevance of the next test to follow. Testing is
performed stepwise, and takes part of the sequential diagnostic refinement.

272 V Palade, CD Bocaniala and L Jain (Eds.)

The testing procedure requires human operator observations, but only a
few are useful given the current situations (faults occurred, process phase, etc.), and
given the entire set OM of human observed manifestations (see Section 8.3.3.3).

The current set of instance manifestations used at the training phase of the
ANN block includes those observed by human senses (or portable measurement
devices) and they should be provided as required at the time of diagnosis. In
reverse, the embedded knowledge may be used to find out which is the plausible
and relevant observation that the human operator should supply to advance the
optimal diagnosis.

In this way, the next best test is obtained as the solution of the abduction
problem solving, using plausible and relevance criteria as follows:

plausibility(P_CRITERIA, EFFECTS, CAUSES) – whose
outcome is the set of operator-observed manifestations OM
(hence variables to be tested), based on the set of manifestations
joined with the set of plausible faults obtained at the current step
in the diagnosis.
relevance(R_CRITERIA, OM) – whose outcome is the set of
relevant operator observations out of the plausible ones, that
satisfy R_CRITERIA.

The abduction problem is solved by means of a neural network
implementation, and indicates the most plausible and relevant operator observation (if
the competition is strict), or a set of observations (if the competition is relaxed), for
which the human operator will supply data.

8.7.2.3. Incremental Processing for the Diagnostic Refining
The inference engine of the expert system with the same name, sequentially and
repeatedly fulfills the following tasks:

i) Start data acquisition from the Target MCFS by means of the
“Data acquisition and pre-processing” block, which also performs
the „intelligent encoding.”
ii) Identify the activities of all modules, during the current process
phase (note that a process phase lasts between any two transitions
of activities for any of the modules entering the same 0-junction).
iii) Detect faults – by identifying process and store anomalies.
iv) Detect transport anomalies and the faulty module – by
identifying signatures of manifestations of effort and flow
variables from Table 8.3.
v) Isolate fault(s) inside the faulty module(s), by means of
manifestations and anomalies patterns, applied at the inputs of
“Fault isolation block per module”; recognize fault using the
dedicated ANN for the module.
vi) Evaluate the truth value of the “faulty” state versus the
“normal” state for the entire target system.
vii) If “faulty” is greater than “normal” but no diagnostic exists
(i.e., truth value of all activated faults is under a given threshold)
ask human operator for additional observations and go to step i.

Computational Intelligence in Fault Diagnosis 273

viii) If a diagnostic exists (“normal” and “unknown” included)
and no further additional observations requested, display the
diagnostic.

The inference engine cycle is standard but embedded knowledge and data
are specific to the target system under the diagnosis.

8.7.3. Aspects of the Sequential Diagnosis
In the presented approach, sequential diagnosis involves three aspects:
a) Abduction by plausibility and relevance proceeds stepwise: first,

plausible causes are obtained through feed-forward activations
according to instance manifestations; second, the relevant faults are
discriminated from the relevance groups, each group as a specific
modularisation of faults, one modularisation applied at a time.

b) Process phases arise one after another, each process phase exhibiting
specific plausibility criteria; consequently, the connectionist abduction
is performed according to the (expected) current process phase.

c) Additional observations required from and supplied by human
operator get into the diagnosis system, until no test is required – i.e.,
until the diagnostic is obtained (even if it is “no fault” or “unknown
fault”).

For aspects a and b above, an example of sequential diagnosis is presented
in the previous section; item c refers to the next best test policy formulated as an
abduction problem, and solved by plausibility and relevance implemented by neural
networks. Note that “unknown fault” that occurs in the real running is finally
decided by the human operator of the diagnosis system – when a faulty situation
exists but no diagnostic provided.

8.7.3.1. Diagnosis by Plausibility and Relevance Criteria Sequentially
Applied
Let us consider the diagnosis performed for a process phase P. After applying the
plausibility criteria P_CRITERIA upon the set of EFFECTS, the set F* of all
plausible causes is deducted (i.e., the set comprising all causes with a positive
activation). The “mass activation” of plausible faults is, by notation, Fi, as given
in Eq. 23, where F* is the set of plausible causes.

F
*

i i
F F

F Fi = (23)
The sum is performed over the set F*of plausible causes but it actually is

the same if performed over the entire set F of causes, while nonplausible causes
exhibit zero activation. So, the computational procedure always deals with the
entire set F of causes, hence simple implementation.

Applying the relevance criteria R_CRITERIA upon the set of CAUSES will
increase the activation of a plausible and relevant cause Fi

*, according to the layer’s
weight WL (see Section 8.2.5.2). The increase will affect the numerical value of Fi

*,
according to the mass activation Fi of all faults and to the weight WL of the current
modularisation layer:

274 V Palade, CD Bocaniala and L Jain (Eds.)

i
i

i

F
FFi

* = WL
(24)

In the proposed approach, the order of the relevance criteria applied is
important, because the activation mass changes accordingly. The best order is the
one of increasing weights WL, so the activation mass Fi is updated only once,
before the current layer processing. Each layer induces a graded increase of
respective cause(s) activation, the last layer of modularisation inducing the highest
increase.

After applying all relevance criteria, the relevance of faulty situation is
determined (see Section 8.2.5.3) and the diagnostic is issued as the most relevant
causes resulted, including faults with activation over the doubt level.

8.7.3.2. Testing Policy by Plausibility and Relevance Criteria Sequentially
Applied

The next test is required after each diagnostic obtained. The diagnosis
system “asks” the human operator to provide a certain variable value; he or she
supplies the value, and so diagnosis based on plausibility and relevance restarts.

The most plausible and relevant operator-observed variable(s), for the
given situation, result as an abduction problem solving according to Section 8.2.3.
The next best observation (i.e., test) is indicated by the ANN block provided for
each module, based on current faults and instance manifestations activated.

Now, the activation of plausible fault Fi
* changes according to new

manifestations provided and, additionally, the activation is affected by the weight WO

attached to the operator-observed variable provided at the current step:

i
i

i

F
FFi

* = WO
(25)

The human diagnostician sets up weights for the operator-observed
manifestations according to the deep knowledge in the domain, provided WO = 1
for the set of operator-observed manifestations in the relevance group. The human
operator supplies the observed values (manifestations) in the reverse order of
weights WO. That is, the values of the most important variables are provided first.

In the economy of the diagnosis by next best test, the most important role
is played by Eq. 11, which starts the next test procedure if the FAULTY situation
prevails over the NORMAL one. It is possible to stop asking for new operator-
observed variables if a predefined faulty situation threshold is surpassed, e.g.,

1

0

n

n

i
i

Fn

F
(26)

where = 9 means that the faulty situation is 90% certain as the normal one.

Computational Intelligence in Fault Diagnosis 275

8.7.4. Neural Network Architecture for Diagnosis and
Testing

The neural network architecture for diagnosis using a testing policy comprises two
neural networks, each dedicated to the abduction problem solving: one for the
diagnosis – DNN (Diagnosis Neural Network), the other for indicating the next
observations to be made – TNN (new Test Neural Network), as shown in Figure
8.12.

Both neural network blocks contain feed-forward links for plausibility,
between the input and the output neurons; for DNN, between input neurons of the
type OM (Operator-observed Manifestations), MM (permanent Monitored
Manifestations), SY (SYmptoms detected) and output neurons F (Faults); for TNN,
between F (Faults) and OM (Operator-required Manifestations – identical as set
with the Operator-observed Manifestations set). Forward links are represented as
arrows between input and output layers of neurons, and competition links are
represented by horizontal arrows between the output neurons (F and OM,
respectively).

OV
k

W

MM

OV
1

OV

SY

OV

OPERATOR

requested observations

(additional manifestations)

W

SYOM MM

F
1

F
i

F
n

DNN

FAULTS

SENSOR

observed

manifestations

OPERATOR

observed

manifestations

TNN

Figure 8.12. Neural network architecture for fault diagnosis by abduction, with additional
observations from human operator.

The input of the DNN block consists of permanent observed
manifestations MM and operator-observed manifestations OM – the last ones

276 V Palade, CD Bocaniala and L Jain (Eds.)

passing through the network as long as they are triggered and supplied by the
operator. Plausible faults at the output of the DNN block become inputs of the TNN
block, along with the current manifestations MM, to produce most plausible and
relevant observations to be tested by the human operator. The entire set of neuron
outputs of the DNN block are passed to the input of the TNN block, while only
plausible faults get activated and count for the abduction towards the next test
indicated to the operator.

Diagnosis proceeds stepwise. At each step, the observations become first
manifestations by “intelligent encoding,” then most plausible and relevant faults
result by abduction at the output of the DNN block, along with required operator-
observed variables indicated at the output of the TNN block. The set of most
plausible and relevant faults at each step is a partial result with attached values of
FAULTY and NORMAL situations, as from Eq. 14. The final diagnostic is obtained
when the FAULTY situation surpasses a given threshold and no operator
observations are required. Depending on the number of relevant faults resulting
from competition, single or multiple fault diagnosis is in concern.

The "closed world assumption" is satisfied if all situations that may appear
during the diagnosis have a result; hence the “no fault” (NORMAL) as well as
“unknown fault” (UNKNOWN) neurons appear in the output layer of the DNN
neural network block. The processing for plausibility and relevance roughly
corresponds to general phases in diagnostic reasoning: "hypotheses generation" and
“hypotheses discrimination,” respectively.

The neural network is the core of the diagnosis expert system, and it deposits
the deep and shallow knowledge of the human diagnostician. The way the diagnosis
proceeds also complies with the human diagnostician’s way of acting, i.e., it is
performed sequentially, applying plausibility and relevance criteria step by step,
until the final diagnostic is obtained.

8.8. Case Study on a Hydraulic Installation in a
Rolling Mill Plant

The case study is performed on the simple hydraulic installation shown in Figure
8.13. It comprises two hydraulic cylinders (for a carrier and a brake), two control
valves, the mineral oil tank, the pump with a pressure valve, and two long pipes. To
master the complexity of the installation under diagnosis, the installation was
divided into modules: the Hydraulic supply (containing tank, pump and pressure
valve) and two driving modules (containing control valve, cylinder, damper –
Drossel) – the Hydraulic brake and the Hydraulic conveyor.

8.8.1. Knowledge Elicitation

The information regarding the physical and the behavioural subsystems consists of
knowledge pieces presented in Table 8.4. The whole set of disorders considered
consists of: faults, the NORMAL situation, and the nonconformities at flow, human
operator and neighbour systems.

Computational Intelligence in Fault Diagnosis 277

For each component, the numbers of faults are: 2 at the tank, 4 at the
pump, 3 at the pressure valve, 2 at the pipes, 3 2 at the control valves, 2 at the
damper, 2 2 at the cylinders.

There exist 6 disorders that refer to nonconformities: 2 for the mineral oil
(i.e., “too many suspensions” and “foamy oil”), 1 at the environment (“too hot”), 3
for operating errors (Olu “no oil in the tank” – see below, “carrier load too heavy,”
“pump velocity ill tuned”). So, the disorders consist of 23+1 faults (NORMAL
added), and 6 nonconformities, i.e., |F| = 30.

Line 4 in Table 8.4 shows the types of manifestations and the number of
data according to the activities in line 2; for example, the number of the fuzzy
attributes for the Supply module is (6 variables) (3 landmarks) (2 activities) = 36
manifestations of type lo, no, hi.

The measured manifestations refer to |MM| = 48 pieces that are variables
expressed as single neurons (for the binary variables), or triple neurons (for the
continuous variables with lo, no, hi attributes), each neuron with a graded value of
truth. The observed variables come from analogical sensors for 2 input/output flow-
rates, 3 input/output/damper pressures, 4 temperatures (control valves, pump and
tank), from contacts for 4 operator commands (brake on/off, carrier on/off), for 5
positions (of type left/right, open/shut) of the two pistons and of the pressure valve.
The 4 durations of the pistons' movements (left/right – for the two cylinders) enter
also as measured manifestations.

In the set of the |OM| = 14 operator-observed variables, there are 5 of type
"noise" (2 for the pump, 3 for the pressure and the control valves), 6 "oil leakage"
(all except the damper) and also there are 3 anomalies outside the hydraulic system
(brake/carrier mechanical blockage, no pump power).

F=20 F=200

66%

Drossel

Hydraulic Brake

Ctrl. Valve 1

Pressure Valve

Pump Oil Tank

Ctrl. Valve 2

Conveyor

J'0

J"0

J'1

J1"

J1'''

Figure 8.13. Hydraulic installation under elicitation case study.

278 V Palade, CD Bocaniala and L Jain (Eds.)

Running contexts of the target hydraulic installation refer to each discrete
position or motion of the pistons in the two cylinders, as well as to the two states of
the control valve. So, we find the activities for each of the three modules: 2
activities for the supply module and 4 activities for each driving module. The total
number of process phases is 2+4 4=18. Even for such a simple installation, the
numbers of process phases is quite large, provided that for each of them the
knowledge engineer should develop experiments to assess the specific
manifestations and their links to faults, hence plausibility criteria and the DNN
block training. Instead, each module’s specific behaviour was studied separately
when faulty. The simulated faults and the manifestations that had appeared were
collected for each separate module, concerning only the 2 activities of the supply
module and the 4 activities of each driving module, respectively.

Table 8.4. Inventory of the knowledge pieces involved in the fault diagnosis

 Module

 Entity

Hydraulic

Supply

Hydraulic

Brake

Hydraulic

Conveyor

1. Components

pump, tank,

pressure valve,

pipes

control valve,

cylinder

control valve, self,

cylinder

2. Activities / Faults 2 / 11 4 / 5 4 / 7

3. Sensors

(observed variables)

Analogical 6,

Digital 7

Analogical 5,

Digital 8

Analogical 3,

Digital 8

4. Manifestations

Fuzzy 6⋅3⋅2,

Binary 7⋅2
Fuzzy 5⋅3⋅4,

Binary 8⋅2
Fuzzy 3⋅3⋅4,

Binary 8⋅2
5. AnoP, AnoS, AnoT 2, 1, 4 2, 2, 4 2, 2, 4

A total number of 155 (fuzzy and binary) manifestations result, hence 888
manifestations-to-faults and 255 anomalies-to-faults links get established. If faults
and manifestations were considered for the entire installation (as in “classic” ANN-
based diagnosis – i.e., without modularisation), 32 combinations of activities result,
hence (6 3+5 3+3 3) 32=1344 knowledge pieces for manifestations, which require
30 1344=40320 manifestation-to-faults links, and 9600 anomalies-to-faults links.

Using the modularisation in presented approach, just for the simple
hydraulic installation, the data volume is (1344+40320)/(888+255)=36 times less
for the modularised approach than using a unique ANN block for the entire
installation. In the case of a more complex installation, the ratio is much bigger, and
embedding deep knowledge in the links between faults and manifestations is quite
impossible. While the knowledge acquisition is rather difficult even for the
modularised scheme, the CAKE tool comes to assist the human diagnostician in
managing the elicitation and the data volumes, also in yielding the data structures
for a dedicated diagnosis system.

8.8.2. Neural Blocks for Physical Modules

The diagnosis was meant for three distinct process phases, namely, the one with the
control valve open (for faults at the supply module) and those with moving pistons
(for the two driving modules). No symptoms were considered on the installation

Computational Intelligence in Fault Diagnosis 279

behaviour. The faults–to-manifestations patterns, used in the training of the DNN
and TNN neural network blocks for each module, were partly acquired from human
diagnostician practice, partly from experiments.

Again, the modularisation represents an advantage in the implementation
of the diagnosis system. So, instead of considering the process phases for the whole
installation as the running contexts (which determine the specific faulty behaviour),
it is now possible to consider only the activities of modules interconnected in the
same bond-graph junction. Furthermore, the neural sites for the abduction problems
were easier to build separately for each module.

The structure of the neural network block for the supply module is
depicted in Figure 8.14, where:

Faults are: Pax (pump – axis broken), Pai (pump – clogged
admission), Pne (pump – ill joints), Puz (pump – worn out), Tne
(tank – worn-out filter);
Manifestations are: P1 (oil pressure at the tank outlet: “too low”
lo, “too high” hi), D1 (oil flow rate at the tank outlet: “too low”
lo, “too high” hi), T2 (oil temperature “high” in the tank);
Manifestations requested from the human operator are: Z1
(whistling noise at pump), Z2 (jerky noise at pump), M1 (oil mud
at pump), M2 (oil mud at tank);
Nonconformities from flow and from human operator: Uim (dirty
oil), Usp (foaming oil), Olu (tank empty), Otm (pump angular
velocity ill tuned).

As shown in Figure 8.14, there are two monotonic faults (Pne and Puz),
two monotonic operator-observed variables (Z1 and Otm), and two conjunction
sites (for Pax and Otm). The negation sites for operator-observed variables prevent
further demand of the variables already requested and supplied.

8.8.3. Plausibility and Relevance

For each running context, the plausibility links between faults and manifestations
were set up according to the human diagnostician’s deep knowledge, but also
systematically linking all manifestations to faults in a module.

The neural network model used for the DNN and TNN blocks is the
perceptron; it supports the feed-forward plausibility criteria with modified structure,
suited to abduction problem solving (see Figure 8.14).

Plausibility criteria refer to different abduction problems implemented as
neural sites and to trained faults-to-manifestations patterns from simulated
experiments, on each target module, for fault, “normal” and “unknown” cases.

Competition is added over the set of fault neurons regarding the following
relevance grouping:

1. faults at the same component (physical structure scope) – minimum
cardinality criterion;
2. faults which are obvious only in specific activities of the respective
module (e.g., control valves “blocked parallel” and “blocked crossed” are
obvious only when the piston is moving in the hydraulic cylinder);

280 V Palade, CD Bocaniala and L Jain (Eds.)

3. faults in the module provoking leakage and those provoking clogged
symptoms for mineral oil flow.
For each functional module i, it corresponds to a neural network module

with two blocks, DNNi and TNNi. Additional relevance criteria discriminate
between the diagnostics at module level, in order to issue the diagnostic at the level
of the whole installation. The relevance criteria at installation level are based on
symptoms and on Eq. 11; the relevance criterion of minimum cardinality was
considered.

The training of the neural network block DNN1 (associated with module 1
– the oil supply module presented above) is performed using the standard learning
algorithm for the perceptron. The NORMAL situation for the entire supply module
is trained using normal values (see Figure 8.15): no for P1 and D1, and normal
states of the other manifestations. The UNKNOWN situation is trained by means of
patterns, randomly generated but consistent with those used for plausibility of faults
and the normal situation.

As it is difficult to gather all the necessary details for the NN structures for
all modules, a CAKE (Computer Aided Knowledge Elicitation) instrument was
build and used to describe and automatically generate the DNN and TNN structures
at the module level.

NORMAL
Uim Usp Otm Z1 Z2 M1 M2

T2

Pax Pai Pne Puz Tne

lo no hi

D1

Olu Uim Usp Otm Z1 Z2 M1 M2lo no hi

P1

DNN

1

TNN
1

Olu
UNKNOWN

P1lo P1hi
D1hi

D1hi

Figure 8.14. The neural network structure for the first (oil supply) module for diagnosis.

8.8.4. Sequential Diagnosis for the Supply Module

Figure 8.16 illustrates the four steps in which the diagnosis regarding the supply
module is performed, with respect to a fault that occurred in the pump, namely, Pai
(short name for the fault “oil tank pipe is clogged“). Each window shows a step
during the diagnosis refinement, including the partial diagnostic and the operator-
observed variables required from the human operator. For the simulated fault –
marked by x – the diagnostic is obtained in four steps, after eliminating other causes

Computational Intelligence in Fault Diagnosis 281

– see in the third window Olu (short name for the non-conformity “oil tank
empty”).

0 5 10 15 20 25 30
10

-20

Epochs

S
S

E

Sum Square Error for 32 Epochs

10
-15

10
-10

10
-5

10
0

10
+5

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hamming Distance to the target

Fault Index

H
D

Figure 8.15. Training of the NORMAL situation for the oil supply module, in 32 epochs.

The Y axis indicates the truth value of a specific item from the X axis,
which shows discrete knowledge pieces from 0 to 50.

The three sections of the X axis represent: the 31 disorders mentioned
above, the 6 nonconformities (in the section “Non-cf”), and the 14 observations
needed from the human operator. Faults’ truth values, as resulted from the
diagnosis, are indicated as bars at the index position of each fault (0 to 30).

The 6 nonconformities and the 14 operator-observed manifestations are
also indicated as bars, but their meaning is now a demand to the human operator,
i.e., a confirmation required for a possible nonconformity indicated as a bar, or a
value required from the operator for the observed variable indicated as a bar, at its
specific index on X axis. As a response, the human operator has to indicate if that
environment nonconformity is present, or the current value for the operator-
observed variable, respectively. In the sections for nonconformities and for operator
observations, the height of a bar indicates how stringent is the respective item, so
the human operator may choose the highest one(s) for supplying the confirmation or
the value.

Additional observations required from the human operator in the current
step appear in the Non-cf. section and in the Operator Observations section on the
X axis. The window in each step shows the current diagnostic. Activated
observations from the human operator decrease to 0 after the value is supplied.

The diagnostic is strongly dependent on the coverage of faulty behaviours
for each module with faults or classes of faults. The data on the behaviour of the
hydraulic installation come from simulated experiments. The diagnosis system
always produced a diagnostic in a finite number of steps, and the average accuracy
of the diagnosis was 96%. Additional observations supplied by the human operator
require some steps in the diagnostic refinement that hinders real-time diagnosis.

282 V Palade, CD Bocaniala and L Jain (Eds.)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X

 Faults Non cf Operator Obs.

Step 4

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X

Partial Diagnostic for the simulated Fault marked X

 Faults Non cf Operator Obs.

Step 2

Pai

Pai

Olu

Olu

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X < >

Partial Diagnostic for the simulated Fault marked X

 Faults Non cf Operator Obs.

A
ct

iv
at

io
n Step 1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X

 Faults Non cf Operator Obs.

A
ct

iv
at

io
n Step 3

Pai

Pai

Olu

Olu

Figure 8.16. Sequential diagnosis in 4 steps for the fault Pai, with additional Operator
Observations.

8.9. Conclusions

Fault diagnosis of complex systems involves deep and shallow knowledge of
human diagnosticians, since diagnosis in the reallife deals with incomplete,
imprecise and uncertain knowledge on the behaviour of target systems. The aim of
the chapter is to describe a diagnostic system that emulates the human
diagnostician’s way of acting, in order to build dedicated diagnosis systems for
concrete target systems. The automated fault diagnosis is based on computational
intelligence models: fuzzy and possibilistic logic, artificial neural networks.

The chapter focuses on the fault diagnosis of artefacts often met in
industry (and not only), that executes more functions at the same time based on
conductive flows of matter and energy, i.e., multifunctional conductive flow
systems (MCFSs). The proposed MCFS abstraction is close to the human
diagnostician’s way of conceiving entities and relations on physical, functional and
behavioural structures.

Diagnosis reasoning is intrinsically abductive reasoning. The chapter
presents the abduction by plausibility and relevance, in a connectionist approach.
Plausibility criteria become feed-forward links from manifestations to faults – as
from the shallow knowledge acquired in practice or experiments. Relevance criteria
become competition between the elements of various groups of causes (be they
faults or other kind of disorders), put together according to the deep knowledge on
physical, functional and behavioural structures of the target system.

In order to solve all types of abduction problems (according to Bylander et
al., 1991), specific architectural features are added to the neural network. The
features refer to plausibility criteria and affect the feed-forward links between
manifestation and fault neurons, also between fault neurons. This way, the
abduction problem solving is straightforward and easier implemented in various
neural network types than other approaches (e.g., Ayeb et al., 1998).

Computational Intelligence in Fault Diagnosis 283

Deep knowledge refers to physical and functional structures, as means for
achieving the ends of the target system. Also, deep knowledge refers to the sets of
faults, manifestations and symptoms along with some behavioural hints regarding
primary and secondary effects useful for locating faults. Shallow knowledge refers
to (unexplained) links of faults to manifestations or to symptoms, from the human
diagnostician’s practice or experiments.

The embedding of the deep and shallow knowledge requires appropriate
representations of physical, functional and behavioural concepts, observing the
discrete and qualitative nature of human knowledge. In this respect, means-end and
qualitative modelling approaches are adapted to obtain a unified representation of
various behavioural entities. The faults’ effects propagation is modelled using four
orthogonal transport anomalies related to the bond-graph model of components and
bond-graph junctions for modules for the entire target system.

The concepts and relations involved in human-like diagnosis get
appropriate representations by computational intelligence paradigms. All concepts
and relations enter the connectionist models of the abduction problem solving, and
their representation is also meant for the systematic knowledge acquisition on
concrete target systems. All knowledge pieces involved in fault diagnosis enter
appropriate elicitation models addressing human diagnosticians’ way of acting, and
lead to structures useful for the computational model of the diagnosis system.

The decision on the next best test, aiming the diagnostic refining, is also
seen as an abduction problem, and it is solved based on plausibility and relevance
criteria in the connectionist implementation. The diagnosis on the whole is
performed as a sequential application of plausibility and relevance criteria, applied
incrementally, and completed with new tests until the final diagnostic is found.

Fault diagnosis of real systems involves a great amount of data. Therefore,
knowledge acquisition, knowledge representation and data management tasks
require appropriate tools to assist human diagnosticians in building the diagnosis
system. The Computer Aided Knowledge Elicitation (CAKE) software tool assists
the human diagnostician, or even the human operator, in the design and generation
of the dedicated diagnosis system for the concrete target system envisaged. So, the
CAKE tool replaces the knowledge engineer and the software designer. Moreover,
specific knowledge on the concrete target system is embedded in the diagnostic
expert system, exploiting the human diagnostician’s practice and knowledge on the
running conditions of the target real system.

The case study on a hydraulic installation of a rolling mill plant gives
examples on the knowledge elicitation process and on the diagnostic expert system
building and running.

