

Systems Analysis and
Design for Advanced
Modeling Methods:
Best Practices

Akhilesh Bajaj
University of Tulsa, USA

Stanisław Wrycza
University of Gdansk, Poland

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Senior Managing Editor: Jamie Snavely
Managing Editor: Jeff Ash
Assistant Managing Editor: Carole Coulson
Typesetter: Chris Hrobak
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Systems analysis and design for advanced modeling methods : best practices / Akhilesh Bajaj and Stanislaw Wrycza, editors.
 p. cm.

Includes bibliographical references and index.
Summary: "This book is a collection of work representing leading research in the area of systems analysis and design practices and methodologies"-
-Provided by publisher.

ISBN 978-1-60566-344-9 (hardcover) -- ISBN 978-1-60566-345-6 (ebook) 1. System design. 2. System analysis. I. Bajaj, Akhilesh, 1966-
II. Wrycza, Stanislaw.

QA76.9.S88S936 2009
 004.2'1--dc22

 2009009164

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the authors, but not
necessarily of the publisher.

Preface .. xiv

Chapter I
3SST Model: A Three Step Spatio-Temporal Conceptual and Relational Data Model 1

Andreea Sabău, Babeş-Bolyai University, Romania

Chapter II
An Identity Perspective for Predicting Software Development Project Temporal Success 15

Jeff Crawford, University of Tulsa, USA

Chapter III
Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models 25

Faiz Currim, University of Iowa, USA
Sudha Ram University of Arizona, USA

Chapter IV
On the Load Balancing of Business Intelligence Reporting Systems ... 42

Leszek Kotulski, AGH University of Science and Technology, Poland
Dariusz Dymek, Cracow University of Economics, Poland

Chapter V
Information Systems Development: Understanding User Participation as a Social Network 58

Angela Mattia, Virginia Commonwealth University, USA
Heinz Roland Weistroffer, Virginia Commonwealth University, USA

Chapter VI
Solutions to Challenges of Teaching “Systems Analysis and Design” for
Undergraduate Software Engineers .. 68

Özlem Albayrak, Bilkent University, Turkey

Table of Contents

Chapter VII
Systems Analysis and Design in Polish Universities Curricula: Structured or Object-Oriented 88

Przemyslaw Polak, Warsaw School of Economics, Poland

Chapter VIII
Systems Engineering Modeling and Design ... 96

Kumar Saurabh, Satyam Computer Services Ltd., India

Chapter IX
UML 2.0 in the Modelling of the Complex Business Processes of Reporting
and Control of Financial Information System .. 115

Sebastian Kwapisz, University of Gdansk, Poland

Chapter X
The UML 2 Academic Teaching Challenge: An Integrated Approach ... 134

Stanisław Wrycza, University of Gdańsk, Poland

Chapter XI
User Interface Generation from the Data Schema .. 145

Akhilesh Bajaj, University of Tulsa, USA
Jason Knight, University of Tulsa, USA

Chapter XII
Decision Rule for Investment in Reusable Code .. 154

Roy Gelbard, Bar-Ilan University, Israel

Chapter XIII
Web-Based Systems Development: An Empirically-Grounded Conceptual Framework 161

Michael Lang, National University of Ireland, Galway, Ireland

Chapter XIV
Configurable Reference Modeling Languages .. 180

Jan Recker, Queensland University of Technology, Australia
Michael Rosemann, Queensland University of Technology, Australia
Wil M. P. van der Aalst, Queensland University of Technology, Australia, & Eindhoven
 University of Technology, The Netherlands
Monique Jansen-Vullers, Eindhoven University of Technology, The Netherlands
Alexander Dreiling, SAP Research CEC Brisbane, SAP Australia Pty Ltd., Australia

Chapter XV
Designing Reputation and Trust Management Systems ... 202

Roman Beck, Johann Wolfgang Goethe University, Germany
Jochen Franke, Johann Wolfgang Goethe University, Germany

Chapter XVI
SEACON: An Integrated Approach to the Analysis and Design of Secure
Enterprise Architecture-Based Computer Networks ... 219

Surya B. Yadav, Texas Tech University, USA

Chapter XVII
Formal Methods for Specifying and Analyzing Complex Software Systems 243

Xudong He, Florida International University, USA
Huiqun Yu, East China University of Science and Technology, China
Yi Deng, Florida International University, USA

Compilation of References ... 265

About the Contributors .. 281

Index ... 285

Preface .. xiv

Chapter I
3SST Model: A Three Step Spatio-Temporal Conceptual and Relational Data Model 1

Andreea Sabău, Babeş-Bolyai University, Romania

In order to represent spatio-temporal data, many conceptual models have been designed and a part of
them have been implemented. This chapter describes an approach of the conceptual modeling of spatio-
temporal data, called 3SST. Also, the spatio-temporal conceptual and relational data models obtained by
following the proposed phases are presented. The 3SST data model is obtained by following three steps:
the construction of an entity-relationship spatio-temporal model, the specification of the domain model
and the design of a class diagram which includes the objects characteristic to a spatio-temporal application
and other needed elements. The relational model of the 3SST conceptual model is the implementation
of the conceptual 3SST data model on a relational database platform. Both models are characterized by
generality in representing spatial, temporal and spatio-temporal data. The spatial objects can be represented
as points or objects with shape and the evolution of the spatio-temporal objects can be implemented as
discrete or continuous in time, on time instants or time intervals. More than that, different types of spatial,
temporal, spatio-temporal and event-based queries can be performed on represented data. Therefore, the
proposed 3SST relational model can be considered the core of a spatio-temporal data model.

Chapter II
An Identity Perspective for Predicting Software Development Project Temporal Success 15

Jeff Crawford, University of Tulsa, USA

This theoretical work draws on group development literature to propose a model for increasing the
likelihood of achieving temporal success within a software development (SD) environment. The study
addresses a group’s temporal performance through a punctuated equilibrium (PE) lens. As a means of
extending the PE model of group development for a SD project context, this research will consider social
and temporal aspects of identity within each group in order to address the varying nature of temporal
success. First, anthropological research on rituals in society will be applied to present a project-as-ritual
perspective, where social and temporal identity are suggested to flow from the rites of passage that
exist during the initial meeting and temporal midpoint of a group. Second, social identity theory will

Detailed Table of Contents

be applied to posit that both types of identity are positively associated with a group’s ability to meet
temporal deadlines. This theoretical piece is expected to make two primary contributions to literature.
First, group development literature is enhanced by providing an extension of the PE model to address
environments where social and temporal identities are variable. This contribution is significant since it
will allow researchers to apply a PE perspective in real world project team environments. Second, the
research contributes to SD literature by offering a clear perspective regarding key factors that can serve
to impact a SD project team’s ability to meet temporal deadlines.

Chapter III
Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models 25

Faiz Currim, University of Iowa, USA
Sudha Ram University of Arizona, USA

Cardinality captures necessary semantics in conceptual data modeling and determines how constructs
are translated into relations. Business policies in a variety of domains like healthcare, education, supply
chain management and geographic systems are often expressible in terms of cardinality. The knowledge
about cardinality constraints is also useful during schema integration, in query transformation for more
efficient search strategies, and in database testing. Practically every conceptual modeling grammar
provides support for this kind of constraint, and in an effort to resolve the variations in semantics past
research has studied the different types of cardinality constraints. None have been so far comprehensive,
and further there has been very little coverage of the concept in temporal domain even though it provides
some interesting extensions to the concept. This study considers existing work in snapshot and temporal
cardinality and suggests some areas for future work.

Chapter IV
On the Load Balancing of Business Intelligence Reporting Systems ... 42

Leszek Kotulski, AGH University of Science and Technology, Poland
Dariusz Dymek, Cracow University of Economics, Poland

The UML model consists of several types of diagrams representing different aspects of the modeled
system. To assure the universality and flexibility, the UML involves only a few general rules about depen-
dence among different types of diagrams. In consequence people can have the different methodologies
based on the UML, but in the same time we haven’t the formal tool for assure the vertical cohesion of
created model. To test and reach the vertical cohesion of the model some auxiliary information about
the relations among the elements belonging to different types of diagrams should be remembered. In
this chapter the authors present the method of formal representation of such information in a form of
the relation, called Accomplish Relation. This method is based only on the UML properties and is in-
dependent from any methodology. Additionally, they show how to use the UML timing diagrams for
representing the users’ requirements in association with use cases. To illustrate the usefulness of this
approach we present how it can be used for load balancing of distributed system in case of a Reporting
Systems based on Data Warehouse concept.

Chapter V
Information Systems Development: Understanding User Participation as a Social Network 58

Angela Mattia, Virginia Commonwealth University, USA
Heinz Roland Weistroffer, Virginia Commonwealth University, USA

Conventional wisdom has it that user participation in information systems development (ISD) is es-
sential for systems success. Though the significance of user participation to system success has been
much discussed in the literature, results from empirical studies are inconsistent and suggest that perhaps
new avenues need to be explored. One approach may be viewing user participation as a social network
that is, looking at the emergence of social structures and their technological expressions during the user
participation process. In this chapter, a framework is presented that organizes user participation ap-
proaches that emerge from the different worldviews existing within organizations. This user participation
approach (UPA) framework is used as the structure for the systematic arrangement of user participation
approaches into a fourfold taxonomy based on extrinsic information attributed to them in the literature.
In addition, a categorical analysis and social network analysis (SNA) are used to map and visualize the
relationships between analyst and users, thus providing a conceptual and visual representation of the
relational structures.

Chapter VI
Solutions to Challenges of Teaching “Systems Analysis and Design” for
Undergraduate Software Engineers .. 68

Özlem Albayrak, Bilkent University, Turkey

This study is an enhancement of previous research presented at the 2nd AIS SIGSAND European
Symposium on Systems Analysis and Design and its improved version presented at the 3rd National
Software Engineering Symposium (UYMS) 2007. The AIS-SIGSAND 2007 study, the first phase, was
part of on-going research by which systems analysis and design-teaching experiences related to course
evaluation items were enlightened. This study summarizes previous studies and introduces new findings
suggested by those studies that relate to teaching challenges on systems analysis and design in software
engineering. The first challenge studied is to decide a suitable evaluation item set in undergraduate
level system analysis and design courses for software engineers. The second challenge relates to im-
plicit assumptions made by software engineers during the analysis phase. Based on pre-interview, test,
and post-interview data, the study presents a snapshot of an analysis in software engineering regarding
implicit assumptions made by analysts. Related to these challenges, the study concludes with proposals
on systems analysis and design education.

Chapter VII
Systems Analysis and Design in Polish Universities Curricula: Structured or Object-Oriented 88

Przemyslaw Polak, Warsaw School of Economics, Poland

Nowadays, there are two main information systems modeling methods: structured and object-oriented.
The structured methods have been widely used since the 1970s, whereas recently the object-oriented
methods have attracted more attention. This chapter analyses the methods that are taught on the courses
of information systems analysis and design. The curricula of information systems and computer science

studies in Polish higher education institutions are compared to the Association for Computing Machin-
ery curricula recommendations. In both cases none of the methods is prevailing. Also, the program of
introducing, at the Warsaw School of Economics, Poland, all management and business administration
students to the basics of systems analysis and design is presented. Thus, students majoring in information
systems learn both modeling methods, whereas only structured methods are introduced to all manage-
ment students.

Chapter VIII
Systems Engineering Modeling and Design ... 96

Kumar Saurabh, Satyam Computer Services Ltd., India

System theories, analysis and design have been deployed within every corporate function and within
a broad section of businesses and markets. Systems thinking involve changing paradigms about the
way the world works, the way corporations function, and the human role in each. In systems thinking,
analysis and design we look for interrelationships among the elements of a system. The chapter reflects
the core insights of system modeling. This chapter addresses the core issues of system engineering,
analysis, design, Simulation and modeling of real-world objects. It tells everything one needs to know
to be a successful system thinker, modeler, technical manager and forecaster. The chapter focuses on:
the real-world goals for, services provided by, and constraints on systems; the precise specification of
system structure and behavior, and the implementation of specifications; the activities required in order
to develop an assurance that the specifications and real-world goals have been met; the evolution of
systems over time and across system families. It is also concerned with the processes, methods and tools
for the development of systems in an economic and timely manner.

Chapter IX
UML 2.0 in the Modelling of the Complex Business Processes of Reporting
and Control of Financial Information System .. 115

Sebastian Kwapisz, University of Gdansk, Poland

This chapter includes an analysis and design of a system with a task of improving the efficiency of the
information forwarding process by the institutions under obligation so that the criteria laid down by law
are met. The description of the system has been created in accordance with the specifications of UML
2.0 and - based on many diagram types and the architecture - the business processes that it extends to
and the database structure required to collect information about transactions are set forth. Thanks to
the application of use cases the main functionality of the system is defined: searching for and bringing
together particular transactions followed by transformation and the dispatching of reports. Complex
business processes are presented by corresponding activity and interaction diagrams. The architecture
and the placement of the system within the structure of the organization, however, are depicted with
the help of structure diagrams such as class, component and deployment diagrams. The use made of the
extensibility mechanisms of UML merits attention here. The database stereotype presented in the work
made it possible for the database to be designed at the level of implementation, and the functionality of
the CASE tool enabled the complete software script to be compiled on this basis.

Chapter X
The UML 2 Academic Teaching Challenge: An Integrated Approach ... 134

Stanisław Wrycza, University of Gdańsk, Poland

UML 2.x version has become even more complicated and diverse set of graphical techniques than its
predecessors. Therefore, system developers propose preparation of its reduced, limited or minimal version
called Light UML. This problem has become also the serious challenge for the UML academic teach-
ers. The goal of this chapter is the study of specifying the UML 2.x Light version content on the basis
of the questionnaire survey registering opinions of 180 university students of the University of Gdansk,
Poland. After the introduction, the methodological prerequisites of the survey are clarified. Then, the
research results are presented and discussed according to seven essential UML diagrams assessment
criteria, included in a questionnaire. The final UML 2.x version, resulting from the accomplished survey
is exposed in the last section of the chapter.

Chapter XI
User Interface Generation from the Data Schema .. 145

Akhilesh Bajaj, University of Tulsa, USA
Jason Knight, University of Tulsa, USA

Traditionally, the data model and the process model have been considered separately when modeling an
application for construction purposes. The system analysis and design area has largely ignored the issue
of the relationship between the user interface (UI) and the underlying data schema, leaving UI creation
within the purview of the human computer interaction (HCI) literature. Traditional HCI methods how-
ever, underutilize the information in the data schema when designing user screens. Much of the work on
automatic user interface (UI) generation has met with limited success because of the added load on the
human designer to use specialized scripts for UI specification. In this research in progress, the authors
propose a methodology applicable to database driven systems that (a) automatically infers a draft inter-
face directly from an extended entity relationship (EER) model schema and (b) lists the interactions that
need to take place between the designer and the tool in order to generate the final user schema.

Chapter XII
Decision Rule for Investment in Reusable Code .. 154

Roy Gelbard, Bar-Ilan University, Israel

Reusable code helps to decrease code errors, code units and therefore development time. It serves to
improve quality and productivity frameworks in software development. The question is not HOW to
make the code reusable, but WHICH amount of software components would be most beneficial (i.e. cost-
effective in terms of reuse), and WHAT method should be used to decide whether to make a component
reusable or not. If we had unlimited time and resources, we could write any code unit in a reusable way.
In other words, its reusability would be 100%. However, in real life, resources and time are limited. Given
these constraints, decisions regarding reusability are not always straightforward. The current chapter
focuses on decision-making rules for investing in reusable code. It attempts to determine the parameters,

which should be taken into account in decisions relating to degrees of reusability. Two new models are
presented for decisions-making relating to reusability: (1) a restricted model, and (2) a non-restricted
model. Decisions made by using these models are then analyzed and discussed.

Chapter XIII
Web-Based Systems Development: An Empirically-Grounded Conceptual Framework 161

Michael Lang, National University of Ireland, Galway, Ireland

This chapter encapsulates the main findings of an in-depth study of Web development practices in
Ireland. The essential research objective was to build a richer understanding of the modern context
of Web development and of how that context influences design practices. At the outset, a conceptual
framework was derived through a synthesis of issues in the literature and an analysis of existing models
of IS development. Data was then gathered through a dual-mode (Web and postal) quantitative survey
which yielded 165 usable responses, and later through a series of 14 semi-structured qualitative inter-
views in a follow-up field study. Following an interpretive approach, elementary statistics and grounded
theory were used to iteratively analyze the data until a reasonably comprehensive and stable explanation
emerged. This is presented in the form of an elaborated conceptual framework of Web-based systems
development as “situated action.”

Chapter XIV
Configurable Reference Modeling Languages .. 180

Jan Recker, Queensland University of Technology, Australia
Michael Rosemann, Queensland University of Technology, Australia
Wil M. P. van der Aalst, Queensland University of Technology, Australia, & Eindhoven
 University of Technology, The Netherlands
Monique Jansen-Vullers, Eindhoven University of Technology, The Netherlands
Alexander Dreiling, SAP Research CEC Brisbane, SAP Australia Pty Ltd., Australia

This chapter discusses reference modeling languages for business systems analysis and design. In par-
ticular, it reports on reference models in the context of the design-for/by-reuse paradigm, explains how
traditional modeling techniques fail to provide adequate conceptual expressiveness to allow for easy
model reuse by configuration or adaptation and elaborates on the need for reference modeling languages
to be configurable. We discuss requirements for and the development of reference modeling languages
that reflect the need for configurability. Exemplarily, we report on the development, definition and con-
figuration of configurable event-driven process chains. We further outline how configurable reference
modeling languages and the corresponding design principles can be used in future scenarios such as
process mining and data modeling.

Chapter XV
Designing Reputation and Trust Management Systems ... 202

Roman Beck, Johann Wolfgang Goethe University, Germany
Jochen Franke, Johann Wolfgang Goethe University, Germany

This article analyzes the handling of customer complaints after shipping ordered goods by applying auto-
mated reputation and trust accounts as decision support. Customer complaints are cost intensive and difficult
to standardize. A game theory based analysis of the process yields insights into unfavorable interactions
between both business partners. Trust and reputation mechanisms have been found useful in addressing
these types of interactions. A reputation and trust management system (RTMS) is proposed based on design
theory guidelines as an IS artifact to prevent customers from issuing false complaints. A generic simulation
setting for analysis of the mechanism is presented to evaluate the applicability of the RTMS. The findings
suggest that the RTMS performs best in market environments where transaction frequency is high, individual
complaint-handling costs are high compared to product revenues, and the market has a high fraction of po-
tentially cheating customers.

Chapter XVI
SEACON: An Integrated Approach to the Analysis and Design of Secure
Enterprise Architecture-Based Computer Networks ... 219

Surya B. Yadav, Texas Tech University, USA

The extent methods largely ignore the importance of integrating security requirements with business
requirements and providing built-in steps for dealing with these requirements seamlessly. To address
this problem, a new approach to secure network analysis and design is presented. The proposed method,
called the SEACON method, provides an integrated approach to use existing principles of information
systems analysis and design with the unique requirements of distributed secure network systems. We
introduce several concepts including security adequacy level, process-location-security matrix, data-
location-security matrix, and secure location model to provide built-in mechanisms to capture security
needs and use them seamlessly throughout the steps of analyzing and designing secure networks. This
method is illustrated and compared to other secure network design methods. The SEACON method is
found to be a useful and effective method.

Chapter XVII
Formal Methods for Specifying and Analyzing Complex Software Systems 243

Xudong He, Florida International University, USA
Huiqun Yu, East China University of Science and Technology, China
Yi Deng, Florida International University, USA

Software has been a major enabling technology for advancing modern society, and is now an indis-
pensable part of daily life. Because of the increased complexity of these software systems, and their
critical societal role, more effective software development and analysis technologies are needed. How
to develop and ensure the dependability of these complex software systems is a grand challenge. It is
well known that a highly dependable complex software system cannot be developed without a rigorous
development process and a precise specification and design documentation. Formal methods are one of
the most promising technologies for precisely specifying, modeling, and analyzing complex software
systems. Although past research experience and practice in computer science have convincingly shown
that it is not possible to formally verify program behavior and properties at the program source code
level due to its extreme huge size and complexity, recently advances in applying formal methods during

software specification and design, especially at software architecture level, have demonstrated significant
benefits of using formal methods. In this chapter, we will review several well-known formal methods
for software system specification and analysis. We will present recent advances of using these formal
methods for specifying, modeling, and analyzing software architectural design.

Compilation of References ... 265

About the Contributors .. 281

Index ... 285

xiv

Preface

Systems analysis and design (SAND) is an evolving field that still represents the point where business and
technology intersects. As discussed in (Bajaj, Batra, Hevner, Parsons, & Siau, 2005), SAND represents
the core of management information systems (MIS) curricula but is underrepresented in the area of MIS
research. The chapters in this book represent the state of the art in several streams that are ongoing in
SAND research is Europe and North America. The chapters in this book are largely taken from presenta-
tions at the 2007 AIS SIG SAND (Association of Information Systems Special Interest Group on SAND)
symposia that are an annual occurrence in both North America and Europe since around 2004. While not
exhaustive, these symposia represent on-going work in several different areas of SAND. As such, the
papers here discuss work ranging from spatio-temporal data modeling to software project management
to user interface generation to empirical evaluation of web based system development methods.

Chapter I, entitled “3SST Model: A Three Step Spatio-Temporal Conceptual and Relational Data
Model” by Andreea Sabău, follows three steps: the construction of an entity-relationship spatio-temporal
model, the specification of the domain model and the design of a class diagram which includes the objects
characteristic to a spatio-temporal application and other needed elements. It describes the implementa-
tion of the 3SST spatio-temporal data model on a relational platform.

Chapter II is entitled “An Identity Perspective for Predicting Software Development Project Temporal
Success” by Jeff Crawford investigates a project group’s temporal performance through a punctuated
equilibrium (PE) lens. It describes a model that considers social and temporal aspects of identity within
each group in order to address the varying nature of temporal success.

Chapter III is entitled “Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data
Models” by Faiz Currim and Sudha Ram. It highlights the usefulness of cardinality constraints during
schema integration, in query transformation for more efficient search strategies, and proposed avenues
of future research in this area.

Chapter IV entitled “On the Load Balancing of Business Intelligence Reporting Systems” is co-
authored by Leszek Kotulski and Dariusz Dymek. This chapter proposes a formal representation of
the information that intersects across different UML diagrams in order to form a cohesive view of the
domain.

Chapter V by Angela Mattia and Heinz Roland Weistroffer is entitled “Information Systems De-
velopment: Understanding User Participation as a Social Network” attempts to formally study user
participation in systems development as a social network, that is, looking at the emergence of social
structures and their technological expressions during the user participation process.

Chapter VI is entitled “Solutions to Challenges of Teaching “Systems Analysis and Design” for
Undergraduate Software Engineers” and is authored by Özlem Albayrak. It presents implicit assump-
tions made by software engineers during analysis and also describes suitable item sets in undergraduate
SAND courses.

 xv

Continuing in the teaching of SAND vein, Chapter VII is entitled “Systems Analysis and Design
in Polish Universities Curricula: Structured or Object-Oriented” and is written by Przemyslaw Polak. It
compares the curricula of information systems and computer science studies in Polish higher education
institutions to the Association for Computing Machinery curricula recommendations and analyzes the
prevalence of structured versus object-oriented approaches.

Chapter VIII by Kumar Saurabh, is entitled “Systems Engineering Modeling and Design” high-
lights the insights afforded by “systems” thinking and offers steps on how to achieve such a mindset in
real world contexts.

Chapter IX, entitled “Uml 2.0 in the Modelling of the Complex Business Processes of Reporting
and Control of Financial Information System” is by Sebastian Kwapisz. The chapter explores the usage
of UML specifications for interagency systems development, using a specific case study.

Chapter X by Stanisław Wrycza is entitled “The Uml 2 Academic Teaching Challenge: An Integrated
Approach”. The author explores the essential components of UML that need to be taught in a University
curriculum, based on student surveys.

Chapter XI, entitled by “User Interface Generation from the Data Schema” is co-authored by Akh-
ilesh Bajaj and Jason Knight. It proposes a method to automatically infer a draft interface directly from
an extended entity relationship (EER) model schema and lists the interactions that need to take place
between the designer and the tool in order to generate the final user interface.

Chapter XII is by Roy Gelbard and is entitled “Decision Rule for Investment in Reusable Code”.
The author attempts to determine the parameters, which should be taken into account in decisions relat-
ing to degrees of reusability that should be injected into code.

Chapter XIII, entitled “Web-Based Systems Development: An Empirically-Grounded Conceptual
Framework” is by Michael Lang. This chapter encapsulates the main findings of an in-depth study of
Web development practices in Ireland. Using the results of an extended survey, it presents a conceptual
framework of Web-based systems development as “situated action”.

The last four chapters are not from SIGSAND symposia; but were included because they represent
topics that fit well with the theme of this book. Chapter XIV is entitled “Configurable Reference Model-
ing Languages” and is authored by Jan Recker, Michael Rosemann, Wil van der Aalst, Monique Jansen-
Vullers, and Alexander Dreiling. It motivates the need for conceptual expressiveness for enhancing the
configurability of modeling languages.

Chapter XV, by Roman Beck and Jochen Franke is entitled “Designing Reputation and Trust Man-
agement Systems”. It utilizes game theory to design a trust based system so as to reduce false complaints
filed by customers in high transaction environments.

Chapter XVI, entitled “Seacon: An Integrated Approach to the Analysis and Design of Secure En-
terprise Architecture–Based Computer Networks” and is authored by Surya Yadav. It illustrated how
SAND principles can be used in the design of secure networks.

The final chapter is entitled “Formal Methods for Specifying and Analyzing Complex Software Sys-
tems” and is co-authored by Xudong He, uiqun Yu, and Yi Deng. It summarizes formal methods of system
specification and illustrates how these can be used at the architecture stage to test complex software.

Akhilesh Bajaj, University of Tulsa, USA

Stanisław Wrycza, University of Gdansk, Poland

xvi

RefeRences

Bajaj, A., Batra, D., Hevner, A., Parsons, J., & Siau, K. (2005). Systems Analysis and Design: Should
We Be Researching What We Teach? Communications of the AIS, 15(April), 478-493.

 1

Chapter I
3SST Model:

A Three Step Spatio-Temporal Conceptual
and Relational Data Model

Andreea Sabău
Babeş-Bolyai University, Romania

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

In order to represent spatio-temporal data, many conceptual models have been designed and a part
of them have been implemented. This chapter describes an approach of the conceptual modeling of
spatio-temporal data, called 3SST. Also, the spatio-temporal conceptual and relational data models
obtained by following the proposed phases are presented. The 3SST data model is obtained by following
three steps: the construction of an entity-relationship spatio-temporal model, the specification of the
domain model and the design of a class diagram which includes the objects characteristic to a spatio-
temporal application and other needed elements. The relational model of the 3SST conceptual model is
the implementation of the conceptual 3SST data model on a relational database platform. Both models
are characterized by generality in representing spatial, temporal and spatio-temporal data. The spatial
objects can be represented as points or objects with shape and the evolution of the spatio-temporal
objects can be implemented as discrete or continuous in time, on time instants or time intervals. More
than that, different types of spatial, temporal, spatio-temporal and event-based queries can be performed
on represented data. Therefore, the proposed 3SST relational model can be considered the core of a
spatio-temporal data model.

1. IntRODUctIOn

Spatio-temporal databases (STDB) deal with spa-
tial objects that are changing over time and space.
In other words, these objects are characterized by

spatial and temporal attributes, yet these are not
static objects. There are many domains where the
spatio-temporal (ST) data is used: cadastral ap-
plications, military operations, weather systems,
multimedia presentations, moving objects etc.

2

3SST Model

Spatial databases and temporal databases have
been studied for many years (modeling, imple-
menting, optimizing), but the surrounding reality
showed us different applications which needed to
combine the spatial and temporal domains. Thus,
the two dimensions were both included into spatio-
temporal databases. The first attempts consisted
in adding one dimension to the other: including
temporal data into a spatial database or adding
spatial attributes to the temporal objects. Later,
other models joined space and time into one uni-
fied spatio-temporal view (Worboys, 1994).

Following these different approaches in
perceiving ST data, modeling techniques and
database models, many conceptual models have
been designed and concrete applications have
been implemented. Some of the models represent
space and evolving spatial objects organized in
time-stamped layers (see the Snapshot Model –
Langran & Chrisman, 1988). One layer contains
the state of a geographic distribution at a mo-
ment of time, but there are no explicit temporal
connections between layers. Another class of
spatio-temporal data models is represented by the
Event-Oriented Models which record informa-
tion about the events that led to spatio-temporal
changes (see the Event-Oriented Spatio-Temporal
Data Model (ESTDM) - Peuquet & Duan, 1995).
Thus, event-oriented queries are supported and
the evolution of an object has to be traced through
the stored events.

Other spatio-temporal data models have been
designed using and / or adapting conceptual data
modeling techniques in order to satisfy some
spatio-temporal requirements. Such a model is
the STER model (the Spatio-Temporal Entity-
Relationship Model - Tryfona & Jensen, 1999;
Tryfona & Jensen, 2000) which extends the
standard Entity-Relationship Model to include
spatial and temporal characteristics. The entities
may have spatial attributes of type point, line or
region, while entities, attributes and relationships
can be time-stamped using valid time, transaction
time or bi-temporal data. The object-oriented data

modeling technique is used in another paper (Price,
Tryfona, & Jensen, 2000), where the Unified
Modeling Language (UML) is extended to include
attributes and methods of spatial and temporal
nature (Spatio-Temporal UML - STUML).

An original approach is the Three-Domain
Model (Yuan, 1999) which separates semantic
domain from spatial and temporal domains. The
advantage of this model arises from the indepen-
dence of the three domains at semantic and be-
havioral level. There are links from semantic and
temporal objects to spatial objects and from spatial
and temporal objects to semantic objects. Assum-
ing that a spatial object is located in time, there are
no direct links from semantic to spatial domain.
The particular case of objects without temporal
measures is marked with a null time value. The
ST data is organized within four relations: three
relations that correspond to the three domains
and a relation that links the semantic objects, the
time elements and the spatial entities.

A parametric ST model is the Parametric
k-Spaghetti (Chomicki & Revesz, 1997). The
evolving spatial data can be of type point, line
segment or region. One geometry element is rep-
resented by one or more triangles (degenerate in
the case of points and line segments). Therefore
the ST information is stored within tuples which
contain the object’s id, the parametric coordi-
nates of one triangle and a valid time interval as
timestamp. Though the structure of the relation
is relatively simple, the represented information
can capture the continuous evolution of spatial
objects in time.

Moving Object Data Models have been devel-
oped to deal explicitly with continuously moving
objects. The Moving Objects Spatio-Temporal
data model (MOST) (Sistla, Wolfson, Chamber-
lain, & Dao, 1997; Wolfson, Xu, Chamberlain,
& Jiang, 1998) introduces the notion of dynamic
attribute represented as functions of time in order
to denote an attribute that changes continuously.
Another approach consists in modeling the con-
tinuous evolution of objects using the so-called

 3

3SST Model

sliced representation (Erwig, Güting, Schneider,
& Vazirgiannis, 1998; Güting, Böhlen, Erwig,
Jensen, Lorentzos, Schneider, & Vazirgiannis,
2000).

A part of these data models were proposed
as general models. Other ST data models were
designed especially for a specific ST application.
The paper (Wang, Fang, & Xie, 2005) considers
the particular application domain of cadastral
information system and proposes a new ST data
model. This model is based on the parcel as pri-
mary object and is designed in order to overcome
some problems like data redundancy, low query
efficiency and the relationship problem between
the father parcel and the son parcel. Another
data model concerned with tracking land use is
proposed in (Huang, & Claramunt, 2005). The
proposed model extends the ODMG object model
with a parameterized type, TimeSeries<T>, which
allows the shifting of spatial types into ST types
in order to represent the history of an object. Also,
a spatio-temporal extension of the object query
language is proposed, which helps the formulation
of various spatio-temporal queries. The Volumet-
ric Spatiotemporal Data Model (Rahim, Shariff,
Mansor, Mahmud, & Alias, 2006) has been devel-
oped to manage surface movement in the Virtual
Geographical Information Systems (VGIS). The
authors have integrated the temporal element with
the 3D object (the volumetric object), which is one
of the spatial objects in VGIS. Therefore, temporal
version of volumetric surface data can be stored
and visualized by using this model.

In (Sabau, 2007a), a new ST conceptual data
model was presented. Using the 3SST model for
a spatio-temporal application domain modeling,
the designer may include spatio-temporal objects,
but also thematic objects, without any spatial or
temporal attributes. Depending on the application,
events may be modeled using particular event-type
objects. Discrete and continuous evolutions are
allowed for the thematic and spatial objects. One
spatial object can be a point, a line or a simple
polygon (therefore, spatial object with or without
shape).

Three steps are proposed to be followed during
the conceptual modeling process: the identification
of the general entities and the relationships be-
tween them, the design of the four-domain model
and the development of the detailed model which
includes classes (the description and behavior of
objects) and relations. The importance of each
of the proposed modeling phases is mentioned
regarding the identification of the characteristics
or behavioral aspects of objects to be modeled.

Next, the 3SST conceptual data model is trans-
formed into a concrete model (Sabau, 2007b) in
order to be implemented on a relational database
system. Despite the diversity and complexity of
objects and their evolutions, the proposed objective
is to represent the data using a reduced number
of relations and attributes. Thus, the final goal is
to obtain a spatio-temporal relational structure
characterized by simplicity, generality, minimum
redundancy and offering the possibility of an easy
implementation of spatial and temporal operations
and queries on the represented data.

The chapter is organized as follows: the next
section presents the steps by which the 3SST model
is obtained; the represented space and time ele-
ments and the concrete relational 3SST model are
described in Section 3. The final section contains
conclusions and proposed future work.

2. tHe 3sst cOnceptUAl DAtA
mODel

A weakness of many existing models is that each
of them deals with some common characteristics
found within specific applications. The modeling
process described in this chapter tries to identify
and use the objects and elements needed within
an application dealing, among others, with spatio-
temporal data. The modeling phases do not take
into account a certain ST application. This means
that the model is capable to represent thematic,
spatio-temporal and events alike objects.

The conceptual 3SST model is obtained by
following three steps: the construction of a general

4

3SST Model

entity-relationship spatio-temporal model, the
specification of the domain model and the design
of a class diagram which includes the objects
characteristic to a spatio-temporal application and
other needed elements. These steps are presented
next in this section.

2.1. the entity-Relationship
spatio-temporal model

The first step of the spatio-temporal modeling
approached in this chapter makes use of one of
the most encountered conceptual data modeling
techniques, regardless of the nature of data or ap-
plication - the Entity-Relationship model. Thus, the
result of the first modeling step of spatio-temporal
data will be simply called the Entity-Relationship
Spatio-Temporal model (E-R ST model).

In order to discuss the construction of the
diagrams corresponding to the three modeling
steps, the concrete example of a meteorological
application is considered.

The main entity such an application has to deal
with is the meteorological phenomenon. These are
one of the most complex spatio-temporal objects:
a meteorological phenomenon is a spatial object
with both position and extend, and both character-
istics evolve in time. Yet, besides these attributes,
the object may have non-spatial characteristics
which are called thematic in this chapter. For
example, to a meteorological phenomenon it can
be associated: a type (rain, drizzle, fog, snow,
hail, glazed frost, storm), which is a non-temporal

attribute; various parameters (atmospheric pres-
sure, air temperature, soil dampness / moisture,
nebulousness, visibility, wind speed), which can
be temporal attributes if their evolution in time
is recorded.

The attributes that record the evolution (the
temporal attributes) are considered to be composite
attributes with repetitive values (multi-value attri-
butes), because there are zero, one or more values
associated with an object’s instance. The thematic
temporal attributes and the spatio-temporal at-
tributes consist of a time attribute and a thematic
attribute, and a spatial attribute, respectively. The
structure of the multi-value attributes within the
3SST data model is shown in Figure 1. For example,
for the previously considered entity “Meteorologi-
cal_phenomenon”, the attribute “wind_speed” is
represented as a thematic temporal attribute (see
Figure 1(a)): one value of this attribute is given by
the wind’s speed (corresponding to the thematic
attribute) at a certain moment (corresponding to
the time attribute).

In order to generalize the domain of a problem
and to achieve a fairly comprehensive model, the
set of object types to be included within the E-R
ST diagram is enlarged. For example, the domain
of a meteorological application may contain
spatial objects with no temporal characteristics
(like table-land, town), temporal objects without
spatial attributes (the usage of equipments or the
measurement of the values corresponding to dif-
ferent parameters) or objects with no spatial or
temporal attributes.

Figure 1. The structure of the multi-value attributes within the 3SST data model: (a) The thematic tem-
poral attributes, (b) The spatio-temporal attributes

 5

3SST Model

If a database contains spatio-temporal objects
and their attributes along with the evolution of
their values in time (the objects states are stored),
the types of queries that may be efficiently
answered are object-oriented, spatial-oriented,
time-oriented and combinations of these. Yet, it
cannot be known what caused the change of the
state, the creation or destruction of an object.
Therefore, information about the occurred event
is also stored, to overcome this shortcoming
(Peuquet & Duan, 1995).

In common usage, an event has the connotation
of an occurrence, something that takes places at
a particular place and time. Depending on the
number of objects affected by an event, the events
are classified as endogen (implies a single object;
for example the creation or alteration of an object)
or hexogen (at least two objects are affected, for
example the split and merge processes). As an
example of event that may occur in the consid-
ered application, let’s consider the impact of two
meteorological phenomena.

In this chapter it is considered that an event do
not has associated a lifespan. In order to explain
this decision, an object O is considered and two
consecutive states of O, S1 and S2, which are
valid during the time intervals [ts

1, tf
1), and [ts

2,
tf

2) respectively. The event E is considered to be
the event that triggered the change of the object’s
state, from S1 to S2. If the event E has a lifespan,
then tf

1< ts
2, and the corresponding lifespan is

given by [tf
1, ts

2). The question that arises in this
case is „Which is the state of O during the time
interval [tf

1, ts
2)?”. In each case, if the object has a

discrete or a linear continuous evolution in time,
its state should be known in any moment within
a contiguous time interval (except the cases when
the communication with that object is broken).
Therefore, it is considered that an event only
happens at a certain moment in time, updates the
states of the affected objects, and tf

1 = ts
2 is the

timestamp of that event.
Therefore, an event object has associated as

attributes a temporal-type one (a timestamp)

and the location, representing the instant and the
position where the event occurred. The event can
be considered an individual class of objects that
are connected to objects within the application
domain. It is important to notice that the event
objects have no evolution in time and that an event
is not a spatio-temporal object even if it has spatial
and temporal characteristics.

Considering that an object may have more
attributes which evolve in time, the type of time-
stamping at attribute level is applied in this model.
The time-stamping of a tuple would lead to many
data redundancies.

Despite the complexity of a ST data domain,
the E-R ST diagram (see Figure 2) is very simple,
identifying only two related entity types. This E-R
ST diagram is not intended to be used directly for
a particular application domain. It only proves
that all kind of objects characteristics (thematic,
spatial, temporal, ST) can be modeled by using
simple and multi-valued attributes, but in order
to obtain a more closed conceptual model to a
concrete one, further refining steps are necessary
(see subsection 2.3).

An observation has to be made in order to
clarify the difference made by this chapter between
time and temporal elements. It is called temporal
an element (object or attribute) whose state (value)
is changing over time. The timestamps associated
with evolving elements are simply called time
elements.

2.2. the 4-Domain model

The data model presented by Yuan (1996) im-
plies the spreading of data over thee domains
in accordance with its nature: thematic, spatial
and temporal. There are relationships set from
the semantic and temporal domain to the spatial
domain and from the spatial and temporal domain
to the semantic domain.

The second step of the 3SST modeling process
applies the same idea to the components depicted
in Figure 2. The events and thematic objects are

6

3SST Model

treated as two separate domains because there is
a special relation among objects through events.
The space and time aspects are removed from
thematic objects and events, in order to be seen
as individual classes, with their own attributes
and behavior, and to answer efficiently spatial-
based and time-based queries. Thus the domain
model depicted in Figure 3 is composed by four
domains, representing:

• Thematic objects: The objects that are in-
cluded in the domain of application;

• Event objects: The objects that represent the
cause of changes among application domain
objects;

• Space objects: The objects that describe
the spatial characteristics of a thematic or
event-type object; these objects are strictly
spatial and each of these objects represents
shape and / or location. An observation
has to be made: in this paper these objects
are not called spatial objects not to be con-

founded with the spatial objects of a spatial
database;

• Time objects: objects which represents the
temporal domain that may be associated
with thematic objects, event objects or space
objects.

Unlike the data model proposed by Yuan
(1999), the 3SST modeling allows for the estab-
lishment of direct links between any two of the
four domains, without restrictions. Therefore,
the representation of static spatial objects or
dynamic non-spatial objects is possible.

2.3. the Object model

Using either the E-R or the 4-Domain diagram,
four types of objects may be represented in the
current model:

• Non-spatial non-temporal objects (noted here
as thematic objects): The objects that do not
have any spatial or temporal attribute;

• (strict) Spatial objects: They have at least one
spatial attribute, but its evolution in time is
not recorded, and do not have any temporal
attribute;

• (strict) Temporal objects: These objects do
not have any spatial attribute, but they have
associated at least one valid time or transac-
tion time attribute;

• Spatio-temporal objects: They have at least
one spatial attribute whose evolution in time
is recorded.

Figure 2. The general Entity-Relationship Spatio-
Temporal diagram

Figure 3. The 4-Domain diagram

 7

3SST Model

The efficient temporal data handling and the
uniform treatment of spatial and temporal data
are two of the main advantages of using object-
oriented techniques in a ST environment. The
design of the class diagram corresponding to the
3SST data model starts with the transformation of
the E-R ST diagram, using the 4-Domain diagram,
into the initial model represented in Figure 4.

Futher, the normalization process at object
class level (Ambler, 2006) is used during the refin-
ing operations because it has the main advantage
the fact that it makes possible to identify indepen-
dent objects not only at characteristics level, but
at behavioral level as well over the classic relation
normalization. In this way, the obtained model is
closer to a concrete one. For example, the space
and time objects might be treated in a similar
fashion regarding the resemblance between the
spatial and temporal dimensions characteristics;
nevertheless, the two domains present major dif-
ferences at the behavioral level.

The final class diagram in 3ONF (the 3rd Object
Normal Form) corresponding to the 3SST data
model is depicted in Figure 5.

Some observations related to Figure 5 have
to be made:

• A geometric object (space object) is repre-
sented by one or more n-dimensional points;
thus, such an object can represent a point,
a line segment (if there are two associated

points) or any region implemented as a
polygon having at least three vertices; the
points are stored in counterclockwise order,
in order to facilitate different computations,
like area, direction, intersection, or triangu-
lation of that region; the attribute Next_point
is a link to the next point within the current
list of points (if it is not the last point of the
list). The points of a polygon are stored in
counterclockwise order, in order to facilitate
the implementation of different computa-
tions, like area, direction, intersection, or
triangulation of regions.

• This spatio-temporal model allows both
types of time objects to be used: the valid
time (the time when the fact is true in the
modeled reality) and the transaction time (the
time when a fact is stored in database).

• The temporal domain of the 3SST data model
is linear and continuous.

• The time elements can be instants or inter-
vals.

The presented spatio-temporal model allows
both types of time objects to be used: the valid
time (the time when the fact is true in the modeled
reality) and the transaction time (the time when
a fact is stored in database).

The time elements are enriched with an at-
tribute that represents the corresponding time
zone, if needed. For example, the timetable of

Figure 4. The class diagram in 0ONF of the 3SST data model

8

3SST Model

airplanes uses the local time for arrivals, but,
in order to be able to compute the duration of a
flight, the difference between the time zones is
needed to be known.

The Figure 5 depicts relations of aggregation
between the Generic_object class and the The-
matic_temporal_object and Spatio-temporal_ob-
ject classes in order to represent the dynamic
attributes (non-spatial and spatial) whose evolu-
tion time intervals correspond to the lifespan of
the corresponding object. Further, there are also
represented relations of association between the
Generic_object and Space_object, and Time_ob-
ject respectively in the case when the thematic
object has associated a spatial attribute without
temporal evolution or a time attribute.

The entity Granularity is included in order to
express spatial, time and numerical data in asso-
ciation with different measurement units.

The methods that define the behavior of the-
matic objects, space objects and time objects are
not presented in detail: the methods of thematic
objects may be implemented according to the na-
ture of managed data, and the methods for spatial
and temporal data correspond to different spatial
and temporal operators.

The values of a spatio-temporal attribute may
evolve discretely or continuously. On the other
hand, regarding the spatial attributes of objects,
the changes that may occur are on shape and / or
position. These kinds of changes may be repre-

Figure 5. The class diagram in 3ONF of the 3SST data model

 9

3SST Model

sented depending on data members and methods
of the Point class: if a point object is represented
by a scalar value or a constant function of time,
the evolution of that point is discrete on a cor-
responding time interval (discrete evolution);
the continuous evolution of a point object during
a time interval might be represented by a non-
constant function of time. Like the Parametric
k-Spaghetti data model, the 3SST data model
uses linear functions of time.

3. tHe 3sst RelAtIOnAl DAtA
mODel

This section presents the result of the imple-
mentation (Sabau, 2007b) of the proposed 3SST
conceptual data model on top on a relational
database system. During this implementation,
the following decisions have been made:

• The generality regarding the number of
objects’ dimensions is reduced to two,
because of some limitations of the used
Transact SQL language and the implemen-
tation of some spatial operators. Therefore,
the implemented model can represent two-
dimensional spatial objects.

• The objects of class Time_instance, which is
renamed as Temporal in the relational model,
received the time_zone property. This is use-
ful, for example, in recording the timetable
of airplanes, for which the departure and the
arrivals are given using the local time. In
this case, the knowledge if the time zone is
necessary in order to compute the duration
of one flight.

• The implementation of the 3SST model uses
the vector data model and represents spatial
entities by their approximations: a line is
represented by as set of connected line seg-
ments and a region is modeled as polygon.
The set of polygons that are represented by
a set of points (the vertices) are convex or

non-convex and have to be simple, non-self-
intersecting polygons. The next sub-section
contains the definitions of the basic spatial
data types (point, line segment, line, and
polygon) and the description of the time
elements used within the 3SST model.

3.1. the Represented spatial Data

The space Sp that includes the spatial objects
is considered theoretically to be the Euclidian
2-dimensional space. Because of limitations of
the real type of the system, the domain of values
corresponding to the coordinates of points is
discrete. According to this, theoretically, Sp = R2
= {(x1, x2) | x1, x2∈R }. A pair P = (x1, x2), xi∈R,
i:=1..2, is a point of the considered space.

A line segment S is given by two points, P1,
P2∈Sp, P1 ≠ P2, such as S = {Ps | Ps = α * P1 + (1-
α) * P2, α∈[0, 1]}.

In order to define the line and polygon enti-
ties, the oriented line segment is considered to
be the vector determined by two points P1 si P2.
Therefore, if P1, P2∈Sp, P1 ≠ P2, and SO1 = (P1,
P2) and SO2 = (P2, P1) are two oriented segments,
then SO1 ≠ SO2.

A set of oriented segments, L = (SO1, SO2, …,
SOl), defines a line if:

PL1: ∀ i:=1..(l-1), SOi.P2 = SOi+1.P1 (the segments
are connected at their end points);

PL2: ∀ i, j:=1..l, i≠j, SOi ∩ SOj = ∅ ∨ SOi ∩ SOj
= {P} (the segments are not overlapping,
partially or totally).

Let Pg = (SO1, SO2, …, SOp), p≥1, be a set of
oriented segments. Pg is a simple polygon if the
following conditions are fulfilled:

PP1: ∀ i:=1..p, SOi.P2 = SO(i+1) MOD p.P1 (the seg-
ments are connected at their end points);

PP2: ∀ i:=1..(p-2), j:=(i+2)..p, i ≠ j, SOi ∩ SOj =
∅ (any two non-consecutive segments are
not intersecting);

10

3SST Model

PP3:
1

1 1
: 2

() 0
p

i i
i

A PPP
−

+
=

∆ >∑

The notation A(ΔP1PiPi+1) used in PP3 repre-
sents the signed area of the triangle ΔP1PiPi+1, i:=
2..(p-1). The sum of the triangles’ signed areas
represents the signed area of the polygon; the posi-
tive sign assures the counterclockwise orientation
of the vertices of the polygon.

3.2. the time elements

The time objects that are used for time stamping
the thematic or spatial objects can be of type instant
or interval. It is considered that the time domain
is the time of reality, and not simply a surrogate
temporal axis, as the real numbers.

The evolution of an object O is considered to be
given by a sequence of states (S1, S2, …, Sn). If the
evolution of O is discrete and is recorded only at
certain moments in time, each of its states is time
stamped with a time instant. On the other side,
each state is defined over a certain time interval,
if the object O’s evolution (discrete or continuous)
is recorded during time intervals. Let Ik with the
end points tk

1 and tk
2, t

k
1 < tk

2, be the time inter-
val corresponding to Sk state, where k:=1..n. If
the lifespan of O is continuous and there cannot
exists two different states of O at the same time,
then any two time intervals Ik and Ij, k, j:=1..n, k
≠ j, must be disjoint. The implementation of the
3SST data model considers that they are closed
at their “left” end point and open at the “right”
end point. Figure 6 depicts a discrete evolution
of O, which consists of four states (S1, S2, S3, S4),
during time interval [t1, t5).

3.3. the Relational Implementation
of the 3sst model

In this section the structure of the 3SST rela-
tional model (Sabau, 2007b) that corresponds to
the presented conceptual 3SST model is shortly
described.

The relations depicted in Figure 7 are currently
implemented on a Microsoft SQL-Server database
system and the operation routines and queries
are written using the Microsoft SQL-Server’s
Transact-SQL language. The set of implemented
routines includes operations and queries with
numerical result (for spatial or temporal objects),
predicates (topologic, metric and directional, also
for spatial or temporal objects), operations with
result of type Direction (Sabau, 2007b) (only for
spatial data of type point), operations and queries
with result of type spatial or time.

A few comments about the diagram structure
depicted in Figure 7 are given next:

• The property of generality is inherited by
the relational model from the conceptual
data model. Therefore, the 3SST relational
model can be considered the core of a ST
data model. For example, even if the current
structure contains one relation Object which
includes the static data of the application
domains entities, more Object-like relations
can be included in the database, depending
on a particular application.

• A measurement unit is included into a single
family of granularities, each of these having
a parent granularity.

• Each spatial element has associated a unique
ID (SOID) and each point identified by a

Figure 6. The discrete evolution of an object over
the time interval [t1, t5)

 11

3SST Model

PID corresponds to a certain spatial element
(see the foreign key Point (SID) referencing
Spatial_Obj (SOID)).

• The type of the ROW_ID columns is Time-
stamp. This decision was made because
this data type assures that the automatically
generated values are unique within the entire
database, not only within a relation.

• A static object or a static point does not
have associated any tuple within the relation
Evolution.

• Any point is identified by the value PID, and
a state of a point is identified by ROW_ID.
Therefore, the evolution of a point is given
by the set of tuples of the Point relation that
contain the given PID value.

• In the previous sub-sections were described
the spatial and time objects that can be rep-
resented using the 3SST relational model.
The non-spatial temporal objects and the
spatio-temporal objects are not described
explicitly because they are implemented
using the Evolution relation. This relation
actually contains the complete history of an
object (Dyn_Thematic or Point).

• The events that trigger the objects’ changes
are recorded in the Event relation. The as-
sociations within an event and the new states
of the affected objects are contained within
the Event_obj relation, where the ROW_ID
can represent the new state of a thematic
object or the new state of a point object.

3.4. the characteristics of the 3sst
Relational Data model

The characteristics that recommend the 3SST
data model as a core in modeling data within a
ST application are presented next:

• Generality at the level of:
○ ST application: the modeling process

does not take into account a specific
type of application, and can be used
within different applications, like the
management of terrains, transportation
systems, ecology, and many others;

○ Types of objects (as being included into
one of the four mentioned domains): it
is possible the representation of:

Figure 7. The diagram of the 3SST relational model

12

3SST Model

 thematic static objects (without
thematic dynamic, spatial static
or spatial dynamic attributes),

	 spatial static objects (with at least
one spatial static attribute and
without dynamic attributes),

	 thematic dynamic objects (with
at least one thematic dynamic
attribute and without spatial at-
tributes),

	 spatial dynamic objects or ST
objects (with at least one spatial
dynamic attribute);

○ Types of spatial objects: the 3SST data
model allows the geometric representa-
tion of objects without shape, with lin-
ear or region shape; the approximation
of the regions is made using convex or
concave simple polygons;

○ Types of evolutions: the model can rep-
resent the discrete and the continuous
evolutions of spatial objects using linear
functions of time as their approxima-
tions. As another aspect of the general-
ity within the context of spatial objects’
evolutions, it is emphasized the fact that
the representation of the evolution of
spatial objects of type line segment or
polygon allows the independent evolu-
tion of their extremities, without storing
redundant data.

• Extensibility:
○ The main idea of the 3SST data model

development is obtaining a core in
modeling ST data. The presented model
can be extended by new structures and
new fields can be added to the existing
structures, without influence on what
was mentioned before. For example:
there is a single table Object and a single
table Dyn_Thematic; but, according to
the number or the diversity of ST objects
within the data domain of a ST appli-
cation, there can be added new tables

within the relational database, as long
as the way the objects and their states
are identified is the same.

• Independence against the domain of the
problem: the spatial and spatio-temporal
data is included into structures that are not
affected by the expansion of the database.

• Simplicity: not the last, the simplicity of
the 3SST structures can be noticed, as the
number of tables and fields vis-à-vis the pos-
sibilities in representing data and operating
on it.

cOnclUsIOn AnD fUtURe WORk

Any application needs first a conceptual model of
data. The 3SST data modeling process proves the
benefit of using two or more modeling techniques
in order to identify various types of objects, the
relationships among them, how they communicate
or what behavior they have. The entity-relationship
diagram was first used because is simple and pro-
vides a clear point of view on data. The domain
model resulted from different observations and it
was rather an intermediate step, than a separate
modeling phase. The class diagram finished the
process by identifying the objects and some of
their attribues and methods.

Next, it is shown the capability of a relational
database system to store ST data with discrete or
continuous evolution in time. The spatial attributes
of considered objects may be of type point, line
or simple polygon. The implementation of spatial
evolution allows the defining points of the geo-
metric objects to change independently, with a
different frequency, on different time intervals.
Also, the implemented model is able to perform
different spatial, temporal and ST operations
and queries on the stored data, with the help of
a set or routines written in the standard query
language.

The current work will be continued by the
implementation of a visual interface. In order to

 13

3SST Model

implement in a more elegant and efficient fashion
the data structures and the corresponding routines,
the proposed future work also includes their imple-
mentation on top of an object-relational database
system and the study of queries performance on
large sets of data.

RefeRences

Ambler, S. W. (last updated 2006). Introduction to
class normalization. Retrieved 2008, from http://
www.agiledata.org

Chomicki, J., & Revesz, P. (1997). Constraint-
based interoperability of spatiotemporal da-
tabases. Proc. of the 5th Intl. Symposium on
Large Spatial Databases, LNCS 1262, 142-162.
Springer-Verlag.

Erwig, M., Güting, R. H., Schneider, M., & Vazir-
giannis, M. (1998). Abstract and discrete modeling
of spatio-temporal data types. In Proceedings of
ACM International Symposium on Geographic
Information Systems, (pp. 131-136).

Güting, R. H., Böhlen, M. H., Erwig, M., Jensen,
C. S., Lorentzos, N. A., Schneider, M., & Vazir-
giannis, M. (2000). A foundation for representing
and querying moving objects. ACM Transactions
on Database Systems, 25(1), 1-42.

Huang, B., & Claramunt, C. (2005). Spatiotempo-
ral Data Model and Query Language for Track-
ing Land Use Change. Transportation Research
Record: Journal of the Transportation Research
Board, 1902, 107-113.

Langran, G., & Chrisman, N. R. (1988). A
framework for temporal geographic information
systems. Cartographica, 25(3), 1-14.

Peuquet, D., & Duan, N. (1995). An Event-Based
Spatio-temporal Data Model (ESTDM) for
Temporal Analysis of Geographical Data. Int.
Journal of Geographical Information Systems,
9(1), 7-24.

Price, R. J., Tryfona, N., & Jensen, C. S. (2000).
Extended SpatioTemporal UML: Motivations,
Requirements and Constructs. Journal of Data-
base Management, 11(4), 14-27.

Rahim, M. S. M., Shariff, A. R. M., Mansor, S.,
Mahmud, A. R., & Alias, M. A. (2006). Volumetric
spatiotemporal data model. In Innovations in 3D
Geo Information Systems, Lecture Notes in Geoin-
formation and Cartography, (pp. 547-556).

Renolen, A. (1996). History graphs: Conceptual
modeling of spatio-temporal data. In Proceedings
of GIS Frontiers in Business and Science, Inter-
national Cartographic Association, 2, Brno.

Sabau, A. (2007a). The 3SST Model: A three step
spatio-temporal conceptual model. In Proceedings
of the 2nd AIS SIGSAND European Symposium on
System Analysis and Design, Gdansk.

Sabau, A. (2007b). The 3SST Relational Model.
Studia Universitatis “Babeş-Bolyai”, Informatica,
LII(1), 77-88.

Sistla, A. P., Wolfson, O., Chamberlain, S., & Dao,
S. (1997). Modeling and querying moving ob-
jects. Proceedings of the 13th IEEE International
Conference on Data Engineering, Birmingham,
(pp. 422-432).

Tryfona, N., & Jensen, C. S. (1999). Conceptual
data modeling for spatiotemporal applications.
GeoInformatica, 3(3), 245-268.

Tryfona, N., & Jensen, C. S. (2000). Using abstrac-
tions for spatio-temporal conceptual modeling.
Proceedings of the 2000 ACM Symposium on
Applied Computing, Italy, (pp. 313-322).

Wang, Z., Fang, Y., & Xie, X. (2005). A spatio-
temporal data model based on the parcel in cadas-
tral. In Proceedings of Geoscience and Remote
Sensing Symposium, 2.

Wolfson, O., Xu, B., Chamberlain, S., & Jiang,
L. (1998). Moving objects databases: Issues and
solutions. Proceedings of the 10th International

14

3SST Model

Conference on Scientific and Statistical Database
Management (SSDBM98), (pp. 111-122).

Worboys, M. F. (1994). A Unified Model for
Spatial and Temporal Information. The Computer
Journal, 37(1), 27-34.

Yuan, M. (1996). Modeling semantical, temporal,
and spatial information in geographic information
systems. In M. Craglia & H. Couclelis (Eds.),

Geographic Information Research: Bridging
the Atlantic (pp. 334-347). London: Taylor &
Francis.

Yuan, M. (1999). Use of a three-domain repre-
sentation to enhance GIS support for complex
spatiotemporal queries. Transactions in GIS,
3(2), 137-159.

 15

Chapter II
An Identity Perspective
for Predicting Software
Development Project

Temporal Success
Jeff Crawford

The University of Tulsa, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

This theoretical work draws on group development literature to propose a model for increasing the
likelihood of achieving temporal success within a software development (SD) environment. The study
addresses a group’s temporal performance through a punctuated equilibrium (PE) lens. As a means of
extending the PE model of group development for a SD project context, this research will consider social
and temporal aspects of identity within each group in order to address the varying nature of temporal
success. First, anthropological research on rituals in society will be applied to present a project-as-
ritual perspective, where social and temporal identity are suggested to flow from the rites of passage
that exist during the initial meeting and temporal midpoint of a group. Second, social identity theory
will be applied to posit that both types of identity are positively associated with a group’s ability to meet
temporal deadlines. This theoretical piece is expected to make two primary contributions to literature.
First, group development literature is enhanced by providing an extension of the PE model to address
environments where social and temporal identities are variable. This contribution is significant since
it will allow researchers to apply a PE perspective in real world project team environments. Second,
the research contributes to SD literature by offering a clear perspective regarding key factors that can
serve to impact a SD project team’s ability to meet temporal deadline.

16

An Identity Perspective for Predicting Software Development Project Temporal Success

INTRODUCTION

Software development (SD) projects have been the
subject of a tremendous amount of attention in the
academic world. Within this research stream, the
most frequent goal has been to evaluate, elucidate
and ultimately predict factors which enhance the
likelihood of achieving SD project success. Issues
such as project structure and SD methodology
usage have been suggested as important factors
that influence project success (Hardgrave, Davis,
& Riemenschneider, 2003; Khalifa & Verner,
2000; Kirsch, Sambamurthy, Ko, & Purvis, 2002).
However, little research has considered the role of
group dynamics in shaping SD project success.
Since SD projects are often the result of team ef-
forts, a key source of SD project success must lie
in how the group develops and approaches their
tasks over time.

As a first step in addressing the role of group
dynamics in a SD context, this paper will pres-
ent a theoretical model which attempts to explain
the role of group development in promoting SD
project success. Because project success is a broad
and complex construct, the theory detailed here
will focus only on one aspect of success, that
of meeting temporal deadlines. A punctuated
equilibrium (PE) model of group development
(Gersick, 1988) will serve as the theoretical
foundation for addressing the temporal pacing
of work activities within a SD project. While a
PE model provides a general framework to evalu-
ate SD project temporal success, its interpretive
power is limited with regards to several of the
idiosyncrasies inherent in SD project work. For
example, SD environments are often character-
ized by fluid project specifications, shifting task
and project deadlines, workplace demands which
compete with project expectations, and a need to
interweave independent development activities
within interdependent project goals. To accom-
modate these issues, this research will extend
the PE model by considering both the social and
temporal identity possessed by each SD project

team. The resulting view of SD group develop-
ment is expected to explain the variance that often
exists in project team temporal success.

This paper will proceed as follows. First,
the PE model of group development will be dis-
cussed in terms of its strengths and limitations
for predicting SD project success. Next, the PE
model will be extended by considering the role
of social and temporal identity in a SD context,
specifically focusing on the impact of identity
on the group’s ability to navigate its temporal
midpoint. Following this, the theoretical model
will be presented and propositions discussed.
Finally, the paper will conclude with an overview
of expected contributions and future directions
of this research stream.

tHeORetIcAl peRspectIves
On gROUp DevelOpment

Group development literature has a long, rich and
somewhat divided history1. Early researchers of
group development suggested that productive
groups progress sequentially through a series of
well defined stages during their life (Tuckman &
Jensen, 1977). While a sequential view of group
development doesn’t preclude the existence of
behaviors in any given stage (i.e., work activities
in the forming stage), it does suggest that each
phase is characterized by a dominant set of be-
haviors specific to that phase (Wheelan, 1994). A
sequential perspective suggests that groups must
navigate in a linear fashion through each devel-
opmental stage before they can have a chance of
attaining task success. In the late 1980s, the idea
of gradual sequential development was challenged
by the research of Connie Gersick (1988, 1989),
who used a widely accepted theory of biological
evolution (PE) to frame the task-related behavior
of small groups. The PE perspective illustrated
that groups are likely to complete tasks on-time
provided they share a consistent sensitivity to
temporal deadlines and demonstrate that sensi-

 17

An Identity Perspective for Predicting Software Development Project Temporal Success

tivity through increased activity at the group’s
temporal midpoint. While often positioned as
competing and tangential explanations of group
development (Wheelan, Davidson, & Tilin, 2003),
recent work has suggested that both perspectives
offer valid explanations of group behavior, but
from different points of reference. Specifically,
sequential models of group development focus
on the socio-emotional development of groups
throughout their life while a PE model illustrates
group development in light of work activity over
time (Chang, Bordia, & Duck, 2003). Since this
research focuses on the temporal nature of SD
projects, a PE model of group development is the
most appropriate framework for understanding
the role of group development in temporal SD
project success.

A pe model of group Development

The PE perspective of group development grew
out of evolutionary research which sought to
understand how biological systems change over
time (Wollin, 1999). Rather than proposing that
species evolve only through smooth and gradual
change, scientists began to theorize that new forms
often result from revolutionary events (Eldredge
& Gould, 1972). Over time, researchers began to
apply this perspective in understanding phenom-
ena within different domains. In particular, group
development researchers such as Gersick (1988)
observed that groups did not follow a smooth and
gradual development pattern as suggested in previ-
ous research (Tuckman & Jensen, 1977) but rather
exhibited characteristics that were analogous with
the development of biological systems. Specifi-
cally, she found that groups tended to experience
two stable phases of their life, punctuated by a
radical shift at their temporal midpoint (Gersick,
1988, 1989). During the first half of a group’s life,
a group’s modus operandi appeared to result from
the first meeting and stayed fairly consistent until
the temporal midpoint. At the midpoint, groups
typically experienced a sharp point of crisis (i.e.,

uncertainty regarding completion of the task)
which resulted in a radical re-evaluation and
reformation of group behavior and task work.
This new group structure then stabilized for the
second phase of a group’s life, where members
intently focused on behaviors which would help
them complete the assigned work task before the
temporal deadline.

A key finding of this perspective is that win-
dows of opportunity for influencing a group’s
trajectory exist and are somewhat predictable.
Specifically, Gersick found that both inertial
phases of a group’s life are preceded by a window
of opportunity (1988, 1989). The first is evident
during a group’s initial meeting, where members
are brought together to consider the assigned task
and member roles for the first time. Decisions made
during this first period strongly influence group
structure and work during the first period of the
group’s life. The second window of opportunity
occurs at the midpoint transition, where group
members are forced to reconsider their task prog-
ress in light of a rapidly approaching deadline.
Rather than incrementally changing direction,
the midpoint results in a radical shift of group
direction which serves to define task work during
the second period of inertia.

This perspective holds several promises for
SD research addressing temporal project success.
First, the PE model suggests two key points in a
group’s life, the initial meeting and the temporal
midpoint, that can serve as windows of oppor-
tunity for management to help direct SD project
teams towards a successful end. At the initial
meeting, efforts made to promote a unified view of
project expectations and goals can help to ensure
that the first period of inertia isn’t wasted time but
rather a period when a healthy team structure is
implemented. At the temporal midpoint, the model
suggests that drawing attention to project dead-
lines can serve as an important means of moving
the SD team into a highly productive period where
attaining project deadlines are more likely. Sec-
ond, a PE model of group development implicitly

18

An Identity Perspective for Predicting Software Development Project Temporal Success

illustrates the importance of identity in achieving
positive group outcomes. PE research has most
often investigated groups convened to complete
a specific task within a clearly understood time
frame (Chang et al., 2003; Gersick, 1988, 1989),
resulting in project teams with strong social and
temporal identities.

tHeORetIcAl peRspectIves
On IDentIty

A PE model of group development has been
examined and validated within groups that pos-
sess two distinct types of identity. First, groups
examined in PE research seemed to enjoy a strong
social identity, defined as the summation of group
member “self-concept which derives from his
knowledge of his membership of a social group
(or groups) together with the value and emotional
significance attached to that membership” (Tajfel,
1981, p. 255). This social identity is most clearly
expressed in the group’s consensus regarding proj-
ect goals and objectives. Second, groups examined
in PE research also evidenced a strong temporal
identity, defined as group member understanding
for and allegiance to the final project deadline.
Temporal identity is most clearly illustrated in
groups where project deadlines are clear and
unambiguous.

