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Foreword

With the increased complexity of industrial machines and processes, the task of 
fault diagnosis is becoming increasingly difficult and its complexity almost 
unmanageable using conventional techniques. Therefore, in the past decade, intense 
research was dedicated to find alternative solutions using methods that mirror 
human reasoning as well as involve complex problem solving techniques inspired 
from nature, to cope with the need for adaptation of the diagnostic methodology to 
the inherent changes occurring in the diagnosed process.  

The automatic diagnosis requires the ability to identify the symptoms 
automatically and map them to their causes as well as, eventually, to prescribe 
solutions for repairing/restoring the good functionality of the device, machine or 
plant. Some methods can prove suitable for certain systems while being totally 
inappropriate for others. 

Computational intelligence attempts to emulate human and biological 
reasoning, decision-making, learning and optimization via a series of techniques 
that mirror the adaptive evolutionary nature of living beings. Such techniques can 
be either used individually or combined into more complex hybrid methodologies, 
resulting in systems with enhanced capabilities, e.g., the same system can benefit 
from the decision-making under uncertainty enabled by fuzzy logic as well as from 
learning and adaptation that neural networks provide, or from the evolutionary 
optimization inherent in genetic algorithms. 

Since the early 1990s, attempts to apply various computational intelligence 
methods to fault diagnosis, sometimes used to augment traditional methods, were 
made mainly in research laboratories. Given their success, these are now moving 
into industrial settings. Big companies such as Siemens and ABB have embraced 
such novel technologies very early.  

Most successful attempts proved that fault diagnosis can greatly benefit 
from computational intelligence techniques. Neural networks can ease fault 
identification through model matching and learning of new symptoms. Fuzzy logic 
can improve the diagnostic decision-making under the uncertainty inherent in the 
diagnostic information: vague symptoms, ambiguous mapping of symptoms to their 
causes as well as capturing the gradual degradation of systems and processes in 
appropriate (fuzzy) models. Genetic algorithms are capable of optimizing the 
diagnostic models as well as the diagnostic process itself by tracking the 
(sometimes gradual) changes occurring in the diagnosed system in various ways. 

We welcome this new book for offering us a very good overview of the 
state of the art in the development of computational intelligence techniques 
pertaining to fault diagnosis. Covering all computational intelligence techniques 
both in theory as well as illustrating how they work by clear examples and/or 
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practical applications on a relatively broad range of problems, the book gradually 
exposes the reader to these various methods in its eleven chapters. 

Structurally, the book is a comprehensive collection of works arranged in a 
progressive manner, to ease the gradual grasping of concepts. Starting with a very 
good overview of computational intelligence and its suitability to the difficult task 
of fault diagnosis, in Chapter 1, it continues (in Chapters 2 to 5) with four 
applications involving fuzzy logic to solve various real-world diagnosis problems, 
then Chapters 6 and 7 illustrate successful neural network-based diagnostic models, 
to progress in Chapter 8 to a generic computational intelligence approach. Hybrid 
neuro-fuzzy diagnostic approaches are further illustrated in Chapters 9 and 10. The 
last chapter presents a novel distributed causal model for diagnosing complex 
systems.  

Overall, I salute this work for marking the progress made in this significant 
area of fault diagnosis, which can be very useful to a broad audience, ranging from 
industrial users to graduate students. Enabling the use of these techniques in 
industrial applications as well as for training and teaching purposes, the book can be 
regarded as both a repository of knowledge for practitioners and a basis for a course 
on computational intelligence in diagnosis. 

     Professor Mihaela Ulieru,
     Canada Research Chair 



Preface

In one of his recent commentaries, called “Integration automation”, Mark Venables, 
editor of the IEE Manufacturing Engineer Journal, predicts that “there are five 
technologies that will drive the future of industrial automation. These are control 
and diagnosis, communication, software, electronics, and materials – with the 
former trio being the most important” (http://www.iee.org/oncomms/ 
sector/computing/commentary.cfm). Indeed, one of the main current trends in 
solving problems in manufacturing industry is developing fault-tolerant control 
schemes. Fault-tolerant control is concerned with making the controlled system able 
to maintain control objectives, despite the occurrence of a fault. Hence, fault 
diagnosis represents the main ingredient of a fault-tolerant control system. 
Diagnosing the faults that occurred in a system permits triggering control 
mechanisms to keep a plant working sufficiently well until the necessary 
maintenance may be performed. In practice, this feature results in a significant 
improvement in industrial plant safety, productivity and time in service. 

There are two main categories of fault diagnosis techniques currently in 
use and each has its own basic support theory. The first class of methodologies used 
for fault diagnosis-related problems were based on mathematical models of the 
monitored plant. The differences between the plant model and its actual behaviour 
are called residuals and form the basis for deciding if a fault did or did not occur; 
and if a fault has occurred, deciding which particular fault occurred. Unfortunately, 
these techniques provide satisfactory results only when plants exhibit linear 
behaviour or when the modelling errors can be kept within acceptable limits. 
Accurate mathematical models can be obtained only for plants with low behavioural 
complexity. 

Recent research efforts have concentrated on finding suitable techniques to 
model plants with high nonlinear behaviour, noise and uncertainty. These three 
characteristics have been successfully mastered by using computational intelligence 
methodologies. These solutions are based on models such as fuzzy systems, neural 
networks, and genetic algorithms, to name only the most important of them. The 
above methods are commonly combined to give the desired result. Besides using 
residuals for diagnosis purposes, the computational intelligence methods may also 
be used to directly map the sensor measurements to the faults’ space. These 
methods allow an understanding of plant behaviour using rules obtained directly 
from sensor measurements. However, even if these techniques can solve the 
difficult problems posed by nonlinearity, noise and uncertainty, if the complexity of 
the plant behaviour is very high, the computational load becomes too large for 
practical purposes. 



xii   V Palade, CD Bocaniala and L Jain (Eds.) 

Finding consistent solutions for large-scale complex systems diagnosis
problems is currently one of the major interests of industrial research. It presents a 
challenge to researchers in the field too. The preoccupation of the European 
researchers in the area of fault diagnosis is illustrated by the existence of three large 
projects, recently funded by the European Commission. One of these is MAGIC 
(Multi-Agents-Based Diagnostic Data Acquisition and Management in Complex 
Systems, http://magic.uni-duisburg.de/). The other two are IFATIS (Intelligent 
Fault Tolerant Control in Integrated Systems, http://ifatis.uni-duisburg.de/) and 
NeCST (Networked Control Systems Tolerant to faults, http://www.strep-
necst.org/). The usual approach to the problem is by distributing the diagnosis task 
over a set of subsystems of the monitoring system. The global diagnosis is then 
formulated by combining the output of the individual local diagnosis processes. 

In this book we offer a collection of the latest contributions to the area of 
computational intelligence applications to fault diagnosis. These have been written 
by members of a number of well-established fault diagnosis research groups. There 
is also a special section which deals with the latest issues in fault diagnosis of 
complex systems. The book contains 10 chapters and is preceded by a review and 
state-of-the-art introductory chapter. Each of the chapters focuses on some 
theoretical aspects of computational intelligence methodologies applied to real-
world fault diagnosis problems. Four of the chapters deal with fuzzy sets 
applications. Three chapters deal with neural network applications to fault 
diagnosis. Two chapters are concerned with neuro-fuzzy techniques for fault 
diagnosis. The last chapter considers the problem of diagnosing complex systems 
using local agents. These agents may be implemented by using computational 
intelligence-based fault diagnosis techniques. 

The book has a unifying content as most of the chapters revolve around 
two main applications. These are aero-engines fault diagnosis, and the diagnosis 
benchmark proposed within the European Commission’s FP5 DAMADICS project 
(http://www.eng.hull.ac.uk/research/control/damadics1.htm), respectively. The 
aeroengines applications, described in Chapters 2 and 6, have been developed by 
the research group at Cranfield University, UK, led by Professor Riti Singh. The 
applications to the DAMADICS diagnosis benchmark problem, which feature the 
flow control valve, are described in five chapters and have been developed by the 
research group at Instituto Superior Técnico, Lisbon, Portugal, led by Professor 
José Sá da Costa. 

In Chapter 1, Bocaniala and Palade present an overview of the main 
computational intelligence techniques and their applications to the fault diagnosis 
field. The advantages and disadvantages of each methodology when applied to 
diagnosis of systems featuring lower or larger complexity are discussed. The 
methodologies reviewed include neural networks, fuzzy systems, neuro-fuzzy 
systems, and genetic algorithms, and are the methodologies employed for diagnosis 
in the remaining chapters. This chapter also introduces the benchmarks used 
throughout the book. 

The next four chapters, from Chapter 2 to Chapter 5, deal with fuzzy sets 
applications to fault diagnosis. In Chapter 2, Marinai and Singh present an 
application of fuzzy sets to gas path diagnostics of aero-engines. The objective is to 
estimate the changes in engine components’ performance resulting from the engine 
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degradation over time. It uses only few measurable parameters, which are inevitably 
affected by noise. The use of fuzzy logic permits the noisy measurements to be 
successfully used.  Fuzzy rules are used to map input sets of measurements into 
faulty output classes of performance parameters in a constrained search space. This 
enables problem reduction and is aimed at overcoming the difficulty of analytical 
formulation. The arrangement of the diagnostics model and its outcome can be 
attained in a relatively short time. This makes the technique suitable for on-board 
use.

Mendonça, Sousa and Sá da Costa describe in Chapter 3 the application of 
optimised fuzzy models to fault detection and isolation systems. In this approach, 
fuzzy models or observers are used for both normal operation and faulty operation. 
The fuzzy observers are obtained from simulated data driven by real data. The 
inputs of the fuzzy models are selected using a regularity criterion algorithm. The 
parameters of the fuzzy models are optimised using a real-coded genetic algorithm. 
The scheme uses these fuzzy observers to compute the residuals. The application of 
this approach to a pneumatic servomotor actuated industrial valve, which is the 
benchmark problem studied within the DAMADICS project, has the ability to 
detect and isolate a large number of faults. The data also contains noise, which 
increases the difficulty in detecting and isolating the faults.  

In Chapter 4, Bocaniala and Sá da Costa present a fuzzy classifier 
employed for fault diagnosis purposes that is applied with good results to the 
DAMADICS diagnosis benchmark problem. The fuzzy classifier identifies the 
areas in the sensor measurements space corresponding to normal and faulty 
operating states by using fuzzy subsets. The main advantages of the developed 
fuzzy classifier are the high accuracy with which it delimits the areas corresponding 
to different system states, and the high precision of the discrimination within 
overlapping areas. 

In Chapter 5, the last chapter concerned with fuzzy logic applications, 
Stefanoiu and Ionescu introduce a nonconventional method of fault diagnosis. It is 
based upon some statistical and fuzzy concepts. The intention is to automate a part 
of human reasoning when performing the detection and classification of defects by 
the use of vibrations. The defect classification maps obtained allow the user to 
perform reliable detection and isolation of defects, independent of their nature. 
Signal prefiltering is not mandatory; the fuzzy model is able to work with the raw 
vibration as well as with prefiltered data.  

The following three chapters are concerned with neural network 
applications to fault diagnosis. In Chapter 6, Ogaji and Singh present a hierarchical 
approach to gas path diagnostic for aero-engines and use multiple neural networks. 
The networks involved are trained to detect, isolate and assess faults in some 
components of a single-spool gas turbine. The level of accuracy achieved by this 
decentralised application of ANNs shows benefits over techniques that require only 
a single network for fault detection, isolation and assessment.  

In Chapter 7, Lipnickas gives the description of a two-stage neural 
network-based classifier system for the fault diagnosis of industrial processes. The 
first-stage neural network classifier operates as primary fault detection unit, and is 
used to distinguish between normal operating state and abnormal operating states. 
In order to reduce the number of false alarms, a penalty factor is introduced in the 
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training error cost function. The second-stage neural network classifier is used to 
differentiate between different faults. The performance of the proposed approach is 
validated by application to the DAMADICS diagnosis benchmark problem. 

In Chapter 8, Ariton focuses on fault diagnosis of artefacts occurring in 
industry that execute various tasks involving conductive flows of matter and 
energy. The proposed multifunctional conductive flow systems abstraction is close 
to that of a human diagnostician when conceiving entities and relations on physical, 
functional and behavioural structures, that is, reasoning that is intrinsically 
abductive. This chapter presents the use of abduction by its plausibility and 
relevance using a neural network-based approach. The case study on a hydraulic 
installation of a rolling mill plant exemplifies the knowledge elicitation process and 
diagnostic expert system building and running.  

The subsequent two chapters discuss neuro-fuzzy applications to fault 
diagnosis. In Chapter 9, Chen, Lim and Lai apply Fuzzy Min-Max (FMM) neural 
networks to the diagnosis of heat transfer and tube blockage conditions of the 
circulating water system in a power generation plant. If the FMM neural network is 
integrated with a rule extraction algorithm, then it is able to overcome the “black-
box” phenomenon by justifying its predictions with fuzzy if-then rules that are 
compatible with the domain information as well as the opinions of the experts 
involved in the maintenance process. To assess the effectiveness of the FMM 
network, real sensor measurements are collected and used for diagnosis. The FMM 
network parameters are systematically varied and tested. 

In Chapter 10, Calado and Sá da Costa describe a fault diagnosis approach 
based on Hierarchical Fuzzy Neural Networks (HFNNs). In contrast to conventional 
feed-forward neural networks, the employed HFNN has an additional layer that 
converts the increment in each on-line measurement into fuzzy sets. Thus, on-line 
measurement data are compressed into qualitative values whose semantics are 
represented by fuzzy sets and, hence, the training of the HFNN and the diagnosis of 
the faults can be carried out more efficiently. The methodology is applied to the 
DAMADICS diagnosis benchmark. 

Finally, in Chapter 11, Bocaniala and Sá da Costa describe a novel 
framework for using causal models in distributed fault diagnosis. The causal model 
associated with the monitored system is split into minimally separated and causally 
independent regions. The fact that each region is causally independent from the rest 
of the model allows performing the diagnosis of that region locally, without 
needing to communicate with the rest of the model. This property allows 
maintaining the diagnosis focus exclusively on those regions of the map that are 
affected by faults. Each local diagnosing agent can be implemented using 
computational intelligence approaches described in previous chapters or more 
traditional techniques, like observers. Hence, monitoring a complex system 
becomes a tractable problem. 

In summary, the book contains an illustrative selection of chapters on fault 
diagnosis approaches using computational intelligence methodologies. The book is 
intended mainly for doctoral students and researchers who wish to find out the 
latest developments and research results in the area. They will need this book to 
enhance their knowledge and to provide a foundation for further study. 
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1. Computational Intelligence 
Methodologies in Fault Diagnosis: Review 
and State of the Art 

Cosmin Danut Bocaniala and Vasile Palade 

This first chapter of the book introduces the reader to the area of computational 
intelligence techniques and to their significant and abundant applications to fault 
diagnosis. Fault diagnosis represents an important contemporary research field, due 
to the ever-increasing need for safety, maintainability and reliability of industrial 
plants. The research in this field influences important areas of our day-to-day life by 
increasing security when using safety-critical devices, extending the lifetime of 
many expensive devices, and improving efficiency of manufacturing lines, which 
leads to smaller production expenses and lower prices for the end user. 

The main problems raised by the processes taking place within modern 
industrial plants are their high nonlinearity, noisy signals, and uncertainty. 
Computational intelligence techniques – neural networks, fuzzy techniques, genetic 
algorithms, etc. – are the very answer of the fault diagnosis research community to 
these problems. This book represents a collection of recent results on applying 
various computational intelligence techniques to fault diagnosis. In this introductory 
chapter, the reader is presented with a short description of the main computational 
intelligence techniques together with a literature review on their applications to 
fault diagnosis. 

Another major problem raised by the modern industrial plants is their high 
level of complexity. The complexity of a plant is understood here as the 
impossibility to model its global emergent behavior using state-of-the-art modeling 
techniques. Unfortunately, even if they offer better performance than mathematical 
models when modeling processes with reasonable complexity, the computational 
intelligence techniques cannot successfully model very complex processes. 

The answer given by the research community to this problem is to develop 
distributed fault diagnosis methodologies. The main idea is to partition the 
monitored system in subsystems having a reasonable complexity level and, then, to 
successfully apply state-of-the-art methodologies on each one of them. The global 
diagnosis of the system is going to be based on all these local diagnosis processes. 
Implementing the local diagnosis processes using computational intelligence 
methodologies retains their ability to treat the local nonlinearities, noise and 
uncertainty. The book contains a special chapter dealing with distributed fault 
diagnosis methodologies.  
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1.1. Fault Diagnosis, Techniques and 
Approaches

Fault diagnosis research deals with real-world problems as plant efficiency, 
maintainability and reliability. For safety-critical systems, such as nuclear plants 
and aircrafts, the problem of detecting the occurrence of faults is of high 
importance. The consequences of faults in such systems could be disastrous in 
terms of human mortality and environmental impact. To a lesser extent, fault 
detection in process and manufacturing industries is also crucial in order to improve 
production efficiency, quality of the product and cost of production. 

There are two main directions for development of fault diagnosis systems: 
using hardware redundancy or using analytical redundancy. Hardware redundancy 
uses multiplication of physical devices and, usually, a voting system to detect the 
occurrence of a fault and its location in the system. The main problem in this 
approach is the significant cost for the necessary extra equipment. Analytical 
redundancy uses instead redundant functional relationships between variables of the 
system. The main advantage of this approach compared to hardware redundancy is 
that no extra equipment is necessary. This chapter reviews fault diagnosis schemes 
based on analytical redundancy. 

The early 1970s mark the beginning of analytical redundancy-based fault 
diagnosis research. Beard (1971) developed at MIT an observer-based fault 
detection scheme. Jones (1973) continued his work. Their contribution is known as 
the Beard-Jones Fault Detection Filter. Mehra and Peschon (1971) and Willsky and 
Jones (1974) were the first to use statistical approaches to fault diagnosis. Clark and 
his colleagues (Clark, Fosth and Walton, 1975) applied for the first time Luenberger 
observers. Also, Mironovsky (1980) proposed a residual generation scheme based 
on consistency checking on the system input and output over a time window. 

The 1980s and early 1990s represent a period of time during which the 
major approaches on quantitative fault diagnosis were developed: observer-based 
approach, parity relation method, parameter estimation method, etc. Some 
important tutorial papers from this period are Frank (1987), Isermann (1991), 
Basseville and Nikiforov (1993). It is to be noted that these methodologies are well-
established theoretically. For this reason, in this book they are called the classical
fault diagnosis methodologies. These methodologies have in common the use of a 
set of analytical redundancy relationships that represents the model of the system 
describing the desired performance of the monitored system. The system is 
monitored for possible digressions from this model, that indicate occurrences of 
faults and that may assist in isolating the faulty components. The research 
community grouped around this general approach is known as the Fault Detection 
and Isolation (FDI) community. 

In 1991, a Steering Committee called SAFEPROCESS (Fault Detection, 
Supervision and Safety for Technical Processes) has been created within IFAC 
(International Federation of Automatic Control). Due to its importance, in 1993, 
SAFEPROCESS became a Technical Committee within IFAC. One important 
initiative of this committee was to define a common terminology in the FDI field 
(Isermann and Ballé, 1997). 
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During the last decade, the research focused on fault diagnosis for 
nonlinear systems. Computational intelligence techniques – neural networks, fuzzy 
logic, neuro-fuzzy systems, and genetic algorithms – have been extensively and 
successfully applied to fault diagnosis. A recent tutorial on the use of these methods 
in the FDI community is provided in (Patton et al., 1999; 2000). 

In the late 1980s a group of Artificial Intelligence researchers 
independently proposed a fault diagnosis theory based on First-Order Logic. The 
system is modeled using the set of basic components of the system and the 
connections between them. The diagnosis consists in identifying the possible faulty 
components via an inference process. The papers laying the foundations of this 
theory are (Reiter, 1987) and (de Kleer and Williams, 1987). A more recent survey 
on this approach may be found in (Hamscher et al., 1992). The research community 
that follows this approach is known as the Model-Based Diagnosis (MBD) 
community. The relationship between the FDI approach and the MBD approach is 
studied in (Cordier et al., 2000) and (de Kleer and Kurien, 2003). 

The content of this introductory chapter is organised as follows. Section 
1.1 contains a general discussion on fault diagnosis, including basic terminology 
and its relation to control systems. It also briefly surveys classical fault diagnosis 
methodologies. Section 1.2 provides a short description of the main computational 
intelligence techniques – neural networks, fuzzy techniques, neuro-fuzzy systems, 
genetic algorithms – together with a literature review on their applications to fault 
diagnosis. The section includes discussions on the advantages and disadvantages of 
each methodology, which can help the user to decide which method is the best for 
his specific case study. It is noteworthy that many times hybrids of computational 
intelligence methodologies are used in practice, in order to sum up their advantages 
and to overcome their disadvantages. For a recent review on hybrid intelligent 
systems, see (Negoita et al., 2005). Section 1.3 contains concise descriptions of the 
benchmarks used in the book. Specific details regarding these benchmarks are 
discussed in individual chapters. The last section draws some conclusions on the 
practical benefits of the surveyed methodologies. 

1.1.1. Basic Definitions 

The basic notions presented in this subsection follow the IFAC Technical 
Committee – SAFEPROCESS – terminology in the field (Isermann and Ballé, 
1997) as used by Chen and Patton (1999).  

1.1.1.1. Fault Diagnosis. Fault-Tolerant Control 
A fault represents an unexpected change of system function, although it may not 
represent a physical failure. The term failure indicates a serious breakdown of a 
system component or function that leads to a significantly deviated behavior of the 
whole system. The term fault rather indicates a malfunction that does not affect 
significantly the normal behavior of the system. 

An incipient (soft) fault represents a small and often slowly developing 
continuous fault. Its effects on the system are in the beginning almost unnoticeable. 
A fault is called hard or abrupt if its effects on the system are larger and bring the 
system very close to the limit of acceptable behavior. 
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A fault is called intermittent if its effects on the system are hidden for 
discontinuous periods of time (Isermann, 1997). Although a fault is tolerable at the 
moment it occurs, it must be diagnosed as early as possible as it may lead to serious 
consequences in time. 

A fault diagnosis system is a monitoring system that is used to detect faults 
and diagnose their location and significance in a system. The system performs the 
following tasks: 

fault detection – to indicate if a fault occurred or not in the 
system 
fault isolation – to determine the location of the fault 
fault identification – to estimate the size and nature of the fault 

The first two tasks of the system - fault detection and isolation - are 
considered the most important. Fault diagnosis is then very often considered as fault 
detection and isolation (FDI). 

A fault-tolerant control system is a controlled system that continues to 
operate acceptably following faults in the system or in the controller. An important 
feature of such a system is automatic reconfiguration, once a malfunction is 
detected and isolated. Fault diagnosis contribution to such a fault-tolerant control 
system is detection and isolation of faults in order to decide how to perform 
reconfiguration. 

1.1.1.2. Diagnosis Based on Analytical Models 
“The model based fault diagnosis can be defined as the determination of the faults 
in a system by comparing available system measurements with a priori information 
represented by the system’s analytical/mathematical model, through generation of 
residuals quantities and their analyses. A residual is a fault indicator that reflects 
the faulty condition of the monitored system” (Chen and Patton, 1999). 

The problem that occurs when using an analytical model for the given 
system is that it cannot perfectly model uncertainties due to disturbances and noise. 
This results in differences between the analytical model output and the system 
output due to nonmodeled dynamics and other uncertainties. These differences may 
cause the residuals to indicate erroneously faults. A robust FDI scheme represents a 
FDI scheme that provides satisfactory sensitivity to faults, while being robust 
(insensitive or even invariant) to modeling uncertainties (Frank, 1991; Patton and 
Chen, 1996; 1997) and to noise. One of the main challenges in designing a robust 
FDI scheme is to make it able to diagnose incipient faults. The effects of an 
incipient fault on a system are almost unnoticeable in the beginning, thus effects of 
uncertainties on the system could hide these small effects. 

A fault diagnosis task consists of two main stages: residual generation and 
decision-making (Chow and Willsky, 1980) (Figure 1.1). Residual generation is a 
procedure for extracting fault symptoms from the system, using available input and 
output information. A residual generator represents an algorithm used to generate 
residuals (Chen and Patton, 1999). Decision-making represents examining the 
residual signals in order to establish if a fault occurred and isolate the fault. 
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Figure 1.1. The two main stages of fault diagnosis. 

1.1.2. Modeling Systems with Faults 

This subsection provides the general analytical description of a system considered 
with all possible faults. The residual generation structure is given and analytical 
conditions for fault detectability and isolability discussed. For the sake of 
simplicity, it will be assumed that a linear model reproduces the system dynamics. 
In the case of a nonlinear dynamics, it is assumed that the model used will be a 
linearized model around a few operating points. The state space model presented in 
the first subsection stands only for the cases when a linear model can represent the 
system. The nonlinear systems can be modeled using a set of linear models built 
around a set of operating points. The transition between different operating regions 
is performed using for instance fuzzy logic. The technique has been introduced by 
Takagi and Sugeno (1985). 

The information used for FDI is the measured input to the actuators and 
the output of the sensors (Figure 1.2). The measured output y(t) is used by the 
feedback control, and the controller generates the measured input u(t). If the input 
u(t) is available, then FDI uses the open-loop model of the system, even if it is in a 
control loop. If the input is not available, then FDI needs to use, as input, the 
reference command uC(t). In this case, the system model used for FDI is the closed-
loop model. In this situation, the controller plays an important role because a robust 
controller can hide the effects of the faults, therefore making FDI very difficult. 
This problem is addressed in (Patton, 1997). 

1.1.2.1. General Structure of Faulty Systems 
The state space model of the monitored system shown in Figure 1.2 is 

( ) ( ) ( )
( ) ( ) ( )

R

R R

x t Ax t Bu t
y t Cx t Du t

(1) 

where x Rn is the state vector, uR Rr is the input vector to the actuator and yR Rm

is the system output vector; A, B, C and D are known matrices with known 
dimensions. 

The faults in the system could occur due to actuators, system components 
and sensors. When considering faults, the dynamics of the system change as 
follows: 

actuator fault 
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uR(t)=u(t)+fa(t) (neglecting actuator dynamics), fa Rr is the actuator 
vector fault 

system dynamics (components) fault 
x(t)=Ax(t)+BuR(t)+fc(t), fc Rn is the component vector fault 

sensor fault 
y(t)=yR(t)+fs(t) (neglecting sensor dynamics), fs Rm is the sensor 
vector fault 

Actuators 
System 

Dynamics 

Sensors Controller 

Fault Detection 

and Isolation 

u
C
(t) u(t) y(t) 

Figure 1.2. The information used by a fault diagnosis system. 

If the previous three fault categories are considered simultaneous, the 
system model changes to: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

a c

a s

x t Ax t Bu t Bf t f t
y t Cx t Du t Df t f t

(2) 

In a more general case, the state-space model describes a system with all 
possible faults as: 

1

2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t Ax t Bu t R f t
y t Cx t Du t R f t

(3) 

where f(t) Rg is a fault vector, whose elements fi(t) (i=1,…,g) correspond to 
specific faults, and R1 and R2 are faults entry matrices which represent the effect of 
faults on the system. 

Equation 3 gives the general model for a faulty system in the time domain. 
For the frequencies domain, the input - output model transfer matrix will 
consequently be: 

y(s)=Gu(s)u(s)+Gf(s)f(s) (4) 
where 

1

1
1 2

( ) ( )

( ) ( )
u

f

G s C sI A B D

G s C sI A R R
(5) 

1.1.2.2. General Structure of Residual Generation 
The input values of a residual generator are the input and the output of the 
monitored system. This fact is expressed mathematically by Eq. 6, where Hu(s) and 
Hy(s) are transfer matrices realizable using stable linear systems: 

r(s)=Hu(s)u(s)+Hy(s)y(s) (6) 
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The residual must be designed (in the ideal case) to be zero for the fault-
free case and non-zero when faults occur: 

r(t)=0 if and only if f(t)=0 (7) 
Therefore, the matrices Hu(s) and Hy(s) must satisfy next constraint 

condition:
Hu(s)+Hy(s)Gu(s)=0 (8) 

The above equation is called the generalized representation of all residual 
generators (Patton and Chen, 1991). The design of a residual generator consists 
simply in choosing two matrices Hu(s) and Hy(s), which satisfy Eq. 8. According to 
the parameterization chosen for Hu and Hy, a different way to generate the residuals 
is obtained. 

Fault detection is performed comparing the residual evaluation function 
J(r(t)) with a threshold function T(t) using the next test: 

( ( )) ( ) for ( ) 0
( ( )) ( ) for ( ) 0

J r t T t f t
J r t T t f t (9) 

1.1.2.3. Fault Detectability. Fault Isolability 
In the presence of system faults, the residual vector will be: 

1 21 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
y f rf

rf rf rf gg

r s H s G s f s G s f s

r s G s f s G s f s G s f s (10) 

where Grf(s)=Hy(s)Gf(s) represents the relation between residual and faults, [Grf(s)]i
is the i-th column of matrix Grf and fi(s) is the i-th component of f(s).

The fault fi is detectable in the residual r(s) if the corresponding column of 
Grf(s) is nonzero, [Grf(s)]i 0; this is called the fault detectability condition of the 
residual r(s) to the fault fi (Chen and Patton, 1999). There are cases when a fault is 
present in the system, but a residual that satisfies the detectability condition does 
not indicate the fault as a continuous signal. This condition is not enough for 
detecting such faults, as noticed in (Patton and Kangethe, 1989) and (Frank et al., 
1993). 

The fault fi is called strongly detectable in the residual r(s) if the steady-
state gain [Grf(0)]i 0. This is called the strong fault detectability condition of the 
residual r(s) to the fault fi (Chen and Patton, 1999). 

A fault is called isolable using a residual vector set, if it is distinguishable 
from other faults using this set. Usually, each residual from the considered set is 
designed to be sensitive to a subset of faults and insensitive to the others. There are 
three main approaches to design residual sets. 

A residual set is called a structured residual set, if it has the required 
sensitivity to specific faults and insensitivity to the remaining faults (Gertler, 1991). 
If all the faults are to be isolated, the residual set is called a dedicated residual set,
which was inspired by the dedicated observer scheme (Clark, 1978). A residual 
vector is called a generalized residual set if each residual component is sensitive to 
all faults but one. 

Another approach to perform fault isolation is to design a directional
residual vector, which lies in a fixed and fault-specified direction (or subspace) in 
the residual space, in response to a specific fault. In this case, each fault is assigned 
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a constant vector called the signature direction of that fault (Chen and Patton, 
1999). 

1.1.3. Classical Diagnosis Methods 

The central issue in model-based fault diagnosis is residual generation. Each 
residual generation method has its associated specific technique of computing the 
residual vector. In this section, three closely correspondent methods are briefly 
presented first: observer-based, parity relation and factorization. The parameter 
estimation method is also shortly presented. 

The goal of an observer-based approach is to estimate system output using 
Luenberger observers in a deterministic setting (Frank, 1987; Patton and Kangethe, 
1989), or Kalman filter in the stochastic case (Tzafestas and Watanabe, 1990). Then 
the output estimation error is used as a residual. 

In the deterministic case, a functional Luenberger observer is used to 
estimate the output as a linear function of the state, Lx(t):

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t Fz t Ky t Ju t
w t Gz t Ry t Su t

(11) 

where x(t) Rq is the state vector of this functional observer; F, K, J, R, G and S are 
matrices with appropriate dimensions. The output w(t) of this observer is called an 
estimate of Lx(t), for the system given in Eq. 11, in an asymptotic sense, if in the 
absence of faults (Chen and Patton, 1999): 

lim ( ) ( ) 0
t

w t Lx t (12) 
The parity relation method consists in checking the consistency of the 

measurements of the monitored system (Chen and Patton, 1999). If we consider the 
measurements of an n-dimensional vector using m sensors, the equation is: 

y(k)=Cx(k)+f(k)+e(k) (13) 
where y(k) Rm is a measurement vector, x(k) Rn is the state vector, f(k) is the 
vector of sensor faults, e(k) is the noise vector and C is an m x n measurement 
matrix.

In order to perform fault detection and isolation, the vector y(k) can be 
combined into a set of linearly independent equations to generate the parity vector 
(residual) (Eq. 14). The residual r(k) must have zero value for the fault-free case. 
Therefore, the matrix V must satisfy the constraint VC=0. If the constraint holds, the 
residual depends only on the faults and noise (Eq. 15), 

r(k)=Vy(k) (14) 
r(k)=v1[f1(k)+e1]+...+ vm[fm(k)+em] (15) 

where vi is the i-th column of V, fi is the i-th element of f(k) which stands for the 
fault in the i-th sensor. 

The factorization method synthesizes the residual generator in the 
frequency domain by factorization of the Gu(s) matrix from the input-output model 
of the monitored system. The method was initiated by Viswanadham, Taylor and 
Luce (1987) and extended by Ding and Frank (1990). The factorization method 
proposed by Vidyasagar (1985) states that for any m x r proper rational matrix, in 
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our case Gu(s), there are two stable, rational and realizable matrices M(s) and N(s)
so that 

1( ) ( ) ( )uG s M s N s (16) 
The residual generator is considered as 

r(s)=Q(s)[M(s)y(s)-N(s)u(s)] (17) 
The input-output model in the frequency domain is 

y(s)=Gu(s)u(s)+Gf(s)f(s) (18) 
Using Eq. 17 in Eq. 18, the residual takes the form: 

r(s)=Q(s)M(s)Gf(s)f(s) (19) 
that is only affected by faults. 

The matrix Q(s) could be used to improve the residual performance 
responding to faults in a particular frequency region. 

System identification techniques could also be used in model-based FDI 
(Isermann, 1991; 1997). The premise in parameter estimation methods is that the 
faults are reflected in the physical system parameters. The system parameters are 
estimated using parameter estimation methods and afterwards compared to the 
parameters offered by the reference model obtained in fault-free condition. Any 
substantial difference between the two sets of parameters indicates a system fault. 

The input-output model is used under the form: 
y(t)=f(P,u(t)) (20) 

where P is the vector comprising information about system parameters and f is a 
function that could be both linear or nonlinear. If the estimation of the P vector at 
step k-1 is , then the residual can be defined as in Eq. 21. The isolation task 
cannot be easily performed (Isermann, 1984). 

1k̂P

1
ˆ( ) ( ) ( , ( ))kr k y k f P u k (21) 

The practice shows that the quantitative methodologies presented in this 
section perform well on reasonably small systems. The modeling errors in the case 
of small systems do not consistently affect the diagnosis process. Unfortunately, 
trying to model accurately enough a complex system proves to be a difficult task. 
The main problem is the large number of components of such a system and the even 
larger number of interactions between them. There is also a high probability of 
obtaining large modeling errors that will affect significantly the diagnosis process. 
In this case, it is either impossible to model the behavior of the system, or the model 
obtained is too large to be used in practice or even for research purposes. 

1.2. Overview of Computational Intelligence 
Methodologies in Fault Diagnosis 

In order to obtain good performance, analytical approaches to FDI systems require 
very accurate mathematical models of the monitored systems. As a result, modeling 
errors will affect the performances of the FDI systems; especially when the 
monitored system is nonlinear. Using computational intelligence approaches, i.e., 
neural networks, fuzzy logic-based systems, neuro-fuzzy hybrids, or evolutionary 
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computing techniques, such as genetic algorithms, may compensate for modeling 
errors, as these methodologies offer good approximations of non-linear systems. 

In their survey on soft computing approaches in fault diagnosis, Patton et
al. (1999) recommend that “a robust FDI system should combine both numerical 
(quantitative) and symbolic (qualitative) information”. The class of hybrid systems 
called neuro-fuzzy systems, combinations between neural networks and fuzzy 
systems, represents an example of such robust systems. Another class of robust FDI 
systems, in the previously defined sense, represents combinations between classical 
approaches, i.e., observer-based or parameter estimation, used for residual 
generation phase, on the one hand, and neural networks, fuzzy logic, or 
evolutionary computing techniques, used for decision-making phase, on the other 
hand. 

The purpose of this section is to provide a review on the recent 
computational intelligence approaches to fault detection and isolation. The first 
subsection presents recent neural network applications. The second subsection 
brings in the latest fuzzy logic contributions. The neuro-fuzzy systems are discussed 
in the fourth subsection. The last subsection describes the way genetic algorithms – 
the most known and, at the same time, the most commonly used evolutionary 
computing technique – are employed for diagnosis purposes. Besides genetic 
algorithms, there are other emerging evolutionary computing techniques used, with 
very good results, for solving fault diagnosis problems. The most promising one is 
the particle swarm optimization (PSO) technique (Unland and Ulieru, 2005). 

1.2.1. Neural Network Applications 

Neural networks represent information processing systems formed by 
interconnecting simple processing units called neurons. Each neuron is an 
independent processing unit that transforms its input via a function called activation
function. The connections between neurons are characterized by weight values that 
represent the memory of the network. There are three important characteristics of 
neural networks that make them a suitable tool for modeling the behavior of a 
system: generalization ability, noise tolerance and fast response once trained 
(Puscasu et al., 2000). Generally, the input-output vectors of a system represent 
values measured by sensors, a fact that introduces a certain level of noise. Even if 
the training data are affected by noise, a neural network is still able to generalize the 
system behavior, the level of accuracy being proportional to the level of noise. 

SYSTEM  

NN 

u
y

z r

Figure 1.3. Residual generation using a neural network. 
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Figure 1.4. Residual vector r=(r1,…,rn) mapping into a normal or faulty class. 

Table 1.1. Frequently used neural network architectures in recent papers 

Neural Networks for Modeling Neural Networks for Classification 

Multilayer Perceptron Networks Multilayer Perceptron Network 

Recurrent Neural Networks Radial Basis Function Networks 

Dynamic Neural Networks SOM (Self-Organizing Map) Networks 

Counter Propagation Networks Probabilistic Neural Networks 

GMDH (Group Method of Data Handling) 

Networks 

CMAC (Cerebellar Model Articulation 

Controller) Networks 

Neural networks may be applied in FDI systems for both detection and 
isolation. For the detection phase, the normal behavior of the monitored system is 
modeled using a neural network. Residual signals are generated by comparing the 
output of the neural network with the output of the system (Figure 1.3). For the 
isolation phase, a neural network is used to perform the classification of the 
residuals into the corresponding classes of faults (Figure 1.4).

There are FDI systems that employ neural networks for both detection and 
isolation, but also hybrid FDI systems that use neural networks for either detection 
or isolation phase only. A list of neural network architectures frequently used in 
recent fault diagnosis applications is given in Table 1.1, which shows that most of 
the recent research effort focused on the use of neural networks for system 
modeling purposes. 

1.2.1.1. Multilayer Perceptron Networks 
Multilayer Perceptron (MLP) Networks have a simple architecture shown in Figure 
1.5 and they may be used for both modeling and classification tasks. The layers are 
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fully interconnected in one direction, from the input layer toward the output layer. 
The commonly used training algorithm is backpropagation, that seeks to update the 
weights of the network so that a sum-squared-error decreases toward a desired 
minimum value. The MLP networks do not contain dynamics in their structure. 
Therefore they are not suitable for modeling systems with large dynamics. 
However, due to their simplicity, they are used for modeling the monitored system 
behaviour when the transient error is not important (Paton et al., 1999). 

. . . 

input layer 1st hidden layer output layer 

Figure 1.5. Multilayer Perceptron Network architecture. 

An MLP network used for classification encodes the mapping between the 
residual vector, which feeds the input of the network, and the faulty vector, which 
represents the output of the network. An MLP classifier establishes the boundaries 
between the areas occupied by the different states of the system (Haykin, 1999). 
Therefore, the performance of an MLP classifier, which represents the percentage 
of the well-classified inputs per state, will be influenced by the degree of 
overlapping between the states of the system. The current state of the system will be 
identified according to the area that the input symptoms vector belongs to. 
However, this approach is too rigid. Take, for instance, an incipient fault that, 
shortly after occurring in the system, can hardly be distinguished by the normal 
state. The temporal development of such a fault can be rather described as a gradual 
passing from normal operating conditions to the plain manifestation of the fault. 
That is, the trajectory of the input symptoms vector moves gradually from the area 
corresponding to the normal behavior to the area corresponding to that incipient 
faulty behavior. 

In order to model the behavior of dynamic systems using an MLP network, 
one can extend its architecture adding tapped delay lines. The tapped delay lines 
used with an input of the neural network allow the network to consider not only the 
current value of an input, but also a given number of past values of that input. This 
allows modeling the behavior of the system by taking into consideration the 
dynamics of the considered input over a time window. Bendtsen and Izadi-
Zamanabadi (2002) used an MLP network enhanced with tapped delay lines not 
only to model the monitored system, but also to estimate an adaptive threshold to be 
applied on the residual signals. The authors prove that, given a bounded 
perturbation of the input of the neural network, there are calculable bounds for all 
possible outputs. 
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An interesting neural network implementation of diagnosis tasks, based on 
MLP and Counterpropagation networks, is presented in (Ariton and Palade, 2005). 
Some details on this approach are presented in Chapter 8 of this book. 

1.2.1.2. Recurrent Neural Networks 
The class of Recurrent Neural Networks (RNNs), with the general structure shown 
in Figure 1.6, possesses internal dynamic constituents that allow them to model the 
dynamics of the monitored system. The dashed lines in the figure represent the 
internal recurrent connections of the network. Their role is to provide feedback 
from the next layers of neurons and, usually, their weights are set to unity value. 

. . . 

input layer 1st hidden layer output layer 

Figure 1.6. Recurrent Neural Network architecture. 

The RNNs can also be used to perform classification tasks. Roverso (2000) 
used ensembles of RNN classifiers to diagnose faults in a Pressurized Water 
Reactor (PWR) Nuclear Plant. The use of ensembles addresses the problem of 
output stability when using RNNs. The training algorithm for the same RNN 
architecture can end up in different local minima if trained with the same training 
data but randomly initialized weights. As a result, different versions of the same 
RNN can provide different outputs for the same inputs. In the mentioned paper, the 
ensemble of RNNs combines the outputs of its constituents into one single result 
using the bagging method (Breiman, 1996). The quality of the results obtained 
using an ensemble is directly proportional to the level of disagreement among its 
constituents (Krogh and Vedelsby, 1995). 

Elman Neural Networks (ENNs) are a particular case of RNNs. An ENN 
has only one hidden layer fully interconnected with the input and output layers, 
with the addition of a feedback connection from the output of each neuron in the 
hidden layer to the input of the network. This special feedback feature allows 
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Elman networks to learn and recognize temporal or spatial patterns. Fuente and 
Saludes (2000) employ a bank of ENNs to perform fault isolation. 

1.2.1.3. Dynamic Neural Networks 
Dynamic Neural Networks (DNNs) have the same architecture as MLPs except that 
the usual neurons are replaced by dynamic neurons. The structure of a dynamic 
neuron (Ayoubi, 1994) is shown in Figure 1.7. The behavior of a dynamic neuron is 
described in Eq. 22 (Korbicz et al., 1999). The output of the adder component, x(k), 
represents the weighted summation of the input of the neuron. The internal filter is 
the component that introduces dynamics to the neuron transfer function. The past 
internal states and outputs of the neuron activity are considered when determining 
the current activity of the neuron. Due to this special feature, a DNN needs neither 
tapped delay line as the MLPs, nor feedback from the hidden layer neurons as 
RNNs, in order to enhance its input with past values. A DNN will model the 
dynamics of a system taking as inputs only its current measurements. Therefore, a 
DNN will model better than other types of neural networks the dynamics of the 
monitored system using the same training data as an MLP network. Finally, the last 
component of the neuron (activation) computes the neuron output via the nonlinear 
function F and the slope parameter g of this function. 
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Figure 1.7. Dynamic neuron structure. 
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The unknown parameters of a DNN are, besides its weights, the vectors 
a=[a1,…,an]T and b=[b1,…,bn]T, and the slope g of each neuron (Eq. 22). Therefore, 
the training process of a DNN must incorporate methods for adjusting the weights 
as well as methods to estimate these parameters. Korbicz et al. (1999) discuss two 
training methods for DNNs in a fault diagnosis application, the Extended Dynamic 
Backpropagation (EDBP) algorithm and the Evolutionary Search with Soft 
Selection (ESSS) algorithm. In (Patan and Parisini, 2002), stochastic methods are 
applied to DNN training for fault diagnosis tasks. Compared to MLP networks or 
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RNNs, the training of a DNN requires more time, memory, and computational 
effort.

Marcu et al. (1999) study the mixing of three variations of DNNs and their 
application to generating residuals for a three-tank laboratory system. Marcu et al.
(2000) apply two types of DNNs to model the evaporation station from the Lublin 
sugar factory using real process data. The two types of DNNs are the Dynamic 
Multilayer Perceptron Networks (DMLPs), previously described, and Dynamic 
Radial Basis Function (DRBF) Networks that have dynamics provided by the 
ARMA filters in the hidden layers structure (Ayoubi, 1994). A comparative study 
of the performance of the two types of networks has been done. 

Mirea and Marcu (2002) present a neural network architecture for system 
identification, Functional-Link Neural Networks (FLNNs) with dynamic neurons in 
the hidden layer. The FLNNs are one-layer perceptron networks that contribute the 
inputs of each neuron on the hidden layer with functional transformations of the 
common inputs (Patra et al., 1999). The performance of this architecture is 
demonstrated on a three-tank laboratory system and on real data from the 
evaporation station at the Lublin sugar factory in Poland. 

1.2.1.4. Radial Basis Function Networks 
These networks are single-layer perceptron networks and they are commonly used 
to perform classification tasks. The general architecture of an RBF classifier for 
FDI purposes is shown in Figure 1.8. The input of the network is the residual vector 
r. The output of the neural network, the faulty vector f, has the components fi=g( r-
ci ), i=0,…,m, where the domain of the g function is the [0,1] interval. The first 
component of the faulty vector f, f0, stands for the normal state. The interpretation 
of the output is that the input residual vector r is as close to the vector ci as is the i-
th component of f to 1, and as far from the vector cj as the j-th component of f to 0 is 
close. The vectors ci , i=0,…,m, are called the centers of the neural network. 
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Figure 1.8. The architecture of an RBF classifier for FDI purpose. 

The most frequently used activation function for the hidden layer of RBFs 
has the general form given in Eq. 23. 

2

2( ) exp( )
2
ug u (23) 
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Figure 1.9. The influence of  parameter on the shape of the activation function. 

The parameter  represents the width factor, and its influence on the 
function is shown in Figure 1.9. The arrow shows the width of the graph of the 
function increasing as the  parameter increases. 

The components of the output of the RBF classifier can be seen as degrees 
of belongingness of the residual vector to clusters corresponding to the centers. 
Each center also corresponds to a system state and, therefore, the output vector 
represents the degrees of assignment of the residual vector to the system states. The 
degree of belongingness is gradual and its measure is given by a value in the [0,1] 
interval via the g function. As noted at the end of the discussion regarding the MLP 
classifiers, expressing the belongingness of the input residual vector to a system 
state gradually seems to offer a better description than using the belongingness to a 
classical set. Thus, an RBF classifier can express better than an MLP classifier the 
assignment of the residuals to the faulty states. 

The performance of an RBF classifier depends on the success of tuning the 
weights and the centers using the training set. An RBF classifier performs a 
clustering operation on the residual vectors in the training set (Haykin, 1999). There 
are as many centers as the number of faulty states of the system. If the residual 
vectors corresponding to a state naturally group themselves in more than just one 
cluster, then the RBF classifier needs as many centers per state as the number of 
natural clusters associated with that state. 

Another problem of the RBF networks is that they can cope only with 
faulty states specified during the training phase. However, if one of the faulty states 
that were not specified occurs, it also needs to be detected and isolated. In 
(Terstyánszky and Kovács, 2002; Dalmi et al., 2002), a general method is proposed 
for improving the fault diagnosis by taking into account these faults that are not 
specified during the training of the RBF network. When an unspecified fault occurs, 
the architecture of the RBF network used will be updated through introducing a 
new neuron on the hidden layer. The new neuron corresponds to the unspecified 
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faulty behavior. Also, once a new neuron has been introduced, the parameters of the 
network must also be updated accordingly. 

1.2.2. Fuzzy Logic Applications 

Fuzzy logic is used for both fault detection via modeling, and fault isolation via 
classification for nonlinear systems. Mamdani (1976) proposed a linguistic tool to 
build the fuzzy model of a system. He proposed to model the system behavior using 
if-then rules connecting linguistic terms that captured the intuitive understanding of 
the available signals by human subjects. For instance, the values associated with a 
signal can be placed into three overlapping intervals: small, medium and large.
Takagi and Sugeno (1985) proposed a mathematical tool to build the fuzzy model 
of a system. This type of models is more accurate than the Mamdani-type models 
for modeling real-world processes. In exchange, the transparency offered by the use 
of linguistic terms to human subjects is lost somehow. Another important advantage 
of the Takagi-Sugeno approach is the fact that nonlinear systems can be modeled 
using a set of linear models built around a set of operating points. The transition 
between different operating regions, defined by the previous set of operating points, 
is performed using fuzzy logic. 

Fuzzy logic is very often used to perform fault isolation tasks. The 
relationships between residuals and the faulty states of the monitored system are 
expressed by a set of if-then rules. The Mamdani-type models are preferred for this 
task due to the transparency offered by using linguistic terms. The training phase 
has the purpose of adjusting the shape of the fuzzy membership functions of the 
fuzzy sets, by using residuals-faults associations present in the training set. During 
the test phase, the residuals presented at the input of the fuzzy classifier are mapped 
into the corresponding faulty state using fuzzy inference. 

This subsection introduces first the Takagi-Sugeno (1985) fuzzy modeling 
technique. Next, it presents the Mamdani-like fuzzy classifier for residual 
evaluation used by Frank (1996). This classifier does not represent a practical 
choice when dealing with a complex system, as the number of rules that describe 
the relationships between residuals and faults is very large. The solution proposed 
in (Koscielny et. al., 1999) to overcome the curse of dimensionality is discussed at 
the end of this subsection. 

1.2.2.1. Fuzzy Modeling of Systems with Faults 
Takagi and Sugeno (1985) use fuzzy rules, with the general form given by Eq. 24, 
to build the fuzzy model of a system. 

R: IF x1 is A1 and … and xk is Ak THEN y=p0+p1x1+…+pkxk (24) 
where y is the output of the system whose value is inferred, x1, …, xk are input 
variables of the system, A1, …, Ak represent fuzzy sets with linear membership 
functions standing for a fuzzy subspace, in which the rule R can be applied for 
reasoning.

If the system is described by a set of rules {Ri / i=1,…,n} having the 
previous form, and the values of input variables x1, x2, …, xk are x1

0, x2
0,…, xk

0,
respectively, the output value y is inferred following the next three steps. 

Step 1. For each Ri, the value yi is computed as follows: 
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yi=p0
i+p1

ix1
0+…+pk

ixk
0 (25) 

Step 2. The truth value of the proposition y=yi is computed as follows: 
|y=yi|=| x1

0 is A1 and … and xk
0 is Ak |  |Ri|=A1

i(x1
0) …

Ak
i(xk

0) |Ri| (26) 

where |*| means the truth value of the proposition *,  stands for the min operation, 
and A(x)=|x is A|, and it represents the grade of membership of x in A. The value |Ri|
is called the confidence level in the i-th rule and is usually considered to be 1. 

Step 3. The output y is computed as the average of all yi with the weights 
|y=yi|,

1

1

n i i

i
n i

i

y y y
y

y y
(27) 

Let us consider the fuzzy model of a system formed by the next two rules: 
1

2

: _ 0.2
: _ 0

R  IF x is medium big THEN y x
R  IF x is medium small THEN y x

9
.6 2

(28) 

Figure 1.10 shows the two linear models corresponding to the two rules 
and the output of the fuzzy model. The previously described fuzzy inference insures 
a smooth transition between the two fuzzy subspaces corresponding to the rules R1
and R2. It is this property that is appealing when trying to model nonlinear systems.  

It is not only the input-output model of a system (Eq. 4) that may be 
represented in the framework of the Takagi-Sugeno approach, but also the state 
space model of a system (Eq. 1). For this purpose, Ma et al. (1998) use a set of r
fuzzy rules having the form 

1 1
( ) ( ) ( )

( ) ( )
( ) ( )

i i
i g ig

i i

x t A x t B u t
IF z t is F and z t is F THEN

y t C x t
(29) 

where i=1,…,r, Fij (j=1,…,g) are fuzzy sets, x(t) is the state vector, u(t) is the input 
vector, yi(t) is the output vector, and z1(t),…,zg(t) are some measurable system 
variables. 

In order to perform fault diagnosis of a nonlinear system using its 
corresponding state space Takagi-Sugeno model, Lopez-Toribio et al. (2000) 
design a fuzzy observer to estimate the system state vector. For the fuzzy observer 
design, it is assumed that the fuzzy system model is locally observable, i.e., all (Ai,
Ci), i=1,…,r, pairs are observable. Each fuzzy rule in the Takagi-Sugeno model has 
an observer rule associated with itself, with the following general form (Ma et al.,
1998): 

1 1( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( )

i g ig

i i i

i i

IF z t is F and z t is F

x t A x t B u t G y t y t
THEN

y t C x t

(30) 

where Gi, i=1,…,r, are observation error matrices, and y(t) and ˆ( )y t  are the final 
output of the fuzzy system and the fuzzy observer, respectively. 
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Figure 1.10. The output of a Takagi-Sugeno fuzzy model. 

1.2.2.2. Fuzzy Evaluation of Residuals 
Frank (1996) proposes the use of Mamdani-type fuzzy logic for residual evaluation, 
in order to isolate the faults that occurred. Let R={r1, r2,…, rm} be the set of 
residuals. Each residual ri, i=1,…,m, is described by a number of fuzzy sets {ri1,
ri2,…,ris}, whose membership functions are identified using methods like domain 
expert knowledge and learning with neural networks. The causal relationships 
between the residuals and faults are expressed by if-then rules having a form similar 
to Eq. 31. 

ip jqIF (effect = r ) AND (effect = r )... THEN (cause is the k - th fault) (31) 
The output of the fuzzy classifier is the faulty vector F. The fuzzy 

inference process will assign to each component Fi, i=1,…,m, a value between 0 
and 1 that indicates the degree with which the normal state (the corresponding 
component is F0), or the j-th fault, affects the monitored system, j=1,…,m. If there 
is the premise that the system can be affected only by a fault at a time, then the 
faulty vector contains only one component larger than a preset threshold value, and 
whose corresponding faulty state represents the actual state of the monitored 
system. If multiple faults can affect the monitored system, then the components of 
the classifier output, which are larger than a preset threshold, indicate the faults that 
occurred in the system. 

The advantage of using the previous fuzzy classifier is the fact that fuzzy 
rules provide details on the mapping of residuals to a faulty state. The disadvantage 
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is that this fuzzy system does not represent a practical choice when dealing with a 
complex system, as the number of rules that describe the relationships between 
residuals and faults is very large. A solution to overcome this curse of 
dimensionality is presented in the following. 

1.2.2.3. Fuzzy Isolation of Faults in Complex Systems 
Koscielny et al. (1999) define a fault isolation system as the quadruple 
FIS=<F,R,V, >, where F={f0, f1,…,fK} is the set of normal and faulty states (f0

denotes the normal state), R={r1, r2,…, rJ} is the set of residuals, 
j

j
r R

V V ,

Vj={v1, v2,…, vI}, Vj is the linguistic variable describing residual rj having as 
possible values attributes v1, v2,…, or vI, and 

: ( ), ( , )k j kj ji j jF S V f r V v V V (32) 
The value of a residual rj is defined by the fuzzy membership function 

values corresponding to the attributes of the linguistic variables considered, 

ji i jv V (33) 
The diagnostic fuzzy inference is done by performing for each rule the 

firing degree. The firing degree (Eq. 34) is computed using the values of the 
degrees of agreement between a residual rj and its values obtained for fault fk (Eq. 
35): 

maxkj ji i kjv V (34) 

1,...,

1,..., 1,..., 1,...,

hj
j J

k
nj jP

n K j J j J

(35) 

The diagnosis consists of the faults, for which the firing degree is the 
largest, 

max max for 1, ,k kDGN f k K (36) 
For diagnosis of complex systems, the dimensions of the sets of faults and 

residuals are very large and the previous approach does not represent a practical 
choice. Koscielny et al. (1999) simplify the diagnosis procedure noticing that it is 
not necessary to analyze all residuals. Instead, a subset of residuals R*, which are 
useful for fault identification, and a subset of possible faults F*, need to be 
dynamically defined. 

1.2.3. Neuro-Fuzzy Systems Applications 

Palade et al. (2002) identify two categories of combinations between neural 
networks and fuzzy systems. First, there are neuro-fuzzy combinations where each 
methodology preserves its identity. The system is composed of a set of neural 
networks and fuzzy systems that work independently but their inputs/outputs are 
interconnected in order to augment each other’s capabilities. These neuro-fuzzy 
systems belong to the class of combination hybrid intelligent systems (Palade et al.,
2002). Second, there are neuro-fuzzy systems where one of the two methodologies 
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is fused into the other. The neuro-fuzzy systems in this category belong to the 
fusion hybrid intelligent systems class. Two subcategories can be distinguished. 
There are systems where the neural networks represent the basic methodology and 
fuzzy logic the secondary one. In this case, the inputs and/or the outputs and/or the 
weights of the neural network are fuzzy sets. Also, there are systems where fuzzy 
logic represents the basic methodology and neural networks the secondary one. 
These systems feature a set of fuzzy rules put in the form of a neural network in 
order to make use of the learning, adaptation and parallelism capabilities provided 
by neural networks. 

The neuro-fuzzy systems may be used either for modeling (fault detection) 
or for classification (fault isolation) purposes. This subsection first presents the 
neuro-fuzzy systems used for identifying the parameters of Takagi-Sugeno fuzzy 
models, which may be used for fault detection (Babuska, 2002; Palade et al., 2002; 
Uppal et al., 2002). Next, a neuro-fuzzy structure used for fault isolation is 
discussed, more precisely, the neuro-fuzzy hierarchical structure proposed in 
(Calado et al., 2001). Lastly, the B-spline neural networks (Chen and Patton, 1999; 
Patton et al., 1999) are shortly presented at the end of this section. 

1.2.3.1. Neuro-Fuzzy Systems for Takagi-Sugeno Fuzzy Model 
Implementation 
The most general Takagi-Sugeno model has as consequence of the fuzzy rules 
ARMA (AutoRegressive Moving Average) models of higher order (Palade et al.,
2002), as shown in Eq. 37. 

1 2

1 1

1 1

:

      ( ) ( ) ( )

i i k ik
n n

i i i
i j j

j j

R IF x is A and x is A

THEN y t c p x t j s y t j (37) 

where i=1,…,r, r is the number of rules, x=(x1, x2, …, xk) is the input vector, 
pj

i=(pj1
i, …, pjk

i), sj
i=(sj1

i, …, sjk
i), and x(t-j), y(t-j), j=1,…,n1 or n2, represent the past 

values for the inputs and output of the system. If the two sums in the consequent of 
the rule given in Eq. 37 are missing, we obtain the well-known form of a Takagi-
Sugeno model of order zero. 

In order to design a Takagi-Sugeno model, the following three sets of 
parameters need to be identified using the available input-output data measurements 
(Takagi and Sugeno, 1985): 

The actual input variables (x1,…,xk) composing the antecedent of 
the rule. 
Ai1,…,Aik – the membership functions of the fuzzy sets in the rule 
antecedent. 
ci, pi, si – the parameters in the consequence of the rule. 

The number and the membership functions of the fuzzy sets Ft
s, t=1,…,rs,

associated with each input variable xs, s=1,…,k, must be determined before building 
the neural network. The space associated with each variable can be empirically 
partitioned into fuzzy sets by analyzing the way the system operates. This can be a 
very difficult task when dealing with complex systems. Other techniques that can 
be employed are clustering and genetic algorithms. The fuzzy sets in the antecedent 
of the rules for input s, s=1,…,k, are elements of the set {Ft

s | t=1,…,rs}.
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The first set of parameters (actual inputs used in the antecedent) represents 
a subset of all inputs of the system and it can be determined using the heuristic 
search algorithm proposed in (Takagi and Sugeno, 1985). The method is concerned 
with making two choices. The first choice represents the choice of the variables that 
will appear in the antecedent of the rules. Each variable has associated with itself a 
fuzzy partition on its space. The second choice represents the number of fuzzy sets 
in the partition. 
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Figure 1.11. Neuro-fuzzy network for Takagi-Sugeno fuzzy model implementation. 

The third set of parameters is identified using training algorithms for 
neuro-fuzzy systems for Takagi-Sugeno model implementation. These systems put 
the set of fuzzy rules of the model under the form of a neural network (Palade et al.,
2002; Babuska, 2002) (Figure 1.11, Figure 1.12). The parameters are identified 
during the training of the neuro-fuzzy network. The ARMA model in the 
consequence of a fuzzy rule is implemented by a subnetwork as shown in Figure 
1.12. 

For an example of neuro-fuzzy systems for Mamdani-type fuzzy model 
implementation, and a comparison with the neuro-fuzzy systems for Takagi-Sugeno 
fuzzy model implementation, see (Palade et al., 2002). The Takagi-Sugeno fuzzy 
model is preferred for the residual generation phase, when the accuracy of the 
model represents the main concern. For the residual evaluation phase, neuro-fuzzy 
classifiers implementing a Mamdani fuzzy model are preferred, because they 
provide fuzzy rules meaningful to human subjects via the employed linguistic terms 
in the consequence of the rules. 

The disadvantage of the neuro-fuzzy systems is that the architecture of the 
neuro-fuzzy network can become large for complex systems. This fact poses 
difficulties for the neuro-fuzzy network training process. The previous fact 
represents the so-called curse of dimensionality and it is inherited from the fuzzy 
component of the neuro-fuzzy system. 
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Figure 1.12. The subnetwork corresponding to the i-th neuron in the 4th layer. 

1.2.3.2. Neuro-Fuzzy Hierarchical Structures for Fault Isolation 
Details on how to use Mamdani-type neuro-fuzzy networks for fault isolation are 
presented in (Palade et al., 2002). Calado et al. (2001) propose a hierarchical 
architecture of several neuro-fuzzy structures (called by the authors fuzzy-neural 
networks (FNNs)) for fault isolation purposes. The structure aims to correctly 
classify input symptoms corresponding to both abrupt and incipient faults (single or 
multiple), using only abrupt faults symptoms and normal state symptoms during the 
training phase. The symptoms are generated by selecting from residuals, and their 
combinations, those signals that provide the best distinction between different 
operating states of the system. 

The hierarchical structure has the three levels shown in Figure 1.13. The 
first-order differences for all available measurements are used as symptoms. The 
lower level consists of one FNN that receives as input the considered symptoms. 
The output of this FNN determines which of the FNNs on the medium level will be 
activated. That is, if the i-th component of the output has a value close to 1, then the 
i-th FNN on the medium level will be activated. The number of the FNNs on the 
medium level is equal to the number of faults considered. Each one of them is also 
fed with all symptoms considered. The upper level is used to perform an OR 
operation on the outputs of the activated FNNs on the medium level. The 
components of the outputs considered for the OR operation must have a value close 
to 1. 

Let us consider the case when the previous methodology is applied to a 
very complex system. Such a system will usually provide a large number of sensor 
measurements and, therefore, the number of input symptoms will be very large. 
Also, such a system will usually feature a large number of faults. In order to 
increase the number of faults that can be diagnosed, the number of fuzzy sets used 
must increase too. If the complexity of the rule base is too large, the neuro-fuzzy 
systems will experience the curse of dimensionality too. 
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Figure 1.13. A hierarchical structure of neuro-fuzzy networks. 

1.2.3.3. B-Spline Neural Networks 
The B-spline neural networks are one-layer neural networks with B-spline functions 
in the hidden layer. A study on the B-spline neural networks and their applications 
in system modeling is given in Brown and Harris (1995). If the input of the neural 
network is n-dimensional, there is an interval Xi=[xmin

i, xmax
i] for the i-th dimension, 

i=1,…,n, where all possible input values for the i-th dimension lay. Each of these 
intervals is partitioned into Ni subintervals , i=1,…,n. For each subinterval j,
j=1,…,Ni, the recurrence relationships used to compute a univariate B-spline 
function of order k are given by Eq. 38. 

The univariate B-spline functions previously defined possess the following 
two properties. First, the functions are defined on a bounded support and the output 
of the function is positive on its support (Eq. 39). Second, the sum of the outputs of 
the functions is always one (Eq. 40). 

1
, 1

1 1

1,

( ) ( ) ( )

1, if
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0, otherwise

j k jj j
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The multivariate B-spline functions are formed by taking the tensor 
product of n univariate B-spline functions, where one and only one univariate 
function is defined on each input dimension (Eq. 41). Because the tensor product is 
used, the properties of the univariate functions are all extended to the multivariate 
functions. 

,
1

( ) ( )
i

nt t
k k i

i
B x B xi (41) 

A B-spline neural network with n-dimensional input and p neurons on the 
hidden layer, standing for as many B-spline univariate (n=1) or multivariate 
functions, is shown in Figure 1.14.
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Figure 1.14. The general structure of a B-spline neural network. 

The two properties of B-spline functions underlined above show that the 
output of the neural network, which represents a weighted sum of the p functions in 
the hidden layer, is always a value in the [0,1] interval. This property is used to 
perform fault detection on a B-Spline neural network model of the monitored 
system. Patton et al. (1999) and Chen and Patton (1999) use, as input of the neural 
network, the inputs and the outputs of the system inside a time window. The output 
of the neural network, the residual r(t), is forced to be 0 when the system operates 
in normal state, and 1 when a fault occurs in the system. 

The fault isolation task can be performed modifying the B-spline neural 
network model as shown in Figure 1.15 (Patton et al., 1999; Chen and Patton, 
1999). The m+1 output values of the network correspond to the normal state (F0)
and the faulty states (F1-Fm) of the system. When the system operates in normal 
state, the corresponding output value, F0, is one and all other output values are zero. 
If the j-th fault occurs, then the value of F0 moves towards zero and the value of Fj
moves towards one. 
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Figure 1.15. The general structure of a B-spline neural network for fault isolation. 
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Figure 1.16. The fuzzy sets corresponding to the univariate B-spline functions. 

The structure of a B-spline neural network can be interpreted as a set of 
fuzzy rules. To each (multivariate) B-spline function, it may be associated a fuzzy 
rule with the general form 

i iIF x is A THEN y is w (42) 
The fuzzy set Ai represents the fuzzy interpretation of the (multivariate) 

function Bi. A multivariate function is formed of n univariate functions. Each i-th 
univariate function can be interpreted as a fuzzy set corresponding to the i-th input 
(Figure 1.16). The tensor product (Eq. 41) of the univariate functions corresponds 
to the logical intersection (AND) of their corresponding fuzzy sets, i.e., the hatched 
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area in the figure corresponds to the logical intersection (x1 is large) AND (x2 is 
medium).

The previous equivalence may be used to insert in the B-spline neural 
network knowledge from human experts expressed as fuzzy rules (Chen and Patton, 
1999; Brown and Harris, 1995). The fact that the (multivariate) B-spline functions 
can be interpreted linguistically allows the set of fuzzy rules to provide the operator 
with an explicit description of the causes of the faults. Unfortunately, for a large 
number of inputs, the set of derived rules becomes too large and the previous 
advantage is lost (Patton et al., 1999). Also, the B-spline neural networks need a 
very large learning time even for a modest number of inputs (Patton et al., 1999). 

1.2.4. Genetic Algorithms 

Genetic algorithms represent the best known and the most commonly used 
Evolutionary Computing technique. When used for fault diagnosis purposes, in the 
large majority of cases, genetic algorithms represent a support methodology for 
other soft computing techniques, especially for parameter tuning tasks. There also 
are approaches that use genetic algorithms as a stand-alone technique to perform 
diagnosis. 

Genetic algorithms are search procedures based on the mechanisms of 
natural selection (Goldberg, 1989). Given a population of individuals, natural 
selection promotes the survival of the fittest individuals from one generation to 
another. An individual is characterized by a set of chromosomes, which represents 
the encoding of its features. A chromosome is a string of symbols called genes. A 
gene is, in its turn, characterized by its position in the string called locus, and a set 
of possible values called alleles. The fitness of an individual is measured via a 
function called the objective function. Any individual from each new generation 
represents the result of applying natural genetics mechanisms to the individuals 
from the previous generation. The natural genetics mechanisms combine the strings 
of two individuals in order to obtain new strings of genes. The use of natural 
genetics mechanisms insures that, after a number of generations, the population will 
contain individuals with maximum fitness, i.e., the objective function reaches the 
maximum value. 

Usually the genes of an individual are Boolean variables. In this case, the 
alleles of every gene are the two Boolean values 0 and 1. One of the advantages of 
this representation is that, if the features of an individual can be characterized by the 
numerical values fi, i=1,…,p, then the strings of that individual can binary encode 
these values. Since an individual is distinguished by the set of its features, which 
can be numerically characterized, it represents a point (f1,…,fp) in a p-dimensional 
space. Another advantage of using the binary representation is that the strings of 
genes of the individuals can be easily combined to produce new individuals. The 
large diversity of individuals in this case can be understood as a randomized walk 
through the p-dimensional space provided by the features of the individuals. This 
randomized walk can be seen rather as a random search guided by the natural 
genetics mechanisms towards finding the points (the individuals) with maximum 
fitness. Genetic algorithms with genes represented as real or integer numbers are 
also very popular. 
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If an individual is described using the values of the m features, it means 
that it will have associated a set of m strings. The strings encode the binary 
transformation of the m features. As the length of the i-th string must be the same 
for all individuals in the population, an interval of possible values must be set for 
each parameter. Setting the right landmarks for each parameter must take into 
account the fact that the dimensions of these intervals determine the size of the 
search space.  

The number of individuals in the population is usually kept to a constant 
value n. Each new generation is obtained from the previous one by applying the 
natural genetics mechanisms. Three largely used such mechanisms are elitism,
reproduction via crossover, and mutation. The elitism mechanism chooses the most 
fit e (e<n) individuals from the previous generation and transfers them in the new 
one. The rest of n-e individuals of the new generation are obtained by applying the 
reproduction mechanism. This mechanism selects two individuals from the 
population and combines their features via crossover and mutation, in order to 
obtain new individuals. 

The selection of the parents of the new individuals is made taking into 
account the fitness values. More precisely, the percent obtained by dividing the 
fitness of an individual to the sum of fitness values of all individuals represents the 
probability with which that individual will be selected to perform reproduction. 
Therefore, the probability for selecting the most fit individuals for reproduction is 
larger than the probability of selecting the less fit individuals.  

The new individuals are obtained combining the features of selected 
individuals. The features combination is done by applying the crossover operation 
for the pairs of strings of genes corresponding to the same feature. The location of 
the crossing site is selected uniformly random between the first position and the end 
of the string. During reproduction, the genes of the two new individuals may suffer 
mutations. That is, a gene having the Boolean value 1 can change its value to 0, and 
vice versa. 

There are two different manners to employ genetic algorithms for fault 
diagnosis purposes: directly and indirectly. Indirectly, genetic algorithms are used, 
in a large majority of cases, for tuning the parameters of soft computing-based 
diagnosis systems, i.e., neural networks (Marcu et al., 2003) or fuzzy logic-based 
classifiers (Bocaniala et al., 2004; 2005). Metenidis et al. (2004) proposed the use 
of genetic programming (Michalewicz, 1996) for selecting nonlinear systems 
models to be used for diagnosis purposes. Sun et al. (2004) use genetic 
programming in order to perform feature selection so that the performance of 
diagnosis achieved via classification reaches a maximum level. In (Spanache et al.,
2004), genetic algorithms are used to determine the optimal sensor placement in a 
plant, in order to achieve the best possible diagnosability. However, genetic 
algorithms can be used to directly tackle diagnosis problems. Yangping et al.
(2000) express the diagnosis problem as a function inversion problem, where 
S=g(F) represents the function to invert, S the available signals from the plant and F
the set of faults associated with different parts of the plant. The elements in F
represent binary values indicating if the corresponding fault occurred or not. 
Genetic algorithms are used to simulate g-1 in order to estimate which faults 
occurred. 
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The main advantage when using genetic algorithms is their capacity to find 
optimal solutions when searching throughout spaces having unknown and 
complicated topologies. However, genetic algorithms share the same “black box” 
feature that neural networks possess. They do not provide information on the 
behavior of the approached system, as they belong to the class of optimization 
techniques guided by an objective function. Moreover, in order to construct the 
function to be optimized, consistent understanding of the behavior of the diagnosed 
system is required. Besides the two previous facts, another drawback when using 
genetic algorithms is the usually large computational effort needed to reach a 
satisfactory optimal solution. It is also important to mention that, when dealing with 
complex systems, the dimension of the search space is usually very large. This fact 
has a considerable impact on the amount of resources and the computational time 
needed by the search process. 

1.3. Benchmark Applications 

The applications of computational intelligence techniques to fault diagnosis tasks 
presented in this book have been validated using five benchmarks. The book 
revolves around two main benchmarks: aero-engines gas path faults (Chapters 2 and 
6), and the control valve faults used in the European Commission’s FP5 
DAMADICS project (Chapters 3, 4, 7 and 10), respectively. Other three chapters 
are concerned with diagnosis of a power generation plant (Chapter 9), a rolling mill 
plant (Chapter 8), and electrical engines using vibrations (Chapter 5). 

The performance of the gas turbine of an aero-engine can be expressed in 
terms of a series of performance parameters for the various components of the 
system. The two main characteristics of the performance of a gas turbine are the 
efficiency and flow function of compressors and turbines, and the discharge 
coefficient of nozzles. It is important to mention that these characteristics cannot be 
directly measured. However, they can be estimated using related measurable 
parameters, i.e., spool speeds, averaged pressures and temperatures, thrust and air 
flows. The performance degradation of a component will be reflected by changes in 
these measurable parameters. The relationship between measurement parameters 
and performance parameters is highly nonlinear and it can be described using the 
aerothermodynamics of the gas turbine's components. However, the main difficulty 
when modelling this nonlinear relationship is the fact that the sensors used to 
collect the measurement parameters operate in an extremely harsh environment. As 
a consequence, there is large noise in the measurements and the probability of 
sensor failure is very high. Therefore, an effective diagnostic method needs to be 
able to cope with the large noise and measurements uncertainty. This chapter 
indicates that soft computing methodologies became the preferred tools when 
dealing with problems of this type. Chapters 2 and 6 employ for diagnosis purposes 
fuzzy logic and neural networks, respectively. More details on this benchmark 
problem can be found in these two chapters. 

The control valve studied in the European Commission’s FP5 
DAMADICS project is used as part of the process at sugar factory Cukrownia 
Lublin S.A., Poland. The valve is used to supply water to the steam generator boiler 
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of an evaporation station. The main technological task of the evaporation station is 
to thicken the beet juice following the filtering and cleaning processes. It consists of 
seven evaporators: the first five evaporators work with natural juice circulation, and 
the last two with juice circulation forced by pumps. The juice condensation process 
is performed using steam and vapour, which are the same quantities but come from 
different sources. Steam is produced by a water steam boiler and is delivered 
mainly to the first evaporator. The vapour is produced in each evaporator and it is 
used as a heating medium. The evaporation station produces a condensate, which is 
delivered to the next steam boiler. From this short description, the importance, in 
economical terms, of monitoring the correct operation of the water supply control 
valve can be readily assessed. For more information on DAMADICS benchmark, 
visit the web site, http://www.eng.hull.ac.uk/research/control/ damadics1.htm. The 
valve was extensively modeled, and a MATLAB/SIMULINK program was 
developed for simulation purposes (Sá da Costa and Louro, 2003; Bartys et al.,
2004). The input to the simulation represents real data, normal behavior and some 
faulty conditions, collected at the plant. This method provides more realistic 
conditions for generating the behavior of the system while undergoing a fault. It 
also makes the FDI task more difficult because the real data input causes the system 
to feature the same noise conditions as those in the real plant.

1.4. Conclusions 

This chapter surveyed the applications of computational intelligence 
methodologies to fault diagnosis. Throughout the chapter, a special emphasis has 
been put on the practical limitations of the applicability of these methodologies. 
Even if computational intelligence methodologies successfully address difficult 
problems – such as high nonlinearity of the monitored plant, large noise levels in 
the available sensor measurements, uncertainty – they are able to perform 
reasonably well only on systems having a reasonable level of complexity. Here, a 
complex system represents a system whose global behaviour, which emerges from 
the interactions between its usually large number of basic components, is difficult 
to accurately describe via an analytical model. The weakness that state-of-the-art 
computational intelligence methodologies share is their inability to cope with 
complex systems. 

Isermann and Ballé (1997) underline the fact that a single diagnosis 
method is inadequate for matching all challenges posed by a complex system. 
Therefore, in the last few years, the fault diagnosis community concentrated its 
research efforts on distributed fault diagnosis methodologies. The main idea is to 
partition the monitored system in subsystems having a reasonable complexity level 
and then to successfully apply state-of-the-art methodologies on each of the 
subsystems. The global diagnosis of the system is going to be based on all these 
local diagnosis processes. Implementing the local diagnosis processes using 
computational intelligence methodologies retains their ability to treat the local 
nonlinearities, noise and uncertainty. A noteworthy research effort in this direction 
is the recent European Commission’s FP5 MAGIC Project (http://magic.uni-
duisburg.de).
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It may be concluded that, currently, there are two main trends in the fault 
diagnosis research field: (i) the earlier trend of finding methodologies suitable for 
fault diagnosis of systems having a reasonable level of complexity, and (ii) the later 
trend of finding distributed methodologies able to partition a complex system into 
small enough subsystems so that the local diagnosis may be performed with state-
of-the-art methodologies, and so that the global diagnosis may be obtained in a 
coherent manner from local diagnosis. The last chapter of the book, Chapter 11, 
presents a novel distributed fault diagnosis methodology for complex systems, 
based on the use of causal models. 
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2. A Fuzzy Logic Approach to Gas Path 
Diagnostics in Aero-engines 

Luca Marinai and Riti Singh 

Engine-related costs contribute a large fraction of the direct operating costs (DOCs) 
of an aircraft, because the propulsion system requires a significant part of the 
overall maintenance effort. Thus, to ensure competitive advantage in the aero-
engine market, health monitoring systems with gas path diagnostics capability are 
highly desirable. 

In this chapter, an application of fuzzy logic technology to gas path 
diagnostics for aero-engines performance analysis is presented and the setup 
procedure for a modern civil turbofan is described, as an example. The objective is 
to estimate the changes in engine component performance due to the engine 
degradation over time from the knowledge of only a few measurable parameters, 
inevitably affected by noise. This is a novel process that achieves effective 
diagnosis by means of a rule-based pattern-recognition methodology founded on 
fuzzy algebra, developed to provide an alternative technology versus conventional 
estimation algorithms. 

The inherent capability of fuzzy logic to deal with gas path diagnostics 
difficulties, thanks to the use of fuzzy set theory and its rule-based nature, is 
highlighted. First, the problem of noisy measurements is treated at a fuzzy-set level. 
Second, at the system level the definition of fuzzy rules is used to map input sets of 
measurements into output faulty classes of performance parameters in a constrained 
search space; this enables a problem reduction aimed at overcoming the fact that the 
analytical formulation is undetermined. 

The process quantifies the performance parameters’ deteriorations through 
a nonlinear approach, even in the presence of noisy measurements that typically 
complicate the diagnostic assessment. The diagnostics model’s setup as well as its 
outcome can be attained in a relatively short time, making this technique suitable 
for on-board use.  The accuracy of the technique relative to simulated turbofan data 
is tested and its advantages and limitations are discussed. 

2.1. Introduction 

The performance of an aero-engine deteriorates over time as a consequence of its 
components’ degradation. The identification of the exact component(s) responsible 
for the performance loss facilitates the choice of the recovery action to be 
undertaken. An engine gas-path diagnostic process calculates changes in the 
magnitude of the component performance parameters (e.g., efficiency and flow 
capacity) given a set of measurements (e.g., temperatures, pressures, shaft speed 
and fuel flow) through the engine. However, accurate assessment is complicated by 
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(i) only having relatively few measurements available and  (ii) errors in the 
measurements. 

A recent update of gas-path diagnostics (GPD) methodologies is reported 
in the Von Karman Institute lecture series 2003-01 on gas-turbine condition 
monitoring and fault diagnosis edited by Mathioudakis and Sieverding (2003). 
Many pertinent tools have been devised during the last three decades and a critical 
review of the most used techniques and their applications is provided in (Marinai et 
al., 2004), highlighting similarities, differences and limitations. 

This chapter presents a new gas path diagnostics method. The novelty of 
this technique lies in the use of fuzzy logic to provide secure isolation and 
quantification of gas path component faults. Fuzzy logic is introduced because of its 
inherent capability of dealing with GPD problems due to its rule-based nature and 
its fuzzy approach. The rule-based architecture is used to perform pattern 
recognition of measurement fault signatures, while the fuzzy approach is 
advantageous in dealing with the uncertainties that typically affect the GPD 
problem, namely, the measurement errors and the undetermined mathematical 
formulation. These features created a research opportunity; and an application of 
the method to a modern three-shaft turbofan engine and its encouraging results will 
show, in this chapter, that the promises of fuzzy logic were not burnt out. A 
software was devised – see (Marinai, 2004). First, its SFI (single fault isolation) 
capability was proved – see section 2.5. Then a partial MFI (multiple fault 
isolation) capability, with up to 2 gas path components considerably faulty 
simultaneously, was tested – see section 2.6.

2.1.1. A Guide through the Chapter 

Section 2.2 is aimed at guiding the reader through the fuzzy logic process step by 
step from an introduction to the theory to the application to gas-path diagnostics. 
Section 2.3 introduces the three-spool turbofan configuration involved in the 
development of the diagnostics methodology and the instrumentation set used. 
Section 2.4 is then dedicated to the development of the fuzzy diagnostics system for 
a three-spool engine and to the sensitivity studies carried out for a pertinent setup of 
the methodology. The graphical user interface (GUI) devised for this purpose is 
introduced as well. The accuracy of the SFI capability of the system in the presence 
of noisy measurements and a method used to enhance such a capability is discussed 
in section 2.5. This section also describes an additional feature of the system whose 
rules can be tuned over a global deterioration baseline to enhance the SFI role in 
GPD. A fuzzy diagnostics system able to perform partial MFI and its accuracy are 
discussed in section 2.6. A second GUI was devised to make use of the fuzzy 
diagnostics model to compute the diagnoses and plot the results; this is described in 
section 2.7. The conclusions are presented in section 2.8.
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2.2. Fuzzy Logic Systems 

2.2.1. Background 

Fuzzy logic is a new rule-based approach, founded on the formulation of a novel 
algebra, typically used in the analysis of complex systems and to enable decision-
making processes (Zadeh, 1969). 

Fuzzy engineering is the specific research area investigated aimed at 
modelling engineering processes with fuzzy systems. These are able to provide 
appropriate approximations of various phenomena if enough rules are defined. The 
quality of the approximation is strictly related to the quality of the rules. This is not 
a standard view of fuzzy systems but it is the view taken in this chapter according to 
the definition of fuzzy engineering given by (Kosko, 1997). A different view is that 
fuzzy logic is a linguistic theory that models human reasoning with vague rules of 
thumb and common sense. This holds without any doubt in many applications. 
Fuzzy systems, as described in the next section, rely on the formulation of fuzzy 
algebra. This is a generalization of the abstract set theory, based on new definitions 
concerning fuzzy sets and logical operators (Zadeh, 1969). 

Fuzzy logic is used in this research to provide the capability of 
approximating the relationships between the N-dimensional input space of the gas-
path measurements and the P-dimensional output space of the performance 
parameters by using a number of fuzzy rules. The rules in turn depend on fuzzy sets 
able to deal with uncertain or vague estimations of the process variables. 

Fuzzy logic is all about the relative importance of precision. It is a 
convenient way to map inputs into outputs (Zadeh, 1969) and the primary 
mechanism for doing this is a list of if-then statements called fuzzy rules. All the 
rules are evaluated in parallel and the order of the rules is unimportant. To set up a 
system that interprets rules, we first have to define all the elements of a fuzzy 
system (i.e., fuzzy sets, membership functions, logical operators and architecture of 
the rules) and then the elements of the inference process, namely, the algorithms for 
implication, aggregation and defuzzification phases. The fuzzy inference process 
interprets the values in the input vector and, based on a set of fuzzy rules, assigns 
values to the output vector. 

2.2.2. Fuzzy Algebra: Basic Elements of a Fuzzy System 
Architecture

Engineering science typically deals with uncertain variables and approximations to 
a fixed number of decimal places that depend on the accuracy capability but also on 
the necessity and costs of being accurate. When a decision has to be made based on 
uncertain values of a set of variables, a binary logic based on either-or laws can 
become a limitation. 

A fuzzy system based on multivalue logic can help in modelling a process 
when a mathematical model of how the system’s outputs depend on the inputs is not 
available or is not accurate, or when it is necessary to deal with the uncertainty 
present in the inputs. Besides, a fuzzy model is beneficial in order to introduce 
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different sources of information in the decision-making process (data fusion) and 
when it is advantageous to include expert knowledge or statistical inputs. 