References

1. Ariton V, Ariton D (2000) A General Approach for Diagnostic Problems
Solving by Abduction. In: Proceedings of IFAC-SAFEPROCESS, Budapest,
Hungary, pp. 446-451
2. Ariton V (2001) Abstraction Levels for the Fault Isolation in Multifunctional
Conductive Flow Systems. In: Proceedings of the 9th IFAC/IFORS/IMACS/IFIP/

284 V Palade, CD Bocaniala and L Jain (Eds.)

Symposium on Large Scale Systems-Theory and Applications, Bucharest,
Romania, pp. 386-391
3. Ariton V, Baciu C (2002) Knowledge Elicitation and Case Tool for Fault
Diagnosis in Multifunctional Conductive Flow Systems. In: Proceedings of
SCI2002 - 6th World Multiconference on Systemics, Cybernetics and Informatics,
Orlando, Florida, USA, July 14-18, vol. XXII, pp. 345-350
4. Ariton V (2003) Deep and shallow knowledge in fault diagnosis. In: Palade V,
Howlett RJ, Lakhmi J (eds) Knowledge-Based Intelligent Information and
Engineering Systems, 7th International Conference, KES 2003, Oxford, UK,
September 3-5, Proceedings, Springer-Verlag, pp.748-755
5. Ariton V, Palade V (2004) Human-like fault diagnosis using a neural network
implementation of plausibility and relevance. Neural Computing & Applications
(Springer-Verlag) 14(2):149-165
6. Ayeb B, Wang S, Ge J (1998) A Unified Model for Abduction-Based Reasoning.
IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans
28(4):408-424
7. Bocaniala CD, Sa da Costa J, Palade V (2004) A Novel Fuzzy Classification
Solution for Fault Diagnosis. International Journal of Fuzzy and Intelligent Systems
15(3-4):195-206
8. Bocaniala CD, Sa da Costa J, Palade V (2005) Fuzzy-based refinement of the
fault diagnosis task in industrial devices. International Journal of Intelligent
Manufacturing 16(6): 599-614
9. Bylander T, Allemang D, Tanner MC, Josephson JR (1991) The Computational
Complexity of Abduction. Artificial Intelligence 49:25-60
10. Cherkassky V, Lari-Najafi H (1992) Data Representation for Diagnostic Neural
Networks. IEEE Expert 7(5):43-53
11. Cellier FE (1995) Modelling from Physical Principles. In: Levine WS (ed) The
Control Handbook. CRC Press, Boca Raton, pp.98-108
12. Calado JMF, Korbicz J, Patan K, Patton RJ, Sa da Costa MG (2001) Soft
Computing Approaches to Fault Diagnosis for Dynamic Systems. European Journal
of Control 7(2-3):248-286
13. Cordier MO, Dague P, Dumas M, Lévy F, Motmain J, Staroswiecki M, Travé-
Massuyès L (2000) AI and Automatic Control Approaches of Model-Based
Diagnosis: Links and Underlying Hypotheses. In: Proceedings of IFAC-
SAFEPROCESS, Budapest, Hungary, pp. 274-279
14. Davis R (1993) Retrospective on "Diagnostic Reasoning Based on Structure
and Behaviour”. Artificial Intelligence 59:149-157
15. Dubois D, Prade H (1998) Possibility Theory: Qualitative and Quantitative
Aspects. In: Gabbay DM, Smets P (eds) Handbook of Defeasible Reasoning and
Uncertainty Management Systems, vol 1, pp. 120-159, Kluwer Academic
Publishers, New York
16. de Kleer J, Kurien J (2003) Fundamentals of Model-Based Diagnosis.
Proceedings of IFAC-SAFEPROCESS, Washington, USA, pp. 1-12
17. Konolige K (1992) Abduction Versus Closure in Causal Theories. Artificial
Intelligence 53:255-272
18. Kruse R, Gebhardt J, Klawon F (1994) Foundations of Fuzzy Systems. John
Wiley & Sons, New York

Computational Intelligence in Fault Diagnosis 285

19. Kuipers BJ (1994) Qualitative Reasoning: Modelling and Simulation with
Incomplete Knowledge. MIT Press, Cambridge, MA, USA
20. Larsson JE (1992) Knowledge-based methods for control systems. PhD Thesis,
Lund
21. Mosterman PJ, Biswas G (2002) A Hybrid Modelling and Simulation
Methodology for Dynamic Physical Systems. In: SIMULATION: Transactions of
the Society for Modeling and Simulation International, 78(1):5-17
22. Mosterman PJ, Kapadia R, Biswas G (1995) Using bond graphs for diagnosis
of dynamical physical systems. In: Proceedings of the Sixth International
Conference on Principles of Diagnosis, pp. 81-85
23. O'Brien T (1970) Reliability of Multifunction Structures. New York University
24. Okuda K, Miyasaka N (1991) Model based intelligent monitoring and real time
diagnosis. In: Isermann R (ed) Preprints of SAFEPROCESS '91
25. Opdahl AL, Sindre G (1994) A taxonomy for real-world modelling concepts.
Information Systems 19(3): 229-241
26. Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis of
an industrial gas turbine using neuro-fuzzy methods. In: Proceedings of the 15th
IFAC World Congress, 21–26 July, Barcelona, pp. 2477–2482
27. Patton RJ, Frank PM, Clark RN (2000) Issues of Fault Diagnosis for Dynamic
Systems. Springer-Verlag, London
28. Peng Y, Reggia J (1990) Abductive Inference Models for Diagnostic Problem
Solving. Springer-Verlag, London
29. Schurz G (2002) Models of Abductive Reasoning. TPD Preprints Annual 2002,
no.1, University of Düsseldorf, Germany
30. Shibata B, Tateno S, Tsuge Y, Matsuyama H (1991) Fault diagnosis of the
chemical process utilizing signed directed graph. In: Isermann R (ed) Preprints of
Fault Detection Supervision and Safety for Technical Processes - SAFEPROCESS
'91, pp.381-386
31. Struss P (1997) Model-based and qualitative reasoning: An introduction.
Annals of Mathematics and Artificial Intelligence 19: 355-381
32. Turksen IB (1996) Non-Specificity and Interval-Values Fuzzy Sets. Fuzzy Sets
and Systems 80:87-100
33. Uppal FJ, Patton RJ, Palade V (2002) Neuro-Fuzzy Based Fault Diagnosis
Applied to an Electro-Pneumatic Valve. In: Proceedings of the 15th IFAC World
Congress, 21–26 July, Barcelona, Spain, pp. 2483-2488

9. Fault Diagnosis in a Power Generation
Plant Using a Neural Fuzzy System with
Rule Extraction

Kok Yeng Chen, Chee Peng Lim, Weng Kin Lai

In this chapter, the Fuzzy Min-Max (FMM) neural network is integrated with a rule
extraction algorithm, and the resulting network is applied to fault diagnosis tasks in
a power generation plant. With the rule extraction capability, the FMM network is
able to overcome the “black-box” phenomenon by justifying its predictions with
fuzzy if-then rules that are comprehensible to the domain users. To assess the
effectiveness of the FMM network, real sensor measurements are collected and
used for diagnosing the heat transfer and tube blockage conditions of the
Circulating Water (CW) system in a power generation plant. The FMM network
parameters are systematically varied and tested. Bootstrapping is used to
statistically ascertain the stability of the network performance. In addition, the
extracted rules are found to be compatible with the domain information as well as
the opinions of the experts who are involved in the maintenance of the CW system.
Implications of the FMM network with the rule extraction facility as an intelligent
and useful fault diagnosis tool are discussed.

9.1. Introduction

Fault diagnosis is a research area that is becoming increasingly important owing to
the complexity of modern industrial systems and growing demands for quality, cost
efficiency, reliability, and safety (Al-Najjar, 1996). In order to maintain the
competitive edge, factory operators and manufacturers often have to ensure that
their machines and processes are set at optimal operating conditions. Fault
diagnosis systems support this objective by predicting failures and, if a failure had
occurred, by identifying the reasons behind the failure. In a complex process, fault
diagnosis systems normally deal with the management and maintenance of a whole
chain of actions to detect and diagnose abnormal events. Early prediction of
possible fault states allows maintenance work to take place before a
machine/system breaks down, that may cause damages and obstructions to the
overall operation, hence improving the level of plant safety and, at the same time,
reducing production downtime and productivity loss.

When developing a fault diagnosis system, the basic a priori condition
needed is a set of failures and the relationship between the observations (symptoms)
and the faults. There are a variety of approaches for devising process fault detection
and diagnosis systems. Venkatasubramanian et al. (2003a,b,c) through a series of
systematic and comparative study of various diagnostic methods from different

288 V Palade, CD Bocaniala and L Jain (Eds.)

perspectives have shown that process fault detection and diagnosis methods may be
categorised into three general categories, namely, quantitative model-based
methods, qualitative model-based methods, and process history-based methods.
Quantitative model-based methods correspond to modelling the physical process by
using some mathematical functional relationships of the inputs and outputs of the
process. Qualitative model-based methods deal with modelling the physical process
by expressing the model equations in terms of qualitative functions centred on
different units of the process. In contrast to model-based methods where a priori
knowledge (either quantitative or qualitative) about the process under scrutiny is
needed, process history-based methods (data-based methods) utilise the availability
of a large amount of historical process data for modelling the physical process,
either implicitly or explicitly.

In general, data-based fault diagnosis approaches involve a wide range of
actions which can consist of measuring data, processing the data, comparing new
data with the original data, evaluating the data, and coming to a conclusion on the
general health condition of the process. In this aspect, computational intelligence
approaches, including neural network (NN) models, have emerged as an alternative
to design and develop robust fault diagnosis tools (Venkatasubramanian et al.,
2003c). Indeed, NN models have been adopted as intelligent learning systems
owing to their intrinsic parallelism, adaptability, and ability to handle noisy data.
They can learn complex associations and relationships directly from data. They can
also handle fusion of multiple sources of data and information. With these attractive
features, NN-based systems increasingly have been employed as intelligent fault
diagnosis tools to identify and to distinguish between faulty and normal operating
conditions in complex processes (Polycarpou and Helmicki, 1995).

From the literature review, there is evidence that NN-based systems are
effective in handling fault diagnosis tasks. For example, NNs and fuzzy logic were
utilised to provide intelligent diagnosis of a turbine engine (Kuo, 1995). Similarly,
NN models were employed to model the critical parameters in the gas turbine
engine, and the differences between the modelled and actual parameters were used
to accurately predict engine malfunction (Denny, 1993). In (Kuo, 1995), a multiple
NN system was applied to fault diagnosis of a diesel engine, while NN-based fault
diagnostic systems were adopted to monitor jet and rocket engines in (Dietz et al.,
1989). An approach based on NN models was developed for helicopter gearbox
fault detection (Dellomo, 1999). Other examples include use of the backpropagation
network and the Radial Basis Function network, respectively, to detect fault
conditions in pneumatic control valve actuators (de Freitas et al., 1999) and to
classify rolling element bearing faults (Jack et al., 1999).

Nonetheless, most of the NN-based diagnostic systems suffer from the so-
called “black-box” phenomenon, i.e., it is difficult to extract domain knowledge
encoded in a trained network to explain its predictions. Users, who need symbolic
knowledge and reasoning in order to be convinced of the predicted outcome, are
often reluctant to use such a system if the NN model is unable to provide an
explanatory facility to justify how a prediction is reached. Such a drawback can be
a barrier to a wider acceptance of NN applications in real environments, especially
in mission-critical operations such as those in a power generation plant.

Computational Intelligence in Fault Diagnosis 289

In rule learning and extraction research, a lot of effort has been devoted to
the integration of symbolic, rule-based knowledge and NN models. There are many
techniques available for rule extraction from trained NNs, e.g., the KT rule
extraction algorithm (Fu, 1994), rule-extraction-as-learning technique (Craven and
Shavlik, 1994), and DEDEC approach (Tickle et al., 1996). According to (Andrews
et al., 1995), there are three main approaches in the aspect of translucency of NN
rule extraction techniques, namely, the decompositional, pedagogical, and eclectic
approaches. The main idea of the decompositional approach (e.g., the KT rule
extraction algorithm) is to extract rules at the level of individual hidden and output
nodes by analysing the weight vector associated with each local node in the trained
NN models. The pedagogical approach (e.g., the rule-extraction-as-learning
technique) views the trained NN models at the minimum possible level of
granularity. The network is treated as a black box in which the extracted rules map
the inputs directly to the outputs. The eclectic approach (e.g., the DEDEC
methodology) is the combination of both decompositional and pedagogical
approaches. In this approach, knowledge about the internal architecture and/or
weight vectors in the trained NN models are used to complement a specific
symbolic learning algorithm.

In this chapter, the applicability of the Fuzzy Min-Max neural network
(Simpson, 1992) (hereafter referred to as FMM) to fault diagnosis tasks in a power
generation plant is described. In order to overcome the “black-box” phenomenon,
FMM is further enhanced with a rule extraction capability. There are two main
reasons that motivate the use of FMM with rule extraction. First, it has the
capability of learning in a single pass through the data samples and is able to build
and fine-tune the decision boundaries of different classes without retraining.
Second, the proposed rule extraction procedure, which can be categorised as a
decompositional approach, is able to extract knowledge and rules from FMM in a
straightforward manner for justifying its predictions.

This chapter is organized as follows. In section 9.2, the architecture and
dynamics of FMM are introduced. The rule extraction algorithm is explained in
section 9.3. A case study on fault diagnosis in a power generation plant is described
in section 9.4. Conclusions are drawn in section 9.5.

9.2. The Fuzzy Min-Max Neural Network

FMM is a type of neural network model that builds decision boundaries by creating
hyperboxes in the pattern space. The hyperboxes are defined by pairs of minimum
and maximum points and their corresponding membership functions are used to
create fuzzy subsets in the n-dimensional pattern space. One of the important
properties of FMM is that it learns incrementally in a single pass through the data.
It refines the existing pattern classes as new information is received. It also has the
ability to add new pattern classes online. The learning process in FMM is mainly
concerned with proper placement and adjustment of hyperboxes in the pattern
space. If overlapping hyperboxes of different classes occurred in the pattern space,
contraction will be performed to eliminate the overlapping areas. Thus, the learning

290 V Palade, CD Bocaniala and L Jain (Eds.)

dynamics are comprised of compare, add, and subtract operations that fine-tune the
boundaries of the pattern classes.

Figure 9.1 illustrates the aggregation of several hyperboxes in a two-
dimensional pattern space for a binary classification problem. Definition of the
fuzzy set for each hyperbox, jB , is as follows.

, , , , , n
j j j j jB X V W f X V W X I (1)

where X = input pattern, 1 2(, , ,)nX x x x , jV = minimum point for jB ,

1 2(, , ,)j j j jnV v v v , and jW = maximum point for jB , 1 2(, , ,)j j j jnW w w w .

Notice that the pattern space is an n-dimensional unit cube nI . Using the
above definition, the collective fuzzy set that characterises the kth pattern class
is defined as

kC

k j
j K

C B (2)

where K is the index set of the hyperboxes associated with class k. Note that the
union operation is typically the maximum of all of the associated fuzzy set
membership functions.

Figure 9.1. An example of fuzzy min-max hyperboxes placed along the boundary of a
two-class problem. Note that the hyperboxes corresponding to the two classes are

nonoverlapping between classes.

The learning algorithm of FMM allows overlapping hyperboxes from the
same class. However, it eliminates the overlapping between hyperboxes that
represent different classes. The membership function of the jth hyperbox ()j hb A ,

, measures the degree to which the hth input pattern 0 ()j hb A 1 hA falls outside

hyperbox jB . Equation 3 shows the measurement of how far each component is
greater (lesser) than the maximum (minimum) point value along each dimension. If

()j hb A 1, the point should be more “contained” by the hyperbox. Note that

 represents complete hyperbox containment. The function that meets all
these criteria is the sum of two complements, i.e., the average amount of maximum

() 1j hb A

Computational Intelligence in Fault Diagnosis 291

point violation and the average amount of the minimum point violation. The
resulting membership function is defined as

1

1() [max (0, 1 max (0, min (1,)))
2

max (0, 1 max (0, min (1,)))]

n
j h hi ji

i

ji hi

b A a w
n

v a
(3)

where 1 2(, , ,) n
h h h hnA a a a I is the hth input pattern, 1 2(, , ,)j j j jnV v v v is

the minimum point for jB , 1 2(, , ,)j j j jnW w w w is the maximum point for jB ,

and is the sensitivity parameter that regulates how fast the membership values
decrease as the distance between hA and jB increases.

Figure 9.2 shows a three-layer FMM neural network. Each
1 2(, , ,)B mF b b b node represents a hyperbox fuzzy set where the AF to BF

connections are the min-max points and the BF transfer function is the hyperbox
membership function (as defined in Eq. 3). The input layer 1 2(, , ,)A nF a a a has
n processing elements, one for each of the n dimensions of the input pattern hA .
After the learning process, all the minimum points and maximum points created are
stored in matrix V and matrix W, respectively. These connections are adjusted using
the learning algorithm that will be presented later. The connections between BF and

CF nodes are binary valued and stored in matrix U, which is defined as
1 if is a hyperbox for class

0 otherwise
j k

jk
b c

u (4)

where jb is the jth BF node and is the kthkc CF node.

Each CF node represents a class, and the output of the CF node represents
the degree to which the input pattern hA fits within the class k. The transfer
function for each of the CF nodes performs the fuzzy union of the appropriate
hyperbox fuzzy set values, i.e.,

1
max

m

k j
j

c b jku (5)

There are two ways to utilise the outputs of the CF nodes. If a soft
decision is required, the output is utilised directly. However, if a hard decision is
required, the winner-takes-all approach (Kohonen, 1984) is utilised, i.e., the CF
node with the highest value is selected and its output node value will be set to 1 to
indicate that it is the closest pattern class and the remaining CF node values are set
to 0.

292 V Palade, CD Bocaniala and L Jain (Eds.)

Figure 9.2. A three-layer Fuzzy Min-Max neural network.

9.2.1. Learning in the Fuzzy Min-Max Neural Network

The learning algorithm in FMM comprises an expansion/contraction process.
Assume that training set D consists of a set of M ordered pair { , }h hX d , where

 is the input pattern and 1 2(, , ,) n
h h h hnX x x x I { 1, 2, , }hd m is the

index of one of the m classes. The expansion/growth process allows decision
boundaries that are nonlinearly separable to be formed. It allows existing classes to
be refined over time, and new classes to be added without retraining. The expansion
process will lead to overlapping among hyperboxes. Thus, elimination of
hyperboxes will commence using the contraction process if overlapping hyperboxes
from different classes occurred. Nevertheless, it is not a problem when overlapping
occurs for the same class.

In summary, the FMM learning algorithm comprises a three-step process:
1. Expansion: Identify expandable hyperboxes and expand them. If an
expandable hyperbox cannot be found, a new hyperbox for that class will
be added. For hyperbox jB to expand and to include hX , the following
constraint must be met:

1
max (,) min (,)

n
ji hi ji hi

i
n w x v x

1

(6)

where 0 is a user-defined value that determines the maximum size
of a hyperbox.
2. If the expansion criterion is met, the minimum and maximum points
of the hyperbox are adjusted as follows.

Computational Intelligence in Fault Diagnosis 293

min (,)new old
ji ji hix , 1, 2, ,i i nv v (7)

max (,)new old
ji ji hix , 1, 2, ,i i nw w (8)

3. Overlapping Test: Determine if any overlapping exists between
hyperboxes from different classes. For all dimensions, if at least one of the
following four cases is satisfied, then overlapping exists between two
hyperboxes. Assuming 1old initially, the four test cases and the
corresponding minimum overlap value for the ith dimension are as
follows.

1: ji ki ji kiCase v v w w min(,)new old
ji kiw v, (9)

2 : ki ji ki jiCase v v w w , min(,)new old
ki jiw v (10)

3 : ji ki ki jiCase v v w w min (min (,),)new old
ki ji ji kiw v w v, (11)

4 : ki ji ji kiCase v v w w , min (min (,),)new old
ji ki ki jiw v w v (12)

where j = hyperbox jB that expanded in the previous step, and k =

hyperbox represents another class and is being tested for possible
overlapping.

kB

4. Contraction: If overlapping between hyperboxes of different classes
exists, eliminate the overlapping by minimally adjusting each of the
hyperboxes. If all dimensions of the two hyperboxes do overlap, only one
of the n dimensions that has minimum overlapping is adjusted to keep the
hyperbox size as large as possible. To make the proper adjustment, the
same four cases are examined where is the selected dimension to
contract.

1: j k j kCase v v w w ,
2

old
k

old
jnew

k
new
j

vw
vw

Case v v w w

(13)

2 : k j k j ,
2

old old
k jnew new

k j
w v

w v (14)

3 : j k k jCase a v v w w () ()k j j kw v w v, and
new old
j kv w

(15)

3 : j k k jCase b v v w w () ()k j j kw v w v, and
new old
j kw v

(16)

4 : k j j kCase a v v w w ()k j j kw v w v, () and
new old
k jw v

(17)

4 : k j j kCase b v v w w () ()k j j kw v w v, and
new old
k jv w

(18)

294 V Palade, CD Bocaniala and L Jain (Eds.)

9.3. Rule Extraction from the Fuzzy Min-Max
Neural Network

Owing to the “black-box” phenomenon, rule extraction plays an important role for
the acceptance of NN systems as an intelligent and useful fault diagnosis tool. With
an explanatory facility, the predictions from NN systems can be justified with if-
then rules. This will enable domain users to gauge the NN predictions, thus
overcoming the suspicion from non-NN experts to utilise this technology in their
work.

With respect to FMM, out of all the hyperboxes created, some of them are
rarely used during prediction. To reduce the complexity of FMM, an algorithm for
network pruning and rule extraction, as proposed in (Carpenter and Tan, 1995), is
incorporated into FMM. The main objective of network pruning is to remove those
hyperboxes that have low confidence factors while preserving a high accuracy rate
of the prediction. A hyperbox is eliminated when its confidence factor is lower than
a user-defined pruning threshold, . The confidence factor of each hyperbox is
expressed as

(1)j j jCF U A (19)
where jU and jA are Usage and Accuracy of the jth hyperbox, respectively, while

 [0, 1] is a weighting factor. Parameter jU is defined as the fraction of the

number of training patterns coded by hyperbox () that predicts a particular
outcome over the maximum number of training patterns coded by any hyperbox
that predict the same outcome, i.e.,

jb jC

max []
j

j
j

C
U

C (20)

Accuracy jA is defined as the fraction of the percentage of prediction

patterns predicted by hyperbox j (jP) over the maximum percentage of prediction
patterns predicted by any hyperbox that predicts the same outcome, i.e.,

max []
j

j
j

P
A

P (21)

By using the above approach, it is possible to equip FMM with rules that
have interpretation in consequence of the min-max points of the hyperboxes. To
further facilitate the rule interpretation in a comprehensible form, weight
quantisation by truncation (Eq. 19) is applied. This method divides the range
between 0 and 1 into Q intervals, and assigns a quantisation point to the lower
bound of each interval, i.e.,

(1)
q

qV
Q (22)

for , where Q is the quantisation level. By using weight quantisation,
the extracted rules can be interpreted in accordance with fuzzy linguistic terms. For
example, with , the consequent part of the if-then rules can be translated into

1, 2, ,q Q

5Q

Computational Intelligence in Fault Diagnosis 295

very low, low, medium, high, and very high. As a result, the rules from FMM can be
elucidated in human linguistic terms that are easily comprehensible to the domain
users.

9.4. Fault Diagnosis in a Power Generation Plant

Power generation is a mission-critical service in a country. It is imperative to ensure
that the process of power generation is conducted in an efficient manner such that
continual supply of energy is guaranteed. In general, power generation involves
complex processes and equipment, and effective and intelligent fault diagnosis tools
are of vital importance to a power generation facility. As a result, a research project
has been conducted to investigate the applicability of FMM with rule extraction to
fault detection and diagnosis tasks in collaboration with a power generation plant in
Penang, Malaysia.

A case study pertaining to the Circulating Water (CW) system in the Prai
power generation plant, Malaysia, has been carried out. The function of the CW
system is to supply a sufficient and continuous amount of cooling water to the main
turbines condenser to condense steam from the turbine exhaust and other steam
flows into the condensers. Figure 9.3 shows a simplified diagram depicting the
main components of the CW system. In reality, the CW system includes all piping
and equipment (such as condensers and drum strainer) between intake of sea water
and the outfall of the system where sea water is discharged back to the sea.

Condensate

Strainer

Common

Discharge

Header
CW

Pumps

Primary Bar

Screen

Sea

Water

Condenser

To Sea

Steam

Low Pressure

Turbines

Figure 9.3. The Circulating Water system.

As shown in Figure 9.3, sea (circulating) water enters the plant from the
sea through a primary bar screen at the pump house. The bar screen is used to
prevent large-sized debris, such as timber and clumps of seaweed, from entering the
CW system. In the pump house, the CW pumps draw sea water from the suction
chamber to a common discharge header through a hydraulic discharge valve. From
the common discharge header, sea water flows into the CW inlet culvert through a
drum strainer, which acts as a filter to remove fine debris, such as shells and

296 V Palade, CD Bocaniala and L Jain (Eds.)

seaweed. Circulating water flows through the culvert up to the turbine condensers,
where circulating water is used to condense steam being exhausted from the low-
pressured turbine. After passing through a pair of outlet valves, circulating water
enters a concrete outlet culvert before it is discharged back to sea.

Data relating to a targeted power output of 80 MW was collected. Two
experiments were conducted to evaluate the applicability of FMM as an intelligent
fault diagnosis tool. Before describing the experiments and the results, a discussion
on bootstrapping, a statistical method used to evaluate the performance, is presented
in the next section.

9.4.1. The Bootstrap Method

The performance indicator used in the experiments was accuracy, i.e., ratio of the
correct number of predictions for the test samples to the total number of test
samples. In addition, the bootstrap method (Efron, 1979; Efron and Tibshirani,
1993) was employed to compute the estimated confidence bounds for accuracy.
Estimation of confidence bounds is important in order to ascertain the statistical
variation of accuracy, owing to the uncertainty of the network performance when
different initialisation conditions were used.

Bootstrapping is useful for estimating the confidence interval of
parameters when the underlying distribution function of the parameter is unknown.
It involves generating subsets of data on the basics of random sampling with
replacements as data are sampled. This method has no constraints upon the number
of times that a data sample may be represented in generating a single resampling.
The size of the resampling subsets may be fixed arbitrarily which is independent of
the parameter of the experimental design, and may even exceed the total number of
data. The algorithm to estimate confidence intervals by using bootstrapping is as
follows.