Unfortunately, SD project environments are
subject to variations in social and temporal identi-
ties within the project and an assumption of strong
social and temporal identity will not suffice. As
such, it is important to address how identity is
achieved within a SD project as a means of induc-
ing positive project outcomes. A PE perspective
suggests two points in a group’s life where a group
is most agreeable for shaping identity, the initial
group meeting and the group’s temporal midpoint.
These periods can be understood in terms of rites
of passage that serve to transition individuals into
a new project-related identity.

Rites of passage in a sD context

Rites can be defined as “relatively elaborate, dra-
matic, planned sets of activities that consolidate
various forms of cultural expressions into one
event, which is carried through social interactions,
usually for the benefit of an audience” (Trice &
Beyer, 1984, p. 655). The existence of rites provides
a means of achieving stability within an organiza-
tion in the face of unpredictable change (Robey &
Markus, 1984; Trice & Beyer, 1984). Within the
context of project work, rites of passage become
paramount since they provide a door through
which member identity can be shaped into one
that is project-focused. Anthropological research
on rites of passage in society, originating in the
early 1900s with French anthropologist Arnold van
Gennep (1960) and coming to prominence in the
latter half of the 20th century with the ethnographic
work of Victor Turner (Turner, 1974), provides
a procedural view which provides an important
insight into the formation of developer identity
within a SD project. Drawing on the work of van
Gennep, Turner formalized a ritual-as-process
perspective where individuals are suggested to
traverse three separate stages of behavior during
an identity transition: (a) separation, (b) liminal-
ity, and (c) aggregation (Deflem, 1991)2. In the
initial stage of separation, the individual divorces
from existing social structures in preparation to
receive their new identity. This initial stage is fol-
lowed by a liminal period where the individual is
“betwixt and between”, having abandoned their
previous identity but yet to take hold of the new
one (Turner, 1995). Finally, a period of aggrega-
tion occurs where the individual absorbs their
new identity and finalizes the shift between social
roles. Turner’s intense interest in this process
focused on the liminal period since he was con-
vinced that “liminality is not only transition but
also potentiality, not only ‘going to be’ but also
‘what may be’” (Turner & Turner, 1978, p. 3). As
such, Turner suggests that the liminal period can

 19

An Identity Perspective for Predicting Software Development Project Temporal Success

be dangerous to the existing institutional environ-
ment since communitas (anti-structure) develop
which can produce social structures incompatible
with existing norms (Turner, 1995).

Organizational worker identities shift over
time within an organization, as can be evidenced
within the day to day roles required of a SD proj-
ect worker. For example, a software developer
will often wear different hats based on specific
organizational needs, playing the part of coder,
mentor, standards bearer, technical support, proj-
ect worker, manager, etc. With so many potential
outlets for identity, how does a project worker
acquire a social and temporal identity within the
context of a SD project? Within organizations,
worker identity is often altered through the use
of rites of passage, such as that of a worker be-
ing promoted to management whose existing
workspace (cubicle) is abandoned for an office
with a door (a transitory rite of passage). Rites
are prevalent within the software development
process (Robey & Markus, 1984) and often serve
as mechanisms through which developer identity
is aligned with the project.

The first rite of passage in a SD project exists
during the group’s initial meeting, where indi-
viduals are faced with creating a social identity
relating to the project itself. At this early stage
of the project, individuals must unfreeze their
current social identity in order to incorporate
new roles and responsibilities required within
the project. The second rite of passage is evident
at the group’s midpoint transition, where group
members must solidify a temporal identity, lock-
ing into the project’s completion date in order to
encourage and support productive behaviors. As
such, rites of passage play an important role in
shaping project identity, and consequently en-
abling or constraining temporal success.

The strength of SD project social and tempo-
ral identities can vary greatly between projects.
With social identity, team members are often
saddled with divergent organizational demands
that preclude them from deeply identifying with

the project. In addition, temporal identity might
be discouraged because of competing and/or
ambiguous project deadlines. Using a rites of pas-
sage perspective, SD environments would exhibit
weak social or temporal identities in light of two
conditions. First, project-related rites of passage
might not encourage sufficient separation for
members, hampering the formation of a strong
social identity. For example, replacing the initial
project meeting with an e-mail message could be
interpreted by team members as an indication of
low project importance. Second, project-related
rites of passage might not be sufficient to move an
individual from the liminal stage into aggregation
with the new identity. For example, a SD group
might not develop a concrete and cohesive under-
standing of the project deadline at the midpoint but
rather continue living in a state of project-related
temporal ambiguity.

ReseARcH pROpOsItIOns

Drawing on the theoretical framework presented
earlier, several propositions can be asserted. The
first considers how a project team can achieve tem-
poral success. PE research demonstrates that task
productivity primarily occurs during the period
of a group’s life following their midpoint transi-
tion provided that the team exhibited a proper
awareness of time and deadlines. Groups unable
to refocus at their temporal midpoint were found
to be prone to failure (Gersick, 1989). As such, a
PE perspective suggests the following within a
SD project context:

P1: SD project temporal success is positively
related to a project team’s ability to success-
fully navigate their temporal midpoint.

However, there are several idiosyncrasies
within a SD project environment that prevent
one from blindly applying a PE perspective to
understand SD project temporal success. First,

20

An Identity Perspective for Predicting Software Development Project Temporal Success

groups studied in PE research have a very clear
project-related social identity. While some SD
projects are characterized by developers working
solely on one project, many developers are saddled
daily with competing organizational demands.
For example, it is not uncommon for a developer
to provide support and maintenance for past SD
projects while also working on new development
initiatives. In addition, developers are often as-
signed to projects based on their expertise (i.e.,
security expert, database expert, etc.) which can
force them to span multiple projects at one time. In
situations where developers are asked to identify
with multiple initiatives, it is likely that they will
experience problems in identifying with any one
particular project. Second, the PE perspective has
typically been applied to groups where members
were required to “make interdependent decisions
about what to create and how to proceed” (Ger-
sick, 1988, p. 13). While SD projects do require
interdependent activity, developers often function
independently of the project team while complet-
ing tasks within the project. As such, developers
are frequently insulated from the overall project
through their attention to the completion of specific
project-related tasks. Third, the idea of a temporal
midpoint transition requires that group members
have an unambiguous knowledge of the project
deadline. Gersick acknowledged this in her work
when she stated that “synchrony in group mem-
bers’ expectations about deadlines may be criti-
cal to groups’ abilities to accomplish successful
transitions in their work” (1989, pp. 305-306). SD
projects often require SD methodologies which
embrace need for user requirements to be progres-
sively elaborated over time (DeGrace & Stahl,
1990; McConnell, 2004), limiting the degree to
which team members can clearly understand the
project deadline. Even when a project deadline can
be crystallized, developers are often required to
focus on the completion of individual tasks rather
than the project as a whole, and as such are not
tuned into the overall project deadline.

While there is value in drawing on a PE model
for understanding SD project temporal success,
it is clear that the model alone won’t address
the complexities of SD environments. The next
paragraphs will illustrate how the concept of
identity can be used to extend the PE model to a
SD project context.

the Role of Identity in sD project
temporal success

Project identity is expressed in the PE model
of group development through both social and
temporal identities. While social identity is estab-
lished in the initial meeting of a group, temporal
identity grows from the group’s inception and is
only solidified at the group’s temporal midpoint.
The impact of identity on temporal success will
first be addressed through social identity since
it occurs early in the group’s life, followed by a
discussion of the influence of temporal identity
on success.

The role of social identity on group outcomes
can be understood through a social identity theory
lens. Social identity theory was developed to
explain the means by which individuals ascribe
identification with a given group, and the result-
ing dynamics of relationships with other groups
(Tajfel, 1981). Social identity is important since
it provides the individual with cognitive structur-
ing regarding the social environment while also
enabling a means of positioning themselves within
that environment (Ashforth & Mael, 1989). While
social identity theory has most frequently been
used to explain the drivers of group identification
(Bhattacharya, Rao, & Glynn, 1995; Dwyer, Rich-
ard, & Shepherd, 1998; Laverie & Arnett, 2000;
Underwood, Bond, & Baer, 2001), the theory has
also been applied to understanding outcomes such
as adherence to organizational norms (Hogg &
Terry, 2000) and stakeholder mobilization (Row-
ley & Moldoveanu, 2003).

Social identity theory offers several impor-
tant lessons with regards to a SD group’s ability

 21

An Identity Perspective for Predicting Software Development Project Temporal Success

to meet temporal deadlines. First, individuals
possess multiple social identities which might
impose competing and conflicting demands
upon them (Ashforth & Mael, 1989). Research
has consequently suggested that individuals in
organizations are more likely to participate in
activities that are viewed as consistent with their
identities (Ashforth & Mael, 1989), or conversely
that individuals might eschew activities that aren’t
consistent. Further, research has posited that social
group attraction encourages compliance with in-
group norms (Hogg & Terry, 2000), consequently
discouraging compliance with out-group norms.
These two assertions suggest that a project team’s
social identity, defined as “the intersection of the
social identities of the individuals in that group”
(Rowley & Moldoveanu, 2003, p. 211), should
positively influence that team’s attention to project
tasks, which has a direct bearing on their abil-
ity to navigate the temporal midpoint transition
described in a PE perspective. As such, the PE
model of group development is extended for a
SD project environment through the following
proposition:

P2: The project-related social identity within
a group is positively related to a project
team’s ability to successfully navigate their
temporal midpoint.

Another important application of social iden-
tity theory within this context is its implications
for a project team’s ability to develop a temporal
identity. Temporal identity is more than just know-
ing the date a project should be complete. Rather,
temporal identity requires that a group ingest the
due date in a way that is reflected through their col-
lective behavior. While SD project team members
are understood to have multiple social identities
within the organization, there are likely to be
inconsistencies between these different identities.
Rather than integrating the various social identi-
ties, research has suggested that individuals will

identify more strongly with one than the others
and as such exert more efforts on activities that
support that foremost identity (Ashforth & Mael,
1989). In the case of SD projects, this suggests that
the strength of a SD project team’s social identity
will impact the formation of their temporal identity
by providing a justification and motivation for
project work over other competing demands.

P3: The project-related social identity within
a group is positively related to a project
team’s project-related temporal identity.

Finally, the temporal identity of a SD project
team is also expected to have direct implications
on their ability to manage the temporal midpoint
transition suggested in a PE perspective. Research
on polychronic orientations within a workgroup
suggests that as worker preferences regarding
polychronicity (i.e., a desire to work on multiple
tasks simultaneously) align with the reality of how
activities are actually accomplished in the group,
members have a greater willingness to exert effort
and in fact increase their desire to remain in that
group (Slocombe & Bluedorn, 1999). This find-
ing underlies the idea that temporal synchrony
within a group provides an intra-group paradigm
that allows them to more closely focus on project
activities regardless of other temporal pressures.
As such, it is expected that the strength of a SD
project team’s temporal identity will provide a
means for effectively handling the shock of the
temporal midpoint transition.

P4: The project-related temporal identity within
a group is positively related to a project
team’s ability to successfully navigate their
temporal midpoint.

Figure 1 provides a graphical depiction of
the process theory outlined in propositions one
through four.

22

An Identity Perspective for Predicting Software Development Project Temporal Success

cOntRIbUtIOns, lImItAtIOns
AnD fUtURe DIRectIOns

The preceding research propositions suggest that
a PE model of group development can be used
to predict temporal success within a SD project
team provided that social and temporal identi-
ties are sufficient to provide a team the ability
to survive and thrive in light of the shock at the
group’s temporal midpoint. The resulting model
is expected to make three primary contributions
to literature. First, group development literature
is furthered by extending the PE model to ad-
dress “real-world” project environments where
project identity can substantially vary. Second,
the research contributes to SD literature by of-
fering a theoretical view regarding conditions
that can encourage SD project team’s ability to
meet temporal deadlines. Finally, this research
contributes to project management literature by
stepping outside the procedural aspects of project
management and addressing social considerations
in enabling project success.

In addition, the propositions in this research
offer a platform from which managerial interven-
tions can be derived to induce temporal project
success. For example, the proposed model stresses
the importance of two points in a group’s life (the
initial meeting and the temporal midpoint) that
are most conducive to altering the trajectory of a
group. This research contributes to practitioners
by providing a project-as-ritual view where indi-
vidual identity is shaped through rites of passage
at each key point in the project’s life. As such,

the model suggests that interventions aimed at
increasing project team identity (for example,
providing a greater emphasis on the initial project
meeting) can improve the project team’s ability
to meet temporal deadlines.

RefeRences

Ashforth, B. E., & Mael, F. (1989). Social identity
Theory and the Organization. Academy of Man-
agement Review, 14(1), 20-39.

Bhattacharya, C. B., Rao, H., & Glynn, M. A.
(1995). Understanding the Bond of Identifica-
tion: An Investigation of its Correlates Among
Art Museum Members. Journal of Marketing,
59(4), 46-57.

Chang, A., Bordia, P., & Duck, J. (2003). Punctu-
ated equilibrium and Linear Progression: Toward a
New Understanding of Group development. Acad-
emy of Management Journal, 46(1), 106-117.

Deflem, M. (1991). Ritual, Anti-Structure, and
Religion: A Discussion of Victor Turner’s Proces-
sual Symbolic Analysis. Journal for the Scientific
Study of Religion, 30(1), 1-25.

DeGrace, P., & Stahl, L. H. (1990). Wicked Prob-
lems, Righteous Solutions: A Catalogue of Modern
Software Engineering Paradigms. Englewood
Cliffs, NJ: Prentice Hall, Inc.

Dwyer, S., Richard, O., & Shepherd, C. D. (1998).
An Exploratory Study of Gender and Age Match-
ing in the Salesperson-Prospective Customer

Tem p o ral
S uc c es s

Tem p o ral
Id ent ity

A b ility to
M anag e the

Tem p o ral
M id p o int

P 1

P 2

P 3

P 4

S o c ial
Id ent ity

Figure 1. Theoretical model3

 23

An Identity Perspective for Predicting Software Development Project Temporal Success

Dyad: Testing Similarity-Performance Predic-
tions. The Journal of Personal Selling & Sales
Management, 18(4), 55.

Eldredge, N., & Gould, S. J. (1972). Punctuated
Equilibria: An Alternative to Phyletic Gradualism.
In T. J. M. Schopf (Ed.), Models in Paleobiology
(pp. 82-115). San Francisco, CA: Freeman.

Gersick, C. J. G. (1988). Time and Transition in
Work Teams: Toward a New Model of Group
development. Academy of Management Journal,
31(1), 9-41.

Gersick, C. J. G. (1989). Marking Time: Predict-
able Transitions in Task Groups. Academy of
Management Journal, 32(2), 274-309.

Hardgrave, B. C., Davis, F. D., & Riemensch-
neider, C. K. (2003). Investigating Determinants
of Software Developers’ Intentions to Follow
Methodologies. Journal of Management Informa-
tion Systems, 20(1), 123-151.

Hogg, M. A., & Terry, D. J. (2000). Social identity
and Self-Categorization Processes in Organiza-
tional Contexts. Academy of Management Review,
25(1), 121-140.

Khalifa, M., & Verner, J. M. (2000). Drivers
for Software development Method Usage. IEEE
Transactions on Engineering Management, 47(3),
360-369.

Kirsch, L. J., Sambamurthy, V., Ko, D.-G., & Pur-
vis, R. L. (2002). Controlling Information Systems
Development Projects: The View from the Client.
Management Science, 48(4), 484-498.

Laverie, D. A., & Arnett, D. B. (2000). Factors
Affecting Fan Attendance: The Influence of Iden-
tity Salience and Satisfaction. Journal of Leisure
Research, 32(2), 225.

Markus, M. L., & Robey, D. (1988). Information
Technology and Organizational Change: Causal
Structure in Theory and Research. Management
Science, 34(5), 583-598.

McConnell, S. (2004). Code Complete (2nd ed.).
Redmond, WA: Microsoft Press.

Robey, D., & Markus, M. L. (1984). Rituals in
Information Systems Design. MIS Quarterly,
8(1), 5-15.

Rowley, T. J., & Moldoveanu, M. (2003). When
Will Stakeholder Groups Act? An Interest- and
Identity-based Model of Stakeholder Group
Mobilization. Academy of Management Review,
28(2), 204-219.

Slocombe, T. E., & Bluedorn, A. C. (1999). Or-
ganizational Behavior Implications of the Con-
gruence Between Preferred Polychronicity and
Experienced Work-unit Polychronicity. Journal
of Organizational Behavior, 20, 75-99.

Tajfel, H. (1981). Human Groups and Social Cat-
egories: Studies in Social Psychology. Cambridge,
England: Cambridge University Press.

Trice, H. M., & Beyer, J. M. (1984). Studying
Organizational Cultures Through Rites and
Ceremonials. Academy of Management Review,
9(4), 653-669.

Tuckman, B. W., & Jensen, M. A. C. (1977). Stages
in Small Group development Revisited. Group &
Organization Studies, 2(4), 419-427.

Turner, V. W. (1974). Dramas, Fields, and Meta-
phors: Symbolic Action in Human Society. Lon-
don, England: Cornell University Press.

Turner, V. W. (1995). The Ritual Process: Struc-
ture and Anti-Structure (Reprint ed.). Chicago:
Aldine Transaction.

Turner, V. W., & Turner, E. (1978). Image and
Pilgrimage in Christian Culture. New York:
Columbia University Press.

Underwood, R., Bond, E., & Baer, R. (2001).
Building Service Brands via Social identity:
Lessons from the Sports Marketplace. Journal of
Marketing Theory and Practice, 9(1), 1.

24

An Identity Perspective for Predicting Software Development Project Temporal Success

Van Gennep, A. (1960). The Rites of Passage
(M. B. Vizedom & G. L. Caffe, Trans.). London,
England: University of Chicago Press

Wheelan, S. A. (1994). Group Processes: A De-
velopmental Perspective. Needham Heights, MA:
Allyn and Bacon.

Wheelan, S. A., Davidson, B., & Tilin, F. (2003).
Group development Across Time: Reality or Illu-
sion? Small Group Research, 34(2), 223-245.

Wollin, A. (1999). Punctuated equilibrium: Rec-
onciling Theory of Revolutionary and Incremental
Change. Systems Research and Behavioral Sci-
ence, 16(4), 359-367.

enDnOtes

1 For a comprehensive review of group de-
velopment literature, see: Chidambaram,

L., and Bostrom, R.P. “Group Development
(I): A Review and Synthesis of Development
Models,” Group Decision and Negotiation
(6:2), March 1997, pp 159-187.

2 It is interesting to note the parallel between
Turner’s three stages and those proposed by
Kurt Lewin to explain behavioral change:
unfreeze, change and freeze. More infor-
mation on Lewin’s model of change can be
found at: Lewin, K. “Group Decision and
Social Change,” in: Readings in Social Psy-
chology, T.M. Newcomb and E.L. Hartley
(eds.), Henry Holt & Co., New York, NY,
1947, p. 344.

3 Antecedent variables in Figure 1 are consid-
ered necessary, but not sufficient, conditions
required in attaining temporal success. The
model in Figure 1 is an example of a process
theory, as discussed in (Markus & Robey,
1988)

 25

Chapter III
Survey of Cardinality

Constraints in Snapshot and
Temporal Semantic Data Models

Faiz Currim
University of Iowa, USA

Sudha Ram
University of Arizona, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

Cardinality captures necessary semantics in conceptual data modeling and determines how constructs
are translated into relations. Business policies in a variety of domains like healthcare, education, supply
chain management and geographic systems are often expressible in terms of cardinality. The knowledge
about cardinality constraints is also useful during schema integration, in query transformation for more
efficient search strategies, and in database testing. Practically every conceptual modeling grammar
provides support for this kind of constraint, and in an effort to resolve the variations in semantics past
research has studied the different types of cardinality constraints. None have been so far comprehensive,
and further there has been very little coverage of the concept in temporal domain even though it provides
some interesting extensions to the concept. This study considers existing work in snapshot and temporal
cardinality and suggests some areas for future work.

IntRODUctIOn

The last three decades have seen active research
in the area of database design and modeling. A
number of modeling grammars and implementa-

tion techniques have been proposed, including
popular standards like the Entity Relationship
(ER) model and the Unified Modeling Language
(UML). Both ER and UML were designed as
general-purpose models, and we have seen the

26

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

development of model extensions to capture the
semantics in specialized domains (e.g., for scien-
tific, healthcare, and temporal applications). In
various forms, these models all address important
design needs of documenting and communicat-
ing the database schema, and are consequently
popular in industry and academia. One would be
hard-pressed to find a database textbook that did
not include some conceptual model variant, and
likewise most database CASE tools incorporate
them in as well.

A number of grammars have been developed
for snapshot and temporal data. Their popular-
ity and importance can also be measured via a
surrogate of the number of surveys and research
commentaries developed for conceptual modeling
(Gregersen & Jensen, 1999; Hull & King, 1987;
Parent et al., 1999; Peckham & Maryanski, 1988;
Tryfona & Jensen, 1999; Wand & Weber, 2002). An
important aspect of such models is the expression
of data constraints (Ram & Khatri, 2005). The
visible representation of rules helps organizations
in a number of ways including better capturing of
semantics, as an aid to translation of the schema,
in search and query strategies.

Most conceptual models capture business poli-
cies that determine cardinality. However, there is a
wide variation in how grammars treat the seman-
tics of cardinality and how many different types of
cardinality constraints they represent. Some con-
sider cardinality as applied to relationships, while
others also take into account attributes and classes.
Cardinality for attributes is often integrated into
the semantic model constructs by use of special
symbols such as shading mandatory attributes
(i.e., minimum cardinality of 1) or using some
symbolic construct like a double-lined oval for a
multi-valued attributes (maximum cardinality ≥
2). Other useful and related structural constraints
like identification (where the cardinality of the
attribute domain exactly matches the cardinality
of its associated entity set) and composition (at-
tributes with degree > 1 or component attributes)
are also represented. In Figure 1, which uses the

notation syntax adopted by a popular database
text book1 (Elmasri & Navathe, 2006), we see
EmpID is an identifier, Name is a composite
attribute, and Phone is a multi-valued attribute
for the EMPLOYEES class.

There are a number of other data constraints
besides cardinality. For instance, when discussing
attributes, one could include constraints on the
range of values an attribute can take, including
restrictions determined by membership in rela-
tionships or subclasses. Often, a simple annota-
tion to the schema or data dictionary is made. For
example, the Semantic Database Model (SDM)
(Hammer & McLeod, 1981) uses value classes
and derivations which are specified in the schema
data-dictionary. Aiming to survey and classify all
possible rules is a huge task, and would go well
beyond the scope of a single chapter.

In this work, we focus on cardinality rules.
This is a subset of the possible data integrity rule
types, and we refer the reader to work by Thal-
heim (Thalheim, 1996) that discusses the various
constraint categories. Cardinality is an interesting
type of rule for a number of reasons, including
the variety of constraint sub-types, the ability to
formalize rule semantics via first-order-logic and
consequently reason about the rules and potential
conflicts. Further, a lack of understanding of the
distinction among cardinality types can lead to
miscommunication (for those following a different
scheme) about the data semantics and consequent
translation, or a persistent misconception that
cardinality is a difficult concept in conceptual
modeling.

E M P LO Y E E SE m pID

N am e

F irs t
N am e

Las t
N am e

P hone

Figure 1. An example of employees working on
projects

 27

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

The purpose of this survey is to provide a
comparative reference of cardinality semantics.
For traditional snapshot models, we provide a
meta-survey by making reference to previous
papers in the field that have examined a number
of conceptual modeling grammars. Since a survey
has not been done yet for temporal models, we
proceed to provide one for the well-known tempo-
ral conceptual models, explaining and classifying
their support for different kinds of cardinality.
Our goal is to assist current and future efforts by
cataloging available features and providing recom-
mendations for future modeling research efforts
and implementation development. Thus, it is aimed
at both academicians and practitioners engaged in
database design and development, including those
in the temporal data management area.

In the rest of this chapter, we examine some
of the constraint types currently modeled. We
begin with traditional snapshot (i.e., non-temporal)
models and their handling of attribute and relation-
ship cardinalities and subsequently move on to
the treatment of cardinality in temporal, temporal
models. Finally we also consider general-purpose
rule-based frameworks and constraint modeling
languages and how they deal with cardinality.

1.1 cardinality in traditional
conceptual models

Relationship cardinality is a business rule type
normally captured in semantic models like the
ER approach or UML, and the term cardinality
in most models is synonymous with cardinalities
associated with interaction relationships (Elmasri
& Navathe, 2006; Rob & Coronel, 2001). Relation-

ship cardinality is used to represent the semantics
of “how many”, in connection with members of
entity classes being associated with other entity
classes in relationship instances. For example
in a relationship involving employees working
on projects (Figure 2), a cardinality constraint
could specify that an employee may not work
in any projects (i.e., minimum of 0) and could
work in up to 5 projects at a maximum. Each
project should have at least 10 employees (with no
constrained maximum). This information is then
used in translating the diagram into the relational
model. The minimum and maximum components
of the cardinalities are sometimes referred to as
existence dependencies and mapping constraints
(Silberschatz et al., 1997).

The conventional (snapshot) semantic models
do not explicitly capture semantics of time. Im-
plicitly however, the cardinality constraints do
have a time frame of evaluation associated with
them. For example, when stating that an employee
may work in a minimum of 0 and a maximum
of 5 projects, the implicit evaluation frame is at
a point in time.

In most grammars, attribute cardinality is used
to denote either single-valued or multi-valued
attributes, with implications for logical design
(Elmasri & Navathe, 1994; McFadden et al., 2002).
Additional semantics that capture the cardinality
for attributes in terms of specific minimum and
maximum values (i.e., natural numbers specifying
the minimum and maximum number of values an
attribute can have) and entity classes (minimum
and maximum number of members in the entity
class) has also been suggested (Lenzerini &
Santucci, 1983; Liddle et al., 1993).

E M P LO Y E E S W ork O n P R O J E C TS[0 :5][10 :M]

Figure 2. An example of employees working on projects

28

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

1.1.1. A Summary of Relationship
Cardinality

Different types of cardinality constraints have
been identified for relationships beginning with
Lenzerini and Santucci’s detailed study of cardi-
nality in the early eighties (Lenzerini & Santucci,
1983). Since then a number of framework papers
have been written on cardinality, and we present
the basic classifications (using the example in
Figure 2) to help explain the concepts presented
in previous work (and the differences among
them). The subsequent section (1.1.2) contains the
discussion of existing literature on cardinality in
a snapshot context.

Participation constraints look at a relationship
(e.g., employees work on projects), and ask the
question, “How many times can an entity (e.g.,
an employee) participate in the relationship?” The
generalized version of this rule type considers not
just a single entity class, but also entity combina-
tions, for example “How many times can a given
combination of employee and project participate
in the Works_On relationship?” The syntax we
use to denote relationship participation constraints
is: PARTICIPATION(R, C1,…,Ci), i ∈ [1, …, n],
where the relationship is denoted by R, each entity
class within the relationship by Ci, and n is the
degree of the relationship

Projection constraints look at the relationship
and restrict how many distinct entity instances can
occur across the set of relationship instances. Thus,
“How many different employees can exist across
all instances of the Works_On relationship?”
is an example of the projection constraint. The
generalized version of this constraint examines
entity combinations from multiple entity classes.
The syntax we use to denote this constraint is:
PROJECTION(R, C1,…,Ci), i ∈ [1, …, n], where
R, Ci, and n have the same semantics as for par-
ticipation constraints.

Co-occurrence constraints consider an
entity already known to be participating in a
relationship, and ask how many members of

another entity class can co-occur with it. Thus,
for example, one could ask, “Given an employee
that exists in the Works_On relationship, how
many distinct projects can co-occur with it?”
The syntax we use to denote this constraint is:
CO_OCCURRENCE(R, (C1,…, Ci), (Ci+1,…,Ck)),
i ∈ [1, …, n-1] and k ∈ [2, …, n], and the other
terms have the same semantics as before.

Appearance constraints are relevant in re-
lationships where the same entity-class plays
more than one role. Common examples are unary
relationships, e.g., a pre-requisite relationship in
Figure 3 where a task can serve as a pre-requisite
for another task; i.e., it must be completed before
the other task can start. The appearance constraint
restricts the number of roles a single entity can
play in a particular relationship instance (if a
task can be a pre-requisite for another task, but
not for itself, then it plays a single role since the
same task cannot appear on both sides of the
relationship). The syntax used for this constraint
is: APPEARANCE (R, C, L1,…, Lj)), where j ∈
[1, …, m], and Lj are roles played by entity class
C in the relationship R.

Now that we have a basic vocabulary for de-
scribing the kinds of constraints, we consider the
common interpretation of cardinality described
in many textbooks (Elmasri & Navathe, 1994;
McFadden et al., 2002; Rob & Coronel, 2001;
Silberschatz et al., 1997). The semantics of these
are: “For a given member of one class participating
in a relationship, how many members of another

P R O J E C TS

Pre-requisites

[0:3]

[0:10]

Is a Pre-requis ite fo r

H as pre- requis ites

Figure 3. An example of projects and pre-req-
uisites

 29

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

class can it be associated with?” Using the example
in Figure 2, “For a given employee, how many
projects can he/she be working in (minimum,
maximum)?” This is also the interpretation ad-
opted by UML (OMG, 2004) when referring to
associative multiplicity (the UML equivalent of
cardinality). Since this variant of cardinality ap-
pears often in literature we give it a moniker for
easy reference, textbook cardinality. The interest-
ing aspect of this cardinality is that the minimum
cardinality corresponds to a specific kind of
participation cardinality, while the maximum
maps to a co-occurrence constraint. When gen-
eralized to ternary or higher-order relationships
the semantics is of “look-across” constraints that
encompass n-1 entity classes on the constraining
side, while counting the association with the re-
maining entity class (where n is the degree of the
relationship). For instance in Figure 4, the “0:M”
cardinality attached to suppliers asks: “for a given
project-part pair, how many suppliers can they be
associated with at a minimum and maximum?”
The general understanding is that an arbitrarily
chosen project-part pair may never exist together
(i.e., never participate in the relationship together),
so the minimum would likely be 0, while the
maximum is some upper bound “M” (signifying
at most how many suppliers co-occur with this
project-part pair). Formally, the minimum maps
to: PARTICIPATION(R, C1,…,Ci), where i = n (i.e.,
no sub-combinations where i < n are considered),
while the maximum is CO_OCCURRENCE(R,
(C1,…,Ci-1), (Ci)), where i = n and we can interpret
the constrained class as the ith class without loss

of generality in this case. Note: we could replace
“i” with “n” in the formal constraint specification,
but leave it in to emphasize the missing aspect of
“generality” in these definitions.

Another point to note is that in most cases
the meaning of the max(Cardinality) for the co-
occurrence and participation constraints is the
same for binary relationships, this is not the case
for ternary or higher order relationships where we
may wish to consider a constraint on a subset of the
entity classes in the relationship. For example, in
Figure 4 we may wish to limit how often a part α,
can co-occur with a supplier β irrespective of the
projects shipped to. Additionally, with a shipment
history involved, co-occurrence and participation
cardinalities can differ even for binary relation-
ships (since time is an implicit third dimension
in the relationship).

1.1.2. Snapshot Cardinality Discussions
in Literature

Ferg (Ferg, 1991) has summarized the notation
and semantics of interaction relationship cardinal-
ity in three commonly entity-relationship model
variants, Information Engineering (Finkelstein,
1990; Martin, 1990), Merise (Rochfeld, 1986)
and Chen (Chen, 1976). In comparing them, he
comes up with three types of cardinality, i.e.,
Lookacross, Participation and Visibility con-
straints. Ferg’s version of Lookacross cardinality
corresponds to the traditional understanding of
cardinality constraints described in the previous
paragraph. His Participation cardinalities are a

S U P P LIE R S M ake
Shipm ents P R O J E C TS[0 :P][0 :M]

P A R TS

[0 :Q]

Figure 4. An example of part shipments made by suppliers to projects

30

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

subset of the possible cardinalities, and take the
form of how often an entity in a class participates
in a relationship, “How often does any employee
(e.g., John Doe) from the Employees entity class
participate in the relationship?”, and does not
consider entity-combinations. There is an overlap
between the min(Cardinality) of his Lookacross
and Participation cardinality (i.e., they refer to
the same concept). Visibility cardinality maps to
a subset of what we classify as Projection con-
straints, specifically the non-generalized form
that only considers a single entity class at a time.
Ferg does not consider cardinality constraints on
constructs other than interaction relationships.

Liddle et al. (Liddle et al., 1993) formally
defined (using predicate calculus and relational
algebra) and compared (in the context of interac-
tion relationships) the semantics of cardinality in
thirteen different conceptual data models. This
was the first serious attempt to come up with a
broad understanding of cardinality as seen in vari-
ous grammars. The models he examined included
a number of variants of the original ER model,
and also the Semantic Binary Data Model (Abrial,
1974), Semantic Association Model (Su, 1983),
Semantic Database Model (Hammer & McLeod,
1981), NIAM/ORM, IRIS (N. Derrett, 1985),
Object Modeling Technique (OMT) (Rumbaugh
et al., 1991), and Object-oriented Systems analysis
(OSA) (Embley et al., 1992). OSA was used as
the reference model in the paper (having been
developed by Liddle’s co-authors). Rumbaugh
et al.’s OMT is similar to UML in its constraint
semantics. One observation that is evident from the
comparison is that even variants of the same ER
model have ended up with different semantics for
cardinality. This stresses the need for a unifying
framework. A useful concept introduced by this
chapter is using expressions and variables for the
min(Cardinality) and max(Cardinality) specifica-
tions. This allows the user to come up with relative
constraints as well, for example the size of the
student population can be placed as a restricted on
some multiple of the number of faculty (i.e., based

on a maximum desired student-faculty ratio). In
terms of cardinality for interaction relationships,
Liddle et al. come up with the classification of
constraints into three types, mapping, participa-
tion and co-occurrence. Mapping constraints are
related to the maximum co-occurrence cardinality
for interaction relationships (or more specifically
CO_OCCURRENCE(R, (C1,…,Ci-1), (Ci)), i = n.
They typically are of the form “1:1”, “1:M”, “M:M”
(or “M:M:M” in the case of ternary relationships),
where [1, M] refer to the maximum cardinality
of association for a member (or members) of that
entity class (“M” simply meaning “Many”)2. For
example, if an employee can work in only one de-
partment at most, but a department can have many
employees, this gives rise to a “1:M” type mapping.
These constraints are important for translation
into the relational design. Our framework does
not explicitly consider mapping constraints since
they can be derived from the maximum cardi-
nality of the relevant co-occurrence constraint.
Liddle et al.’s participation and co-occurrence
constraints are a subset of the participation and
co-occurrence constraints in our framework.
Specifically, the participation constraint takes
the form PARTICIPATION(R, C1, …, Ci), i = n,
and the co-occurrence constraint takes the form
CO_OCCURRENCE (R, (C1,…, Ci-1), (Ci)), i =
n, where n is the degree of the relationship. Thus,
these are identical to the corresponding definition
adopted by Ferg. Like the textbook definition,
these do not consider varying combinations of
entity classes. This is not surprising since ER/
UML modeling variants usually represent a single
constraint on the schema diagram.

Ferg and Liddle et al. distinguish the notions of
participation, co-occurrence and projection car-
dinalities for interaction relationships. However,
these notions of cardinality are not generalized. By
generalization, we mean constraints that consider
different possible combinations of participating
entities. For example, in Figure 5, given a ternary
relationship R, and participating entity classes
A, B, C, the conventional constraints capture the

 31

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

following three forms of co-occurrence: (A, B)
with C [min1:max1], (A, C) with B [min2:max2],
and (B, C) with A [min3:max3]. A generalized
version would consider in addition: A with B, A
with C, B with A, B with C, C with A, C with B,
A with (B, C), B with (A, C), and C with (A, B).
Generalized constraints are particularly signifi-
cant for relationships of degree greater than two
(i.e., ternary or higher-order relationships). The
conventional, or non-generalized, definitions of
cardinality involve either one entity class or n-1
entity classes considered at a time (where n is the
degree of the relationship).

Thalheim (Thalheim, 2000) has generalized
these three types of cardinalities to cover partici-
pation, co-occurrence and projection constraints
with one or more associated entity classes. His
definition of the comp(R, R1, …, Rn) constraint
maps to what we define as participation constraint,
while comp*(R, R1, …, Rn) maps to the co-occur-
rence constraint and comp+(R, R1, …, Rn) maps
to the projection constraint. The superiority over
the previous two approaches is the generalized
version of the constraint, as also support for a
user-specified set of integers (as opposed to simply
a range) to which the cardinality maps.

McAllister also provides a generalization of
cardinalities (i.e., for combinations of entities
rather than a single entity), and suggests a tabular
notation for capturing the constraints (McAllister,
1998). His framework is unique in that it uses the
semantics of co-occurrence for max(Cardinality)
and participation for min(Cardinality). This is

possibly because the author does not specify
the semantics using first order logic and instead
uses intuitive operations to define the semantics.
The author mentions projection cardinality, but
deliberately chooses not to consider it in the cur-
rent paper. Thus, while a claim of completeness
is made, we do not agree with it because not only
are projection constraints not considered, but also,
no distinction is made between co-occurrence
and participation constraints. Instead of having
achieved completeness, we feel the author really
means to have achieved generalization of the
cardinalities. The article does however present
a very detailed analysis of inter-relationships
between constraints.

The papers previously discussed do not
cover appearance cardinalities for interaction
relationships. Another limitation is that they
only consider cardinalities for attributes, entity
classes and interaction relationships. Thus, gen-
eralization/specialization relationships, grouping
relationships and composite relationships are not
considered.

Rundensteiner et al. have proposed a frame-
work for set-based integrity constraints specifi-
cally for semantic groupings (Rundensteiner et
al., 1991). These constraints have been included
in a taxonomy for modeling set-based business
rules at the conceptual design stage proposed by
Ram and Khatri (Ram & Khatri, 2005). Their
framework encompasses previous classification
schemes, adds the concept of appearance con-
straints for interaction relationships, and addresses

A R B[m in 2 :m ax 2][m in 3:m ax 3]

C

[m in 1:m ax1]

Figure 5. Cardinality in a ternary relationship

32

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

the gaps in extant cardinality frameworks that do
not have much by way of a formal classification
for cardinality constraints for generalization/
specialization relationships, grouping relation-
ships and composite relationships. To that extent,
it is the most detailed framework for classifying
cardinality in traditional conceptual models.

In terms of notation, a variety of styles have
been presented, including Crow’s feet (McFadden
et al., 2002), specifying only the maximum, and
specifying a minimum-maximum combination
(Batini et al., 1992). Essentially, most of these
notation formats specify a range denoted by the
minimum and maximum values for relationship
cardinalities. Some notations are more expressive
than others and specify numbers for minimum and
maximum rather than simply allowing [optional,
mandatory] for the minimum and [one, many] for
maximum. A more flexible notion of having a
specification system where the cardinality is not
restricted to a [〈min〉, 〈max〉] pair has also been
suggested (Zhou & Baumann, 1992), where a set
of possible values may be specified for the car-
dinality, rather than a range. This can be useful
for example to specify that a tennis match can
have either two or four players, but not three, or
that there must be an even number of wheels for
a vehicle (or some user-defined valid range for
“number of wheels”). Other extensions to the no-
tion of cardinality include the inclusion of variables
and expressions in specifying cardinality and the
inclusion of averages (in addition to the [〈min〉,
〈max〉] pair) (Liddle et al., 1993).

A key aspect that past frameworks have not
covered is proof for completeness of the classifica-
tion. There was no formal approach to determine
what possible kinds of constraints existed and
whether any future extensions were needed. This
is one of the reasons the author and a collabora-
tor introduced previous work on completeness
in cardinality (Currim & Ram, 2006). In doing
so, they introduced a distinction between set and
instance-level constraints and established com-
prehensiveness in the classification of cardinality
constraints in semantic data modeling.

1.2 cardinality in temporal models

Temporal ER models cover various aspects related
to time while defining the conceptual model and
the semantics of cardinality. We assume the no-
tational style earlier in this chapter (a variation of
earlier work (Ram & Khatri, 2005)) when mapping
the cardinality types from each of the models to
ours. We do not describe the models themselves
in detail, just the cardinality aspect. Descriptions
and comparisons between the semantic models
is available in previous research (Gregersen &
Jensen, 1999; Khatri et al., 2004).

1.2.1. Cardinality in Temporal Models

Temporal conceptual models focus on adding sup-
port for time-varying information to conventional
snapshot models. The models are considered
in the approximate sequence they appeared in
literature.

RAKE: The Relationships, Attributes, Keys
and Entities (RAKE) model considers time-
varying relationships and attributes (entity classes
per se are not considered time varying). It focuses
on the valid time dimension and includes facts
that are either events or states. As for cardinality,
the author only considers maximum cardinality
for interaction relationships (textbook conven-
tion), which is extended to each “state” (i.e.,
should hold at each point in time, or in other
words a “sequenced” semantics). Specifically:
CO_OCCURRENCE(R, (C1…Ci-1), (Ci)) se-
quenced3; where R is the relationship, (C1…Ci-1) is
the entity combination under consideration (e.g.,
a supplier-project pair) and Ci is the entity class
being “counted” (e.g., “How many distinct parts”
appear with each supplier-project pair).

TEER and STEER: The Temporal EER
(TEER) (Elmasri & Wuu, 1990; Elmasri et al.,
1993) and Semantic Temporal EER (STEER)
model (Elmasri et al., 1990) adapt the EER model
(Elmasri & Navathe, 1994) to handle the time
dimension. While the models have some differ-

 33

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

ences with respect to temporal constructs, there is
no perceptible difference in terms of cardinality;
additionally the first author on both these models is
the same and they appear in literature at about the
same time. Both models have no explicit discus-
sion of cardinality. However, reference is made to
the max(Cardinality) for interaction relationships.
Since TEER is based on EER, and EER considers
min(Cardinality), we assume the detailed model
specification includes min(Cardinality). The
authors also discuss the possibility of attributes
being multi-valued at a point in time or over an
entity’s lifetime. We therefore infer that the au-
thors wish to represent the attribute cardinality
constraint using a sequenced and lifetime window
of evaluation; where A represents any attribute
possessed by entity class C. For relationships
the cardinality inferred relates to participation
of a combination of entities, in a sequenced and
lifetime context.

ERT: The Entity-Relationship-Time (ERT)
Model (Theodoulidis et al., 1991) was developed
as part of the TEMPORA modeling paradigm
(Loucopoulos et al., 1990). It supports state data
(referred to as history) and event data (associated
with a single time unit). The ERT model makes
distinctions between three types of relationships
interaction, generalization/specialization and ag-
gregation (termed as an “is_part_of” relationship).
Cardinality is described for all of the relationship
types. However, there is no reference to non-
sequenced or lifetime cardinality, and the assump-
tion is the authors intend to convey sequenced
semantics. For interaction relationships, the
cardinality is a sequenced extension of the tradi-
tional textbook cardinality. Thus, min(Cardinality)
it corresponds to the min(Cardinality) of par-
ticipation, PARTICIPATION(R, C1, …, Ci),
sequenced. The max(Cardinality) maps to the
max(Cardinality) of CO_OCCURRENCE(R,
(C1…Ci-1), (Ci)), sequenced . In both cases, n rep-
resents the degree of the relationship, and i = n.
For generalization/specialization (GS) relation-
ships with a given superclass C and subclasses

Cj, we see GS-PARTICIPATION(C, C1, …, Cj),
sequenced. Finally, for aggregation relationships
(AG), we see two types of cardinality, one from
the base class to the aggregate of the form AG-
PARTICIPATION(Ag, C1, …, Ck), sequenced,
and the next from the aggregate to the base class
of the form AG-PROJECTION (Ag, C1, …, Ck),
sequenced. Ag is the aggregate entity class (or
complex object), and Ck is the participating base
class. In both cases, k represents the number of
participating base entity classes forming the ag-
gregate.

TER: The Temporal Entity-Relationship (TER)
extends the entity-relationship model by introduc-
ing the concepts of snapshot and lifetime cardinal-
ity for relationships (Tauzovich, 1991). TER is the
first model to emphasize the distinction between
snapshot and lifetime cardinality (though traces
of this division have been referred to previously)
and the need to represent both. On the negative
side, they restrict the applicability of cardinality
to binary relationships and do not recommend
allowing a “many-to-many” type relationship
(based on maximum cardinality). This limits the
generalizability of cardinality constraints. The
semantics of the cardinality types proposed by
them map to: PARTICIPATION(R, C1, …, Ci)
for min(Cardinality) and the max(Cardinality)
maps to CO_OCCURRENCE(R, (C1…Ci-1),
(Ci)), both of which are applicable in sequenced
and lifetime context.

TempEER: The Temporal Enhanced Entity-
Relationship Model (TempEER)4 discusses tem-
poral extensions to the entity-relationship model
and how it can be mapped to the relational model
(Lai et al., 1994). The discussion of cardinality is
almost identical to TEER/STEER and the authors
additionally discuss attributes being multi-valued
at a point in time or over an entity’s lifetime, which
we could interpret as: ATTRIBUTE(C, A) over the
sequenced and lifetime windows of evaluation.
Once again, the authors’ intent for relationship
cardinality is inferred from a schema used and we
consider it as translating to the same semantics
as that for TEER/STEER.

34

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

TEERM: The Temporal Event-Entity Rela-
tionship Model (TEERM) (Dey et al., 1995) ex-
tends the entity-relationship model by introducing
events as an additional construct. They distinguish
between static, quasi-static and temporal relation-
ships and attributes. In TEERM, cardinality is
defined as the minimum (or maximum) number
of relationship instances in which any instance of
an entity class can participate. This maps to our
definition of participation cardinality, specifically
PARTICIPATION (R, C1 , …, Ci) in a sequenced
context. There is no indication to whether the
authors wished to consider a lifetime cardinality
interpretation. Thus, on this front it is less expres-
sive than models we have recently discussed.

TERC+: As one of the more recent research
efforts, the TERC+ conceptual model (Zimányi
et al., 1997) incorporates a number of temporal
concepts. It distinguishes between valid time,
transaction time as well as user-specified time
dimensions (though only implements valid time).
Temporal facts are classified as either events or
states, and all constructs (entity classes, rela-
tionships and attributes) have associated time
varying semantics. The TERC+ model expresses
cardinality for attributes, interaction relation-
ships, generalization/ specialization relationships
and aggregation relationships. For cardinality a
distinction is made between snapshot and life-
time cardinality. While they only discuss the
max(Cardinality) relative to lifetime cardinalities,
the concept can be generalized to include the
min(Cardinality). When only the two extremes of
snapshot and lifetime cardinalities are considered,
the corresponding min(Cardinality) must be the
same (since at the beginning—the lifetime of an
item is a single unit of time). Summarizing the
various kinds of cardinalities that are expressible
in TERC+, we have both at the sequenced and
lifetime level:

• Cardinality constraints for Attributes,
• Interaction Relationships: Participation

(rather than co-occurrence),

• Generalization / Specialization Relation-
ships: Participation (i.e., how many sub-
classes a superclass entity instance can be
a member of),

• Aggregation Relationships: Both the par-
ticipation and projection constraints.

The cardinality types in TERC+ for General-
ization/Specialization and Aggregation are similar
to that of ERT, but have and implicit extension of
lifetime cardinalities. We say “implicit”, because
the authors only discuss snapshot cardinality
for these. However, for the other abstractions,
the authors discuss lifetime cardinality, and so
we assume they also intend to consider lifetime
cardinalities for Generalization/Specialization
and Aggregation as well.

Chrono: The Chrono conceptual model
(Bergamaschi & Sartori, 1998) is designed as a
temporal extension to the IDEF1X (Publication,
1993) model (itself an extension of the entity-
relationship model). It focuses on representing the
valid time dimension of facts and supports both
states and events. Entity classes and relationships
are considered temporal (time varying attributes
lead to the corresponding class being designated
as temporal). The model emphasizes the need
for correctly capturing integrity constraints that
can then be translated into triggers. However, in
terms of cardinality, only the max(Cardinality)
for interaction relationships is mentioned. Since
Chrono is based on IDEF1X, it is restricted to
binary relationships. Therefore the cardinality
corresponds to: CO_OCCURRENCE(R, Ci, Cj),
where i, j ∈ [1, 2] ∧ i ≠ j (we assume here that each
role will be conceptually have a distinct number,
in the case of unary relationships). Based on the
discussion in the paper, we conclude that only a
sequenced semantics is intended.

TimeER: The temporal semantic model
TimeER (Gregersen & Jensen, 1998) incorporates
the sequenced version of the snapshot participation
constraint. Interestingly, they do not follow the
convention of the snapshot conceptual database

 35

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

models in adopting a combination of participation
and co-occurrence constraints as the cardinality.
Their definition of both the minimum and maxi-
mum cardinality maps to PARTICIPATION(R,
C1, …, Ci) sequenced, where i = n. As we might
have learned to expect, based on the conceptual
models examined so far, the authors do not get into
much detail about cardinality, and do not discuss
generalizability of cardinality for higher-order
relationships (i.e., ternary or above). They do
however include “lifespan constraints”, a special
type of a temporal cardinality constraint where
the cardinalities are defined over the lifetime of
the relationship in question, and derive a useful
relationship in terms of: min(Cardinality) lifespan
≥ min(Cardinality) snapshot; max(Cardinality)
lifespan ≥ max(Cardinality) snapshot.

1.3 Other temporal Integrity
constraints

Temporal integrity constraints have long been
studied in relational database research (Gertz &
Lipeck, 1995; Koubarakis, 1995). In addition to
temporal keys and referential integrity (Snodgrass,
1999), a variety of constraints and implementation
considerations (e.g., efficient constraint checking
using temporal logic (Chomicki, 1995), constraint
conflict resolution using temporal logic (Chomicki
et al., 2003), constraints and access control permis-
sions (Bertino et al., 1998)). Most of these efforts
have been focused at the logical level, and other
than the cardinality constraints present in temporal
entity-relationship models (see Section 1.2.1), not
much attention has been paid to a framework for
classifying temporal cardinality constraints.

1.4 Constraint Definition Languages

In order to overcome the inherent lack of constraint
specification ability in most semantic models,
and allow for richer specification of constraints,
constraint definition languages and constraint
enforcement systems have been developed (Cal-

vanese et al., 1998; Morgenstern, 1984; Shepard &
Kerschberg, 1984; V. C. Storey et al., 1996; Urban
& Lim, 1993). While these papers are relevant from
the standpoint of representing modeled constraints
at the logical design phase, they are not suitable
for the higher-level of abstraction in conceptual
modeling. Most are also not designed to allow
analysts to handle temporal semantics.

The other limitation of such languages (taking
OCL (OMG, 2006) as an example) is that they try
and allow for a high-level pseudo-code definition
of a constraint. Every OCL specification of a co-
occurrence constraint would include the for-loop
counting associated entities rather than simply
saying it was a “co-occurrence constraint”. The
consequence of this lack of abstraction is that
each time the same constraint type is seen, the
pseudo-code must be rewritten, and the productiv-
ity is lost. Complex constraints expressed in such
languages are hard to understand by users and may
be inadequate for communicating business rules
between users and database designers. However,
if the user is looking for a language to represent
constraints and generate inferences based upon
axiomatic representations of constraints (rather
than a means to classify or understand constraint
semantics), then constraint definition languages
are the appropriate choice.

1.5 business Rules frameworks

We briefly discuss two well-known business rules
frameworks that deal with conceptual modeling,
the Ross Method (and classification), and BRO-
COM. While they do an excellent job considering
the various types of constraints applicable for
businesses, their focus is not on cardinality, and
instead is on providing a general purpose con-
straint framework. This leads to a similar limita-
tion for both, in that they do not distinguish the
different kinds of cardinality. Further, while time
is considered in terms of how it affects sequenc-
ing of operations, neither model was designed
for temporal data.

36

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

The Ross Method (Ross, 1997) offers a clas-
sification scheme that spans seven rule types
including instance verifiers (counts instances),
type verifiers (logical AND / OR connectivity
between rules to derive more complex rules),
and mathematical evaluators (functions to per-
form calculations). In terms of cardinality—the
category that is applicable is instance verifiers.
Ross offers two operators: mandatory and lim-
ited (upper and lower bounds) that can be used
with entities or attributes. While this provides a
simple and elegant approach, there is no semantic
distinction between participation, co-occurrence
or projection constraints. The BROCOM or Busi-
ness Rule Oriented Conceptual Modeling (Herbst,
1997) approach aims to conceptually (through a
simplified SQL-like syntax that is closer to natural
language) represent database triggers. It adopts a

general-purpose classification scheme that breaks
down rules into four components: triggering event
(e.g., order inserted into table), check condition
(is the order worth more than $50,000?), action
on meeting the condition (expedite the order
processing and set its priority to high), and ac-
tion on the failure of condition (set the priority to
normal). A rule-repository facilitates storage
and implementation (typically via triggers or
procedures) of the rules. Since BROCOM is a
general-purpose framework, it has the limitation
of not providing a discussion of semantics for the
different kinds of cardinality.

1.6 conclusion

A summary of cardinality support in the differ-
ent models is provided in Tables 1 and 2. These

Table Legend

Constructs for which
Cardinality is Defined

E: Entity Classes

A: Attributes

R: Interaction Relationships

S: Subclass and superclass relationships

H: Higher order relationships (groupings, composites)
Kinds of Interaction
Cardinality supported

PT: Participation cardinality

CO: Co-occurrence cardinality

PJ: Projection cardinality

AP: Appearance cardinality

Framework Constraint Aspects Included in Framework

Constructs Predicate
Support?

PT CO PJ AP Set-Level?

Lerenzini E A R No No Yes Non-generalized No No

Ferg R No Non-
generalized

Non-
generalized

Non-generalized No No

Liddle E A R No Non-
generalized

Non-
generalized

 No

No No

Thalheim R No Yes Yes Yes No No

McAllister R No Yes Yes Yes No No

Rundensteiner H No Yes Yes Yes No No

Ram & Khatri E A R S H Yes Yes Yes Yes Yes No

(work by Authors) E A R S H Yes Yes Yes Yes Yes Yes

Table 1. Summary of snapshot cardinality frameworks

 37

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

highlight the differences in previous work when
dealing with constraints. We demonstrate what
kinds of constructs cardinality is supported on (en-
tity classes, attributes, interaction relationships,
etc.). We also present whether the constraints allow
for predicates in snapshot models (for selectively
restricting counts of say “red” parts instead of
all parts), and whether the distinction between
instance and set-level cardinality is supported.
Since relationship cardinality is the most common
type of constraint, we provide additional details
on the kinds of relationship cardinality covered,
and if the generalized form of the constraint can
be modeled.

Efforts to standardize the various cardinality
interpretations using some form of a classification
framework have been undertaken both in snapshot
(Liddle et al., 1993; Ram & Khatri, 2005) as well
as temporal contexts (Currim, 2004). The stan-
dardization frameworks serve two purposes. To
begin with, they provide a consistent interpreta-
tion to understand constraints. Additionally, they

allow analysts to have a structured approach to
considering the different kinds of rules that may
exist in an application being developed.

In the snapshot domain, the most detailed
treatment of constraints appear in work by Ram
and Khatri (Ram & Khatri, 2005). Temporal
extensions for attribute cardinality were intro-
duced in TEER (Elmasri & Wuu, 1990; Elmasri
et al., 1993). Extending these constraint schemes
to include specific consideration of evaluation
windows and applicability bounds in a temporal
(and spatial) context has been proposed (Currim
& Ram, 2008), but we find there is much room for
future work along three different directions.

First, there is room for taxonomy augmenta-
tion to new branches of related research such as
extending frameworks to include rules that lie at
the intersection of data and process modeling.
Managing the rules in a federated environment
particularly when schema evolution occurs would
also be a challenging area of work that would also
have to resolve the issue of since constraint con-

Model Constraint Types Included in Framework

Constructs PT CO PJ Evaluation
Window

Applicability
Bounds

RAKE R No Non-
generalized

No Seq None

TEER and
STEER

A R Non-
generalized

No No Seq, Lifetime None

ERT R S H
(partial)

Textbook Textbook No Seq None

TER R Textbook Textbook No Seq, Lifetime None

TempEER A R Non-
generalized

No No Seq, Lifetime None

TERM None N/A N/A N/A N/A N/A

TEERM R Non-
generalized

No No Seq None

TERC+ A R S H
(partial)

Non-
generalized

No No Seq, Lifetime None

Chrono R No Non-
generalized

No Seq None

TimeEER R Non-
generalized

No No Seq, Lifetime None

Table 2. Support for cardinality in common temporal data models

38

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

flicts and address how differences in granularity
among schemas can be handled while merging
constraints.

Second, application and evaluation, both in
terms of building proof-of-concept prototypes
or extending CASE tools to handle different
kinds of constraints, as well as evaluation of the
rule frameworks in a field study or case study to
measure expressiveness and ease of use.

Finally, a tough but rewarding area of work
would be in theory building. Here researchers
could seek to adopt and develop theories that
explain, for example, under what circumstances
analysts using the additional complexity of the
rules perform better (perhaps due to the taxonomy
leading to automated translation algorithms
for constraint code) and what the challenges to
adoption of additional constraint complexity are.
Currently, established ways of data modeling
among practitioners focus on limited number
of constraints. We recommend the inclusion of
a richer variety of constraints at the conceptual
design stage since rule visibility improves the
quality of the conceptual schema.

RefeRences

Abrial, J. R. (1974). Data semantics. In J. W. Klim-
bie & K. L. Koffemen (Eds.), Data base manage-
ment (pp. 1–59). Amsterdam: North-Holland.

Batini, C., Ceri, S., & Navathe, S. B. (1992). Con-
ceptual database design: An entity-relationship
approach: The Benjamin/Cummings Publishing
Company.

Bergamaschi, S., & Sartori, C. (1998). Chrono: A
conceptual design framework for temporal enti-
ties. Paper presented at the 17th International Con-
ference on Conceptual Modeling, Singapore.

Bertino, E., Bettini, C., Ferrari, E., & Samarati,
P. (1998). An access control model supporting
periodicity constraints and temporal reasoning.

ACM Transactions on Database Systems, 23(3),
231-285.

Bettini, C., Jajodia, S., & Wang, S. X. (2000).
Time granularities in databases, data mining,
and temporal reasoning: Springer-Verlag.

Calvanese, D., Lenzerini, M., & Nardi, D. (1998).
Description logics for conceptual data modeling.
In J. Chomicki & G. Saake (Eds.), Logics for da-
tabases and information systems (pp. 229-263).
Kluwer.

Chen, P. P. (1976). The entity-relationship model -
toward a unified view of data. ACM Transactions
on Database Systems, 1(1), 9-36.

Chomicki, J. (1995). Efficient checking of temporal
integrity constraints using bounded history en-
coding. ACM Transactions on Database Systems,
20(2), 149-186.

Chomicki, J., Lobo, J., & Naqvi, S. A. (2003).
Conflict resolution using logic programming.
IEEE Transactions on Knowledge and Data
Engineering, 15(1), 244-249.

Currim, F. (2004). Spatio-temporal set-based
constraints in conceptual modeling: A theoretical
framework and evaluation. Unpublished Doctoral
Dissertation, University of Arizona, Tucson.

Currim, F., & Ram, S. (2006). Understanding
the concept of “completeness” in frameworks for
modeling cardinality constraints. Paper presented
at the 16th Workshop on Information Technologies
and Systems, Milwaukee, WI.

Currim, F., & Ram, S. (2008). Conceptually
modeling windows and bounds for space and time
in database constraints. Communications of the
ACM, 51(11), 125-129.

Dey, D., Barron, T. M., & Storey, V. C. (1995).
A conceptual model for the logical design of
temporal databases. Decision Support Systems,
15(4), 305-321.

 39

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

Elmasri, R., Ihab El-Assal, & Kouramajian, V.
(1990, October 8-10). Semantics of temporal
data in an extended er model. Paper presented
at the Ninth International Conference on Entity-
Relationship Approach, Lausanne, Switzerland.

Elmasri, R., & Navathe, S. B. (1994). Fundamen-
tals of database systems (Second ed.): Benjamin
Cummings Publishing Co., Redwood City, CA.

Elmasri, R., & Navathe, S. B. (2006). Funda-
mentals of database systems (Fifth ed.): Addison
Wesley.

Elmasri, R., & Wuu, G. T. J. (1990). A temporal
model and query language for er databases. Paper
presented at the Sixth International Conference
on Data Engineering, Los Angeles, California,
USA.

Elmasri, R., Wuu, G. T. J., & Kouramajian, V.
(1993). A temporal model and query language for
eer databases. In A. U. Tansel, J. Clifford, S. K. Ga-
dia, A. Segev & R. T. Snodgrass (Eds.), Temporal
databases: Theory, design, and implementation
(pp. 212-229): Benjamin/Cummings.

Embley, D. W., Kurtz, B. D., & Woodfield, S.
N. (1992). Object-oriented systems analysis: A
model-driven approach. Englewood Cliffs, N J:
Prentice-Hall.

Ferg, S. (1991, 23-25 October, 1991). Cardinality
constraints in entity-relationship modeling. Paper
presented at the 10th International Conference
on Entity-Relationship Approach, San Mateo,
alifornia, USA.

Finkelstein, C. (1990). An introduction to infor-
mation engineering: From strategic planning to
information systems.

Gertz, M., & Lipeck, U. W. (1995, September 17-
18). Temporal” integrity constraints in temporal
databases. Paper presented at the International
Workshop on Temporal Databases, Zürich, Swit-
zerland.

Gregersen, H., & Jensen, C. S. (1998). Conceptual
modeling of time-varying information (No. TR-
35): TimeCenter.

Gregersen, H., & Jensen, C. S. (1999). Temporal
entity-relationship models - a survey. IEEE Trans-
actions on Knowledge and Data Engineering,
11(3), 464-497.

Hammer, M., & McLeod, D. (1981). Database
description with sdm: A semantic database model.
ACM Transactions on Database Systems, 6(3),
351-386.

Herbst, H. (1997). Business rule-oriented concep-
tual modeling. Heidelberg: Physica-Verlag.

Hull, R., & King, R. (1987). Semantic database
modeling survey, applications, and research is-
sues. ACM Computing Surveys, 210-260.

Jensen, C. S., Dyreson, C. E., Böhlen, M. H., Clif-
ford, J., Elmasri, R., Gadia, S. K., et al. (1998).
The consensus glossary of temporal database
concepts - february 1998 version. In C. S. Jensen,
J. Clifford, R. Elmasri, S. K. Gadia, P. J. Hayes &
S. Jajodia (Eds.), Temporal databases: Research
and practice (pp. 367-405): Springer.

Khatri, V., Ram, S., & Snodgrass, R. T. (2004).
Augmenting a conceptual model with geo-spatio-
temporal annotations. IEEE Transactions on
Knowledge and Data Engineering, forthcom-
ing.

Koubarakis, M. (1995, September 17-18). Data-
bases and temporal constraints: Semantics and
complexity. Paper presented at the International
Workshop on Temporal Databases, Zürich, Swit-
zerland.

Lai, V. S., Kuilboer, J.-P., & Guynes, J. L. (1994).
Temporal databases: Model design and commer-
cialization prospects. DATA BASE, 25(3), 6-18.

Lenzerini, M., & Santucci, G. (1983). Cardinal-
ity constraints in the entity-relationship model.
Paper presented at the 3rd International Confer-

40

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

ence on Entity-Relationship Approach, Anaheim,
California.

Liddle, S. W., Embley, D. W., & Woodfield, S.
N. (1993). Cardinality constraints in semantic
data models. Data and Knowledge Engineering,
11(3), 235-270.

Loucopoulos, P., McBrien, P., Persson, U.,
Schmaker, F., & Vasey, P. (1990, November).
Tempora-integrating database technology rule
based systems and temporal reasoning for ef-
fective software. Paper presented at the ESPRIT
Conference, Brussels, Belgium.

Martin, J. (1990). Information engineering, Book
II: Planning and analysis: Pearson Education.

McAllister, A. (1998). Complete rules for n-ary
relationship cardinality constraints. Data and
Knowledge Engineering, 27(3), 255-288.

McFadden, F. R., Hoffer, J. A., & Prescott, M.
B. (2002). Modern database management (Sixth
ed.): Prentice Hall.

Morgenstern, M. (1984). Constraint equations:
Declarative expression of constraints with
automatic enforcement. Paper presented at the
10th Conference on Very Large Databases, Sin-
gapore.

N. Derrett, W. K. a. P. L. (1985). Some aspects of
operations in an object-oriented database. IEEE
Database Engineering Bulletin, 8(4), 66-74.

OMG. (2004). Unified modeling language (uml),
v2.0.

OMG. (2006). Object constraint language speci-
fication, v 2.0.

Parent, C., Spaccapietra, S., & Zimanyi, E. (1999).
Spatio-temporal conceptual models: Data struc-
tures + space + time. Paper presented at the 7th
ACM Symposium on Advances in Geographic
Information Systems, Kansas City, USA, 1999.

Peckham, J., & Maryanski, F. (1988). Semantic
data models. ACM Computing Surveys, 20(3),
153-189.

Publication, F. I. P. S. (1993). Integration defini-
tion for function modeling (idef1x) (No. Technical
Report 184): National Institute of Standards and
Technology, Gaithersburg, MD 20899.

Ram, S., & Khatri, V. (2005). A comprehensive
framework for modeling set-based business rules
during conceptual database design. Information
Systems, 30(2), 89-118.

Rob, P., & Coronel, C. (2001). Database systems:
Design, implementation, and management (Fifth
ed.): Course Technology.

Rochfeld, A. (1986, November 17-19). Merise,
an information system design and development
methodology, tutorial. Paper presented at the Fifth
International Conference on Entity-Relationship
Approach, Dijon, France.

Ross, R. G. (1997). The business rule book:
Classifying, defining and modeling rules, ver-
sion 4.0 (Second ed.): Business Rule Solutions,
Incorporated.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy,
F., & Lorensen, W. (1991). Object-oriented
modeling and design. Englewood Cliffs, NJ:
Prentice-Hall.

Rundensteiner, E. A., Bic, L., Gilbert, J. P., &
Yin, M.-L. (1991, April 8-12). A semantic integrity
framework: Set restrictions for semantic group-
ings. Paper presented at the Seventh International
Conference on Data Engineering, Kobe, Japan.

Shepard, A., & Kerschberg, L. (1984). Prism:
A knowledge-based system for semantic integ-
rity specification and enforcement in database
systems. Paper presented at the ACM SIGMOD
Conference, Boston.

 41

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models

Silberschatz, A., Korth, H., & Sudarshan, S.
(1997). Database system concepts (Third Edition
ed.): McGraw Hill.

Snodgrass, R. T. (1999). Developing time-oriented
database applications in sql. Morgan Kaufmann
Series in Data Management Systems.