Fuzzy logic systems rely on the formulation of a novel abstract set theory 
and algebra: a generalization of the set theory, based on fuzzy sets as well as logical 
operators, will be considered below. The four main elements of a fuzzy logic 
inference process are listed in Figure 2.1 and discussed in the following sections. 

 FUZZY 

 ALGEBRA 

 1. Fuzzy sets 

 2. Membership Functions 

 3. Fuzzy operators 

4. if-then rules 

FUZZY 

LOGIC 

Inference 

Figure 2.1. Fuzzy algebra and fuzzy logic inference. 

It will be proved that fuzzy set theory, introduced by Zadeh in 1965, is a 
generalization of abstract set theory. In other words, the former always includes the 
latter as a special case; definition theorems, and proofs of fuzzy set theory always 
hold for non-fuzzy sets. Because of this generalization, fuzzy set theory has a wider 
scope of applicability than traditional set theory in solving engineering problems 
that involve high degrees of uncertainty and, to some degree, subjective evaluation 
(Kandel, 1986). 

2.2.2.1. Fuzzy Sets 
The basic concept behind fuzzy algebra and fuzzy logic systems is the definition of 
fuzzy sets. A fuzzy set does not have distinctly delineated boundaries and contains 
elements with a partial degree of membership. 

In standard algebra a traditional set includes elements with a Boolean or 
two-value logic. This means that an element belongs or does not belong to the set. 
The degree of membership of an element can be only 0 or 1, or 0 or 100%. If we 
consider the example in Figure 2.2, the numbers A=51, B=60 and D=69 are 
elements of the set S, while the number D=71 is not. 

A= 51 

B=60 

C=69 

D=71 

S

Figure 2.2. Standard set. 

This concept is graphically described in Figure 2.3. The numbers included 
in the range between 50 and 70 belong to the set of cool air temperature. 
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On the other hand, a fuzzy set admits elements with a partial degree of 
membership according to a defined membership function (MF). In the example 
shown in Figure 2.3 and 2.4, the membership function is triangular; therefore the 
degree of membership decreases as we approach the margins of the set. 

In Figure 2.4 the two overlapping fuzzy sets of cool and right air 
temperature are considered. A value of temperature such as 68 degrees has distinct 
values of degree of membership to the two sets and consequently activates the two 
MFs with two different degrees of activation. 
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Figure 2.3. Diagrams of a standard set (left) and a fuzzy set (right). 
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Figure 2.4. Two overlapping fuzzy sets. 

Going from the graphical representation to the analytical form, let X
denote the space of objects. Then a fuzzy set A in X is a set of ordered pairs 

(1) A = {x, (x)}, x XA
where (x) is the degree of membership of x in A and the function A A is called the 
membership function (MF). Usually, A(x) is a number in the interval [0,1], with the 
grades 1 and 0 representing, respectively, full membership and non-membership in 
a fuzzy set. It maps each element of the input space X to a membership value. The 
input space is sometimes referred to as the universe of discourse. The membership 
function itself can be an arbitrary curve whose shape is defined as a function that 
suits the problem from the point of view of simplicity, convenience, speed, and 
efficiency.

Summarizing, the following concepts have been introduced so far: 
Fuzzy set 
Degree of membership 
Membership function (MF) 
Degree of activation (d.o.a.) 
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The next subsection will consider the logical operators, the third element 
of the fuzzy inference process – see Figure 2.1.

2.2.2.2. Logical Operators 
Fuzzy logic is a generalization of standard Boolean logic. This means that the 
logical operations, as defined in this section, will hold in standard algebra as well. 
As far as the logical operators AND, OR, and NOT are concerned, Figure 2.5 shows 
the truth tables according to traditional logic. 

Figure 2.5. Standard logical operations. 

.a

.b

Figure 2.6. Two-valued and multi-valued logic. 

Figure 2.6.a shows a graphical representation of the logical operators in a 
two-value logic. Many methods are available in the literature for their 
implementation in a multi-valued logic or fuzzy logic. In this work the following 
algorithms are considered: 

AND using minimum or product (a b)
OR using maximum or algebraic sum (a+b-a b)
NOT using the complement 

An example of fuzzy operators using the first options in the list above is 
shown in Figure 2.6, where we replace A AND B, where A and B are limited to the 
range (0,1), by using the function min(A,B). Using the same reasoning, we can 
replace the OR operation with the max function, so that A OR B becomes equivalent 
to max(A,B). Finally, the operation NOT A becomes equivalent to the operation (1 – 
A). Once the logical operators are defined, any construction using AND, OR, and 
NOT applied to fuzzy sets can be resolved. 

It can be proved that these definitions still hold in traditional algebra, 
considering Figure 2.7. As an example, considering the AND operator in the table 
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we can see that: min(0,0)=0, min(0,1)=0, min(1,0)=0 and min(1,1)=1. Similarly, we 
can reason for the second options in the list of possible algorithms provided above 
(e.g., change min with product to implement the AND operator). 

Figure 2.7. Example of logical operators, fuzzy algebra. 

In fuzzy algebra AND, OR, and NOT are known as the fuzzy intersection 
or conjunction (AND), fuzzy union or disjunction (OR), and fuzzy complement 
(NOT), but as said before their definitions are by no means unique. 

2.2.2.3. Fuzzy Rules 
Fuzzy rules play a key role in the fuzzy inference process – see Figure 2.1. Fuzzy 
systems are universal approximators if enough rules are stated. Fuzzy sets and fuzzy 
operators that constitute the fuzzy algebra are the elements of if-then rule 
statements. A single fuzzy if-then rule assumes the form “if z is in the fuzzy set A
then x is in the fuzzy set B”. The if-part of the rule “z is in A” is called the 
antecedent, while the then-part of the rule “x is in B” is called the consequent. 

If A1 then B1 

If A2 then B2 

If Am then Bm 

Z � A 

B1’

B2’

Bm’

Σ

w1

   w2 

wm

B Defuzzifier

X=F(Z) 

Figure 2.8. Additive fuzzy system architecture. 

With reference to Figure 2.8, an N-dimensional input space (in 
performance diagnostics, the measurements) is mapped into a P-dimensional output 
space (performance parameters) by means of m rules. Each input vector partially 
activates all the rules in parallel, the rule can be associated with different rule-
weights wi, and eventually a defuzzifier calculates the outcome solution based on 
the activation of the MFs. It can be proved that an additive fuzzy system computes a 
conditional expectation E(X|Z) and therefore an optimal nonlinear estimation 
(Kosko, 1997). 
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Interpreting an if-then rule involves the following phases: (i) evaluating 
the antecedent (which involves the fuzzification of the input and applying any 
necessary fuzzy operators) and (ii) applying that result to the consequent (known as 
implication). In the case of two-valued or binary logic, when the if-part of the rule 
is true, the then-part is true. In a multi-valued logic the antecedent is a fuzzy 
statement, so if the antecedent is true to some degree of activation, then the 
consequent is also true to that same degree.  

Therefore, interpreting one if-then rule is a three-part process: 
Fuzzify inputs: resolve all fuzzy statements in the antecedent to a 
degree of membership between 0 and 1.  
Apply fuzzy operator to multiple part antecedents: If there are 
multiple parts to the antecedent, apply fuzzy logic operators and 
resolve the antecedent to a single number between 0 and 1. This is 
the degree of support for the rule.  
Apply implication method: Use the degree of support for the 
entire rule to shape the output fuzzy set. The consequent of a 
fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set 
is represented by a membership function that is chosen to indicate 
the qualities of the consequent. If the antecedent is only partially 
true (i.e., is assigned a value less than 1), then the output fuzzy set 
is truncated according to the implication method. 

In general, one rule by itself does not do much good. What is needed are a 
number of rules that can play off one another. The output of each rule is a fuzzy set. 
The output fuzzy sets for each rule are then aggregated into a single output fuzzy 
set. Finally, the resulting set is defuzzified, or resolved to a single number (Zadeh, 
1969). 

2.2.3. Fuzzy Inference Systems 

Fuzzy engineering can be implemented according to a three-step procedure aimed at 
defining the system architecture. The first step is the identification of the input and 
output variables Z and X. In a diagnostics system the input variables are the 
elements of the set of measurements and the outputs are the performance 
parameters representative for the health of the engine. The second step is aimed at 
selecting the right membership functions for these variables. The third step relates 
the output sets to the input sets through fuzzy rules. The way in which the rules are 
stated depends on the learning algorithm. Rules in this work are generated running a 
whole-engine steady-state simulation code (engine model). The choice of the right 
learning algorithm has a big impact on the accuracy of the fuzzy system. 

Once the system architecture is defined, fuzzy inference is the process that 
computes the outcome provided an input to the system. There are two main types of 
inference methods known in the literature as Mamdani and Sugeno. A Mamdani-
type inference is based on the fact that fuzzy sets are defined for inputs and outputs. 
Therefore, after the aggregation process there is a fuzzy set for each output variable 
that needs to be defuzzified. 
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On the other hand, a Sugeno-type system is based on the definition of the 
output MFs as single spikes rather than distributed fuzzy sets. The single spike is 
also known as singleton output membership function and can be considered as a 
pre-defuzzified fuzzy set. This improves the efficiency of the process simplifying 
the computation. The outcome is just the weighted average of a few data points. 
The GPD method developed in this work uses the Mamdani inference strategy. 

A typical fuzzy logic system (Figure 2.9) involves fuzzification, rules 
evaluation and defuzzification phases: 

A fuzzifier turns numeric values (input measurements) into 
degree of activation of input MFs. 
An inference engine accumulates the effects of each rule on the 
output MFs; it includes logical operations, implication and 
aggregation phases. 
A defuzzifier calculates the outcome based on the activation of 
the output MFs. 

Output

Fuzzification 

FUZZY 

LOGIC 

Inference

Process 

Defuzzification 

Input

Rules 

(IF/THEN)

Figure 2.9. Configuration of a rule-based fuzzy logic system. 

2.2.4. Comments on Fuzzy Rules for a Diagnostics System 

Among the various gas path diagnostics methods, a distinction can be made 
(Volponi, 2003) between techniques more suitable for estimating gradual 
deteriorations and techniques for estimating rapid deteriorations, i.e., where 
deteriorations represent the faults occurred. We referred to such methods as MFI 
(multiple-fault isolation) and SFI (single-fault isolation), respectively. The former 
implies that all the engine components (whose shifts in performance we are 
estimating) deteriorate slowly whereas the latter implies a rapid trend shift probably 
due to a single entity (or perhaps two) going awry. AI-based methods such as fuzzy 
logic systems are more suitable for SFI problems, because they are based on an 
approximation of all the possible solutions for the limited number of combinations 
used to train the system. The extension to all possible combinations (even in a 
limited search-space) is theoretically possible, but extremely burdensome from a 
computational point of view. In this work, a fuzzy logic diagnostics system was 
firstly set up to secure an effective SFI capability – see sections 2.4 and 2.5. Then a 
partial MFI capability was tested considering up to four health parameters (two 
components) simultaneously deteriorated – see section 2.6.

The number of necessary fuzzy rules grows exponentially with the number 
of system variables. Any attempt to reduce the number of rules is inevitably 
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associated with less precise approximation capability. In general, we must trade 
some accuracy for ease of computation.  

In this work, a diagnostic system for the three-shaft turbofan was 
developed – see section 2.4. The six gas path components investigated are: FAN, 
intermediate pressure compressor (IPC), high pressure compressor (HPC), high 
pressure turbine (HPT), intermediate pressure turbine (IPT) and low pressure 
turbine (LPT) – see second column of Table 2.1. When these six components are 
considered for GPD, the number of possible combinations C of components 
degraded can be calculated as: 

!
!( )!

nC
k n k (2) 

that gives the number of combinations of n=6 components taken k at a time. 
According to Eq. (2, all the possible combinations are listed in Table 2.1.

Table 2.1. Combinations C of six gas path components taken k at a time 
    k 
C

1 at a 
time

2 at a time 3 at a time 4 at a time 5  at  a time 6 at a 
time

1 FAN FAN - IPC FAN - IPC - HPC FAN - IPC - HPC- HPT FAN - IPC - HPC- HPT-IPT 
2 IPC FAN - HPC FAN - IPC - HPT FAN - IPC - HPC- IPT FAN - IPC - HPC- HPT-LPT 
3 HPC FAN - HPT FAN - IPC - IPT FAN - IPC - HPC - LPT FAN - IPC - HPC- IPT-LPT 
4 HPT FAN - IPT FAN - IPC - LPT FAN - IPC - HPT- IPT FAN - IPC - HPT- IPT-LPT 
5 IPT FAN - LPT FAN - HPC- HPT FAN - IPC - HPT - LPT FAN - HPC – HPT- IPT-LPT 
6 LPT IPC - HPC FAN - HPC - IPT FAN - IPC - IPT - LPT  IPC - HPC- HPT-IPT-LPT 

FAN-
IPC- 
HPC- 
HPT- 
IPT- 
LPT

7  IPC - HPT FAN - HPC - LPT FAN - HPC - HPT - IPT  
8  IPC - IPT FAN - HPT - IPT FAN - HPC - HPT- LPT  
9  IPC - LPT FAN - HPT - LPT FAN - HPC - IPT - LPT  
10  HPC - HPT FAN - IPT - LPT FAN - HPT - IPT - LPT  
11  HPC - IPT IPC - HPC - HPT IPC - HPC- HPT - IPT  
12  HPC - LPT IPC - HPC- IPT IPC - HPC - HPT - LPT  
13  HPT - IPT IPC - HPC - LPT IPC - HPC- IPT - LPT  
14  HPT - LPT IPC - HPT- IPT IPC - HPT - IPT - LPT  
15  IPT - LPT IPC - HPT - LPT HPC - HPT - IPT - LPT  
16   IPC - IPT - LPT  
17   HPC - HPT - IPT  
18   HPC - HPT - LPT  
19   HPC - IPT - LPT  
20    

Considering that the number of parameters representative of the health of 
each component is always 2, 2k is the number of parameters deteriorated 
simultaneously in each rule (each run of the engine model) when we simulate k
degraded components at a time. 

For example, if two degraded components at a time are simulated, four 
parameters are changed in the generation of each rule. 

On the other hand, the equation 
2g kN f f (3) 

computes the number of permutations of f (=3 in the example of Table 2.2) fault 
levels (e.g., 0, 1, 2% change in performance parameters) taken g=2k (=4 in Table 
2.2) at a time with repletion. The parameter g=2k represents the number of 
parameters changed at a time. In the case of Table 2.2 the number of permutations 
with repetitions are N=f2k 4=3 =81. As we have six components, we have C=15
combinations of 2 components (and 4 parameters) taken at a time: the final number 
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of rules to generate in this example would be the product TotalCombinations = CN
= 15·81 = 1215. 

Table 2.2. Example of 4 deteriorated parameters at a time 

ηi Γi ηj Γj

0
1
2
0
1
2
..

0
0
0
1
1
1
..

0
0
0
0
0
0
.. 

0
0
0
0
0
0
..

Summarizing, the number of TotalCombinations for a three-spool engine 
with six gas path components, and so the number of rules to generate, is given by: 

2 6!
!(6 )!

kTotalCombinations C N f
k k (4) 

where k is the number of degraded components simulated at a time, and f is the 
number of fault levels, as performance parameters percentage changes from the 
clean engine. 

Given six components and two health parameters per component, we have 
12 performance parameters (  and  of the components). We define the search 
space as the 12-dimensional space of the ranges of variability of the 12 parameters 
in percentage changes from the clean value. The solution of the diagnostic problem 
will be looked for within the constrained search space. 

The learning algorithm devised in this work builds the fuzzy-logic-based 
diagnostic system with a number of rules equal to TotalCombinations as defined 
above, noting that there is no justification to omit some combinations if the purpose 
is to approximate the dependency between measurements and performance 
parameters when the latter vary in a given search space. Nevertheless, the values of 
the f fault levels can either be chosen as uniformly distributed in the ranges of the 
search space or not. This work is dedicated to the study of a fuzzy system with 
uniformly distributed fuzzy rules, so the density of the fuzzy rules is left unchanged 
through a given search space, though it is varied from system to system to trade 
accuracy towards computational burden as discussed before. 

2.2.4.1. Fuzzy Systems and Neural Networks 
A last comment can be made about the strong analogy that exists between fuzzy 
systems and neural networks. Neural networks, as fuzzy systems, can approximate a 
function or process that represents a relation of cause and effect and can act as 
universal approximators. A neural network, instead of stating rules, trains its 
synapses. The numerical synaptic values change when input data make the neurons 
fire. This makes a net able to learn to recognise patterns and therefore to map inputs 
into outputs. The major difference is that, in the case of a neural network, a user has 
no way to know what the net has learnt or forgotten during the learning process. 
When the network is trained with new information there is an inevitable tendency to 
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forget the old ones. On the other hand, fuzzy rules are modular and the user can 
always put them in or take them out at will. 

Figure 2.10. Three-shaft turbofan engine configuration. 

Table 2.3. Measurement set 

1 N2 : IP Shaft Speed 
2 N3 : HP Shaft Speed 
3 FF : Fuel Flow 
4 P13 : FAN tip exit Total Pressure 
5 P25 : HPC entry Total Pressure 
6 P3 : HPC exit Total Pressure 
7 T25 : HPC entry Total Temperature 
8 T3 : HPC exit Total Temperature 
9 T45 : IPT exit Total Temperature 

10 T5 : LPT exit Total Temperature 

2.3. A Three-Spool Engine Configuration and Its 
Instrumentation

The engine involved with the development of the technique described in this 
chapter is a three-shaft turbofan and its configuration is shown in Figure 2.10
highlighting the typical sensor locations. The set of measurements available for the 
diagnostics process within this project is listed in Table 2.3 using the measurements 
listed in Table 2.4 as power setting and environmental parameters. Sensor noise is 
assumed to follow a normal distribution whose standard deviation in terms of 
percentage deviation from the nominal value can be used as a parameter 
representative of the noise level. Accurate values of standard deviations are 
provided by the sensor manufacturers but, for the scope of this project, the sensor 
noise standard deviations listed in Table 2.5 are considered sufficiently accurate and 
realistic. The performance simulations are undertaken mainly using Turbomatch, a 
steady-state performance simulation code developed at Cranfield University. The 
simulations are carried out at a condition of 10000 m of altitude, 0.85 Mach and 
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0.8% PCN1 (which identifies the percentage of accomplishing the design point 
condition by low-pressure shaft speed N1). 

Table 2.4. Power setting and environmental parameters 

1 N1 : LP Shaft Speed 
2 M : Mach Number 
3 Z : Altitude

Table 2.5. Sensor noise standard deviations in % of the measured value 

SENSOR TYPE STDV
i

Temperature 0.4%
Pressure 0.25%
Fuel Flow 0.5%
Shaft Speed 0.05%

2.4. A Fuzzy-Logic-Based Diagnostics System for 
a Three-Spool Engine 

2.4.1. Objectives and Scope 

Considering the advantages of fuzzy logic as illustrated in Section 2.2, and 
according to a thorough literature study reported in (Marinai, 2004; Marinai et al.,
2004), the research objectives were precisely to develop a procedure that is: 

Based on a nonlinear model. 
Designed specifically for SFI and/or MFI. 
Capable of detecting with reasonable accuracy significant 
changes in performance. 
Able to provide a “concentration” capability on the actual fault. 
Competent to make a worthwhile diagnosis using only few 
measurements (N>M).
Able to deal with random noise in the measurements. 
Light in computational requirements. 
Fast in undertaking diagnosis for on-wing applications. 
Able to be adapted to similar systems in a reasonably short time: 
exempt from training and tuning uncertainties, difficulties and 
dependences for setting-up parameters. 
Free from a lack of comprehensibility due to “black-box” 
behaviour. 

The scope of this section is to illustrate an application of the devised 
method to a three-spool engine. The most important parameters in the process are 
identified and optimised through a sensitivity study. Then, the accuracy of the 
methodology in this specific application is assessed with simulated case studies in 
section 2.5. Section 2.6 extends the applicability of the method to the MFI problem. 
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2.4.2. The Methodology and Identification of the Key 
Parameters

Gas path analysis is formulated here as a problem of recognition of deteriorated 
measurements patterns by using a rule-based method that has its foundation in 
fuzzy algebra (Marinai et al., 2003a, 2003b). 

The inherent capability of fuzzy systems, previously pointed out in section 
2.1, to deal with GPD problems is exploited here in two ways. Firstly, we take into 
account the uncertainty in the measurements that affects the fault pattern 
characterization, at a set level. Secondly, at a system level, the learning algorithm 
devised in this project states fuzzy rules to map input sets of measurements into 
output sets of performance parameters, in a constrained search space. This enables 
diagnoses even though the formulation of the diagnostics problem is analytically 
undetermined. 

The diagnostic process, as shown in Figure 2.11, is designed to assess 
performance parameters percentage changes from a clean engine condition (12 
outputs) given the knowledge of the measurement changes (10 inputs) calculated as 
percentage deviations with respect to a baseline determined by means of an engine 
model run at a specific power setting and environmental conditions. The fuzzy 
system F=R10 R12 uses m rules to map the vector of input delta measurements z to 
a vector of output delta performance parameters x=F(z). The analysis is undertaken 
at the operating condition characterised by the following parameters: N1=0.8%, 
Mach= 0.85, Altitude=10000 m. 

Figure 2.11. Layout of the fuzzy logic diagnostic system. 

Diagnostics is made through a Mandami-type fuzzy inference process. The 
ranges of variability of the outputs –  and  for the six components – define the 
search space, where the solution is sought.  A sensible choice of these ranges for a 
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real-life application would be between -5% and 0 for all the efficiency deltas and 
for the flow capacity deltas of the compressors, while they can cover positive values 
for the turbine flow capacity deltas going for example between -5% and +3%. The 
range of variability of each input variable is evaluated according to the sought 
output ranges through the engine model. 

2.4.2.1. Fault Levels Combinations and If-Then Rules 
The learning algorithm proposed in this work states if-then rules that are generated 
running the engine model and therefore are strictly related to the aero-thermal 
equations. The use of data obtained from the engine model to generate the rules 
preserves the linearity of the problem. 

The rules have the general form IF condition-1 AND condition-2 …THEN 
statement. The if-part of the rule refers to the fault signature in the measurements, 
represented through input MFs, evaluated by running the engine model at a defined 
deteriorated condition within the search space. The statement in the then-part of the 
rule refers to this condition characterised with output MFs. 

The procedure to state fuzzy rules starts with the definition of the search 
space for the performance parameters. According to section 2.2.4 the search space 
includes all the combination of changes in efficiency and flow capacities of the 6 
components that the system is meant to deal with. The parameters that characterise 
the search space are: (i) the number of components that are considered deteriorated 
simultaneously (1 at a time for SFI), (ii) the maximum and minimum values of the 
ranges of variability of the performance parameters, and (iii) the increment value 
that divides each range in a finite number of constant variations (fault levels). For 
the purpose of illustrating the methodology, we consider the following search 
space:

Number of components simultaneously deteriorated = 1 (SFI) 
Maximum variation in compressors’ efficiencies = 0% 
Minimum variation in compressors’ efficiencies = -3% 
Maximum variation in compressors’ flow capacities = 0% 
Minimum variation in compressors’ flow capacities = -3% 
Maximum variation in turbines’ efficiencies = 0% 
Minimum variation in turbines’ efficiencies = -3% 
Maximum variation in turbines’ flow capacities = 1% 
Minimum variation in turbines’ flow capacities = -3% 
Increment Value= 0.5% 

The features of this search space are the followings: 
It defines the 12-dimensional space of the ranges of variability of 
the 12 parameters in % changes from the clean value. 
It takes into account positive variation of turbines’ flow capacity. 
We consider C=6 combinations of one gas path component 
deteriorated at a time – see section 2.2.4.
The increment value in the search space is 0.5%. This means that 
the engine model is run for all the combinations of variations of 
the performance parameters within the ranges defined above, 
obtained going from the minima to the maximum in 0.5% steps. 
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For example, going from 0 to 3% of FAN efficiency the 
following 7 conditions of deterioration are generated: 0, -0.5, -1, -
1.5, -2, -2.5, -3%. 
We note that with 0.5% steps, all the ranges are divided in 7 
combinations except for the turbine flow capacity ranges, which 
are divided into 9 fault levels.  
The number of if-then statements generated is equal to 331. 

The solution of the diagnostic problem will be looked for within the 
constrained search space, so we define a number of fuzzy rules equal to the if-then 
statements generated running the engine model. Note that the use of a constant 
increment value implies that the values of the f fault levels are chosen uniformly 
distributed in the ranges. 

2.4.2.2. Input and Output Membership Functions 
Fuzzy sets are defined for the inputs and the outputs. Each of the input ranges is 
spanned with a number Mi of MFs where the index i=1,…,n identifies the i-th 
measurement. These MFs centred, for each measurement, in the outcome of the 
engine model run for all the combinations identified in the search space, or in the 
mean value of a cluster of values grouped according to the procedure. On the other 
hand, the deviations in performance parameters of the table are always associated 
with an MF. Similarly, Nj MFs for j=1,…,p are designed for the i-th performance 
parameter centred in fault level values specified in the search space.  

Two types of MFs were considered: triangular, or Gaussian according to 
equation (5), where m is the midpoint of the function and RMS= . The two types of 
MFs are shown in Figure 2.12.

2
0.5

( )
x m

MF x e (5) 

The optimal type of output MFs is not known a priori and therefore a 
sensitivity study (section 2.4.5) was undertaken to identifying the choice that 
contributes to an optimal accuracy of the diagnostics system. An example of seven 
Gaussian MFs spanning the range for FAN  is shown in Figure 2.13.

On the other hand, a preliminary comment can be made here regarding the 
input MFs. The degree to which the measurement value z belongs to a given MF, in 
fuzzy algebra, was named a(z). Alternatively, a(z) can be interpreted as the 
probability that the measurement is the midpoint of the MF given that the 
measurement value is z. Therefore, we can view the input fuzzy set as a random set 
of two-point conditional probability densities, where the set degree a() = 
degree(z A) becomes the local conditional probability prob{Z=A Z=z}. In this 
sense we can use Gaussian MFs for the input measurements with values of RMS 
equal to realistic values of sensor noise RMSs. In the opinion of the authors, this 
choice is an effective and consistent way of designing measurement MFs oriented 
to tackle the measurement uncertainty problem. However, at this level of the 
investigation, the possibility of using triangular MFs, generally considered very 
effective in designing highly dimensional fuzzy systems, is left also for the input 
variables. This leaves open the opportunity to compare the two input MF types – 
see section 2.4.5 –  to identify the best system layout.  
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Figure 2.12. Triangular membership function (left) and Gaussian membership function 
(right).

Figure 2.13. Example of 7 Gaussian MFs in a fixed performance parameter range for the 
output FAN .

2.4.2.3. Fuzzy Rules Generation 
Each rule is composed of two parts: (i) the if-part that contains the fault signature in 
the measurements represented with MFs linked with the AND operator, and (ii) the 
then-part that contains the MFs of the output performance parameters that 
characterise the fault condition. Table 2.6 and Table 2.7 contain an example of data 
necessary to set up a rule generated by running the engine model. The use of data 
obtained from the engine model to generate the rules preserves the linearity of the 
problem. A rule states in terms of MFs, what in terms of numerical values can be 
read as follows: if the pattern in the measurements shows the deviations from a 
baseline listed in Table 2.6, then the combination of deterioration levels is in Table 
2.7.
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Table 2.6. Example of % changes in measurements from the baseline  

∆N2 ∆N3 ∆FF ∆P13 ∆P25 ∆P3 ∆P5 ∆T25 ∆T3 ∆T45
0.460 -0.008 -0.949 -0.907 -1.117 -1.115 -0.804 0.169 0.111 0.182 

Table 2.7. Example of % deltas in performance parameters from the clean engine  

∆ηFAN ∆ΓFAN ∆ηIPC ∆ΓIPC ∆ηHPC ∆ΓHPC ∆ηHPT ∆ΓHPT ∆ηIPT ∆ΓIPT ∆ηLPT ∆ΓLPT

-2 -1.5 0 0 0 0 0 0 0 0 0 0 

In general, a rule will be formulated according to Table 2.8 and Table 2.9
created from Table 2.6 and Table 2.7. Table 2.8 shows the formulation of the if-part 
of the rule where the mfi is the MF of the i-th input that is either centred in the i-th 
value of Table 2.6 or centred in the mean value of a cluster of values defined as 
follows. The algorithm that generates the input MFs for a number m of rules starts 
with the choice of K, the maximum number of input MFs (based on the experience). 
Then, for the i-th input measurement, the values of deviations (outcomes of the 
engine model for a number m of rules) are sorted and if two values are overlapped 
one of them is discharged. Then, the values are counted; if their number is less or 
equal than K (the maximum number of MFs required) one MF is centred in each of 
these values that at the most are m (number of rules). Otherwise, the difference 
between each value and its consequent value, in the sorted list, is computed. The 
smallest value of difference between two measurement deviations is identified and 
these two values are substituted with their average value. An MF is then centred in 
this average value. This is repeated until the number of values that are centres of the 
input MFs is equal to K. In the tables, the symbol + represents the AND operator. 
Accordingly, Table 2.9 contains the then-part of the rule with the output MFs that 
identify the deteriorated condition. 

Table 2.8. If-part of the fuzzy rule  

If-part – ∆ measurements MFs 
mf1 + mf2 + mf3 + mf4 + mf5 + mf6 + mf7 + mf8 + mf9 + mf10 

Table 2.9. Then-part of the fuzzy rule  

Then-part – ∆ performance parameters MFs 
mf1 , mf2 , mf3 , mf4 , mf5 , mf6 , mf7 , mf8 , mf9 , mf10 , mf11 , mf12 

2.4.2.4. Fuzzy Inference: Functional and System Parameters 
Fuzzy inference is the process used to perform pattern recognition and therefore to 
compute mapping between input values and output values. 

The inference process consists of feeding an input set of % changes of the 
10 measurements that are taken along the gas path (or simulated with the engine 
model to generate a test case) into the fuzzy logic system that calculates the output 
performance parameters % changes. The fuzzy inference process includes the 
following five phases: (i) fuzzification of the input variables, (ii) application of the 
AND fuzzy operator in the if-part of the rule, (iii) implication from the if-part to the 
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then-part of each rule, (iv) aggregation of the then-parts across the rules, and (v) 
defuzzification.

The following parameters are referred to as functional parameters and can 
be combined in several ways in designing a fuzzy system: 

AND operator, implemented as: product, minimum. 
Implication method, implemented as: product, minimum. 
Aggregation method, implemented as: summation, maximum 
Defuzzification method, implemented as: centroid, centre of 
maximum. 

The functional parameters were identified as those parameters that 
characterise the functionality of the inference process. A first sensitivity study is 
described in section 2.4.5 to identify the combination of parameters most suitable to 
design a fuzzy-logic-based diagnostic system. There is no reason to think that when 
the type of engine diagnosed changes this optimal combination of functional 
parameters should vary. So, the outcome of this first investigation is the choice of 
the fuzzy functional parameters for a generic diagnostics system. 

On the other hand, we define the following system parameters:
Number, type, width of the input MFs. To take into account 
sensor noise the value of amplitude (s or ) for the i-th 
measurement can be expressed as a multiple of its sensor noise 
RMSi (a·RMSi).
Number, type, width of the output MFs. The number of output 
MFs is always a result of the search space definition. For each of 
the 12 performance parameters (involved in this application), for 
a given range of variability, this number depends on the 
increment value (as defined in section 2.4.2.1) once the search 
space is defined. This number corresponds to the number f of 
fault levels that the range is divided into. 

Summarizing, for the application described in this chapter, with fixed 
inputs and outputs, the system parameters to be optimised are six: number, type and 
width of the input MFs, type and width of output MFs and increment value in the 
search space. 

A second sensitivity study will be carried out in section 2.4.5 aimed at 
identifying the best values to set up a system for the three-spool engine considered 
in this work. When implementing a new diagnostic system, a new sensitivity study 
may be required to identify their optimal values. Nevertheless, the logic and the 
procedure to choose the parameters remains suitable and the parameters chosen in 
this work can be used as first attempt values. 

2.4.3. Automated Procedure 

The procedure to generate fuzzy rules was automated via the graphical user 
interface (GUI) shown in Figure 2.14. This GUI constitutes the first of two 
windows of the diagnostics module based on fuzzy logic described in (Marinai, 
2004). This first GUI is aimed at setting up fuzzy logic diagnostics models for a 
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given engine. A second interface is aimed at operating the diagnostics models 
created to estimate the possible faults – see section 2.7.

Figure 2.14. Fuzzy diagnostic model setup GUI. 

The first GUI of the diagnostics module, as shown in Figure 2.14, is able 
to setup a diagnostics model given an engine model (Turbomatch), an operating 
condition and a search space. 

In the GUI the main elements that must be specified are: 
In the engine model setup frame of the GUI: engine model used, 
operating condition, selection of the measurement set (number 
and type). 
In the search space definition frame of the GUI: the ranges of 
variability of the performance parameters, the number of 
components simultaneously degraded and the increment value in 
the ranges. 
In the system parameters definition frame of the GUI: number, 
type and width of the input MFs, type and width of output MFs. 
(Note that the increment value is defined with the search space.) 
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In the functional parameters definition frame of the GUI: AND 
operator, implication, aggregation, and defuzzification algorithms 
among the techniques listed in section 2.4.2.4.

Once these selections are made, a fuzzy logic inference system (FIS) is 
generated and saved. An additional frame of the GUI was designed to test FISs by 
simulating test data with implanted faults as well as measurement noise.  

An ulterior feature of this interface is its capability of generating a 
diagnostics FIS able to diagnose component faults in the presence of systematic 
errors in the measurements (bias) while identifying the faulty sensor as well. A 
checkbox in the search space definition frame of the GUI enables the input of an 
ulterior system parameter called sigma NOT. This feature is discussed in detail in 
(Marinai, 2004) but not described in this chapter. 

2.4.4. Sensitivity Study: Strategy 

2.4.4.1. Reasons for the Study. Anticipation of the Results 
Section 2.4.5 will present a sensitivity study aimed at identifying our choice of 
optimal combination of system and functional parameters for an optimal 
approximation capability of the diagnostics system. The approximation capability is 
defined as the ability of the method to model and approximate the functional 
relationship between sets of inputs (fault signature in the measurements) and the 
right sets of outputs (variations in the performance parameters), without 
considering, for the moment, the additional complication of measurement errors. 
Subsequently, in section 2.5, noise is added to the test cases and our optimal 
selection of the system parameters is modified accordingly, to achieve an enhanced 
accuracy of the diagnosis. 

The sensitivity study (to evaluate the method’s approximation capability) 
includes two sets of tests aimed at carrying out: (i) optimization of the functional 
parameters, and (ii) optimization of the system parameters. For the benefit of the 
reader, we anticipate here the results that are justified throughout the next 
subsection. Our choice of optimal functional parameters is the following: 

AND operator, implemented as: product. 
Implication method, implemented as: product. 
Aggregation method, implemented as: summation. 
Defuzzification method, implemented as: centroid (centre of 
maximum as second best). 

These features identify a fuzzy logic system commonly known as SAM 
(standard additive model). 

On the other hand, the optimal selection of system parameters is: 
Gaussian MFs for input and output. 
Maximum N of MFs fixed to 500. It was found that the more 
input MFs are defined the better, in fact this value is greater than 
the number of input MFs that correspond to the combinations in 
the search space identified for an SFI capability. Nevertheless, in 
the case of a system with MFI capability, in the opinion of the 
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authors, a sensible value (e.g., 500) must be given to limit the 
computational burden. 
Width of MFs equal to 0.15 for the input MFs and equal to 0.5 for 
the output MFs. Note that the optimal value of the input MFs 
width to achieve an effective approximation capability is different 
from the case in which noise is added. In the presence of noise the 
optimal value for each measurement is different and corresponds 
to the values of the sensors’ noise RMSs assuming that noise is 
normally distributed, as discussed in section 2.5.
The number of output MFs is identified by the choice of the 
increment value in the search space. A smaller increment value is 
associated with a higher number of rules. Even though it is 
proved that this is advantageous for the accuracy of the system, it 
considerably reduces the speed of the calculation. 

2.4.4.2. Description of the Case Studies 
Test cases were generated, implanting 1771 combinations, deteriorating the six 
components independently (two parameters at a time) in the ranges of variability 
defined for the examined search space (see section 2.4.2.1) with an increment value 
of 0.2. 

Table 2.10. Combinations of functional parameters 

case AND Implication  Aggregation Defuzzification 

1 Product  Product  Summation  Centroid

2 Minimum Product  Summation  Centroid 

3 Product  Minimum  Summation  Centroid 

4 Minimum Minimum Summation  Centroid 

5 Product  Product  Maximum  Centroid 

6 Minimum Product  Maximum Centroid 

7 Product  Minimum  Maximum Centroid 

8 Minimum Minimum Maximum Centroid 

9 Product  Product  Summation  C.O.M

10 Minimum Product  Summation  C.O.M 

11 Product  Minimum  Summation  C.O.M 

12 Minimum Minimum Summation  C.O.M 

13 Product  Product  Maximum  C.O.M 

14 Minimum Product  Maximum C.O.M 

15 Product  Minimum  Maximum C.O.M 

16 Minimum Minimum Maximum C.O.M 

In the sensitivity study reported in section 2.4.5, a first series of 16 tests 
were performed to identify the optimal functional parameters. The test cases were 
used to assess the approximation capability of 16 different systems whose layouts 
were designed according to the combinations of functional parameters listed in 
Table 2.10. For these 16 systems, the system parameters were fixed to the following 
first-guess values: Gaussian MFs in input and output, maximum N of MFs fixed to 
500, width of input MFs equal to 0.25, width of output MFs equal to 0.5, increment 
value of the search space equal to 0.5%. 
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Once a best choice of functional parameters was found, it was kept 
unchanged in the subsequent tests: the second group of tests was undertaken using 
the same 1771 test cases to evaluate the optimal system parameters among the 
following possible selections. 

Input MFs type= Gaussian, Triangular. 
Input MFs width= 0.1, 0.15, 0.25, 0.5. 
Output MFs type= Gaussian, Triangular. 
Output MFs width= 0.25, 0.5, 1%. 
Increment value= 0.25, 0.5, 1%.  
Input MFs number= 50, 100, 500. 

The strategy used to carry out these tests follows: starting from the first-
guess values of system parameters used in the first series of tests (Gaussian MFs in 
input and output, maximum N of MFs fixed to 500, width of input MFs equal to 
0.25, width of output MFs equal to 0.5, increment value of the search space equal to 
0.5%), the changes listed in Table 2.11 were made in sequence. For each change in 
system parameters, the system so generated was tested. The change was carried 
forward to the successive test only if it outperformed the results from the previous 
system. 

Table 2.11. List of system parameters changes for the sensitivity study 

N. Change to system parameters 

1 Input MFs type changed to triangular (from Gaussian) 

2 Output MFs changed to triangular 

3 Input MFs width increased to 0.5 (from 0.25) 

4 Input MFs width reduced to 0.15

5 Input MFs width reduced to 0.1  

6 Output MFs width reduced to 0.25 (from 0.5) 

7 Output MFs width increased to 1  

8 Increment value increased to 1 % (from 0.5%) 

9 Increment value reduced to 0.25 % 

10 Input MFs number reduced to 100 

2.4.4.3. Three Methods to Estimate the System Accuracy 
This section introduces three methods that were used to assess the performance 
parameters’ estimation error and therefore the capability of a given diagnostics 
system to meet the requirements, as discussed below. 

For each input set of 10 measurement deviations, the diagnostics process 
computes 12 deviations in performance parameters. The difference between the 
implanted deviation in each performance parameter and the corresponding 
calculated one is computed according to the following equation: 

Delta = Implanted – Calculated (6)
Method 1. This method computes, for each test case, the max Delta

(maximum value of Delta ) calculated for the 12 parameters estimated. Then it 
assigns to this value different levels of severity according to its amount. Three 
severity ranges were considered: 

Low severity (LS): max Delta < 0.5% 
Medium severity (MS): 0.5%<max Delta < 1% 
High severity (HS): max Delta > 1% 
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Therefore for the 1771 test cases created, for each system assessed is 
calculated: number and % of MS cases and number and % of HS cases (the number 
and % of LS cases can be obviously deduced).   

This method is aimed at evaluating local errors of the system in estimating 
the performance parameters, pointing out when in each test case the maximum error 
overcomes fixed thresholds.  

Method 2. This technique is used only to assess SFI capability when a 
fault is implanted in only one component at a time (two parameters simultaneously 
faulty). The 1771 test cases are divided into six groups characterised by a different 
faulty component, the number of components being six. This method considers, in 
each group, only the two parameters affected by deterioration and computes the 
Deltas for them only. For each parameter in which deterioration is implanted this 
method computes: 

 = the mean value of the Deltas across the group of test cases 
relative to the same component deteriorated. 
 = the standard deviation of those Deltas. 

Cl95%+ =  + 1.96 , the corresponding 95% upper confidence 
limit. 
Cl95%– =  – 1.96 , the corresponding 95% upper confidence 
limit. 

This approach computes a local error because it considers only the 
parameters where the deterioration is implanted. It undertakes for these parameters 
a statistical analysis of the results and therefore it can be used to provide an 
expected accuracy of the system on them. 

Method 3. This method computes, for each test case, the RMS of the 
Deltas for the N=12 parameters estimated for each calculation, according to the 
equation  

2( )
N

i
i i

Delta
RMS

N
(7) 

The average value, mean(RMS)=RMS, of the RMSs calculated for all test 
cases (1771 in the sensitivity study) is identified as a global parameter to estimate 
the accuracy of the diagnosis. This method is particularly useful to highlight a 
smearing tendency (see section 2.2.3) or else the propensity of some of the 
diagnostics methods to distribute the faults over many engine components even 
when only a limited number of components are affected by faults. 

The three methods are employed in this work in the following cases: 
Methods 1 and 3 are used in the sensitivity study reported in the 
next section (2.4.5) to provide a quick way of estimating a global 
accuracy of each system assessed. 
Methods 1, 2 and 3 are then used in section 2.5 to investigate in 
detail (local and global errors) the approximation capability of the 
fuzzy diagnostics system and successively its accuracy, in the 
presence of noisy measurements, for the diagnostics system with 
the chosen layout. 
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Methods 1 and 3 are used in section 2.6 to assess the partial MFI 
capability of the system. 

2.4.5. Sensitivity Study: Results 

2.4.5.1. Choice of the Functional Parameters 
This section is dedicated to reporting the results of the first part of the sensitivity 
study to identify the best choice of functional parameters. The 16 different layouts 
listed in Table 2.10 (section 2.4.4.2) were investigated and the results are 
summarized in Table 2.12, the number of cases in the two tables being the same. 
The table contains the results from two techniques to assess the diagnostics system 
accuracy: Methods 1 and 3 as defined in section 2.4.4.3. In the table, for each 
system, the results from Method 1 are the number (N) and the percentage (%) of the 
cases with medium severity (MS) and high severity (HS) errors. Besides, Method 3 
provides the average value of the RMS error, for the 1771 test cases.  

Table 2.12. Results from Methods 1 and 3 to assist the best choice of functional 
parameters

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 27 //  0.0152 0 // 0 0.048 

2 79 //  0.0446 2 // 0.0011 0.065 

3 35 //  0.0198 0 // 0 0.084

4 96 //  0.0542 3 // 0.0017 0.097 

5 43 //  0.0243 1 // 0.0005 0.058 

6 48 //  0.0271 2 // 0.0011 0.060 

7 57 //  0.0322 1 // 0.0005 0.068 

8 106 //  0.0599 2 // 0.0011 0.079 

9 31 //  0.0175 8 // 0.0045 0.046 

10 103 //  0.0582 20 // 0.0113 0.055 

11 80 //  0.0452 0 // 0 0.065

12 134 //  0.0757 6 // 0.0034 0.095 

13 51 //  0.0288 7 // 0.004 0.074 

14 49 //  0.027 8 // 0.0045 0.075 

15 50 //  0.028 7 // 0.004 0.076 

16 51 //  0.0288 10 // 0.0056 0.075 

The outcome of this analysis highlighted two optimal combinations of 
functional parameters that show a minimum number of MS and HS cases and a 
minimum average value of RMS. These best layouts are for the cases 1 and 9 that 
correspond respectively to the following layout: 

Best choice: AND=Product, Implication=Product, Aggregation= 
Summation, Defuzzification=Centroid. 
Second best choice: AND=Product, Implication=Product, 
Aggregation=Summation, Defuzzification=Centre of Maximum. 
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Case 1 was selected as best choice because it showed: minimum number of 
MS and zero HS cases. As far as the RMS is concerned, case 1 does not outperform 
case 9 that is considered to be the second best selection. Nevertheless the difference 
in RMS for the two systems is negligible. It is worthwhile noticing that the small 
value of RMS for case 9 indicates a strong concentration capability on the actual 
fault. 

2.4.5.2. Choice of the System Parameters 
The procedure to identify the most suitable combination of system parameters was 
presented in section 2.4.4.2. It consists of a sequence of 10 modifications to the 
first-guess values. After each change in system parameter, the layout was tested 
with the 1771 test cases introduced in section 2.4.4.2 and the change was kept in the 
successive layout only if it outperformed the results from the previous system. 

Table 2.13. Results from Methods 1 and 3 to assist the best choice of system parameters 

Method 1 Method 3 

case
MS cases (N. // %) HS cases (N. // %) RMS

Set up time 

Keep (K) / 

Reject  (R) 

the change 

1 339 //  0.1914 310 // 0.175 0.282 1 min, 12 sec R

2 29 //  0.016 0 // 0 0.049  unchanged R

3 305 // 0.1722 24 // 0.0136 0.112 unchanged R

4 26 //  0.0147 0 // 0 0.045 unchanged K

5 41 //  0.0232 4 // 0.0023 0.064 unchanged R

6 26 //  0.0147 2 // 0.0011 0.048 unchanged R

7 58 // 0.0327 2 // 0.0011 0.237 unchanged R

8 334 // 0.1942 44 // 0.0248 0.129 23 sec R

9 10 // 0.0056 0 // 0 0.117 4 min, 8 sec R

10 28 // 0.0158 2 // 0.0011 0.055 1 min, 12 sec R

This procedure was applied starting from the best choice of layout 
identified in section 2.4.5.1. The outcome of this sensitivity study is summarized in 
Table 2.13. The table case number corresponds to the layout change number of 
Table 2.11. Table 2.13 presents the results from Methods 1 and 3 (see section 
2.4.4.3) and the setup time or else the time to generate a new fuzzy logic inference 
system, with the new layout, for the search space under investigation. In the last 
column of the table is reported whether the layout with the change outperforms or 
not the previous one. 

The following change was introduced in the system parameters: 
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Input MFs width reduced to 0.15 (case 4), because it reduces the 
number of MS cases and the RMS.

It is worthwhile noticing that the changes associated with case 9 
(increment value reduced to 0.25%) were not introduced. The reasons are that even 
though the corresponding number of MS cases appreciably drops, the RMS
increases indicating a higher tendency to smear the fault in the 12 parameters. 
Moreover, the setup time increases significantly. It is an ambition of this work to 
extend the SFI capability of the system to an MFI capability; therefore concerns 
about the setup time are vital to enable this additional feature in a reasonable time. 
In fact, the number of rules that needs to be generated increases dramatically in 
implementing a system able to identify more than two components simultaneously 
faulty, and so does the setup time accordingly. 

Similarly, this procedure was applied starting from the second best layout 
identified in section 2.4.5.1 to complete the identification of a second optimal 
layout. The outcome of this second sensitivity study is summarized in Table 2.14.
The table case number corresponds to the layout change number of Table 2.11. The 
following two changes were introduced in the system parameters: 

Input MFs width reduced to 0.15 (case 4). 
Output MFs width increased to 1 (case 7). 

Table 2.14. Results from Methods 1 and 2 to assist the best choice of system parameters 
for the second optimal selection of the functional parameters  

case

Keep (K) / 

Reject  (R) 

the change

1 R

2 R

3 R

4 K

5 R

6 R

7 K

8 R

9 R

10 R

2.5. SFI Accuracy and Tuning 

This section is dedicated to a thorough analysis of the SFI accuracy of the fuzzy-
logic-based diagnostic system in the following cases: 

To approximate and model the functional relationship between 
sets of inputs (fault signature in the measurements) and sets of 
outputs (variations in the performance parameters), without the 
additional complication of measurements errors. The best layout 
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identified in section 2.4.5.2 is studied in more detail in section 
2.5.1.
To diagnose a fault in one component (SFI) in the presence of 
noise in the measurements. The accuracy of the system is tested, 
and how this accuracy can be enhanced changing the input MFs 
amplitude according to realistic values of sensor noise RMSs is 
shown in section 2.5.2.
To diagnose considerable changes in the two health parameters of 
one component with respect to a previously assessed deteriorated 
condition. A way of tuning the diagnostics system capable of SFI 
to estimate such changes and the method’s accuracy are reported 
in section 2.5.3.

2.5.1. Approximation Capability: Accuracy 

In section 2.4.5.2 an optimal layout for a fuzzy diagnostics system was identified 
via a sensitivity study. The system has the following features: 

Functional parameters: AND=Product, Implication=Product, 
Aggregation=Summation, Defuzzification=Centroid. 
System parameters: Gaussian MFs in input and output, Maximum 
N of MFs fixed to 500, width of input MFs equal to 0.15, width of 
output MFs equal to 0.5, increment value of the search space 
equal to 0.5% (this identifies indirectly the output MFs number – 
see section 2.4.2.4)

This section presents a more in-depth study of the accuracy of the devised 
diagnostics process by means of two techniques, introduced in section 2.4.4.3, to 
assess the system estimation error: Methods 1 and 3. This section is entirely 
dedicated to the analysis of system’s capability of approximating and modelling the 
functional relationship between inputs and outputs without considering 
measurement errors.

2.5.1.1. Accuracy Results: Method 2 
Figure 2.15 presents Deltas between implanted and calculated performance 
parameter deteriorations for the 1771 cases. 

For each case, efficiency and flow capacity changes were implanted 
simultaneously for one component: starting from the FAN, on the left of the 
diagram, to the LPT on the right. Therefore, for each test case shown on the x axis, 
two values are plotted on the y axis: the corresponding Deltas (errors) in estimating 
the efficiency and the flow capacity of the component simulated as faulty (the name 
of the component appears on the top of the diagram for each group of test cases). 
For each component, a statistical analysis of the result was carried out according to 
Method 2 and summarized in Table 2.15.
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Figure 2.15. SFI capability of the diagnostics system. Results for 1771 test cases. 

Table 2.15. Statistics of the diagnostics results, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.009 -0.003 -0.007 -0.007 -0.009 0.001 0.006 -0.026 -0.040 0.014 -0.032 0.017
σ 0.231 0.136 0.091 0.075 0.089 0.065 0.127 0.131 0.175 0.123 0.165 0.184
CI95%+ 0.444 0.264 0.173 0.141 0.166 0.129 0.256 0.230 0.302 0.255 0.292 0.377
CI95% - -0.461 -0.269 -0.186 -0.154 -0.184 -0.127 -0.243 -0.282 -0.382 -0.227 -0.355 -0.344

For each component degraded, the table reports, for each health parameter: 
the mean value ( ) of the errors between the calculated and the implanted 
performance parameter changes, over the test cases relative to that specific 
component, the standard deviation ( ) of such an error, and the derived 95% 
confidence intervals (CI95%). For each parameter it can be concluded that, with 95% 
confidence, the error is contained between CI + and CI –.95% 95%

2.5.1.2. Accuracy Results: Method 3 
A second performance parameters’ estimation error is introduced by computing, for 
each test case, the RMS of the Deltas for the 12 parameters at each calculation, 
according to the procedure previously described in Method 3.  This analysis reveals 
that the fuzzy logic system has a good accuracy on the parameters not affected by 
the implanted faults, or else it has a good “concentration” capability on the actual 
fault. The average value of the RMS error, for the 1771 test cases, was 0.045, which 
is a considerably low value. 

2.5.1.3. Computational Time Required 
One of the most favourable aspects of using fuzzy logic to implement a system 
capable of SFI, is its speed: once an automated setup procedure is designed (see 
GUI section 2.4.3) such a system is quick and easy to setup and equally fast when 
operated to diagnose a fault. The computational time obviously depends on the 
computer used but sensible figures for a current average computational capability 
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are listed in Table 2.16. The table reports the setup time and the diagnostics time 
relating them respectively to the number of rules to setup and the number of test 
cases to diagnose. These represent the elements on which the computational time 
has a stronger dependency. The diagnostics time for a single calculation is on the 
order of 0.1 second, as seen in the table. 

Table 2.16. Computational time with current computational capability 

Processing Time Dependency 

Setup time 1 min, 12 sec 331 rules 

Diagnostic Time 2 min, 50 sec 

(0.1 sec/case) 

1771 test cases 

2.5.2. Diagnostics Capability in the Presence of Noisy 
Measurements: Accuracy 

The sensitivity study illustrated in section 2.4.5 provided us with two best choices 
of layout for a fuzzy diagnostics system that required approximating and modelling 
the input–output functional relationship as defined in section 2.4.2. This section 
studies how these two systems perform when they are demanded to diagnose a fault 
given a set of measurements affected by noise. Moreover a way to enhance the 
accuracy changing the input MFs amplitude according to sensor noise RMSs is 
discussed. The systems have the following features: 

System 1 (best choice): 
Functional parameters: AND=Product, Implication= 
Product, Aggregation=Summation, Defuzzification= 
Centroid. 
System parameters: Gaussian MFs in input and output, 
maximum N of MFs fixed to 500, width of input MFs 
equal to 0.15, width of output MFs equal to 0.5, 
increment value of the search space equal to 0.5% (this 
identifies indirectly the output MFs number – see section 
2.4.2.4).

System 2 (second best choice): 
Functional parameters: AND=Product, Implication= 
Product, Aggregation=Summation, Defuzzification= 
Centre of Maximum. 
System parameters: Gaussian MFs in input and output, 
maximum N of MFs fixed to 500, width of input MFs 
equal to 0.15, width of output MFs equal to 1, increment 
value of the search space equal to 0.5%. 

As far as the functional parameters are concerned, System 1 belongs to the 
category of SAM systems. On the other hand, System 2 is a quasi-SAM system: the 
main difference lies in the defuzzification algorithm, implemented as center of 
maximum (COM) function. The 1771 test cases were modified adding to the i-th 
element of the measurement set a random number that represents a realistic noise 
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level according to the type of sensor required. The random number is generated as 
follows. Table 2.17 lists, for different types of sensors, realistic values of sensor 
noise standard deviations SDTVi as a percentage of the measured value, the noise 
being assumed to follow a Gaussian distribution.  For each measurement of the 
1771 test cases, a random number is generated from a normal distribution with 
mean zero, and standard deviation SDTVi , according to the value in the table. This 
random number represents the % deviation the corresponding measurement must be 
varied to simulate the noise. 

Table 2.17. Sensor noise standard deviations in % of the measured value 

Sensor type STDV
i

Temperature 0.4%
Pressure 0.25%
Fuel Flow 0.5%
Shaft Speed 0.05%

Once the random component is added to the measurements of the 1771 test 
cases to simulate the presence of noise, they are used to test Systems 1 and 2. 

Figure 2.16 represents the Deltas between implanted and calculated 
performance parameter deteriorations for the 1771 cases. 

Table 2.18. Statistics of the diagnostics results for System 1, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.08 -0.03 -0.04 -0.05 -0.14 -0.09 -0.12 0.02 -0.08 0.04 -0.04 -0.01
σ 0.64 0.30 0.39 0.35 0.58 0.34 0.41 0.37 0.41 0.30 0.33 0.29
CI95%+ 1.16 0.56 0.72 0.64 1.01 0.57 0.68 0.75 0.73 0.62 0.61 0.56
CI95% - -1.33 -0.62 -0.81 -0.74 -1.28 -0.75 -0.92 -0.70 -0.89 -0.54 -0.70 -0.58

The test cases are divided into six groups characterised by a different 
faulty component. Figure 2.16 considers, in each group, only the two parameters 
affected by deterioration and shows the Deltas only for them. Moreover, for each 
parameter in which deterioration is implanted, Table 2.18 reports the statistical 
results according to Method 2. It can be seen in Figure 2.16 how the values of 
Deltas are much higher compared to the case without noise. This can also be  
observed in Table 2.18 where high values of are reported. The RMS increased as 
well up to 0.147 (Method 3) and the results showed 483 cases (27%) with MS 
errors and 105 cases (5.9%) with HS errors (Method 1) – see Table 2.19.

Table 2.19. Summary of accuracy results for System 1 via Methods 1 and 3 over 1771 
cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 483 //  0.27 105 // 0.059 0.147 
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Table 2.20. Statistics of the diagnostics results for System 1 with enhanced capability of 
dealing with noisy data, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.07 -0.02 -0.03 -0.02 -0.12 -0.03 -0.09 0.02 -0.07 0.04 -0.02 -0.01
σ 0.42 0.24 0.26 0.17 0.40 0.17 0.25 0.31 0.24 0.20 0.26 0.20
CI95%+ 0.75 0.46 0.48 0.30 0.67 0.29 0.41 0.64 0.40 0.44 0.49 0.39
CI95% - -0.89 -0.49 -0.54 -0.35 -0.90 -0.36 -0.58 -0.59 -0.55 -0.36 -0.53 -0.40
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Figure 2.16. SFI capability of System 1. Results for 1771 test cases. 

To improve the system accuracy that is dramatically affected when noisy 
data are analysed, the input MFs amplitudes were modified. It was proved to be 
advantageous to differentiate them: different values of amplitude were used for 
different input. The most suitable choice was found to be to use as input MFs 
amplitude for the different measurement types exactly the values of sensor noise 
standard deviation listed in Table 2.17.

The improved results obtained with System 1 with enhanced capability of 
dealing with noisy data are shown in Figure 2.17. The deltas are considerably more 
localised within 0.5 %, and considering that this is also the order of magnitude of 
the noise introduced in some of the measurements, it is in the opinion of the authors 
a positive outcome. The improvement can also be appreciated in Table 2.20,
noticing the considerable reduction of the values of . The RMS obtained with the 
enhanced system was reduced to 0.08 (Method 3) and the results showed 201 cases 
(11%) with MS errors and 33 cases (1.8%) with HS errors (Method 1) – see Table 
2.21.
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Figure 2.17. SFI capability of System 1 with enhanced capability of dealing with noisy 
data. Results for 1771 test cases. 

Table 2.21. Summary of accuracy results for enhanced System 1 via Methods 1 and 3 over 
1771 cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 201 //  0.11 33 // 0.018 0.08

Due to the fact that Systems 1 and 2, as defined at the beginning of this 
section, provided similar type of outcomes, it was considered here worthwhile to 
also study the behaviour of System 2 in the presence of noise in the measurements. 
In the same way that System 1 was adapted to deal with noisy data, also for System 
2 it was necessary to change the amplitudes of the input MFs according to the noise 
level implanted. Figure 2.18 shows the results obtained with the enhanced System 
2. The outcome as expected is similar to the one previously reported for the 
enhanced System 1. The values of  detailed in Table 2.22 (Method 2) are 
comparable in magnitude to the values of Table 2.20 for the enhanced System 1 
even though slightly worse. The RMS obtained with the enhanced System 2 
calculated for the 1771 cases was equal to 0.09 (Method 3) but the results showed 
183 cases (10%) with MS errors and 30 cases (1.6%) with HS errors outperforming 
the enhanced System 1 when evaluating the system accuracy with Method 1 – see 
Table 2.23.

Table 2.22. Statistics of the diagnostics results for System 2 with enhanced capability of 
dealing with noisy data, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.06 -0.02 -0.03 -0.02 -0.10 -0.04 -0.08 0.02 -0.08 0.04 -0.02 0.00
σ 0.44 0.25 0.28 0.17 0.43 0.17 0.27 0.32 0.26 0.21 0.27 0.21
CI95%+ 0.81 0.47 0.51 0.31 0.74 0.31 0.44 0.65 0.43 0.45 0.51 0.40
CI95% - -0.92 -0.51 -0.58 -0.35 -0.95 -0.38 -0.61 -0.60 -0.58 -0.37 -0.56 -0.41
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Table 2.23. Summary of accuracy results for enhanced System 2 via Methods 1 and 3 over 
1771 cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 183 //  0.10 30 // 0.016 0.09
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Figure 2.18. SFI capability of System 2 with enhanced capability of dealing with noisy 
data. Results for 1771 test cases. 

2.5.2.1. Remarks 
It may be concluded that in this section an important milestone in this project was 
proved. Two fuzzy system layouts were identified as capable of performing SFI 
capability in the presence of noisy measurements and their accuracy was evaluated 
with the three different methods introduced in section 2.4.4.3. The enhanced 
System 1 outperformed the enhanced System 2 in the accuracy tests provided by 
Methods 2 and 3, but underperformed when the accuracy was estimated with 
Method 1. 

2.5.3. Tuning Capability to Enhance the SFI Role in GPD 

An SFI system is used to evaluate considerable changes in only two performance 
parameters of one component. The application of an SFI approach in a real-life case 
becomes useful under the assumption that only one component can be faulty. This 
assumption becomes more realistic if the changes are estimated in a short space of 
time, or else the diagnosis is made to assess only changes in the performance 
parameters from a very recent known condition. In fact, if on the contrary the time 
scale increases, it is more likely that two or more gas path components are 
degraded.  
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These considerations create a new opportunity of using SFI systems 
coupled with MFI systems (e.g., linear estimation methods). MFI approaches are 
limited when estimating considerable changes (i.e., > 1%) but are advantageous 
when calculating small deteriorations that inevitably affect all the parameters 
simultaneously over the engine operating time. The procedure represented in Figure
2.19 is an attempt at suggesting how this coupling could be implemented. The 
procedure described relies on the idea that SFI and MFI systems compute a solution 
in parallel for every flight mission of the engine. The two systems at flight n
calculate deltas in measurements from a baseline not of a clean engine but of the 
global deterioration level estimated at flight n-1. Therefore the two systems do not 
calculate the absolute changes in performance parameters, with respect to a clean 
engine, but the relative changes with respect to the deteriorated condition evaluated 
at the previous flight. The relative changes computed at flight n are then added to 
the global deterioration level to obtain the absolute changes with respect to the 
clean condition. 

 

 SFI  MFI 

∆ Measurements (t) 

(baseline condition estimated at the 

time t- ∆ respect to the Global 

deterioration level ) 

check 

1) If SFI outcome is <0.5% changes 

in all the components ignore SFI 

outcome.

2) If SFI outcome is >0.5% add it to 

the global deterioration levels 

Global 

deterioration 

level 

Figure 2.19. MFI and SFI coupling. 

Let us assume that at flight number one the engine is clean and no 
deterioration is detected. At a given point in time (flight n) the MFI system detects 
small deteriorations in all performance parameters, no considerable changes (<0.5) 
are detected by the SFI and therefore it is ignored. At flight n+1 instead something 
happens and one component gets severely damaged. The SFI estimates changes > 
0.5% (in a real application the value 0.5% should be replaced with a more correct 
value obtained in validating the suggested procedure), therefore the SFI outcome is 
used to update the global deterioration level instead of the MFI result. 

In the light of this proposed framework, in this work an automated 
procedure (see GUI from section 2.4.3) was devised to tune the rules of the fuzzy 
diagnostics system on top of a known deterioration level for all the 12 performance 
parameters (baseline). This baseline is assumed to be calculated at the previous 
flight with an MFI method and represents the global deterioration level in Figure 
2.19.  Let us assume, for example, that the values listed in Table 2.24 represent the 
baseline of deterioration. The SFI is now required to assess whether there are 
considerable changes from this already existing level of deterioration. 

The results shown in Figure 2.20 were obtained using the enhanced 
System 1 as defined in the previous section that was tuned to the baseline of Table
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2.24. A new set of 1771 test cases were generated with fault implanted in the ranges 
defined by the search space identified in section 2.4.2.1 but superimposed on the 
global deteriorations of Table 2.24; the measurements calculated running the engine 
model were disturbed adding a random component according to the same procedure 
described in the previous section. It is important to observe that these results cannot 
precisely (i.e., case by case) be compared to the results from the previous set of test 
cases because, having added a random component, the two sets could have slightly 
different severity of noise level. But a comparison can be made looking at the 
statistical figures. Table 2.25 presents analogous results to Table 2.22 (Method 2). 
The RMS obtained with the tuned diagnostics system calculated for the 1771 cases 
was equal to 0.089 (Method 3) and the results showed 172 cases (9%) with MS 
errors and 22 cases (1.2%) with HS errors (Method 1) – see Table 2.26.

2.6. A Fuzzy Diagnostics System with Partial MFI 
Capability 

In section 2.5.3, it was discussed how an SFI system can be used in a real-life 
application to evaluate considerable changes in only two performance parameters, 
under the assumption that only one component can become significantly faulty in 
the considered time interval. It was recognised that this assumption becomes more 
realistic if the diagnosis is made to assess only changes from a very recent known 
condition. In fact, if on the contrary the time scale increases, it is more likely that 
two or more gas path components are degraded. With the intention of making the 
procedure summarized in Figure 2.19 more robust, in this section a fuzzy 
diagnostics system with partial MFI capability was devised, to substitute the SFI 
process in the coupling procedure (Figure 2.19).  

Table 2.24. Global deterioration level, baseline 

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-0.5   -0.4   -0.2   -0.5   -0.3   -0.2   -0.3   0.5   -0.4   0.3   -0.6   0.5 

Table 2.25. Statistics of the diagnostics results for tuned enhanced System 1, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.07 -0.02 -0.03 -0.02 -0.07 -0.01 -0.09 0.00 -0.06 0.02 -0.04 -0.02
σ 0.36 0.22 0.28 0.18 0.32 0.16 0.27 0.30 0.20 0.19 0.23 0.19
CI95%+ 0.64 0.40 0.52 0.32 0.56 0.30 0.44 0.58 0.34 0.39 0.41 0.35
CI95% - -0.78 -0.45 -0.58 -0.37 -0.70 -0.32 -0.62 -0.58 -0.46 -0.34 -0.50 -0.38
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Figure 2.20. SFI capability of the tuned enhanced System 1. Results for 1771 test cases. 

Table 2.26. Summary of accuracy results for tuned enhanced System 1 via Methods 1 and 
3 over 1771 cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 172 //  0.09 22 // 0.012 0.089

The process with partial MFI capability is in principle similar to the SFI 
systems described so far. It is able to quantify considerable deviation in 
performance parameters and it uses the nonlinear approach based on fuzzy logic. 
Moreover it is able to quantify changes in more than two parameters 
simultaneously: in this work the system was tested with up to two components 
degraded at a time, four parameters simultaneously deteriorated. In the context of 
section 2.5.3, this allows relaxing the previously stated assumption requiring that no 
more than two components can become considerably degraded in one mission.  

2.6.1. System Layout 

A fuzzy diagnostics system with partial MFI capability was devised in this work for 
a three-shaft turbofan engine. The inputs and outputs of the diagnostic process are 
the same shown in Figure 2.11 (section 2.4.2). The system is designed to assess 
performance parameters percentage changes from a clean engine condition (12 
outputs) given the knowledge of the measurement changes (10 inputs) calculated as 
percentage deviations with respect to a baseline determined by means of an engine 
model run at the specific power setting and environmental conditions (defined in 
section 2.4.2).

This section describes a system able to quantify considerable changes in up 
to two components degraded simultaneously (four performance parameters) 
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according to the considerations made in section 2.2.4 – see Table 2.1. The search 
space was defined as follows: 

Maximum variation in compressors’ efficiencies = –1% 
Minimum variation in compressors’ efficiencies = –3% 
Maximum variation in compressors’ flow capacities = –1% 
Minimum variation in compressors’ flow capacities = –3% 
Maximum variation in turbines’ efficiencies = –1% 
Minimum variation in turbines’ efficiencies = –3% 
Maximum variation in turbines’ flow capacities = –1% 
Minimum variation in turbines’ flow capacities = –3% 

Besides, the following additional parameters were fixed: 
Number of components simultaneously deteriorated = 2 
Step of increment = 0.5% 
Number of rules = 19440 

To limit the number of rules and therefore the complexity of the system no 
rules were stated to provide the input–output functional relationship corresponding 
to fault levels between 0% and –1%. Note that even though the ranges in the search 
space are defined between –1% and –3%, the 0% fault levels are always included in 
the search space. Therefore, the above definition of search space only excludes the -
0.5% fault level compared to the search space defined in section 2.4.2. This choice 
slightly affects the accuracy at low deterioration levels (around 0.5%) but it was 
recognised that a higher accuracy is required when assessing higher changes in the 
performance parameters (e.g., 3%). Besides, in this work a strong commitment was 
devoted to meeting the requirement of devising a fast system for on-wing 
applications, and therefore a reduction in the number of rules (excluding the –0.5% 
fault level) was driven by time-related concerns. 

2.6.2. Partial MFI Capability: Results 

2.6.2.1. Test Cases 
A series of 1201 test cases resulting from the combinations of three fault levels (0, -
1.2, -2.7) taken 4 at a time (4 parameters deteriorated at a time) was generated. A 
random component was added to the measurements of the test cases to simulate the 
presence of noise, according to the procedure described in section 2.5.2.

2.6.2.2. Results: Accuracy and Computational Time 
Method 1 and 3 introduced in section 2.4.4.3 were used here to assess the system 
accuracy in performing partial MFI capability. The RMS obtained considering only 
the 12 outputs relative to the performance parameters, for the 1201 cases, was equal 
to 0.1123 (Method 3) and the results showed 201 cases (16.7%) with MS errors and 
70 cases (5.8%) with HS errors (Method 1) – see Table 2.27.

A typical result, in addition to the 1201 cases, is presented in Table 2.28
and Table 2.29. Table 2.28 lists the implanted faults in the FAN and HPC. The 12 
outputs of the diagnostics system are shown in Table 2.29. A remarkable 
concentration capability of the fuzzy diagnostics system can be noted. 



Computational Intelligence in Fault Diagnosis   75 

As far as the computational time is concerned, Table 2.30 reports the setup 
time and diagnostics time together with the number of rules stated and the number 
of test cases diagnosed, representing the elements on which the computational time 
has a stronger dependency. A system with partial MFI capability requires a 
considerably increased number of rules (19440 in this example) that inevitably 
affects the computational time. The diagnostics time for a single calculation is 
approximately 12 seconds, about 100 times the time required by the corresponding 
system with SFI. 

Table 2.27. Summary of accuracy results for System 1 via Methods 1 and 3 over 1201 
cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 201 // 0.1674 70 // 0.0583 0.1123

Table 2.28. Implanted deterioration (partial MFI) 

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-1.8 -2.2 0 0 -2.3 -2.7 0 0 0 0 0 0 

Table 2.29. Estimated deterioration (partial MFI), typical result 

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-1.51 -2.43 -0.01 0.00 -2.38  -2.54 0.00 0.02 0.00 -0.00 0.01 0.03 

Table 2.30. Computational time with current computational capability 

Processing Time Dependency 

Set-up time 18 min, 35 sec  19440 rules 

Diagnostics Time  240 min

(12 sec/case) 

1201 test cases 

2.7. Operating the Diagnostics Model through the 
GUI

The diagnostics software developed within this work is constituted by two GUIs. 
The first one, presented in Figure 2.14 of section 2.4.3, was devised to 
automatically set up a fuzzy diagnostics model. Figure 2.21 shows the second 
graphical user interface that operates the fuzzy diagnostic model previously set-up 
and assesses the changes in the 12 performance parameters. Once the engine and its 
simulation model are selected, the readings from the engine can be input and the 
diagnosis made by means of the diagnostic system previously generated and saved. 
Alternatively, a fault can be implanted simulating the corresponding measurements 
deviations using the engine model. These are used to test a new generated fuzzy 
diagnostics system with simulated data. This interface can be used to operate 
models either with or without capability of dealing with biases (Marinai, 2004), as 
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mentioned in section 2.4.3, but this is not covered in this chapter. The results can be 
eventually plotted. 

Figure 2.21. GUI that operates the fuzzy diagnostic models. 

2.8. Conclusions 

Fuzzy logic is introduced in this work because of its inherent capability of dealing 
with GPD problems due to its rule-based nature and its fuzzy approach. This 
created a research opportunity, and a novel diagnostics procedure was devised; an 
application of the method to a three-shaft turbofan engine and its promising results 
were discussed in this chapter.  

In the light of the technical requirements identified for advanced gas path 
diagnostics (see section 2.4.1), it can be concluded that fuzzy logic showed 
significant advantages and inherent features well suited to GPD problems, as 
discussed below. 

Volponi (2003) pointed out the necessity to develop different 
algorithms to address the problem of estimating gradual and rapid 
deteriorations, namely, MFI (multiple fault isolation), generally 
based on linear approaches, and SFI (single fault isolation) 
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methods necessarily based on nonlinear approaches, respectively. 
The fuzzy diagnostics system described above was proved to 
preserve the nonlinearity present in the aero-thermal relationships 
between the performance parameters and the gas path 
measurements.  
Fuzzy diagnostics, as conceived in this chapter, in order to be 
effective, relies on the statement of an exhaustive number of rules 
defined within a performance parameters search space. This 
becomes cumbersome when the number of parameters that are 
considered simultaneously and that are changing increases (tests 
were performed with one gas path component degraded at a time 
– SFI, and with up to two components and so four performance 
parameters deteriorated at a time – partial MFI).  
Fuzzy diagnostics system with SFI or partial MFI capability can 
operate coupled with a linear MFI algorithm as long as a global 
deterioration level is updated every flight. The rules must be 
tuned over the calculated global deterioration level estimated at 
the previous flight; this is enabled by the significantly rapid set-
up phase devised for the fuzzy diagnostics system presented 
above.
Fuzzy diagnostics systems do not show a tendency to smear the 
results over all the performance parameters (that for example 
affects Kalman filter-based diagnostics methods), demonstrating 
on the contrary good concentration capability. 
Fuzzy diagnostics systems do not require completely observable 
systems with the same number of inputs and outputs. (A system 
Z=h(X) is said to be completely observable if every state X
(vector) can be determined from the observation of Z (vector) – 
Marinai, 2004.) 
A considerable enhancement of the diagnostics accuracy in the 
presence of noisy data can be obtained choosing the input 
measurement MFs amplitudes according to the different values of 
sensor noise standard deviations available for different sensors. 
Marinai (2004) formulates a statistical interpretation of the fuzzy 
systems. An analogous fuzzy diagnostics system was described in 
Marinai (2004) that was able to diagnose component faults in the 
presence of systematic errors in the measurements (bias) while 
identifying the faulty sensor as well. This result was achieved by 
means of a procedure that introduces the NOT operator in the 
statement of the rules. 
As far as the computational time is concerned, fuzzy diagnostics 
systems show: 

Considerably fast setup phase (e.g., approximately 1 minute 
for an SFI system), especially when compared with the very 
long training period required by a neural network with 
comparable diagnostics features. This enables the setup of a 
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new system for a new operating condition or over a 
calculated deterioration baseline in a short period of time. 
Fast diagnostics time suitable for on-line applications. 

The computational time depends on the number of rules stated 
and, therefore, on the number of parameters simultaneously 
deteriorated at a time. 
Fuzzy logic diagnostics models are advantageous when different 
sources of information (e.g., oil analysis, oil debris analysis, 
vibration analysis, expert knowledge, statistical inputs, etc.) need 
to be combined in the decision-making process (data fusion). 
Such a feature can also be used to combine results computed with 
different GPD techniques gaining in accuracy and reliability of 
the results. Once the diagnosis is performed, a prognostics 
algorithm (Marinai et al., 2003b) can be introduced to assess and 
predict into the future health condition of the engine or one of its 
components for a fixed time horizon or predict the time to failure. 
The modular nature of the fuzzy rules stated to devise a 
diagnostics system enables the user with a high level of system 
comprehensibility. 
The adaptation of a fuzzy diagnostics system to different gas 
turbines is expected to be simple according to the procedures 
described above. However, a sensitivity study to optimise the 
fuzzy system parameters is strongly advisable. 
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3. Fault Detection and Isolation of 
Industrial Processes Using Optimized Fuzzy 
Models

Luis Mendonça, João Sousa and José Sá da Costa 

Model-based fault detection and isolation represents an approach that has received 
increasing attention in the academic and industrial fields, due to economical and 
safety-related matters. This approach has a large variety of methods in the literature 
considering mathematical models and modern control theory. However, in practice 
it is very difficult to achieve accurate models for complex nonlinear plants. If the 
plant structure is not completely known, the diagnosis has to be based primarily on 
data or heuristic information. The inherent characteristics of fuzzy logic theory 
make it suitable for fault detection and isolation (FDI). Fault detection can benefit 
from nonlinear fuzzy modelling and its fast and robust implementation, its capacity 
to embed apriori knowledge and its ability of generalization. Consequently fault 
diagnosis can profit from a transparent reasoning system, which can embed operator 
experience, but also learn from experimental and/or simulation data. Thus, fuzzy 
logic-based diagnostic is advantageous since it allows the incorporation of apriori 
knowledge and lets the user understand the inference of the system. This chapter 
proposes the application of optimised fuzzy models to FDI systems, using a 
regularity criterion to select the relevant model inputs and a real-coded genetic 
algorithm to optimise the fuzzy models. An industrial valve simulator is used to 
obtain abrupt and incipient faults in the system. The optimised fuzzy models used in 
the FDI system were able to detect and isolate the twelve abrupt and incipient faults 
considered. 

3.1. Introduction 

A system that includes the capacity of detecting, isolating and identifying faults is 
called a fault diagnosis and isolation system (FDI) (Chen and Patton, 1999). Fault 
detection and isolation methods are used to detect any discrepancy between the 
system outputs and model outputs. It is assumed that these discrepancy signals are 
related to a fault. However, the same difference signals respond to model plant 
mismatches or noise in real measurements, which are erroneously detected as a 
fault. For a simple fault that can be detected by a single measurement, a 
conventional threshold check may be appropriated. However, since in complex 
industrial systems it is usually very difficult to directly measure the state of the 
process, more sophisticated solutions are needed. In this case a model-based 
approach will be more suitable. This requires process modelling, which proves to be 
a very demanding task, especially when dealing with a nonlinear process.  



82   V Palade, CD Bocaniala and L Jain (Eds.)

The idea of model-based fault detection is to compare output signals of the 
model with the real measurements available in the process, thereby generating the 
residuals, which are fault indicators giving information about the location and 
timing of a fault. There is an increasing demand for man-made dynamical systems 
to become safer and more reliable. These requirements extend to process industrial 
plants, which are basically controlled by servo-actuated flow control valves. Taking 
into consideration that malfunction of a valve in many hazardous applications can 
cause serious consequences, the fault diagnosis of industrial servo-actuated valves 
is a very important task. When the malfunction is detected and isolated, a quick 
response might prevent the monitored system from expensive damages and loss of 
efficiency and productivity. 

The developments of model-based fault diagnosis began at various places 
in the early 1970s. This approach to fault diagnosis in dynamic systems has been 
receiving more and more attention over the last two decades. The availability of a 
good model of the monitored system can significantly improve the performance of 
diagnostic tools, minimizing the probability of false alarms. The inconsistency 
between the data from the system measurements and the corresponding signals of 
the model is called a residual. The residual generation is then identified as an 
essential problem in model-based FDI, since if it is not performed correctly, some 
fault information could be lost. Therefore, the model-based FDI approach requires 
precise mathematical relationships relating the model to the process, to allow 
detection of small abrupt and incipient faults quickly and reliably. 

Different analytical estimation methods are available, such as Kalman 
filters (Eide and Maybeck, 1996) and Luenberger observers (Clark, 1979), among 
others (Chen and Patton, 1999). However, the requirements for precise and accurate 
analytical models imply that any resulting modelling error will affect the 
performance of the resulting FDI system. This is particularly true for dynamically 
nonlinear and uncertain systems, which represent the majority of real processes. 
Therefore, the main assumption made when using the model-based FDI approach is 
that a precise mathematical model of the plant is required. This makes quantitative 
model-based approaches very difficult to use in real systems, since any non-
modelled dynamics can affect the performance of the FDI scheme. A way to 
overcome this problem is to design robust algorithms, where the effects of 
disturbances on the residual are minimized, and the sensitivity to faults is 
maximized. Many approaches have been developed including unknown input 
observers (Duan and Patton, 2001; Frank, 1990) and eigenstructure assignment 
observers (Shen et al., 1998), as well as frequency domain techniques for robust 
FDI filters (Gertler, 1998), such as minimization of multiobjective functions that 
did not prove to be successful for nonlinear cases. 

Recently, soft computing methods like neural networks, expert systems, 
fuzzy systems and neuro-fuzzy systems have been used with relative success 
(Calado et al., 2001). Fuzzy techniques have received special attention due to their 
fast and robust implementation, their capacity to embed apriori knowledge, their 
performance in reproducing nonlinear mappings, and their ability of generalization. 
The description of some nonlinear systems can be very difficult to achieve by 
means of analytical equations. The use of fuzzy systems theory is a natural tool to 
handle nonlinear and uncertain conditions. The use of fuzzy models increases the 
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capability of FDI to work with systems characterized by incomplete information 
and noise. Thus, fuzzy logic techniques are now being investigated in the FDI 
research community as a powerful modelling and decision-making tool (Borner and 
Isermann, 2003), along with neural networks (Schwarte et al., 2003) and other more 
traditional techniques such as nonlinear and robust observers (Chen and Patton, 
1999), parity space methods (Gertler, 1998; Kinnaert, 2003), and hypothesis-testing 
theory (Laengst et al., 2003). The key advantage of fuzzy logic is that it enables the 
system behaviour to be described by “if-then” relations. The main trend in 
developing fuzzy FDI systems has been to generate residuals using either parameter 
estimation or observers, and allocate the decision-making to a fuzzy-logic inference 
engine. By doing so, it has been possible to combine symbolic knowledge with 
quantitative information and, thereby, minimize the false alarm rate. Indeed, the key 
benefit of fuzzy logic is that it lets the operator describe the system behaviour or the 
fault–symptom relationship with simple “if-then” rules (Koscielny and Syfert, 
2003). 

In this chapter, a model-based fuzzy FDI approach is presented. The 
symptoms are generated using fuzzy observers and plant measurements. The 
underlying idea is to predict the system outputs from the available inputs and 
outputs of the process, thus identifying a fuzzy model directly from data. The 
residual is then a weighted difference between the predicted and the actual outputs. 
In our approach, fuzzy observers are built for normal and faulty operations allowing 
the detection and isolation of the considered faults. The structure of the fuzzy 
models for FDI is determined using the regularity criterion (RC) to find, 
automatically, the relations between input and output variables, as presented in 
(Sugeno and Yasukawa, 1993). The obtained model is optimised by using a real-
coded genetic algorithm (GA) introduced in (Setnes and Roubos, 2000). This 
chapter proposes the use of RC and GA for identifying fuzzy models of an 
industrial valve, to be used for detection and isolation of abrupt and incipient faults.  

The chapter is organized as follows. Section 3.2 presents a brief overview 
of methods for fault detection and isolation. In this section, classical and fuzzy 
methods for FDI are presented. Further, a fuzzy model-based architecture for FDI is 
proposed. Fuzzy modelling is briefly presented in Section 3.3, where the regularity 
criterion is described. The GA for optimal parameter estimation is described in 
Section 3.4. The case study and the obtained results are presented in Section 3.5. 
Finally, the conclusions are drawn in Section 3.6. 

3.2. Fault Detection and Isolation 

Different approaches have been developed in FDI. One of the first ones was the 
failure detection filter, which is applied to linear systems (Beard, 1971). After that, 
different methods and approaches were developed such as the application of 
identification methods to fault detection of jet engines (Rault et al., 1971) and the 
correlation methods applied to leak detection (Siebert and Isermann, 1976). Some 
years later, Isermann (1984) presented a survey on process fault detection methods 
based on modelling parameters and state estimations. Model-based methods for 
fault detection and diagnosis applied to chemical processes are presented in 
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(Himmelblau, 1978), the first book about this approach. In the frequency domain, 
FDI is applied using the frequency spectra as criterion to isolate the faults (Ding 
and Frank, 2000). Other FDI approaches are based on residual generators. These 
generators are based on approaches like physical or hardware redundancy methods, 
or analytical or functional redundancy methods (Chen and Patton, 1999). 

Physical or hardware redundancy methods are a traditional approach to 
fault diagnosis, which use multiple sensors, actuators and components to measure 
and control a particular variable. The major problems encountered with these 
methods are the extra equipment and maintenance cost, as well as the additional 
space required to accommodate this equipment (Isermann and Ballé, 1997). These 
disadvantages increase the necessity of using other methods, easier to use and with 
small costs. Therefore, analytical or functional redundancy methods can be used 
instead. These methods use redundant analytical relationships among various 
measured variables of the monitored system (Chen and Patton, 1999). 

3.2.1. Analytical Redundancy Methods  

In the analytical redundancy scheme, the resulting difference generated from the 
comparison of different variables is called the residual or symptom signal. These 
variables are measured signals with estimated values, generated by a mathematical 
model of the considered system. When the system is in normal operation the 
residual should be close to zero, and when the fault occurs the residual should be 
larger than zero. This property of residuals is used to determine whether or not 
faults have occurred. Some examples of residual generators based on the analytical 
redundancy scheme are the Kalman filter, Luenberger observers, state and output 
observers and parity relations, among others (Chen and Patton, 1999). 