1. Collect a sample 1 2(, , ,)nx x x with mean ˆ that defines a

discrete distribution function having mass Ĝ 1
n

 at each of n sample

points.

2. Draw a sample randomly from . The distribution of each Ĝ * 1ix in the

bootstrap sample is , i.e., * 1ˆ iG * 1
1

ix , * 1
2
ix ,..., * 1i

nx ~ .* 1ˆ iG
3. Calculate the new mean *ˆ i .
4. Repeat step 2 and 3 m times to obtain * 1ˆ i , * 2ˆ i ,..., .*ˆ im

5. Sort the bootstrap mean values in ascending order, * 1ˆ i < * 2ˆ i <...<
.*ˆ im

6. Calculate the confidence intervals from the sorted list. The confidence

interval is (,), where 1cCOF 2cCOF 1 2c
maCOF (upper confidence

interval), and 2 1cCOF m COF 1c (lower confidence interval), when a
is the confidence level (e.g., 0.95 for 95% confidence interval).

Computational Intelligence in Fault Diagnosis 297

9.4.2. Experiment I – Heat Transfer Conditions

The turbine condensers use circulating water to remove rejected energy (heat) from
the low-pressured steam and, at the same time, to keep the turbine backpressure
(condenser vacuum) at the lowest possible yet constant level. Heat transfer
conditions in the condenser have a significant effect on the condenser backpressure,
in which an efficient heat transfer process will assist in maintaining the condenser
backpressure at a low level. With a satisfactory level of condenser backpressure, a
high turbine work efficiency to generate power can be maintained. On that account,
factors such as pressure and temperature of the exhaust steam and the cooling water
have a profound influence on the performance of the condenser in the process of
condensation.

The data set used in this experiment contained 2439 samples. Each data
sample consisted of 12 features comprising the temperature and pressure
measurements at various inlet and outlet points of the condenser, as well as other
important parameters as shown in Table 9.1. The heat transfer conditions were
classified into two categories, i.e., the process of heat transfer was accomplished
either efficiently or inefficiently. From the database, there were 1224 data samples
(50.18%) that showed inefficient heat transfer condition, whereas 1215 data
samples (49.82%) showed efficient heat transfer condition in the condenser. The
data samples were equally divided into three subsets for training, prediction and
test.

Table 9.1. List of sensor parameters used in the experiments

No. Parameter Description

1 LPT A Low Pressure Cylinder Exhaust Temperature A

2 LPT B Low Pressure Cylinder Exhaust Temperature B

3 GEN Generator

4 CWIT A Condenser Circulating Water Inlet Temperature A

5 CWIT B Condenser Circulating Water Inlet Temperature B

6 CWOT A Condenser Circulating Water Outlet Temperature A

7 CWOT B Condenser Circulating Water Outlet Temperature B

8 CWIP A Condenser Circulating Water Inlet Pressure A

9 CWOP A Condenser Circulating Water Outlet Pressure A

10 CWIP B Condenser Circulating Water Inlet Pressure B

11 CWOP B Condenser Circulating Water Outlet Pressure B

12 VAC Condenser Vacuum

During the experimental study, some important FMM parameters were
varied systematically to investigate the network performance. Table 9.2 shows the
test accuracy rates subject to varying from 0.01 to 0.10, with the sensitivity
parameter 5 . The highest accuracy rate achieved was 97.66%, and was
produced by setting 0.04 . Bootstrapping was applied to the results to determine

298 V Palade, CD Bocaniala and L Jain (Eds.)

the 95% confidence intervals of accuracy, and the results are shown in Table 9.3.
Notice that the difference between the lower and upper limits of the confidence
bounds was small, suggesting that the network performance was stable.

Table 9.2. Test results for Experiment I

θ Test Accuracy

(%)

θ Test Accuracy

(%)

0.01 97.17 0.06 96.06

0.02 97.05 0.07 96.06

0.03 97.66 0.08 95.33

0.04 97.66 0.09 94.34

0.05 95.85 0.10 95.08

Table 9.3. Bootstrapped results for Experiment I

Confidence Intervals Number of

Resamplings

Lower (%) Upper (%)

Mean

(%)

200 96.695 97.301 97.030

400 96.686 97.285 97.007

600 96.694 97.310 97.020

800 96.686 97.309 97.007

1000 96.685 97.301 97.009

Table 9.4. Pruning results for Experiment I

τ Test Accuracy (%) No. of

Hyperboxes

0.0 97.66 499

0.1 97.05 205

0.2 97.05 196

0.3 97.05 196

0.4 96.93 194

0.5 96.93 194

0.6 96.68 192

0.7 96.06 100

0.8 79.09 27

Computational Intelligence in Fault Diagnosis 299

Network pruning was performed to remove those hyperboxes that had a
low confidence factor. The pruning threshold, , was varied from 0.0 to 0.8, with

0.04 . Table 9.4 shows the test accuracy and the number of hyperboxes after
pruning. The result for 0.7 was selected for rule extraction because of the high
test accuracy rate with a smaller network size.

Table 9.5 shows six rules from each class that have the best confidence
factor while Table 9.6 shows an interpretation of the first positive rule and the
second negative rule. The heat transfer conditions can be ascertained by monitoring
certain parameters such as LPT A, LPT B, CWIT A, CWIT B, CWOT A, CWOT B
and VAC. Notice that VAC for most of the positive rules ranged from 3 (medium)
to 4 (high) while for the negative rules it ranged from 1 (very low) to 2 (low).
Indeed, in order to have efficient heat transfer in the condensers, the condenser
vacuum should be preserved at a low level. If CWIT A and CWIT B increased, the
steam temperatures (LPT A and LPT B) exiting the turbine would increase to
establish the needed differential temperature for continuous heat transfer during
power generation. This situation can be identified in most of the extracted rules,
where LPT A and LPT B were less than 2 (low) while CWIT A and CWIT B
ranged from 2 (low) to 3 (medium) for the negative rules. On the other hand, if LPT
A and LPT B increased from 3 (medium) to 4 (high), CWIT A and CWIT B would
increase from 3 (medium) to 5 (very high) in most positive rules. The rules
extracted were found to be compatible with domain knowledge as well as the
experts’ opinions in maintaining the CW system.

9.4.3. Experiment II – Tube Blockage Conditions

In this experiment, the objective was to predict the occurrence of tube blockage in
the CW system. The cleanliness of the condenser tubes has a significant impact on
the ability of the condenser to transfer heat from the exhaust steam to the cooling
water. One of the most common causes of blockage is tube fouling. Occasionally,
there are mud and small solid materials, such as seaweed, shells, and sand, which
have inadvertently escaped the filtering process of the CW system. As a
consequence, these solid materials enter the CW piping system, which includes the
condenser tubes. They may block the tubes and affect the efficiency of the
condenser in cooling exhaust steam. Thus, the second experiment focused on
blockage detection in the condenser tubes and nearby pipes. The conditions of the
condenser tubes were categorized into two classes: significant blockage and
insignificant blockage.

The same data set as used in Experiment I was employed. From the set, a
total of 1313 samples (53.83%) showed significant blockage and the remaining
showed insignificant blockage in the condenser tubes. The data samples were again
equally divided into three subsets for training, prediction and test. A number of tests
were conducted by varying from 0.01 to 0.95 with the sensitivity parameter

5 . Table 9.7 shows the results from 0.09 to 0.50 as setting
0.09 would result in overspecific rules while setting 0.50 would result in

too common rules. Notice that FMM was able to achieve perfect score (100%
accuracy) in this experiment.

300 V Palade, CD Bocaniala and L Jain (Eds.)

Table 9.5. Example of the extracted rules for Experiment I, where positive (+) and
negative (–) rules, respectively, indicate inefficient and efficient heat transfer conditions

Parameters Test

Rule

1 2 3 4 5 6 7 8 9 10 11 12

CF

No Acc

+ 3-4 3-4 3 3 2 2-3 3 1 1 2 1 3 1.000 19 1.00

+ 3 3 4 3 2 2-3 3 1-2 1 2 1 3-4 0.900 19 1.00

+ 3 3 3-4 3 2 2 3 2 1-2 2 1 3 0.900 24 1.00

+ 3 3 3-4 3 2 2 3 1 1 2 1 3-4 0.950 15 1.00

+ 3 3 3 5 4 3-4 4 2 3-4 2 3 2 0.850 19 1.00

+ 3 2-3 3 4 3 3 3 1-2 3 1 1 3 0.800 19 1.00

– 2 2 4 4 2 2 2 3 4 2 1 2 1.000 17 0.94

– 1-2 1 3-4 3 1 2 1 3 4 2 1 2 0.943 21 1.00

– 1 1-2 3 2 2-3 1 3 2 2 2 5 2 0.943 16 1.00

– 2 2 3-4 3 2 2 1-2 3 4 2-3 1 1-2 0.943 17 1.00

– 1 1 4 2-3 1 1 1 2 4 2 1 1-2 0.886 20 1.00

– 1 1 3 3 1 1 1 3 4 2-3 1 1 0.829 26 1.00

Table 9.6. Interpretation of the first positive rule and the second negative rule

IF IF

LPT A = medium to high LPT A = very low to low

LPT B = medium to high LPT B = very low

GEN = medium GEN = medium to high

CWIT A = medium CWIT A = medium

CWIT B = low CWIT B = very low

CWOT A = low to medium CWOT A = low

CWOT B = medium CWOT B = very low

CWIP A = very low CWIP A = medium

CWOP A = very low CWOP A = high

CWIP B = low CWIP B = low

CWOP B = very low CWOP B = very low

VAC = medium VAC = low

THEN Heat transfer is not efficient THEN Heat transfer is efficient

To facilitate rule extraction, network pruning was conducted to remove
those hyperboxes that had a low confidence factor. Table 9.8 summarises the results
obtained by varying from 0.0 to 0.8, with 0.15 . It can be seen that setting

0.7 resulted in a reasonably high test accuracy rate with a small network size.
Bootstrapping was applied to the pruned results to determine the 95% confidence
intervals of the network accuracy. The bootstrapped results are tabulated in Table
9.9. Again, the results indicate that the network performance remained stable after
pruning.

Table 9.10 shows the extracted rules and examples of their interpretation
are shown in Table 9.11. Notice that CWOP B was at 1 (very low) for all the
positive rules. On the contrary, CWOP B for all the negative rules ranged from 3
(medium) to 4 (high). In addition, CWOP A for the positive rules can achieve 1
while CWOP A for the negative rules ranged from 3 (medium) to 5 (very high). In
fact, there is a close relationship between the flow rate and the pressure of the CW

Computational Intelligence in Fault Diagnosis 301

system. The low outlet pressure is actually a sign of insufficient flow of circulating
water in the condenser tubes. Insufficient flow can also be traced by a low CW inlet
pressure. This is clearly shown by CWIP A and CWIP B of the first, third, fourth,
and sixth positive rules, where the rules ranged from 1 (very low) to 3 (medium).
The extracted rules, again, were found to be compatible with domain information as
well as the experts’ opinions.

Table 9.7. Test results for Experiment II

θ Test Accuracy

(%)

θ Test Accuracy

(%)

0.09 100.00 0.30 99.88

0.10 100.00 0.35 100.00

0.15 100.00 0.40 100.00

0.20 99.88 0.45 99.88

0.25 99.02 0.50 99.88

Table 9.8. Pruning results for Experiment II

τ Test Accuracy (%) No. of Hyperboxes

0.0 97.66 499

0.1 97.05 205

0.2 97.05 196

0.3 97.05 196

0.4 96.93 194

0.5 96.93 194

0.6 96.68 192

0.7 96.06 100

0.8 79.09 27

Table 9.9. Bootstrapped results for Experiment II

Confidence Intervals Number of

Resamplings

Lower (%) Upper (%)

Mean

(%)

200 92.848 96.023 94.398

400 92.463 96.121 94.410

600 92.841 95.941 94.471

800 92.865 96.203 94.531

1000 92.913 96.146 94.466

302 V Palade, CD Bocaniala and L Jain (Eds.)

Table 9.10. Example of the extracted rules for Experiment II, where positive (+) and
negative (–) rules, respectively, indicate significant and insignificant tube blockage in the

CW system

Parameters Test

Rule

1 2 3 4 5 6 7 8 9 10 11 12

CF

No Acc

+ 3-4 3-4 1-4 3-4 2 2-3 2-3 1-2 1-2 2 1 3-4 1.000 109 1.00

+ 1 1 2-4 2-3 1-2 1 1 2-3 4 2-3 1 1-2 0.914 64 1.00

+ 2-3 2 4-5 3-4 2 2-3 2 1-2 3 1-2 1 2-3 0.875 73 1.00

+ 1-2 2 3-4 3-4 2 2 2 1-3 3-4 1-3 1 2 0.796 71 1.00

+ 2-3 2-3 2-4 5 4 3 3 2-3 3-4 2-3 1 2-3 0.843 53 1.00

+ 3 2-3 2-5 4 2-3 3 2-3 1-2 3 1 1 3-4 0.741 24 1.00

– 2-3 2 2-4 4-5 3-4 2-3 2-3 3 4 3 3-4 1-2 1.000 107 0.94

– 2-3 2-3 2-3 4-5 3-4 3 3-4 2-3 4 2-3 3 2-3 0.952 95 1.00

– 5 5 2-4 5 5 5 5 3 5 2 3 4-5 0.782 19 1.00

– 3-4 3 2-3 5 4-5 3-4 4 2-3 3-4 2 3 2-3 0.782 40 1.00

– 2 2 3-4 3-5 2 2 2-3 2 3-4 2 3 1-2 0.758 37 1.00

– 3 2-3 1-4 5 4 3 3-4 3-4 4 3 3 2-3 0.746 24 1.00

Table 9.11. Interpretation of the first positive rule and the first negative rule

IF IF

LPT A = medium to high LPT A = low to medium

LPT B = medium to high LPT B = low

GEN = low to high GEN = low to high

CWIT A = medium to high CWIT A = high to very high

CWIT B = low CWIT B = medium to high

CWOT A = low to medium CWOT A = low to medium

CWOT B = low to medium CWOT B = low to medium

CWIP A = very low to low CWIP A = medium

CWOP A = very low to low CWOP A = high

CWIP B = low CWIP B = medium

CWOP B = very low CWOP B = medium to high

VAC = medium to high VAC = very low to low

Then Significant blockage Then Insignificant blockage

9.5. Summary

In this chapter, FMM is endowed with a rule extraction algorithm. With the rule
extraction algorithm, FMM is able to explain its predictions using fuzzy if-then
rules, thus overcoming the “black-box” phenomenon as suffered by most NN
models. Applicability of FMM to fault diagnosis tasks in a power generation plant
has been examined. The potential of FMM in learning and predicting faults in
complex processes as well as in providing a comprehensible explanation for its
predictions has been demonstrated in two experiments. The proposed rule extraction
algorithm is able to yield a comprehensible rule set. The extracted rules have been
verified as meaningful and are in line with the domain knowledge as well as
experts’ opinions. Further research work will concentrate on the aspects of

Computational Intelligence in Fault Diagnosis 303

implementation, validation, and verification of FMM as a useful, robust, and
intelligent fault diagnosis tool in a variety of application domains.

Acknowledgements

The effort and time of staff at TNB Prai Power Generation Plant in providing
guidelines and advice for this research project are highly appreciated. The
corresponding author gratefully acknowledges the research grants provided by
Universiti Sains Malaysia, and the Ministry of Science, Technology, and
Innovations Malaysia (No. 06-02-05-8002 & 04-02-05-0010) that have in part
resulted in this chapter.

References

1. Al-Najjar B (1996) Total quality maintenance: An approach for continuous
reduction in costs of quality products. Journal of Quality in Maintenance
Engineering 2:2-20
2. Andrews R, Diederich J and Tickle AB (1995) A survey and critique of
techniques for extracting rules from trained artificial neural networks. Knowledge
Based Systems 8:373-389
3. Carpenter GA and Tan AH (1995) Rule extraction: From neural architecture to
symbolic representation. Connection Science 7:3 -27
4. Craven MW and Shavlik JW (1994) Using sampling and queries to extract
rules from trained neural networks. In: Machine Learning: Proceedings of the
Eleventh International Conference, San Francisco, CA, USA
5. Dellomo MR (1999) Helicopter gearbox fault detection: a neural network based
approach. Journal of Vibration and Acoustics 121:265-272
6. Denny G (1993) F16 jet engine trending and diagnostics with neural networks.
In: Proceedings of SPIE, vol. 1965, pp. 419-412
7. Dietz WE, Kiech EL and Ali M (1989) Jet and rocket engine fault diagnosis in
real time. Journal of Neural Network Computing 1: 5-18
8. de Efron B (1979) Bootstrap Methods. Another Look at the Jackknife. The
Annals of Statistics 7:1-26
9. Efron B and Tibshirani RJ (1993) An introduction to the bootstrap. Chapman &
Hall
10. Freitas JFG, MacLeod IM and Maltz JS (1999) Neural networks for pneumatic
actuator fault detection. Transactions of the SAIEE 90:28-34
11. Fu LM (1994) Rule generation from neural networks. IEEE Transactions on
Systems, Man, and Cybernetics 28: 1114-1124
12. Jack LB, Nandi AK and McCormick AC (1999) Diagnosis of rolling element
bearing faults using radial basis function networks. EURASIP Journal on Applied
Signal Processing 6:25-32

304 V Palade, CD Bocaniala and L Jain (Eds.)

13. Kuo RJ (1995) Intelligent diagnosis for turbine blade faults using artificial
neural networks and fuzzy logic. Engineering Applications of Artificial Intelligence
8:25-34
14. Polycarpou MM and Helmicki AJ (1995) Automated fault detection and
accommodation: A learning system approach. IEEE Transactions on System, Man,
and Cybernetics 25:1447-1458
15. Simpson P (1992) Fuzzy Min-Max Neural Networks–Part 1: Classification.
IEEE Transactions on Neural Networks 3:776-786
16. Sharkey JC, Chandroth JO and Sharkey NE (2000) A multi-net system for the
fault diagnosis of a diesel engine. Neural Computing and Applications9:152-160
17. System description and operating procedures, Prai Power Station Stage 3, vol.
14, 1999
18. Tickle B, Orlowski M and Diederich J (1996) DEDEC: A methodology for
extracting rule from trained artificial neural networks. In: Proceedings of the Rule
Extraction from Trained Artificial Neural Network Workshop, Society for the
Study of Artificial Intelligence and Simulation of Behaviour Workshop Series
(AISB’96), University of Sussex, Brighton, UK, pp. 90-102, 1996
19. Venkatasubramanian V, Rengaswamy R, Yin K and Kavuri SN (2003a) A
review of process fault detection and diagnosis. Part I: Quantitative model-based
methods. Computers and Chemical Engineering 27:293-311
20. Venkatasubramanian V, Rengaswamy R, Yin K and Kavuri SN (2003b) A
review of process fault detection and diagnosis. Part II: Qualitative models and
search strategies. Computers and Chemical Engineering 27:313-326
21. Venkatasubramanian V, Rengaswamy R, Yin K and Kavuri SN (2003c) A
review of process fault detection and diagnosis. Part III: Process history based
methods. Computers and Chemical Engineering 27:327-346
22. Kohonen T (1984) Self-Organization and Associative Memory. Springer-
Verlag Berlin

10. Fuzzy Neural Networks Applied to
Fault Diagnosis

João Calado and José Sá da Costa

In this chapter, after a brief state-of-the-art of the use of ANNs in industrial
applications, the authors describe a fault diagnosis approach based on Fuzzy Neural
Networks (FNNs) that combines the advantages of both fuzzy reasoning and neural
networks. Fuzzy reasoning is capable of handling uncertain and imprecise
information, while an ANN is capable of learning from examples. In contrast to
conventional feed-forward ANNs, FNNs have an additional layer that converts the
increment in each on-line measurement into fuzzy sets. Thus, on-line measurement
data are compressed into qualitative values whose semantics are represented by
fuzzy sets and, hence, the training of the FNN and the diagnosis of the faults can be
carried out more efficiently.

However, fault symptoms concerning multiple simultaneous faults are
harder to learn than those associated with single faults. Furthermore, the larger the
set of faults, the larger the set of fault symptoms will be and, hence, the longer and
less certain the training outcome. In order to overcome this problem, the proposed
approach comes forward with a hierarchical structure of three levels, where several
fuzzy neural networks are used. Thus, a large number of patterns are divided into
many smaller subsets so that the classification can be carried out more efficiently.
The adoption of a hierarchical structure of several FNNs for fault diagnosis aims at
developing an architecture that can localize abrupt and incipient as well as single
and multiple faults correctly, or at least with a minimum misclassification rate, and
be easily trained using only single abrupt fault symptoms. In such an architecture,
measurements or faults act as antecedents from which we can infer a classification
of the pattern input that is diagnosis.

In order to test the performance and robustness of the current fault
diagnosis approach, a pneumatic servomotor actuated industrial control valve has
been used as test bed, and the analysis of results will be presented, as well as
conclusions drawn.

10.1. Introduction

Nowadays, control systems are becoming more and more complex and control
algorithms more and more sophisticated. Therefore, on-line fault detection and
isolation (FDI) is one of the most important tasks in safety-critical and intelligent
control systems. A major goal of intelligent control systems is to achieve high
performance with increasing reliability, availability and automation of maintenance
procedures. In many applications, increased requirements on productivity and
performance lead to plants operating near design limits for much of the time. This

306 V Palade, CD Bocaniala and L Jain (Eds.)

may often result in system failures, which are typically characterised by critical
changes in the inherent dynamics of the process. Process failures can potentially
result not only in the loss of productivity but also in the loss of expensive
equipment and, ultimately, of human lives. For these reasons, there is a growing
need for on-line FDI approaches in order to increase reliability of such safety-
critical industrial processes.

In dynamical systems, faults may be divided in two main classes: abrupt
faults and incipient faults. The incipient faults affect the process behaviour slowly
and may take a long time before being detected. Conversely, abrupt faults give rise
to jumps in the process parameters or model, resulting in an appreciable deviation
from normal behaviours. Abrupt faults are easy to detect, while incipient faults are
more difficult to detect since they could resemble the transient behaviour of the
process under normal regulation.

Thus, early detection and isolation of process faults, i.e., before they
seriously degrade or affect safety as well as economic and environmental factors, is
becoming an important consideration in effective plant supervision and control. In
this context, fault detection and isolation and subsequent diagnosis of the degree of
fault severity, likely causes, has been increasing in importance. Precise diagnostic
information must be generated quickly to protect the plant from shutdown and
provide operators with appropriate process status information to help them to take
the correct decisive actions not only when faults become serious but also when
faults that are developing become difficult to detect (incipient faults).

FDI systems based on conventional techniques are usually supported by
linear process model (Patton et al., 1994). For nonlinear processes, the traditional
approach is to linearise the process model around the process operating point. This
approach is effective for many nonlinear processes if the operating range is limited
and the FDI system has been designed to be robust enough to tolerate small
perturbation around the operating point. However, for processes with a high
nonlinearity and a wide operating range, the linearised approach fails to give
satisfactory results. One solution is to use a large number of linearised models
corresponding to a range of operating points which is not yet very practical for real-
time applications (Chen, 1995). On the other hand, the difficulty associated with
diagnosing multiple faults based on classical linear mathematical models like the
state space model arises from the need to have a very accurate model and the
extensive calculations required. If there are errors in the model, they manifest
themselves as faults, yielding false alarms. Furthermore, dealing with incipient
faulty scenarios, where faults evolve gradually instead of suddenly occurring abrupt
faults, is a major limitation of some techniques used in the conception of current
FDI systems.

The increased number of international conferences and workshops
including the FDI topic demonstrates the great attention given by the scientific
community to the development of related methodologies. Such a research topic can
be grouped into three main areas: quantitative, qualitative approaches or a mix of
both (Patton et al., 2000). The quantitative approaches are typically based on a
mathematical model of the process (differential equations – white box model) or on
a model based on artificial neural networks (black box model). On the other hand,
the qualitative approaches are typically based on qualitative models of the

Computational Intelligence in Fault Diagnosis 307

processes, like fuzzy models or other qualitative techniques (Calado et al., 2003).
The third group of FDI approaches includes the coupling between qualitative and
quantitative methodologies.

As pointed out by several authors (Patton et al., 1999; Calado et al., 2001),
the application of different methods depends on our knowledge about the process
and/or about the main objectives needed to be achieved. However, choosing
between one or other methodology to implement a specific FDI system is often not
an easy task since, according to the type of faults that such a system has to cope
with, each method is characterized by some advantages and some disadvantages. As
previously mentioned, the quantitative methods based on mathematical models are
normally simplified (linear models) because the real processes are normally very
complex and nonlinear, hence, hard to model. The quantitative methods that use
artificial neural networks depend on the data that can be acquired from the process
and it is also a very hard task to obtain faulty data from real processes. Usually, the
data contain only the steady-state behaviour of the processes. On the other hand, the
qualitative approaches (like fuzzy systems) depend on the knowledge and
experience available about the process. So, the best solution is the combination
between the two approaches, where the advantages of both methodologies could be
combined compensating the disadvantages.

Thus, this chapter will be concerned with the application of fuzzy neural
networks for fault isolation purposes and is organized as follows: in the next section
a brief introduction to the artificial neural networks topic is given, as well as some
industrial applications of multilayer perceptron and some applications of fuzzy
neural networks are pointed out; section 10.3 describes the application of artificial
neural networks to on-line fault detection and isolation (FDI) and a specific
methodology based on a hierarchical structure of fuzzy neural networks is
presented; section 10.4 presents the results achieved with the application of the
methodology presented in the previous section to fault isolation of a pneumatic
servomotor actuated industrial control valve; in section 10.5 some concluding
remarks are presented.

10.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) share their origins with the infancy of machine-
based information processing, when McCulloch and Pitts first showed that a
network of interconnecting threshold units could replicate any Boolean function.
These units are modelled on the response of neural cells in biological nervous
systems, hence the evocative name given to this field.