Storey, V. C. (1993). Understanding semantic
relationships. The VLDB Journal — The Inter-
national Journal on Very Large Data Bases,
2(4), 455-488.

Storey, V. C., Yang, H., & Goldstein, R. C. (1996).
Semantic integrity constraints in knowledge-
based database design systems. Data and Knowl-
edge Engineering, 20(1), 1-37.

Su, S. Y. W. (1983). A semantic association model
for corporate and scientific statistical databases.
Journal of Information Sciences, 29, 151-199.

Tauzovich, B. (1991). Towards temporal exten-
sions to the entity-relationship model. Paper
presented at the 10th International Conference
on Entity-Relationship Approach, San Mateo,
California.

Thalheim, B. (1996, December 1-10, 1996). An
overview on semantical constraints for database
models. Paper presented at the 6th International
Conference on Intellectual Systems and Computer
Science, Moscow, Russia.

Thalheim, B. (2000). Entity-relationship mod-
eling: Foundations of database technology:
Springer-Verlag.

Theodoulidis, C. I., Loucopoulos, P., & Wangler,
B. (1991). A conceptual modelling formalism
for temporal database applications. Information
Systems, 16(4), 401-416.

Tryfona, N., & Jensen, C. S. (1999). Conceptual
data modeling for spatiotemporal applications.
Geoinformatica, 3(3), 245-268.

Urban, S. D., & Lim, B. B. (1993). An intelligent
framework for active support of database seman-
tics. International Journal of Expert Systems,
6(1), 1-37.

Wand, Y., & Weber, R. (2002). Research com-
mentary: Information systems and conceptual
modeling - a research agenda. Information Systems
Research, 13(4), 363-376.

Zhou, J., & Baumann, P. (1992, October 7-9,
1992). Evaluation of complex cardinality con-
straints. Paper presented at the 11th International
Conference on the Entity-Relationship Approach,
Karlsruhe, Germany.

Zimányi, E., Parent, C., Spaccapietra, S., & Pirotte,
A. (1997, November 26-28). Terc+: A temporal
conceptual model. Paper presented at the Interna-
tional Symposium on Digital Media Information
Base (DMIB ‘97), Nara, Japan.

enDnOtes

1 In this particular syntax, there is no sym-
bolic representation of whether an attribute
is optional or mandatory.

2 Some authors use the symbol * in place of
M, for example in (Veda C. Storey, 1993).

3 We assume the reader is familiar with basic
temporal database terminology, and refer
to previous work in the temporal domain
(Bettini et al., 2000; Jensen et al., 1998) for
more information.

4 Note: While the authors refer to their model
with the acronym TEER, we use TempEER
to avoid confusion with (Elmasri & Wuu,
1990).

42

Chapter IV
On the Load Balancing of

Business Intelligence Reporting
Systems

Leszek Kotulski
AGH University of Science and Technology, Poland

Dariusz Dymek
Cracow University of Economics, Poland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

The UML model consists of several types of diagrams representing different aspects of the modeled system.
To assure the universality and flexibility, the UML involves only a few general rules about dependence
among different types of diagrams. In consequence people can have the different methodologies based
on the UML, but in the same time we haven’t the formal tool for assure the vertical cohesion of created
model. To test and reach the vertical cohesion of the model some auxiliary information about the rela-
tions among the elements belonging to different types of diagrams should be remembered. In this chapter
the authors present the method of formal representation of such information in a form of the relation,
called Accomplish Relation. This method is based only on the UML properties and is independent from
any methodology. Additionally, they show how to use the UML timing diagrams for representing the
users’ requirements in association with use cases. To illustrate the usefulness of this approach we pres-
ent how it can be used for load balancing of distributed system in case of a Reporting Systems based
on Data Warehouse concept.

IntRODUctIOn

In modern concepts of using IT in business orga-
nizations, one of the crucial elements are systems

supporting business decision processes generally
called Business Intelligence systems. This class
of information systems includes data warehouses,
OLAP systems, report generating systems etc.

 43

On the Load Balancing of Business Intelligence Reporting Systems

Their complex structures reflect the multifaceted
of modern business decision processes and the
large scale of necessary information. The com-
mon feature of all mentioned kinds of systems is
a large amount of data and a high computational
complexity. Additionally, there are time limits1
set on response time of these systems which
result in high hardware requirements. On the
second hand, some parts of these systems are
not used all the time with full efficiency. Gener-
ally, BI applications generate several periodical
cycles of a hardware nodes workload. The basic
time cycles are relevant to periodical reports and
adequate processes: we can distinguish daily,
weekly, decadal and monthly cycles and a few
longer cycles: quarterly, half-yearly and annual
ones. Beside periodical processes we have also
processes linked with everyday analytical tasks,
which generate system workload, and must be
taken into account.

Analyzing of the workload schedule for the
whole system, based on aggregated time cycles,
we must take into consideration the structure of
the system. Usually, it consists of many single
components: subsystems, software applications
and hardware nodes. Considering the workload
schedule for each hardware nodes we can indicate
the situations in which one node is overloaded
whereas other nodes are on low level of their ef-
ficiency. To assure optimal resource utilization,
throughput, or response time we can increase the
computing system power (by redundantion of
some hardware components) or reschedule some
processes. Such techniques, called load balanc-
ing, strongly depend on the software structure.
So it seems to be useful to start considering the
timing characteristic of the developed software
from the software modeling phase. This situation
forces formalization of this phase.

Unified Modeling Language (UML), being
an uncontested modeling standard, in version 2.x
offers 13 types of diagrams (Object Management
Group, 2007a). In the load balancing context
we are especially interested in timing diagrams

introduced for describing timing properties of
the modeled system. However, we suggest using
them to describe timing characteristic of user
requirements (represented at use case diagrams)
and to trace their influence to other stages of the
software modeling processes, represented by
class, object and deployment diagrams.

Let’s note that UML as a tool became a base
for some software development methodologies like
RUP (IBM Rational Unified Process) or ICONIC
(Rozenberg & Scott, 2001). It bases on such a
fundamental concepts like an object-oriented
paradigm or a distributed and parallel program-
ming but is independent from those method-
ologies. This fact gives UML some advantages;
especially it can be treated as a universal tool for
many purposes. On the other hand, UML needs
to be supplemented when we consider the verti-
cal consistency of the model (Kuźniarz, Reggio,
Sourrooille, & Huzar, 2002; Dymek & Kotulski,
2007a; Kotulski & Dymek, 2008), i.e. when we
are interested in the formal description how one
type of the UML diagrams influences on the model
described by the other types of the UML diagrams.
In the section below, the relational model, based
on the graph theory, is proposed for describing
the vertical consistency of the model.

Timing diagrams are one of many new arti-
facts introduced by second version of UML. They
are the tool for describing the dynamical aspect
of the modeled system and expressing the time
characteristic of system components. The brief de-
scription of timing diagrams concept is presented
in the following section. We also present the way
of using the timing diagrams in cooperation with
previously presented the relational model for ob-
taining the time characteristic for elements from
different kinds of UML diagrams.

Successive section presents an example of us-
ing previously described models and methods, in
case of the Reporting Data Mart based on the Data
Warehouse concept. We describe how to use tim-
ing diagrams to obtain the time characteristic of
system components, and how these characteristics

44

On the Load Balancing of Business Intelligence Reporting Systems

can be used for checking the system properties
(e.g. workload). We also present how the achieved
results can be used to workout some decision about
the system structure.

The last section is a summary of presented
solution. It describes the main features of this
approach and points out the possibility of using
it in different situations.

Described solution is the summary of a few
years investigation presented in a few publications
(Dymek & Kotulski, 2006; Dymek & Kotulski,
2007a; Dymek & Kotulski, 2007b; Dymek & Kot-
ulski, 2008; Kotulski & Dymek, 2007; Kotulski
& Dymek, 2008). We still continue our research;
especially concentrate on practical aspect of its
application.

AssURAnce Of veRtIcAl
cOnsIstency

UML itself defines the relation between ele-
ments from the given kind of diagrams or among
diagrams from the same class. Generally, UML
does not formally define the relation between
various kinds of diagrams. Version 2.0 intro-
duces <<trace>> and <<refine>> stereotypes for
specifying model elements that represent the same
concept in different models (Object Management
Group, 2007a). but does not extend their use at
the metamodel level. The limitation itself to the
specification connections inside only a given type
of UML diagrams allows using different kinds of
reasoning methods for development methodolo-
gies and is one of advantages of the UML. But
lack of the formal linkage among elements from
different kinds of diagrams can cause loosing
some information during the software system
designing, e.g. it’s hard to find the connections
between users’ requirements and servicing them
software components.

The problem of considering both the horizon-
tal and the vertical consistency of UML model
has been already pointed out a few years ago

(Kuźniarz, Reggio, Sourrooille, & Huzar, 2002),
but in practice those investigations has been con-
centrated on the horizontal consistency.

The consideration of the vertical consistency
of the model i.e. relations among the information
maintained by different kinds of diagrams needs
remembering, inside this model, the “associa-
tions” introduced by the system modeler during
the system development phase. Let’s note that
this information is not only strongly dependent
on the methodology of the system creation,
but dynamically changes in time. As there are
many examples of the usefulness of the graph
transformations mechanism for specification
and controlling dynamically changing systems
(Rozenberg, 1997; Ehrig, Engels, Kreowski &
Rozenberg, 1999a; Ehrig, Kreowski, Montanari,
& Rozenberg, 1999b), so it seams to be natural
use this formalism for our purpose.

Fortunately, the UML diagrams can be ex-
pressed as graphs using XMI standard (Object
Management Group, 2006). During the process of
software system designing we can translate each
UML diagrams into a form of a graph and create
it representation in the Graph Repository, which
will gather the information from each phase of
the designing process. It gives us a possibility to
take advantages of graph grammar to trace the
software system designing process, treating this
process as a sequence of graphs transformations.
We are able to participate in the designing process
and simultaneously modify the Graph Repository.
In (Kotulski, 2006) it was proved that, with the
help of the aedNLC graph transformation system
(Kotulski, 2000), we can control the generation
of such a Graph Repository with O(n2) compu-
tational complexity. This solution enables us to
establish the formal linkage between elements
from different kinds of UML diagrams as the
Vertical Relation. To illustrate the capability of
the Vertical Relation we present below one of
its exemplifications called the Accomplish Rela-
tion (AR) (Dymek & Kotulski, 2006; Dymek &
Kotulski, 2007b).

 45

On the Load Balancing of Business Intelligence Reporting Systems

In the Graph Repository we can distinguish
various layers (relevant to UML diagrams): the
use case layer (UL), the sequence layer (SL), the
class layer (CL) (divided onto the class body layer
(CBL) and the class method layer (CML)), the
object layer2 (OL) (divided onto the object body
layer (OBL) and the object method layer (OML)),
the timing layer (TML) and the hardware layer
(HL).

In the presented solution (Dymek & Kotulski,
2006) we can:

• Represent deployment of the final objects
to the proper computing nodes,

• Show nested software structure (introduced
by packages),

• Trace, inside which class (in the case of class
inheritance) the given objects method has
been defined.

Finally in the same way we can extend this
representation by:

• The association of the object’s method
with the proper edges in the interaction
diagrams,

• The association a graph representing the
interaction diagram with the given use case
activity.

For any G, representing a subgraph of the graph
repository R, the notation G|XL means the graph,
with the nodes belonging to the XL layer (where
XL stands for any UML type of diagram) and
the edges induced from the connections inside R.
For example, R|UL∪OL means the graph with all
the nodes (n_set (R|UL∪OL)) representing user
requirements and all the objects, servicing these
requirements, with the edges (e_set(R|UL∪OL))
representing both horizontal and vertical relation
inside the graph repository. Now we can present a
definition of Accomplish Relation function:

AR:(Node,Layer) → AR(Node,Layer) ⊂ n_
set(R|Layer) is the function where:

Node ∈ n_set (R|XL) : XL ∈ {UL, CBL, CML,
OBL, OML,HL}

Layer ∈ { UL, CBL, CML, OBL, SL, OML,TML,
HL}, Layer ≠ XL

In the chapter we will be interested in fol-
lowing exemplification of the AR function:
AR(Node,Layer) is a subset of nodes from
n_set(R|Layer), which stay in the relationship of
the following type: “support service” or “is used
to” with given Node, based on the role performed
in the system structure. For better explanation,
let’s see some examples:

• For any user requirement r∈ n_set (R|UL),
AR(r,OBL) returns a set of objects which
supports this requirement service,

• For any object o∈ n_set (R|OBL), AR(o,UL)
returns a set of requirements that are sup-
ported by any of its methods,

• For any object o∈ n_set (R|OBL), AR(o,HL)
returns a set consists of the computing
(hardware) node, in which given object is
allocated,

• F o r a n y o b j e c t x∈ n _ s e t
(R|UL∪CBL∪OBL∪SL∪HL), AR(x,TML)
returns a set consists of the timing diagram
describing the timing properties of its be-
havior,

• For any class c∈ n_set (R|CBL), AR(c,UL)
returns a set of requirements that are sup-
ported by any of its method

The above relations are embedded into the
graph repository structure, so there are no com-
plexity problems with their evaluation. Moreover,
the graph repository is able to trace any software
or requirement modification, so these relations

46

On the Load Balancing of Business Intelligence Reporting Systems

are dynamically changing during the system life
time. In (Kotulski & Dymek, 2008) we suggest
to specify timing behavior of the actors appear-
ing in the use case diagrams by using the timing
diagrams associated (by some vertical relation)
with them, and to trace how this specification
influences on the software creation process (es-
pecially preparation of some software component
for distribution). We also consider this problem
later, in successive section.

tImIng DIAgRAms AnD tHeIR
ApplIcAtIOn

Timing diagrams are one of the new artifacts add-
ed to UML 2.x. They enrich the UML by adding
the possibility of expressing and analyzing some
dynamical properties of modeled system based
on its (and its elements) behavior in time. Below,
we present some basic concept of timing diagram
and show how, in cooperation with Accomplish
Relation, we can use them to calculate the time
characteristic of system or its components.

timing Diagram concept

In the OMG documentation (Object Management
Group, 2007b) the timing diagram is defined as an
“interaction diagram that shows the change in state
or condition of a lifetime (representing a Classifier

Instance or Classifier Role) over linear time. A
classifier itself is characterized as “a collection
of instances that have something in common. A
classifier can have features, that characterize its
instances. Classifiers include interfaces, classes,
data types, and components” (Object Management
Group, 2007b). While timing diagrams has been
primary used by electrical engineers for designing
electronic state machines, the most common us-
age is to show how software object interact with
each other. They have a simple representation
as a diagram with the time along the horizontal
axis and object states or attribute value along the
vertical axis. Its usefulness for modeling of the
real time systems is presented by Valiente, Genova
and Cerretero (2005).

It should be outlined, that the mentioned in
OMG UML Superstructure examples of Classi-
fiers are not only those mentioned above. Below
we will consider timing diagrams associated
with Actors in use case diagrams in order to
characterize the behavior of the modeled system
environment. We will also consider a different
interpretation of the Lifeline state, designated
both as the possible subsystem states and as the
values of eventual attributes of the Lifeline.

A Figure 3.1 represents the robust notation of
the timing diagrams for one Lifeline (:report), two
states (on, off) and linear time representation. A
few Lifelines can appear in the same package, and
all the events are synchronized with respect of

Figure 3.1. A lifetime for a discrete object

 47

On the Load Balancing of Business Intelligence Reporting Systems

the tick values of the common clock. The Lifeline
has not to be necessarily expressed in metric time,
so some events, duration and time constrains or
synchronization edges can appears in the timing
diagrams notation, but they are not necessary for
the presentation of the introduced in the paper
methodology of timing diagram application, so
they are not considered here.

Characterizing the behavior of the systems
environment, it is easy to note that its influence
on the system depends not only on the type of
Actors cooperated with the system, but also on
the number of particular Actor instances and
frequency of the request generation made by
them. This creates the problem of the Lifeline
states representation by enumerate number of
states. The solution can be the introduction of
some continuous space of states and marking the
Lifeline value as pointed by some its attribute. For
example if we are interested in how many times a
given actor A interacts with the pointed out uses
case U representing the part of the modeled the
system; then the state space can be designated
as number of interactions per day. Actors may
represent human users, external hardware, or
other subjects, what means that each of them
represents a number of the physical instances in
the real world. So, the final value represented by
the Lifeline should be evaluated by multiplying
the number of single actor interactions by the
number of its instances.

Analyzing the use case diagram we can evalu-
ate the whole use cases overhead by summing up
the interactions of actors and the other use cases.
If we are able to estimate the time complexity of
the algorithms implementing use case then we
are able to estimate the final system workload,
otherwise we can treat this values as a desired
timing constrains of the designated system. Two
problems appear when we try to use this idea in
practice:we can estimate the time complexity of
the particular algorithms of the system, but it is
difficult to trace how this estimation influences
the final workload of the particular function of
the system represented by the use case,

the mentioned estimation is usually made
after implementation of the system (at the testing
and the integration stage), so it can be too late to
improve the system effectiveness.

Using AR for generation of timing
Diagrams for elements from
Different kinds of Uml Diagrams

The solution presented in the previous section
bases on the assumption that we are able to estimate
the workload of the computing system caused by
an Actor request. Such estimation can be made by
the observing of the real system or by estimating
of complexity of used algorithms. However, it
seams to be desirable to consider the influence of
the information gathered in the timing diagrams
(describing Actors timing behavior) on the final
model of the developed software system.

In all methodologies using UML, the use case
diagrams (and class diagrams – for illustration of
Domain Model) are the first diagrams generated
during the system modeling. Here, we assume
that the timing diagrams associated with Actors
activities are generated at the use case level to
express the time relations among the elements of
the system structure associated with the periodical
character of the system functions. The vertical
relation AR, introduced earlier in second section,
help us to do that. Using AR relation for each
Actor’s request r we able to designate:

• The set of classes modeling the algorithms
used during its service (AR(r,CBL)),

• The set of object that are responsible for the
servicing of the request r (AR(r,OBL),

• The deployment of the mentioned in the
previous point objects ((AR(o,DL)).

Thus we are able to estimate the workload of
the software and the hardware components in
the following way. Let, for each r∈ n_set (R|UL),
TM(r,t) represents timing diagram associated with
r (more formally TM(r,t)=AR(r,TML)(t)). Having

48

On the Load Balancing of Business Intelligence Reporting Systems

defined TM for requirements we can calculate it
for methods, class, objects and hardware nodes.

For any m∈ n_set (R|CML)

)UL,m(ARr

)t,r(TM)t,m(TM
∈

=

For any c∈ n_set (R|CBL)

)UL,c(ARr

)t,r(TM)t,c(TM
∈

=

For any o∈ n_set (R|OBL)

)UL,o(ARr

)t,r(TM)t,o(TM
∈

=

For any h∈ n_set (R|HL)

)OBL,h(ARo

)t,o(TM)t,h(TM
∈

=

where ∪ means the logical sum.

Timing diagrams generated for methods and
classes help us to better understand the modeled
system structure and can be very useful in find-
ing the system elements that should be refactored
(Flower, Beck, Brant, Opdyke, & Roberts, 1999;
Kotulski & Dymek, 2007).

Timing diagrams generated for Hardware
Layer give us information about the time of the
hardware nodes activity, triggered by the execu-
tion of processes corresponding with objects
allocated at it.

Let’s notice that the timing diagrams gener-
ated for the object can be used to estimate the
level of utilization of the hardware equipment.
Let’s assume that:

• We are able to estimate the (average, peri-
odical) performance of the object compo-
nents (described as per(o)); this estimation
should be associated with the computational
complexity of algorithms used inside the
object.

• We know the computing power of the hard-
ware nodes (described as cp(h))

Then the function

)(

))(),((
),(),(

hcp

opertoTRA
thEF OBLhARo

∑
∈

∗
=

shows us the efficiency of the hardware nodes
utilization in time. It can be used to indicate the
periods of time in which the hardware equipment
is almost not used or is very close to overloading.
Brief analysis of presented function shows us that
we have three ways of influence on its value:

1. We can reschedule the user requirements
by changing business processes schedule,

2. We can decrease performance demanded by
the object’s processes by rewriting software
modules

3. We can increase the hardware computing
power.

More detail analysis of these possibilities we
present below, in next section.

expRessIOn Of tIme
cHARActeRIstIc Of tHe
RepORtIng systems

In this section we show how the AR function,
based on the vertical relation concept, can be
used to system workload estimations. For cleaner
explanation we consider the real Reporting Data
Mart based on the Data Warehouse system in
commercial bank. Firstly, we briefly describe
the architecture of the Reporting System and
some environmental limitations. Next, we show
how the ULM timing diagrams can be used to
express the timing characteristic of the system
workload on different levels: from a single process
to a hardware node. At the end, we present how
to use this characteristic for a system refine by
workload balancing.

business Reporting Data marts

Every business organization has to prepare many
reports for some external organizations based
on country’s law regulation. In case of Poland,
commercial banks have to submit obligatory

 49

On the Load Balancing of Business Intelligence Reporting Systems

reports inter alia to the National Bank of Poland
(WEBIS reports), the Ministry of Finance (MF
reports) and the Warsaw Stock Exchange (SAB
reports)3. Beside external obligatory reports, each
business organization generates large amount of
internal reports. Depending of the frequency of
their generation we are able to divide them into a
few categories. We can distinguish daily, weekly,
decadal, monthly, quarterly, half-yearly or annual
reports and additionally we have some number
of ad-hoc reports, which have no periodical char-
acteristic. In most cases, these reports base on
almost the same kind of source data, but various
external and internal requirements on format and
content cause that different software applications
(based on assorted algorithms) are needed. To
simplify the example we skip the organization
of the Extraction, Transformation and Loading
(ETL) processes and assume that all necessary in-
formation are maintained by the Data Warehouse
Repository. It’s ease to realize that for different
Data Marts the set of used DW processes can be
different. Analyzing the information content of
reports we can divide them into a few categories,
based on kind of source data and the way of their
processing. Each of those categories, regardless
of periodical character, is generated by different
processes. Their results are integrated on the
level of the user interface depending on period
and organizational requirements. The schema of
data flow for Reporting Data Mart (Dymek &
Kotulski, 2007a) is presented in Figure 4.1

Each User Application represents functional-
ity associated with the single period and with the
single type of obligatory reports. Because of that,
we can treat these applications as user require-
ments (use cases in terms of UML), defining Data
Mart functionality.

To simplify this example we can take a simple
Reporting Data Mart with functionality restricted
to only two types of reports. First type consists
of three periodical reports: weekly, decadal and
monthly ones. The second type of the reports con-
sists of ad hoc reports generated by consultants
and verification of the hypothesis prepared by
them (Kotulski & Dymek, 2008). These activities
are represented at use case diagram presented in
Figure 4.2.

To estimate the system workload, first we have
to get the time characteristic for each single type
of processes. In next steps we assign the number
of processes and generated by them workload.

time characteristic of processes

As it was mentioned above, some reports have
the periodical character. It means that processes
associated with these reports category have
also the periodical character. They are executed
only in the given period of time. This period is
strictly connected with the organizational pro-
cess of drawing up the given type of reports. Let
us notice that the obligatory reports e.g. these
for the National Bank of Poland, have to fulfill

Figure 4.1. General schema of the Reporting Data Mart

50

On the Load Balancing of Business Intelligence Reporting Systems

many control rules, before they can be send out.
In practice, it means that those reports are not
generated in a single execution of the proper
software processes. Instead of this, we have the
organizational process which can progress even
a few days, during which the software process is
executed many times after each data correction.
As a result, if we analyzing the time of the avail-
ability of system functionality connected with
those reports, we must take into account the larger
time of the readiness of the hardware environment
than in the case of the single process execution.
We assume that processes associated with weekly,
decadal and monthly reports generation are started
appropriately 2, 3 or 4 days before of the reports
delivery time.

In case of obligatory reports, time of their
readiness is set by external factories. In case of
reports for National Bank we have e.g. the fol-
lowing limitations:

• Weekly reports have to be ready before
Thursday,

• Decadal reports have to be ready in five
workdays,

• Monthly reports have to be ready till 20 day
of the next month.

Reflecting, mentioned earlier, lasting time of
processes associated with each kind of periodical

reports generation, we can expressed the time
characteristic of these processes in a form of the
timing diagrams. At Figure 4.3, there are three
timing diagrams, presenting the process activity
respectively for weekly, decadal and monthly
reports generation processes. We distinguish
only two states on or off (on diagrams it is 1 or
0 respectively).

Knowing the time characteristics for each
single periodical reports generation process we
can calculate the aggregated time characteristic
for all of them together. In this case, the informa-
tion about state of processes (on/of) is not enough.
Also information about number of concurrently
running processes, which we can get by simple
aggregation of single timing diagrams, is not
enough. We need information about workload
generated by each kind of process in particular
hardware environment. This information we
can get by observing a real system or on early
stage of system development by making some
estimation.

Let’s assume, for simplifying the example,
that each process of periodical reports preparation
generate the same level of workload and one pro-
cess generates “weak” workload, two processes
generate “medium” workload and three processes
generate “strong” workload. In such case the ag-
gregated timing diagram for these processes will
look as follow (Figure 4.4):

Figure 4.2. Schema for Reports Generation activities

 51

On the Load Balancing of Business Intelligence Reporting Systems

Later we will show how to deal with the system
workload level more precisely. But even this brief
analysis let us realize, that the system workload
is on “strong” level only for a short time and
a little rescheduling (if possible) can lower the
requirement for computing power of hardware
environment.

system Workload estimation

In previous subsection we considered the case
of periodical reports generations and processes
linked with them. Each of these processes is
running as single process (e.g. there are no two
processes of monthly reports generation running
concurrently). More complicated situation is in
case of a consultant activity and processes con-
nected with ad hoc reports and hypothesis veri-
fication (Kotulski & Dymek, 2008). We can have
many consultants working concurrently and each

consultant can execute a few processes in the same
time. So besides the characteristic of processes
we must have information about the number of
consultants and their typical behavior. When we
have this information we are able to calculate the
possible number and type of concurrently running
processes starting by them. Next, based on time
characteristic of these processes we will be able
to estimate the system workload.

Because we have two kinds of different pro-
cesses we will need two timing diagrams for their
characteristic. Firstly, analyzing the consultant
activity we can realize that:

• Process activity connected with ad hoc
reports, which is linked with continues
analytical jobs driven by consultant, occurs
during work time,

• Much more complicated (in terms of
complexity and amount of processed data)

Figure 4.3. Timing diagrams for periodical reports generation
(a) activ ity o f w eekly report genera tion p rocess

(b) activ ity o f decada l report genera tion p rocess

(c) activ ity o f m onth ly report genera tion p rocess
0

1

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
0

1

0

1

days

p
r
o
c
e
s
s

a
c
t
i
v
i
t
y

Figure 4.4. Aggregated system workload for periodical processes

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
0

w eak

m ed ium

strong system w ork load

52

On the Load Balancing of Business Intelligence Reporting Systems

processes of hypothesis verifications are
executed in the background, with breaks
on non working days.

The timing diagrams depicting activity of these
processes are shown on Figure 4.5.

Presented timing diagrams show us only the
activity of given processes in time. As in previous
presented timing diagrams, we distinguish only
two states on or off (on diagrams it is 1 or 0 re-
spectively). But for system workload estimation we
must take into account information about number
of these processes and the workload linked with
each kind of these processes. In usual situation
we have many consultants and each of them can
execute few processes of the report generation or
hypothesis verification.

The method of evaluation of the number of
processes depending on number of users and
kind of their activity is presented by Dymek and

Kotulski (2008). This method, based on some kind
of calculus defining on timing diagram gives us
the new kind of the timing diagram, where Y-
axis shows not the process status (on/off) but the
number of running processes. Let assume that we
have 10 processes of hypothesis verification and
20 processes of ad hoc report generation, running
concurrently. In such a situation the aggregated
timing diagram for consultants’ activities will
look as follow (Figure 4.6). This information can
be useful for the characteristic of the overloading
of the files system or swapping management.

In this case, we will concentrate only on the
computational properties of the system. Informa-
tion about the number of running processes and
their kinds is one of the inputs for the system
workload estimation. To make this estimation
we also need information about the workload
generated by these processes.

Figure 4.5. Timing diagrams for consultant activities

Figure 4.6. Aggregated timing diagrams for consultants’ activities

 53

On the Load Balancing of Business Intelligence Reporting Systems

On the early stages of the system design we
can assess the workload of given type of process
based on its algorithm computational complexity.
Aggregating this with the number of processes
we are able to estimate the needed efficiency of
hardware equipments. Estimated maximum of
workload, where workload is a function of time
based on timing diagrams analysis, gives us the
minimum efficiency of hardware demanded by
the designed system. Let’s realize that in envi-
ronment with many hardware computing nodes,
using AR function, we are able to assign every
single process to particular hardware node, as it
was shown in the previous section. As a conse-
quence, we can estimate the workload of every
single hardware node.

On the late stages of system designing (in-
tegration or implementation stages) or for the
existing system we can gather real data about
the workload generated by particular processes.
In similar manner as described above we get the

system workload characteristic as a function of
time expressed as a timing diagram.

In presented example of the reporting Data
Mart we assume that for a given hardware environ-
ment the workload generated by particular types
of processes looks like at table 4.1. The generated
workload is expressed in percentage of hardware
environment utilizations. By this we can easily
show the system workload characteristic on a
single timing diagram (see Figure 4.7).

system Workload balancing

Previously made the estimation of the system
workload allows us to conduct a more detail
analysis of potential system overloading. Tim-
ing diagram, representing the system workload
as a function of time (Figure 4.7), makes easy to
point out the periods of time in which the system
is overloaded or is almost unused. Based on this
information we are able to take some actions. In
case of system overloading we can:

• Reschedule some processes (long term
scheduling),

• Reallocate some software applications (to
other hardware nodes),

• or distribute processes to few hardware
nodes.

In each case we have to collect information for
each hardware node about software applications

weakly report 30%
decadal report 30%
monthly report 30%
ad hoc report 1,5%
hypothesis verification 4,5%

Table 4.1.Workload generated by single process
of different kind

Figure 4.7. System workload characteristic

54

On the Load Balancing of Business Intelligence Reporting Systems

and processes allocated on them, their connec-
tions, time dependences and time scheduling.
Base on this we can work out the solution of pos-
sible overloading of some hardware nodes. The
first two cases are generally independent from
the structure of software applications. In the last
case, the possibility of distributing of processes
belonging to one software application depends
on its structure; this application must be ready
for distributed processing. Setting out such a
requirement for all used software applications is
economically disadvantageous – such a software
application is more complicated and costs more. So
it’s necessary to work out the method that allows
us to point out subsystems which should be ready
for distributed processing on early designing phase
of software application. This information can be
also used in the process of the system refactoring
(Kotulski & Dymek, 2007).

Get back to our example and consider the pos-
sibility of the long term rescheduling. Analyzing
the timing diagram shown at Figure 4.6, we can
observe that user demand exceeds computing
power of the system at 9-th, 30-th and from 57-th
to 60-th day of system observation. Fortunately,
data for monthly and decadal reports generation
usually are prepared by ETL process a few days
earlier so we can start: decadal reports evalua-
tion on 7-th and 29-th day, monthly reports on
25-th and 54-th days. Figure 4.8 represents the
overloading evaluation in such a case.

system Workload characteristic
after process Rescheduling

As we can see, in this case rescheduling of some
processes allows us to balance the system work-
load without changes in the hardware environment
or the software system structure. In the presented
example, for a single process we consider the
only two states on/off assuming that workload
generated by a process is constant in this process
lasting time. This assumption was made for sim-
plifying the example but in real case, especially

for long lasting and complex processes, workload
generated by the single process can differ in time.
Using the previously defined AR function we can
reflect it in presented estimation. Let’s trace it in
case of weekly reports.

Starting from the set of requirements associ-
ated with weakly reports (decadal or monthly
appropriately) we can designate set of object OS
that supports these requirements (using AR(r,OBL)
function, where r∈UL reflects functionality linked
with weekly reports generation). Next we estimate
the time of the object activities; for this we should
consider the structure of class from which this
object has been generated. Moreover, the object
activities are made in a some succession path so
we should check the timing diagrams associated
with the classes from which these objects have
been generated, designated as follows

)CL,o(ARi

)TDL,i(AR
∈

 o∈OS

We have to analyze the timing diagrams due
to the fact that the time of activity of the coop-
erating objects is the sum of its executions in the
interaction path, but generated by them workload
can differ. In such a case the timing diagram for
the weekly reports generation process can look
like below (Figure 4.9).

In brief estimation we take a maximum of
generated workload (30%) as a constant workload
generated by this process. But in same cases we
should make more detail analysis, especially when
maximum workload is achieved only in very short
period and the whole process is long. Next steps
of system workload estimation are the same as
in case of brief analysis.

cOnclUsIOns

The problem of load balancing integrates many dif-
ferent aspects of a software system design. Some

 55

On the Load Balancing of Business Intelligence Reporting Systems

decisions must be taken on the very early design
phase and their results have to be embedded into
the system software structure. The recent release
of UML 2.0, supporting software modeling, has
corrected a lot of design difficulties encountered
in the 1.x revision. One of the new introduced
capabilities is the possibility of characterization
of the timing behavior for some components of the
modeled system (with help of timing diagrams).
Unfortunately still actual is Engel’s observa-
tion that a general consistency of UML model
is still missing (Engels & Groenewegen, 2000).
The vertical consistency is supported neither by
CASE tools nor by the modeling methodologies
like RUP or ICONIC.

In the paper the idea of the formal remembering
(as a kind of vertical relations) the associations
between elements belonging to the different kinds
of the UML diagrams was presented. Those as-
sociations appear during the reasoning process,
while system modeling. However, this formal
approach has a specific context; it means that the
mentioned associations are remembered as a graph
structures (equivalent to the UML Interchange
standard (Object Management Group, 2006)), so
their maintenance and/or evaluation is possible
with help of the graph transformation. In such a
meaning this approach differs from other formal
approaches supporting UML modeling with such
formalisms as SCP (Engels, Küster, Heckel, &
Groenewegen, 2001) or B language (Snook &
Butler, 2006).

Graph Repository content, called UML(VR)
(Kotulski & Dymek, 2008), covers both UML
diagrams and vertical relations joining the ele-
ments of different diagrams, and is in general
used for assuring the vertical consistency of the
modeled system. In this chapter, we argue that in
a consistent model the timing properties can be
inherited from high abstraction level to the lover
one. We also suggest of using timing diagrams as
a tool for description of Actors timing behavior
was shown. The mentioned diagrams and vertical
associations can be arguments for calculation of
the timing diagrams associated with objects and
classes, and next for deployment diagrams. We
use these timing characteristic of the system for
high level scheduling made at the level of user
requirements (some permanent processes are
executed earlier) to achieve satisfactory system
overloading of the Reporting Systems in a Data
Warehouse environment. The deeper analysis
(not covered in the paper) can points out the part
of the system that should be consider for possible
refactoring (Kotulski & Dymek, 2007). All the
more, it is important because the refactoring
techniques in general are based on the system
developer intuition (who discovers “bad smells”
part of program (Flower et al., 1999)).

We would like to ascertain that the estima-
tion of the system overloading is made from the
modeling system perspective, and has a form of
preliminary estimation of some its properties,
especially in case when not all the decisions on

Figure 4.9. Detail timing diagram for the weekly reports generation

56

On the Load Balancing of Business Intelligence Reporting Systems

the modeled system structure have been under-
taken. When the detailed structure of the system
is already defined we suggest using well formed
optimization methodology based on Markov
Chains. The useful examples of such an approach
are presented by Hanna and Mouaddib (2002)
(see also Abdallah & Lesser, 2005) in context
of agents systems and by Lindemann, Lohmann
and Thümmler (2004) for the quality assurance
of service in the CDMA cellular networks.

RefeRences

Abdallah, S., & Lesser, V. (2005). Modeling task
allocation using a decision theoretic model. In
Proceedings of the Fourth international Joint
Conference on Autonomous Agents and Multi-
agent Systems (The Netherlands, July 25 - 29,
2005). AAMAS ‘05. ACM, New York, NY, (pp.
719-726).

Dymek, D., & Kotulski, L. (2006). Evaluation of
Risk Attributes Driven by Periodically Changing
System Functionality. Transaction on Engineer-
ing, Computing and Technology, vol.16 November
2006, ISSN 1305-5313, (pp. 315-320).

Dymek, D., & Kotulski, L. (2007a). On the load
balancing of Business Intelligence Reporting Sys-
tems. Proceedings of the AIS SIGSAND European
Symposium on Systems Analysis and Design,
University of Gdansk, (pp. 121-125).

Dymek, D., & Kotulski, L. (2007b). On the hi-
erarchical composition of the risk management
evaluation in computer information systems. Pro-
ceedings of the Second International Conference
DepCoS - RELCOMEX, Szklarska Poreba, 14-16
June, 2007, ISBN-0-7695-2850-3, IEEE Computer
Society (pp. 35- 42).

Dymek, D., & Kotulski, L. (2008). Estimation
of System Workload Time Characteristic using
UML Timing Diagrams. Proceedings of the Third
International Conference DepCoS – RELCOMEX

2008, IEEE Computer Society No. P3178, (pp.
9-14).

Ehrig, H., Engels, G., Kreowski, H.-J., & Rozen-
berg, G. (1999a). Handbook of Graph Grammars
and Computing By Graph Transformation: Vol-
ume II, Application, Languages and Tools. World
Scientific Publishing Co., NJ.

Ehrig, H., Kreowski, H.-J., Montanari, U. &
Rozenberg, G. (1999b). Handbook of Graph
Grammars and Computing By Graph Transfor-
mation: Volume III, Concurrency, Parallelism
, and Distribution, World Scientific Publishing
Co., NJ.

Engels, G., & Groenewegen, L. (2000). Object-
Oriented modeling: A road map. In A. Finkelstein
(Eds) Future of Software Engineering 2000. ACM,
(pp.105-116).

Engels, G., Küster, J. M., Heckel, R., & Groene-
wegen, L. (2001). A methodology for specifying
and analyzing consistency of object-oriented
behavioral models. The 8th European Software
Engineering Conference held jointly with ESEC/
FSE-9. ACM, New York, (pp.186-195).

Flower, M., Beck, K., Brant, J., Opdyke, W., &
Roberts, D. (1999). Refactoring: Improving the
Design of Existing Code. Addison-Wesley.

Hanna, H., & Mouaddib, A. (2002). Task selection
problem under uncertainty as decision-making.
In Proceedings of the First international Joint
Conference on Autonomous Agents and Multi-
agent Systems: Part 3 (Bologna, Italy, July 15
- 19, 2002). AAMAS ‘02. ACM, New York, NY,
(pp. 1303-1308).

Kotulski, L. (2000). Model wspomagania genera-
cji oprogramowania w środowisku rozproszonym
za pomocą gramatyk grafowych. Wydawnictwo
Uniwersytetu Jagiellońskiego, Kraków, ISBN
83-233-1391-1.

IBM Rational Unified Process, Retrieved No-
vember 05, 2008, from http://www-01.ibm.com/
software/awdtools/rup/

 57

On the Load Balancing of Business Intelligence Reporting Systems

Kotulski, L.(2006). Nested Software Struc-
ture Maintained by aedNLC graph grammar.
Proceedings of the 24th IASTED International
Multi-Conference Software Engineering, (pp.
335-339).

Kotulski, L., & Dymek, D. (2007). On the Evalu-
ation of the Refactoring in UML Environment,
Information Systems Architecture and Technol-
ogy - Information Technology and WEB Engi-
neering: Models, Concepts and Challenging,
Wydawnictwo Politechniki Wrocławskiej, ISBN
978-83-7493-345-2, (pp.185-193).

Kotulski, L., & Dymek, D.(2008). On the modeling
timing behavior of the system with UML(VR). In
M. Bubak, et al. (Eds), ICCS 2008, part I, LNCS
5101, (pp. 386-395).

Kuźniarz L., Reggio, G., Sourrooille, J., & Hu-
zar, Z. (2002). Workshop on “Consistency in
UML-based Software Development”, Retrieved
November 05, 2008, from http://www.ipd.bth.se/
uml2002/RR-2002-06.pdf

Lindemann, C., Lohmann, M., & Thümmler,
A. (2004). Adaptive call admission control for
QoS/revenue optimization in CDMA cellular
networks. Wireless Network. 10, 4 (Jul. 2004),
(pp. 457-472).

Object Management Group (2007a). UML Infra-
structure Specification v.2.1.2, OMG document
number: formal/2007-11-04, Retrieved Novem-
ber 05, 2008, from http://www.omg.org/spec/
UML/2.1.2/

Object Management Group (2007b). UML Super-
structure Specification v.2.1.2, OMG document
number: formal/2007-11-02, Retrieved Novem-
ber 05, 2008, from http://www.omg.org/spec/
UML/2.1.2/

Object Management Group (2006). UML Dia-
gram Interchange v.1.0 OMG document number:
formal/2006-04-04, Retrieved November 05,
2008, from http://www.omg.org/technology/
documents/formal/diagram.htm

Rozenberg, G. (1997). Handbook of Graph Gram-
mars and Computing By Graph Trans-formation:
Volume I, Foundations. Ed. World Scientific
Publishing Co., NJ.

Rozenberg, D., & Scott, K. (2001). Applying
Use Case Driven Object Modeling with UML:
An Annotated e-Commerce Example. Addison
Wesley.

Snook, C. & Butler, M.(2006). UML-B: Formal
modeling and design aided by UML. ACM Trans-
action on Software Engineering Methodology,
15(1), 92-122.

Valiente, M., Genova, G., & Cerretero, J. (2005).
UML 2.0 Notation for Modeling Real-Time Task
Scheduling. Journal of Object technology, 5(4),
91-105.

enDnOtes

1 These limits are not as sharp and crucial as
for OLTP systems, but they are important
and have to be pointed out.

2 Packages introduce some sub-layers struc-
ture inside this layer.

3 Structure and information contents of those
reports are based in international standards
so the same situation we can meet in other
countries.

58

Chapter V
Information Systems

Development:
Understanding User Participation as

a Social Network

Angela Mattia
Virginia Commonwealth University, USA

Heinz Roland Weistroffer
Virginia Commonwealth University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

Conventional wisdom has it that user participation in information systems development (ISD) is essential
for systems success. Though the significance of user participation to systems success has been much
discussed in the literature, results from empirical studies are inconsistent and suggest, that perhaps new
avenues need to be explored. One approach may be viewing user participation as a social network that
is, looking at the emergence of social structures and their technological expressions during the user
participation process. In this chapter, a framework is presented that organizes user participation ap-
proaches that emerge from the different worldviews existing within organizations. This user participation
approach (UPA) framework is used as the structure for the systematic arrangement of user participation
approaches into a fourfold taxonomy based on extrinsic information attributed to them in the literature.
In addition, a categorical analysis and social network analysis (SNA) are used to map and visualize the
relationships between analyst and users, thus providing a conceptual and visual representation of the
relational structures.

IntRODUctIOn

A critical factor in successful information systems
(IS) development is generally assumed to be user

participation. Interestingly enough, empirical
studies have been unable to conclusively link
user participation to systems success. Indeed,
attempts to organize and synthesize past empiri-

 59

Information Systems Development

cal studies on user participation have resulted in
conflicting results (Cavaye, 1995; Hwang &
Thorn, 1999; Olson & Ives, 1981). This may not
be totally surprising, due to the dynamic nature
of organizations (Doherty & King, 2005) and
the inability to capture many of the everyday
social interactions that occur as users participate.
Everyday user participation may or may not be
public and therefore has been difficult to assess
in the past.

However, in today’s world, online communica-
tion is becoming an increasingly important part
of how users participate in information systems
development (ISD). Project participants go online
to look for information, keep in touch with co-
workers and other professional contacts, conduct
business, talk about the project, track progress,
discuss new developments, and look for answers
to problems. Most of these interactions leave
behind records of some sort of social interaction:
exchanged email messages, discussion forums,
instant messaging (IM) logs, newsgroup postings,
blog entries, wikis, etc. Hidden in these growing
archives of interactions are useful social patterns
that, if more easily recognized and understood,
could greatly improve the outcome of an ISD proj-
ect. This chapter looks at how social interaction
may be visualized and how such representations
may help organizations understand the mediated
environments they inhabit, the worldviews they
exhibit, and the relationships of these factors to
information systems outcome or success. Indeed,
information visualization offers a method of ob-
serving the unobservable (Shneiderman, 1998).

The Internet has produced a new way to iden-
tify “social networks”. Indeed, these networks
support social interaction and user participation
on an unprecedented scale. Social networks are
changing the user participation context, as mil-
lions of people around the world come together
in online public spaces and exchange ideas, ask
questions, and comment on daily life events. In-

deed, individuals and organizations are evolving
in their interactions as they recognize and learn to
appreciate how they can stay in touch by e-mail
or in online discussion forums with hundreds of
people all over the globe. These social networks,
which may be public or private, are about col-
laboration and empowerment for individuals,
organizations, and societies (Shneiderman, 2002).
They leave behind copious evidence of the evolv-
ing social networks and the revolutionary ways
users are participating. Yet, this evidence is largely
undefined and thus so far has been unusable in the
context of ISD user participation research. The
objective of the current research is to provide a
framework that will facilitate visualizing the cues
and patterns that are present in social networks,
in order to help users, analysts, managers, and
other stakeholders participating in ISD, better
understand the worldviews they exhibit and their
relationship to systems outcomes.

In a sense, we undertake making the intangible
aspects of user participation in ISD tangible. In
doing so, an issue to contemplate is whether the
process of “how users participate” is evolution-
ary, or are we experiencing a revolution with
respect to “how users participate?” Disclosing the
worldviews and patterns of “how users participate”
may help illuminate these issues and others about
user participation in ISD. Indeed, it may be a step
towards conclusively showing a link between user
participation and system success.

This chapter is organized as follows. After
providing and discussing some basic terminology,
we present and extend the user participation ap-
proach (UPA) framework (Mattia and Weistrof-
fer, 2008) and justify its use as a means to better
understand user participation as a social network.
Based on a survey of the literature, we provide
and summarize a categorization of user participa-
tion approaches using the UPA framework. The
chapter concludes with a discussion on how the
proposed framework can be better understood as
a social network.

60

Information Systems Development

tHe UseR pARtIcIpAtIOn
AppROAcH fRAmeWORk

Basically, this research involves extracting, ana-
lyzing, and categorizing information retrieved
from available data. The concept of organizing
data for better comprehension is not new, and
indeed, has an extensive history in the user partici-
pation literature (Cavaye, 1995; Hwang & Thorn,
1999; Olson & Ives, 1981; Ware, 2000). What is
different in our research is the what, how, and
why in organizing, analyzing, and understanding
user participation during ISD, viewed as a social
network.

Definitions of Terms

User participation has been discussed in the
literature from many theoretical perspectives,
but attempts at organizing and synthesizing the
literature have proven difficult. First, to properly
organize the user participation process in ISD
we must define several ambiguous terms. Barki
and Hartwick (1989) suggest that the term user
participation should be used “when referring to
the set of operations and activities in the systems
development process that users participate in”,
and the term user involvement “should be used
to refer to a subjective psychological state which
influences user perceptions of the system.”

Development-related activities performed by
users during ISD include activities that may per-
tain to either the management of the ISD project
or to the analysis, design, and implementation
of the system itself (Cavaye, 1995). Therefore,
participation reflects what specific behaviors
are performed, how many of these behaviors are
performed, and how often they are performed.
These behaviors can be measured by asking
users to indicate the extent to which they have
participated in specific assignments, activities,
and tasks (Hartwick & Barki, 2001).

Due to the diverse use of the terms user par-
ticipation and user involvement, the term user

engagement has emerged, referring to either user
participation or user involvement or both (Hwang
& Thorn, 1999). In addition, recent research also
looks at user attitudes as a separate term and
defines it as affective or evaluative judgment
(e.g., good or bad) towards an object or behavior
(Barki & Hartwick, 1989). Simply said, it is a
psychological state that reflects the user’s feel-
ings about IS. This is important because recent
research has suggested that user participation,
user involvement, and user attitude exert dif-
ferent impacts on system outcomes. Indeed, a
circular relationship is suggested (Lin & Shao,
2000), because when user’s perform participatory
activities, they can help users get more involved,
which may improve the user’s attitude and make
them feel more satisfied with the IS.

A social network is defined in this research as
a social structure consisting of nodes (which are
generally individuals or organizations) that are
tied by one or more specific worldviews. Conse-
quentially, persistent data to be investigated and
visualized need to be collected from different
social networks. Thus, these collections of data
deal with user participants and with the spaces and
the people they encounter during ISD. Rather than
visualizing information systems as a technological
phenomenon, we are visualizing the social fabric
of the user participation process: the relationship
between the roles of analysts and users. User roles
in this research are sub-classified as user (in the
narrow sense), stakeholder, and manager. This role
distinctness is necessary to more accurately model
the attributes and relationships of the worldview in
which the user role exists. Thus the role of a user
(in the wider sense) is flexible; it may range in its
definition as solely using the system, to designing
and managing the user participation process. We
are visualizing the ordinary activities of analyst
and users participating in ISD and their world-
views that have an impact on these activities. In
so doing, we are not limiting this research to one
kind of environment, but instead, explore a variety
of online spaces and social networks. Every ISD

 61

Information Systems Development

project is fundamentally different from every
other, dealing with different social networks, and
online architectures. This approach allows us to
explore how social networks may affect distinct
user and organizational worldviews, synchronous
and asynchronous user participant environments,
conversation-based and artifact-based ISD com-
munities. Consequently, this research shows
how a user’s worldview and social networks can
impact user participation in ISD and the resulting
system outcomes.

the proposed framework

Typically in academic research, a research ques-
tion is first identified, and then ways are inves-
tigated to explore and answer this question. In
contrast, creators of social networks often begin
with, first, the purpose they are interested in
pursuing and, second, the raw dimensions present
in the data. To these two parameters, the work
presented here adds a third one: empirical findings

from information systems research and a variety
of social science research – ranging from sociol-
ogy and psychology to communication research.
Whenever possible, the choice of which dimen-
sions to visualize in this research has been guided
by the theories and empirical results from these
fields. Communication research in particular, can
be of great value to designers of social networks
because they highlight the kinds of cues users
of online spaces utilize as they interact. These
studies spell out some of the inner workings of
social processes such as online impression forma-
tion and the impact that different cues have on
interpersonal communications processes (Carroll,
2002). Furthermore, this research explores social
network analysis as one analytic approach to bet-
ter understand user participation.

Adapted from Cavaye (1995) and Mattia and
Weistroffer (2008), Figure 1 depicts the various
dimensions that have been used in previous user
participation research, but extends the model by
synthesizing numerous other ideas put forward

Figure 1. User participation approach (UPA) framework

62

Information Systems Development

in the literature, including the four paradigms of
information systems development proposed by
Hirschheim and Klein (1989). This user partici-
pation approach (UPA) framework is designed
to present a more complete visualization of a
complex phenomenon that is frequently marked
by gradual changes through a series of states. In
addition, this extension will help organize exist-
ing research findings and continue the cumulative
research tradition on user participation.

Burrell and Morgan (Burrell & Morgan, 1979)
use epistemological assumptions (how you obtain
knowledge) and ontological assumptions (your
social and technical worldview) to yield two
dimensions: a subjectivist-objectivist dimension
and an order-conflict dimension. The subjectivist
position seeks to understand the basis of human
life by exploring the depths of the subjective
experience of individuals.

The main concern is with understanding the
way in which an individual creates, modifies,
and interprets the world. The objectivist position
applies models and methods resulting from the
natural sciences to the study of human affairs.
The objectivist thinks of the social world as being
the same as the natural world (Burrell & Morgan,
1979). The conflict-order dimension is described
as where an order or integrationist worldview
emphasizes a social world characterized by order,
stability, integration, consensus, and functional
coordination. The conflict or coercion worldview
emphasizes change, conflict, disintegration, and
coercion (Burrell & Morgan, 1979). The dimen-
sions are offered as a theoretical schema for
analyzing organizational theory.

Following Burrell and Morgan (1979),
Hirschheim and Klein (1989) map the dimensions
onto one another to yield the four paradigms of
information systems development. These four
paradigms are sets of assumptions about ISD
which reflect different worldviews about the
physical and social world (Hirschheim & Klein,
1989; Hirschheim, Klein, & Lyytinen, 1995).
Different worldviews tend to be reflected in dif-

ferent theories. Indeed, all approaches are located
in a frame of reference (worldview) of one kind
or another. Iivari, Hirschheim and Klein (2001)
extended this line of research by supplying a
four-tiered framework for classifying and under-
standing ISD approaches and methodologies that
have been proposed in the literature. The UPA
framework proposed in this chapter is a frame
of reference for the user participation process in
ISD. This provides a comprehensive schema for
analysis of user participation outcomes (issues
and problems) within ISD and in particular, the
user participation domain.

The UPA framework recognizes contingen-
cies, which refer to the variables that enable or
inhibit user participation. Intervening mecha-
nisms are included to illustrate that the system
outcome may have variables that moderate the
user participation effect (Cavaye, 1995). It is
important to recognize these, so that the user
participation process is viewed in the context of
the larger picture.

categorical Analysis of the User
participation process

A categorical analysis of the user participation
process is used to analyze the UPAs in the context
of information system development approaches
(ISDA). First, we classify and map the list of user
participation items into different process model
elements. In a similar manner we characterize
the ISDAs. Finally, heuristics are used to inves-
tigate how the approaches translate into manager,
analyst, stakeholder, and user actions. In this
study, this analysis technique helps clarify the
story that the UPA tells us. In addition, we use
the UPA framework and social network analysis
to infer from the whole ISD structure to the user
participation part; from organizational structure
to individual user participant; from behavior to
worldview. Consequentially, this allows us to
study whole social networks, all the ties containing
specific relations in the defined user participation

 63

Information Systems Development

population, and the personal social networks of
user participants and the ties that specific users
have, such as their individual communities.

A categorical analysis of the user participation
process produces four generalized categories.
Each category consists of typical classes of behav-
ior that follow from the assumptions of a particular
worldview. The worldviews that the ISDAs are
derived from are archetypes that represent highly
simplified but paramount conceptions.

Elements of the Categorical Analysis:

• The definition of the UPA indicates the
overarching concept explicitly defined in
the approach.

• The definition of the ISDA indicates the
worldview concept explicitly defined in the
approach.

• The management rationale indicates which
justifications are provided for the use of the
approach and specific goals that managers
should pursue.

• Social relationships exemplify the estab-
lished leadership in the user participation
process.

• An episode is a set of participatory activi-
ties.

• Users, managers, stakeholders, and analysts
form social networks that have encounters.
It is important to note that encounters mark
the beginning and end of an episode, i.e.
they separate episodes.

• The heuristics indicate how the participa-
tory activities and the UPA are related. The
four main view elements are organization,
practice, requirements, and functionality.

User Participation Approach (UPA) Taxonomy

Worldview I. The analyst as the user participation leader II. The analyst as a facilitator

UPA: User participation as a rational process in a social
network.

User participation as a sense making process in a social
network.

Worldview: Functionalism (objective-order) focuses mostly on
technical change.

Social relativism (subjective-order) focuses on social
interaction.

ISDA: Typically these approaches to ISD share a number
of common features that drive interpretations and
actions. Examples: Structured, information model-
ing, decision support system, socio-technical design,
object-oriented.

Interactionist, soft systems methodology, professional
work practice.

Management
rationale:

The ideal of profit maximization. None are apparent. As the social worldview is continu-
ously changing, no particular, rationale can be provided
to ‘explain’ the user participation state.

Social Network: Management, the analyst and users. Users and the analyst.

Social Relationships: Analyst-led. Equivocation.

Episode’s Guiding
Principles:

Information systems are developed to support
rational, organizational operation and effective and
efficient project management.

Information systems development creates new meaning.

Heuristic: This UPA is technical in nature and significantly
focused on the requirements element. Functional-
ity, practice, and organizational elements follow in
its analyst-led, technical to social focus. Significant
emphasis on design and requirements model a
worldview that turns a system into a useful tool for
management to achieve its goals.

Interrogative activities that enable debate. This UPA
focuses on social interaction and thus, is significantly
focused on the functionality element. Through interac-
tion, objectives emerge and become legitimate by
continuously developing or adding functionality to the
information system. The technical communicator role,
with its increased emphasis on listening to users and
advocating their needs and desires, also can be used
to increase and enhance communication during the
user participation process and reduce the pain of these
changes.

Table 1.

continued on the following page

64

Information Systems Development

The worldviews are arranged in groups (cat-
egorized) according to the relationship identified
in the UPA framework. Therefore, the categorical
analysis provides us with a cognitive map (Table 1)
that conceptualizes the attributes, whereby nodes
(actors) or individuals can be distinguished.

sOcIAl netWORk AnAlysIs
Of tHe UseR pARtIcIpAtIOn
pROcess

The general form of this analysis views the user
participation process as a social network that
emerges from the UPA chosen. Actors (nodes)
participate in social systems; therefore social
network analysis is used to make the relation-
ships between actors explicit. The theoretical and
methodological focus of social network analysis
is identifying, measuring, and testing hypotheses
about the structural forms and relations among
actors, making this type of analysis well suited

for use with the UPA framework, in contrast to
factor research which has an individualistic and
variable-centric focus (Knoke & Yang, 2008) (see
Figure 1). Basic units of analysis are relations (ties).
Other measures of social network structure include
range, density, centrality, groups, and positions
(for a review, see (Wasserman & Faust, 1994)).

As a point of departure we offer the following
research question: What enables certain groups of
users participating in ISD to contribute to system
success? A traditional approach to this question
has been to focus on the analysts and their ability
to manage the process of user participation. This is
because analysts have traditionally played a pivotal
role in designing and coordinating collective ac-
tions. This traditional (objective) leader-centered
worldview has provided valuable insights into the
relationship between leadership and group perfor-
mance. Today, user led approaches exist that are
also consistent with an objective, leader-centered
worldview. All of these objective, leader-centered
worldviews assume that there is only one leader

Worldview III. The user as the user participation manager in
a social network.

IV. The analyst and stakeholders as partners in a
social network.

UPA: User participation as a process of empowerment. User participation as an equal opportunity process.

Worldview: Radical structuralism (objective-conflict) focuses on
radical change.

Neohumanism (subjective-conflict) focuses on social
change.

ISDA: Participation supports democracy at work and qual-
ity of work. Example: Trade unionist.

Models communicative action in organizations. Ex-
ample: Speech act-based.

Management ratio-
nale:

The ideal of an evolution from capitalist market
economy to a collectively planned and managed
economy. This evolution empowers users to meet
their own needs.

The ideal of emancipation. Information systems should
lead to freedom from all unwarranted constraints and
compulsions (e.g., distorted communication) toward a
state of well-being for all.

Social Network: Management and the analyst. Stakeholders and the analyst.

Social Relationships: User-led. Joint system development.

Episode’s Guiding
Principles:

Information systems are developed to support mana-
gerial control because management is the user.

Information systems are developed to remove distorting
influences and other barriers.

Heuristic: This UPA focuses on radical changes that allow us-
ers to meet their own needs (User-friendly ISD tools)
thus, is significantly focused on the practice element.
Craftsmanship and productivity are thought to im-
prove when the users’ daily practices are enhanced.

This UPA is social in nature and significantly focused
on the organizational element. Practice, functionality,
and the requirements elements follow in its social to
technical focus. Significant emphasis on organizational
design and adaptation should lead to an ideal environ-
ment for joint system development.

Table 1. continued

 65

Information Systems Development

in a group, and view leadership as an exclusively
top-down process between one leader and the
other users (Figure 2).

A newer, more subjective approach to manag-
ing the user participation process is to have mul-
tiple leaders. This approach has proven effective
because groups often have more than one leader.
Even when there is a formally assigned analyst or
user as the group leader, other, informal, leaders
may emerge. Users often choose informal leaders
of their own, leaders who are separate from the
analyst designated as leader by the organization.
The subjective, multiple-leader worldviews as-
sume that there is a need for more than one leader
in a group. These worldviews view leadership as
an emergent process between multiple leaders and
the other users (Figure 3).

Basic units of analysis here are relations (ties)
measured by visualizing formal social structures
of the type “reports to”.

The purpose of this section was to give a brief
explanation and a corresponding visualization of
the social relations indentified in the categorical
analysis. We have briefly outlined how social
network analysis can enhance the research agenda
set forth in the UPA framework. User Participa-

tion during ISD until now has remained mostly
untouched by social network analysis. In all four
worldviews of the UPA framework, we argue
that the network perspective combined with the
categorical analysis has the potential to supply
a cross-level analysis, generally incorporating
more macro-level constructs (such as management
rationale) into micro-level research (such as user
participation leadership). As we continue to ana-
lyze user participation during ISD using the UPA
framework, we expect social network analysis to
supply many more interesting explanations about
the user participation process.

cOnclUsIOn

The research-in-progress reported in this chap-
ter is focused on organizing and analyzing user
participation by viewing it as a social network.
Though people are quite adept in participating in
social networks in new and ever-more detailed
and persistent ways, they often lack the ability
to see the relationship in intelligible, useful, and
business oriented ways. And yet, it is clear that the

Figure 2. Objective, leader-centered social net-
work

Figure 3. Subjective, emergent-leader social
network

66

Information Systems Development

use of social networks can be an important source
of information about the people that create them
and the worldviews they exhibit. Worldviews play
a critical role in determining the way problems
are solved, organizations are run, and the degree
to which individuals succeed in achieving their
goals. Existing social networks supply persistent
datasets on how users participate, and a social
network analysis may present the cues and pat-
terns that allow us to better understand the rela-
tionship of user participation in ISD to systems
outcomes. In addition, visual representations of
social networks help us understand the dataset
and convey the results of the analysis. Social
network analysis tools can change the layout,
colors, size and many other elements of the social
network representation. Indeed, a picture can say
a thousand words.

The refinement of the categorical analysis on
user participation leads to a more organized tax-
onomy and therefore a more useful understanding
of a user’s worldview and the user participation
approaches most congruent to the worldview
identified. The next logical step is to analyze the
social networks and the ties that bind them as a
source of persistent data on user participation.
This will open new avenues of making tangible
what is now obscured and intangible. In addition,
social networks should be investigated as a new
(evolutionary or revolutionary) approach that
managers, analysts, users, and stakeholders can
utilize in accordance with the appropriate world-
view that they exhibit. As simple as this approach
may sound, it is a clear departure from how user
participation in ISD has traditionally occurred.
Most user participation during ISD is discon-
nected from the organizational and individual
worldviews and the social networks available to
the participants. By categorizing user participa-
tion approaches according to validated aspects
of each worldview and exploring social network
structures, this research expands our knowledge
of how visualizations of the user participation
social network can be used and what impact these
UPAs have on systems outcome.

RefeRences

Barki, H., & Hartwick, J. (1989). Rethinking
the concept of user involvement. MIS Quarterly
13(1), 53-64.

Burrell, G., & Morgan, G. (1979). Sociologi-
cal Paradigms and Organisational Analysis:
Elements of the Sociology of Corporate Life.
Heinemann.

Carroll, J. M. (2002). Human-computer Interac-
tion in the New Millennium. ACM Press, Addison-
Wesley.

Cavaye, A. L. M. (1995). User participation in
system development revisited. Information and
Management 28(5), 311-323.

Doherty, N. F., & King, M. (2005). From techni-
cal to socio-technical change: tackling the human
and organizational aspects of systems develop-
ment projects. European Journal of Information
Systems 14(1), 1-5.

Hartwick, J., & Barki, H. (2001). Communica-
tion as a dimension of user participation. IEEE
Transactions on Professional Communication
44(1), 21-36.

Hirschheim, R., & Klein, H. K. (1989). Four
paradigms of information systems development
Communications of the ACM 32(10), 1199-1216.

Hirschheim, R. A., Klein, H.-K., & Lyytinen, K.
(1995). Information Systems Development and
Data Modeling: Conceptual and Philosophical
Foundations. Cambridge University Press.

Hwang, M. I., & Thorn, R. G. (1999). The ef-
fect of user engagement on system success: A
meta-analytical integration of research findings.
Information and Management 35(4), 229-236.

Iivari, J., Hirschheim, R., & Klein, K. (2001).
Dynamic framework for classifying information
systems development: Methodologies and ap-
proaches. Journal of Management Information
Systems 17(3), 179-218.

 67

Information Systems Development

Knoke, D., & Yang, S. (2008). Social Network
Analysis (2nd ed.) Sage Publications.

Lin, L. T., & Shao, B. M. (2000). The relationship
between user participation and system success: A
simultaneous contingency approach. Information
and Management 37(6), 283-295.

Mattia, A.M., & Weistroffer, H.R. (2008). In-
formation systems development: A categorical
analyis of user participation approaches. Proceed-
ings of the 41st Hawaii International Conference
on System Sciences.

Olson, M. H., & Ives, B. (1981). User involvement
in system design: An empirical test of alternative
approaches. Information and Management 4(4),
183-195.

Shneiderman, B. (1998). Designing the User Inter-
face: Strategies for Effective Human-Computer-
Interaction (3rd ed.) Addison Wesley Longman.

Shneiderman, B. (2002). Leonardo’s Laptop: Hu-
man Needs and the New Computing Technologies.
MIT Press.

Ware, C. (2000). Information Visualization: Per-
ception for Design. Morgan Kaufman.

Wasserman, S., & Faust, K. (1994). Social Network
Analysis: Methods and Applications. Cambridge
University Press.

68

Chapter VI
Solutions to Challenges of

Teaching “Systems Analysis
and Design” for Undergraduate

Software Engineers
Özlem Albayrak

Bilkent University, Turkey

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

This study is an enhancement of previous research presented at the 2nd AIS SIGSAND European Sympo-
sium on Systems Analysis and Design and its improved version presented at the 3rd National Software
Engineering Symposium (UYMS) 2007. The AIS-SIGSAND 2007 study, the first phase, was part of on-
going research by which systems analysis and design-teaching experiences related to course evaluation
items were enlightened. This study summarizes previous studies and introduces new findings suggested
by those studies that relate to teaching challenges on systems analysis and design in software engineer-
ing. The first challenge studied is to decide a suitable evaluation item set in undergraduate level system
analysis and design courses for software engineers. The second challenge relates to implicit assumptions
made by software engineers during the analysis phase. Based on pre-interview, test, and post-interview
data, the study presents a snapshot of an analysis in software engineering regarding implicit assumptions
made by analysts. Related to these challenges, the study concludes with proposals on systems analysis
and design education.