Figure 3.1. Diagram of model-based fault detection. 

The model-based FDI method can be defined as the detection and isolation
of faults in a system by means of methods that extract features from residual 
signals. Setting fixed or variable thresholds on residual signals generated from 
differences between actual measurements and their estimates obtained by using the 
process model thus detect faults. A number of residuals can be designed, where 
each one of them must be sensitive to individual faults occurring in different 
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locations of the system. The analysis of each residual, once the threshold is 
exceeded, leads to the fault isolation. The general principle of model-based FDI is 
presented in Figure 3.1, where the two main stages are: residual generation and 
residual evaluation, which can be described as follows: 

(1)  Residual generation – generates residual signals using available 
inputs and outputs from the monitored system. 

(2)  Residual evaluation – examines residuals for the likelihood of faults 
and the decision rule is then applied to determine if a fault occurred. 

The accuracy of the model describing the behaviour of the monitored 
system is crucial in model-based fault detection. However, the impossibility of 
obtaining complete knowledge and understanding of the monitored process 
increases the uncertainty in the model. Therefore, methods to reduce sensitivity to 
modelling uncertainty are used in FDI. However, sensitivity reduction sometimes 
does not solve the problem, since the sensitivity reduction may be associated with a 
reduction of the sensitivity to faults (Chen and Patton, 1999; Gertler, 1998). Thus, 
the main reliability problem of FDI is modelling uncertainty, which is unavoidable 
in real industrial systems. The design of an effective and reliable FDI scheme for 
residual generation should take into account modelling uncertainty with respect to 
sensitivity to faults. The problems introduced by model uncertainties, disturbances 
and noises in model-based FDI have been considered in (Gertler, 1998). 

The generation of symptoms is therefore the main issue in model-based 
fault diagnosis. When the systems are in faulty state, the symptoms present the fault 
behaviour. Considering two different types of behaviour, the faults used in this 
chapter are either abrupt or incipient.

Figure 3.2. Abrupt and incipient faults behaviour. 

Abrupt faults are faults modelled as stepwise function and incipient faults 
are faults modelled by using smooth functions, i.e., functions that vary slowly with 
time. Figure 3.2 presents the behavior of abrupt and incipient faults. Considering 
the problems concerning modelling of industrial processes, the diagnosis of 
incipient faults using model-based FDI is sometimes very difficult. This situation is 
the consequence of a small visibility in the first moments of residuals when an 
incipient fault occurs, because they can be hidden by the uncertainty. The 
increasing interest in incipient fault detection demands finding new approaches. The 
developed FDI techniques present different properties with respect to diagnosis of 
different faults. This development achieved a reliable FDI technique because it 
includes the advantages of integrating different methods. In (Isermann and Ballé, 
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1997) some basic FDI methods are evaluated, and the trends in the application of 
model-based FDI to technical processes are presented. 

When information about relations between symptoms and faults is 
available in the form of diagnostic models, various methods of reasoning can be 
applied. Typical approximate reasoning methods are: 

Probabilistic reasoning;  
Possibilistic reasoning with fuzzy logic; 
Reasoning with artificial neural networks. 

Methods like neural networks, expert systems, fuzzy systems and neuro-
fuzzy systems have been used with success in model-based FDI (Calado et al.,
2001). From the several described possibilities, fuzzy logic is a natural tool to 
handle complicated and uncertain conditions, considering that the characteristics of 
the systems are not precisely known. Sometimes, noise contamination and 
uncertainty effects affect the residuals in fault-free conditions. The consequence of 
this influence is the residual variation around the zero. This situation is very 
dangerous because it hides faulty effects. The capability to describe vague and 
imprecise facts and work with systems when complete information is not available 
makes fuzzy logic a powerful tool in this case. The fuzzy approach in FDI is used to 
generate symptoms, i.e., fuzzy descriptions, to detect and to isolate the fault (Dexter 
and Benouarets, 1997; Isermann, 1998). Takagi-Sugeno fuzzy models can be used 
to describe nonlinear dynamics of a plant where faults can occur, see e.g. 
(Hellendoorn et al., 2001; Mendonca et al., 2003). 

3.2.2. Fuzzy Methods in FDI  

The fuzzy approach supports in a natural way the direct integration of a human 
operator in the fault detection process. Fuzzy logic can use expert knowledge in the 
form of a rule-based knowledge format (Patton et al., 2000). Some application areas 
of fuzzy logic in FDI include process industry (Himmelblau, 1978; Koscielny and 
Syfert, 2003), electromechanical systems (Insfran et al., 1999), and traffic and 
avionics control (Eide and Maybeck, 1996) among others. These possible 
application areas use different approaches of fuzzy logic FDI. The frequency 
spectrum is one of them, presented in (Mechefske, 1998), where fuzzy logic is used 
to classify the frequency spectra of various rolling element bearing with faults. 

The use of model-based FDI is another approach, as presented in (Lu et
al., 1998), where diagnostic models containing a fast fuzzy rule generation 
algorithm and a rule-based inference engine are used. The use of fuzzy reference 
models is proposed in (Dexter and Benouarets, 1997). In this approach, fuzzy 
models describe faulty and normal operation, and a classifier based on fuzzy 
matching performs diagnosis. In (Lopez-Toribio et al., 2000), an approach is 
proposed where identification of local linear models using the TS fuzzy modelling 
strategy is solved using a convex optimisation technique involving linear matrix 
inequalities in order to find the optimum set of fuzzy models. The approach 
presented in this chapter is also based on fuzzy models. The fuzzy models to be 
used in FDI are obtained using the automatic approach proposed in (Vieira et al.,
2004, 2005).The next section presents the proposed architecture for FDI used in this 
chapter, as introduced in (Mendonca et al., 2003). 
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3.2.3. Proposed Architecture for FDI 

This chapter uses a straightforward architecture to detect, isolate and identify faults. 
The FDI system is based on fuzzy models identified directly from data and 
optimised using genetic algorithms. The model-based technique uses an optimised 
fuzzy model for the process running in normal operation, and one optimised model 
for each of the faults to be detected. Suppose that a process is running, and n
possible faults can be detected. The fault detection and isolation system proposed 
for these n faults is depicted in Figure 3.3. 

Figure 3.3. Fault detection and identification scheme. 

The multidimensional input of the system, u, enters both the process and 
an optimised model (observer) in normal operation. The vector of residuals  is 
defined as 

ˆy y , (1) 
where y is the output of the system and ŷ  is the output of the optimised model in 
normal operation. When any component of  is larger than a certain threshold , the 
system indicates a fault occurrence, i.e., a fault is detected. In this case, n optimised 
models, one for each fault, are activated, and n vectors of residuals are computed. 
Each residual i, with i=1,...,n, is computed as 

F Fˆy y
i i

, (2) 
where Fŷ

i
is the output of the observer for fault i. The residuals F F, ...,

i n
are 

evaluated, and the fault or faults isolated are the outputs of the FDI system. In this 
chapter, all models, i.e., the model for normal operation and the models for the n
faults, are fuzzy models reproducing the dynamic behaviour of the process, for each 
considered situation, i.e., normal operation and system operating while any of the n
faults occurred. This technique proved to be adequate to identify models extracted 
from real data, as in the example described in this chapter, which is an industrial 
servo-actuated pneumatic valve with six abrupt faults and six incipient faults.  

Considering that this chapter proposes a fuzzy model-based FDI technique, 
the next section presents briefly fuzzy modelling. 
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3.3. Fuzzy Modelling 

Fuzzy modelling often follows the approach of encoding expert knowledge 
expressed in a verbal form in a collection of if-then rules, creating a model 
structure. Parameters in this structure can be adapted using input–output data. When 
no prior knowledge about the system is available, a fuzzy model can be constructed 
entirely on the basis of system measurements. In the following, we consider data-
driven modelling based on fuzzy clustering. This approach avoids the well-known 
bottleneck of knowledge acquisition (Babuska, 1998; Sousa and Kaymak, 2002). 
Fuzzy models are acquired from sampled process data, utilizing the functional 
approximation capabilities of fuzzy systems. Assume that data from an unknown 
system y = F(x) is observed. The aim is to use this data to construct a deterministic 
function y = f(x) that can approximate F(x). The function f is represented as a 
collection of fuzzy if-then rules. 

The system to be identified can be represented as a multiple-input 
multiple-output (MIMO) nonlinear autoregressive (NARX) model. This MIMO 
system can be decomposed into several multiple-input single-output (MISO) 
models, without loss of generality (Sousa and Kaymak, 2002) 

( 1) ( ( ))y k + = f x k ,ˆ (3) 
where  is the state of the system, and contains previous inputs and 
outputs. Only MISO models are considered in the following, for the sake of 
simplicity. We consider rule-based models of the Takagi-Sugeno (TS) type (Takagi 
and Sugeno, 1985). The representation of (3) as an affine TS model is given by 

n( )kx R

1 1

1 1 ( 1)

: is ...  is i i n in

i i in n i n+

R x A x A

y = a x +  + a x + a

If  and and

then
(4) 

with i = 1,2,…,K, where K is the number of fuzzy rules. Here, Ri is the i-th rule, Ai1,
…, Ain are fuzzy sets defined in the antecedent space, x = [x1, …,xn]T is the 
antecedent vector, and yi is the rule output variable. The aggregated output of the 
model, , is calculated by taking the weighted average of the rule consequents: ŷ

K
i= i i

K
i= i

y
y = 1

1
ˆ , (5) 

where i is the degree of activation of the i-th rule: 
( ) 1,2

ij
n
j=1i A j= x ,   i = ,...,K (6) 

and ( ) :  0,1
ijA jx    R  is the membership function of the fuzzy set Aij in the 

antecedent of Ri. The nonlinear identification problem is solved in two steps: 
structure identification and parameter estimation. 

3.3.1. Structure Identification 

In this step, the designer must choose first the order of the model and the significant 
state variables x of the model. To identify the model (4), the regression matrix XT = 
[x1, …, xN] and an output vector yT = [y1, …, yN] are constructed from the available 
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data. Here  N >> n is the number of samples used for identification. The objective 
of identification is to construct the unknown nonlinear function y = f(x) from the 
data, where f is the TS fuzzy model in (3). 

Considering complex processes with a large number of controlled 
variables, the use of an automatic approach to obtain the structure identification of 
fuzzy models is an interesting approach, because it is difficult to find the relations 
between input and output variables. As the relations between the process variables 
are not well known, an automatic criterion is used to determine which input 
variables influence each output. In this chapter, a regularity criterion (RC) is used 
to choose the fuzzy model structure (Sugeno and Yasukawa, 1993). To apply this 
criterion, the identification data must be divided into two groups, A and B. The 
regularity criterion is used e.g. for group method of data handling, and it is defined 
as follows: 

2 2

1 1
( ) ( )

A Bk kA AB B BA
i i A i i B

i= i=
RC = y - y /k + y - y /k / 2 (7) 

where kA and kB are the number of data points of groups A and B, respectively, A
iy

and are the output data of groups A and B, respectively, B
iy ABy  is the model 

output for group A estimated using the data from group B, and  is the model 
output for group B estimated using the data from group A.

BAy

Thus, using two groups of data, A and B, two fuzzy models are built for 
each group, starting with only one input. The RC is computed for each model, and 
the one that minimizes RC is selected as the best one. In the next step, the input 
already selected is fixed, i.e., it belongs to the system's structure, and different input 
candidates are added to the previous fuzzy model from the remaining ones. When 
this second step finishes, the fuzzy model has two inputs. This second input is 
chosen as the one that minimizes the value of RC, as before. This procedure repeats 
until the value of RC increases. This method implies that a fuzzy model must be 
created each iteration. The number of fuzzy rules (or clusters) that best suits the 
data must be determined for that identification. The criterion to determine the 
number of clusters is based on the evaluation of the cost function S(c) proposed in 
(Sugeno and Yasukawa, 1993): 

2 2

1 1
( ) ( )

N c m
ik k i i

k= i=
S c = x - v - v - x (8) 

where N is the number of data to be clustered, c is the number of clusters (c 2), xk
is the kth data point, x  is the mean value for the inputs, vi is the center of the ith
cluster, ik  is the grade of the kth data point belonging to the ith cluster and m is an 
adjustable weight. The number of clusters c is increased from 2 up to the number 
that gives the minimum value for S(c). Note that this minimum can be local. 
However, this procedure diminishes the number of rules and consequently the 
complexity of the fuzzy model. The parameter m has a great importance in this 
criterion. The bigger the m is the bigger the optimum number of clusters. This value 
is adjustable and is usually between 1.5 and 2, see (Sugeno and Yasukawa, 1993).  

Having the inputs selected by the RC algorithm and the number of clusters 
from Eq. (8), a fuzzy model using the Gustafson-Kessel (GK) fuzzy clustering 
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algorithm (Gustafson and Kessel, 1979) is built. Using this algorithm it is possible 
to exclude variables with poor performance. Summarizing, the structure of fuzzy 
models is obtained using the following algorithm: 

1. Cluster the data using fuzzy c-means with 2 initial clusters and 
compute (8); 

2. Increase the number of clusters until (8) reaches its minimum; 
3. Divide the data set into two groups A and B;  
4. REPEAT for each state in the state vector that does not belong to 

the inputs of the model; 
5. Build two models, one using data group A and other using data 

group B;  
6. Compute (7); 
7. Select the input with the lowest RC as a new input of the model;  
8. UNTIL RC increases or the end of the state vector is reached; 
9. Select the final inputs;  
10. Using the number of clusters given from (8) and the inputs selected 

by (7), build a fuzzy model using GK clustering algorithm. 

3.3.2. Parameter Estimation 

The number of rules, K, the antecedent fuzzy sets, Aij, and the consequent 
parameters, ai = [ai1, …, ain, ai(n+1)] are determined in this step, by means of fuzzy 
clustering in the product space of  X X Y. Given ZT=[X, y] to be clustered and an 
estimated number of clusters K, the GK clustering algorithm proposed in 
(Gustafson and Kessel, 1979) is applied to compute the fuzzy partition matrix U.
Unlike the popular fuzzy c-means algorithm (Bezdek, 1981), the Gustafson-Kessel 
algorithm applies an adaptive distance measure. 

The fuzzy sets in the antecedent of the rules are obtained from the partition 
matrix U, whose ikth element 0,1ik  is the membership degree of the data 
object zk in cluster i. One-dimensional fuzzy sets Aij are obtained from the 
multidimensional fuzzy sets defined pointwise in the ith row of the partition matrix 
by projections onto the space of the input variables xj:

( ) proj ( )
ijA jk j ikx = , (9) 

where proj is the pointwise projection operator (Kruse et al., 1994). The pointwise 
defined fuzzy sets Aij are approximated by suitable parametric functions in order to 
compute 

ijA jx  for any value of xj. The consequent parameters for each rule are 

obtained using a common weighted least-square estimation. Let Xe denote the 
matrix [X;1] and let Wi denote a diagonal matrix in having the degree of 
activation, , as its kth diagonal element as defined in (6). Assuming that the 
columns of X

NxNR
( )i kx

e are linearly independent and  > 0  for( )i kx 1 k N , the 
weighted least-squares solution of y = Xe ai +  becomes 

-1
a X W X X W yT T

i e i e e i . (10) 
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3.4. Optimal Parameter Estimation Using Genetic 
Algorithms

Fuzzy models obtained using the identification method presented in the previous 
section are usually not optimal. This section presents the optimisation method for 
fuzzy models that uses a real-coded genetic algorithm proposed in (Setnes and 
Roubos, 2000). 

Among the techniques especially suitable for constrained, nonlinear 
optimisation problems are the evolutionary computation techniques, which include 
evolutionary strategies (Rault et al., 1971), evolutionary programming (Fogel, 
1991) and genetic algorithms (GA). In the following, we concentrate on GA since 
they are the most studied and described methodology (Michalewicz, 1999).  

Genetic algorithms can be used for a variety of purposes, their most 
important application being in the field of optimisation because of their ability to 
search efficiently in large search spaces, which makes them more robust with 
respect to the complexity of the optimisation problem compared to the more-
conventional optimisation techniques (Michalewicz, 1999). Since Holland (1971) 
first proposed the idea of genetic algorithms, many researchers have suggested 
extensions and variations to the basic genetic algorithm. With the advent of 
artificial intelligence techniques, many applications of the genetic algorithms have 
been reported, especially in combination with other artificial intelligence techniques 
such as neural networks and fuzzy systems. Gradually, genetic algorithms are 
becoming an important part of hybrid intelligent systems.  

GA are inspired by the biological process of natural selection, performing 
selection, crossover and mutation over a population, in order to achieve a global 
optimum. Instead of searching from general-to-specific hypotheses or from simple-
to-complex, genetic algorithms generate successor hypotheses by repeatedly 
mutating and recombining parts of the best currently known hypotheses. GA are 
applied to an existing population of individuals, the chromosomes. At each iteration 
of the genetic process, an evolution is obtained by replacing elements of the 
population by offspring of the most fitted elements of that same population. In this 
way, the best fit individuals have a higher probability of having their offspring (that 
represent variations of itself) included in the next generation. GA evaluates the 
individuals in the population by using a fitness function. This function indicates 
how good a candidate solution is. It can be compared with an objective function in 
classical optimisation. Inspired by the “survival of the fittest” idea, the genetic 
algorithms maximise the fitness value, in contrast with classical optimisation, where 
one usually minimises the objective function. It has been observed that genetic 
algorithms are valuable optimisation tools, especially for nonconvex optimisation in 
the presence of constraints (Michalewicz, 1999).  

The fitness of the individuals within the population is assessed, and new 
individuals are generated for the next generation. The following genetic operators 
are available for this purpose: 

Selection – chooses chromosomes according to their fitness for 
mating, i.e., for producing offspring. Fitter individuals get a 
higher probability to mate, and their genetic material is exploited. 
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Crossover – exchanges genetic material in the form of short 
allele strings (a part of a chromosome) between the parent 
chromosomes. This reordering or recombination includes the 
effects of both exploration and exploitation.  
Mutation – introduces new genetic material by random changes 
to explore the search space. 

The chromosome representation determines the GA structure. With a 
population size equal to L, the parameters of each fuzzy model are encoded in a 
chromosome Sl, with l = 1, …, L as a sequence of elements describing the fuzzy sets 
in the rule antecedents followed by the parameters of the rule consequents. 
Considering a model with M fuzzy rules, an n-dimensional premise and n + 1 
parameters in each consequent function, a chromosome is encoded as: 

1 1l M Ms = ant ,...,ant , ,..., ,a a (11) 
where ai contains the consequent parameters of rule Ri, and anti contains the  
parameters of the antecedent fuzzy sets Aij, j = 1, …,n. In the initial population 

0 0 0
1 LS = s ,...,s , 0

ls  is the initial model, and 0
2

0
Ls ,...,s  are created by random 

variation (uniform distribution) around 0
ls  within the defined constraints (Setnes 

and Roubos, 2000). 
The evolutionary process presented in this chapter is supported by a 

roulette wheel elitist selection method. This means that the chromosomes which 
yield a better fitness have a higher chance to survive and generate offspring and that 
the best fit chromosome in a certain generation always survives and evolves to the 
following generation. In order to establish a relation between the fitness of the 
chromosomes and the probability of their selection for operation (manipulation by a 
genetic operator) or deletion the following formula is used: 

min ( )
1j j

i
i

 J
P = ,i, j = ,...,L,

J
(12) 

where Ji is the performance of an individual measured in terms of the mean squared 
error (MSE): 

N 2
i k

k=1

1
kJ = y - y

N
ˆ , (13) 

where yk is the real output of the system, and ˆky  is the output estimated by the 
fuzzy model. When a chromosome is selected for an operation, the chance of its 
manipulation by a crossover operator is 95% and the probability of a mutation 
occuring is 5%. 

To promote the evolution of the population towards a better fitness in the 
concerned domain, two major types of genetic operators are used: crossover and 
mutation. In this chapter, when a chromosome is selected for a genetic operation, 
each of the two operators has equal chance of being applied. 

Let t = 0,1,…,Ng be the generation number, su and sv be chromosomes 
selected for operation, 1,k ...,L  is the position of an element in the chromosome 

and  and  are the lower and upper bounds on the parameter 
encoded by element k. Real-coded GA is used because binary-coded or classical 

min = 0ku max = 1ku
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GAs (Goldberg, 1989) are less efficient when applied to multidimensional or high 
precision problems. The bit strings can become very long and the search space 
blows up (Michalewicz, 1999). In this chapter, three different types of crossover 
operations are considered: 

Simple arithmetic crossover, where t
us  and t

vs  are crossed over at 
the th position (  being chosen randomly), thus creating two 
offsprings: 

1
1 1

t+
u g+s = u ,...,u ,v ,...,v (14) 

and
1

1 1
t+
v g+s = v ,...,v ,u ,...,u . (15) 

Whole arithmetic crossover, where 0,1r  is a random number 

with uniform distribution, and a linear combination of t
us  and t

vs
results in: 

1 ( ) (1- )t+ t t
u u vs = r s + r s (16) 

and
1 ( ) (1 )t+ t t

v v us = r s + - r s . (17) 

Heuristic crossover, where t
us  and t

vs  are combined creating two 
offsprings: 

1 ( )t+ t t t
u u v us =  s + r s - s (18) 

and
1 ( )t+ t t t

v v u vs =  s + r s - s . (19) 
These operators revealed to be the most appropriate for the current 

optimisation. Three mutation operators have been considered, which are the 
following: 

Uniform mutation, where a random selected element v  is 

replaced by  which is a number in the range 'v min max,u u .

Multiple uniform mutation, which is a uniform mutation of 
randomly selected elements. 
Gaussian mutation, where all elements of a chromosome are 
mutated such that 

1 '
1( )t+ ' '

u k gs =  u , ...,u , ...,u , (20) 

where , with 'u = u + f = 1,..., g , and f is a random number 
drawn from a Gaussian distribution. 

The genetic algorithm for fuzzy model optimisation, as used in this 
chapter, is summarized as follows (Setnes and Roubos, 2000): 

Given the data matrix Z and the structure of the fuzzy rule base derived 
using the RC in (7), select the number of generations Ng and the 
population size L. 

1. Create the initial population based on the derived fuzzy 
model structure. 
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2. Repeat genetic optimisation for t = 1, …,Ng:
a) Select the chromosomes for operation and 

deletion. 
b) Create the next generation: operate on the 

chromosomes selected for operation and 
substitute the chromosomes selected for 
deletion by the resulting offspring. 

c) Evaluate the next generation by computing the 
fitness for each individual. 

3. Select the best individual (solution) from the final generation. 
The next section presents the application of fuzzy models, which use the 

inputs selected with the RC criterion, are identified using GK fuzzy clustering and 
are optimised by real-coded GA, to a servo-actuated industrial valve. 

3.5. Case Study 

A pneumatic servo-actuated industrial control valve is used as test bed for the fault 
detection and diagnosis approach proposed in this chapter. This valve is situated on 
the outlet of thick juice from the fifth section of the evaporation station of the 
Lublin Sugar Factory in Poland that is associated with the DAMADICS project 
(http://www.eng.hull.ac.uk/research/control/damadics1.htm). 

Figure 3.4. Diagram of the industrial servo-actuated pneumatic valve considered. 

3.5.1. Description of the System 

The actuator-valve used in this chapter is depicted in Figure 3.4. The actuator 
consists of three main parts: body of the valve, actuator (e.g., spring-and-diaphragm 
pneumatic servomotor) and positioner controller. Furthermore, each of the three 
main parts contains the components shown in Figure 3.4, which are the following: 
positioner supply air pressure, PSP; air pressure transmitter, PT; volume flow rate 
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transmitter, FT; temperature transmitter, TT; rod position transmitter, ZT; electro-
pneumatic converter, E/P; cut-off valves, V1 and V2; by-pass valve, V3; pneumatic 
servomotor chamber pressure, Ps; and controller output, CVI. 

The valve body is the component that determines the flow through the 
valve. A change of the restricted area in the valve regulates the flow. There are 
many types of valve bodies, and the differences between them relate to the form by 
which the restricted flow area changes. This chapter addresses the globe valve case, 
but the FDI method can easily be applied to other types of valve bodies. Modelling 
of the flow through the valve body is not an easy task since most of the underlying 
physical phenomena are not fully understood (Sa da Costa and Louro, 2003). The 
most common approach to determine the flow through a valve is to use dimensional 
analysis (White, 1994) based on the model of the flow through a sharp-edged 
orifice. 

There are many types of actuators: electrical motors, hydraulic cylinders, 
spring-and-diaphragm pneumatic servomotor, etc. The most common type of 
actuator is the spring-and-diaphragm pneumatic servomotor due to its low cost. 
This actuator consists of a rod that has, at one end, the valve plug, and at the other 
end the plate. The plate is placed inside an airtight chamber and connects to the 
walls of this chamber by means of a flexible diaphragm. 

The positioner controller, shown in Figure 3.5, determines the flow of air 
into the chamber. The positioner is the control element that performs the position 
control of the rod. It receives a control reference signal from a computer controlling 
the process, passes it through a second order filter, prior to the PID control action 
that leads the rod's displacement to that reference signal. The positioner comprises, 
as well, a position sensor and a electrical-pneumatic (E/P) transducer. The first 
determines the actual displacement of the rod so that the error between the actual 
and desired position (reference signal) can be obtained. The E/P transducer receives 
a signal from the PID controller transforming it in a pneumatic valve-opening signal 
that adds or removes air from the pneumatic chamber. This transducer is also 
connected to a pneumatic circuit and to the atmosphere. If the controller indicates 
that the rod should be lowered, the chamber is connected to the pneumatic circuit. 
If, on the other hand, the rod should be raised, the connection is established with the 
atmosphere, thus allowing the chamber to be emptied.  

3.5.2. Valve Modelling 

The valve simulator presented in (Sa da Costa and Louro, 2003) is used to obtain 
the data for each of the abrupt and incipient faults tested in this chapter. Table 3.1 
presents the faults considered in this chapter and their description. Each of the 
presented faults is used considering their abrupt and incipient behaviours. 

From a complete analysis of the variables described in subsection 3.5.1, it 
can be concluded that for FDI purposes the most relevant variables are the flow 
process value, PV, and the servomotor rod displacement, X. Therefore, these 
variables have been considered as outputs of the fuzzy model. Moreover, the 
variables found to be relevant for this model are the following: pressure inlet valve, 
P1; pressure outlet valve, P2; temperature at the inlet, T1; and control value for the 
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inlet valve, CV. The mean squared error is used as the performance index to 
measure the residuals of fuzzy models: 

F
1

1MSE
i

N 2
i

k=
= y - y

N
ˆ , (21) 

where y is a system output and is the correspondent fault model i output. Fi
ŷ

The variance accounted for (VAF) is a widely used measure to test the 
validity of a model, and it is defined as 

0
0

1 cov( )
VAF 100

cov( )
i i

i

- y - y=
y

ˆ . (22) 

Let the real output be yi, the predicted output by the model be , and cov 
be the covariance of the respective vector. When VAF = 100%, the model explains 
all the variability in the real outputs. 

iŷ

The set of identification data used to build the valve model in normal 
operation contains 2000 samples. Figures 3.6 and 3.7 present both outputs of the 
process under normal operation. 

Two fuzzy models have been identified using the fuzzy modelling 
approach described in this chapter for flow and rod displacement. The MSE 
obtained from (21) is 0.09 for flow and 0.03 for rod displacement when the system 
is without faults. The obtained VAF values are 81.2% and 57.6% for flow and rod 
displacement, respectively. 

Using the fuzzy modelling approach described in this chapter, fuzzy 
models have been identified for each fault considered. The performance of the 
obtained models for each output in terms of VAF is shown in Table 3.2 for abrupt 
faults and for incipient faults. This table shows that it was possible to obtain 
accurate models for each fault. Moreover, the RC was able to select properly the 
most relevant inputs for the fuzzy models. 

Figure 3.5. Positioner controller. 

Table 3.1. Faults description 

Faults Description 

F1 Valve clogging 

F5 External leakage 

F7 Medium evaporation or critical flow 

F17 Unexpected pressure change across the valve 

F18 Fully or partly opened bypass valves 

F19 Flow rate sensor fault 
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Figure 3.6. Top: Flow output. Bottom: Flow residuals. 

Figure 3.7. Top: Rod displacement output. Bottom: Rod displacement residuals. 

Table 3.2. VAF of the fuzzy models for abrupt (left) and incipient (right) faults models 
of the servo-actuated valve 

 RC GA 

Faults flow disp. flow disp. 

F1 74.0 74.9 75.2 75.3 

F5 74.1 57.6 74.8 58.3 

F7 97.3 99.9 97.8 99.9 

F17 79.8 62.1 80.5 62.7 

F18 73.1 59.3 74.3 60.6 

F19 75.4 60.9 76.0 61.4 

 RC GA 

Faults flow disp. flow disp. 

F1 99.9 98.0 99.9 98.3 

F5 94.6 62.7 95.4 63.6 

F7 97.4 96.4 98.3 96.9 

F17 95.9 84.9 96.5 85.6 

F18 98.4 60.7 99.4 62.3 

F19 99.9 84.3 99.9 85.6 

3.5.3. FDI Results 

The FDI scheme proposed in this chapter, which is presented in Figure 3.3, has 
been applied to the industrial valve to detect and isolate the abrupt and incipient 
faults F1, F5, F7, F17, F18 and F19.  
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Tables 3.3 and 3.4 present the MSE of residuals, for flow and rod 
displacement, as defined in (21) when each abrupt fault occurs in the system. The 
faulty residuals, as defined in (2), are obtained after the fault detection. Each row in 
the tables corresponds to the fault that occurs during the simulation, and each 
column indicates the model of the fault used to isolate the fault. The residual for the 
fault considered in each row is depicted in bold. The fault isolation is made 
considering the residuals of two outputs: flow and rod displacement. The FDI 
system used in this chapter is able to detect and isolate correctly all six abrupt faults 
considered. By checking the values in bold, it can be seen that they are most often 
the smallest in the respective row. In some cases the isolation needs the two 
outputs. As an example, row 5 in Table 3.4 indicates that fault F18 has been 
simulated, and the isolation system has very similar values for F17, F18 and F19 
(0.03, 0.04 and 0.03, respectively). Recall that Table 3.4 presents the MSE for the 
rod displacement output. However, by checking the output of the other variable, the 
flow, in row 5 of Table 3.3, it becomes clear that the fault isolated is F18, because 
its residual is clearly smaller than all the others in that row. 

Table 3.3. Residuals of fuzzy models for abrupt faults (flow output) 

Fuzzy Model 

Faults F1 F5 F7 F17 F18 F19

F1 16.2 2.38x10
3

 2.1x10
3

 2.2x10
3

 440.1 9.6x10
3

F5 2.4x10
3

0.31 52.1 7.38 713.7 2.2x10
3

F7 17.2 2.15x10
3

0.07 2.2x10
3

 439.4 9.6x10
3

F17 12.8 3.3 27.9 3.7 242.7 12.8 

F18 416.3 794.3 672.9 687.5 6.1 5.9x10
3

F19 9.6x10
3

 2.5x10
3

 2.8x10
3

 2.7x10
3

 6.1x10
3

24.8 

Table 3.4. Residuals of fuzzy models for abrupt faults (rod displacement output) 

Fuzzy Model 

Faults F1 F5 F7 F17 F18 F19

F1 16.3 2.2x10
3

 2.8x10
3

 2.2x10
3

 2.2x10
3

 2.2x10
3

F5 2.1x10
3

0.13 0.65 0.24 0.16 0.14 

F7 661.1 5.1x10
3

2.72 5.1x10
3

 5.1x10
3

 5.1x10
3

F17 1.2 1.23 1.12 0.34 51.8 0.34 

F18 2.1x10
3

 0.037 0.15 0.03 0.04 0.03

F19 2.1x10
3

 0.037 0.15 0.03 0.03 0.02

Figure 3.8 (left) shows the output data collected from the simulator of 
industrial servo-actuated valve when the abrupt fault F1 occurs. The sampling time 
is equal to 1s. The residuals obtained using the fuzzy models in normal operation 
when valve clogging (fault F1) occurs are shown in Figure 3.8 (right). The occurred 
fault is detected; in the figure it can be seen that both residuals and, for flow and rod 
displacement respectively, present one zone with large values. When the block 
Fault Detection in Figure 3.3 detects faults, the faulty models, in our case the fuzzy 
observers for F1, F5, F7, F17, F18 and F19, are activated. The simulated residuals  
obtained for abrupt fault F1 are depicted in Figure 3.9 (left). These residuals are 
very close to zero, and thus the abrupt fault F1 is isolated using the fuzzy observer. 
Figure 3.9 (right) presents the residuals of the model for another fault, F5, when the 
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same abrupt fault F1 occurs. In this case, the fault is not isolated because the 
obtained residuals present large values for each of the output variables, as expected. 
Large residual values are also obtained for the other models of faults considered.  

Besides abrupt faults, six incipient faults have also been simulated. Tables 
3.5 and 3.6 present the results obtained when each incipient fault occurs in the 
system. These tables, as in the abrupt faults case, present the MSE of the fuzzy 
models for the residuals. The values in bold contain the residual for the fault 
considered. The six incipient faults proposed in this chapter are isolated correctly 
with the proposed FDI scheme. 

The output of the system when incipient fault F1 occurs is shown in Figure 
3.10 (left). The detection of incipient fault F1, when this fault occurs after 500 s, is 
presented in Figure 3.10 (right). In this case, both residuals present large values, 
which confirm that the system is faulty. The residuals obtained when the incipient 
fault F1 occurs are depicted in Figure 3.11 (left). Both residuals are very close to 
zero, and thus incipient fault F1 is correctly isolated. 

Further, the residuals of another fault model, when the incipient fault F1
occurred in the system, are depicted in Figure 3.11 (right). In this case, the fault is 
not isolated because the obtained residuals present large values for both output 
variables. As for the abrupt faults, some faults can only be isolated when both 
outputs are considered. Thus, using only one output is not enough to isolate 
incipient faults correctly. 

Table 3.5. Residuals of fuzzy models for incipient faults (flow output) 

Fuzzy Model 

Faults F1 F5 F7 F17 F18 F19

F1 0.05 1.7x10
3

 1.5x10
3

 1.4x10
3

 481.7 1.2x10
3

F5 3 0.12 13.5 0.39 266.6 0.22 

F7 2.7x10
3

 2.2x10
3

0.17 2.2x10
3

 2.2x10
3

 2.8x10
3

F17 3.5 1.02 8.3 0.43 38.6 2.3 

F18 0.79 584.5 475.3 390.7 3.35 3.5x10
3

F19 35.8 1.5x10
3

 1.9x10
3

 1.5x10
3

 3.1x10
3

0.08

Table 3.6. Residuals of fuzzy models for incipient faults (rod displacement output) 

Fuzzy Model 

Faults F1 F5 F7 F17 F18 F19

F1 5.8 1.7x10
3

 1.7x10
3

 1.75x10
3

 1.74x10
3

 1.75x10
3

F5 352.9 0.03 1.22 0.04 0.03 0.043 

F7 4.9x10
3

 4.9x10
3

5.5 5.1x10
3

 5x10
3

 5x10
3

F17 0.5 0.2 4.22 0.09 12.3 602.2 

F18 1.6x10
3

 0.04 1.7 0.046 0.03 0.046

F19 2.6x10
3

 0.15 3.3 0.03 0.14 0.03
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Figure 3.8. Left: Flow and rod displacement output data (abrupt fault F1). Right: 
Detection of abrupt fault F1.

Figure 3.9. Left: Isolation of abrupt fault F1. Right: Model of abrupt fault F5 residuals 
when abrupt fault F1 occurs. 

Figure 3.10. Left: Flow and rod displacement output data (incipient fault F1). Right: 
Detection of incipient fault F1.



Computational Intelligence in Fault Diagnosis   101 

Figure 3.11. Left: Isolation of incipient fault F1. Right: Model of incipient fault F5
residuals when incipient fault F1 occurs. 

3.6. Conclusions 

This chapter proposed an FDI scheme based on fuzzy models. In this approach, 
fuzzy models (observers) are used both for normal operation and for each faulty 
operation. The fuzzy observers are obtained from simulated data driven by real 
data. The inputs of the fuzzy models are selected using the RC algorithm, and the 
parameters of the fuzzy models are optimised using a real-coded genetic algorithm. 
The FDI scheme uses these fuzzy observers to compute the residuals. The 
application of this approach to a pneumatic servomotor actuated industrial valve has 
shown its ability to detect and isolate six abrupt and six incipient faults. Note that 
the data contains noise, which increases the difficulty to detect and isolate the 
faults. 

Future research will consider the extension of the proposed FDI scheme to 
a larger number of faults, and the inclusion of intermittent faults to be detected and 
isolated.
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4. A Fuzzy Classification Technique 
Applied to Fault Diagnosis 

Cosmin Danut Bocaniala and José Sá da Costa 

This chapter describes a novel fuzzy classification methodology for fault diagnosis. 
There are three main directions of applying fuzzy classifiers to fault diagnosis: 
neuro-fuzzy classifiers, classifiers based on collections of fuzzy rules, and 
classifiers based on collections of fuzzy subsets. The contributed fuzzy 
classification methodology described in this chapter follows the last direction. The 
main advantages of the developed fuzzy classifier are the high accuracy with which 
it delimits the areas corresponding to different system states, i.e., the normal state 
and the different faulty states, and the fine precision of discrimination inside 
overlapping areas. In addition, the classifier needs to tune only a small numbers of 
parameters, i.e., the number of parameters equals the number of system states 
considered. The methodology is validated by application with very good results to 
fault diagnosis of a control flow valve from an industrial device. 

4.1. Introduction 

The goal of fault diagnosis research is improving the security, efficiency, 
maintainability and reliability of industrial plants. There are two main types of 
systems that are addressed: safety-critical systems such as nuclear plants and 
aircraft, and lower safety-critical systems such as process and manufacturing plants. 
A fault diagnosis system is a monitoring system that is used to detect faults and 
diagnose their location and significance in a system (Chen and Patton, 1999). The 
diagnosis system performs mainly the following tasks: fault detection – to indicate 
if a fault occurred or not in the system, and fault isolation – to determine the 
location of the fault. 

According to Duda and Hart (1973), classification represents “the 
assignment of a physical object or event to one of several prespecified categories.” 
Fault diagnosis represents a suitable application field for classification methods, as 
its main purpose is to achieve an optimal mapping of the current state of the 
monitored systems into a prespecified set of system states. The set of system states 
includes the normal state and the faulty states (Ariton and Palade, 2005). A general 
framework for applying classification methods to fault diagnosis problems is given 
in (Leonhardt and Ayoubi, 1997). Fault diagnosis is described as “a sequential 
process involving two steps: the symptoms extraction and the actual diagnostic 
task.” The symptoms are extracted on the basis of the measurements provided by 
the actuators and sensors in the monitored system. The actual diagnostic task is to 
map the points in the symptoms space into the set of considered faults. For this 
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reason, the use of classification techniques represents a natural choice when 
designing a fault diagnosis system. 

There are three main ways for applying fuzzy classifiers to fault diagnosis 
that can be found in the literature. Fault diagnosis may be performed using 
collections of fuzzy rules (Frank, 1996; Koscielny et al., 1999). Let R={r1, r2,…,
r } be the set of residuals. Each residual rm i, i=1,…,m, is described by a number of 
fuzzy sets {ri1, ri2,…,ris}. The causal relationships between the residuals and faults 
are expressed by if-then rules having a form similar to 

ip jqIF (effect = r ) AND (effect = r )... THEN (cause is the k - th fault) (1) 
The output of the fuzzy classifier is the faulty vector F. The fuzzy 

inference process will assign to each component Fi, i=0, 1,…,n, where n is the 
number of faults – a value between 0 and 1 that indicates the degree with which the 
normal state (the corresponding component is F0) or the j-th fault affects the 
monitored system, j=1,…,m. If there is the premise that the system can be affected 
only by a fault at a time, then the faulty vector contains only one component larger 
than a preset threshold value, and whose corresponding faulty state represents the 
actual state of the monitored system. If multiple faults can affect the monitored 
system, then the components of the classifier output, which are larger than a preset 
threshold, indicate the faults that occurred in the system. The main advantage of 
using sets of fuzzy rules is that they make transparent the relationships between 
symptoms and faults via the use of linguistic terms. However, notice that if the 
number of fuzzy sets used is increasing, the number of linguistic terms used to label 
them also increases. It follows that the linguistic informational burden of the 
operator may increase too beyond reasonable limits. 

Combinations between fuzzy logic and neural networks, i.e., neuro-fuzzy 
systems, are used to create diagnosis systems robust to uncertainties and noise 
(Palade et al., 2002; Uppal et al., 2002). Calado et al. (2001) propose a hierarchical 
structure of several fuzzy-neural networks (FNN) for fault isolation purposes. The 
hierarchical structure has three levels. The first order differences for all available 
measurements are used as symptoms. The lower level consists of one FNN that 
receives as input the considered symptoms. The output of this FNN determines 
which of the FNNs on the medium level will be activated. That is, if the i-th 
component of the output has a value close to 1, then the i-th FNN on the medium 
level will be activated. The number of the FNNs on the medium level is equal to the 
number of faults considered. Each one of them is also fed with all symptoms 
considered. The upper level is used to perform an OR operation on the outputs of 
the activated FNNs on the medium level. The components of the outputs considered 
for the OR operation must have a value close to 1. The main advantage of the 
neuro-fuzzy systems is that the learning, adaptation and parallelism capabilities 
provided by neural networks may be used to tune the fuzzy rules parameters. The 
main drawback of the neuro-fuzzy classifiers, like the one presented before, is 
represented by a possible too large number of parameters to be tuned, i.e., fuzzy 
membership functions and neural network weights. 

A third direction is to represent the normal state and each faulty state of 
the system as a fuzzy subset of the symptoms space (Boudaoud and Masson, 2000). 
The quality of this last direction is given by its capabilities to learn the topological 
structure of the space. Boudaoud and Masson (2000) propose two main steps for the 
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design of such a pattern recognition diagnosis system: analysis and exploitation. 
The analysis phase is performed off-line and it transforms the available 
measurements, labelled with the corresponding operating state of the system, into a 
collection of fuzzy subsets standing for regions in the measurements space 
describing the operating states into the measurements space. The exploitation phase 
corresponds to the on-line diagnosis process using classification into the regions 
found before. 

The fuzzy subsets defining the normal state and the faulty states of the 
system represent hyperboxes B defined by a minimum point m and a maximum 
point M in the symptoms space (Boudaoud and Masson, 1996). Figure 4.1 shows a 
hyperbox in R3. This type of fuzzy subsets has been used with the fuzzy min-max 
clustering algorithm proposed by Simpson (1993). The maximal size of each 
hyperbox is tuned so that the misclassification rate is minimal. The particularities of 
the fuzzy subsets defined by hyperboxes, i.e., full membership inside hyperboxes 
and partial membership around hyperboxes boundaries, allow diagnosis to consist 
of three possible cases: (i) the system state is stationary, (ii) the system is in 
transition between two possible states, and (iii) the system is stabilizing in a new 
state. It is important to mention that the hyperboxes used during the diagnosis 
process are not allowed to overlap (Simpson, 1993). This does not mean that the 
areas in the symptoms space corresponding to different states do not overlap, but 
that the hyperboxes delimit the sub areas where points have full membership. 
Diagnosing the partial membership areas as transitions between two states 
compensates the loss of diagnosis information due to this approach. 

Notice that the dimension of each hyperbox depends on only three 
constraints: its minimum point, its maximum point, and a parameter that controls 
the decreasing rate of membership to B value when the distance between a test point 
u and B increases. Thus, the main advantage of the third direction compared to the 
previous two directions is the smaller number of parameters to be tuned, i.e., three 
times the number of system states considered, which leads to a smaller designing 
time for the classifier. However, the transparency of relationships between 
symptoms and faults given by the use of linguistic terms is lost. 

minimum point 

m

maximum point 

M

Figure 4.1. A hyperbox in R3 defined by minimum and maximum points. 
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The classification methodology described in this chapter follows the last 
direction mentioned. The methodology is described in detail in our previous papers 
(Bocaniala et al., 2004; 2005). The main property of this methodology is the large 
accuracy with which it learns the topological structure of the symptoms space. The 
fuzzy subsets built by the classifier approximate with a very small error the areas in 
the symptoms space corresponding to different system states. Its accuracy also 
manifests through handling with fine precision the discrimination inside 
overlapping areas. 

The fuzzy subsets defined by this methodology express better the 
topological properties of the symptoms space than hyperboxes used in (Boudaoud 
and Masson, 1996). Details are given further in the chapter. Also, similar to the 
methodology proposed in (Boudaoud and Masson, 1996), the methodology in this 
chapter also needs to tune only a small numbers of parameters, i.e., the number of 
parameters equals the number of system states considered. Details are given further 
in the chapter as well. 

The chapter is organized as follows. Section 4.2 presents the theoretical 
aspects of the described fuzzy classification methodology. The case study, 
DAMADICS benchmark (http://www.eng.hull.ac.uk/research/control/damadics1. 
htm), is concerned with fault diagnosis of a valve intended to supply water to a 
steam generator boiler. Section 4.3 provides a detailed analysis of the faults studied 
by the benchmark. Section 4.4 presents the detection and isolation of the valve 
faults using the contributed fuzzy classifier. Section 4.5 summarizes the original 
contributions of this chapter and mentions possible directions for future work. 

4.2. Theoretical Aspects of the Contributed Fuzzy 
Classification Methodology 

The fuzzy subsets used by the classification methodology described in this chapter 
are induced (built) on the basis of a point-to-set similarity measure between a point 
and a set of points in the measurements space (Baker, 1978). The point-to-set 
similarity is built at its turn on the basis of a point-to-point similarity measure 
between points in the measurements space. 

One of the particularities of the methodology is the fact that one may 
choose those point-to-point and point-to-set similarities that provide the best 
classification performance for the problem at hand. Thus, the methodology may be 
seen as a template that may be instantiated so that it fits the specific characteristics 
of the problem to solve. One may criticize this aspect as it implies searching by 
trials the most suitable similarity measures. However, hints on what measures 
should be used may be obtained by analysis of the measurements used. For 
instance, the trends in the available sensor measurements may reflect in the same 
way the effects of a fault on a system. Therefore, the use of a measure of similarity 
between the trends in the sensor signals over a time window may prove to be a good 
choice.

In order to facilitate the understanding of the theoretical concepts 
presented in the following, a simple problem shown in Figure 4.2 is used. The 
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figure shows the points corresponding to two categories characterized by two 
measurements. 
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Figure 4.2. The simple problem used to illustrate the theoretical aspects. 

4.2.1. Point-to-Point Similarity Measure Based on Distance 
Functions

The similarity between two points u and v, s(u,v), may be expressed using a 
complementary function, d(u,v), expressing dissimilarity. Baker (1978) expresses 
dissimilarity by using the distance function in Eq. 2. Notice that, in this case, the 
functions s and d are complementary with regard to unit value, s(u,v)=1-d(u,v). The 
 parameter plays the role of a threshold value for the similarity measure. For a data 

point u, all points v residing at a distance (u,v) smaller than  will bear some 
similarity with u. As for the points residing at distances larger than or equal to , the 
similarity s(u,v) is null. The contour plot of the point-to-point similarity function 
when Eq. 2 is used is shown in Figure 4.3. The distance measure used is the 
Euclidean measure. 

, / , for ,
,

1, otherwise
u v u v

h u v (2) 

4.2.2. Point-to-Point Similarity Measure Based on Pearson 
Correlation

The Pearson correlation (Weisstein, 1999) measures the similarity in the trends of 
two signals. Let us suppose that s and t represent the measurements of two signals 
over the same time window. The formula used to compute the correlation between 
the vectors s and t is given in Eq. 3. The terms zs and zt represent the z-scores of s
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and t, respectively. The z-score of a vector is obtained by first subtracting the mean 
value and then dividing by its standard deviation. The product between zs and zt is 
the dot product and n represents the length of the time window. 

( , ) 1 ( ) /p s t zs zt n (3) 

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

0.1 0.1

0.
1

0.1
0.10.1

0.
1

0.
3

0.3 0.3
0.3

0.3

0.3

0.3

0.
5

0.5

0.5

0.50.5

0.7

0.
7

0.7
0.9

test point
1st category
2nd category

Figure 4.3. The point-to-point similarity measure for =5 in Eq. 2.

The values of this correlation measure fall in [0,2] interval, where 0 stands 
for perfect correlation and 2 stands for perfect anticorrelation. Figure 4.4 shows two 
pairs of shapes corresponding to these two cases. There is a parallel between the 
terms “correlation”/“anticorrelation” and the terms “similarity”/“dissimilarity.” 
Indeed, the function p may play the same role as the dissimilarity function d in the 
previous subsection. In this case, the maximum value for d(s,t), which is equal to 
p(s,t), is 2. The functions s and d are complementary with regard to this value; thus, 
s(u,v)=2-d(u,v). 

4.2.3. Point-to-Set Similarity Measure 

The similarity measure between two data points may be extended to a similarity 
measure between a point and a set of points (Baker, 1978). In this chapter, if the 
point-to-point similarity is given by Eq. 2, the similarity between a given point u
and a set of points S is computed as the mean value of the point-to-point similarity 
values between u and each v in S (Eq. 4, where n denotes the number of elements in 
S). Notice that the value of r(u,S) stays inside [0,1] interval, as s(u,v) also stays 
inside [0,1] interval and the cardinal of S is n.

( , )
, v S

s u v
r u S

n
(4) 
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Figure 4.4. Perfect Pearson correlation (a) and perfect Pearson anticorrelation (b). 
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Figure 4.5. The contour plot of the point-to-set similarity for the first category ( =3).

The effect of using the  parameter is that only those data points from S,
whose distance to u is larger than , contribute to the point-to-set similarity value. 
The explanation is that only these points have a nonzero similarity with u. It follows 
that the similarity value between u and S is decided within the neighborhood 
defined by .

It has been observed in practice that, if different (dedicated)  parameters 
are used for different categories to express the point-to-point similarity (Eq. 2), the 
performance of the classifier increases substantially. Let us consider that the value 
of the  parameter is 3 for both categories in the problem. The contour plots of the 
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point-to-set similarity functions for the two categories are shown in Figures 4.5 and 
4.6 (left), respectively. The two plots are drawn for all the points in the Cartesian 
product [0,16]x[0,16]. If we decrease the value of  to 1.8 for the second category, 
the contour plot for this category matches more accurately the topology of the area 
occupied by points in the category (Figure 4.6, right). 
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Figure 4.6. The contour plot of the point-to-set similarity for the second category when 
=3 (left) and when =1.8 (right) 

Figure 4.7. The surfaces generated when the same  value is used (left) and when 
different  values are used (right) 

4.2.4. Fuzzy Subsets Induced by Single Point-to-Set 
Similarity Measures 

Let C={Ci}i=1,…,m be the set of all points in the measurements space, associated with 
the problem to solve, where Ci, i=1,…,m, represents the set of all points 
corresponding to the i-th considered category. The membership function of the 
fuzzy subset Fuzzi induced by Ci, computed on the basis of a given point-to-set 
similarity measure, is given in Eq. 5. The n value represents the cardinal of C, and 
the ni value represents the cardinal of Ci.
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( , )
( , )

i
i

r u Cu
r u C (5) 

If the values of the  parameters considered are the same: 3 for both 
categories, the obtained fuzzy subsets (surfaces) corresponding to the two 
categories are shown in Figure 4.7 (left). If different values for the  parameters are 
used: 3 for the first one and 1.8 for the second one, the surface corresponding to the 
second category shrinks to match better the topology of the area occupied by the 
points in that category (Figure 4.7, right). 

A point u presented at the input of the classifier is assigned to the category 
Cz whose corresponding degree of assignment z(u) is the largest (Eq. 6). In case of 
ties, the assignment to a category cannot be decided and the point is rejected. 

1,...,
-th category maxz i

i m
u z u u (6) 

4.2.5. Fuzzy Subsets Induced by Multiple Point-to-Set 
Similarity Measures 

The practice showed that there are problems for which classifiers designed by using 
only one point-to-set similarity measure does not provide satisfactory results 
(Bocaniala et al., 2004). When situations like these are met, the advantages brought 
by two or more similarity measures may be combined in order to improve the 
performance of the classifier (Bocaniala e. al., 2004), i.e., a hybrid approach is 
used. This aspect has also been noticed by Baker (1978). 

In the following, a few possible approaches, when trying to combine the 
use of two or more similarity measures, are suggested: 

similarity measures: the  parameter may be applied only to one 
of the similarity measures used; if more than one similarity 
measure is used, then there is a  parameter for each one of them. 
cluster affinity measures: there may be only one cluster affinity 
measure resulting from the combination of all similarities used; 
or, there may be one cluster affinity measure for each similarity 
used. 
fuzzy membership functions: the fuzzy membership functions 
represent combinations of cluster affinity measures if more than 
one such  measure exists. 

If the  parameter is applied to only one of the similarity measures used, 
then all other cluster affinity measures will be computed for the neighbourhood 
defined by this  parameter. 

In this chapter, a hybrid approach based on Euclidean distance and Pearson 
correlation is used. For details see the case study in Section 4.3. 

4.2.6. Designing and Testing the Classifier 

Let m be the number of the categories considered for the problem to be solved. The 
proposed methodology first groups the set of all available data C into clusters 
according to the category they belong to, Ci, i=1,…,m. In order to design and test 
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the classifier, each subgroup Ci is split in three representative and distinct subsets, 
Ci

ref, Ci
param, and Ci

test. On the basis of these subsets three sets unions, REF, PARAM
and TEST, are defined (Eq. 7). They are called the reference patterns set, the 
parameters tuning set, and the test set, respectively. A subset is considered 
representative for a given set if it covers that set in a satisfactory manner. In the 
following, the semantic for the expression satisfactory covering subset adopted in 
this thesis is explained. Then, the role of each one of the three unions is detailed. It 
is to be noticed that the union of subsets having the satisfactory covering property 
for a set represents also a satisfactory covering subset of that set. 

1

1

1

m ref
i

i
m param

i
i

m test
i

i

REF C

PARAM C

TEST C

(7) 

4.2.6.1. Satisfactory Covering Subsets 
For the work presented in this thesis, a satisfactory covering subset represents a 
subset of data that preserves (with a given order of magnitude) the distribution of 
the data associated with the problem. Selecting the elements that compose a 
satisfactory covering subset for a given data set can be costly. Therefore, it is more 
convenient to use selection methods that provide convenient approximations for 
satisfactory covering subsets. Such a method is proposed in the following. 

Let us consider a given finite data set A that contains r points in a 
multidimensional space. First, the maximum distance, max, between two elements 
is computed. During this computation a pair of elements, (a,b), with maximum 
distance between them is memorized. Then, one of the elements, let it be a, is 
considered as the centre of s hyperspheres, Si, i=1,...,s. The user must provide the s
value. Each one of the Si hyperspheres has a radius equal to 

, 1,...,i
maxr i i s

s
(8) 

The next step is to consider the partition induced by the next subsets, 
0 1

1

/

/  , 1,..., 1j j+ j

P a A a inside S

P a A a inside S - S j s
(9) 

The cardinal of the subset that approximates the satisfactory covering 
subset is set to a previous given percent t of elements from A. The distribution of 
elements from A in the partition elements P , …, Ps-10  is not equal. This distribution 
is taken into account when distributing the percent t among the partition members. 
Each partition member Pj, j=1, …, s-1, will be allocated a number of pj elements. 
The approximation subset is composed by randomly selecting pj elements from the 
Pj subset, j=1, …, s-1.
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4.2.6.2. Reference Patterns Set (REF) 
The point-to-set similarity measures are defined for the representative subsets Ci

ref,
i=1,…,m. Therefore, when using a single point-to-set similarity measure, the fuzzy 
membership functions are computed as 

),(
),(

Cur
Cur

u
ref
i

i (10) 

4.2.6.3. Parameters Tuning Set (PARAM) 
The shape of the membership functions i, associated to the fuzzy sets Fuzzi,
depends not only on the representative subset Ci

ref, but also on the value of the i

parameter, i=1,…,m. The algorithm for tuning the parameters i, i=1,…,m, of the 
classifier represents a search process in an m-dimensional space for the parameter 
vector ( 1, 2,..., m) that meets, for each category, the maximal correct 
classification criterion and the minimal misclassification criterion. In order to 
perform this search, different methodologies may be used, i.e. genetic algorithms 
(Bocaniala et al., 2003), hill-climbing (Bocaniala and Sa da Costa, 2004a) and 
particle swarm optimisation (PSO) (Bocaniala and Sa da Costa, 2004b). In practice, 
the PSO methodology proved to be the fastest. 

The search for optimal parameters when using genetic algorithms and hill-
climbing may be accelerated by using an optimised initial population (Sa da Costa 
et al., 2003). An optimised initial population can be obtained by performing an 
iterative search that starts with an individual whose parameters have very small 
values. Then, at each next step, the values of the parameters will be 
increased/decreased so that the fitness of the obtained individual, i.e., the classifier 
performance, increases. 

4.2.6.4. Testing Set (TEST) 
The performance of the classifier is measured according to its generalization 
capabilities when applied on the TEST set. It is to be noticed that the TEST set 
contains data that were not presented before at the input of the classifier and that is 
representative for the whole data set C. The practice showed that the performance 
of the classifier may improve if the testing is performed after adding the data in the 
PARAM set to the REF set. 

4.3. Detailed Analysis of Faults in the Case Study 

The DAMADICS benchmark (http://www.eng.hull.ac.uk/research/control/dama 
dics1.htm) is concerned with fault diagnosis of a valve intended to supply water to a 
steam generator boiler. The valve is used as part of the process at sugar factory 
Cukrownia Lublin S.A., Poland. It is made up of three parts: a valve body, a spring-
and-diaphragm pneumatic actuator and a positioner (Figure 4.8). The valve body is 
the equipment that sets the flow through the pipe system. The flow is proportional 
to the minimum flow area inside the valve (2), which, in turn, is proportional to the 
position of a rod (5). The spring-and-diaphragm actuator determines the position of 
this rod. The spring-and-diaphragm actuator is composed of a rod, which at one end 
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is connected to the valve body and the other end has a plate, which is placed inside 
a pneumatic chamber (8). The plate is connected to the walls of the chamber by a 
flexible diaphragm. This assembly is supported by a spring. The position of the rod 
is proportional to the pressure inside the chamber, which is determined by the 
positioner. The positioner is basically a control element. It receives three signals: a 
measurement of the position of the rod (x), a reference signal for the position of the 
rod (CV) and a pneumatic signal from a compressed air circuit in the plant. The 
positioner returns an airflow signal, which is determined by a classic feedback 
control loop of the rod position. The airflow signal changes the pressure inside the 
chamber.

There are several sensors included in the system that measure the variables 
that influence the system, namely, the upstream and downstream water pressures, 
the water temperature, the position of the rod (x) and the flow through the valve (F).
These measurements are intended for controlling the process but they can also be 
used for FDI purposes. This means that the implementation of this sort of system 
will not imply additional hardware. The first three measurements, as well as the 
control value (CV), may be seen as the inputs to the system whilst the latter two 
may be seen as its outputs. The two output values, the sensor for measuring the 
position of the rod (x) and the sensor for measuring the water flow through the 
valve (F), provide variables that contain information relative to the faulty 
behaviours. 

Figure 4.8. The valve studied by DAMADICS benchmark. 

The sensor measurements corresponding to some faults cannot be obtained 
directly from the real process as the occurrence of these faults may have disastrous 
consequences on the system. Therefore, the valve needed to be extensively 
modelled using the physical laws that govern its behaviour (Louro, 2003; Sa da 
Costa and Louro, 2003). The MATLAB/SIMULINK model obtained may be used 
to simulate any faulty behaviour. 

The faults in the benchmark have been simulated for 20 different values of 
fault strength, uniformly distributed between 5% and 100%, and different input 
values for the reference signal. The previous set of fault strengths represents a good 
approximation of all possible faulty situations involving the faults in the 
benchmark. All faults have been simulated two times for all their fault strengths. 
The simulation lasted for 70 seconds the first time and for 20 seconds the second 
time. The fault has been introduced at the 50th second the first time and at the 10th 
the second time. The data obtained during the first simulation have been used to 
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design the classifier, i.e., 50% for the REF set and 50% for the PARAM set. The 
data obtained during the second simulation have been used as the TEST set. For the 
second round of simulation a shorter time has been chosen, i.e., the fault is 
introduced in the system for only 10 seconds, as good fault diagnosis 
methodologies need to have very short time intervals for detection and isolation of 
abrupt faults. 

The input to the simulation is taken from real data collected at the plant. 
This method provides more realistic conditions for generating the behaviour of the 
system while undergoing a fault. It also makes the FDI task more difficult because 
the real data input causes the system to feature the same noise conditions as those in 
the real plant. 

The valve is affected by a total of 19 faults that may have abrupt and/or 
incipient behaviour (Table 4.1). In this chapter only the abrupt manifestation of the 
faults has been considered. The large majority of faults, 14 out of 19, manifest an 
abrupt behaviour. 

Table 4.1. The set of faults considered in DAMADICS benchmark 

Abrupt behavior Fault Description 

small medium big 

Incipient

behaviour 

F1 Valve clogging x x x  

F2 Valve plug or valve seat sedimentation   x x 

F3 Valve plug or valve seat erosion    x 

F4 Increase of valve or bushing friction    x 

F5 External leakage (leaky bushing, covers, 

terminals) 

   x 

F6 Internal leakage (valve tightness)    x 

F7 Medium evaporation or critical flow x x x  

F8 Twisted servo-motor’s piston rod x x x  

F9 Servomotor’s housing or terminals 

tightness

   x 

F10 Servomotor’s diaphragm perforation x x x  

F11 Servomotor’s spring fault   x x 

F12 Electro-pneumatic transducer fault x x x  

F13 Rod displacement sensor fault x x x x 

F14 Pressure sensor fault x x x  

F15 Positioner feedback fault   x  

F16 Positioner supply pressure drop x x x  

F17 Unexpected pressure change across the 

valve

  x x 

F18 Fully or partly opened bypass valve x x x x 

F19 Flow rate sensor fault x x x  

As mentioned in the introduction of this chapter, the sensor that measures 
the rod position (x) and the sensor that measures the flow (F) provide variables that 
contain information relative to the faults. The difference dP between the upstream 
pressure measurement (P1) and the downstream pressure measurement (P2) is also 
considered (besides x and F) as it permits to differentiate F17 from the other faults. 
For the rest of the faults, the previous difference always has negligible values (close 
to zero). 

The effects of three out of the 14 abrupt faults on these three sensor 
measurements are not distinguishable from the normal behaviour (N), {F8, F12,
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F14}. Therefore, in the following, these cases are not studied. They can be dealt 
with if further sensors are added to the system. There can be distinguished three 
groups of faults, {F2, F19}, {F7, F10}, and {F11, F15, F16}, for which exists a 
strong similarity between their effects on the measurements, i.e., large overlapping. 
There is also noncritical overlapping between the groups of faults {F1, F7} and 
{F13, F18}.

4.4. Results of Fault Diagnosis Using the Fuzzy 
Classifier

The previous section indicated the three sensor measurements, x, F and dP, that 
provide the best distinction among the faults. In order to provide the classifier with 
information on the dynamics of the system, the state of the system is described 
using the aggregate of these values over a time window of 5 time-steps. More 
precisely, the state of the system represents a point in a 15-dimensional space, (xt-4,
…, xt, F , …, Ft-4 t, dP , …, dPt-4 t), where t is the time instance when the system state 
is recorded. The classifier performs detection and isolation in one single step. If the 
classifier outputs the same fault label for two consecutive states then the system is 
diagnosed as being affected by that fault. 

The classifier employed in this chapter is built using a hybrid approach 
based on Euclidean distance and Pearson correlation. Pearson correlation allows the 
trends in the x and F signals to provide supplementary separation between different 
faults. As mentioned before, a point in a 15-dimensional space describes the system 
state, i.e. the record over 5 consecutive time-steps for dP, x and F values. Therefore, 
the point has associated two vectors that represent the trend for x and F signals over 
the 5 time-step window. Three point-to-set similarity measures are used, based on 
the three similarity measures induced by the Euclidean distance (rE), Pearson 
correlation for x (rP_x), and Pearson correlation for F (rP_F), respectively. The 
parameters are applied only to the point-to-point similarity measure based on the 
Euclidean distance. If the  parameters are applied only to one of the point-to-point 
similarity measures used, then all other point-to-set similarity measures will be 
computed for the neighbourhood defined by these  parameters. The point-to-set 
similarity measures corresponding to each of the two Pearson correlations are given 
by Eq. , where p  and p11 x F stand for the point-to-point similarities based on Pearson 
correlation for x and F, respectively. Finally, the fuzzy membership functions 
represent a combination of the three point-to-set similarity measures (Eq. 12). The 
terms ,  and  weight the contribution of each point-to-set similarity measure to 
the overall value. The search process for the optimal  parameters may be extended 
to also tune the values of these terms. 
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The process of fault detection and isolation will follow the next two steps. 
First, only one category per fault is considered, containing all the points associated 
with all possible fault strengths. Second, more than one category for one fault is 
considered. These categories are formed by allowing for single fault strengths or 
groups of fault strengths to form distinct categories (Bocaniala et al., 2004). The 
second step is taken in order to increase even more (if possible) the isolation 
capabilities of the classifier until distinguishing between different fault strengths. 

For the first step, one category per fault is considered and a classifier is 
built for this particular set of categories. The isolation matrix obtained is shown in 
Table 4.2. The normal state (N) is separable/well-classified from the faulty states in 
proportion of 99.60%. The comment “not visible” stands for situations when the 
effects of the corresponding fault strengths are not visible. Analysing the content of 
Table 4.2 the following facts may be deduced. The classifier correctly recognizes 
the five groups of overlapping faults mentioned in Section 4.3. Notice that the large 
overlapping between F11, F15 and F16 is almost completely solved. Notice also 
that in the case of faults F1, F10, F18 and F19, the effects of the small fault 
strengths are not distinguishable from the normal state. The previous analysis 
proves the high accuracy with which the classifier is able to delimit the areas 
corresponding to different categories, and the fine precision of discrimination inside 
overlapping areas. However, the content of Table 4.2 raises questions like the next 
one: if the classifier outputs the label F15, then is this fault in the system really F15
(and if it is which fault strength does it have), or is it fault strength 95% of F11, or 
is it fault strength 75% of F16? The second step of the process of detection and 
isolation investigates the answers to questions like the previous one, i.e., tries to 
improve the isolation. 

For the second step, more than one category per fault is considered. These 
categories are formed by allowing for single fault strengths or groups of fault 
strengths to a distinct category (Bocaniala et al., 2004). As will be seen, this 
refinement increases the isolation between different faults and between different 
fault strengths of the same fault. The effects of the refinement are studied 
considering the faults grouped according to the overlapping between them, i.e., 
{F1, F7}, {F2, F19}, {F7, F10}, {F11, F15, F16}, {F13, F18} and {F17}. For 
each group of faults the next analysis is performed. First, for each fault, the 
clustering into groups of fault strengths is found by considering the fault strengths 
as separate categories and building the corresponding classifier. For each fault, the 
identified groups of fault strengths represent the new set of categories per fault. 
Second, using the previous sets of categories per fault, another classifier is built in 
order to check the isolation properties. The result of these analyses is presented in 
Tables 4.3 to 4.7. The notation used is FiFSj, where i and j respectively stand for 
the fault label and fault strength (given as a number between 0 and 100). The 
labelling convention for the clusters formed by more than one fault strength is to 
use the label corresponding to the smallest fault strength in the group, i.e., the two 
clusters for F2 are labelled F2FS70 and respectively F2FS80. 
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Table 4.2. The isolation matrix for the case when only one category per fault is 
considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F1 [ - - - N - - ] [ - - - - F1 - - - - ] F7 

F2 [ - - - not considered in the benchmark - - - - ] F2 F2 F19 F2 F2 F19 F2 

F7 [ - - - - - - - - - F7 - - - - - - - - ] 

F10 [ - - - N - - ] F10 F10 (not 

visible) 

F10 F10 F10 F10 [ - F7 - ] 

F11 [ - - - not considered in the benchmark - - - - ] (not

visible)

F11 F11 F11 F15 F11 F11 

F13 F18 F18 F13 F18 [ - - - - - - F13 - - - - - - - ] 

F15 [ - - - not considered in the benchmark - - - - ] F15 F15 F15 (not 

visible) 

F15 F16 F15 

F16 [ - - - - - - N - - - - - ] F15 [ - F16 - ] 

F17 [ - - - not considered in the benchmark - - - - ] [ - - F17 - - ] 

F18 N [ - - F13 - ] [ - - - - - F18 - - - - - ] 

F19 N N [ F19 ] F2 [ - - - - - - - F19 - - - - ] 

Table 4.3. The isolation matrix for the group of faults {F1, F7} in case when more than 
one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

F1 [ - - - N - - ] F1FS45 F1FS50 F1FS55 F1FS60 F1FS65 F1FS70 F1FS75 F1FS80 F1FS85 F1FS90 F1FS95 F7 

F7 [ - - - - - - - - - F7 - - - - - - - - ]

Table 4.4. The isolation matrix for the group of faults {F2, F19} in case when more than 
one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

F2 [ - - - not considered in the 

benchmark 

- - - - - ] F19FS15 F2FS70 F19FS30 F2FS80 F2FS70 F19FS30 F2FS80

F19 N N [ - F19FS15 ] F19FS30 [ - - - F19FS35 - - ] F19FS80 [ - F19FS35 ] 

Table 4.5. The isolation matrix for the group of faults {F7, F10} in case when more than 
one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F7 [ - - - - - - - - - F7 - - - - - - - - ] 

F10 [ - - - N - - ] F10FS45 F10FS45 (not 

visible) 

F10FS45 F10FS45 F10FS70 F10FS70 [ - F7 - ] 

Table 4.6. The isolation matrix for the group of faults {F13, F18} in case when more 
than one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F13 F13FS5 F18FS10 F13FS5 F18FS10 F13FS5 F13FS5 [ - - - - - - F13FS40 - - - - - ] 

F18 N F18FS10 F13FS5 [ - F18FS10 ] [ - - - - - F18FS40 - - - - - ] 

Table 4.7. The isolation matrix for the group of faults {F11, F15, F16} in case when 
more than one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

F11 [ - - - not considered in the 

benchmark 

- - - - ] (not 

visible) 

F11 F11 F11 F11 F11 F11 

F15 [ - - - not considered in the 

benchmark 

- - - - ] F15FS70 F15FS75 F15FS80 (not 

visible) 

F15FS70 F15FS80 F15FS70

F16 [ - - - - - - N - - - - - ] F15FS75 [ - F16FS85 - ] 

Notice that the isolation results have improved radically. For instance, the 
medium and large fault strengths of F19, 40-100%, are separated from the small 
ones, 5-35%; while misclassification of F19 with F2 occurs only for the small 
strengths of F19. The overlapping between faults F13 and F18 occurs now only 
between small fault strengths, i.e., between 5% and 30% for F13 and 10% and 35% 
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for F18. The medium and large strengths of both faults are now perfectly separated 
from each other. 

4.5. Conclusions 

This chapter presented a novel fuzzy classification methodology applied to fault 
diagnosis. There are three main directions of applying fuzzy classifiers to fault 
diagnosis: neuro-fuzzy classifiers, classifiers based on collections of fuzzy rules, 
and classifiers based on collections of fuzzy subsets. The fuzzy classification 
methodology described in this chapter follows the last direction. The main property 
of this methodology is the large accuracy with which it learns the topological 
structure of the symptoms space. The fuzzy subsets built by the classifier 
approximate with a very small error the areas in the symptoms space corresponding 
to different categories. Its accuracy also manifests through handling with fine 
precision the discrimination inside overlapping areas. 

The technique of building fuzzy subsets used with the contributed 
methodology is based on the work of Baker (1978). The original contributions are 
(i) the use of different (dedicated)  parameters for different categories to express 
the point-to-point similarity in order to increase the performance of the classifier, 
(ii) developing the idea acknowledged by Baker (1978) that the use of fuzzy subsets 
induced by multiple point-to-set similarity measures may increase the performance 
of the classifier, (iii) for the case study, the use of a 5 time-step time window that 
allows information on the system dynamics to be used with the classifier, and (iv) 
also for the case study, the improvement in the isolation capability by allowing 
single fault strengths or groups of fault strengths to form distinct categories used 
with the classifier. 

Future research on the fuzzy classification methodology needs to 
concentrate on obtaining a computational complexity of both design and test phase 
that is small enough to make the classifier suitable for application to fault diagnosis 
of real systems. The computational complexity of the design phase has already been 
significantly reduced by using the particle swarm optimisation technique (Bocaniala 
and Sa da Costa, 2004a; 2004b). Also, it has been observed in practice that the 
classifier generalises reasonably well even for small dimensions of the REF and 
PARAM sets (Bocaniala, 2003). Or, the computational complexity of both the 
design and test phase depends heavily on the sizes of these two sets. This leads to 
the conclusion that a technique might be found so that the sizes of these two sets 
drop substantially and so that the performance of the classifier stays at least the 
same. An answer might be found by studying the kernel methods (Shawe-Taylor 
and Cristianni, 2004). 
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5. Fuzzy-Statistical Reasoning in Fault 
Diagnosis

Dan Stefanoiu and Florin Ionescu 

When searching for faults threatening a system, the human expert is sometimes 
performing an amazingly accurate analysis of available information, frequently by 
using only elementary statistics. Such reasoning is referred to as “fuzzy reasoning,” 
in the sense that the expert is able to extract and analyse the essential information of 
interest from a data set strongly affected by uncertainty. Automating the reasoning 
mechanisms that represent the foundation of such an analysis is, in general, a 
difficult attempt, but also a possible one, in some cases. The chapter introduces a 
nonconventional method of fault diagnosis, based upon some statistical and fuzzy 
concepts applied to vibrations, which intends to automate a part of human reasoning 
when performing the detection and classification of defects. 

5.1. Introduction 

Nowadays, the classical fault tolerant design paradigm is enriched by new methods 
and techniques (Wilsky, 1976; Reiter, 1987; Isermann, 1993; 1997). The trade-off 
between costs involved by ignoring fault prevention and costs of hyper-safety of 
systems is improved. The effort in designing satisfactory modules aptly to prevent 
failures is decreased, due to important technological advances. In a complete 
structure of fault detection and diagnosis, a module concerned with monitoring of 
system symptoms and anticipation for possible failures is included. In general, the 
symptoms are detected by using two kinds of methods: analytical and heuristic.

The analytical methods are involved with systems for which the 
characteristic parameters are measurable (or quantifiable). These parameters are 
determined by analysing either some signals or the system itself. For instance, the 
basic parameters of monitored signals are: the amplitude, the variance, the auto-
correlation, the power spectral density, etc. Basically, the system analysis is 
founded on an identification model, in general parametric (Söderström and Stoica, 
1989). Various models are used, such as: (auto)regressive, state representation, 
described by some parity equations, etc. The model parameters are deduced from 
measured input-output data by system identification techniques. In both cases, a 
quantitative expertise has to be performed. This consists mostly of comparisons 
between the measured values and a set of tolerated values assigned to normal 
behaviour of the system. The malfunction symptoms appear when the parameters 
start to systematically provide values beyond tolerances. Moreover, a classification 
of symptoms can be realized, depending on the difference between the measured 
and tolerated values.  
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Sometimes, the analytical approach is not sufficient or cannot be 
performed (especially because the characteristic parameters are not quantifiable). 
Moreover, the symptoms meaning is important for interpretation of associated 
faults. Often, this relies on the qualitative assessment of a human operator as expert. 
The expert experience plays an important role in symptoms investigation. For this 
reason, one says that the detection of symptoms is performed by using heuristic 
methods (from heuriskein (Greek) – to search, to investigate). The nonquantifiable 
information observed from the system could be reflected for example by: colours, 
smells, noise tones, etc. However, some quantifiable parameters, but with “fuzzy” 
values, represented by linguistic terms like: “small,” “medium,” “large,” “about 
null,” etc., belong to this category as well. The human operator integrates this 
information in a quasi-empirical history of system functioning. Qualitative 
comparisons are performed between the observed information and the information 
specified by the history. The history includes not only information about the normal 
functioning states, but also about the maintenance process, repairs, fault types, life-
time, fatigue, etc. The decision concerning the symptoms and faults is based on 
operator’s skills, experience or flair and is affected by uncertainty. However, the 
experience about the system can be improved through a learning mechanism. 

Like in medicine, fault prevention remains a demanding task that requires 
both self-anticipation from the system and intelligent approach from the user. 
Usually, a self-anticipatory system transmits information about its behaviour 
through some anticipating signals. For example, human or animal muscles have 
different electrochemical activity just before they are damaged, due to high 
intensity and long effort (von Tscharner, 2000). Another example is issued from 
mechanical systems, for which the vibrations are anticipating signals (Angelo, 
1987; Bedford and Drumheller, 1994; McConnell, 1995; Wowvk, 1995). Their 
intimate structure changes some time before a failure occurs (Braun, 1986). But this 
change is so fast and sometimes so difficult to distinguish that, without special 
detection and decoding techniques, it could be ignored. These techniques focus on 
the extraction of vibration main characteristics (features), in order to classify the 
possible faults. In general, the strategy adopted within a fault detection method 
starting from vibrations consists of the following stages: signal acquisition, signal 
analysis (in order to extract features), features grouping, faults classification 
(eventually adaptively, through a continuously learning mechanism), fault 
identification (if present). 

Vibration acquired from mechanical systems is interesting mainly for its 
capacity to encode information about the defects or faults threatening them. Several 
distinct efforts in detection of machinery defects can be noticed, but only in the last 
few decades has vibration become crucial for automating this process. The earliest 
method, which dates back to the first days of machinery (and which is still in use 
today), is founded on a trained observer or listener referred to as (expert) analyst. A 
person with a great deal of experience in working with a particular machine or 
engine can detect flaws in operating machinery, by simply “watching” or 
“listening” to it. Very often, the resulting diagnosis, based on empirical 
observations and deductions, is amazingly accurate, but difficult to model. Other 
subsequent attempts became more systematic and used some parameters, such as: 
the lubricant temperature (which, unfortunately, provides too late a diagnosis, after 
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the defects are already severe), the oil cleanness (which requires an exhaustive and 
often inefficient analysis), the noise level of acoustic emission (which is often 
enabled only by already fatigued elements), etc.  

The most efficient methods in early detection of defects are using signal 
processing (SP) techniques (Oppenheim and Schafer, 1985; Proakis and Manolakis, 
1996). These methods differ from many typical SP applications where the noise 
attenuation is a fundamental requirement. When using vibrations, exactly the noise 
is the most concerned part in the analysis. This is due to the fact that not only the 
natural oscillations of machinery could encode the defective behaviour, but also the 
noise corrupting them. Moreover, the applications revealed that the signal-to-noise 
ratio (SNR) is extremely small for vibrations encoding information about defects. 
Therefore, the models of vibration used in fault detection and diagnosis (fdd) are, in 
fact, models of their noisy parts, encoding all the information about defect types 
and their severity degrees.  

One of the most interesting applications in fdd is concerned with bearings, 
due to their simple structure and large integration within mechanical systems 
(Howard, 1994; FAG OEM and Handel AG, 1996; 1997). By inspecting the 
spectrum of vibration acquired from bearings, some researchers believed that its 
irregular shape is mainly due to the environmental noise and correlation between 
different components. Hence, they introduced techniques to “remove” the white 
noise and decorrelate the data, based on SP concepts such as: autocorrelation,
backstrum, or cepstrum, but the irregularities are only slightly smoothed and the 
defect severity is difficult to derive. Perhaps the most popular method to extract 
information about defects in bearings (and geared coupling) is the (spectral) 
envelope analysis (EA). Some of these techniques (especially EA) are described in 
(Stefanoiu and Ionescu, 2002). They are poorly modelling the humanlike diagnosis, 
which probably requires nonconventional approaches. Actually, one can notice that 
experienced analysts perform a kind of fault classification, by simply inspecting the 
spectrum. Moreover, they are able to improve the accuracy of classification for 
every new case they analyse. It is by far not completely known what kind of 
reasoning lies behind their diagnosis, but one has assumed that the brain performs a 
qualitative statistical assessment inputting some pattern recognition mechanisms 
towards this goal. A very interesting approach combining statistics and pattern 
recognition has been introduced in (Xi et al., 2000). This is in fact an attempt of 
automating human reasoning, which resulted in a quite efficient and simple fdd 
algorithm, though with unavoidable limitations.  

In this research, one started from the largely accepted idea that human 
reasoning is also fuzzy. This means that a solution to a problem could be issued 
even from unclear, vague or ambiguous information, i.e., from information strongly 
affected by uncertainty. Usually, the analyst considers the solution the most 
“plausible” one, according to the available data. When an fdd or/and classification 
has to be performed from vibrations, the analyst’s experience is crucial for the 
accuracy of subsequent analysis. Unfortunately, the analyst has to cope not only 
with external perturbations affecting the data, but also with his/her own 
subjectivism when performing such an analysis. Usually, this analysis is based on 
some simple statistical assessments aiming to increase its objectivity. Therefore, the 
reasoning hidden behind data analysis could be automated by performing a 
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combination between spectral statistics and fuzzy clustering (in entropy sense (Klir 
and Folger, 1988)), which should decrease both the subjectivism and the 
perturbations influence. Moreover, comparisons between the tested vibration and a 
standard (defect free) vibration could be performed, without specifying from the 
beginning the number of classes and/or their meaning, which has to be discovered 
later. In fact, this approach combines analytic and heuristic points of view, in order 
to build a model of human reasoning when performing fdd.  

The chapter is structured as follows. The fuzzy-statistical reasoning 
method is presented in depth in the next section, which has two main parts: the first 
one is devoted to vibration acquisition and preprocessing, whereas within the 
second one, the fuzzy-statistical model is described. The resulting algorithm is 
practically listed in Section 5.2 as well, simultaneously with the method description. 
The simulation results and their interpretations are given in Section 5.3. The 
graphical simulations are presented in the Appendix. Some concluding remarks 
complete the chapter. 

5.2. The Fuzzy-Statistical Reasoning Method 

One (but probably not unique) way to overcome some fdd limitations when using 
spectral or envelope analysis is to combine the spectral representation with statistics 
and subsequently to use a fuzzy model aiming to minimize the diagnosis 
uncertainty. This approach is described next. 

5.2.1. Method Overview 

When measuring vibrations of a mechanical system, several signals are combined 
together within the resulting data, such as: natural oscillations, interference signals 
(due to interactions between its different parts); defect encoding noise, indicating 
that something is wrong with one or more of its parts and environmental noise. The 
crude mechanical vibration is converted into an electrical vibration signal ( v ) by 
means of a sensor connected to a transducer (which could induce slight distortions). 
For example, in the case of a bearing, if data  are rich enough (few thousands of 
rotations), the vibration spectrum 

v
V  looks like that in Figure 5.1. Two cases could 

be discussed here. 

)2( πνV

[
d
B
]

ν

LF MF HF

Resonance0

Figure 5.1. Overall vibration spectrum in case of defects. 
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When the bearing is defect free, the spectral energy is mainly concentrated 
inside the low-frequency band (LF) encoding information about oscillations and 
their natural frequencies (derived from bearing geometry, depending on shaft 
rotation speed). Few multiples of natural frequencies are replicated within the 
spectrum, but their power has an exponential decay (due to damping). In the case of 
defective bearing, the idea that the defect noise is basically generated by visible or 
microscopic quasi-random shocks has been largely accepted today. Shocks are 
modelled by trains of impulses and they put the sensor into resonance state. 
Usually, sensor resonance appears at (very) high frequency, but, by convolution 
with a train of impulses, it is replicated towards low frequency as well. In Figure 
5.1, this is suggested by the energy concentration around some peaks located in 
middle-frequency band (MF). Usually, a resonance peak is mixed with basic LF 
spectrum as well, such that it could hardly be distinguished. The high-frequency
band (HF) rather encodes information about resonance corrupted by environmental 
noises. The spectrum could change (even dramatically), depending on the applied 
load, sensor locations, shaft speed, bearing mounting, etc.  

The EA principle is easy to explain now: select one of the resonance 
peaks, apply a bandpass filter on the vibration around the selected resonance, take 
the envelope of the resulting signal and zoom the LF part of the spectral envelope. 
If isolated, the defect appears now as distinctive peaks at locations depending again 
on natural frequencies. The higher the peaks are, the more severe the defect. 

But the analyst just looks at the spectrum and provides the diagnosis by 
observing the changing parts relatively to the standard spectrum, though the latter 
has no constant shape. This means he/she is focusing on some spectral subbands 
that reveal significant shape and energy differences from the standard. Moreover, 
the similar differences are grouped in classes and each class points to a certain 
defect or combination of defects (with some confidence degree). 