Therefore, ANNs grew out of research in Artificial Intelligence;
specifically, attempts to mimic the fault-tolerance and capacity to learn of
biological neural systems by modelling the low-level structure of the brain
(Patterson, 1996). The main branch of Artificial Intelligence research in the 1960s
to 1980s proposed the Expert Systems. These are based upon a high-level model of
reasoning processes attempting to mimic the concept that human beings reasoning
processes are built upon manipulation of symbols. It became rapidly apparent that
these systems, although very useful in some domains, failed to capture certain key

308 V Palade, CD Bocaniala and L Jain (Eds.)

aspects of human intelligence. In order to reproduce intelligence, it would be
necessary to build systems with a similar architecture.

The brain is mainly composed of a very large number (about
10,000,000,000) of neurons, massively. Each neuron is a specialized cell that can
propagate an electrochemical signal. The neuron has a branching input structure
(the dendrites), a cell body, and a branching output structure (the axon). The axon
of one cell connects to the dendrites of another via a synapse. When a neuron is
activated, it fires an electrochemical signal along the axon. This signal crosses the
synapses to other neurons, which may in turn fire. A neuron fires only if the total
signal received at the cell body from the dendrites exceeds a certain level known as
the firing threshold. The strength of the signal received by a neuron and, hence, its
chances of firing, critically depends on the efficacy of the synapses. Each synapse
actually contains a gap, with neurotransmitter chemicals poised to transmit a signal
across the gap. One of the most influential researchers into neurological systems
(Donald Hebb) postulated that learning consisted mainly in altering the "strength"
of synaptic connections. Recent research in cognitive science, in particular in the
area of no conscious information processing, has further demonstrated the
enormous capacity of the human mind to infer ("learn") simple input–output
covariations from extremely complex stimuli (Lewicki et al., 1992).

Thus, from a very large number of extremely simple processing units (each
performing a weighted sum of its inputs, and then firing a binary signal if the total
input exceeds a certain level), the brain manages to perform extremely complex
tasks. Of course, there is a great deal of complexity in the brain which has not been
discussed here, but it is interesting that ANNs can achieve some remarkable results
using a model not much more complex than this.

ANN models, as an approximation scheme, are normally viewed as a
composition of many non-linear computational elements operating in parallel and
arranged in certain patterns. These models attempt to achieve good performance via
dense interconnections of simple computational elements. The parameters
associated with each interconnection are determined during a training period
whatever the topological structure of the neural network models. However, all are
aimed at approximating complex nonlinearities by linear combination of a simple
nonlinear function.

Thus, ANNs witnessed an explosion of interest over the last few years, and
are being successfully applied across a broad range of problem domains, in areas as
diverse as finance, medicine, engineering, geology and physics. Indeed, anywhere
there are problems of prediction, classification or control, ANNs are being
introduced. This sweeping success can be attributed to a few key factors:

ANNs are parallel systems used for solving regression and
classification problems (Bishop, 1995). They estimate a function
without requiring a mathematical description of how the output
functionally depends on the input: they learn from examples. In
particular, ANNs are nonlinear systems. For many years linear
modelling has been the commonly used technique in most
modelling domains, since linear models have well-known
optimisation strategies. Where the linear approximation was not
valid, which was frequently the case, the models suffered

Computational Intelligence in Fault Diagnosis 309

accordingly. ANNs also keep in check the curse of dimensionality
problem that bedevils attempts to model nonlinear functions with
large numbers of variables.
ANNs learn by examples. The ANN user gathers representative
data, and then invokes training algorithms to automatically learn
the structure of the data. Although the user does need to have
some heuristic knowledge of how to select and prepare data, how
to select an appropriate neural network, and how to interpret the
results, the level of user knowledge needed to successfully apply
ANNs is much lower than would be the case using some more
traditional nonlinear statistical methods.

ANNs are also intuitively appealing as they are a crude low-level model of
biological neural systems. In the future, the development of this neurobiological
modelling may lead to genuinely intelligent computers.

ANNs are applicable in virtually every situation in which a relationship
between the predictor variables (inputs) and predicted variables (outputs) exists,
even when that relationship is very complex and not easy to articulate in the usual
terms of "correlations" or "differences between groups." A few representative
examples of problems to which neural network analysis has been applied
successfully are:

Detection of medical phenomena. A variety of health-related
indices (e.g., a combination of heart rate, levels of various
substances in the blood, respiration rate) can be monitored. The
onset of a particular medical condition could be associated with a
very complex (e.g., nonlinear and interactive) combination of
changes on a subset of the variables being monitored. ANNs have
been used to recognize this predictive pattern so that the
appropriate treatment can be prescribed.
Stock market prediction. Fluctuations of stock prices and stock
indices are another example of a complex, multidimensional, but
in some circumstances at least partially-deterministic
phenomenon. ANNs are being used by many technical analysts to
make predictions about stock prices based upon a large number of
factors such as past performance of other stocks and various
economic indicators.
Credit assignment. A variety of pieces of information are
usually known about an applicant for a loan. For instance, the
applicant's age, education, occupation, and many other facts may
be available. After training an ANN on historical data, the ANN
could be used to classify applicants as good or bad credit risks.
Monitoring the condition of machinery. ANNs can be
instrumental in cutting costs by bringing additional expertise to
scheduling the preventive maintenance of machines. An ANN can
be trained to distinguish between the normal operational
conditions of a machine versus when it is on the verge of a
problem. After this training period, the expertise of the network

310 V Palade, CD Bocaniala and L Jain (Eds.)

can be used to warn a technician of an upcoming breakdown,
before it occurs and avoid costly unforeseen "downtime."
Engine management. ANNs have been used to analyze the input
of sensors from an engine. The ANN controls the various
parameters within which the engine functions, in order to achieve
a particular goal, such as minimizing fuel consumption.

As a matter of fact, neural computation is a highly interdisciplinary field,
touching upon such diverse disciplines as statistics, neuroscience, psychology,
physics or linguistics. As mentioned above, what unites the field is the original
motivation behind neural networks to abstractly model the function of neurons and
neuron assemblies in the brain. Starting from this motivation, and the number of
models that have been developed, the field has moved outwards into several
directions, and continues to move today.

In the next two subsections, some industrial applications of artificial neural
networks, are reported.

10.2.1. Industrial Applications of Multilayer Perceptron

In engineering and physics, the classical approach to describe the behaviour and
functioning properties of real systems and to obtain mathematical models to
represent them relies on the use of algebraic and differential equations. The use of
parameter estimation techniques and accurate knowledge of the physical system
dynamics are required by such approaches together with numerical calculations to
emulate the system operation. However, due to the complexity of the physical
system, uncertainties are always present, making the corresponding mathematical
model inaccurate, or even nonrealistic. Hence, in practice, approximate analysis is
used and linearity assumptions are usually made.

To overcome the above difficulties, as mentioned in the last section, ANNs
implement algorithms that attempt to achieve a neurological related performance,
such as learning from experience, making generalizations from similar situations
and judging states when poor results were achieved.

In recent years, many real-world industrial problems have been solved by
applying ANNs. Such approaches include functional predictions and systems
modelling when the physical systems are not well understood or are highly
complex, pattern recognition and robust classifiers, with the ability to generalize
while making decisions about imprecise input data.

Nowadays, many different types of ANNs are known. However, some of
the more popular include multilayer perceptron (MLP), which is generally trained
with the backpropagation learning algorithm, learning vector quantization, radial
basis function (RBF), Hopfield and Kohonen networks, to name a few. Depending
on how data is processed through the artificial neural network, they can be divided
in two main groups. One of those groups is concerned with feedforward ANNs
while the other includes the recurrent ANNs (i.e., implement feedback). Another
way of classifying ANNs is related to the learning (or training) method used, as
some ANNs employ supervised learning, while others are referred to as
unsupervised or self-organizing learning methodologies.

Computational Intelligence in Fault Diagnosis 311

Control engineers are often faced with engineering problems exhibiting
knottiness, nonlinearities and uncertainties (Fukuda and Shibata, 1992). ANNs have
been proven to be a powerful methodology providing accurate solutions for such
classes of problems and overcoming the difficulties associated with the classical
methods to deal with those problems. They are suitable to cope with such
complexities due to the following features: learning from training data used for
physical system identification by finding a set of connection strengths that will
allow the network to carry out the desired computation (Rumelhart et al., 1994);
generalisation from inputs not previously presented during the training phase by
accepting an input and producing a plausible response determined by the internal
ANN connection structure, which makes the overall system robust against noisy
data and features exploited in industrial applications (Jung and Hsia, 1998);
mapping of nonlinearities making them suitable for identification in process control
applications (Rahman et al., 2000); parallel processing capabilities, allowing fast
processing for large-scale dynamical systems; applicable to multivariable systems,
since they naturally process many inputs and have many outputs; used as a black-
box approach and implemented on compact processors for space-and-power
constrained applications with no prior knowledge about the physical system being
modelled.

The Multilayer Perceptron (MLP) is the most used model in classification
problems; it is an artificial neural network with a topology where each neuron
output is connected to every neuron in subsequent layers, connected in cascade with
no feedback connections or connections between neurons in the same layer. Such an
approach has been used in several industrial applications reported by many authors.
Some examples are automatic wood surface inspection (Lampinen et al., 1998),
speed control of DC motors (Rubaai and Kotaru, 2000; Venayagamoorthy and
Harley, 1999), diagnostics of induction motor faults (Chow et al., 1991, 1993;
Filippetti et al., 1995, 2000), induction motor control (Burton and Harley, 1998;
Burton et al., 1995; Huang et al., 1999; Wishart and Harley, 1995), and current
regulator for pulsewidth-modulation (PWM) rectifiers (Cichowlas et al., 2000).
Maintenance and sensor failure detection was reported by Naidu et al. (1990),
check valves operating in a nuclear power plant (Ikonomopoulos et al., 1992;
Tsoukalas and Reyes-Jimenez, 1990), and vibration monitoring in rolling element
bearings (Alguindigne and Uhrig, 1994). It has been widely applied in feedback
control (Carelli et al., 1995; Er and Liew, 1997; Hashimoto et al., 1992; Jung and
Hsia, 1998; Ozaki et al., 1991; Payeur et al., 1995; Sun et al., 2001; Sundareshan
and Askew, 1997) and fault diagnosis of robotic systems (Vemuri and Polycarpou,
1997). The MLP was used in modelling chemical processes (Bhat et al., 1990), to
produce quantitative estimation of concentration of chemical components (Liu et
al., 1993), and to select powder metallurgy materials and process parameters
(Cherian et al., 2000). It was used in a turbo generator controller
(Venayagamoorthy and Harley, 1999), digital current regulation of inverter drivers
(Buhl and Lorenz, 1991), modelling and control of a welding process (Andersen et
al., 1990; Cook et al., 1995). An optimisation tool applied to the gas industry was
reported by Martineau et al. (2002), as well as a tool to predict daily natural gas
consumption needed by gas utilities (Khotanzad et al., 2000). Such artificial neural
network was also used in a temperature control system (Khalid and Omatu, 1992;

312 V Palade, CD Bocaniala and L Jain (Eds.)

Khalid et al., 1995), monitoring feedwater flow rate and component thermal
performance of pressurised water reactors (Kavaklioglu and Upadhyaya, 1994), and
fault diagnosis in a heat exchanger continuous stirred tank reactor system (Sorsa et
al., 1991).

The MLP is indeed the most used ANN structure and spread out across
several disciplines, like identification and defect detection on woven fabrics (Sardy
et al., 1993), automatic detection of damages on a critical conveyor belt
transporting 60 million tons of coal per annum (Alport et al., 2002), prediction of
paper cure in the papermaking industry (Edwards et al., 1999), controller steering
backup truck (Nguyen and Widrow, 1990), and modelling of plate rolling processes
(Gorni, 1997).

The majority of the reported applications involve fault detection and
diagnosis, quality control, pattern recognition and adaptive control (Boger, 1995;
Fogel, 1990; Liu et al., 1993; Uhrig, 1994). All the mentioned MLP applications
demonstrate adaptability features with the industrial problem, thus becoming part of
the industrial processes.

In the next subsection some applications of a special type of artificial
neural networks called fuzzy neural networks are presented.

10.2.2. Applications of Fuzzy Neural Networks

A major reason for the widespread application of fuzzy systems in industry is that
they have the ability to handle problems not well defined, including nonlinearity
and uncertainty, are easy to understand, are easy to apply quickly, and reduce
development costs. However, fuzzy systems can express knowledge but cannot
learn to adapt themselves. ANNs have the ability to learn, so the two methods
complement each other. From an engineering point of view much of the interest in
ANNs and fuzzy systems has been for dealing with difficulties arising from
uncertainty, imprecision and noise. Fuzzy reasoning is capable of handling
uncertain and imprecise information, while an ANN is capable of learning from
examples. Thus, fuzzy neural networks (FNNs) intend to combine the advantages of
both fuzzy reasoning and ANNs (Buckley and Hayashi, 1994a).

The name fuzzy neural networks suggests that it refers to artificial neural
networks that are fuzzy, which means that some kind of fuzziness has been
introduced to standard artificial neural networks. Therefore, as pointed out by
Rutkowska and Hayashi (1999), such a name is most suitable for the neural
networks obtained by direct fuzzification of signals and/or weights, as well as
artificial neural networks composed of fuzzy neurons. Artificial neural networks,
fuzzified by introducing fuzzy signals, weights, activation functions, etc., have been
reported by several authors (Hayashi et al., 1993; Ishibuchi et al., 1995). Fuzzy
neurons and fuzzy neural networks were first introduced by Lee and Lee (1975).
Their fuzzy neurons were understood as a fuzzy generalisation of the McCulloch-
Pitts neuron model (McCulloch and Pitts, 1943), which was historically the first
neuron model proposed for classical artificial neural networks (Zurada, 1992;
Anderson, 1995). Much later, the classical perceptron (Rosenblatt, 1958) was
considered with the addition of membership functions; it was called the fuzzy
perceptron (Keller and Hunt, 1985). A survey paper of Takagi (1990) discussed the

Computational Intelligence in Fault Diagnosis 313

fusion of artificial neural networks and fuzzy logic. However, very little research on
fuzzy neural networks was done by then.

Fuzzy set theory has long been considered a suitable framework for pattern
recognition, especially classification procedures because of the inherent fuzziness
involved in the definition of a class or of a cluster (Lin and Lee, 1996). On the other
hand, fuzzy set theory has been introduced to cope with uncertainty in other steps of
the pattern recognition process, as for instance, to cope with the fuzziness involving
the feature or the classification space.

In recent years, the concept of incorporating fuzzy logic into an ANN has
grown into a popular research topic (Chen and Teng, 1995; Wang, 1997; Lin et al.,
1999, 2001). Fuzzy logic and artificial neural networks are complementary
technologies (Lin and Lee, 1996). In contrast to classical ANNs or fuzzy systems,
Fuzzy Neural Networks (FNNs) possess both their advantages. They combine the
capability of fuzzy reasoning in handling uncertain information with the advantages
of artificial neural networks, such as learning abilities, optimisation abilities,
generalisation abilities and connectionist structures. Thus, one of the merits of the
fuzzy neural approach is faster convergence speed with smaller network size as
compared to the classical ANN (Kiguchi and Fukuda, 1997; Farag et al., 1998).

Moreover, in many real-world applications, partial knowledge is available,
but not a complete set of rules. What is needed is a technology that can work with a
partial knowledge base and can learn from the additional data in order to perform
the task correctly. Fuzzy logic handles the explicit knowledge, whereas the artificial
neural networks handle the knowledge implicit in the data. A fusion of these two
models into one model provides a better way of resolving problems that neither
approach can solve separately.

An FNN can process both numerical information from measuring
instruments and linguistic information from experts. In addition to fuzzy rule-based
neural networks, which are also called neuro-fuzzy networks whose aims are
mainly to process numerical relationships (Horikawa et al., 1992; Jang, 1993;
Chakraborty et al., 2002), another class of FNNs that has attracted researchers
attention is feedforward fuzzified neural networks, which are defined from
conventional feedforward artificial neural networks by including fuzzified neurons,
or by substituting crisp neurons with fuzzified ones (Buckley and Hayashi, 1994b;
Liu and Wang, 1999; Liu, 2000). This second class of FNNs have been successfully
applied to many real problems that are inherently uncertain and imprecise,
involving adaptive control, system identification and pattern classification
(Ishibuchi et al., 1995; Feuring et al., 1999; Ishibuchi and Nii, 2001).

Furthermore, according to Buckley and Hayashi (1994a), for an artificial
neural network to be called a fuzzy neural network, the signals and/or weights must
be fuzzy sets. They also consider three groups of FNNs. The first group includes the
FNNs having real number signals but fuzzy set weights. In the second group the
FNNs have fuzzy signals and real number weights. In the last group, FNNs have
both fuzzy signals and fuzzy weights.

Some examples where fuzzy neural networks have been applied aiming at
the automation of many different tasks are model reference control methodology
based on fuzzy neural networks (Chen and Teng, 1995) and position and force
control of industrial robot manipulators (Kiguchi and Fukuda, 1997).

314 V Palade, CD Bocaniala and L Jain (Eds.)

In the next section, the use of fuzzy neural networks for fault detection and
isolation will be presented. Furthermore, a detailed description of a hierarchical
structure of fuzzy neural networks developed for fault isolation purposes will be
provided.

10.3. Fuzzy Neural Networks Applied to FDI

Recently, the use of FNN for FDI purposes has received increasing attention in both
research and application (Garcia et al., 1997; Leonhardt and Ayoubi, 1997; Patton
et al., 1999; Calado and Sá da Costa, 1999; Patton et al., 2000; Koscielny and
Syfert, 2000; Calado et al., 2001; Mendes et al., 2002; Kowal et al., 2002; Calado
et al., 2003). These reported studies have demonstrated that FNNs could be used to
overcome the difficulties of conventional fault isolation techniques to deal with
nonlinear behaviours. Establishing an appropriate training set allows the fuzzy
neural networks to learn and generalize for operating with unseen input data.
However, fault symptoms concerning multiple simultaneous faults are harder to
learn than those associated with single faults. Furthermore, the larger the set of
faults, the larger the set of fault symptoms will be and, therefore, the longer and less
certain the training outcome.

Hence, in order to overcome the difficulties previously mentioned, the
authors will present an approach based on a hierarchical structure of three levels
where several FNNs are used. Thus, a large number of patterns are divided into
many smaller subsets so that the classification can be carried out more efficiently.
The adoption of a hierarchical structure of FNN approach for fault isolation aims at
development of an architecture that can localise abrupt and incipient single and
multiple faults correctly, or at least with a minimum misclassification rate and be
easily trained, from only single abrupt fault symptoms.

Therefore, the current fault isolation approach consists of a hierarchical
structure with three levels (lower, medium and upper) where the lower and the
medium levels use one or more FNNs and the upper level is a fuzzy OR decision
block, as depicted in Figure 10.1. It can be seen that the fuzzy neural networks have
been achieved by adding a fuzzification layer to the conventional feedforward
artificial neural networks (Haykin 1999).

In previous applications using the current fault isolation methodology
(Calado et al., 2001; Mendes et al., 2002), the inputs to the hierarchical structure of
fuzzy neural networks (HSFNN) used for fault isolation purposes have been based
on the differences of the process measurement variables values, as expressed by
Eq. 1:

k k kdMV MV MV i (1)
where MV is the measured variable and k the sampling time. Further studies have
been performed and the fault isolation approach based on the HSFNN has been
applied for fault isolation purposes of a pneumatic servomotor actuated industrial
control valve, as described in the next section. It has been observed during the
mentioned design that such type of input variables has disadvantages, if they are
applied to slowly developing incipient faults. In these cases, it is almost impossible

Computational Intelligence in Fault Diagnosis 315

to distinguish the fault symptoms from the measurement noise without using a high
value of index i. However, since the FDI system should be able to isolate faults in a
very early stage of their development as already mentioned, the index i has to be
relatively small. One way to overcome such a problem will be to consider as inputs
of the HSFNN the time derivative of the measured variables instead of their
differences as given by Eq. 1.

FNN
1

FNN
n

∂x
n

∂x
1

 F
1

 F
2

 F
n-1

 F
n

Faults

FUZZY

OR

FNN
0

MV

Normal case

Lower Level

F
n

F
1

Medium Level Upper Level

∂x
n

∂x
1

 F
1

 F
2

 F
n-1

 F
n

∂x
n

∂x
1

 F
1

 F
2

 F
n-1

 F
n

Figure 10.1. Hierarchical structure of fuzzy neural networks.

However, since the measurement variables are affected by noise, it is
necessary to exercise some caution on how the estimated derivative is obtained.
Thus, the derivatives are estimated by means of linear regression, being given by
the following formula:

1 1 1

0 0 0
2

1 12

0 0

/

/

i i i
k j k j k j k j

j j j
k

i i
k j k j

j j

t MV t MV i
a

t t i
(2)

In Eq. 2 the following notation is used: ak is the slope of the line at instant
k; t stands for time; MV is the measured variable; and i is the number of points used
for fitting the line. In the case study detailed in the next section, 15 points have been
used for linear regression purposes (i=15).

According to Figure 10.1 the lower level of the HSFNN consists of one
FNN0 where all derivatives of the measured variables are used as inputs. The
medium level uses a number of FNNs (structurally identical or different) that is
equal to the number of single fault scenarios considered. Each FNNi at the medium
level is also fed with all the measurement variables and each one is associated with
an output of the FNN0 at the lower level, corresponding to a particular single fault.
The upper level consists of a fuzzy OR operation on the FNNi outputs at the

316 V Palade, CD Bocaniala and L Jain (Eds.)

medium level. There are different fuzzy OR operators available (Klir and Folger,
1988), but in the current approach we use the max-min operations to construct the
fuzzy OR, represented by Eq. 3. Thus, the final fault vector is the result of this
operation, which means the maximum values of each fault for all outputs from the
medium level.

1max ,..., , 1nFNNFNN
i i iF F F i (3)

The elements of the set used in the fuzzy OR operation are determined by
the outputs of the FNN0 at the lower level. Thus, if the i-th and j-th outputs of the
FNN0 at the lower level are taking values greater than 0.5, the threshold considered,
then the outputs of the i-th and j-th FNNi at the medium level form the elements
used in the fuzzy OR operation. However, if only one output of the FNN0 at the
lower level is taking a value greater than 0.5, then the corresponding FNNi in the
medium level is used to confirm that this fault is a single fault, or to isolate multiple
faults. Obviously, the multiple faults must include the one corresponding to the
output of the FNN0 at the lower level.

In the fault isolation approach considered, as previously mentioned, the
adopted FNN has an additional fuzzy input layer that maps the increment of each
measurement into qualitative values whose semantics are represented by fuzzy sets.
In the current approach, the fuzzification layer converts each input into the
following fuzzy quantity space, Qf= nlarge, nmedium, nsmall, zero, psmall,
pmedium, plarge , by association with seven types of neurons (complement
sigmoid activation function for nlarge, sigmoid function for plarge and Gaussian
function for all the others). The hidden and output layers processing elements use
the sigmoid function as their activation function. The membership functions
associated with the neurons in the fuzzification layer could be determined by using
the c-mean clustering algorithm (Bezdek, 1981) applied to the vectors used to train
the neural networks. Both the lower level and the medium level networks are made
up of three layers. The neural networks used in the case study described in the next
section were trained using the Newton method combined with the Levenberg-
Marquardt method (Marquardt, 1963). The training goal was to obtain a mean
squared error smaller than 10-3.

The FNN0 (lower level) training data will be obtained from the process
single abrupt fault simulation. In general and in order to cope with different fault
strengths, the same fault will be simulated with several different intensities. Thus,
the number of training patterns used to train the FNN0 is equal to the number of
single abrupt faults times the number of fault strengths considered plus a number of
training patterns corresponding to the normal operational conditions. In general,
Table 10.1 shows the training data associated with the lower level FNN,
considering only one fault intensity.

On the other hand, the FNNi (medium level) will be trained using the data
for one single abrupt fault (the fault associated with the corresponding FNNi) and
for all possible double abrupt faults that the FNNi will be able to diagnose. This
training data is obtained by adding the data for the corresponding single abrupt
faults considered, as shown in Table 10.2 and in Eq. 4:

e1
1+2 ... em

1+2 = e1
1+ e1

2 ... em
1+ em

2 (4)

Computational Intelligence in Fault Diagnosis 317

Table 10.1. Training data for single abrupt faults

Vectors FNN inputs

FNN

outputs

Fault

diagnosed

1

2

.

.

.

n-1

n

δe
1

0

 ... δe
m

0

δe
1

1

 ... δe
m

1

.

.

.

δe
1

n-1

 ... δe
m

n-1

δe
1

n

 ... δe
m

n

0 0 0 ... 0

1 0 0 ... 0

.

.

.

0 01 0

0 0 0 ... 1

Normal

F
1

.

.

.

F
n-1

F
n

Table 10.2. Training data for double abrupt faults

Vectors FNN inputs

FNN

outputs

Faults

diagnosed

1

2

.

.

.

n-1

n

δe
1

1+2

 ... δe
m

1+2

δe
1

1+3

 ... δe
m

1+3

.

.

.

.

δe
1

(n-1)+n

 ... δe
m

(n-1)+n

1 1 0 ... 0

1 0 1 ... 0

.

.

.

.

0 0 ... 1 1

F
1
 F

2

F
1
 F

3

.

.

.

.

F
n-1

F
n

In order to cope with process transient behaviours due to normal set point
regulations, the current fault isolation approach should be coupled with a fault
detection system, as for instance in the approach proposed by Calado et al. (2003).

Thus, when quantitative models are not readily available, a correctly
trained artificial neural network can be used as a nonlinear dynamic model of the
process. However, the neural network does not easily provide insight into model
behaviour; the model is explicit rather than implicit in form. This main difficulty
can be overcome using qualitative modelling or rule-based inference methods. For
example, fuzzy logic can be used together with state-space models or neural
networks to enhance FDI diagnostic reasoning capabilities (Lopez-Toribio et al.,
1999).

In the next section, the fault isolation approach described above will be
applied to a pneumatic servomotor actuated industrial control valve and the results
achieved will be provided.