IntRODUctIOn

“Software engineering education” is an important
and a challenging arena that involves certain myths

and human interaction (Ghezzi and Madrioli,
2005; Hawthorne and Perry, 2005; Hillburn and
Watts, 2002; Morrogh, 2000; Vliet, 2005; Haz-
zan and Tomayko, 2005). Due to this importance,

 69

Solutions to Challenges of Teaching “Systems Analysis and Design”

there have been many studies conducted in this
area. Several guidelines for software engineering
education were prepared (Albayrak, 2003; Bagert,
Hilburn, Hislop and Mengel, 1998; Thomas, Se-
meczko, Morarji and Mohay, 1994; Vliet, 2006).
Some studies concentrated on pre-graduation
challenges and studied software engineering
curricula (Cifuentes and Hughes, 1994; Pullan
and Oliver, 1994; Bagert 1998; Parnas, 1999; Sch-
neider, Johnston and Joyce, 2005). Other studies
were conducted to prepare software engineers for
real life by suggesting industry and university
collaboration (Clark, 2005; Ellis, Mead, Moreno
and Seidman, 2003; Dawson and Newsham, 1997;
Dawson, 2000; Yamaura and Onoma, 2002) or via
software engineering projects (Aizamil, 2005; Liu,
2005; Morgan and Lear, 1994; Mohay, Morarji,
Thomas, 1994; Oudshoom and Maciunas, 1994).
A great deal has been written on the future of
software engineering education (Boehm, 2006;
Cianciarini, 2005; Bagert, et. al., 1998).

Software engineering is an integrated disci-
pline. Systems analysis and design are two main
elements of software development. For today’s
software engineers, understanding the problem
correctly (analysis) and solving it in the best pos-
sible way (design) are very important. Thus, spe-
cial emphasis must be given to teaching systems
analysis and design to software engineers.

Studies on teaching systems analysis and de-
sign courses were conducted long before Hunter’s
research on attributes of excellent systems analysts
(Hunter, 1994). System Analysis and Design
(SAD) in a computer science curriculum was
suggested by Spence and Grout in 1978 (Spence
and Grout, 1978). Several aspects of SAD course
development were studied (Golden, 1982; Goroff,
1982; McLeod, 1996; Larmour, 1997). Archer
proposed a realistic approach to teaching SAD
(Archer, 1985), while Olfman and Bostrom ana-
lyzed innovative teaching for SAD (Olfman and
Bolstrom, 1992). Osborne proposed the use of
a CASE tool for teaching systems analysis and
design (Osborne, 1992), and Dick suggested the

use of student interviews (Dick, 2005). During
the 1990s, human factors related to SAD were
investigated, and teamwork and the human factor
in SAD teaching were studied (Fellers, 1993; Om-
land, 1999). Following the previous studies, Misic
and Russo aimed to identify the importance of the
educators’ role in various systems development
tasks, activities, and approaches and to compare
educators’ perceptions to those of practicing
systems analysts (Misic and Russo, 1999).

Systems analysis and design are important
phases in software engineering; hence, impor-
tance should be given to both of them. A software
engineer should be armed with systems analysis
and design related knowledge, not in a classical
way but in a comprehensive way similar to that
proposed in this chapter, so that software engineers
are able to apply what they learn at universities
to real-life, practical problems.

This study shares the experiences of preparing
undergraduate software engineering students for
SAD related subjects applicable to real-life, prac-
tical problems. The study is performed in three
phases: The fist phase constructs the background
for the AISSIGSAND paper and is mostly related
to challenge of using different evaluation items to
measure software engineers’ success in systems
analysis and design subjects. The first phase stud-
ies the challenges of applying different types of
evaluation items in an SAD related undergraduate
course. It can be utilized to help academicians
who search for an appropriate combination of
evaluation means for a course teaching SAD to
undergraduate software engineering students.
The second phase includes analysis related tests
conducted to observe implicit assumptions em-
bedded in analysis studies. Both the second and
the third phase of the study deal with challenges
related to implicit assumptions made by analysts
during analysis. In the third phase of the research,
experiments and pre and post interviews were
conducted. The results of the second and the third
phase of the experiments can be utilized by aca-
demicians who aim to avoid, or at least minimize,

70

Solutions to Challenges of Teaching “Systems Analysis and Design”

implicit assumptions during a systems (especially
software systems) analysis phase.

This chapter is organized as follows: First, it
summarizes the previous phases of the current
research study in the Previous Studies’ Summary
section. It then presents the sample characteris-
tics, study method, and results of the last phase
in the Phase III Current Study section. The study
concludes with a consideration of future study
enhancements of the main subject in the Future
Studies and Conclusions section.

sUmmARy Of pRevIOUs stUDIes

This section of the chapter summarizes the pre-
vious two phases of the current research. The
first phase was conducted at Izmir University of
Economics (IUE), Faculty of Computer Sciences
and presented at the 2nd AISSIGSAND Symposium
(Albayrak, 2007a). By the time the first phase was
published, it was on-going research. Some notes
collected during the first phase were compiled in
the second phase of the study, and the results were
published in UYMS 07 (Albayrak, 2007b).

phase I: evaluation Items

The Study

The first part of the study is composed of experi-
ences gathered from teaching SAD subjects to
undergraduate software engineering students.
The goal is to observe whether or not SAD exam
results are related to the type of evaluation used.
The study is based on the teaching experiences of
two sections of an undergraduate course, called
“SE303—Principles of Software Engineering” at
IUE, Faculty of Computer Sciences. This course,
for which there are no prerequisite courses, is
mandatory for third year students. Of the students,
97% had successfully completed two semester
courses on “Programming Languages (C/C++)”
and one semester course, “Systems Analysis and

Design” before enrolling in this course. The major
goal of this course, rather than teaching program-
ming or analysis and design alone, is to provide a
learning environment in which knowledge gained
from these phases is successfully utilized in the
real-life experiences demanded from software
engineers. The major learning objectives of the
course include both practical application and
theoretical modeling knowledge.

The total number of students, enrolled on the
course, is 58. Fifty-six of the students have prior
knowledge related to data-oriented and object-
oriented methodologies for analysis and design
phases. The students also have prior experience
in using UML. In this course, both data-oriented
and object-oriented analysis and design were
utilized as needed. In addition, agent-oriented
and service-oriented analysis and design meth-
odologies were briefly introduced. This study
deals only with data and object-oriented analysis
and design methodologies. Two different CASE
tools were utilized, and different process models
varying from waterfall to agile development were
studied.

Throughout the semester, different evalua-
tion methods as measures of knowledge were
developed and utilized. The list of evaluation
items used in the course and their percentage
values are presented in Table 1. Observations
and experiments were used as study methods,
and statistical analysis of data gathered from the
students’ evaluation means was conducted.

In addition to midterm and final exams,
homework and group projects are used for a more
comprehensive evaluation of students’ knowledge.
Initial groups, composed of two students, were
formed by the students themselves. The final proj-
ect was implemented by groups of four, formed by
the instructor. The items of evaluation and their
characteristics are designated by Table 2.

The students were all aware of the differences
between a software engineer and a programmer,
yet when it came to developing systems, all acted
as programmers rather than as software engineers

 71

Solutions to Challenges of Teaching “Systems Analysis and Design”

responsible for analysis and design studies. The
reason for this behavior can be traced back to
students’ prior education experiences. According
to the current curriculum, students need to have
completed two programming courses, in which
they are trained to accept a given problem as
valid, rather than analyze it. Furthermore, dur-
ing these programming courses, students are not
trained in regard to design. Therefore, they start
writing the code without analysis and a good
design. Students do not conduct analysis unless
it is explicitly stated.

H1 was given after three weeks of studying
systems analysis. The request was simply to
calculate the entered prices of purchased goods
in order to obtain the total amount due. A brief
and formal explanation was provided to the stu-
dents, who were also informed that the user, the
general manager, was in fact the instructor, and
the instructor was available via e-mail, phone,
regular office hours, or appointment.

In H2, students formed self-chosen groups of
two. Some modifications to the existing program
were requested. It was requested that the program
would operate in both Turkish and English. The
cashier was designated as the program user;
students were allowed to ask questions during
the analysis.

The midterm exam was composed of four dif-
ferent parts. The first part of the exam, M1, was
closed book, and the students were not allowed
to ask questions. The second part of the exam,
M2, was given after the first-part exam papers
were collected. The M2 was closed book, and
the students were not allowed to ask questions.
The same question was asked in the exam, in a
different way: In M1, the definition and elements
of a system defined by software engineering were
asked. In M2, the students were asked to generate
a context diagram for the system defined by soft-
ware engineering. In other words, the questions
in M1 and M2 were identical.

In M3, one question was the same as one of the
M2 parts: the object-oriented analysis of a student
dormitory system. In M2, the students were asked
to prepare individually a use case diagram for
that system. In M3, students were given the same
question, during which they were allowed to ask
questions of the other students, but not to share
their work. The time allowed for the question in

Table 1. Evaluation item percentages

Evaluation Item Percentage (%)

Midterm (4 different parts) 30

Homework (6 integrated assignment) 35

Final 35

Item Group Size Explanation (Hi: Homework i, Mi: Midterm part i)

H1 1 A simple program to add item prices to create total $ due

H2 2 Same program with a Multilanguage support

M1 0 Closed book part

M2 0 Open book, asking questions not allowed part

M3 No limit Open book, asking questions is allowed part

M4 4 Groups of 4 students formed

H3 2 A menu, help, barcode, and multiplicity are added to H1

H5 2 A database access for price is added to H2

H6 4 Integrate H3 and H5 that they studied previously

Final 0 Closed book

Table 2. Evaluation items used

72

Solutions to Challenges of Teaching “Systems Analysis and Design”

M2 was less than that in M3; M3 questions were
delivered after collecting M2 exam papers.

M4 required the students to answer one ques-
tion in M3 and allowed the students to form groups
and to submit group work as answers.

H3 was given after design studies were
completed. A menu, help file, and barcode were
added to the previous homework given for H2.
In addition, the program was changed slightly; it
not only obtained the prices but also the amount
purchased so that a bill was generated.

H5 concerned a database access from a pro-
gram in order to read the prices using the barcode
entered. The complete database design and a
prototype for implementation were given to the
students. H6 involved integrating H5 and H3, and
students were given four complete source codes
as starting points.

The final exam covered the whole course and
was a closed book exam during which communi-
cation among the students was forbidden.

All evaluation items were read by the same in-
structor. To grade the evaluation items objectively,
the instructor read each question individually.

As can be understood from the above expla-
nations, evaluation items are closely related. The
interrelations between these items reflect a more
“comprehensive” evaluation than a classical one,
in which unrelated items are considered. Having
briefly mentioned the evaluation items, it is now
time to present the findings of the study, based
on evaluations of these items. The results are
summarized in Table 3.

Results

According to the results of the study, composed
of observations and tests from one semester, the
way software analysis and design knowledge is
measured has a strong impact on the result of
the evaluation process. Students who are suc-
cessful at defining and utilizing key concepts

Item Subject Results

H1 Analysis 97% failed to ask questions to the user

99% failed to gather complete requirements and to test the program with alphanumeric data

90% failed to display the output sentences as given

H2 Analysis/Design 20% made wrong assumption that it was necessary to build a calculator

M1 Analysis 75% were successful in solving analysis problems

M2 Analysis/Design 88% failed to solve the same problem in Midterm part 1, M1

M3 Analysis 35% failed to ask questions during the exam

73% were less successful in group study

H3 Design Failed to realize design concepts: flexibility, modularity, multi-lingual support, etc.

H5 Implementation Initial response: 100% of students claimed they had not learned this previously

Produced (unnecessary) analysis and design document

Some designs did not match their implementation

Past homework response: 78% believed that they had the ability to do the task

H6 Test 95% of groups evaluated others’ work, good test cases were determined. Students were
successful at testing other groups’ projects, but not very effective at testing their own

H7 Maintenance 85% of comments were insufficient

Final All Analysis has not yet been completed

Table 3. Brief analysis of evaluation item results

 73

Solutions to Challenges of Teaching “Systems Analysis and Design”

and tools related to system analysis and design
in a closed book written exam were found to be
unable to apply them to solve practical problems
in an open book exam. A project that requires
an implementation phase means that most of the
students fail to conduct the required analysis and
design studies.

This section presents the analysis of evalua-
tion item data, homework, and exam results, and
provides further observations gathered during the
course. Table 3 summarizes the statistical analysis
of the evaluation item scores.

When asked in a written exam about the
most important step in analysis, almost all of the
students chose the analysis of user requirements;
yet when it came to satisfying the customer, they
neglected to ask the customer questions, an impor-
tant step in system analysis. Of the students, 89%
know what validation means in a software system,
yet in practice, they failed to validate solutions
because of a lack of proper analysis studies; thus
the students assumed that the information given
was adequate in itself for analysis studies.

It was also observed that when the students
were given homework and questions that did
not include implementation (as in M1 and M2),
they mostly produced correct answers regarding
analysis and design questions. On the other hand,
when implementation was included in the as-
signed homework (as in H1–H6), the students did
not pay enough attention to the systems analysis
and design phases; instead, they directly worked
with the software implementation, causing them
to fail.

Having summarized the results of the evalu-
ation items used throughout the study, the next
stage is to present observations derived from
these results.

Derived Observations

According to this study, it can be said that the way
SAD studies are tested does matter, and it may
be a challenge of teaching SAD to determine an

evaluation items set. It was observed that when
analysis and design related subjects are measured
by written exams, especially by closed book
exams like M1, when directly questioned, most
students answer correctly. Yet when it comes to
using this knowledge in an open book exam and
in a project with an implementation section, the
students do not utilize their knowledge of analysis
and design in solutions.

Thus, if classical or traditional ways are used
as evaluation items for analysis and design prob-
lems, the results of the items (exams) might be
misleading. In this study, it was observed that in
exams (midterm and final), questions on analysis
and design were answered correctly. Thus, the
majority of the students correctly responded to
analysis and design related subjects when the
questions were asked in traditional ways.

An analysis of M3 and M4 shows that when
the students were asked to answer analysis ques-
tions individually, they achieved higher grades
than when they were allowed to work in groups.
Exams M3 and M4 have two questions in common.
According the results of these parts, the students
who were successful in individual studies were
found to be unsuccessful when working in groups.
In other words, according to M3 and M4 analysis,
teamwork decreased performance. Considering
communication overload, the students were given
more time on M4 than M3. Group synergy resulted
in a negative impact on the success of the students
during the exam.

Between M1 and M2, there was a common
question. In M1, students were asked to use
structured English as a tool; in M2, they were
asked to use a UML use case diagram to solve
the same problem. Exam M1 was closed book,
and part two was open book. For 88% of the
students, answers for the closed book exam were
better than for the open book exam. Despite the
fact that the students were given more time than
for M1, the students performed less well in M2.
The weaker performance was not related to the
inability to utilize UML, rather to the fact that

74

Solutions to Challenges of Teaching “Systems Analysis and Design”

the students unnecessarily changed their answer
to the question. Later interviews with the student
revealed the fact that they had expected a more
difficult question in an open book exam; thus, they
did not trust their initial, but correct answers and
changed them. Later, an extra quiz was conducted
to make sure that the students were able to convert
written cases to UML use cases. Thus, the dif-
ference between students’ performances in M1
and M2 were not based on any UML conversion/
utilization problem.

When the students are tested based on projects,
they respond to questions differently. From H1
to H6, most of the students failed to respond to
analysis and design related topics. Initially, the
students did not conduct any further analysis
and design studies, although this was actually
required. Furthermore, they conducted analysis
in H5 and H6 where, in fact, no analysis studies
were required.

If exams are used as the only evaluation means,
most of the students will appear to be successful
in answering analysis and design related problems.
If only projects (or project-like homework) are
given, most of the students will appear unsuc-
cessful. Therefore, utilization of both exams and
projects (homework) should be applied in order to
obtain an overall picture. The utilization of both
written exams and projects can therefore be a
comprehensive way of measuring students’ ability
set regarding analysis and design subjects.

Soon after the first midterm, the students were
interviewed about the exam. This exam was the
only one for which students were allowed to ask
questions. According to the interviews, students
found asking questions during the exam strange;
it was only done by those who understood the
importance of user feedback during analysis stud-
ies. Experiencing such an exam helped students
to remember the importance of user involvement
during the analysis phase. After the exam, most
of the students stated that they would never forget
to involve customers during analysis.

The findings of the first phase are related to the
challenges of using different types of evaluation in
teaching SAD. To help derive general statements,
future studies conducting similar study constructs
were suggested by the first phase of the study.
The second phase of the study concentrated on
implicit assumptions taken by the analyst during
software systems analysis.

In this phase, the student grades were found to
be very sensitive to the type of evaluation items.
This sensitivity may not directly relate to the differ-
ences in the evaluation items only. SAD is neither
a trivial subject to teach nor, hence, to evaluate.
Many variables, most of which are interrelated,
are involved in teaching SAD. These variables
make teaching and evaluating SAD an intricate
process. Some of these variables were controlled
by the study, because all the different parts of the
midterm exam were delivered as part of the same
exam. There were no significant differences in
variables related to the students themselves, such
as mood, during the exam.

The variables related to the instructor are the
same in the study sample. Two sections were
taught by the same instructor, who followed
exactly the same material in both sections. The
instructor, i.e. the author, graded all evaluation
means in the study.

One of the variables can be related to the stu-
dents’ assumptions about the evaluation means.
Most of the students believed that open book exams
were more difficult than closed book exams. With
this assumption, some answered the same question
differently in a closed and open book exam.

Another variable observed in the study is about
creating limits that do not exist. Due to such lim-
its, most students failed to became successful in
SAD in M3. The fact that some students did not
ask questions of the users during the exam can
partially be explained by this variable. There was
no restriction on students asking other students
questions in the exam. Instructions for M3 stated
that only students who spoke would be recorded.

 75

Solutions to Challenges of Teaching “Systems Analysis and Design”

This recording was made to give additional points
to those conducting analysis.

The past experiences of the students can
be considered another variable. Most students
attempted to solve and/or implement problems
without conducting analysis and design studies.
This may be because of previous experience in
programming courses. For more than a year, they
were trained to solve problems given to them.
During the previously taken, one-semester analy-
sis course, students were given only descriptive
sentences and were asked to generate analysis
diagrams related to certain technologies, without
being asked to conduct complete analysis and
design studies.

During the first phase of the study, a test to
measure implicit assumptions during software
systems analysis was developed. In the second
phase, this test was conducted.

phase II: Assumptions in Analysis

The Study

People make assumptions about things they do not
know for certain. Assumptions made by software
analysts may be harmful and costly when made
implicitly. Implicit assumptions are those that
are not shared with and verified by the system’s
end users. One danger of making an implicit as-
sumption during systems analysis is that it may be
wrong. When wrong assumptions become part of
system analysis, they can be carried to design and
to further implementation phases. As a result, the
cost of systems development and the probability
of systems failure increase. Thus, dealing with
implicit assumptions during the analysis phase
is one of the challenges of SAD.

One of the goals of teaching SAD should be to
train students not to make implicit assumptions
and to avoid reflecting these assumptions to design
and implementation phases. This study searched
for the impact of SAD education and software
development experiences on a number of implicit

assumptions made by software developers during
the analysis phase.

The second phase of the study is composed
of tests and interviews conducted to examine
implicit assumption failures during software
systems analysis. This phase is conducted at IUE,
Faculty of Computer Sciences, Department of
Software Engineering. Fifty-four students took
the SE303—Principles of Software Engineering
course. During this phase, we asked the following
question to the students:

“For the following software requirement, do
one of the following 3 alternatives:

1. Draw prototype screens for at least two
inputs you enter,

2. Write source code in any programming
language you know (C/C#, Java, …),

3. Write pseudo code ”.

For any positive number entered by the user, the
program should display a list of even numbers
less than input.

PLEASE LIST ANY QUESTIONS/ASSUMP-
TIONS YOU HAVE FOR YOUR SOLUTION.

The students were free to choose from devel-
oping prototype screens, writing pseudo code,
or writing source code in any programming lan-
guage. Students were forbidden to ask questions
while answering this question. The last sentence
in the question stated that students should list any
questions and/or assumptions they had for their
solutions. By that, we wanted to make students’
implicit assumptions explicit, by being written
on paper.

To respond to the question, the students first
conducted an analysis. After the test, we counted
the number of assumptions and questions of the
students, which were written on paper. Those
students who did not write explicit assumptions
implicitly reflected their assumptions to their
design and implementation studies.

76

Solutions to Challenges of Teaching “Systems Analysis and Design”

During the test, the students’ cumulative
grade point averages (CGPA), letter grades for
programming language, and SE303 course grades
were collected to analyze possible relationships
between these grades and the student’s choice to
answer the question.

The given requirement is vague: It does not
explicitly state requirements related to input data
type, prompts to display, type of application (Web,
console, Windows-based GUI), end of list, order
of list (whether ascending or descending), error
messages (type and contents), and format of listing
(all numbers in one line, or one number per line,
or divided into columns). Table 4 shows subjects
that an analyst should ask about before design
and implementation.

Results

A total of 54 students answered the question, and
54 valid responses were collected. All students
passed one programming course, and 34 students
took the SE303 Principles of Software Engineer-
ing course in addition to the Systems Analysis
and Design course.

Thirty-four students preferred to use coding,
while 20 selected prototype screens. We counted
the number of explicit assumptions (NEA) for each
student. We assumed that a total of five explicit
assumptions was a sign of good analysis. None

of the students stated more than five explicit as-
sumptions. We observed that students with lower
grades from programming courses preferred to
use prototyping and that those who did not enroll
in SE303 preferred coding. Students who had
above average grades from the programming
language (C++) course were able to state more
explicit assumptions than those who had lower
grades. Figure 1 presents the distribution of NEA
values for students grouped by above and below
average scores received from the programming
language course.

Figure 2 plots the NEA versus the number of
students who answered using prototyping and

Subject Question

Input type Is the number integer, double, float,…?

Prompts What will be displayed to user as text?

Order Is it ascending or descending?

Format What is the format of the list?

Application type Will it be a console, windows, or Web
application?

Error messages Which errors will be displayed, and
how?

Stopping condition What will be the stopping condition?

Language In which language should the program
run?

Table 4. Given requirement related subjects for
making possible assumptions

Figure 1. Number of explicit assumptions versus number of students based on programming course grade
assumptions than those who had lower grades. Figure 1 presents the distribution of NEA values for
students grouped by above and below average scores received from the programming language course.

Figure 1. Number of Explicit Assumptions versus Number of Students Based on Programming Course Grade

Figure 2 plots the NEA versus the number of students who answered using prototyping and source code.
None of the students using prototyping were able to state more than three explicit assumptions. While
most of the students using coding (16) did not make any explicit assumptions, only students who used
coding were able to state more than three explicit assumptions.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

neA

n
um

be
r

of
 s

tu
de

Prototype
Code

Figure 2.Number of Explicit Assumptions versus Number of Students Based on Students’ Preferences

0

2

4

6

8

10

12

14

0 1 2 3 4 5

neA

number of
students <= CC

> CC

 77

Solutions to Challenges of Teaching “Systems Analysis and Design”

source code. None of the students using proto-
typing were able to state more than three explicit
assumptions. While most of the students using
coding (16) did not make any explicit assumptions,
only students who used coding were able to state
more than three explicit assumptions.

The majority of the students using prototyp-
ing (40%) made two explicit assumptions. None
of the students using prototyping had more than
three explicit assumptions (Figure 3).

Most of the students using coding (46%) did
not make any explicit assumptions. Six percent
of the students using coding were able to state
five assumptions explicitly. Figure 4 depicts the

percentages of students using coding grouped by
the NEA made by the students.

It was observed that the development method
(using prototyping or coding in a programming
language) selected by the students may have
impacted the number of explicit, hence, implicit
assumptions made during the analysis phase.

In this study, only one requirement was given to
the students; for future studies more requirements
of different complexity levels may be given to see
if the complexity of requirements has an effect
on the number of implicit requirements taken by
the analysts. The advantage of this study is that
it was simple and conducted for a homogenous

Figure 2. Number of explicit assumptions versus number of students based on students’ preferences

Figure 3. Percentages of students and number of explicit assumptions made in prototyping

0
25%

1
15%2

40%

3
20%

5
0%

4
0%

N E A
N um ber o f
S tuden ts %

assumptions than those who had lower grades. Figure 1 presents the distribution of NEA values for
students grouped by above and below average scores received from the programming language course.

Figure 1. Number of Explicit Assumptions versus Number of Students Based on Programming Course Grade

Figure 2 plots the NEA versus the number of students who answered using prototyping and source code.
None of the students using prototyping were able to state more than three explicit assumptions. While
most of the students using coding (16) did not make any explicit assumptions, only students who used
coding were able to state more than three explicit assumptions.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

neA

n
um

be
r

of
 s

tu
de

Prototype
Code

Figure 2.Number of Explicit Assumptions versus Number of Students Based on Students’ Preferences

0

2

4

6

8

10

12

14

0 1 2 3 4 5

neA

number of
students <= CC

> CC

nt
s

78

Solutions to Challenges of Teaching “Systems Analysis and Design”

set, composed of students from the same class.
It is further suggested that similar studies should
be conducted on different samples composed of
other students and analysts. Avoiding implicit
assumptions during analysis should be a concern
of people teaching SAD. Ways to decrease the
number of implicit assumptions that are made
should be applied during undergraduate train-
ing. How to deal with or avoid making implicit
assumptions may be one of the major concerns of
systems analysts. The second phase of this study
can be considered an attempt to observe whether
or not the methods used during software design
and development have an effect on the number of
implicit assumptions during analysis. Based on
the results of the second phase, it is not possible
to make strong statements about assumptions
made during the analysis studies and the methods
used in software design and development. For that
reason, a similar study was conducted at a dif-
ferent university. The following section explains
the third phase of this study in detail.

pHAse III: cURRent stUDy

The second phase suggested conducting the study
in different environments. Based on this sug-
gestion, the current study, the final phase, was
developed. This phase uses the same research

question developed in the first phase and tested
in the second phase. It checks if the number of
explicit assumptions during software analysis is
related to the method preferred during design and
development. It also tests whether or not previ-
ously taking SAD related courses and experience
has an impact on the number of explicit assump-
tions made.

method

The same method used in the second phase was
applied in the third phase of the study. Before
conducting the study with a student sample, we
conducted the study with CTIS Faculty members.
Ten CTIS faculty members tested the question
and commented on the validity of the study.
Experienced faculty members were able to iden-
tify all explicit assumptions. They verified that
the question was valid and could be used for its
intended purpose. Within this small sample, it
was observed that instructors who did not teach
programming language courses mostly preferred
developing prototype screens to coding. Faculty
members who selected using prototypes had a
tendency to make fewer explicit assumptions than
the other faculty members who selected coding.
When interviewed, the faculty members using
prototypes claimed that developing prototypes was
less expensive than developing a program. They

Figure 4. Percentages of number of explicit assumptions made in coding

C ode

46%

24%

12%

9% 3% 6%
0
1
2
3
4
5

 79

Solutions to Challenges of Teaching “Systems Analysis and Design”

further stated that they used prototypes because
they believed that it was a less expensive and more
effective means of communicating with the users,
which is important, due to the determination of
systems requirements.

The student sample of the second phase was
composed of third year students only. In the third
phase, undergraduate students of all levels were
included in the sample. Not all of the classes have
the same degree of experience related to SAD. The
first year and second year students had never taken
a course on SAD, while the third and the forth
year students had completed SAD courses suc-
cessfully. The most experienced student group, the
senior students, was interviewed before and after
the test. In addition to the SAD related courses,
during the course CTIS494 Software Quality As-
surance, the senior students learned specifications
of high quality requirements as a by-product of
thorough analysis. This group was more informed
about SAD than the other groups.

sample

The sample was composed of undergraduate
students of the Bilkent University Computer
Technology and Information Systems (CTIS) de-
partment. Although IUE and Bilkent are different
universities, there are some similarities between
them: Both are private universities in Turkey. At
both Bilkent and IUE, the language of instruction
is English. Regarding SAD related courses, the
CTIS department curriculum is very similar to
that of the IUE software engineering curriculum.
Furthermore, both use the same textbook in the

software engineering principles course, in which
the students learn more about SAD. IUE students
of the second phase had completed an extra SAD
course, while CTIS students learned analysis and
design in a software engineering principles course
and applied their knowledge in the CTIS459 Ap-
plied Software Engineering course.

The study was conducted with students of all
levels, ranging from freshman to senior. The third
year students were familiar with SAD concepts
from one course they took, CTIS359, on software
engineering. The senior students took the CTIS359
and CTIS459 Applied Software Engineering and
the CTIS494 Software Quality Assurance courses.
The samples used in the study were given SAD
experience levels based on the number of SAD
courses they had enrolled in. Freshman and
second-year students had never taken SAD before,
thus their SAD experience level was assigned
to 0. The third year students having one course
on SAD were assigned to 1, and the forth year
students’ SAD experience level was assigned to
3, correspondingly.

Hardcopy questions were delivered to the
students except for the third year students, who
were performing their industrial training at some
companies. E-mails were sent to the third year
students, and their responses were also collected
via e-mail. Hard copy questions were delivered
in class with responses collected in class. It took
about 10 minutes, on average, and a maximum of
17 minutes for the students to answer the ques-
tions in class. While all in-class responses were
collected, not all of the third class students who
were contacted via e-mail answered the question.

Table 5. Third phase student sample characteristics

Class Way to collect response Sample Size Valid Responses SAD related courses taken SAD Level

1 Hard copy 26 22 None 0

2 Hard copy 21 21 None 0

3 e-mail 78 26 CTIS359 1

4 Hard copy 29 29 CTIS359, CTIS459, CTIS494 3

80

Solutions to Challenges of Teaching “Systems Analysis and Design”

Table 5 lists the characteristics of the student
sample used in the third phase.

Descriptive statistics measures were calcu-
lated, and the results were used to compare dif-
ferent groups in the study, especially groups with
SAD training vs. group without SAD training. We
also researched to learn the types of areas that are
more likely to be assumed implicitly.

Results

In this section, findings of the third phase are pre-
sented. Whenever possible, the results obtained in
the third phase will be compared with that of the

second phase. Based on their similarities regard-
ing SAD field related experience and training, the
first and second year students were considered
one group, and the third and forth year students
were considered another group. Characteristics
of the CTIS third and forth year students are very
similar and hence, comparable to the sample of
the second phase, third year students of IUE. Both
samples have a similar background and training
set related to SAD.

The majority of the students failed to state any
explicit assumptions needed during analysis. None
of the first year students made explicit assump-
tions. The majority of the first year students (90%)

Figure 5. Number of explicit assumptions versus number of first and second year students based on
their preferences

Figure 6. Number of explicit assumptions versus number of third and forth year students based on their
preferences

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5

neA

n
um

be
r o

f s
tu

de
nt

s

1-2 Code
1-2 Prototype

Figure 5. Number of Explicit Assumptions versus Number of First and Second Year Students Based on Their Preferences

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

neA

n
um

be
r o

f s
tu

de
nt

s

3-4 Code
3-4Prototype

Figure 6. Number of Explicit Assumptions versus Number of Third and Forth Year Students Based on Their Preferences

0
56%1

25%

2
19%

5
0%

3
0%

4
0%NEA

Figure 7. Percentages of Number of Explicit Asssumptions Made by the Third and Forth Year Students in Prototyping

It was observed that the students with SAD training (3rd and 4th year students) made more explicit
assumptions than the students without SAD training. On average, the NEA made by the 3rd and 4th year
students are twice those made by the 1st and 2nd year students.

Table 6

Descriptive Statistics for NEA of Third Phase Sample

All Students
1st–2nd Year

Students
3th– 4th Year

Students

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5

neA

n
um

be
r o

f s
tu

de
nt

s

1-2 Code
1-2 Prototype

Figure 5. Number of Explicit Assumptions versus Number of First and Second Year Students Based on Their Preferences

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

neA

n
um

be
r o

f s
tu

de
nt

s

3-4 Code
3-4Prototype

Figure 6. Number of Explicit Assumptions versus Number of Third and Forth Year Students Based on Their Preferences

0
56%1

25%

2
19%

5
0%

3
0%

4
0%NEA

Figure 7. Percentages of Number of Explicit Asssumptions Made by the Third and Forth Year Students in Prototyping

It was observed that the students with SAD training (3rd and 4th year students) made more explicit
assumptions than the students without SAD training. On average, the NEA made by the 3rd and 4th year
students are twice those made by the 1st and 2nd year students.

Table 6

Descriptive Statistics for NEA of Third Phase Sample

All Students
1st–2nd Year

Students
3th– 4th Year

Students

 81

Solutions to Challenges of Teaching “Systems Analysis and Design”

used coding to respond to the questions. Of the
second year students, 57% used coding.

It was observed that the students with SAD
training (3rd and 4th year students) made more
explicit assumptions than the students without
SAD training. On average, the NEA made by the
3rd and 4th year students are twice those made by
the 1st and 2nd year students.

According to the data in Table 6, we can
say that students with SAD training (3rd and 4th
year students) achieved more explicit (hence

less implicit) assumptions, on average, than the
students without any SAD training (1st and 2nd
year students).

Based on data collected, it can be said that
students who preferred using prototyping made,
on average, more explicit assumptions than the
students who preferred coding. Among the 1st and
2nd year students, the average NEA made by the
students who selected prototyping was found to
be 10 times that of those who used coding. The
ratio of the NEA made by the 3rd and 4th year

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5

neA

n
um

be
r o

f s
tu

de
nt

s

1-2 Code
1-2 Prototype

Figure 5. Number of Explicit Assumptions versus Number of First and Second Year Students Based on Their Preferences

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

neA

n
um

be
r o

f s
tu

de
nt

s

3-4 Code
3-4Prototype

Figure 6. Number of Explicit Assumptions versus Number of Third and Forth Year Students Based on Their Preferences

0
56%1

25%

2
19%

5
0%

3
0%

4
0%NEA

Figure 7. Percentages of Number of Explicit Asssumptions Made by the Third and Forth Year Students in Prototyping

It was observed that the students with SAD training (3rd and 4th year students) made more explicit
assumptions than the students without SAD training. On average, the NEA made by the 3rd and 4th year
students are twice those made by the 1st and 2nd year students.

Table 6

Descriptive Statistics for NEA of Third Phase Sample

All Students
1st–2nd Year

Students
3th– 4th Year

Students

Figure 7. Percentages of number of explicit asssumptions made by the third and forth year students in
prototyping

All Students 1st–2nd Year Students 3th– 4th Year Students

1st–2nd Year 3rd–4th Year Code Prototype Code Prototype

Mean .19 .31 .05 .67 .18 .6

Standard Error .08 .09 .03 .31 .08 .20

Median 0 0 0 0 0 0

Mode 0 0 0 0 0 0

Standard Deviation .59 .63 .22 1.07 .51 .81

Sample Variance .35 .40 .05 1.15 .26 .65

Kurtosis 12 2.30 17.79 .43 7.70 -.84

Skewness 3.44 1.90 4.35 1.33 2.89 .85

Range 3 2 1 3 2 2

Minimum 0 0 0 0 0 0

Maximum 3 2 1 3 2 2

Sum 10 17 2 8 7 10

Count 53 55 41 12 39 16

Table 6. Descriptive statistics for NEA of third phase sample

82

Solutions to Challenges of Teaching “Systems Analysis and Design”

students who preferred prototyping to the NEA
made by students who selected coding was found
to be 3.

We made a possible classification of assump-
tions that can be made during analysis of the given
problem, in Table 4. According to the results,
the students made the most explicit assumptions
related to the stopping condition (none negative
numbers in the list) of the requirement. The least
NEA made were in the subject of prompts used
in the program or prototype.

We conducted post interviews with some of the
students who were involved in the above study.
The third year students contacted via e-mail were
not interviewed. Half of the first and the second
year students and all of the forth year students
were interviewed after they answered the question.
Students from the first two years said that they
had never faced such conditions in which a tricky
question asked by the instructor was incomplete
and vague. They claimed that whenever a ques-
tion was asked to them, they considered it their
responsibility to provide an answer, not to judge
whether the question was incomplete or vague.
Approximately half of the students interviewed
stated that the question was so simple that they
did not need to ask further questions related to
undetermined parts in the question, and thus, they
made assumptions that were implicit and reflected
these assumptions in their answers.

When we asked the students why they made
implicit assumptions rather than writing the as-
sumptions explicitly, the students replied differ-
ently. The majority of the first and second year
students replied that they did not even realize
that they had made assumptions. These students
stated that they thought they solved exactly what
the problem asked. Some students stated that
they did not need to write assumptions explicitly
regarding some subjects, because they believed
that they should implement the default behavior.
According to those students, creating a list in
ascending order or listing only positive numbers,
for example, are default behaviors of software. A
minority (21%) of the forth year students stated
that they were aware of their assumptions but
instead of writing them explicitly, as stated by
the question, they reflected their assumptions in
their answers. Those students further claimed that
asking questions to the users or making explicit
assumptions are time-consuming processes. In-
stead, these students said that having a solution to
show to the user was better than writing explicit
assumptions and waiting for approval of the user
for these assumptions. They also stated that it was
not easy to come up with assumptions related to all
subjects and suggested that a solution that included
some implicit assumptions was better than a list
of questions and no solution at hand.

V alidat ion
22%

O rder
9%

Form at
11%

none
negat ive

26%

P rom pt
2%

Input
Ty pe
15%

E rror
7%

W indows
A ppl.
4%

O ther
4%

Figure 8. Percentages of NEA made in related subjects

 83

Solutions to Challenges of Teaching “Systems Analysis and Design”

After the post interviews, we gave a one-hour
lecture about requirements quality to the forth
year students. They learned what made up a good
quality software requirement. We then gave the
same requirement to the students to analyze.
Most of the students replied correctly and were
able to write all explicit assumptions related to
the requirement.

fUtURe stUDIes AnD
cOnclUsIOn

Each of the three phases of this study presents
some challenges of teaching SAD to undergradu-
ate software engineering students. The first chal-
lenge pointed out by the first phase of this study
is on the selection of the evaluation item set used
in systems analysis and design courses in under-
graduate software engineering education. The
second challenge, related to implicit assumptions
made during analysis studies is the center of the
second and third phases of the study.

The type (closed or open book exams, home-
work, projects) and set of evaluation items used
may have a strong impact on the success of stu-
dents. Using evaluation sets composed of similar
types may be biased. Academicians should be
informed about the pros and cons of applied
evaluation items. Deciding the set of evaluation
means is a problem of education in general, and
it is also important in SAD education. In an SAD
course, the selection of a wrong set of evaluation
items may cause students to succeed when they
should actually fail, or visa versa. We observed
that to the same questions, students replied differ-
ently during closed book and open book sessions
of the same exam. Thus, we found that the way
that was used to test SAD students’ knowledge
had a strong impact on their success. We suggest
that the use of a single type of evaluation item
may not be good enough to test students’ ability
and knowledge that will be utilized during SAD
studies. For a better assessment of student learn-

ing, a mix of different measures is suggested,
with special emphasis given to open book exams
and projects.

We noticed that during an open book exam,
students may fail to apply what they already
know about systems analysis and design. Open
book exams are similar to real-life conditions in
which the analyst or the designer has access to
some resources and has a limited time to solve
problems. The fact that most students who suc-
ceed during the closed book part failed in the open
book part may be a sign of unsuccessful analysis
and design studies after graduation. Either the
most appropriate evaluation means set should be
found, or students should be trained in such a way
that they are able to perform equally under all
evaluation means. The findings of the first phase
indicate that SAD educators should be careful in
selecting the evaluation means set used or should
be better at finding ways to help students apply
their knowledge to the problems, regardless of
the type of evaluation. When a question about
implementation was asked, students failed to
conduct the analysis and design phases, which
contradicted what they learned in systems analysis
and design related courses. Most students focus
on only the end products of questions. Only with
proper training, can students’ awareness related
to SAD steps be created and students’ ignorance
of analysis and design steps be removed.

During the exam, students were allowed to
form groups. We further observed that students’
performance decreased when they worked in
groups. To the same question in the same exam,
individual answers were better than answers given
by groups. There may be several reasons behind
this decrease in performance. However, they are
beyond the scope of this study. Nevertheless,
this study should increase attention given to the
importance of group performance related to SAD
education. Software engineers mostly work in
groups. Students should be trained more in group
work. Assigning group projects may help students
to practice and learn how to work effectively in

84

Solutions to Challenges of Teaching “Systems Analysis and Design”

groups. Ways to create group synergy should be
provided to undergraduate software engineering
students so that they will be able to apply what
they learn to the real-life SAD of projects.

To cope with the challenge of determining
an appropriate type and set of evaluation means
used in SAD education, we suggest that creative
means that allow similarities to real-life condi-
tions should be used. We consider that asking
the same question in the same exam in both the
closed and open book part and allowing students
to form groups during an open book exam are
creative ways of evaluating students. We also
suggest supporting such exams with individual
and group homework and projects.

Like all other human beings, software engi-
neers make assumptions. However, professional
analysts should be careful when working on soft-
ware systems. A system is only as good as its
requirements identified during analysis studies.
If analysis of a software system is conducted in
isolation from the user, then the requirements may
stay incomplete, not valid, and even ambiguous.
Explicit assumptions are communicated with the
user and requirements are correctly reflected to
design and implementation phases. Any assump-
tion taken implicitly during the analysis phase
may be costly in later phases, thus assumptions
made during the analysis phase should be stated
explicitly. An implicit assumption is one that is
not taken by a user but is reflected in the analysis
study. This situation may result in invalid systems
requirements. Implicit assumptions made during
analysis studies are further reflected to design
and implementation. We observed that students
have a tendency to assume that any given require-
ment to them is valid, and they start design and
implementation with their implicit assumptions,
which later may be difficult and expensive to
communicate to the user.

According to the current curricula of both
departments investigated by this study, program-
ming language courses are delivered in the first
year; SAD courses are taught in the following

years. Thus, the students are better trained in
solving implementation related problems than
in solving analysis and design related problems.
Moreover, in the early years of their education,
the students use questions that are clear and valid.
They are trained to solve valid problems, but not
to make problems valid. Thus, they do not need to
explore if a given problem needs further analysis.
Currently, in both departments, tools and methods
are taught first. How to conduct analysis and de-
sign is taught later in the third and fourth years.
As a result, during the first two years, students
assume that a given requirement or problem is a
valid, high quality requirement, and they try to
solve it using their own ideas.

Students with SAD training made fewer
implicit assumptions and hence more NEA on
average than the students without SAD training.
This result is parallel to the expected result, and
the ratio of the average NEA of students with SAD
training to that of students without SAD training
was found to be 1,63. This ratio may reflect the
impact of SAD training on better analysis stud-
ies; hence, ways should be researched to increase
this ratio.

It was found that the average NEA is more
when prototyping is preferred than when coding
is used. Further studies may concentrate on the
relationship between prototype development and
the number of explicit assumptions made during
the analysis studies. As future research, it may be
worthy to test if prototype development causes the
software systems analyst to make fewer implicit
assumptions. Based on the findings of this study,
it cannot be inferred that using prototyping causes
an analyst to make fewer implicit assumptions.

According to the collected data, the second
and the third phases were found to be similar. The
third phase of the study has shown that in dealing
with implicit assumptions made during analysis,
students with SAD training are better than stu-
dents with no SAD background. Unless implicit
assumptions are avoided, users will continue to
ask corrections, which will be considered change

 85

Solutions to Challenges of Teaching “Systems Analysis and Design”

requests. Different ways to deal with the second
challenge of software systems development should
be researched. One way is effective training.

Teaching SAD for software engineering stu-
dents remains an area for further research. Future
research may involve gathering data and conduct-
ing theoretical studies to model SAD teaching
for software engineering, as in this study. The
challenges studied may be searched for not only
in university environments, as in this study, but
also in the industry, in order to compare if they
present some similarities.

AcknOWleDgment

We thank all who voluntarily contributed to the
study.

RefeRences

Aizamil, Z. (2005). Towards an effective software
engineering course project, ICSE’05, St. Louis,
Missouri, USA, 631–632.

Albayrak, O. (2007a). Experiences of teaching
systems analysis and design to undergraduate
software engineers, AISSIGSAND 2007, (pp.
109–115), Sopot, Poland.

Albayrak, O. (2007b). Software engineering
education: Experience and applications of re-
quirements determination and analysis phases
(in Turkish) Proceedings of the third National
Software Engineering Symposium, UYMS 2007,
(pp. 15–18), Ankara, Turkey.

Albayrak, O. (2003). Proposals to contribute
computer engineers education (in Turkish), Pro-
ceedings of the first. Elektrik Elektronik Bilgisayar
Mühendislikleri Eğitimi Sempozyumu ve Sergisi
(pp. 220-221), Ankara, Turkey.

Archer, C. B. (1985). A realistic approach to teach-
ing systems analysis at the small or medium-sized
college, ACM SIGCSE Bulletin, Proceedings of
the sixteenth SIGCSE technical symposium on
Computer science education SIGCSE ‘85, 17,1,
105–108.

Bagert, D. J. (1998). The challenge of curriculum
modeling for an emerging discipline: software
engineering, Frontiers in Education Conference,
FIE ‘98. 28th Annual, 2, 910–915.

Boehm, B. (2006). A view of 20th and 21st Cen-
tury Software Engineering, ICSE’06, Shanghai,
China, (pp. 12–29).

Bagert, D. J., Hilburn, T. B., Hislop, G. W., &
Mengel, S. A. (1998). Guidelines for software
education: meeting the needs of the 21st Century,
Frontiers in Education Conference, 1998. FIE
‘98. 28th Annual, 2, 909.

Ciancarini, P. (2005). On the Education of Future
Software Engineers, ICSE’05, St. Louis, Missouri,
USA, (pp. 649–650).

Cifuentes, C., & Hughes, J. (1994). SE curricu-
lum design: methodologies, formal methods, and
life cycle models, Proceedings of II. Formal
methods Software Education Conference, (pp.
344–346).

Clark, N. (2005). Evaluating student teams de-
veloping unique industry projects, Australian
Computing Education Conference, Newcastle,
Australia, 42, 21–30.

Dawson, R., & Newsham R. (1997). Introducing
Software Engineers to the Real World, IEEE
Software, 14(6), 37–43.

Dawson, R. (2000). Twenty Dirty Tricks to
Train Software Engineers, Proc. 22nd Int’l Conf.
Software Eng. (ICSE 00), IEEE CS Press, (pp.
209–218).

Dick, M. (2005). Student interviews as a tool for
assessment and learning in a systems analysis and

86

Solutions to Challenges of Teaching “Systems Analysis and Design”

design course, ACM SIGCSE Bulletin, Proceed-
ings of the 10th annual SIGCSE conference on
Innovation and technology in computer science
education ITiCSE ‘05, 37(3), 24–28.

Ellis, H. J. C., Mead, N. R., Moreno, A. M., &
Seidman, S. B. (2003). Industry/University soft-
ware engineering collaborations for the success-
ful reeducation of non-software professionals.
Software Engineering Education and Training,
Proceedings. 16th Conference, (pp. 44–51).

Fellers, J. W. (1996). Teaching teamwork: ex-
ploring the use of cooperative learning teams in
information systems education, ACM SIGMIS
Database, 27(2), 44–60.

Ghezzi, C., & Mandrioli, D. (2005). The challenges
of software engineering education, Software En-
gineering, 2005. ICSE 2005. Proceedings. 27th
International Conference, (pp. 637–638).

Golden, D. G. (1982). Development of a systems
analysis and design course, ACM SIGCE Bulletin,
Proceedings of the thirteenth SIGCSE techni-
cal symposium on Computer science education
SIGCSE ’82, 14(1), 110–113.

Goroff, I. (1982). A systems analysis and design
course sequence, ACM SIGCE Bulletin, Proceed-
ings of the thirteenth SIGCSE technical symposium
on Computer science education SIGCSE ’82,
14(1), 123–127.

Hawthorne, M. J., & Perry D. E. (2005). Software
Engineering Education in the Era of Outsourc-
ing, Distributed Development, and Open Source
Software: Challenges and Opportunities, ICSE’05,
St. Louis, Missouri, USA, (pp. 643–644).

Hazzan, O., & Tomayko J. (2005). Teaching Hu-
man Aspects of Software Engineering, ICSE’05,
St. Louis, Missouri, USA, 647–648.

Hilburn, T. B. W., & Watts S. (2002). The Im-
pending Changes in Software Education. IEEE
Software, 19(5), 22–25.

Hunter, M. G. (1994). Excellent Systems Analyst:
Key Audience Perceptions. Computer Personnel,
(pp. 15–31).

IEEE (2004). SWEBOK, Guide to the Software
Engineering Body of Knowledge. Los Alamitos,
California.

Larmour, R. (1997). A survey into the relevance
and adequacy of training in systems analysis and
design. ACM SIGCSE Bulletin, 29(2) , 54–64.

Liu, C. (2005). Enriching Software Engineering
Courses with Service-Learning Projects and the
Open-Source Approach, ICSE’05, St. Louis, Mis-
souri, (pp. 613–614).

McLeod, R. (1996). Comparing undergraduate
courses in systems analysis and design. Com-
munication of the ACM, 39–5, (pp. 113–121).

Misic, M. M., & Russo, N. L. (1999). An assess-
ment of systems analysis and design courses. The
Journal of Systems and Software, 45, 197–202.

Mohay, G., Morarji, H., & Thomas, R. (1994). Un-
dergraduate, graduate and professional education
in software engineering in the ‘90s: a case study,
Software Education Conference Proceedings, (pp.
22–25, 103–110).

Morgan, G. W., & Lear, F. A. (1994). The role
of a software engineering project within an
undergraduate applied computing degree, Soft-
ware Education Conference Proceedings, (pp.
230–236).

Morrogh, P. (2000). Is software education narrow-
minded?—A position paper, Software Engineer-
ing, 2000. Proceedings of the 2000 International
Conference, (pp. 545–546).

Olfman, L. and Bostrom, R.P. (1992). Innova-
tive teaching materials and methods for systems
analysis and design, ACM SIGMIS Database,
23,2, 7–12.

Omland, H. O. (1999). Educating systems analyst
emphasizing the human factor, ACM SIGCSE

 87

Solutions to Challenges of Teaching “Systems Analysis and Design”

Bulletin, Proceedings of the 4th annual SIGCSE/
SIGCUE ITiCSE conference on Innovation and
technology in computer science education ITiCSE
‘99, 31(3), 44–47.

Osborne, M. (1992). APPGEN: a tool for teach-
ing systems analysis and design, ACM SIGCSE
Bulletin, Proceedings of the twenty-third SIGCSE
technical symposium on Computer science educa-
tion SIGCSE ‘92, 24(1), 259–263.

Oudshoorn, M.J. and Maciunas, K.J. (1994). Ex-
perience with a project-based approach to teach-
ing software engineering, Software Education
Conference, 1994. Proceedings. (pp. 220–225).

Parnas, D. (1999). Software Engineering Programs
Are Not Computer Science Programs, IEEE Soft-
ware, 16(6), 19–30.

Pullan, W. and Oliver, D. (1994). Development of
an undergraduate software engineering degree,
Software Education Conference, 1994. Proceed-
ings, (pp. 111–117).

Schneider, J.-G.; Johnston, L., & Joyce, P. (2005).
Curriculum development in educating under-

graduate software engineers—Are students being
prepared for the profession?, Software Engineer-
ing Conference, 2005. Proceedings. Australian,
(pp. 314–323).

Spence, J. W., & Grout, J. C. (1978). Systems analy-
sis and design in a computer science curriculum,
ACM SIGCSE Bulletin, 10(4), 24–27.

Thomas, R., Semeczko, G., Morarji, H., & Mohay,
G. (1994). Core software engineering subjects: a
case study (‘86–’94), Software Education Confer-
ence Proceedings, (pp. 24–31).

Vliet, H. (2005). Some Myths of Software Engi-
neering Education, ICSE’05, St. Louis, Missouri,
USA, (pp. 621–622).

Vliet, H. (2006). Reflections on software engineer-
ing education. Software, IEEE, 23(3), 55–61.

Yamaura, T., & Onoma, A. K. (2002). University
software education matched to social requests,
Cyber Worlds, Proceedings. First International
Symposium, (pp. 331–336).

88

Chapter VII
Systems Analysis and Design

in Polish Universities Curricula:
Structured or Object-Oriented

Przemyslaw Polak
Warsaw School of Economics, Poland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

Nowadays, there are two main information systems modeling methods: structured and object-oriented.
The structured methods have been widely used since the 1970s, whereas recently the object-oriented
methods have attracted more attention. This chapter analyses the methods that are taught on the courses
of information systems analysis and design. The curricula of information systems and computer science
studies in Polish higher education institutions are compared to the Association for Computing Machin-
ery curricula recommendations. In both cases none of the methods is prevailing. Also, the program of
introducing, at the Warsaw School of Economics, Poland, all management and business administration
students to the basics of systems analysis and design is presented. Thus, students majoring in infor-
mation systems learn both modeling methods, whereas only structured methods are introduced to all
management students.

IntRODUctIOn

In modern systems analysis and design two general
group of methods can be distinguished: structured
and object-oriented. Structured methods were
first introduced in nineteen seventies (DeMarco,
1978; Gene & Sarson, 1979). Since then, they

have dominated systems analysis and design for
decades, being a subject of only gradual changes
including the introduction of event-driven ap-
proach and the increased importance of logical
models (McMenamin and Palmer, 1984; Yourdon,
1989). Object oriented methods were introduced
in the late 80s and early 90s (Coad & Yourdon,

 89

Systems Analysis and Design in Polish Universities Curricula

1990; Rumbaugh, Blaha, Premerlani, Eddy, &
Lorensen, 1991). Since then, they have gained
more attention in research and practice than
structured methods.

There is not clear answer to which methods
are better, whether their usefulness depends on
the area of application, or possibly it’s just a case
of popularity often accompanying new ideas and
technologies, what particularly can be observed
in the rapidly changing world of computer sci-
ence and information systems (e.g. Rickman,
2000; Rob, 2004; Ward, 1989; Weisert, 2006).
The purpose of this article is not to answer such
a general question but to study which method is
taught at business schools and economic universi-
ties with a special concentration on Polish higher
education institutions.

systems AnAlysIs AnD DesIgn
In cURRIcUlA

Courses concerning the methods of information
systems modeling are the core of the manage-
ment information systems curriculum. Usually,
they include one mandatory course on systems
analysis and design or two separate courses:
information systems analysis and information
systems design. At specific educational institu-
tions, slightly different names might be used. In
1990s, syllabuses of these courses reached usually
high level of maturity and stability, resulting from
the popularity and widespread acceptance of the
structured modeling methods. Their superior-
ity over describing system logic using natural
language which is often imprecise and subject
to misinterpretation, what was common practice
before the introduction of structured methods, was
never contested (Matthies, 1977). However, this
standstill was disturbed by the dissemination of
object oriented modeling methods, preceded by
the development of object oriented programming
languages, e.g. Ada, Smalltalk, C++ or Java.

Under these circumstances, teaching staff
was faced with the dilemma which of these ap-
proaches should have been preferred. Naturally,
an ideal solution would include comprehensive
courses including both methods. However in
reality, most of university curricula are tight, and
time limits for particular courses are imposed by
independent bodies, where proposals to radically
increased one course limit would not be given a
lot of support. Different curricula solving that
dilemma are presented as follows.

teAcHIng stAnDARDs Of tHe
pOlIsH mInIstRy Of scIence
AnD HIgHeR eDUcAtIOn

The teaching standards published in 2002 by the
Minister of National Education and Sport (pol.
Minister Edukacji Narodowej i Sportu - MENiS)1
for unified first and second degree2 Informatics
and Econometrics3 studies (MENiS 1st & 2nd
I&E) among majors include a course on infor-
mation systems design. Its suggested syllabus
includes: ”Elements of theory of information
systems. Types of information systems. Design,
implementation and maintenance of information
systems. Economical and organizational aspects
on information systems. Computer laboratory:
information system analysis – case study” (De-
cree of the Minister of National Education and
Sport …, 2002). The syllabus does not mention
any particular modeling methods. The syllabus
of IS design suggests doing analysis of informa-
tion system. It can be assumed that the course
was intended to include both analysis and design,
but it is not clearly stated, whereas phases of
implementation and maintenance are mentioned
in the syllabus.

The same ministerial document contains a cur-
riculum of the first degree studies in Informatics
and Econometrics (MENiS 1st I&E) which, on
the contrary, includes two courses: Information
systems analysis, and Information systems design.

90

Systems Analysis and Design in Polish Universities Curricula

The syllabus of the first one consists of: “Gen-
eral characteristics of management information
systems. Systems information resources. Search-
ing for information requirements. Systematic
information systems analysis. Methods of system
examination. Analysis of system structure and
behavior. Structured analysis. Modeling methods.
Object-oriented analysis, methods and tools. Or-
ganization of analysis. Cost and benefit analysis.”
(Decree of the Minister of National Education and
Sport …, 2002). Thus, the ministry suggests that
both methods should be presented. However, it
is hard to imagine in a 30-hour course to exer-
cise preparing systems requirements using both
methods. The syllabus rather suggests presenting
briefly different aspects and methods related to
information systems analysis.

The ministerial syllabus of Information sys-
tems design in the first degree studies includes:
“Characteristics of management information
systems. Classification of information systems.
Life cycle of information systems. Fundamental
project approaches. Organizational and economic
aspects of developing information systems. Rules,
methods and techniques of information systems
design. Selected issues of information systems
implementation. Scope, rules and methods of
information systems improvement” (Decree of
the Minister of National Education and Sport
…, 2002). This course is set for 60 hours. It is
an exception because standard course in Polish
educational system lasts 30 hours. Therefore,
despite the fact that it is not openly stated, it is
probably expected to be divided into two equal
30-hour blocks of lecture and class or computer
laboratory. The syllabus does not suggest any-
thing about design methods. It is surprising that
the life cycle of information systems should be
discussed during this course, whereas this topic is
not mentioned in syllabuses of other courses in the
curriculum, e.g. Information systems analysis or
Computer programming. It seems to be reasonable
to introduce information systems lifecycle earlier,
during the course on Introduction to informatics.

However, its syllabus includes only topics related
to information technology alone with no refer-
ence to information systems as a comprehensive,
functional solution aimed on the fulfillment of
users’ requirements.

In both cases of the unified first and second
degree as well as the first degree studies ministerial
curricula leave certain level of freedom for narrow
specialty courses. Thanks to this it is possible to
expand or add courses related to systems analysis
and design and, thereby, introduce students to both
structured and object-oriented methods.

Differences in approaches to systems analysis
and design can be shown by comparison to the
curriculum of computer science studies (MENiS
CS). In the ministerial curriculum, there is no
course named analysis or design. However, the
syllabus of a course Applications - Software En-
gineering apparently includes systems design, and
contains following topics: “Software Engineering.
Cycle of designing and life cycle of software.
Object-oriented design method. Languages for
specification and design. Software testing. Se-
lected supporting tools.” (Decree of the Minister
of National Education and Sport …, 2003). So
here there is a direct recommendation of object-
oriented methods. However, analysis phase is not
explicitly mentioned in the syllabus.

In 2007, in Polish tertiary education, the
system of unified first and second degree stud-
ies was abandoned following the adoption of the
Bologna declaration. New teaching standards
for separate undergraduate and graduate studies
were published by the Ministry of Science and
Higher Education. Required content of the first
degree studies in Informatics and Econometrics
(MNiSW 1st I&E) includes a topic on Information
systems design. Both methods are represented in
this topic: “Methods and techniques of informa-
tion systems design – entity-relation diagrams,
data flow diagrams, data vocabularies, decision
techniques, structure diagrams. Structured design
of information systems. Object-oriented systems:
basic object model, design based on object-

 91

Systems Analysis and Design in Polish Universities Curricula

oriented model. Unified Modeling Language.”
(Decree of the Minister of Science and Higher
Education …, 2007).

On the other hand, the teaching standards
of the second degree studies in Informatics and
Econometrics do not contain any course on sys-
tems analysis and design.

Ministerial standards of the first degree studies
in computer science (MNiSW 1st CS) within a
field of Software Engineering state that a graduate
should have a competence: “to design software
in accordance with structured or object-oriented
methodology” (Decree of the Minister of Science
and Higher Education …, 2007). It is a significant
change in comparison with the curriculum from
2002 which imposed teaching object-oriented
methods. A curriculum of the second degree
studies in computer science (MNiSW 2st CS)
contains a topic on Modeling and analysis of
information systems, but none reference to any
particular method was included.

Acm cURRIcUlA
RecOmmenDAtIOns

IS 2002 (Information Systems) and MSIS 2000
(Master of Science in Information Systems) are
model curricula for undergraduate and gradu-
ate degree programs in Information Systems.
They were developed as a collaborative effort of
Association for Computing Machinery (ACM),
Association for Information Systems (AIS),
Association of Information Technology Profes-
sionals (AITP), and International Federation for
Information Processing (IFIP). They were created
as a consensus of many circles and organizations
dealing with information systems and, therefore,
are widely acclaimed around the world. They are
a source and reference point to many curricula
in academic institutions in the United States and
other countries (Kobylinski, 2004).

The curriculum of the first degree studies IS
2002 in a presentation area Information Systems

Development embodies Analysis and Logical
Design. The scope of this course includes: “Struc-
tured and object oriented analysis and design, use
of modeling tools, adherence to methodological
life cycle and project management standards.”
(Gorgone, Davis, Valacich, Topi, Feinstein and
Longenecker, 2002). The program suggests that
students should design a project of limited scope
during this course, but again no methods are pre-
ferred. The syllabus of another course in this pre-
sentation area of the curriculum Physical Design
and Implementation with DBMS also recommends
both methods: “Conceptual, logical, and physical
data models, and modeling tools; structured and
object design approaches; models for databases:
relational and object oriented; design tools; data
dictionaries, repositories, warehousing, and data
mining; database implementation including user
interface and reports; multi-tier planning and
implementation; data conversion and post imple-
mentation review.” (Gorgone et al., 2002).

The core courses in the second degree MSIS
2000 curriculum include Analysis, modeling,
and design. Its syllabus contains “Object-oriented
analysis and design” (Gorgone, Gray, Feinstein,
Kasper, Luftman, Stohr, Valacich, & Wigand,
1999), but does not mention openly structured
methods. Moreover, one of suggested career tracks
Systems Analysis & Design includes: “Advanced
Design Methodologies (e.g., Object-Oriented
Analysis and Design, RAD, prototyping)” (Gor-
gone et al., 1999). It is worth of noticing that MSIS
2000 curriculum was designed about two years
earlier than IS 2002.

Another model curriculum was developed by
ACM for undergraduate programs in computer
science (CC 2001). The Software engineering
area in this curriculum contains the course on
Software design. The authors proposed among
learning objectives of this course: “Compare and
contrast object-oriented analysis and design with
structured analysis and design” and “Create and
specify the software design for a medium-size
software product using a software requirement

92

Systems Analysis and Design in Polish Universities Curricula

specification, an accepted program design meth-
odology (e.g., structured or object-oriented), and
appropriate design notation.” (Computing Cur-
ricula ..., 2001).

systems AnAlysIs AnD
DesIgn In pOlIsH AcADemIc
InstItUtIOns

All students of the Warsaw School of Econom-
ics (WSE) studying all kinds of economic and
business administration majors are introduced
to the basics of structured modeling during the
compulsory course of Introduction to information
systems. The syllabus of this course is significantly
different than programs described in equivalent
ministerial proposals for respective majors related
to business and economics (Decree of the Minister
of National Education and Sport …, 2002). The
traditional program of computer laboratories at
the WSE was consistent with ministerial sugges-
tion and concentrated on using word processors,
spreadsheets and occasionally database systems.
The new syllabus was introduced in 2001. Changes
were triggered by gradually increasing computer
proficiency of enrolled students. The aim of the
project was to introduce all management and
business administration students to the methods
of modeling information systems. These skills
might be useful for future users of management
information systems participating in defining
systems requirements. However, considering that
those students do not require thoroughly master
developing information systems, the syllabus
was limited to structured methods, which are
easier to understand for business users (Polak
and Polak, 2006).

Analogous approach was taken at the Wroclaw
University of Economics (WUE). The syllabus of
Introduction to information systems also contains
elements of structured modeling. However, in
this case, it is 120-hour course allowing authors
to incorporate in the syllabus traditional top-

ics, according to ministerial proposal, as well
as introduction to systems analysis and design
(Dyczkowski & Wójtowicz, 2003).

On Economic Universities in Poland and at the
Warsaw School of Economics curricula of Infor-
matics and Econometrics4 include 60 or 90-hour
course of Information systems design, following
the ministerial standards. None of them has a
separate course on systems analysis. However, the
faculties of management on the Gdansk, Szczecin
and Warsaw Universities offer such 30 or 60-hour
course (Dyczkowski & Skwarnik, 2004).

The syllabus of Information systems design at
the Warsaw School of Economics does not state
preferred modeling methods. In practice, both
methods are discussed and the choice of method
for a final student project depends on preferences
of a lecturer. However, object-oriented methods
have been recently preferred since students in-
troduced earlier to structured methods during
Introduction to information systems have started
to enroll to this course. Additionally, one of the
elective courses Business process modeling allows
students to increase their knowledge of structured
methods in analysis. Similarly, the syllabus of In-
formation systems design on Wroclaw University
of Economics suggests presenting both methods
but does not specify which should be used in a
final project.

Additionally, special studies in Management
information systems, carried at the Warsaw School
of Economics in cooperation with Microsoft, of-
fer courses on systems analysis and design using
both methods and students make their choice of
preferred method for final project. Comparable
special studies carried at the WSE in cooperation
with Oracle are concentrated on Case*Method
which is proprietary structured method.

Following the compulsory introduction of
independent first and second degree studies in
Polish tertiary education, the Warsaw School of
Economics also prepared a new curriculum. The
introductory course syllabus was not changed
and includes elements of structured modeling.

 93

Systems Analysis and Design in Polish Universities Curricula

Whereas, the course of Information systems
design is in practice dedicated to object-oriented
methods. However, new course called Business
Applications Development (BAD) was proposed
for graduate studies. It is strongly oriented on sys-
tems analysis based on identification of business
processes followed by the object-oriented applica-
tion designing fulfilling the requirements of the
processes. This solution is analogous to approach
suggested in service oriented architecture.

sUmmARy

The study of syllabuses clearly shows that in case
of information systems curricula object-oriented
methods do not supersede structured modeling
methods in systems analysis and design. On the
contrary, computer science studies were at some
point dominated by object oriented methods,
but structured methods regained some attention.

There is no data suggesting that Polish curricula
in discussed area differ substantially from inter-
national model programs. The summary of refer-
ences to object oriented and structured approaches
in syllabuses is shown in Table 1.

Observations indicate that current research
in systems analysis and design concentrates on
object-oriented methods. However, information
systems curricula do not reflect it. Apparently,
academic staff finds both methods valuable. It is
possible, as well, that stable academic curricula
do not keep pace with rapidly changing informa-
tion technologies. Structured methods also better
reflect managerial approach towards business pro-
cesses, therefore these methods might be preferred
in systems analysis on business and management
studies. Whereas, object-oriented modeling, better
related to contemporary programming languages
and methods of building applications, might domi-
nate systems design methods. This trend confirms
evolution of CASE tools towards object-oriented
methods and concurrent popularity of structured
methods used by business process modeling
tools, what is conformable to the principles of
service oriented architecture (Kaminski, Polak,
& Wieczorkowski, 2005).

The research presented in the chapter is limited
to the model ACM curricula, the standards of
the Polish Ministry of Science and Higher Edu-
cation and the curricula of some leading Polish
academic institutions. Further research might not
only compare other curricula but also investigate
opinion of academic staff towards both discussed
methods of systems analysis and design.