Therefore, when automating this kind of reasoning, the following 
operations could be involved: define a set of statistical parameters (sp) that quantify 
the information about shape and energy of a signal; split the spectrum into a number 
of subbands; compare the tested and standard subbands in terms of sp; group the 
results in similarity classes, by using a global fuzzy relation between them; select 
the best fault class, according to an entropy-based criterion aiming to minimize the 
information uncertainty. This constitutes the kernel of the method described 
hereafter. The presentation covers two main parts. The first one is concerned with 
vibration acquisition and preprocessing. The second one is devoted to the fuzzy-
statistical model. 

5.2.2. Vibration Data Acquisition and Pre-processing 

Let us denote the raw vibration data by v . In practice, v  is a finite length, finite 
bandwidth and discrete time signal encoding the information about defects that 
could exist within the tested component. In this case, the signal is acquired from 
bearings. The acquisition and preprocessing procedure encompasses several steps 
that are described next. 

Step 1: Set the acquisition parameters.  
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The first parameter employed in data acquisition is the sampling rate, denoted by 
s . The selection of s  is extremely important for the next analysis. On the one 

hand, s  should be large enough, in order to avoid aliasing (Oppenheim and 
Schafer, 1985; Proakis and Manolakis, 1996). On the other hand, large s  values 
involve expensive devices. Therefore, a suitable value should be selected, such that 
the resulting signal encode most part of the desired information about defects and 
the acquisition costs be affordable.  

The sensor characteristic usually extends beyond 140–150 kHz. If defects 
exist, the sensor resonance is replicated towards LF and MF bands within the 
vibration spectrum (see Figure 5.1). At least 3 or 4 resonance peaks are located in 
the  0–20 kHz band and at least 2 of them lie inside the 0–10 kHz subband. In fact, 
the analyst focuses on this LF subband. Usually, the vibration spectrum extends 
beyond the limit of 20 kHz, but the band of interest remains 0–10 kHz (the SNR 
decreases rapidly beyond 10–12 kHz, because of HF noises that dominate the other 
fast decaying vibration components). All these arguments lead to the following 
trade-off in vibration acquisition:  

a. Prefilter the sensor signal by using a low-pass analogic anti-
aliasing filter (Proakis and Manolakis, 1996) that removes the HF 
components beyond 150 kHz;  

b. Use the sigma-delta modulation technique (Proakis and 
Manolakis, 1996), in order to restrict the signal in the range 0–12 
kHz, to attenuate the quantization noise and to avoid aliasing (a 
new low-pass analogic filter is applied in the end);  

c. Sample the resulting analogic signal by setting a rate of at least 
20–24 kHz (i.e., kHz20s ), according to Shannon-Nyquist 
Sampling Theorem (Oppenheim and Schafer, 1985; Proakis and 
Manolakis, 1996). 

A standard sampling rate that has been employed for example in (Maness 
and Boerhout, 2001) is kHz6.25s , which yields accurate vibration spectra in 
the range 0–12.8 kHz. Observe the powers of 2 hidden behind these values: 

 and , which avoids some computational errors 
due to division by multiples of 2.  

100260025 8 100280012 7

Another parameter of interest is the vibration length, denoted by .
Normally, this is set according to the main rotation frequency 

N
r  and sampling rate 

s . The vibration data should include a minimum number of complete rotations, 
 (usually, ). Then, obviously: rn 2000rn

rsrnN / (1) 

For example, if 2000rn , Hz50r  (3000 rpm) and kHz6.25s ,

the number of vibration data is:  samples, which takes 40 
s. Usually,  is also set as a power of 2 multiple and this is the reason, in Eq. 1, 

000,024,1102 310N
N

s  is sometimes set with the same property. This setting is very useful in 
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evaluation of spectrum, when using a fast fourier transform (FFT) algorithm 
(Oppenheim and Schafer, 1985; Proakis and Manolakis, 1996).  

Usually, the apparatus performing the vibration acquisition (connected to 
the sensor) could be tuned by only specifying these two parameters: s  and  or 
the duration of acquisition. The corresponding operations necessary to store the data 
in a memory are transparent for the user. 

N

Step 2: Construct the raw vibration. 
The sensor capacity of perception is determined by its bearing position. Different 
data could be obtained for different locations on the same bearing. When the 
bearing is under load, this variability is even more accentuated. This gives rise to 
the problem of appropriate sensor location, which is uncertain. The uncertainty 
could be attenuated if several sensors are located in different positions (instead of a 
single one). Unfortunately, in this case, other problems occur. For example, the 
acquired signals have to be mixed in a unique raw vibration, by synchronizing them 
appropriately. Another problem is that the number of sensors could increase the 
cost of acquisition solution. Sensors should be as light as possible, in order to 
introduce insignificant distortions into the genuine vibration. But, the lighter the 
sensor, the more expensive. Also, in general, sensors have slightly different 
characteristics. The bigger the sensor number, the more difficult to denoise the data. 
Hence, a suitable number of sensors should be employed, such that the acquired 
signals be easy to synchronize and the cost of acquisition be affordable.  

An interesting and efficient solution is introduced in (Maness and 
Boerhout, 2001), as illustrated in Figure 5.2. Two sensors are employed to acquire 
the horizontal and the vertical vibrations, denoted by  and, , respectively. 
These are, in fact, two quadrature signals easy to synchronize, by considering them 
the real and the imaginary part of raw vibration: 

xv yv

yx jvvv (2) 

v

v ≡ v + j v

v

Figure 5.2. Construction of raw vibration from two quadrature signals. 

The resulting signal is complex valued, but its sensitivity to sensors 
location is attenuated. In the absence of load, there are no significant differences 
between quadrature signals in terms of magnitude. If a load is applied, these 
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differences become important and should be accounted. In this case, Eq. 2 should 
be replaced by: 

yx jbvavv (3) 
where  and  are two constants selected such that  and  have 
approximately the same range of variation. For example, in the case of vertical load, 

 could be set to 1 (no horizontal load), whereas b  should be set inside (0,1) 
interval, since the load amplifies the defect noise of vibration.  

0a 0b xav ybv

a

Step 3: Vibration segmentation and windowing. 
1,0][ NnnvThe vibration data set  is quite large. If the Fourier transform (FT) 

were to be applied on this set, the evaluation could be very slow. Moreover, the 
resulting spectrum is practically useless since the vibration signals are also non-
stationary (Cohen, 1995). In other words, the spectrum is time varying. This 
involves the overall spectrum reflecting the intimate behaviour of vibration only on 
average, whereas, on the contrary, the spectrum variations are important for 
learning as much as possible about how the bearing runs. Therefore, the vibration 
segmentation becomes a necessity. In this context, one operates with two concepts: 
(vibration) frames and (vibration) segments.

A frame is a subset of successive samples that could not be further 
segmented. Frames could or could not be overlapped. In this approach, the frames 
are nonoverlapping, but the overlapping effect is hidden behind the concept of 
segment. One can denote by  the m-th frame of vibration (where Mm ,0mv ) and 
by  the frame length (constant for all frames). Obviously, the number of 
nonoverlapped frames is: 

NN f

fNNM /1 (4) 

where  is the smallest integer superior or equal to a a . It is suitable that 
be a divisor of . For example, if  is a power of 2 multiple (as suggested within 
the previous step), then  could be 512, 1024, 2048, etc. For the model 
constructed next, one requires that 

fN
N N

fN
2M  (i.e., at least 3 frames should be 

available). The frame length should be selected not only according to , but also 
to the minimum resolution of frame spectrum (at least 400 rays for vibration in the 
range 0–10 kHz). The statistical part of the model constructed later is sensitive to 

, since it determines the precision of corresponding sp.  

N

fN
A vibration segment includes three successive (nonoverlapping) frames: 

the previous frame ( ), the current frame ( ) and the next frame ( ), for 1mv mv 1mv

1,1 Mm 1M. Thus, the vibration data could generate up to  segments of 
length  each. Unlike frames, segments are overlapping (two of the three frames 
in a segment are identical within the next segment), in order to prevent marginal 
effects when filtering. Actually, the characteristic frame of a segment is the current 
one, located in the middle. Its left and right neighbours are only playing the role of 

fN3
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background signals, which avoids zero-padding and performs a smooth passage 
from a frame to another, when filtering.  

The samples of neighbour signals could or could not be as important as the 
samples of current frame in a segment. This feature is controlled through 
windowing. The windowing technique is very simple, in fact. Let  be a 

length window that slides along the vibration data with a step of  samples. Then 
the current segment is extracted from raw vibration by simply multiplying 

w fN3 -

fN
v  and 

 in a certain position (0, , , ..., ). The sliding effect is 
suggested in Figure 5.3, where the window support is given by three successive 
frames (a segment, in fact). The window symmetry axis should be centred on the 
current frame middle point.  

w fN fN2 fNM )2(

Several windows are usually employed in SP (Proakis and Manolakis, 
1996). Some of them are weighting not only the neighbour frames but also some 
samples of central frame (like the window in Figure 5.3). The most utilized 
windows are the following nine, expressed next only for their -length support wN

1,0 wNn , with .2wN

Raw vibration support: 0...N-1

Segment support:

(m-1)N ...(m+1)N

Sliding

window

v v v

Figure 5.3. Windowing the raw vibration. 

1. Rectangular (Oppenheim and Schafer, 1985; Proakis and Manolakis, 
1996): 1][nw .
2. Bartlett (or triangular) (Oppenheim and Schafer, 1985; Proakis and 

Manolakis, 1996): 
1
2

12
1][

w

w

N

Nn
nw .

3. Blackman (Oppenheim and Schafer, 1985; Proakis and Manolakis, 

1996): 
1

4cos8.0
1

2cos5.042.0][
ww N
n

N
nnw .

4. Chebyshev: recursive algorithm (see MATLAB function chebwin).
Besides the support length ( ), a second parameter is necessary: ,
which stands for the attenuation in decibels (dB) of the window spectrum 
side lobe with respect to the main lobe. As  increases, the window 
aperture decreases, but below 70 dB, significant marginal errors are 

wN 0wr

wr
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introduced. A good trade-off between the window aperture and its 
marginal errors is obtained for dB]100,80[wr .
5. Hamming (Oppenheim and Schafer, 1985; Proakis and Manolakis, 

1996): 
1

2cos46.054.0][
wN
nnw .

6. Hanning (Oppenheim and Schafer, 1985; Proakis and Manolakis, 

1996): 
1

2cos1
2
1][

wN
nnw .

7. Kaiser (Kaiser, 1974; Proakis and Manolakis, 1996): 

2
1sinh

2
1

2
1sinh

][

22

w

ww

N

NnN

nw , where sinh stands for the 

hyperbolic sine (
2
eesinh

xx
x

def
0) and the parameter  is the 

height in dB of the window spectrum side lobe. Sometimes (see MATLAB 
function kaiser),  is replaced by another parameter, , defined as 

follows:

21,0
]50,21[,)21(07886.0)21(5842.0

50,)7.8(1102.0
4.0

6As  increases, the window aperture decreases, but below ,
significant marginal errors are introduced. A good trade-off between the 
window aperture and its marginal errors is obtained for 9 .
8. Lanczos (Proakis and Manolakis, 1996): 

L

N
Nn
N

Nn

nw

w

w

w

w

)1(2
122

)1(2
122sin

][ , where the exponent  controls the 

window aperture. As 

0L

L  increases, the window aperture decreases, but 
below the unit value ( 1L ), significant marginal errors are introduced. A 
good trade-off between the window aperture and its marginal errors is 
obtained for 1L .
9. Tukey (Proakis and Manolakis, 1996): 
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)1,0(where the parameter  controls the percentage of rectangular 
window centred inside. For the vibration segment, a good choice is 

3/1 , since the central frame takes only one third of the whole 
segment. 
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Figure 5.4. Nine of the most utilized signal processing windows. 

All windows above are symmetric, as shown in Figure 5.4, where, beside 
the window shape, the parameter values are also depicted for Chebyshev, Kaiser, 
Lanczos and Tukey windows. But not all windows of this collection have the same 
performances when using them in SP applications. Their efficiency depends on the 
specific criteria that have to be matched. Although some windows seem to have the 
same shape, they are actually quite different. The differences are better emphasized 
by their spectra, as drawn in Figure 5.5. The graphics are plotted by using the 
spectral power expressed in dB and on all horizontal axes normalized frequencies 
are represented. The main lobe lies in LF subband, whereas the side lobes extend to 
MF and HF subbands. The main lobe is best emphasized for windows like 
Blackman, Chebyshev or Kaiser. (For the last two, the main lobe height relative to 
the first side lobe can be controlled.) One of the most employed criterions in 
selection of the appropriate window is the attenuation performed by the side lobes. 
Since the window multiplies the data, their corresponding FT are convoluted 
(according to the Inverse Convolution Theorem (Oppenheim and Schafer, 1985; 
Proakis and Manolakis, 1996)). Hence, the genuine data spectrum is distorted by 
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the window spectrum. Ideally, the window spectrum is not distorting the genuine 
one only if it is identical to the unit (or Dirac) impulse. In another words, only the 
main lobe should be present (not the side lobes) and its aperture should be null in 
spectral images below. But, as one can see from the windows’ spectra, none of them 
verify this (ideal) property. 
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Figure 5.5. Spectra of the nine signal processing windows above. 

Thus, one can say that a “good” window (in terms of attenuation criterion) 
should have a small aperture of the main lobe and a rapid attenuation over the side 
lobes. In this way, a minimal distortion is introduced into the genuine data. But one 
may easily guess that these two properties are opposite, as a direct consequence of 
the Gabor-Heisenberg Uncertainty Principle (Cohen, 1995; Proakis and Manolakis, 
1996). Actually, except the rectangular window, all the other windows are 
performing a trade-off between the main lobe aperture and the side lobes 
attenuation.

The rectangular window, which anyone is tempted to select for its 
simplicity, is, in fact, the worst one in terms of side lobes attenuation, but probably 
one of the best in terms of main lobe aperture. The triangular window improves in 
some respect this trade-off, but not essentially. Among the other windows, 
Blackman, Hanning and Kaiser prove very good performances. (the Hanning 
window is actually employed in many filter design methods.) 

But, for the purpose of our model, the Tukey window is very likely the 
most appropriate. As one can see, its shape in the  time domain (Figure 5.4) is very 
well adapted to the manner in which the vibration segments are constructed: one 
important central frame and two lateral auxiliary frames (that should gradually be 
weighted). In frequency, a good trade-off between main lobe aperture and side 
lobes attenuation is realized (see again Figure 5.5). Therefore, the vibration 
segments are built by windowing the data with a Tukey window (for 3/1 ). 
Note that all the other eight windows have been tested by simulation, but none of 
them could overtake the Tukey window in terms of final defect classifications 
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properties. But, actually, the method presented here is not very sensitive to the 
employed window, which constitutes an advantage.  

1,1 MmDenote by  (for ms ) the current segment resulting after 
windowing the data by . Then the windowing effect could be described by: w

wvvvs mmmm ][ 11 (5) 

Step 4: Digital filtering of vibration data. 
The vibration segments  are utilized next in a filtering procedure aiming to 
remove the LF oscillatory part and, eventually, some HF noise. The filters are 
digital. Unlike many approaches regarding vibrations filtering, here, one takes 
benefits from the modern and powerful finite impulse response (FIR) filters design 
procedures described, for example in (Proakis and Manolakis, 1996).  

ms

Two types of digital FIR filters could be employed: high-pass and band-
pass. The first one just removes most of the harmonic natural oscillations. The 
second one could moreover remove the HF noise inherited by vibration data 
especially from environmental sources. For these filters, some parameters should be 
set, in order to perform the design: the filter length ( ), the left cutoff frequency 
(

hN

lc ) and the right cutoff frequency ( rc , in case of high-pass filters).  
The filter length should be large enough to yield good filters 

characteristics, but it should not overtake the segment length. A suitable choice is 
, provided that the frame length is sufficiently large. 

(According to FIR procedure design, in the case of high-pass filters, the length must 
be odd. If  is even, then  should be set to .)

1, ffh NNN

hNfN 1fN

The left cutoff frequency lc  has to be set such that the decaying natural 
harmonics in raw vibration are strongly attenuated or removed. Thus, on the one 
hand, , where the inferior limit min,lclc min,lc  is set to 7-10 times the 
maximum natural frequency of oscillation. On the other hand, increasing the left 
cutoff frequency beyond a limit of 2 kHz may result in a loss of information about 
possible defects. Thus, in  should be set in the range ]2000,[ min,lc  [Hz].  

Unlike within the EA method, here, the right cutoff frequency rc  should 
ensure a sufficiently wide pass band, in order to extract all information encoding 
defects. If the anti-aliasing analogic filters do not remove some HP noises, then rc

should be selected such that they are attenuated in subband 2/, src . Normally, 
the width of this subband should not be larger than lc , but this is not a 
requirement. Sometimes, the right cutoff is imposed by a central symmetry 
frequency, usually selected according to a resonance peak in vibration spectrum.  

In Figure 5.6, the characteristics of two filters have been depicted: a high-
pass one (to the left) and a band-pass one (to the right). For both filters, 

, but the high-pass one must have an odd number of coefficients. 2048fN
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Figure 5.6. High-pass (left) and band-pass (right) filter characteristics. 

The time domain characteristics (the impulse responses) are less 
suggestive than the frequency domain characteristics (magnitude and phase of 
frequency responses). “Good” filters should have an abrupt change at the cut-off 
frequency, a strong attenuation in stop band(s), no ripples on the main lobe and 
linear phase. In this figure, the left and right cutoff frequencies have been set to 

Hz1932lc  and Hz9876rc , whereas the sampling frequency is 
kHz6.25s . Actually, the band-pass filter was centred on 5.9 kHz. The 

attenuation in stop bands is quite strong, thanks to the large filter lengths.  
Segments are one by one filtered. If  is the impulse response of the 

selected filter, then any filtered segment is simply obtained by convolution: 
h

hsm .

Since , its length is  as well. This involves 1, ffh NNN hsmfN3  could 

also be split into three frames with same length ( ):fN

][ 1,,1, mhmhmhm vvvhs (6) 
The reason the filtered segment is split again into three frames in Eq. 6 is 

very simple. The filter was not actually applied to all frames in  but to its main 
frame, the central one. The lateral frames are only context signals that tell to the 
filter there are nonnull signal values before and after the main frame. Since filters 
are shift invariant linear systems (Oppenheim and Schafer, 1985; Proakis and 
Manolakis, 1996), the main frame in Eq. 6 is also the central one. Therefore, from 
the filtered segment, only one frame is extracted for the next step: . Note that, 
in general,  is different from 

ms

mhv ,

hvmmhv ,  and it is closer to the real behaviour of 
filtered vibration, due to the lateral frames. Also, the first and the last raw vibration 
frames (  and ) are only involved as context signals aiming to avoid marginal 
errors. They are not furthermore transmitted.  

0v Mv
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The resulting filtered frames could be considered as nonoverlapping, since 
the main frame of the segment becomes the context (auxiliary) frame for the next 
segment. There are 1,1, Mmmhv1M  filtered frames . These are inputs for the 

fuzzy-statistical model described next. Note that a set of standard (defect free) 
vibration preprocessed data 1,1

0
, Mmmhv  is also provided by the same technique. 

5.2.3. The Fuzzy-Statistical Model 

The steps aiming to construct the fuzzy-statistical model are grouped into two 
categories: construction of the spectral statistic information about the filtered 
frames 1,1, Mmmhv  and utilization of this information in a fuzzy approach. 

Step 1: Spectrum evaluation and segmentation.  
The spectrum of each frame  (or ) is evaluated by using one of the 
powerful existing FFT algorithms (Oppenheim and Schafer, 1985; Proakis and 
Manolakis, 1996). Denote by  (respectively by ) the spectrum of current 

(filtered) frame (

0
,mhvmhv ,

0
,mhVmh,V

1,1 Mm ), i.e., the magnitude of its FT. Since the spectrum is 
symmetric for real valued data sequences, it follows that only the first  rays 

could be accounted, which corresponds to a bandwidth of 

2/fN

2/s .
The main difference between spectra encoding information about defects 

 and defect-free spectra  is that the former have a bigger variability 
among frames, whereas the later vary within some minimum and maximum bounds, 
close to each other. The variability could be expressed in various ways, but, for this 
model, sp are employed to quantify the spectral behaviour.  

0
,mhVmh,V

By convention, let  stand for any of two spectra above (  or 

). The full frequency band of each spectrum  is uniformly segmented next 
into

mh,V mh,V
0
,mhV mh,V

1K  subbands, in order to evaluate a set of local sp. Such a frequency 
segment (subband) should include between 5 and 10 rotations of main shaft, in 
order to construct a consistent set of sp. Thus, the segment bandwidth should be set 
between Kr5 r10 rs /]20/1,10/1[and  (i.e.,  should vary in the range ). The 
minimum bound yields a good frequency resolution (i.e., narrow subbands), but a 
smaller sp accuracy than the maximum bound, where, however, the resolution is 
worst. Obviously, the sp consistency (accuracy) depends on the number of 
accounted data. In this case, the consistency depends on the number of rays 
included in a segment, that is, on the segment bandwidth. The bigger the 
bandwidth, the more consistent the sp, but the less focused on local spectral 
variation. A good compromise is realized for r8 :

rsK 16/ (7) 
The number of rays within each frequency subband (except possibly the 

one located at the highest frequency) is: 
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KNN fK 2/ (8) 

2048fN Hz50rFor example, ,  (3000 rpm), and kHz6.25s

lead to:  subbands (of 400 Hz bandwidth each) and 32K 32KN  rays/sub-band, 
according to Eqs. 7 and 8.  

1K .By convention, sub-bands are indexed from 0 to 
Splitting the spectrum in a number of equally spaced subbands may not be 

the best solution to focus on spectral power local variation. However, the trade-off 
between frequency resolution (or K ) and sp accuracy (or ) determines the 
minimum bandwidth for carrying out the statistical analysis. Nonuniform 
segmentations could be realized by compacting together two or more adjacent 
subbands with minimum bandwidth. But the fdd method described here is 
independent on the type of frequency segmentation. Therefore, for the sake of 
simplicity, the segmentation is kept uniform hereafter.  

KN

To conclude this step, a final remark should be noted. Filtering the 
vibration segments involves a separation of frequency stop subbands and pass 
subbands. The statistical parameters might not be similarly employed for any of 
these 2 subband types, because the information encoded inside the stop subbands is 
probably extremely poor and noisy compared to the information inside the pass 
subbands. Since the whole band was practically quantified by K  values, separation 
lines between stop and pass subbands have to be defined. Obviously, the cut-off 
frequencies lc  and rc  belong to some subbands as follows:  

K
KK s

lclclc 2
1,  and 

K
KK s

rcrcrc 2
,1 (9) 

where 

slclc KK /2  and srcrc KK /2 (10) 

For example, if, like previously, Hz1932lc  and Hz9876rc ,
whereas 32KkHz6.25s  and , then:  and 4lcK 25rcK .

0 1 2 3
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sub-bands

Pass sub-bands

ν

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 31 31

ν

Stop

sub-bands

0 ν /2

24

Figure 5.7. An example of frequency segmentation. 

Normally, the transition subbands (i.e., including the cutoff frequencies) 
should be pass type, in order to avoid removing useful side information. Therefore, 
the stop subbands are: {0, 1, ..., 1K1lcK , , ..., rcK }. Consequently, the pass 
subbands are: { , ..., lcK 1rcK }. For the previous example, the stop and pass sub-
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bands are: {0, 1, 2, 3, 25, 26, ..., 31}, respectively {4, 5, ..., 23, 24}, as depicted in 
Figure 5.7. 

Step 2: Definition of sp and construction of relative statistical vectors.  
Using statistics to extract information about defects from raw vibration is not a new 
idea. Many analysts perform diagnosis with the help of some parameters such as the 
root mean square (RMS) or the peak value evaluated either from vibration data or 
their spectrum.  

A quasi-complete statistical set of parameters includes the following 12 
parameters: peak (to valley) ( v ); average ( v ); absolute average ( v ); energy

( ); normalized energy ( ); root mean square ( ); peak to average ratio
( ); crest factor ( ); impulse factor ( ); shape factor ( ); clearance 
factor ( ); Kurtosis ( ). Their definitions are listed in Eq. 11, for any N-
length data series, 

vE N
vE vRMS

vPAR vCF vIF vSF

vCLF vK

1,0][ Nnnv  (such as vibrations or their spectra): 

][min][max
2
1

1,01,0
nvnvv

NnNn

def 1

0
][1 N

n

def
nv

N
v

1

0
][1 N

n

def
nv

N
v; ; ;

1

0

2][1 N

n

def

v vnv
N

RMS
1

0

2][1 N

n

def
N

v nv
N

E
1

0

2][
N

n

def

v nvE ; ; ;

][max1
1,0

nv
v

PAR
Nn

def

v
v

def

v RMS
vCF

v
vIF

def

v; ; ; (11) 

4

1

0

4][1

v

N

n
def

v RMS

vnv
N

K21
][1 N

def

v

nv

vCLF
v

RMSSF v
def

v ; ;

0nN
The first six parameters are concerned with energetic characteristics, 

whereas the other six quantify different shape properties. Obviously, the number of 
data, , is a measure of sp accuracy. (The accuracy increases with .)  N N

Usually, the values of parameters defined in Eq. 11 are compared to 
standard values corresponding to defect-free systems. Their biases could indicate 
the desired information about defects (including estimations of severity degree). 
Though the number of parameters to account for is large enough, no one is able to 
extract all the necessary information about defects.  

Once the frequency segmentation has been realized, some sp should be 
evaluated within every subband. Note that the set of 12 sp above is redundant. For 
example, in (Xi et al., 2000), one states that peak-to-valley is similar to RMS, to 
energy and to absolute average; impulse factor is similar to shape factor; kurtosis is 
similar to crest factor. These similarities are not realized in sense of similarity 
measure from physics, but in terms of some features ad hoc defined in the context 
of that research. Therefore, a safe approach is to take into consideration as much sp 
as possible. An obvious remark is that, for nonnegative data (like spectral powers), 
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the absolute average is identical to the average. Also, it is better to evaluate the 
normalized energy instead of pure energy, especially in the case of nonuniform 
frequency segmentation (when subbands have different numbers of rays and, thus, 
their energy becomes noncomparable). Thus, only 10 sp are retained in this context. 
They are denoted according to time and frequency segmentations performed so far: 

peak (to valley) ( ); average ( mh,Vmh,V ); normalized energy ( ); root mean 

square ( ); peak to average ratio ( ); crest factor ( ); impulse 

factor ( ); shape factor ( ); clearance factor ( ); kurtosis ( ). 
As usual, the  employed in notations points to any of 2 vibration data types: 
acquired from the tested bearing (* vanishes) or from the standard (defect free) 
bearing (* is replaced by 0).  

,
,
N
mhE

mhRMS , mhPAR , mhCF ,

mhIF , mhSF , mhCLF , mh,K

1,1 MmK  values for every frame Any of the sp above takes  (one 
value for each subband). The number of rays per subband determines their 
consistency, . For example,  could be evaluated as follows: mhRMS ,KN

1

0

2

,,, ][][1][
KN

n
mhKmh

K

def

mh knkN
N

kRMS VV 1,0 Kk (12) ,

where the local average is: 
1

0
,, ][1][

KN

n
Kmh

K

def

mh nkN
N

k VV 1,0 Kk, (13) 

A  statistical matrix  could be constructed for every spectral 

frame , by stacking the sp values in successive row vectors, as enumerated 
above. Thus, for example, the RMS value in Eq. 13 is the element 

mh,SK10

mh,V
]1,4[ k  of 

matrix , i.e., , whereas the fourth row of the matrix 

packs all RMS values among subbands. The generic element of matrix  is 

, where 

][]1,4[ ,, kRMSk mhmhSmh,S

mh,S

],[, jimhS 10,1i 1,1 MmKkj ,11,  and .
When the tested bearing is defect-free (standard), the statistical values of 

matrices  vary within some acceptable tolerances among frames. Thus, in this 
case, the values of every sp are located inside a min-max domain, whose bounds 
depend on the evaluation subband. More specifically, let  be the i-th sp in the 

list above (for 

0
,mhS

iP

VP210,1i ). (For example, , , etc.) Then its 

value for the m-th frame and the k-th sub-band is . For the standard 

vibration,  could vary in the range 

RMS4P

],[ kmiP

][,][ maxmin kk ii PP],[0 kiP  among frames, but 
within the same subband (k). A natural manner to evaluate the min-max bounds is 
to account for all frames:  
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],[min][ 0

1,1

min kmk i
Mm

i PP ],[max][ 0

1,1

max kmk i
Mm

i PP 1,0 Kk, , (14) 

This involves that two remarkable matrices could be constructed, by 
gathering together all minimum or maximum values evaluated in Eq. 14:  

]1[],[ minmin jji iPS , ,]1[],[ maxmax jji iPS Kj ,110,1i , (15) 
The same result is obtained if the min and max operators are applied 

elementwise on matrices 1,1
0
, MmmhS . In practice, the min and max values are 

furthermore corrected by multiplication with constants  and ,
respectively, , in order to avoid diagnosing as defective the defect-free bearings. For 
example,  and . The lower bound is, however, less important 

than the upper bound and this is the reason the constant  is not 0.9 (the 

symmetrical value of ), but 0.6. By convention, hereafter, one preserves 

the same notations  and  for corrected bounds as well.  

1min 1max

6.0min 1.1max

min

1.1max

][min kiP ][max kiP
Defective bearings provide vibrations that exceed some or all the 

(corrected) bounds in matrices defined by Eq. 15. The biases of sp  outside the 
standard range could indicate the desired information about defects, including 
estimations of severity degree. Note that defects could be detected not only when 
maximum bound is overtaken, but also if the minimum bound is undertaken. The 
second effect is especially induced by lubrication defects, excessive wear or 
multiple-point defects (when the phases of FT could lead to energy attenuation 
inside some subbands). In order to quantify the severity degree of defects, the sp are 
replaced by the relative statistical parameters (rsp), defined as explained next.  

iP

There are two types of assessments when performing the comparison 
between sp and their bounds: by accounting for both min and max limits or by 
considering only the max limit. Both limits should be accounted for pass subbands, 
whereas only the max limit is sufficient for the stop bands. In the first case, for each 
sp  ( 10,1i ) one defines a corresponding rsp  as follows:iP iR

][],[0if],,[/][

][,][],[if,1

][],[if],[/],[

10
1],[

minmin

maxmin

maxmax

kkmkmk
kkkm

kkmkkm
km

iiii

iii

iiii
def

i

PPPP
PPP

PPPP
R ,

(16) 

1,0,1,1 KkMm
Similarly, in the second case, the definition of rsp can be expressed as:  

][],[if,1

][],[if],[/],[
10
1],[

max

maxmax

kkm
kkmkkm

km
ii

iiii
def

i PP
PPPP

R ,
(17) 

1,0,1,1 KkMm
The same philosophy was employed in both definitions of Eqs. 16 and  17: 

if the maximum bound is exceeded, evaluate how many times the parameter 
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overtakes the bound; if the minimum bound is exceeded, evaluate how many times 
the bound overtakes the parameter; set by 1 the rsp when the parameter stays within 
the tolerance limits.  

Note that, independently of the sp type, the values of different rsp could 
now be compared, thanks to their relative nature. Thus, for example, although RMS 
( ) is not comparable with kurtosis ( ), the relative RMS ( ) has values 
varying in a similar range to the relative kurtosis ( ). Therefore, the rsp values of 
the same frame within the same subband could be packed in a 10-length column 
vector . The purpose of the 

4P 10P 4R

10R

T],,,[ 1021 RRRR 10/1  factor employed in 

both definitions above is to normalize the vector R  in the following sense:  
1,1 Mm 1,0 Kk1],[ kmR (18) , ,

1],[ kmRand  if the spectrum of the m -th frame behaves normally within the 
-th subband (as for the defect-free bearing). Starting with the next step, Euclidean 

norms 
k

],[ kmR  are actually employed. For a more general approach, other norms 
could be considered as well. For example, one can consider that not all sp have the 
same weight and thus a weighting matrix 1010Q  (eventually diagonal) has to 
multiply left the rsp vector R . The norm of the resulting vector QR  is in fact a 
generalized Euclidean Q -norm.  

Returning to Eqs. 16 and 17, a special case remains to be considered: the 
null parameter values, when both bounds have to be accounted. If one recalls the sp 
definitions in Eq. 11, it is easy to see that not all parameters could be null, even 
when the input data consists of a finite length null signal. This property is proven by 
those parameters quantifying the signal shape, since a part of the shape information 
is the signal length (denoted by  in Eq. 11). In fact, simple algebraic 
manipulations lead to the following interesting limits when the signal 

N
v  tends to the 

null signal:  

0
2
0lim

0
v

v
00lim

0 N
v

v
00lim

0 N
v

v
 ;  ;  ; 

001lim
0 N

NRMSvv
00lim

2

0 N
N

vv
E ;  ; ;00lim 2

0 vv
E

(19) 

12
lim

0 N
NCFvv 2

lim
0

NIFvv
NPARvv 0

lim  ;  ;  ; 

1
33lim

2

0 N
NN

vv
K

2
lim

0

NCLFvv
1lim

0
NSFvv

 ;  ; 

Thus, the shape parameters are null if and only if the signal is empty. 
Practically, in context of spectral frames, they are always nonnull. But the energetic 
parameters could be null inside some subbands, if and only if all corresponding rays 
are null. Usually, if in a pass subband all rays are null, either a severe defect is 
announcing or there are some important errors within the available data. The second 
hypothesis could be confirmed when the spectrum is null for many pass subbands. 
But, if only few isolated pass subbands provide null data, then the first hypothesis is 
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more plausible. In this case, the rsp should be set to a value equal to or more than 
, for all subbands where . The reason for this setting will 

become obvious in the next step.  
][10 max kiP 0],[ kmiP

miki ,1],[RAn average set of norms  is also evaluated for each sub-

band, after every 1,1 Mm  processed frames:  
m

i

def
ki

m
km

1
],[1],[ RR 1,0 Kk, (20) 

This entity is extremely useful for initialising the fuzzy model. In fact, one 
can consider that the processing starts from a virtual frame that provides the 
average information about rsp norms at any moment. Set the index of virtual frame 
by  and change notation ],[ kmR0m ],0[ kR by . In the new notation, the 
current number of frames was omitted, in order to unify all notations regarding the 
rsp norms. But, hereafter, one can consider by convention that the set of rsp norms 

miki ,0],[R  always starts with the average of currently processed frames 

miki ,1],[R  in the first position. This average could recursively be upgraded, 

from a frame to another, according to the equation below:  

1
],1[],[

],1[
m

kmkmm
km

RR
R (21) 1,0 Kk,

],1[ kRAfter processing the first frame, the average is identical to , but 
starting from the second processed frame, the average and the other rsp norms are, 
in general, different. Therefore, within the next steps, one shall assume that the 
average starts to be evaluated after at least two frames have been processed. 

Step 3: Definition and construction of a statistical network.
],[ kmRLet  be the value of  expressed in dB (for dB],[ kmR

1,0 Mm , i.e., including the average (Eq. 20). Then the severity degree of defect 
could be expressed in terms of a grid, in dB as well. Usually, there are 4 severity 
types: normal (when no defect seems to be detected), incipient, medium and severe.
The separation values between severity types could be set as follows: 1,

 and dB62 dB dB2010 dB ],[ kmR. Thus, if  varies in the range [1,1.22), no 
defect is present; for range [1.22,2), the defect is incipient; inside the range [2,10), 
the defect is medium and if ],[ kmR  is more than 10, the defect is severe. The grid 

could refine the severity levels for every type as follows: 0, 1, 2 dB 3 ,

, , dB3 dB4 dB9 2010 dB62 dB 12L, ..., ,  [dB] (  levels). Let 
L

Lll 1,0
][  be the L-length vector of all severity levels expressed in dB and 

set L .
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All settings above aimed to build a map like the one depicted in Figure 5.8 
and referred to as the statistical network (sn). Thus, for each subband, a box cell is 
assigned to every severity degree. Each value dB],[ kmR  is uniquely located 
inside such a box, as suggested by the diamonds in figure. In this example, the 
location of rsp norms of a frame is depicted. The maximum rsp norm is reached 
inside subband #5, where an incipient-medium defect is announced. Its severity 
degree is 5.89 dB (at least one sp is about 1.97 times out of standard min-max 
range). Note that the box cells corresponding to severe defects are open, in the 
sense that their height varies depending on maximum pointed severity degree (if 
applicable). On the contrary, the other box cells have fixed heights (but differ from 
one severity degree to another). 
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Figure 5.8. A statistical network example. 

The sn provides in fact a statistical map of possible defects, simpler than 
the spectrum image. And yet, it is difficult to perform a good fdd by only inspecting 
this map. Therefore, a technique of grouping network cells in similarity classes 
could make this task easier.  

Step 4: Covering the statistical network with clusters. 
The previous steps prepared the fuzzy model construction. Starting from this step, a 
fuzzy approach is combined with statistics in order to provide defect classifications 
expressed as partitions of sn above. This approach is based on concepts of fuzzy
relations and fuzzy entropy (Klir and Folger, 1988) and its kernel has already been 
integrated into another (but very different) method concerned with identification of 
main structures inside Multi-Agent Systems (Ulieru et al., 2000). 

In context of vibrations, the fuzzy model relies on the fact that every frame 
encodes the same information about existing defects (if the frame length is large 
enough to induce a good accuracy of sp). Consequently, the statistical maps 
resulting from every frame reveal about the same correlation between those box 
cells that actually encode the defect, whereas the remaining cells are less correlated. 
More specifically, the rsp norms from different frames “fall” more often into the 
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same boxes for those subbands that seem to be directly affected by the defect. One 
can say that rsp norms occur more often inside box cells that apparently encode the 
systematic spectrum biases caused by a specific defect.  

Therefore, the basic idea is first to construct a similarity fuzzy relation 
between box cells within sn and then to unpack the result as different classifications 
comprising similarity classes. A similarity class is actually a group of box cells that 
seem to point to the same fault or group of faults (with some confidence degree).  

In construction of a fuzzy relation between box cells, the first action is to 
specify how the sn could be covered by collections of box cells for every spectral 
frame. Any collection of box cells is referred to in this context as a cluster. Denote 
by  the generic box-cell of sn, where 1,0 LlklB ,  is the severity level and 

1,0 Kk  is the frequency subband. A natural way to construct clusters is to 
consider two types of sn covers as follows:  

a. a horizontal one, H , ith  w L  clusters, each of which includes 
only constant severity level box cells: 

1,0,kll BC
Kk

1,0 Ll( );
b. a vertical one, G , with K  clusters, each of which includes 

only box cells corresponding to the same frequency subband: 
1, K

,0, lklk BD  (
1L

0k

L

lCH
K

kDG

).

Thus:
1

 and 
0l 0k

Note that the covers in Eq. 22 are independent of frame index (they 
preserve the same structure for all frames), since, at this stage, one focuses only on 
the structural information about how the sn could be roughly organized. The 
information about defects encoded by rsp norms will be accounted for in a future 
stage.

1

(22) 

An example of horizontal and vertical clusters is displayed in Figure 5.9. 
Other structures of sn covering could be considered as well, for example, 

the one consisting of cross-clusters obtained by taking the union between horizontal 
and vertical clusters (also illustrated in Figure 5.9). But the main advantage of 
coverings above is that they lead to one of the simplest fuzzy relation construction 
algorithms.

The box cells that belong to the same cluster are in fact entities verifying 
the same elementary crisp (binary) relation. Two crisp relations could thus be 
stated: (a) two box cells are in the same relationship if they reveal the same severity 
level; (b) two box cells are in the same relationship if they point to the same 
frequency subband. The characteristic (index) functions describing these crisp 
relations are KLKL  binary matrices, where the element  is unitary only if 
the box cells i  and j  are in relation to each other (otherwise, the element ),( ji  is 
null). These matrices could be expressed only after linearization of sn indices. Thus, 
the box cell  located in plane by the indices  is equivalently located on a 

),( ji

),( kllB ,k
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lineal by the index . There are two possibilities to derive the expression of index 
: by enumerating all columns or by enumerating all rows of sn. In this approach, 

one selects to enumerate the sn rows, starting from bottom to top (see Figure 5.10). 
Thus, the first group of box cells is associated with normal behaviour. The 
incipient, medium and severe defect box cells follow (in this order).  

kli ,

kli ,

0 5 10 15 20 25 30
0

5

10

15

20

Frequency sub-bands [indexes]

S
ev

er
it

y 
d

eg
re

es
 [

d
B

]

6

1

(1.97073 times out of range).
Sub-band [5]. Severity degree: 5.89254 [dB].

Severity type: incipient-medium.

0 5 10 15 20 25 30
0

5

10

15

20

Frequency sub-bands [indexes]

S
ev

er
it

y 
d

eg
re

es
 [

d
B

]

6

1

(1.97073 times out of range).
Sub-band [5]. Severity degree: 5.89254 [dB].

Severity type: incipient-medium.

V
e
r
t
i
c
a
l
 
c
l
u
s
t
e
r
 

Horizontal cluster 

Figure 5.9. Horizontal and vertical clusters inside the statistical network. 

Row 0 

…

Row 1 

Row L-1 

Row 0 Row 1 Row L-1 
…

Figure 5.10. Linear enumeration of box cells in a statistical network. 

1,0 Ll 1,0 KkThe index  is then: kli , klKi kl , , , .

Conversely: Kil kl /, 1,0, LKi kl aKik kl %, and , , where  is the 
integer part of a  and  is the rest of division between integers  and .nNn% N

Since any of the two sn covers provided by a frame is a union of its 
(disjoint) clusters, the associated global binary crisp relation is also a union of 
elementary crisp relations. Hence, the global characteristic matrix is obtained by 
summing together all corresponding elementary matrices. The specific form of the 
selected covers leads to the global characteristic matrices given in Eq. 23. 

2L 3KAs a toy example, set  and . The corresponding sn looks as in 
Figure 5.11 and its covers are:  

121110020100 ,,,, BBBBBBHa. Horizontal:

120211011000 ,,, BBBBBBGb. Vertical:
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Horizontal cover                              Vertical cover 

blocks
LLIII

III
III

G

KKKKKK

KKKKKK

KKKKKK

blocks
LLUOO

OUO
OOU

H

KKKKKK

KKKKKK

KKKKKK

(23) 

KKwhere ,  and  are the KKU KKO KKI  all unit, all zero and identity 
matrices, respectively, expressed as:  

KK

U KK

111

111
111

,

KK

O KK

000

000
000

(24) 
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Figure 5.11. A toy statistical network. 

Then Eqs. 23 and 24 imply:  

111
111
111

33U , ,
000
000
000

33O
100
010
001

33I

Horizontal cover                              Vertical cover 

100100
010010
001001
100100
010010
001001

3333

3333

II
II

G

111000
111000
111000
000111
000111
000111

3333

3333

UO
OU

H

(25) 

The matrices in Eq. 23 (or Eq. 25) are actually binary maps of the two 
crisp relations that every frame provides. The position of every unit value shows 
which couple of box cells are in relation to each other. These relations are in fact 
rough approximations of the following relation directly related to defects: two box 
cells are in relation to each other if they point to the same fault. Of course, at this 
time, we don’t know exactly which box cells verify this property and this is the 
reason one operated with two approximations. Any horizontal or vertical cluster 
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could include abnormal box cells pointing to the subband affected by a specific 
defect or, respectively, to the severity degree proved by a specific defect. The 
approximations are refined next by using the rsp norms, until specific defect classes 
are obtained.  

Step 5: Evaluating the occurrence degrees. 
The covers constructed above do not partake in the fuzzy relation that one intends 
to construct, but their clusters do. Recall that, unlike within crisp relations, two 
entities are in a fuzzy relation to each other only if they belong to a crisp relation 
with some membership degree (Klir and Folger, 1988). The membership values 
express the uncertainty regarding the specific relationship between entities. Within 
the crisp approach, this relationship is either certainly existing or certainly not 
existing. There are no other possibilities. Within the fuzzy approach, two entities 
could be in a relationship, but this assertion has a degree of uncertainty varying 
from 0 (certainly not) to 1 (certainly yes).  

The relationships between sn box cells should also be fuzzy, for two main 
reasons. Firstly, the horizontal and vertical clusters could not be totally reliable 
since, in general, they gather together boxes inside of which some rsp norms fall 
and boxes that are untouched by these norms, even for long strings of vibration 
data. These act in fact as different entities inside the sn. They were only roughly 
gathered together, according to structural criteria of same severity level or 
frequency subband, but without accounting for the information provided by the 
vibration itself. Secondly, the structure of selected clusters (horizontal, vertical) 
could not be certain, but only intuitively more plausible than another structure. 
Fortunately, the final fuzzy relation is not that sensitive to the initial clustering of 
box cells and refines these approximations.  

The horizontal and vertical clusters encode no information about defects 
unless they are put into correspondence with the rsp norms. In reality, after 
processing Mm ,11  frames (including the virtual one naturally associated with 
the average information about rsp norms – see Eq. 20), inside every box cell  a 
number of rsp norms could occur. Refer to this number as (occurrences) counter
and denote it by . Obviously, since for each subband 

klB ,

1,0 Kk],[ klNm  a unique 

severity level 1,0 Lll  ( )exists such that:

1dB],[ ll kmR (26) 
it follows that:  

1,0 Ll 1,0 Kk1,0 Mm (27) 1],[0 mklNm , , ,
Null counter values are associated with those box cells for which no rsp 

norms occurred so far. Furthermore, another obvious property holds:  

)1(],[
1

0

1

0
mKklN

L

l

K

k
m 1,0 Mm, (28) 

i.e., the total amount of counters equals the number of subbands touched by all 
currently processed frames, including the virtual one.  
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After processing a new frame, the counters are upgraded following a rule 
given by Eq. 27:  

1,0

1,0

2,0

Kk

Ll

Mm

otherwise],,[

],1[if,1],[
],[ 1dB

1
klN

kmklN
klN

m

llm
m

R , (29) 

which means: increment by 1 only those counters corresponding to box cells where 
the rsp norms occurred. However, this rule is not that simple. The virtual frame 
gives the initial values of these counters and, thus, they could change depending on 
the number of currently processed frames, Mm ,11 . So, Eq. 29 must be 
understood as a recursive recipe where the initial values are also dependent on the 
current step of upgrading. Consequently, a counter could even be incremented by 2 
and not by 1, or decreased by 1, when the average moves its position.  

A consistent set of occurrence degrees is constructed and one-by-one 
associated with the collection of sn box cells, by using counters. Denote by ],[ klm

the occurrence degree uniquely associated with box cell , after processing klB ,

Mm ,11  frames (starting from the virtual one). Two possible definitions could 
be used to set ],[ klm , according to Eqs. 27 and 28:  

1
],[],[

m
klNkl m

def

m  or 
)1(
],[],[

mK
klNkl m

def

m (30) 

In both cases ]1,0[],[ klm , but for the first one:  

1],[
1

0

L

l
m kl  and Kkl

L

l

K

k
m

1

0

1

0
],[ (31) 

whereas for the second one:  

K
kl

L

l
m

1],[
1

0
 and 1],[

1

0

1

0

L

l

K

k
m kl (32) 

From a probabilistic point of view, Eqs. 31 and 32 show that only the 
second definition in Eq. 30 could be associated to the occurrence frequency of rsp 
norms inside box cells. But, in the context of fuzzy logic theory, requirements like 
the last one in Eq. 32 are often not necessary (Klir and Folger, 1988). The only 
requirement is to include the occurrence degree variation in range [0,1]. One of the 
main drawbacks of the second definition is the rapid decay towards null values of 
all occurrence degrees, due to product )1(mK . No occurrence degree could 
increase. Even if a counter is upgraded, its value is only increased by maximum 2, 
whereas the corresponding occurrence degree is decreased about K  times. In 
contrast, the first definition keeps the occurrence degrees more balanced and, 
furthermore, the occurrence degrees could increase. The last remark is due to a very 
simple algebraic property:  

1
1

1 m
n

m
n

m
n

1
2

1
1

m
n

m
n

m
n0,mn mn0, , but , if (33) 
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Since the first definition provides occurrence degrees that are more 
sensitive to counters upgrading than the second one, it will be selected for the next 
steps. In fact, the occurrence degree is only raw information about rsp norms 
distribution over the statistical map. More processing operations are necessary in 
order to derive the uncertainty degrees associated with the elementary crisp 
relations previously constructed.  

An example of the two-dimension occurrence degrees distribution is 
displayed in Figure 5.12. The distribution is improved after every new processed 
frame. 
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Figure 5.12. An occurrence distribution over the statistical network. 

At this point, one can say that box cells supporting the biggest occurrence 
degrees are very likely directly associated to the defect type. But it is not that 
simple to build a group of such box-cells, based only on a set of occurrence degrees, 
because the attempt is rather empirical and affected by uncertainty. A systematic 
method to construct similarity classes by using statistical information is then 
necessary. Also, as already mentioned, it is desirable that every class be associated 
with some confidence degree.  

The occurrence degrees are in fact values of some membership functions 
that change the nature of clusters from crisp to fuzzy. More specifically, consider 
the generic horizontal and vertical clusters,  and , respectively. Then their 
associated membership functions are: 

lC kD
],[)( ,, klB mkllm  for any box cell 

 and lkl CB , ],[)( ,, klB mklkm kkl DB , for any box cell .

lmlC ,, kmkD ,,Thus,  and  are now fuzzy sets. The new definitions 
are superior to the former ones, since the rsp norms have been accounted. Now, if 
the box cell  that belongs to a crisp cluster  has a null occurrence degree, it 
cannot belong to the fuzzy cluster 

lCklB ,

lmlC ,, . For simplicity, denote the values of 
membership functions by ][, klm  and ][, lkm , respectively (i.e.,  and lm, km,

could also be treated as vectors from nd , respectively).  K]1,0[  a L]1,0[
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Note that the membership functions change from a frame to another, 
though the crisp clusters are independent of frames. Hence, the fuzzy clusters have 
variable structure depending on the number of processed frames, which is closer to 
the real behaviour of sn (variable) structure. 

Step 6: Associating certainty degrees with elementary crisp relations.  
A unique certainty degree should be associated with every cluster  or . This 
is a number that expresses, on the one hand, the certainty in considering the 
corresponding cluster and, on the other hand, the degree of box cells affiliation with 
the elementary fuzzy relation the cluster naturally generates. The membership 
matrix of elementary fuzzy relation is simply derived by multiplication between the 
cluster certainty degree and its characteristic matrix. This idea is developed next, 
but, first, the certainty degrees have to be evaluated.  

lC kB

The evaluation of certainty degrees is based on the concepts of fuzzy and 
uncertainty measures (Klir and Folger, 1988). Obviously, certainty is opposite to 
uncertainty. An interesting fuzzy/uncertainty measure is the Shannon Fuzzy 
Entropy (SFE). Its definition relies on the multidimensional Shannon function
below:  

N

n
nnnn xxxxx

1
22 )1(log)1(log)(S , NT

nxxx ]1,0[]...[ 1 (34) 

The Shannon function originated from the concept of entropy, first utilized 
in physics. Thus, if one restricts the sum in Eq. 34 to the first half, replaces “ ”

by “ ” (John Nepper’s natural logarithm) and sets  as a discrete 

probability density (i.e., verifying ), then the entropy is obtained:  

2log
Nx ]1,0[ln

1
1

N

n
nx

N

n
nn xxx

1
ln)(H (35) 

1NWhen , the entropy from Eq. 35 is associated with the event for 
which the probability was considered. The opposite event is described by the 
opposite probability: x1 . Hence, the second half of the sum in Eq. 34 becomes 
the entropy of the opposite event. The Shannon function thus expresses the total 
entropy of an entity, by accounting for not only its classical entropy, but also the 
entropy of its opposite. Note that, in Eq. 34, no restriction (like the one verified by 
probability densities) is imposed. The Shannon function is an instrument utilized in 
many domains, but was defined in the context of information theory, as a concept 
quantifying the information encoded or transported by an entity. Its unit is the bit. 
This is the reason the natural logarithm was replaced by  in the original 
definition of entropy.  

2log

Several interesting properties of the Shannon function could be noted. For 
this approach, the following two are of the most concern. Firstly, the function is 
bounded and reaches several null minima, but only one maximum. No other minima 
are possible, but the null ones are reached on the border of definition domain (the 
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hypercube ). Secondly, the maximum value is exactly the dimension of input 
argument, i.e., . It is reached for the middle point argument, the function being 
symmetrical. For example, in Figure 5.13, the graphics of the only two Shannon 
functions that could be viewed are drawn.  

N]1,0[
N

When the argument in Eq. 34 is provided by values of the membership 
function describing a fuzzy set, the SFE is obtained. In this case, SFE has several 
interpretations. As a general fuzzy measure, SFE quantifies how close to the crisp 
state is the fuzzy set (or its fuzziness). The bigger the SFE value is, the less crisp the 
set (i.e., the fuzzier). But SFE could also play the role of uncertainty measure.
Uncertainty has two major facets: vagueness and ambiguity (Klir and Folger, 1988; 
Ulieru et al., 2000). 
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Figure 5.13. One- and two-dimension Shannon functions 

The SFE is a vagueness measure. The bigger the SFE value is, the more 
vague the fuzzy set description, i.e., the more uncertain (or unreliable) the 
information about that set. Thus, maximum entropy means maximum uncertainty 
and fuzziness. The smaller the SFE values, the better.  

Let us now get back into the context of previous steps. The certainty 
degree of a cluster should be opposite to its entropy (uncertain (vague) clusters 
should have small certainty degrees). Also, another property should be verified: the 
bigger the occurrence degrees of its box cells, the smaller its entropy. Since SFE 
has one maximum and several null minima (pointing to the lack of uncertainty), the 
values of membership functions  and lm, km,  must be translated from [0,1] to 
[0.5,1] by a simple affine transformation, before using them subsequently:  

2
1],[],[ klkl m

m (36) 

(By convention, one preserves the same notation for the translated values.) 
Denote by lm,  the certainty degree of horizontal cluster , after 

processing  frames (where 

lC

1,0 Mm1,0 Ll1m  and ). Similarly, lm,

stands for the certainty degree of vertical cluster , after processing 1mkD  frames 

(where 1,0 Kk 1,0 Mm and ). The values of  and lm, lm,  are then 
evaluated in three steps (by accounting for all previous remarks): compute the SFE 
of fuzzy clusters lmlC ,, kmkD ,, K and ; normalize the SFE by  and, 
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Lrespectively, by ; subtract the result from 1. This is summarized in Eqs. 37 and 
38. 

The normalization applied in Eqs. 37 and 38 is necessary because the 
certainty degrees have to vary only in the range [0,1], as well. This restriction is 
imposed by another meaning of a certainty degree, regarding the covers: any cluster 
belongs to an sn fuzzy cover with some membership degree. Actually, the crisp 
covers  and G  are transformed into fuzzy covers, by a similar mechanism 
employed to transform crisp clusters into fuzzy clusters. Their membership 
functions are the following: 

H

HlClmlm C ,)(  for any cluster  and 
 and m,G. Thus, m,HGkDkmkm D ,)(  for any cluster  are now fuzzy 

sets, but their elements are other fuzzy sets (the fuzzy clusters, in fact). Like for 
fuzzy clusters, covers membership functions depend on the number of processed 
frames ( ) (where 1,0 Mm1m ).
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Step 7: Constructing the -sharp cuts of fuzzy relation.  
Every fuzzy cluster generates, in association with its certainty degree, an 
elementary fuzzy relation between the box cells it includes. The membership matrix 
describing this relation is simply obtained by multiplication between the 
characteristic matrix of crisp cluster and the corresponding certainty degree. More 
specifically, if  and  are the generic horizontal and vertical clusters (as 
usual), then, after processing 

lC kD
1m  frames, their corresponding certainty degrees 

are lm,  and km, , respectively. One can denote by  and  the characteristic 
matrices of  and , respectively. Then, obviously:  

lH kG

lC kD
Horizontal cluster                                   Vertical cluster 

blocks
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k (39) 

where the block  is located on the main diagonal in position  of matrix 

, whereas the block  consists of one unit value on the main diagonal in 
position  of matrix  (all remaining values being null).  

KKU ),( ll
k

KKIlH
),( kk kG
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The elementary fuzzy relations are described by the following membership 
matrices: llm H, kkm G, (horizontal) and  (vertical). The corresponding relations 
are 1m-sharp cuts of fuzzy relation after processing  frames (where 

1,0 Mm ). (See the definition of -sharp cut in (Ulieru et al., 2000.) In fact, 
this definition is similar to the definition of -cut (Klir and Folger, 1988), but the 
inequality sign was replaced by the equality one.)  

For example, recall the toy sn in Figure 5.11. For that structure, two 
horizontal and three vertical elementary fuzzy relations are available after every 
processed frame: 
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Equation 40 reveals another interesting property: the box cells that are very 
far from each other could not be in the same relation, even in the case of fuzzy 
relations. This is the case, for example, of box cells located at different severity 
levels and opposite subbands, such as  and  or  and . Practically, 
it is very unlikely that these box cells could associate together to reveal the same 
defect. But this property could be cancelled for the global fuzzy relation providing 
defect classifications, since such limitations are only intuitive. 

0,0B 2,1B 0,1B 2,0B

Step 8: Constructing the fuzzy relation.  
Two operations are applied in order to build the final fuzzy relation between sn box 
cells: aggregation of the (elementary) -sharp cuts and evaluation of the transitive 
cover. The aggregation is simply performed through the max fuzzy union (Klir and 
Folger, 1988): 
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Thus, the membership matrix describing the crude fuzzy relation  is 
constructed by means of the elementwise max operator (“

mR
max ”) applied on all 

matrices corresponding to fuzzy relation of the right term in Eq. 41:  

kkm
Kk

llm
Ll

m GH ,
1,0

,
1,0

max,maxmaxM (42) 

Note that the same max operations like in Eq. 42 have been applied to 
obtain the characteristic matrices in Eq. 23, but by using unit certainty grades (since 
the relations were crisp). Obviously, the dimension of matrix  is KLKL .mM

For the toy example above, the membership matrix  is:mM

2,1,1,1,2,

1,1,1,1,1,

1,1,0,1,0,

2,2,0,0,0,

1,0,1,0,0,

0,0,0,0,0,

,max00
,max00

,max00
00,max

00,max
00,max

mmmmm

mmmmm

mmmmm

mmmmm

mmmmm

mmmmm

mM

As one can see, some box cells are (co)related with various (un)certainty 
degrees, but between some other box cells no relationship seems to exist. The null 
values inside matrix  are always the same, independently of how many frames 
are processed (because of the horizontal and vertical crisp clusters), whereas the 
nonnull values vary from a frame to another (because of the occurrence degrees). 
Denote the generic element of  (i.e., the membership degree) by 

(where 

mM

],[ jimMmM

KLji ,1, ).
The resulting matrix  is symmetric and reflexive (since the elementary 

matrices  and  verify these two properties). Thus  is a proximity relation, 
but it is not necessarily fuzzy transitive. (See (Klir and Folger, 1988) for 
definitions.) Even though all elementary matrices  and  would describe 
(crisp) equivalence relations (i.e., all of them would be transitive as well), it is 
possible that m  is nontransitive. This means, in general, mR  is not a similarity
(fuzzy) relation. However, the similarity is a very important property, because the 
defect classes should also be (nonoverlapped) similarity classes. The direct 
involvement of similarity property in the construction of defect classes is revealed 
at the next step. Let us focus now on the transitivity property.  

mM

lH kG mR

lH kG

R

Actually, the transitivity property is the most difficult to insure in the case 
of fuzzy relations, because it is expressed (for example) as follows, differently from 
the crisp case (Klir and Folger, 1988; Ulieru et al., 2000): 

],[,],[minmax],[
,1

jnniji mm
KLn

m MMM KLji ,1,, (43) 

This is the max-min (fuzzy) transitivity. An equivalent matrix form of Eq. 
43 can straightforwardly be derived: 
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mmm MMM (44) 
where “ ” points to fuzzy multiplication (product) between matrices with 
compatible dimensions (involving the composition of the corresponding fuzzy 
relations). This multiplication is expressed starting from classical matrix 
multiplication, where max operator is used instead of summation and min operator 
is used instead of product. Also, “ ”in Eq. 44 means that the ordering relation 
focuses on matrix elements and not globally, on matrices.  

The lack of transitivity can be corrected by generating the transitive
closure of , which is defined as the smallest transitive fuzzy relation including 

 (according to fuzzy inclusion) (Klir and Folger, 1988). A simple procedure 
allows us to compute this closure for any fuzzy relation :

mR

mR
R

)( RRRRStep 1. Compute the following fuzzy relation: .
RR RR, replace  by , i.e., Step 2. If RR  and go to 

Step 3. Otherwise, RR  is the transitive closure of the initial 
.R

It is not so difficult to prove that this procedure preserves the reflexivity 
and symmetry of  (Ulieru et al., 2000), so that the transitive closure mRmR  is a 
similarity relation. Also, in terms of membership matrices,  is replaced by mM

mM , derived according to the procedure above (but with max instead of union 
operator and with (max-min) fuzzy multiplication instead of composition operator).  

The procedure is very efficient. The only limitation in terms of network 
granularity is here the dimension of  (i.e., KLKLmM ), which could be very 
large. But, nowadays, the existing computing performances could yield reasonable 
running time for matrices with more than one million elements.  

The main difference between  and  is that mR mRmR  is defined by means 
of a smaller number of membership degrees than . In general, small grades 
vanish. This is very suitable, since, probably, small membership degrees are mostly 
due to various noises still affecting the vibration data, even after filtering. In other 
words, by computing the transitive closure, the statistical data have been denoised.
Another difference between the two fuzzy relations is that box cells previously 
unrelated (according to ) could now be related (according to 

mR

mRmR ). This means 
the nonnull values in  could overwrite the null ones. In general, inside the 
matrix

mM

mM , null values could seldom appear. This effect is correcting the initial 
rough assumption that some box cells could never be related to each other.  

Step 9: Generating the defect classifications.  
The values in mM  are referred to as (fuzzy) confidence degrees. The number of 

distinctive confidence degrees is 1,1 Mm2/)1(KLKLPm , for each  (due to 
symmetry). They could decreasingly be sorted: 1,1,0, mPmmm  (by using 

natural new notations instead of ). For each confidence degree ],[ jimM pm,
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1,0 mPp( ), a partition of statistical network is generated, by evaluating the 
corresponding -cut of fuzzy relation  (Klir and Folger, 1988). Every mR -cut
plays the role of defect classification and is actually a partition of sn. Any class in 
such a partition gathers the cells with similar statistical properties and, therefore, is 
a similarity class. Obviously, all box cells with null occurrence degrees (see, for 
example, some high severity box cells in Figure 5.8) are grouped in an inactive
cluster and do not actually partake in the classification. The inactive cluster is the 
same for any classification, if the number of processed frames, 1m , is constant, 
but its topology could change as  varies.  m

1,0,,,
, pmQqqpmpm FCLet  be the defect classification corresponding to 

confidence degree  ( 1,0 mPppm, ). Inside, there are  defect classes 

generically denoted by . Usually, the classifications are listed in decreasing 
order of their confidence degrees. Moreover, it is well known that such an 
arrangement reveals a holonic behaviour (Ulieru et al., 2000). That is, the 
confidence is also a measure of classifications granularity: as confidence decreases, 
a larger number of classes group more and more together. For maximum 
confidence, every cell is also a class, which means maximum of granularity as well 
(  equals the number of box cells with nonnull occurrence degrees). For 
minimum confidence, all cells are grouped in a single class, the granularity being 

also minimum ( ). Thus the trend of finite string 

pmQ ,

qpm ,,F

0,mQ

1,0,
mPppmQ11, mPmQ  is 

decreasing when the confidence degree is decreasing. Only one classification shall 
be selected from this collection, as described in the next step.  

Some examples of defect classes together with their confidence degrees 
are described in the section devoted to simulation results. 

Step 10: Selecting the optimum classification.  
Besides the confidence degree, the SFE of every class could also be evaluated. 
Actually, like in case of covers  and G , every classification (an sn partition, in 
fact) is a fuzzy set with fuzzy sets (the defect classes) as elements. The membership 
functions associated with defect classifications are denoted by 

H

 (where pm,

1,1 Mm 1,0 mPp and ). Thus, pmpm ,, ,C  is a fuzzy set and the 

membership function  could be derived by means of a similar argument like in 
Step 6. There is, however, an important difference here. The entropy of a fuzzy set 
comprising fuzzy sets as elements should depend on the entropy of every element. 
If all elements would have small/large entropy values, then the set should also have 
small/large entropy. Consequently, the membership function 

pm,

pm,  has to reflect the 
normalized entropy of each defect class: 
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qpmNqpm

def

qpmpmqpm
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qpmN ,,FSIn Eq. 45,  is the normalized entropy of defect class 

(where 

qpm ,,F

qpmN ,,FS1,0 , pmQq ). To evaluate , first identify all the box cells that 

belong to  (together with their translated occurrence degrees – see Eq. 36), 
then use the definition in Eq. 34 and finally divide the result by the number of box 
cells. For example, consider that the following classification has been obtained 
inside the toy sn in Figure 5.11: 

qpm ,,F

1,0,,, qqpmpm FC , where the defect classes are 

 and 1,10,00,, , BBpmF 2,12,01,01,, ,, BBBpmF . (The box cell  belongs to 
the inactive cluster.) Then:
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The division by 2 in Eq. 45 is required because SFE is nonmonotonic 
(recall Figure 5.13). The values of qpmN ,,FS  varying in the range [0,1] are now 
restricted to the range [0,1/2], which involves the final entropy increases when the 
(translated) occurrence degrees decrease.  

After the membership function pm,  has been evaluated, the entropy of 

classification  is computed by using again the definition stated in Eq. 34: pm,C
1

0
,,2,,,,2,,,

,

)1(log)1(log)(
pmQ

q
qpmqpmqpmqpmpmS (48) 

Note that the normalization is meaningless in Eq. 48, since the entropy 
also encodes information about the number of defect classes (clusters). Therefore, 
in general, the entropy values 

1,0, )(
mPppmS  prove a decreasing trend, since the 

number of defect classes (i.e., the maximum of entropy) decreases when the 
confidence degree decreases. This involves the entropy values 

1,0, )(
mPppmS

and the confidence degrees 
1,0,

mPppm  are opposite.  

A “good” classification should have high confidence degree and low 
entropy. This could be selected by means of a cost function that encodes the 
opposite behaviour of entropy and confidence degree. In order to define such a 
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function, it is first necessary to transform the entropy and the confidence degrees 
into maps comparable to each other. Before this operation, the comparison between 
them is impossible, because they vary in different ranges. The transformation is 
affine:

pm
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Obviously, both normalized maps  and  vary in the range [0,1] and, 
moreover, they are reaching the extreme values 0 and 1.  

)( ,
01

pmS01
, pm

Define the cost function  as the geometric mean between the values of  
the map defined by Eq. 49 and the opposite values of the map defined by Eq. 50, 
over the classification indexes set: 
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In this context,  expresses the opposite entropy weighted by 
confidence degrees. Other cost functions could also be employed in this aim (such 
as the arithmetic mean or another algebraic combination between  and 

). But, in any case, this function could only have a finite number of 
maxima (or minima) that realize the trade-off between entropy and confidence 
degree. In the case of cost function , the best compromise is reached for its 

global maximum. Thus, the best classification  is selected by solving 

the following simple optimisation problem: 
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An example of how the optimum classification is selected by solving the 
problem stated by Eqs. 51 and 52 is displayed in Figure 5.14, where only 51 frames 
have been processed (including the virtual one). The opposite variation between the 
confidence degree and the (opposite) entropy, as well as the shape of their 
geometric mean are clearly drawn. In this example, 32 classifications are available 
and the optimum resulting index is , which points to the 15th 
classification as being the optimum one. Note that the 19th classification is a sub-
optimal one, though its entropy–confidence compromise is also maximum, but 
locally (and close to the global maximum). The number of classes inside the 
optimum classification is 82 (most of them being singletons). As one shall see in 
the section devoted to simulation results, the optimum classification constitutes an 

14opt
mp
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image map about the specific fault(s) distorting the standard spectrum. Also, the 
classification confidence is  and its entropy is . The 
entropy is quite high (close to its maximum, 82), since the number of processed 
frames is modest (only 51) and thus the occurrence degrees are inaccurate. As the 
number of processed frames increases, the entropy goes down, farther from its 
maximum. 

7.014,50 81.06)( 14,50S
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Figure 5.14. Selecting the optimum defect classification. 

The most difficult part of the fuzzy model is the classification map 
interpretation (or analysis). This means that specific defects should be put into 
direct correspondence with map topologies. The subsequent analysis is more 
rigorous and simpler to perform than by inspecting the vibration spectrum, since a 
part of analyst reasoning has already been automated. Accounting for all classes in 
a map is sometimes sufficient to perform an accurate diagnosis. But, sometimes, 
this attempt leads to a rather complicated analysis. Therefore, some specific class 
(or a reduced number of classes) should be emphasized as representing the 
defect(s). One option is to consider the biggest class as revealing all subbands 
affected by the defect(s). A different option is to extract the minimum entropy class, 
which, in general, is smaller than the biggest class and, therefore, more focused on 
few subbands. These are very likely the most affected by defect(s). (Recall that 
minimum entropy means maximum occurrence degree of rsp norms.) Other 
representing classes could also be selected.  

In order to complete the method, it is perhaps useful to show how an 
optimum cluster (or group of clusters) could be selected inside the best 
classification  by using the normalized SFE as cost function. Thus, the index 
of optimum defect class(es) is (are) evaluated by solving the following optimisation 
problem: 

opt
mC

qpmN
Qq

opt
m opt

m
opt
mpm

q
,,

1,0
,

minarg FS (53) 

For the example in Figure 5.14, the minimum (normalized) entropy of the 
optimum defect class inside the best classification is about 0.65. All the other 
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classes have entropy values at least as large as this value. Therefore, the 
corresponding cluster is representing in the best manner a specific defect.  

But selecting an optimum defect class is less important than selecting the 
optimum classification. As already mentioned, sometimes, the classification 
configuration is itself a good image about defects, provided that its interpretation is 
not too difficult to perform. A very desirable property of such an interpretation is to 
reveal multiple defects by simple combinations of single defect maps. In general, 
this property is difficult to achieve. But the interpretation principle could be the 
same, independently of single or multiple-point defects generating the maps.  

Note that, in this approach, the number of processed frames was 
considered variable. Though the notations are more complicated (the index  is 
omnipresent), one can clearly see how the concepts utilized inside are varying 
depending on this variable. The main reason the method was presented in terms of 
processed frames number is to show that its implementation could be performed by 
following either an on-line or an off-line strategy. For the on-line implementation 
the best classification should be provided after every processed frame (or group of 
frames). Step 8 is the critical one, since the evaluation of transitive cover could be 
time consuming when the product 

m

KL  is too big (over 1500, with the actual 
computing performances). In this case, the best solution is to perform the defect 
classification only after several frames have been processed. This means the 
strategy is quasi-off-line (or even off-line). In general, the number of processed 
frames improves the method accuracy, since the estimation of occurrence degrees is 
more and more precise. 

5.3. Simulation Results and Discussion 

The two algorithms previously described constitute the kernel of a simulator 
designed to test the fuzzy-statistical reasoning method. The testing platform and the 
simulation results are described next. 

5.3.1. The Testing Platform 

The vibration data are acquired from bearings through a platform designed on 
purpose. Three main systems are connected, as illustrated by the pictures in Figure 
5.15: a mechanical stand, a vibration data acquisition and pre-processing apparatus 
and a personal computer (PC).  

The mechanical stand consists of the following elements: 
1. A three-phase electrical engine, Siemens type, with maximum rotation 
speed of 2740 rot/min (about 45.67 Hz), working at 380 V and with a 
power of 370 W.  
2. A couple of bearings mounted into mechanical seats, appropriately 
designed to fit to their geometry. The seats are easy to dismount in order to 
change the bearings, when necessary. The bearing near the engine is a 
standard high-quality one, without defects. The other bearing could also be 
standard (identical to the first one, in order to acquire the standard 



164   V Palade, CD Bocaniala and L Jain (Eds.)

vibration data) or a tested one, with possible defects (for raw vibration 
acquisition). All bearings are provided by Romanian and German 
industries. (See their geometry in Figure 5.16.). 
3. A couple of metallic discs mounted between bearings, on the same 
axis, which play a double role. On the one hand, they produce a load of 
about 200 N applied in a radial-axial manner on bearings. This leads to a 
contact angle of 40° inside the bearings. On the other hand, they are 
creating an inertial momentum that rejects some external perturbations and 
keeps the rotation speed constant. 
4. An elastic coupling between engine axis and load axis, aiming to 
attenuate the engine self-sustained vibrations or shaft wobbling that could 
corrupt the data. 

Figure 5.15. The bearings testing platform. 
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�# of balls: 13

�contact angle: 40° 

Figure 5.16. Geometrical characteristics of tested bearings. 

The geometrical characteristics of tested bearings (illustrated in Figure 
5.16) lead in fact to a very small variation of natural frequencies, depending on 
contact angle. Thus, even the contact angle is not accurately set, and its influence 
over the natural frequencies is not decisive. The biggest natural frequency is about 
325 Hz. 

The vibration is acquired by using two light accelerometers. The definition 
in Eq. 2 is adopted to provide the complex valued vibration data, because both 
sensors are far enough from the direction of applied load. A very powerful 
apparatus has been employed to acquire vibration data: an LMS Roadrunner (LMS 
International, 1999). Its capabilities extend far beyond the minimal ones required by 
this method: accurate prefiltering of data, simultaneous acquisition on at least two 
channels and selectable recording format. The Roadrunner integrates a 
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microcomputer with a user-friendly interface that allows the user to work as 
comfortably as with any PC. It is also endowed with at least four channels (their 
number could be extended), compatible with a large number of sensors. The 
maximum allowed sampling frequency is 100 kHz. In this application, the sampling 
frequency has been set to kHz6.25s . Data are saved in ASCII format, with 22 
digits of representation. From Roadrunner, data are transferred to a PC, via floppy 
discs. The PC has the following main characteristics: 1 GHz (frequency), 256 Mb 
RAM (memory), 40 Gb (hard disk capacity). They rate the PC at the average of 
actual (public) technological level (years 2001, 2002). A laptop could also be 
successfully employed to implement the method. 

5.3.2. Initial Simulation Parameters 

In the description of the platform above, the shaft rotation speed and the sampling 
frequency were given: Hz67.45r  and Hz60025s . Thus, a complete 
rotation takes about 21.9 ms, encoded by 560 vibration data samples. The vibration 
data length is set to samples, which takes 163.84 s in 7482 full 
rotations (see Eq. 1).  

304,194,4222N

The vibration frame length is set to  samples (320 ms, 
~15 full rotations). The number of nonoverlapped frames is then 512 (see Eq. 4), 
whereas every data segment includes three successive frames, as explained in the 
previous section. The frame length involves a frequency resolution of 3.125 Hz.  

8192213
fN

The window selected to smooth the overlapping between segments is 
Tuckey type, with 33.33% rectangular shape (see Figures 5.4 and 5.5). A high-pass 
filter will be applied to windowed segments. The LF cutoff frequency is set 7 times 
the largest natural frequency: Hz22753257lc .

32KThe vibration spectrum is segmented into  subbands. Every 
subband includes 128 rays for a bandwidth of 400 Hz. This setting realizes a good 
compromise between sp accuracy (each one is computed by using 128 spectral 
values) and bandwidth. The severity levels are set as already explained ( 12L
levels).

5.3.3. Comparative Discussion on Simulation Results 

The experiments have been organized according to the following scenario:  
1. Collect raw vibration data from four tested bearings: a standard 
(defect free) one (labelled S720913, according to its geometry); one with 
a chop on the inner race (I720913); one with a spall on the outer race 
(O720913); one with chops on both inner and outer races (M720913).  
2. Apply EA to detect the severity degree of defects and to check if 
multiple defects on bearing M720913 are visible or not. The following 
settings are performed in this aim: consider vibration segments of more 
than 1 s length; operate with 1/3-octave filters appropriately designed (as 
described in (Barkov et al.,1995a,b)); take full rectified envelope; focus on 
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the LF sub-band of envelope spectrum, for a bandwidth at least equal to 2 
kHz.  
3. Apply the fuzzy reasoning method.  

A. Envelope analysis results 
A standard horizontal vibration data segment of about 1.3 s (32,768 samples, 4 
frames) and a zoom on the portion between 0.2 s and 0.25s are represented Figure 
5.17a. The shape is almost harmonic, as expected. In Figure 5.17b, the 
corresponding spectrum is represented in dB, with a resolution of 0.78125 Hz 
(16,384 rays on half band 0-12.8 kHz). The energy of vibration is practically 
concentrated in LF-MF subband 0-5 kHz. The sensor resonance is insignificant. 
The peaks into the LF band are due to bearing natural frequencies. The envelope of 
standard signal, as well as a similar zoom as before, is drawn in Figure 5.18a. 
Signals appear very close to the white noise. Actually, the LF part of the envelope 
spectrum in Figure 5.18b reveals a quasi-constant variation on all frequencies 
around the spectral acceleration of 102.7 cm/s2 (the spectrum average). 
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Figure 5.17. Standard vibration (a) and its spectrum (b) (bearing S720913).
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Figure 5.18. Standard envelope vibration (a) and its spectrum (b) (bearing S720913).

For the next three cases, the length of vibration data segments is identical 
to the standard set above. The vibration segments are represented in Figures 5.19a, 
5.20a and 5.21a, while their corresponding spectra are found in Figures 5.19b, 
5.20b and 5.21b (see Appendix). The time variations appear to be more irregular 
than previously. The harmonic behaviour is distorted by a noise encoding the defect 
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type. The effect of modulation could be seen in the zoomed portions of these 
signals, especially for the outer race defect. The sensors are forced to resonate and 
this effect is replicated towards LF and MF bands in all spectra. A significant 
resonance peak is located in band 6-10 kHz for all defective bearings, while it is 
missing for standard bearing. Also, peaks are more emphasized within the LF 
spectral zone for defective bearings than for standard.  

The 1/3-octave filter (specific to EA) has been designed such that its 
central frequency is located somewhere in the median spectral valley between 4 and 
6 kHz. Actually, it is selected as the minimum point of the spectral median in 
subband 4-6 kHz. This corresponds to the selection performed in (Barkov et
al.,1995a,b) where the central frequency is located in a subband corresponding to 
the flattest zone of spectrum. In this specific case, the bandwidth is determined by 
the resonance peak flanking the valley to the right (in subband 6-10 kHz). The 
bandwidth is set as 3/2 times the difference between the location of this peak and 
the central frequency. The filter length is set to 2048 coefficients, in order to 
preserve high accuracy of filtering.  

Figures 5.19, 5.20 and 5.21 are also concerned with the envelope signals 
(c) and the corresponding (envelope) spectra (d). In the case of single-point defects 
(Figures 5.19c and 5.20c), the abnormal behaviour is illustrated by the spectral 
envelope prominent peaks located around the multiples of natural frequency 
corresponding to the defective part: Hz061.325BPFI  (Ball Pass Frequency on 
the Inner race) or Hz606.268BPFO  (Ball Pass Frequency on the Outer race). 
The peaks decay exponentially, such that starting from the 9th multiple, they are 
practically sunk into the noisy part of spectrum. The severity degree is quite easy to 
estimate from these graphics, if the height of the largest peak is compared to the 
average standard envelope spectrum: about 3.5 (i.e., 10.88 dB) for inner race defect 
and about 4.5 (i.e., 13.06 dB) for outer race defect. This rates the defects as medium 
ones. Note, however, that the estimation could not be extremely accurate, since the 
vibration segments lengths are small (only 1.3 s, i.e., about 59 full rotations). An 
accurate estimation requires at least 100 rotations, but this increases the noisy part 
in all spectra, such that spectral estimation techniques should be employed 
(Oppenheim and Schafer, 1985; Proakis and Manolakis, 1996), in order to provide 
readable spectra.  

Refer now to the multiple-point defect (Figure 5.21c). The envelope 
spectrum is so noisy that, practically, it is impossible to isolate some characteristics 
related to the defect type, though the spectrum in Figure 5.21b does not look very 
different from the spectra in Figures 5.19b and 5.20b. The energy increase revealed 
by the envelope spectrum is mainly due to the vibration signal itself (see Figure 
5.21a), which has a larger energy level than in the case of single-point defects 
(Figures 5.19a and 5.20a). But the general level of noise is also increased. The EA 
failure in this case could have some plausible explanations. Besides the 1/3-octave 
filter selection (note that EA is very sensitive to this filter), perhaps the vibration 
model considered here cannot match the interpretation principle that worked well in 
the case of single-point defects (i.e., associate the natural frequencies directly to 
defect nature and location). 

B. Fuzzy-statistical reasoning results 
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The three vibration signals have been entered into two MATLAB programs 
implementing the method described in the previous section. Thus, after collecting 
all information about rsp norms occurrences in box cells of sn, three occurrence 
degrees distributions have been obtained. For single point defects, there are two 
main rsp norms concentrations: one for MF and one for HF zones, but the most rsp 
norms seem to occur in the MF zone. On the contrary, for multiple defects, they 
occur rather in the HF zone. Thus, a first criterion for discriminating between 
single- and multiple-point defects is revealed.  

After constructing the fuzzy model, a number of faults classifications 
resulted, for each tested bearing: 30 for I720913, 32 for O720913 and 27 for 
M720913. The selection of an optimum faults classification is automatically 
performed (as described). The trade-off between the confidence degree (Eq. 49) and 
the classification entropy (Eq. 50) is quantified by means of geometric mean 
criterion (Eq. 51) that points to the optimal classification index. The variation of 
confidence degree and entropy among classifications as well as the shape of the 
geometric mean are illustrated in Figures 5.22, 5.25 and 5.28, for each bearing. The 
optimum classification indexes are: #20 for I720913, #20 for O720913 and #17 
for M720913. The corresponding optimum classification maps are pictured in 
Figure 5.23 (inner race defect), Figure 5.26 (outer race defect) and Figure 5.29 
(multiple defects). For each classification, the representation is illustrated by using 
the grey levels scale to the right. One recognizes the sn by looking at the grid of 
each map. Thus, box cells that belong to the same class (cluster) have the same 
colour. Moreover, inside every box, the index of class the box belongs to is written, 
except the boxes that do not partake in the classification and belong to the inactive 
cluster. Besides the numerical parameters describing the classification minimum 
entropy (optimal) cluster, the average of rsp norms is represented as a curve passing 
through the map. Obviously, clusters are more or less grouped around this curve for 
all classifications.

As already mentioned, the most difficult part of the fuzzy model is the 
interpretation (or analysis) of classification maps. This means specific defects 
should be put into direct correspondence with map topologies. Such an analysis is 
more rigorous and simpler to perform than by inspecting the vibration spectrum, 
since a part of analyst reasoning has already been automated.  

The shape of inactive cluster or of the rsp norms average could already 
constitute an image of defect types. For the three optimum classifications described 
above, the inactive clusters are all different, though their shapes are closer to each 
other for single-point defects. But this effect is noticed in EA as well: Figures 5.19d 
and 5.20d are not very different, since the values of the two corresponding natural 
frequencies are close to each other (BPFI=325.061 Hz and BPFO=268.606 Hz). 
The inactive cluster for multiple defects seems to be quite different, but the same 
interpretation principle or rules as for single-point defects could be used. In the case 
of EA, the interpretation rule that worked very well for single-point defects is 
useless in the case of multiple-defect spectrum (Figure 5.21d).  

Another entry yielding map interpretation is to focus not on the inactive 
cluster, but rather on the active ones. Of course, one could consider all classes in a 
map (optimal or suboptimal). But this involves a complicated analysis. Therefore, 
some specific class (or a reduced number of classes) should be emphasized as 



Computational Intelligence in Fault Diagnosis   169 

representing the defect(s). An option is to consider the biggest class as revealing all 
subbands affected by the defect(s). A different option is to extract the minimum 
entropy class (optimal cluster), which, in general, is smaller than the biggest class 
and, therefore, more focused on a few subbands. These are very likely the most 
affected by defect(s). (Recall that minimum entropy means maximum occurrence 
degree of rsp norms.) Other representing classes could also be selected.  

The optimal detected clusters are the following:  
a. for bearing I720913 (inner race defect): cluster #13, 

with normalized entropy 0.516168, focusing on subband 
5200-5600 Hz (MF);  

b. for bearing O720913 (outer race defect): cluster #20, 
with normalized entropy 0.711234, focusing on subband 
4800-5200 Hz (MF);  

c. for bearing M720913 (inner and outer race defects): 
cluster #27, with normalized entropy 0.709225, focusing 
on subband 12.4-12.8 kHz (very HF).  