10.4. Case Study

Faults are usually the main cause of loss of productivity in the process industry.
One of the most important types of equipment present in the process industry is the
flow control valve. A fault in a flow control valve may lead to a halt in production
for long periods of time. Apart from these economic considerations faults may also
have security implications. A fault in an actuator may endanger human lives, as in
the case of a fault in an elevator’s emergency brakes or in the stems position control
system of a nuclear power plant. The occurrence of faults can be reduced through

318 V Palade, CD Bocaniala and L Jain (Eds.)

preventive maintenance; however, they cannot be fully eliminated. If a fault is
detected in its early stages a quick intervention can often prevent serious
consequences to the ongoing process. Therefore, there is a need for fault diagnosis
systems that detect and isolate a fault as soon as it occurs (Chen and Patton, 1999;
Patton et al., 2000). The design and performance testing of fault diagnosis systems
for industrial process often requires a simulation model since the actual system is
not available to generate normal and faulty operational data needed for design and
testing, due to the economic and security reasons that they would imply.

One of the most common types of actuators in the process industry is the
flow control valve. Their numbers can run up to the thousands in process industries,
such as oil refineries and the food industry. These flow control valves are widely
used to control the distribution of process fluids as water and steam. The processes
in which this kind of valve finds its most common application are characterized by
high time constant, like thermal regulation and slow chemical reactors and
evaporators. In all these cases, it is necessary to ensure the flow to be constant at a
specified set point for a long period, while the transient time to reach the control
value is usually of minor interest. These devices are subject, relatively often, to
faults and malfunctions due to harsh environment conditions, which cause a
decrease in production or even an installation shutdown. Recently, the application
of fault diagnosis systems to industrial valve actuators has been studied under the
European research training network DAMADICS
(http://diag.mchtr.pw.edu.pl/damadics/) where a benchmark problem was defined.
In this chapter the performance of the fault isolation technique described in the
previous section will be demonstrated on this industrial benchmark valve actuator
used to control the flow of the feeding water of a steam generator boiler. This
benchmark problem will be described next.

10.4.1. Flow Control Valve

Figure 10.2 shows a view and the schematics of a typical industrial flow control
valve. The flow control valve is a final control device that acts on the controlled
process. Most of these valves are pneumatically actuated, consisting of three main
parts: body of the valve, actuator (e.g., spring-and-diaphragm pneumatic
servomotor) and positioner controller. The valve body is the component that
determines the flow through the valve. The fluid enters the valve by port 1, it flows
across the restricted section 2 and it exits the valve by port 3. The plug 4 can
translate along its axis 5 in order to change the area of the restricted section. A
change of the restricted area in the valve regulates the flow. There are many types
of valve bodies; the differences between them relate to the form by which the
restricted flow area changes. Here, the globe valve case will be adopted.

The flow through the valve body mainly depends on the valve opening,
which is a function of the position of the stem, and on the pressure difference across
the valve. The actuator sets the position of this stem. There are many types of servo
actuators: electrical motors, hydraulic cylinders, spring-and-diaphragm pneumatic
servomotor, etc. The most common type of actuator is the spring-and-diaphragm
pneumatic servomotor due to its low cost. This actuator consists of a stem that has,
at one end, the valve plug and at the other end the plate. The plate is placed inside

Computational Intelligence in Fault Diagnosis 319

an airtight chamber and connects to the walls of this chamber by means of a flexible
diaphragm. This assembly is supported by a spring, as shown in Figure 10.2.
Compressed air is admitted in chamber 6 and it acts on diaphragm 7. The spring 8 is
compressed and it develops a force proportional to the deflection that opposes the
force developed by the air on the diaphragm. The position of the stem is
proportional to the pressure inside the airtight chamber.

Figure 10.2. Industrial flow control valve and schematics.

The positioner, shown in Figure 10.3, determines the flow of air into the
chamber.

Figure 10.3. Positioner controller.

The positioner is the control element that performs the position control of
the stem. It receives a control reference signal (setpoint) from a computer
controlling the process, passes it through a second-order filter, in order to get rid of
noise and abrupt changes of the reference signal, prior to the PID control action that
leads the stem’s position to that reference signal. The positioner comprises as well a
position sensor and an electrical-pneumatic (E/P) transducer. The first determines
the actual position of the stem so that the error between the actual and desired
position (reference signal) can be obtained. The E/P transducer receives a signal
from the PID controller transforming it into a pneumatic valve-opening signal that
adds or removes air from the pneumatic chamber. This transducer is also connected
to a pneumatic circuit and to the atmosphere. If the controller indicates that the stem
should be lowered, the chamber is connected to the pneumatic circuit. If, on the
other hand, the stem should be raised, the connection is established with the
atmosphere, thus allowing the chamber to be emptied.

320 V Palade, CD Bocaniala and L Jain (Eds.)

10.4.2. Faults

The control valve may be affected by a number of faults (Koj, 1998). These faults
are grouped into four major categories: valve faults, actuator faults, positioner faults
and general/external faults. Here only abrupt or incipient faults are considered.

Valve faults are faults that affect the valve body. There are six different
faults for this type: valve clogging (fault f1), valve plug or valve seat sedimentation
(fault f2), valve plug or valve seat erosion (fault f3), increased bushing friction
(fault f4), external leakage (fault f5) and internal leakage or fault in valve tightness
(fault f6).

Fault f1, valve clogging, occurs when the servomotor stem is blocked by
an external event of a mechanical nature. This fault does not permit the stem to go
above a certain position and therefore the flow cannot drop below a certain value.
Restricting the stem motion to a smaller range simulates this fault.

Fault f2, valve plug or valve seat sedimentation, occurs when solid
particles that are mixed with the liquid start to sediment in the valve plug or in the
valve seat reducing the orifice dimensions. The altering of the dimensions causes
the Kv to decrease, the maximum stem position (xmax) to be smaller and the position
of the stem to change because the force exerted by the fluid is smaller. A
simultaneous decrease of the flow coefficient Kv, an alteration of the stem motion,
and a decrease in its range simulate the fault.

Fault f3, valve plug or valve seat erosion, occurs when the continuing flow
starts to remove material from the valve plug or the valve seat, which alters their
dimensions. The altering of the dimensions causes the flow coefficient Kv to
increase, the maximum stem position to be higher and the position of the stem to
change because the force exerted by the fluid is bigger. A simultaneous increase of
Kv, an alteration of the stem motion, and an increase in its range simulate the fault.

Fault f4, increased bushing friction, occurs when the normal force and
static friction coefficient on the valve stem packing box increases due to corrosion,
sedimentation, pollution, etc. This causes the hysteresis that already occurs in the
stem to be increased. This fault is simulated by an increase in the hysteresis of the
stem motion.

Fault f5, external leakage, occurs when the valve has a leakage, caused by
corrosion, mechanical wear or poor assembly. This fault entails a loss of flow to the
environment. This fault is simulated by a reduction in the flow at the output of the
valve.

Fault f6, internal leakage, occurs when there is a loss of valve plug–valve
seat tightness due to erosion, corrosion or mechanical wear. This fault is simulated
by an increase of the flow coefficient Kv.

The actuator faults affect the pneumatic servomotor. There are four faults
that fall into this category: twisted servomotor stem (fault f7), servomotor housing
tightness (fault f8), diaphragm perforation (fault f9), and spring fault (fault f10).

Fault f7, twisted servomotor stem, may occur when the stem is bent due to
external or internal forces parallel to the stem’s axis. This will cause the normal
force on the valve stem-packing box to increase and therefore cause an increase in
hysteresis. This fault is simulated by an increase in the hysterisis that affects the
stem motion.

Computational Intelligence in Fault Diagnosis 321

Fault f8, servomotor housing tightness, occurs when there are air losses
due to the lack of tightness of the pneumatic chamber. These air losses have an
influence on the chamber pressure. This fault is simulated by a reduction in the
airflow into or from the pneumatic chamber.

Fault f9, diaphragm perforation, occurs when the flexible diaphragm is
punctured due to fatigue of the material. This causes a loss of air from the
pneumatic chamber to the atmosphere, which alters the chamber pressure. This fault
is simulated by a reduction in the airflow into or from the pneumatic chamber and
in the area of the flexible diaphragm.

Fault f10, spring fault, occurs when the spring, which supports the stem,
has a fault due to corrosion and/or fatigue of the spring’s material. This fault is
simulated by reducing the spring constant K.

There are three main faults that affect the positioner: E/P transducer fault
(fault f11), stem displacement sensor fault (fault f12) and positioner feedback fault
(fault f13).

Fault f11, E/P transducer fault, occurs when the characteristics of the
transducer are changed due to coil damage or mechanical fault. This fault is
simulated by changing the output of the E/P transducer, which will affect the
airflow into or from the chamber.

Fault f12, stem displacement sensor fault, occurs when the potentiometric
sensor responsible for supplying the measurements of the stem’s position is faulty,
due to wear of the materials or wire breaks due to fatigue. This fault is simulated by
an increase, or decrease, in the readings of the position sensor.

Fault f13, positioner feedback fault, is caused by fault of a spring
cancelling the clearance in the positioner mechanical lever feedback system. This
fault is simulated introducing hysteresis in the feedback portion of the control loop,
not affecting the sensor reading.

General/external faults are faults whose origin is not in the flow control
valve system but rather in the plant installation, but may affect the valve’s
performance. There are four main faults that fall into this category: positioner
supply pressure drop (fault f14), unexpected pressure change across the valve (fault
f15), opened bypass valve (fault f16) and flow sensor fault (fault f17).

Fault f14, positioner supply pressure drop, occurs when the pressure of the
pneumatic circuit that connects with the positioner drops. This causes the airflow
into the chamber to be altered. This fault is simulated by a reduction of the pressure
of the pneumatic circuit.

Fault f15, unexpected pressure change across the valve, occurs when, for
some reason related to the system where the valve is placed, the pressure difference
across the valve is altered. It causes changes in the flow and in the stem position.
This fault is simulated by a change in the values of the upstream pressure or the
values of the downstream pressure.

Fault f16, opened bypass valve, occurs when the valve of a bypass circuit,
used to allow the control valve to be changed without stopping the flow, is opened,
either due to employee mishandling or to a fault in this valve. This fault will lead to
a greater flow at the exit of the circuit than what would be expected. The fault is
simulated by an increase in the flow through the valve.

322 V Palade, CD Bocaniala and L Jain (Eds.)

Fault f17, flow sensor fault, occurs when the sensor responsible for
measuring the flow is faulty due to electronics or wiring failure. This causes the
flow measurements to be biased. This fault is simulated by an increase, or decrease,
in the flow readings.

A complete description of the faults and the way they affect the valve can
be found in (Louro, 2003).

10.4.3. Flow Control Valve Benchmark Simulator

An efficient parameterized MATLAB/SIMULINK simulator was developed that
allows the simulation of normal and faulty conditions of the flow control valve. The
faults are parameterized by defining the starting time, the type of fault (single,
multiple, abrupt or incipient), the fault intensity, and the fault settling time (if the
fault is incipient). Results can be assessed by an appropriate graphic interface and
data files.

The simulator’s inputs are the stem position reference signal (CV), the
upstream and downstream pressures (Pus and Pds) and the fluid temperature (T),
given by the actual measurements from the plant. The outputs of the model are the
stem position (X) and the flow (F) through the valve, as well as the previously
mentioned inputs. The difference between the values given as inputs and the
outputs referring to those values is that noise is added to them in order to simulate
an actual sensor reading. Noise is assumed to be white with uniform distribution
with sinusoidal mean and variance set by the user, being the seed generated
randomly.

The developed simulator was compared with the data originating from an
actual industrial system and it was concluded that the simulator provides a response
that is very similar to the one of the actual system.

Some faults were introduced on purpose in the real system and the
measurements compared with the data generated by the simulator for the same
faults. The faulty data generated by the simulator was not as close to the real system
as it had been for the normal operation. However, it is close enough for the intended
purpose of fault diagnosis design and testing.

10.4.4. Fault Isolation

To test the efficiency of the fault isolation (FI) system based on the HSFNN
previously described, four rates of change of the measurement variables have been
defined as input data to the fault isolation system: dFi – rate of change of the flow
sensor measurement, dXi – the rate of change of the rod displacement, dTi – the rate
of change of the fluid temperature and dPi – the rate of change of the pressure
difference across the valve.

To achieve a fault or faults isolation in the process under supervision, an
analysis of the output values from the FNN at the lower level of the hierarchical
structure is necessary. If the number of nonzero outputs (output 0.5) in FNN0 is
equal to 0, then it is assumed that no fault occurred in the process under
consideration. Otherwise, the result of the fault isolation system is considered to be

Computational Intelligence in Fault Diagnosis 323

the result of a fuzzy OR operation (upper level) on several FNNi outputs in the
medium level, as previously described.

In the FI system considered all FNNs are equal, with a fuzzification layer
consisting of 28 processing elements arranged in 4 groups, corresponding to the
four rates of change of the measurement variables, where each group contains 7
neurons corresponding to the respective fuzzy sets (Figures 10.4 and 10.5). The
number of neurons in the hidden layer is determined by the complexities of the
relationships between the faults and the fault symptoms. During the design stage,
following a trial and error procedure, it was found that 7 hidden processing
elements give satisfactory performance for the fault isolation system under
consideration. However, further research could be conducted in order to optimize
the FNN topology by using ANN pruning algorithms. Moreover, since to test the
current FI system, only 8 relevant single abrupt faults have been considered (F2, F7,
F10, F11, F13, F17, F18 and F19), the output layer of each network is up to 8
neurons, each one corresponding to a fault. Besides the previously mentioned set of
single faults, all possible double fault scenarios corresponding to an AND operation
in the single fault space have also been considered.

The training of the FI system has been accomplished by using data relative
to the normal behaviour of the process and all eight abrupt faults, at one specific
operating point (CV=0.5), considering only one fault intensity (fs=0.75), giving a
total of 8 time series containing the faulty information plus 1 time series containing
the data relative to the normal behaviour of the process. The 9 time series are used
for training the lower level network. For training the medium level networks the
data relative to one of the faults is added with the data relative to the other faults in
order to form data relative to double faults. Only the time series pertaining to the
same operating point and fault intensity are added, which means that for training
each medium level network there is a total of 8 operating points, 1 pertaining to the
fault to which the network is associated and 7 pertaining to multiple faults. The
membership functions associated with the fuzzy sets in the fuzzy layer of the FNN
are estimated by applying the fuzzy c-mean clustering algorithm to the training
data. The membership functions obtained can be seen in Figures 10.4 and 10.5.

The testing set contains information relative to normal operation
conditions and to all eight faults, with two operating points (CV=0.65 and
CV=0.75) and with three fault intensity values (fs=0.25, fs=0.5 and fs=0.75) for the
case of abrupt faults, according to what has been defined for benchmark purposes.
Table 10.3 shows the results achieved. From these results it can be concluded that
for abrupt faults the HSFNN provides a good generalization capability as a fault
isolation system. This is a very important aspect as far as the performance of the
fault isolation system is concerned, since only single abrupt fault symptoms at one
operating condition and for one fault intensity are considered during the training
task.

Incipient faults are a type of faults where the magnitude of the fault
intensity does not change instantaneously but rather develops through time. It is
difficult to know the shape of the evolution since it depends on the case study and
the type of fault. For the present case study, it is assumed that the fault intensity
varies linearly from 0, at an instant called fault starting time, to 1, at an instant
called fault settling time. After the simulation has reached the fault settling time, the

324 V Palade, CD Bocaniala and L Jain (Eds.)

fault intensity remains at 1 during the remaining simulation. The testing set for
incipient faults is composed of data relative to all four faults shown in Table 10.3,
considering two operating points (CV=0.65 and CV=0.75). Table 10.4 contains the
times used for simulating these incipient faults.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Derivative of the measured variable flow (F)

M
e
m

b
e
r
s
h

i
p

d
e
g

r
e
e

Figure 10.4. Membership functions applied to the derivative of F and T.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Derivative of measured variable rod position (X)

M
e
m

b
e
r
s
h
i
p

d

e
g
r
e
e
s

Figure 10.5. Membership functions applied to the derivative of X and P.

Computational Intelligence in Fault Diagnosis 325

Table 10.3. FI results for single abrupt and incipient faults

Fault Description

Abrupt

Small Medium Big

Incipient

F1 Valve clogging

F2 Valve plug or valve seat

sedimentation

 100

%

0%

F3 Valve plug or valve seat erosion

F4 Increase of valve or bushing friction

F5 External leakage (leak bushing,

covers, terminals)

F6 Internal leakage (valve tightness)

F7 Medium evaporation or critical flow 100

%

100

%

100

%

F8 Twisted servomotor’s piston rod

F9 Servomotor’s housing or terminal

tightness

F10 Servomotor’s diaphragm

perforation

100

%

100

%

100

%

F11 Servomotor’s spring fault 100

%

0%

F12 Electro-pneumatic transducer fault

F13 Rod displacement sensor fault 100

%

100

%

100

%

0%

F14 Pressure sensor fault

F15 Positioner feedback fault

F16 Positioner supply pressure drop

F17 Unexpected pressure across the

valve

 100

%

0%

F18 Fully or partly opened bypass

valves

100

%

100

%

100

%

F19 Flow rate sensor fault 100

%

100

%

100

%

Undetectable faults or faults only dynamically detectable, hence,

the fault isolation system is not triggered

 Fault isolation system is not able to cope with such faulty

scenarios

Xxx% Percentage of correct isolated faults

 Not used for benchmark purposes

Under these incipient faulty scenarios, Table 10.3 shows that unsuccessful
results have been achieved. One of the reasons for the bad performance of the fault
isolation system under incipient faulty scenarios is concerned with the very slow
evolution of the symptoms associated with such faults, as can be seen from Table
10.4. The changes observed in the measurement variables are so small that it is
impossible to distinguish the fault effects from the noise that affects the process. As
an example, Figures 10.6 and 10.7 illustrate the situation when fault F19 is
considered as an incipient fault. Fault F19 has no effect on the measurement
variables T and P. Furthermore, it is worth noting that only 15 points are used to

326 V Palade, CD Bocaniala and L Jain (Eds.)

evaluate the derivatives of the measurement variables, which are the inputs of the
fault isolation system. Another reason that makes it very difficult to isolate the
incipient faults simulated with a very low fault development speed is concerned
with the pneumatic servo-motor actuated industrial control valve used, which has a
position controller that compensates the influence of some faults in the process. The
controller action could mask the fault effect in the process and, hence, the incipient
fault symptoms will be substantially different from the abrupt fault symptoms used
to train the FNNs.

Table 10.4. Times that characterize incipient faults

Fault

Simulation

Starting

Time (s)

Fault

Starting

Time (s)

Fault

Settling

Time (s)

Simulation

Ending

Time (s)

F2 0 50 84050 100000

F11 0 50 84050 100000

F13 0 50 650 1200

F17 0 50 3650 5000

The double simultaneous abrupt faults used to test the FDI system have
been achieved through an AND operation in the single fault space. For all double
simultaneous abrupt faults considered the fault detection system was able to detect a
hypothetical fault and, therefore, the fault isolation system has been triggered. The
results achieved by the FI system under double simultaneous abrupt faults
considering only the situations where the abrupt faults are simulated with big
intensity and the two operating points mentioned above are shown in Table 10.5.

0 50 100 150 200 250 300 350 400 450 500

0.74

0.742

0.744

0.746

0.748

0.75

0.752

0.754

0.756

0.758

0.76

Time [s]

M
e
a
s
u

r
e
d

V

a
r
i
a
b

l
e

R

o
d

P

o
s
i
t
i
o

n

(
X

) Fault Starting Time

Figure 10.6. Effect of incipient fault F19 on the rod position.

Computational Intelligence in Fault Diagnosis 327

0 20 40 60 80 100 120 140 160 180 200

0.1

0.15

0.2

0.25

Time [s]

M
e
a
s
u

r
e
d

V

a
r
i
a
b

l
e

F

l
o

w
(
F

)

Fault Starting Time

Figure 10.7. Effect of incipient fault F19 on the flow.

From Table 10.5 it can be seen that the performance of the FI system under
double simultaneous faulty scenarios is not good for some faults. Several
misclassification problems have been observed. The poor isolation results for
double abrupt faults have two main causes. Firstly it may not be possible to
distinguish single and double abrupt faults, especially when the isolation task is
based on only one time instant thus ignoring the faults’ dynamic characteristics.
The double abrupt faults may not be distinguishable from the single faults. For
instance, the symptoms of fault F10 are symmetric to the symptoms of fault F11.
This means that the symptoms of the double simultaneous abrupt faults, F10+F11,
will be very similar to those of a single abrupt fault. In this case, single abrupt fault
F10 and double simultaneous abrupt fault, F10+F11, have identical symptoms.

Table 10.5. FI results for double simultaneous abrupt faults

Double Faults Description Abrupt Big

F2 + All other faults (1) Valve plug or valve seat sedimentation 67%

F7 + All other faults (1) Medium evaporation or critical flow 80%

F10 + All other faults (1) Servo-motor’s diaphragm perforation 68%

F11 + All other faults (1) Servo-motor’s spring fault 17%

F13 + All other faults (1) Rod displacement sensor fault 0%

F17 + All other faults (1) Unexpected pressure across the valve 83%

F18 + All other faults (1) Fully or partly opened bypass valves 0%

F19 + All other faults (1) Flow rate sensor fault 0%

Another cause for the poor isolation results may be the fact that the double
fault symptoms are computed from the single abrupt fault symptoms as previously
described. Such a methodology assumes that the relation between the symptoms is
linear and has provided good results in cases where the HSFNN strategy was
applied to linear systems or systems with small nonlinearities (Calado et al., 2001).

328 V Palade, CD Bocaniala and L Jain (Eds.)

However, the model for the actuator valve is highly nonlinear. This causes the
training vector for double simultaneous faults, obtained following the procedure
described above, to be different from the actual double fault symptoms.

Due to the bad results achieved under single incipient faulty scenarios, no
double simultaneous incipient faulty scenarios have been considered.

10.5. Summary

This chapter is concerned with the application of fuzzy neural networks to fault
detection and isolation systems. Thus, for readers not familiar with the subject, the
background knowledge associated with artificial neural networks and the potential
fields of application of this technology is presented in the introduction section.
Furthermore, aiming to demonstrate that such a technology is mature enough to be
applied in the solution of several kinds of industrial problems, a wide range of
industrial applications of classical feedforward artificial neural networks are also
reported in section 10.2, as well as applications of different types of fuzzy neural
networks.

Section 10.3 is concerned with the development of FDI approaches based
on fuzzy neural networks and a specific fault isolation system based on a
hierarchical structure of several fuzzy neural networks is described in detail. The
robustness and performance of such a fault isolation system has been assessed in
section 10.4 by using a test bed consisting of a pneumatic servomotor actuated
industrial control valve. Different kinds of faults have been considered, which has
been assumed to occur in an abrupt or incipient manner, or by affecting the
measurement variables in the process under supervision in an abrupt way or,
instead, by affecting the process behaviour slowly (incipient faults).

The results presented in section 10.4 have shown that, under abrupt faults,
the HSFNN provides very accurate results and is characterized by a good
generalization capability as a fault isolation system. Under incipient or multiple
simultaneous faulty scenarios, the performance of the proposed methodology
depends on the fault development speed and/or on the system nonlinearities.

Acknowledgements

The authors acknowledge funding support under the EC FP5 contract (HPRN-CT-
2000-00110) DAMADICS Human Potential Research Training Network. Thanks
are expressed to the management and staff of the Lublin sugar factory, Cukrownia
Lublin SA, Poland for their collaboration and provision of manpower and access to
their sugar plant.