RefeRences

Computing Curricula 2001. Computer Science.
Final Report. (2001) The Joint Task Force on
Computing Curricula, IEEE Computer Society,
Association for Computing Machinery. Retrieved
April 23, 2006 from http://acm.org/education/
curric_vols/cc2001.pdf

Syllabus structured
methods

object-
oriented
methods

IS 2002 + +

MSIS 2000 - +

CC 2001 + +

MENiS 1st & 2nd I&E - -

MENiS 1st I&E – Analysis + +

MENiS 1st I&E – Design - -

MENiS CS - +

MNiSW 1st I&E + +

MNiSW 1st CS + +

MNiSW 2nd CS - -

WSE – Introduction to IS + -

WSE 1st & 2nd – Design + +

WSE 1st – Design - +

WSE 2nd – BAD + +

WUE – Introduction to IS + -

WUE – Design + +

Table 1. Reference to structured and object ori-
ented modeling methods in selected curricula

94

Systems Analysis and Design in Polish Universities Curricula

Coad, P., & Yourdon, E. (1990). Object-oriented
analysis. Englewood Cliffs: Yourdon Press.

Decree of the Minister of National Education
and Sport from April 18th 2002 on designation
of teaching standards for respective studies and
levels of education [in Polish - Rozporządzenie
Ministra Edukacji Narodowej i Sportu z dnia 18
kwietnia 2002 r. w sprawie określenia standardów
nauczania dla poszczególnych kierunków studiów
i poziomów kształcenia]. (2002). Dziennik Ustaw,
116, 1004.

Decree of the Minister of National Education
and Sport from June 13th 2003 changing decree
on designation of teaching standards for respec-
tive studies and levels of education [in Polish
- Rozporządzenie Ministra Edukacji Narodowej
i Sportu z dnia 13 czerwca 2003 r. zmieniające
rozporządzenie w sprawie określenia standardów
nauczania dla poszczególnych kierunków studiów
i poziomów kształcenia]. (2003). Dziennik Ustaw,
144, 1401.

Decree of the Minister of Science and Higher
Education from July 12th 2007 on designation
of teaching standards for respective studies and
levels of education, as well as a procedure of
creating and conditions which should be satisfy
in order to run cross-field and macro-field studies
[in Polish - Rozporządzenie Ministra Edukacji i
Szkolnictwa Wyższego z dnia 12 lipca 2007 r. w
sprawie określenia standardów kształcenia dla
poszczególnych kierunków studiów i poziomów
kształcenia, a także trybu tworzenia i warunków,
jakie musi spełniać uczelnia, by prowadzić studia
międzykierunkowe oraz makrokierunki]. (2007).
Dziennik Ustaw, 164, 1166.

DeMarco, T. (1978). Structured analysis and
system specification. Englewood Cliffs: Prentice
Hall.

Dyczkowski, M., & Skwarnik, M. (2004). Na-
tional Academic Institutions Curricula Review
[in Polish - Prezentacja programów kształcenia

w uczelniach krajowych]. In A. Nowicki (Ed.),
Doskonalenie kształcenia informatycznego
na kierunku Informatyka i Ekonometria na
wydziale Zarządzania i Informatyki Akademii
Ekonomicznej we Wrocławiu. Część 1. Identy-
fikacja kształcenia w obszarze informatyki (pp.
46-66). Wrocław: Akademia Ekonomiczna we
Wrocławiu.

Dyczkowski, M., & Wójtowicz, R. (2003). The
concept of computer laboratory courses for non
information systems students, example of business
informatics [in Polish - Koncepcja prowadzenia
zajęć laboratoryjnych dla studentów kierunków
nieinformatycznych na przykładzie przedmiotu
informatyka ekonomiczna]. In A. Nowicki, W.
Olejniczak (Eds.). Dydaktyka informatyki eko-
nomicznej – kształcenie dla społeczeństwa in-
formacyjnego (pp. 133-138). Wrocław: Akademia
Ekonomiczna we Wrocławiu.

Gane, C., & Sarson, T. (1979). Structured systems
analysis: Tools and techniques. Englewood Cliffs:
Prentice-Hall.

Gorgone, J. T., Davis, G. B., Valacich, J. S., Topi,
H., Feinstein, D. L., & Longenecker, H. E. Jr.
(2002). IS 2002. Model curriculum and guidelines
for undergraduate degree programs in informa-
tion systems. Association for Computing Machin-
ery (ACM), Association for Information Systems
(AIS), Association of Information Technology
Professionals (AITP). Retrieved April 23, 2006
from http://www.acm.org/education/is2002.pdf

Gorgone, J. T., Gray, P., Feinstein, D. L., Kasper,
G. M., Luftman, J. N., Stohr, E. A., Valacich, J.
S., & Wigand, R. T. (1999). MSIS 2000. Model
Curriculum and Guidelines for Graduate Degree
Programs in Information Systems. Association
for Computing Machinery (ACM), Association
for Information Systems (AIS). Retrieved April
23, 2006 from http://cis.bentley.edu/isa/pages/
documents/msis2000jan00.pdf

 95

Systems Analysis and Design in Polish Universities Curricula

Kaminski, A., Polak, P., & Wieczorkowski, J.
(2005). Process approach in MIS implementa-
tion – business process modeling tools [in Pol-
ish - Podejście procesowe we wdrażaniu SIZ –
narzędzia modelowania procesów biznesowych].
In E. Niedzielska, H. Dudycz & M. Dyczkowski
(Eds.), Nowoczesne technologie informacyjne w
zarządzaniu, Prace Naukowe Akademii Ekonom-
icznej we Wrocławiu, 1081, 278-287.

Kobylinski, A. (2004). The comparison of business
informatics curriculum at the Warsaw School of
Economics with model IS 2002 curriculum [in Pol-
ish - Porównanie programu nauczania informatyki
gospodarczej w Szkole Głównej Handlowej w
Warszawie z modelowym curriculum IS 2002].
In J. Goliński, D. Jelonek, A. Nowicki (eds.),
Informatyka ekonomiczna. Przegląd naukowo-
dydaktyczny, Prace Naukowe Akademii Ekonom-
icznej we Wrocławiu, 1027, 270-279.

Matthies, L. (1977). The new playscript procedure.
Stamford: Office Publications Inc.

McMenamin, S. M., & Palmer, J. F. (1984). Es-
sential systems analysis. New York: Yourdon
Press.

Polak, P., & Polak, D. (2006). The changes in
curriculum of business informatics computer
laboratories in economic universities [in Polish -
Zmiany w programie laboratorium z informatyki
gospodarczej na uczelniach ekonomicznych]. In
A. Szewczyk (Ed.), Dydaktyka informatyki i in-
formatyka w dydaktyce (pp. 188-191). Szczecin:
Uniwersytet Szczeciński.

Rickman, D. M. (2000). A Process for Combin-
ing Object Oriented and Structured Analysis
and Design. 3rd Annual Systems Engineering &
Supportability Conference. Retrieved February
14, 2007 from http://www.dtic.mil/ndia/systems/
Rickman2.pdf

Rob, M. A. (2004). Issues of structured vs. object-
oriented methodology of systems analysis and de-
sign. Issues in Information Systems, 5, 275-280.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
& Lorensen, W. (1991). Object-oriented modeling
and design. Englewood Cliffs: Prentice Hall.

Ward, P. T. (1989). How to integrate object orien-
tation with structured analysis and design. IEEE
Software, 6(2), 74-82.

Weisert, T. (2006). Systems Analysis Methodol-
ogy Sliding Backwards, Chicago: Information
Disciplines Inc. Retrieved January 15, 2007 from
http://www.idinews.com/story.html

Yourdon, E. (1989). Modern structured analysis.
Englewood Cliffs: Yourdon Press.

enDnOtes

1 Currently tertiary education is a domain of
the Ministry of Science and Higher Educa-
tion (pol. Ministerstwo Nauki i Szkolnictwa
Wyższego - MNiSW).

2 This form of 5-6 year studies was dominant
in Polish tertiary education. Recently inde-
pendent undergraduate and postgraduate
studies has been introduced to Polish higher
education.

3 “Informatics and Econometrics” is a direct
translation of the Polish Ministry of Sci-
ence and Higher Education official name
for information systems and quantitative
methods studies.

4 At the Warsaw School of Economics an
equivalent major of Informatics and Econo-
metrics is named Quantitative methods in
economy and information systems.

96

Chapter VIII
Systems Engineering Modeling

and Design
Kumar Saurabh

Satyam Computer Services Ltd., India

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

System theories, analysis and design have been deployed within every corporate function and within
a broad section of businesses and markets. Systems thinking involve changing paradigms about the
way the world works, the way corporations function, and the human role in each. In systems thinking,
analysis and design we look for interrelationships among the elements of a system. The chapter reflects
the core insights of system modeling. This chapter addresses the core issues of system engineering,
analysis, design, Simulation and modeling of real-world objects. It tells everything one needs to know
to be a successful system thinker, modeler, technical manager and forecaster. The chapter focuses on:
the real-world goals for, services provided by, and constraints on systems; the precise specification of
system structure and behavior, and the implementation of specifications; the activities required in order
to develop an assurance that the specifications and real-world goals have been met; the evolution of
systems over time and across system families. It is also concerned with the processes, methods and tools
for the development of systems in an economic and timely manner.

1. IntRODUctIOn

This widespread acceptance and deployment
of system theories means System engineering,
analysis and design and modeling are now more
on the critical path than ever before.

This chapter should be an interesting source of
information both for people who want to experi-

ment with their thinking and simulating the real
world who face the need to deal with the inner
levels of system engineering concepts. We hope
this chapter is useful as a starting point for people
who want to become system analyst and architect
but don’t know where to start.

On the technical side, this text should offer
a hands-on approach to understanding the sys-

 97

Systems Engineering Modeling and Design

tem theory and thinking, modeling, simulation,
knowledge management, system analysis and
design, system forecasting and different types
of real world modeling techniques like techno-
socio-economic modeling and some of the design
choices made by the system developers for auditing
and output designs from scratch.

The first part of the chapter deals system en-
gineering, analysis, design theories and thinking
concepts. This part visualizes an interdisciplin-
ary approach and means to enable the realization
of successful systems. It focuses on defining
customer needs and required functionality early
in the development cycle, documenting require-
ments, and then proceeding with design synthesis
and system validation while considering the
complete problem. Second part works with the
system analysis design modeling concepts and
its types. It reflects that computer model, as used
in modeling and simulation science, is a math-
ematical representation of something—a person,
a building, a vehicle, a tree—any object and a
model also can be a representation of a process.
Third part will give the inputs to understand the
dynamics of the system. This chapter is based
on system dynamics that is a computer-based
simulation modeling methodology tool for manag-
ers to analyze complex problems. Using system
dynamics simulations allows us to see not just
events, but also patterns of behaviour over time.
The behaviour of a system often arises out of
the structure of the system itself, and behaviour
usually changes over time.

This chapter will give you the knowledge of
important sections from the scratch, step-by-step
procedures, and the skills necessary to effectively
system thinker, modeler, Analyst, technical and
solution architect.

2. system tHeORy AnD
tHInkIng

One of the biggest breakthroughs in how we
understand and guide change in organizations

is systems theory and systems thinking. To un-
derstand how they are used in organizations, we
first must understand a system. Many of us have
an intuitive understanding of the term. However,
we need to make the understanding explicit in
order to use systems thinking and systems tools
in organizations.

Simply put, a system is an organized col-
lection of parts (or subsystems) that are highly
integrated to accomplish an overall goal. The
system has various inputs, which go through
certain processes to produce certain outputs,
which together, accomplish the overall desired
goal for the system. So a system is usually made
up of many smaller systems, or subsystems. For
example, an organization is made up of many ad-
ministrative and management functions, products,
services, groups and individuals. If one part of
the system is changed, the nature of the overall
system is often changed, as well -- by definition
then, the system is systemic, meaning relating
to, or affecting, the entire system. (This is not
to be confused with systematic, which can mean
merely that something is methodological. Thus,
methodological thinking -- systematic thinking
-- does not necessarily mean systems thinking.)

2.1 system theory

History and Orientation

Hegel developed in the 19th century a theory to
explain historical development as a dynamic pro-
cess. Marx and Darwin used this theory in their
work. System theory (as we know it) was used by
L. von Bertalanffy, a biologist, as the basis for the
field of study known as ‘general system theory’,
a multidisciplinary field (1968). Some influences
from the contingency approach can be found in
system theory.

Core Assumptions and Statements

System theory is the trans-disciplinary study
of the abstract organization of phenomena, in-

98

Systems Engineering Modeling and Design

dependent of their substance, type, or spatial or
temporal scale of existence. It investigates both
the principles common to all complex entities, and
the (usually mathematical) models which can be
used to describe them.

Most systems share the same common char-
acteristics. These common characteristics include
the following:

1. Systems have a structure that is defined by
its parts and processes.

2. Systems are generalizations of reality.
3. Systems tend to function in the same way.

This involves the inputs and outputs of
material (energy and/or matter) that is
then processed causing it to change in some
way.

4. The various parts of a system have func-
tional as well as structural relationships
between each other.

5. The fact that functional relationships exist
between the parts suggests the flow and
transfer of some type of energy and/or
matter.

6. Systems often exchange energy and/or mat-
ter beyond their defined boundary with the
outside environment, and other systems,
through various input and output pro-
cesses.

7. Functional relationships can only occur be-
cause of the presence of a driving force.

8. The parts that make up a system show some
degree of integration - in other words the
parts work well together.

Within the boundary of a system we can find

three kinds of properties:

• Elements: Are the kinds of parts (things or
substances) that make up a system. These
parts may be atoms or molecules, or larger
bodies of matter like sand grains, rain drops,
plants, animals, etc.

• Attributes: Are characteristics of the ele-
ments that may be perceived and measured.
For example: quantity, size, color, volume,
temperature, and mass.

• Relationships: Are the associations that
occur between elements and attributes.
These associations are based on cause and
effect.

We can define the state of the system by deter-
mining the value of its properties (the elements,
attributes, and/or relationships).

Scientists have examined and classified many
types of systems. Some of the classified types
include:

• Isolated system: A system that has no in-
teractions beyond its boundary layer. Many
controlled laboratory experiments are this
type of system.

• Closed system: Is a system that transfers
energy, but not matter, across its boundary
to the surrounding environment. Our planet
is often viewed as a closed system.

• Open system: Is a system that transfers
both matter and energy can cross its bound-
ary to the surrounding environment. Most
ecosystems are example of open systems.

• Morphological system: This is a system
where we understand the relationships
between elements and their attributes in
a vague sense based only on measured
features or correlations. In other words, we
understand the form or morphology a system
has based on the connections between its
elements. We do not understand exactly how
the processes work to transfer energy and/
or matter through the connections between
the elements.

2.2 systems engineering

A management technology involving the interac-
tions of science, an organization, and its environ-

 99

Systems Engineering Modeling and Design

ment as well as the information and knowledge
bases that support each. The purpose of systems
engineering is to support organizations that de-
sire improved performance. This improvement is
generally obtained through the definition, develop-
ment, and deployment of technological products,
services, or processes that support functional
objectives and fulfill needs. It is a comprehensive,
iterative technical management process that in-
cludes translating operational requirements into
configured systems, integrating the technical
inputs of the entire design team, managing inter-
faces, characterizing and managing technical risk,
transitioning technology from the technology base
into program specific efforts, and verifying that
designs meet operational needs. It is a life cycle
activity that demands a concurrent approach to
both product and process development.

Systems engineering has triple bases: a physi-
cal (natural) science basis, an organizational and
social science basis, and an information science
and knowledge basis. The natural science basis
involves primarily matter and energy process-
ing. The organizational and social science basis
involves human, behavioral, economic, and en-
terprise concerns. The information science and
knowledge basis is derived from the structure and
organization inherent in the natural sciences and
in the organizational and social sciences.

2.3 the scope of system
engineering Activities

One way to understand the motivation behind
systems engineering is to see it as a method, or
practice, to identify and improve common rules
that exist within a wide variety of systems.

At times a systems engineer must assess
the existence of feasible solutions, and rarely
will customer inputs arrive at only one. Some
customer requirements will produce no feasible
solution. Constraints must be traded to find one
or more feasible solutions. The customers’ wants
become the most valuable input to such a trade

and cannot be assumed. Those wants/desires
may only be discovered by the customer once the
customer finds that he has over constrained the
problem. Most commonly, many feasible solutions
can be found, and a sufficient set of constraints
must be defined to produce an optimal solution.
This situation is at times advantageous because
one can present an opportunity to improve the
design towards one or many ends, such as cost
or schedule. Various modeling methods can be
used to solve the problem including constraints
and a cost function.

Systems engineering encourages the use of
modeling and simulation to validate assumptions
or theories on systems and the interactions within
them. Use of methods that allow early detection
of possible failures are integrated into the design
process. At the same time, decisions made at the
beginning of a project whose consequences are
not clearly understood can have enormous impli-
cations later in the life of a system, and it is the
task of the modern systems engineer to explore
these issues and make critical decisions. There is
no method which guarantees that decisions made
today will still be valid when a system goes into
service years or decades after it is first conceived
but there are techniques to support the process of
systems engineering. Examples include the use of
soft systems methodology, Jay Wright Forrester’s
System Dynamics method is currently being
explored, evaluated and developed to support the
engineering decision making process.

Initially, when the primary purpose of a
systems engineer is to comprehend a complex
problem, graphic representations of a system are
used to communicate a system’s functional and
data requirements

3. IntRODUctIOn tO system
DynAmIcs

System dynamics is a computer-based simulation
modeling methodology developed at the Mas-

100

Systems Engineering Modeling and Design

sachusetts Institute of Technology (MIT) in the
1950s as a tool for managers to analyze complex
problems. Its primary audience is still managers,
although it has spread widely in academia, where
professors and students use it to model systems
from every conceivable discipline ranging from
history and literature to biology, physics, and
economics.

The word “dynamic” implies continuous
change and that is what dynamic systems do – they
continuously change over time. Their position, or
state, is not the same today as it was yesterday and
tomorrow it would have changed yet again.

Using system dynamics simulations allows
us to see not just events, but also patterns of
behaviour over time. The behaviour of a system
often arises out of the structure of the system
itself, and behaviour usually changes over time.
Sometimes the simulation looks backward, to
historical results. At other times it looks forward
into the future, to predict possible future results.
Understanding patterns of behaviour, instead of
focusing on day-to-day events, can offer a radical
change in perspective. It shows how a system’s
own structure is the cause of its successes and
failures. This structure is represented by a series
of causally linked relationships. The implication is
that decisions made within an organization have
consequences, some of which are intentional and
some are not. Some of these consequences will
be seen immediately while others might not be
seen for several years.

System dynamics simulations are good at com-
municating not just what might happen, but also
why. This is because system dynamics simulations
are designed to correspond to what is, or might
be happening, in the real world.

3.1 system Dynamics as simulation
modeling

System dynamics is a subset of the field of simu-
lation modeling. Simulation modeling is widely
practiced in many traditional disciplines such as

engineering, economics, and ecology. Since the
formulation of differential equations to simulate
the progression of systems through time is nearly
a free-form exercise, with very few paradigmatic
constraints, simulation modeling is usually shaped
by the paradigm of discipline more than by the
modeling technique. The concept of simulating
a system is too general and unstructured to be in
itself a paradigm that helps one organize questions
and observations about the world.

System dynamics, however, includes not only
the basic idea of simulation, but also a set of
concepts, representational techniques, and beliefs
that make it into a definite modeling paradigm. It
shapes the world view of its practitioners.

3.2 system simulation Analysis and
Design

System development can generally be thought of
having two major components: systems simula-
tion & analysis and systems design. In System
simulation & analysis more emphasis is given to
understanding the details of an existing system
or a proposed one and then deciding whether the
proposed system is desirable or not and whether
the existing system needs improvements. Thus,
system analysis is the process of investigating
a system, identifying problems, and using the
information to recommend improvements to the
system.

System design is the process of planning a new
business system or one to replace or complement
an existing system. Analysis specifies what the
system should do. Design states how to accom-
plish the objective. After the proposed system is
analyzed and designed, the actual implementa-
tion of the system occurs. After implementation,
working system is available and it requires timely
maintenance.

System dynamicists are not primarily con-
cerned with forecasting specific values of system
variables in specific years. They are much more
interested in general dynamic tendencies; under

 101

Systems Engineering Modeling and Design

what conditions the system as a whole is stable
or unstable, oscillating, growing, declining, self-
correcting, or in equilibrium.

The primary assumption of the system dy-
namics paradigm is that the persistent dynamic
tendencies of any complex system arise from its
internal causal structure - from the pattern of
physical constraints and social goals, rewards,
and pressures that cause people to behave the
way they do and to generate cumulatively the
dominant dynamic tendencies of the total sys-
tem. A system dynamicist is likely to look for
explanations of recurring long-term social prob-
lems within this internal structure rather than in
external disturbances, small maladjustments, or
random events.

The central concept that system dynamicists
use to understand system structure is the idea of
two-way causation or feedback. It is assumed
that social or individual decisions are made on the
basis of information about the state of the system
or environment surrounding the decision-makers.
The decisions lead to actions that are intended to
change (or maintain) the state of the system. New

information about the system state then produces
further decisions and changes Each such closed
chain of causal relationships forms a feedback
loop. System dynamics models are made up
of many such loops linked together. They are
basically closed-system representations; most of
the variables occur in feedback relationships and
are endogenous. When some factor is believed
to influence the system from the outside without
being influenced itself, however, it is represented
as an exogenous variable in the model.

3.3 solving problems

When confronted with problems or new situa-
tions, we can react to them in several possible
ways. The approach we select is based on prior
experience and our knowledge of the problem
at hand. The most common approach to new
problems and situations is to take them apart and
examine their pieces. We do this in the hope that
by understanding the pieces we will also be able
to understand the entire problem or situation at
hand. We are taught this method in our youth and

Figure 1. The various stages involved in building an improved system

102

Systems Engineering Modeling and Design

it is reinforced almost daily. This approach helps
us to manage the incredible amount of data, stress,
problems, and chaos that bombards us every day.
If we didn’t have this ability, all but the simplest
problems would appear overwhelming.

Although this method is a good approach in
some situations, it can be inappropriate or even
dangerous under different circumstances. More
sophisticated approaches are usually required
when investigating corporate problems. If a
company is experiencing a serious threat to its
survival, be it declining market shares or dis-
agreements with the labor union, resources are
mobilized to deal with the problem. The company
might already be divided into “parts”, such as the
accounting department, the sales department, and
so on. Problems affecting the entire company are
often blamed on a department, as when a loss in
market shares causes executives to target the sales
department for investigation or punishment. The
reason for the problem might seem obvious. The
company must be losing market shares because
the salespeople are not selling the product. What
is often lost in the picture is the fact that the sales
department depends on many other departments
to do its job.

Deficiencies may be in any or all of them.
Perhaps the management information services
department has not provided the salespeople with
the computer support they need. Or maybe manu-
facturing has been suffering from poor scheduling
of orders and a backlog has developed. This will
in turn make it harder for the salespeople to sell
the product to customers who want an immedi-
ate delivery. A number of factors may be the
cause of the problem, which may come to light
only when the interactions among all parts of the
corporation, and not just the parts themselves,
are examined.

3.4 connecting the pieces

We are viewing a system when we look at a group
of individual parts, as well as the connections or

interactions among these parts. A corporation
is an example of such a system, composed of
many departments that in turn act as systems
themselves. When we study the parts and the
interactions between them, we in fact study the
entire system.

The study of systems is not new. It dates back
to the 1920s when researchers from different
disciplines began to see that many patterns were
common to all fields. A new field, general systems
theory, developed around the notion that no mat-
ter how different the parts of individual systems
were, they were put together using a set of rules
common to all.

Systems theory suggests that knowledge of one
type of system can be applied to many other types.
By studying interactions and connections between
the pieces of a system, we can gain knowledge
that can be useful when confronted with other
problems. Systems theory expands further to
include two major fields in management science:
systems thinking and system dynamics.

3.5 systems thinking and system
Dynamics

The ideas we have presented thus far are important
in both systems thinking and system dynamics.
Systems thinking involve changing paradigms
about the way the world works, the way corpo-
rations function, and the human role in each. In
systems thinking we look for interrelationships
among the elements of a system. We do this to
avoid placing blame in favor of finding the true,
long-term solution to a problem. Seeing the inter-
relationships can also help us find leverage points
within a system (places where a slight change will
have a tremendous effect on the system’s behav-
iour). Gaining awareness about how the system
is built up and how it works can also help us to
avoid solutions that only treat the symptoms of an
underlying problem without curing the problem
itself. System thinking is powerful because it
helps us to see our own mental models and how

 103

Systems Engineering Modeling and Design

these models color our perception of the world.
In many cases, it is difficult for us to alter our
mental models. There are always some beliefs
or viewpoints that we are not willing to change,
no matter what evidence is presented against it.
This causes a certain resistance to new concepts.
Problems can occur, however, when a rigid mental
model stands in the way of a solution that might
solve a problem. In such situations, adherence to
mental models can be dangerous to the health of
the organization. We all use mental models every
day. Our minds do not contain real economic or
social systems. Instead, they contain representa-
tions - models - of reality. We use these models
in all aspects of decision-making. Being explic-
itly aware of our mental models can help us in
understanding why we make the decisions we do
and how we can improve our decision-making
processes. If everyone’s mental models are brought
to light in the context of an organization, we can
begin to see where, how, and why the models
diverge. This is the first step in building a shared
understanding within an organization. As long as
mental models remain hidden, they constitute an
obstacle to building shared understanding.

System dynamics is closely related to systems
thinking. System dynamics was invented to give
managers a tool to understand the complex sys-
tems that they were charged with controlling. The
methodology uses computer simulation models to
relate the structure of a system to its behaviour
over time. Viewed in this way, system dynamics
can translate the understanding gained by systems
thinking into a computer simulation model. By
experimenting with this prototype of the system
at hand, we can gain further knowledge about the
system. System dynamics is capable of creating
a learning environment - a laboratory that acts
like the system in miniature. Even if building a
learning organization - an organization with a high
degree of shared understanding and knowledge
about how the organization works - isn’t the goal,
systems thinking can be a very valuable tool at the
outset of a system dynamics study. It helps bring

together the people necessary to the success of the
system dynamics study, and get them in a frame
of mind that is open to new ideas, and allow an
evolution of mental models. For change to be suc-
cessfully implemented people must be motivated
to learn and able to act on what they’ve learned,
and they must be in an environment of open and
honest exchange. Systems thinking, by helping
people in an organization see what the problems
are and how their mental models contribute to the
problems, set the stage for a successful system
dynamics study.

When we conduct a systems thinking or sys-
tem dynamics study, we must base it on existing
information. The information we can use exists
on several levels. The largest and most complete
information available to us is our mental informa-
tion; everything we carry in our heads. In sheer
size, this information database is the largest and
most complete available to us. Next is the writ-
ten database, which may be smaller by a factor
of a hundred or even a thousand. It represents
all the information we have on thesis or stored
electronically. Finally, we have a numerical da-
tabase, representing all information that is stored
as numbers and constituting another hundred- or
thousand fold loss in the amount and richness
of the information. Obviously, the place to find
the most complete information about a situation
is in the mental database. What we do with that
information is another matter. The human mind is
a brilliant storage device, but we do have trouble
relating cause and effect, especially when they
are not close in time. In such cases, we cannot
reliably predict the outcome of any but the sim-
plest situations with the simplest inputs. This is
one of the reasons why computer simulation can
be a useful addition to the method of systems
thinking. A systems thinking study usually pro-
duces causal-loop diagrams to map the feedback
structure of a system, and generic structures to
illustrate common behaviour. System dynamics
takes the information about a system’s structure
that normally remains hidden in mental models

104

Systems Engineering Modeling and Design

and formalizes it into a computer model. The
behaviour generated by that particular structure
is revealed when the model is simulated. It consti-
tutes a powerful tool for understanding complex
problems. Instead of trying to relate pieces of in-
formation in our heads, we can use the computers
to formalize our ideas and assumptions and then
simulate them through time. That is the beauty
and power of system dynamics models.

3.6 the tools and Rules of system
Dynamics

System dynamics simulations are based on the
principle of cause and effect, feedback, and delay.
Some simple simulations will incorporate only
one or two of these principles. More sophisticated
simulations will use all three to produce the kind
of behaviour we encounter in the real world.

3.6.1 Cause and Effect

Cause and effect is a simple idea, but some simula-
tions based on methodologies other than system
dynamics don’t use it. The idea is that actions and
decisions have consequences. Price affects sales.
Births affect the size of a population. Advertising
affects market awareness. If we examine these
cause and effect relationships isolated, they are
usually very easy to understand. However, when
they are combined into long chains of cause and
effect, they can become complex. This is one
reason for using simulations. The human mind
is good at developing intuition around complex
problems, but poor at keeping track of dozens,
hundreds, or even thousands of interconnections
and cause and effect relationships.

We can create causal-loop diagrams, as are
often used in systems thinking to illustrate cause
and effect relationships. In such diagrams we use
arrows to indicate the relationships. Sometimes,
information about the way in which the relation-
ship works is also included in the diagram. A mark
“o” or “–“ on the diagram implies a “change in

the opposite direction.” The relationship between
price and sales is such a relationship, where an
increase in price leads to a decrease in sales. The
relationship between births and population is of
another type. When births increase, so does the
population. This is a situation where a change
leads to a “change in the same direction”. It is
shown by marking “s” or “+” on the arrow in
the diagram.

Figure 2 shows a simple causal-loop diagram.
In this diagram, which we will discuss closer in the
next section, price has a negative effect on sales,
which in turn has a negative effect on unit costs,
which in turn has a positive effect on price.

3.6.2 Feedback

Feedback is a concept that most people associate
with microphones and speakers. A microphone
that isn’t properly set up will pick up the sound
coming from its own speaker. This sound gets
amplified further by the speaker and picked up by
the microphone again. This process keeps going
until the speaker is producing the loudest sound it
can or the microphone cannot pick up any louder
sound. If the microphone and the speaker were set
up correctly, the system would work linearly. The
loudness of the sound going into the microphone
would only affect the loudness of the sound coming
out of the speaker. Because of the misplacement of

Figure 2. A simple causal-loop diagram illus-
trating connections between price, sales, and
unit costs

 105

Systems Engineering Modeling and Design

the microphone, however, the loudness of sound
coming out of the speaker also affects the loudness
of sound going into the microphone. Cause and
effect feed back on each other. This is the general
principle of feedback - that some causal chains
are linked together so that cause and effect feed
back to each other. This happens everywhere in
real world in all kinds of systems, though people
are often not aware of it.

Epidemic is another example. Viruses spread
when a member of an infected population comes
into contact with someone, who is uninfected, but
susceptible. This person then becomes part of the
infected population, and can spread the virus to
others. The larger the infected population, the more
contacts, the larger the infected population.

The simple causal-loop diagram illustrates
feedback as seen in a price and sales example.
If we used a cost-based pricing strategy, then we
could show that as sales increase, the unit costs
for the product goes down. As the unit costs go
down, the price can go down. As the price goes
down, the sales go up. The causal-loop diagram
of Figure 2 shows that the price we charge today
will affect what we charge in the future. A low
price will increase sales and reduce unit costs,
making it possible to further reduce price in the
future. A high price will reduce sales and increase

unit costs, making it necessary to increase price
in the future. This is obviously not the whole
story. This structure is only one part of a larger
system and the level of price and sales are also
subject to influences from other variables in the
system. But still, this isolated feedback loop is
easy to understand. Feedback relationships can
produce a variety of behaviours in real systems
and in simulations of real systems. Figure 3 il-
lustrates four common behaviours created by
various feedback loops.

3.6.3 Building Blocks in System
Dynamics

Simulation tools is a modeling environment based
on the science of system dynamics. Simulation
tool allows us to model systems - with all their
cause and effect relationships, feedback loops, and
delays - in an intuitive graphical manner. Symbols
representing levels, flows, and “helper” variables
(so called auxiliaries) are used to create graphi-
cal representations of the system in constructor
diagrams. Flows and information links represent
relationships and interconnections. The entire
structure of a system, no matter how complex,
can be represented in Simulation tool by the use
of these variables and connections.

• LEVELS AND FLOWS

In a system dynamics model, the structure of
the system is represented mathematically. A level

Figure 3. Four common behaviours created by
various feedback loops

Figure 4. Integrating a function measures the area
underneath the function

106

Systems Engineering Modeling and Design

is the accumulation (or integration) of the flows
that causes the level to change. In integrating a
function, we are simply measuring the area under-
neath the function by dividing it into equal-width
partitions and then summing up the area of all the
partitions. This is illustrated in Figure 4.

When creating a simulation model graphi-
cally in Simulation tool, connecting the variable
symbols generates the integral (flow) equations.
Every variable in the model is defined by an equa-
tion, in the same way as cells in a spreadsheet
are defined. In Simulation tool, boxes represent
levels. Double arrows represent the flows, and
that is controlled by a flow rate. The flow rate is
defined in the same way as auxiliaries. Figure 5
shows a simple model when created graphically
in Simulation tool.

The cloud-like symbol to the left of the first
flows and to the right of the second flow represents
source and sink of the structure, respectively. The
cloud symbol indicates infinity and marks the
boundary of the model. For instance, in the simple
structure illustrated in the Figure 5, the level is
the ‘Workforce’, measured in people, which is in-
creased by the ‘Hiring Rate’ (flow) and decreased
by the ‘Firing Rate’ (flow). The clouds tell us that
in this model we are not concerned with where
the hired people come from or where the fired
people go. That information is beyond the model
boundaries. If we were interested in including this
information, we could add another level to the
left of the hiring rate and one to the right of the
firing rate extending the model boundary. This is
shown in Figure 6, where we have the hiring rate

draining a level of applicants, and the firing rate
adding to a level of former employees.

• AUXILIARIES

While it is possible to create an entire model
with only levels and flows, Simulation tool has
a few more tools to help us to capture real-world
phenomena in a model. To achieve a certain level
of detail or to aid in the formulation of flow rate
equations, it is sometimes necessary to model a
variable as an auxiliary. In Simulation tool, a circle
represents auxiliaries, as shown in Figure 7.

An auxiliary is used to combine or reformulate
information. It has no standard form; it is an alge-
braic computation of any combination of levels,
flow rates, or other auxiliaries. Although auxiliary
variables may appear to be accumulations, they
have no memory, unlike levels. Auxiliaries are
used to model information, not the physical flow
of goods, so they change with no delay, instan-
taneously. They can be inputs to flows, but never
directly to levels, because flows are the only vari-
ables that change their associated levels. Levels,
however, can be inputs to auxiliaries. Note that
flow rates and auxiliaries are defined in exactly

Figure 5 A simple model created in the graphical
modeling language

Figure 6. The model with extended model bound-
aries

Figure 7. Auxiliary

 107

Systems Engineering Modeling and Design

the same manner. The difference is that the flow
rate is connected to the flow valve, and thereby
controls the flow directly.

• CONSTANTS

Constants are, unlike ordinary auxiliaries,
constant over the time period of the simulation.
A diamond represents these constants, as shown
in Figure 8.

A constant is defined by an initial value, and
maintains this value throughout the simulation,
unless the user changes the value manually (by
using a slider bar, for example). For instance, in
a one-year simulation, a company may have an
essentially fixed workforce that can be represented
as a constant auxiliary. If the simulation were to
expand to 20 years, however, workforce would
most likely become a level and be allowed to vary
over time. Sometimes we find ourselves confused
about whether an element of the system should be
included as a constant or auxiliary or as a level.
In these situations we should try to rethink the
problem. We should think of the time period of
the problematic behaviour and whether or not it is
reasonable to expect the element to change over
that period. We will then be in a better position
to decide what elements should be constants and
what elements should be allowed to vary during
the simulation.

• INFORMATION LINKS

Connections are made among constants,
auxiliaries, and levels by means of information
links. These links appear as thin connectors in the
constructor diagram, as shown in Figure 9.

Information links show how the individual
elements of the system are put together. In a sense
they close the feedback loops. We have already
seen how flows change the levels by filling them
or draining them. Information links can transfer
the value of the level back to the flow, indicating
a dependence of the flow on the level, as well as
the obvious dependence of the level on the flow,
as seen in Figure 10.

3.7 Decisions and policies

Many people intuitively understand the differ-
ence between decisions and policies. However,
we often do not realize that every decision we
make is somehow governed by a policy. Even
the system of a swinging pendulum can be de-
scribed in terms of its “decisions” in the face of
governing policies (the rules of physics). Within
corporations, the distinction between the two is
extremely important. Managers must often make
decisions based on limited information and their

Figure. 8 Constant

Figure 9. Information links connects various
variables

Figure. 10 A closed feedback loop representing
the interest earned from an account in a bank

108

Systems Engineering Modeling and Design

own previous experience. They may have little
or no control over what information they receive,
what form it is in, when they receive it, or how
much they receive. When their decisions turn
out to be wrong, they are often blamed for mis-
interpreting the data. Sometimes the conclusion
is that the manager simply didn’t have enough
information to make the correct choice. Unfortu-
nately, the actual problem is usually much deeper.
As mentioned earlier, the behaviour of a system
is a consequence of its structure. Therefore, the
only real changes we can make to a system are
changes to the structure. Other changes to the
system will soon be canceled out through the
actions of negative feedback loops. Providing
the managers with more and more information
is not necessarily the correct solution, since too
much detail or complexity might do more harm
than good. It is often a better idea to examine the
structure of the organization. This way we can
gain knowledge and insight about the policies of
the company; the rules of the organization, spoken
or unspoken, implicit or explicit, that provides the
setting for decisions.

3.7.1 Decision-Making Process

Decisions must always be based on observable
variables. In a system dynamics model, this means
that decisions must be based entirely upon levels,
as flows are never instantaneously observable and
therefore can never affect instantaneous decision-
making. In the aforementioned example, the
decision on how much inventory to order must be
based on the present value of the level of inventory.
Levels can represent the actual state of the system
at a given point in time (current inventory) or the
desired state of the system (desired inventory).
When there is discrepancy between actual and
desired conditions, corrective actions are usu-
ally taken to move the actual state closer to the
desired state. The first attempt to solve a complex
problem rarely succeeds. This is not surprising,
given the complex cause and effect relationships

and feedback loops that exist in most systems we
are in contact with. Usually, corrections change
the system and lead to a total redefinition of the
problem. Decisions are attempts to move the
system toward our goals. Actual conditions are
continuously compared to the desired conditions
and action is taken according to the discrepancy
between them. This is an iterative process. In
the context of a corporate model, decisions could
be how many orders to submit to the supplier to
replace inventory, how many workers to hire, or
when to replace capital equipment. A decision to
replenish inventory should be based on the present
level of inventory (a level) and not on the rate of
sales (a flow). Levels should be the only inputs
to decisions; decisions control the flows to and
from levels, and the flows determine the change
in the levels. As Forrester states “Only rates
[flows] resulting from decisions change levels.
Only levels control decisions and rates of flows.
In other words, decisions control all processes
of change”. Decisions are governed by policies.
Therefore, the way decisions control change is
through policies. Flows are defined by equations,
and these equations are statements of system
policy. Policies describe how and why decisions
are made. Specifically, it is the policy statement
that attempts to move the system toward a goal.
It provides the connection between information
inputs and the resulting decisions stream.

Policies may be informal, such as a conse-
quence of habit, intuition, personal interest, and
social pressures and power within the organiza-
tion. They can also be explicit, with a formal
awareness of the reasons of action. In the latter
case, participants know exactly what policies are
guiding their decisions and are able to anticipate
the actions of others in a similar situation. Informal
policies can be hazy, but the system dynamics
model attempts to make them explicit. In such a
model, informal policies are treated with as much
concern as explicit policies. They are considered
equally important in understanding the behaviour
of a complex system. To truly capture the prob-

 109

Systems Engineering Modeling and Design

lematic behaviour of a system, a system dynamics
model must represent the basic policy structure of
that system. The model can then be used to try out
various policies before implementing them in the
real system. In this way, effective policies can be
developed to provide a proper guiding framework
for the average manager .

The ultimate goal, if real change is sought, is
to find the optimal mix of policies that create the
desired behaviour (smooth growth of revenue,
constant inventory, etc.), no matter who is in the
decision- making process.

3.8 building the models

The system dynamics provides a new way of
viewing the world around us. We can formalize
the concepts and views of the world into a com-
puter simulation model. Let us take a closer look
at the stages of the modeling process. Although
we will go through these in a certain order, we
should always keep in mind that creating simula-
tion models is an iterative process. Usually, when
creating a model, we will not create it in a linear
fashion. Instead, we will advance one step, then
take three steps back and reevaluate everything
we’ve already done. This is the art of modeling:
it is subjective, frustrating at times, and in the
end we can never say that the model is “correct”
or even finished. It is simply one representation
of reality, built to explain a particular problem.
We may find that we learn more in the process of
creating the model than in manipulating it after
it is finished.

3.8.1 Problem Definition

The modeling process begins with defining a
problem. The problem definition is the keystone
of the entire activity. Although it might sound like
the easiest part, it is not enough to have a vague
notion about the problem behaviour. Defining
the problem is essentially defining the purpose
of the model. The problem should therefore be

defined as precisely as possible. This definition
is the basis of all our future efforts and our guide
in decisions concerning boundaries and validity
of our model. The narrower our focus, the easier
it will be to resist the temptation to overdo the
structure.

Numbers are useful tools in this stage of the
process. If we can use numbers to define the
problems, such as real inventory data to illustrate
the problem of inventory fluctuations, we will be
better equipped to define the problem. If no real
data are available, it is extremely useful to draw
the shape of the behaviour against time. If the
problem concerns the interactions of variables,
such as the effect of seasonal fluctuations in
demand on the level of inventory, it is necessary
to map the relevant variables against each other.
This way we can build an understanding of how
each of the various variables affects each other. We
should always keep in mind that system dynamics
models are not concerned with the behaviour of
individual variables. The main focus is on how
each variable interacts with the other variables
to produce the system’s behaviour.

3.8.2 Identification of Variables

The problem definition helps us to structure our
information, and to start generating names and
units of measurement for variables. The list of
variables usually becomes very long. From this
list, we should identify primary system variables.
We can throw out the variables that are irrelevant
to the purpose of the model and set aside the
variables that we are not sure of. The latter ones
might become helpful later, when we arrive at the
stage of model design.

3.8.3 Model Boundaries

Given the problem definition, we can start to set
the boundaries of the model. Creating boundary
diagrams can be useful at this stage of the pro-
cess. Such diagrams will also help us to identify

110

Systems Engineering Modeling and Design

the variables to be included in the model, and
whether these variables will be endogenous or
exogenous.

3.8.4 Simulation

We are now ready for the simulation stage of the
system dynamics modeling. When we have put
our conceptual model into the computer, and all
the variables and equations are well defined, we
can simulate the model and view its behaviour
over time. It is often useful to try a few “mental
simulation” exercises before simulating the model.
We should try to imagine what the model should do
when it is simulated. When the model is simulated,
we will see whether the actual behaviour differs
from our expectations - it most probably will - and
thereby has a starting point in figuring out why.
It could be that the structure of the model is in
error. It could be that we forgot to take certain
variables into account and that our expectations
of the behaviour were wrong. When we simulate
the computer model, we must set up appropriate
simulation settings for the model.

The two most important are the time horizon
and the time step. The time horizon represents the
period of time we want our model to simulate. It
is specified by a start and stop time given relative
to the selected calendar. The time horizon will
vary from model to model, and we will usually
select it so it matches the time frame of the prob-
lem behaviour. The time step represents the time
interval that the simulation progresses for each
calculation. The shorter the time step, the more
calculations tool will perform, and the slower the
model will run.

Once we have determined the time horizon
and time step of the simulation, we will be able
to simulate our model under different conditions
and observe the results. To truly understand the
model, we must relate the structure we have created
to the behaviour that results from simulating the
model. If we cannot get the behaviour we want we
must go back and reexamine the structure of the

model and try to determine why it is creating the
unwanted behaviour. The causal-loop diagram is
often useful in this regard. When we understand
why the model generates certain behaviour, we can
experiment with changes in the structure to gener-
ate the actual problem behaviour as we described
it in the early stages of the model creation. When
the model adequately represents the real problem,
we can use it for policy analysis and experimenta-
tion. We now have a mini-labouratory in which
to simulate the effects of various policy changes
before implementing them in the real system.

3.9 A sample system Dynamics
model- sdmodel

Software Marketing Management (SMM) is
the business discipline focused on the practi-
cal application of marketing techniques and the
management of a firm’s marketing resources and
activities. Software Marketing managers are often
responsible for influencing the level, timing, and
composition of customer demand in a manner that
will achieve the company’s objectives. Software
marketing management is the art and science of
choosing target markets and getting, keeping and
growing customers through creating, delivering,
and communicating superior customer value. This
case study gives the insights of diffusion of new
software product and its adoption in the market.
We will model the diffusion and adoption of the
new software strategy and will suggest the sce-
narios through simulation result.

3.9.1 Case Introduction

In order to make fact-based decisions regarding
software marketing strategy and design effective,
cost-efficient implementation programs, and firms
must possess a detailed, objective understanding
of their own business and the market in which they
operate. In analyzing these issues, the discipline
of software marketing management often overlaps
with the related discipline of strategic planning.

 111

Systems Engineering Modeling and Design

3.9.2 Software Marketing Research and
Analysis

Traditionally, software marketing analysis was
structured into three areas: Customer analysis,
Company analysis, and Competitor analysis
(so-called “3Cs” analysis). More recently, it has
become fashionable in some software marketing
circles to divide these further into five “Cs”: Cus-
tomer analysis, Company analysis, Collaborator
analysis, Competitor analysis, and analysis of the
industry Context.

The focus of customer analysis is to develop a
scheme for market segmentation, breaking down
the market into various constituent groups of cus-
tomers, which are called customer segments or
market segments. Software marketing managers
work to develop detailed profiles of each seg-
ment, focusing on any number of variables that
may differ among the segments: demographic,
psychographic, geographic, behavioral, needs-
benefit, and other factors may all be examined.
Marketers also attempt to track these segments’
perceptions of the various products in the market
using tools such as perceptual mapping.

The firm’s collaborators may also be profiled,
which may include various suppliers, distributors
and other channel partners, joint venture part-
ners, and others. An analysis of complementary
products may also be performed if such products
exist.

Software marketing management employs
various tools from economics and competitive
strategy to analyze the industry context in which
the firm operates. These include five forces analy-
sis of strategic groups of competitors, value chain
analysis and others. Depending on the industry,
the regulatory context may also be important to
examine in detail.

In Competitor analysis, marketers build de-
tailed profiles of each competitor in the market,
focusing especially on their relative competitive
strengths and weaknesses using SWOT analysis.
Software marketing managers will examine each

competitor’s cost structure, sources of profits,
resources and competencies, competitive position-
ing and product differentiation, degree of verti-
cal integration, historical responses to industry
developments, and other factors.

Once the company has obtained an adequate
understanding of the customer base and its own
competitive position in the industry, software
marketing managers are able to make key stra-
tegic decisions and develop a software marketing
strategy designed to maximize the revenues and
profits of the firm. The selected strategy may aim
for any of a variety of specific objectives, includ-
ing optimizing short-term unit margins, revenue
growth, market share, long-term profitability, or
other goals.

To achieve the desired objectives, marketers
typically identify one or more target customer
segments which they intend to pursue. Customer
segments are often selected as targets because they
score highly on two dimensions: 1) The segment
is attractive to serve because it is large, growing,
makes frequent purchases, is not price sensitive
(i.e. is willing to pay high prices), or other fac-
tors; and 2) The company has the resources and
capabilities to compete for the segment’s business,
can meet their needs better than the competition,
and can do so profitably. In fact, a commonly
cited definition of software marketing is simply
“meeting needs profitably.”

3.9.3 Software Marketing Strategy and
Implement Planning

Once the company has obtained an adequate
understanding of the customer base and its own
competitive position in the industry, software
marketing managers are able to make key stra-
tegic decisions and develop a software marketing
strategy designed to maximize the revenues and
profits of the firm. The selected strategy may aim
for any of a variety of specific objectives, includ-
ing optimizing short-term unit margins, revenue
growth, market share, long-term profitability, or
other goals.

112

Systems Engineering Modeling and Design

After the firm’s strategic objectives have been
identified, the target market selected, and the
desired positioning for the company, product or
brand has been determined, software marketing
managers focus on how to best implement the
chosen strategy. Traditionally, this has involved
implementation planning across the “4Ps” of
software marketing: Product management, Pric-
ing, Place (i.e. sales and distribution channels),
and Promotion.

3.9.4 Project, Process, and Vendor
Management

Once the key implementation initiatives have been
identified, software marketing managers work to
oversee the execution of the software marketing
plan. Software marketing executives may therefore
manage any number of specific projects, such
as sales force management initiatives, product
development efforts, channel software marketing
programs and the execution of public relations and
advertising campaigns. Marketers use a variety
of project management techniques to ensure
projects achieve their objectives while keeping
to established schedules and budgets.

3.9.5 Causal Loop Diagram and Stock
Flow Diagram

The causal loop diagram of the new product
introduction may look as follows:

There are two feedback loops in this diagram.
The positive reinforcement loop on the right indi-
cates that the more people have already adopted
the new product, the stronger the word-of-mouth
impact. There will be more references to the
product, more demonstrations, and more reviews.
This positive feedback should generate sales that
continue to grow. Figure 11 shows the causal loop
diagram of the new product production.

The second feedback loop on the left is nega-
tive reinforcement. Clearly growth can not con-
tinue forever, because as more and more people
adopt, there remain fewer and fewer potential
adopters.

Both feedback loops act simultaneously,
but at different times they may have different
strengths. Thus one would expect growing sales
in the initial years, and then declining sales in
the later years.

Figure 11. Causal loop diagram of new product adoption

 113

Systems Engineering Modeling and Design

3.9.6 Stock Flow Diagram

In our example, there are two basic stocks: Po-
tential adopters and Adopters. There is one flow:
New adopters. For every new adopter, the stock of
potential adopters declines by one, and the stock
of adopters increases by one. Figure 12 depicts
the stock and flow diagram of the new product
production based on the causal loop diagram
discussed before.

3.9.7 Equations Of The Models

The equations for the causal loop example are:

Adopters =

Potential adopters =

New adopters = Innovators + Imitators

Innovators = p * Potential adopters

Imitators = q * Adopters * Probability that contact
has not yet adopted

Probability that contact has not yet adopted =

 p = 0.03
q = 0.4

Figure 12. Stock and flow diagram of new product adoption

114

Systems Engineering Modeling and Design

3.9.8 Simulation Results

The simulation results show that the behaviour
of the system would be to have growth in adopt-
ers that follows a classical s-curve shape. The
increase in adopters is very slow initially, then
exponential growth for a period, followed ulti-
mately by saturation

Figure 13. Simulation graph of adoption of new
product

Figure 14. Simulation graph of adopter popula-
tion

3.9.9 Case Summary

Facing new pressures from a global, web-driven
economy characterized by greater competition,
companies need smart, customer-centric market-
ing strategies. The case study provides system
dynamics modeling simulation for developing an
effective marketing strategy by examining how
firms create and sustain customer value. Here we
are focused on alignment, growing businesses,
delivering key performance indicators, innova-
tion, customer and channel penetration, reliable
technology and communication tools, and subject
matter sales and marketing experts.

3.10 Conclusion

System Engineering modeling and design is a
technique that aims to allow understanding and
modeling of complex systems. A system in this
sense is any organization of people, items and
capabilities that work together to achieve goals.
The models provide a holistic view of the system.
This is done by showing causal relationships
between different elements of the system graphi-
cally, and describing the nature of the relationship
through equations. Another key element of the sys-
tem dynamics approach is the time evolutionary
view. This allows the representation of the behav-
ior of the system as it evolves through time, giving
a dynamic rather than a static view of the system.

RefeRences

Forrester, J. W. (1958). Industrial Dynamics: A
Major Breakthrough for Decision Makers. Har-
vard Business Review, 38(4), 37-66.

Forrester, J. W. (1961). Industrial Dynamics. Pe-
gasus Communications, Waltham, MA.

Wolstenholme, E. F. (1990). System Enquiry: a
System Dynamics Approach. John Wiley & Sons,
New York.

 115

Chapter IX
UML 2.0 in the Modelling of the

Complex Business Processes
of Reporting and Control of
Financial Information System

Sebastian Kwapisz
University of Gdansk, Poland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

The General Inspectorate of Financial Information is instituted under the Ministry of Finance. Its
duty is to counteract bringing into financial circulation pecuniary assets derived from illegal sources
and to intercept any possible signs of money laundering. The procedure requires institutions such as
banks and insurance companies to forward information of “over-the-limit” transactions in which the
amounts involved exceeds the value specified by the Ministry. The efficiency of collecting information
about these transactions is actually working, and is determined to a large extent by the speed and ef-
ficiency of the information systems in particular institutions responsible for those issues. The chapter
discusses and analyses problems associated with the sending information about such transactions by
the institution under such obligation. It lays out the range of possibilities opened up by the Unified
Modeling Language (UML), which constitutes a universal tool for exchanging information within IT
groups and specifying complex business processes. The potential of the language lies in its numerous
extensibility mechanisms, which allow the application of various stereotypes, depending on the area
given. The chapter also emphasizes significance of the CASE tool, which makes it possible to control
and create UML diagrams. Programs of the CASE type are also able to generate a skeleton code used
subsequently by programmers during implementation.This chapter includes an analysis and design of a
system with a task of improving the efficiency of the information forwarding process by the institutions
under obligation so that the criteria laid down by law are met. The description of the system has been
created in accordance with the specifications of UML 2.0 and - based on many diagram types and the
architecture - the business processes that it extends to and the database structure required to collect

116

UML 2.0 in the Modelling of the Complex Business

information about transactions are set forth. Thanks to the application of use cases the main functionality
of the system is defined: searching for and bringing together particular transactions followed by trans-
formation and the dispatching of reports. Complex business processes are presented by corresponding
activity and interaction diagrams. The architecture and the placement of the system within the structure
of the organization, however, are depicted with the help of structure diagrams such as class, component
and deployment diagrams. The use made of the extensibility mechanisms of UML merits attention here.
The database stereotype presented in the work made it possible for the database to be designed at the
level of implementation, and the functionality of the CASE tool enabled the complete software script to
be compiled on this basis.

1 IntRODUctIOn

Unified Modeling Language(UML) is a succes-
sor of object- oriented methodologies of analysis
and design of informatics systems which was
invented at the turn of the 80ties and 90ties.
Conception of UML was elaborated in Rational
Corporation as the result of cooperation so-called
‘three musketeers’: Grady Booch, Jim Rumbaugh,
Ivar Jacobson (1999). UML is graphical notation
which is applying to present varied problems into
models and assuring good communication in IT
teams with sharing ideas. Natural language can
not be precise and cause lack of understanding
in complicated problems. UML is irreplaceable
in designing large systems and helps in illustrat-
ing its elements and correlations (Wrycza S.,
Marcinkowski B., & Wyrzykowski K., 2005).

UML has become primary standard in specifi-
cation of projects and architectures of object- ori-
ented systems and still receives wide recognition
in IT professionals. Although initially conceived
as a language for software development, UML
may be used to model a wide range or real world
domains. For example, UML can be used to
model many real world Processes (in business,
science, industry, education and elsewhere),
Organizational Hierarchies, Deployment maps
and much more.

Modeling informatics systems requires dif-
ferent view of analyzing problem, because many
people are included in project (users, program-
mers, analysts or specialist of integration). Each
of mentioned above group of people uses different

perspective of system and is interested in different
stage of its life time. Specification of UML 2.0
provides many possibilities in presenting systems
with emphasizing each main element. Therefore
multi-perspective nature of UML could help con-
trolling iterative and evolutionary development of
system (Maciaszek L., 2005). Usefulness of UML
is also common in modern software methodolo-
gies (RUP, Agile, XP).

This chapter also emphasizes the use of tools
for object modeling, which give abilities to pro-
duce fragments of skeleton programming code
and facilitate communication in IT team.

All diagrams which define system of reporting
and control presented in this article are created
in Enterprise Architect. EA has comprehensive
support for UML 2.0 standard. It has all 13 UML
2.0 diagrams in the tool. Intuitive visualization of
UML is a part of strength of EA. Thanks to model-
ing tools often called CASE programs (Computer
Aided Systems Engineering), designing such
solution and improve use of UML become more
effective (Maciaszek L., 2005).

Using UML Profiles, UML Patterns and other
extensions, UML with EA may be tailored to ad-
dress a particular modeling Domain not explicitly
covered in the original UML specification. EA
makes extending the UML simple and straight-
forward, and best of all, the extension mechanism
is still part of the UML Specification (Enterprise
Architect Home Page). The UML database profile
presented in this chapter enables defining in the
model such elements as keys on tables (primary,
foreign), indexes or even users of database. Ad-

 117

UML 2.0 in the Modelling of the Complex Business

ditionally CASE tools help in converting such
models into SQL code with compatibility of
database type (e.g. SQL Server 2000, Oracle,
InterBase etc.) (Muller, R. J., 2000).

The aim of this article is to show great func-
tionality of UML 2.0 which is a best practice
for communicating, modeling, specifying and
defining business and software systems. At the
beginning there is introduction of institution of
The General Inspectorate of Financial Informa-
tion and requirements of reporting and control
system. Then moving from analysis to design
system functionalities, processes and architecture
are illustrated on the UML diagrams.

2 tHe cHAllenge Of
IntegRAtIOn Of cORpORAte
InfORmAtIOn systems WItH
InspectIOn Of fInAncIAl
InfORmAtIOn systems

The General Inspection of Financial Informa-
tion is a non-police body of the state administra-
tion, having access to bank, broker, treasury, and
notary secrets. Its head is an Undersecretary of
State at the Ministry of Finance, appointed at a
motion of the Prime Minister. It is his duty to
carry out analytical investigation after having
been informed by institutions under obligation
to do so about suspicious transactions that have
occurred.

The tasks of the General Inspection include
obtaining, storing, processing, and analyzing
financial information and taking steps in order
to counteract bringing into circulation pecuni-
ary values coming from illegal or undisclosed
sources.

Under the legal acts mentioned above, “in-
stitutions under obligation’ (IUO) should supply
information about registered transactions to the
General Inspection in an electronic form. The term
‘transactions’ means cash and non-cash deposits
and drawings, including transfers among various
accounts belonging to the same account holder.

An IUO taking a client’s instruction or order
for carrying out a transaction in excess of 15,000
EURO or the equivalent is obliged to register such
a transaction, even if it is carried out through more
than one operation when circumstances show that
these transactions are interrelated.

The issue of ‘money laundering’ mentioned
above more and more often affects the Polish
financial system as well. In order to counteract
this phenomenon, the Parliament passed an act
imposing the duty of collection and registration
of all the financial transactions carried out by the
so-called IUOs’.

The system’s task is to collect information
about ‘above-threshold’ transactions the value of
which exceeds a certain value fixed by the Min-
istry in order to identify possible signs of money
laundering. Both the scope and format of data
transferred to the General Inspection must comply
with the requirements of this institution.

Regulations issued by the Ministry of Finance
impose on the institutions the duty and responsibil-
ity of registration of such transaction on financial
markets when the organization acts upon a cli-
ent’s instruction. This makes the IUO undertake
appropriate steps in order to meet the Ministry’s
requirements. The process of transferring infor-
mation requires appropriate IT infrastructure
enabling efficient detection of such operations and
integration with the Ministry’s system. Figure 1
shows a general flowchart of the system:

In order to collect data for reports efficiently,
the system takes required information automati-
cally from the databases of the subsidiaries of the
organization. The Controllers’ responsibility is to
verify the validity of registered transactions and
to key them in case of suspected offence. The
General Controller is responsible for creating
a ‘batch’ of the transactions for a given month,
saved as an XML file, and transferring it to the
Ministry.

The system will be compiled as a web ap-
plication, which means that the user will com-
municate with the application server through an

118

UML 2.0 in the Modelling of the Complex Business

Internet browser. This will make it possible for
a dispersed group of units to work within one
institution, with simultaneous data saving on the
central database server.

The system will be implemented in the institu-
tion’s internal network, using its architecture in
order to communicate between components of
the system. Communication with the Ministry’s
external systems will be limited to report sending
and validation.

3 bUsIness pROcesses
mODelIng

The first stage of creating an IT system in con-
formity with the UML is identification of an
objective domain. Before starting the deployment
of the system it is necessary to identify the needs
of the future user as precisely as possible. It is
important to obtain profound understanding of

business processes, their initiation and flow. This
stage is so important because it is responsible for
displaying a fragment of real world which is a
foundation for further development of the applica-
tion from the programmer’s point of view.

The flowchart above shows the context of
processes for the system under design, which is
helpful during the identification of its functional-
ity. The flowchart includes an abstract User who
may initiate the events: Appearance of Suspicion
or Generating Report. Appearance of Suspicion
is an event executed when suspicious transaction
is spotted and it starts a process of Registry of
Transaction. This process aims at Registration of
Transaction labeled by a stereotyped <<goal>>.
The input data of the process are labeled as ste-
reotyped <<input>> and they may be entered
through a component, i.e. Web Page of Transac-
tion or by using the system’s object Automatic
Import. The process ends in saving the output
data <output>> in the database labeled in the
flowchart as Database.

System
D atabase

Server G IIF

Genera l C ontro ler

Secondary C ontro ler

Application Server

Secondary C ontro ler

E xte rna l S ystem

D ataBase D ataBase

Genera l O ffice

S ubsid ia ries

R eport
X M L

Figure 1. The flowchart of the system

 119

UML 2.0 in the Modelling of the Complex Business

The other event which may occur is Generating
Report which takes place when the user wants to
report to the General Inspection. This event starts
up a Generating Report process aimed at Report
Generation. The input data for the process come
from the database and the report generation is
supported (<<supply>>) by a component of the
system – Web Page of Report. The process ends
with transferring data to the Ministerial system
SI*GIFI.

4 fUnctIOnAlItIes Of tHe
system In tHe fORm Of Use
cAse DIAgRAm

Using the flowchart Use Case Diagram it is pos-
sible to identify correctly the requirements of
the designed system and identify users with the
functions they perform within the system. Each
use case is described with the major scenario
and, if necessary, by an alternative scenario. The

 od bUsIness pROcesses mODelIng

Registering of transaction

«goal»
enrollment
transaction

Aappearance o f
susp ic ion

User

«database»
system

Database

process of generating report
G enerating R eport

«goal»
enrollment
transaction

sI*gIIf

«com ponent»
Web page of
transaction

«com ponent»
Web page of

reports

«objec t s ys tem »
Automatic

Import

«goal»

«output»

«input» «goal»

«output»

«input»

«supply»

«input»

Figure 2. Flowchart of business processes

120

UML 2.0 in the Modelling of the Complex Business

scenarios describe how the software is used by
the individual user.

The use case diagram presented in Figure 3
includes three players, i.e. Administrator, Gen-
eral Controller and Secondary Controller as an
expansion of the abstract player User.

The execution of the use case Administrating
is ascribed to the player Administrator. He can
tune the application to proper operation. Addi-
tionally, this case is extended (<<extend>>) by
the case User Management which allows for full
management of the users and their roles. This
relation is optional.

The user General Controller may utilize full
functionality of the system. He has authorization

to perform the use cases Reporting and Operation
of Transaction. The tasks of Secondary Controller,
however, are less complex and they focus only on
the use case Operation of Transaction.

The use case Operation of Transaction allows
for registering of transaction and it is extended
by the following cases: Create New Transaction,
Updating Transaction and Configuring Automatic
Import. By initiating Creating New Transaction
or Updating Transaction, the user is obliged to
verify the validity of the input data. He carries
out the included case (<<include>>) of using
Transaction Verification.

The player General Controller uses the
functionality of report generating consisting in

Figure 3. Use case diagram
 ud Use cAse DIAgRAm

Administrator

general controller

secondary controller

UseR

Administrating

Reporting

Operation of
transaction

User management

generating Report

searching Reports

Reports
verification

sending Report

create new
transaction

Updating
transaction

transaction
verification

configuring
automatic import

«extend»

«inc lude»

«extend»

«extend» «inc lude»

«inc lude» «extend»

«extend»

«extend»

«inc lude»

 121

UML 2.0 in the Modelling of the Complex Business

downloading specific data from the set of reg-
istered transactions. The use case Reporting is
extended by the cases Sending Report and Gen-
erating Reports. The use case Generating Report
requires verification of the validity of the report.
This is done through initiating the included use
case (<<include>>) Report Verification. After
generating the report and positive validation, it
is registered in the database. At that moment the
General Controller may carry out Sending Report
which includes use case Searching Reports aimed
at exact identification of the report which is to be
sent to the Ministerial system SI*GIFI.

In Figure 3 three main modules of the system
are specified:

• Administrative module – makes it possible
to create users and assign authorization to
them. Users are subdivided into system
administrators, General Controllers and
Secondary Controllers. The Local Controller
has a possibility of putting in and updating
data, and verifying the validity of registered
transactions from a given subsidiary; he
also enters on a current basis data concern-
ing “emergency drawings”. The General
Controller can enter corrections, edit and
report the operations of all the units and
create reports for the General Inspection;

• Reporting module – enables data opera-
tions: editing, browsing, sorting out, report
generating and sending to the SI*GIFI. The
possibilities of editing and reporting are
available depending on the authorization
conferred upon the user;

• Operation of transaction module – enables
importing, inputting and updating transac-
tions. The system checks on-line the valid-
ity of entered transactions. The process of
automatic import of data is launched by an
authorized user in order to detect suspicious
financial transactions in any of the subsidiar-
ies.

When starting to work with the system, the
user has to go positively through the process of
authorization and authentication, which means a
necessity of correct logging into the system. Only
a registered user with the ascribed role may use
the functionalities of the system.

5 tRAnsActIOn pROcessIng

The process of transaction registration may
be carried out in two ways. The first one – the
authorized user is connected to the transaction
processing interface and enters the data manu-
ally. Then the keyed-in data are validated, and,
if the process runs positively, the data are stored
in the database.

The Sequence Diagram presented in Figure
4 presents the interaction of the process of reg-
istering a new transaction. In order to start the
process, the user employs Transaction Processing.
Then the control is taken over by ITransaction
interface, to which the user feeds the transaction
data and issues the message addTrans. Instance of
the ITransaction classifier triggers an operation
on the tables Owner, Dispatcher, Beneficiary in
order to download id number of a given identity.
This operation is performed as a program loop and
allows to search all the registered identities. If the
input data of the transaction are positively veri-
fied, the interface validateTrans of ITransaction
executes component procedure addTrans at the
table Transaction. If the process ends positively,
a message (Saved) is sent; otherwise the error
message (Error) is displayed.

Another way of registration is based on auto-
matic import of transaction. The system down-
loads information about daily transactions from
existing transaction database and places them in
the system’s database. All the transactions are
saved because there is a possibility of error oc-
currence during importing. If the validation of
the import proves unsuccessful, it is assigned a

122

UML 2.0 in the Modelling of the Complex Business

parameter value of Validation = False, otherwise
the value is Validation = True. Thanks to this
solution users can easily identify transactions that
need corrections. All the data can, if necessary,
be upgraded or corrected by the users.