That the optimal clusters #13 and #20 are located in adjacent box cells is 
not coincidental, but is due to the fact that the corresponding natural frequencies 
have values close to each other. The extreme HF subband pointed by the multiple 
defects is somehow surprising. A better interpretation could be given by 
considering other sub-optimal classifications (see the next discussion). But, in any 
case, a good insight concerning the “full optimality” (optimal clusters into optimal 
classifications) is the following: single-point defects are indicated by optimal 
clusters around the LF or MF peaks of rsp norms average (and there is a correlation 
between natural frequencies and focused subbands), while the optimal clusters of 
multiple-point defects seem to be located around the HF peak of average. A more 
refined frequency segmentation, with a larger number of subbands than here 
( ) could probably help the user to make a sharper distinction between 
focused subbands in the case of single-point defects. Practically, the EA results are 
obtained by the fuzzy reasoning method as well. Concerning the multiple-point 
defects, it is possible that a frequency interpretation in terms of natural frequencies 
cannot be performed, but increasing 

64K

K  should lead to the same effect: the 
distinction between different defects should be easier to achieve. Unfortunately, the 
number of subbands ( K ) can only be increased at the expense of running time, 
especially due to the procedure evaluating the fuzzy transitive closure, which is the 
most time-consuming part of the algorithm (exponential type).  

The severity degree estimated here is located on the 4th level (between 6 
and 9.54 dB) – the first medium severity one – for single-point defects and on the 
5th level (between 9.54 and 12.04 dB) for multiple defects. The first location is 
close to the severity degree estimated by EA for inner race defect (10.88 dB), but 
quite different from the outer race defect estimated severity (13.06 dB). For 
multiple defects, EA offers no severity degree estimation, but in this case the 
location of multiple defects optimal cluster is closer to the outer race severity (13.06 
dB). Both estimations here are below the estimations proposed by EA. Since the 
severity degrees are conventionally set and in both methods the raw vibrations have 
been affected by filtering, the comparison in terms of severity degree is probably 
irrelevant. One could only note that, for the fuzzy-statistical method, the estimated 
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severity degree for multiple defects seems to be plausible, because the general level 
of vibration noise has been increased. This effect is proven by Figures 5.17a, 5.19a, 
5.20a and 5.21a, where the amplitude of corresponding raw vibrations is about 3 
cm/s2 2 for standard and inner race defect, 2 cm/s for outer race defect, but 5 cm/s2

for multiple defects.  
In order to extract more insights concerning classification map 

interpretation, several classifications should be depicted around the optimal ones. 
Their confidence and granularity are decreasing with classification index (according 
to the holonic phenomenon). In this context, some suboptimal classifications have 
been represented in Figure 5.24 (inner race defect), Figure 5.27 (outer race defect) 
and Figure 5.30 (multiple defects). They are selected according to the geometric 
mean values of Figures 5.22, 5.25 and 5.28. Thus, the suboptimal classifications 
have the best geometric mean values under the maximum one in every case. 
Sometimes, this requirement is fulfilled by local maxima, as in the case of bearings 
O720913 and M720913. One could notice how box cells are more and more 
grouped together as the classification index increases.  

An interesting observation could be noted with regard to all these maps: 
the optimal cluster (indicated by the optimal classification) is also optimum (with 
minimum entropy) for a large number of suboptimal classifications surrounding the 
optimal one, in the case of single-point defects. Though its index is changing (due 
to holonic phenomenon), its location is identical. The optimal cluster persistence 
among faults classifications is another good insight about the single-point defect 
nature, because, for multiple defects, the optimum cluster changes among 
classifications. However, in the case of multiple defects, it seems that another 
optimal cluster could also be considered, but extracted from suboptimal 
configurations. This is in fact the cluster #11 in classification #16 (as well as in 
classifications #13, #14, and #15, although not shown here). If one revisits Figure 
5.27, one could notice that all these classifications, though suboptimal, prove a 
good compromise between confidence and entropy (they are only slightly below the 
optimal classification). Their unique optimum cluster focuses on the subband 7200-
7600 Hz (still on the HF peak), but points to a lower severity degree (on level 3-6 
dB, incipient).  

One can infer from this analysis that selecting the cluster detected as 
optimal for the maximum number of classifications could be a good hint about the 
defect nature. But a reliable diagnosis requires a whole set of inference rules (and 
not isolated ones), in order to associate classification maps with specific defects and 
their severity degrees. A good achievement is that, by fuzzy-statistical reasoning, 
defects could be classified regardless of their nature as single- or multiple-point 
ones. 

5.4. Concluding Remarks 

Although with some obvious limitations, the method presented above aims to 
automate a part of human reasoning when detecting and classifying defects and to 
improve the multiple defect diagnosis. The main advantage of this method is that 
the defect classification maps could allow the user to perform a reliable detection 
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and diagnosis of defects, independently of their nature. Another advantage is its 
generality. On the one hand, the natural oscillation frequencies of the tested 
component play only a secondary role. On the other hand, gears, belt transmissions, 
or other vibration sources could replace bearings, provided that at least a good 
description of possible defects is a priori known in each case. Note that prefiltering 
is not mandatory: the fuzzy model could work with the whole raw vibration as well 
as with prefiltered data. The method’s main drawbacks are the complexity (slightly 
bigger than EA complexity) and the difficulties in finding appropriate 
interpretations for classification maps.  

Approaching the human reasoning in fault diagnosis is a demanding task. 
Not only because human reasoning is a complex mechanism (far to be completely 
understood nowadays), but also because such an attempt is mostly concerned with 
the inexplicable part of reasoning. 

5.5. Appendix. Graphical Simulation Results 
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Figure 5.19. Envelope analysis for bearing I720913.
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Figure 5.20. Envelope analysis for bearing O720913.
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Figure 5.21. Envelope analysis for bearing M720913.
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Figure 5.22.  Selecting the optimum defect classification for bearing I720913.
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Figure 5.23. Optimum defect classification # 20 for bearing I720913.
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Figure 5.24. Suboptimal defect classifications #19 and #21 for bearing I720913.
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Figure 5.25. Selecting the optimum defect classification for bearing O720913. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y 
d

eg
re

e 
le

ve
ls

 [
d

B
]

Classification #20 inside the statistical network for bearing O720913. Optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.658506       * Classification entropy: 35.7052

* Number of clusters: 36
* Optimum cluster: 20       * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y 
d

eg
re

e 
le

ve
ls

 [
d

B
]

Classification #20 inside the statistical network for bearing O720913. Optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.658506       * Classification entropy: 35.7052

* Number of clusters: 36
* Optimum cluster: 20       * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

Figure 5.26. Optimum defect classification # 20 for bearing O720913. 
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= Average statistical parameters

Entropy scale

* Confidence degree: 0.696495       * Classification entropy: 46.6996

* Number of clusters: 47
* Optimum cluster: 20       * Entropy: 0.711234

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

S
ev

er
it

y 
d

eg
re

e 
le

ve
ls

 [
d

B
]

Classification #23 inside the statistical network for bearing O720913.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.60544       * Classification entropy: 20.7728

* Number of clusters: 21
* Optimum cluster: 17       * Entropy: 0.711234
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Classification #23 inside the statistical network for bearing O720913.
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* Confidence degree: 0.60544       * Classification entropy: 20.7728

* Number of clusters: 21
* Optimum cluster: 17       * Entropy: 0.711234
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Figure 5.27. Suboptimal defect classifications #19 and #23 for bearing O720913. 
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Figure 5.28. Selecting the optimum defect classification for bearing M720913. 
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Figure 5.29. Optimum defect classification # 17 for bearing M720913. 
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Classification #16 inside the statistical network for bearing M720913. Sub-optimal.
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Classification #22 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.704344       * Classification entropy: 14.8632

* Number of clusters: 15
* Optimum cluster: 10       * Entropy: 0.767531
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Classification #22 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.704344       * Classification entropy: 14.8632

* Number of clusters: 15
* Optimum cluster: 10       * Entropy: 0.767531
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Figure 5.30. Suboptimal defect classifications #16 and #22 for bearing M720913. 
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6. Artificial Neural Networks in Fault 
Diagnosis: A Gas Turbine Scenario 

Stephen Ogaji and Riti Singh 

Gas turbines are used for aero and marine propulsion, power generation and as 
mechanical drives for a wide range of industrial applications. Often, they are 
affected by gas path faults, which have hitherto been diagnosed by techniques such 
as fault matrixes, fault trees and gas path analysis. In this chapter, an artificial 
neural network approach to fault diagnosis is presented. The networks involved are 
trained to detect, isolate and assess faults in some of the components of a single 
spool gas turbine. The hierarchical diagnostic methodology adopted involves a 
number of decentralised networks trained to handle specific tasks. All sets of 
networks were tested with data not used for the training process. The results, when 
compared with available diagnostic tools, show that significant benefits can be 
derived from the actual application of this technique. 

6.1. Gas Turbine Faults  

Gas turbines (GT) are mechanical devices operating on a thermodynamic cycle with 
air as the working fluid. The air is compressed in a compressor, mixed with fuel and 
burnt in a combustor, with the gas expanded in a turbine to generate power used in 
driving the compressor and external loads (thrust or shaftpower) depending on 
requirements. 

The main gas path components of the GT, which are compressor, 
combustor and turbines, are usually very reliable, but could result in low 
availability of the whole unit if a forced unexpected outage is encountered, as it can 
take some considerable time to repair them. This is made worse if the breakdown 
occurred when the maintenance crew was unprepared for it. Improving availability 
and reducing life cycle costs of the GT require maintenance schemes, such as 
condition-based maintenance (CBM), which advocates maintenance only when it is 
necessary and at the appropriate time rather than after a fixed number of operating 
hours or cycles. For the operational health of the engine to be regularly monitored 
for gas path faults, such measurable parameters as shaft speed, pressures, 
temperatures, fuel flow and shaftpower/thrust are required. 

The gas path of a gas turbine is affected by a number of faults, which 
degrades its performance. The following succinctly presents the most common 
faults that affect the gas path. 

a. Fouling: This is one of the most common causes of engine 
performance deterioration facing users of gas turbines and it can 
account for more than 70% of all engine performance loss 
accumulated during operation (Diakunchak, 1992). Fouling is the 
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accumulation of deposits on the blade surfaces causing an 
increase in surface roughness, changes in shape of airfoil/airfoil 
inlet angle and reduction in airfoil throat opening (Diakunchak, 
1992; Zaita et al., 1998). Fouling primarily results in mass flow 
and compressor delivery pressure (CDP) reduction, and 
ultimately in power reduction and increased heat rate 
(Diakunchak, 1992; Aker and Saravanamuttoo, 1989; 
Lakshminarasimha et al., 1994), with a slight change in 
compressor efficiency (Agrawal et al., 1978). 

b. Tip Clearance: Tip clearance has the effect of reducing both 
efficiency and flow capacity in a compressor. There is a much 
greater response of efficiency drop to tip clearance than fouling. 

c. Erosion: Materials exposed to particle impacts are eroded and 
subjected to deterioration of their surface quality, changes in 
airfoil profile and throat openings, with increases in blade and 
seal clearances. With the gas turbine, the result of this on the gas 
path component is a decrease in performance. In the compressor, 
the eroded blade leads to loss of compressor delivery pressure and 
mass flow rate while on turbine nozzles/blades erosion has the 
effect of increasing turbine flow function and reducing efficiency, 
and hence output power. 

d. Corrosion: When loss of materials from flow path components is 
caused by the chemical reaction between the components and 
contaminants that enter the gas turbine with the inlet air, fuel or 
injected water/steam, the process is called corrosion. Corrosion is 
experienced more at the hot end with the presence of elements 
such as vanadium, sodium and lead enhancing high-temperature 
corrosion of turbine airfoils. The effect is a reduction of engine 
performance. 

e. Object Damage: This is the result of an object striking the gas 
path components of the gas turbine engine. The origin of such 
particles could be via the inlet section with the working fluid 
(foreign object damage (FOD)) or particles from the engine itself 
breaking off and being carried downstream (domestic object 
damage (DOD)). Here, again, the effect is a deterioration of the 
engine’s performance. The fault signature with respect to its 
effect on performance is sometimes identical to that of fouling. 

6.2. Engine Reliability, Availability and 
Diagnostic Techniques 

Operation and maintenance costs of a gas turbine contribute a major portion of the 
annual maintenance budget of a company. In view of the changes in world economy 
towards globalisation and openness of the market, any efforts that can reduce the 
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total cost of ownership and life cycle cost of the equipment will be added 
advantages. 

The primary objectives of all maintenance strategies are to reduce 
equipment downtime, increase reliability and availability of the equipment, which 
at the same time optimise the life cycle costs of the equipment. Normally, costs 
associated with the design and manufacture of the engine are fixed and rarely 
influenced by the users. Therefore, in order to increase the overall profit and be 
competitive in the open market, the users are left to manage the life cycle costs of 
the engine during its operation and maintenance. 

Reliability is generally described in terms of the failure rate or mean time 
between failures (MTBF), while availability is normally associated with total 
downtime. In general, current technology has ensured that the gas turbines for 
industrial application, especially for base load power plant operation, have high 
levels of reliability. However, when the turbines are removed from operation due to 
forced outages, the downtime incurred depends on the time required to complete the 
necessary repair or maintenance action, hence affecting its availability (Singh, 
2001). 

Figure 6.1 illustrates the comparison of forced outage rate and total 
downtime for major components of a typical gas turbine. Overall outage rate of a 
gas turbine is normally affected by unreliability of “soft components” such as 
instrumentation and control systems. However, their downtime can be managed to 
acceptable levels, as they are either easily replaceable or generally designed with 
redundancy. On the other hand, gas path components such as compressor and 
turbine reliability are high. However, when a forced outage is caused by these 
components, the maintenance downtime can be excessive. This is because these 
components are normally not held in spares, either by the users or manufacturers, 
due to their high costs but low demand. The long time for maintenance action 
results in low availability of the engine for usage, when required. As shown in 
Figure 6.2, if the time between maintenance actions is 10,000 hours, but the engine 
downtime is 3 months due to unavailability of spare parts, then the engine overall 
availability achieved would be only 80%. If, however, an appropriate technique to 
predict the failure of these components is used, the parts can be preordered some 
months ahead. The new maintenance downtime is then only due to actual repair 
time. If the downtime were reduced to 3 days, then the availability would be 99.5%. 
This improvement clearly provides significant impact to plant overall economics 
(Singh, 2001) and can only be brought about if better knowledge of plant 
performance is available. Enhanced knowledge of the gas path components of the 
gas turbine would help to optimally schedule maintenance and, in fact, is a key 
feature of an engine health monitoring (EHM) scheme. 

Gas path fault diagnostic techniques can be grouped into two categories: 
qualitative and quantitative approaches. 

Qualitative techniques: This includes all approaches that try to ascertain 
the presence of a fault without placing a value on the level of fault. Examples of this 
technique include fault matrix and fault trees (Singh, 1999). The procedure here is 
to take measurements from the engine and try to match them against predetermined 
patterns of known faults. A major limitation of this technique is that only one fault 
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can be identified at a time and, because of the nature of results obtained, the extent 
of deterioration may not be known. 
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Figure 6.1. Gas turbine major components’ outage rates and total downtimes. 

Figure 6.2. Availability vs. downtime. 

Quantitative techniques: with the inherent limitations of the qualitative 
techniques, there was a need for quantitative methods. The work of Urban (Urban, 
1972) gave rise to what is now commonly known as gas path analysis (GPA). The 
theory behind this is simple.  The analytical performance of gas turbine engine is 
based upon component characteristics and aerothermo relationships. For a well-
defined characteristic, an aerothermo model can provide the engine performance in 
terms of dependent or measurable parameters such as pressures, temperatures, spool 
speed, etc. and independent nonmeasurable parameters such as efficiencies and 
flow capacities. During the operation of an engine, the performance deteriorates 
because of gas path degradation and faults. Each of these faults affects the 
independent parameters and because they cannot be directly measured, the faults 
need to be detected, isolated and quantified by using the relationship between the 
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dependent and independent parameters (Figure 6.3). Artificial neural networks 
(ANN) and genetic algorithms (GA) are other quantitative techniques being 
explored for engine diagnostics. 

Gas Path Faults

Measurable

Variables Shift 

Independent

Variables Change 

Results in 

Producing 

Allowing 

Isolation of

Figure 6.3. Principles underlying gas path analysis. 
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Figure 6.4. Typical two-shaft aeroderivative gas turbine with power turbine. 

In the following sections, we review the need for engine diagnostics and 
maintenance, introduce ANNs, present some aspects of the ANNs application to 
diagnostic problems, highlight some features of ANNs that make them amenable to 
GT diagnostics, as well as their limitations, and finally discuss their application to 
gas path fault diagnosis of a developed case study. The engine used for this analysis 
is a two-shaft aeroderivative gas turbine, thermodynamically similar to the Rolls 
Royce Avon. A sectioned picture of this engine’s configuration is shown in Figure 
6.4 with some of the gas path components indicated.  

6.3. Artificial Neural Networks 

Eustace and Merrington. (1995) described a neural network as a diagrammatic 
representation of a mathematical equation that receives values (inputs) and gives 
out results (outputs). Neurobiology estimates the human brain to consist of one 
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hundred billion nerve cells or neurons. These communicate via electrical signals 
that are short-lived impulses or “spikes” in the voltage of the cell wall membrane. 
Biological neurons (Figure 6.5) have three principal components: the dendrites, the 
cell body (soma) and the axon. A neuron's dendritic tree is connected to about a 
thousand neighbouring neurons. When one of those neurons fires, a positive or 
negative charge is received by one of the dendrites. The strengths of all the received 
charges are added together through the processes of spatial and temporal 
summation. Spatial summation occurs when several weak signals are converted into 
a single large one, while temporal summation converts a rapid series of weak pulses 
from one source into one large signal. The aggregate input is then passed to the cell 
body or soma. If the aggregate input is greater than the axon hillock's threshold 
value, then the neuron fires, and an output signal is transmitted down the axon. The 
strength of the output is constant, regardless of whether the input was just above the 
threshold, or a hundred times as great. The output strength is unaffected by the 
many divisions in the axon; it reaches each terminal button with the same intensity 
it had at the axon hillock. 

Dendrites 

Nucleus

Axon

Terminal 

Buttons 

Axon 

hillock

Soma 

Synapse 

Signal Flow 

Input 

Output 

A typical biological neuron. Figure 6.5.

Although ANNs have been around since the late 1950s, it was not until 
mid-1980 that algorithms became sophisticated enough for general applications. 
Also referred to as connectionist architectures, parallel-distributed processing 
systems, an ANN is an information-processing paradigm inspired by the way the 
densely interconnected, parallel structure of the mammalian brain processes 
information. ANNs are collections of mathematical models that emulate some of 
the observed properties of biological nervous systems and draw on the analogies of 
adaptive biological learning. The key element of the ANN paradigm is the novel 
structure of the information processing system. It is composed of a large number of 
highly interconnected processing elements that are analogous to neurons and are 
tied together with weighted connections that are analogous to synapses. A typical 
neuronal model is thus comprised of weighted connectors, an adder and a transfer 
function (Figure 6.6). 
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Figure 6.6. A single mathematical neuronal model. 

The basic relationship here is: 
n = wp + b (1) 

a = F (wp + b) (2) 
where 

a = network output signal 
w = weight of input signal 
p = input signal 
b = neuron specific bias 
F = transfer/activation function 
n = induced local field or activation potential 
Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurons. This is true for ANNs as well. Learning 
typically occurs by example through training, or exposure to a truthed set of 
input/output data where the training algorithm iteratively adjusts the connection 
weights (synapses). These connection weights store the knowledge necessary to 
solve specific problems. From Eqs. 1 and 2, it can be seen that a simple neuron 
performs the linear sum of the product of the synaptic weight and input with the 
bias, which value is then passed through an activation or transfer function that 
limits the amplitude of the output of a neuron. Activation functions can take various 
forms ranging from hard limit, through pure linear to sigmoid and the choice of 
which to use depends on the desired output from the network and the characteristics 
of the system being modelled. 

Typical and practical networks are normally multi-input and probably 
multilayered and in such cases, the variables in Eqs. 1 and 2 now take a different 
format with w being the matrix of weights and a, p and b representing vectors of 
their respective definitions. 

Two key similarities between biological and artificial networks (Haykin, 
1999) are: 

1. Their building blocks are highly interconnected computational devices 
though the artificial neurons are much inferior to their biological 
counterparts. 
2. The function of the network is determined by the nature of connection 
between the neurons. 
The inherent nonlinearity in GT performance and diagnostic relationships 

and the obvious limitations of the analytical model-based technique otherwise 
known as GPA, make the need for consideration of alternative techniques such as 
ANNs inevitable. 
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The basic steps involved in obtaining a typical supervised feedforward 
ANN include: 

1. Assessing the problem to be solved in a bid to seek the possibility of 
discretising it. 
2. Generating training and test data. 
3. Defining and training various network architectures in order to seek 
the optimal architecture(s). The training process joggles the weights and 
biases to obtain the set that optimises performance via reduced errors and 
good generalisation. The weight adjustment for the case of a back 
propagation network that operates on the gradient descent technique is 
done via the relation: 

1nw
w

E(n)w ij
ij

ij (3) 

where E is the difference between the outputs and the targets for the nth 
input otherwise called the “error” to be minimised,  and  are the 
learning rate and momentum constants, respectively. 
4. Testing the ANNs with enough data to ascertain generalisation 
abilities. 
Barschdorff (1991) states that the use of ANNs can significantly improve 

symptom interpretation in scenarios of malfunctions of mathematically difficult to 
describe systems and processes. 

6.4. Artificial Neural Networks and Fault 
Diagnosis

The possibility of incorporating ANNs in engine health monitoring has recently 
been the subject of much research after its successful application to other 
endeavours of life such as medicine (diagnosis of diseases), finance (prediction of 
stocks) amongst others. ANNs have been applied by a number of authors to fault 
diagnostic activities. Such areas include: 

Sensor(s) faults. Single sensor fault diagnosis for industrial 
power plants (Simani and Fantuzzi, 2000). Single sensor fault 
diagnosis for a space shuttle main engine (Guo and Nurre, 1991). 
Prediction of a failed sensor and actuators in automobile engines 
(Dong et al., 1997). 
GT faults. Aeroengine fault and sensor bias detection (Kobayashi 
and Simon, 2001; Zedda and Singh, 1998). Fault diagnosis of 
fleet engines (Eustace and Merrington, 1995). Faulty sensor and 
component isolation for a single spool GT (Kanelopoulos et. al.,
1997). Jet engine parameter trending and engine malfunction 
prediction (Denney, 1993). Diagnosis and prognosis for the fuel 
system faults of an AGT-1500 military tank’s GT (Illi et al.,
1994). 
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Jet and rocket engines. Detection of bearing failure and fuel 
interruptions in real time as well as stipulating the severity and 
duration of the fault (Dietz et al., 1989). 
Nuclear power plant. Nuclear power plant diagnostics (Guo and 
Uhrig, 1992; Parlos et al., 1994; Tsai and Chou, 1996), signal 
validation (Upadhyaya and Eryurek, 1992; Fantoni and Mazzola, 
1996), control (Jous and Williams, 1990; Bakal et al., 1995), 
plant state identification (Barlett and Uhrig, 1992; Tsoukalas, 
1994), prediction of plant parameters (Sofa et al., 1990) and 
optimisation (Fukuzaki et al., 1992). 
Mechanical damage. Detection of rotating machinery gearbox 
and bearing housing faults (Paya et al., 1997). Prediction of 
propulsion system rotor unbalance (Huang et al., 2001), GT blade 
fault diagnosis (Angelakis et al., 2001). 

Some developed GT diagnostic approaches involving the use of ANNs 
include the following reviewed works. 

-Zedda and Singh (1998) proposed the use of a modular based diagnostic 
framework for a twin spool turbofan GT with low bypass, thermodynamically 
similar to the Garret TFE 1042. In their work, the authors considered the possibility 
of using multiple nets in the detection and quantification of faults within three of 
the four (FAN, HPC, HPT and LPT) components of this GT unit. Seven sensors 
were considered for the isolation of fault in eight performance parameters. The 
analysis considered a single operating point and component faults were split into 
two categories – soft and hard, which required that a different diagnostic path be 
traversed for the detected category. Single component faults were also considered. 
The diagnostic procedure modules consisted of preclassification, classification, data 
validation, training set selection and net training. The results were reportedly 
encouraging by the authors. 

Kobayashi and Simon (2001) proposed a hybrid neural network - genetic 
algorithm technique for engine performance diagnostics. A General Electric 
simulation programme for the XTE46 – a scaled unclassified representation of an 
advanced military twin spool turbofan engine –  was used to generate data for 
constructing the diagnostic process. Faults were modelled by adjustments to 
efficiencies and/or flow coefficient scalars of the fan (FAN), booster (BST), high 
pressure compressor (HPC), high pressure turbine (HPT) and low pressure turbine 
(LPT). This gave nine health parameters to be estimated. The authors chose twelve 
sensed parameters to monitor the engine and compute the health parameters. In their 
approach, a neural network estimator was designed to estimate the engine health 
parameters from sensor measurements while the genetic algorithm was applied to 
the sensor bias detection task. The authors claimed that the approach of 
incorporating genetic algorithms would reduce the size of the network training set 
significantly while inferring that ANN will not perform well if sensor bias is 
present in the measurements used to train it. In general, the results showed good 
estimation capabilities of the designed system with estimation errors below the 30% 
level considered by the authors to be their satisfactory mark. The authors suggested 
that an area of further work would require a systematic way of selecting and/or 
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locating sensors for health estimation, as simply increasing the number of sensors 
does not guarantee improved estimation performance. 

Kanelopoulos et al. (1997) applied multiple neural networks in the 
simulation of performance and qualitative diagnosis of faults in a single shaft GT.  
The authors suggested that two networks with the first used to isolate sensor faults 
and the subsequent one to isolate component faults would provide better results 
than applying a single network for the combined task. This work amongst others 
gave impetus to the idea of using a specialised network for a specialised task. 

Eustace and Merrington (1995) applied a probabilistic neural network to 
diagnose faults in any engine within a fleet of 130 engines. This idea is interesting 
especially when one considers the fact that even for healthy engines, measured 
parameters vary naturally from engine to engine within a fleet. The General Electric 
F404 low-bypass-ratio afterburning turbofan engine was chosen for consideration. 
This engine has six modules – fan, compressor, HPT, LPT and afterburner/final 
nozzle section. The authors used a statistical correlation technique to select five 
from eight available engine-monitoring parameters as inputs to the network. 
Residuals obtained from the difference of a measured parameter and its baseline – 
which was computed from correlative relationship with another parameter - were 
used to train the network. Faulty data were generated by fault implantation on a 
single engine and superimposed linearly on the fault-free data of the fleet, of which 
60 were used to generate the network and 70 to test the network. This 
superimposition was done to reduce the time and cost involved in fault implant 
tests. Implanted faults were in the form of off-nominal adjustments to both the 
compressor variable geometry (CVG) and exhaust nozzle final area. Results from 
the network tests showed that an average accuracy of 87.6% was achieved with test 
patterns of about 4900. Considering the variability in the baseline used, the obtained 
result can be deemed acceptable. 

Cifaldi and Chokani (1998) discussed the use of ANN with the 
backpropagation and delta learning rule in predicting the performance of six 
components (diffuser, compressor, burner, turbine, nozzle and mechanical shaft) of 
a turbojet engine while simultaneously giving an overview of its possible 
application to vibration-related faults. Ten thousand training patterns were 
generated with the simulation programme and another twenty-five patterns were 
used to test the trained network. Each of these patterns represented an operating 
point. The result of their study showed that the mechanical, burner, compressor and 
turbine efficiency trends were well predicted while the efficiency trends of the 
diffuser and nozzle were poorly predicted. The authors attributed this poor 
performance to the choice of the instrumentation. 

Green and Allen (1997) discussed the need to incorporate ANNs with 
other AI tools to obtain a cognitive (awareness), ontogenetic (learning organism), 
engine health monitoring (EHM) system or COEHM with estimation of lifing, 
diagnostic and prognostic capabilities. 

Guo et al. (1996) applied an autoassociative neural network (AANN) for 
sensor validation. The authors in their analysis assumed a redundancy in the 
instrumentation set. This may imply that a nonredundant instrumentation set cannot 
be successfully applied with AANN for sensor validation since according to the 
authors, the number of neurons in the bottleneck must not be less than the minimum 
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number of sensors required to generate all sensor estimates in case of a detected 
failure.

Napolitano et al. (1996) while comparing the approaches of Kalman filters 
(KF) and ANN for sensor failure detection, isolation and accommodation (SFDIA), 
used units without physical redundancy in the sensory capabilities. Basing their 
analysis on soft failures/faults, the authors applied multiple ANNs in the form of 
main and decentralised networks (MNN, DNNs) to perform SFDIA. The 
application of multiple nets makes it possible to infer that if errors are to be 
minimised for this and other complex applications, then more than one net need be 
employed with each, applied to a specific aspect of the problem. 

Weidong et al. (1996) and Lu et al. (2000) used the relativity of inputs and 
outputs of an ANN to detect the presence, or otherwise, of faults in sensors, with 
the output said to represent a better approximation of the sensors’ correct 
measurements. This network output can then be fed to other networks, probably, for 
component fault diagnosis. 

In the present analysis, however, we intend to develop a methodology for 
fault diagnostics of the gas path of a two-shaft gas turbine. We shall consider faults 
that affect the components (turbines and compressor) as well as the sensors, using 
ANNs. Table 6.1 shows some of the strengths of ANNs that are juxtaposed with 
their perceived weaknesses. The strengths make ANNs very useful for integration 
in engine diagnostics, while the weaknesses create challenges that will need 
solutions as more research is focussed on improving ANN applications to 
diagnostics systems. 

Table 6.1. Comparison of the strengths and weaknesses of ANNs in engine diagnostics 

ANN STRENGTHS ANN WEAKNESSES 

• It has the ability to handle nonlinear 
relationships, which are characteristics of 
engine parameter interrelationships. This 
feature can be extended to include such 
cases where ANN is applied to represent 
relationships where no analytical model 
exists. 

• It is tolerant to measurement 
nonrepeatability problems or noise. 

• It can operate satisfactorily even in the 
presence of limited information. 

• It can be applied online due to its 
extremely fast convergence when in the 
recall mode. 

• The optimal network structure for a given 
problem is generally not known. 

• The criteria for the validation of a network 
are not well defined. 

• The criteria for the selection of the best 
training algorithm for fast convergence of 
given or new patterns is not understood. 

• The rules for selecting the amount and type 
of data for training as to improve quality of 
network are minimal. 

• The convergence of training algorithms is 
not guaranteed. 

• Long training/ adaptation times. 
• Data effusive, which could be difficult to 

obtain in some actual situations. 

6.5. Measurable Parameters and Measurement 
Uncertainties/Errors

It is obvious that the ability to accurately determine engine health largely depends 
on the accuracy of measurements available. Many sensors installed on the engine 
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operate in very hostile environments at extremes of temperature and/or pressure. 
Unfortunately, sensor measurements are often distorted by noise and bias, thereby 
masking the true condition of the engine and leading to incorrect estimation results. 
This creates the situation where sensor reliability may be lower than component 
reliability, and causes incorrect component fault diagnosis. 

Measurement errors may be broken down into two distinct components, a 
random error and a fixed error (Abernethy and Thomson, 1973). Random error is 
the difference in values between repeated measurements of the same item. This can 
be described as instrument nonrepeatability or precision error, and can be of the 
same order of magnitude as changes induced by a real engine fault. The fixed error 
is called the sensor bias and remains constant. In repeated measurements, each 
measurement will have the same amount of bias. Sensor failures can be viewed as 
either hard catastrophic failures or soft uneasy-to-detect failures. Hard failures are 
generally assumed to be easy to detect. Soft failures may generally not degrade the 
system performance for some time but if left undetected can eventually cause 
catastrophic results. An undetected sensor bias can either point to a nonexistent 
fault or point to a fault in an engine component. 

For simplicity, and to be able to communicate the level of uncertainty 
associated with a measurement, an “uncertainty” term may be used to describe the 
measurement instrument. The most widely used convention is a hybrid of bias and 
precision error. Uncertainty may be centred about the measurement and is defined 
as:

(4) U =  (B + t95s)
where B is the bias limit, s is the precision error index (standard deviation of the 
sampled population) and t95 is the 95th percentile point for the two-tailed “t” 
distribution (Figure 6.7). 
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Figure 6.7. Instrument uncertainties (Abernethy and Thomson, 1973). 

Six measurable parameters (the process of determining them is presented 
later) are used in the current analysis, and their precision values are given in Table 
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6.2, together with the levels of deviations for which they could be considered as 
producing faulty readings. The precision values were applied to all simulated data 
before introduction to the ANN programme for training and testing purposes. 

Table 6.2. Measurable parameters nonrepeatability errors 

Sensor Description Precision 

Values

(%  span) 

Fault Level 

Considered (%) 

1 N1 Gas generator relative shaft speed 0.03 + (0.06 to 10) 

2 WFE Gas generator fuel flow 1 + (2 to 10) 

3 P2 Gas generator compressor delivery total pressure 0.1 + (0.2 to 10) 

4 T2 Gas generator compressor delivery total temperature 0.4 + (0.8 to 10) 

5 P4 Gas generator exhaust pressure 0.1 + (0.2 to 10) 

6 T4 Gas generator exhaust temperature 0.4 + (0.8 to 10) 

6.6. Case Study 

Gas path faults can occur during the operation of a gas turbine, and because they 
affect performance and life, it is necessary to diagnose and correct them. It is 
important to note that in addition to component faults, measurement noise and 
sensor bias are other sources of parameter changes in the gas path of a gas turbine. 
A stochastic approach would therefore seek not to undermine this fact. Application 
of artificial neural networks has the capability to deal with inaccuracies of 
conventional diagnostic tools. Such inaccuracy effects include undermodeling 
(where a simplified model is used for convenience to appropriate the real system), 
linearization errors and measurement noise. Figure 6.8 presents a first level 
schematic of the diagnostic strategy being proposed. The procedures adopted 
include: 

(1) Obtaining an aerothermodynamic model of the engine from 
which simulation data would be generated for training and testing 
the networks. This approach was applied because it is extremely 
expensive to sacrifice actual engines for such an analysis and the 
probability of obtaining erroneous data from actual fault 
implantations cannot be ruled out. 

(2) Determining the sensors to be monitored. This can be done by 
making use of the sensor information available for the given 
engine or applying such techniques as gas path analysis to 
determine the optimum combinations that would be effective to 
diagnose the desired faults (Ogaji and Singh, 2002b). The latter 
approach was used. 

(3) Implanting faults in the engine model and generating data to 
cover all the possible fault scenarios as well as the required 
operating conditions defined by the power setting parameter and 
ambient conditions. 

(4) Training and testing various network architectures and 
determining the best data flow framework for the required 
diagnostic purpose. 
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Figure 6.8. Schematic of diagnostic strategy. 
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Figure 6.9. Gas path diagnostic framework for single-spool gas turbine. 
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The diagnostic framework (ANN model from Figure 6.8) applied is shown 
in Figure 6.9, and its functioning is given below: 

Measured patterns from the engine sensors are fed into the first 
classification network denoted by CLASS1. These patterns are 
classified into either faulty (F) or not faulty (NF). 
If there is no fault detected in the patterns and if the network is 
sufficiently accurate, then there is no need for further diagnostic 
checks. If a fault is detected, the patterns are passed on to 
CLASS2 where they are classified into either sensor faults (SF) or 
component faults (CF). The sensor faults considered in this case 
are single (SSF) and dual (DSF). 
If a sensor fault is detected, the pattern is passed on to an 
autoassociative network (AUTOASSOC1), whose output has 
been constrained during training, to give nonfaulty results. Thus 
the percentage deviation between input to this network and its 
output provides an indication of the amount of bias/fault or even 
noise present in each of the sensors. 
Alternatively, if the pattern from CLASS2 is classified as a CF, 
then the patterns are passed on to another classification network 
called CLASS3 which classifies the patterns into any of the three 
categories: single-component faults (SCF), dual-component faults 
(DCF) and multi-component faults (MCF). It necessary to note 
that the engine under consideration has four basic components – 
one compressor, one combustor and two turbines. The combustor 
is excluded in this analysis because its efficiency is relatively 
stable with time (Diakunchak, 1992) and thus its performance 
deterioration does not provide sufficient information from the 
measurable parameters which is a requirement for assessing its 
health using our technique.  
A pattern identified as SCF is passed on to another network, 
CLASS4, which attempts to isolate the affected component, 
which could be the compressor (C), compressor turbine (CT) or 
power turbine (PT). If the faulty component is successfully 
isolated, the pattern is passed on to an approximation network that 
assesses the extent of fault by determining the changes in 
efficiency ( ) and flow capacity ( ). Interpretation of the nature 
of the fault is left to the user. 
The approach to DCF and MCF fault assessment is similar to that 
of SCF described above. 

The anatomy and results of these networks as well as results obtained from 
tests carried out are presented in the next section. A possible alternative diagnostic 
structure to that shown in Figure 6.9 is also presented. 
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6.7. Network Anatomy and Results 

In Table 6.3 a summary of the classification networks developed in this work is 
presented including results obtained in terms of correctly classified test patterns. 
The network type is the probabilistic neural network (PNN), which can be set up in 
less than two minutes when data is available. This network requires no “training,” 
but its hidden layer takes up processing units or neurons equal to the number of 
training patterns while the input and output layers are respectively equal, in terms of 
the number of neurons, to the number of sensors and the expected output groups. 
The PNN was applied to all pattern classification tasks except CLASS3, because in 
addition to the quick setup time, it also has the basic advantage of novelty detection 
(assigning previously unseen patterns to the most probable fault class). Appendix 2 
offers a succinct description of the networks used in this work including the PNN. 

Table 6.3. Anatomy of classification networks and results 

NETWORK Type TTRP/TTP RESULTS (%CCP) 

CLASS1 PNN 13526 

NF 

100 

F

99.9 

CLASS2 PNN 12026 

SF 

100 

CF

99.7 

CLASS3 PNN 9926 

SCF 

99.1 
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90.1 
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76.3 
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Figure 6.10. Distribution of classification results from CLASS3 using a PNN. 

CLASS1 data set comprised representations from all the possible fault 
scenarios, thus patterns in all the other CLASS networks are also members of 
CLASS1. The classification accuracy of CLASS1 is very high which indicates the 
network’s ability to adequately distinguish between a faulty (F) and nonfaulty (NF) 
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engine. The philosophy of first ascertaining the condition of an engine before 
diagnosing its fault is considered a novel development. 

Generally, all classification networks performed well except CLASS3 
where some DCFs were misclassified as either SCF or MCF. This is because when 
one or both components included in the DCF are lightly affected by fault, the fault 
pattern becomes basically similar to that of an SCF and is classified as such. If both 
components in the DCF are heavily affected by fault, the pattern created becomes 
very similar to that of an MCF and is thus classified as such. Also, most of the 
MCFs were classified as DSF for the same reason (Figure 6.10). This problem led 
to application of a trained network to this aspect of the diagnostic framework. Using 
a fully connected feedforward network with architecture 6-35-35-3, resilient 
backpropagation (RB) as training algorithm and tanh sigmoid transfer function 
(Demuth and Beale, 2001) on all nodes, we obtained improved classification 
accuracy for this class (Table 6.4). The lesson to be derived here is that a modular 
diagnostic structure like the one proposed in Figure 6.8 allows for optimisation of 
each aspect of the structure, by using the best network configuration suitable for 
that aspect. 

Table 6.4. Comparison of classification from PNN and RB for CLASS3 

NETWORK TYPE SCF DCF MCF 

PNN (%CCP) 99.10 90.06 76.31 

RB (%CCP) 98.95 95.00 90.44 

An alternative to the classification section of the ANN framework 
proposed in Figure 6.9 is shown in Figure 6.11. Here, a CLASS  network created 
on the PNN principle is used to diagnose any of the nine possible engine conditions, 
a task hitherto performed by five CLASS networks. The classification accuracy 
achieved (Table 6.5) is similar to that from Figure 6.9 when the percentages are 
compounded down the chain, but the possibility of optimising any section of the 
classification network structure is ruled out as is possible with Figure 6.8. 
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Figure 6.11. Alternative classification structure. 
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Table 6.5. Classification accuracy for alternative structure 

FC NF SF C CT PT C+CT C+PT CT+PT MCF 

%CCP 100.00 99.62 99.82 98.42 98.42 89.06 87.76 86.72 76.02 

The implanted component faults ranged from a 0.5% to 3.5% drop in 
efficiency while various levels of flow capacity changes were combined with each 
level of efficiency drop depending on the type of fault being simulated. This is 
expected to cover the range of faults of interest during engine operation. Test 
patterns were generated at positions between the training patterns that account for 
the equality of test and training patterns. In Table 6.6, a summary of the 
approximation networks is presented. It should be recalled that approximation 
networks are created to quantify the amount of changes in independent variables for 
component(s) diagnosed to be faulty. The sizes of network deemed optimal from 
the number of networks trained for each category are also shown. All the networks 
here were trained with RB training algorithm (Demuth and Beale, 1992) with the 
transfer function for all nodes tan sigmoid. The last two columns of Table 6.6 show 
the MSE obtained from training and testing these networks. The MSE and RMS 
defined by Eqs. 5 and 6 respectively are the statistical parameters used to examine 
the performance of the networks as well as make comparisons with other diagnostic 
techniques in this work. 

The very low MSE obtained during training and testing of the APPROX 
networks vis-à-vis the close similarity between the MSE from the training and 
testing process in the presence of measurement noise indicates the high estimation 
quality of the networks for the faults being diagnosed. 

Table 6.6. Anatomy of approximation networks and results 

NETWORK NTRALG TTRP/TTP SIZE MSE 

(TRAINING) 

MSE (TEST) 

APPROX1 RB 1830 6-15-15-2 0.009 0.010 

APPROX2 RB 1220 6-10-10-2 0.003 0.003 

APPROX3 RB 1220 6-10-10-2 0.002 0.003 

APPROX4 RB 23064 6-30-30-4 0.032 0.032 

APPROX5 RB 23064 6-35-35-4 0.018 0.018 

APPROX6 RB 15376 6-30-30-4 0.018 0.018 

APPROX7 RB 20736 6-40-40-6 0.137 0.146 

n

n

i 1

2
Detectedimplanted FaultFault

MSE
(5) 

MSERMS (6) 
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Table 6.7. Correlation of APPROX4 test output with target and analysis of prediction 
error

Parameter
Correlation

Coefficient (r) 

ηc 0.9721

Γc 0.9993

ηct 0.9787

Γct 0.9992

?ηc ?Γc ?ηct ?Γct

Mean

Error
0.01 0.00 0.01 0.00 

σ 0.21 0.18 0.18 0.14 

1σ 75 70 81 69 

2σ 95 95 95 95 

%
 o

f 
po

in
ts

w
ith

in
 th

e 
gi
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3σ 99 99.5 98 99.5 
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Figure 6.12. Distribution of actual error in ANN prediction of compressor turbine 
performance parameters 

A close view at one of these approximation networks presented in Table 
6.6, say APPROX4, shows that it has architecture of 6-30-30-4 with 23,064 patterns 
used for training while another 23,064 patterns were involved in the testing of the 
network. This network was designed to assess the amount of DCF present in the 
compressor and compressor turbine. Figure 6.12a-d shows the prediction error 
distribution from testing of this network. Considering the level and complexity of 
the faults being diagnosed, especially with the level of noise added, this degree of 
accuracy is satisfactory even in actual applications. From the correlation 
coefficients (Table 6.7, left), we show the degree of matching obtained from the 
ANN predicted fault level and the target or true values for each of the independent 
variables. From Table 6.7, right, it is shown that over 70% of the test patterns fall 
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within one standard deviation of the mean error, with the mean effectively equal to 
zero in this case. 

Other networks showed similar performance to those presented above, but 
generally, as the complexity of the problem being addressed increased, the degree 
of accuracy of the network in addressing the problem decreased. 

In Table 6.8, the anatomy of the autoassociative network used to determine 
changes from a working baseline for sensor fault(s) is shown. The MSE error, both 
for training and testing of the network here, again, indicate a very high level of 
prediction accuracy. The amount of sensor noise that may be present is also 
determined. 

Table 6.8. Anatomy of autoassociative network and results 

Label NTRALG TTRP/TTP SIZE MSE 

(TRAINING) 

MSE (TEST) 

AUTOASSOC1 RB 2100 6-15-3-15-6 1.245E-10 1.245E-10 

6.8. Comparison of Developed Approach with 
Other Techniques

Tables 6.9 and 6.10 show a comparison between the diagnostic results from two gas 
path analysis (GPA) techniques and those of the trained networks for compressor 
and gas generator turbine faults, respectively. GPA as a tool for engine diagnostics 
was initially introduced by Urban (1972) and involves the thermo-mathematical 
matching of engine measurements (dependent variables) to performance parameter 
(independent variables) changes. This is based on the premise that faults in the gas 
path of a gas turbine cause changes in efficiencies and flow capacities which are not 
directly measurable but because a relationship exists between the measurements 
such as pressures, temperatures, speeds, etc. taken from different stations of an 
engine and the performance parameters, it is exploited to determine the magnitude 
of changes in the independent variables. Urban (1972) considered this relationship 
from a linear perspective and his work is now more commonly termed linear gas 
path analysis (LGPA). In reality, gas turbine parameter interrelationships are highly 
nonlinear, hence, Escher and Singh (1995) developed an iterative approach to the 
problem with the principles based on Urban’s formulation. This new approach is 
termed nonlinear gas path analysis (NLGPA). 

In Table 6.9, the implanted fault in the compressor component and the 
diagnostic results from three diagnostic techniques, LGPA, NLGPA and ANN, are 
compared. It should be noted that the presence of a fault is indicated by a change in 
the independent variables which would thus affect the measurements taken from the 
engine. The ANN module involved in estimating the fault in this component is 
APPROX2 (see Figure 6.9). The mean RMS errors from the three techniques show 
that the estimation accuracy depreciates from NLGPA through ANN to LGPA; in 
fact the mean error from the ANN is twice that from NLGPA. A similar conclusion 
can be drawn from Table 6.10, where APPROX2 is called to estimate compressor 
turbine fault from the ANN module in Figure 6.9. In Table 6.10, however, NLGPA 
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failed to converge on some fault scenarios. This nonconvergence is due to a 
convergence feature in the NLGPA algorithm that causes instability when it is 
perceived that a solution is not possible with the current instrumentation suite. This 
is in contrast with the ANN results, which show that the instrumentation suite is 
sufficient. In addition, the results from the GPA techniques (LGPA and NLGPA) do 
not include measurement noise, unlike those from ANN. Had noise been included 
in the NLGPA measurements, the ANN diagnostic results may have compared 
favourably with those from NLGPA, or even better since no noise filtering 
algorithm exists in the NLGPA tool. 

Table 6.9. Comparison between ANN and GPA diagnostic results for compressor 

IMPLANTED 

FAULTS

LINEAR GPA NONLINEAR GPA ANN

η
c

Γ
c

η
c

Γ
c

RMS η
c

Γ
c

RMS η
c

Γ
c

RMS

-0.5 -0.5 -0.81 -0.33 0.251 -0.50 -0.47 0.022 -0.59 -0.50 0.062 

-0.5 -1.0 -0.83 -0.86 0.253 -0.50 -1.00 0.003 -0.53 -0.94 0.045 

-0.5 -1.5 -0.92 -1.50 0.299 -0.50 -1.55 0.037 -0.55 -1.49 0.034 

-0.5 -2.0 -1.22 -1.69 0.555 -0.62 -1.53 0.340 -0.59 -2.04 0.071 

-1.0 -1.0 -1.62 -0.65 0.503 -1.00 -0.98 0.012 -1.04 -1.00 0.030 

-1.0 -2.0 -1.66 -1.72 0.506 -1.00 -2.00 0.002 -0.80 -1.83 0.189 

-1.0 -3.0 -2.07 -2.52 0.832 -1.13 -2.49 0.373 -1.01 -3.03 0.020 

-1.0 -4.0 -2.46 -3.42 1.111 -1.01 -3.97 0.025 -1.02 -4.04 0.032 

-1.5 -1.5 -2.46 -0.88 0.811 -1.50 -1.47 0.019 -1.34 -1.40 0.130 

-1.5 -3.0 -2.46 -0.88 1.647 -1.49 -3.00 0.007 -1.54 -3.04 0.042 

-1.5 -4.5 -3.13 -3.81 1.251 -1.50 -4.48 0.015 -1.35 -4.35 0.151 

-1.5 -6.0 -3.72 -5.11 1.693 -1.51 -5.99 0.006 -1.81 -6.29 0.302 

-2.0 -2.0 -3.51 -0.80 1.365 -2.00 -1.99 0.008 -1.79 -1.87 0.177 

-2.0 -4.0 -3.49 -3.09 1.236 -2.08 -3.73 0.201 -1.81 -3.85 0.170 

-2.0 -6.0 -4.19 -5.11 1.673 -2.00 -6.00 0.005 -1.93 -5.99 0.048 

-2.0 -8.0 -5.01 -6.88 2.270 -2.01 -7.99 0.012 -1.91 -7.93 0.080 

-2.5 -2.5 -4.30 -1.02 1.648 -2.50 -2.48 0.015 -2.74 -2.74 0.243 

-2.5 -5.0 -4.24 -4.07 1.393 -2.53 -4.96 0.038 -2.59 -5.10 0.097 

-2.5 -7.5 -5.28 -6.24 2.156 -2.50 -7.49 0.010 -2.62 -7.55 0.090 

-2.5 -10.0 -6.33 -8.69 2.862 -2.52 -9.99 0.014 -2.48 -9.87 0.093 

-3.0 -3.0 -5.25 -0.98 2.138 -3.01 -2.99 0.006 -2.81 -2.97 0.137 

-3.0 -6.0 -5.09 -4.85 1.690 -3.04 -5.96 0.039 -3.14 -6.05 0.107 

-3.0 -9.0 -6.37 -7.45 2.623 -3.01 -8.99 0.009 -3.08 -9.00 0.054 

-3.0 -12.0 -7.60 -10.41 3.440 -2.99 -11.99 0.006 -3.06 -12.05 0.057 

Mean Error 1.425 Mean Error 0.051 Mean Error 0.102 
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Table 6.10. Comparison between ANN and GPA diagnostic results for compressor turbine 
module

IMPLANTED 

FAULTS 

LINEAR GPA NONLINEAR GPA ANN 

η
CT

Γ
CT

η
CT

Γ
CT 

RMS η
CT

Γ
CT

RMS η
CT

Γ
CT 

RMS 

-0.5 0.5 -0.99 0.38 0.358 -0.51 0.47 0.021 -0.53 0.55 0.038 

-0.5 1.0 -1.01 0.86 0.373 -0.51 0.97 0.023 -0.53 1.13 0.098 

-0.5 1.5 -1.04 1.30 0.403 -0.51 1.44 0.041 -0.60 1.61 0.109 

-0.5 2.0 -1.06 1.75 0.434 -0.49 1.97 0.023 -0.59 1.97 0.065 

-1.0 1.0 -2.11 0.69 0.814 -1.01 1.01 0.007 -1.00 1.06 0.040 

-1.0 1.5 -2.17 1.13 0.866 -0.99 1.48 0.014 -1.06 1.59 0.075 

-1.0 2.0 -2.37 1.55 1.021 -1.00 1.99 0.008 -0.94 1.96 0.053 

-1.0 2.5 -2.58 1.95 1.184 -1.00 2.50 0.003 -0.94 2.39 0.085 

-1.5 1.5 -3.96 1.01 1.775 -1.51 1.50 0.004 -1.47 1.49 0.020 

-1.5 2.5 -4.32 1.73 2.069 -1.67 2.48 0.118 -1.50 2.45 0.033 

-1.5 3.5 -4.36 2.46 2.152 -1.52 3.48 0.023 -1.53 3.53 0.028 

-1.5 4.5 -4.65 3.16 2.421 -1.49 4.49 0.008 -1.44 4.38 0.097 

-2.0 2.0 -5.45 1.17 2.507 -2.01 2.00 0.006 -2.04 1.95 0.042 

-2.0 3.0 -5.76 1.89 2.770 -2.02 2.99 0.013 -2.00 3.06 0.041 

-2.0 4.0 -6.07 2.58 3.048 -2.01 4.00 0.006 -2.01 4.02 0.018 

-2.0 4.5 -6.22 2.91 3.190 -2.01 4.49 0.011 -1.91 4.39 0.096 

-2.5 2.5 -6.82 1.34 3.166 NC NC - -2.42 2.39 0.097 

-2.5 3.0 -7.01 1.69 3.318 NC NC - -2.43 2.95 0.061 

-2.5 3.5 -7.18 2.03 3.469 NC NC - -2.56 3.55 0.059 

-2.5 4.5 -7.79 2.69 3.951 NC NC - -2.55 4.56 0.055 

-3.0 3.0 -11.53 1.42 6.134 NC NC - -2.95 3.07 0.057 

-3.0 3.5 -12.23 1.70 6.648 NC NC - -3.04 3.63 0.095 

-3.0 4.0 -11.44 1.98 6.139 NC NC - -3.02 4.16 0.111 

-3.0 4.5 -12.37 2.21 6.822 NC NC - -2.99 4.61 0.081 

Mean Error 2.710 Mean Error 0.021 Mean Error 0.065 

6.9. Conclusion 

A hierarchical approach to gas path diagnostic for a two-shaft simple gas turbine 
involving multiple neural networks has been presented. The described methodology 
has been tested with data not used for training, and generalisation is found to be 
appropriate for actual application of this technique. In addition, the level of 
accuracy achieved by this decentralised application of ANNs shows derivable 
benefits over techniques that require just a single network to perform fault 
detection, isolation and assessment. The technique presented, combined with 
inference tools such as expert system or fuzzy logic, could be expanded to produce 
an engine health monitoring scheme since ANNs also have the ability to fuse data 
from other associated performance monitoring techniques such as vibration and oil 
analysis.

Generally, as the number of simultaneously faulty components is 
increased, the reliability of the network to accurately assess the fault decreases. One 
way of improving this reliability would be the increase of sensory information by 
considering data at different operating points, otherwise known as multiple 
operating point analysis (MOPA).  

The ANN structure described above forms a part of the diagnostic tool that 
includes other aspects involved in parameter corrections, as well as aspects that 
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provide linguistic information on the nature and type of fault, since ANNs only give 
qualitative and quantitative results without any explanation for their significance. 
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Appendix 1 

Nomenclature 
Component efficiency 
Component flow function/capacity 
Standard deviation 

n Number of measured patterns 

Abbreviations 
APPROX Function approximation network 
AUTOASSOC Autoassociative neural network 
C Compressor 
CBM Condition based maintenance 
CCP Correctly classified patterns
CF Component fault 
CLASS Pattern classification network 
CT Compressor turbine 
DCF Dual component fault 
DSF Dual sensor fault 
EHM Engine health monitoring 
F Fault
FC Fault class
GT Gas turbine 
ICP Incorrectly classified patterns 
MCF Multicomponent fault 
MSE Mean square error 
NC No convergence 
NF No fault 
NTRALG Network training algorithm 
PNN Probabilistic neural network 
PT Power turbine 
RB Resilient backpropagation network training algorithm 
RMS Root mean square 
SCF Single component fault 
SF Sensor fault 
SSF Single sensor fault
TTP Total test patterns 
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TTRP Total training patterns 

Glossary of terms 
(including jargon) 
Advanced diagnostic 
technique (ADT) 

A diagnostic approach that applies state-of-the-art tools. 

APPROX A network that is designed to provide quantitative estimates. 
Architecture A graph describing the layout of a neural network. 
Artificial neural 
network (ANN) 

A collection of mathematical models that emulates some of 
the observed properties of biological nervous systems and 
draws on the analogies of adaptive biological learning. 

Bias A fixed component of measurement error, which remains 
constant no matter how many times the measurement is 
taken. 

CLASS A network that is designed to provide qualitative results. 
Dimensionality The number of independent units contained in a given layer 

of a network. 
Epoch The presentation of a set of training (input and/or target) 

vectors to a network and the calculation of the new weights. 
Expert system (ES) A computer program that contains a knowledge base and a 

set of algorithms or rules that infer new facts from that 
knowledge and from incoming data. 

Feedforward network A form of network connectivity in which outputs go to 
following but not preceding neurons. 

Fuzzy logic (FL) A form of algebra applied in decision making with imprecise 
data. It employs a range of values between extremes of 
perfection, i.e., “true” or “false.” 

Gas path analysis 
(GPA) 

A commonly used term for performance analysis. 

Gas path faults (GPF) Faults that affect the working fluid’s flow path in a gas 
turbine. They include fouling and erosion. 

Gas path fault 
diagnostics (GPFD) 

The process of isolating and assessing faults in an engine’s 
gas path. 

Generalisation The ability of a network to produce a required output from 
an input vector, similar to its training set. 

Kalman filter (KF) An algorithm for producing best estimates of the component 
changes and sensor biases that produced an observed set of  
gas-path measurement differences from expectation. 

Noise A random component of measurement error caused by 
numerous small effects, which cause disagreements between 
repeated measurements of the same parameter.   

Pattern A vector of inputs. 
Testing The process of ascertaining the generalisation ability of a 

trained network. 
Training A procedure whereby a network is adjusted to do a 

particular job. 
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Appendix 2 – Neural Network Structures 

Figure 6.13 shows a typical probabilistic neural network (PNN) with m hidden layer 
neurons and k output classes. PNNs are simple on design, and with sufficient data 
are guaranteed to generalize well in classification tasks. When a pattern is 
introduced to the network, distances are computed between the inputs and the 
training patterns. The sum of each contribution is obtained and arranged into a 
vector of probabilities by the radial basis layer (middle layer). This vector of 
probabilities is then passed as an argument to a compete transfer function which 
allocates a one to the class of the candidate with the highest probability, because it 
has the maximum probability of being correct while other classes are allocated zero. 
A drawback, however, is that PNN networks are slower to operate in the recall 
mode because more computations are required each time they are called. 
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Figure 6.13. Probabilistic neural network 
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Figure 6.14. Two-hidden-layer feed forward network. 
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Figure 6.15. Autoassociative network. 
Figures 6.14 and 6.15 show typical supervised network architectures that 

require training before application in the recall mode for the intended purpose. 
Previous works by Ogaji and Singh (2002a) and Ogaji et al. (2002a) show that 
engine parameter estimation tasks are best handled by a two-hidden-layer network.  
Because of its speed of convergence during training, and efficiency in memory 
usage, resilient backpropagation training algorithm was used for our entire network 
training process. Also, because gas turbine parameter relationships are inherently 
nonlinear, a tangent sigmoid transfer function, which takes input in the range of 
plus and minus infinity and squashes the output to the range {-1, 1}, is used for all 
network nodes. This transfer function is differentiable and thus suitable for engine 
diagnostic purposes. 

The autoassociative network presented in Figure 6.15 has been shown to 
perform well in sensor fault detection and isolation (Guo et al., 1996; Lu et al.,
2000; Zedda and Singh, 1998; Ogaji et al., 2002b). This network has three hidden 
layers with the central layer called a bottleneck. The network requires that the 
number of neurons in the bottleneck be greater than or equal to the number of 
principal components required in constructing the output in the case of failed 
sensor(s) or noisy inputs. Also, in this kind of network, the dimensionality of the 
input and output patterns is the same, and various input sets may be required to give 
a particular output pattern. This makes it distinct from the hetero-associative 
networks, where various input patterns are mapped into various output sets, with the 
dimensionality of the input and output not necessarily being identical. 



7. Two-Stage Neural Networks Based 
Classifier System for Fault Diagnosis 

Ar nas Lipnickas 

This chapter gives a description of a two-stage classifier system for fault diagnosis 
of industrial processes. The first-stage classifier is used for fault detection and the 
second one is used for fault isolation and identification. The first stage classifier 
operates as primary fault detection unit, and it is used to distinguish between normal 
operating state and abnormal operating states. In order to reduce the number of false 
alarms, a penalizing factor is introduced in the training error cost function. The 
second-stage classifier is used to differentiate between different detectable faults. In 
order to increase the reliability of fault identification, the probabilities of 
classification performed by this classifier are averaged within the fault duration 
time. The performance of the proposed approach is validated by application to a 
valve actuator fault diagnosis problem. 

7.1. Introduction 

In today’s highly complex industrial systems, one of the main problems is the 
occurrence of faults in equipment. These faults usually have a significant 
economical impact due to loss of productivity and breakdown of the equipment. In 
extreme cases occurrence of faults may even endanger human lives. Recently, early 
fault detection has received increasing attention, as it is connected with the rising 
demand for higher performance as well as for more safety and reliability of 
industrial systems. 

The most commonly used fault diagnosis approach is based on building the 
model of the real system in order to provide estimates of certain measured signals. 
Then, the estimates of the measured signals are usually compared with the real 
measured signals, i.e., differences between real signals and their estimates are used 
to form residual signals (Figure 7.1). These residuals are eventually employed for 
fault detection and isolation (FDI) (Calado et al., 2001; Isermann, 1997; Frank and 
Ding, 1997; Chiang et al., 2001; Lipnickas and Korbicz, 2004; Angeli and 
Chatzinikolaou, 2004). The successful detection of a fault is followed by a fault 
isolation procedure whose aim is to classify the fault. The fault diagnosis 
performance is degraded if the identified model is not accurate. 

However, in many FDI problems, the information encoded by residual 
signals is sufficient for robust fault detection, but it is insufficient for fault isolation 
and identification. Therefore, pattern recognition techniques seem to be an 
alternative solution for the model-based FDI. 
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Figure 7.1. General scheme for process model-based fault detection. 

The data space with measured process signals and heuristic symptoms 
provided by experienced human operators is called features space. A diagnosis task 
consists of transforming the quantitative information from the features space into a 
qualitative statement about the cause of a given disturbance (Chen and Patton, 
1999). The assignment of the proper category to each point in the features space is 
basically one of the tasks of pattern recognition. 

Various classification techniques might be used for pattern recognition and 
classification. A wide variety of approaches have been taken towards the 
classification task. According to Raudys (2001), the number of classification 
algorithms already published exceeds two hundred. 

The artificial neural networks (NNs) are powerful tools for handling 
complex pattern recognition problems. One of the most important advantages of 
feedforward NNs is their ability to implement nonlinear transformations for 
function approximation problems, i.e., given a sufficiently large number of hidden 
nodes, any continuous function from input to output can be approximated arbitrarily 
well by an NN (Bishop, 1996; Duda et al., 2000; Narendra and Parthasarthy, 1990; 
Wang, 1992). 

Neural networks have been extensively used in many engineering domains 
and one of the application fields is fault diagnosis (see Chen and Patton (1999) for a 
list of references). According to Chen and Patton (1999) NNs are properly aimed at 
processes that are ill defined, complex, nonlinear and stochastic. Therefore, neural 
networks have many advantages and can be used in a number of ways to tackle fault 
diagnosis of nonlinear dynamic systems. 

From the theoretic point of view, data classification represents a static non-
linear mapping between inputs and outputs. Without modifications, an NN classifier 
cannot be used to represent dynamic systems. Therefore, for identification of 
dynamic systems, classifiers need to have some dynamic elements involved in the 
structure (Patton et al., 1999). The most common way of dynamics identification is 
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the use of tapped delay lines (TDL) such as the Nonlinear Auto Regressive 
(NARX) model with exogenous input (Narendra and Parthasarthy, 1990). 

This chapter describes a two-stage classifier system for fault diagnosis of 
small and medium-size FDI problems. The first classifier is trained to distinguish 
normal operating state of the analyzed process from malfunctioning states. Notice 
that this classifier performs the three main FDI tasks (Figure 7.1) for fault detection 
in the “black box” manner, i.e., identifying process model, residual generation, and 
detection of changes into residuals. However, due to neural networks’ “black box” 
characteristics, the identified model is not explicit. In the case when recognizing 
one of the process operating states normal or malfunction is more important than 
recognizing the other one, a penalizing factor in the classifier training cost function 
is proposed. To build a reliable fault detection unit, a calculation methodology for 
false alarm reduction is proposed. 

When the first-stage classifier detects a fault occurrence, then the second-
stage classifier is used to identify the type and the strength of the fault. In order to 
increase the reliability of the fault identification unit the probabilities of 
classification performed by this classifier are averaged within the fault duration 
time. 

The performance of the proposed approach is validated by applying the 
proposed methodology to a valve actuator fault diagnosis problem, i.e., the multi 
disciplinary and complementary EU Research Training Network project 
DAMADICS. The project is focused on development and application of methods 
for actuator fault diagnosis in industrial control systems. 

The chapter is organized as follows. In Section 7.2, the background on data 
classification and on the MLP classifier is given. Section 7.3 presents the 
background on the proposed two-stage classifiers FDI. The case study, 
DAMADICS benchmark, is described in Section 7.4. The experimental results are 
presented in Section 7.5. Finally, Section 7.6 presents some conclusions. 

7.2. Pattern Recognition and Data Classification 

Pattern recognition is the research area that studies the operation and design of 
systems that recognise and classify patterns in data. The classification decision in 
such systems is made on the basis of observed attributes or features, and each 
datum is assigned to one class from a set of predefined classes. In the following, a 
few basic classification techniques, i.e., statistical or Bayesian classifiers, 
classification by decision trees and neural networks are reviewed. 

Statistical approaches are generally characterised by having an explicit 
underlying probability model, which provides a probability of being in each class 
rather than simply a classification. One of the statistical approaches is building a 
classifier based on Bayes decision theory, i.e., the Bayesian classifier. Bayes' 
formula, used for classification, allows one to calculate a posteriori class 
probabilities  of input pattern x based on the a priori class c( | )jP c x j probabilities 

( )jP c  and the conditional class densities distribution ( | )jp cx :
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For the classification problem, the classification is done by choosing the 
class cj with the highest a posteriori probability .( | )jP c x

The classifiers based on Bayes’ formula, are optimal, i.e., no other 
classifiers have a lower expected classification error rate. However, in practise this 
error rate is nearly unattainable because the classifier assumes that complete 
information is known about the statistical distributions in each class. Statistical 
procedures try to supply the missing information on distribution of class 
probabilities in a variety of ways, but there are two main directions: parametric and 
nonparametric. Parametric methods make assumptions about the nature of the 
distributions (commonly it is assumed that the distributions are Gaussian), and the 
problem is reduced to estimating the parameters of the distributions (means and 
covariance matrices in the case of Gaussians). Nonparametric methods make no 
assumptions about the specific distributions involved and, therefore, they can be 
described more accurately as distribution-free. 

There are two basic approaches to nonparametric estimation for pattern 
classification: in one the class densities are estimated (and then used for 
classification), in the other one the class is chosen directly (direct estimation of the 
a posteriori probabilities). The former approach may be exemplified by Parzen 
windows, which are implemented in the probabilistic neural networks (PNNs) 
(Bishop, 1996). The latter approach may be exemplified by the k-nearest-
neighbours algorithm (Bishop, 1996; Duda et al., 2000), in which the k nearest 
prototypes are used to label an unknown pattern. If the size of the training data set 
used increases towards infinity, the nearest-neighbour classifier is almost as good as 
a Bayes classifier, and its error rate is bounded from above by twice as much as the 
Bayes error rate (Duda et al., 2000). In spite of the merits of the k-nearest-
neighbours methodology, the technique is very time consuming for large data sets 
and especially when k>1 (Duda et al., 2000; Michie et al., 1994). 

The other non-parametric technique, which is not based on the formalism 
of Bayes decision theory, is the decision tree approach. This approach can be easily 
used to classify objects characterised by continuous and/or discrete features. Such 
situations arise often in real applications. 

The decision tree classifier is particularly useful for nonmetric data where 
all of the questions can be answered in a "yes/no," "true/false" or "value from a set 
of values" style that does not require any notion of metric. The classification is 
carried out through a sequence of questions about object features, in which the next 
question asked depends on the answer to the current question. 

Such a sequence of questions can be displayed in a directed decision tree 
or simply tree, where by convention the first or root node is displayed at the top, 
connected by successive (directional) links or branches to other nodes. These are 
similarly connected until terminal or leaf nodes are reached, which have no further 
links. The growing procedure for decision trees is based on logical operations, 
which learn a task from a series of examples. 
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The simple decision tree in Figure 7.2 illustrates one benefit of trees over 
many other classifiers, i.e., interpretability. It is straightforward to render the 
information contained by such trees under the form of logical expressions built 
using logical conjunctions and disjunctions. For instance, the tree shows Apple = 
(green AND medium) OR (red AND medium) or simplified rule Apple = (medium
AND NOT yellow).

Figure 7.2. An example of decision tree for fruit classification. 

In practice, the decision tree is useful when the classification problem is 
fairly simple, the training set is small and expert knowledge might be incorporated. 

The neural network approach for classification is one of the most 
competent in terms of performance, and it is preferred over the other classification 
approaches due to its nonparametric adaptive learning and high nonlinearity. In 
general, a neural network consists of layers of interconnected nodes, each node 
producing a nonlinear function of its input. The input to a node may come from 
other nodes or directly from the input data (Figure 7.3). Also, some nodes may be 
identified with the output of the network. The complete network therefore 
represents a very complex set of interdependencies, which may incorporate any 
degree of nonlinearity, allowing any kind of function to be modelled. Given a 
sufficiently large number of hidden nodes, any continuous function from input to 
output can be approximated arbitrarily well by such a network (Duda et al., 2000). 

For this reason, the multilayer perceptron (MLP) neural networks are used 
in the study. 

Unfortunately, there are two main drawbacks in the use of neural network 
techniques: complexity adjustment and selection of neural network model. The 
input feature space and number of predefined classes define the number of inputs 
and outputs, respectively. Therefore, the total number of weights or parameters in 
the network depends on the number of nodes in the hidden layer. If too many free 
parameters (hidden nodes) are used, generalisation will be poor; conversely, if too 
few parameters are used, the training data will not be learned adequately. Usually 
neural network-based modelling involves trying multiple networks with different 
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architectures, learning techniques, and training parameters in order to achieve 
“acceptable” model accuracy. Typically, one of the trained networks is later chosen 
as “the best,” while the rest are discarded. 

7.2.1. The MLP Neural Networks Used in the Study  

The MLP neural networks are parallel-distributed information processing structures 
of processing elements interconnected via signal channels called connections. 
Figure 7.3 shows a typical MLP neural network with explicit division of processing 
elements into three layers. The type of function performed by a network depends on 
values of weights that are determined by minimising some error function and type 
of processing elements. The estimation process of network weights, which is most 
often done by using the error backpropagation algorithm (Bishop, 1996; Duda et
al., 2000), is called learning or training. 

Let ( )q
jo  denote the output signal of the jth neuron in the qth layer induced 

by presentation of an input pattern, and  is the connection weight coming from 
the ith neuron in the (q-1) layer to the jth

( )q
ijw

neuron in the qth layer. Then  
( ) ( )q q
j jo f net (2) 

1( ) ( ) ( 1)

0

qn
q q

j ij i
i

net w o q (3) 

where  stands for the activation level of the neuron,  is the number of 
neurons in the q-1 layer and f(net) is a neuron's transfer function. 

( )q
jnet 1qn

In most often applications, the sigmoid neuron's activation function is 
used: 

( ) 1 1 exp(  )f net net (4) 
where  is a slant parameter. 

When an augmented input vector 1 21, , ,..., t
nx x xx  is given in the input 

(0th) layer, the output signal of the jth neuron in the output (Hth) layer is given by 

( ) ( ) ( 1) (1)( ) ...( )H H H
j ij ki

i k t
o f w f w f w xx tm t (5) 

When the output values ( )H
njo  induced by presentation of a particular input 

pattern xn are compared with the desired output values , a mean squared output 
error cost function is formed as 

njd

2( )

1 1

1
2

QN H
o on nj nj

n n j
E E d o (6) 

where N is the number of learning samples and Q is the number of classes.  
During the network training, the actual output of the network is compared 

to the required output or target, and the error is backpropagated through the network 
such that the weighted connections between all the units are adjusted in the right 
direction. Training the network is done by minimising the error function (Eq. 6). 
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During the network testing, the weights are no longer adjusted and the 
performance of the network can be tested by presenting new data, and comparing 
the actual outputs with the desired ones. The ability of the network to produce a 
correct response to the new (unseen) data is called generalisation. The 
generalisation is poor when the network overfits (or underfits) the training data. 

The degree to which network overfits (underfits) the training data is related 
to the number of training patterns and the number of parameters in the model. In 
general, with a fixed number of training patterns, overfitting can occur when the 
model has too many parameters (too many degrees of freedom). Or, for the selected 
model of network, the number of training data is too small. Haussler (1992) has 
shown that, for nonlinear regressors, the required number of training examples 
necessary for good generalization is *log( ), where  is the total number of 
weights in the model. According to the exhaustive experiments reported in the 
literature, for the MLP network it is sufficient to have at least the 3*  training data. 

Figure 7.3. A feedforward multilayered neural network with one hidden layer, where W(1)

is the weight vector between the input and the hidden layer and W(2) is the weight vector 
between the hidden and the output layer. 

However, neural network models produce only static input-output 
mapping. In order to maintain dynamic system modelling, the tapped delay lines 
(TDL) should be introduced to the neural network model (Figure 7.4) (Calado et al.,
2001; Patton et al., 1999). Unfortunately, this kind of network has an input space 
dimensionality problem. This problem is overcome if the order of the process to be 
modelled is known and all necessary inputs/outputs are fed to the NN. Otherwise 
the input space of the network becomes very large (depending on the past history 
horizon). The essential features extraction or input features selection should be 
introduced before neural network design. The literature on features reduction is 
very rich (Bishop, 1996; Jollife, 1986; Baldi and Hornik, 1989; Teeuwsen et al.,
2002; Verikas and Bacauskiene, 2002). Only a few works are related to the 
dimensionality reduction problem for time-series data, for an example see (De Mers 
and Cottrell, 1993). The reduction of the dimensionality of neural network input 
space is an important task. It leads to better generalisation and less computational 
task.
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Figure 7.4. Process modelling using feedforward NNs and tapped delay lines (TDL). 

7.3. Proposed Approach for Fault Diagnosis

A two-stage classifier system for FDI problems is proposed. The first NN classifier 
is trained to distinguish normal operating state of the process from the 
malfunctioning state. During training, the classifier learns both the system 
behavioural model and the adaptive threshold at the same time. In the case a fault 
occurrence is detected, then and only then the second-stage unit is engaged for the 
fault identification and classification. When recognizing one operating state of the 
system is more important than recognizing the other one, the first-stage classifier is 
trained by minimizing the error cost function using an additional penalizing factor. 

The structure of the proposed approach is depicted in Figure 7.5. As shown 
in Figure 7.5 first the process measurements go to the fault detection block 
consisting of classifier (MLP_1) and fault detection calculation procedure 
(Primary-Fault-Detection and Final-Fault-Detection). In the case the plant is 
operating in normal state (NS), then classifier MLP_1 indicates the state NS. If a 
fault occurred and the plant is operating in the faulty state, MLP_1 indicates the 
occurrence of a faulty state (FS). Sequentially, the proposed procedure calculates 
the frequency of fault occurrences in predefined time window. When the number of 
fault occurrences exceeds the threshold, then the final-fault-detection signal is 
triggered and process measurements from the fault detection moment are passed to 
the second-stage classifier (MLP_2). 

The MLP_2 is trained to identify and classify system faults. To increase 
the reliability of the fault identification and isolation, the probabilities of 
classification by MLP_2 are averaged within the fault duration time. A detailed 
description of the approach is given in the following sections. 

7.3.1. Fault Detection Unit 

To train first-stage classifier MLP_1, the data is collected from process data 
operating in NS stage and in all possible malfunction stages (FS). The trained 
MLP_1 classifier is further used as the primary fault detection (PFDk) component. 
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The dashed lines in Figure 7.5 show the possible getaway from the FS to the NS in 
the fault disappearance case. Practically, every noisy process measurement in such 
fault detection system might cause false alarms. Therefore, in order to reduce the 
amount of false alarms the final-fault-detection (FFDk) system based on two sliding 
windows is introduced. The FFDk computes the occurrence of the PFDk binary 
signal within a prespecified time window. The final fault decision signal FFDk is 
produced when the number of PFDk overcomes a constant value :

1 2
1 1 1 (FS),  if  

0 (NS),  otherwise

w wT T
k i k ji j

k
PFD FFD

FFD (7) 

where k is the process time index, Tw1 is the size of the time window for the PFDk
signal,  is a constant and Tw2 is the size of the time window for FFDk. The PFDk is 
computed in such manner that it eliminates false alarms and increases the successful 
fault detection with proper values of , Tw1 and Tw2. Thus values are dependent on 
the performance of the MLP_1 and are determined experimentally with the property 
Tw1>> Tw2. The time interval Tw2 serves as a holdout of alarm and in the case of fault 
disappearance (PFDk=0 for the time period ~ Tw1), the FFDk signal will be switched 
off. 

The final fault detection rule is written as: 
if 0 then  {Fault occurred at moment }kFFD k (8) 
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Figure 7.5. Fault detection. 

An example performance of the fault detection unit is demonstrated in 
Figure 7.6. The panel depicts the PFD signal generated by MLP_1 classifier with 
the binary values “0” for the normal state (NS) and “1” for the faulty state (FS). 
Necessary values of parameters to calculate FFD were set as following: Tw1 =80 s, 
Tw2 =6 s and =8. The middle panel presents calculations of the inequality in Eq. 7; 
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the dotted line gives the calculation for the left-hand site and the  solid line for the 
right- hand side. As is seen, till the moment k=190 s the system operation was 
treated as normal state but with the increased primary fault detection occurrences 
the system state has been changed to faulty and later, after the disappearance of 
PFD occurrences, the fault detection unit has switched the system status back to 
normal state. 

Figure 7.6. Performance demonstration of fault detection unit with Tw1 =80 s, Tw2=6 s and 
=8.

The successful fault detection triggers the second-stage unit, used for fault 
isolation and classification. 

7.3.1.1. Proposed Error Cost Function 
A false alarm is an indication of a fault, when no fault has occurred. A missed 
detection is no indication of fault occurrence. For fault detection, there is an 
intrinsic trade-off between minimisation of the false alarms and missed detection 
rate. In the statistical hypothesis theory, the tight classification threshold of an 
instance would result in high false alarm and low fault misdetection rate, while 
limits which are too spread, for normal state, will result in a low false alarm and a 
high misdetection rate. Consider the case with two classes: normal state (NS) and 
faulty state (FS). Using a certain given threshold value, the statistical hypothesis 
theory might be applied to predict NS and FS states based on statistical properties 
of the collected training data (Figure 7.7). The conditional class densities 
distribution p(x|cNS) and p(x|cFS) are calculated from normal and faulty states data, 
respectively. Using Bayesian decision theory (Section 7.2) and appropriate 
threshold value the faulty state can be detected. As seen in Figure 7.7, increasing 
the threshold (shifting the threshold to the right) decreases the false alarm rate but 
the rate of misdetection is increased. This is the trade-off between false alarms and 
misdetection rate (Trunov and Polycarpou, 2000). 
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Figure 7.7. The conditional class densities distributions of two classes, normal state and 
faulty state. By moving the threshold value from left to right, the false alarm rate is 

decreased while at the same time the misdetection rate is increased. 

The nonparametric classifiers such as neural networks do not estimate 
conditional class densities distributions, but try to find appropriate classification 
hyperplanes based on the applied training error cost function. Usually, such an error 
function is equally weighted for all classes. 

Most often in practice, one operating state of the plant is more important 
than the other one due to safety requirements or due to unreliable ways of collecting 
data for one of the operating states. For these reasons, a penalizing factor might be 
introduced in the training cost function (Lipnickas et al., 2004). Then the neural 
network classifier is trained through minimisation of the classification error rate 
with a penalising factor: 

1

P
p p

p
E e (9) 

where ep is classification error of data point p and p is the penalising factor defined 
as:
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The penalising factor is equal to 1 if classification is correct, to the 
constant  for misclassified class C_1, and to “1” for misclassified C_2. When 
0< <1 then misclassification of class C_1 is less important than misclassification of 
C_2 and in the case >1 the class importance is the opposite. 

7.3.2. Fault Isolation and Identification 

The second-stage classifier (MLP_2) is trained to operate for the fault isolation and 
identification purpose. The training data used correspond only to the faults detected 
by MLP_1. The detectable faults might not be separable based on the input 
measurement; therefore some additional heuristic symptoms should be found and 
added to the original data measurements. When several different faults behave 
identically and there is no way to distinguish them then these faults must be 
grouped into the same class. Each collected datum must be labelled with class 
numbers standing for individual faults or groups of them. 
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The MLP_2 is trained to separate the labelled data by minimising 
classification error rate using the random search technique (Verikas and Gelzinis, 
2000). 

7.3.2.1. Increased Reliability of Fault Isolation and Identification 
In real application the classes of faults are usually highly overlapped and therefore 
by performing on-line fault identification the classification decision about detected 
faults most often fluctuates in time. For that reason it is preferable to use a time 
window for selection of the most frequently output class. The other way is to use 
class probability averaging within a prespecified time window. 

Wan (1990) has shown that MLP neural networks for classification are 
able to approximate the Bayes optimal discriminant function (Bayes a posteriori
probabilities) on given training data. Therefore, in order to increase the fault 
identification reliability of MLP_2 classifier, the averaged probability for every 
classified datum is computed starting with fault detection time j, FFDj. The 
computations of the averaged class probabilities are finished and they are reset to 
zero from the moment when FFDk signal goes to zero (NS state). The averaged 
class probabilities are computed according to the formula: 

_ 2( ) ( 1)
( 1)

1
i i
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c c
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P t t p t
P t
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where i is an index of considered class with class probability ._ 2
i

MLP
cp ( )

icP t  is the 

averaged class probability with the property i(0) 0,  c
icP  and ci is the class label. 

The class label c of the measured data at a time t is then determined as 
follows:

( ) arg max ( )
ici

c t P t (12) 

where ( )
icP t  is the averaged class probability and i is class index. 

7.4. Case Study: DAMADICS Benchmark

DAMADICS – Development and Application of Methods for Actuator Diagnosis in 
Industrial Control Systems – is a Research Training Network funded by the 
European Commission under Framework V. 

The studied valve actuator block can be considered as a four-input and 
two-output system, as shown in Figure 7.8. Data sampling and storage is performed 
using a 1s sampling interval. The input measurements xk at time moment k are 
defined as follows: 

x [1,2,3,4,5,6], k = (CV; P1; P2; T1; F; X) (13) 
where process variables are: CV - control value, P1 - pressure at the inlet of the 
valve, P2 - pressure at the outlet of the valve, T1 - juice temperature at the inlet of 
the valve, F - juice flow at the outlet of the valve, and X - servomotor rod 
displacement. 
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Figure 7.8. The actuator block. 

Table 7.1. Set of faults specified for benchmark. Incipient faults – I. Abrupt faults: S - 
small, M - medium, B - big 

Fault Description S M B I 

f1 Valve clogging  * * *  

f2 Valve plug or valve seat sedimentation    * * 

f7 Medium evaporation or critical flow  * * *  

f8 Twisted servomotor’s piston rod  * * *  

f10 Servomotor’s diaphragm perforation  * * *  

f11 Servomotor’s spring fault    * * 

f12 Electropneumatic transducer fault  * * *  

f13 Rod displacement sensor fault  * * * * 

f14 Pressure sensor fault  * * *  

f15 Positioner feedback fault    *  

f16 Positioner supply pressure drop  * * *  

f17 Unexpected pressure change across the valve   * * 

f18 Fully or partly opened bypass valves  * * * * 

f19 Flow rate sensor fault  * * *  

Within the DAMADICS project, the valve actuator simulator has been 
developed under MATLAB Simulink. This tool makes it possible to generate 
normal operating mode data, as well as faulty data for 19 faults. The considered 
faults are presented in Table 7.1. The faults can be considered either as abrupt or 
incipient. The asterisks denote combinations of faults and failure modes that have 
physical backgrounds and are specified for benchmark. A comprehensive 
description of DAMADICS benchmark is available at http://www.eng.hull.ac.uk/ 
research/control/damadics1.htm. 

7.5. Experimental Investigation 

In the case of flow valve diagnosis, the only information about system state is 
available from measurements generated by the sensors. In this work a 3s TDL 
sliding window (Xk=[xk, xk-1, xk-2]) of the original measurements has been used. The 
initial input vector consists of 18 measured signals. 
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Besides the original measurements, in order to increase the accuracy of 
fault isolation and identification, four additional heuristic fault symptoms derived 
from the process input data xk have been introduced. These heuristic symptoms 
have been derived through human expert observation and inspection of the 
behaviour of faulty data. 

To detect the abrupt increase of fluid temperature DT1, the value T1k=x[4],k
from the input measurements is used. This signal is used only for isolating the f7.
DT1=1 when the fluid temperature is higher than the maximum admission 
temperature Tadm:

 1,    1
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To detect the unexpected abrupt pressure change across the valve case, the 
values of upper stream pressure P1k=x[2],k and downstream pressure P2k=x[3],k are 
used. The derived signals are used only for isolating the f17: when pressure drops 
rapidly then DP2=1, 
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In the case of incipient fault f17 development the symptom DP2in will be 
set to “1”. For the incipient fault f17 detection a symptom extracted by the line 
approximation 2 2

3 ,*P P
k k kk

Py a x b  in sliding time window TwP2=50 s has been 

used. The parameters 2P
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Finally, another heuristic symptom is calculated as the derivative of Rod 
displacement and it marks the rapid changes in the measurement of Rod 
displacement. For fault isolation and identification purposes, the most informative 
is the sign of the computed derivative. This symptom is very sensitive to noise and 
therefore a detection threshold has to be used: 
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One important feature of Rod displacement spikes is that such spikes are 
never equal to 1 at the same time k, i.e., Spike_POZk=1  Spike_NEGk=1. 