Computational Intelligence in Fault Diagnosis 329

References

1. Alguíndigue IE and Uhrig RE (1994) Automatic fault recognition in
mechanical components using coupled artificial neural networks. In: Proceedings of
IEEE World Congress on Computational Intelligence, June–July, pp. 3312–3317
2. Andersen K, Cook GE, Karsai G and Ramaswamy K (1990) Artificial neural
networks applied to arc welding process modeling and control. IEEE Transactions
on Industry Applications 26:824–830
3. Anderson JA (1995) An Introduction to Neural Networks. MIT Press
4. Alport M, Mhlongo A, Naicker J and Plumb S (2002) Application of Neural
Networks to Solve Industrial Problems: Bridging in Practice. Physica Scripta
T97:118-121
5. Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York
6. Bhat NV, Minderman PA, McAvoy T and Wang NS (1990) Modeling
chemical process systems via neural computation. IEEE Control Systems Magazine
10:24–30
7. Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford
University Press.
8. Buckley JJ and Hayashi Y (1994a) Fuzzy Neural Networks. In: Yager RR and
Zadeh LA (eds) Fuzzy Sets, Neural Networks, and Soft Computing. Van Nostrand
Reinhold, New York, pp. 233-249
9. Buckley JJ and Hayashi Y (1994b) Can fuzzy neural nets approximate
continuous functions, Fuzzy Sets and Systems 61(1):43-51
10. Buhl M and Lorenz RD (1991) Design and implementation of neural networks
for digital current regulation of inverter drives. In: Proceedings of Conf. Rec. IEEE-
IAS Annual Meeting, pp. 415–423
11. Burton B and Harley RG (1998) Reducing the computational demands of
continually online-trained artificial neural networks for system identification and
control of fast processes. IEEE Trans. on Industry Applications 34:589–596
12. Burton B, Kamran F, Harley RG, Habetler TG, Brooke M and Poddar R (1995)
Identification and control of induction motor stator currents using fast on-line
random training of a neural network. In: Proceedings of Conf. Rec. IEEE-IAS
Annual Meeting, pp. 1781–1787
13. Boger Z (1995) Experience in developing models of industrial plants by large
scale artificial neural networks. In: Proceedings of the Second New Zealand
International Two-Stream Conf. Artificial Neural Networks and Expert Systems,
pp. 326–329
14. Calado JMF and Sa da Costa JMG (1999) An Expert System Coupled with a
Hierarchical Fuzzy Neural Network Approach for Multiple Fault Diagnosis.
International Journal of Applied Mathematics and Computer Sciences 9(3): 667-
687
15. Calado JMF, Korbicz J, Patan K, Patton RJ and Sa da Costa JMG (2001) Soft
computing approaches to fault diagnosis for dynamic systems. European Journal of
Control 7(2-3):169-208
16. Calado JMF, Carreira FPNF, Mendes MJGC, Sa da Costa JMG and Bartys M
(2003b) Fault Detection Approach Based on Fuzzy Qualitative Reasoning Applied

330 V Palade, CD Bocaniala and L Jain (Eds.)

to the DAMADICS Benchmark Problem. In: Proceedings of the 5th IFAC
Symposium on Fault Detection, Supervision and Safety of Technical Processes,
SAFEPROCESS’2003, Washington, D. C., USA, June 9-11, pp. 1179-1184
17. Carelli R, Camacho EF and Patiño D (1995) A neural network based feed
forward adaptive controller for robots. IEEE Trans. on Systems, Man and
Cybernetics 25: 1281–1288
18. Cichowlas M, Sobczuk D, Kazmierkowski MP and Malinowski M (2000)
Novel artificial neural network based current controller for PWM rectifiers. In:
Proceedings of the 9th Int. Conf. on Power Electronics and Motion Control, pp. 41–
46
19. Chakraborty S, Pal K and Pal NR (2002) A neuro-fuzzy framework for
inference. Neural Networks 15:247-261
20. Chen J (1995) Robust Residual Generation for Model-Based Fault Diagnosis
of Dynamic Systems. PhD Thesis, Department of Electronics, University of York,
UK
21. Chen J and Patton RJ (1999) Robust Model Based Fault Diagnosis for
Dynamic Systems. Kluwer Academic Publishers, New York
22. Chen YC and Teng CC (1995) A model reference control structure using a
fuzzy neural network. Fuzzy Sets and Systems 73:291-312
23. Cherian RP, Smith LN and Midha PS (2000) A neural network approach for
selection of powder metallurgy materials and process parameters. Artificial
Intelligence Engineering 14:39–44
24. Chow MY, Mangum PM and Yee SO (1991) A neural network approach to
real-time condition monitoring of induction motors. IEEE Trans. on Industrial
Electronics 38:448–453
25. Chow MY, Sharpe RN and Hung JC (1993) On the application and design of
artificial neural networks for motor fault detection—Part II. IEEE Trans. on
Industrial Electronics 40: 189–196
26. Cook GE, Barnett RJ, Andersen K and Strauss AM (1995) Weld modelling and
control using artificial neural network. IEEE Trans. on Industry Applications
31:1484–1491
27. Edwards PJ, Murray AF, Papadopoulos G, Wallace AR, Barnard J and Smith G
(1999) The application of neural networks to the papermaking industry. IEEE
Trans. on Neural Networks 10: 1456–1464
28. Er MJ and Liew KC (1997) Control of adept one SCARA robot using neural
networks. IEEE Trans. on Industrial Electronics 44: 762–768
29. Farag WA, Quintana VH and Torres GL (1998) A genetic-based neuro-fuzzy
approach for modelling and control of dynamical systems. IEEE Trans. on Neural
Networks 9: 756-767
30. Feuring T, Buckley JJ and Hayashi Y (1999) Fuzzy neural nets can solve the
overfitting problem. In: Proceedings of the Int. Joint Conference on Neural
Networks 4: 4197-4201
31. Filippetti F, Franceschini G and Tassoni C (1995) Neural networks aided on-
line diagnostics of induction motor rotor faults. IEEE Trans. on Industry
Applications 31:892–899

Computational Intelligence in Fault Diagnosis 331

32. Filippetti F, Franceschini G, Tassoni C and Vas P (2000) Recent developments
of induction motor drives fault diagnosis using AI techniques. IEEE Trans. on
Industrial Electronics 47: 994–1004
33. Fisher Controls, Control Valve Engineering.USA
34. Fogel DB (1990) Selecting an optimal neural network industrial electronics
society. In: Proceedings of IEEE IECON’90,vol. 2, pp. 1211–1214
35. Fukuda T and Shibata T (1992) Theory and applications of neural networks for
industrial control systems. IEEE Trans. on Industrial Applications 39: 472–489
36. Garcia FJ, Izquierdo V, Miguel L and Peran J (1997) Fuzzy Identification of
Systems and its Applications to Fault Diagnosis Systems. In: Proceedings of the 3rd
IFAC Symposium on Fault Detection, Supervision and Safety for Technical
Processes – SAFEPROCESS'97, Hull, UK, vol. 2, August 26-28, pp. 705-712
37. Gorni AA (1997) The application of neural networks in the modeling of plate
rolling processes. JOM-e 49(4) (electronic document)
38. Hashimoto H, Kubota T, Sato M and Harashima F (1992) Visual control of
robotic manipulator based on neural networks. IEEE Trans. on Industrial
Electronics 39: 490–496
39. Hayashi Y, Buckley JJ and Czogala E (1993) Fuzzy Neural Networks with
Fuzzy Signals and Weights. International Journal of Intelligent Systems 8: 527-537
40. Haykin S (1999) Neural Networks – A Comprehensive Foundation (2nd

Edition). Prentice-Hall, New Jersey
41. Horikawa S, Furuhashi T and Uchikawa Y (1992) On fuzzy modelling using
fuzzy neural networks with the back-propagation algorithm. IEEE Trans. on Neural
Networks 3:801-806
42. Huang CY, Chen TC and Huang CL (1999) Robust control of induction motor
with a neural-network load torque estimator and a neural-network identification.
IEEE Trans. on Industrial Electronics 46:990–998
43. Ikonomopoulos A, Uhrig RE and Tsoukalas LH (1992) Use of neural networks
to monitor power plant components. In: Proceedings of American Power
Conference, vol. 54-II, April, pp. 1132–1137
44. Ishibuchi H, Morioka K and Turksen IB (1995) Learning by fuzzified neural
networks. International Journal of Approximate Reasoning 13(3):327-358
45. Ishibuchi H and Nii M (2001) Numerical analysis of the learning of fuzzified
neural networks from if-then rules. Fuzzy Sets and Systems 120(2):281-307
46. Jang J-SR (1993) ANFIS: Adaptive-network-based fuzzy inference system.
IEEE Trans. on Systems, Man and Cybernetics 23:665-684
47. Jung S and Hsia TC (1998) Neural network impedance force control of robot
manipulator. IEEE Trans. on Industrial Electronics 45:451–461
48. Kavaklioglu K and Upadhyaya BR (1994) Monitoring feedwater flow rate and
component thermal performance of pressurized water reactors by means of artificial
neural networks. Nuclear Technology 107:112–123
49. Keller JM and Hunt D (1985) Incorporating Fuzzy Membership Functions into
the Perceptron Algorithm. IEEE Trans. on Pattern Analysis and Machine
Intelligence 7: 693-699
50. Khalid M and Omatu S (1992) A neural network controller for a temperature
control system. IEEE Control Systems Magazine 12:58–64

332 V Palade, CD Bocaniala and L Jain (Eds.)

51. Khalid M, Omatu S and Yusof R (1995) Temperature regulation with neural
networks and alternative control schemes. IEEE Trans. on Neural Networks 6:572–
582
52. Khotanzad A, Elragal H and Lu TL (2000) Combination of artificial neural-
network forecasters for prediction of natural gas consumption. IEEE Trans. on
Neural Networks 11:464–473
53. Kiguchi K and Fukuda T (1997) Intelligent position/force controller for
industrial robot manipulators – application of fuzzy neural networks. IEEE Trans.
on Industrial Electronics 44:753-761
54. Klir JG and Folger AT (1988) Fuzzy Sets, Uncertainty and Information.
Prentice-Hall, New York
55. Koj J (1998) The Fault Sources of Pneumatic Servo-Motor-Control Valve
Assembly. In: Proceedings of the III Polish National conference on Diagnosis of
Industrial Processes, Jurata, Poland, pp. 415-419 (in Polish)
56. Koscielny JM and Syfert M (2000) Application of Fuzzy Neural Networks for
Fault Isolation - Example for Power Boiler System. In: Proceedings of 6th IEEE
International Conference on Methods and Models in Automation and Robotics -
MMAR'2000, Miedzyzdroje, Poland, vol. 2, pp. 801-806
57. Kowal M, Korbicz J, Mendes MJGC and Calado JMF (2002) Fault Detection
Using Neuro-Fuzzy Networks. Systems Science Journal 28(1):45-57
58. Lampinen J, Smolander S and Korhonen M (1998) Wood surface inspection
system based on generic visual features. In: Fogelman-Soulié F and Gallinari P
(eds) Industrial Applications of Neural Networks. World Scientific, pp. 35-42
59. Lee SC and Lee ET (1975) Fuzzy neural networks. Mathematical Biosciences
23:151-177
60. Leonhardt S and Ayoubi M (1997) Methods of fault diagnosis. Control
Engineering Practice 5(5):683-692
61. Lewicki P, Hill T and Czyzewska M (1992) Nonconscious Acquisition of
Information. American Psychologist 47(6):796-801
62. Lin C-T and Lee CSG (1996) Neural Fuzzy Systems: A Neuro-Fuzzy
Synergism to Intelligent Systems. Prentice-Hall, Upper Saddle River, NJ
63. Lin FJ, Hwang WJ and Wai RJ (1999) A supervisory fuzzy neural network
control system for tracking periodic inputs. IEEE Trans. on Fuzzy Systems 7:41-52
64. Lin FJ, Wai RJ and Hong CM (2001) Hybrid Supervisory Control Using
Recurrent Fuzzy Neural Network for Tracking Periodic Inputs. IEEE Trans. on
Neural Networks 12(1):68-90
65. Liu P (2000) On the approximation realization of fuzzy closure mapping by
multilayer regular fuzzy neural network. Multiple Valued Logic 5(2): 463-480
66. Liu P and Wang H (1999) Research on approximation capability of regular
fuzzy neural network to continuous fuzzy function. Science in China, Series E
41(2):143-151
67. Liu Y, Upadhyaya BR and Naghedolfeizi M (1993) Chemometric data analysis
using artificial neural networks. Applied Spectroscopy. 47(1):12–23
68. Lopez-Toribio C, Patton R and Uppal F (1999) Artificial Intelligence
Approaches to Fault Diagnosis for Dynamic Systems. International Journal of
Applied Mathematics and Computer Science 9(3):471-518

Computational Intelligence in Fault Diagnosis 333

69. Louro R (2003) Fault Diagnosis of an Industrial Actuator Valve. MSc
Dissertation, Instituto Superior Técnico, Technical University of Lisbon, November
70. Marquardt D (1963) An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. SIAM Journal ofn Applied Mathematics 11:164–168
71. Martineau S, Gaura E, Burnham KJ and Haas OCL (2002) Neural network
control approach for an industrial furnace. In: Proceedings of the 14th International
Conference on Systems Science, Las Vegas, USA, pp. 227-233
72. McCulloch WS and Pitts W (1943) A Logical Calculus of the Ideas Immanent
in Nervous Activity. Bulletin of Mathematics and Biophysics 5:115–133
73. Mendes MJGC, Kowal M, Calado JMF, Korbicz J and Sa da Costa JMG
(2002) Fault Isolation Approach Using a Profibus Network: a case study. In:
CONTROLO’2002, 5th Portuguese Conference on Automatic Control, pp. 525 –
530
74. Naidu SR, Zafiriou E and McAvoy TJ (1990) Use of neural networks for
sensor failure detection in a control system. IEEE Control Systems Magazine
10:49–55
75. Ozaki T, Suzuki T, Furuhashi T, Okuma S and Uchikawa Y (1991) Trajectory
control of robotic manipulators using neural networks. IEEE Trans. on Industrial
Electronics 38
76. Patterson DW (1996) Artificial Neural Networks: Theory and Applications.
Prentice-Hall
77. Patton RJ, Lopez-Toribio CJ and Uppal FJ (1999) Artificial Intelligence
Approaches to Fault Diagnosis. International Journal of Applied Mathematics and
Computer Sciences 9(3):471-518
78. Patton RJ, Frank PM and Clark RN (2000) Issues of Fault Diagnosis for
Dynamic Systems. Springer, London
79. Payeur P, Le-Huy H and Gosselin CM (1995) Trajectory prediction for moving
objects using artificial neural networks. IEEE Trans. on Industrial Electronics
42:147–158
80. Rahman MH, Fazlur R, Devanathan R and Kuanyi Z (2000) Neural network
approach for linearizing control of nonlinear process plants. IEEE Trans. on
Industrial Electronics 47:470–477
81. Rosenblatt F (1958) The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review 65:386–408
82. Rubaai A and Kotaru R (2000) Online identification and control of a DC motor
using learning adaptation of neural networks. IEEE Trans. on Industry Applications
36:935–942
83. Rumelhart DE, Widrow B and Lehr MA (1994) The basic ideas in neural
networks. Communications of the ACM 37(3):87–92
84. Rutkowska D and Hayashi Y (1999) Neuro-Fuzzy Systems Approaches.
Journal of Advanced Computational Intelligence 3(3):177-185
85. Sardy S, Ibrahim L and Yasuda Y (1993) An application of vision system for
the identification and defect detection on woven fabrics by using artificial neural
networks. In: Proceedings of Int. Joint Conference on Neural Networks, pp. 2141–
2144
86. Sorsa T, Koivo HN and Koivisto H (1991) Neural networks in process fault
diagnosis. IEEE Trans. on Systems, Man and Cybernetics 21:815–825

334 V Palade, CD Bocaniala and L Jain (Eds.)

87. Sun F, Sun Z and Woo PY (2001) Neural network-based adaptive controller
design of robotic manipulators with an observer. IEEE Trans. on Neural Networks
12:54–67
88. Sundareshan MK and Askew C (1997) Neural network-assisted variable
structure control scheme for control of a flexible manipulator arm. Automatica
33(9):1699–1710
89. Takagi H (1990) Fusion technology of fuzzy theory and neural networks –
Survey and future directions. In: Proceedings of International Conference on Fuzzy
Logic and Neural Networks (IIZUKA’90), Iizuka, Japan, July 20-24, pp. 13-26
90. Tsoukalas L and Reyes-Jimenez J (1990) Hybrid expert system-neural network
methodology for nuclear plant monitoring and diagnostics. In: Proceedings of SPIE
Applications of Artificial Intelligence VIII, vol. 1293, April 1990, pp. 1024–1030
91. Uhrig RE (1994) Application of artificial neural networks in industrial
technology. In: Proceedings of the IEEE Int. Conf. Industrial Technology, pp.73–77
92. Vemuri AT and Polycarpou MM (1997) Neural-network-based robust fault
diagnosis in robotic systems. IEEE Trans. on Neural Networks 8:1410–1420
93. Venayagamoorthy GK and Harley RG (1999) Experimental studies with a
continually online-trained artificial neural network controller for a turbo generator.
In: Proceedings of the International Joint Conference on Neural Networks, vol. 3,
Washington, DC, July, pp. 2158–2163
94. Zurada JM (1992) Introduction to Artificial Neural Systems. West Publishing
Company
95. Wang LX (1997) A Course in Fuzzy Systems and Control. Prentice-Hall,
Englewood Cliffs, NJ
96. Wishart M and Harley RG (1995) Identification and control of induction
machines using artificial neural networks. IEEE Trans. on Industry Applications
31:612–619

11. Causal Models for Distributed Fault
Diagnosis of Complex Systems

Cosmin Danut Bocaniala and José Sá da Costa

This chapter describes a novel framework for using causal models in distributed
fault diagnosis. The state-of-the-art distributed fault diagnosis methodologies lack a
coherent partitioning methodology of the monitored system into a set of
subsystems, such that the independence level of local diagnosis process for each
subsystem is maximal and such that the communication between different
subsystems, required for formulating global diagnosis, is minimal. The partitioning
of the causal model is performed with regard to the d-separation property that
renders each region of the partition causally independent from the rest of the model.
This special property allows fault diagnosis to be performed locally, without the
need of communicating with the rest of the model, as long as the border with the
rest of the model is healthy, i.e., maximum independence level of local diagnosis
processes. Moreover, the causal model is partitioned so that the regions of the
partitions are separated by borders containing a minimal number of vertices. It
follows that if communication with the neighbouring elements is needed, the
computational complexity of the process is minimal.

11.1. Introduction

This chapter describes a novel approach regarding the use of causal models for
performing distributed fault diagnosis of complex systems. The methodology has
been introduced in (Bocaniala and Sa da Costa, 2004; 2005). Fault detection and
isolation (FDI) methodologies use actuators and sensors measurements. When
dealing with complex (large-scale) industrial installations, designing a fault
diagnosis system becomes very difficult due to the large number of sensors and
actuators. Moreover, any solution for this problem must take into account the fact
that the practitioners prefer rather simplistic systems that use basic engineering
fundamentals. This is due to the fact that, in practice, simple and verifiable
principles always win the competition versus complex methods that are usually
characterised by instability, unpredictable behaviour and large computational
burden. The described distributed methodology is be able to achieve its goal using
simple and verifiable principles coming mainly from causal modelling and
distributed computing.

The common approach when designing a distributed fault diagnosis system
is to define a partition on the system structure and to assign one agent to each
region of the partition. The agents perform local diagnosis inside the area they are
assigned to. Global diagnosis is obtained by defining a proper communication

336 V Palade, CD Bocaniala and L Jain (Eds.)

scheme among agents. Two implementations of this common approach are
discussed in the following.

The first implementation of this approach is given in (Fabre et al., 2002).
A system is defined as a pair S=(V,O), where V is the set of system variables and O
is the set of possible states of S. A partition of system S represents a set of
subsystems S1, S2, …, Sm, such that Si=(Vi,Oi), Vi Vj, m 2, 1 i j m,
V=V1 V2 ... Vm. If each of the local states in Oi, i=1,…,m, represents the
projection of at least one global state in O, then the obtained partition is unique and
is called the canonical partition. Notice that, in this case, the information contained
by the elements of the partition, i.e., the set of variables and the set of states, is the
same information provided by the original system. The system S is now defined by
smaller sets of local constraints on smaller subsets of variables. This kind of
representation is very useful for complex systems for which the number of variables
is very large and, thus, the number of possible states is enormous. Fabre et al.
(2002) give an algorithm that computes the canonical partition starting from a given
partition. The algorithm uses communication via common variables between
different partition regions and it does not need to know in advance the set O of all
possible states of the system. Notice that this implementation focuses on the system
partitioning aspect. Similar implementations are given in (Albert et al., 2001; Letia
et al., 2000).

The second implementation highlights the advantages of using more than
one fault diagnosis methodology when diagnosing a complex system and it has
been proposed in the framework of the recent MAGIC project (Köpen-Seliger et al.,
2003; Lesecq et al., 2003). Isermann and Ballé (1997) underline the fact that a
single diagnosis methodology is inadequate for matching all challenges posed by a
complex system. Therefore, the main task is to decide, for each partition region, the
available diagnosis methodologies that provide best results. Notice that in this case
the implementation focuses on optimizing the local diagnosis results.

The two implementations mentioned above lack a coherent partitioning
methodology of the monitored system into a set of subsystems such that the
independence level of local diagnosis process for each subsystem is maximal and
such that the communication between different subsystems, required for
formulating global diagnosis, is minimal. The proposed partitioning methodology
partitions the monitored system into fully independent subsystems, i.e., maximum
independence level of local diagnosis processes. It also insures minimal borders
between different subsystems, which imply minimal computational complexity for
communication.

The complexity of a system resides in the number of its basic components,
actuators and sensors. In this chapter, the causal model of a system is encoded as a
directed graph (digraph) (Balakrishnan, 1997), where vertices represent the
available actuators readings and sensors readings, and edges represent the causal
links between these measurements. The complexity of the system is reflected in the
complexity of the associated digraph. The described fault diagnosis methodology
basically (i) considers the causal model of the system as a map, (ii) splits this map
into edge disjoint regions separated by borders formed by vertices, and (iii) assigns
a dedicated agent to each region (Figure 11.1). For step (ii), notice that each region
may be treated recursively in the same manner as the initial map, therefore inducing

Computational Intelligence in Fault Diagnosis 337

a local hierarchy of agents. The local expertise of the agents, as well as the
interaction between them is used to robustly detect and isolate the faults in the
system. The use of this distributed scheme allows maintaining the focus only on
those regions of the map that are affected by faults. Hence, monitoring a complex
system becomes a tractable problem.

agent 1
agent 2

agent 3 agent 4

agent 5

Figure 11.1. The splitting of the causal model of a system.

In order to comply with the natural requirement for as small as possible a
diagnosis computational time, the previous splitting is required to satisfy the next
conditions: (i) the agents should be able to independently assess the state of the
system in the assigned area, and (ii) the interaction between different agents should
be kept as small as possible. The complexity of the interaction between two agents
is given by the number of vertices located on the borders between the corresponding
regions.

The first condition is met by using the d-separation criterion between each
pair of neighbouring regions. The d-separation criterion, introduced in (Pearl and
Paz, 1985), offers a parallel between causal independency and vertex separation in
digraphs. If X, Y and Z represent three vertex subsets in a causal model, the d-
separation criterion is able to determine if “knowing Z renders Y irrelevant to X.”
For the proposed partitioning, if X and Y represent the vertex subsets of two
neighbouring regions, and if Z represents the vertex subset that constitutes the
border between the two agents, then the d-separation criterion always holds.

Unfortunately, the d-separation criterion can be applied exclusively on
acyclic digraphs (Neal, 2000; Pearl and Richter, 1996; Spirtes, 1995). Therefore,
one of the main contributions of the chapter is a feedback loops replacement
methodology that renders a cyclic causal model acyclic without actually losing the
structural and behavioural information given by feedback.

The second condition is met by using the multilevel hypergraph
partitioning (Karypis, 2002), which guarantees that a minimal number of vertices
are located on the borders. The analysed causal model is transformed into a
hypergraph, so that the following equivalence holds: the causal model has a
minimal number of vertices on the partition borders if and only if the equivalent
hypergraph has a minimal number of hyperedges cut by the partition borders. The
multilevel partitioning paradigm is based on a very simple idea. First, the original

338 V Palade, CD Bocaniala and L Jain (Eds.)

hypergraph undergoes a sequence of successive approximations that represent
smaller and smaller sized versions of the original configuration. The process of
approximation continues until the hypergraph is reduced to a few tenths of vertices.
At this point, some algorithms are used to compute a partitioning of the current
form of the hypergraph. The final phase is to use the partitioning of the smallest
hypergraph to derive the partitioning of the original hypergraph. This is achieved by
successive projections of the current partition to the next level finer approximation
of the original hypergraph.

The previous multilevel partitioning hypergraph algorithm has been
implemented by its authors into an application called hMeTiS. The application,
together with a User Manual, can be downloaded from http://www-
users.cs.umn.edu/~karypis/hmetis/ index.html.

The content of the chapter is organized as follows. Section 11.2 presents
the feedback loops replacement methodology that allows cyclic causal models to be
transformed into acyclic models. Section 11.3 brings in the algorithm used to build
the partitioned causal models described in the chapter. Section 11.4 summarizes the
original contributions of this chapter and mentions possible directions for future
work.

11.2. Feedback Loops Replacement Procedure for
Obtaining Acyclic Causal Models

The section describes a methodology for replacing feedback loops in order to obtain
acyclic causal models from causal models with feedback (Bocaniala and Sa da
Costa, 2004; 2005). The most important property of the obtained acyclic causal
model is that it reflects not only the structural properties of the original cyclic
causal model, but also its behaviour in time. As mentioned in the chapter
introduction, the considered system is modelled based on causality relationships
between the available sensor readings. The initial model is represented as a digraph
where vertices stand for the sensor measurements at the initial time-step of the
analysis, and edges stand for cause-effect relationships between them. In order to
reflect the behaviour of the system in time, this initial model is replicated at each
time step, i.e., when new sensor measurements are available. The vertices of the
replica correspond to the values of the sensor measurements at the current time-
step. New edges, which reflect cause-effect relationships between vertices in the
current replica of the model and vertices in the previous replicas, must be added. As
detailed later in the section, adopting models built in the previous manner, offers
the opportunity to replace a feedback loop of the system with an acyclic
substructure by unfolding it in time. However, as shown later, all structural
information and all temporal information given by feedback are preserved. It is to
be noticed that, as the number of the considered time-steps increase, some vertices
of aged replicas of the initial model become causally irrelevant to the other vertices
in the model and, therefore, they can be eliminated. Thus, the model is dynamic in
both positive and negative sense, i.e., vertices may be added and vertices may be
eliminated as well.

Computational Intelligence in Fault Diagnosis 339

PID controller

CV CVI x

-

+

Figure 11.2. The control loop for the rod position of a valve.

In order to give a simple illustration of the reasons behind adopting this
feedback replacement procedure let us analyze the system with feedback in Figure
11.2. The system in the figure is a flow control valve reduced to only three
components: the control value (CV), the output of a PID controller (CVI) and the
rod position (x). When a positioning command (CV) is issued, the controller uses
the difference between CV and x in order to compute the control command CVI.
The control commands are continuously issued on the basis of CV and x values in
order to keep x as close as possible to CV. If one wishes to sketch the structural
properties of the system in time, there are two possible situations to be analyzed: (i)
the system is turned on at the initial time-step t of the analysis and (ii) the system is
functioning at the initial time-step t of the analysis.

In the first case, the only causal relationships that are active at the initial
time-step are those between CV and CVI and between x and CVI, i.e., the CVI value
will be computed on the basis of CV and x. The causal relationship between CVI
and x will become active after a very short interval of time d, 0<d<T, while the
output of the controller is computed. It is presumed that the sensor measurements
are available periodically, at small interval of time of length T, i.e., its value
represents the duration between two consecutive sensor measurements. The value of
CVIt+d will not affect the value of xt but it will affect the value of xt+T. Notice that, if
it were possible to read the three sensors at time t´, t<t´<t+d, only the ones
corresponding to CV and x will provide values. The causal model for the first
situation is depicted in Figure 11.3.

CV
t

CVI
t+d

x
t

CV
t+T

CVI
t+T+d

x
t+T

CV
t+2*T

CVI
t+2*T+d

x
t+2*T

...

Figure 11.3. The system is observed when it is being turned on (the initial model is shown
in red).

340 V Palade, CD Bocaniala and L Jain (Eds.)

CV
t

x
t

CV
t+T

CVI
t+2*T

x
t+T+d

CV
t+2*T

CVI
t+3*T

x
t+2*T+d

x
t+3*T+d

...

CVI
t+T

Figure 11.4. The system is observed when it is already turned on (the initial model is
shown in red).