Transaction import is carried out after defining
search options. It is possible to define the follow-
ing search options:

• A set of options for identifying transactions
of a value higher then the current 15,000
EURO;

• A set of options for identifying suspicious
transactions. These options can be defined
as automatic options, performed each time
after importing a transaction, or as manual
options initiated by the user at any time.

Figure 5 displays activities performed during
import of transaction to display the logic of data-

flow through two partitions: User and Import.
The first activity is performed by the user while
Setting Import Parameters. By initiating import
process – Start Import – the dataflow is directed
to an Import classifier. The import information
is downloaded – Get Import Parameters. Then
operations of connecting to the database and
searching for transactions follow. If a transaction
meeting the parameter valueTrans >1,500 EURO
is not found,, the data flow is directed to the User
with the information that there are no transac-
tions above the ‘threshold’ level. Otherwise the
transaction is downloaded, validated, and saved
in the database of the system. Finally the User is
informed about the imported transactions.

Sequence diagram presented in Figure 6
shows interactions of the transaction import.
To start the process, the User engages Process
of Transaction Import. Then, control is taken
over by the ITransaction interface, by the use of

 sd tRAnsActIOn pROcessIng

U ser

(from Use Case Model)

« tab le»
:Transac tion

« tab le»
:B ene fic ia ry

« tab le»
D ispa tche r

« tab le»
:O w ner

W eb P age

loop

alt
[va lida tionTrans = Tru e]

[va lida tionTrans = F a lse]

« in te rface»
:ITransac tion

da ta e n try
Transac tion= addTrans (Transac tion)

idO w ner= s e lec tO w ner()
idD isposer= s e lec tD isposer()

idB ene fic ia ry= s e lec tB ene fic ia ry()

B oo lean=

addTrans (Transac tion)
M essage(S aved)

M essage(E rro r)
C lose

Figure 4. Transaction processing

 123

UML 2.0 in the Modelling of the Complex Business

which the User defines import parameters, such
as Transaction Value, Database, Table, login and
password. This information is necessary to initiate
correctly a connection with the database which
contains importable data. Thus the instance of
ITransaction generates operation setimport of
the Import classifier. After initiating import by
the User, parameters of import are downloaded,
and then a search for transactions in the indicated

database is launched. This operation is carried out
as a programmed loop. If the message select=0
is received, the system informs the user that
there are no transactions. However, if at least a
single transaction is found, the validation ‘vali-
datingTrans’ is started, and then it is saved in the
database. Finally the user is informed about the
effects of the import.

 ad tRAnsActIOn ImpORt

ImportUseR

set ImpORt
pARAmeteRs

Run Import get Import parameters

create connection w ith
database

collecting transaction

validating transaction

set v alidationfalse set v alidation true

sav ing transaction show import result

transaction search

message - no transacion

[co u n tT ra n s > 0 A n d va l u e T ra n s > 1 5 .0 0 0 E]

[co u n tT ra n s = 0]

[va l i d a ti n g = Fa l se] [va l i d a ti n g = T ru e]

Figure 5. Transaction import chart

124

UML 2.0 in the Modelling of the Complex Business

6 geneRAtIng RepORts

All the transactions saved in the system must be
sent to the General Inspection. Exporting peri-
odical reports generates an XML document. The
document is saved to a file with an appropriate

name, e.g. 14022006.xml. Exported positions of
the registry are labeled with a common identi-
fier.

The process of generating reports is initiated
by the user authorized as the General Controller.
First, a transaction saved in the database of the

 sd pROcess Of tRAnsActIOn ImpORt

:U ser

«tab le»
:T ransac tion

D atabase

:Im port

W eb Page

alt
[va lida tingT rans = T rue]

[va lida tingT rans = F a lse]

«in terface»
:IT ransac tion

loop

loop

loop

configure Im port
setIm port Im port= setIm port()

runIm port
T ransac tion= Im portT rans ()

String= getIm portParam eters ()

T ransac tion= s e lec t

Boolean= va lida tingT rans ()

addT rans (T ransac tion)
setVa lida tion(T rue)

Message(Im portC orrec t)

addT rans (T ransac tion)

setVa lida tion(F a lse)
Message(Im portW ithErrors)

m essage(noT rans)

c lose

Figure 6. Sequence diagram of the transaction import

 125

UML 2.0 in the Modelling of the Complex Business

system in the specific time interval is downloaded.
After successful validation of the report, an XML
document created in this way may be saved.

The sequence diagram in Figure 7 demon-
strates the interactions in the process of generating
reports. To initiate this process, the user engages
Generating Reports, which evokes the message
generateReport on the IReport interface. Then,
using the message selectTrans of the ITransaction
interface, aided by component procedure select-
Trans the user imports transactions registered in
the table Transaction for the month relevant for the
report. If validateReport =True, the component
procedure addReport allows for saving data in the
table Report. Then the user receives the message
Report Generated.

The process of sending the report to the
SI*GIFI system may take place immediately

after it has been created or later, but it needs
the interference of the General Controller of the
Organization.

The process of posting the report demonstrated
in Figure 8 starts when the General Controller,
using the page Generating Reports executes the
message sendReport on the IReport interface.
The report data are imported from the Report
table with the message selectReport. Then the
IReport interface transfers the report (with the
message sendReport) to the boundary object,
i.e. the Ministerial SI*GIFI system. The IReport
interface classifier waits for a feedback message
after the report has been processed at the Ministry.
Depending on the verification run by the Ministe-
rial system, on the page Generating Reports a
message correct or rejected will be displayed.

 sd geneRAtIng RepORts

G enera l C ontro ler

(from Use Case Model)

«tab le»
:R eport

«tab le»
:T ransac tion

«in terface»
:IR eport

«in terface»
:IT ransac tion

W eb Page

loop

alt
[va lida teR aport = T rue]

[va lida teR eport = F a lse]

generateR eport
R eport= generateR eport()

T ransac tion= se llec tT rans ()

T ransac tion= se lec tT rans ()

Boo lean= va lida teR aport()

addR eport(R eport)
Message(R eport G enerated)

Message(Error)

c lose

Figure 7. The process of generating reports

126

UML 2.0 in the Modelling of the Complex Business

The diagram of the finite state machine shown
in Figure 9 shows the states of the report after
being sent to the Ministerial system. Processing
in SI*GIFI is a complex state which contains
finite state submachines. The states presented in
the diagram mean:

• Registered – the file has been accepted by
the GIFI system. In the case of sending files
by email this status will be displayed after
decoding of the file which, depending on
the number of files queuing up, may last
several hours. The procedure is so long
because identification of a transmitted file
and its assignment to a specific institution
may happen only after positive verification
of electronic signature and decoding of the
file,

• Signature is waiting for verification – the IT
system of GIFI is waiting for verification of
the signature’s authenticity. Time needed for
checking authenticity is 1 hour. This time
results from the Electronic Signature Act.
During that time authorized certification
offices verify the authenticity of the signa-
ture,

• Signature correct – the signature has been
verified as authentic and the file is waiting
for decoding,

• Signature incorrect – the signature has been
verified as incorrect and the file will not be
decoded, and its status will change into “To
be clarified”,

• Transaction read – the IT system found
correct data referring to transactions in
the decoded file, and the transactions have

 sd pOstIng RepORt

G eneral C ontroler

(from Use Case Model)

W eb P age S I*G IIF

alt
[correc t]

[rejec ted]

«interface»
:IR eport

«table»
:R eport

pos tingR eport
sendR eport()

R eport= selec tR eport()

send

S tring= M essage()
M essage(correc t)

S tring= M essage()

M essage(rejec ted)

c lose

Figure 8. The process of posting reports to the SI*GIFI

 127

UML 2.0 in the Modelling of the Complex Business

been read into the GIFI IT system. The
process of file transfer has been correctly
completed.,

• Incorrect – in the decoded file, the GIFI IT
system found data saved and sent by the
IUO in breach of the relevant ordinance of
the Ministry of Finance on the transmitted
data formats. The IUO should verify the
correctness of the data sent in terms of their
compliance with the format provided for by
the ordinance, and after identification of the
error the corrected data should be sent once
again.

The timing diagram presented by Figure 10
specifies the order of occurrence of classifier of
instance states in terms of time change. It presents
states of Report Generating and their duration
through the definition of their time limits. The
break of the state alteration line means the oc-

currence of a new state of this instance. For the
states generatingReports, SavingReports, Post-
ingReports and ReadingReports, the time scale
clearly defines their duration. It is impossible,
however, to define precisely the duration of the
following states:

• verificationSignature – {1 hour}
• verificationReport – {a few hours}
• enrolmentReport – {10 minutes}

7 DAtA mODel Of tRAnsActIOn
AnD RepORtIng mODUle

By the use of UML available in the database
profile, it is possible to apply in the diagrams
classes stereotypes, tables, relations, views or
component procedures:

Figure 9. The diagram of finite state machine of sending reports to the SI*GIFI
sm posting Reports

processing in sI*gIIf

enrollment Incorrect

signature is
waiting for
verification

signature correct

verification

Receiving

signature incorrect

transaction reading

w hen report = " accep ted"

posting Report

Fa lse True

128

UML 2.0 in the Modelling of the Complex Business

• Labeling tables with stereotype <<Table>>,
columns - <<Column>> and views -
<<View>>,

• Keys defined according to the stereotype
<<PK>> - Primary Key, and <<FK>> -
Foreign Key,

• Unique values - <<Unique>>.

Database profile of UML contains all the
elements needed for modeling database structure.
By applying specific stereotypes we can easily
design a database. By using the CASE software
it is possible to obtain more detailed specification
of created diagrams and generate on their basis
ready-made scripts, such as SQL. Table spaces
are also an important element, as they are used to
aggregate and decompose tables. They constitute
clear, hierarchic structure which enhances bet-
ter understanding of the database by the project
team. It is of significant importance in a situation,
when we want to use the database once again or
introduce some modifications.

The system’s database consists of the follow-
ing table spaces (<<Tablespace>>) which are
identical to the system’s modules:

• Transaction handling, created by tables:
Transaction, Dispatcher, Owner, Benefi-
ciary;

• Reporting, consisting of both Report and
Transaction tables.

Since the modules of transaction handling and
reporting overlap, the structure of this segment
of the database may be considered on a single
diagram. Figure 11 includes tables Report, Trans-
action, Dispatcher, Owner and Beneficiary. From
the system functionality point of view, the central
point of this segment of the database are two
tables: Transaction and Report.

The table Transaction consists of the primary
key PK IdTransaction and four foreign keys
idReport, idBeneficiary, idOwner, and idDis-
patcher, which represent primary keys of their
own tables. The other columns describe transac-
tion data. The column Validation is an important
element, since it can take False and True values
depending on verification of data correctness dur-
ing the transaction’s import. Size of associations
points to relation between tables. Each transaction
must have one Owner, Dispatcher, and Beneficiary
assigned. The Report, however is an element that
aggregates transactions from a given month, and
in order to generate it we must have at least one
transaction. Partial aggregation applied here
shows that shared objects or Transactions may
function independent of the aggregate.

Figure 10. The timing diagram of the process of generating and posting reports to the SI*GIFI

 129

UML 2.0 in the Modelling of the Complex Business

 cd structure of transaction Data

transaction

co l u m n
*P K Id T ra n sa cti o n : i n t
 FK Id Re p o rt: i n t
 n rE wT : i n t
 n rRe j Da t: d a te ti m e
 re j Da t: d a te ti m e
 j e d IO : i n t
 S ta tu s: i n t
 kRo d zT r: n va rch a r(4)
 kP wz: n va rch a r(1)
 kP d j rz : n va rch a r(4)
 sp Dysp : i n t
 n rDo kT : n va rch a r(1 2)
 tDa t: d a te ti m e
 tM : n va rch a r(3 5)
 tJ : n va rch a r(3)
 tK wZ: n va rch a r(1 5)
 n rRa ch Z: n va rch a r(5 6)
 n rRa ch N: n va rch a r(5 6)
 Uwa g i : n va rch a r(1 5 0 0)
 FK Id B e n e fi c j a ry : i n t
 FK Id O wn e r: i n t
 FK Id D i sp a tch e r: i n t
 V a l i d a ti o n : b i t

FK
+ FK _ T ra n sa kcj a _ B e n e fi c i a ry(i n t)
+ FK _ T ra n sa kcj a _ D i sp a tch e r(i n t)
+ FK _ T ra n sa kcj a _ O wn e r(i n t)
+ FK _ T ra n sa kcj a _ Re p o rt(i n t)
P K
+ P K _ T ra n sa kcj a (i n t)
p ro c
+ a d d T ra n s()
+ d e l l T ra n s()
+ u p d a te T ra n s()
+ se l e ctT ra n s()
+ se tV a l i d a ti o n ()

beneficiary

co l u m n
*P K Id B e n e fi c j e n ta : i n t
 b T yp P o : n va rch a r(2)
 b Nz: n va rch a r(1 4 0)
 b A d rK r: n va rch a r(1 0)
 b A d rK o d : n va rch a r(1 0)
 b A d rM : n va rch a r(3 5)
 b A d rU l : n va rch a r(3 5)

P K
+ P K _ B e n e fi c i a ry(i n t)
p ro c
+ a d d B e n e fi c i a ry()
+ d e l B e n e fi c i a ry()
+ u p d a te B e n e fi c i a ry()
+ se l e ctB e n e fi c i a ry()

Dispatcher

co l u m n
*P K Id D i sp a tch e r: i n t
 zT yp P o : n va rch a r(2)
 zNz: n va rch a r(1 4 0)
 zA d rK r: n va rch a r(2)
 zO b yw: n va rch a r(2)
 zA d rK o d : n va rch a r(1 0)
 zA d rM : n va rch a r(3 5)
 zA d rU l : n va rch a r(3 5)
 zNrP e s: n va rch a r(1 1)
 zNrRe g : n va rch a r(9)
 zNrRe S : n va rch a r(1 0)
 zNrS wt: n va rch a r(1 5)
 zN ip : i n t
 zRo d zDo kT o : n va rch a r(2)
 zNrDo kT o : n va rch a r(2 5)

P K
+ P K _ D i sp a tch e r(i n t)
p ro c
+ a d d D i sp a tch e r()
+ d e l D i sp a tch e r()
+ u p d a te D i sp a tch e r()
+ se l e ctD i sp a tch e r()

Owner

co l u m n
*P K Id O wn e r: i n t
 p T yp P o : n va rch a r(2)
 p Nz: n va rch a r(1 4 0)
 p A d rK r: n va rch a r(2)
 p A d rK o d : n va rch a r(1 0)
 p A d rM : n va rch a r(3 5)
 p A d rU l : n va rch a r(3 5)

P K
+ P K _ O wn e r(i n t)
p ro c
+ a d d O wn e r()
+ d e l O wn e r()
+ u p d a te O wn e r()
+ se l e ctO wn e r()

Report

co l u m n
*P K Id Ra p o rtu : i n t
 N i p IO : i n t
 IK a rt: i n t
 p Da t: d a te ti m e
 p Cza s: sm a l l d a te ti m e

P K
+ P K _ Ra p o rt(i n t)
p ro c
+ a d d Ra p o rt()
+ d e l Ra p o rt()
+ u p d a te Ra p o rt()
+ se l e ctRa p o rt()

+ FK _ T ra n sa kcj a _ Re p o rt

1 ..*« FK »1

+ FK _ T ra n sa kcj a _ B e n e fi c i a ry

1

« FK »

1

+ FK _ T ra n sa kcj a _ O wn e r

1

« FK »

1

+ FK _ T ra n sa kcj a _ D i sp a tch e r

1

« FK »

1

Figure 11. Data structure of the transaction handling and reporting module

130

UML 2.0 in the Modelling of the Complex Business

The Ordinance of the Minister of Finance
exactly specifies the structure of a transaction,
defining all the required fields and types of data
specific to them. Elements of each transaction are
grouped as follows [15]:

• Identification of transaction – nrEwt –
evidence number, nrRejDat – registration
number, rejDat – registration date, jedIO
– organizational unit and status;

• Transaction – kRodzTr – transaction type
code, kPwz – transaction association code,
kPdjrz – suspicious transaction code, spDysp
– mode of dispatching decision, nrDokT-
transaction document number, tDat- date
of completion of transaction, tM – place of
completion of transaction, tKw- total amount
of transaction, tJ- transaction unit, tKwZ-
total amount of transaction after revision,
tJZ – transaction unit after revision;

• Information about dispatcher – entity issuing
transaction note;

• Information about owner – entity on behalf
of which the order is issued;

• Information about beneficiary – person
benefiting from completed transaction;

• Account of parties to the transaction –
nrRachZ – Number of Source Account, and
- nrRachN – number of target account;

• Fields of notes – include additional informa-
tion about transaction.

Each transaction registered in a given month
contributes to the monthly XML report. Reports
are defined by the fields like NipIO – Tax Ref-
erence Number of the IUO, lKart – number of
transactions, pDat – date, and pCzas – time of
report generation.

On the basis of the presented diagram, a SQL
script has been generated. Excerpt from the script
can be seen as follows:

-- --
-- DBMS : SQL Server 2000
-- --

-- Create Tables
CREATE TABLE Beneficiary (
 IdBeneficiary int NOT NULL,
 bTypPo nvarchar(2),
 bNz nvarchar(140),
 bAdrKr nvarchar(10),
 bAdrKod nvarchar(10),
 bAdrM nvarchar(35),
 bAdrUl nvarchar(35)
)
;
-- Create Primary Key Constraints
ALTER TABLE Beneficiary ADD CON-
STRAINT PK_Beneficiary
 PRIMARY KEY (IdBeneficiary)
;

8 system cOmpOnents AnD
DeplOyment

Figure 12 presents three components forming a
functionality of the reporting and control system.
The Administration component stores classes
User, Department and Branch Office and contains
three interfaces of IAdministrator, Autentification,
and Login ensuring accessibility. As the very labels
suggest, Autentification and Login interfaces make
it possible to verify and log in the User, whereas
IAdministrator allows for efficient management
and configuration of the system.

The component Report Handling contains a
class Report and makes an interface Ireport avail-
able. It utilises a component Transaction Handling
through an interface searching ITransaction in
order to download transactions for reporting.

Transaction Handling is the third component,
consisting of classes Transaction, Import, and an

 131

UML 2.0 in the Modelling of the Complex Business

abstract class Person and its expansions – Benefi-
ciary, Dispatcher, Owner. Performing operations
on these classes is possible through the availability
interface ITransaction.

For appropriate operation, Transaction Han-
dling and Report Handling need two interfaces:
Login and Autentification components of Ad-
ministration.

The above deployment diagram has been con-
structed at a physical level because it contains de-
tailed specifications of node attributes. The system
is meant to be implemented in the inner network
of the organization. According to this assumption,
the Figure 13 diagram demonstrates the arrange-
ment of the system in the network architecture.
Specific parameters are presented in three nodes:
the GIFI Application Server, Database Server and
User Station. These are the only elements that, in
a present situation, may undergo the configuration
meant for this system. The other elements, such
as network setup or firewall, are the parameters
which must be accepted by the system.

The Database Server and Application Server
nodes contain detailed information about a pro-
cessor, RAM, HDD controllers and operating
systems. As far as the database is concerned, its
type has been defined: Microsoft SQL Server.

The user station, however, should have the web
browser which will enable the User to utilize the
system.

Three artifacts, i.e. Handling Reports.aspx,
Login.aspx, and Transaction Handling.aspx
have been located on the server, together with
three system components. Because they have
been located on the Internet application server
Microsoft IIS(Internet Information Services)
which is a component of the operational system
Windows Server 2003, they can be utilized by
the user through his web browser. The database
server, however, will contain the whole structure
of the database which is needed for appropriate
operation of the system.

sUmmARy

Examples of usage of UML 2.0 language presented
in this chapter show its possible wide spectrum
of application in various areas of software engi-
neering. Particular attention should be paid to
utilization of Unified Modeling Language in the
process of reaching and defining functionality of
systems in which complex architecture combines
numerous objective domains. By applying the

Figure 12. Component diagram
 id component Diagram

Administration

IAdm in is tra tor

Log ing

Autentifica tion

Report
handling

Autentifica tion

Loging

IR aport

IT ransac tion

transaction
handling

Autentifica tion

Loging
IT ransac tion

132

UML 2.0 in the Modelling of the Complex Business

possibilities of UML we can precisely define the
functionality, facilitate communication between
design teams, and monitor unification of specifica-
tion of concepts. Thanks to complex UML profiles
and multi-perspective nature, the language is ap-
plicable in designing various problem areas.

Besides, the chapter presents applicability of
UML in the database modeling process. Utiliza-
tion of the CASE tools comprehensively supports
possibilities offered by UML at construction of
model multi-level applications and their data
structures. It is a major step forward in designing
contemporary IT solutions.

The design of the system presented above
which facilitates generating and sending reports
to GIFI has been constructed in compliance with
the specification of UML 2.0. Its coherent and
systematic description credibly reflects complex
business model and concurrent processes.

RefeRences

Ambler S. W. (2003). The Elements of UML Style.
Cambridge: University Press.

 dd Deployment Diagram

firewall

Organization's
network

User station

Database
serv er

« a sp p a g e »
T ra n sa cti o n h a n d l i n g .a sp x

« a sp p a g e »
Re p o rt h a n d l i n g .a sp x

« a rti fa ct»
Da ta b a se .m d f

gIfI reporting
application serv er

component
model::

Administration

component
model::Report

Handling

component
model::

transaction
Handling

« a sp p a g e »
L o g i n .a sp x

Web browser

- P ro ce sso r: 2 x 2 G Hz X e o n
- M e m o ry: 2 x 1 G B
- HDD: S CS I 3 0 0 G B
1 0 0 0 0 RP M
- P l a tfo rm : M i cro so ft
W i n d o ws S e rve r 2 0 0 3

- P ro ce sso r: 2 x 2 G Hz X e o n
- M e m o ry: 4 x 1 G B
- D i sc M a tri x 2 T B
- P l a tfo rm : M i cro so ft W i n d o ws S e rve r
2 0 0 3
- Da ta b a se : M i cro so ft S Q L S e rve r

1
« fa st e th e rn e t»

1
1

« fa st e th e rn e t»
1

1
« T CP -IP »

1

« d e p l o y»

« m a n i fe st» « m a n i fe st»« m a n i fe st»

« d e p l o y»« d e p l o y»« d e p l o y»

1 ..

« e th e rn e t»
1

Figure 13. Diagram of system deployment

 133

UML 2.0 in the Modelling of the Complex Business

Ariadne Training (2001). UML Applied – Object
Oriented Analysis and Design using the UML.
Ariadne Training Limited.

Booch G., Rumbaugh J., & Jacobson I. (1999).
UML user guide. Addison Wesley.

Enterprise Architect Home Page, http://www.
sparxsystems.com/

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design Patterns: Elements of Resuable
Object- Oriented Software. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design Patterns: Elements of Resuable
Object- Oriented Software. Addison-Wesley.

Maciaszek, L. (2005). Requirements Analysis and
Systems Designs. Addison Wesley.

Marcinkowski, B., & Wrycza, S. (2005). Inter-
action Occurrences and Combined Fragments
in System Dynamics Modelling with UML 2
Sequence Diagram art. In G. Nilsson, R. Gustas,
W. Wojtkowski, G. Wojtkowski, S. Wrycza, & J.
Zupancic (Eds.), ISD 2005 Proceedings of the
Fourteenth International Conference on Informa-
tion Systems Development, Karlstad University
Studies, s (pp. 59-68), Karlstad.

Martin, J., & Odell, J. J. (1992). Object- oriented
Analysis And Design. Prentice Hall.

Martin, R. C. (2003). Agile Software Development.
Pearson Education.

Muller, R. J. (2000). Databases –UML In database
modeling. MIKOM 2000 (in Polish).

Shalloway, A., & Trott, J. R. (2002). Object
oriented design – Design Patterns. HELION (in
Polish).

Śmiałek, M. (2005). Understanding UML 2.0
Methods of object oriented modeling, HELION
(in Polish).

The Ministry of Finance GIFI. Counteracting
money laundering.

Wrifs-Brock, R., & McKean, A. (2006). Object
design – Role, responsibility and cooperation,
Helion 2006

Wrycza, S., Marcinkowski, B., & Wyrzykowski,
K. (2005). UML 2.0 in Informatics System Model-
ing. Helion.

Wrycza, S., Marcinkowski, B., & Wyrzykowski,
K. (2005). UML 2.0 in Information Systems Mod-
eling. Helion 2005 (in Polish), (pp.1-448).

Wrycza, S., & Marcinkowski, B. (2006). UML 2
Teaching at Postgraduate Studies – Prerequisites
and Practice art. In D. Colton, & T. Janicki (Eds.),
The Proceedings of ISECON 2005, Columbus,
Ohio, Volume 22, the 22nd Annual Conference foe
Informations Systems Educators, AITP Founda-
tion for Information technology Education.

134

Chapter X
The UML 2 Academic Teaching

Challenge:
An Integrated Approach

Stanisław Wrycza
University of Gdańsk, Poland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

UML 2.x version has become even more complicated and diverse set of graphical techniques than its
predecessors. Therefore, system developers propose preparation of its reduced, limited or minimal version
called Light UML. This problem has become also the serious challenge for the UML academic teach-
ers. The goal of this chapter is the study of specifying the UML 2.x Light version content on the basis
of the questionnaire survey registering opinions of 180 university students of the University of Gdansk,
Poland. After the introduction, the methodological prerequisites of the survey are clarified. Then, the
research results are presented and discussed according to seven essential UML diagrams assessment
criteria, included in a questionnaire. The final UML 2.x version, resulting from the accomplished survey
is exposed in the last section of the chapter.

1 IntRODUctIOn

Unified Modeling Language (UML), proposed by
G. Booch, I. Jacobson and J. Rumbaugh (2004),
has attracted the attention of both academics and
practitioners of information systems analysis and
design. In the last few years, increasing interest in
UML stimulated spreading it across computing

curricula at universities. This tendency evoked
the exchange of ideas regarding the effective
teaching of UML among the language trainers.
Version 2.0 (OMG 2005) and the working drafts
of future UML versions (OMG 2006) are in fact
a diverse and in some parts excessive toolbox,
which combined with system development process
create a methodological platform for developing
a working system.

 135

The UML 2 Academic Teaching Challenge

Most of the UML teachers stress the question
of the language complexity and variety of its
modeling constructs. They consider this issue
as a fundamental problem from a teaching point
of view. On the basis of practical projects and
teaching experiences it may be stated that only
purposefully selected part of the complete UML
potential is used. Moreover, a few diagrams and
sets of UML notions are known to form the core
of a typical system model. There are versatile
opinions what specific modeling notions are the
most required for teaching and practical aims.
Such set of UML diagram types and notions
might create its minimal set or – as it is commonly
called – UML Light version.

The question of the effective implementation
of UML in education, in respect of a UML Light
version concept, has already been raised in differ-
ent papers. Flint, Gardner and Boughton (2004)
indicate a number of problems associated with
UML teaching. They stress that the use of strict
subsets of UML is easier to understand than the
full language notation. Burton and Bruhn (2004)
generalize their experiences related to use of the
UML and underline the role of CASE tools ap-
plication in UML teaching. In their opinion such
tools are important factors, stimulating support
of the active students’ involvement in teaching
process as well as allowing enrichment of system
specifications by using stereotypes. The concept of
minimal set of UML diagrams was also proposed
by DeLooze (2005). Another survey, carried out
among 171 practitioners, was directed at the UML
version that would have a limited scope as well
(Dobing and Parsons, 2006). It seems that the
quickness of UML upgrading and implementing
modifications as well as potential difficulties in
getting familiar with the language by novices are
underestimated. The goal of this chapter is the
study of specifying the UML 2.x Light version
content on the basis of the questionnaire survey
of the university students’ opinions.

The courses of UML (2.0 and earlier versions)
have been given at the University of Gdansk since
2001. The complete UML teaching approach was
implemented soon after and then continuously
modified and improved with each released UML
version. The UML teaching process is discussed in
detail in (Wrycza and Marcinkowski, 2005b). The
authors identified and analyzed several problems
described in (Wrycza and Marcinkowski, 2006).
One of the essential conclusions, being in accor-
dance with the opinions expressed by authors cited
to follow, is that the students are overwhelmed
by the number of different UML diagrams (13 in
UML 2.0), complicated interrelationships among
them and the extensive number of modeling no-
tions. The following constraints should concern
such Light version:

• Light version would only consist of dia-
grams that are most often used in practice
and would include only part of the current,
detailed syntax;

• The minimal UML version should support
the RUP basic disciplines, i.e. require-
ments specification as well as analysis and
design;

• Light version should be entirely compatible
with the “full” version of UML 2.x.

This concept does not limit the UML potential
as the system specifications elaborated in the
Light version could be subsequently extended
towards the full version by the application of
complete scope of UML modeling diagrams and
constructs.

2 metHODOlOgIcAl
bAckgROUnD

To solve the problem of UML Light version
concept, the authors decided to carry out the

136

The UML 2 Academic Teaching Challenge

2% 7%

51%

33%

7%

very eas y
eas y
m oderately d iffic ult
rather di ffic ult
very d iffic ult

questionnaire survey among the university stu-
dents. The target group encompassed 180 students
within knowledge of both structured and object-
oriented methodologies of systems development.
All students taking part in the survey formed a
competent target group, as they:

• Participated in the 30 hrs lecture of UML
2.0;

• Have studied the extensive UML manual
entitled “UML 2.0 in information systems
modeling” (Wrycza, Marcinkowski and
Wyrzykowski, 2005a);

• Exercised the fluency in UML diagramming
by solving the specified design problems
using UML 2 diagrammatic notation with
the support of Sparx Systems Enterprise
Architect CASE tool;

• Developed small UML projects in 3-4 stu-
dents groups;

• Had access to extensive e-learning content,
supporting the course;

• In many cases the students had practical
working experience as programmers or
designers (in particular group leaders).

As noted, the appropriate questionnaire con-
taining 17 basic questions was elaborated and
handed to 180 students taking part in UML course.
The questions were focused around Light version
concepts, reciprocal influence of structured and
object-oriented approach as well as possible UML
extensions. To make the proper assessment of the
UML 2.x Light version the following seven crucial
issues, raised in questionnaire, were analyzed:

1. UML complexity level,
2. UML diagrams cardinality,
3. Usefulness of the specific diagrams,
4. Choice of diagrams overwhelmed with

modeling constructs,
5. Selection of the user-friendly UML dia-

grams,
6. Use of the UML diagrams for the source

code generating,
7. Assessment of the appropriateness of the

dynamics diagrams for the Light version
support.

The assessment of the aforementioned problems in
the synthetic opinions of interviewees is discussed
in detail in the next point.

3 selecteD ResUlts Of tHe
sURvey

3.1 Uml complexity level

The initiating enquiry of the questionnaire re-
garded UML complexity (Figure 1). It’s a basic
question for justification the necessity for intro-
ducing UML Light version. Classifying UML 2.x
as an easy or very easy technique by most of the
respondents would in fact deny the concept of the
Light version introduction. The students’ answers,
however, confirmed the authors hypothesis – ac-
cording to the students’ assessment, UML is most
frequently classified as moderately difficult (51%),
rather difficult (33%) or very difficult (7%). It
means that more than 90% of respondents would

Figure 1. UML complexity level

 137

The UML 2 Academic Teaching Challenge

57%

43%
too m any
adequate num ber

welcome the more introductory, i.e. the Light
version of UML.

3.2 Uml Diagrams cardinality

The students taking part in the survey had a
chance to exercise all 13 types of UML diagrams.
The number of UML diagrams is in a natural
way related to the UML complexity. Majority of
interviewees (over 57%) assessed that the UML
standard comprises too many types of diagrams,
as shown at Figure 2. The remaining respondents
accepted all types of diagrams, not assessing
however the potential surplus of cardinality of
modeling notions that were used in each type of
diagram.

3.3 Usefulness of the Specific
Diagrams

Since only the part of the formal UML specifica-
tion is used in practice, the problem of uselessness
of the specific diagram types arises. The survey
revealed that the future system analysts propose
the following diagrams as the most useful ones
(Figure 3):

• Class Diagrams (62% of accepting respons-
es),

• Use Case Diagrams (56%),
• Activity Diagrams (26%),
• Sequence Diagrams (21%).

The investigations acknowledged commonly
recognized leading role of Class Diagrams and
Use Case Diagrams as the basic graphical formal-

isms for object-oriented modeling of the structure
and dynamics of information system respectively.
Supplementary, Use Case Diagrams initiate itera-
tive- incremental lifecycle in RUP and the other
IS object-oriented methodologies. On the other
hand, State Machine Diagrams (28%), Timing
Diagrams (19%), Deployment Diagrams (13%)
and Composite Structure Diagrams (12%) are
recognized as the most useless diagrams. In the
opinion of teachers, students underestimated the
relevance of State Machine Diagram and Deploy-
ment Diagram. While the former is semantically
rich, but often rejected by novices, the latter is
used at the lower, closer to implementation, disci-
plines of system development process. Therefore,
the teaching of these types of diagrams could be
transferred to the object-oriented programming
courses.

3.4 Diagrams types and their
modeling constructs

As concerned the fourth criterion, students were
supposed to enumerate diagrams particularly
overwhelmed with UML notions (Figure 4). Most
interaction diagrams were found on the list. Se-
quence Diagram was considered overwhelmed
or very overwhelmed with specific modeling
constructs by 32% of the interviewees, while
Interaction Overview Diagram and Communi-
cation Diagram by 28% and 27% respectively.
Only Timing Diagram was ranked as average.
On the other hand, number of UML notions used
while creating a diagram was not a problem in
the case of Object Diagrams, Use Case Diagrams
and Class Diagrams. Only 14%, 18% and 20%

Figure 2. Adequacy of the number of UML diagrams

138

The UML 2 Academic Teaching Challenge

0%

10%

20%

30%

40%

50%

60%

70%

Class
Use Case

Activity
Sequence

Object
Communication

Timing
StateMachine

Package

CompositeStructure

InteractionOverview

Component

Deployment

most useful least useful

Figure 3. Usefulness of the specific UML diagrams

3.4 Diagrams types and their modeling constructs

As concerned the fourth criterion, students were supposed to enumerate diagrams particularly
overwhelmed with UML notions (Figure 4). Most interaction diagrams were found on the list.
Sequence Diagram was considered overwhelmed or very overwhelmed with specific modeling
constructs by 32% of the interviewees, while Interaction Overview Diagram and Communication
Diagram by 28% and 27% respectively. Only Timing Diagram was ranked as average. On the other
hand, number of UML notions used while creating a diagram was not a problem in the case of Object
Diagrams, Use Case Diagrams and Class Diagrams. Only 14%, 18% and 20% of the respondents
respectively mentioned these diagrams as overwhelming. The case of Class Diagrams may be
considered as an interesting one. This type of diagram is in fact a complex one, consisting of a
relatively large number of modeling constructs. However they are accepted and naturally mastered by
students, owing to the awareness of the significance of the classes in contemporary programming
languages.

Figure 3. Usefulness of the specific UML diagrams

0%

5%

10%

15%

20%

25%

30%

UseCase
Class

Object
Activity

StateMachine

Sequence

Communication

Timing
InteractionOverview

Package

CompositeStructure

Component

Deployment

rather overwhelmed definitely overwhelmed

Figure 4. UML diagrams overwhelmed with modeling constructs

3.5 User-friendliness of UML diagrams

User-friendliness is one of the keywords and challenges of Computing field. Assessment of UML
diagrams under this angle should facilitate the specification of UML Light version. Definitely the Use
Case Diagram was recognized as the most easy to use in the family of 13 UML diagrams (Figure 5).
The survey respondents (74%) confirm this feature, so required at the high level of system
specification. This aspect of the system model should be as precise as possible, remaining easy to
interpret by all system stakeholders, in particular system owners, managers and future users.
Acknowledged user-friendliness of Use Case Diagrams is a good starting point for achieving system
specification correctness, precision, consistency and completeness by using the other related UML
diagrams, supporting Use Case Diagrams.

Due to the pragmatic role of Class Diagrams for programming, they have also achieved a high rank of
acceptance – 66% of the respondents classified this type of diagram as an easy or very easy one.
Students appreciated (59%) the significance of Activity Diagrams as a backbone of algorithms and
programs. Certain types of UML diagrams ought to be reconsidered in respect of their “user-
friendliness”. In particular, Interaction Overview Diagrams were classified as difficult or very difficult
to use by 43% of the students. Also Deployment Diagrams (39%) and Composite Structure Diagrams
(38%) were found difficult to use. Therefore, the mentioned diagrams are the natural candidates for
excluding them from the scope of the UML 2.x Light version.

Figure 4. UML diagrams overwhelmed with modeling constructs

 139

The UML 2 Academic Teaching Challenge

of the respondents respectively mentioned these
diagrams as overwhelming. The case of Class
Diagrams may be considered as an interesting
one. This type of diagram is in fact a complex
one, consisting of a relatively large number of
modeling constructs. However they are accepted
and naturally mastered by students, owing to the
awareness of the significance of the classes in
contemporary programming languages.

3.5 User-friendliness of Uml
Diagrams

User-friendliness is one of the keywords and chal-
lenges of Computing field. Assessment of UML
diagrams under this angle should facilitate the
specification of UML Light version. Definitely the
Use Case Diagram was recognized as the most
easy to use in the family of 13 UML diagrams

(Figure 5). The survey respondents (74%) con-
firm this feature, so required at the high level of
system specification. This aspect of the system
model should be as precise as possible, remain-
ing easy to interpret by all system stakeholders,
in particular system owners, managers and
future users. Acknowledged user-friendliness
of Use Case Diagrams is a good starting point
for achieving system specification correctness,
precision, consistency and completeness by using
the other related UML diagrams, supporting Use
Case Diagrams.

Due to the pragmatic role of Class Diagrams
for programming, they have also achieved a high
rank of acceptance – 66% of the respondents
classified this type of diagram as an easy or very
easy one. Students appreciated (59%) the sig-
nificance of Activity Diagrams as a backbone of
algorithms and programs. Certain types of UML

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Use Case

Class

Object

Activity

State Machine

Sequence

Communication

Timing

Interaction Overview

Package

Composite Structure

Component

Deployment

easy or very easy to use neither easy nor difficult difficult or very difficult

Figure 5. Assessment of UML diagrams user-friendliness

3.6 UML diagrams best-suited for source code generation

The development of CASE tools inspired the research and works on source code generation on the
basics of system documentation. UML diagrams at large give the profound opportunity for code
generation on the basis of precise system specifications. The interviewees assessed the following types
of diagrams as a particularly good basis for code generation:
• Class Diagrams (66% total);
• Activity Diagrams (42%);
• Sequence Diagrams (34%);
• Communication Diagrams (34%);
• Component Diagrams (23%).

Again the Class Diagrams have been recognized as the most helpful types of UML diagrams while
transferring system model into a code (Figure 6). Both the contribution and usefulness of the other
UML diagrams in respect of code generation, but not included in the above group of five types, have
been estimated as low.

Figure 5. Assessment of UML diagrams user-friendliness

140

The UML 2 Academic Teaching Challenge

diagrams ought to be reconsidered in respect of
their “user-friendliness”. In particular, Interaction
Overview Diagrams were classified as difficult
or very difficult to use by 43% of the students.
Also Deployment Diagrams (39%) and Composite
Structure Diagrams (38%) were found difficult to
use. Therefore, the mentioned diagrams are the
natural candidates for excluding them from the
scope of the UML 2.x Light version.

3.6 Uml Diagrams best-suited for
source code generation

The development of CASE tools inspired the
research and works on source code generation
on the basics of system documentation. UML
diagrams at large give the profound opportunity
for code generation on the basis of precise system
specifications. The interviewees assessed the fol-
lowing types of diagrams as a particularly good
basis for code generation:

• Class Diagrams (66% total);
• Activity Diagrams (42%);
• Sequence Diagrams (34%);
• Communication Diagrams (34%);
• Component Diagrams (23%).

Again the Class Diagrams have been recog-
nized as the most helpful types of UML diagrams
while transferring system model into a code (Fig-
ure 6). Both the contribution and usefulness of the
other UML diagrams in respect of code generation,
but not included in the aforementioned group of
five types, have been estimated as low.

3.7 modeling the system Dynamics

Potential UML user has quite a number of UML
diagrams types used for describing system dy-
namics at his/her disposal. Some of them are
relatively intuitive and easy to use (eg. Activity
Diagrams, Timing Diagrams) while the others are
very precise, robust and consequently difficult,
but they still remain helpful and are eagerly used
by system analysts and designers. In particular,
Sequence and Communication Diagrams are
not as intuitive as diagrams used for modeling
system requirements, by and large because they
are addressed to professional and experienced
programmers. Precision in developing low-level
system dynamics specifications as well as their
transferability to the source code should be the
deciding factors of their functionality. As shown
at Figure 7, besides Interaction Overview Dia-

0%

5%

10%

15%

20%

25%

30%

35%

40%

Class Activity Sequence Communication Component

better than other diagrams best in its field

Figure 6. UML diagrams best-suited for source code generation

3.7 Modeling the system dynamics

Potential UML user has quite a number of UML diagrams types used for describing system dynamics
at his/her disposal. Some of them are relatively intuitive and easy to use (eg. Activity Diagrams,
Timing Diagrams) while the others are very precise, robust and consequently difficult, but they still
remain helpful and are eagerly used by system analysts and designers. In particular, Sequence and
Communication Diagrams are not as intuitive as diagrams used for modeling system requirements, by
and large because they are addressed to professional and experienced programmers. Precision in
developing low-level system dynamics specifications as well as their transferability to the source code
should be the deciding factors of their functionality. As shown at Figure 7, besides Interaction
Overview Diagrams, all remaining UML dynamics diagrams are helpful in preparing such
specifications. Activity Diagrams were considered the best in this field by as much as 13% of the
respondents. Given the fact that Activity Diagrams are rather user-friendly, the closest to the
structured methodologies, they remain a good basis for specifying the system logic and source code
backbone.

Figure 6. UML diagrams best-suited for source code generation

 141

The UML 2 Academic Teaching Challenge

grams, all remaining UML dynamics diagrams are
helpful in preparing such specifications. Activity
Diagrams were considered the best in this field by
as much as 13% of the respondents. Given the fact
that Activity Diagrams are rather user-friendly,
the closest to the structured methodologies, they
remain a good basis for specifying the system
logic and source code backbone.

4 sUmmARy

The survey results presented in this chapter are
helpful in defining the scope of the UML 2.x
Light version. Such version would be extremely
stimulating and motivating in effective teaching
of UML 2.x. This concept was warmly welcomed
by students and still does not limit the UML
potential. The system specifications elaborated
using the Light version could be subsequently
extended towards the complete systems by the
implementation of full scope of UML modeling
notions and diagrams.

To sum up, the following UML diagrams were
selected and indicated in the survey as the com-
ponents of the proposed UML Light version:

• Use Case Diagrams,
• Class Diagrams,
• Activity Diagrams,
• Sequence Diagrams.

These four types of diagrams (Figure 8) en-
able modeling of all essential system aspects,
i.e. system requirements, analysis and design of
system structure and dynamics. This conclusion
was revealed by the first criterion analyzed in the
reported survey and then consequently supported
by six succeeding criteria.

Not all modeling constructs are used while
preparing the system specifications according to
the UML 2.x Light version. Students are particu-
larly overwhelmed by the number of modeling
notions mostly while developing Sequence Dia-
grams and Activity Diagrams. Therefore, only the
most relevant of these diagrams notions should

0%

5%

10%

15%

20%

25%

30%

35%

Activity State Machine Sequence Communication Timing Interaction
Overview

better than other diagrams best in its field

Figure 7. UML diagrams for supporting system dynamics specification

4 SUMMARY

The survey results presented in this paper are helpful in defining the scope of the UML 2.x Light
version. Such version would be extremely stimulating and motivating in effective teaching of UML
2.x. This concept was warmly welcomed by students and still does not limit the UML potential. The
system specifications elaborated using the Light version could be subsequently extended towards the
complete systems by the implementation of full scope of UML modeling notions and diagrams.

To sum up, the following UML diagrams were selected and indicated in the survey as the components
of the proposed UML Light version:
• Use Case Diagrams,
• Class Diagrams,
• Activity Diagrams,
• Sequence Diagrams.
These four types of diagrams (Figure 8) enable modeling of all essential system aspects, i.e. system
requirements, analysis and design of system structure and dynamics. This conclusion was revealed by
the first criterion analyzed in the reported survey and then consequently supported by six succeeding
criteria.

Figure 7. UML diagrams for supporting system dynamics specification

142

The UML 2 Academic Teaching Challenge

UML 2.x Diagram

Structure Diagram Dynamics Diagram

« L i g h t»
class Diagram

package DiagramObject Diagram

composite
structure Diagram

Implementation Diagram

component
Diagram

Deployment
Diagram

«light»
Use case
Diagram

« L i g h t»
Activ ity
Diagram

state machine
Diagram

Interaction
Diagram

« L i g h t»
sequence Diagram

timing Diagram

communication
Diagram

Interaction
Ov erv iew

Diagram

Figure 8. UML 2.x diagrams selected for the Light version

be transferred to the UML 2.x Light version.
Wrycza, Marcinkowski, Wyrzykowski (2005a)
divided the UML modeling notions into basic
and advanced ones. The proposal of the division
of the specific modeling constructs adequate for
the four selected types of diagrams respectively
is presented in Table 1.

Both four selected types of UML diagrams
(Class, Use Case, Activity and Sequence Dia-
grams), shown at Figure 8 as well as respective
basic modeling categories of these types of
diagrams (Table 1) form the proposed scope of
UML 2.x Light version according to the survey
accomplished.

 143

The UML 2 Academic Teaching Challenge

Table 1. The basic and advanced modeling constructs in respect of UML 2.x Light version

RefeRences

Ambler, S. W. (2005). The Elements of UML 2.0
Style. Cambridge: Cambridge University Press.

Booch, G., Rumbaugh, J., & Jacobson, I. (2004).
The UML Reference Manual. 2nd Edition. Boston:
Addison-Wesley.

Burton, P. J., & Bruhn, R. E. (2004). Using UML
to Facilitate the Teaching of Object-Oriented Sys-
tems Analysis & Design. Journal of Computing
Sciences in Colleges, 19.

DeLooze, L. L. (2005). Minimal UML Diagrams
for a Data-Driven Web Site. SIGITE.

Dobing, B., & Parsons, J. (2006). How UML is
Used. Communications of ACM, 49.

Flint, S., Gardner, H., & Boughton, C. (2004).
Executable/Translatable UML in Computing
Education. In R. Lister & A. Young (Eds.), Con-
ferences in Research and Practice in Information
Technology, 30.

Jacobson, I., Christerson, M., Jonsson, P., &
Overgaard, G. (1992). Object-Oriented Software
Engineering: A Use-Case Driven Approach.
Boston: Addison-Wesley.

Kontio, M. (2005). Architectural Manifesto:
Designing Software Architectures. Part 5. In-
troducing the 4+1 View Model. http://www-128.
ibm.com/developerworks/wireless/library/wi-
arch11.

Kruchten, P. (1995). Architectural Blueprints –
the “4+1” View Model of Software Architecture.
IEEE Software, 12.

OMG (2006). Object Management Group. The UML
2.1 Superstructure Convenience Document. http://
www.omg.org/cgi-bin/doc?ptc/2006-04-02.

OMG (2005). Object Management Group. Uni-
fied Modeling Language 2.0 Superstructure
Specification. http://www.omg.org/cgi-bin/
doc?formal/05-07-04.

Class Diagram Use Case Diagram Activity Diagram Sequence Diagram
B

as
ic

 n
ot

io
ns

Class
Attribute
Operation
Binary association
Association name
Role name
Navigability
Multiplicity
Aggregation
Composition

Use case
Actor
Binary association

Activity
Subactivity
Activity Initial
Activity Final
Control Flow

Actor
Class
Boundary class
Control class
Entity class
Lifeline
Execution specification
Synchronous message

A
dv

an
ce

d
no

tio
ns

Responsibility
Visibility
Static attributes/operations
N-ary associations
Association classes
Reflexive associations
Multiple associations
Qualification
Generalization
Dependency
Realization

«include» dependency
«extend» dependency
Generalization
Types of actors
Multiplicity
Navigability
Realization

Decision
Activity edge connector
Merge node
Action
Pin
Activity parameter node
Weight
Signal
Central buffer
Data store
Activity partition
Expansion region
Interruptible activity region
Exception handler

Asynchronous message
Return message
Lost message
Found message
Balking message
Timeout message
Guard condition
Message to self
Iteration
Branching
Interaction fragment
Interaction occurrence
Gate

144

The UML 2 Academic Teaching Challenge

Trujillo, J. (2006). A Report on the First Inter-
national Workshop on Best Practices of UML.
SIGMOD Record, 35.

Wrycza, S., Marcinkowski, B., & Wyrzykowski,
K. (2005a). Systems Modeling with UML 2 (in
Polish). Helion, Gliwice, (pp. 1-456).

Wrycza, S., & Marcinkowski, B. (2005b). UML 2
Teaching at Postgraduate Studies – Prerequisites

and Practice. Proceedings of ISECON 2005, 22,
New Orleans. AITP Foundation for Information
Technology Education.

Wrycza, S., & Marcinkowski, B. (2006). UML 2
Academic Course – Methodological Background
and Survey Benchmarking. Proceedings of
ISECON 2006, 23, Dallas. AITP Foundation for
Information Technology Education.

 145

Chapter XI
User Interface Generation from

the Data Schema
Akhilesh Bajaj

University of Tulsa, USA

Jason Knight
University of Tulsa, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

Traditionally, the data model and the process model have been considered separately when modeling
an application for construction purposes. The system analysis and design area has largely ignored the
issue of the relationship between the user interface (UI) and the underlying data schema, leaving UI
creation within the purview of the human computer interaction (HCI) literature. Traditional HCI methods
however, underutilize the information in the data schema when designing user screens. Much of the work
on automatic user interface (UI) generation has met with limited success because of the added load on
the human designer to use specialized scripts for UI specification. In this research in progress, the au-
thors propose a methodology applicable to database driven systems that a) automatically infers a draft
interface directly from an extended entity relationship (EER) model schema and b) lists the interactions
that need to take place between the designer and the tool in order to generate the final user schema.

IntRODUctIOn

The graphical user interface has become both
ubiquitous and relatively uniform in providing
access to applications for diverse users (Myers et
al., 2000). From the early 1980-s, user interface
(UI) management systems focused on providing
human designers high-level specification lan-

guages such as state transition diagrams or event
based representations to specify the interface in
response to events (Jacob, 1986, Olsen, 1986).
These representations have become progressively
richer and model-based interface development
tools today range from automatic interface gen-
erators to tools that offer advice based on task
representations.

146

User Interface Generation from the Data Schema

This research in progress is important because
traditionally, the data model and the process model
have been considered separately when modeling
an application for construction purposes. The sys-
tem analysis and design (SA&D) area has largely
ignored the issue of the relationship between
the user interface (UI) and the underlying data
schema, leaving UI creation within the purview
of the human computer interaction (HCI) litera-
ture. Traditional HCI methods underutilize the
information in the data schema when designing
user screens. However, business applications are
usually database driven, and the UI for most busi-
ness information systems represents processes that
allow users to interact with the data. In this work,
we take a first step in bridging this gap between
the SA&D and HCI literatures, and propose a
generalized methodology to generate a UI that
uses the data schema as the foundation.

Figure 1 (Szekely, 1996) describes the model-
based interface development process. The model
component organizes the specification into three
layers. Domain models correspond to the data
schema. Examples of task models include data
flow diagrams or other activity diagrams. An
abstract UI specification provides a set of low
level interface tasks such as selecting from a set

of elements, information elements selected from
the domain model, and how the two should be
grouped. The concrete UI specification deals
with the actual interface elements such as the
windows, buttons, checkboxes and navigation
buttons. Based on Figure 1, it is clear that the
majority of model-based environments explicitly
differentiate between task (process) models and
data models.

The very great majority of business applica-
tions involve a database back-end with a front-
end UI, and hence we utilize the extended entity
relationship (EER) model to capture the data
schema (Chen, 1976, Smith and Smith, 1977).
Our methodology uses a set of rules to map
EER objects automatically to provide a first cut
user-interface, and then provides an opportunity
for a structured dialog with the user to attempt
to assuage some of the problems with the data-
model-only approach.

A metHODOlOgy tO DeRIve
A UI fROm An eeR scHemA

Before presenting the methodology, we list the
concepts in the EER model that we will map. We

M ode ling T oo ls
Task , D om ain

M ode ls

A bstrac t U I
S pec ifica tion

C oncre te U I
S pec ifica tion

M ode l

A bstrac t
D es ign T oo l

C oncre te
D es ign T oo l

A u tom ated
D es ign

D es ign
K now ledge

G u ide lines

D es ign C ritics
D es ign A dviso rs

D eve loper

Im p lem enta tion
Too l

Too lk it-R eady
F ile

C om pile r/
L inker

D e live red
A pp lica tion

R untim e S ystemA pp lica tion
C ode

Figure 1. Model-based interface development process (Szekely, 1996)

 147

User Interface Generation from the Data Schema

base our list of concepts largely from standard
database textbooks like (Korth et al., 2005) and
assume an EER schema to consist of the follow-
ing concepts:

• Entity sets,
• Relationship sets with 0/1 cardinality on at

least one side, and any cardinality on the
other,

• Relationship sets with m:n cardinality and
n-ary relationships

• Attributes of entity and relationship sets,
• Multi-valued attributes
• Composite attributes
• Entity subclasses that have extra attributes

and/or extra relationships, with no multiple
inheritance

• Weak entity sets (existence dependencies)
with a unique identifier

As summarized in (Szekely, 1996), an au-
tomatic interface generation algorithm should
specify components at the following levels:

a. P : Presentation units (the different windows
and a list of their contents)

b. N: Navigation between presentation units
c. A: abstract interface items (e.g., a drop down

list, a check box, etc.)
d. C: Concrete interface items (how each ab-

stract item will be implemented, such as a
list-of-values for a drop-down list specifica-
tion)

e. L: Window layout (position, font size, and
other presentation criteria

Our methodology, described next, consists of
two phases: the automated generation of the first-
cut interface (FCI), followed by the structured
dialog with the human designer to generate the
second-cut interface (SCI).

generating the first cut Interface
(fcI)

The FCI consists of primitive screens that interact
with the data, as well as provides for navigation
between them. For convenience, we present our
methodology for FCI generation in the follow-
ing format. For each EER concept, we list the
mapping to a relational schema and to the UI.
We will not consider the C components of the
mapping here, since C is system dependent (e.g.,
different UI systems will implement drop down
lists differently). The L aspect is described in the
end, since it contains common rules that apply
to all the screens.

Entity Sets

Relational mapping: Create a table for the entity
set. The columns of the table are the attributes of
the strong entity set. The primary key of the table
is the primary key of the entity set.

UI Mapping
Presentation Units: Create a separate screen
with all the attributes of the entity set. Additional
buttons labeled CREATE, UPDATE, DELETE,
RESET, EXIT are also created for the screen.
These allow basic database access operations, as
well as allow the user to exit the application.

Navigation: The screen gets links to the screens
that correspond to every m:n relationship set in
which the entity set participates, and to the screens
that correspond to every multi-valued attribute
of the entity set

Abstract Interface Items
• For enumerated type attributes, provide a

fixed list of values.
• For attributes that are dates, currency, strings

or numbers, provide a text box.
• For the primary key attribute(s), provide a

non-updatable text box (grayed out) with a

148

User Interface Generation from the Data Schema

drop down list to search for existing rows
in the table.

• For attributes that are Boolean, provide a
check box

• Primary key fields should be in grey back-
ground and non-updateable

Relationship Sets with 0/1 Cardinality
on at Least One Side, and Any
Cardinality on the Other

Relational mapping: Add a column(s) in the table
that corresponds to the entity set that is on the
“Any Cardinality” side. The column(s) we add
here is the primary key of the entity set that is
on the 0/1 side and any other attributes of the
relationship set.

UI Mapping
Presentation Units: Use already developed screens

say, S1 for the entity set that corresponds to
the “Any Cardinality” side, and S2 for the
entity set that corresponds to the 0/1 side

Navigation: No additional navigation provided
here

Abstract Interface Items
• In S1, provide a drop-down list of values

that show the primary key of the entity on
the “Any Cardinality” side.

• Follow the same rules for other relationship
attributes as described for entity sets.

• In S2, provide a view only drop down list for
all entities on the “any cardinality” side that
are linked to the entity which is displayed
in all of S2.

Relationship Sets with m:n Cardinality
and n-ary Relationships

Relational mapping: Create a separate table for
the relationship set. The columns of the table are
the attributes of the relationship set (if any) +
primary keys of all the entity sets that participate

in the relationship set. The primary key of the
table is = the primary keys of all the entity sets
that participate in the relationship set.

UI Mapping
Presentation Units: Create a separate screen with

all the attributes of the relationship set, as
well as the primary keys of all participant
entity sets. Additional buttons labeled CRE-
ATE, UPDATE, DELETE, RESET, EXIT
are also created for the screen. These allow
basic database access operations, as well as
allow the user to exit the application. If the
relationship has no attributes then disable
the UPDATE button.

Navigation: The screen gets links to the screens
that correspond to every participant entity
set

Abstract Interface Items
• For enumerated type attributes, provide a

fixed list of values.
• For attributes that are dates, currency, strings

or numbers, provide a text box.
• For the primary key attributes, provide a

drop-down list of relevant values drawn
from the participant entity sets

• For attributes that are Boolean, provide a
check box

• Primary key fields should be non-updateable
(grayed out) and drop down search. If no
attributes other than primary keys, then no
UPDATE button should be there.

Multi-Valued Attributes

Relational mapping: Create a separate table for
the multi-valued attribute. The columns of
the table are the primary key of the entity
set to which the attribute belongs + a sepa-
rate column for values of the attribute. The
primary key of the table is all the columns
of the table.

 149

User Interface Generation from the Data Schema

UI Mapping
Presentation Units: Create a separate screen with

the primary key of the entity set and the
multi-valued attribute. Additional buttons
labeled CREATE, DELETE, RESET, EXIT
are also created for the screen. These allow
basic database access operations, as well as
allow the user to exit the application.

Navigation: The screen gets a link to the screen
for the entity set that owns the multi-valued
attribute.

Abstract Interface Items
• For enumerated type attributes, provide a

fixed list of values.
• For attributes that are dates, currency, strings

or numbers, provide a text box.
• For the primary key attributes of the owner

entity set, provide a non-updatable text box
(grayed out) with a drop down list to search
for existing rows in the table.

Composite Attributes

Relational mapping: No separate table is cre-
ated for composite attributes. Only the leaf
attributes are used when transferring to the
relational schema. The only effect on the UI is
at the L level, where attributes that belong to a
composite hierarchy should be grouped together
on the screen corresponding to that entity set or
relationship set.

Entity Subclasses that have Extra
Attributes And/Or Extra Relationships

Relational mapping: Create a separate table for
the superclass first, using the rules for map-
ping entity sets we have seen earlier. For
each subclass entity set, create a separate
table. The columns of each table = the
additional attributes of the corresponding
subclass entity set + the primary key of the
superclass entity set. The primary key of

the subclass table is the primary key of the
superclass table.

UI Mapping
Presentation Units: Create a separate screen with

all the extra attributes of the subclass, as
well as the primary key of the superclass
entity set. Additional buttons labeled CRE-
ATE, UPDATE, DELETE, RESET, EXIT
are also created for the screen. These allow
basic database access operations, as well as
allow the user to exit the application.

Navigation: The screen gets a link to the screen that
corresponds to the superclass entity set

Abstract Interface Items
• For enumerated type attributes, provide a

fixed list of values.
• For attributes that are dates, currency, strings

or numbers, provide a text box.
• For the primary key attributes, provide a

drop-down list of relevant values drawn
from the superclass entity sets

• For attributes that are Boolean, provide a
check box

Weak Entity Sets
(Existence Dependencies)
with a Unique Identifier

Relational mapping: Create a separate table for
the weak entity set. The columns of the
table are the attributes of the weak entity
set + the primary key of the corresponding
strong entity set. The primary key of the
table is the primary key of the correspond-
ing strong entity set + the unique identifier
of the weak entity set.

UI Mapping
Presentation Units: Create a separate screen with

all the attributes of the weak entity set, as
well as the primary key of the strong entity
set. Additional buttons labeled CREATE,

150

User Interface Generation from the Data Schema

UPDATE, DELETE, RESET, EXIT are also
created for the screen. These allow basic
database access operations, as well as allow
the user to exit the application.

Navigation: The screen gets a link to the screen
that corresponds to the strong entity set

Abstract Interface Items
• For enumerated type attributes, provide a

fixed list of values.
• For attributes that are dates, currency, strings

or numbers, provide a text box.
• For the primary key attributes, provide a

drop-down list of relevant values drawn
from the superclass entity sets as well as a
non-updateable field for the unique identifier
attributes of the weak entity set.

• For attributes that are Boolean, provide a
check box

As shown, the primitive screens in the FCI
correspond to tables in the relational schema
that is derived from the EER schema. Each
screen provides write access to one table, and
read access to multiple tables, as specified in the
Presentation Units. Navigation is also provided
to other primitive screens as specified. Next we
describe the Layout guidelines for the screens in
the first cut interface, drawing on well known
HCI principles.

Layout Guidelines for FCI Screens
Basic layout principles that we utilize include
the following:

• Grouping like objects
• Using familiar language
• Using color
• Consistency
• Clearly marked Exits
• Shortcuts
• Easy reversal

These are summarized from classic works such
as (Shneiderman, 1998, Nielsen, 1993). Next we

describe definite guidelines for incorporating sev-
eral of these concepts in the first cut interface.

Grouping like Objects
Grouping like objects is useful because it allows
the user to create multiple-item chunks. This al-
lows the users’ short term memory to manage more
items on the screen than the usual 7 +/- 2 items.
Grouping can be performed using line boundar-
ies, or spatial proximity. This rule can be applied
in many ways on the FCI screens. First, for each
screen corresponding to an entity set, weak entity
set, subclass and relationship set, the primary key
fields used to identify objects in the table that the
screen can write to, should be grouped together.
Second, attributes that are intrinsic to an entity set
or a relationship set should be grouped together.
Third, primary keys that allow selection from
other tables (as in the case of 1:n relationships)
should be grouped together. Fourth primary keys
that are view-only should be grouped together.
Fifth, attributes that are part of the same compos-
ite hierarchy should be grouped together. Sixth,
buttons providing database functionality such
as CREATE, UPDATE and DELETE should be
grouped together. The RESET button should be
kept in its own group. Finally, the EXIT button
should be kept separate from the others.

Using familiar language: One of the tenets
of good data modeling is to use the language of
the users in creating the names of objects and
attributes. Since the primitive screens are based
on the data schema, our methodology provides
support for this HCI requirement.

Consistency: Using the FCI generation rules
promotes consistency in look and feel. For each
screen, the primary key of the table that it writes
to should provide a drop down selection. All other
primary keys from other tables that are read only
from that screen should be select only, but should
provide a GO button to be able to jump to the
write screen for the corresponding table, so that
particular record may be edited from its relevant
screen. Buttons that perform the same tasks across

 151

User Interface Generation from the Data Schema

E M P LO Y E E S

P R O JECTS

Em p
M anage
Em p

Em p
W orkO n
P ro j

n

m

n

1Em pId
Em pN am e

Em pEm ail*

*m ultiva lued

P ro jID
P ro jD escription

dateB egan ,
dateE nded

screens should be in the same location, and have
the same look and feel.

Clearly Marked Exits: This is useful to provide
a feeling of user empowerment. Since the first cut
interface screens all have clearly marked exits that
allow us to exit the application, this HCI require-
ments is supported in our methodology.

An IllUstRAtIve exAmple Of A
fIRst cUt InteRfAce

Figure 2 depicts a simple EER schema, follow-
ing standard diagramming conventions (Korth et
al., 2005). Attributes are next to each entity and
relationship set. Figure 3 illustrates the 4 screens

Figure 2. EER schema for application

E M P LO Y E ES
E m ployee Id

E m ployeeN am e

C R E A T E U PD AT E D ELET E

R ESET

E m pW orksO nPro jE m pEm ail

E m ployee Id
E m ployeeE m ail

C R E A T E U PD AT E D ELET E

R ESET

EM PLO YEES

E m pE m ail

P R O JE C TS

P ro jID
P ro jD escrip tion

C R E A T E U PD AT E D ELET E

R ESET

E m pW orksO nPro j

E ntity M apping

M ulti-va lued a ttribu te M apping

E m ployee Id

dateB egan

C R E A T E U PD AT E D ELET E

R ESET

EM PLO YEES

E m pW orksO nP ro j

P ro jId

dateE nded

PR O JEC T S
m:n re la tionsh ip m apping

M anaged B y

EXIT

EX IT

EX IT

EX IT

G O

G O

G O

M anages G O

Figure 3. The four first cut UI screens from the EER schema

152

User Interface Generation from the Data Schema

in the FCI, generated using the AIG algorithm
outlined before.

After the first cut interface has been gener-
ated, using the described guidelines, the primitive
screens need to be augmented with a set of naviga-
tion screens as well as view only items specific
to the application. This is described in brief next,
because of space limitations. It will be presented
in more detail at the conference.

generating the second cut Interface

The motivation is to overcome some of the earlier
disadvantages of AIG toolkits. This step is based
on interaction from users, as well as the process
diagram for the application. The steps in the SCI
can be divided into the following categories:

• Generation of menu screens that perform
navigation to the primitive screens

• Bundling of primitive screens into one
window if access to more than one table is
required for a business process

• Removal of attributes from certain screens
(e.g. salary from the employees screen)

• Addition of specific view-only information
that the employee needs to perform the data
entry on a screen E.g., a summary for the
sales of a particular customer for the last
year can be useful view-only information
when updating the customer_category field
on the primitive screen corresponding to the
customers entity set. customers screen).

• Addition of graphic reports on certain primi-
tive screens

• Addition of intuitive identifiers such as
customer_name for the customers primitive
screen that allow for easier human searching
in the drop down list for customers and add
more intuitive identifiers such as name to the
primary keys in the drop down lists. In order
to simplify the human workload, we do not
allow the addition of any updateable fields,

the idea being that each screen provides at
most one updateable table, though multiple
readable tables. This is similar to the notion
of updateable views in the database litera-
ture.

cOnclUsIOn

In this research in progress, we propose a meth-
odology to infer a set of primitive screens from
an EER schema, that serves as a foundation for
a complete UI. The chief contribution of the
methodology is that it focuses on database driven
applications, and balances automatic generation
of the UI with input from the designer in order to
arrive at a final UI. We are testing our methodology
with a teaching case that consists of approximately
12 tables. Students or end users familiar with the
domain will be provided a user interface generated
with the methodology described here and asked
to evaluate the interface.