The positive spike (Spike_POZ) is relevant for faults f11 and f13. This 
helps to distinguish such faults from all other faults, but the amplitude of the spike 
is very large only in the “Big” fault case. 
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The negative spike of Rod displacement (Spike_NEG) is relevant to faults 
f7, f10, and f17. Faults f7 and f17 are identified by other additional signals and  the 
Spike_NEG signal is redundant for them. The Spike_NEG signal is useful to 
distinguish “Medium” and “Big” cases for fault f10 {M,B}. 

The usage of Rod displacement derivative is related to real spikes in the 
process measurements. Therefore a 250s time interval has been selected to keep 
spike signal “ON” unchanged, hoping that this time interval will be sufficient for 
fault isolation and fault maintenance, but not too long so that to cause false fault 
identification (in the case of noise spike in the process measurement). 

The values of the constants used in the study have been found to be as 
follows: Tadm =0.75 (150˚C), Pconst=0.2 (0.8 MPa), and Xdtconst=0.5 (50% of rod 
displacement motion amplitude). It is noteworthy that these values are object and 
process dependent. 

7.5.1. Fault Detection 

The first classifier MLP_1 for fault detection is trained to classify the labelled data 
corresponding to plant operating states NS and FS. For this task, an MLP with one 
hidden intermediate layer has been trained. The training and testing data sets 
consisted respectively of 2000 samples (50%) for NS and another 2000 samples 
(50%) for FS. The FS data set consists of all faults specified within the 
DAMADICS benchmark. The MLP network structure has been chosen according to 
the author’s experience together with a trial-and-error procedure. The optimal 
number of hidden neurons with a logarithmic sigmoid transfer function has been 
found to be 15. 

The MLP_1 network has been first trained to minimise the classification 
error of the training data. With the chosen structure, the classifier was able to 
separate the operation states with 13.0% error for the training set and 14.3% for the 
testing set. The confusion matrix obtained after performing the test is shown in 
Table 7.2. The diagonal elements of the matrix represent data that has been 
correctly classified. The results in nondiagonal places show the classification errors. 
An approximately equal percentage of classification error has been obtained for 
both classes. This means that the fault detection system will cause frequent false 
alarms during normal operating state. Therefore, for the second trial the network 
has been trained with the proposed error cost function (Eq. 9). The penalising factor 

 (Eq. 10) was set to “0.75” to penalise the network performance more for the 
misclassified NS and less for the misclassified FS. 

The idea behind the penalising factor in Eqs. 9 and 10 is that recognising 
the system operation in normal state is more important than recognising its 
operation in faulty state. This is also due to the way the data points from different 
system behavioural states have been collected, i.e., some faults in DAMADICS 
benchmark are only dynamically detectable and the system response in FS state to 
the static control value is identical to the NS behaviour. 

With the same structure of MLP neural network, but introducing the 
penalising factor, the classifier MLP_1 is able to separate the two operation states 
with 14.1% error for the training set and 15.3% for the testing set. The confusion 
matrix obtained after performing the test is shown in Table 7.3. The performance of 
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fault detection is a little bit worse, but the amount of misclassification of NS is 
drastically reduced. 

Table 7.2. The confusion matrix of MLP_1 

NS FS 

NS 84.8 13.2 

FS 15.2 86.8 

Table 7.3. The confusion matrix of MLP_1 trained with the proposed error cost function 

NS FS 

NS 98.7 29.3 

FS 1.3 70.7 

The MLP_1 classifier trained with the proposed error cost function is 
further used as the primary fault detection (PFDk) unit (Figure 7.5). For the final 
fault detection (Eq. 1) the values of constants have been searched for within the 
ranges: Tw1 [50,…,150], Tw2 [4,…,10] and [4,…,10] and the values found are 
Tw1=80 s, Tw2=6 s, and  =8. The set of faults detectable by FFD is shown in Table 
7.4. Faults f8 and f14 are undetectable because the effect of the faults is at the same 
level as the uncertainty in the MLP_1 and fault f16 (“Small” and “Medium” cases) 
is only dynamically detectable. 

The increased NS recognition performance in Table 7.3 compared to Table 
7.2 is not surprising since, from Table 7.4, it is obvious that about 15% of the 
collected data from FS are undetectable. Undetectable means that the behaviour of 
the analysed process in FS state is almost equivalent to NS and therefore this data 
might be considered actually mislabelled. By forcing the classifier to minimise the 
proposed error cost function, the influence of the mislabelled data is reduced. 

7.5.2. Fault Isolation and Identification 

The purpose of this section is to investigate the possibilities of isolating the faults 
that are successfully detected, i.e., faults denoted by "D" in Table 7.4. The detected 
faults have been grouped into 20 classes according to the authors’ experience 
together with a trial-and-error procedure. Equally shaded squares in Table 7.4 mean 
that faults have similar symptoms and without additional process measurements 
cannot be properly distinguished, i.e., faults {f13S, f13M, f18S, f18M} form one 
class and the other larger class consists of the group of faults {f1S, f10S, f12S,
f12M, f12B}. The dotted squares denote classification of incipient faults. These 
faults are a special class of slowly developing faults and they can be detected only 
after fault strength signal passes a certain value. 

For fault identification task the MLP_2 network with one hidden 
intermediate layer has been trained through minimisation of classification error. The 
optimal number of hidden neurons for MLP_2 with a logarithmic sigmoid transfer 
function has been found to be 15. The data set consisted of at least 200 samples per 
class. The whole data set has been split into two equal parts for training and testing 
the classifier. 
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With the chosen structure the classifier MLP_2 was able to classify the 
occurred faults with 11.0% error for the training set and 11.3% classification error 
for the testing set. The worst fault identification is for fault f18B, approximately 
36% of data is assigned to the class with f18S and f18M. This is not a serious 
problem since classifier correctly identifies the fault type and only misses the 
identification of the fault strength. Fault f7M has been found to be in a similar 
situation: 37% of data is misidentified as smaller (f7S) or larger (f7B) strength of 
the same fault. 

7.5.3. On-Line FDI Application 

The proposed two-stage classifiers FDI has been applied to detect and identify 
faults on-line using the methodology detailed in section 7.2.1. 

It was found that the MLP_2 classifier is unable to recognise dynamically 
developing faults. This is not surprising, since the data for MLP_2 training was 
collected from the static parts of the faults. Therefore it has been proposed to 
suspend fault identification during dynamic behaviour of faults. The short time of 
dynamic fault development is observed in the cases of occurrence of faults f7, f10,
f11, f13, and f17. The fault dynamic is based on the physical processes within 
actuator valve (see DAMADICS website). For instance in the case of f7 fault, the 
temperature of the fluid is so high that during the first moments when fault occurs 
the fluid possesses physical characteristics similar to the steam. Later the 
characteristics change back to fluid characteristics. Similar behaviour is observed 
for fault f10 (pneumatic servomotor’s diaphragm perforation). The abrupt 
perforation of diaphragm causes fast changes in valve rod displacement 
(Spike_NEG). Until the moment when pressure outflow in the servomotor’s 
chamber equals the pressure flow income, the fault has the dynamic characteristics 
for about 25 seconds (Figure 7.10). 

In the case a fault is detected along with a spike occurrence (Spike_POZ or
Spike_NEG), the fault identification system is triggered only 25s after the fault 
detection moment. Such a situation is demonstrated in Figures 7.9 and 7.10. The 
real fault occurred at the time moment 100s and the FFDk reports fault occurrence 
(FS) at the moment 106s. Due to the detected spike, fault identification by MLP_2 
is forced to suspend the output by 25 s. Later MLP_2 produces outputs with stable 
and correct fault identification.

In the case a spike has not occurred, MLP_2 identifies a fault as soon as 
the fault is detected by fault detection system (FFDk). Such a situation is 
demonstrated in Figure 7.11 for incipient fault f13. The fault occurred at the time 
moment 100s, the FFDk reported the occurrence of fault (FS) at the moment 178s, 
and the correct fault identification has been obtained starting with at the moment 
420s. As may be seen from Figure 7.11, the occurred incipient fault changes its 
characteristics all the time and it is continuously misidentified till the moment fault 
reaches a specific fault kernel. It is obvious that the more time is given for the 
development of incipient fault the better fault identification is obtained. 
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Table 7.4. Results of fault detection (D - detectable, N - not detectable) for abrupt faults: 
S - small, M - medium, B - big, and I - incipient 

Fault S M B I 

f1 D D D  

f2   D D 

f7 D D D  

f8 N N N  

f10 D D D  

f11   D D 

f12 D D D

f13 D D D D 

f14 N N N  

f15   D  

f16 N N D  

f17   D D 

f18 D D D D 

f19 D D D  
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Figure 7.9. Symptoms of fault f10B and its classification. 
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Figure 7.10. Symptoms of fault f13B and its classification. 

Figure 7.11. Symptoms of incipient fault f13 and its classification. 
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7.6. Conclusions  

The proposed FDI system is based on a two-stage classification system: the first 
classifier is used for fault detection and the second one for fault identification. In 
order to reduce the number of false alarms during fault detection, the penalising 
factor is introduced in the error cost function for MLP_1 network training. Also, a 
methodology to compute the final fault occurrence is introduced. The simulation 
results have shown that a satisfactory fault detection rate is obtained. Therefore, the 
proposed technique provides an alternative approach to the model-based FDI. The 
approach in this study has been applied for on-line fault identification in order to 
examine the capabilities of the proposed technique. 

It is well known that analytical redundancy of the FDI system can ensure 
more reliable fault detection and isolation. For the proposed FDI system, it might be 
used an additional two-out-of-three voting system (Isermann et al., 2002) for 
triggering an alarm, in order to obtain a lower rate of misclassification. Also a 
committee of classifiers might be applied to ensure better fault identification 
(Lipnickas and Korbicz, 2004; Verikas and Lipnickas, 2002). 
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8. Soft Computing Models for Fault 
Diagnosis of Conductive Flow Systems 

Viorel Ariton 

This chapter focuses on the fault diagnosis of artefacts often met in industry, but not 
only, that execute various functions involving conductive flows of matter and 
energy, i.e., multifunctional conductive flow systems (MCFSs). The proposed 
MCFS abstraction is close to the human diagnostician way of conceiving entities 
and relations on physical, functional and behavioural structures. Diagnosis 
reasoning, performed by human diagnosticians, is intrinsically abductive reasoning. 
This chapter presents the abduction by plausibility and relevance in a connectionist 
approach. The case study on a hydraulic installation of a rolling mill plant gives 
examples on the knowledge elicitation process and on the diagnostic expert system 
building and running. 

8.1. Introduction 

Fault diagnosis of complex systems is often a difficult task, due to the incomplete, 
imprecise and uncertain knowledge on behaviours and interactions encountered in 
the real-life context. Diagnostic reasoning is abductive reasoning, thus it is different 
from the common (deductive) reasoning. The latter starts from causes and leads to 
effects, hence the “explanation” is based on a definite space of causes to a definite 
set of effects, while the first starts from effects to reveal causes. Hence, the 
“explanation” is based on a presumed space of causes with many-to-many links to a 
(reduced) space of effects. In real life, the diagnosis itself proceeds differently for 
similar target systems running in different contexts. On top of those difficulties, one 
may notice that computer applications for fault diagnosis face the modelling and the 
parameter identification burdens, both after a challenging knowledge elicitation 
effort on the target area. 

Consequently, fault diagnosis of complex systems often relies on human 
diagnosticians, who usually perform knowledge acquisition on faulty behaviours, 
later used to “recognize” faults from (some) instance effects. In a simple view, they 
use a mapping of faults to effects, for searching causes possibly linked to the 
instance effects, and sequentially refining the diagnostic based on knowledge in the 
area and from practice. 

The artificial intelligence community concerned with diagnosis obtains the 
mapping either by methodical experiments – exhausting the faults’ space and 
collecting the effects – or by means of some knowledge of human experts from 
practice. However, the computational models for fault diagnosis also require 
methods to reduce the many-to-many relations of the reverse mapping from effects 
to faults, which commonly are known as human diagnostician’s deep knowledge. 
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The diagnostic is then obtained: (1) using a matching procedure from actual effects 
to possible faults – as in the case-based diagnosis or in the neural/causal network-
based diagnosis, (2) using a transformed effects space regarding the difference from 
the expected and the actual behaviour labelled with faults – as in the model-based 
diagnosis, or (3) using an "intelligent" look up procedure performed through a 
combined effects space, according to human diagnostician knowledge on 
phenomena specific to the target system in normal and faulty running – as in 
knowledge-based fault diagnosis. 

Computational models of the above approaches have shortcomings at both 
phases above, most of them revealed when the target system runs in a real context: 

a) For the faults-to-effects mapping phase: cases (1) and (2) above 
involve experiments which are barely possible for (all) faults, hence 
no complete mapping is possible, while in case (3), the mapping 
involves additional structures on causal relations between faults and 
effects, coming from some explanations of phenomena taking place. 

b) For the diagnostic decision phase: in cases (1) and (2), the 
computational models are simpler but the diagnostic not entirely 
reliable, while in case (3) the backward chaining from effects to faults 
is applied in specific ways to the various running contexts. 

Knowledge handled in cases (1) and (2) is often identified as “shallow 
knowledge,” while that in case (3) is considered “deep knowledge.” In usual cases, 
target systems involve flow conduction; hence the effects propagate throughout the 
(entire) system and thus make the diagnosis much more difficult. In that case, the 
combinatorial growth of the faults-effects mapping – cases (1) or (2), and because 
the deep knowledge refers to the model of the entire system – case (3). However, 
for systems in real life, neither the complex mapping nor the (many) complex 
models are possible, and that’s why the human diagnostician’s role is crucial. It is 
worth noting that running contexts of real systems are of greatest importance, while 
identical systems may behave differently – due to age, environment, maintenance. 

The present chapter first states some considerations on the diagnosis as an 
abduction problem solving which exhibits an intrinsic connectionist nature: the 
many-to-many relations of the effects to causes may get forward (excitatory) links 
meant for activation of plausible causes, then relevant causes result from 
competition between the plausible ones. The artificial neural network (ANN) 
implementation of the connectionist model is enriched with specific architectural 
features (structures of neural sites) meant to solve all types of abduction problems 
met in the literature. 

The nodes of the connectionist model are manifestations, symptoms and 
faults. Human diagnosticians handle such concepts in a discrete and qualitative 
way. In order to obtain a sound representation of the concepts and their qualitative 
relations, the chapter develops the analysis on modelling means that lead to discrete 
knowledge pieces and their relations, as human diagnosticians handle, regarding 
normal and faulty behaviour of a target system. 

The chapter focuses on the class of conductive flow systems that perform 
more functions at a time; such systems are most encountered in technical and 
economical domains, and due to their multifunctional and flow conduction natures 
they are termed multifunctional conductive flow systems (MCFS). Sections 8.4 and 
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8.5 develop appropriate knowledge elicitation schemes, in a multi-modelling 
approach, to discriminate concepts and relations, as knowledge pieces involved in 
fault diagnosis. 

All concepts and relations take part in appropriate Computational 
Intelligence models which combine human diagnosticians’ deep and shallow 
knowledge on the target system behaviour, based on fuzzy logic and possibilistic 
modelling of incomplete and imprecise deep knowledge on manifestations, and 
based on neural network blocks for abductive problem solving of both fault 
diagnosis and next best test policy in refining the diagnostic. 

The neural networks embed the shallow knowledge as data sets from 
practice and experiments for the plausibility links between faults and 
manifestations. Deep knowledge helps finding the relevant causes (from the 
plausible ones), and it is embedded in the neural sites of the specific abduction 
problems on manifestations and faults in the target system. Also, it is embedded in 
the links between faults and their specific symptoms corresponding to the four 
“orthogonal transport anomalies” (first introduced in (Ariton, 2003)). Additionally, 
the deep knowledge on the physical structure of the target system is embedded as 
the projection structure of neural blocks, each corresponding to a Bond Graph 
junction of the flow conduction system (Ariton, 2001). 

Whilst deep and shallow knowledge are combined and embedded in the 
neural network, the training does not require exhaustive experiments on faults in the 
complex target system (which are barely possible in real life), and the diagnosis 
exploits the common view on the whole system as an interconnection of modules; 
to each module a neural network block is attached, thus easier to handle and train. 
The architectural features that embed the deep knowledge allow a better and 
comprehensive diagnostic, and also offer the opportunity to generate dedicated 
diagnosis applications for each concrete complex target system and its real-life 
running context. That opportunity is of most importance for the diagnosis task 
while two identical target systems may behave differently. While for the control 
task of a system it is natural to provide all homeostatic conditions to obtain the 
intended aim, the diagnosis task deals with the system as it is, in its real context and 
local conditions. 

8.2. Diagnostic Problem Solving by Abduction 

Abductive reasoning is a challenge for philosophy, science and practice. Abduction 
is sometimes creative while it puts effects before causes (Bylander et al., 1991; 
Schurz, 2002). Computer applications require effective computational models, 
commonly focusing on the connectionist nature of the abduction problems (Peng 
and Reggia, 1990; Ayeb et al., 1998). 

8.2.1. Abduction Problems in Diagnosis 

In the real world, fault diagnosis involves open spaces of manifestations and faults, 
while both are not completely known in real contexts. Unlike deductive reasoning , 
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which focuses a definite aim and may consider the targeted part isolated from the 
whole, abductive reasoning (e.g., in diagnosis) may not ignore causes (and effects) 
without corrupting the result (i.e., the diagnostic). For example, if the excessive 
heat of the air around a hydraulic installation is neglected, one may assert that 
abnormal running is due to a faulty component – which may be false; a similar case 
arises when ignoring the quality of the mineral oil flow. 

In fault diagnosis, the cause may represent one or more faults occurring at 
a moment, and the effects are subsequent deviations from the normal running that 
appear. A huge number of causes come from combinations of various faults and 
various external events, so the set of all possible causes is never taken into 
consideration (it is not realistic). On the other hand, some effects are observed and 
become manifestations, and some are not “visible” – due to the lack of information 
(e.g., no sensors). 

Both aspects presented in the previous paragraph are facts of the intrinsic 
knowledge incompleteness of the diagnosis, actually of abductive reasoning in 
general. So, diagnosis always deals with open spaces of causes and effects; 
moreover, it deals with imprecise and uncertain knowledge of human experts on the 
real behaviour of the target system. However, for feasibility reasons, both the space 
of causes and the space of effects should be closed spaces. In this respect, special 
classes of causes and effects should be introduced – e.g., the “normal” situation or 
“unknown” causes. 

Studies of Bylander et al. (1991) on abductive reasoning reveal four 
categories of abduction problems:  

a) independent abduction problems – no interaction exists 
between causes; 

b) monotonic abduction problems – an effect appears at 
cumulative causes; 

c) incompatibility abduction problems – pair of causes are 
mutually exclusive; 

d) cancellation abduction problems – pair of causes cancel 
some effects, otherwise explained separately by one of them. 

Ayeb et al. (1998) have a sound approach in this respect. They introduce a 
fifth category: 

e) open abduction problems – when observations consist of 
three sets: present, absent and unknown observations. 

The discrimination of the abduction problem type is specific to the 
particular behaviour of the target system and it is a matter of deep knowledge of the 
human diagnostician on causes and effects in the local context. For each type of 
abduction problem, Section 8.2.4.2 presents a suitable architectural feature, which 
may enter the neural network implementation for the abductive problem solving. 

8.2.2. Abductive Reasoning through Plausibility and 
Relevance

Direct causal links between effects and causes may represent plausibility criteria 
(Bylander et al., 1991). From the set of all plausible causes, only a subset represent 
actual causes, usually obtained through a parsimonious principle. Konolige (1992) 
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considers the minimum cardinality as a relevance criterion, and applies it to the set 
of plausible faults to obtain the diagnostic subset. 

In the presented approach the concept of relevance gets a specific 
representation, namely, it assumes some grouping of plausible causes – following 
specific points of view, then selecting the most relevant causes from a group – 
following competition or sorting/choosing procedures (Ariton and Ariton, 2000). In 
the connectionist implementations, plausibility links get direct representations as 
forward links between specific effects to specific causes As a concept, the 
“relevance” is not often discussed in the literature, so below a special attention is 
given to the subject. 

A relevance group is a set of causes that are hardly likely to occur the 
same time – e.g., the set of faults for a particular component in the target system; in 
other words, a faulty component may exhibit only a small number of faults at a time 
(usually, only one). The point of view from which causes may enter a relevance 
group is the relevance scope, and it reflects the human diagnostician’s deep 
knowledge on the faulty behaviour of the target system. The relevance criterion is 
the method used in selecting relevant cause(s). In order to perform selection, a 
quantitative quotient (e.g., “certainty” or “activation”) is provided to rank causes. 
Following the relevance criterion (usually “minimum cardinality”), the selection of 
“most relevant” causes proceeds, e.g., by competition inside the group – for the 
connectionist implementation, or by choosing the cause with greatest activation. 
Other relevance criteria may state specific order of causes or specific quantitative 
relations between activations. 

In the case of fault diagnosis, the minimum cardinality is usually applied 
as a relevance scope for the single fault diagnosis, disregarding it refers to a 
component or to the whole target system. However, the concept of relevance may 
be extended to the selected aspects met in real-life situations, i.e., to other 
“relevance features.” For example, in conductive flow systems, a group of faults 
may indicate “leakage” symptom, so they all form a relevance group; if some of 
such faults in the group are plausible, the most relevant will be the one exhibiting 
the maximum relevance feature (in that case “leakage”). 

The abduction problem solving proceeds by applying plausibility and 
relevance criteria to the sets of all effects and causes, as further described; the input 
is the set of instance effects and the output is the set of plausible and relevant causes 
– which form the diagnostic. In Sections 8.2.4 and 8.2.5, the plausibility and the 
relevance get connectionist models adequate to computational implementation. 

8.2.3. Connectionist Approach to Abduction 

Many-to-many causal relations between faults and manifestations get reversed 
when reasoning by abduction. However, no inverse exists for the complex relations 
when real problems are under concern – e.g. fault diagnosis of a real complex 
installation. In such a case, one fault evokes many manifestations and the same 
manifestation is evoked by many faults. Moreover, manifestations may enter 
conjunction grouping to one fault, whereas disjunction grouping for others. 
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8.2.3.1. Qualitative Plausibility and Quantitative Relevance  
It is worth noting two interesting characteristics of the above concepts: plausibility 
is qualitative and relevance is quantitative. So, in order to find:  

plausible causes, one should use some qualitative processing to 
select all causes complying with the observed current situation, 
e.g., asserting the faults related to the instance manifestations that 
appeared; 
relevant causes, one should use some quantitative processing to 
select only causes exhibiting a certain degree (e.g., greater than a 
given threshold value) from the set of plausible ones. 

The practical conclusions on issuing a connectionist model for abductive 
reasoning by plausibility and relevance are: 

the activation mechanisms involved in plausibility criteria should 
allow a “logical overload” of numbers toward the qualitative 
processing on causes; 
the competition mechanisms for relevance criteria should assess 
(numerical) degrees which enter the quantitative processing on 
relevance of causes. 

The logical overload is meant for affecting “quantities” (e.g., numbers) in 
order to become “qualities” (i.e., meanings) thus suited for plausibility criteria; the 
meaning is attached to each range of values, corresponding to the significance of 
that range taken from the deep knowledge of domain experts. The simplest logical 
overload attaches two complementary meanings for the two ranges of numerical 
values obtained after splitting the whole domain based on a border value (i.e., a 
threshold) with certain significance for the variable. 

That simplest logical overload is actually used in the neural network 
implementation of the plausibility: if the link strength to a fault-neuron, coming 
from a manifestation-neuron, is greater than 0.5 (the doubt threshold), then the link 
is “important” and gets that meaning. Therefore, it has to pass the gates into the 
fault-neuron, i.e., enter the input function (the stimuli sum). Otherwise, it is “not 
important” and hence the gate to the fault-neuron is blocked, i.e., the input stimulus 
does not enter the input function (actually, the input value is set to 0). Practical 
examples on how to use the logical overload in specific abduction problems in 
neural network implementation are presented in the next subsections. 

8.2.3.2. Parallel Plausibility and Sequential Relevance 
Relations between causes and effects (in this direction) correspond to the deductive 
explanations and indicate which causes determine which effects. The many-to-
many relations between effects and causes (in the reverse direction) show which 
effects may evoke which causes, but instance effects do no indicate instance causes 
(that really occurred), while no inverse of the direct relations exists. Therefore, in 
the general case, complex relations between effects and causes naturally lead to a 
connectionist model which, in an artificial neural network (ANN) implementation, 
will present excitatory links for the plausibility and competition links for relevance. 

In a general approach, abduction problem solving proceeds by multiple 
applications of the following functions (Ariton and Ariton, 2000): 
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plausibility(P_CRITERIA, EFFECTS) – which originates the 
plausibility of each element from the set of CAUSES, based on 
the set of instance EFFECTS, and according to plausibility 
criteria P_CRITERIA.
relevance(R_CRITERIA, CAUSES) – which yields the subset of 
CAUSES selected from the set of plausible ones, observing 
R_CRITERIA specific to each relevance grouping resulted from 
the relevance scopes. 

Note that entities in CAUSES and EFFECTS sets exhibit values in [0,1] 
interval. The above functions apply to each entire set of entities: first, all instance 
EFFECTS contribute to activation of plausible causes (so they attain nonzero 
values), then the entire set of CAUSES enters the relevance competition (repeatedly) 
while the less plausible causes already have near-zero values, thus eliminated. That 
assures a “classical” connectionist implementation in the ANN approach. 

P_CRITERIA refer to deep knowledge of human experts (related to known 
causal relations between effects and causes) or they refer to shallow knowledge 
after the ANN train, following data collected from experiments on causes and 
effects. Plausibility may operate in parallel on EFFECTS to activate the related. 

R_CRITERIA refer solely to deep knowledge of human experts on the 
various cases where causes show specific relations between them, specific links to 
running contexts or particular behaviours. Relevance processing is repeatedly 
(sequentially) applied, until a final definite set of causes (i.e., the diagnostic) 
achieve the highest stationary activation. In single fault diagnosis, the cardinality 
accepted for the diagnostic set is 1, in multiple fault diagnosis cardinality is greater 
than 1. How sequential diagnosis proceeds is presented in Section 8.7.3.

8.2.4. Neural Models of Plausibility for the Abduction 
Problems

In the neural network model, plausibility refers to forward (excitatory) links 
between effects and causes. A cause (e.g., fault) becomes the output neuron Fi and 
an effect (e.g., manifestation) becomes an input neuron Mj. The activation of a 
cause is the result of cumulative action effects associated to it, and it may be 
expressed by the well-known neural activation function applied to inputs Mj:

Fi = f( M
| |

1

M
ij

j
w j + i) (1)

i.e., each manifestation from the set M (with |M| the cardinality) evokes, in a 
specific measure (i.e., weight) wji, the fault Fi, if the sum becomes greater than the 
threshold i.

However, human diagnosticians often take into account a manifestation 
linked to a fault in a simple, “logical manner” (Ariton and Palade, 2004): 
manifestation Mj is “valid” (as a witness) for a fault Fi only if its activation is 
greater than a threshold, specific to the given manifestation-to-fault link. In the 
simplest way, if any two neurons M and F have activations in [0, 1] and the weight 
on their link is w, the maximum contribution of M to F is w (when M=1) and it is 
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still “valid” when M>0.5 (when M is above the doubt value) – i.e., its contribution 
is greater than w/2.

The logical overload consists in attaching certain linguistic attributes to the 
generic input I of a cause neuron, e.g., exceeding the doubt level, w/2:

if I > w/2 then I = “valid” else I = “not valid” (2) 
This way, each link’s strength is logically overloaded, and it makes 

possible the logical aggregation of effects to (evoked) causes, as required by each 
type of abduction problem. 

8.2.4.1. Neural Sites and Specific Logical Aggregation 
The ANN computational model of abduction for plausibility of the logical 
aggregation of input-effects to cause-neurons is performed by means of dedicated 
“neural sites,” as specific architectural features that may embed deep knowledge in 
the connectionist model, beside the native shallow knowledge – which is embedded 
by training. The logical aggregations envisaged are (Ariton and Palade, 2004): 

i) disjunctive aggregation, performed by the “disjunctive site” 
through the default cumulative processing (that is already the 
input function of the “classical” neuron), i.e., all m inputs 
cumulate their activation Ij:

1

m
j

j
O I (3)

ii) conjunctive aggregation, performed by the “conjunction site,” 
whose output O obeys the rule given by Eq. 4. After the logical 
overload, the inputs I1, I2 are aggregated according to the truth 
table from Figure 8.1f: 

if I1 > w /2 AND I1 2 > w2/2 then O = I1 + I2  else O = 0 (4) 
iii) negation, performed by the “negation site”. The output O is 
obtained from  input I according to Eq. 5 and the truth table in 
Figure 8.1g:  

O = w - I (5)
Note that the logical aggregation upon links’ strengths modifies only the 

input value of the cause-neuron; it does not affect the usual processing inside the 
neurons in the original neural network (i.e., input or activation neuron functions). 
So, the training and the recall procedures do not change (e.g. for perceptron or 
counterpropagation neural networks). 

8.2.4.2. Structures of Sites and Neurons for Different Abduction Problems 
Each type of abduction problem in Section 8.2.1is solved through a 

specific structure of neural sites, involving forward links from effects to causes as 
follows:
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Figure 8.1. Various abduction problems solved by neural network features using logical 
overload of the links between neurons. 

a) For independent abduction problems – excitatory links apply 
directly from the effect Mj to the corresponding cause Fi (see 
Figure 8.1a). If there also exists a conjunction grouping of 
the effects to the cause, conjunction site(s) are used at the 
input of the cause-neuron. Note that, by default, the neuron 
implements a disjunctive grouping of inputs through its input 
(sum) function (Eqs. 1 and 3).  

b) For monotonic abduction problems – the causes Fi and Fl
both evoke the same effect Mj, hence they suffer conjunction 
with one another and with the common effect through 
conjunction sites, as shown in Figure 8.1b, and expressed by 
the rule: 

(6)Fi  Fl AND Mj, Fl  F AND Mj
c) For incompatibility abduction problems – the pair Fi and Fl

of causes are mutually exclusive (i.e., they are not both active 
at the same time), both evoking the same effect Mj. Each of 
them suffers conjunction with the negation of the other cause 
and with the common effect, as shown in Figure 8.1c, and 
expressed by the rule: 

(7)Fi  NOT Fl AND Mj, Fl NOT Fi AND Mj
d) For cancellation abduction problems – the pair of causes Fi

and Fl reduce the effect Mj when both occurred, although 
each of them evokes it separately. They suffer conjunctions 
as in Figure 8.1d, according to the following rule: 

(8)Fi  Fl AND NOT Mj,   Fl Fi AND NOT Mj
e) For open abduction problems – the difficulty is dealing with 

absent effects, so the cause Fi is activated if no effect Mj
exists (Figure 8.1e), according to the rule: 
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(9)Fi  NOT Mj
Links between cause-neurons in abduction problems of types b, c, d, have 

all weights between cause-neurons equal to 1 if they are symmetric (one to 
another), else they are set according to deep knowledge of the human expert. 

Plausibility criteria are now embedded in:  
weights of the forward links between effects and causes – shallow 
knowledge;
neural sites structures attached to cause-neurons (according to 
respective abduction problem) – deep knowledge;  
thresholds set for the site’s inputs – deep knowledge.  

The training procedure embeds the shallow knowledge by strengthening 
links between effects and causes as from the training patterns. At the recall phase, 
the sites trigger the inputs of the neurons just to obtain plausible causes; so, they 
only avoid activating less plausible causes, but do not modify the values of 
activations of the plausible ones – according to instance values of the (input) effects 
appearing. Even the structure of the neural network looks different, the original 
training procedure of the (two-layer) neural network does not change (no matter the 
type of the neural network used – e.g., perceptron, counterpropagation). 

8.2.5. Neural Models of Relevance and Layered 
Modularization

The neural model of the relevance is competition. Relevance assumes a numerical 
value attached to causes, and the relevant cause(s) have the highest values that also 
exceed a given threshold. The cardinality of the relevant set of causes is 1 if 
“winner takes all” competition applies, or greater (if a relaxed competition applies). 
So, the relevant causes observe the minimum cardinality condition. 

Relevance is a sequential processing: each relevance criterion is applied 
one after another in a given order, each criterion assuming the following steps: 

i) Consider plausible causes in the current relevance group whose 
values exceed the given threshold. 
ii) Start competition between causes inside the relevance group. 
iii) Select relevant cause(s) observing the given cardinality (1 for 
single fault diagnosis). 

Both pieces of information, the order of the relevance criteria applied and 
the causes belonging to each relevance group, are a matter of the human 
diagnostician’s deep knowledge on refining the diagnostic. The numerical values 
involved in competition and the selection of causes come from the plausibility 
processing of causes based on instance effects. 

Due to the fact that plausibility activates in various degrees the causes, 
competition always proceeds on the whole relevance group of cause (not only on 
the plausible ones); less plausible have lower (or zero) values and are easily 
eliminated, so the computational procedure is applied identically. 
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8.2.5.1. Relevance Scope  
Any cause should enter a relevance group, i.e. no cause is relevant by itself 

while it is either already known or permanent. A relevance group usually consists of 
causes that share the same characteristics (Ariton and Ariton, 2000). For example, 
faults occurring at a given component form a relevance group, faults exhibiting 
“leakage” symptom at a given module form a relevance group, etc. Note that one 
cause (e.g. fault) may take part in more relevance groups, due to its properties. 

The groups of causes are actually obtained by performing some 
modularisation on the entire set of causes observing relevance criteria that fall into 
one of the following categories: 

Scope on physical structure – concerning the physical units as 
locations for causes: all the faults at the module level form a 
relevance group, and all the faults at the component level form a 
relevance group; 
Scope on functional structure – concerning the specific running 
contexts (i.e., activities or process phases) in which causes are 
“visible”: all the faults whose effects appear only when the piston 
of a hydraulic cylinder is moving form a relevance group; 
Scope on generic effects – usually concerning the same symptom: 
all faults evoking “leakage” symptom form a relevance group, 
while those evoking “clogged” symptom form another relevance 
group.

The relevance criterion is usually the minimum cardinality on plausible 
causes, meaning that causes are unlikely to appear simultaneously. It is applied at 
the various unit levels (physical or functional). Other relevance criteria are: faults
more likely to occur (due to component’s age or state – as from human 
diagnostician’s experience), faults requiring further observations (by means of 
human operator tests), etc. In such cases, to each cause is attached a numerical 
value necessary in the processing presented above. 

8.2.5.2. Layered Modularisation of Causes 
A cause may enter various relevance groups of the same set of causes, in a layered
modularisation. Each layer refers to a scope – regarding the modularisation of the 
set of causes, for each relevance scope obtaining two (or more) “relevance groups.” 
For example, some layers refer to the physical structure: one layer contains groups 
of causes associated to modules and another one to components; other layers refer 
to generic symptoms associated to faults: those producing “leakage” and those 
producing “obstruction.” For each layer a specific modularisation occurs, 
corresponding to the scope it represents. 

Suppose that the layered modularisation of causes is performed according 
to n relevance scopes, so n-times partitioning of the same set of causes is obtained. 
Each layer L of relevance induces a specific modularisation of causes and has a 
specific weight WL in the economy of the diagnosis. A layer (and its scope) may be 
more relevant than another, provided weights are normalized, i.e.: 

1
1

n L

L
W (10) 
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The relevance criteria, scopes and layers, groups and weights of layers all 
come from the deep knowledge of human diagnosticians, and they are indicated 
during knowledge elicitation time. The competition that takes place over causes in a 
relevance group, is independent of the forward plausibility processing in the neural 
network structure, no matter what ANN implementation is chosen. So, the 
relevance may be added without altering the original neural network functioning to 
an appropriate feedforward ANN architecture. 

8.2.5.3. Relevance of the Faulty Situation Against the Normal Situation 
A component is the final location in fault isolation, corresponding to the set of all 
faults as possible causes of some faulty behaviour of that component. However, the 
space of faults should be completed with the “normal” situation. The neural 
network output layer will contain F0, F1,…, Fn-1 neurons indicating faults, and the 
Fn neuron indicating the normal situation. 

The Fn cause (and neuron) is of capital importance, while the NORMAL
situation enters the relevance competition along with the FAULTY situation. So, 
before fault isolation proceeds, the fault detection attests the FAULTY situation 
against the NORMAL one. The relevance group is the set of F0, F1,… Fn causes, and 
the relevance criterion (Eq. 11) asserts the FAULTY situation:  

if then FAULTY
1

0
)1-n,1,0,i(5.0 Fnn

n

i
FiFi (11) 

In other words, if any of the activated faults has a truth value greater than 
the “doubt value,” and the relative level of the NORMAL situation is greater than all 
current (activated) faults, then the FAULTY situation is credited. 

In conclusion, the connectionist model for abduction problem solving, 
using plausibility and relevance presented in this paper, is fully functional for all 
categories of abduction problems, as well as for disjunctive and conjunctive 
groupings of effects to a cause. 

The proposed neural network model for abduction is a two-layer feed-
forward neural structure, similar to perceptron or counterpropagation, that is 
completed with neural site structures for plausibility and relevance grouping / 
competition for relevance. The presented approach is more natural and simpler than 
the unified connectionist model for abduction presented by Ayeb et al. (1998). It 
also allows various “classic” ANN implementations, if appropriate feedforward and 
competition links are provided. 

8.3. Aspects of Human Knowledge Usage in Fault 
Diagnosis

Fault diagnosis deals with concepts as fault, fault mode, manifestation, symptom or 
anomaly. The diagnostic problem solving is commonly conceived in two stages: 
Fault Detection, then Isolation of the actual faults (Palade et al., 2002; Uppal et al.,
2002; Bocaniala et al., 2004; 2005). The literature in the field defines the above 
concepts slightly different from one researcher to another, depending on the 
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approach or the actual implementation or method proposed. Diagnosis (DX) 
approaches deal with Artificial Intelligence (AI) and Cognitive Sciences concepts 
(Cordier et al., 2000) and are closer to the human diagnostician way of acting. 

In real life, fault diagnosis faces three types of inconveniences with respect 
to the faulty behaviour of a target complex system (Davis, 1993): 

Incomplete knowledge – the set of all (single or multiple) faults, 
effects and relations between them is not completely known. 
Diagnosis relies on a small set of causal relations (deductive) and 
empirical associations between faults and causes, and on a vague 
idea on how to proceed in FDI. Some manifestations are not 
known, while the human operator may supply information from 
test points, if required. When propagated effects exist, they 
increase the uncertainty on the faulty behaviour (e.g., in 
conductive flow systems (Ariton, 2001)). 
Imprecise knowledge – there is perpetually a drift in any 
measured value of a variable, the human expert having only a 
clue on abnormal ranges of values for each variable.  
Uncertain knowledge – when they have occurred, manifestations 
may not be entirely “abnormal”; that is, faults and manifestations 
occur “with some degree,” they have truth values attached. 

Aiming the computational modelling, the present approach is pragmatic: it 
considers definite meanings for the concepts above, allowing the representation of 
knowledge incompleteness, imprecision and uncertainty, assuming it comes from 
human diagnosticians’ deep and shallow knowledge on faulty behaviour of a target 
real-world system. 

8.3.1. Knowledge Pieces Involved in Diagnosis  

Human diagnosticians’ deep knowledge refers to the structure of the system under 
diagnosis and to the expected normal behaviour, while shallow knowledge refers to 
faulty behaviour at module and/or component levels. The structure of the target 
system consists of modules and components, as units conceived by designers, and 
accepted by diagnosticians to master the system’s complexity. Modules and 
components are usually conceived as functional units. In the literature, the module 
is a structure of components, but the component does not have a clear meaning. It 
may suffer further decompositions (see Section 8.6.2.1), but nevertheless a 
component is conceived as the final location for faults or manifestations.  

In the following definitions, we make use of the term piece of knowledge,
stressing that the concept defined is obtained through an appropriate processing on 
the physical reality to extract (discrete) objects and logical meanings. A cognitive 
neutral numerical value Xk gets meanings (depending on the value range or 
particular situations) that are expressed by truth values X  [0,1], where Xk k = 1 
means that the concept is certain or complete. The concept may be a state 
(expressed by a noun) or a grade (expressed by an adjective or an adverb). 
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8.3.1.1. Component  
A component is “a piece of equipment accepted by the human diagnostician as 
being sufficient for fault isolation” (Ariton and Ariton, 2000). Of course, it is a 
convention how much “detailed” a component is, while the human diagnostician 
decides what unit exhibits “pointed” causes for abnormal behaviours. After all, it is 
a matter of troubleshooting: deciding the location of the cause is the first step in 
removing the faulty unit (for further removing the disorder). How “small” (or how 
“low”) the components are is a decision of the elicitation made upon the system 
under the diagnosis, when the fault isolation granularity is established. 

8.3.1.2. Disorder  
A disorder refers to nonconformities in the actual behaviour of the target system, 
against the expected one – which is designed and considered “normal.” In order to 
obtain a feasible diagnosis system, the space of causes has to be a closed space, so it 
includes: disorders taking place at components (e.g., damages or ill tuning), flow
(e.g., bad quality), environment (e.g., abnormal surrounding conditions) and human 
operation (technological discipline). Note that environment includes all neighbour 
systems: technical systems ambient atmosphere, etc., which may affect the target 
system’s running. 

8.3.1.3. Fault 
A fault is a simple piece of knowledge regarding a physical nonconformity located 
at a component. Fault is a human concept with intrinsic discrete and logical natures: 
it has a name, usually expressed as a proposition about the disorder, and a degree of 
uncertainty – usually expressed in terms of a truth value Fl [0,1]. If Fl  0.5, then it 
is above doubt that fault Fl occurred. From the human diagnostician point of view, 
the truth value is a measure of plausibility of a fault. The set F of all “known” faults 
should be decided at the elicitation time, each for a specific disorder or for a class of 
disorders, and reflecting the open space of effects induced by the incomplete 
knowledge. Open spaces should be closed by completing with generic “disorders” 
of the kind “not known” or “undecided,” also with locations of the kind “out of 
target system limit.” The fault mode refers to a specific disorder induced by a 
certain fault in a given process phase. 

8.3.1.4. Manifestation 
A manifestation is a simple piece of knowledge attesting to an abnormal value of an 
observed variable, during a certain running context of the target system. In the 
entire set M of manifestations, some may reach the diagnosis system by sensors 
(from continuous or binary variables), and others by human operator tests on 
observed variables in the process (from human senses – as adjectives, or from test 
points – as numbers). The manifestation’s truth value Mr [0,1] indicates how 
certain is the state or a grade exhibited, and it reflects our knowledge imprecision 
and uncertainty. 

8.3.1.5. Symptom 
A symptom is a complex piece of knowledge that refers to a certain behaviour 
coming from the deep knowledge on the target system and the domain. Symptoms 
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evoke classes of faults and induce some partition S on the entire set of faults F.
Some symptoms provoke disjunctive partitions (e.g., faults in the “leakage” 
class/symptom do not belong to the “clogged” class/symptom), others provoke non-
disjunctive partitions. A fault that evokes more than one nondisjunctive symptom 
cumulates its plausibility (it is more relevant). The primary and secondary effects, 
witnessed in conduction flow systems, are symptoms: primary effect is the one 
located at the faulty component, secondary effect is the one located at the nonfaulty 
component due to propagated deviations of variables values (deviations from the 
expected “normal” values). 

8.3.1.6. Process 
Process phase is a complex piece of knowledge that refers to a certain state of the 
process, with certain duration in the functioning of the target system. From the 
human diagnostician point of view, a process phase characterizes the context in 
which the diagnosis takes place. While in the real system’s running the process 
phase is “expected” to happen, its truth value P asserts the degree to which the 
context is really known, during the current slice of time in the process evolution. 
Process phases induce partitions on the set M of all manifestations and on the set S
of all symptoms.  

All the “evaluations” made by the (automated) diagnosis system to obtain 
truth values for manifestations, symptoms, process phases, and faults evoke some 
processing performed on observed variables’ values (Calado et. al., 2001). Note that 
the human diagnostician deals with “linguistic variables” when referring to 
manifestations and symptoms. By default, knowledge pieces are discrete and 
qualitative in nature, the latter reflecting knowledge imprecision or knowledge 
incompleteness regarding the human diagnostician view on the (faulty) behaviour 
of the target system. Therefore, any processing should comply with these aspects. 

8.3.2. Observed Variables 

Let us consider now a computerized diagnosis system that deals with manifestations 
and faults with graded values of truth as described above. If the observations made 
upon the target system’s behaviour are linguistic or binary variables, they already 
have a “logical meaning” – present/absent. The observations made upon the target 
system come to the diagnosis system from the human operator (thus meaningful) or 
from sensors, as numerical values, thus cognitivly neutral. To obtain a common 
denominator, they should undergo some processing to become manifestations, so 
they undergo some "intelligent encoding" indicated by Cherkassky and Lari-Najafi 
(1992) as being crucial in diagnosis. 

The preprocessing performed by the diagnosis system on the raw acquired 
values depends on the observed variable’s type:  

a) Binary variable from digital sensor – no processing required. By 
default, such a variable has two values, attached to a logical 
meaning (e.g., present/absent, open/shut). The manifestation 
results immediately, and Mr {0,1}.

b) Continuous variable from analogical sensor/device – processing 
required. To obtain some discrete piece of knowledge 
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(manifestation with some truth value Mr [0,1]) from primary 
data, the continuous signal supplied by the sensor is sampled and 
the series of values undergoes some processing according to the 
current process phase. 

c) Discrete variable from human operator tests – no processing 
required. For example, the linguistic variable “noisy” is by default 
a logical variable with two values; thus manifestation results 
immediately: Mr {0,1}. Note that variables like “not hot,” “hot,” 
“very hot” should be reduced to more manifestations of the same 
type Mr {0,1}. 

d) Continuous variable from human operator test performed in a 
test-point – processing required. The numerical pointwise value, 
entered by the human operator, should be evaluated if normal or 
not. Abnormal situation results as a (discrete) manifestation, 
according to the current process phase (e.g., fuzzification of 
point-wise numerical values, obtaining a fuzzy attribute with a 
graded value of truth Mr [0,1]). 

So, intelligent encoding depends on the type of observed variables. The 
specific processing brings them to a uniform representation. Knowledge 
incompleteness, imprecision and uncertainty, specific to human diagnostician 
qualitative way of thinking, come from the abstractions made on the real continuous 
running of the target system (Mosterman and Biswas, 2002) and from the 
complexity of real phenomena. These aspects of human knowledge are melted into 
discrete and logical representations of manifestations, both useful in the neural 
network approach of the diagnosis, further presented in this chapter. 

8.3.3. Semiqualitative Encoding of Manifestations 

Fuzzy logic deals with associating logical meanings to numbers. It copes with the 
qualitative way of thinking of human experts, and quantities become sets, or 
intervals with imprecise edges, but specific meanings. In the present approach, a 
manifestation is a fuzzy attribute of an observed continuous variable V during the 
process phase P, i.e., it is a fuzzy subset over its universe of discourse (V), as 
shown in Figure 8.2. 

8.3.3.1. Prototype Manifestations 
The attributes refer to the qualitative subdomains related to the abnormal values 
"too low" (lo) and "too high" (hi) in the current running context. Fuzzification is 
chosen as the "intelligent encoding" meant for manifestations. In Figure 8.2, the 
subdomains between landmarks Lm(no) - Lm(lo) and Lm(no) - Lm(hi), respectively, 
refer to the qualitative subdomains of Kuipers’s approach (Kuipers, 1994) on 
quantifying values of a variable, in qualitative physics. 

Pairwise neighbour subdomains form the fuzzy attributes “too low” and 
“too high” for the generic manifestations lo and hi corresponding to the given 
variable V and the given process phase P. Note that the fuzzy attribute “normal” 
(no) refers to the range of “expected values” for the observed variable, which 
indicates a normal behaviour; it is essential for obtaining a closed space of causes. 
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The overlapped intervals of the fuzzy attributes (see Figure 8.1) reflect the 
knowledge incompleteness and imprecision of the human diagnostician, which is 
linked to the specificity of the manifestation (Turksen, 1996). 

The attributes lo or hi – as triangular membership functions in the semi-
qualitative representation – are prototype manifestation set by the human 
diagnostician at knowledge elicitation on the system under the diagnosis. 

The effective landmarks and the fuzzy subsets for generic manifestations 
lo, no, hi are provided at elicitation time. The knowledge engineer uses deep 
knowledge from the domain expert to assign qualitative landmarks for each 
observed variable from sensors. In this case, the CAKE (Computer Aided 
Knowledge Elicitation) tool is useful for the human diagnostician (see Section 8.6).

The triangular membership functions of the generic manifestations fit well 
to the semiqualitative representation usually encountered by human diagnosticians 
(Kruse et al., 1994). Due to the linear and baricentric encoding, such representation 
offers some advantages for logical processing in a human-like way, also for fuzzy 
arithmetic with ranges when assessing propagated effects (Ariton, 2003). That 
simple semiqualitative representation best captures the human diagnostician’s 
knowledge on manifestations of any kind, when the system is faulty. 

8.3.3.2. Handling Uncertainty on Instance Manifestations 
The manifestations linked to a continuous variable (type b or d from the above 
classification) actually refer to the pointwise value v that enters the diagnosis 
system during a process phase P. After fuzzification, each attribute lo, no, hi gets a 
truth value. 

The instance manifestations obtained reflect the uncertainty of the 
situation occurring when for example both truth values hi(v)>0 and no(v)>0 appear 
(see Figure 8.2) – the last one reflecting the opinion on “normal” behaviour of the 
current situation. The preprocessing block of the diagnosis system should assert, for 
any variable instance, the appearing manifestations and their extent (the truth 
value). 

8.3.3.3.  Types of Manifestations 
The set of all instance manifestations MP for a given process phase P comprises: the 
instance manifestations for all sensor-observed continuous variables MC

P (truth 
values in [0,1]), the instance manifestations for all sensor-observed binary variables 
M P

B  (truth values in {0,1}) and the instance manifestations for all human operator-
observed variables M P (truth values in {0,1}). O

Taking into consideration all variables of any kind, and for all process 
phases, will lead to the set M of all manifestations as distinct knowledge pieces. It 
comprises the set MM of manifestations obtained by permanent measurements 
through sensors mounted in the process: 

MM = { MC
P MB

P (12)   | for all process phases P } 
and the set OM of manifestations obtained by human operator observations:  

OM = { MO
P  | for all process phases P } (13) 

Hence, the set M of all discrete manifestations entering the diagnosis system 
is: 

(14) M = MM OM
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and comprises all pieces of knowledge of the kind lo, no, hi for manifestations at 
continuous variables, or present / absent for binary variables. 

Overall, the cardinality of the set of all observed variables is lower than the 
cardinality of the set of manifestations M, since the sensor-observed binary 
variables may have two “pieces of knowledge” (i.e., one manifestation of type 
“present” and, afterwards, one of type “absent”), and the human operator-observed 
variables may have three “pieces of knowledge” (i.e., two manifestations lo, hi and 
one of type no – as “absent” or “normal”). Some “absent” manifestations are quite 
important in diagnosis (see below), as they require a specific type of abduction 
problems to be solved. 

Some continuous operator-observed variables may be “measurements on 
the fly,” i.e., they are not permanently observed by sensors, but supplied 
occasionally by the human operator when required, following a best next test 
procedure (de Kleer and Kurien, 2003). In this case, the diagnosis system should 
perform the fuzzification or other processing, after the operator supplies the 
required value. This is a usual approach to finding logical meanings for 
manifestations (with truth values), and the obtained unified and discrete 
representation will be used in the connectionist implementation for diagnosis 
described in the next sections. 

8.3.4. Intelligent Encoding of Instance Manifestations 

Depending on the source of the observation, the obtained manifestation requires 
more complex or simpler processing, for example when observation comes from 
analogical sensors or from binary sensors, respectively. In the latter case, values as 
close/shut are already discrete and have a meaning – thus no processing required. 

For an observed pointwise value v the truth value results from regular 
fuzzification (Kruse et al., 1994) – e.g., in Figure 8.2 the instance manifestations hi
and no get truth value hi(v) and no(v). The representation is semiqualitative while 
it exhibits qualitative attributes (i.e., lo, no, hi) and truth (numerical) values for 
each. However, human diagnosticians judge manifestations for the activity as a 
whole, hence the instance manifestation refers to the set of values (not the pointwise 
one) acquired during the current process phase P. Thus, straight fuzzification is not 
suited to encode manifestations (Dubois and Prade, 1998). An appropriate 
processing is further used. 

8.3.4.1. Instance Domain for an Observed Variable  
The sampling and the conversion of the V variable during P time period of the P
activity produce NP binary numbers, further denominated instance domain (see the 
solid line in Figure 8.3a). A pointwise (quantified) value vi appears P

i  times in the 
instance domain. If divided by NP, it becomes the frequency of vi during P, with a 
maximum P

m at value vm: P
m = P

i
max i  .The value vm is a meaningful value but it 

does not evoke a manifestation, while it does not refer to the entire set of values, 
hence a special encoding scheme is needed, which is further presented. 
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Figure 8.2. Semiqualitative representation of generic manifestations expected at a sensor-
observed variable V.

The frequency distribution P
V for all values is the collection: 

P
V  = { P

i  | i = 0 .. NP (15)  } 
and the normalized frequency distribution (to the maximum P

m ) – see Figure 8.3a 
– is:

P
V   = { P

i / P
m | i = 0 .. NP (16)  } 

8.3.4.2. Instance Membership Function for Series of Acquired Values
Instead of a pointwise value, the diagnosis system will use the normalized 
frequency distribution P

V  to assert manifestations for the variable V over the 
process phase P, as shown below. So, the instance domain (solid line in Figure 
8.3a) may be seen as a fuzzy set in the statistical approach (as from (Kruse et al. , 
1994)), and P

V is the actual instance membership function.

Figure 8.3. Possibility measure (a) and necessity measure (b) of the instance membership 
function upon the prototype manifestations for the continuous variable V, during the activity 

P
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The instance membership function P
V  is not like the probability 

distribution pV, while pV = P
i / P

i , thus it is obvious that  pV
P
V . On the other 

hand, sampling V during the period P is not a random process, hence the approach 
is not stochastic. Frequencies do not change the proportions between the values 
after normalization, so that frequency distribution is scalable, but the probability 
distribution is not. 

8.3.4.3. Instance Manifestation 
The instance membership function of the observed variable V will reveal instance 
manifestations that appeared during the actual activity P. Manifestation is an 
attribute a {lo, no, hi}, which results from the possibility and the necessity 
measures (Ayeb et al., 1998) of the instance membership function over the partition 
in Figure 8.3a: 

PossV(a) = supv a v
p , NecV(a) =1- PossV(a) = infv a (1- v

p (17) )
Inference of the instance manifestations proceeds as follows: 

i) Calculate the membership function P
V  of the V variable’s instance 

domain. 
ii) Calculate the set   P

V of possible manifestations:
   P
V = { a | a  {lo, no, hi} and Possa( P (18) V ) > 0.5} 
iii) Calculate the set  P

V  of necessary manifestations:
 P
V = { a | a  {lo, no, hi} and Neca( P (19) V ) > 0} 

iv) Assert which instance manifestation MP
V actually occurred, 

applying:
MP

V = { a | a  P
V

  P
V  and Neca( P

V ) is maximum from all in   P (20) V } 
In the example from Figure 8.3, the possibility measures are: Posslo( P

V ) = 
0, Possno( P

V ) = 0.75, Posshi( P
V ) = 0.55 and the necessity measures are: Neclo( P

V ) =  
0,  Necno( P

V ) =  0.45,  Nechi( P
V ) =  0.25, hence the instance manifestation is no

(see Figure 8.3b). 
At elicitation time, the set of all instance manifestations M P, for a given 

activity P, comprises: instance manifestations for sensor-observed continuous 
variables MC

P P (truth values in [0,1]), binary variables MB  (truth values in {0,1}), 
and human operator-observed variables M P (truth values in {0,1}). O

8.4. Concepts and Structures on Normal Running 

Deep and shallow knowledge, embedded in the connectionist model, comes from 
concepts that human diagnosticians deal with regarding the target system. However, 
diagnosis of real complex systems is a difficult task, while it involves a huge 
number of variables and events to handle, so computer-aided diagnosis is of great 
help.

The following section presents some principles on discriminating the 
concepts and their relations for the fault diagnosis following a human-like 
diagnosis, and using connectionist models for abduction. In that endeavor, means-
end modelling approach seems best suited for the analysis and representation of 
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physical and functional structures. The approach makes use of bond graph models, 
adapted to cope with human-like qualitative view on the faulty behaviour of 
conductive flow systems, and also to the modular way of thinking when isolating 
faults.

8.4.1. Means-End Abstractions of Physical and Functional 
Structures

Real systems are multifunctional systems, while they perform many functions at the 
same time. Functions refer to tasks performed by modules and components toward 
specific utilities envisaged by the artefact. Each module performs a sequence of 
activities, and all modules perform activities in parallel – each module one activity 
at a time, during the given slice of time in the whole installation running. As a term, 
“multifunctional” is introduced in (O’Brien, 1970) on complex systems’ safety, and 
it is used in fault diagnosis in (Okuda and Miyasaka, 1991; Shibata et al., 1991). 

Most encountered systems in technical or economical domains are 
conductive flow systems (CFSs) (Cellier, 1995) – i.e., they transport matter, energy 
and information as flows passing through pipe-like paths. Through the effects 
propagation, same effects may appear at many faults, located at faulty and non-
faulty units. In such cases, the human diagnostician deals with primary and 
secondary effects, i.e., effects located at the faulty component and effects spread to 
nonfaulty components, respectively. 

Means-end modelling approach is a view on artefacts from the utility 
perspective: the ends (concrete goals of the artefact) are those structuring the means 
(functional structures) supported by physical components. In (Larsson, 1992) a 
component performs a “flow function” (and a module a network of flow functions) 
– acting upon the flow. 

8.4.1.1.  Multifunctional Systems 
A multifunctional system (MFS) under the diagnosis is the 5-tuple C, G, S, T, H :

C is the set of all physical components, each component meant as the final 
location for fault isolation, each completing certain functions; 

G is the set of functions components may accomplish;  
S is the set of ends, each end characterized by performance of a certain 

utility that the system must accomplish; 
T is the set of time durations in accomplishing (each of all) ends; 
H is the set of modules, each module hi comprising a subset Ci of 

components and accomplishing a subset Si of ends. 
An elementary end sik is achieved during (and corresponds to) an activity – 

from the Discrete Event System abstraction of the hi module’s running. A module 
may accomplish more ends. For example, a hydraulic conveyor executes four 
activities corresponding to the four ends of the actuator (the hydraulic cylinder): 
still left, move left-to-right, still right, move right-to-left, each being a function of 
the actuator component. 

The set of modules H is a disjunctive partition upon the set S of ends, each 
module accomplishing a specific subset of ends Si but only one end sik at a time. In 
the example above, the module comprises components as pipes, control valve, 
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damper, hydraulic cylinder. The ends are the “move” or “stay still” services, and the 
durations in accomplishing those ends are either specified – e.g., the expected 
duration for each movement of the piston, or derived – e.g., the stay-still duration 
(between movements). The relations between cardinalities |S|=|T| and |S|>|H| hold; 
in other words, each end has a certain duration (in normal and abnormal situations) 
and a module exhibits at least two activities (idle/active) to a certain end. 

8.4.1.2.  Multifunctional Conductive Flow Systems  
Multifunctional conductive flow system (MCFS) is the 7-tuple C,G,S,T,U,H, :

C, G, S, T are as above; 
U is the set of flow types; a certain flow type ut is processed by 

components of a module toward a specific end by means of specific functions of 
components; 

H is as above, but restricted to the subset Ci of components that act upon 
the same flow type ut . 

 is the weak upstream relation taking place between components cij, and 
between modules hi along the flow paths in the conductive flow system. 

The (matter/energy) flow conduction is ruled by specific laws that are not 
captured in the definition above but will be discussed later (see Section 8.4.2) in the 
discrimination of primary from secondary effects at faults. 

Note that upstream relations of neighbour components depend on the 
activity; for example, the “hydraulic cylinder” has an upstream relation with a 
component when the piston moves left-to-right (filling its left chamber) and 
downstream relation with the same component when the piston moves right-to-left 
(filling its right chamber). 

In the proposed approach, MCFS appears as a multiple layered structure of 
conductive flow systems, each of them handling a certain type of flow and acting 
toward some definite ends on the same set of components. For example, the 
“mineral oil flow” in the hydraulic installation of a rolling mill plant is an auxiliary 
flow beside the “long steel plate flow” meant for the (main) technological end – 
plate extrusion. 

8.4.1.3.  Means-End Abstraction on Functions 
Each component cij fulfills a certain flow function during a certain activity, upon a 
certain type of flow ut, but it may fulfill simultaneously more flow functions, each 
upon different flow types “passing” through the component. For example, a control 
valve in a hydraulic system may complete a “barrier” flow function (when blocking 
the flow for “piston stay-still” end) or a “transport” flow function (when letting 
through flow for “piston move” end); on the other side, the control valve always 
exhibits a “transport” flow function for the electric current through the control coil 
of the valve. 

Each module hi H achieves a certain end by means of the functions gij
specific to the components in the set Ci of the given module. Other aspects of the 
flow functions follow: 

a) the component cij fulfills a unique “flow function” upon a certain 
flow type, during a certain activity of the module hi (according to 
Larsson (1992)); 
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b) the end sik of a module is accomplished by the set Ci of 
components by means of the “network” of “flow functions” 
(Larsson, 1992); 

c) the module is actually a functional unit, comprising only 
components that process the same ut flow type (in the presented 
approach).

8.4.1.4. Qualitative View on Flow Functions 
The detailed flow functions (transport, barrier, distribution, etc.) in (Larsson, 1992) 
may be reduced to three qualitative functions, sufficiently relevant for the diagnosis 
task, while it is somehow simpler and more qualitative than the control task. In 
(Opdahl and Sindre, 1994) three orthogonal operational facets of real-world systems 
are proposed, as in Table 8.1. 

Table 8.1. Functional orthogonal facets of real-world systems

Concept Process Flow Store 

Activity Transformation Transportation Preservation 

Aspect Matter Location Time 

The concepts refer to physical or chemical processing (see Process), the 
space location change (see Flow) and the time location change (see Store), i.e., time 
delay.

The activities associated with the three concepts suggest three primary 
flow functions, suited to the qualitative modelling of components’ faulty 
behaviours. For each concept in Table 8.1 the corresponding primary flow function 
is:

i) flow processing function (fpf) – like chemical or physical 
transformation of the piece of flux (to a certain utility); 
ii) flow transport function (ftf) – like space location change of the 
piece of flux  (by pipes, conveyors, etc.); 
iii) flow store function (fsf) – like time delay of the piece of flux, by 
accumulation of mass or energy in some storing or inertial 
components. 

A real component achieves several primary flow functions, but solely one 
during a given activity. Note that components that directly accomplish ends of the 
target system, fulfill processing (fpf) and store (fsf) primary flow functions; most 
components fulfill transport (ftf) primary flow function. Flow function’s 
misbehaviour is easily associated with some generic anomalies that may appear at 
faults (see Section 8.5.2).

8.4.2. Bond-Graph Modelling and MCFS’s Structures 

Conductive flow modelling of real systems observes Kirchkoff’s laws, no matter 
the type of flow (matter, energy or information). Bond graphs are appropriate and 
general modelling tools for conductive flow systems, with the great advantage of 
Kirchkoff's laws applied in a modular way, and not for the whole system as in the 
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classical way (Cellier, 1995; Mosterman et al., 1995). Moreover, bond-graph 
modelling offers general concepts useful for behavioural abstractions of the flow 
functions for every type of flow (see below). 

8.4.2.1. Modularisation by Bond Graph Junctions in the Target MCFS  
Bond graph modelling deals with flow power variables: the intensive (pressure like) 
and the extensive (flow-rate like) variables, called effort (e) and flow (f),
respectively (Cellier, 1995). 
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Figure 8.4. The bond graph 0-junction (a), and 1-junction (b). 

Components, along flow paths in CFS, form bond graph junctions: 
type 1 junction – that corresponds to a loop of interconnected 
components, 
type 0 junction – that corresponds to a node of interconnected 
components.  

Each junction’s common variables are: effort in 0-junction and flow in 1-
junction; the noncommon power variable is specific to each component and all 
enter a sum (e.g., the flow in the 0-junction), as in Figure 8.4a,b. 

In the present approach, the 1-junction corresponds to a given activity of a 
module, i.e., the 1-junction is the bond graph model of the activity, so it may play 
the role of the “module” – in the multifunctional abstraction (Ariton, 2003). The 1-
junction is already a network of flow functions – complying with the means-end 
point of view. 

The conclusions above are useful in knowledge elicitation of modules, 
during MCFS hierarchical decomposition. In this view, the 0-junction is the 
interconnection of modules, and the structure of the whole target system is made of 
0-junctions. 

8.4.2.2.  Primary Flow Functions and Bond-Graph Components  
The large generalization specific to the bond graph approach is synthetically 
illustrated in the tetrahedron of state in Figure 8.5 (Cellier, 1995). Variables on flow 
conduction may have specific meanings to specific domains: the effort e may 
correspond to force (in mechanics), to voltage (in electricity), to pressure (in 
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hydraulics), flow f may correspond to velocity, to current, to volume flow rate (in 
the respective domains). Other general concepts in bond graph modelling approach 
are: the generalized momentum p (momentum in mechanics, flux in electricity, 
etc.), and the generalized displacement q (distance, charge, etc.). 

The presented approach extensively uses the concepts of bond graph 
components:

power flow components: Resistance R, Capacitance C, Inductance 
I, corresponding to dissipative, storage and inertial elements, 
respectively;
power transfer components: transformer TR (effort-effort and 
flow-flow ratios) and gyrator GY (effort-flow and flow-effort 
ratios).

Figure 8.5. The tetrahedron of state and the bond graph components R, C, I.

Components of MCFSs have projections on bond-graph and means-end 
perspectives:

R component corresponds to transport function (ftf);
C and I components correspond to storing function (fsf);
TR and GY components correspond to processing function (fpf).

This result is useful in the faulty behaviour modelling (see Sections 8.5.1
and 8.5.2) and in the hierarchical decomposition of the target system toward 
components (see Section 8.6.2.1).

8.4.2.3. Upstream Relations between Modules and Components 
The bonds (half-arrows in Figure 8.4) indicate the flow but do not refer to the 
upstream/downstream relations between components. Those relations are important 
in locating the effects along flow paths (see Section 8.5.3.3).

In Figure 8.4 the indices j 1 n show the components’ upstream order 
between components ci1, ci2, ci3 hi (belonging to the same module) and direct 
neighbours (which input / output ports are directly coupled). Neighbour modules 
also exhibit upstream relations. 

The upstream relation is strong (<<) at 1-junction: ci1<< c << ci2 i3 when the 
order of two neighbours is strict, while they are output-input coupled and the flow 
strictly gets out from one component and gets in the neighbour one. 
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The upstream relation is weak ( ) at 0-junction: ci1 ci2 ci3 when two 
neighbour components’ ports are input-input or output-output coupled, so for both 
neighbour components the flow either gets out or gets in the coupled ports. 

The two bonds of indices 0 and n+1of the 1-junction indicate effort at the 
input and at the output of the series of components, and actually represent links to 
the upstream and downstream 0-junctions, respectively. 

8.5. Concepts and Structures on Faulty Running 

Elicitation defines knowledge pieces (some of them discriminated above) but also 
prepares corresponding data for further processing. The chapter introduces 
knowledge pieces related to faulty behaviour and their representation for the 
computational model. 

8.5.1. Generic Faulty Behaviour of CFS’s Components  

Following the above approach, the faulty behaviour of components of the target CFSs 
is conceived as human-like symptoms attached to various faults of the real 
components:  

Faults in R component affect the transport function (ftf);
manifestations refer to R parameter changes, and the symptoms 
refer to propagation of power deviations along the paths in the 
system (discussed in Section 8.5.2.2).
Faults in C and I components affect the storing function (fsf);
manifestations refer to changes in time delays in the process 
running. 
Faults in TR and GY components affect the processing function (fpf);
manifestations and symptoms are specific to each end of flow 
processing.

Faults may occur at any components but only R components are involved 
in power propagation along the system. Consequently, deviations of the power 
variables e and f propagate from the faulty component to other components, where 
they indirectly affect specific parameters – for example the delay for C and I, or the 
transferred effort and flow for TR and GY.

An important conclusion is drawn from the statements above: the 
anomalies of R bond-graph components are primary effects, and they provoke 
secondary effects by means of flow power variables deviations propagated 
throughout the flow path in the target CFS. Another important conclusion, from the 
point of view of diagnosis, is that the discrimination of primary effects from 
secondary effects leads to fault isolation. 

The TR and GY components correspond to actuators in the target system, 
and they decouple flows or modules. Hence, the two components are, usually, the 
final components in the network of flow functions, i.e., they are components at the 
border between two modules. For example, the carrier of a conveyor is not part of 
the module, while the hydraulic cylinder is a transformer from the effort of the 
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mineral oil towards displacement (of the carrier). Actually, the carrier and its load 
are part of another module, decoupled by the hydraulic cylinder (as a transformer). 
So, the b) item from the Section 8.4.1.3 is observed. 

8.5.2. Anomalies Related to Primary Flow Functions  

Anomaly is a piece of knowledge indicating a class of abnormal behaviours; it is 
another word for symptom, which is used in the present approach to restrict the 
meaning of the symptom to a deviation from the expected behaviour of one of the 
three primary flow functions defined above. The anomaly is located at the faulty 
unit, i.e., it is a “primary effect.” This way, the fault isolation procedure benefits 
from some additional information useful when the location of the fault is of 
concern. 

8.5.2.1. Anomalies and Primary Flow Functions 
Flow process anomaly, flow store anomaly and flow transport anomaly are 
disorders of respective flow functions, located at the faulty component or module:  

a) Process anomaly (AnoP) appears at the actuator components 
– bond-graph gyrator GY or transformer TR components. 
Process anomalies refer to abnormal values of performance 
parameters of the end envisaged. 

b) Store anomaly (AnoS) appears at storage or inertial 
components – bond-graph capacitance C and inductance I
components. The store anomaly refers to abnormal values of 
the time delay appearing at faults in storage or inertial 
elements. 

c) Transport anomaly (AnoT) appears at dissipative component, 
in the bond-graph view resistance R components. In fault 
diagnosis literature and practice “leakage” or “clogged pipe” 
are usual terms for such anomalies. 

8.5.2.2.  Transport Anomalies 
Ariton (2003) introduces four orthogonal transport anomalies that completely cover 
the faulty behaviour of a component involved in the flow transport, namely: 

d) Obstruction (Ob) – consists in change (increase) of the 
transport R parameter of a component, without flow path 
modification (e.g., clogged pipe). 

e) Tunnelling (Tu) – consists in change (decrease) of the 
transport R parameter of a component, without flow path 
modification (e.g., broken-through pipe). 

f) Leakage (Le) – consists in structure changing (output flow 
too low) of a flow transport component, involving flow path 
modification. 

g) Infiltration (In) – consists in structure changing (output flow 
too high) of a flow transport component, involving flow path 
modification. 
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Transport anomalies are orthogonal (see Figure 8.6): inside the pair and 
between pairs. In Figure 8.6 the axes’ names indicate the “main” power flow 
variable for the pair, the one mainly involved in the effect at the respective pair of 
transport anomalies. Note that the effort for Ob/Tu pair is meant at the input, and 
the flow for In/Le pair is meant at the output of the given flow transport unit 
(component or module), so the signs depicted in Figure 8.6 are specific to those 
situations.
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Figure 8.6. Orthogonal transport anomalies. 

Solely, one transport anomaly may appear at a time vis-à-vis a faulty 
component. 

The four transport anomalies are effective concepts in the qualitative 
modelling of faulty behaviour and in effects propagation. As later shown, transport 
anomalies are of seminal importance in the discrimination of primary effects from 
secondary ones, in detection and isolation of faults. 

Various components in real systems are involved in flow transport, i.e., 
they act as R bond-graph components and may exhibit transport anomalies at faults. 

The transport anomalies Ob/Tu are symptoms similar to events as “clogged 
paths” or broken-through paths, and In/Le are symptoms similar to flow exchange 
with the environment. The first pair observes the (expected) flow balance equations, 
while the second does not. Transport anomalies play a central role in fault detection, 
while they have the meaning of “primary effects” – i.e., effects located at the faulty 
component (or module). Asserting a transport anomaly means detecting a fault and 
also isolating the fault – while the transport anomaly location is asserted. 

Process anomalies AnoP and store anomalies AnoS may appear as 
secondary effects when induced by the flow power deviations propagated through 
components with flow transport functions, along the flow paths, while the 
deviations appeared at the location of a transport anomaly AnoT  that occurred as a 
primary effect.
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8.5.3. Qualitative Deviations Induced by Transport 
Anomalies

The following study focuses on deviations of the effort e and the flow f of bond-
graph power variables at faulty and nonfaulty bond-graph R type components. 

8.5.3.1.  Qualitative Behaviour of R Components 
The qualitative relation between the power variables for a nonfaulty component is e
= M+ f, according to the general qualitative Ohm's law (Struss, 1997). The flow 
variables’ deviations from expected values at the input port comply: 

e = M+ (21) f
where M+ is a class of increasing monotonic functions (according to qualitative 
physics and notations from (Kuipers, 1994)). e and f refer to power variable 
finite deviations (due to some external causes of the nonfaulty component. The 
qualitative relation Eq. 21 also holds for the flow variables at the output port (note 
that no concern exists in the extent of the relation). 

8.5.3.2. Power Deviations at Faulty and Non-faulty R Components 
As presented in Section 8.5.2.2, the faulty flow transport components induce one of 
the four orthogonal symptoms (transport anomalies) shown in Table 8.2. 

The deviations of effort and flow variables from the expected (normal) 
values are specific to R bond-graph component for the given transport anomaly 
(Ob/Tu, In/Le). The deviations’ signs (i.e., the qualitative values) simply result from 
the affected parameters of R and of the main variable in the context of the transport 
anomaly. 

Table 8.2. Flow power variables’ deviations at input and output ports of R bond-graph 
components for each transport anomaly occurrence 

Transport 

anomaly  

 “Main” 

variable 

deviation for the 

anomaly class 

Effort deviation 

at the input 

(output) ports 

Flow deviation 

at the input 

(output) ports 

Qualitative 

effort-flow 

relations 

Obstruction 

(Ob)
e
in-out

> 0 

∆e
(in)

> 0

(∆e
(out)

< 0) 

∆f
(in)

< 0   

(∆f
(out)

< 0) 

M
−

(M
+

 ) 

Tunneling  

(Tu)
e
in-out

< 0 

∆e
(in)

< 0

(∆e
(out)

> 0) 

∆f
(in)

> 0   

(∆f
(out)

> 0) 

M
−

(M
+

 ) 

Infiltration  

(In)
f
out

> 0 

∆e
(in)

> 0

(∆e
(out)

> 0) 

∆f
(in)

< 0   

(∆f
(out)

> 0) 

M
−

(M
+

 ) 

Leakage  

(Le)
f
out

< 0 

∆e
(in)

< 0

(∆e
(out)

< 0) 

∆f
(in)

> 0   

(∆f
(out)

< 0) 

M
−

(M
+

 ) 

As shown in the last column of Table 8.2, the qualitative relation between 
the deviations of flow variables at the input port is: 

e = M (22) f
where M  is a class of negative monotonic (decreasing) functions. It seems that the 
relation does not comply with the general Ohm’s law; note that Eq. 22 refers to 
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deviations from expected values, so it is not the Ohm’s law in question but 
variables’ deviations.  

Equations 21 and 22 are the basis of the qualitative modelling for the 
effects’ propagation along the flow paths in the conductive flow system. 

8.5.3.3. Signatures of Qualitative Deviations at Flow Transport Anomalies 
The transport flow function reflected by R bond-graph generic component is 
involved in the propagation of flow power and also in propagation of the deviations 
of the flow power variables when faults occur. The propagated flow power 
deviation reaches a neighbour nonfaulty component involved in the flow transport, 
and affects the effort (at input port) and the flow (at output port) values depending 
on the bond-graph junction they share.  

Table 8.3 presents the signatures of manifestations for the effort and flow 
variables corresponding to each transport anomaly and to each type of bond-graph 
junction. The signatures are patterns expressed in terms of qualitative deviations (lo
– “too low” and hi – “too high”) for the flow variables at a nonfaulty component 
sharing the same bond-graph junction with the faulty one. Note that both (faulty and 
nonfaulty) components are flow transport (R bond-graph) components; hence they 
are both involved in the flow power deviation’s propagation (from the AnoT
“cause” location). 

Table 8.3. Signatures of the transport anomalies as effort-flow manifestations at the 
input-output ports (respectively), in each type of bond-graph junction 

1-junction

shadowed item is AnoT

(the faulty component) 

0-junction 

fault downstream 

(of Kirchkoff’s 

node)

0-junction 

fault upstream  

(of Kirchkoff’s 

node) 

Transport 

anomaly 

(AnoT)

1 >> 2 3 << 2 1 >> 2 4 ≥≥ 2 2 << 1 3 ≤≤  1

Obstruction (Ob) hi-lo lo-lo hi-hi hi-lo lo-hi lo-lo

Tunneling (Tu) lo-hi hi-hi lo-lo lo-hi hi-lo hi-hi

Infiltration (In) hi-lo hi-hi hi-lo hi-lo hi-lo hi-hi

Leakage (Le) lo-hi lo-lo lo-lo lo-lo hi-hi lo-lo

≥≥

>>

3

1 2

4

>>

3

≤≤
1 2

4

 1>>2>>3

If the flow power deviation reaches the location of GY/TR bond-graph 
(actuator) component, or of C/I (store/inertial) bond-graph component, a secondary 
effect appears, expressed by the AnoP or AnoS anomalies. Those effects actually 
reflect the AnoT anomaly propagated as power flow deviations along the flow paths 
throughout the target system. 

Manifestations at nonfaulty components are expressed in terms of 
qualitative deviation of the effort – at the input port, and of the flow – at the output 
port, in pairs (hi-lo, lo-lo, etc.), and they result from the qualitative relations of the 
flow power variables at faulty (Eq. 22) and nonfaulty (Eq. 21) components (Ariton, 



Computational Intelligence in Fault Diagnosis   261 

2003), in the corresponding behaviour contexts (the triplet: junction type, upstream 
relation, transport anomaly). 

The signatures with manifestations at the components upstream/ 
downstream from the faulty one are specific to the transport anomaly (AnoT) and 
the junction type; the only exceptions are Tunnelling and Infiltration in 0-junction 
(column 3 of the Table 8.3), which cases should be decided based on relations in 
neighbour 1-junction(s). Note that weak relations (  / ) are equivalent for the 
meant study of qualitative signatures. 

8.6. Knowledge Elicitation and the CAKE Tool 

Diagnosis performed by human experts involves deep knowledge and shallow 
knowledge on a real target system comprising many modules and components, 
many activities, many faults, manifestations and symptoms. 

It is difficult to manage the huge amount of information if no adequate 
instrument exists, i.e., a Computer Aided Knowledge Elicitation (CAKE) tool. Such 
a tool assists the human diagnostician in the knowledge acquisition phase and in 
managing the information on the concrete target system. Therefore, the knowledge 
acquisition is performed more easily and the computational model is easily adapted 
to specific situations on the place. The CAKE (software) tool takes the place of the 
knowledge engineer, who is the essential human expert in the design phase of a 
dedicated diagnosis system. So, human diagnosticians and human operators do not 
need a knowledge engineer to build their own diagnosis system (for the target 
system) but they simply put all the information into it guided by the software tool. 

8.6.1. Elicited Concepts with the Aim of Fault Diagnosis 

The concepts’ representation involves a combination of models presented above 
and concisely noted below, along with their role and use: 

a) Means-end modelling of hierarchical structures for the multifunctional 
aspect:

i. role – identifies deep knowledge on physical and functional 
structures (components and simplified functions, modules 
and ends); 

ii. use – define behavioural patterns at faults based on proposed 
primary flow functions. 

b) Discrete event modelling of the running context for the 
multifunctional aspect:  

i. role – identifies deep knowledge on activities toward ends of  
modules; 

ii. use – determines current activity of a module and its time 
limits.

c) Bond-graph modelling of components for the flow conduction aspect: 
i. role – identifies deep knowledge on flow conduction as 

bond-graph junctions and components; 
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ii. use –  associates functions to bond-graph components and 
generic anomalies observing effects propagation. 

d) Qualitative modelling of concepts and relations for the faulty 
behaviour: 

i. role – describes deep knowledge on faulty behaviour: faults 
(at component level), symptoms (as generic anomalies), 
observations and manifestations (with prototype and instance 
attributes);

ii. use – detects faults (by instance manifestations and 
symptoms) and hierarchically isolate faults (at module and 
then component levels) by recognizing cause-effects as from 
deep and shallow knowledge of human diagnosticians.  

The models follow the human expert’s common view on diagnosis: items a 
and b cover the discrete view on the structure and the behaviour in normal 
situations, while item d covers the discrete view on the behaviour in faulty 
situations. Item c. covers the continuous view on fault effects propagation by flow 
conduction. The paper proposes a qualitative view on faulty behaviour of 
components and a procedure to assert primary effects from the propagated 
(secondary) effects. 

The data on real running of the target system have a close representation to 
the human diagnostician’s view, through: 

e) Fuzzy logic – for the “intelligent encoding” of observations to 
manifestations: 

i. role – encodes “prototype manifestations” as 
meaningful intervals according to the deep 
knowledge of human diagnostician; 

ii. use – obtains “instance manifestations” from the 
actual values collected from sensors during 
installation running. 

The diagnosis follows modular and incremental procedures, carried out by: 
f) Inference engine – for fault detection and sequential diagnostic 

refinement: 
i. role – detects abnormal behaviour (symptoms) and 

sequentially performs diagnosis for temporal sliding 
windows and for newly observed variables; 

ii. use – locates a transport anomaly at module level, 
then starts the neural network recognition process 
for further fault isolation. 

g) Artificial Neural Networks – for recognition of the faults:  
i. role – embeds shallow knowledge from practice and 

experiments as links between manifestations and 
symptoms to faults; 

ii. use – isolates faults by recognizing patterns of 
manifestations and anomalies.  

The diagnostic is obtained by recognizing patterns of manifestations and 
symptoms associated with faults. Items e to g are computational models that 
emulate the human diagnostician’s way of acting, and directly embed human 
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concepts in their native form. The diagnosis proceeds incrementally, following the 
sequence of activities of the modules during the target system’s running and adding 
new observation meant to refine the diagnostic. 

The knowledge pieces for diagnosis involve a large amount of data that 
should enter the diagnosis expert system (Patton et al., 2000). Each concept 
addresses a set of specific information: 

module – name, ends, activities, specific set of components, up-
stream relations to neighbour modules, junctions and signatures 
for each  transport anomaly identification, nonspecific 
observations  (e.g., mud); 
activities – code, next activity, time limits; 
component – name, primary flow function and bond-graph 
component for each activity of the host module, set of specific 
faults, component and module located manifestations; 
fault – name, (deep knowledge) links from manifestations and 
anomalies of the flow function in the host component, abductive 
relations to causes from the target system or environment, 
(shallow knowledge) links from other manifestations in the host 
module; 
manifestation – name, source type (sensor or human operator 
observations), prototype attributes and ranges of values (specific 
to the activity of the host module), abductive relations to causes; 
anomaly – type (AnoP, AnoS, AnoT), host component or module, 
end parameters values for abnormal behaviour, etc. 

Knowledge elicitation will provide data for building the structures of ANN 
blocks (e.g., data on layers of neurons for manifestations and faults, for the 
abductive links between them, for training with patterns). Knowledge elicitation 
provides data for the inference engine of the diagnosis expert system: the series of 
activities for each module, order of 0-junction for which signatures of neighbour 
modules identify the transport anomaly, etc. 

The knowledge pieces enter the Knowledge Base for consistency checking 
and for storing concrete data in the appropriate representation. After elicitation, the 
training of ANN blocks follows, then the diagnosis expert may be generated as a 
dedicated software for the given target MCFS. 

All knowledge pieces, presented in previous sections, are specific 
knowledge structures that the CAKE tool deals with. The structures refer, for 
example, to the physical and functional units of the target system, to the systems 
interconnected with the targeted one, to all situations that may disturb or originate 
faulty situations. 

The feasibility condition, meant for the computational model of the fault 
diagnosis system, is to assure closed spaces for causes and effects. Abnormal 
behaviours are not only caused by faults at components but also by any other 
abnormal situation inside the target system or coming from outside. To cope with 
such cases, the concept of disorder is introduced. Disorder refers to any cause that 
will induce an abnormal situation: human operator mishandling (e.g., ill tuning, 
infringement of technological rules, etc.), ill state of matter or energy flows (e.g., 
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the quality), abnormal conditions in the environment (e.g., too hot or too cold), and 
negative influences from the neighbour systems. 