In the second case, the system is already functioning and, therefore, all
three sensor measurements will provide values at the initial time-step. Still, neither
CVIt affects xt nor xt affects CVIt. There are two possible initial models: (a)
CVt CVIt+d and xt CVIt+d, i.e., the value of CVIt is neglected and (b)
CVIt+T xt+T+d, i.e. the sensors are red during two time-steps and the values of xt,
xt+T, CVIt, CVt, and CVt+T are neglected. The first possible model is equivalent with
the one in Figure 11.3. The second possible model is depicted by Figure 11.4.
Notice that if we compensate the second model by adding edges CVt CVIt+T and
xt CVIt+T, then the structures of the two models are equivalent. The only
difference is that after the initial moment t, the first computed value is CVIt+d for (a)
and xt+T+d for (b).

CV
t-2*T

CVI
t-2*T+d

x
t-2*T

CVI
t-T+d

x
t-T

CVI
t+d

x
t

CV
t-T

CV
t

Figure 11.5. The system is observed inside the time window [t-2*T,t].

There are two important observations to be made. First, notice that the
causal model previously developed contains no feedback loops. Second, notice that
the previous models do not reflect the causal links between the current value of a
sensor measurement St and the previous values of the same sensor measurements,
St-i*T, i=1, 2, … . In practice, there is always a value c>1 for which all
measurements at time instants t-i*T, where i>c, are causally irrelevant to the
measurement at time instant t. It follows that all relevant causal relationships

Computational Intelligence in Fault Diagnosis 341

between St and its predecessors may be observed in the time window [t-c*T,t].
When dealing with more than one sensor measurement, as is the case for the system
in Figure 11.2, then the time window that contains all relevant causal relationships
inside the system is given by the largest value of the c parameters. This constant
value is called the relevant time-window span. For instance, if the values of the c
parameter for CV, CVI and x are cCV=1, cCVI=2, and cx=2, respectively, the resulting
causal model is shown in Figure 11.5. The model in the figure corresponds to the
sensor measurements available in the time window [t-2*T,t], where t is the current
time instant.

Analysing the edge cut set that eliminates feedback from the structure,
observe that, in the first case, the feedback loop between CVI and x must be cut on
the edge CVI x, while, in the second case, the feedback loop of the system may be
cut on any composing edge. The second case occurs much more often in practice
and, therefore, the systems analysed in this section will be considered as already
functioning. Thus, all feedback loops in the analysed system may be cut on any
composing edge. This fact reduces the decisional effort when building the acyclic
causal model of the system.

The example above and the accompanying discussion emphasised the fact
that, in order to obtain the initial model of a system, an edge cut set that breaks all
loops in the cyclic model of the system needs to be found first.

This section is structured as follows. The first subsection presents an
algorithm that performs a partitioning of a causal model into a number of levels
(Viswanadham et al., 1987). The main property of the level partitioning is that each
feedback loop in the model is assigned to a level in the partitioning. The second
subsection proves that there is always an edge cut set for a cyclic causal model. The
proof uses the distribution of feedback loops on levels given by the level
partitioning. The third subsection presents, on the basis of the proof in the second
subsection, the algorithm for building the acyclic causal model corresponding to a
cyclic model using the feedback loop replacement procedure.

In order to facilitate the understanding of the theoretical concepts
presented in the following, the digraph shown in Figure 11.6 is used.

BA

C

D

E

F

G

Figure 11.6. The digraph used to illustrate the theoretical aspects.

11.2.1. The Level Partitioning Algorithm of a Causal
Model

Viswanadham et al. (1987) describe in their book an algorithm for structuring a
digraph based on the reachability relation on the digraph vertex set. The

342 V Palade, CD Bocaniala and L Jain (Eds.)

reachability relation R is defined as follows. Given two vertices vi and vj, vi R vj if
and only if there is a directed path from vi to vj. Eventually, the reachability matrix
M is defined as

1,

0, otherwise
i j

ij
v Rv

m (1)

The reachability matrix M can be computed from the adjacency matrix A,
A=Ak=Ak+1=M (2)

where Ak is computed using Boolean operations.
Structuring a digraph with respect to the reachability relation actually

builds a partition on the vertex set into equivalence classes induced by this relation.
These equivalence classes are called levels. The vertices found on a level have the
next two properties.

(1) For vi, vj Lk (the k-th level) there are only two possibilities:
(a) vi is reachable from vj and vj is reachable from vi, i.e., the two
vertices belong to the same feedback loop,
(b) vi is not reachable from vj and vj is not reachable from vi, i.e.,
the two vertices are isolated one from each other.

(2) No vertex of Lj is reachable from any vertex of any following level
Lj+1 (j=1,2,…,m-1; m represents the number of levels), but there could
be edges to Lj from any previous level Lk (k=1,2,…,j-1).

In order to build the levels, two sets of vertices are defined for each vertex
vi of the digraph. The reachability set Ri of vi is formed by all the vertices that are
reachable from vi. The antecedent set Ai of vi is formed by all the vertices from
which vi is reachable. The level partitioning of the digraph is built according to the
definitions given by Eq. 4.

: 1

: 1

i j ij

i j ji

R v V m

A v V m
(3)

1

1 1

1 1 1 1

1 1

:
{ : () and

() (

()}, 2, ,

i i i i

j i i j

i j i

i j

L v R A A
L v v V L L

R L L A L L

A L L j m

)j
(4)

For the digraph in Figure 11.6, the reachability matrix M is

A B C D E F G
A 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1
E 0 0 0 0 1 1 1
F 0 0 0 0 1 1 1
G 0 0 0 0 1 1 1

Computational Intelligence in Fault Diagnosis 343

The intersection RU AU equals AU for U {A, B, C, D}. It follows, from
Eq. 4, that L1={A, B, C, D}. For the remaining vertices, (RU – L1) (AU – L1) equals
(AU – L1) for U {E, F, G}. It follows that the second and last level L2={E, F, G}.

11.2.2. Finding a Minimal Edge Cut Set for the Feedback
Loops

Balakrishnan (1997) defines a strongly connected component (SCC) of a digraph as
a maximal set of interconnected feedback loops. It follows that the set of the SCCs
of a causal model concentrates the whole feedback structure of the model. Notice
from the description of the level partitioning algorithm that there can be only one
SCC per level, i.e., the maximum possible number of SCCs equals the number of
levels. Therefore, given the level partitioning of a cyclic causal model, the task of
finding an edge cut set that breaks all loops in the system reduces to finding an edge
cut set for each SCC given by the partitioning.

In the following, an algorithm that always provides an edge cut set for an
SCC is given. The edge cut set will be required to be minimal in the sense that, if
possible, each loop is cut on only one edge. Notice that there may be cut edges that
break more than one loop. The most favourable situation is when the number of this
kind of edges is maximal. The algorithm that computes the minimal edge cut set
(MECS) for an SCC uses the breadth-first search (BFS) procedure when traversing
the SCC. The formal description of the algorithm is given in the following. The
MECS for the whole causal model is the reunion of the MECS computed for all its
SCCs.

Algorithm 1 (The minimal edge cut set of an SCC)

Step 1. Choose randomly one vertex r in the SCC and consider it the root of the
BFS tree. Build the BFS tree.
Step 2. An edge that does not belong to the BFS tree is called a left-out edge. For
each layer of the BFS tree, for each vertex v on that layer, for each left-out edge e
originating from v do the following.
Step 2.1. Check all directed paths containing v and e if they (i) do not contain any
edge in the MECS, and if they (ii) contain at least an ancestor w of v in the BFS
tree. If the previous two conditions are satisfied, then there is at least one loop, i.e.,
the loop containing v, e and w, which is not yet cut. By adding edge e to MECS, the
loop containing v, e and w and possibly other loops will be cut by e.
Step 2.2. Check if MECS remains minimal after adding e and eliminate the
redundant cut edges. An edge from MECS is called redundant if the loops that it
cuts are already cut by other edges from MECS. See the proof of Theorem 1 for
details.

Theorem 1 Given a cyclic causal model, Algorithm 1 always provides a minimal
edge cut set for each SCC.
Proof First of all, notice that each loop in the considered SCC contains at least one
left-out edge. The justification is immediate. The BFS tree from Step 1 is acyclic. If

344 V Palade, CD Bocaniala and L Jain (Eds.)

the left-out edges are added to this tree, then the obtained graph is the original SCC.
The loops in the original SCC have been “restored” by adding the left-out edges. It
follows that MECS represents a subset of the left-out edges set. What is left to be
proven is that the MECS provided by Algorithm 1 really cuts all loops in the SCC
and that it is minimal in the defined sense.

Let us denote by BFS(t) the BFS tree with vertex t as root. Notice that, if
the edge e in Step 2.1 of the algorithm is v u, all directed paths containing v and e
represent directed paths in BFS(u). Using this observation, Step 2 may be
interpreted as follows: if there is an ancestor w of v in BFS(r) from Step 1, such that
w belongs to BFS(u) and such that the directed path between root u and w in BFS(u)
does not contain any edge from MECS, then edge e is added to MECS. If each
directed path in BFS(u) between u and one of its ancestors w in BFS(r) contains an
edge f from MECS, then the loop containing v, e and w and possibly other loops are
already cut by f. The previous discussion proves that, if there is any loop that
contains edge e and that it is not yet cut by other edge in MECS, this loop will be
cut by adding e to MECS in Step 2.1. It follows that MECS will cut all loops in the
considered SCC. Moreover, MECS is already minimal in the sense that an edge
enters MECS if and only if a loop not yet cut is detected. What is left to be
investigated, so that MECS is minimal in the sense defined at the beginning of the
subsection, is the elimination of redundant edges from Step 2.2.

Let us denote by AN(v) the ancestors of v in BFS(r) and by EL(u) (from
eliminated) all vertices s in BFS(u) such that the directed path between u and s is
cut by an edge from MECS. Then the condition for edge e to enter MECS may be
expressed as

, , ()
() () ()

e left - out edge from SCC e v u v BFS r
e MECS AN v BFS u EL u (5)

The redundant cut edges mentioned in Step 2.2 may appear in a BFS(s)
tree, s r, as shown in Figure 11.7. The directed path from s to d contains both edges
g and h. The condition s r is given as both g and h represent left-out edges and, by
definition, BFS(r) does not contain any left-out edge. As detailed above, edges g
and h are cut with the purpose of disconnecting a and c respectively from the
vertices in AN(a) and AN(c), respectively. When both g and h appear on the directed
path from s to d in the BFS(s) tree, s r, the fact that they are cut may be interpreted
as disconnecting a and c respectively from the vertices in AN(a) SubBFS(s,b) and
AN(c) SubBFS(s,d) respectively, where SubBFS(s,t) represents the subtree of
BFS(s) having the root t. If edge g is fixed and for any edge h and any vertex s

(1)
(2)

 g and h belong to the path between s and d in BFS(s)
 AN(a) SubBFS(s,b) AN(c) SubBFS(s,d) (6)

then g may be eliminated from MECS in Step 2.2. It follows that MECS is minimal
in the sense defined at the beginning of the subsection.

An implementation of Algorithm 1 needs to administer the set of BFS(s)
trees, s r, the AN(s) sets, s r, in the BFS(r) tree, and the EL(s) sets, s r, of the
BFS(s) trees. The AN(s) sets are static throughout the algorithm while the BFS(s)
trees and the EL(s) sets are dynamic, depending on the edges that enter or leave

Computational Intelligence in Fault Diagnosis 345

MECS. If l is the number of edges leftout after Step 1, the two main operations in
Step 2 are performed for l times.

In the following, Algorithm 1 is applied for the SCC in the first level L1 of
the digraph in Figure 11.6. Let us assume r equals D. The BFS(r) tree is shown in
Figure 11.8. The left-out edges are displayed as dotted lines. The ancestors of the
origins of the two left-out edges are AN(A)={D} and AN(C)={B, D}.Initially, the
EL(s) sets, s D, are void. For the left-out edge A B, the condition in Eq. 5 is true,

() (() ()) { } ({ , , , }) { }AN A BFS B EL B D A B C D D (7)
It follows that MECS = {A B}. Step 2.2 is not performed as MECS

contains only one edge.
The second left-out edge, C D, points towards D that represents the root

of the BFS(D) tree considered in Step 1. Therefore, the edge is also added to
MECS. Step 2.2 is performed by inspecting the BFS(s) trees, s D, from Figure
11.9. The only BFS tree that may contain a pair of redundant edges is BFS(A). The
first condition from Eq. 6 is fulfilled as edges A B and C D find themselves on
the directed path from the root A to the vertex D. The second condition from Eq. 6
is false,

s

a

b

c

d

g

h

Figure 11.7. Two redundant edges in BFS(s) tree.

346 V Palade, CD Bocaniala and L Jain (Eds.)

BA

C

D

Figure 11.8. The BFS(D) tree together with the left-out edges (dotted line).

B

A

D

C D

C

A
B

C

B

A

D

Figure 11.9. The BFS(s) trees, s D.

() (,) { } { , } { }
() (,) { , }

{ } () (,) () (,)

AN A SubBFS A B D C D D
AN C SubBFS A D B D
D AN A SubBFS A B AN C SubBFS A D

(8)

and, therefore, the edge A B is not redundant and it is not eliminated from MECS.

Corollary 1 Given a cyclic causal model, there is always a minimal edge cut set
(MECS) that renders the causal model acyclic.
Proof Theorem 1 insures that there is always a MECS for each SCC of a cyclic
causal model. It follows that the reunion of these MECS, i.e., the MECS of the
cyclic causal model, always exists and it renders acyclic the initial cyclic causal
model.

11.2.3. Building the Acyclic Causal Model Corresponding
to a Cyclic Causal Model

Given the results in the previous subsection, it is now possible to give an algorithm
that computes the acyclic causal model of a cyclic causal model by performing
feedback loop unfolding in time. The formal description of the algorithm is given in

Computational Intelligence in Fault Diagnosis 347

the following. The algorithm must be provided with the relevant time-window span
constant cmax, i.e., the maximum value of the c parameters (see the introductory part
of the section).

Algorithm 2 (Feedback loops replacement for obtaining an acyclic causal model
corresponding to a cyclic causal model)

Step 1. If the analysed causal model is cyclic, then first obtain the initial model (see
the introductory part of this section) by eliminating the MECS from the cyclic
causal model.
Step 2. Let t be the initial time-step. If St is an element of the initial model, then its
instance at the i-th time-step, i=1, …, cmax, is noted as St+i*T. The possible
connections in the final acyclic model are detailed in the following.
Step 2.1. All vertices St+j*T, 0 j<i, will have an outgoing connection with St+i*T.
Step 2.2. If Ut is another element of the initial model, Ut St, so that St and Ut are
connected in the initial model, then all pairs St+i*T and Tt+i*T will have the same type
of connection.
Step 2.3. Finally, for each edge U S or S U in MECS, the connection Ut+(i-

1)*T St+i*T or St+(i-1)*T Ut+i*T respectively is added to the model.

Notice that Algorithm 2 represents a summary in a formalised manner of
the discussion from the introductory part of the section. For examples, see also the
introductory part of the section.

Theorem 2 Each vertex in the acyclic causal model obtained by applying
Algorithm 5 to a cyclic causal model, receives all input values that it is supposed to
receive and provides all output values that it is supposed to provide.
Proof The proof represents an analysis of Algorithm 2. First, the connections
between vertices at the i-th step must be identical to the connections that exist in the
initial model. This is insured by Step 2.2. The loss of connectivity information
caused by the feedback loop replacement is recovered via unfolding in time, Step
2.3.

Corollary 2 The acyclic causal model obtained by applying Algorithm 2 to a cyclic
causal model preserves all structural information and all temporal information given
by the initial cyclic causal model.
Proof It is an immediate consequence of Theorem 2.

11.3. The Contributed Methodology of Partitioning
Acyclic Causal Models Using d-Separation
Criterion

This section first presents the algorithm that performs the proposed partitioning.
The number k of size balanced regions and the value c of the overall imbalance
tolerance between different regions (Karypis, 2002) are decided by the user. The

348 V Palade, CD Bocaniala and L Jain (Eds.)

decision must take into account the fact that the whole set of vertices is going to be
distributed inside each region of the partition as well as on the borders of the
partition. The goal is to obtain a partition that (i) has a minimal vertex-cut set and
that (ii) has all pairs of neighbouring regions causally independent (d-separated).
The uncertainty of this decision consists in the fact that the algorithm used
guarantees minimal borders, but neither is it able to estimate the number of vertices
located on them nor is it able to estimate how many vertices belong to each
partition member. Future research needs to find methodologies able to eliminate
this uncertainty. One possible direction is to insert principles from algorithms that
provide minimal d-separation sets (Tian et al., 1998) into multilevel partitioning
algorithm.

The section also provides some general guidelines on how to use this
partitioning to perform distributed fault detection and isolation. However, the
purpose of the chapter is not to propose a distributed fault diagnosis methodology.
The goal of the chapter is rather to describe a causal model-based framework for
developing such methodologies.

Algorithm 3 (Partitioning a causal model into causally independent regions)

Step 1. If the input causal model CM contains feedback loops, use Algorithm 3 to
perform feedback loops replacement in order to obtain the corresponding acyclic
causal model (ACM).
Step 2. Compute the moral graph MG corresponding to ACM. The moral graph of a
dag is built by connecting first all pairs of vertices that are parents of the same
vertex and, then, giving up edge orientation (Lauritzen et al., 1990). The “morality”
of the obtained graph is insured by the fact that all vertices that share a child vertex
are now “married” by connecting edges.
Step 3. Transform the MG graph into a hypergraph HG so that (i) the edges of MG
represent the vertices of HG and (ii) each hyperedge h of HG corresponds to a
vertex v in MG as follows,

h={e MG / e is an incoming/outgoing edge in/from v} (9)
Step 4. Use the hMeTiS application, with the k and c parameters decided by the
user, to partition HG into k parts.
Step 4.1. The vertex-cut set in MG corresponds to the hyperedge-cut set of HG.
Step 4.2. The regions in the MG partition are delimited using the edge labelling of
MG provided by the HG partition. The vertex-cut set on MG determines a partition
of ACM into causally independent regions.

Theorem 3 Each hyperedge-cut set in HG has a correspondent vertex-cut set in
MG of the same size.
Proof When partitioning HG using hMeTiS in Step 4, each hyperedge h in HG may
or may not be cut by the provided partition. In the following these two possible
situations are analyzed.

If a hyperedge h in HG is cut by the HG partition provided by Step 4, this
fact has the following interpretation. The elements in h span more than one region
of the HG partition. But, the elements in h are all edges in MG with one end in a
vertex v from MG (Eq. 8). Since the partition regions in MG are determined by the

Computational Intelligence in Fault Diagnosis 349

edge labelling provided for HG (Step 4.2), it follows that the edges in MG with one
end in v, span more than one region of the MG partition. It follows that v represents
a vertex located on the borders of the partition in MG.

If a hyperedge h in HG is not cut by the HG partition provided by Step 4,
this fact has the following interpretation. The elements in h span one single region
of the HG partition. But, the elements in h are all edges in MG with one end in a
vertex v from MG (Eq. 8). Since the partition regions in MG are determined by the
edge labelling provided for HG (Step 4.2), it follows that the edges in MG with one
end in v, span one single region of the MG partition. It follows that v represents a
vertex located inside one of the partition regions of MG.

From the previous two analyses, each hyperedge h in the hyperedge-cut set
provided by Step 4 has a corresponding vertex v in the edge-cut set of MG. It
follows that the claim in the theorem text is true, i.e., each hyperedge-cut set in HG
has a correspondent vertex-cut set in MG of the same size.

Corollary 3 Given a causal model of a system, Algorithm 3 provides a partition of
its acyclic form that (i) has a minimal vertex-cut set and that (ii) has all pairs of
neighbouring regions causally independent, i.e., d-separated by the minimal vertex-
cut set.
Proof This corollary is an immediate consequence of Theorem 3. The hyperedge-
cut set of HG provided by hMeTiS is minimal (Karypis, 2002). Theorem 3 proved
that the vertex-cut set in MG induced by the hyperedge-cut set in HG has the same
cardinal. It follows that the induced vertex-cut set in MG is also minimal.

One vertex set separating two regions in MG will d-separate the two
regions in the acyclic form ACM of the original causal model CM (Lauritzen et al.,
2002). It follows that the vertex-cut set induced on MG by the hyperedge-cut set in
HG will d-separate each pair of neighbouring regions in ACM.

B
t

A
t

C
t

D
t

E
t

F
t

G
t

Figure 11.10. The initial model of the digraph in Figure 11.6.

In the following, it is presumed that the digraph in Figure 11.6 represents
the causal model CM of a system, and Algorithm 3 is applied to provide the CM
partitioning into causally independent regions. The MECS for the first level L1 has
already been computed in Section 11.2. The MECS for the second level L2 contains
one single edge, any of the three edges connecting E, F and G. Let us presume that
E F edge is chosen. Given the reunion of the two MECS, the initial model of the
digraph in Figure 11.6 is shown in Figure 11.10. Let us presume that the relevant
time-window span constant is 1, i.e., for all vertices the relevant past measurements
are the ones taken at the previous time-step. The acyclic causal model ACM

350 V Palade, CD Bocaniala and L Jain (Eds.)

corresponding to CM (Step 1) is shown in Figure 11.11. The dashed edges are
drawn in Step 2.1, Algorithm 2, while the dashed dotted edges are drawn in Step
2.3, Algorithm 2.

In practice, it is preferred sometimes to unfold in time only the pair of
vertices disconnected by edges in MECS. If v is a vertex in CM whose all adjacent
edges have not been selected for MECS, then v is not unfolded in time and all edges
adjacent with vt+i, i=1,...,cmax, become adjacent with v. All edges connected pairs of
vertices from {vi / i=0,...,cmax} set are removed. The label used for the new vertex is
“v” with no mention of time-step. This is done in order to reduce the complexity of
ACM digraph and the obtained digraph is called the reduced form of ACM. In the
case of the CM in Figure 11.11 there is only one vertex, G, whose all adjacent edges
are not in MECS. It follows that the reduction is insignificant as the reduced form
of this particular ACM has only one vertex, Gt+1, and one edge, Gt Gt+1, less than
the original ACM.

B
t

A
t

C
t

D
t

E
t

F
t

G
t

B
t+1

A
t+1

C
t+1

D
t+1

E
t+1

F
t+1

G
t+1

Figure 11.11. The acyclic causal model (ACM) corresponding to initial model in Figure
11.10.

The moral graph MG of ACM (Step 2) is shown in Figure 11.12. As
mentioned in Step 2, the moral graph of ACM is built by first connecting
(“marrying”) all pairs of vertices that are parents of the same vertex and, then,
giving up edge orientation (Lauritzen et al., 1990). The dashed edges represents the
edges added in order to insure the “morality” of the digraph.

The hypergraph HG corresponding to MG (Step 3) is obtained by
considering the edges of MG as vertices in HG. Equation 8 is used to obtain the
hyperedges of HG. For instance, the hyperedges corresponding to vertices At and
At+1 are

1

1 1

1 1 1

, , ,

,
t

t

A t t t t t t t t

A t t t t

h A A A B A B A D

h A A A D
1

(10)

Computational Intelligence in Fault Diagnosis 351

Notice that two hyperedges may share the same vertex (edge) in HG (MG).
Hyperedges

tAh and
1tAh share the vertex (edge) At At+1 in HG (MG).

The number k of regions chosen is 2 and the overall imbalance tolerance
chosen is 1% of the total number of vertices. The hyperedge-cut set of HG found by
hMeTiS application (Step 4) is {

tAh , , ,
tBh

tCh
tDh , ,

tEh
1tDh ,

1tEh ,
1tGh }. It follows

that the vertex-cut set of MG is {At, Bt, Ct, Dt, Et, Dt+1, Et+1, Gt+1}. The two causally
independent regions of the partition are {At+1, Bt+1, Ct+1} and {Ft, Gt, Ft+1}. The
partition is displayed in Figure 11.13.

Notice the large size of the border between the two regions, i.e., 8 out of
14 vertices. If the original digraph (Figure 11.6) would have represented the causal
model of a real system, then the decrease of diagnosis complexity when using the
obtained partition instead of using the original digraph would have proven
insignificant, due to the large size of the border. The previous partition may be
further refined using algorithms that provide minimal d-separation sets. One of
these algorithms, introduced by Tian et al. (1998), is presented in the following.

Let us consider two vertices x and y in an acyclic digraph D. An algorithm
is provided that finds a set Z such that Z, and no proper subset of Z, d-separates x
from y.

B
t

A
t

C
t

D
t

E
t

F
t

G
t

B
t+1

A
t+1

C
t+1

D
t+1

E
t+1

F
t+1

G
t+1

Figure 11.12. The moral graph MG of ACM in Figure 11.11.

Algorithm 4 (Minimal d-separation)

Step 1. Construct the subgraph corresponding to the ancestors of x and y, DAn(x y). A
vertex w is called an ancestor of a vertex u in D if it is connected with u through a
directed path, i.e., there is a set of vertices {v1, v2, …,vn} so that w=v1, u=vn and
(vi,vi+1), i=1,…,n-1, is a directed edge in D.
Step 2. Construct the moral graph of DAn(x y), (DAn(x y))m.

352 V Palade, CD Bocaniala and L Jain (Eds.)

B
t

A
t

C
t

D
t

E
t

F
t

G
t

B
t+1

A
t+1

C
t+1

D
t+1

E
t+1

F
t+1

G
t+1

region 1

region 2

Figure 11.13. The partition into two causally independent regions of the ACM in Figure
11.11.

Step 3. Find a separating set Z’ in (DAn(x y))m. A separating set for x and y in the
moral graph represents a set that cuts all the paths in graph between x and y. Notice
that the set Z’ will d-separate x and y in the original acyclic digraph D. The set Z’
may be initialized with the reunion of x and y neighbours in (DAn(x y))m.
Step 4. Starting from x, run breadth-first search (BFS) procedure. Whenever a node
in Z’ is met, mark it if it is not already marked, and do not continue along that path.
When BFS stops, let Z’’ be the set of nodes which are marked. Remove all
markings.
Step 5. Starting from y, run BFS. Whenever a node in Z’’ is met, mark it if it is not
already marked, and do not continue along that path. When BFS stops, let Z be the
set of nodes that are marked.

The previous algorithm is valid when applied for two disjoint sets of
vertices X and Y. The only modification is the addition of two extra vertices x’ and
y’ to (DAn(X Y))m, so that x’ is connected to all vertices in X and y’ is connected to all
vertices in Y. The minimal separator must be found for x’ and y’.