As part of this work, we aim to extend the
rules described here to incorporate higher level
navigation screens, construct a compiler that auto-
matically generates the first cut schema based on
the rules described here, and test the methodology
for large scale applications.

RefeRences

Chen, P. P. (1976). ACM Transactions on Database
Systems, 1, 9-36.

Jacob, R. J. K. (1986). ACM Transactions on
Graphics, 5, 283-317.

Korth, H., Silberschatz, A., & Sudarshan, S.
(2005). Database Systems Concepts. McGraw
Hill, New York.

Myers, B., Hudson, S. E., & Pausch, R. (2000).
ACM Transactions on Computer-Human Interac-
tion, 7, 3-28.

 153

User Interface Generation from the Data Schema

Nielsen, J. (1993). Usability Engineering, Aca-
demic Press.

Olsen, D. R. (1986). ACM Transactions on Infor-
mation Systems, 5, 318-344.

Shneiderman, B. (1998). Designing the User
Interface. Addison Wesley Longman.

Smith, J. M., & Smith, D. C. P. (1977). ACM
Transactions on Database Systems, 2, 105-133.

Szekely, P. A. (1996). In F. Bodart, & J. Vanderdon-
ckt (Eds.), Design, Specification and Verification
of Interactive Systems: Proceedings of the Third
International Eurographics Workshop. Namur,
Belgium.

154

Chapter XII
Decision Rule for Investment

in Reusable Code
Roy Gelbard

Bar-Ilan University, Israel

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

Reusable code helps to decrease code errors, code units and therefore development time. It serves to
improve quality and productivity frameworks in software development. The question is not HOW to
make the code reusable, but WHICH amount of software components would be most beneficial (i.e. cost-
effective in terms of reuse), and WHAT method should be used to decide whether to make a component
reusable or not. If we had unlimited time and resources, we could write any code unit in a reusable way.
In other words, its reusability would be 100%. However, in real life, resources and time are limited. Given
these constraints, decisions regarding reusability are not always straightforward. The current chapter
focuses on decision-making rules for investing in reusable code. It attempts to determine the parameters,
which should be taken into account in decisions relating to degrees of reusability. Two new models are
presented for decisions-making relating to reusability: (i) a restricted model, and (ii) a non-restricted
model. Decisions made by using these models are then analyzed and discussed.

IntRODUctIOn

Software reuse helps decrease code errors, code
units and, therefore, development time; thus
improving quality and productivity of software
development. Reuse is based on the premise
that educing a solution from the statement of a
problem involves more effort (labor, computa-

tion, etc.) than inducing a solution from a similar
problem for which such efforts have already been
expended. Therefore, software reuse challenges
are structural, organizational and managerial, as
well as technical.

Economic considerations and cost-benefit
analyses in general must be at the center of any dis-
cussion of software reuse; hence, the cost-benefit
issue is not HOW to make the code reusable, but

 155

Decision Rule for Investment in Reusable Code

WHICH amount of software components would
be most beneficial (i.e. cost-effective for reuse),
and WHAT method should be used when deciding
whether to make a component reusable or not.

If we had unlimited time and resources, we
could write any code unit in a reusable way. In other
words, its reusability would be 100% (reusability
refers to the degree to which a code unit can be
reused). However, in real life, resources and time
are limited. Given these constraints, reusability
decisions are not always straightforward.

Literature review shows that there are a variety
of models used for calculating-evaluating reuse
effectiveness, but they are not focused on the issue
of the degree to which a code is reusable. Thus the
real question is how to make reusability pragmatic
and efficient, i.e. a decision rule for investment in
reusable code. The current chapter focuses on the
parameters, which should be taken into account
when making reusability degree decisions. Two
new models are presented here for reusability
decision-making:

• A Non-Restricted Model, which does not
take into account time, resources or invest-
ment restrictions.

• A Restricted Model, which takes the afore-
mentioned restrictions into account.

The models are compared, using the same data, to
test whether they lead to the same conclusions or
whether a contingency approach is preferable.

bAckgROUnD

Notwithstanding differences between reuse ap-
proaches, it is useful to think of software reuse
in terms of attempts to minimize the average cost
of a reuse occurrence (Mili et al 1995).

[Search + (1-p) * (ApproxSearch +q * Adapta-
tion old + (1-q)* Development new)]

Where:

• Search (ApproxSearch) is the average cost
of formulating a search statement of a library
of reusable components and either finding
one that matches the requirements exactly
(appreciatively), or being convinced that
none exists.

• Adaptation old is the average cost of adapt-
ing a component returned by approximate
retrieval.

• Development new is the average cost of
developing a component that has no match,
exact or approximate, in the library.

For reuse to be cost-effective, the aforementioned
must be smaller than:

p *Development exact +(1-p)* q * Development
approx +(1-p)* (1-q)́ Development new)

Where:

• Development exact and Development new
represent the average cost of developing
custom-tailored versions of components
in the library that could be used as is, or
adapted, respectively. Note that all these
averages are time averages, and not averages
of individual components, i.e. a reusable
component is counted as many times as it
is used.

Developing reusable software aims at maxi-
mizing P (probability of finding an exact match)
and Q (probability of finding an approximate
match), i.e. maximizing the coverage of the ap-
plication domain, and minimizing adaptation
for a set of common mismatches, i.e. packaging
components, in such a way that the most common
old mismatches are handled easily. Increasing P
and Q does not necessarily mean putting more
components in the library; it could also mean
adding components that are more frequently

156

Decision Rule for Investment in Reusable Code

needed, because adding components not only
has its direct expenses (adaptation costs), but also
increases search costs.

There are two main approaches to code ad-
aptation: (1) Identifying components that are
generally useful, and (2) covering the same set
of needs with fewer components, which involves
two paradigms: (i) abstraction, and (ii) compo-
sition. Composition supports the creation of a
virtually unlimited number of aggregates from
the same set of components, and reduces the
risk of combinatorial explosion that would result
from enumerating all the possible configurations.
In general, the higher the level of abstraction at
which composition takes place, the wider the
range of systems (and behaviours) that can be
obtained. The combination of abstraction and
composition provides a powerful paradigm for
constructing systems from reusable components
(Mili et al. 1995).

Frakes and Terry (1996) describe a wide range
of metrics and adaptation models for software re-
use. Six types of metrics and models are reviewed:
cost-benefit models, maturity assessment models,
amount of reuse metrics, failure modes models,
reusability assessment models, and reuse library
metrics (Frakes & Terry 1996). Other studies
(Otso 1995; Henninger 1999; Virtanen 2001; Ye
2002; Ye & Fischer 2002), present additional
metrics and methods. These studies evaluate
and make comparisons, but as is typical in an
emerging discipline such as systematic software
reuse, many of these metrics and models still lack
formal validation. However, in some cases they
are found useful in industrial practice (Ferri et
al. 1997; Chaki et al. 2004).

In other cases questions are raised; several
researchers identify and address problems that
still exist in the framework of reuse (William et
al. 2005; Krik et al. 2006; Burkhardt et al. 2007).
Garcia et al. (2006) find inconsistency in software
measurement terminology. It seems that the fac-
tors affecting reuse of software assets, haven’t
changed much along the last decade, but still they

are quite complicated for implementation (Mel-
larkod et al. 2007; Spinellis 2007). Mohagheghi
et al. (2007) present a review of industrial studies,
while Desouza et al. (2006) indicate four dynamics
for bringing use back into software reuse.

Empirical works (Virtanen 2001; Ye 2002;
Mens & Tourwé 2004; Tomer et al. 2004; Mo-
hagheghi et al. 2007) have analyzed existing reuse
metrics and their industrial applicability. These
metrics are then applied to a collection of public
domain software products, and projects categories
to assess the level of correlation between them
and other well-known software metrics such as
complexity, volume, lines of code, etc.

The current chapter is focused on decision-
making rules for investment in reusable code. The
well known “Simple Model” and “Development
Cost Model” deal with these decisions, but do
not take into account restrictions and constraints
such as time, budget, resources, or other kinds of
investment, such as delivery time that may impact
on the decision to reuse.

AnAlyzIng neW ReUse mODels

Assume a software development project contains
3 code components: A, B and C, and we need to
determine two things: Which of these components
should be reusable? What criteria should be taken
into account?

Alternative Component A Component B Component C

1 - - -

2 + - -

3 - + -

4 + + -

5 - - +

6 + - +

7 - + +

8 + + +

Table 1. Choice alternatives

 157

Decision Rule for Investment in Reusable Code

There are eight combination-choice alterna-
tives for these 3 components, as shown in Table
1 (+ represents “make reusable”, - represents
“don’t make reusable”).

A. the non-Restricted model

The model contains the following parameters:

Ci Cost of creating component i from scratch
(without making it reusable).

Ri Cost of making component i reusable (extra
costs – not included in Ci).

ICi Cost of implementing reusable component
i into code.

NRi Number of reuses of component i. (C, R and
NR are in man-hours).

Savings resulting from making component i
reusable are represented as follows:

SAVi = NRi *(Ci – ICi) – (Ci + Ri)

Therefore: If SAVi > 0, it is worthwhile to make
component i reusable.

Suppose a company that employs two kinds
of programmers: M and N. Programmers of
type M are permanent employees of the firm.
Programmers of type N are highly qualified
consultants who are employed by the company
for specific projects. The company is going to
write / create / develop a new project, and has
to make a decision regarding which components
should be reusable.

The following are additional parameters:

Cim Hours needed for programmer M to create
component i from scratch.

Rim Hours needed for programmer M to make
component i reusable.

ICim Hours needed for programmer M to imple-
ment reusable component i into code.

Sm Costs of programmer M, per 1 hour.

Hence:

Ci = Min(Cim*Sm, Cin*Sn)
Ici = Min(ICim*Sm, ICin*Sn)
Ri = Min(Rim*Sm, Rin*Sn)

Hence:

SAVi = NRi *(Min(Cim*Sm, Cin*Sn) –
Min(ICim*Sm, ICin*Sn)) – (Min(Cim*Sm,
Cin*Sn) + Min(Rim*Sm, Rin*Sn))

b. the Restricted model

The Non-Restricted model has the following
limitations:

• It requires absolute values
• It is quite difficult to measure parameters

such as: Ci, Ri and Ici
• It does not take into account the most

typical situation where time and budget are
restricted as well as in-house investment in
reuse, i.e. time and resources for reusable
code developing.

In order to avoid these limitations, the Re-
stricted Model is based upon the following
parameters:

I Maximal investment that can be allocated
for writing a reusable code.

T Maximal calendar time that can be allocated
for writing a reusable code.

Ii Percent of “I” needed to make component
i reusable.

Ti Percent of “T” needed to make component
i reusable.

Ci Relative complexity of creating component
i from scratch.

Fi Frequency (%) of future projects that are
likely to reuse component i.

Pi Relative profit of making component i reus-
able.

158

Decision Rule for Investment in Reusable Code

RI Remainder of “I”, after some reusable com-
ponents have been written.

RT Remainder of “T”, after some reusable
components have been written.

Assume that: Pi = Ci * Fi.

Hence: Component i is the next component to be
made reusable if:

Pi = Max(P1, P2, ..., Pn-1, Pn)
Ii <= RI
Ti <= RT

c. Illustrative example -
non-Restricted model

The following example (Example 1) demonstrates
the decision made by the Non-Restricted Model.
Assume we want to develop 10 projects, each one
containing components A, B and C according to
Table 2.

Hence:

NRa = 10, NRb = 1, NRc = 4

Table 3 presents illustrative assumptions
concerning Cim and Cin (hours needed for

programmer type M and N to create component
i from scratch).

Moreover, assume programmers’ costs to be:
Sm = 20, Sn = 40

Hence:

Ca = Min(300*20, 200*40) = 6,000
Cb = Min(20*20, 10*40) = 400
Cc = Min(150*20, 100*40) = 3,000

Table 4 presents illustrative assumptions
concerning Rim and Rin (hours needed for
programmers type M and N to make component
i reusable).

Hence:

Ra = Min(650*20, 300*40) = 12,000
Rb = Min(15*20, 7*40) = 280
Rc = Min(150*20, 80*40) = 3,000

Table 5 presents illustrative assumptions
concerning ICim and ICin (Hours needed for
programmers type M /N to implement reusable
component i into code).

Hence:

Project 1 2 3 4 5 6 7 8 9 10

Component A + + + + + + + + + +

Component B +

Component C + + + +

Table 2. Example 1, Number of components for
future reuse

Programmer
type

Component A Component B Component C

Type M 300 20 150

Type N 200 10 100

Table 3. Example 1, Ci illustrative assumptions

Programmer
type

Component A Component B Component C

Type M 650 15 150

Type N 300 7 80

Table 4. Example 1, Ri illustrative assumptions

Programmer
type

Component A Component B Component C

Type M 60 5 50

Type N 15 3 10

Table 5. Example 1, ICi illustrative assumptions

 159

Decision Rule for Investment in Reusable Code

ICa = Min(60*20, 15*40) = 600
ICb = Min(5*20, 3*40) = 100
ICc = Min(50*20, 10*40) = 400

Hence:

SAVa = 10 *(6,000 – 600) – (6,000 + 12,000) =
36000 > 0
SAVb = 1 *(400 – 100) – (400 + 280) = -380 <
0
SAVc = 4 *(3000– 400) – (3,000+ 3,000) = 4400
> 0

In light of the aforementioned, the Reuse
Decision according to the Non-Restricted Model
is to make components A and C reusable (i.e.
Alternative 6).

D. Illustrative example - Restricted
model

The following example (Example 2) demonstrates
the decision made by the Restricted Model, based
on the previous example (Example 1). Assume
the following:

1. I 10,000.
2. T 150. The available remaining time to

make the existing code reusable.
3. Ci Assume component B is the easiest

one to develop, and requires 10 hours. As-
sume component A requires 300 hours, and
component C requires 150 hours. Hence,
complexities are: CA=30, CB=1, CC =15.

4. Fi Component A will be reused by 100% of
future projects, B by 10% and C by 40%.

5. IA = 12,000/10,000=120%, I B =
280/10,000=2.8%, IC = 3000/10,000=30%.

6. TA = 300/150=200%,
 TB = 7/150=4.7%,
 TC= 150/150=100%.

Hence Example 2 parameters are seen in Table
6.

Taking time and investment restrictions into
account, the reuse decision, according to the
Restricted Model is to make only component C
reusable (i.e. Alternative 5).

cOnclUsIOn AnD
fUtURe tRenDs

The current chapter presented two new reuse
decision making models: a restricted model and
a non-restricted model, which are mainly dif-
ferent in the way they take into account real-life
constraint-restrictions such as time, budget, and
resources repetition.

The models produced different results from the
same data. The decision made by the restricted
model pinpointed fewer software components for
reuse. It is worth mentioning that different groups
of software components were not the issue, but
rather different subgroups of the same group, i.e.
software components selected by the Restricted
Model were subgroups of components selected
by the Non-Restricted Model.

Moreover, the parameters of the Restricted
Model relate to relative value arguments, by
contrast to the parameters of Non-Restricted
Model, which relate to absolute values. While
absolute values are difficult to measure, relative
values are simpler to define. There are a variety
of formal methods by which relative values may
be defined, methods that are used in other areas
of software engineering, such as cost estimation,
effort estimation, priority decision and others.

The reusability decision made by the Restricted
Model may be biased by the following parameters:

Component Ci Fi(%) Pi Ii(%) Ti(100%)

A 30 100 30 120 200

B 1 10 0.1 2.8 4.7

C 15 40 0.6 30 100

Table 6. Parameters used by Example 2

160

Decision Rule for Investment in Reusable Code

time, resources, component complexity, and
number-percent of future projects in which the
component would be reused. Further research
should be conducted focusing on decision robust-
ness in light of the aforementioned parameters
and their possible spectrum.

RefeRences

Burkhardt, J. M., & Détienne, F., (2007). An
empirical study of software reuse by experts in
object-oriented design. arXiv:cs/0702005v1.

Chaki, S., Clarke E. M., Groce, A., Jha, S., &
Veith, H. (2004). Modular Verification of Soft-
ware Components in C. IEEE Transactions on
Software Engineering, 30(6), 388-402.

Desouza, K. C., Awazu, Y., & Tiwana, A., (2006).
Four dynamics for bringing use back into soft-
ware reuse. Communications of the ACM, 49(1),
96-100.

Frakes, W., & Terry, C. (1996). Software Reuse:
Metrics and Models. ACM Computing Surveys,
28(2), 415-435.

García, F., Bertoa, M. F., Calero, C., Vallecillo,
A., Ruíz, F., Piattini, M., & Genero, M. (2006),
“Towards a consistent terminology for software
measurement “,Information and Software Tech-
nology, 48(8), 631-644.

Henninger, S. (1999). An Evolutionary Approach
to Constructing Effective Software Reuse Reposi-
tories. ACM Transactions on Software Engineer-
ing and Methodology, 6(2), 111-140.

Kirk, D., Roper, M., & Wood, M., (2006). Identi-
fying and addressing problems in object-oriented
framework reuse. Empirical Software Engineer-
ing, 12(3), 243-274.

Mens, T., & Tourwé, T. (2004). A Survey of
Software Refactoring. IEEE Transactions on
Software Engineering, 30(2), 126-139.

Mellarkod, V., Appan, R., Jones, D. R., & Sherif, K.
(2007). A multi-level analysis of factors affecting
software developers’ intention to reuse software
assets: An empirical investigation. Information
& Management, 2007, 44(7), 613-625.

Mili, H., Mili, F., & Mili, A. (1995). Reusing
Software: Issues and Research Directions. IEEE
Transactions on Software Engineering, 21(6),
528–562.

Mohagheghi, P., & Conradi, R., (2007). Quality,
productivity and economic benefits of software
reuse: a review of industrial studies. Empirical
Software Engineering, May 2007, (pp. 471-516).

Otso, K. J. (1995). A Systematic Process for Reus-
able Software Component Selection. Technical
Report, University of Maryland.

Spinellis, D. (2007). Cracking Software Reuse.
IEEE Software, 24(1), 12-13.

Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., &
Schach, S. R. (2004). Evaluating Software Reuse
Alternatives: A Model and Its Application to an
Industrial Case Study. IEEE Transactions on
Software Engineering, 30(9), 601-612.

Virtanen, P. (2001). Empirical Study Evaluating
Component Reuse Metrics. Proceedings of the
ESCOM, (pp. 125-136).

William, B., Frakes, W. B., & Kang, K. (2005).
Software Reuse Research: Status and Future.
IEEE Transactions on Software Engineering,
31(7), 529-536.

Ye, Y. (2002). An Empirical User Study of an
Active Reuse Repository System. Proceedings of
7th International Conference on Software Reuse,
(pp. 281-292).

Ye, Y., & Fischer, G., (2002). Supporting Reuse by
Delivering Task-Relevant and Personalized Infor-
mation. Proceedings of International Conference
on Software Engineering, (pp. 513-523).

 161

Chapter XIII
Web-Based Systems

Development:
An Empirically-Grounded
Conceptual Framework

Michael Lang
National University of Ireland, Galway, Ireland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

This chapter encapsulates the main findings of an in-depth study of Web development practices in Ire-
land. The essential research objective was to build a richer understanding of the modern context of Web
development and of how that context influences design practices. At the outset, a conceptual framework
was derived through a synthesis of issues in the literature and an analysis of existing models of IS de-
velopment. Data was then gathered through a dual-mode (Web and postal) quantitative survey which
yielded 165 usable responses, and later through a series of 14 semi-structured qualitative interviews in
a follow-up field study. Following an interpretive approach, elementary statistics and grounded theory
were used to iteratively analyze the data until a reasonably comprehensive and stable explanation
emerged. This is presented in the form of an elaborated conceptual framework of Web-based systems
development as “situated action.”

IntRODUctIOn

The latter years of the 1990s saw a frenetic surge
in activity on the World Wide Web, driven by
improvements in networking and communica-
tions technologies, enhanced browser capabilities,
more advanced server-side and client-side func-
tionality, increased sophistication of visual user

interfaces, and the rise of electronic commerce.
This sudden and spectacular growth caused quite
a degree of apprehension amongst the academic
research community because the apparently “out
of control” Internet technological upheaval was
progressing at such a chaotic pace that the state-
of-theory was left lagging some distance behind
the state-of-practice (Cusumano & Yoffie, 1999).

162

Web-Based Systems Development

Whereas the Web a few short years previously
was predominantly a publishing medium, it was
metamorphosing so quickly into an applications
development environment that serious doubts
hung over the readiness of the incumbent gen-
eration of Web designers, many of whom were
self-trained and from backgrounds other than
“proper” software engineering.

On such a premise, Murugesan & Deshpande
(1999) called for a “new concept and discipline of
Web Engineering” and affirmed that there was a
“pressing need for new methods and tools” (Mu-
rugesan, Deshpande, Hansen, & Ginige, 1999).
In similar vein, Oinas-Kukkonen et al (2001)
claimed that “systematic analysis and design
methodologies for developing Web information
systems are necessary and urgently needed among
practitioners”. Speculation was rife of an im-
minent “Web crisis” on foot of a prevalent view
that industry development practices in general
were unsystematic and unreliable. Whether these
remarks were well-founded or mere “exception
reporting” (Glass, 1998) is arguable, for the soft-
ware industry has supposedly been chronically
afflicted by a “crisis” as long as it has existed
(Gibbs, 1994; Naur & Randell, 1969).

This research project was initiated at a point
(c. 2001) when there was much sensational talk
in the academic literature of an imminent “Web
crisis”. Quite a number of empiricial studies of
Web development, mostly of the nature of de-
scriptive surveys or narrow experience reports,
were published about that time. Though useful
and interesting, those studies are now a little
dated. Setting aside general HCI research on the
effectiveness/usability of Web sites and the mainly
experimental contributions of the Web Engineer-
ing community, remarkably few studies of actual
industry practice have since appeared. Following
the post-Y2K implosion of the “dot.com” bubble,
the Web design industry went through an upheaval
whereby firms engaging in haphazard practices
were forced to either reform (if they were capable
of so doing) or perish (as very many of them

did). Development technologies have advanced
remarkably in recent years, and many Web
development firms originally established in the
mid- to late-1990s have at this stage settled down
and attained process maturity. The objective of
this research project was therefore to contribute
towards a richer and updated understanding of
the “real-world” context of Web-based systems
development, and of how that context influences
design practices.

Specifically, the research questions were as
follows:

R 1. What is the profile of a typical Web-based
systems development project?

R 2. What are the main challenges being expe-
rienced by Web-based systems designers in
practice?

R 3. What development practices are being en-
gaged to address these challenges?

R 4. What situational factors influence the enact-
ment of development practices?

R 5. Where formalised design guidance is in
place, what is its nature and from where is
it derived?

ReseARcH AppROAcH

A three-phase research approach was taken, as
shown in Figure 1. At the outset, a number of in-
formal meetings were held with a few experienced
Web developers to help solidify the research objec-
tives, assess the salience and relevance of certain
aspects raised by the literature, and uncover any
major topical issues of which the researcher was
unaware.

The second phase consisted of a dual-mode
(postal and Web-based) survey of 438 organisa-
tions. The sampling frame included organisations
engaged in bespoke software application devel-
opment; those specialising in Web or interactive
multimedia systems design; companies from
traditional media that had branched into “new

 163

Web-Based Systems Development

media”; and large organisations with internal
IT departments. The survey received an overall
response rate of 52%, ultimately yielding 165
usable responses.

The third and final phase was a follow-up field
study, consisting of semi-structured qualitative
interviews with 14 Web developers. The selection
of interviewees was theoretically driven, chosen
so as to seek out similarities and dissimilarities,
looking at both typical and atypical cases. They
varied according to organisational size, organi-
sational type, application domains, client loca-
tion (in-house versus external Web development
houses), and the interviewee’s professional back-
ground. Many of the interviewees had recently
won or been nominated for awards at prestigious
national ceremonies. It was assumed that award
winners would be more forthcoming, knowledge-
able and insightful, and also that they exemplify
best practice. In most of the organisations visited,

one personal interview was conducted with the
team leader, typically convened during the mid-
day break so as not to encroach upon busy work
schedules. In one organisation two developers
were separately interviewed, and in another the
managing director brought five staff members into
the meeting room. Where available, secondary
data sources were also consulted. Data gathering
continued until a point of reasonable “theoretical
saturation” was reached.

The survey data was mainly analysed using
descriptive and enumerative statistics, such as
frequency distributions, averages/medians, and
cross-tabulations. Because an interpretive ap-
proach was taken in this research project, no
formal hypotheses were set out. Instead, some
theoretical propositions based on posited relation-
ships in the conceptual framework were explored
by means of simple difference/correlation tests.
The qualitative data gathered in the field study

P ersona l
E xperience L ite ra tu reIn itia l R esearch

Top ic & O b jectives

P re lim inary in fo rm a l c onversa tions
w ith d esigners in p ractice

R efined R esearch
Top ic & O b jectives

P osta l / W eb-based s urvey o f 4 38
organ isa tions (165 u sab le responses)

R efined R esearch
O bjectives & F ram ework

F ie ld s tud y (in te rv ie ws w ith 1 4
purposefu lly s e lected designers)

C onclusions &
E xp lana to ry F ram ework

Q ua lita tive da ta
ana lys is

Q uantita tive d a ta
ana lys is

re flective
triangu la tion

re flective
triangu la tion

Figure 1. Overview of research process

164

Web-Based Systems Development

was analysed using a hybrid method, mainly based
on the procedures of grounded theory (Glaser &
Strauss, 1967; Locke, 2001; Strauss & Corbin,
1998), but also informed by the principles laid
down by Miles & Huberman (1994). Although data
gathering for the survey and field study phases was
done in chronological sequence, data analysis was
an iterative and parallel activity, involving both
inductive and deductive reasoning in a grounded,
reflective process. Through this triangulation of
methods and data, the inherent weaknesses of
individual methods are reduced, strengthening
the validity and reliability of findings.

limitations of the survey

The survey element of this research project is lim-
ited by a number of shortcomings, some of which
relate to the inherent weaknesses of questionnaires
and are compensated for by the field study:

• The survey questionnaire comprised
mostly fixed-format questions that captured
quantitative data, and responses to the few
open-ended questions were scant. For this
reason, a qualitative follow-up field study
was conducted to elucidate upon the survey
findings.

• As is generally the case with survey research,
there remains the possibility that findings
may be skewed because of reliability and
validity issues. Numerous measures to
counteract and alleviate potential bias were
taken, but it is very difficult to fully eradicate
the possibility of contamination.

• The survey was conducted in a small geo-
graphical region (the island of Ireland), so
caution must be exercised in generalising
findings to wider international populations.
To test for regional bias, the survey could
be replicated in another area and it would
be interesting to conduct a cross-national
comparison of Web development practices.
The option of so doing was originally en-

visaged at the outset of this project, but to
rigorously and successfully perform such
a study would involve considerable proce-
dural and methodological challenges (Lang,
2002), necessitating collaboration between
a distributed team of international partners.
For that reason, it was decided not to pursue
this option for now, but to defer it as a future
possibility. Indeed, parts of the questionnaire
used in this study have since been replicated
in surveys of Web development practices in
Korea and in Croatia (Lang, Plantak Vuko-
vac, 2008)).

limitations of the field study

While the combination of a quantitative survey in
conjunction with a qualitative field study helps to
redress some of the shortcomings of either used
in isolation, there remains a number of intractable
problems with the field study which mainly have
to do with the shortcomings of interpretivism,
grounded theory, and qualitative interviews. In
brief, these are:

• Interviews can be intrusive and atypical;
by his very presence as a “foreigner” in an
organisational setting, a researcher may
introduce bias into that setting. Though
interviewees were generally relaxed, forth-
coming, and willing to be recorded by means
of a digital audio device, there remains the
possibility that some unnatural behaviour
was caused by the intrusion of the inter-
viewer.

• With data gathered from field studies, only
“analytical” generalisability is possible.
Logical inferences can be drawn, but statisti-
cal inferences can not. This shortcoming was
redressed by the combination of a field study
and a large-scale survey in this research.

• Qualitative data is prone to subjective and
conflicting interpretations. Because this field
study was based on interviews personally

 165

Web-Based Systems Development

conducted by the author, he has the advantage
above all others of having a first-hand “feel”
for the data and is therefore best placed to
draw conclusions. That said, the opinions
of a number of academic colleagues and
peers were sought in order to assess the
plausibility of interpretations. The author’s
knowledge of relevant background literature
was also an important point of reference
in the interpretive process, as was his own
professional experience in the area.

• Because the resultant explanatory framework
is a deliberate simplification and is grounded
in a limited number of observations, it can-
not be expected to account for all possible
variations that might be encountered. Of
course, no explanation can ever be said to be
complete so it is necessary to decide when
to stop. In the logic of grounded theory this
happens at “theoretical saturation”, the point
of diminishing returns beyond which analy-
sis is necessarily delimited. At this juncture
there typically remain data fragments which
have not been fully exhausted, but the con-
ceptual model is bounded and deemed to
be “good enough” because, while accepted
as being incomplete, it accounts for most of
the observed variations in the recorded data
incidents (Locke, 2001).

• Again, because the field study was based on
a restricted sample of interviewees, it is lim-
ited to the extent that this sample is broadly
representative of the general population. The
interviewees in this study were purposefully
selected in order that comparisons and dif-
ferences might be drawn between cases,
but it should be noted that they were mainly
award-winning companies. As such, they
may be argued to be unrepresentative of
industry as a whole, but it was decided that it
would be preferable to capture a description
of best practices (i.e. award winners) rather
than general practices.

• For reasons of limited access, just one person
was interviewed in most of the organisa-
tions visited. For issues where the unit of
analysis is the organisation (e.g. the use of
processes and procedures) as opposed to the
individual (e.g. the influence of one’s profes-
sional background), the reliance on a single
organisational spokesperson is clearly not
ideal for it can be prone to rather personal
and biased interpretations. It might have
been better, for the sake of reliability, to have
spoken with a number of persons within each
organisation, in different roles and at differ-
ent levels of the organisational hierarchy.
The unfortunate reality is that with small
businesses, such access is often difficult
to negotiate, particularly in the industry of
Web development where pressing deadlines
and multiple concurrent projects are the
norm. Furthermore, the participants in this
field study were distributed geographically
across Ireland which placed a constraint on
the feasibility of multiple return site visits.
As it turned out, there were indeed possible
reliability issues with some of the interview
data because: (i) at times, the received
impression was that the interviewee was
self-convinced that initiatives they pushed
for are “working”; (ii) some interviewees
were a little opinionated; (iii) in a few cases,
it seemed that the interviewee was trying to
impress the interviewer, either endeavour-
ing to provide the “correct” answer or even
veering towards a “sales pitch”. Ultimately,
it was necessary to use a degree of personal
judgement to separate credible statements
from the ones which seemed likely to be
exaggerated. Where possible, interview
transcripts were cross-checked against
survey data and other secondary data to
look for anomalies which cast doubts over
reliability. A few discrepancies were found
between survey and interview responses, but
these were all readily explained by changes

166

Web-Based Systems Development

in organisational practices that had been
implemented in the interim period between
the execution of the survey and the conduct
of interviews. In spite of the shortcoming of
having interviewed just one person in most
of the organisations visited, the researcher
is of the opinion that interviewees for the
greater part were frank, forthright, and rep-
resentative of the general views that pertain
within their organisations.

OveRvIeW Of tHe cOnceptUAl
fRAmeWORk

Anselm Strauss, one of the original advocates of
grounded theory (GT), has affirmed that it can be
used not merely to build new theories, but also to
extend existing theory by filling in gaps (Strauss,
1970). Accordingly, the framework derived by this
study used GT to produce an extended variant
of the “Method-in-Action” model, given that the
application of this model to Web-based systems
development has not yet been investigated in depth
(Fitzgerald, Russo, & Stolterman, 2002). Elements

were also adapted from other models, including
NIMSAD (Jayaratna, 1994), Multiview/WISDM
(Avison, Wood-Harper, Vidgen, & Wood, 1998;
Vidgen, Avison, Wood, & Wood-Harper, 2002),
Kumar & Bjørn-Andersen’s model of designer
values (Kumar & Bjørn-Andersen, 1990), and
Gasson’s social action model of ISD (Gasson,
1999). The iterative GT technique of “constant
comparison” was used firstly to synthesise the
main concepts of these models into a coherent
unified framework, and then to mould this initial
framework into the empirically-grounded model
which emerged as the sense-making tasks of
data gathering and analysis progressed. Simply
put, the resultant framework came together in a
manner that was both top-down and bottom-up.
Conceptual categories were initially derived from
a review of literature and other models, then the
content of these categories was filled in by a
grounded analysis of empirical data.

As the research project unfolded and the con-
ceptual framework began to take shape, it became
the nucleus of all efforts, providing reference
links to the background literature and research
questions, informing the research design and

Figure 2. Conceptual framework of Web-based systems development as situated design

derived fro m reflective
ana lys is o f past experience

exert in fluence
upon behav iour o f

in fluence
enac tm ent o f

m ay be based o n /
derived fro m

created in
response to

ana lyses

enac tsshapes
Designerproject factors

(“in trins ic ” des ign c ontext)
situated

Design practices

mediating factors
(“extrins ic ” des ign context)

formalised
Design guidance

derived fro m reflective
ana lys is o f past experience

exert in fluence
upon behav iour o f

in fluence
enac tm ent o f

m ay be based o n /
derived fro m

created in
response to

ana lyses

enac tsshapes
Designerproject factors

(“in trins ic ” des ign c ontext)
situated

Design practices

mediating factors
(“extrins ic ” des ign context)

formalised
Design guidance

situated
Design practices

situated
Design practices

mediating factors
(“extrins ic ” des ign context)

formalised
Design guidance

 167

Web-Based Systems Development

philosophical perspective, and guiding the elicita-
tion and reflective analysis of data. The refined
conceptual framework which eventually emerged
is presented in Figure 2. At its heart, design prac-
tices are regarded as situated actions, purposefully
enacted by knowledgable actors who analyse the
design context and act accordingly, drawing upon
their own experiences to choose an appropriate
method. The foundation of the “situated action”
view of design is that, “rather than attempting
to abstract action away from its circumstances
and represent it as a rational plan, the approach
is to study how people use their circumstances
to achieve intelligent action” (Suchman, 1987).
It rejects the “technical rationalist” assertion
that formalised design methods can be executed
objectively. Rather, design methods must always
be uniquely interpreted; as Essinck (1988) puts it,
“in a real life project one has to puzzle together
one’s own specific method, tuned to the problem
at hand and the situation the designer is in”.

Because of space constraints, it is not possible
here to report the full details of empirical findings
as they relate to the various categorical headings
of the conceptual framework. The following
sections therefore briefly explain the elements
of the framework as they apply to the practice
of Web-based systems development. Further
details of this study and the process by which the
framework was derived are published in [56-61].
A copy of the survey instrument is available from
the author upon request.

Designer-encapsulated factors

A designer’s professional training and education
can shape his problem-solving orientation and
world view by indoctrinating certain values and
conditioning him to think and behave in certain
ways (Sahraoui, 1998). An analogy can be drawn
here with Thomas Kuhn’s notion of a “scientific
community” which he defines as “the practitioners
of a particular specialty … [who] have undergone
similar educations and professional initiations”

(Kuhn, 1996). Kuhn makes the point that these
communities, or “schools”, may “approach the
same subject from incompatible viewpoints”.
“Incommensurable” (Kuhn, 1996) or “incongru-
ent” (Orlikowski & Gash, 1994) viewpoints can
cause people to work at cross-purposes, which
has been seen to lead to disappointing outcomes
in ISD projects (Bostrom & Heinen, 1977). A
number of authors have mentioned that it would
be interesting to investigate the practices of
Web designers from backgrounds other than
software development, so as to build a broader,
richer understanding (Jonasson, 2000; Russo &
Graham, 1999). However, this issue has received
very little attention thus far. In view of this gap
in the literature, a comparison of the methods
and approaches used by designers from different
professional backgrounds was one of the main
concentrations of this study.

In the survey phase of this research, the
cover letter attached to the questionnaire simply
requested that it be completed by someone in
a design role, the rationale being to capture a
cross-section of respondents across the various
disciplines that contribute to Web-based systems
development. As expected, two dominant discipli-
nary groupings emerged: computer-based systems
development (CBSD), and visual design (VD).
Differences in priorities and preferences were
observed, apparently influenced by the histori-
cal practices (e.g. software specifications versus
graphic design “briefs”) and orientations (e.g.
functional/transactional versus informational/
promotional) in each field. For example, the VD
group were considerably more lax than the CBSD
group as regards requirements documentation,
and were also generally very loose concerning the
use of “approaches” and “methods”. Indeed, the
notion of a design “method” seemed to be alien
to many of the VD group. On the other hand, the
CBSD group were mostly comfortable with the
idea of a systematic process for Web-based sys-
tems development, such processes mainly being
adaptations of traditional software development
methods and techniques.

168

Web-Based Systems Development

In the follow-up field study, the influence of
professional background on design practices was
probed in greater depth. Interestingly, a number
of different problem-solving perspectives were
discovered, each clearly shaped by the various
priorities and orientations of the respective
disciplines. The perspectives identified were:
Web-based systems development as the design
of a functional software application (emphasis
on back-end functionality); as the design of an
interactive tool (emphasis on ergonomics); as the
design of a directed communicational dialogue
(emphasis on audience engagement); and as an
extension of branded graphic design (emphasis on
visual presentation). For a more detailed analysis,
see Lang, M. (2009) and Lang, M. (2003).

The framework therefore recognises that a
designer’s professional background and education
can shape his “world view” by conditioning him
to think and behave in certain ways. While dif-
ferent perspectives and orientations were found
to exist, it would seem that, at least in the field of
practice, there is a growing degree of pluralism, as

evidenced by a substantial degree of cross-skilling
and cross-pollination of techniques.

Though some tasks and stages of Web-based
systems development may be formalised and
codified, or even automated, there remains a
critical need for creative human intervention and
the exercise of judgement. Many authors argue
that software design is essentially a highly skilled
craft (McBreen, 2002; Taylor, 2004; Wroblewski,
1991). It is inaccurate to conceive of design as
merely following some pre-defined “cookbook”
method; rather, design requires creative thinking
and draws upon the skills and experiences of tal-
ented individuals (Glass, 1995; Shaw & Garlan,
1996; Stolterman & Russo, 1997). Rumbaugh
(1995) puts it as follows:

“You can’t expect a method to tell you every-
thing to do. Writing software is a creative process,
like painting or writing or architecture. There
are principles of painting, for example, that give
guidelines on composition, color selection, and
perspective, but they won’t make you a Picasso
… Some methods claim to fully automate the

6

Designerproject factors
situated

Design practices

mediating factors

formalised
Design guidance

Designerproject factors
situated

Design practices

mediating factors

formalised
Design guidance

Designer-encapsulated factors

• Professional background
– problem-solving orientation & priorities
– historical practices of native discipline
– cross-skilling / pluralism

• Knowledge
– critical to productivity
– process knowledge: “way of working”

generally clear but often not defined
– experience is a crucial lever

e.g. ability to “read” a situation, reflective
analysis of past lessons

– knowing how to apply the process
e.g. when to depart from it? appropriate
level of rigour?

– repertoire of time-saving patterns &
heuristics / know-how

– “applied creativity” based on sound
knowledge of basic design principles

• Individual commitment
– critical to sustainable pace

Figure 3. Conceptual framework: Designer-encapsulated factors

The framework therefore recognises that a designer’s professional background and education can shape his “world view”
by conditioning him to think and behave in certain ways. While different perspectives and orientations were found to
exist, it would seem that, at least in the field of practice, there is a growing degree of pluralism, as evidenced by a
substantial degree of cross-skilling and cross-pollination of techniques.

Though some tasks and stages of Web-based systems development may be formalised and codified, or even automated,
there remains a critical need for creative human intervention and the exercise of judgement. Many authors argue that
software design is essentially a highly skilled craft (McBreen, 2002; Taylor, 2004; Wroblewski, 1991). It is inaccurate to
conceive of design as merely following some pre-defined “cookbook” method; rather, design requires creative thinking
and draws upon the skills and experiences of talented individuals (Glass, 1995; Shaw & Garlan, 1996; Stolterman &
Russo, 1997). Rumbaugh (1995) puts it as follows:

“You can’t expect a method to tell you everything to do. Writing software is a creative process, like painting or
writing or architecture. There are principles of painting, for example, that give guidelines on composition, color
selection, and perspective, but they won’t make you a Picasso … Some methods claim to fully automate the
[software development] process, to tell you every step to follow so that software design is painless and faultless.
They are wrong. It can’t be done. What can be done is to supply a framework that tells you how to go about it
and identifies the places where creativity is needed.”

Continuing with the analogy between painting and software design, it is interesting to read the following extract from
Leonardo da Vinci’s Trattato della Pittura (Treatise on Painting) of 1651:

“These rules will enable you to possess a free and good judgement, since good judgement is born of good
understanding, and good understanding derives from reason expounded through good rules, and good rules are
the daughters of good experience – the common mother of all the sciences and arts” (White, 2000)

This relationship between method, understanding, experience and judgement, which of course is not specific to painting,
can also be seen in the writings of Schön (1983) and, within the ISD literature, in the work of Introna & Whitley (Introna
& Whitley, 1997; Whitley, 1998). Accordingly, like the Method-in-Action model, the conceptual framework derived by
this study recognises the vital contribution played by creative, talented individuals in the successful execution of the
design process. Designers interpret the design context and use their judgement to decide what actions to take in a
particular situation.

A strong theme which emerged from the field study was the role of knowledge and experience as a crucial lever in the
determination of how Web development processes and guidelines are tailored to meet the needs of the particular situation
at hand. Furthermore, knowledge is a critical asset in a development environment characterised by high-speed work
practices because it contributes to productivity. More knowledgeable employees are able to work faster because they are
equipped with a repertoire of time-efficient “tricks”, heuristics, and patterns acquired along the downward traverse of the
learning curve. It was found that most of the award-winning companies interviewed have mechanisms in place to
facilitate and encourage the management of Web design knowledge, with rewards and bonuses accruing to employees

Figure 3. Conceptual framework: Designer-encapsulated factors

 169

Web-Based Systems Development

[software development] process, to tell you every
step to follow so that software design is painless
and faultless. They are wrong. It can’t be done.
What can be done is to supply a framework that
tells you how to go about it and identifies the
places where creativity is needed.”

Continuing with the analogy between painting
and software design, it is interesting to read the
following extract from Leonardo da Vinci’s Trat-
tato della Pittura (Treatise on Painting) of 1651:

“These rules will enable you to possess a free
and good judgement, since good judgement is born
of good understanding, and good understanding
derives from reason expounded through good
rules, and good rules are the daughters of good
experience – the common mother of all the sci-
ences and arts” (White, 2000).

This relationship between method, understand-
ing, experience and judgement, which of course
is not specific to painting, can also be seen in the
writings of Schön (1983) and, within the ISD lit-
erature, in the work of Introna & Whitley (Introna
& Whitley, 1997; Whitley, 1998). Accordingly,
like the Method-in-Action model, the conceptual
framework derived by this study recognises the
vital contribution played by creative, talented
individuals in the successful execution of the
design process. Designers interpret the design
context and use their judgement to decide what
actions to take in a particular situation.

A strong theme which emerged from the field
study was the role of knowledge and experience
as a crucial lever in the determination of how Web
development processes and guidelines are tailored
to meet the needs of the particular situation at
hand. Furthermore, knowledge is a critical asset
in a development environment characterised by
high-speed work practices because it contributes to
productivity. More knowledgeable employees are
able to work faster because they are equipped with
a repertoire of time-efficient “tricks”, heuristics,
and patterns acquired along the downward traverse
of the learning curve. It was found that most of
the award-winning companies interviewed have

mechanisms in place to facilitate and encourage
the management of Web design knowledge, with
rewards and bonuses accruing to employees who
use slack time to gain and exchange useful knowl-
edge. A number of companies schedule regular
time slots for innovative research activity, setting
aside normal development work.

The other main designer-encapulated factor
which emerged in this study was individual com-
mitment. Again, like knowledge, this is critical in
order to be able to sustain a continuous pace of
high-speed delivery. Such issues as organisational
culture, appropriate reward mechanisms, and
the adoption of practices to eliminate morale-
sapping overtime were found to be important in
this regard.

formalised Design guidance

Departing slightly from the original Method-in-
Action framework, the term “formalised design
guidance” is used here in preference to “formalised
method” because this study found that, even where
Web developers have process documentation in
place, it is usually not at the comprehensive level
of “method” but more often seems to be simply
a collected body of concise procedures, rules of
good practice, heuristics and guidelines, or “how-
to” memoranda (e.g. intranet-based “Wiki’s” and
“blogs”).

Though 83% of survey respondents have a
clearly understood way of working, in very many
cases development processes are not explicitly
documented. A similar pattern emerged during
follow-up interviews. It would seem that design
know-how is best transmitted and acquired by
working “on the job”, rather than from perusal
of formalised procedures or attending training
programmes. Most organisations use a “home-
cooked” in-house development process that is
founded on research, experimentation and reflec-
tive analysis of past experience. On the basis of in-
terview findings, these in-house “methods” seem
not to be complete end-to-end solutions, but more

170

Web-Based Systems Development

of a high-level process model within which there
is a pick-and-mix selection of low-level techniques
to support phase tasks. They are mainly hybrids
and custom-tailored variants, based on combina-
tions of internally devised guidelines and public
domain methods, informed by an awareness of
best industry practice as gleaned from handbooks
or on-line forums, and supported by or based
around useful tools. This is consistent with the
concept of “bricolage” whereby Web designers,
rather than shunning method, judiciously assemble
fragments of methods and distil the most useful
elements into a flexible custom-made approach.
Though the same high-level process model may

be applied across all projects, tailoring occurs at
the level of within-phase tasks, depending on the
needs of the particular situation at hand.

Ironically, while there is a vast and ever-grow-
ing “jungle” of academically-produced Web-based
systems development methods in the literature,
none of which are being used to any significant
extent in actuality (as evidenced by the survey
results), the findings of the field study suggest that
out in the real world a single generic high-level
process dominates, it resembling a derivative of
the traditional “Waterfall” software development
model wedded to an amalgam of sub-processes
inherited from the fields of graphic design, HCI,

7

who use slack time to gain and exchange useful knowledge. A number of companies schedule regular time slots for
innovative research activity, setting aside normal development work.

The other main designer-encapulated factor which emerged in this study was individual commitment. Again, like
knowledge, this is critical in order to be able to sustain a continuous pace of high-speed delivery. Such issues as
organisational culture, appropriate reward mechanisms, and the adoption of practices to eliminate morale-sapping
overtime were found to be important in this regard.

formalised Design guidance

Departing slightly from the original Method-in-Action framework, the term “formalised design guidance” is used here in
preference to “formalised method” because this study found that, even where Web developers have process
documentation in place, it is usually not at the comprehensive level of “method” but more often seems to be simply a
collected body of concise procedures, rules of good practice, heuristics and guidelines, or “how-to” memoranda (e.g.
intranet-based “Wiki’s” and “blogs”).

Designerproject factors
situated

Design practices

mediating factors

formalised
Design guidance

Designerproject factors
situated

Design practices

mediating factors

formalised
Design guidance

formalised Design guidance

• Approaches and process models
– predominance of “home-cooked” in-house

processes, derived from experience
– “bricolage” approach: pick-and-mix
– rich diversity of influences e.g. graphic

design, industrial design, film-making,
marketing, software development

– emphasis on agility, speed and
efficiency/productivity

• Techniques
– ease-of-use and usefulness in context of

multi-disciplinary team are key issues
– existing techniques from root disciplines

are being applied; no apparent desire or
need for “new” methods/techniques

• Principles & guidelines
– extensive use of on-line forums as sources

of guidance
– in-house guidelines: concise “rule sheets”

and “how-to” lists, derived from experience
– awareness of international conventions and

best practices

• Tools
– modular / layered system architecture
– processes may evolve around useful tools

i.e. “picking the tool for the job”
– tools to support efficient collaboration

e.g. knowledge-bases, blogs/Wikis, code
management, job control, messaging

– rapid development tools
e.g. content management, code libraries,
automatic code generation, “productised”
ready-to-go solutions

Figure 4. Conceptual framework: Formalised design guidance

Though 83% of survey respondents have a clearly understood way of working, in very many cases development
processes are not explicitly documented. A similar pattern emerged during follow-up interviews. It would seem that
design know-how is best transmitted and acquired by working “on the job”, rather than from perusal of formalised
procedures or attending training programmes. Most organisations use a “home-cooked” in-house development process
that is founded on research, experimentation and reflective analysis of past experience. On the basis of interview
findings, these in-house “methods” seem not to be complete end-to-end solutions, but more of a high-level process model
within which there is a pick-and-mix selection of low-level techniques to support phase tasks. They are mainly hybrids
and custom-tailored variants, based on combinations of internally devised guidelines and public domain methods,

Figure 4. Conceptual framework: Formalised design guidance

 171

Web-Based Systems Development

strategic marketing / brand design, and industrial
design. On the basis of the interview data gathered
in this research project, it can be concluded that
what differentiates one company from the next
is not the overall shape or format of their devel-
opment process, – notwithstanding the fact that
many companies do indeed present their process
as a unique selling point, – but rather the way in
which the finer points of that process are uniquely
interpreted by their design team in the specific
context of a particular project.

In addition to the form of the generic Web
development process model, – which represents
a fusion of approaches drawn from a variety of
sources, – the influence of multiple disciplin-
ary fields on the practice of Web-based systems
development is evidenced by the finding that all
interviewees, regardless of their professional
backgrounds, found that the same methods and
techniques they had formerly used in their “na-
tive” discipline transferred across to Web design.
This suggests that wholly new methods and
techniques for Web-based systems development
are neither necessary nor appropriate. It was also
generally found that ease-of-use, usefulness and
representational capabilities are important factors
which affect the choice of conceptual modelling
techniques for Web design. Whereas the emphasis
of traditional software development techniques
was on back-end functionality (e.g. ERDs for
database-driven applications), there is now also
an essential need for front-end design techniques
drawn from the field of visual communications,
such as storyboards and “mood boards”.

Given the high-speed nature of Web-based
systems development, the emphasis of formalised
design guidance is very much on agility, speed,
efficiency and productivity. Streamlined processes
are necessary in order to maximise throughput,
and also to sustain a continual pace by eradicat-
ing the need for ongoing overtime (which has
fatiguing and demoralising effects). Interestingly,
the Web developers interviewed have evolved
practices that are markedly similar to those of

the “agile” methods family, such as: collective
code ownership; an emphasis on simplicity; the
use of regular informal team briefings; insistence
on a close working relationship with the client;
the pursuit of continuous process improvement
through reflective evaluation; and a general em-
phasis on people, communication, and working
software over processes, documentation, and
adherence to a plan. Processes and procedures
are therefore treated as flexible frameworks to
guide and assist the essentially creative tasks of
analysis and design.

The central role of tools in the formalisation
of work practices also emerged as an important
factor. For example, the use of automatic code
generation, re-usable components (both code
and graphical elements), enhanced RAD tools,
modular tiered systems architectures, and “pro-
ductised” software solutions greatly speeds up
Web development without subverting cost or
quality. Additionally, the store of in-house knowl-
edge, which is an important factor in productivity,
can be more effectively leveraged through the
advantageous use of collaborative forums such
as intranets, “Wiki’s”, and “blogs”.

project factors
(Intrinsic Design context)

Whitley (1998) makes the point that “in order
to be able to use a method appropriately, it
is necessary to have an understanding of the
context in which it is being used”. There is a
significant body of literature on the notion of
situation-specific “method engineering” (Brink-
kemper, 1996; Gnatz, Marschall, Popp, Rausch,
& Schwerin, 2003; Hidding, 1996; Kumar &
Welke, 1992; Song, 1997), and while there are
considerable issues surrounding the feasibility of
such an approach in practice (Fitzgerald, Russo,
& O’Kane, 2003; Ter Hofstedt & Verhoef, 1997;
Truex & Avison, 2003), it is nevertheless gener-
ally accepted that different situations warrant
different approaches (Cockburn, 2000; Essinck,

172

Web-Based Systems Development

1988; Jackson, 2000; Kraemer & Dutton, 1991;
Malouin & Landry, 1983; Ratbe, King, & Kim,
1999). All of the aforementioned conceptual
frameworks recognise that design practices may
be affected by the specific circumstances of the
design context, which is variously referred to as
the “problem situation”/“methodology context”
(NIMSAD), “situation” (Multiview), “context”
(Kumar & Bjørn-Andersen’s model), and “busi-
ness/development context” (Method-in-Action).
Here, the design context is represented by the
categories labelled “Project Factors: intrinsic
design context” and “Mediating Factors: extrinsic
design context”.

It was found that the duration of a typical
Web development project is of the order of 2 to 3
months. Such short delivery cycles, until recently
at least, were unprecedented in traditional software
development and are made possible in Web-based
systems development by a combination of factors.
Firstly, the Web is an immediate delivery medium
which is not impeded by production, distribution
and installation delays. Secondly, as evidence by
the interview data, there have been dramatic gains
in recent years in developer productivity, coupled
with ever more efficient and refined development

processes. This has been achieved through the
use of high-speed rapid application development
tools, templates and wizards for automatic code-
generation, plug-and-play database connectivity,
and libraries of pre-fabricated components and
applets. Web programming is now advanced to
a point where most development time is invested
into the ongoing evolution of an out-of-the-box
solution. Code production for a project has
moved from crude cut-and-paste re-use to instant
automatic generation, meaning that most of the
standard back-end functionality required for any
given project can be up and running within a day
or two. The visual design of the GUI front-end,
like the traditional production process for com-
mercial art, can also be done within a very short
timeframe. A fully-proven working prototype can
therefore be very quickly launched, which can later
be modified and enhanced in such a manner that
end-users may be largely oblivious to the ongoing
changes. As such, rapid/agile and evolutionary/
incremental development approaches are a natural
fit to the Web environment.

Consistent with the previous work of Basker-
ville & Pries-Heje (2001, 2004), this study found,
as one would expect, that time pressure is the

9

wizards for automatic code-generation, plug-and-play database connectivity, and libraries of pre-fabricated components
and applets. Web programming is now advanced to a point where most development time is invested into the ongoing
evolution of an out-of-the-box solution. Code production for a project has moved from crude cut-and-paste re-use to
instant automatic generation, meaning that most of the standard back-end functionality required for any given project can
be up and running within a day or two. The visual design of the GUI front-end, like the traditional production process for
commercial art, can also be done within a very short timeframe. A fully-proven working prototype can therefore be very
quickly launched, which can later be modified and enhanced in such a manner that end-users may be largely oblivious to
the ongoing changes. As such, rapid/agile and evolutionary/incremental development approaches are a natural fit to the
Web environment.

Designerproject factors
situated

Design practices

mediating factors

formalised
Design guidance

Designerproject factors
situated

Design practices

mediating factors

formalised
Design guidance

project factors
(“intrinsic” design context)

• Project timeframe

• Project constraints (budget, staff, etc.) may
lead to “pragmatic satisficing”

• Team-related issues
e.g. size, disciplinary composition, cohesion,
division of labour, shared understandings

• Clarity and stability of requirements
e.g. bespoke or routine, relationship with client

• Importance of “non-functional” requirements
e.g. branding, visual aesthetics, usability,
accessibility, security, maintainability,
performance etc.

• Application characteristics
e.g. domain, size/complexity, criticality

• Development focus: in-house or external client

Figure 5. Conceptual framework: Project factors

Consistent with the previous work of Baskerville & Pries-Heje (2001, 2004), this study found, as one would expect, that
time pressure is the central determinant of design practices. However, there are discrepancies between this research and
that of Baskerville & Pries-Heje, most notably with their finding that developers may resort to the practices of “coding
your way out” and “negotiated quality” because of the pressures of high-speed development environments. Whereas in
Baskerville & Pries-Heje’s study such practices were endemic, in this research hardly any such incidents were
discovered. This can be explained in a number of ways. Firstly, the interviewed companies were mostly award-winners, a
likely indicator that they make special efforts to strive for excellence and quality. Secondly, the marketplace has become
more competitive in recent years and users are much less tolerant of unprofessional standards of work, meaning that
expectation levels have risen. Thirdly, as already mentioned, the use of pre-fabricated “productised” solutions that are
already fully tested means that robust systems can be rapidly delivered without compromising cost or quality. Even in the
worst case scenario for a development team, where they face the dreaded “backs-to-the-wall” combination of acute time
and resource constraints, a tactic herein coined as “pragmatic satisficing” is engaged, meaning that a tried-and-tested
solution is re-used, albeit it may not be the best possible outcome.

It was found, initially in the survey and later in the follow-up interviews, that most Web development teams are small,
typically comprising about 5 to 10 members for any given project. This affords the advantage that communication
problems are minimal and that cohesion can more easily be achieved, both of which are important for timely delivery. As
teams grow in size, knowledge becomes fragmented. There consequently arises a need to formalise and standardise
working methods (e.g. conventions for collective code ownership) because otherwise wasteful inefficiencies due to “re-
inventing the wheel” can occur. In both the survey and the follow-up interviews, it was found that larger teams tend to
make more use of documented guidelines and procedures.

Conflict between Web designers from different professional backgrounds was not found to be much of a problem in
practice. This is because the once rival factions of software engineering and graphic design have over time come to gain
an appreciation of each others’ perspectives and priorities (as evidenced by a considerable degree of cross-skilling), and it
is now easier to separate front-end and back-end Web design into different layers than it was a few years ago.

The clarity and stability of requirements is an age-old issue in systems development, but in high-speed environments it is
important to “nail” a prioritised list as quickly as possible. In comparison with traditional software development, it was
found during the field study that a greater weighting of time in Web-based systems development is spent on analysis and
design as opposed to coding. Requirements analysis is the most time-consuming phase of all in Web development,

Figure 5. Conceptual framework: Project factors

 173

Web-Based Systems Development

central determinant of design practices. However,
there are discrepancies between this research and
that of Baskerville & Pries-Heje, most notably
with their finding that developers may resort
to the practices of “coding your way out” and
“negotiated quality” because of the pressures of
high-speed development environments. Whereas
in Baskerville & Pries-Heje’s study such practices
were endemic, in this research hardly any such
incidents were discovered. This can be explained
in a number of ways. Firstly, the interviewed
companies were mostly award-winners, a likely
indicator that they make special efforts to strive for
excellence and quality. Secondly, the marketplace
has become more competitive in recent years and
users are much less tolerant of unprofessional
standards of work, meaning that expectation levels
have risen. Thirdly, as already mentioned, the use
of pre-fabricated “productised” solutions that are
already fully tested means that robust systems can
be rapidly delivered without compromising cost
or quality. Even in the worst case scenario for a
development team, where they face the dreaded
“backs-to-the-wall” combination of acute time
and resource constraints, a tactic herein coined
as “pragmatic satisficing” is engaged, meaning
that a tried-and-tested solution is re-used, albeit
it may not be the best possible outcome.

It was found, initially in the survey and later in
the follow-up interviews, that most Web develop-
ment teams are small, typically comprising about 5
to 10 members for any given project. This affords
the advantage that communication problems are
minimal and that cohesion can more easily be
achieved, both of which are important for timely
delivery. As teams grow in size, knowledge be-
comes fragmented. There consequently arises a
need to formalise and standardise working meth-
ods (e.g. conventions for collective code owner-
ship) because otherwise wasteful inefficiencies
due to “re-inventing the wheel” can occur. In both
the survey and the follow-up interviews, it was
found that larger teams tend to make more use of
documented guidelines and procedures.

Conflict between Web designers from differ-
ent professional backgrounds was not found to be
much of a problem in practice. This is because
the once rival factions of software engineering
and graphic design have over time come to gain
an appreciation of each others’ perspectives and
priorities (as evidenced by a considerable degree
of cross-skilling), and it is now easier to separate
front-end and back-end Web design into different
layers than it was a few years ago.

The clarity and stability of requirements is
an age-old issue in systems development, but
in high-speed environments it is important to
“nail” a prioritised list as quickly as possible. In
comparison with traditional software develop-
ment, it was found during the field study that a
greater weighting of time in Web-based systems
development is spent on analysis and design as
opposed to coding. Requirements analysis is the
most time-consuming phase of all in Web develop-
ment, whereas coding can actually be very quick.
Though most of the functional requirements for
a Web-based system are typically standard and
can therefore be readily described, the bespoke
elements take time to specify, as does a considered
analysis of the fine details of the overall package
including the “non-functional” requirements (us-
ability, accessibility, security, performance levels,
etc.). As initially revealed by the survey and later
substantiated by follow-up interviews, it is com-
mon practice to produce and sign-off a detailed
requirements specification before commencing
full scale production, the purpose of which is to
keep feature creep in check and compel clients
to make firm decisions.

From the interviews, it seems that most or-
ganisations use largely the same development
process for all types of applications, regardless of
delivery platform or application domain. While
the general process may be very similar across
all projects, the rigour with which its sub-tasks
are executed varies, as one would expect, in ac-
cordance with application size/complexity and
application criticality. Some evidence was found

174

Web-Based Systems Development

in the survey that in highly specialised areas such
as interactive e-learning/CBT applications, a
proprietary method might be used, and also that
in some sectors (e.g. Financial Services) there is
a greater emphasis on processes and documented
procedures (e.g. detailed functional specifications,
formalised organisational guidelines). However,
a shortcoming of this study is that insufficient
data was gathered to analyse the influence of
specialised application domains on the finer details
of Web development processes and procedures
(e.g. security is a concern in the development of
e-banking systems, but this was only incidentally
touched upon in this research).

The focus of systems development activity (i.e.
in-house versus external client) was also found
to impact development practices. Whereas Web

design agencies can agree plans with clients and
negotiate with them over who pays for subsequent
over-runs, in-house development teams are in a
“hands tied” situation, meaning that project plan-
ning is necessarily done very differently.

mediating factors (extrinsic Design
context)

Design practices can sometimes be affected by the
intervention of extraneous factors, the influence
of which may be to cause designers to pursue a
course of action they might not otherwise take.
For example, it was found during interviews that
there may be a mandate by the client that certain
procedures are to be rigidly followed (e.g. because
of statutory requirements to comply with certain

10

whereas coding can actually be very quick. Though most of the functional requirements for a Web-based system are
typically standard and can therefore be readily described, the bespoke elements take time to specify, as does a considered
analysis of the fine details of the overall package including the “non-functional” requirements (usability, accessibility,
security, performance levels, etc.). As initially revealed by the survey and later substantiated by follow-up interviews, it
is common practice to produce and sign-off a detailed requirements specification before commencing full scale
production, the purpose of which is to keep feature creep in check and compel clients to make firm decisions.

From the interviews, it seems that most organisations use largely the same development process for all types of
applications, regardless of delivery platform or application domain. While the general process may be very similar across
all projects, the rigour with which its sub-tasks are executed varies, as one would expect, in accordance with application
size/complexity and application criticality. Some evidence was found in the survey that in highly specialised areas such
as interactive e-learning/CBT applications, a proprietary method might be used, and also that in some sectors (e.g.
Financial Services) there is a greater emphasis on processes and documented procedures (e.g. detailed functional
specifications, formalised organisational guidelines). However, a shortcoming of this study is that insufficient data was
gathered to analyse the influence of specialised application domains on the finer details of Web development processes
and procedures (e.g. security is a concern in the development of e-banking systems, but this was only incidentally
touched upon in this research).

The focus of systems development activity (i.e. in-house versus external client) was also found to impact development
practices. Whereas Web design agencies can agree plans with clients and negotiate with them over who pays for
subsequent over-runs, in-house development teams are in a “hands tied” situation, meaning that project planning is
necessarily done very differently.

mediating factors (extrinsic design context)

Designerproject factors
situated

Design practices

mediating factors

formalised
Design guidance

Designerproject factors
situated

Design practices

mediating factors

formalised
Design guidance

mediating factors
(“extrinsic” design context)

• Mandate by client e.g. public sector contracts

• Organisational control & reward systems
e.g. support for innovation and knowledge
sharing, drive to eliminate overtime

• Prevalent organisational culture
e.g. innovative -v- bureaucratic, autonomy -v-
accountability, concern with staff morale

• Organisational priorities e.g. revenue
maximisation, internal responsiveness,
perpetual immediacy, quality -v- time

• Statutory & regulatory imperatives
e.g. industry regulations, legislative mandate

• Locus of power e.g. sales & marketing -v-
development team, status of in-house Web
team, decision-making authority of
stakeholders, “single voice” -v- “design-by-
committee”

• Covert political / strategic roles of method
– deliverable sign-offs as defensive shields:

“not our fault” accountability
– means-ends inversion: transparency of

“due process”
– external visibility of rigorous methods as

semblance of professionalism: contract-
winning motive

– formulation of policies & procedures may
be tactic to gain power e.g. Web team
“drawing the line”, individual expert power

Figure 6. Conceptual framework: Mediating factors

Design practices can sometimes be affected by the intervention of extraneous factors, the influence of which may be to
cause designers to pursue a course of action they might not otherwise take. For example, it was found during interviews
that there may be a mandate by the client that certain procedures are to be rigidly followed (e.g. because of statutory
requirements to comply with certain standards, or the existence of binding protocols for procurement or software testing),
or not to be followed (e.g. political pressure to complete, “just do it!”).

Figure 6. Conceptual framework: Mediating factors

 175

Web-Based Systems Development

standards, or the existence of binding protocols
for procurement or software testing), or not to
be followed (e.g. political pressure to complete,
“just do it!”).

As was previously observed by Powell et al
(1998), this study found that the locus of power
within organisations can significantly influence
the development approach. For example, fledg-
ling in-house Web development units often have
to resort to “pragmatic satisficing” behaviour
because they are under-resourced. In Web de-
sign agencies, a typical cause of conflict is the
competing motives of the sales team (revenue
maximisation) and the development team (qual-
ity optimisation), – this argument is usually won
by the sales team, and programmers might end
up being coerced into taking shortcuts to meet
targets. The locus of power is also a common
issue for client organisations, where the politics,
indecision, and communicative difficulties arising
from the “design-by-committee” syndrome can
frustrate even the best laid project plans.

Associated with the concept of reward and con-
trol systems are two closely related other concepts:
organisational priorities and organisational cul-
ture. Prerogatives such as perpetual immediacy,
statutory and regulatory imperatives, a commer-
cial desire to maximise revenue/throughput, a
need to be internally flexible with schedules and
requirements, or a focus on quality above time
and cost considerations can impact development
processes by directing priorities. Similarly, the
culture of an organisation, as reinforced by control
and reward mechanisms, is also a relevant issue
(e.g. emphasis on individual accountability as
opposed to responsible autonomy).