Fault diagnosis deals with various aspects of the target system, each of 
them identified as a subsystem: 

a) Physical Subsystem – refers to all physical units (e.g., modules and 
components) and hierarchical structures (e.g., the whole installation 
and the modules) as means for achieving the ends of the system. 
Regarding the diagnosis, they represent the locations for faults. 

b) Functional Subsystem – refers to all functional units (primary flow 
functions) and hierarchical structures (process phases and activities), 
which actually achieve the ends of the system. Regarding the 
diagnosis, they represent locations for the behavioural aspects of the 
target system. 

c) Behavioural Subsystem – refers to all concepts related to the abnormal 
running of the target system: observations, manifestations, symptoms 
and faults, along with their links. 

d) Operational Subsystem – refers to the human operator actions that 
may provoke an abnormal situation. 

e) Flow Subsystem(s) – all types of matter or energy flow that may 
induce abnormal situations (e.g., the “foaming oil” in a hydraulic 
installation).

f) Environment – refers to all systems out of the diagnosis contour (i.e. 
the target system): the ambient atmosphere, the mounting conditions, 
and the neighbour systems. 

All knowledge pieces become entities related to each other that should be 
indicated by the knowledge engineer and should enter the computational model for 
fault diagnosis, as further presented. The structures of knowledge pieces are further 
presented in the entity-relationship diagrams that follow. 

8.6.2. Elicitation Aspects on Normative and Faulty Models  

The normative model consists of physical and functional structures that support the 
ends’ achievement. They comprise entities specific to their corresponding 
subsystems, presented in the previous sections. 

The diagrams in Figures 8.7 and 8.8 are UML representations of entities 
relations elicited for the corresponding subsystems. Having in mind fault diagnosis, 
in each diagram will appear the two entities Disorder and Fault – the last inheriting 
the first one. The dashed ellipses indicate borders of the other subsystems. 

8.6.2.1. The Physical Subsystem  
The entities involved in the Physical Subsystem are Component (the entire set C),
Module (the entire set M), and Installation; all of them are locations of 
faults. However, there are disorders that may produce similar effects as faults, 
which are located in other systems (Flow, Operational or Neighbour systems).  

The discrimination of the physical units proceeds from the means-end 
view (as MFS) and from the bond-graph view (as CFS), following the hierarchy of 
physical/functional units. For each flow type ut, the knowledge engineer should 
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assert the end of the modules, then the primary flow functions of the comprised 
components along with the associated bond-graph generic component. So, 

Modules – result from ends (and activities) accomplished towards 
products / services achieved, and correspond to bond-graph 1-
junctions.
Components – result from primary flow functions completed in 
each activity, and correspond to certain bond-graph components. 

Fault isolation granularity is the extent of the decomposition of the 
physical structures into components, hence the cardinality of C. The fault isolation 
granularity reflects human diagnostician’s troubleshooting pragmatism regarding 
the sufficient location of disorders for their removal; it also reflects the 
incompleteness of human knowledge on physical structures and on the 
environment. Usually, a component may exhibit more faults, so C induces a 
disjunctive partitioning over F.

The discrimination of physical components – sufficient for fault isolation – 
follows the hierarchical structure of the target system, and proceeds to a combined 
decomposition observing the physical and the functional structures: 

i. from the entire Installation – which is also the whole 
Process,

ii. decomposition proceeds to Modules – each referring to a 
Subprocess with two or more Activities,

iii. then each Activity is decomposed in primary Flow Functions
– each being attached to a Component.

The relations between entities – with the corresponding multiplicity 
attached to each relation – are illustrated in Figure 8.7 and they represent: 

Association «loc» (located to) directs to the location of the 
Disorder;
Dependency «evo» (evokes) directs to the anomaly evoked by 
the Disorder;
Inheritance Fault from Disorder;
Composition of Component to Module, and to 
Installation.

The physical units (in the physical structures) present hierarchical relations 
and also upstream  (strong) and  (weak) relations, depending on the bond-
graph junction the physical units enter. Upstream and downstream relations appear 
in the diagrams representing the bond-graph junctions of the target system, for each 
combination of activities of the participating modules, and for the components 
inside the module. While specific, those diagrams are not shown here. 

8.6.2.2. The Functional Subsystem 
The functional structure is also a hierarchical structure: activities (of each module) 
comprise flow functions (of each component) and each flow function is linked to a 
specific faulty behaviour. All knowledge on physical and functional structures is 
deep knowledge, while it comes from human experts’ acquaintance with the domain 
and with the design issues of the target MCFS. 
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Figure 8.7. The UML diagram for entities and relations of the Physical Subsystem. 

The entities of the Functional Subsystem are: Process and 
Subprocess (as general concepts related to the running of the whole 
Installation and of each Module). Activity is defined in Section 8.4.1.1,
and – from the means-end point of view – corresponds to the network of flow 
functions for the components that leads to a certain (processing) end of the module. 
The Process phase is the current set of activities existing at a moment during 
the whole installation running. The Operational Mode indicates a state of the 
Component that leads to a primary flow function or to another, depending on the 
control action meant for the components (e.g., valve is open or shut). The fact that a 
Disorder depends on the Activity it appears, is represented by the 
constraint{and} upon the respective relations (note that {} stands for {and}, reduced 
because of the limited space). 

8.6.2.3. The Behavioural Subsystem 
The human diagnostician’s view on manifestations and symptoms concerns: 

i) deviations of the observed variables from the expected 
(“normal”) values – where observations may refer to ends, effort 
and flow variables, linguistic values from human operator; 
ii) deviations of functions that lead to abnormal ends – anomalies 
in the end’s accomplishment, in the flow store or flow transport; 
iii) propagation of the effects from the fault location – deviations 
of flow variables appear as primary effects (transport anomalies) 
and provoke secondary effects. 

Entities on the faulty behaviour come from the deep knowledge of human 
experts in the domain and on the target MCFS, as presented in Section 8.5.

The relation «evo» indicate that a Manifestation evokes a 
Disorder, while «rev» indicates that an Observation reveals a
Manifestation.
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The {and} constraints between respective dependencies and associations 
indicate that the Disorder is specific to the Anomaly and the Activity that 
appear. 

A causal relation that has an explanation represents deep knowledge. 
Relations that come from experiments or practice represent shallow knowledge that 
is embedded in the Artificial Neural Network (ANN) blocks. Shallow knowledge is 
embedded into the diagnosis expert system during the training procedures, based on 
known patterns acquired from practice (off line) or from experiments (on-line). 
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8.6.3. The CAKE Tool 

Knowledge elicitation and knowledge acquisition are assisted by the Computer 
Aided Knowledge Elicitation (CAKE) software tool, which actually replaces the 
knowledge engineer who is involved in the design and implementation of the 
diagnosis expert system (Ariton and Baciu, 2002). 

Knowledge elicitation proceeds by asking the operator about entities, 
values and relations, namely, on specific concepts of the subsystems in the target 
system. Knowledge elicitation activity consists of three phases: the top-down phase 
– which performs means-end discrimination of modules to components in the 
normative model, then the bottom-up phase – for collection of specific data on the 
faulty model, and finally the join phase – for establishing relations between all 
entities.

Figure 8.10. Screenshot for the CAKE screen for knowledge acquisition. 

The top-down phase scans the layered structure of flows in the target 
MCFS, considering each flow type and “asking” for: modules (with activities and 
junction types), components (with flow functions and bond-graph components), 
faults and observed variables along with manifestations attached. The functional 
structure results from the functions attached to each physical unit: for each module 
– ends and activities they accomplish, for each component – the appropriate flow 
functions and the corresponding bond-graph generic component for each activity. 

The bottom-up phase scans in the reversed order the physical and the 
functional structures, attaches faults to components, performs intelligent encoding 



Computational Intelligence in Fault Diagnosis   269 

of manifestations, attaches manifestations to appropriate faults (from the shallow 
knowledge), and finally attaches anomalies to faults (from the deep knowledge). 

The join phase puts together the existing modules in the respective bond-
graph junctions (as from deep knowledge), attaches signatures to each junction, and 
indicates specific tasks for the inference engine (e.g., the order of bond-graph 
junctions to scan for transport anomalies). 

The knowledge acquisition in the three phases refers to all knowledge 
pieces and relations for the target MCFS. The information is stored in the CAKE 
tool’s Knowledge Base, which is specific to the target system. This way, data are 
prepared for the generation of a dedicated diagnosis application. Figure 8.10 shows 
a screenshot of the CAKE tool for MCFS building involved in the second phase. 

The result of the knowledge acquisition is the complete description of the 
target system as text and data stored in the knowledge base. Following the text 
description and the knowledge base, the CAKE tool generates the code for a 
dedicated diagnosis expert system. The “Fault Isolation” (neural) blocks are later 
trained with faults-manifestations and faults-symptoms patterns, based on 
previously collected data from practice and/or experiments. 

8.7. Fault Diagnosis System by Abduction  

As already shown, the human diagnostician combines deep and shallow knowledge 
on the target system, and then isolates faults following hierarchical decomposition 
and incremental procedures in refining the diagnostic (i.e., finally locating the 
fault). The deep knowledge is more compact and it rapidly reduces the searching 
space based on laws from the domain (“explanations”). However, deep knowledge 
captures only general causal links and hardly refers to the diversity of effects and 
causes in the real running. So, shallow knowledge comes to describe the detailed 
behaviour in the uncertain and incomplete context of the complex real system. 

8.7.1. Diagnosis Expert System’s Structure 

In Figure 8.11 is depicted the block structure of the Diagnosis Expert system and 
the place of the CAKE tool – which, actually, is not part of the diagnosis system. 
The diagnosis approach mainly focuses the knowledge regarding the faulty 
behaviour of the target MCFS, while knowledge regarding the normative model is 
only meant for the physical and the functional structures that will support the 
behavioural model in locating anomalies and faults. 

All knowledge enters the “Knowledge Base” block, which in the proposed 
approach is simply a data base, while the normative and the faulty models are sets 
of behavioural units with parameters and links between them. 

The “Knowledge Base” is the central block of the diagnosis expert system; 
data structures come from the “Knowledge elicitation” block (the CAKE tool 
included). 

The actual data (values) come from the “Target MCFS” through the “Data 
acquisition and pre-processing” block which performs scanning, sampling and 
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intelligent encoding of data from sensors and from human operators; data channels 
are depicted as  in Figure 8.11. 

The “Incremental diagnosis” block is the inference engine of the expert 
system; it controls the other blocks through control channels (depicted as simple 
arrows  in Figure 8.11). The inference engine’s tasks are presented in Section 
8.7.2.3.

The “Fault isolation” blocks are Artificial Neural Networks (ANN) 
dedicated and trained each for a given module faults recognition, based on patterns 
of manifestations and anomalies. The ANN blocks are connectionist models for 
abduction of faults from effects that embed deep knowledge on “abductive 
problems” of causes and effects (see (Ariton and Palade, 2004)), and also shallow 
knowledge on effects-to-causes pattern relations. 

The “Human operator interface” block interacts with the human operator 
by asking and providing operator observations to “Data acquisition and pre-
processing” block (arrow  in Figure 8.11) and displays the diagnostic. 

The “Knowledge elicitation and acquisition” block provides the 
knowledge (see  in Figure 8.11) for the “Knowledge Base” block, prototype 
manifestations for the “Data acquisition and pre-processing” block and faults-
manifestations patterns for the ANN blocks. The “Knowledge elicitation and 
acquisition” is the CAKE tool (see Section 8.6) and it is actually the subject of the 
present work. 
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Figure 8.11. Diagnosis expert system and the place of the CAKE tool. 



Computational Intelligence in Fault Diagnosis   271 

8.7.2. Modular and Incremental Diagnosis 

Diagnosis proceeds by locating faults hierarchically, like the human diagnostician 
does: 

first discriminating the module with a transport anomaly, 
then recognizing fault(s) inside the module. 

The transport anomaly is detected using signatures of manifestations on 
effort and flow variables at each module’s input/outputs – see Table 8.3 – which 
leads to isolation of the faulty module. The existence of the transport anomaly is a 
confirmation of the faulty state and valuable information for further isolation of the 
concrete faults inside the module. 

At the module level, it is possible to proceed the same way, i.e., to locate 
the faulty component detecting it by signatures of power variables’ deviations. 
However, it is hardly the case that effort and flow are measured at every component 
in real installations. So, at the module level, fault isolation is performed by 
recognizing “pattern faults” from “pattern manifestations and symptoms,” based on 
a dedicated ANN block provided for the module. 

8.7.2.1. Parallel Processing for Modular Diagnosis 
Manifestations (i.e., lo, no, hi linguistic values at the observed variables) and 
symptoms (i.e., process, store and transport anomalies) are input neurons and the 
faults are the output neurons of the ANN. All concepts have the appropriate 
representations as presented above: discrete (i.e., linguistic) knowledge and logical 
meanings (i.e., truth values). This way, the abductive reasoning of the human 
diagnostician may be described by the connectionist model proposed in Section 
8.2.3.

The main advantage of the presented connectionist approach in diagnosis 
is the embedding of the human diagnostician’s shallow knowledge by ANN 
training, using manifestations-to-faults patterns as from the actual behaviour of each 
module in the target system. It is worth mentioning that it is unrealistic to use a 
unique ANN block for an entire real system, while it deals with enormous numbers 
of combined causes and training patterns. By using the modular approach 
presented, the combination of manifestations-to-faults patterns is drastically 
reduced, and the fact that the human expert’s shallow knowledge usually refers to 
the module level, even experiments on site or in laboratory conditions are 
conducted at the module level. 

8.7.2.2. Testing Policy as an Abduction Problem Solving 
The testing policy aims to indicate the best next test the result of which allows the 
optimal diagnostic refining, in other words the shortest path (as steps) to the 
diagnostic.

The “next best test problem” can be formulated as an abduction problem, 
and it can be solved in the same way as the diagnosis itself, i.e., as a connectionist 
implementation of plausibility and relevance of the next test to follow. Testing is 
performed stepwise, and takes part of the sequential diagnostic refinement. 
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The testing procedure requires human operator observations, but only a 
few are useful given the current situations (faults occurred, process phase, etc.), and 
given the entire set OM of human observed manifestations (see Section 8.3.3.3).

The current set of instance manifestations used at the training phase of the 
ANN block includes those observed by human senses (or portable measurement 
devices) and they should be provided as required at the time of diagnosis. In 
reverse, the embedded knowledge may be used to find out which is the plausible 
and relevant observation that the human operator should supply to advance the 
optimal diagnosis. 

In this way, the next best test is obtained as the solution of the abduction 
problem solving, using plausible and relevance criteria as follows: 

plausibility(P_CRITERIA, EFFECTS, CAUSES) – whose 
outcome is the set of operator-observed manifestations OM
(hence variables to be tested), based on the set of manifestations 
joined with the set of plausible faults obtained at the current step 
in the diagnosis. 
relevance(R_CRITERIA, OM) – whose outcome is the set of 
relevant operator observations out of the plausible ones, that 
satisfy R_CRITERIA.

The abduction problem is solved by means of a neural network 
implementation, and indicates the most plausible and relevant operator observation (if 
the competition is strict), or a set of observations (if the competition is relaxed), for 
which the human operator will supply data. 

8.7.2.3. Incremental Processing for the Diagnostic Refining 
The inference engine of the expert system with the same name, sequentially and 
repeatedly fulfills the following tasks:  

i) Start data acquisition from the Target MCFS by means of the  
“Data acquisition and pre-processing” block, which also performs 
the „intelligent encoding.” 
ii) Identify the activities of all modules, during the current process 
phase (note that a process phase lasts between any two transitions 
of activities for any of the modules entering the same 0-junction). 
iii) Detect faults – by identifying process and store anomalies. 
iv) Detect transport anomalies and the faulty module – by 
identifying signatures of manifestations of effort and flow 
variables from Table 8.3. 
v) Isolate fault(s) inside the faulty module(s), by means of 
manifestations and anomalies patterns, applied at the inputs of 
“Fault isolation block per module”; recognize fault using the 
dedicated ANN for the module. 
vi) Evaluate the truth value of the “faulty” state versus the 
“normal” state for the entire target system. 
vii) If “faulty” is greater than “normal” but no diagnostic exists 
(i.e., truth value of all activated faults is under a given threshold) 
ask human operator for additional observations and go to step i. 
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viii) If a diagnostic exists (“normal” and “unknown” included) 
and no further additional observations requested, display the 
diagnostic.

The inference engine cycle is standard but embedded knowledge and data 
are specific to the target system under the diagnosis. 

8.7.3. Aspects of the Sequential Diagnosis 
In the presented approach, sequential diagnosis involves three aspects: 
a) Abduction by plausibility and relevance proceeds stepwise: first, 

plausible causes are obtained through feed-forward activations 
according to instance manifestations; second, the relevant faults are 
discriminated from the relevance groups, each group as a specific 
modularisation of faults, one modularisation applied at a time. 

b) Process phases arise one after another, each process phase exhibiting 
specific plausibility criteria; consequently, the connectionist abduction 
is performed according to the (expected) current process phase. 

c) Additional observations required from and supplied by human 
operator get into the diagnosis system, until no test is required – i.e., 
until the diagnostic is obtained (even if it is “no fault” or “unknown 
fault”).

For aspects a and b above, an example of sequential diagnosis is presented 
in the previous section; item c refers to the next best test policy formulated as an 
abduction problem, and solved by plausibility and relevance implemented by neural 
networks. Note that “unknown fault” that occurs in the real running is finally 
decided by the human operator of the diagnosis system – when a faulty situation 
exists but no diagnostic provided. 

8.7.3.1. Diagnosis by Plausibility and Relevance Criteria Sequentially 
Applied
Let us consider the diagnosis performed for a process phase P. After applying the 
plausibility criteria P_CRITERIA upon the set of EFFECTS, the set F* of all 
plausible causes is deducted (i.e., the set comprising all causes with a positive 
activation). The “mass activation” of plausible faults is, by notation, Fi, as given 
in Eq. 23, where F* is the set of plausible causes. 

F
*

i i
F F

F Fi = (23) 
The sum is performed over the set F*of plausible causes but it actually is 

the same if performed over the entire set F of causes, while nonplausible causes 
exhibit zero activation. So, the computational procedure always deals with the 
entire set F of causes, hence simple implementation. 

Applying the relevance criteria R_CRITERIA upon the set of CAUSES will 
increase the activation of a plausible and relevant cause Fi

*, according to the layer’s 
weight WL (see Section 8.2.5.2). The increase will affect the numerical value of Fi

*,
according to the mass activation Fi of all faults and to the weight WL of the current 
modularisation layer: 
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i
i

i

F
FFi

* = WL
(24) 

In the proposed approach, the order of the relevance criteria applied is 
important, because the activation mass changes accordingly. The best order is the 
one of increasing weights WL, so the activation mass Fi is updated only once, 
before the current layer processing. Each layer induces a graded increase of 
respective cause(s) activation, the last layer of modularisation inducing the highest 
increase.

After applying all relevance criteria, the relevance of faulty situation is 
determined (see Section 8.2.5.3) and the diagnostic is issued as the most relevant 
causes resulted, including faults with activation over the doubt level. 

8.7.3.2. Testing Policy by Plausibility and Relevance Criteria Sequentially 
Applied

The next test is required after each diagnostic obtained. The diagnosis 
system “asks” the human operator to provide a certain variable value; he or she 
supplies the value, and so diagnosis based on plausibility and relevance restarts. 

The most plausible and relevant operator-observed variable(s), for the 
given situation, result as an abduction problem solving according to Section 8.2.3.
The next best observation (i.e., test) is indicated by the ANN block provided for 
each module, based on current faults and instance manifestations activated. 

Now, the activation of plausible fault Fi
* changes according to new 

manifestations provided and, additionally, the activation is affected by the weight WO

attached to the operator-observed variable provided at the current step: 

i
i

i

F
FFi

* = WO
(25) 

The human diagnostician sets up weights for the operator-observed 
manifestations according to the deep knowledge in the domain, provided WO = 1 
for the set of operator-observed manifestations in the relevance group. The human 
operator supplies the observed values (manifestations) in the reverse order of 
weights WO. That is, the values of the most important variables are provided first. 

In the economy of the diagnosis by next best test, the most important role 
is played by Eq. 11, which starts the next test procedure if the FAULTY situation 
prevails over the NORMAL one. It is possible to stop asking for new operator-
observed variables if a predefined faulty situation threshold is surpassed, e.g., 

1

0

n

n

i
i

Fn

F
(26) 

where  = 9 means that the faulty situation is 90% certain as the normal one. 
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8.7.4. Neural Network Architecture for Diagnosis and 
Testing

The neural network architecture for diagnosis using a testing policy comprises two 
neural networks, each dedicated to the abduction problem solving: one for the 
diagnosis – DNN (Diagnosis Neural Network), the other for indicating the next 
observations to be made – TNN (new Test Neural Network), as shown in Figure 
8.12. 

Both neural network blocks contain feed-forward links for plausibility, 
between the input and the output neurons; for DNN, between input neurons of the 
type OM (Operator-observed Manifestations), MM (permanent Monitored 
Manifestations), SY (SYmptoms detected) and output neurons F (Faults); for TNN, 
between F (Faults) and OM (Operator-required Manifestations – identical as set 
with the Operator-observed Manifestations set). Forward links are represented as 
arrows between input and output layers of neurons, and competition links are 
represented by horizontal arrows between the output neurons (F and OM,
respectively).
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Figure 8.12. Neural network architecture for fault diagnosis by abduction, with additional 
observations from human operator. 

The input of the DNN block consists of permanent observed 
manifestations MM and operator-observed manifestations OM – the last ones 
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passing through the network as long as they are triggered and supplied by the 
operator. Plausible faults at the output of the DNN block become inputs of the TNN 
block, along with the current manifestations MM, to produce most plausible and 
relevant observations to be tested by the human operator. The entire set of neuron 
outputs of the DNN block are passed to the input of the TNN block, while only 
plausible faults get activated and count for the abduction towards the next test 
indicated to the operator. 

Diagnosis proceeds stepwise. At each step, the observations become first 
manifestations by “intelligent encoding,” then most plausible and relevant faults 
result by abduction at the output of the DNN block, along with required operator-
observed variables indicated at the output of the TNN block. The set of most 
plausible and relevant faults at each step is a partial result with attached values of 
FAULTY and NORMAL situations, as from Eq. 14. The final diagnostic is obtained 
when the FAULTY situation surpasses a given threshold and no operator 
observations are required. Depending on the number of relevant faults resulting 
from competition, single or multiple fault diagnosis is in concern. 

The "closed world assumption" is satisfied if all situations that may appear 
during the diagnosis have a result; hence the “no fault” (NORMAL) as well as 
“unknown fault” (UNKNOWN) neurons appear in the output layer of the DNN 
neural network block. The processing for plausibility and relevance roughly 
corresponds to general phases in diagnostic reasoning: "hypotheses generation" and 
“hypotheses discrimination,” respectively. 

The neural network is the core of the diagnosis expert system, and it deposits 
the deep and shallow knowledge of the human diagnostician. The way the diagnosis 
proceeds also complies with the human diagnostician’s way of acting, i.e., it is 
performed sequentially, applying plausibility and relevance criteria step by step, 
until the final diagnostic is obtained. 

8.8. Case Study on a Hydraulic Installation in a 
Rolling Mill Plant 

The case study is performed on the simple hydraulic installation shown in Figure 
8.13. It comprises two hydraulic cylinders (for a carrier and a brake), two control 
valves, the mineral oil tank, the pump with a pressure valve, and two long pipes. To 
master the complexity of the installation under diagnosis, the installation was 
divided into modules: the Hydraulic supply (containing tank, pump and pressure 
valve) and two driving modules (containing control valve, cylinder, damper –
Drossel) – the Hydraulic brake and the Hydraulic conveyor. 

8.8.1. Knowledge Elicitation 

The information regarding the physical and the behavioural subsystems consists of 
knowledge pieces presented in Table 8.4. The whole set of disorders considered 
consists of: faults, the NORMAL situation, and the nonconformities at flow, human 
operator and neighbour systems.  
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For each component, the numbers of faults are: 2 at the tank, 4 at the 
pump, 3 at the pressure valve, 2 at the pipes, 3 2 at the control valves, 2 at the 
damper, 2 2 at the cylinders. 

There exist 6 disorders that refer to nonconformities: 2 for the mineral oil 
(i.e., “too many suspensions” and “foamy oil”), 1 at the environment (“too hot”), 3 
for operating errors (Olu “no oil in the tank” – see below, “carrier load too heavy,” 
“pump velocity ill tuned”). So, the disorders consist of 23+1 faults (NORMAL
added), and 6 nonconformities, i.e., |F| = 30. 

Line 4 in Table 8.4 shows the types of manifestations and the number of 
data according to the activities in line 2; for example, the number of the fuzzy 
attributes for the Supply module is (6 variables) (3 landmarks) (2 activities) = 36 
manifestations of type lo, no, hi.

The measured manifestations refer to |MM| = 48 pieces that are variables 
expressed as single neurons (for the binary variables), or triple neurons (for the 
continuous variables with lo, no, hi attributes), each neuron with a graded value of 
truth. The observed variables come from analogical sensors for 2 input/output flow-
rates, 3 input/output/damper pressures, 4 temperatures (control valves, pump and 
tank), from contacts for 4 operator commands (brake on/off, carrier on/off), for 5 
positions (of type left/right, open/shut) of the two pistons and of the pressure valve. 
The 4 durations of the pistons' movements (left/right – for the two cylinders) enter 
also as measured manifestations. 

In the set of the |OM| = 14 operator-observed variables, there are 5 of type 
"noise" (2 for the pump, 3 for the pressure and the control valves), 6 "oil leakage" 
(all except the damper) and also there are 3 anomalies outside the hydraulic system 
(brake/carrier mechanical blockage, no pump power). 
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Hydraulic Brake

Ctrl. Valve 1
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Pump Oil Tank
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Figure 8.13. Hydraulic installation under elicitation case study. 
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Running contexts of the target hydraulic installation refer to each discrete 
position or motion of the pistons in the two cylinders, as well as to the two states of 
the control valve. So, we find the activities for each of the three modules: 2 
activities for the supply module and 4 activities for each driving module. The total 
number of process phases is 2+4 4=18. Even for such a simple installation, the 
numbers of process phases is quite large, provided that for each of them the 
knowledge engineer should develop experiments to assess the specific 
manifestations and their links to faults, hence plausibility criteria and the DNN 
block training. Instead, each module’s specific behaviour was studied separately 
when faulty. The simulated faults and the manifestations that had appeared were 
collected for each separate module, concerning only the 2 activities of the supply 
module and the 4 activities of each driving module, respectively. 

Table 8.4. Inventory of the knowledge pieces involved in the fault diagnosis 

                   Module 

     Entity 

Hydraulic 

Supply 

Hydraulic 

Brake 

Hydraulic 

Conveyor 

1. Components 

pump, tank, 

pressure valve, 

pipes 

control valve, 

cylinder 

control valve, self, 

cylinder 

2. Activities / Faults 2 / 11 4 / 5 4 / 7 

3. Sensors  

(observed variables) 

Analogical 6, 

Digital 7 

Analogical 5, 

Digital 8 

Analogical 3, 

Digital 8 

4. Manifestations 

Fuzzy 6⋅3⋅2,

Binary 7⋅2
Fuzzy 5⋅3⋅4,

Binary 8⋅2
Fuzzy 3⋅3⋅4, 

Binary 8⋅2
5. AnoP, AnoS, AnoT 2, 1, 4 2, 2, 4 2, 2, 4 

A total number of 155 (fuzzy and binary) manifestations result, hence 888 
manifestations-to-faults and 255 anomalies-to-faults links get established. If faults 
and manifestations were considered for the entire installation (as in “classic” ANN-
based diagnosis – i.e., without modularisation), 32 combinations of activities result, 
hence (6 3+5 3+3 3) 32=1344 knowledge pieces for manifestations, which require 
30 1344=40320 manifestation-to-faults links, and 9600 anomalies-to-faults links. 

Using the modularisation in presented approach, just for the simple 
hydraulic installation, the data volume is (1344+40320)/(888+255)=36 times less 
for the modularised approach than using a unique ANN block for the entire 
installation. In the case of a more complex installation, the ratio is much bigger, and 
embedding deep knowledge in the links between faults and manifestations is quite 
impossible. While the knowledge acquisition is rather difficult even for the 
modularised scheme, the CAKE tool comes to assist the human diagnostician in 
managing the elicitation and the data volumes, also in yielding the data structures 
for a dedicated diagnosis system. 

8.8.2. Neural Blocks for Physical Modules 

The diagnosis was meant for three distinct process phases, namely, the one with the 
control valve open (for faults at the supply module) and those with moving pistons 
(for the two driving modules). No symptoms were considered on the installation 
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behaviour. The faults–to-manifestations patterns, used in the training of the DNN 
and TNN neural network blocks for each module, were partly acquired from human 
diagnostician practice, partly from experiments.  

Again, the modularisation represents an advantage in the implementation 
of the diagnosis system. So, instead of considering the process phases for the whole 
installation as the running contexts (which determine the specific faulty behaviour), 
it is now possible to consider only the activities of modules interconnected in the 
same bond-graph junction. Furthermore, the neural sites for the abduction problems 
were easier to build separately for each module. 

The structure of the neural network block for the supply module is 
depicted in Figure 8.14, where: 

Faults are: Pax (pump – axis broken), Pai (pump – clogged 
admission), Pne (pump – ill joints), Puz (pump – worn out), Tne
(tank – worn-out filter); 
Manifestations are: P1 (oil pressure at the tank outlet: “too low” 
lo, “too high” hi), D1 (oil flow rate at the tank outlet: “too low” 
lo, “too high” hi), T2 (oil temperature “high” in the tank); 
Manifestations requested from the human operator are: Z1
(whistling noise at pump), Z2 (jerky noise at pump), M1 (oil mud 
at pump), M2 (oil mud at tank); 
Nonconformities from flow and from human operator: Uim (dirty 
oil), Usp (foaming oil), Olu (tank empty), Otm (pump angular 
velocity ill tuned). 

As shown in Figure 8.14, there are two monotonic faults (Pne and Puz), 
two monotonic operator-observed variables (Z1 and Otm), and two conjunction 
sites (for Pax and Otm). The negation sites for operator-observed variables prevent 
further demand of the variables already requested and supplied. 

8.8.3. Plausibility and Relevance 

For each running context, the plausibility links between faults and manifestations 
were set up according to the human diagnostician’s deep knowledge, but also 
systematically linking all manifestations to faults in a module. 

The neural network model used for the DNN and TNN blocks is the 
perceptron; it supports the feed-forward plausibility criteria with modified structure, 
suited to abduction problem solving (see Figure 8.14). 

Plausibility criteria refer to different abduction problems implemented as 
neural sites and to trained faults-to-manifestations patterns from simulated 
experiments, on each target module, for fault, “normal” and “unknown” cases. 

Competition is added over the set of fault neurons regarding the following 
relevance grouping: 

1. faults at the same component (physical structure scope) – minimum 
cardinality criterion; 
2. faults which are obvious only in specific activities of the respective 
module (e.g., control valves “blocked parallel” and “blocked crossed” are 
obvious only when the piston is moving in the hydraulic cylinder); 
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3. faults in the module provoking leakage and those provoking clogged 
symptoms for mineral oil flow. 
For each functional module i, it corresponds to a neural network module 

with two blocks, DNNi and TNNi. Additional relevance criteria discriminate 
between the diagnostics at module level, in order to issue the diagnostic at the level 
of the whole installation. The relevance criteria at installation level are based on 
symptoms and on Eq. 11; the relevance criterion of minimum cardinality was 
considered. 

The training of the neural network block DNN1 (associated with module 1 
– the oil supply module presented above) is performed using the standard learning 
algorithm for the perceptron. The NORMAL situation for the entire supply module 
is trained using normal values  (see Figure 8.15): no for P1 and D1, and normal 
states of the other manifestations. The UNKNOWN situation is trained by means of 
patterns, randomly generated but consistent with those used for plausibility of faults 
and the normal situation. 

As it is difficult to gather all the necessary details for the NN structures for 
all modules, a CAKE (Computer Aided Knowledge Elicitation) instrument was 
build and used to describe and automatically generate the DNN and TNN structures 
at the module level. 

NORMAL 
Uim Usp Otm Z1 Z2 M1 M2

T2

Pax Pai Pne Puz Tne

lo no hi

D1 

Olu Uim Usp Otm Z1 Z2 M1 M2lo no hi

P1

DNN

1

TNN
1

Olu
UNKNOWN 

P1lo P1hi
D1hi

D1hi

Figure 8.14. The neural network structure for the first (oil supply) module for diagnosis. 

8.8.4. Sequential Diagnosis for the Supply Module 

Figure 8.16 illustrates the four steps in which the diagnosis regarding the supply 
module is performed, with respect to a fault that occurred in the pump, namely, Pai
(short name for the fault “oil tank pipe is clogged“). Each window shows a step 
during the diagnosis refinement, including the partial diagnostic and the operator-
observed variables required from the human operator. For the simulated fault – 
marked by x – the diagnostic is obtained in four steps, after eliminating other causes 
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– see in the third window Olu (short name for the non-conformity “oil tank 
empty”). 
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Figure 8.15. Training of the NORMAL situation for the oil supply module, in 32 epochs. 

The Y axis indicates the truth value of a specific item from the X axis, 
which shows discrete knowledge pieces from 0 to 50. 

The three sections of the X axis represent: the 31 disorders mentioned 
above, the 6 nonconformities (in the section “Non-cf”), and the 14 observations 
needed from the human operator. Faults’ truth values, as resulted from the 
diagnosis, are indicated as bars at the index position of each fault (0 to 30). 

The 6 nonconformities and the 14 operator-observed manifestations are 
also indicated as bars, but their meaning is now a demand to the human operator, 
i.e., a confirmation required for a possible nonconformity indicated as a bar, or a 
value required from the operator for the observed variable indicated as a bar, at its 
specific index on X axis. As a response, the human operator has to indicate if that 
environment nonconformity is present, or the current value for the operator-
observed variable, respectively. In the sections for nonconformities and for operator 
observations, the height of a bar indicates how stringent is the respective item, so 
the human operator may choose the highest one(s) for supplying the confirmation or 
the value. 

Additional observations required from the human operator in the current 
step appear in the Non-cf. section and in the Operator Observations section on the 
X axis. The window in each step shows the current diagnostic. Activated 
observations from the human operator decrease to 0 after the value is supplied. 

The diagnostic is strongly dependent on the coverage of faulty behaviours 
for each module with faults or classes of faults. The data on the behaviour of the 
hydraulic installation come from simulated experiments. The diagnosis system 
always produced a diagnostic in a finite number of steps, and the average accuracy 
of the diagnosis was 96%. Additional observations supplied by the human operator 
require some steps in the diagnostic refinement that hinders real-time diagnosis. 
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Figure 8.16. Sequential diagnosis in 4 steps for the fault Pai, with additional Operator 
Observations.

8.9. Conclusions 

Fault diagnosis of complex systems involves deep and shallow knowledge of 
human diagnosticians, since diagnosis in the reallife deals with incomplete, 
imprecise and uncertain knowledge on the behaviour of target systems. The aim of 
the chapter is to describe a diagnostic system that emulates the human 
diagnostician’s way of acting, in order to build dedicated diagnosis systems for 
concrete target systems. The automated fault diagnosis is based on computational 
intelligence models: fuzzy and possibilistic logic, artificial neural networks. 

The chapter focuses on the fault diagnosis of artefacts often met in 
industry (and not only), that executes more functions at the same time based on 
conductive flows of matter and energy, i.e., multifunctional conductive flow 
systems (MCFSs). The proposed MCFS abstraction is close to the human 
diagnostician’s way of conceiving entities and relations on physical, functional and 
behavioural structures. 

Diagnosis reasoning is intrinsically abductive reasoning. The chapter 
presents the abduction by plausibility and relevance, in a connectionist approach. 
Plausibility criteria become feed-forward links from manifestations to faults – as 
from the shallow knowledge acquired in practice or experiments. Relevance criteria 
become competition between the elements of various groups of causes (be they 
faults or other kind of disorders), put together according to the deep knowledge on 
physical, functional and behavioural structures of the target system. 

In order to solve all types of abduction problems (according to Bylander et
al., 1991), specific architectural features are added to the neural network. The 
features refer to plausibility criteria and affect the feed-forward links between 
manifestation and fault neurons, also between fault neurons. This way, the 
abduction problem solving is straightforward and easier implemented in various 
neural network types than other approaches (e.g., Ayeb et al., 1998). 
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Deep knowledge refers to physical and functional structures, as means for 
achieving the ends of the target system. Also, deep knowledge refers to the sets of 
faults, manifestations and symptoms along with some behavioural hints regarding 
primary and secondary effects useful for locating faults. Shallow knowledge refers 
to (unexplained) links of faults to manifestations or to symptoms, from the human 
diagnostician’s practice or experiments. 

The embedding of the deep and shallow knowledge requires appropriate 
representations of physical, functional and behavioural concepts, observing the 
discrete and qualitative nature of human knowledge. In this respect, means-end and 
qualitative modelling approaches are adapted to obtain a unified representation of 
various behavioural entities. The faults’ effects propagation is modelled using four 
orthogonal transport anomalies related to the bond-graph model of components and 
bond-graph junctions for modules for the entire target system. 

The concepts and relations involved in human-like diagnosis get 
appropriate representations by computational intelligence paradigms. All concepts 
and relations enter the connectionist models of the abduction problem solving, and 
their representation is also meant for the systematic knowledge acquisition on 
concrete target systems. All knowledge pieces involved in fault diagnosis enter 
appropriate elicitation models addressing human diagnosticians’ way of acting, and 
lead to structures useful for the computational model of the diagnosis system. 

The decision on the next best test, aiming the diagnostic refining, is also 
seen as an abduction problem, and it is solved based on plausibility and relevance 
criteria in the connectionist implementation. The diagnosis on the whole is 
performed as a sequential application of plausibility and relevance criteria, applied 
incrementally, and completed with new tests until the final diagnostic is found. 

Fault diagnosis of real systems involves a great amount of data. Therefore, 
knowledge acquisition, knowledge representation and data management tasks 
require appropriate tools to assist human diagnosticians in building the diagnosis 
system. The Computer Aided Knowledge Elicitation (CAKE) software tool assists 
the human diagnostician, or even the human operator, in the design and generation 
of the dedicated diagnosis system for the concrete target system envisaged. So, the 
CAKE tool replaces the knowledge engineer and the software designer. Moreover, 
specific knowledge on the concrete target system is embedded in the diagnostic 
expert system, exploiting the human diagnostician’s practice and knowledge on the 
running conditions of the target real system. 

The case study on a hydraulic installation of a rolling mill plant gives 
examples on the knowledge elicitation process and on the diagnostic expert system 
building and running. 
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9. Fault Diagnosis in a Power Generation 
Plant Using a Neural Fuzzy System with 
Rule Extraction 

Kok Yeng Chen, Chee Peng Lim, Weng Kin Lai 

In this chapter, the Fuzzy Min-Max (FMM) neural network is integrated with a rule 
extraction algorithm, and the resulting network is applied to fault diagnosis tasks in 
a power generation plant. With the rule extraction capability, the FMM network is 
able to overcome the “black-box” phenomenon by justifying its predictions with 
fuzzy if-then rules that are comprehensible to the domain users. To assess the 
effectiveness of the FMM network, real sensor measurements are collected and 
used for diagnosing the heat transfer and tube blockage conditions of the 
Circulating Water (CW) system in a power generation plant. The FMM network 
parameters are systematically varied and tested.  Bootstrapping is used to 
statistically ascertain the stability of the network performance. In addition, the 
extracted rules are found to be compatible with the domain information as well as 
the opinions of the experts who are involved in the maintenance of the CW system. 
Implications of the FMM network with the rule extraction facility as an intelligent 
and useful fault diagnosis tool are discussed. 

9.1. Introduction 

Fault diagnosis is a research area that is becoming increasingly important owing to 
the complexity of modern industrial systems and growing demands for quality, cost 
efficiency, reliability, and safety (Al-Najjar, 1996). In order to maintain the 
competitive edge, factory operators and manufacturers often have to ensure that 
their machines and processes are set at optimal operating conditions. Fault 
diagnosis systems support this objective by predicting failures and, if a failure had 
occurred, by identifying the reasons behind the failure. In a complex process, fault 
diagnosis systems normally deal with the management and maintenance of a whole 
chain of actions to detect and diagnose abnormal events. Early prediction of 
possible fault states allows maintenance work to take place before a 
machine/system breaks down, that may cause damages and obstructions to the 
overall operation, hence improving the level of plant safety and, at the same time, 
reducing production downtime and productivity loss.

When developing a fault diagnosis system, the basic a priori condition 
needed is a set of failures and the relationship between the observations (symptoms) 
and the faults. There are a variety of approaches for devising process fault detection 
and diagnosis systems. Venkatasubramanian et al. (2003a,b,c) through a series of 
systematic and comparative study of various diagnostic methods from different 
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perspectives have shown that process fault detection and diagnosis methods may be 
categorised into three general categories, namely, quantitative model-based 
methods, qualitative model-based methods, and process history-based methods. 
Quantitative model-based methods correspond to modelling the physical process by 
using some mathematical functional relationships of the inputs and outputs of the 
process. Qualitative model-based methods deal with modelling the physical process 
by expressing the model equations in terms of qualitative functions centred on 
different units of the process. In contrast to model-based methods where a priori 
knowledge (either quantitative or qualitative) about the process under scrutiny is 
needed, process history-based methods (data-based methods) utilise the availability 
of a large amount of historical process data for modelling the physical process, 
either implicitly or explicitly.

In general, data-based fault diagnosis approaches involve a wide range of 
actions which can consist of measuring data, processing the data, comparing new 
data with the original data, evaluating the data, and coming to a conclusion on the 
general health condition of the process. In this aspect, computational intelligence 
approaches, including neural network (NN) models, have emerged as an alternative 
to design and develop robust fault diagnosis tools (Venkatasubramanian et al.,
2003c). Indeed, NN models have been adopted as intelligent learning systems 
owing to their intrinsic parallelism, adaptability, and ability to handle noisy data. 
They can learn complex associations and relationships directly from data. They can 
also handle fusion of multiple sources of data and information. With these attractive 
features, NN-based systems increasingly have been employed as intelligent fault 
diagnosis tools to identify and to distinguish between faulty and normal operating 
conditions in complex processes (Polycarpou and Helmicki, 1995). 

From the literature review, there is evidence that NN-based systems are 
effective in handling fault diagnosis tasks. For example, NNs and fuzzy logic were 
utilised to provide intelligent diagnosis of a turbine engine (Kuo, 1995). Similarly, 
NN models were employed to model the critical parameters in the gas turbine 
engine, and the differences between the modelled and actual parameters were used 
to accurately predict engine malfunction (Denny, 1993). In (Kuo, 1995), a multiple 
NN system was applied to fault diagnosis of a diesel engine, while NN-based fault 
diagnostic systems were adopted to monitor jet and rocket engines in (Dietz et al.,
1989). An approach based on NN models was developed for helicopter gearbox 
fault detection (Dellomo, 1999). Other examples include use of the backpropagation 
network and the Radial Basis Function network, respectively, to detect fault 
conditions in pneumatic control valve actuators (de Freitas et al., 1999) and to 
classify rolling element bearing faults (Jack et al., 1999). 

Nonetheless, most of the NN-based diagnostic systems suffer from the so-
called “black-box” phenomenon, i.e., it is difficult to extract domain knowledge 
encoded in a trained network to explain its predictions. Users, who need symbolic 
knowledge and reasoning in order to be convinced of the predicted outcome, are 
often reluctant to use such a system if the NN model is unable to provide an 
explanatory facility to justify how a prediction is reached.  Such a drawback can be 
a barrier to a wider acceptance of NN applications in real environments, especially 
in mission-critical operations such as those in a power generation plant. 
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In rule learning and extraction research, a lot of effort has been devoted to 
the integration of symbolic, rule-based knowledge and NN models.  There are many 
techniques available for rule extraction from trained NNs, e.g., the KT rule 
extraction algorithm (Fu, 1994), rule-extraction-as-learning technique (Craven and 
Shavlik, 1994), and DEDEC approach (Tickle et al., 1996). According to (Andrews 
et al., 1995), there are three main approaches in the aspect of translucency of NN 
rule extraction techniques, namely, the decompositional, pedagogical, and eclectic 
approaches. The main idea of the decompositional approach (e.g., the KT rule 
extraction algorithm) is to extract rules at the level of individual hidden and output 
nodes by analysing the weight vector associated with each local node in the trained 
NN models. The pedagogical approach (e.g., the rule-extraction-as-learning 
technique) views the trained NN models at the minimum possible level of 
granularity. The network is treated as a black box in which the extracted rules map 
the inputs directly to the outputs. The eclectic approach (e.g., the DEDEC 
methodology) is the combination of both decompositional and pedagogical 
approaches. In this approach, knowledge about the internal architecture and/or 
weight vectors in the trained NN models are used to complement a specific 
symbolic learning algorithm. 

In this chapter, the applicability of the Fuzzy Min-Max neural network 
(Simpson, 1992) (hereafter referred to as FMM) to fault diagnosis tasks in a power 
generation plant is described. In order to overcome the “black-box” phenomenon, 
FMM is further enhanced with a rule extraction capability. There are two main 
reasons that motivate the use of FMM with rule extraction. First, it has the 
capability of learning in a single pass through the data samples and is able to build 
and fine-tune the decision boundaries of different classes without retraining. 
Second, the proposed rule extraction procedure, which can be categorised as a 
decompositional approach, is able to extract knowledge and rules from FMM in a 
straightforward manner for justifying its predictions. 

This chapter is organized as follows. In section 9.2, the architecture and 
dynamics of FMM are introduced. The rule extraction algorithm is explained in 
section 9.3. A case study on fault diagnosis in a power generation plant is described 
in section 9.4. Conclusions are drawn in section 9.5. 

9.2. The Fuzzy Min-Max Neural Network 

FMM is a type of neural network model that builds decision boundaries by creating 
hyperboxes in the pattern space. The hyperboxes are defined by pairs of minimum 
and maximum points and their corresponding membership functions are used to 
create fuzzy subsets in the n-dimensional pattern space. One of the important 
properties of FMM is that it learns incrementally in a single pass through the data.  
It refines the existing pattern classes as new information is received.  It also has the 
ability to add new pattern classes online. The learning process in FMM is mainly 
concerned with proper placement and adjustment of hyperboxes in the pattern 
space. If overlapping hyperboxes of different classes occurred in the pattern space, 
contraction will be performed to eliminate the overlapping areas. Thus, the learning 
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dynamics are comprised of compare, add, and subtract operations that fine-tune the 
boundaries of the pattern classes. 

Figure 9.1 illustrates the aggregation of several hyperboxes in a two-
dimensional pattern space for a binary classification problem. Definition of the 
fuzzy set for each hyperbox, jB , is as follows. 

, , , , , n
j j j j jB X V W f X V W X I (1) 

where X = input pattern, 1 2( , , , )nX x x x , jV  = minimum point for jB ,

1 2( , , , )j j j jnV v v v , and jW  = maximum point for jB , 1 2( , , , )j j j jnW w w w .

Notice that the pattern space is an n-dimensional unit cube nI .  Using the 
above definition, the collective fuzzy set that characterises the kth pattern class 
is defined as 

kC

k j
j K

C B (2) 

where K is the index set of the hyperboxes associated with class k.  Note that the 
union operation is typically the maximum of all of the associated fuzzy set 
membership functions. 

Figure 9.1. An example of fuzzy min-max hyperboxes placed along the boundary of a 
two-class problem. Note that the hyperboxes corresponding to the two classes are 

nonoverlapping between classes. 

The learning algorithm of FMM allows overlapping hyperboxes from the 
same class. However, it eliminates the overlapping between hyperboxes that 
represent different classes. The membership function of the jth hyperbox ( )j hb A ,

, measures the degree to which the hth input pattern 0 ( )j hb A 1 hA  falls outside 

hyperbox jB . Equation 3 shows the measurement of how far each component is 
greater (lesser) than the maximum (minimum) point value along each dimension. If 

( )j hb A 1, the point should be more “contained” by the hyperbox. Note that 

 represents complete hyperbox containment. The function that meets all 
these criteria is the sum of two complements, i.e., the average amount of maximum 

( ) 1j hb A
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point violation and the average amount of the minimum point violation. The 
resulting membership function is defined as 

1

1( ) [ max (0, 1 max (0, min (1, )))
2

max (0, 1 max (0, min (1, ))) ]

n
j h hi ji

i

ji hi

b A a w
n

v a
(3) 

where 1 2( , , , ) n
h h h hnA a a a I  is the hth input pattern, 1 2( , , , )j j j jnV v v v  is 

the minimum point for jB , 1 2( , , , )j j j jnW w w w  is the maximum point for jB ,

and  is the sensitivity parameter that regulates how fast the membership values 
decrease as the distance between hA  and jB  increases.

Figure 9.2 shows a three-layer FMM neural network. Each 
1 2( , , , )B mF b b b  node represents a hyperbox fuzzy set where the AF  to BF

connections are the min-max points and the BF  transfer function is the hyperbox 
membership function (as defined in Eq. 3). The input layer 1 2( , , , )A nF a a a  has 
n processing elements, one for each of the n dimensions of the input pattern hA .
After the learning process, all the minimum points and maximum points created are 
stored in matrix V and matrix W, respectively. These connections are adjusted using 
the learning algorithm that will be presented later. The connections between BF  and 

CF  nodes are binary valued and stored in matrix U, which is defined as 
1 if  is a hyperbox for class 

0 otherwise
j k

jk
b c

u (4) 

where jb  is the jth BF  node and  is the kthkc CF  node. 

Each CF  node represents a class, and the output of the CF  node represents 
the degree to which the input pattern hA  fits within the class k. The transfer 
function for each of the CF  nodes performs the fuzzy union of the appropriate 
hyperbox fuzzy set values, i.e., 

1
max

m

k j
j

c b jku (5) 

There are two ways to utilise the outputs of the CF  nodes. If a soft 
decision is required, the output is utilised directly. However, if a hard decision is 
required, the winner-takes-all approach (Kohonen, 1984) is utilised, i.e., the CF
node with the highest value is selected and its output node value will be set to 1 to 
indicate that it is the closest pattern class and the remaining CF  node values are set 
to 0. 
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Figure 9.2. A three-layer Fuzzy Min-Max neural network. 

9.2.1. Learning in the Fuzzy Min-Max Neural Network 

The learning algorithm in FMM comprises an expansion/contraction process. 
Assume that training set D consists of a set of M ordered pair { , }h hX d , where 

 is the input pattern and 1 2( , , , ) n
h h h hnX x x x I { 1, 2, , }hd m  is the 

index of one of the m classes. The expansion/growth process allows decision 
boundaries that are nonlinearly separable to be formed. It allows existing classes to 
be refined over time, and new classes to be added without retraining. The expansion 
process will lead to overlapping among hyperboxes. Thus, elimination of 
hyperboxes will commence using the contraction process if overlapping hyperboxes 
from different classes occurred. Nevertheless, it is not a problem when overlapping 
occurs for the same class. 

In summary, the FMM learning algorithm comprises a three-step process: 
1. Expansion: Identify expandable hyperboxes and expand them. If an 
expandable hyperbox cannot be found, a new hyperbox for that class will 
be added. For hyperbox jB  to expand and to include hX , the following 
constraint must be met: 

1
max ( , ) min ( , )

n
ji hi ji hi

i
n w x v x

1

(6) 

where 0  is a user-defined value that determines the maximum size 
of a hyperbox. 
2. If the expansion criterion is met, the minimum and maximum points 
of the hyperbox are adjusted as follows. 
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min ( , )new old
ji ji hix , 1, 2, ,i i nv v (7) 

max ( , )new old
ji ji hix , 1, 2, ,i i nw w (8) 

3. Overlapping Test: Determine if any overlapping exists between 
hyperboxes from different classes.  For all dimensions, if at least one of the 
following four cases is satisfied, then overlapping exists between two 
hyperboxes. Assuming 1old  initially, the four test cases and the 
corresponding minimum overlap value for the ith dimension are as 
follows.

1: ji ki ji kiCase v v w w min( , )new old
ji kiw v, (9) 

2 : ki ji ki jiCase v v w w , min( , )new old
ki jiw v (10) 

3 : ji ki ki jiCase v v w w min (min ( , ), )new old
ki ji ji kiw v w v, (11) 

4 : ki ji ji kiCase v v w w , min (min ( , ), )new old
ji ki ki jiw v w v (12) 

where j = hyperbox jB  that expanded in the previous step, and k = 

hyperbox  represents another class and is being tested for possible 
overlapping. 

kB

4. Contraction: If overlapping between hyperboxes of different classes 
exists, eliminate the overlapping by minimally adjusting each of the 
hyperboxes. If all dimensions of the two hyperboxes do overlap, only one 
of the n dimensions that has minimum overlapping is adjusted to keep the 
hyperbox size as large as possible. To make the proper adjustment, the 
same four cases are examined where  is the selected dimension to 
contract. 

1: j k j kCase v v w w ,
2

old
k

old
jnew

k
new
j

vw
vw

Case v v w w

(13) 

2 : k j k j ,
2

old old
k jnew new

k j
w v

w v (14) 

3 : j k k jCase a v v w w ( ) ( )k j j kw v w v,  and 
new old
j kv w

(15) 

3 : j k k jCase b v v w w ( ) ( )k j j kw v w v,  and 
new old
j kw v

(16) 

4 : k j j kCase a v v w w ( )k j j kw v w v, ( )  and 
new old
k jw v

(17) 

4 : k j j kCase b v v w w ( ) ( )k j j kw v w v,  and 
new old
k jv w

(18) 
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9.3. Rule Extraction from the Fuzzy Min-Max 
Neural Network 

Owing to the “black-box” phenomenon, rule extraction plays an important role for 
the acceptance of NN systems as an intelligent and useful fault diagnosis tool.  With 
an explanatory facility, the predictions from NN systems can be justified with if-
then rules. This will enable domain users to gauge the NN predictions, thus 
overcoming the suspicion from non-NN experts to utilise this technology in their 
work.

With respect to FMM, out of all the hyperboxes created, some of them are 
rarely used during prediction.  To reduce the complexity of FMM, an algorithm for 
network pruning and rule extraction, as proposed in (Carpenter and Tan, 1995), is 
incorporated into FMM. The main objective of network pruning is to remove those 
hyperboxes that have low confidence factors while preserving a high accuracy rate 
of the prediction. A hyperbox is eliminated when its confidence factor is lower than 
a user-defined pruning threshold, . The confidence factor of each hyperbox is 
expressed as 

(1 )j j jCF U A (19) 
where jU  and jA are Usage and Accuracy of the jth hyperbox, respectively, while 

 [0, 1] is a weighting factor. Parameter jU  is defined as the fraction of the 

number of training patterns coded by hyperbox  ( ) that predicts a particular 
outcome over the maximum number of training patterns coded by any hyperbox 
that predict the same outcome, i.e., 

jb jC

max [ ]
j

j
j

C
U

C (20) 

Accuracy jA  is defined as the fraction of the percentage of prediction 

patterns predicted by hyperbox j ( jP ) over the maximum percentage of prediction 
patterns predicted by any hyperbox that predicts the same outcome, i.e., 

max [ ]
j

j
j

P
A

P (21) 

By using the above approach, it is possible to equip FMM with rules that 
have interpretation in consequence of the min-max points of the hyperboxes. To 
further facilitate the rule interpretation in a comprehensible form, weight 
quantisation by truncation (Eq. 19) is applied. This method divides the range 
between 0 and 1 into Q intervals, and assigns a quantisation point to the lower 
bound of each interval, i.e., 

( 1)
q

qV
Q (22) 

for , where Q is the quantisation level. By using weight quantisation, 
the extracted rules can be interpreted in accordance with fuzzy linguistic terms.  For 
example, with , the consequent part of the if-then rules can be translated into 

1, 2, ,q Q

5Q
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very low, low, medium, high, and very high. As a result, the rules from FMM can be 
elucidated in human linguistic terms that are easily comprehensible to the domain 
users. 

9.4. Fault Diagnosis in a Power Generation Plant 

Power generation is a mission-critical service in a country. It is imperative to ensure 
that the process of power generation is conducted in an efficient manner such that 
continual supply of energy is guaranteed. In general, power generation involves 
complex processes and equipment, and effective and intelligent fault diagnosis tools 
are of vital importance to a power generation facility. As a result, a research project 
has been conducted to investigate the applicability of FMM with rule extraction to 
fault detection and diagnosis tasks in collaboration with a power generation plant in 
Penang, Malaysia. 

A case study pertaining to the Circulating Water (CW) system in the Prai 
power generation plant, Malaysia, has been carried out. The function of the CW 
system is to supply a sufficient and continuous amount of cooling water to the main 
turbines condenser to condense steam from the turbine exhaust and other steam 
flows into the condensers. Figure 9.3 shows a simplified diagram depicting the 
main components of the CW system. In reality, the CW system includes all piping 
and equipment (such as condensers and drum strainer) between intake of sea water 
and the outfall of the system where sea water is discharged back to the sea. 

Condensate 

Strainer 

Common 

Discharge 

Header 
CW  

Pumps

Primary Bar 

Screen 

Sea 

Water 

Condenser 

To Sea 

Steam 

Low Pressure

Turbines 

Figure 9.3. The Circulating Water system. 

As shown in Figure 9.3, sea (circulating) water enters the plant from the 
sea through a primary bar screen at the pump house. The bar screen is used to 
prevent large-sized debris, such as timber and clumps of seaweed, from entering the 
CW system. In the pump house, the CW pumps draw sea water from the suction 
chamber to a common discharge header through a hydraulic discharge valve. From 
the common discharge header, sea water flows into the CW inlet culvert through a 
drum strainer, which acts as a filter to remove fine debris, such as shells and 
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seaweed. Circulating water flows through the culvert up to the turbine condensers, 
where circulating water is used to condense steam being exhausted from the low-
pressured turbine. After passing through a pair of outlet valves, circulating water 
enters a concrete outlet culvert before it is discharged back to sea. 

Data relating to a targeted power output of 80 MW was collected. Two 
experiments were conducted to evaluate the applicability of FMM as an intelligent 
fault diagnosis tool. Before describing the experiments and the results, a discussion 
on bootstrapping, a statistical method used to evaluate the performance, is presented 
in the next section. 

9.4.1. The Bootstrap Method 

The performance indicator used in the experiments was accuracy, i.e., ratio of the 
correct number of predictions for the test samples to the total number of test 
samples. In addition, the bootstrap method (Efron, 1979; Efron and Tibshirani, 
1993) was employed to compute the estimated confidence bounds for accuracy. 
Estimation of confidence bounds is important in order to ascertain the statistical 
variation of accuracy, owing to the uncertainty of the network performance when 
different initialisation conditions were used. 

Bootstrapping is useful for estimating the confidence interval of 
parameters when the underlying distribution function of the parameter is unknown. 
It involves generating subsets of data on the basics of random sampling with 
replacements as data are sampled. This method has no constraints upon the number 
of times that a data sample may be represented in generating a single resampling. 
The size of the resampling subsets may be fixed arbitrarily which is independent of 
the parameter of the experimental design, and may even exceed the total number of 
data. The algorithm to estimate confidence intervals by using bootstrapping is as 
follows.

1. Collect a sample 1 2( , , , )nx x x  with mean ˆ  that defines a 

discrete distribution function  having mass Ĝ 1
n

 at each of n sample 

points. 

2. Draw a sample randomly from . The distribution of each Ĝ * 1ix  in the 

bootstrap sample is , i.e., * 1ˆ iG * 1
1

ix , * 1
2
ix ,..., * 1i

nx  ~ .* 1ˆ iG
3. Calculate the new mean *ˆ i .
4. Repeat step 2 and 3 m times to obtain * 1ˆ i , * 2ˆ i ,..., .*ˆ im

5. Sort the bootstrap mean values in ascending order, * 1ˆ i  < * 2ˆ i  <...< 
.*ˆ im

6. Calculate the confidence intervals from the sorted list. The confidence 

interval is ( , ), where 1cCOF 2cCOF 1 2c
maCOF  (upper confidence 

interval), and 2 1cCOF m COF 1c  (lower confidence interval), when a
is the confidence level (e.g., 0.95 for 95% confidence interval). 
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9.4.2. Experiment I – Heat Transfer Conditions 

The turbine condensers use circulating water to remove rejected energy (heat) from 
the low-pressured steam and, at the same time, to keep the turbine backpressure 
(condenser vacuum) at the lowest possible yet constant level. Heat transfer 
conditions in the condenser have a significant effect on the condenser backpressure, 
in which an efficient heat transfer process will assist in maintaining the condenser 
backpressure at a low level. With a satisfactory level of condenser backpressure, a 
high turbine work efficiency to generate power can be maintained.  On that account, 
factors such as pressure and temperature of the exhaust steam and the cooling water 
have a profound influence on the performance of the condenser in the process of 
condensation.

The data set used in this experiment contained 2439 samples.  Each data 
sample consisted of 12 features comprising the temperature and pressure 
measurements at various inlet and outlet points of the condenser, as well as other 
important parameters as shown in Table 9.1. The heat transfer conditions were 
classified into two categories, i.e., the process of heat transfer was accomplished 
either efficiently or inefficiently.  From the database, there were 1224 data samples 
(50.18%) that showed inefficient heat transfer condition, whereas 1215 data 
samples (49.82%) showed efficient heat transfer condition in the condenser.  The 
data samples were equally divided into three subsets for training, prediction and 
test.

Table 9.1. List of sensor parameters used in the experiments 

No. Parameter Description

1 LPT A Low Pressure Cylinder Exhaust Temperature A

2 LPT B Low Pressure Cylinder Exhaust Temperature B

3 GEN Generator

4 CWIT A Condenser Circulating Water Inlet Temperature A

5 CWIT B Condenser Circulating Water Inlet Temperature B

6 CWOT A Condenser Circulating Water Outlet Temperature A

7 CWOT B Condenser Circulating Water Outlet Temperature B

8 CWIP A Condenser Circulating Water Inlet Pressure A

9 CWOP A Condenser Circulating Water Outlet Pressure A

10 CWIP B Condenser Circulating Water Inlet Pressure B

11 CWOP B Condenser Circulating Water Outlet Pressure B

12 VAC Condenser Vacuum

During the experimental study, some important FMM parameters were 
varied systematically to investigate the network performance. Table 9.2 shows the 
test accuracy rates subject to varying  from 0.01 to 0.10, with the sensitivity 
parameter 5 . The highest accuracy rate achieved was 97.66%, and was 
produced by setting 0.04 . Bootstrapping was applied to the results to determine 
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the 95% confidence intervals of accuracy, and the results are shown in Table 9.3. 
Notice that the difference between the lower and upper limits of the confidence 
bounds was small, suggesting that the network performance was stable. 

Table 9.2. Test results for Experiment I 

θ Test Accuracy 

(%) 

θ Test Accuracy 

(%)

0.01 97.17 0.06 96.06 

0.02 97.05 0.07 96.06 

0.03 97.66 0.08 95.33 

0.04 97.66 0.09 94.34 

0.05 95.85 0.10 95.08 

Table 9.3. Bootstrapped results for Experiment I 

Confidence Intervals Number of 

Resamplings 

Lower (%) Upper (%) 

Mean 

(%) 

200 96.695 97.301 97.030 

400 96.686 97.285 97.007 

600 96.694 97.310 97.020 

800 96.686 97.309 97.007 

1000 96.685 97.301 97.009 

Table 9.4. Pruning results for Experiment I 

τ Test Accuracy (%) No. of 

Hyperboxes 

0.0 97.66 499 

0.1 97.05 205 

0.2 97.05 196 

0.3 97.05 196 

0.4 96.93 194 

0.5 96.93 194 

0.6 96.68 192 

0.7 96.06 100

0.8 79.09 27 
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Network pruning was performed to remove those hyperboxes that had a 
low confidence factor. The pruning threshold, , was varied from 0.0 to 0.8, with 

0.04 . Table 9.4 shows the test accuracy and the number of hyperboxes after 
pruning. The result for 0.7  was selected for rule extraction because of the high 
test accuracy rate with a smaller network size. 

Table 9.5 shows six rules from each class that have the best confidence 
factor while Table 9.6 shows an interpretation of the first positive rule and the 
second negative rule. The heat transfer conditions can be ascertained by monitoring 
certain parameters such as LPT A, LPT B, CWIT A, CWIT B, CWOT A, CWOT B 
and VAC. Notice that VAC for most of the positive rules ranged from 3 (medium) 
to 4 (high) while for the negative rules it ranged from 1 (very low) to 2 (low). 
Indeed, in order to have efficient heat transfer in the condensers, the condenser 
vacuum should be preserved at a low level. If CWIT A and CWIT B increased, the 
steam temperatures (LPT A and LPT B) exiting the turbine would increase to 
establish the needed differential temperature for continuous heat transfer during 
power generation. This situation can be identified in most of the extracted rules, 
where LPT A and LPT B were less than 2 (low) while CWIT A and CWIT B 
ranged from 2 (low) to 3 (medium) for the negative rules. On the other hand, if LPT 
A and LPT B increased from 3 (medium) to 4 (high), CWIT A and CWIT B would 
increase from 3 (medium) to 5 (very high) in most positive rules. The rules 
extracted were found to be compatible with domain knowledge as well as the 
experts’ opinions in maintaining the CW system. 

9.4.3. Experiment II – Tube Blockage Conditions 

In this experiment, the objective was to predict the occurrence of tube blockage in 
the CW system. The cleanliness of the condenser tubes has a significant impact on 
the ability of the condenser to transfer heat from the exhaust steam to the cooling 
water. One of the most common causes of blockage is tube fouling. Occasionally, 
there are mud and small solid materials, such as seaweed, shells, and sand, which 
have inadvertently escaped the filtering process of the CW system. As a 
consequence, these solid materials enter the CW piping system, which includes the 
condenser tubes. They may block the tubes and affect the efficiency of the 
condenser in cooling exhaust steam. Thus, the second experiment focused on 
blockage detection in the condenser tubes and nearby pipes. The conditions of the 
condenser tubes were categorized into two classes: significant blockage and 
insignificant blockage. 

The same data set as used in Experiment I was employed. From the set, a 
total of 1313 samples (53.83%) showed significant blockage and the remaining 
showed insignificant blockage in the condenser tubes. The data samples were again 
equally divided into three subsets for training, prediction and test. A number of tests 
were conducted by varying  from 0.01 to 0.95 with the sensitivity parameter 

5 . Table 9.7 shows the results from 0.09 to 0.50  as setting 
0.09 would result in overspecific rules while setting 0.50  would result in 

too common rules. Notice that FMM was able to achieve perfect score (100% 
accuracy) in this experiment. 
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Table 9.5. Example of the extracted rules for Experiment I, where positive (+) and 
negative (–) rules, respectively, indicate inefficient and efficient heat transfer conditions 

Parameters Test 

Rule 

1 2 3 4 5 6 7 8 9 10 11 12 

CF

No Acc 

+ 3-4 3-4 3 3 2 2-3 3 1 1 2 1 3 1.000 19 1.00 

+ 3 3 4 3 2 2-3 3 1-2 1 2 1 3-4 0.900 19 1.00 

+ 3 3 3-4 3 2 2 3 2 1-2 2 1 3 0.900 24 1.00 

+ 3 3 3-4 3 2 2 3 1 1 2 1 3-4 0.950 15 1.00 

+ 3 3 3 5 4 3-4 4 2 3-4 2 3 2 0.850 19 1.00 

+ 3 2-3 3 4 3 3 3 1-2 3 1 1 3 0.800 19 1.00 

– 2 2 4 4 2 2 2 3 4 2 1 2 1.000 17 0.94 

– 1-2 1 3-4 3 1 2 1 3 4 2 1 2 0.943 21 1.00 

– 1 1-2 3 2 2-3 1 3 2 2 2 5 2 0.943 16 1.00 

– 2 2 3-4 3 2 2 1-2 3 4 2-3 1 1-2 0.943 17 1.00 

– 1 1 4 2-3 1 1 1 2 4 2 1 1-2 0.886 20 1.00 

– 1 1 3 3 1 1 1 3 4 2-3 1 1 0.829 26 1.00 

Table 9.6. Interpretation of the first positive rule and the second negative rule 

IF IF 

LPT A = medium to high LPT A = very low to low 

LPT B = medium to high LPT B = very low 

GEN = medium GEN = medium to high 

CWIT A = medium CWIT A = medium 

CWIT B = low CWIT B = very low 

CWOT A = low to medium CWOT A = low 

CWOT B = medium CWOT B = very low 

CWIP A = very low CWIP A = medium 

CWOP A = very low CWOP A = high 

CWIP B = low CWIP B = low 

CWOP B = very low CWOP B = very low 

VAC = medium VAC = low 

THEN Heat transfer is not efficient THEN Heat transfer is efficient 

To facilitate rule extraction, network pruning was conducted to remove 
those hyperboxes that had a low confidence factor. Table 9.8 summarises the results 
obtained by varying  from 0.0 to 0.8, with 0.15 . It can be seen that setting 

0.7 resulted in a reasonably high test accuracy rate with a small network size. 
Bootstrapping was applied to the pruned results to determine the 95% confidence 
intervals of the network accuracy. The bootstrapped results are tabulated in Table 
9.9. Again, the results indicate that the network performance remained stable after 
pruning. 

Table 9.10 shows the extracted rules and examples of their interpretation 
are shown in Table 9.11. Notice that CWOP B was at 1 (very low) for all the 
positive rules. On the contrary, CWOP B for all the negative rules ranged from 3 
(medium) to 4 (high). In addition, CWOP A for the positive rules can achieve 1 
while CWOP A for the negative rules ranged from 3 (medium) to 5 (very high). In 
fact, there is a close relationship between the flow rate and the pressure of the CW 
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system. The low outlet pressure is actually a sign of insufficient flow of circulating 
water in the condenser tubes. Insufficient flow can also be traced by a low CW inlet 
pressure. This is clearly shown by CWIP A and CWIP B of the first, third, fourth, 
and sixth positive rules, where the rules ranged from 1 (very low) to 3 (medium). 
The extracted rules, again, were found to be compatible with domain information as 
well as the experts’ opinions. 

Table 9.7. Test results for Experiment II 

θ Test Accuracy 

(%) 

θ Test Accuracy 

(%) 

0.09 100.00 0.30 99.88 

0.10 100.00 0.35 100.00 

0.15 100.00 0.40 100.00 

0.20 99.88 0.45 99.88 

0.25 99.02 0.50 99.88 

Table 9.8. Pruning results for Experiment II 

τ Test Accuracy (%) No. of Hyperboxes 

0.0 97.66 499 

0.1 97.05 205 

0.2 97.05 196 

0.3 97.05 196 

0.4 96.93 194 

0.5 96.93 194 

0.6 96.68 192 

0.7 96.06 100

0.8 79.09 27 

Table 9.9. Bootstrapped results for Experiment II 

Confidence Intervals Number of 

Resamplings 

Lower (%) Upper (%) 

Mean 

(%) 

200 92.848 96.023 94.398 

400 92.463 96.121 94.410 

600 92.841 95.941 94.471 

800 92.865 96.203 94.531 

1000 92.913 96.146 94.466 
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Table 9.10. Example of the extracted rules for Experiment II, where positive (+) and 
negative (–) rules, respectively, indicate significant and insignificant tube blockage in the 

CW system 

Parameters Test 

Rule 

1 2 3 4 5 6 7 8 9 10 11 12 

CF

No Acc 

+ 3-4 3-4 1-4 3-4 2 2-3 2-3 1-2 1-2 2 1 3-4 1.000 109 1.00 

+ 1 1 2-4 2-3 1-2 1 1 2-3 4 2-3 1 1-2 0.914 64 1.00 

+ 2-3 2 4-5 3-4 2 2-3 2 1-2 3 1-2 1 2-3 0.875 73 1.00 

+ 1-2 2 3-4 3-4 2 2 2 1-3 3-4 1-3 1 2 0.796 71 1.00 

+ 2-3 2-3 2-4 5 4 3 3 2-3 3-4 2-3 1 2-3 0.843 53 1.00 

+ 3 2-3 2-5 4 2-3 3 2-3 1-2 3 1 1 3-4 0.741 24 1.00 

– 2-3 2 2-4 4-5 3-4 2-3 2-3 3 4 3 3-4 1-2 1.000 107 0.94 

– 2-3 2-3 2-3 4-5 3-4 3 3-4 2-3 4 2-3 3 2-3 0.952 95 1.00 

– 5 5 2-4 5 5 5 5 3 5 2 3 4-5 0.782 19 1.00 

– 3-4 3 2-3 5 4-5 3-4 4 2-3 3-4 2 3 2-3 0.782 40 1.00 

– 2 2 3-4 3-5 2 2 2-3 2 3-4 2 3 1-2 0.758 37 1.00 

– 3 2-3 1-4 5 4 3 3-4 3-4 4 3 3 2-3 0.746 24 1.00 

Table 9.11. Interpretation of the first positive rule and the first negative rule 

IF IF

LPT A = medium to high LPT A = low to medium 

LPT B =  medium to high LPT B =  low 

GEN = low to high GEN = low to high 

CWIT A = medium to high CWIT A = high to very high 

CWIT B = low CWIT B = medium to high 

CWOT A = low to medium CWOT A = low to medium 

CWOT B = low to medium CWOT B = low to medium  

CWIP A = very low to low CWIP A = medium 

CWOP A = very low to low CWOP A = high 

CWIP B = low CWIP B = medium 

CWOP B = very low CWOP B = medium to high 

VAC = medium to high VAC = very low to low 

Then          Significant blockage Then              Insignificant blockage

9.5. Summary 

In this chapter, FMM is endowed with a rule extraction algorithm. With the rule 
extraction algorithm, FMM is able to explain its predictions using fuzzy if-then 
rules, thus overcoming the “black-box” phenomenon as suffered by most NN 
models. Applicability of FMM to fault diagnosis tasks in a power generation plant 
has been examined. The potential of FMM in learning and predicting faults in 
complex processes as well as in providing a comprehensible explanation for its 
predictions has been demonstrated in two experiments. The proposed rule extraction 
algorithm is able to yield a comprehensible rule set. The extracted rules have been 
verified as meaningful and are in line with the domain knowledge as well as 
experts’ opinions. Further research work will concentrate on the aspects of 
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implementation, validation, and verification of FMM as a useful, robust, and 
intelligent fault diagnosis tool in a variety of application domains. 
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10. Fuzzy Neural Networks Applied to 
Fault Diagnosis 

João Calado and José Sá da Costa

In this chapter, after a brief state-of-the-art of the use of ANNs in industrial 
applications, the authors describe a fault diagnosis approach based on Fuzzy Neural 
Networks (FNNs) that combines the advantages of both fuzzy reasoning and neural 
networks. Fuzzy reasoning is capable of handling uncertain and imprecise 
information, while an ANN is capable of learning from examples. In contrast to 
conventional feed-forward ANNs, FNNs have an additional layer that converts the 
increment in each on-line measurement into fuzzy sets. Thus, on-line measurement 
data are compressed into qualitative values whose semantics are represented by 
fuzzy sets and, hence, the training of the FNN and the diagnosis of the faults can be 
carried out more efficiently. 

However, fault symptoms concerning multiple simultaneous faults are 
harder to learn than those associated with single faults. Furthermore, the larger the 
set of faults, the larger the set of fault symptoms will be and, hence, the longer and 
less certain the training outcome. In order to overcome this problem, the proposed 
approach comes forward with a hierarchical structure of three levels, where several 
fuzzy neural networks are used. Thus, a large number of patterns are divided into 
many smaller subsets so that the classification can be carried out more efficiently. 
The adoption of a hierarchical structure of several FNNs for fault diagnosis aims at 
developing an architecture that can localize abrupt and incipient as well as single 
and multiple faults correctly, or at least with a minimum misclassification rate, and 
be easily trained using only single abrupt fault symptoms.  In such an architecture, 
measurements or faults act as antecedents from which we can infer a classification 
of the pattern input that is diagnosis. 

In order to test the performance and robustness of the current fault 
diagnosis approach, a pneumatic servomotor actuated industrial control valve has 
been used as test bed, and the analysis of results will be presented, as well as 
conclusions drawn. 

10.1. Introduction 

Nowadays, control systems are becoming more and more complex and control 
algorithms more and more sophisticated. Therefore, on-line fault detection and 
isolation (FDI) is one of the most important tasks in safety-critical and intelligent 
control systems. A major goal of intelligent control systems is to achieve high 
performance with increasing reliability, availability and automation of maintenance 
procedures. In many applications, increased requirements on productivity and 
performance lead to plants operating near design limits for much of the time. This 
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may often result in system failures, which are typically characterised by critical 
changes in the inherent dynamics of the process. Process failures can potentially 
result not only in the loss of productivity but also in the loss of expensive 
equipment and, ultimately, of human lives. For these reasons, there is a growing 
need for on-line FDI approaches in order to increase reliability of such safety-
critical industrial processes. 

In dynamical systems, faults may be divided in two main classes: abrupt 
faults and incipient faults. The incipient faults affect the process behaviour slowly 
and may take a long time before being detected. Conversely, abrupt faults give rise 
to jumps in the process parameters or model, resulting in an appreciable deviation 
from normal behaviours. Abrupt faults are easy to detect, while incipient faults are 
more difficult to detect since they could resemble the transient behaviour of the 
process under normal regulation. 

Thus, early detection and isolation of process faults, i.e., before they 
seriously degrade or affect safety as well as economic and environmental factors, is 
becoming an important consideration in effective plant supervision and control. In 
this context, fault detection and isolation and subsequent diagnosis of the degree of 
fault severity, likely causes, has been increasing in importance. Precise diagnostic 
information must be generated quickly to protect the plant from shutdown and 
provide operators with appropriate process status information to help them to take 
the correct decisive actions not only when faults become serious but also when 
faults that are developing become difficult to detect (incipient faults). 

FDI systems based on conventional techniques are usually supported by 
linear process model (Patton et al., 1994). For nonlinear processes, the traditional 
approach is to linearise the process model around the process operating point. This 
approach is effective for many nonlinear processes if the operating range is limited 
and the FDI system has been designed to be robust enough to tolerate small 
perturbation around the operating point. However, for processes with a high 
nonlinearity and a wide operating range, the linearised approach fails to give 
satisfactory results. One solution is to use a large number of linearised models 
corresponding to a range of operating points which is not yet very practical for real-
time applications (Chen, 1995). On the other hand, the difficulty associated with 
diagnosing multiple faults based on classical linear mathematical models like the 
state space model arises from the need to have a very accurate model and the 
extensive calculations required. If there are errors in the model, they manifest 
themselves as faults, yielding false alarms. Furthermore, dealing with incipient 
faulty scenarios, where faults evolve gradually instead of suddenly occurring abrupt 
faults, is a major limitation of some techniques used in the conception of current 
FDI systems. 

The increased number of international conferences and workshops 
including the FDI topic demonstrates the great attention given by the scientific 
community to the development of related methodologies. Such a research topic can 
be grouped into three main areas: quantitative, qualitative approaches or a mix of 
both (Patton et al., 2000). The quantitative approaches are typically based on a 
mathematical model of the process (differential equations – white box model) or on 
a model based on artificial neural networks (black box model). On the other hand, 
the qualitative approaches are typically based on qualitative models of the 
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processes, like fuzzy models or other qualitative techniques (Calado et al., 2003). 
The third group of FDI approaches includes the coupling between qualitative and 
quantitative methodologies. 

As pointed out by several authors (Patton et al., 1999; Calado et al., 2001), 
the application of different methods depends on our knowledge about the process 
and/or about the main objectives needed to be achieved. However, choosing 
between one or other methodology to implement a specific FDI system is often not 
an easy task since, according to the type of faults that such a system has to cope 
with, each method is characterized by some advantages and some disadvantages. As 
previously mentioned, the quantitative methods based on mathematical models are 
normally simplified (linear models) because the real processes are normally very 
complex and nonlinear, hence, hard to model. The quantitative methods that use 
artificial neural networks depend on the data that can be acquired from the process 
and it is also a very hard task to obtain faulty data from real processes. Usually, the 
data contain only the steady-state behaviour of the processes. On the other hand, the 
qualitative approaches (like fuzzy systems) depend on the knowledge and 
experience available about the process. So, the best solution is the combination 
between the two approaches, where the advantages of both methodologies could be 
combined compensating the disadvantages. 

Thus, this chapter will be concerned with the application of fuzzy neural 
networks for fault isolation purposes and is organized as follows: in the next section 
a brief introduction to the artificial neural networks topic is given, as well as some 
industrial applications of multilayer perceptron and some applications of fuzzy 
neural networks are pointed out; section 10.3 describes the application of artificial 
neural networks to on-line fault detection and isolation (FDI) and a specific 
methodology based on a hierarchical structure of fuzzy neural networks is 
presented; section 10.4 presents the results achieved with the application of the 
methodology presented in the previous section to fault isolation of a pneumatic 
servomotor actuated industrial control valve; in section 10.5 some concluding 
remarks are presented. 

10.2. Artificial Neural Networks 

Artificial Neural Networks (ANNs) share their origins with the infancy of machine-
based information processing, when McCulloch and Pitts first showed that a 
network of interconnecting threshold units could replicate any Boolean function. 
These units are modelled on the response of neural cells in biological nervous 
systems, hence the evocative name given to this field. 

Therefore, ANNs grew out of research in Artificial Intelligence; 
specifically, attempts to mimic the fault-tolerance and capacity to learn of 
biological neural systems by modelling the low-level structure of the brain 
(Patterson, 1996). The main branch of Artificial Intelligence research in the 1960s 
to 1980s proposed the Expert Systems. These are based upon a high-level model of 
reasoning processes attempting to mimic the concept that human beings reasoning 
processes are built upon manipulation of symbols. It became rapidly apparent that 
these systems, although very useful in some domains, failed to capture certain key 
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aspects of human intelligence. In order to reproduce intelligence, it would be 
necessary to build systems with a similar architecture. 

The brain is mainly composed of a very large number (about 
10,000,000,000) of neurons, massively. Each neuron is a specialized cell that can 
propagate an electrochemical signal. The neuron has a branching input structure 
(the dendrites), a cell body, and a branching output structure (the axon). The axon 
of one cell connects to the dendrites of another via a synapse. When a neuron is 
activated, it fires an electrochemical signal along the axon. This signal crosses the 
synapses to other neurons, which may in turn fire. A neuron fires only if the total 
signal received at the cell body from the dendrites exceeds a certain level known as 
the firing threshold. The strength of the signal received by a neuron and, hence, its 
chances of firing, critically depends on the efficacy of the synapses. Each synapse 
actually contains a gap, with neurotransmitter chemicals poised to transmit a signal 
across the gap. One of the most influential researchers into neurological systems 
(Donald Hebb) postulated that learning consisted mainly in altering the "strength" 
of synaptic connections. Recent research in cognitive science, in particular in the 
area of no conscious information processing, has further demonstrated the 
enormous capacity of the human mind to infer ("learn") simple input–output 
covariations from extremely complex stimuli (Lewicki et al., 1992). 

Thus, from a very large number of extremely simple processing units (each 
performing a weighted sum of its inputs, and then firing a binary signal if the total 
input exceeds a certain level), the brain manages to perform extremely complex 
tasks. Of course, there is a great deal of complexity in the brain which has not been 
discussed here, but it is interesting that ANNs can achieve some remarkable results 
using a model not much more complex than this. 

ANN models, as an approximation scheme, are normally viewed as a 
composition of many non-linear computational elements operating in parallel and 
arranged in certain patterns. These models attempt to achieve good performance via 
dense interconnections of simple computational elements. The parameters 
associated with each interconnection are determined during a training period 
whatever the topological structure of the neural network models. However, all are 
aimed at approximating complex nonlinearities by linear combination of a simple 
nonlinear function. 

Thus, ANNs witnessed an explosion of interest over the last few years, and 
are being successfully applied across a broad range of problem domains, in areas as 
diverse as finance, medicine, engineering, geology and physics. Indeed, anywhere 
there are problems of prediction, classification or control, ANNs are being 
introduced. This sweeping success can be attributed to a few key factors: 

ANNs are parallel systems used for solving regression and 
classification problems (Bishop, 1995). They estimate a function 
without requiring a mathematical description of how the output 
functionally depends on the input: they learn from examples. In 
particular, ANNs are nonlinear systems. For many years linear 
modelling has been the commonly used technique in most 
modelling domains, since linear models have well-known 
optimisation strategies. Where the linear approximation was not 
valid, which was frequently the case, the models suffered 
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accordingly. ANNs also keep in check the curse of dimensionality
problem that bedevils attempts to model nonlinear functions with 
large numbers of variables.  
ANNs learn by examples. The ANN user gathers representative 
data, and then invokes training algorithms to automatically learn 
the structure of the data. Although the user does need to have 
some heuristic knowledge of how to select and prepare data, how 
to select an appropriate neural network, and how to interpret the 
results, the level of user knowledge needed to successfully apply 
ANNs is much lower than would be the case using some more 
traditional nonlinear statistical methods. 

ANNs are also intuitively appealing as they are a crude low-level model of 
biological neural systems. In the future, the development of this neurobiological 
modelling may lead to genuinely intelligent computers. 