The border found by Algorithm 3 is considered as set Z’ from Step 3,
Algorithm 4. Let X={At+1, Bt+1, Ct+1} and Y={Ft, Gt, Ft+1}. The BFS tree for vertex
x’ added to MG (Step 4, Algorithm 4) is shown in Figure 11.14. The Z’’ set is {At,
BBt, Ct, Dt+1} (the dashed circles in Figure 11.14). The BFS tree for vertex y’ added
to MG (Step 5, Algorithm 4) is shown in Figure 11.15. The Z set equals Z’’ (the
dashed circles in Figure 11.15). Notice that if Z’-Z is added to Y, then Z d-separate
X and Y. The new partition is shown in Figure 11.16. The new border is now half
the size of the original border, i.e., 4 out of 14 vertices. The decrease of diagnosis
complexity when using the new partition instead of using the original digraph is

Computational Intelligence in Fault Diagnosis 353

now significant, due to the small size of the new border. The new region 2 may be
further partitioned using Algorithm 3.

B
t

A
t

C
t

x’

B
t+1

A
t+1

C
t+1

D
t+1

Figure 11.14. The BFS tree for Step 4 (left) and Step 5 (right), Algorithm 4.

B
t

A
t

C
t

D
tE

t

F
t

G
t

y’

D
t+1

E
t+1

F
t+1

G
t+1

Figure 11.15. The BFS tree for Step 5, Algorithm 4.

One of the main properties of the previous partitioning is that, knowing the
values of the vertices on its borders, each region becomes causally independent with
regard to the rest of the causal model, i.e., d-separation criterion is “knowing Z
renders Y irrelevant to X,” where in this case X, Y are neighbouring regions, and Z
the minimal vertex-cut set provided by Algorithm 4. From the fault diagnosis point
of view, this suggests that the diagnosis of a region may be performed locally,
knowing only the values of the vertices inside a region and the values of the vertices
located on its border with the rest of the model. However, if one or more of the
vertices located on the border become faulty, their values become unreliable and
unusable. This may be interpreted as a break in the causality independence with
regard to the rest of the model. In this case, some form of communication with
neighbouring agents may be needed to compensate for the loss of causality
independence. For instance, communication may have the purpose of recovering the
correct value of a faulty sensor using redundancy relationships. However, the
purpose of the chapter is not to propose a distributed fault diagnosis methodology.
The previous remarks represent only some general guidelines on how to use this
partitioning to perform distributed fault detection and isolation. Future research

354 V Palade, CD Bocaniala and L Jain (Eds.)

needs to concentrate on using the contributed causal model framework for
developing such methodologies.

B
t

A
t

C
t

D
t

E
t

F
t

G
t

B
t+1

A
t+1

C
t+1

D
t+1

E
t+1

F
t+1

G
t+1

region 1

region 2

Figure 11.16. The new partition obtained by refining the partition in Figure 11.13 using
Algorithm 4.

11.4. Conclusions

This chapter presented a novel approach regarding the use of causal models for
performing distributed fault diagnosis of complex systems (Bocaniala and Sa da
Costa, 2004; 2005). The described fault diagnosis methodology basically (i)
considers the causal model of the system as a map, (ii) splits this map into edge
disjoint regions separated by borders formed by vertices, and (iii) assigns a
dedicated agent to each region. The main contribution of the chapter is the
partitioning methodology that splits the causal model into causally independent (d-
separated) regions, i.e., step (ii). The fact that each region is causally independent
by the rest of the model allows performing the diagnosis of that region locally,
without needing to communicate with the rest of the model. This property allows
maintaining the diagnosis focus exclusively on those regions of the map that are
affected by faults. Hence, monitoring a complex system becomes a tractable
problem.

The contributed work in this chapter has as support methodologies the
multilevel hypergraph partitioning (Karypis, 2002) and d-separation theory (Pearl
and Paz, 1985; Pearl and Verma, 1986). The original contributions are (i) the
procedure for replacing feedback loops in cyclic causal models so that the resulting
causal model is acyclic and so that no structural information or temporal
information contained in feedback loops is lost, and (ii) the partitioning of causal
models into causally independent regions using d-separation criterion.

Computational Intelligence in Fault Diagnosis 355

Future research on this novel approach regarding the use of causal models
for performing distributed fault diagnosis of complex systems needs to concentrate
on two directions. The first direction is to eliminate the uncertainty when deciding
the number k of size balanced regions and the value c of the overall imbalance
tolerance (see Section 11.3). Currently these two values must be decided by the
user. One possible solution is to insert principles from algorithms that provide
minimal d-separation sets (Tian et al., 1998) into multilevel partitioning algorithm.
The second direction is using the contributed causal framework to perform fault-
tolerant control. Fault-tolerant control is concerned with making a controlled
system able to maintain control objectives, despite the occurrence of a fault. The
main challenge faced by the research in the field of fault-tolerant control systems is
posed by practical applications to complex systems (Patton, 1997). For instance,
one of the operations performed by fault-tolerant control systems is to
accommodate faults that produce structural changes but do not require system
shutdown. In this case, the causal model of the system and the associated
distributed fault diagnosis system also suffer modifications and need to be updated.
Reapplying the partitioning algorithm performs the updating.

Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia,
Minister of Science, Innovation and Technology, Portugal, grant number
SFRH/BD/18651/2004.

References

1. Albert M, Längle T, Wörn H, Kazi A, Brighenti A, Senior C, Revuelta Seijo C,
Sanz Bobi MA, Villar J (2001) Distributed architecture for monitoring and
diagnosis. EU ESPRIT Project DIAMOND

2. Balakrishnan VK (1997) Graph theory, Schaum’s Outlines. McGraw-Hill, New
York

3. Bocaniala CD, Sa da Costa J (2004) Novel framework for using causal models
in distributed fault diagnosis. In: Proceedings of Workshop on Advances in
Control and Diagnosis, Karlsruhe, Germany, pp. 142-147

4. Bocaniala CD, Sa da Costa J (2005) Novel methodology for partitioning
complex systems for fault diagnosis purposes. In: Proceedings of the 16th IFAC
World Congress, Praha, Czech Republic

5. Fabre E, Benveniste A, Jard C (2002) Distributed diagnosis for large discrete
events in dynamic systems. In: Proceedings of the 15th IFAC World Congress,
Barcelona, Spain

6. Isermann R, Ballé P (1997) Trends in the application of model-based fault
detection and diagnosis of technical processes. Control Engineering Practice
5(5):709-719

356 V Palade, CD Bocaniala and L Jain (Eds.)

7. Karypis G (2002) Multilevel Hypergraph Partitioning. Technical Report 02-25,
Department of Computer Science and Engineering, University of Minnesota,
USA

8. Köpen-Seliger B, Marcu T, Capobianco M, Gentil S, Albert M, Latzel S (2003)
MAGIC: An integrated approach for diagnostic data management and operator
support. In: Proceedings of the IFAC Symposium SAFEPROCESS’03,
Washington, USA, pp. 187-192

9. Lauritzen SL, Dawid AP, Larsen BN, Leimer HG (1990) Independence
properties of directed Markov fields. Networks 20:409-505

10. Letia A, Craciun F, Kope Z, Netin A (2000) Distributed diagnosis by BDI
agents. In: Proceedings of the OASTED International Conference on Applied
Informatics

11. Lesecq S, Gentil S, Exel M, Garcia-Beltran C (2003) Diagnostic tools for a
multi-agent monitoring system. In: Proceedings of IMACS IEEE CESA Multi-
Conference on Computing Engineering in Systems Applications, Lille, France

12. Neal RM (2000) On Deducing Conditional Independence from d-separation in
Causal Graphs with Feedback. Journal of Artificial Intelligence Research
12:87-91

13. Patton RJ (1997) Fault-tolerant control: The 1997 situation. In: Proceedings of
the IFAC Symposium SAFEPROCESS’97, Hull, UK, pp. 1033-1055

14. Pearl J, Paz A (1985) Graphoids: A Graph-Based Logic for Reasoning about
Relevance Relationships. Technical Report CSD-850038, Computer Science
Department, Cognitive Systems Laboratory, University of California, Los
Angeles, USA

15. Pearl J, Richter D (1996) Identifying Independencies in Causal Graphs with
Feedback. In: Proceedings of the Twelfth Annual Conference on Uncertainty in
Artificial Intelligence, August 1-4, Reed College, Portland, Oregon, USA

16. Pearl J, Verma T (1986) Formal Properties of Probabilistic Dependencies and
their Graphical Representations. Technical Report CSD-860019, Computer
Science Department, Cognitive Systems Laboratory, University of California,
Los Angeles, USA

17. Spirtes P (1995) Directed Cyclic Graphical Representations of Feedback
Models. In: Proceedings of the Eleventh Annual Conference on Uncertainty in
Artificial Intelligence, August 18-20, Montreal, Quebec, Canada

18. Tian J, Verma T, Pearl J (1998) Finding Minimal d-Separators. Technical
Report CSD-980007, Computer Science Department, Cognitive Systems
Laboratory, University of California, Los Angeles, USA

19. Viswanadham N, Sarma VVS, Singh MG (1987) Reliability of Computer and
Control Systems. North-Holland Systems and Control Series, Elsevier Science
Publishers B.V., Amsterdam, Netherlands

Index

A
Abduction problems 232-234, 236-

240, 242, 248, 271-273, 279,
282, 283

Abrupt faults 85, 87, 96, 98, 99,
117, 221, 226, 306, 323, 326,
327

Actuators 6, 84, 94, 95, 105, 186,
251, 256, 260, 317, 318, 319,
335, 336

Algorithm 4, 14, 22, 32, 39, 42, 43,
54, 76, 90, 115, 128, 205, 338,
341, 343-355

Analytical models 4, 30, 82, 103,
185, 189

Applications 1, 29-31, 33-39, 49,
55, 78, 103-105, 121, 122, 127,
176, 183, 184, 228, 229, 307,
312, 328

Architecture 11, 12, 14-16, 22, 39,
86, 87, 195, 197, 205, 214, 289,
305, 308, 314

Artificial neural networks 34, 86,
179, 183, 186, 191, 201, 202,
210, 237, 262, 267, 270, 306,
307, 309-313, 328-334

B
Behaviour 49, 69, 85, 116, 117,

126, 167, 222, 224, 225, 231,
232, 234, 237, 244, 245, 262,
281, 338

Bond-graph 255, 259-261, 268

C
Categories 21, 66, 109, 111-113,

119-121, 126, 139, 181, 187,
196, 210, 234, 241, 242, 288,
320, 321

Causal models 31, 335-341, 343,
346, 348, 349, 351, 353-355

Classes 10, 11, 13, 20, 128, 129,
158-163, 168, 169, 206, 211,

212, 218-220, 223-225, 259,
289-293, 299, 313

Classification 11, 12, 17, 21, 28,
104, 105, 125, 159-161, 168,
170, 173-175, 209-213, 216,
218-220, 226, 227, 304, 305

Classifier 16, 17, 86, 105, 107, 108,
111, 113-116, 118, 119, 121,
209-213, 216-218, 220, 223-
225, 228

Clustering, fuzzy ~ 88-90, 102, 128
Clusters 16, 52, 54, 89, 90, 113,

119, 146-148, 150, 152-155,
160, 162, 168-170, 173-175,
313

Complexity 1, 23, 30, 31, 74, 89,
91, 104, 171, 197, 198, 243,
246, 276, 287, 310, 311, 336,
337

Components 14-16, 19, 29, 45-47,
51, 57, 58, 60, 63-65, 70-74,
106, 179-182, 187-189, 195,
196, 241-244, 251-268

Computational intelligence 1, 3, 5,
7, 9-11, 13, 15, 17, 29-31, 33-
35, 177, 233, 283, 288, 289,
329

Conditions 7, 30, 49, 51, 52, 71, 72,
82, 86, 117, 179, 190, 195, 299,
309, 337, 343-345

Conductive flow systems 231, 232,
235, 243, 245, 251-253, 260,
282

Control 31, 32, 34-36, 84, 95, 102,
104, 122, 123, 176, 177, 187,
202, 203, 228, 229, 314, 318,
329-331, 333, 334

 fault-tolerant ~ 3, 4, 355, 356
Correlation 127, 146, 197
 Pearson ~ 109-111, 118
Cost function 89, 160-162
 error ~ 214, 216, 218, 219, 223,

224, 228

358 V Palade, CD Bocaniala and L Jain (Eds.)

D
Defects 125-130, 137, 139, 141-

147, 149, 150, 156, 162, 163,
165-172

Detection 4, 11, 31, 78, 82-84, 99,
100, 108, 117-119, 125-127,
176, 187, 194, 203, 209-211,
217

Diagnosis 20, 27-29, 33-35, 49, 50,
71, 85, 86, 102, 103, 125-127,
231-234, 242-248, 261-264,
271-276, 280-284, 303-306,
353-355

 global ~ 1, 30, 31, 335, 336
 local ~ 31, 335
 model-based ~ 3, 32, 33, 284
 system 105, 106, 244-249, 261,

269, 273, 274, 279, 282, 287
Diagnostic 50, 103, 188, 193, 201,

205, 231-235, 237, 240, 262,
263, 269-274, 280-283, 303,
311, 334

Digraph 336-338, 341-343, 345,
349-352

Distributed diagnosis 335, 354-356
Dynamic systems 12, 32, 34, 35, 82,

102, 103, 122, 123, 210, 228,
229, 284, 285, 314, 329, 330,
333, 355

Dynamics 5, 6, 12-15, 34, 104, 118,
289, 290, 306

E
Edges 336, 338, 341-351, 354
Effort 125, 180, 254-260, 266, 271,

272, 289, 303
Entropy 129, 153, 154, 159-162,

168, 173-175
Error function 214, 219
Errors 38, 61, 65, 69, 95, 144, 186,

189, 197-200, 214, 223-225,
306, 319

Estimation, parameter ~ 2, 8-10, 33,
83, 88, 90, 176

Experiments 31, 165, 232, 233, 237,
262, 267, 269, 271, 278, 279,
282, 296-302

F
Fault
 detection 2, 4, 6-8, 10, 21, 32-34,

81, 83, 87, 101-105, 209, 216-
218, 223-226, 228, 330-332

 identification 4, 20, 126, 209, 216,
224, 226, 228

 intensity 316, 322-324
 isolation 4, 7, 14, 17, 21, 23, 26,

85, 98, 209, 218-220, 222-224,
242, 269-271, 322

 propagation 262
 settling time 322, 323, 326
 strengths 116, 119-121, 225, 316
 symptoms 305, 314, 315, 323,

326
Faults 2-9, 81-87, 98, 99, 105-108,

115-121, 186-191, 195-201,
216-221, 223-227, 231-237,
241-245, 256-258, 260-282,
314-318, 320-328

Feedback 5, 13-14, 310-311, 321,
337-343, 346, 348, 354

Flow 37, 51, 64, 74, 95, 96, 98, 100,
115-117, 180, 182, 197, 198,
251-262, 266-268, 318-322,
327

 conductive 231, 231, 235, 243,
245, 251-253, 260, 282-282

Fuzzy
 logic 3, 9, 10, 17, 21, 28, 37-39,

42, 55, 57, 63, 65, 73, 76, 83,
86, 313

 models 17, 18, 39, 81-83, 86-92,
94-99, 101, 103, 128, 145, 146,
162, 168, 171, 307

 rules 17-19, 21-22, 26, 27, 39, 43-
48, 50-54, 55, 86, 88-89, 92, 93

 sets 17-19, 21-23, 26, 39-45, 88,
90, 92, 103, 106, 152-155, 159,
176, 249, 305, 329-332

 statistical method 169
 systems 10, 18-20, 33, 39, 43, 47,

50, 53-55, 77, 79, 82, 86, 88,
103, 104, 312, 313

Computational Intelligence in Fault Diagnosis 359

G
Gas-path fault 179, 183, 191, 205
Genetic algorithms 1, 3, 9, 10, 21,

27-29, 32, 34, 36, 87, 91, 93,
102, 103, 115, 122, 183

Graph 336, 348, 350-352

H
Hierarchical structure 23, 24, 106,

261, 264, 265, 305, 307, 314,
315, 323, 328

Human diagnostician 231-234, 237,
242-248, 250, 251, 261-262,
265-266, 269, 271, 276, 278,
279, 282, 283

Hyperboxes 107-108, 289-294, 299-
300

Hypergraph 337-338, 348, 350

I
Identification 15, 37, 44, 50, 63, 88-

90, 263, 311-313
Incipient faults 97, 99, 221, 224,

306, 314, 324-326
Inference process, fuzzy ~ 19, 39-

40, 50-54
Inputs 4-6, 8-10, 12-18, 20-27, 30-

41, 43-45, 50-55, 57-59, 63, 64,
66, 69, 77-78, 81-83, 87-90, 94,
96, 113, 115-117, 139, 144,
154, 183-186, 193-194, 206-
207, 210-211, 213-215, 220-
222, 236-240, 255, 256, 258-
260, 275-277, 288-292, 308-
311, 314-317, 322, 347-348

Input-output model 6, 8-10
Intermittent faults 101
Intervals 17, 24, 28, 65, 117, 246,

247, 262, 294, 296, 298, 300-
301

Isolation 4, 6-11, 20-21, 23, 45, 84-
85, 98, 117-120, 186-187, 217-
220, 222-224, 242-244, 256-
258, 269-272, 314-318, 322-
323, 326-328

K
Knowledge 19, 27, 37, 81-83, 85-

86, 88, 231-238, 240, 242, 248,
261-279, 282-283, 288-289,
309-313

L
Layers 13, 194, 207, 213-214, 240-

242, 275, 316
Learning 19, 21, 27, 47, 50-51, 132,

184-186, 213-214, 288-292,
310-313

 algorithm 44, 47, 50-51, 280, 289-
292, 310

Linear models 5, 17-18, 86, 307-
308

Logic 39, 44, 236, 238-239, 243-
247, 282

Loops 5, 254, 339-344, 346-348,
354

M
Magnitude...37, 68-69, 114, 131,

138-139, 190, 198, 323
Malfunctions...3-4, 82, 125, 211,

216, 318
Map...11-12, 19, 39, 43, 50, 54, 82,

105, 146, 152, 161-163, 168,
170-171, 207, 215, 231-232,
316, 336-337, 354

Measurements 29, 48-49, 50, 52,
53-54, 64, 66-71, 108-109, 116-
117, 190-192, 198-199, 216,
219, 220, 222-223, 248, 297,
315-316, 322, 335-336, 338-
341

 selection 56-59, 63
Membership functions 17, 19-22,

41, 53, 88, 112-113, 118, 152-
155, 247, 249-250, 289-291,
323-324

Model 4-6, 8-15, 17-19, 21-22, 24-
25, 39, 49-56, 75, 84-101, 128-
129, 145-146, 168, 184-185,
191, 211, 213, 215, 232-233,
237-238, 254-256, 261-264,
288-289, 307-313, 317

360 V Palade, CD Bocaniala and L Jain (Eds.)

 causal 335-331, 343, 346-351,
353-355

 computational ~ 238, 243, 261-
264

 connectionist ~ 232, 242, 250,
270-271

 mathematical ~ 4, 9, 39, 84, 184,
306-307, 310

 statistical 139

N
Network
 flow functions 251, 253, 254, 257,

266
 neural ~ 10-16, 47-48, 183-189,

193-200, 206-207, 210-215,
219, 220, 223, 224, 233-234,
236-240, 242, 262, 270-273,
275, 279, 280, 305-314

 neuro-fuzzy ~ 20-29, 289-294,
297-300, 314-313

 statistical ~ 145-146, 173-175
Nodes 212, 254, 260, 291, 352
Noise 4, 8, 10, 29-30, 48-49, 55, 57-

58, 64, 66-69, 83, 85, 117, 127,
131-132, 137, 191, 193, 196-
199, 222, 223, 277, 279, 315,
319, 322, 326

Normal state 12, 15, 19-20, 23, 25,
105-107, 119, 216, 218-219,
223, 272, 280

Non-linear 5, 10, 14, 17-18, 29-30,
43, 49, 73, 82, 189, 207, 210,
213, 306-309, 311-312, 317,
327, 328

O
Operator 39-40, 42-44, 53-55, 90-

93, 157-158
 human ~ 126, 243-248, 261, 263-

264, 266, 268, 270-277, 279,
281, 283, 306

Outputs 4-6, 8-21, 23-25, 39, 43,
44, 53, 54, 57-59, 63, 64, 66,
73, 74, 81-85, 87-89, 96-100,
106, 116, 184-186, 189, 193-
194, 206-207, 210, 213-215,

220, 235, 237, 238, 255-260,
271, 275-277, 288-289, 291,
308-309, 316, 317, 321-323,
339

Overlapping 12, 17, 41, 108, 118-
120, 132, 289, 290, 292, 293

P
Parameters 7-10, 14, 16, 21-22, 27-

29, 39, 43-55, 57-67, 70-75, 83,
88-92, 106-109, 111, 113-115,
118, 125-126, 129-131, 133-
135, 140-141, 143-144, 173-
175, 182-183, 187-191, 196-
198, 207, 212-215, 256, 257,
288, 291, 294, 296-300, 310-
311

Partition 21-22, 24, 90, 114, 146,
159, 241, 245, 251, 265, 335-
338, 341-343, 347-349, 351-
354

Pattern 47, 50, 53, 114, 181, 188-
189, 193-197, 206-207, 214,
215, 240, 260-263, 269-272,
279, 280, 289-292, 294, 308-
310, 313, 316

 recognition 38, 54, 127, 209-212
Performance 9, 12, 15-16, 28-29,

43-55, 57-60, 64, 65, 71-75, 82,
90, 96, 111, 113, 115, 135-136,
158, 163, 179-182, 185-191,
196-198, 213, 215, 217, 218,
223, 224, 251, 257, 296-298,
305, 308-310, 318, 321, 323,
327

Plant 29-30, 116-117, 186-188, 216,
219, 223, 276, 295, 317, 321,
322

Pre-processing 128, 129, 269, 270
Process 9-10, 15-17, 29-30, 39-40,

49, 83-89, 95, 115-116, 184,
215-217, 222-225, 241, 244-
258, 264, 274, 278, 279, 295,
297, 299, 311-312, 316-318,
323, 326

Computational Intelligence in Fault Diagnosis 361

R
Relation 47, 83, 89, 92, 147, 149,

150, 153, 155-158, 231-233,
236, 237, 243, 252, 255, 256,
259-270, 342

 fuzzy ~ 146-147, 150, 155-158
 parity ~ 8
Relationship 29, 39, 83, 147, 182,

188-189, 198, 207, 300, 309,
353

 analytical ~ 84
 causal ~ 19, 106, 338-341
 functional ~ 57, 63, 64, 66, 74
 linear ~ 29
 mathematical ~ 82
 recurrence ~ 24
 residuals-faults ~ 17, 20
 symptoms-faults ~ 86, 106
Rule
 extraction 289, 294-295, 299-300
 if-then ~ 17, 19, 43-44, 51, 88,

294

S
Sample 88-89, 96, 132-133, 165-

166, 223, 224, 296-297, 299
Selection 27, 28, 91, 92, 114, 130,

135, 167-168, 220, 235, 240
 feature ~ 215
 parameters ~
 optimal ~ 57, 63
Sensor 5-6, 8, 10, 29-30, 48, 49, 77,

84, 95, 116, 117, 128-131, 165,
186-194, 207, 221, 244-250,
270, 277, 278, 297, 321, 322,
325

 measurements 23, 108, 118, 335-
336, 338-341

 noise 52, 55, 58, 64, 66, 67, 77,
198

Signal 17, 23, 81-82, 116, 118, 126-
136, 144, 166-168, 171-172,
184-185, 214, 216, 217, 222,
223, 308, 312-313, 319

 residual ~ 4, 11-12, 84-85
 reference ~ 95, 108-109, 116, 319,

322

Similarity 109-113, 118, 129, 141,
146-147, 157-159, 196

Space 7, 21, 28, 114, 115, 118, 210,
234, 244, 263, 289-290, 316,
317, 323, 326

 input ~ 39, 41, 43, 215
 output ~ 39, 43
 state ~
 model 5-6, 18
 measurements ~ 108
 search ~ 47, 50-52, 55-59, 74, 91-

93
Spectrum
 vibration ~ 127-134, 139, 166-

168, 171-172
Symptoms 4, 12, 23, 84-86, 106-

108, 125-126, 222, 241, 245,
256-259, 262, 314, 315, 323-
327

T
Threshold 7, 12, 19, 84, 85, 87, 184,

216, 218, 219, 236, 237, 240,
294, 299, 307, 308, 316

Time
 computational ~ 66, 74-75, 337
 elicitation ~ 242, 244, 247, 250
 steps 118, 338-340, 347, 349, 350
 window 12, 25, 109, 110, 118,

216, 217, 220, 222, 340, 341,
347

Training 14-16, 22-23, 185-189,
194-198, 207, 212-216, 218-
220, 223-225, 271-272, 292,
294, 297, 299, 308-311, 316-
318, 323, 326

 algorithm 12-13, 22, 185, 195-
196, 207

 data 10, 13-14, 212-213, 215, 218,
219, 316, 317, 323

 process 14, 22, 179, 186, 207
 set 16-17, 213, 223-225, 292, 314
Trees 184, 211-213, 343-346, 352-

353

362 V Palade, CD Bocaniala and L Jain (Eds.)

U
Uncertainty 29, 39-40, 50, 52, 85-

86, 129, 131, 136, 152-154,
190, 224, 243-247, 296, 312-
313, 348

V
Variables 95, 116-117, 196-198,

246-248, 254, 277
 boolean ~ 27
 controlled ~ 89
 flow ~ 258, 259, 260, 266, 271-

272
 input ~ 17, 21, 44, 52, 55, 89, 90,

309, 314

 linguistic ~ 20, 245
 measurements ~ 84, 315, 322,

323, 325, 326, 328
 observed ~ 245, 250, 262, 266,
268, 271, 274, 276, 277-279, 281
 output ~ 43, 89, 99, 309
 power ~ 254, 256, 259, 260, 271
 process ~ 39, 89, 220
 state ~ 88
 system ~ 18, 46

W
Weights 12-14, 16, 18, 21, 43, 185-

186, 213-215, 240, 242, 274,
312-313