ANNs are applicable in virtually every situation in which a relationship 
between the predictor variables (inputs) and predicted variables (outputs) exists, 
even when that relationship is very complex and not easy to articulate in the usual 
terms of "correlations" or "differences between groups." A few representative 
examples of problems to which neural network analysis has been applied 
successfully are: 

Detection of medical phenomena. A variety of health-related 
indices (e.g., a combination of heart rate, levels of various 
substances in the blood, respiration rate) can be monitored. The 
onset of a particular medical condition could be associated with a 
very complex (e.g., nonlinear and interactive) combination of 
changes on a subset of the variables being monitored. ANNs have 
been used to recognize this predictive pattern so that the 
appropriate treatment can be prescribed.  
Stock market prediction. Fluctuations of stock prices and stock 
indices are another example of a complex, multidimensional, but 
in some circumstances at least partially-deterministic 
phenomenon. ANNs are being used by many technical analysts to 
make predictions about stock prices based upon a large number of 
factors such as past performance of other stocks and various 
economic indicators.  
Credit assignment. A variety of pieces of information are 
usually known about an applicant for a loan. For instance, the 
applicant's age, education, occupation, and many other facts may 
be available. After training an ANN on historical data, the ANN 
could be used to classify applicants as good or bad credit risks.  
Monitoring the condition of machinery. ANNs can be 
instrumental in cutting costs by bringing additional expertise to 
scheduling the preventive maintenance of machines. An ANN can 
be trained to distinguish between the normal operational 
conditions of a machine versus when it is on the verge of a 
problem. After this training period, the expertise of the network 
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can be used to warn a technician of an upcoming breakdown, 
before it occurs and avoid costly unforeseen "downtime."  
Engine management. ANNs have been used to analyze the input 
of sensors from an engine. The ANN controls the various 
parameters within which the engine functions, in order to achieve 
a particular goal, such as minimizing fuel consumption. 

As a matter of fact, neural computation is a highly interdisciplinary field, 
touching upon such diverse disciplines as statistics, neuroscience, psychology, 
physics or linguistics. As mentioned above, what unites the field is the original 
motivation behind neural networks to abstractly model the function of neurons and 
neuron assemblies in the brain. Starting from this motivation, and the number of 
models that have been developed, the field has moved outwards into several 
directions, and continues to move today. 

In the next two subsections, some industrial applications of artificial neural 
networks, are reported. 

10.2.1. Industrial Applications of Multilayer Perceptron 

In engineering and physics, the classical approach to describe the behaviour and 
functioning properties of real systems and to obtain mathematical models to 
represent them relies on the use of algebraic and differential equations. The use of 
parameter estimation techniques and accurate knowledge of the physical system 
dynamics are required by such approaches together with numerical calculations to 
emulate the system operation. However, due to the complexity of the physical 
system, uncertainties are always present, making the corresponding mathematical 
model inaccurate, or even nonrealistic. Hence, in practice, approximate analysis is 
used and linearity assumptions are usually made. 

To overcome the above difficulties, as mentioned in the last section, ANNs 
implement algorithms that attempt to achieve a neurological related performance, 
such as learning from experience, making generalizations from similar situations 
and judging states when poor results were achieved. 

In recent years, many real-world industrial problems have been solved by 
applying ANNs. Such approaches include functional predictions and systems 
modelling when the physical systems are not well understood or are highly 
complex, pattern recognition and robust classifiers, with the ability to generalize 
while making decisions about imprecise input data. 

Nowadays, many different types of ANNs are known. However, some of 
the more popular include multilayer perceptron (MLP), which is generally trained 
with the backpropagation learning algorithm, learning vector quantization, radial 
basis function (RBF), Hopfield and Kohonen networks, to name a few. Depending 
on how data is processed through the artificial neural network, they can be divided 
in two main groups. One of those groups is concerned with feedforward ANNs 
while the other includes the recurrent ANNs (i.e., implement feedback). Another 
way of classifying ANNs is related to the learning (or training) method used, as 
some ANNs employ supervised learning, while others are referred to as 
unsupervised or self-organizing learning methodologies. 
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Control engineers are often faced with engineering problems exhibiting 
knottiness, nonlinearities and uncertainties (Fukuda and Shibata, 1992). ANNs have 
been proven to be a powerful methodology providing accurate solutions for such 
classes of problems and overcoming the difficulties associated with the classical 
methods to deal with those problems. They are suitable to cope with such 
complexities due to the following features: learning from training data used for 
physical system identification by finding a set of connection strengths that will 
allow the network to carry out the desired computation (Rumelhart et al., 1994); 
generalisation from inputs not previously presented during the training phase by 
accepting an input and producing a plausible response determined by the internal 
ANN connection structure, which makes the overall system robust against noisy 
data and features exploited in industrial applications (Jung and Hsia, 1998); 
mapping of nonlinearities making them suitable for identification in process control 
applications (Rahman et al., 2000); parallel processing capabilities, allowing fast 
processing for large-scale dynamical systems; applicable to multivariable systems, 
since they naturally process many inputs and have many outputs; used as a black-
box approach and implemented on compact processors for space-and-power 
constrained applications with no prior knowledge about the physical system being 
modelled. 

The Multilayer Perceptron (MLP) is the most used model in classification 
problems; it is an artificial neural network with a topology where each neuron 
output is connected to every neuron in subsequent layers, connected in cascade with 
no feedback connections or connections between neurons in the same layer. Such an 
approach has been used in several industrial applications reported by many authors. 
Some examples are automatic wood surface inspection (Lampinen et al., 1998), 
speed control of DC motors (Rubaai and Kotaru, 2000; Venayagamoorthy and 
Harley, 1999), diagnostics of induction motor faults (Chow et al., 1991, 1993; 
Filippetti et al., 1995, 2000), induction motor control (Burton and Harley, 1998; 
Burton et al., 1995; Huang et al., 1999; Wishart and Harley, 1995), and current 
regulator for pulsewidth-modulation (PWM) rectifiers (Cichowlas et al., 2000). 
Maintenance and sensor failure detection was reported by Naidu et al. (1990), 
check valves operating in a nuclear power plant (Ikonomopoulos et al., 1992; 
Tsoukalas and Reyes-Jimenez, 1990), and vibration monitoring in rolling element 
bearings (Alguindigne and Uhrig, 1994). It has been widely applied in feedback 
control (Carelli et al., 1995; Er and Liew, 1997; Hashimoto et al., 1992; Jung and 
Hsia, 1998; Ozaki et al., 1991; Payeur et al., 1995; Sun et al., 2001; Sundareshan 
and Askew, 1997) and fault diagnosis of robotic systems (Vemuri and Polycarpou, 
1997). The MLP was used in modelling chemical processes (Bhat et al., 1990), to 
produce quantitative estimation of concentration of chemical components (Liu et
al., 1993), and to select powder metallurgy materials and process parameters 
(Cherian et al., 2000). It was used in a turbo generator controller 
(Venayagamoorthy and Harley, 1999), digital current regulation of inverter drivers 
(Buhl and Lorenz, 1991), modelling and control of a welding process (Andersen et 
al., 1990; Cook et al., 1995). An optimisation tool applied to the gas industry was 
reported by Martineau et al. (2002), as well as a tool to predict daily natural gas 
consumption needed by gas utilities (Khotanzad et al., 2000). Such artificial neural 
network was also used in a temperature control system (Khalid and Omatu, 1992; 
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Khalid et al., 1995), monitoring feedwater flow rate and component thermal 
performance of pressurised water reactors (Kavaklioglu and Upadhyaya, 1994), and 
fault diagnosis in a heat exchanger continuous stirred tank reactor system (Sorsa et
al., 1991). 

The MLP is indeed the most used ANN structure and spread out across 
several disciplines, like identification and defect detection on woven fabrics (Sardy 
et al., 1993), automatic detection of damages on a critical conveyor belt 
transporting 60 million tons of coal per annum (Alport et al., 2002), prediction of 
paper cure in the papermaking industry (Edwards et al., 1999), controller steering 
backup truck (Nguyen and Widrow, 1990), and modelling of plate rolling processes 
(Gorni, 1997). 

The majority of the reported applications involve fault detection and 
diagnosis, quality control, pattern recognition and adaptive control (Boger, 1995; 
Fogel, 1990; Liu et al., 1993; Uhrig, 1994). All the mentioned MLP applications 
demonstrate adaptability features with the industrial problem, thus becoming part of 
the industrial processes. 

In the next subsection some applications of a special type of artificial 
neural networks called fuzzy neural networks are presented. 

10.2.2. Applications of Fuzzy Neural Networks 

A major reason for the widespread application of fuzzy systems in industry is that 
they have the ability to handle problems not well defined, including nonlinearity 
and uncertainty, are easy to understand, are easy to apply quickly, and reduce 
development costs. However, fuzzy systems can express knowledge but cannot 
learn to adapt themselves. ANNs have the ability to learn, so the two methods 
complement each other. From an engineering point of view much of the interest in 
ANNs and fuzzy systems has been for dealing with difficulties arising from 
uncertainty, imprecision and noise. Fuzzy reasoning is capable of handling 
uncertain and imprecise information, while an ANN is capable of learning from 
examples. Thus, fuzzy neural networks (FNNs) intend to combine the advantages of 
both fuzzy reasoning and ANNs (Buckley and Hayashi, 1994a). 

The name fuzzy neural networks suggests that it refers to artificial neural 
networks that are fuzzy, which means that some kind of fuzziness has been 
introduced to standard artificial neural networks. Therefore, as pointed out by 
Rutkowska and Hayashi (1999), such a name is most suitable for the neural 
networks obtained by direct fuzzification of signals and/or weights, as well as 
artificial neural networks composed of fuzzy neurons. Artificial neural networks, 
fuzzified by introducing fuzzy signals, weights, activation functions, etc., have been 
reported by several authors (Hayashi et al., 1993; Ishibuchi et al., 1995). Fuzzy 
neurons and fuzzy neural networks were first introduced by Lee and Lee (1975). 
Their fuzzy neurons were understood as a fuzzy generalisation of the McCulloch-
Pitts neuron model (McCulloch and Pitts, 1943), which was historically the first 
neuron model proposed for classical artificial neural networks (Zurada, 1992; 
Anderson, 1995). Much later, the classical perceptron (Rosenblatt, 1958) was 
considered with the addition of membership functions; it was called the fuzzy 
perceptron (Keller and Hunt, 1985). A survey paper of Takagi (1990) discussed the 
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fusion of artificial neural networks and fuzzy logic. However, very little research on 
fuzzy neural networks was done by then. 

Fuzzy set theory has long been considered a suitable framework for pattern 
recognition, especially classification procedures because of the inherent fuzziness 
involved in the definition of a class or of a cluster (Lin and Lee, 1996). On the other 
hand, fuzzy set theory has been introduced to cope with uncertainty in other steps of 
the pattern recognition process, as for instance, to cope with the fuzziness involving 
the feature or the classification space. 

In recent years, the concept of incorporating fuzzy logic into an ANN has 
grown into a popular research topic (Chen and Teng, 1995; Wang, 1997; Lin et al.,
1999, 2001). Fuzzy logic and artificial neural networks are complementary 
technologies (Lin and Lee, 1996). In contrast to classical ANNs or fuzzy systems, 
Fuzzy Neural Networks (FNNs) possess both their advantages. They combine the 
capability of fuzzy reasoning in handling uncertain information with the advantages 
of artificial neural networks, such as learning abilities, optimisation abilities, 
generalisation abilities and connectionist structures. Thus, one of the merits of the 
fuzzy neural approach is faster convergence speed with smaller network size as 
compared to the classical ANN (Kiguchi and Fukuda, 1997; Farag et al., 1998). 

Moreover, in many real-world applications, partial knowledge is available, 
but not a complete set of rules. What is needed is a technology that can work with a 
partial knowledge base and can learn from the additional data in order to perform 
the task correctly. Fuzzy logic handles the explicit knowledge, whereas the artificial 
neural networks handle the knowledge implicit in the data. A fusion of these two 
models into one model provides a better way of resolving problems that neither 
approach can solve separately. 

An FNN can process both numerical information from measuring 
instruments and linguistic information from experts. In addition to fuzzy rule-based 
neural networks, which are also called neuro-fuzzy networks whose aims are 
mainly to process numerical relationships (Horikawa et al., 1992; Jang, 1993; 
Chakraborty et al., 2002), another class of FNNs that has attracted researchers 
attention is feedforward fuzzified neural networks, which are defined from 
conventional feedforward artificial neural networks by including fuzzified neurons, 
or by substituting crisp neurons with fuzzified ones (Buckley and Hayashi, 1994b; 
Liu and Wang, 1999; Liu, 2000). This second class of FNNs have been successfully 
applied to many real problems that are inherently uncertain and imprecise, 
involving adaptive control, system identification and pattern classification 
(Ishibuchi et al., 1995; Feuring et al., 1999; Ishibuchi and Nii, 2001). 

Furthermore, according to Buckley and Hayashi (1994a), for an artificial 
neural network to be called a fuzzy neural network, the signals and/or weights must 
be fuzzy sets. They also consider three groups of FNNs. The first group includes the 
FNNs having real number signals but fuzzy set weights. In the second group the 
FNNs have fuzzy signals and real number weights. In the last group, FNNs have 
both fuzzy signals and fuzzy weights. 

Some examples where fuzzy neural networks have been applied aiming at 
the automation of many different tasks are model reference control methodology 
based on fuzzy neural networks (Chen and Teng, 1995) and position and force 
control of industrial robot manipulators (Kiguchi and Fukuda, 1997). 
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In the next section, the use of fuzzy neural networks for fault detection and 
isolation will be presented. Furthermore, a detailed description of a hierarchical 
structure of fuzzy neural networks developed for fault isolation purposes will be 
provided. 

10.3. Fuzzy Neural Networks Applied to FDI 

Recently, the use of FNN for FDI purposes has received increasing attention in both 
research and application (Garcia et al., 1997; Leonhardt and Ayoubi, 1997; Patton 
et al., 1999; Calado and Sá da Costa, 1999; Patton et al., 2000; Koscielny and 
Syfert, 2000; Calado et al., 2001; Mendes et al., 2002; Kowal et al., 2002; Calado 
et al., 2003). These reported studies have demonstrated that FNNs could be used to 
overcome the difficulties of conventional fault isolation techniques to deal with 
nonlinear behaviours. Establishing an appropriate training set allows the fuzzy 
neural networks to learn and generalize for operating with unseen input data. 
However, fault symptoms concerning multiple simultaneous faults are harder to 
learn than those associated with single faults. Furthermore, the larger the set of 
faults, the larger the set of fault symptoms will be and, therefore, the longer and less 
certain the training outcome. 

Hence, in order to overcome the difficulties previously mentioned, the 
authors will present an approach based on a hierarchical structure of three levels 
where several FNNs are used. Thus, a large number of patterns are divided into 
many smaller subsets so that the classification can be carried out more efficiently. 
The adoption of a hierarchical structure of FNN approach for fault isolation aims at 
development of an architecture that can localise abrupt and incipient single and 
multiple faults correctly, or at least with a minimum misclassification rate and be 
easily trained, from only single abrupt fault symptoms. 

Therefore, the current fault isolation approach consists of a hierarchical 
structure with three levels (lower, medium and upper) where the lower and the 
medium levels use one or more FNNs and the upper level is a fuzzy OR decision 
block, as depicted in Figure 10.1. It can be seen that the fuzzy neural networks have 
been achieved by adding a fuzzification layer to the conventional feedforward 
artificial neural networks (Haykin 1999). 

In previous applications using the current fault isolation methodology 
(Calado et al., 2001; Mendes et al., 2002), the inputs to the hierarchical structure of 
fuzzy neural networks (HSFNN) used for fault isolation purposes have been based 
on the differences of the process measurement variables values, as expressed by  
Eq. 1: 

k k kdMV MV MV i (1) 
where MV is the measured variable and k the sampling time. Further studies have 
been performed and the fault isolation approach based on the HSFNN has been 
applied for fault isolation purposes of a pneumatic servomotor actuated industrial 
control valve, as described in the next section. It has been observed during the 
mentioned design that such type of input variables has disadvantages, if they are 
applied to slowly developing incipient faults. In these cases, it is almost impossible 
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to distinguish the fault symptoms from the measurement noise without using a high 
value of index i. However, since the FDI system should be able to isolate faults in a 
very early stage of their development as already mentioned, the index i has to be 
relatively small. One way to overcome such a problem will be to consider as inputs 
of the HSFNN the time derivative of the measured variables instead of their 
differences as given by Eq. 1. 
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Figure 10.1. Hierarchical structure of fuzzy neural networks. 

However, since the measurement variables are affected by noise, it is 
necessary to exercise some caution on how the estimated derivative is obtained. 
Thus, the derivatives are estimated by means of linear regression, being given by 
the following formula: 
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In Eq. 2 the following notation is used: ak is the slope of the line at instant 
k; t stands for time; MV is the measured variable; and i is the number of points used 
for fitting the line. In the case study detailed in the next section, 15 points have been 
used for linear regression purposes (i=15). 

According to Figure 10.1 the lower level of the HSFNN consists of one 
FNN0 where all derivatives of the measured variables are used as inputs. The 
medium level uses a number of FNNs (structurally identical or different) that is 
equal to the number of single fault scenarios considered. Each FNNi at the medium 
level is also fed with all the measurement variables and each one is associated with 
an output of the FNN0 at the lower level, corresponding to a particular single fault. 
The upper level consists of a fuzzy OR operation on the FNNi outputs at the 
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medium level. There are different fuzzy OR operators available (Klir and Folger, 
1988), but in the current approach we use the max-min operations to construct the 
fuzzy OR, represented by Eq. 3. Thus, the final fault vector is the result of this 
operation, which means the maximum values of each fault for all outputs from the 
medium level. 

1max ,..., , 1nFNNFNN
i i iF F F i (3) 

The elements of the set used in the fuzzy OR operation are determined by 
the outputs of the FNN0 at the lower level. Thus, if the i-th and j-th outputs of the 
FNN0 at the lower level are taking values greater than 0.5, the threshold considered, 
then the outputs of the i-th and j-th FNNi at the medium level form the elements 
used in the fuzzy OR operation. However, if only one output of the FNN0 at the 
lower level is taking a value greater than 0.5, then the corresponding FNNi in the 
medium level is used to confirm that this fault is a single fault, or to isolate multiple 
faults. Obviously, the multiple faults must include the one corresponding to the 
output of the FNN0 at the lower level. 

In the fault isolation approach considered, as previously mentioned, the 
adopted FNN has an additional fuzzy input layer that maps the increment of each 
measurement into qualitative values whose semantics are represented by fuzzy sets. 
In the current approach, the fuzzification layer converts each input into the 
following fuzzy quantity space, Qf= nlarge, nmedium, nsmall, zero, psmall,
pmedium, plarge , by association with seven types of neurons (complement 
sigmoid activation function for nlarge, sigmoid function for plarge and Gaussian 
function for all the others). The hidden and output layers processing elements use 
the sigmoid function as their activation function. The membership functions 
associated with the neurons in the fuzzification layer could be determined by using 
the c-mean clustering algorithm (Bezdek, 1981) applied to the vectors used to train 
the neural networks. Both the lower level and the medium level networks are made 
up of three layers. The neural networks used in the case study described in the next 
section were trained using the Newton method combined with the Levenberg-
Marquardt method (Marquardt, 1963). The training goal was to obtain a mean 
squared error smaller than 10-3.

The FNN0 (lower level) training data will be obtained from the process 
single abrupt fault simulation. In general and in order to cope with different fault 
strengths, the same fault will be simulated with several different intensities. Thus, 
the number of training patterns used to train the FNN0 is equal to the number of 
single abrupt faults times the number of fault strengths considered plus a number of 
training patterns corresponding to the normal operational conditions. In general, 
Table 10.1 shows the training data associated with the lower level FNN, 
considering only one fault intensity. 

On the other hand, the FNNi (medium level) will be trained using the data 
for one single abrupt fault (the fault associated with the corresponding FNNi) and 
for all possible double abrupt faults that the FNNi will be able to diagnose. This 
training data is obtained by adding the data for the corresponding single abrupt 
faults considered, as shown in Table 10.2 and in Eq. 4: 
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Table 10.1. Training data for single abrupt faults 
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Table 10.2. Training data for double abrupt faults 
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In order to cope with process transient behaviours due to normal set point 
regulations, the current fault isolation approach should be coupled with a fault 
detection system, as for instance in the approach proposed by Calado et al. (2003). 

Thus, when quantitative models are not readily available, a correctly 
trained artificial neural network can be used as a nonlinear dynamic model of the 
process. However, the neural network does not easily provide insight into model 
behaviour; the model is explicit rather than implicit in form. This main difficulty 
can be overcome using qualitative modelling or rule-based inference methods. For 
example, fuzzy logic can be used together with state-space models or neural 
networks to enhance FDI diagnostic reasoning capabilities (Lopez-Toribio et al., 
1999). 

In the next section, the fault isolation approach described above will be 
applied to a pneumatic servomotor actuated industrial control valve and the results 
achieved will be provided. 

10.4. Case Study 

Faults are usually the main cause of loss of productivity in the process industry. 
One of the most important types of equipment present in the process industry is the 
flow control valve. A fault in a flow control valve may lead to a halt in production 
for long periods of time. Apart from these economic considerations faults may also 
have security implications. A fault in an actuator may endanger human lives, as in 
the case of a fault in an elevator’s emergency brakes or in the stems position control 
system of a nuclear power plant. The occurrence of faults can be reduced through 
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preventive maintenance; however, they cannot be fully eliminated. If a fault is 
detected in its early stages a quick intervention can often prevent serious 
consequences to the ongoing process. Therefore, there is a need for fault diagnosis 
systems that detect and isolate a fault as soon as it occurs (Chen and Patton, 1999; 
Patton et al., 2000). The design and performance testing of fault diagnosis systems 
for industrial process often requires a simulation model since the actual system is 
not available to generate normal and faulty operational data needed for design and 
testing, due to the economic and security reasons that they would imply.  

One of the most common types of actuators in the process industry is the 
flow control valve. Their numbers can run up to the thousands in process industries, 
such as oil refineries and the food industry. These flow control valves are widely 
used to control the distribution of process fluids as water and steam. The processes 
in which this kind of valve finds its most common application are characterized by 
high time constant, like thermal regulation and slow chemical reactors and 
evaporators. In all these cases, it is necessary to ensure the flow to be constant at a 
specified set point for a long period, while the transient time to reach the control 
value is usually of minor interest. These devices are subject, relatively often, to 
faults and malfunctions due to harsh environment conditions, which cause a 
decrease in production or even an installation shutdown. Recently, the application 
of fault diagnosis systems to industrial valve actuators has been studied under the 
European research training network DAMADICS 
(http://diag.mchtr.pw.edu.pl/damadics/) where a benchmark problem was defined. 
In this chapter the performance of the fault isolation technique described in the 
previous section will be demonstrated on this industrial benchmark valve actuator 
used to control the flow of the feeding water of a steam generator boiler. This 
benchmark problem will be described next. 

10.4.1. Flow Control Valve  

Figure 10.2 shows a view and the schematics of a typical industrial flow control 
valve. The flow control valve is a final control device that acts on the controlled 
process. Most of these valves are pneumatically actuated, consisting of three main 
parts: body of the valve, actuator (e.g., spring-and-diaphragm pneumatic 
servomotor) and positioner controller. The valve body is the component that 
determines the flow through the valve. The fluid enters the valve by port 1, it flows 
across the restricted section 2 and it exits the valve by port 3. The plug 4 can 
translate along its axis 5 in order to change the area of the restricted section. A 
change of the restricted area in the valve regulates the flow. There are many types 
of valve bodies; the differences between them relate to the form by which the 
restricted flow area changes. Here, the globe valve case will be adopted. 

The flow through the valve body mainly depends on the valve opening, 
which is a function of the position of the stem, and on the pressure difference across 
the valve. The actuator sets the position of this stem. There are many types of servo 
actuators: electrical motors, hydraulic cylinders, spring-and-diaphragm pneumatic 
servomotor, etc. The most common type of actuator is the spring-and-diaphragm 
pneumatic servomotor due to its low cost. This actuator consists of a stem that has, 
at one end, the valve plug and at the other end the plate. The plate is placed inside 
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an airtight chamber and connects to the walls of this chamber by means of a flexible 
diaphragm. This assembly is supported by a spring, as shown in Figure 10.2. 
Compressed air is admitted in chamber 6 and it acts on diaphragm 7. The spring 8 is 
compressed and it develops a force proportional to the deflection that opposes the 
force developed by the air on the diaphragm. The position of the stem is 
proportional to the pressure inside the airtight chamber. 

Figure 10.2. Industrial flow control valve and schematics. 

The positioner, shown in Figure 10.3, determines the flow of air into the 
chamber. 

Figure 10.3. Positioner controller. 

The positioner is the control element that performs the position control of 
the stem. It receives a control reference signal (setpoint) from a computer 
controlling the process, passes it through a second-order filter, in order to get rid of 
noise and abrupt changes of the reference signal, prior to the PID control action that 
leads the stem’s position to that reference signal. The positioner comprises as well a 
position sensor and an electrical-pneumatic (E/P) transducer. The first determines 
the actual position of the stem so that the error between the actual and desired 
position (reference signal) can be obtained. The E/P transducer receives a signal 
from the PID controller transforming it into a pneumatic valve-opening signal that 
adds or removes air from the pneumatic chamber. This transducer is also connected 
to a pneumatic circuit and to the atmosphere. If the controller indicates that the stem 
should be lowered, the chamber is connected to the pneumatic circuit. If, on the 
other hand, the stem should be raised, the connection is established with the 
atmosphere, thus allowing the chamber to be emptied. 



320   V Palade, CD Bocaniala and L Jain (Eds.)

10.4.2. Faults 

The control valve may be affected by a number of faults (Koj, 1998). These faults 
are grouped into four major categories: valve faults, actuator faults, positioner faults 
and general/external faults. Here only abrupt or incipient faults are considered.  

Valve faults are faults that affect the valve body. There are six different 
faults for this type: valve clogging (fault f1), valve plug or valve seat sedimentation 
(fault f2), valve plug or valve seat erosion (fault f3), increased bushing friction 
(fault f4), external leakage (fault f5) and internal leakage or fault in valve tightness 
(fault f6). 

Fault f1, valve clogging, occurs when the servomotor stem is blocked by 
an external event of a mechanical nature. This fault does not permit the stem to go 
above a certain position and therefore the flow cannot drop below a certain value. 
Restricting the stem motion to a smaller range simulates this fault. 

Fault f2, valve plug or valve seat sedimentation, occurs when solid 
particles that are mixed with the liquid start to sediment in the valve plug or in the 
valve seat reducing the orifice dimensions. The altering of the dimensions causes 
the Kv to decrease, the maximum stem position (xmax) to be smaller and the position 
of the stem to change because the force exerted by the fluid is smaller. A 
simultaneous decrease of the flow coefficient Kv, an alteration of the stem motion, 
and a decrease in its range simulate the fault. 

Fault f3, valve plug or valve seat erosion, occurs when the continuing flow 
starts to remove material from the valve plug or the valve seat, which alters their 
dimensions. The altering of the dimensions causes the flow coefficient Kv to 
increase, the maximum stem position to be higher and the position of the stem to 
change because the force exerted by the fluid is bigger. A simultaneous increase of 
Kv, an alteration of the stem motion, and an increase in its range simulate the fault. 

Fault f4, increased bushing friction, occurs when the normal force and 
static friction coefficient on the valve stem packing box increases due to corrosion, 
sedimentation, pollution, etc. This causes the hysteresis that already occurs in the 
stem to be increased. This fault is simulated by an increase in the hysteresis of the 
stem motion. 

Fault f5, external leakage, occurs when the valve has a leakage, caused by 
corrosion, mechanical wear or poor assembly. This fault entails a loss of flow to the 
environment. This fault is simulated by a reduction in the flow at the output of the 
valve. 

Fault f6, internal leakage, occurs when there is a loss of valve plug–valve 
seat tightness due to erosion, corrosion or mechanical wear. This fault is simulated 
by an increase of the flow coefficient Kv.

The actuator faults affect the pneumatic servomotor. There are four faults 
that fall into this category: twisted servomotor stem (fault f7), servomotor housing 
tightness (fault f8), diaphragm perforation (fault f9), and spring fault (fault f10). 

Fault f7, twisted servomotor stem, may occur when the stem is bent due to 
external or internal forces parallel to the stem’s axis. This will cause the normal 
force on the valve stem-packing box to increase and therefore cause an increase in 
hysteresis. This fault is simulated by an increase in the hysterisis that affects the 
stem motion. 
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Fault f8, servomotor housing tightness, occurs when there are air losses 
due to the lack of tightness of the pneumatic chamber. These air losses have an 
influence on the chamber pressure. This fault is simulated by a reduction in the 
airflow into or from the pneumatic chamber. 

Fault f9, diaphragm perforation, occurs when the flexible diaphragm is 
punctured due to fatigue of the material. This causes a loss of air from the 
pneumatic chamber to the atmosphere, which alters the chamber pressure. This fault 
is simulated by a reduction in the airflow into or from the pneumatic chamber and 
in the area of the flexible diaphragm. 

Fault f10, spring fault, occurs when the spring, which supports the stem, 
has a fault due to corrosion and/or fatigue of the spring’s material. This fault is 
simulated by reducing the spring constant K. 

There are three main faults that affect the positioner: E/P transducer fault 
(fault f11), stem displacement sensor fault (fault f12) and positioner feedback fault 
(fault f13). 

Fault f11, E/P transducer fault, occurs when the characteristics of the 
transducer are changed due to coil damage or mechanical fault. This fault is 
simulated by changing the output of the E/P transducer, which will affect the 
airflow into or from the chamber. 

Fault f12, stem displacement sensor fault, occurs when the potentiometric 
sensor responsible for supplying the measurements of the stem’s position is faulty, 
due to wear of the materials or wire breaks due to fatigue. This fault is simulated by 
an increase, or decrease, in the readings of the position sensor. 

Fault f13, positioner feedback fault, is caused by fault of a spring 
cancelling the clearance in the positioner mechanical lever feedback system. This 
fault is simulated introducing hysteresis in the feedback portion of the control loop, 
not affecting the sensor reading. 

General/external faults are faults whose origin is not in the flow control 
valve system but rather in the plant installation, but may affect the valve’s 
performance. There are four main faults that fall into this category: positioner 
supply pressure drop (fault f14), unexpected pressure change across the valve (fault 
f15), opened bypass valve (fault f16) and flow sensor fault (fault f17). 

Fault f14, positioner supply pressure drop, occurs when the pressure of the 
pneumatic circuit that connects with the positioner drops. This causes the airflow 
into the chamber to be altered. This fault is simulated by a reduction of the pressure 
of the pneumatic circuit. 

Fault f15, unexpected pressure change across the valve, occurs when, for 
some reason related to the system where the valve is placed, the pressure difference 
across the valve is altered. It causes changes in the flow and in the stem position. 
This fault is simulated by a change in the values of the upstream pressure or the 
values of the downstream pressure. 

Fault f16, opened bypass valve, occurs when the valve of a bypass circuit, 
used to allow the control valve to be changed without stopping the flow, is opened, 
either due to employee mishandling or to a fault in this valve. This fault will lead to 
a greater flow at the exit of the circuit than what would be expected. The fault is 
simulated by an increase in the flow through the valve. 
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Fault f17, flow sensor fault, occurs when the sensor responsible for 
measuring the flow is faulty due to electronics or wiring failure. This causes the 
flow measurements to be biased. This fault is simulated by an increase, or decrease, 
in the flow readings. 

A complete description of the faults and the way they affect the valve can 
be found in (Louro, 2003). 

10.4.3. Flow Control Valve Benchmark Simulator 

An efficient parameterized MATLAB/SIMULINK simulator was developed that 
allows the simulation of normal and faulty conditions of the flow control valve. The 
faults are parameterized by defining the starting time, the type of fault (single, 
multiple, abrupt or incipient), the fault intensity, and the fault settling time (if the 
fault is incipient). Results can be assessed by an appropriate graphic interface and 
data files. 

The simulator’s inputs are the stem position reference signal (CV), the 
upstream and downstream pressures (Pus and Pds) and the fluid temperature (T), 
given by the actual measurements from the plant. The outputs of the model are the 
stem position (X) and the flow (F) through the valve, as well as the previously 
mentioned inputs. The difference between the values given as inputs and the 
outputs referring to those values is that noise is added to them in order to simulate 
an actual sensor reading. Noise is assumed to be white with uniform distribution 
with sinusoidal mean and variance set by the user, being the seed generated 
randomly. 

The developed simulator was compared with the data originating from an 
actual industrial system and it was concluded that the simulator provides a response 
that is very similar to the one of the actual system. 

Some faults were introduced on purpose in the real system and the 
measurements compared with the data generated by the simulator for the same 
faults. The faulty data generated by the simulator was not as close to the real system 
as it had been for the normal operation. However, it is close enough for the intended 
purpose of fault diagnosis design and testing. 

10.4.4. Fault Isolation

To test the efficiency of the fault isolation (FI) system based on the HSFNN 
previously described, four rates of change of the measurement variables have been 
defined as input data to the fault isolation system: dFi – rate of change of the flow 
sensor measurement, dXi – the rate of change of the rod displacement, dTi – the rate 
of change of the fluid temperature and dPi – the rate of change of the pressure 
difference across the valve. 

To achieve a fault or faults isolation in the process under supervision, an 
analysis of the output values from the FNN at the lower level of the hierarchical 
structure is necessary. If the number of nonzero outputs (output  0.5) in FNN0 is 
equal to 0, then it is assumed that no fault occurred in the process under 
consideration. Otherwise, the result of the fault isolation system is considered to be 
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the result of a fuzzy OR operation (upper level) on several FNNi outputs in the 
medium level, as previously described. 

In the FI system considered all FNNs are equal, with a fuzzification layer 
consisting of 28 processing elements arranged in 4 groups, corresponding to the 
four rates of change of the measurement variables, where each group contains 7 
neurons corresponding to the respective fuzzy sets (Figures 10.4 and 10.5). The 
number of neurons in the hidden layer is determined by the complexities of the 
relationships between the faults and the fault symptoms. During the design stage, 
following a trial and error procedure, it was found that 7 hidden processing 
elements give satisfactory performance for the fault isolation system under 
consideration. However, further research could be conducted in order to optimize 
the FNN topology by using ANN pruning algorithms. Moreover, since to test the 
current FI system, only 8 relevant single abrupt faults have been considered (F2, F7, 
F10, F11, F13, F17, F18 and F19), the output layer of each network is up to 8 
neurons, each one corresponding to a fault. Besides the previously mentioned set of 
single faults, all possible double fault scenarios corresponding to an AND operation 
in the single fault space have also been considered. 

The training of the FI system has been accomplished by using data relative 
to the normal behaviour of the process and all eight abrupt faults, at one specific 
operating point (CV=0.5), considering only one fault intensity (fs=0.75), giving a 
total of 8 time series containing the faulty information plus 1 time series containing 
the data relative to the normal behaviour of the process. The 9 time series are used 
for training the lower level network. For training the medium level networks the 
data relative to one of the faults is added with the data relative to the other faults in 
order to form data relative to double faults. Only the time series pertaining to the 
same operating point and fault intensity are added, which means that for training 
each medium level network there is a total of 8 operating points, 1 pertaining to the 
fault to which the network is associated and 7 pertaining to multiple faults. The 
membership functions associated with the fuzzy sets in the fuzzy layer of the FNN 
are estimated by applying the fuzzy c-mean clustering algorithm to the training 
data. The membership functions obtained can be seen in Figures 10.4 and 10.5. 

The testing set contains information relative to normal operation 
conditions and to all eight faults, with two operating points (CV=0.65 and 
CV=0.75) and with three fault intensity values (fs=0.25, fs=0.5 and fs=0.75) for the 
case of abrupt faults, according to what has been defined for benchmark purposes. 
Table 10.3 shows the results achieved. From these results it can be concluded that 
for abrupt faults the HSFNN provides a good generalization capability as a fault 
isolation system. This is a very important aspect as far as the performance of the 
fault isolation system is concerned, since only single abrupt fault symptoms at one 
operating condition and for one fault intensity are considered during the training 
task. 

Incipient faults are a type of faults where the magnitude of the fault 
intensity does not change instantaneously but rather develops through time. It is 
difficult to know the shape of the evolution since it depends on the case study and 
the type of fault. For the present case study, it is assumed that the fault intensity 
varies linearly from 0, at an instant called fault starting time, to 1, at an instant 
called fault settling time. After the simulation has reached the fault settling time, the 
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fault intensity remains at 1 during the remaining simulation. The testing set for 
incipient faults is composed of data relative to all four faults shown in Table 10.3, 
considering two operating points (CV=0.65 and CV=0.75). Table 10.4 contains the 
times used for simulating these incipient faults. 
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Figure 10.4. Membership functions applied to the derivative of F and T. 
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Computational Intelligence in Fault Diagnosis   325 

Table 10.3. FI results for single abrupt and incipient faults 

Fault Description 

Abrupt 

Small   Medium    Big 

Incipient 

F1 Valve clogging 

F2 Valve plug or valve seat 

sedimentation 

  100

%

0%

F3 Valve plug or valve seat erosion    

F4 Increase of valve or bushing friction    

F5 External leakage (leak bushing, 

covers, terminals) 

F6 Internal leakage (valve tightness)    

F7 Medium evaporation or critical flow 100

%

100

%

100

%

F8 Twisted servomotor’s piston rod 

F9 Servomotor’s housing or terminal 

tightness 

F10 Servomotor’s diaphragm 

perforation  

100

%

100

%

100

%

F11 Servomotor’s spring fault   100

%

0%

F12 Electro-pneumatic transducer fault 

F13 Rod displacement sensor fault 100

%

100

%

100

%

0%

F14 Pressure sensor fault 

F15 Positioner feedback fault   

F16 Positioner supply pressure drop 

F17 Unexpected pressure across the 

valve 

  100

%

0%

F18 Fully or partly opened bypass 

valves 

100

%

100

%

100

%

F19 Flow rate sensor fault 100

%

100

%

100

%

      

Undetectable faults or faults only dynamically detectable, hence, 

the fault isolation system is not triggered 

 Fault isolation system is not able to cope with such faulty 

scenarios 

Xxx% Percentage of correct isolated faults 

 Not used for benchmark purposes 

Under these incipient faulty scenarios, Table 10.3 shows that unsuccessful 
results have been achieved. One of the reasons for the bad performance of the fault 
isolation system under incipient faulty scenarios is concerned with the very slow 
evolution of the symptoms associated with such faults, as can be seen from Table 
10.4. The changes observed in the measurement variables are so small that it is 
impossible to distinguish the fault effects from the noise that affects the process. As 
an example, Figures 10.6 and 10.7 illustrate the situation when fault F19 is 
considered as an incipient fault. Fault F19 has no effect on the measurement 
variables T and P. Furthermore, it is worth noting that only 15 points are used to 
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evaluate the derivatives of the measurement variables, which are the inputs of the 
fault isolation system. Another reason that makes it very difficult to isolate the 
incipient faults simulated with a very low fault development speed is concerned 
with the pneumatic servo-motor actuated industrial control valve used, which has a 
position controller that compensates the influence of some faults in the process. The 
controller action could mask the fault effect in the process and, hence, the incipient 
fault symptoms will be substantially different from the abrupt fault symptoms used 
to train the FNNs. 

Table 10.4. Times that characterize incipient faults 

Fault 

Simulation 

Starting 

Time (s) 

Fault 

Starting 

Time (s) 

Fault 

Settling

Time (s) 

Simulation 

Ending 

Time (s) 

F2 0 50 84050 100000 

F11 0 50 84050 100000 

F13 0 50 650 1200 

F17 0 50 3650 5000 

The double simultaneous abrupt faults used to test the FDI system have 
been achieved through an AND operation in the single fault space. For all double 
simultaneous abrupt faults considered the fault detection system was able to detect a 
hypothetical fault and, therefore, the fault isolation system has been triggered. The 
results achieved by the FI system under double simultaneous abrupt faults 
considering only the situations where the abrupt faults are simulated with big 
intensity and the two operating points mentioned above are shown in Table 10.5. 
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Figure 10.6. Effect of incipient fault F19 on the rod position. 
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Figure 10.7. Effect of incipient fault F19 on the flow. 

From Table 10.5 it can be seen that the performance of the FI system under 
double simultaneous faulty scenarios is not good for some faults. Several 
misclassification problems have been observed. The poor isolation results for 
double abrupt faults have two main causes. Firstly it may not be possible to 
distinguish single and double abrupt faults, especially when the isolation task is 
based on only one time instant thus ignoring the faults’ dynamic characteristics. 
The double abrupt faults may not be distinguishable from the single faults. For 
instance, the symptoms of fault F10 are symmetric to the symptoms of fault F11. 
This means that the symptoms of the double simultaneous abrupt faults, F10+F11, 
will be very similar to those of a single abrupt fault. In this case, single abrupt fault 
F10 and double simultaneous abrupt fault, F10+F11, have identical symptoms.  

Table 10.5. FI results for double simultaneous abrupt faults 

Double Faults Description Abrupt Big 

F2 + All other faults (1) Valve plug or valve seat sedimentation 67% 

F7 + All other faults (1) Medium evaporation or critical flow 80% 

F10 + All other faults (1) Servo-motor’s diaphragm perforation  68% 

F11 + All other faults (1) Servo-motor’s spring fault 17% 

F13 + All other faults (1) Rod displacement sensor fault 0%

F17 + All other faults (1) Unexpected pressure across the valve 83% 

F18 + All other faults (1) Fully or partly opened bypass valves 0%

F19 + All other faults (1) Flow rate sensor fault 0%

Another cause for the poor isolation results may be the fact that the double 
fault symptoms are computed from the single abrupt fault symptoms as previously 
described. Such a methodology assumes that the relation between the symptoms is 
linear and has provided good results in cases where the HSFNN strategy was 
applied to linear systems or systems with small nonlinearities (Calado et al., 2001). 
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However, the model for the actuator valve is highly nonlinear. This causes the 
training vector for double simultaneous faults, obtained following the procedure 
described above, to be different from the actual double fault symptoms. 

Due to the bad results achieved under single incipient faulty scenarios, no 
double simultaneous incipient faulty scenarios have been considered. 

10.5. Summary 

This chapter is concerned with the application of fuzzy neural networks to fault 
detection and isolation systems. Thus, for readers not familiar with the subject, the 
background knowledge associated with artificial neural networks and the potential 
fields of application of this technology is presented in the introduction section. 
Furthermore, aiming to demonstrate that such a technology is mature enough to be 
applied in the solution of several kinds of industrial problems, a wide range of 
industrial applications of classical feedforward artificial neural networks are also 
reported in section 10.2, as well as applications of different types of fuzzy neural 
networks. 

Section 10.3 is concerned with the development of FDI approaches based 
on fuzzy neural networks and a specific fault isolation system based on a 
hierarchical structure of several fuzzy neural networks is described in detail. The 
robustness and performance of such a fault isolation system has been assessed in 
section 10.4 by using a test bed consisting of a pneumatic servomotor actuated 
industrial control valve. Different kinds of faults have been considered, which has 
been assumed to occur in an abrupt or incipient manner, or by affecting the 
measurement variables in the process under supervision in an abrupt way or, 
instead, by affecting the process behaviour slowly (incipient faults). 

The results presented in section 10.4 have shown that, under abrupt faults, 
the HSFNN provides very accurate results and is characterized by a good 
generalization capability as a fault isolation system. Under incipient or multiple 
simultaneous faulty scenarios, the performance of the proposed methodology 
depends on the fault development speed and/or on the system nonlinearities. 
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11. Causal Models for Distributed Fault 
Diagnosis of Complex Systems 

Cosmin Danut Bocaniala and José Sá da Costa 

This chapter describes a novel framework for using causal models in distributed 
fault diagnosis. The state-of-the-art distributed fault diagnosis methodologies lack a 
coherent partitioning methodology of the monitored system into a set of 
subsystems, such that the independence level of local diagnosis process for each 
subsystem is maximal and such that the communication between different 
subsystems, required for formulating global diagnosis, is minimal. The partitioning 
of the causal model is performed with regard to the d-separation property that 
renders each region of the partition causally independent from the rest of the model. 
This special property allows fault diagnosis to be performed locally, without the 
need of communicating with the rest of the model, as long as the border with the 
rest of the model is healthy, i.e., maximum independence level of local diagnosis 
processes. Moreover, the causal model is partitioned so that the regions of the 
partitions are separated by borders containing a minimal number of vertices. It 
follows that if communication with the neighbouring elements is needed, the 
computational complexity of the process is minimal.

11.1. Introduction 

This chapter describes a novel approach regarding the use of causal models for 
performing distributed fault diagnosis of complex systems. The methodology has 
been introduced in (Bocaniala and Sa da Costa, 2004; 2005). Fault detection and 
isolation (FDI) methodologies use actuators and sensors measurements. When 
dealing with complex (large-scale) industrial installations, designing a fault 
diagnosis system becomes very difficult due to the large number of sensors and 
actuators. Moreover, any solution for this problem must take into account the fact 
that the practitioners prefer rather simplistic systems that use basic engineering 
fundamentals. This is due to the fact that, in practice, simple and verifiable 
principles always win the competition versus complex methods that are usually 
characterised by instability, unpredictable behaviour and large computational 
burden. The described distributed methodology is be able to achieve its goal using 
simple and verifiable principles coming mainly from causal modelling and 
distributed computing. 

The common approach when designing a distributed fault diagnosis system 
is to define a partition on the system structure and to assign one agent to each 
region of the partition. The agents perform local diagnosis inside the area they are 
assigned to. Global diagnosis is obtained by defining a proper communication 
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scheme among agents. Two implementations of this common approach are 
discussed in the following. 

The first implementation of this approach is given in (Fabre et al., 2002). 
A system is defined as a pair S=(V,O), where V is the set of system variables and O
is the set of possible states of S. A partition of system S represents a set of 
subsystems S1, S2, …, Sm, such that Si=(Vi,Oi), Vi Vj, m 2, 1 i j m,
V=V1 V2 ... Vm. If each of the local states in Oi, i=1,…,m, represents the 
projection of at least one global state in O, then the obtained partition is unique and 
is called the canonical partition. Notice that, in this case, the information contained 
by the elements of the partition, i.e., the set of variables and the set of states, is the 
same information provided by the original system. The system S is now defined by 
smaller sets of local constraints on smaller subsets of variables. This kind of 
representation is very useful for complex systems for which the number of variables 
is very large and, thus, the number of possible states is enormous. Fabre et al.
(2002) give an algorithm that computes the canonical partition starting from a given 
partition. The algorithm uses communication via common variables between 
different partition regions and it does not need to know in advance the set O of all 
possible states of the system. Notice that this implementation focuses on the system 
partitioning aspect. Similar implementations are given in (Albert et al., 2001; Letia 
et al., 2000). 

The second implementation highlights the advantages of using more than 
one fault diagnosis methodology when diagnosing a complex system and it has 
been proposed in the framework of the recent MAGIC project (Köpen-Seliger et al.,
2003; Lesecq et al., 2003). Isermann and Ballé (1997) underline the fact that a 
single diagnosis methodology is inadequate for matching all challenges posed by a 
complex system. Therefore, the main task is to decide, for each partition region, the 
available diagnosis methodologies that provide best results. Notice that in this case 
the implementation focuses on optimizing the local diagnosis results. 

The two implementations mentioned above lack a coherent partitioning 
methodology of the monitored system into a set of subsystems such that the 
independence level of local diagnosis process for each subsystem is maximal and 
such that the communication between different subsystems, required for 
formulating global diagnosis, is minimal. The proposed partitioning methodology 
partitions the monitored system into fully independent subsystems, i.e., maximum 
independence level of local diagnosis processes. It also insures minimal borders 
between different subsystems, which imply minimal computational complexity for 
communication. 

The complexity of a system resides in the number of its basic components, 
actuators and sensors. In this chapter, the causal model of a system is encoded as a 
directed graph (digraph) (Balakrishnan, 1997), where vertices represent the 
available actuators readings and sensors readings, and edges represent the causal 
links between these measurements. The complexity of the system is reflected in the 
complexity of the associated digraph. The described fault diagnosis methodology 
basically (i) considers the causal model of the system as a map, (ii) splits this map 
into edge disjoint regions separated by borders formed by vertices, and (iii) assigns 
a dedicated agent to each region (Figure 11.1). For step (ii), notice that each region 
may be treated recursively in the same manner as the initial map, therefore inducing 



Computational Intelligence in Fault Diagnosis   337 

a local hierarchy of agents. The local expertise of the agents, as well as the 
interaction between them is used to robustly detect and isolate the faults in the 
system. The use of this distributed scheme allows maintaining the focus only on 
those regions of the map that are affected by faults. Hence, monitoring a complex 
system becomes a tractable problem. 

agent 1 
agent 2 

agent 3 agent 4 

agent 5 

Figure 11.1. The splitting of the causal model of a system. 

In order to comply with the natural requirement for as small as possible a 
diagnosis computational time, the previous splitting is required to satisfy the next 
conditions: (i) the agents should be able to independently assess the state of the 
system in the assigned area, and (ii) the interaction between different agents should 
be kept as small as possible. The complexity of the interaction between two agents 
is given by the number of vertices located on the borders between the corresponding 
regions. 

The first condition is met by using the d-separation criterion between each 
pair of neighbouring regions. The d-separation criterion, introduced in (Pearl and 
Paz, 1985), offers a parallel between causal independency and vertex separation in 
digraphs. If X, Y and Z represent three vertex subsets in a causal model, the d-
separation criterion is able to determine if “knowing Z renders Y irrelevant to X.” 
For the proposed partitioning, if X and Y represent the vertex subsets of two 
neighbouring regions, and if Z represents the vertex subset that constitutes the 
border between the two agents, then the d-separation criterion always holds. 

Unfortunately, the d-separation criterion can be applied exclusively on 
acyclic digraphs (Neal, 2000; Pearl and Richter, 1996; Spirtes, 1995). Therefore, 
one of the main contributions of the chapter is a feedback loops replacement 
methodology that renders a cyclic causal model acyclic without actually losing the 
structural and behavioural information given by feedback. 

The second condition is met by using the multilevel hypergraph 
partitioning (Karypis, 2002), which guarantees that a minimal number of vertices 
are located on the borders. The analysed causal model is transformed into a 
hypergraph, so that the following equivalence holds: the causal model has a 
minimal number of vertices on the partition borders if and only if the equivalent 
hypergraph has a minimal number of hyperedges cut by the partition borders. The 
multilevel partitioning paradigm is based on a very simple idea. First, the original 
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hypergraph undergoes a sequence of successive approximations that represent 
smaller and smaller sized versions of the original configuration. The process of 
approximation continues until the hypergraph is reduced to a few tenths of vertices. 
At this point, some algorithms are used to compute a partitioning of the current 
form of the hypergraph. The final phase is to use the partitioning of the smallest 
hypergraph to derive the partitioning of the original hypergraph. This is achieved by 
successive projections of the current partition to the next level finer approximation 
of the original hypergraph. 

The previous multilevel partitioning hypergraph algorithm has been 
implemented by its authors into an application called hMeTiS. The application, 
together with a User Manual, can be downloaded from http://www-
users.cs.umn.edu/~karypis/hmetis/ index.html.

The content of the chapter is organized as follows. Section 11.2 presents 
the feedback loops replacement methodology that allows cyclic causal models to be 
transformed into acyclic models. Section 11.3 brings in the algorithm used to build 
the partitioned causal models described in the chapter. Section 11.4 summarizes the 
original contributions of this chapter and mentions possible directions for future 
work. 

11.2. Feedback Loops Replacement Procedure for 
Obtaining Acyclic Causal Models 

The section describes a methodology for replacing feedback loops in order to obtain 
acyclic causal models from causal models with feedback (Bocaniala and Sa da 
Costa, 2004; 2005). The most important property of the obtained acyclic causal 
model is that it reflects not only the structural properties of the original cyclic 
causal model, but also its behaviour in time. As mentioned in the chapter 
introduction, the considered system is modelled based on causality relationships 
between the available sensor readings. The initial model is represented as a digraph 
where vertices stand for the sensor measurements at the initial time-step of the 
analysis, and edges stand for cause-effect relationships between them. In order to 
reflect the behaviour of the system in time, this initial model is replicated at each 
time step, i.e., when new sensor measurements are available. The vertices of the 
replica correspond to the values of the sensor measurements at the current time-
step. New edges, which reflect cause-effect relationships between vertices in the 
current replica of the model and vertices in the previous replicas, must be added. As 
detailed later in the section, adopting models built in the previous manner, offers 
the opportunity to replace a feedback loop of the system with an acyclic 
substructure by unfolding it in time. However, as shown later, all structural 
information and all temporal information given by feedback are preserved. It is to 
be noticed that, as the number of the considered time-steps increase, some vertices 
of aged replicas of the initial model become causally irrelevant to the other vertices 
in the model and, therefore, they can be eliminated. Thus, the model is dynamic in 
both positive and negative sense, i.e., vertices may be added and vertices may be 
eliminated as well. 
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PID controller 

CV CVI x

-

+

Figure 11.2. The control loop for the rod position of a valve. 

In order to give a simple illustration of the reasons behind adopting this 
feedback replacement procedure let us analyze the system with feedback in Figure 
11.2. The system in the figure is a flow control valve reduced to only three 
components: the control value (CV), the output of a PID controller (CVI) and the 
rod position (x). When a positioning command (CV) is issued, the controller uses 
the difference between CV and x in order to compute the control command CVI.
The control commands are continuously issued on the basis of CV and x values in 
order to keep x as close as possible to CV. If one wishes to sketch the structural 
properties of the system in time, there are two possible situations to be analyzed: (i) 
the system is turned on at the initial time-step t of the analysis and (ii) the system is 
functioning at the initial time-step t of the analysis. 

In the first case, the only causal relationships that are active at the initial 
time-step are those between CV and CVI and between x and CVI, i.e., the CVI value 
will be computed on the basis of CV and x. The causal relationship between CVI
and x will become active after a very short interval of time d, 0<d<T, while the 
output of the controller is computed. It is presumed that the sensor measurements 
are available periodically, at small interval of time of length T, i.e., its value 
represents the duration between two consecutive sensor measurements. The value of 
CVIt+d will not affect the value of xt but it will affect the value of xt+T. Notice that, if 
it were possible to read the three sensors at time t´, t<t´<t+d, only the ones 
corresponding to CV and x will provide values. The causal model for the first 
situation is depicted in Figure 11.3. 

CV
t

CVI
t+d

x
t

CV
t+T 

CVI
t+T+d 

x
t+T 

CV
t+2*T 

CVI
t+2*T+d 

x
t+2*T

...

Figure 11.3. The system is observed when it is being turned on (the initial model is shown 
in red). 
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Figure 11.4. The system is observed when it is already turned on (the initial model is 
shown in red). 

In the second case, the system is already functioning and, therefore, all 
three sensor measurements will provide values at the initial time-step. Still, neither 
CVIt affects xt nor xt affects CVIt. There are two possible initial models: (a) 
CVt CVIt+d and xt CVIt+d, i.e., the value of CVIt is neglected and (b) 
CVIt+T xt+T+d, i.e. the sensors are red during two time-steps and the values of xt,
xt+T, CVIt, CVt, and CVt+T are neglected. The first possible model is equivalent with 
the one in Figure 11.3. The second possible model is depicted by Figure 11.4. 
Notice that if we compensate the second model by adding edges CVt CVIt+T and 
xt CVIt+T, then the structures of the two models are equivalent. The only 
difference is that after the initial moment t, the first computed value is CVIt+d for (a) 
and xt+T+d for (b). 

CV
t-2*T 

CVI
t-2*T+d 

x
t-2*T 

CVI
t-T+d 

x
t-T 

CVI
t+d 

x
t

CV
t-T 

CV
t

Figure 11.5. The system is observed inside the time window [t-2*T,t]. 

There are two important observations to be made. First, notice that the 
causal model previously developed contains no feedback loops. Second, notice that 
the previous models do not reflect the causal links between the current value of a 
sensor measurement St and the previous values of the same sensor measurements, 
St-i*T, i=1, 2, … . In practice, there is always a value c>1 for which all 
measurements at time instants t-i*T, where i>c, are causally irrelevant to the 
measurement at time instant t. It follows that all relevant causal relationships 
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between St and its predecessors may be observed in the time window [t-c*T,t].
When dealing with more than one sensor measurement, as is the case for the system 
in Figure 11.2, then the time window that contains all relevant causal relationships 
inside the system is given by the largest value of the c parameters. This constant 
value is called the relevant time-window span. For instance, if the values of the c
parameter for CV, CVI and x are cCV=1, cCVI=2, and cx=2, respectively, the resulting 
causal model is shown in Figure 11.5. The model in the figure corresponds to the 
sensor measurements available in the time window [t-2*T,t], where t is the current 
time instant. 

Analysing the edge cut set that eliminates feedback from the structure, 
observe that, in the first case, the feedback loop between CVI and x must be cut on 
the edge CVI x, while, in the second case, the feedback loop of the system may be 
cut on any composing edge. The second case occurs much more often in practice 
and, therefore, the systems analysed in this section will be considered as already 
functioning. Thus, all feedback loops in the analysed system may be cut on any
composing edge. This fact reduces the decisional effort when building the acyclic 
causal model of the system. 

The example above and the accompanying discussion emphasised the fact 
that, in order to obtain the initial model of a system, an edge cut set that breaks all 
loops in the cyclic model of the system needs to be found first. 

This section is structured as follows. The first subsection presents an 
algorithm that performs a partitioning of a causal model into a number of levels 
(Viswanadham et al., 1987). The main property of the level partitioning is that each 
feedback loop in the model is assigned to a level in the partitioning. The second 
subsection proves that there is always an edge cut set for a cyclic causal model. The 
proof uses the distribution of feedback loops on levels given by the level 
partitioning. The third subsection presents, on the basis of the proof in the second 
subsection, the algorithm for building the acyclic causal model corresponding to a 
cyclic model using the feedback loop replacement procedure. 

In order to facilitate the understanding of the theoretical concepts 
presented in the following, the digraph shown in Figure 11.6 is used. 

BA

C

D
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F

G

Figure 11.6. The digraph used to illustrate the theoretical aspects. 

11.2.1. The Level Partitioning Algorithm of a Causal 
Model

Viswanadham et al. (1987) describe in their book an algorithm for structuring a 
digraph based on the reachability relation on the digraph vertex set. The 
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reachability relation R is defined as follows. Given two vertices vi and vj, vi R vj if 
and only if there is a directed path from vi to vj. Eventually, the reachability matrix 
M is defined as 

1,

0, otherwise
i j

ij
v Rv

m (1) 

The reachability matrix M can be computed from the adjacency matrix A,
A=Ak=Ak+1=M (2) 

where Ak is computed using Boolean operations. 
Structuring a digraph with respect to the reachability relation actually 

builds a partition on the vertex set into equivalence classes induced by this relation. 
These equivalence classes are called levels. The vertices found on a level have the 
next two properties. 

(1) For vi, vj Lk (the k-th level) there are only two possibilities: 
(a) vi is reachable from vj and vj is reachable from vi, i.e., the two 
vertices belong to the same feedback loop, 
(b) vi is not reachable from vj and vj is not reachable from vi, i.e., 
the two vertices are isolated one from each other. 

(2) No vertex of Lj is reachable from any vertex of any following level 
Lj+1 (j=1,2,…,m-1; m represents the number of levels), but there could 
be edges to Lj from any previous level Lk (k=1,2,…,j-1). 

In order to build the levels, two sets of vertices are defined for each vertex 
vi of the digraph. The reachability set Ri of vi is formed by all the vertices that are 
reachable from vi. The antecedent set Ai of vi is formed by all the vertices from 
which vi is reachable. The level partitioning of the digraph is built according to the 
definitions given by Eq. 4. 

: 1

: 1

i j ij
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R v V m
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(3) 
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For the digraph in Figure 11.6, the reachability matrix M is 

A B C D E F G
A 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1
E 0 0 0 0 1 1 1
F 0 0 0 0 1 1 1
G 0 0 0 0 1 1 1
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The intersection RU AU equals AU for U {A, B, C, D}. It follows, from 
Eq. 4, that L1={A, B, C, D}. For the remaining vertices, (RU – L1) (AU – L1) equals 
(AU – L1) for U {E, F, G}. It follows that the second and last level L2={E, F, G}.

11.2.2. Finding a Minimal Edge Cut Set for the Feedback 
Loops

Balakrishnan (1997) defines a strongly connected component (SCC) of a digraph as 
a maximal set of interconnected feedback loops. It follows that the set of the SCCs 
of a causal model concentrates the whole feedback structure of the model. Notice 
from the description of the level partitioning algorithm that there can be only one 
SCC per level, i.e., the maximum possible number of SCCs equals the number of 
levels. Therefore, given the level partitioning of a cyclic causal model, the task of 
finding an edge cut set that breaks all loops in the system reduces to finding an edge 
cut set for each SCC given by the partitioning. 

In the following, an algorithm that always provides an edge cut set for an 
SCC is given. The edge cut set will be required to be minimal in the sense that, if 
possible, each loop is cut on only one edge. Notice that there may be cut edges that 
break more than one loop. The most favourable situation is when the number of this 
kind of edges is maximal. The algorithm that computes the minimal edge cut set
(MECS) for an SCC uses the breadth-first search (BFS) procedure when traversing 
the SCC. The formal description of the algorithm is given in the following. The 
MECS for the whole causal model is the reunion of the MECS computed for all its 
SCCs. 

Algorithm 1 (The minimal edge cut set of an SCC) 

Step 1. Choose randomly one vertex r in the SCC and consider it the root of the 
BFS tree. Build the BFS tree. 
Step 2. An edge that does not belong to the BFS tree is called a left-out edge. For 
each layer of the BFS tree, for each vertex v on that layer, for each left-out edge e
originating from v do the following. 
Step 2.1. Check all directed paths containing v and e if they (i) do not contain any 
edge in the MECS, and if they (ii) contain at least an ancestor w of v in the BFS 
tree. If the previous two conditions are satisfied, then there is at least one loop, i.e., 
the loop containing v, e and w, which is not yet cut. By adding edge e to MECS, the 
loop containing v, e and w and possibly other loops will be cut by e.
Step 2.2. Check if MECS remains minimal after adding e and eliminate the 
redundant cut edges. An edge from MECS is called redundant if the loops that it 
cuts are already cut by other edges from MECS. See the proof of Theorem 1 for 
details.

Theorem 1 Given a cyclic causal model, Algorithm 1 always provides a minimal 
edge cut set for each SCC.
Proof First of all, notice that each loop in the considered SCC contains at least one 
left-out edge. The justification is immediate. The BFS tree from Step 1 is acyclic. If 
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the left-out edges are added to this tree, then the obtained graph is the original SCC. 
The loops in the original SCC have been “restored” by adding the left-out edges. It 
follows that MECS represents a subset of the left-out edges set. What is left to be 
proven is that the MECS provided by Algorithm 1 really cuts all loops in the SCC 
and that it is minimal in the defined sense. 

Let us denote by BFS(t) the BFS tree with vertex t as root. Notice that, if 
the edge e in Step 2.1 of the algorithm is v u, all directed paths containing v and e
represent directed paths in BFS(u). Using this observation, Step 2 may be 
interpreted as follows: if there is an ancestor w of v in BFS(r) from Step 1, such that 
w belongs to BFS(u) and such that the directed path between root u and w in BFS(u)
does not contain any edge from MECS, then edge e is added to MECS. If each 
directed path in BFS(u) between u and one of its ancestors w in BFS(r) contains an 
edge f from MECS, then the loop containing v, e and w and possibly other loops are 
already cut by f. The previous discussion proves that, if there is any loop that 
contains edge e and that it is not yet cut by other edge in MECS, this loop will be 
cut by adding e to MECS in Step 2.1. It follows that MECS will cut all loops in the 
considered SCC. Moreover, MECS is already minimal in the sense that an edge 
enters MECS if and only if a loop not yet cut is detected. What is left to be 
investigated, so that MECS is minimal in the sense defined at the beginning of the 
subsection, is the elimination of redundant edges from Step 2.2. 

Let us denote by AN(v) the ancestors of v in BFS(r) and by EL(u) (from 
eliminated) all vertices s in BFS(u) such that the directed path between u and s is 
cut by an edge from MECS. Then the condition for edge e to enter MECS may be 
expressed as 

, ,  ( )
( ) ( ) ( )

e left - out edge from SCC e v u v BFS r
e MECS AN v BFS u EL u (5) 

The redundant cut edges mentioned in Step 2.2 may appear in a BFS(s)
tree, s r, as shown in Figure 11.7. The directed path from s to d contains both edges 
g and h. The condition s r is given as both g and h represent left-out edges and, by 
definition, BFS(r) does not contain any left-out edge. As detailed above, edges g
and h are cut with the purpose of disconnecting a and c respectively from the 
vertices in AN(a) and AN(c), respectively. When both g and h appear on the directed 
path from s to d in the BFS(s) tree, s r, the fact that they are cut may be interpreted 
as disconnecting a and c respectively from the vertices in AN(a) SubBFS(s,b)  and 
AN(c) SubBFS(s,d) respectively, where SubBFS(s,t) represents the subtree of 
BFS(s) having the root t. If edge g is fixed and for any edge h and any vertex s

(1)
(2)

 g and h belong to the path between s and d in BFS(s)
 AN(a) SubBFS(s,b) AN(c) SubBFS(s,d) (6) 

then g may be eliminated from MECS in Step 2.2. It follows that MECS is minimal 
in the sense defined at the beginning of the subsection.

An implementation of Algorithm 1 needs to administer the set of BFS(s)
trees, s r, the AN(s) sets, s r, in the BFS(r) tree, and the EL(s) sets, s r, of the 
BFS(s) trees. The AN(s) sets are static throughout the algorithm while the BFS(s)
trees and the EL(s) sets are dynamic, depending on the edges that enter or leave 
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MECS. If l is the number of edges leftout after Step 1, the two main operations in 
Step 2 are performed for l times. 

In the following, Algorithm 1 is applied for the SCC in the first level L1 of 
the digraph in Figure 11.6. Let us assume r equals D. The BFS(r) tree is shown in 
Figure 11.8. The left-out edges are displayed as dotted lines. The ancestors of the 
origins of the two left-out edges are AN(A)={D} and AN(C)={B, D}.Initially, the 
EL(s) sets, s D, are void. For the left-out edge A B, the condition in Eq. 5 is true, 

( ) ( ( ) ( )) { } ({ , , , } ) { }AN A BFS B EL B D A B C D D (7) 
It follows that MECS = {A B}. Step 2.2 is not performed as MECS 

contains only one edge. 
The second left-out edge, C D, points towards D that represents the root 

of the BFS(D) tree considered in Step 1. Therefore, the edge is also added to 
MECS. Step 2.2 is performed by inspecting the BFS(s) trees, s D, from Figure 
11.9. The only BFS tree that may contain a pair of redundant edges is BFS(A). The 
first condition from Eq. 6 is fulfilled as edges A B and C D find themselves on 
the directed path from the root A to the vertex D. The second condition from Eq. 6 
is false, 

s

a

b

c

d

g

h

Figure 11.7. Two redundant edges in BFS(s) tree.



346   V Palade, CD Bocaniala and L Jain (Eds.)

BA

C

D

Figure 11.8. The BFS(D) tree together with the left-out edges (dotted line).
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Figure 11.9. The BFS(s) trees, s D.

( ) ( , ) { } { , } { }
( ) ( , ) { , }

{ } ( ) ( , ) ( ) ( , )

AN A SubBFS A B D C D D
AN C SubBFS A D B D
D AN A SubBFS A B AN C SubBFS A D

(8) 

and, therefore, the edge A B is not redundant and it is not eliminated from MECS. 

Corollary 1 Given a cyclic causal model, there is always a minimal edge cut set 
(MECS) that renders the causal model acyclic.
Proof Theorem 1 insures that there is always a MECS for each SCC of a cyclic 
causal model. It follows that the reunion of these MECS, i.e., the MECS of the 
cyclic causal model, always exists and it renders acyclic the initial cyclic causal 
model.

11.2.3. Building the Acyclic Causal Model Corresponding 
to a Cyclic Causal Model 

Given the results in the previous subsection, it is now possible to give an algorithm 
that computes the acyclic causal model of a cyclic causal model by performing 
feedback loop unfolding in time. The formal description of the algorithm is given in 
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the following. The algorithm must be provided with the relevant time-window span 
constant cmax, i.e., the maximum value of the c parameters (see the introductory part 
of the section). 

Algorithm 2 (Feedback loops replacement for obtaining an acyclic causal model 
corresponding to a cyclic causal model) 

Step 1. If the analysed causal model is cyclic, then first obtain the initial model (see 
the introductory part of this section) by eliminating the MECS from the cyclic 
causal model. 
Step 2. Let t be the initial time-step. If St is an element of the initial model, then its 
instance at the i-th time-step, i=1, …, cmax, is noted as St+i*T. The possible 
connections in the final acyclic model are detailed in the following. 
Step 2.1. All vertices St+j*T, 0 j<i, will have an outgoing connection with St+i*T.
Step 2.2. If Ut is another element of the initial model, Ut St, so that St and Ut are 
connected in the initial model, then all pairs St+i*T and Tt+i*T will have the same type 
of connection. 
Step 2.3. Finally, for each edge U S or S U in MECS, the connection Ut+(i-

1)*T St+i*T or St+(i-1)*T Ut+i*T  respectively is added to the model.

Notice that Algorithm 2 represents a summary in a formalised manner of 
the discussion from the introductory part of the section. For examples, see also the 
introductory part of the section. 

Theorem 2 Each vertex in the acyclic causal model obtained by applying 
Algorithm 5 to a cyclic causal model, receives all input values that it is supposed to 
receive and provides all output values that it is supposed to provide.
Proof The proof represents an analysis of Algorithm 2. First, the connections 
between vertices at the i-th step must be identical to the connections that exist in the 
initial model. This is insured by Step 2.2. The loss of connectivity information 
caused by the feedback loop replacement is recovered via unfolding in time, Step 
2.3.

Corollary 2 The acyclic causal model obtained by applying Algorithm 2 to a cyclic 
causal model preserves all structural information and all temporal information given 
by the initial cyclic causal model. 
Proof It is an immediate consequence of Theorem 2.

11.3. The Contributed Methodology of Partitioning 
Acyclic Causal Models Using d-Separation 
Criterion

This section first presents the algorithm that performs the proposed partitioning. 
The number k of size balanced regions and the value c of the overall imbalance 
tolerance between different regions (Karypis, 2002) are decided by the user. The 
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decision must take into account the fact that the whole set of vertices is going to be 
distributed inside each region of the partition as well as on the borders of the 
partition. The goal is to obtain a partition that (i) has a minimal vertex-cut set and 
that (ii) has all pairs of neighbouring regions causally independent (d-separated). 
The uncertainty of this decision consists in the fact that the algorithm used 
guarantees minimal borders, but neither is it able to estimate the number of vertices 
located on them nor is it able to estimate how many vertices belong to each 
partition member. Future research needs to find methodologies able to eliminate 
this uncertainty. One possible direction is to insert principles from algorithms that 
provide minimal d-separation sets (Tian et al., 1998) into multilevel partitioning 
algorithm. 

The section also provides some general guidelines on how to use this 
partitioning to perform distributed fault detection and isolation. However, the 
purpose of the chapter is not to propose a distributed fault diagnosis methodology. 
The goal of the chapter is rather to describe a causal model-based framework for 
developing such methodologies. 

Algorithm 3 (Partitioning a causal model into causally independent regions) 

Step 1. If the input causal model CM contains feedback loops, use Algorithm 3 to 
perform feedback loops replacement in order to obtain the corresponding acyclic 
causal model (ACM).
Step 2. Compute the moral graph MG corresponding to ACM. The moral graph of a 
dag is built by connecting first all pairs of vertices that are parents of the same 
vertex and, then, giving up edge orientation (Lauritzen et al., 1990). The “morality” 
of the obtained graph is insured by the fact that all vertices that share a child vertex 
are now “married” by connecting edges. 
Step 3. Transform the MG graph into a hypergraph HG so that (i) the edges of MG
represent the vertices of HG and (ii) each hyperedge h of HG corresponds to a 
vertex v in MG as follows, 

h={e MG / e is an incoming/outgoing edge in/from v} (9) 
Step 4. Use the hMeTiS application, with the k and c parameters decided by the 
user, to partition HG into k parts. 
Step 4.1. The vertex-cut set in MG corresponds to the hyperedge-cut set of HG.
Step 4.2. The regions in the MG partition are delimited using the edge labelling of 
MG provided by the HG partition. The vertex-cut set on MG determines a partition 
of ACM into causally independent regions.

Theorem 3 Each hyperedge-cut set in HG has a correspondent vertex-cut set in 
MG of the same size.
Proof When partitioning HG using hMeTiS in Step 4, each hyperedge h in HG may 
or may not be cut by the provided partition. In the following these two possible 
situations are analyzed. 

If a hyperedge h in HG is cut by the HG partition provided by Step 4, this 
fact has the following interpretation. The elements in h span more than one region 
of the HG partition. But, the elements in h are all edges in MG with one end in a 
vertex v from MG (Eq. 8). Since the partition regions in MG are determined by the 
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edge labelling provided for HG (Step 4.2), it follows that the edges in MG with one 
end in v, span more than one region of the MG partition. It follows that v represents 
a vertex located on the borders of the partition in MG.

If a hyperedge h in HG is not cut by the HG partition provided by Step 4, 
this fact has the following interpretation. The elements in h span one single region 
of the HG partition. But, the elements in h are all edges in MG with one end in a 
vertex v from MG (Eq. 8). Since the partition regions in MG are determined by the 
edge labelling provided for HG (Step 4.2), it follows that the edges in MG with one 
end in v, span one single region of the MG partition. It follows that v represents a 
vertex located inside one of the partition regions of MG.

From the previous two analyses, each hyperedge h in the hyperedge-cut set 
provided by Step 4 has a corresponding vertex v in the edge-cut set of MG. It 
follows that the claim in the theorem text is true, i.e., each hyperedge-cut set in HG
has a correspondent vertex-cut set in MG of the same size.

Corollary 3 Given a causal model of a system, Algorithm 3 provides a partition of 
its acyclic form that (i) has a minimal vertex-cut set and that (ii) has all pairs of 
neighbouring regions causally independent, i.e., d-separated by the minimal vertex-
cut set.
Proof This corollary is an immediate consequence of Theorem 3. The hyperedge-
cut set of HG provided by hMeTiS is minimal (Karypis, 2002). Theorem 3 proved 
that the vertex-cut set in MG induced by the hyperedge-cut set in HG has the same 
cardinal. It follows that the induced vertex-cut set in MG is also minimal. 

One vertex set separating two regions in MG will d-separate the two 
regions in the acyclic form ACM of the original causal model CM (Lauritzen et al.,
2002). It follows that the vertex-cut set induced on MG by the hyperedge-cut set in 
HG will d-separate each pair of neighbouring regions in ACM.
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Figure 11.10. The initial model of the digraph in Figure 11.6. 

In the following, it is presumed that the digraph in Figure 11.6 represents 
the causal model CM of a system, and Algorithm 3 is applied to provide the CM
partitioning into causally independent regions. The MECS for the first level L1 has 
already been computed in Section 11.2. The MECS for the second level L2 contains 
one single edge, any of the three edges connecting E, F and G. Let us presume that 
E F edge is chosen. Given the reunion of the two MECS, the initial model of the 
digraph in Figure 11.6 is shown in Figure 11.10. Let us presume that the relevant 
time-window span constant is 1, i.e., for all vertices the relevant past measurements 
are the ones taken at the previous time-step. The acyclic causal model ACM
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corresponding to CM (Step 1) is shown in Figure 11.11. The dashed edges are 
drawn in Step 2.1, Algorithm 2, while the dashed dotted edges are drawn in Step 
2.3, Algorithm 2. 

In practice, it is preferred sometimes to unfold in time only the pair of 
vertices disconnected by edges in MECS. If v is a vertex in CM whose all adjacent 
edges have not been selected for MECS, then v is not unfolded in time and all edges 
adjacent with vt+i, i=1,...,cmax, become adjacent with v. All edges connected pairs of 
vertices from {vi / i=0,...,cmax} set are removed. The label used for the new vertex is 
“v” with no mention of time-step. This is done in order to reduce the complexity of 
ACM digraph and the obtained digraph is called the reduced form of ACM. In the 
case of the CM in Figure 11.11 there is only one vertex, G, whose all adjacent edges 
are not in MECS. It follows that the reduction is insignificant as the reduced form 
of this particular ACM has only one vertex, Gt+1, and one edge, Gt Gt+1, less than 
the original ACM.
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Figure 11.11. The acyclic causal model (ACM) corresponding to initial model in Figure 
11.10.

The moral graph MG of ACM (Step 2) is shown in Figure 11.12. As 
mentioned in Step 2, the moral graph of ACM is built by first connecting 
(“marrying”) all pairs of vertices that are parents of the same vertex and, then, 
giving up edge orientation (Lauritzen et al., 1990). The dashed edges represents the 
edges added in order to insure the “morality” of the digraph. 

The hypergraph HG corresponding to MG (Step 3) is obtained by 
considering the edges of MG as vertices in HG. Equation 8 is used to obtain the 
hyperedges of HG. For instance, the hyperedges corresponding to vertices At and 
At+1 are 

1

1 1

1 1 1

, , ,

,
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t

A t t t t t t t t

A t t t t
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h A A A D
1

(10) 
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Notice that two hyperedges may share the same vertex (edge) in HG (MG). 
Hyperedges 

tAh  and 
1tAh  share the vertex (edge) At At+1 in HG (MG). 

The number k of regions chosen is 2 and the overall imbalance tolerance 
chosen is 1% of the total number of vertices. The hyperedge-cut set of HG found by 
hMeTiS application (Step 4) is {

tAh , , ,
tBh

tCh
tDh , ,

tEh
1tDh ,

1tEh ,
1tGh }. It follows 

that the vertex-cut set of MG is {At, Bt, Ct, Dt, Et, Dt+1, Et+1, Gt+1}. The two causally 
independent regions of the partition are {At+1, Bt+1, Ct+1} and {Ft, Gt, Ft+1}. The 
partition is displayed in Figure 11.13. 

Notice the large size of the border between the two regions, i.e., 8 out of 
14 vertices. If the original digraph (Figure 11.6) would have represented the causal 
model of a real system, then the decrease of diagnosis complexity when using the 
obtained partition instead of using the original digraph would have proven 
insignificant, due to the large size of the border. The previous partition may be 
further refined using algorithms that provide minimal d-separation sets. One of 
these algorithms, introduced by Tian et al. (1998), is presented in the following. 

Let us consider two vertices x and y in an acyclic digraph D. An algorithm 
is provided that finds a set Z such that Z, and no proper subset of Z, d-separates x
from y.
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Figure 11.12. The moral graph MG of ACM in Figure 11.11. 

Algorithm 4 (Minimal d-separation) 

Step 1. Construct the subgraph corresponding to the ancestors of x and y, DAn(x y). A 
vertex w is called an ancestor of a vertex u in D if it is connected with u through a 
directed path, i.e., there is a set of vertices {v1, v2, …,vn} so that w=v1, u=vn and 
(vi,vi+1), i=1,…,n-1, is a directed edge in D.
Step 2. Construct the moral graph of DAn(x y), (DAn(x y))m.
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Figure 11.13. The partition into two causally independent regions of the ACM in Figure 
11.11.

Step 3. Find a separating set Z’ in (DAn(x y))m. A separating set for x and y in the 
moral graph represents a set that cuts all the paths in graph between x and y. Notice 
that the set Z’ will d-separate x and y in the original acyclic digraph D. The set Z’
may be initialized with the reunion of x and y neighbours in (DAn(x y))m.
Step 4. Starting from x, run breadth-first search (BFS) procedure. Whenever a node 
in Z’ is met, mark it if it is not already marked, and do not continue along that path. 
When BFS stops, let Z’’ be the set of nodes which are marked. Remove all 
markings. 
Step 5. Starting from y, run BFS. Whenever a node in Z’’ is met, mark it if it is not 
already marked, and do not continue along that path. When BFS stops, let Z be the 
set of nodes that are marked. 

The previous algorithm is valid when applied for two disjoint sets of 
vertices X and Y. The only modification is the addition of two extra vertices x’ and 
y’ to (DAn(X Y))m, so that x’ is connected to all vertices in X and y’ is connected to all 
vertices in Y. The minimal separator must be found for x’ and y’.

The border found by Algorithm 3 is considered as set Z’ from Step 3, 
Algorithm 4. Let X={At+1, Bt+1, Ct+1} and Y={Ft, Gt, Ft+1}. The BFS tree for vertex 
x’ added to MG (Step 4, Algorithm 4) is shown in Figure 11.14. The Z’’ set is {At,
BBt, Ct, Dt+1} (the dashed circles in Figure 11.14). The BFS tree for vertex y’ added 
to MG (Step 5, Algorithm 4) is shown in Figure 11.15. The Z set equals Z’’ (the 
dashed circles in Figure 11.15). Notice that if Z’-Z is added to Y, then Z d-separate 
X and Y. The new partition is shown in Figure 11.16. The new border is now half 
the size of the original border, i.e., 4 out of 14 vertices. The decrease of diagnosis 
complexity when using the new partition instead of using the original digraph is 
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now significant, due to the small size of the new border. The new region 2 may be 
further partitioned using Algorithm 3. 
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Figure 11.14. The BFS tree for Step 4 (left) and Step 5 (right), Algorithm 4. 
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Figure 11.15. The BFS tree for Step 5, Algorithm 4. 

One of the main properties of the previous partitioning is that, knowing the 
values of the vertices on its borders, each region becomes causally independent with 
regard to the rest of the causal model, i.e., d-separation criterion is “knowing Z 
renders Y irrelevant to X,” where in this case X, Y are neighbouring regions, and Z
the minimal vertex-cut set provided by Algorithm 4. From the fault diagnosis point 
of view, this suggests that the diagnosis of a region may be performed locally, 
knowing only the values of the vertices inside a region and the values of the vertices 
located on its border with the rest of the model. However, if one or more of the 
vertices located on the border become faulty, their values become unreliable and 
unusable. This may be interpreted as a break in the causality independence with 
regard to the rest of the model. In this case, some form of communication with 
neighbouring agents may be needed to compensate for the loss of causality 
independence. For instance, communication may have the purpose of recovering the 
correct value of a faulty sensor using redundancy relationships. However, the 
purpose of the chapter is not to propose a distributed fault diagnosis methodology. 
The previous remarks represent only some general guidelines on how to use this 
partitioning to perform distributed fault detection and isolation. Future research 
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needs to concentrate on using the contributed causal model framework for 
developing such methodologies. 
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Figure 11.16. The new partition obtained by refining the partition in Figure 11.13 using 
Algorithm 4. 

11.4. Conclusions 

This chapter presented a novel approach regarding the use of causal models for 
performing distributed fault diagnosis of complex systems (Bocaniala and Sa da 
Costa, 2004; 2005). The described fault diagnosis methodology basically (i) 
considers the causal model of the system as a map, (ii) splits this map into edge 
disjoint regions separated by borders formed by vertices, and (iii) assigns a 
dedicated agent to each region. The main contribution of the chapter is the 
partitioning methodology that splits the causal model into causally independent (d-
separated) regions, i.e., step (ii). The fact that each region is causally independent 
by the rest of the model allows performing the diagnosis of that region locally, 
without needing to communicate with the rest of the model. This property allows 
maintaining the diagnosis focus exclusively on those regions of the map that are 
affected by faults. Hence, monitoring a complex system becomes a tractable 
problem. 

The contributed work in this chapter has as support methodologies the 
multilevel hypergraph partitioning (Karypis, 2002) and d-separation theory (Pearl 
and Paz, 1985; Pearl and Verma, 1986). The original contributions are (i) the 
procedure for replacing feedback loops in cyclic causal models so that the resulting 
causal model is acyclic and so that no structural information or temporal 
information contained in feedback loops is lost, and (ii) the partitioning of causal 
models into causally independent regions using d-separation criterion. 
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Future research on this novel approach regarding the use of causal models 
for performing distributed fault diagnosis of complex systems needs to concentrate 
on two directions. The first direction is to eliminate the uncertainty when deciding 
the number k of size balanced regions and the value c of the overall imbalance 
tolerance (see Section 11.3). Currently these two values must be decided by the 
user. One possible solution is to insert principles from algorithms that provide 
minimal d-separation sets (Tian et al., 1998) into multilevel partitioning algorithm. 
The second direction is using the contributed causal framework to perform fault-
tolerant control. Fault-tolerant control is concerned with making a controlled 
system able to maintain control objectives, despite the occurrence of a fault. The 
main challenge faced by the research in the field of fault-tolerant control systems is 
posed by practical applications to complex systems (Patton, 1997). For instance, 
one of the operations performed by fault-tolerant control systems is to 
accommodate faults that produce structural changes but do not require system 
shutdown. In this case, the causal model of the system and the associated 
distributed fault diagnosis system also suffer modifications and need to be updated. 
Reapplying the partitioning algorithm performs the updating. 
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