As with the original Method-in-Action model,
it was again found in this study that development
methods may fulfil covert political roles. These
included: establishing a power-base for method
champions (e.g. the XP, WAI, or BS7799 “expert”),
maintaining a transparent and accountable audit
trail of the development process as a protective
fallback (e.g. the in-house “blame game”, or

negotiating responsibility for change requests
or delays with clients), providing assurance that
correct and “proper” practices are being followed
(e.g. public-sector tenders), and helping to raise the
status of in-house Web development departments
(e.g. the creation of internal policies to “legitimise”
or “professionalise” operations).

cOnclUsIOn

The framework presented in this chapter pro-
vides a macro-level overview of the context of
Web-based systems development and the various
inter-related issues therein. A criticism that can
be made of much “Web engineering” research,
particularly that which concentrates on design
methods, is that problems are often investigated
in isolation, without due consideration of their
“natural” context in the real-world environment
of practice. For example, there is a vast array of
academically-produced Web/hypermedia design
methods in the literature, but very few of these
are being used in industry. There are many rea-
sons why this may be so, but the long-standing
criticism (Fitzgerald, 1991) remains that many
of these methods have only been validated in
restricted experimental settings or pilot studies
as opposed to industrial-strength projects. The
framework is helpful in this regard by providing
academic researchers and method developers
with a view of the over-arching context of Web-
based systems development, thereby encouraging
systemic thinking and “big picture” problem-
solving, which ultimately should lead to research
products that are more attuned and adaptable to
the demands of practice.

As regards implications for education, IS/IT
graduate programmes historically placed substan-
tial emphasis on formalised design methods and
techniques as described in standard textbooks,
neglecting or entirely ignoring the factors which
impact the use of those methods and techniques
in practice. This limited one-dimensional per-

176

Web-Based Systems Development

spective meant that perplexed graduates straight
out of college often found themselves at a loss to
understand how so much of the material they had
diligently studied seemed to be irrelevant in the
“real world”. The conceptual framework derived
by this research is therefore potentially valuable
for educators because it constitutes the outline for
a revised and extended curriculum which treats
Web-based systems development as a situated
contextually-sensitive activity.

RefeRences

Avison, D. E., Wood-Harper, A. T., Vidgen, R.
T., & Wood, J. R. G. (1998). A further explora-
tion into information systems development: The
evolution of Multiview2. Information Technology
& People, 11(2), 124-139.

Baskerville, R., & Pries-Heje, J. (2001). Racing
the e-bomb: How the internet is redefining infor-
mation systems development methodology. In N.
L. Russo, B. Fitzgerald & J. I. DeGross (Eds.),
Realigning research and practice in information
systems development: The social and organiza-
tional perspective. IFIP Wg8.2 Conference, Boise,
Idaho, USA, 27-29 july 2001 (pp. 49-68). Boston:
Kluwer Academic Publishers.

Baskerville, R., & Pries-Heje, J. (2004). Short
cycle time systems development. Information
Systems Journal, 14(3), 237-264.

Bostrom, R. P., & Heinen, J. S. (1977). Mis prob-
lems and failures: A socio-technical perspective,
part 1: The causes. MIS Quarterly, 1(3), 17-32.

Brinkkemper, S. (1996). Method engineering:
Engineering of information systems development
methods and tools. Information and Software
Technology, 38(4), 275-280.

Cockburn, A. (2000). Selecting a project’s meth-
odology. IEEE Software, 17(4), 64-71.

Cusumano, M. A., & Yoffie, D. B. (1999). Software
development on internet time. IEEE Computer,
32(10), 60-69.

Essinck, L. J. B. (1988). A conceptual framework
for information systems development methodolo-
gies. In H.-J. Bullinger, E. N. Protonotarios, D.
Bouwhuis & F. Reim (Eds.), Information technol-
ogy for organisational systems (pp. 354-362).
Amsterdam: North-Holland.

Fitzgerald, B., Russo, N. L., & O’Kane, T. (2003).
Software development method tailoring at motor-
ola. Communications of the ACM, 46(4), 65-70.

Fitzgerald, B., Russo, N. L., & Stolterman, E.
(2002). Information systems development: Meth-
ods in action.London: McGraw-Hill.

Fitzgerald, G. (1991). Validating new information
systems techniques: A retrospective analysis.
In H.-E. Nissen, H. K. Klein & R. Hirschheim
(Eds.), Information systems research: Contem-
porary approaches and emergent traditions
(pp. 657-672): Elsevier Science Publishers B.V.
(North-Holland).

Gasson, S. (1999). A social action model of situ-
ated information systems design. DATA BASE
(ACM SIGMIS), 30(2), 82-97.

Gibbs, W. W. (1994, September). Software’s
chronic crisis. Scientific American, 72-81.

Glaser, B. G., & Strauss, A. L. (1967). The discov-
ery of grounded theory: Strategies for qualitative
research.New York: Aldine de Gruyter.

Glass, R. L. (1995). Software creativity.Englewood
Cliffs, NJ: Prentice Hall.

Glass, R. L. (1998). Is there really a software
crisis? IEEE Software, 15(1), 104-105.

Gnatz, M., Marschall, F., Popp, G., Rausch, A.,
& Schwerin, W. (2003). The living software
development process. Software Quality Profes-
sional, 5(3), 4-16.

 177

Web-Based Systems Development

Hidding, G. (1996). Method engineering: Experi-
ences in practice. In S. Brinkkemper, K. Lyytinen
& R. Welke (Eds.), Method engineering: Prin-
ciples of method construction and tool support.
London: Chapman & Hall.

Introna, L. D., & Whitley, E. A. (1997). Against
method-ism: Exploring the limits of method. In-
formation Technology & People, 10(1), 31-45.

Jackson, M. (2000). The origins of JSP and JSD:
A personal recollection. IEEE Annals of Software
Engineering, 22(2), 61-63.

Jayaratna, N. (1994). Understanding and evaluat-
ing methodologies, NIMSAD: A systemic frame-
work.London: McGraw-Hill.

Jonasson, I. (2000). Developing the informa-
tion systems of tomorrow - competencies and
methodologies. Unpublished M.Sc. Dissertation,
University of Skövde, Sweden.

Kraemer, K. L., & Dutton, W. H. (1991). Survey
research in the study of management information
systems. In K. L. Kraemer (Ed.), The information
systems research challenge: Survey research
methods. Volume 3 (pp. 3-58). Boston, Massa-
chusetts: Harvard Business School.

Kuhn, T. S. (1996). The structure of scientific
revolutions (3rd ed.). Chicago: University of
Chicago Press.

Kumar, K., & Bjørn-Andersen, N. (1990). A
cross-cultural comparison of IS designer values.
Communications of the ACM, 33(5), 528-538.

Kumar, K., & Welke, R. J. (1992). Methodology
engineering: A proposal for situation-specific
methodology construction. In W. W. Cotterman
& J. A. Senn (Eds.), Challenges and strategies for
research in systems development (pp. 257-269):
John Wiley & Sons.

Lang, M. (2002, April 29-30). The use of web-
based international surveys in information sys-
tems research. Paper presented at the European

Conference on Research Methodology for Busi-
ness and Management Studies (ECRM 2002),
Reading, England.

Lang, M. (2003) Hypermedia Systems Develop-
ment: A Comparative Study of Software Engineers
and Graphic Designers. Communications of the
AIS, 12(16), 242-257.

Lang, M. (2009) The Influence of Disciplinary
Backgrounds on Design Practices in Web-based
Systems Development. Journal of Information
and Organizational Sciences, forthcoming.

Lang, M. & Plantak Vukovac, D. (2008) Web-
based Systems Development: Analysis and
Comparison of Practices in Croatia and Ireland.
In Papadopoulos, G. A. et al. (eds), Proceedings
of 17th International Conference on Information
Systems Development, Paphos, Cyprus, August
2008.

Locke, K. (2001). Grounded theory in manage-
ment research.London: Sage.

Malouin, J.-L., & Landry, M. (1983). The mirage
of universal methods in systems design. Journal
of Applied Systems Analysis, 10, 47-62.

McBreen, P. (2002). Software craftsmanship: The
new imperative.Boston: Addison Wesley.

Miles, M. B., & Huberman, A. M. (1994). Qualita-
tive data analysis: An expanded sourcebook (2nd
ed.). Thousand Oaks, CA: Sage.

Murugesan, S., & Deshpande, Y. (1999, May
16-22). Preface to ICSE 1999 workshop on web
engineering. Paper presented at the 21st Inter-
national Conference on Software Engineering
(ICSE), Los Angeles, California, USA.

Murugesan, S., Deshpande, Y., Hansen, S., &
Ginige, A. (1999, May 16-17). Web engineering:
A new discipline for development of web-based
systems. Paper presented at the 1st ICSE Workshop
on Web Engineering, Los Angeles, California,
USA.

178

Web-Based Systems Development

Naur, P., & Randell, B. (Eds.). (1969). Software
engineering: Report on a conference sponsored
by the NATO Science Committee, Garmisch,
Germany, 7-11 october 1968.Brussels: Scientific
Affairs Division, NATO.

Oinas-Kukkonen, H., Alatalo, T., Kaasila, J.,
Kivelä, H., & Sivunen, S. (2001). Requirements
for web engineering methodologies. In M. Rossi
& K. Siau (Eds.), Information modeling in the
new millennium (pp. 360-382). Hershey, PA: Idea
Group Publishing.

Orlikowski, W. J., & Gash, D. C. (1994). Tech-
nological frames: Making sense of information
technology in organizations. ACM Transactions
on Information Systems, 12(2), 669-702.

Powell, T. A., Jones, D. L., & Cutts, D. C. (1998).
Web site engineering: Beyond web page design.
Upper Saddle River: Prentice Hall.

Ratbe, D., King, W. R., & Kim, Y.-G. (1999). The
fit between project characteristics and application
development methodologies: A contingency ap-
proach. Journal of Computer Information Systems,
40(2), 26-33.

Rumbaugh, J. (1995). What is a method? Journal of
Object Oriented Programming, 8(6), 10-16;26.

Russo, N. L., & Graham, B. R. (1999). A first
step in developing a web application design
methodology: Understanding the environment.
In A. T. Wood-Harper, N. Jayaratna & J. R. G.
Wood (Eds.), Methodologies for developing and
managing emerging technology based informa-
tion systems: 6th International BCS Information
Systems Methodologies Conference (pp. 24-33).
London: Springer.

Sahraoui, S. (1998). Is information systems
education value neutral? Journal of Computer
Information Systems, 38(3), 105-109.

Schön, D. A. (1983). The reflective practitioner:
How professionals think in action.London: Temple
Smith.

Shaw, M., & Garlan, D. (1996). Software
architecture: Perspectives on an emerging
discipline:Prentice Hall.

Song, X. (1997). Systematic integration of design
methods. IEEE Software, 14(2), 107-117.

Stolterman, E., & Russo, N. (1997). The paradox
of information systems methods: Public and pri-
vate rationality. Paper presented at the 5th British
Computer Society Conference on Information
Systems Methodologies, Lancaster, England.

Strauss, A., & Corbin, J. (1998). Basics of quali-
tative research: Techniques and procedures for
developing grounded theory (2nd ed.). Thousand
Oaks, CA: Sage.

Strauss, A. L. (1970). Discovering new theory
from previous theory. In T. Shibutani (Ed.), Hu-
man nature and collective theory (pp. 46-53).
Englewood Cliffs, NJ: Prentice Hall.

Suchman, L. A. (1987). Plans and situated actions:
The problem of human-machine communication.
Cambridge: Cambridge University Press.

Taylor, P. R. (2004). Vernacularism in software
design practice: Does craftmanship have a place
in software engineering? Australasian Journal
of Information Systems, 11(12), 14-25.

Ter Hofstedt, A. H. M., & Verhoef, T. F. (1997). On
the feasibility of situational method engineering.
Information Systems, 22(6-7), 401-422.

Truex, D., & Avison, D. (2003, August 4-6).
Method engineering: Reflections on the past and
ways forward. Paper presented at the 9th Americas
Conference on Information Systems (AMCIS),
Tampa, Florida, USA.

Vidgen, R., Avison, D., Wood, B., & Wood-Harper,
T. (2002). Developing web information systems:
From strategy to implementation.Oxford: But-
terworth Heinemann.

White, M. (2000). Leonardo: The first scientist.
London: Little, Brown & Company.

 179

Web-Based Systems Development

Whitley, E. A. (1998, December 13-16). Method-
ism in practice: Investigating the relationship
between method and understanding in web page
design. Paper presented at the 19th International
Conference on Information Systems (ICIS),
Helsinki, Finland.

Wroblewski, D. A. (1991). The construction of
human-computer interfaces considered as a craft.
In J. Karat (Ed.), Taking software design seriously:
Practical techniques for human-computer interac-
tion design (pp. 1-19): Academic Press.

180

Chapter XIV
Configurable Reference

Modeling Languages
Jan Recker

Queensland University of Technology, Australia

Michael Rosemann
Queensland University of Technology, Australia

Wil M. P. van der Aalst
Queensland University of Technology, Australia, & Eindhoven University of Technology, The

Netherlands

Monique Jansen-Vullers
Eindhoven University of Technology, The Netherlands

Alexander Dreiling
SAP Research CEC Brisbane, SAP Australia Pty Ltd., Australia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

This chapter discusses reference modeling languages for business systems analysis and design. In
particular, it reports on reference models in the context of the design-for/by-reuse paradigm, explains
how traditional modeling techniques fail to provide adequate conceptual expressiveness to allow for
easy model reuse by configuration or adaptation and elaborates on the need for reference modeling
languages to be configurable. We discuss requirements for and the development of reference modeling
languages that reflect the need for configurability. Exemplarily, we report on the development, defini-
tion and configuration of configurable event-driven process chains. We further outline how configurable
reference modeling languages and the corresponding design principles can be used in future scenarios
such as process mining and data modeling.

 181

Configurable Reference Modeling Languages

IntRODUctIOn

Business systems have evolved as computer-based
information systems that present themselves as
comprehensive commercial packages for the sup-
port of business requirements. Being IT-supported
software solutions, they presumptively support
and enhance organizations in all their business
operations. First attempts towards such corpo-
rate-wide integrated information systems were
developed in the 1960s (Beer, 1966). The huge
success of this idea has led to the proliferation of
comprehensive business information systems such
as enterprise resource planning (ERP) systems or
enterprise systems (ES), the current generation of
which is known under the label of process-aware
information systems (Dumas, van der Aalst, &
ter Hofstede, 2005). This label has emerged from
an act of “silent revolution” that has embraced the
IS discipline over the last decades and which has
started to shift the focus of attention from a data
perspective towards a process perspective. As
a result, an increasing number of business pro-
cesses are now conducted under the governance
of process-aware information systems, with the
intention of bridging not only business and IT but
also people and software through process-based
technology.

The successful implementation of process-
aware business systems is, however, dependent
on a seamless alignment between the system
capabilities and the organizational requirements
of the enterprise. The process of aligning orga-
nizational requirements and system functionality
(Rosemann, Vessey, & Weber, 2004) is known
as configuration and rests on the assumption of
similarity between enterprises, in the sense that
generic business system functionality, with some
customization, is assumed to be applicable to all
enterprises in a given industry sector. Following
the idea of process-orientation, business system
vendors often offer their solutions in the form of
pre-defined generic business processes for a set
of industry sectors. Oracle, for example, offers

system-supported business process solutions that
cover 19 industrial sectors (Oracle, 2006) while
SAP offers business process solutions for 24
industrial sectors (SAP, 2006). These industry-
specific process “templates” are introduced to
organizations to offer a final implementation of
the business system in the form of a configured,
enterprise-specific set of business processes
that are enabled, enacted and supported by the
system.

Yet, the act of aligning generic industry-spe-
cific with enterprise-specific business processes
that reflect organizational requirements has been
shown to imply extensive configuration efforts and
may lead to significant implementation costs that
exceed the price of software licenses by factors
of five to ten (Davenport, 2000). Some instances
even indicate that a misalignment may result
in severe business failure if conducted badly.
Consider the example of FoxMeyer, once a $5
billion wholesale drug distributor, which filed for
bankruptcy in 1996 after Andersen Consulting
concluded that the insufficiently aligned SAP
installation crippled the firm’s distribution (Stein,
1998). Other examples include Mobil Europe and
Dow Chemical (Davenport, 1998).

Business systems vendors are aware of these
problems and try to increase the manageability
of the configuration process of their software
solutions. One respective measure is to deliver
the products along with extensive documentation
and specific implementation and configuration
support tools. Conceptual models play a central
role within such documentation. They describe
functionality and structure of the business systems
on a semi-formal level and have become popular
under the notion of reference models. Though such
reference models for business systems exist in the
form of function, data, system organization, object
and process models, the latter is by far the most
popular model type (Rosemann, 2000) and often
forms a constituent part of the documentation of
software packages.

182

Configurable Reference Modeling Languages

While the existence of such reference models
as part of the system documentation in general
is valuable in software implementation projects
(Kesari, Chang, & Seddon, 2003), traditional
reference models offer little or no support for
configuration (Daneva, 2000) This is mainly due
to a lack of conceptual support in the form of a
configurable modeling language underlying the
reference models (Rosemann & van der Aalst,
in press).

Nevertheless, the business system configura-
tion process can significantly benefit from the
usage of reference models, for instance, in terms
of consistency, completeness, adaptability and
communicability. Since most business informa-
tion systems are quite extensively depicted in
their reference models, it motivates the idea of
utilizing these reference models for the configura-
tion task. However, the language that is used to
formulate reference models for the task of system
configuration needs to be configurable to sup-
port this delicate task. A configurable reference
process model should, for instance, provide rules
defining how a generic reference process model
can be adapted to suit a specific organizational
context.

This chapter provides an introduction to con-
figurable reference modeling languages and their
role in the configuration process of business infor-
mation systems. It covers discussions of current
shortcomings of reference modeling languages,
the need for configurable reference models and
the different stages towards the development and
application of configurable reference modeling
languages, particularly in the context of business
information systems. While we will, during the
course of this chapter, address multiple perspec-
tives using the examples of process and data
models, our foremost focus lies on the process
perspective. We will explicate our argumentations
using the example of a configurable reference
process modeling language called configurable
EPCs (Rosemann & van der Aalst, in press).

Forthcoming from this introduction we will

first discuss traditional reference modeling lan-
guages. Then, we will present and discuss design
principles for the design of configurable reference
modeling languages and then apply the principles
in the development of EPCs. Next, we will briefly
outline future scenarios for configurable reference
modeling languages and their design principles.
We close this chapter by discussing some conclu-
sions from our work.

RefeRence mODelIng
lAngUAges

Reference models are generic conceptual mod-
els that formalize recommended practices for a
certain domain (Fettke & Loos, 2003; Misic &
Zhao, 2000). Often labeled with the term “best
practice,” reference models claim to capture reus-
able state-of-the-art practices (Silverston, 2001a,
2001b). The depicted domains can be very different
and range from selected functional areas, such
as financial accounting or customer relationship
management, to the scope of an entire industry
sector (e.g., higher education).

The main objective of reference models is to
streamline the design of enterprise-individual
(particular) models by providing a generic solution
(Rosemann, 2000). The application of reference
models is motivated by the “design-for/by-reuse”
paradigm, postulating that they should accelerate
the modeling process by providing a repository
of potentially relevant business processes and
structures, ideally in an easy “plug & play” mo-
dus. Thus, reference modeling is closely related
to the reuse of information models (Wisse, 2000)
by providing a generic model solution that can be
adapted to a specific model reflecting individual
requirements.

Reference models are often used for describ-
ing the structure and functionality of business
systems. In these cases, a reference model can be
interpreted as a structured, semi-formal descrip-
tion of a particular application. Such application

 183

Configurable Reference Modeling Languages

reference models correspond to an existing off-
the-shelf solution that supports the functionality
and structure described in the model (Rosemann,
2002). They can, for example, be used for a better
understanding and evaluation of the appropriate-
ness of the software.

One of the most comprehensive models is the
SAP reference model (Curran, Keller, & Ladd,
1997). In version 4.6, its data model includes more
than 4,000 entity types and the reference process
models cover more than 1,000 system processes
and inter-organizational business scenarios. Most
of the other market leading business systems
vendors have alternative or similar approaches
toward such reference models.

Foundational conceptual work for the SAP
reference model had been conducted by SAP
AG and the IDS Scheer AG in a collaborative
research project in the years 1990-1992 (Keller,
Nüttgens, & Scheer, 1992). The outcome of
this project was the process modeling language
event-driven process chains (EPCs) (Keller et
al., 1992; Scheer, 2000), which has been used
for the design of the reference process models in
SAP. EPCs have become one of the most popular
reference modeling languages overall and have,
for instance, been used for the design of many
SAP-independent reference models (e.g., Siebel
CRM, ITIL, eTOM and PMBOK).

EPCs basically denote directed graphs, which
visualize the control flow and consist of events,
functions and connectors. Each EPC starts and
ends with at least one event. An event triggers
a function, which leads to a new event. Three
types of connectors (logical AND ∧, logical ex-
clusive OR XOR and logical OR ∨) can be used
to specify the logical links that exist between
sequences of events and functions in process
chains. They model control flow splits and joins.
An AND-split activates all outgoing branches
in concurrency while an AND-join waits for all
incoming branches to synchronize before propa-
gating control to the following EPC element. An
OR-split activates one, two or up to all outgoing

branches based on certain conditions while an
OR-join synchronizes all incoming branches that
are active and then propagates control to the fol-
lowing EPC element. An XOR-split activates one
of multiple outgoing branches based on certain
conditions while an OR-join propagates control to
the following EPC element when the first active
incoming branch arrives.

Figure 1 gives an example for an EPC as it
potentially can be found as part of a reference
model. This model shows an extract of a procure-
ment process. The EPC contains eight events, six
functions and three connectors. The events can be
seen as pre- and/or post-conditions of functions.
For example, the function Verify Invoice can
be executed if event Invoice posted is received
and the completion of this function will trigger
the event Payment to be effected. There are two
functions triggering event Invoice arrived. The
XOR-connector in the lower half of the diagram
shows that there is no need to synchronize these
two functions (e.g., the completion of Store Goods
directly triggers event Invoice posted). The XOR-
connector in the upper half of the diagram splits
the control flow in accordance to the condition
whether the purchase performed relates to goods
(left branch) or services (right branch). The re-
maining connector denotes an AND-join, meaning
that both input events need to be triggered in order
to enable function Create Purchase Order.

As can be observed from Figure 1, regular
EPCs do not contain any configuration informa-
tion. Therefore, valuable information is lacking.
For example, it is not shown that Record Service
(i.e., the scenario in which procured services need
to be audited during execution, is only of interest
for a subset of all procurement scenarios, namely
those where services are being procured instead
of goods). There are cases imaginable where
enterprises only enact a procurement process for
goods but not services. In these cases the accordant
part of the reference model is not applicable to the
organization and should be eliminated from the
enterprise-specific process model. This implies

184

Configurable Reference Modeling Languages

that the XOR connector may be a choice made for
the whole process rather than for an individual
process instance. Consider a second example. The
EPC shown in Figure 1 neither shows that Store
Goods is only relevant if Evaluate Goods Receipt
is conducted. If organizations opt never to procure
goods but only services, there is no need to imple-
ment functionality for goods storage. Also, the
model neither gives any insights into the necessity

or criticality of potential configurations nor into
possible inter-dependencies between configura-
tion decisions. Thus, the model expressive power
is limited and cannot guide the configuration of
a corresponding business system. Hence, a refer-
ence model designed using a traditional reference
modeling language is only of limited use for the
configuration process due to a lack of support on
a conceptual level.

Figure 1. An example for a potential reference model in EPC notation

Demand
exists

C reate
Purchase
Order

Purchase
approved

Perform
Purchase

E valuate
Goods
R eceipt

R ecord
S ervice

Goods arrived
S ervices
to be

recorded

Invoice posted

Verify Invoice

Payment to be
e cted

S tore Goods

Goods to be
stored

V

Funding exists

X

X

An event represents a
state that i ences or

controls the further of
one or more bus iness

processes . E vents trigger
functions and are results

of functions .

A function is a task or activity
performed on an object in
order to support one or
several bus iness objectives.
A function is triggered by an
event and results in one or
more events.

Logical operators allow
specifying the logical links
that exis t between events and
functions in process chains.
S plits activate one or more
outgoing branches based on
certain conditions while Joins
synchronize one or more
active incoming branches to
propagate control to a
following E PC element.

Directed arcs are used to
connect E PC elements

and depict the time-logical
ow of the process .

 185

Configurable Reference Modeling Languages

DesIgn Of cOnfIgURAble
RefeRence mODelIng
lAngUAges

Design Principles for a Configurable
Reference modeling language

Following the elaborations in the preceding sec-
tion and the idea of reference modeling (i.e., the
streamlined development of individual models
through “design-for/by-reuse”) we postulate
that reference modeling languages ought to be
configurable. We can reason our argumentation
by introducing a simple reference model lifecycle
that depicts the different stages of a reference
model, ranging from model design to execution
(see Figure 2).

The lifecycle is initiated by ES vendors who
depict the functionality of their software packages
in reference models (design time). Such a refer-
ence model typically does not include merely one
proposed alternative for conducting business in
a certain domain but a range of often mutually
exclusive alternatives. It denotes an “upper-bound”
of business system models that may possibly be
implemented in a particular enterprise. An orga-
nization might merely favor one of the depicted
alternatives and thus only to a subset of system

functionality to be implemented. Accordingly
they only refer to a subset of the reference model.
Figure 2 demonstrates this problem in a simple ex-
ample. The upper-bound reference model depicts
two mutually exclusive alternatives of conducting
business, either the sequence A-B-C or A-B-D. A
particular enterprise has to select one of these two
substitutive alternatives of conducting business
under the governance of the respective business
system. The XOR split in this case represents a
decision point that is of relevance during con-
figuration time. Note that a model in this phase
cannot necessarily be executed. It rather captures
different alternatives for a domain and thus needs
to be configured before it can serve as the actual
build time model, a template for implementing
and executing process instances at run time.

These types of decisions cannot be reflected
in traditional reference models due to a lack of
conceptual support of the underlying reference
modeling language. Existing reference modeling
techniques do not support the highlighting and
selection of different alternatives. The resulting
lack of expressiveness denotes a major issue for
model users, as (a) it does not become obvious
what configuration alternatives exist during sys-
tem implementation, and (b) the models do not
provide any decision support towards the selection
of different alternatives.

Figure 2. Reference model lifecycle

186

Configurable Reference Modeling Languages

Contemplating the reference model lifecycle
and the shortcomings of traditional reference
modeling languages, we have identified the follow-
ing design principles for a configurable reference
modeling language:

a. A configurable modeling language is charac-
terized by its capability to support decisions
for the transformation of reference models
from configuration time to build time (i.e.,
the model user can individualize the model
by selecting from alternative options before
instances will be derived from it). Such con-
figuration decisions on a type level have to
be clearly differentiated from decisions on
an instance level and can be highlighted as
variation points in a model (Halmans & Pohl,
2003) that should capture a decision point
together with the related possible choices.

b. A configurable modeling language has to
support configurations of business systems
regarding processes, functions, control flow
and data. In terms of processes, configura-
tion should address the active parts of pro-
cess models (i.e., functionality—functions,
tasks, transitions and the like—and control
flow). As events (or states), being more pas-
sive parts of processes cannot actively be
influenced by an organization, these should
not be covered by a configurable reference
process modeling language.

c. It should be possible to differentiate configu-
ration decisions into mandatory and optional
decisions. Mandatory decisions have to be
made before the very first instance can be
derived from this model. Optional deci-
sions can initially be neglected. It should
be possible to maintain defaults for optional
configuration decisions. This allows the
instantiation of the model even without
explicitly making all possible decisions.

d. Configuration should be differentiated into
global and local decisions. Global decisions
are based on the general context, including

factors such as industry, country, size, and
so forth. The relevant context factors have to
be maintained for every variation point. As
soon as information regarding the relevant
context has been provided, a first (hidden or
background) configuration of the reference
model can take place, which would lead to
“context-aware models.” Local configura-
tions require an explicit study of the relevant
reference model as the related decisions may
be based on local or individual factors such
as available budget, risk profile, time, and
so forth.

e. Configuration decisions should be differenti-
ated into critical and non-critical decisions.
Critical decisions have significant impact
on the use of the system and other business
processes, can often not be re-done and
should be made by the project team. Non-
critical decisions are of minor importance,
can be made by individual team members
and change over time.

f. Configuration decisions can have inter-
relationships. Such pre-requisites for a
configuration decision should be clearly
highlighted. This can include other decisions
that have to be made before. Moreover, any
impact of one decision on other decisions has
to be depicted. This means a logical order
between configuration decisions has to be
considered. This includes interrelationships
within one model, between two process
models or even interrelationships between
reference process and related data models
(Rosemann & Shanks, 2001).

g. Variation points should refer to further
related information within the part of the
business system it depicts. This may in-
clude the system online help and the system
configuration module, such as the SAP
implementation guide (IMG) (Bancroft,
Seip, & Sprengel, 1997). Such information
can provide valuable support for the decision
maker.

 187

Configurable Reference Modeling Languages

h. The entire configuration process should be
guided by recommendations in the form of
guidelines. Such information could come
as benchmarking data from the outside of
the system if a critical mass of system us-
ers is willing to provide such data. It may
include information such as the processing
time of a given process path, the number of
times a decision has been made in the same
industry or the required investments and
implementation time for a certain configu-
ration. Such recommendations may as well
assist reference model users in assessing the
compliance of their configuration to industry
best practices.

i. Reference models can be very comprehen-
sive. Any extension of the underlying model-
ing languages has to carefully consider the
impact on the perceived model complexity.
It is advisable to extend existing reference
modeling languages rather than developing
new ones.

In the following we will apply these design
principles in the development of a configurable
reference modeling language. As process mod-
eling is key to acquiring, communicating and
validating business requirements (Daneva, 2004;
Welti, 1999) we will focus the process perspec-
tive (i.e., the alignment of IT functionality to the
actual business processes of an organization).
The following section introduces Configurable
EPCs as the representation language of a refer-
ence process modeling approach that considers
the configurable nature of a business system and
reflects the design principles for configurable
modeling techniques.

Configurable Event-Driven Process
chains

This section introduces the notion of a Configu-
rable EPC (C-EPC). We start our elaborations by
referring back to the procurement example given

before. Figure 1 shows a potential reference model
for the process of procurement in the form of a
classical EPC. Following this diagram, procure-
ment starts with the creation of a purchase order
(function Create Purchase Order) when a demand
for services or goods exists (event Demand exists)
and (logical AND-connector ∧) when sufficient
funding for the procurement exists (event Funding
exists). Once the created purchase order has been
approved, the procurement can be conducted.
The process succeeds with either reception and
storage of the arrived goods, or recording of the
enactment of the requested service. In either
case, an invoice will arrive at some point in time
demanding payment for the delivery of goods or
services. Then, the invoice needs to be verified,
which in turn triggers the effectuation of payment,
which ends the process.

However, not all organizations implement
procurement the same way. For example, not
only goods may be purchased but also services,
with the former being in a need for appropriate
storage while the latter need to be audited during
enactment. A particular organization may only
want to implement procurement functionality of
a business system for either services or goods.
Furthermore, for illustration purposes, let us as-
sume that a purchase may or may not be related
to a purchase order. Similarly, the verification
of invoices may or may not be essential for the
effectuation of payment, for example in cases
where long-term contracts to trusted vendors
or sophisticated support exists (e.g., in the form
of Evaluated Receipt Settlement functionality).
None of these potential configuration decisions
can be visualized using the traditional EPC refer-
ence modeling language. In particular, the model
does not express possible configuration alterna-
tives and scenarios with respect to the process it
represents.

This section introduces configurable EPCs
as an approach to depict variation points in a
reference process model as well as further con-
figuration information (Rosemann & van der
Aalst, in press).

188

Configurable Reference Modeling Languages

Adhering to design principle (b), we seek to
make the active parts of processes configurable
(i.e., functionality and control flow). Accordingly,
in a C-EPC, functions and connectors can be
configured. As an example, Figure 3 shows the
procurement reference process model introduced
in the preceding section depicted in C-EPC nota-
tion. We will use this example model throughout
the remainder of this section to introduce the
notion of C-EPCs.

Adhering to design principle (i), C-EPCs
extend regular EPCs with the specification of
variation points (configurable functions and
connectors), configuration requirements and
configuration guidelines.

Configurable functions may be included (ON),
excluded (OFF) or conditionally skipped (OPT).
To be more specific, a decision has to be made
whether to perform such a function in every
process instance during run time (ON), whether

Figure 3. Potential configurable reference model for the procurement process, depicted in C-EPC notation

Demand
exis ts

C reate
Purchase
Order

Purchase
approved

Perform
Purchase

E valuate
Goods
R eceipt

R ecord
S ervice

Goods arrived
S ervices
to be

recorded

Invoice posted

Verify Invoice

Payment to be
effected

GUIDE L INE
If
- long term vendor contracts exis t
- E valuated R eceipt S ettlement implemented
Then
Verify Invoice = OFF

R EQUIR EMENT
If E valuate Goods R eceipt = OFF

Then S tore Goods = OFF S tore Goods

Goods to be
stored

V

Funding exists

X

X

A con gurable function is
a variation point in a

process model concerning
a regular E PC function. It

may be included in the
model (ON), excluded

from the model (OFF) or
conditionally skipped

(OPT).

A con gurable connector
is a variation point in a
process model concerning
a regular E PC connector.
A con gurable connector
can only be mapped to a
regular connector whose
logical predicament is at
most equally express ive.

A c guration
requirement is a logical
predicate constraining

the con ration of inter-
related con gurable
nodes in a process

model. This predicate
must hold true for a valid

co uration.

A con guration guideline is
a logical predicate guiding
the c guration of inter-
related c gurable nodes
in a process model. This
predicate may but not
need hold true for a valid
co uration.

 189

Configurable Reference Modeling Languages

to exclude this function permanently (i.e., it will
not be executed in any process instance (OFF) or
whether to defer this decision to run time, i.e., for
each process instance it has to be decided whether
or not to execute the function (OPT)). Referring
to the example given in Figure 3, it is possible,
for instance, to configure the procurement process
in a way that Create Purchase Order and Verify
Invoice are not to be implemented; therefore, they
are to be excluded from the enterprise-individual
process model. Reflecting this decision in the con-
figurable reference process model, the accordant
configurable functions can be switched OFF.

Configurable connectors subsume possible
build time connectors that are less or equally
expressive. Hence, a configurable connector can
only be mapped to a connector type that restricts
its behavior. A configurable OR-connector may
be mapped to a regular OR-, XOR- or AND-
connector. Or, the OR-connector may be mapped
to a single sequence of events and functions (in-
dicated by SEQn, for some process path starting
with node n). That is, out of the incoming/outgo-
ing branches of a configurable OR-connector, a
single branch is chosen that is to be included in
the individual model while the remaining branches
are to be excluded from the model. A configurable
AND-connector may only be mapped to a regular
AND-connector with a decision being made as
to how many of n available process paths are to
be executed in synchronization. A configurable
XOR-connector may be mapped to a regular
XOR-connector, or the XOR-connector may be
mapped to a single process sequence SEQn. Table
1 summarizes these mapping constraints.

Referring back to the example given in Figure
3, consider the decision that a particular enterprise
does not want to implement procurement for both
goods and services but instead only for goods.
The assessment and recording of services would
then be deemed unnecessary. In the reference
process model, such a decision can be reflected
by mapping the configurable XOR-connector
to a single sequence SEQGoods arrived specifying
the process branch containing the handling of
received goods.

In order to depict inter-dependencies between
configurable EPC nodes, configuration require-
ments can be introduced to limit the configuration
possibilities between inter-related configurable
nodes. These constraints are best defined via logi-
cal expressions in the form of If-Then statements
and denote predicates for a set of configurable
nodes that must hold true for a valid configura-
tion. Consider again the example given in Figure
3. If the goods receipt sub-process is deemed
unnecessary, there is no need for the storage of
goods, as services cannot be physically stored. A
configuration constraint could be that if Evalu-
ate Goods Receipt is switched OFF, so must be
function Store Goods.

In order to provide input in terms of rec-
ommendations and proposed best practices,
configuration guidelines may be depicted (also
in the form of logical expressions) to guide the
configuration process semantically. They, too,
may be expressed in the form of If-Then state-
ments. They denote logical predicates for a set
of configurable nodes that may but not need hold
true for a given configuration. Again, consider

Table 1. Constraints for the configuration of connectors
Co urable
connector

Mapping to
OR

Mapping to
XOR

Mapping to
AND

Mapping to
S E Qn

OR

XOR

AND

190

Configurable Reference Modeling Languages

Figure 3. Verify invoice may be an unnecessary
task if long-term procurement contracts with
trusted vendors or advanced Evaluated Receipt
Settlement functionality exists that automatically
settles invoices based on goods issued. For these
scenarios a configuration guideline suggests
switching Verify Invoice OFF.

In summation, the notion of a C-EPC po-
tentially facilitates a selection and modification
of process flows and process activities within a
reference process model. As can be seen from
Figure 3, configurable nodes are denoted as usual
EPC nodes shaped by thick circles, while both
configuration requirements and guidelines are
depicted as notes-like boxes attached to a number
of configurable nodes.

Configuration Using Configurable
epcs

According to the reference model lifecycle (see
Figure 2), at configuration time a configurable
reference process model can be configured in the
sense that configuration alternatives within the
model are selected in a way that a configuration
scenario is created which is deemed desirable for
the particular organization. Such a configuration
maps all configurable nodes to concrete values
(i.e., regular EPC nodes) while adhering to con-
figuration requirements (and possibly also con-
figuration guidelines). Figure 4 shows two possible
regular EPCs resulting from a configuration of
the C-EPC shown in Figure 3.

Consider the EPC depicted in the left part of
Figure 4: In this case, the particular enterprise
decided to relate purchase requests to purchase
orders, hence, the function Create Purchase
Order is included. Similarly, as the organization
only purchases from long-known, trusted
vendors, an extra invoice verification activity
was deemed unnecessary. Hence, the accordant
function Verify Invoice was excluded from the
model. Furthermore, procurement in this case
has to cater to either physical goods or services.

Hence, the configurable XOR-connector has been
mapped to a regular XOR-connector, allowing
for the procurement of either services or goods
at run time, for both of which accordant activi-
ties have been included as well. In the left part
of Figure 4, Configuration (a) shows the process
model resulting from the configuration {(Cre-
ate Purchase Order,ON),(XOR,XOR),(Evaluate
Goods Receipt,ON),(Store Goods,ON),(Record
S e r v i c e , O N) , (X O R , X O R) , (V e r i f y
Invoice,OFF)}.

Configuration (b) shows an EPC resulting
from the configuration {(Create Purchase
Order,OFF),(XOR,SEQServices to be recorded),(Goods
Re c e ip t ,OF F) , (S t o r a ge ,OF F) , (Se r v ic e
recording,ON),(XOR,SEQServices to be recorded),(Verify
Invoice,ON)}. As both EPC models do not conflict
against the configuration requirements depicted
in Figure 3, both configurations are valid. Note
here that a valid configuration is also suitable if it
further satisfies all configuration guidelines.

Strictly speaking, deriving a correct build time
EPC from a configured C-EPC involves three
kinds of tasks: (a) derivation of a partial EPC
model for each configured function, (b) derivation
of a partial EPC model for each configured con-
nector and (c) recalculation of the complete EPC
process graph by excluding unnecessary paths.
The calculation of the build time EPC should be
governed by the minimality criterion: if elements
have to be added by configuration, add as few ele-
ments as possible; if elements have to be removed
by configuration, remove as many as possible,
and optimize the graph so as to include no un-
necessary paths (Mendling, Recker, Rosemann,
& van der Aalst, 2006; Recker, Rosemann, van
der Aalst, & Mendling, 2006).

Theoretically, there are four constellations
in which a configured function may appear in a
C-EPC (Dreiling, Chiang, Rosemann, & van der
Aalst, 2005; Recker, Rosemann, van der Aalst,
& Mendling, 2006): (a) between two events, (b)
between a connector and an event, (c) between
an event and a connector and (d) between two

 191

Configurable Reference Modeling Languages

connectors. Figure 5 illustrates the derivation
rules for these four cases (connectors labeled
with any indicate that any connector type is al-
lowed to make the rule applicable). In case (a) a
configurable function mapped to OPT generates
two additional XOR-connectors. This mapping is
proposed in accordance to the minimality crite-
rion as it introduces a minimal set of additional
elements. In case (b) the configurable function
mapped to OPT generates an additional function
and two XOR-connectors. This additional function
allows for the XOR-split decision, otherwise there

would have been a split connector subsequent to
a join connector, which is not lawful. Case (c) is
similar to case (a)—instead of the succeeding
event a successor split connector (any) is given.
In Case (d) the configurable function mapped to
OFF may not simply be excluded. As the any join
may be the last connector in a chain of several
connectors, the exclusion of the configurable
function may not be possible in every case (if the
connector chain is composed of join connectors
only, events preceding the connector chain can
be eliminated together with the function. If the

Figure 4. Two possible configurations of the C-EPC shown in Figure 3

Demand
exists

Perform
Purchase

R ecord
S ervice

S ervices
to be

recorded

Invoice posted

Verify Invoice

Payment to be
e cted

V

Funding and
Purchase
approved

Demand
exis ts

C reate
Purchase
Order

Purchase
approved

Perform
Purchase

E valuate
Goods
R eceipt

R ecord
S ervice

Goods arrived
S ervices
to be

recorded

Invoice posted
and to be
settled

S tore Goods

Goods to be
stored

V

Funding exis ts

X

X

Configuration (a) Configuration (b)

192

Configurable Reference Modeling Languages

connector chain also includes split connectors,
there are further functions at the end of the chain
that require the events in order to comply with
the EPC alternation rule). The optional function
follows a similar idea as applied in case (b). All
of these derivation rules preserve the correctness
of the model.

Configured connectors can mostly be derived
in a straightforward manner. If a configurable con-
nector is not configured to a sequence, only its label
has to be adopted. If a connector is configured to
a sequence SEQn, those succeeding paths that are
not to be included in the build time model have
to be eliminated. This means that all subsequent
elements are to be excluded from the model until
a join connector is reached. If there are no more
paths to be eliminated, it must further be checked
whether there are join connectors in the model that
do not link to any incoming arc. Paths starting
with these joins have to be eliminated, too, and
the check must be repeated. This procedure is
iterated until there are no more connectors without
incoming arcs. Figure 6 illustrates this procedure
by presenting the case of a split connector whose
outgoing paths are eliminated. Following our
argumentation, this connector and its successor
path must be eliminated until a join connector is
reached. Again, these derivation rules preserve
the correctness of the model.

After deriving configured functions and con-
figured connectors, the resulting EPC may still
include unnecessary process graph structures.
Functions that are switched OFF and connectors
that are configured to SEQn may lead to empty
paths or connectors with only one incoming and
one outgoing arc (for instance the XOR connector
in the resulting model shown in Figure 6). In order
to comply with the minimality criterion, certain
graph reduction rules have to be applied. Figure
7 gives five reduction rules that are sufficient to
derive EPCs that comply with the minimality crite-
rion. Rule (a) eliminates arcs a from an AND-split
to an AND-join if there is a path from the split to
the join that does not pass a. Rule (b) deletes a path

of concurrency if that path only includes an event
and no function. Rule (c) eliminates connectors
that only have one incoming and one outgoing arc.
Rule (d) deletes an arc between an OR split or an
XOR split and a join connector if there is another
arc between them. Rule (e) merges two events if
they both are successors of an OR split or an XOR
split and predecessor of the same join connector.
These reduction rules preserve a minimal process
graph structure that represents the control flow
of the configured process flow variant.

The previous derivation rules can be summa-
rized in the definition of a respective derivation
algorithm. The algorithm includes the steps 1-4
for connector configuration, 5-6 for graph re-
duction, 7 for function configuration and 8-9 for
graph reduction. We start with the configuration
of connectors as sequence configurations might
already reduce the model; in particular, it may
lead to the exclusion of configurable functions.
Furthermore, connector configuration may result
in unnecessary connectors. The graph is reduced
in steps 5-6, as the removal of unnecessary con-
nectors before handling configurable functions

Figure 5. Derivation rules for configured functions

 193

Configurable Reference Modeling Languages

allows applying the derivation rules (a) and (c) of
Figure 7, which in turn result in a smaller graph
than rules (b) and (d). Still, function configuration
may also result in unnecessary connectors that
have to be removed in steps 8-9.

1. Map configured connectors to regular con-
nectors in adherence to the configuration
value.

2. If the configuration value is SEQn eliminate
paths (including all nodes) i ≠ n, until a join
connector or an end node is reached.

3. Check whether there is a connector c without
any incoming arcs. If yes, go to 4. If no, go
to 5.

4. Eliminate all paths starting with connector
c until a join connector or an end node is
reached. Go to 3.

Figure 6. Example: Connector configured to SEQE2

Configuration Decis ion R es ult

E 1

Trans formation

F 1

X

E 2 E 3 E 4

F 2 F 3 F 4

X

E 5

X

E 1

F 1

E 2 E 3 E 4

F 2 F 3 F 4

X

E 5

X

S EQ2

E 1

F 1

E 2

F 2

E 5

X

SEQ2

Figure 7. Reduction rules to derive minimal EPCs
(a)

A

E P

>

ANY

E S E S

A

E P

>

ANY

E S

(b)

(d)

A

E P

X

ANY

A

E P

X

ANY

A

E P

>

ANY

A

E P

>

ANY

A

E P

X

ANY

E S E 1 E 2

A

E P

X

ANY

E S E 12

(e)

(c)

ANY

anyE
P
C

1
anyE

P
C

2

anyE
P
C

1
anyE

P
C

2

194

Configurable Reference Modeling Languages

5. Check whether one of the reduction rules
shown in Figure 7 is applicable. If yes, go
to 6. If no, go to 7.

6. Apply one reduction rule and go to 5.
7. Configure functions according to the rules

shown in Figure 5.
8. Check whether one of the reduction rules

shown in Figure 7 is applicable. If yes, go
to 9. If no, end.

9. Apply one reduction rule and go to 7.

Steps 1 to 9 ensure that all configurable nodes
in a C-EPC are either deleted from the model
or mapped to regular EPC counterparts. At this
stage, we can ensure that the resulting process
graph neither contains semantically ambiguous
process paths nor unnecessary ones. What we
cannot ensure is a formal semantics of the result-
ing EPC (Kindler, 2005; van der Aalst, 1999).
Yet, our extension (and the respective reduction)
approach allows for the application of existing
formalization approaches (e.g., Kindler, 2005;
van der Aalst, 1999) as a semantic foundation
for (derived) EPCs.

The algorithm as shown here rests on the speci-
fication of C-EPCs in XML (Mendling, Recker,
Rosemann, & van der Aalst, 2005; Recker, Rose-
mann, van der Aalst, & Mendling, 2006) using the
interchange format EPML (Mendling & Nüttgens,
2006) and can be implemented using the object-
oriented scripting language XOTcl (Neumann
& Zdun, 2000) (the prototype program and the
EPML specifications can be downloaded from
http://wi.wu-wien.ac.at/~mendling/EPML).

fUtURe tRenDs

Mining Configurable Reference
models

Most of the work reported in this Chapter discusses
the use of configurable process models as a way
to actually configure an ES (i.e., the model is used
to realize the system). However, configurable
process models (e.g., C-EPCs) can also be used
as a way to analyze the processes supported by
the system and to “discover” the actual system

Figure 8. Relation between reference models and process mining

information
system

operational
process

reference
models

event
logs

models

process
discovery

conformance
testing

records

configures

supports /
controls

A reference model
can be descriptive,

e.g., like the
current S AP R /3

reference models .

A reference model
can be prescriptive,
i.e. , the reference
model is directly

used to configure
the information

system and forces
people to work in a

predefined way.

A reference model
describes a class of

meaningful
processes. Through

co uration, a
spec instance of

this class is
selected.

P rocess discovery
allows for the automatic

generation of models
based on real

observations . By
generalizing these
models a reference

model can be derived.

Conformance checking can be used to
detect deviations between the
reference model and the actual
processes . It can also be used to
discover spec co urations and to
investigate the effect of certain
configurations on e.g. the performance.

The information system
records events. Typically
an event refers to:
- an activity,
- a case (process
instance)
- a performer,
- a timestamp,
- data mod ations .

 195

Configurable Reference Modeling Languages

configuration. As a starting point for such types
of analysis, one can use audit trails (also known
as event or transaction logs) and apply process
mining techniques.

The goal of process mining is to extract in-
formation about processes from event logs (van
der Aalst et al., 2003). Process mining techniques
such as the alpha algorithm (van der Aalst, Wei-
jters, & Maruster, 2004) typically assume that
it is possible to sequentially record events such
that (a) each event refers to an activity (i.e., a
well-defined step in the process), and (b) each
event refers to a case (i.e., a process instance).
Moreover, there are other techniques explicitly
using additional information such as (c) the per-
former also referred to as originator of the event
(i.e., the person/resource executing or initiating
the activity), (d) the timestamp of the event or
(e) data elements recorded with the event (e.g.,
the size of an order). This information can be
used to automatically construct process models.
For example, the Multi-Phase Mining approach
(van Dongen & van der Aalst, 2004) can be used
to construct an EPC describing the behavior
observed in the log. There are mature tools such
as the ProM framework (van Dongen, Alves de
Medeiros, Verbeek, Weijters, & van der Aalst,
2005) available to construct different types of
models based on process executions.

There are several ways to use event logs in
the context of configurable reference models (see
Figure 8). Reference models can be descriptive
or prescriptive (i.e., they are used to describe a
process or control to respectively guide the sys-
tem). The SAP reference models are expressed in
terms of EPCs describing how people should/could
use the SAP system. In reality, however, the real
process may deviate from the modeled process
(e.g., the implementation is not consistent with
the specification, or people use a SAP solution
in a way not modeled in any of the EPCs). Even
if reference models are more of a prescriptive
nature, it is still interesting to investigate how
people really use the system.

Figure 8 shows that reference models can be
used to configure an information system (pre-
scriptive) or to merely model the desired process
(descriptive). Independent of the way the reference
model is used, most information systems log events
in the form of audit trails or transaction logs. The
information can be used for process discovery and
conformance testing. Process discovery aims at the
construction of models based on the logs without
explicitly using some apriori reference model.
This approach is used to construct models that can
be used for comparison with existing reference
models, or to generate input for the construction
of new reference models. Conformance testing
can be used to compare real processes with some
a priori knowledge represented in the form of a
reference model. It may be used to see if some
descriptive reference model is actually followed in
reality. Note that system users may deviate from
the procedure prescribed in the reference models.
Such information can be used for auditing or pro-
cess improvement. Moreover, the configuration
itself can be investigated (e.g., analyzing which
configuration is used, what is the effect of using
a specific configuration, etc.).

Process mining is far from trivial. Knowl-
edge of the many ways in which a system may
be used can assist process mining techniques, as
illustrated by Jansen-Vullers, van der Aalst, and
Rosemann (2006). Based on inspecting the event
logs, it is relatively easy to discover the particular
configuration being used. Moreover, event logs
can be used to “diagnose” a configuration. For
example, using process mining it is possible to
automatically locate the bottlenecks and present
them in the context of the configurable process
model (e.g., a function in the C-EPC). This may
assist the reconfiguration of the system. Further-
more, process mining techniques can be used to
compare different configurations and their effects
on the performance of the resulting process, which
supports an “evidence-based” approach towards
business process management.

196

Configurable Reference Modeling Languages

Configurable Data Modeling
languages

So far, we have covered the configurability of
reference process models. Yet, given that refer-
ence models are often used in the context of
business systems, there are more perspectives to
consider. Business systems are not only popular,
since they provide process-oriented support for
typical functional areas such as Procurement
or Materials Management, but also since they
provide integrated data repositories across the
whole enterprise. Accordingly, available refer-
ence models not only depict business processes
but also the data structure of business systems.
As an example, in version 4.6, the SAP reference
data model covers more than 230 business objects
clustering more than 4,000 entity types. A con-
figuration approach needs to place emphasis on
the configuration of reference data models as well.
Consider an organizational perspective: Reference
data models are of particular importance to the
configuration of system organizational units as
they precisely depict the given opportunities of a
business system. A subset of the SAP reference
data model (approximately 30-40 entity types)
allows for a complete description of the interrela-
tions between system organizational units such as
company, factory or distribution channel, which
facilitates configuration decisions as to the system
organizational structure.

Similar to the process perspective, current
reference data models are typically based on
traditional modeling techniques such as the
Entity-Relationship Modeling (ERM) notation
(Chen, 1976). Entity types are used to group and
depict distinct subjects of interest (e.g., custom-
ers, organizations, sales order items, etc.). These
entities may possess various attributes for further
specification. Relationships between such ele-
ments of interest are depicted using relationship
types that specify the type of association between
distinct entities. Cardinalities can further be used
to specify the extent of dependency between as-
sociated entity types.

Classical data modeling techniques do not
allow for the depiction of configuration informa-
tion, such as variation points or configuration
requirements (Rosemann & Shanks, 2001). In
the following, we discuss some configuration
decisions that can be made and how they could
be depicted in reference data models. Extracts
of the SAP reference data model are used as an
example. The structure of this analysis follows the
main constructs of Entity-Relationship-Models
(i.e., entity and relationship types, Chen, 1976).
Note that the variant used here is called SAP-
Structured ERM; refer, for instance, to Seubert,
Schäfer, Schorr, and Wagner (1994).

Transparent examples for model configura-
tions related to optional entity types can be found in
Enterprise Systems in the definition of system or-
ganizational structures. The Sales & Distribution
solution in SAP, for example, requires a decision
whether shipping points of an enterprise are to be
subdivided into loading points. The IMG (Ban-
croft et al., 1997) marks this decision as optional.
This variation point, however, cannot be reflected
in the available reference data model (see Figure
9) as the data structure is statically fixed.

In a configurable reference data model, op-
tional entity types such as Loading Point could be
highlighted with a dotted line, thereby indicating
that such organizational structure may (a) or may
not be (b) implemented.

The configuration of optional relationship
types includes two decisions. First, if the rela-
tionship type is required at all. If the relationship
is required, a second decision is related to what
cardinalities the relationship should have. Again,
consider an organizational perspective: The IMG
allows for the decision whether or not to assign
a purchasing organization to a company code
(i.e., whether procurement may be effectuated
company-specific for all plants assigned to that
company, Figure 10, configuration (a)), or whether
procurement may be effectuated plant-specific for
all the plants assigned to the purchasing organiza-
tion (Figure 10, configuration (b)), irrespective

 197

Configurable Reference Modeling Languages

of the super-ordinate company code. Again, the
available reference data model cannot reflect this
decision as the relationship between the entity
types Company Code and Purchasing Organiza-
tion is fixed.

A configurable reference data model could
highlight this variation point by using a dotted line
for the connection between these entity types.

There is a need to further explore configurabil-
ity of reference data models. We only presented a
brief outline of a proposed conceptual extension
to existing reference data modeling techniques.
Our short discussion revealed that, following the
idea of configurable reference process modeling,
the design principles that led to the develop-
ment of C-EPCs may also be used to extend
or refine other reference modeling techniques
towards configurability (leading for example
to C-ERMs). Exemplarily, we elaborated on the
conceptual development of a configurable data
modeling technique that allows for the modeling

of optional entity types and optional relationship
types. Clearly, this has to be considered a work-
in-progress but nevertheless denotes an important
and interesting research facet in the future of
(configurable) reference modeling.

cOnclUsIOn

This chapter discussed and introduced extensions
to conceptual modeling languages in order to
facilitate the configuration of reference models.
These modeling languages have been developed
in light of a number of critical design principles
which are of relevance following the paradigm of
information model reuse. We used an extension of
the event-driven process chain to demonstrate the
design of a configurable reference process model-
ing language. Furthermore, we gave first insights
into how configurable models can be derived via
process mining from executed business system-

Figure 9. Configuration of reference data models: Entity types

T raditional reference data model Con rable reference data model

Potential data con gurations

S hipping point H Loading point

S hipping point H Loading point S hipping point

C onfiguration (b)Configuration (a)

An entity type is a
collection of things

that can be
dis tinctively
identi ed.

A relationship type is an
association among entity
types and hold true for
each entity of the
associated entity types.

A con rable entity type is a
variation point in a data model

concerning a regular entity
type. It can included in the

model (ON) or excluded from
the model (OFF).

198

Configurable Reference Modeling Languages

supported processes. In principle, other modeling
languages could be extended in similar ways. It
has been discussed how the idea of configuring
process models can be applied to other views, such
as the data perspective. We briefly reported on
the development of a configurable data modeling
language as an example.

We expect research on configurable reference
modeling to give a stimulating input to both
academic and practical work around reference
models in the future. The development of generic,
configurable languages such as the C-EPC and the
establishment of tool-neutral interchange formats
such as EPML (Mendling & Nüttgens, 2006) or the
XML metadata interchange (XMI) format (OMG,
2005) provide promising prototype examples that
strive for practical adoption in the form of com-
mercial solutions. Configurable reference models
may be used to facilitate a model-driven imple-
mentation process of business systems (Recker,

Mendling, van der Aalst, & Rosemann, 2006),or
the usage of configurable reference models can
lead to the cross-organizational consolidation of
previous process configurations, thereby accu-
mulating an evidence-based body of knowledge
as to the configuration and enactment of busi-
ness processes across multiple industry sectors,
regions and cultures. These are just a few ideas,
but they already indicate that reference modeling
and model configurability continue to emerge as
a vibrant and influential research discipline in
the future.

RefeRences

Bancroft, N. H., Seip, H., & Sprengel, A. (1997).
Implementing Sap R/3: How to introduce a
large system into a large organization (2nd ed.).
Englewood Cliffs, NJ: Prentice Hall.

Figure 10. Configuration of reference data models: Relationship types
Configurable reference data model

Potential data con rations

Configuration (b)Configuration (a)

Purchas ing
organization

Company code

Material valuation
area

P lant

Purchas ing
organization -

P lant - ass ignment

R

R

R

T raditional reference data model

Purchas ing
organization

Company code

Material valuation
area

P lant

Purchas ing
organization -

P lant - ass ignment

R

R

Purchas ing
organization

Company code

Material valuation
area

P lant

Purchas ing
organization -

P lant - assignment

R

R

A con gurable
relationship type is a
variation point in a data
model concerning a
regular relationship
type. It can included in
the model (ON) or
excluded from the
model (OFF).

A

A

A

A

R

A

A

 199

Configurable Reference Modeling Languages

Beer, S. (1966). Decision and control: The mean-
ing of operational research and management
cybernetics. London: John Wiley & Sons.

Chen, P. P.-S. (1976). The entity relationship
model: Toward a unified view of data. ACM
Transactions on Database Systems, 1(1), 9-36.

Curran, T., Keller, G., & Ladd, A. (1997). SAP R/3
business blueprint: Understanding the business
process reference model. Upper Saddle River,
NJ: Prentice Hall.

Daneva, M. (2000). Practical reuse measurement
in ERP requirements engineering. In B. Wangler
& L. Bergmann (Eds.), Advanced information
systems engineering: 12th International Confer-
ence (Vol. 1789, pp. 309-324). Stockholm, Sweden:
Springer.

Daneva, M. (2004). ERP requirements engineer-
ing practice: Lessons learned. IEEE Software,
21(2), 26-33.

Davenport, T. H. (1998). Putting the enterprise
into the enterprise system. Harvard Business
Review, 76(4), 121-131.

Davenport, T. H. (2000). Mission critical: Real-
izing the promise of enterprise systems. Boston:
Harvard Business School Press.

Dreiling, A., Chiang, M., Rosemann, M., & van der
Aalst, W. M. P. (2005). Towards an understanding
of model-driven process configuration and its
support at large. In N. C. Romano (Ed.), 2005
Americas Conference on Information Systems
(pp. 2084-2092). Omaha, NE: Association for
Information Systems.

Dumas, M., van der Aalst, W. M. P., & ter Hof-
stede, A. H. M. (Eds.). (2005). Process aware
information systems: Bridging people and
software through process technology. Hoboken,
NJ: John Wiley & Sons.

Fettke, P., & Loos, P. (2003). Classification of
reference models: A methodology and its ap-

plication. Information Systems and E-Business
Management, 1(1), 35-53.

Halmans, G., & Pohl, K. (2003). Communicating
the variability of a software-product family to
customers. Software and System Modeling, 2(1),
15-36.

Jansen-Vullers, M. H., van der Aalst, W. M. P.,
& Rosemann, M. (2006). Mining configurable
enterprise information systems. Data &
Knowledge Engineering, 56(3), 195-244.

Keller, G., Nüttgens, M., & Scheer, A.-W. (1992).
Semantische Prozessmodellierung auf der Grund-
lage “Ereignisgesteuerter Prozessketten (EPK)”
(Working Paper No. 89). Saarbrücken, Germany:
Institut für Wirtschaftsinformatik, Universität
Saarbrücken. [in German]

Kesari, M., Chang, S., & Seddon, P. B. (2003).
A content-analytic study of the advantages and
disadvantages of process modelling. In J. Ang &
S.-A. Knight (Eds.), 14th Australasian Conference
on Information Systems [CD-ROM]. Perth,
Australia: School of Management Information
Systems.

Kindler, E. (2005). On the semantics of EPCs:
Resolving the vicious circle. Data & Knowledge
Engineering, 56(1), 23-40.

Mendling, J., & Nüttgens, M. (2006). EPC markup
language (EPML): An XML-based interchange
format for event-driven process chains (EPC).
Information Systems and E-Business Manage-
ment, 4(3), 245-263.

Mendling, J., Recker, J., Rosemann, M., & van
der Aalst, W. M. P. (2005). Towards the inter-
change of configurable EPCs: An XML-based
approach for reference model configuration. In
U. Frank & J. Desel (Eds.), Enterprise modelling
and information systems architectures 2005 (Vol.
P-75, pp. 8-21). Klagenfurt, Germany: German
Computer Society.

200

Configurable Reference Modeling Languages

Mendling, J., Recker, J., Rosemann, M., & van der
Aalst, W. M. P. (2006). Generating correct EPCs
from configured CEPCs. In H. M. Haddad (Ed.),
2006 ACM Symposium on Applied Computing
(pp. 1505-1510). Dijon, France: ACM.

Misic, V. B., & Zhao, J. L. (2000). Evaluating the
quality of reference models. In A. H. F. Laender,
S. W. Liddle, & V. C. Storey (Eds.), Conceptual
modeling—ER 2000 (Vol. 1920, pp. 484-498).
Salt Lake City, UT: Springer.

Neumann, G., & Zdun, U. (2000). XOTcl: An
object-oriented scripting language. In 7th USENIX
Tcl/Tk Conference (pp. 163-174). Austin, TX.

OMG. (2005). MOF 2.0/XMI mapping specifica-
tion, v2.1. Retrieved January 17, 2006, from http://
www.omg.org/docs/formal/05-09-01.pdf

Oracle. (2006). Oracle consulting business solu-
tions. Retrieved January 13, 2006, from http://
www.oracle.com/consulting/solutions/index.
html

Recker, J., Mendling, J., van der Aalst, W. M.
P., & Rosemann, M. (2006). Model-driven
enterprise systems configuration. In E. Dubois
& K. Pohl (Eds.), Advanced information systems
engineering—CAiSE 2006 (Vol. 4001, pp. 369-
383). Luxembourg, Grand-Duchy of Luxembourg:
Springer.

Recker, J., Rosemann, M., van der Aalst, W.
M. P., & Mendling, J. (2006). On the syntax of
reference model configuration. Transforming the
C-EPC into lawful EPC models. In C. Bussler &
A. Haller (Eds.), Business process management
workshops (Vol. 3812, pp. 497-511). Berlin,
Germany: Springer.

Rosemann, M. (2000). Using reference models
within the enterprise resource planning lifecycle.
Australian Accounting Review, 10(3), 19-30.

Rosemann, M. (2002). Application reference
models and building blocks for management and
control (ERP Systems). In P. Bernus, L. Nemes,

& G. Schmidt (Eds.), Handbook of enterprise
architecture (pp. 595-616). Berlin, Germany:
Springer.

Rosemann, M., & Shanks, G. (2001). Exten-
sion and configuration of reference models for
enterprise resource planning systems. In G. Fin-
nie, D. Cecez-Kecmanovic, & B. Lo (Eds.), 12th
Australasian Conference on Information Systems
(pp. 537-546). Coffs Harbour, Australia: School
of Multimedia and Information Technology.

Rosemann, M., & van der Aalst, W. M. P. (in press).
A configurable reference modelling language.
Information Systems, (forthcoming).

Rosemann, M., Vessey, I., & Weber, R. (2004).
Alignment in enterprise systems implementa-
tions: The role of ontological distance. In 25th
International Conference on Information Systems
(pp. 439-448). Washington, DC: Association for
Information Systems.

SAP. (2006). SAP business maps: Solution
composer. Retrieved January 13, 2006, from
http://www.sap.com/solutions/businessmaps/
composer/

Scheer, A.-W. (2000). ARIS: Business process
modeling (3rd ed.). Berlin, Germany: Springer.

Seubert, M., Schäfer, T., Schorr, M., & Wagner, J.
(1994). Praxisorientierte datenmodellierung mit
der SAP-SERM-Methode. EMISA Forum, 4(2),
71-79. [in German]

Silverston, L. (2001a). The data model resource
book, Volume 1: A library of universal data
models for all enterprises. New York: John Wiley
& Sons.

Silverston, L. (2001b). The data model resource
book, Volume 2: A library of data models for
specific industries (2nd ed.). New York: John
Wiley & Sons.

Stein, T. (1998, August 31). SAP sued over R/3.
Information Week, p. 134.

 201

Configurable Reference Modeling Languages

van der Aalst, W. M. P. (1999). Formalization
and verification of event-driven process chains.
Information and Software Technology, 41(10),
639-650.

van der Aalst, W. M. P., van Dongen, B. F., Herbst,
J., Maruster, L., Schimm, G., & Weijters, A. J. M.
M. (2003). Workflow mining: A survey of issues
and approaches. Data & Knowledge Engineering,
47(2), 237-267.

van der Aalst, W. M. P., Weijters, A. J. M.
M., & Maruster, L. (2004). Workflow mining:
Discovering process models from event logs.
IEEE Transactions on Knowledge and Data
Engineering, 16(9), 1128-1142.

van Dongen, B. F., Alves de Medeiros, A. K.,
Verbeek, M., Weijters, A. J. M. M., & van der

Aalst, W. (2005). The ProM framework: A new
era in process mining tool support. In G. Ciardo
& P. Darondeau (Eds.), Applications and theory of
Petri Nets 2005 (Vol. 3536, pp. 444-454). Berlin,
Germany: Springer.

van Dongen, B. F., & van der Aalst, W. M. P. (2004).
Multi-phase process mining: Building instance
graphs. In P. Atzeni, W. W. Chu, H. Lu, S. Zhou,
& T. W. Ling (Eds.), Conceptual modeling: ER
2004 (pp. 362-376). Shanghai, China: Springer.

Welt i, N. (1999). Successful SAP R/3
implementation: Practical management of ERP
projects. Reading, MA: Addison-Wesley.

Wisse, P. (2000). Metapattern: Context and time in
information models. Boston: Addison-Wesley.

This work was previously published in Reference Modeling for Business Systems Analysis, edited by P. Fettke; P. Loos, pp.
22-46, copyright 2007 by IGI Publishing (an imprint of IGI Global).

202

Chapter XV
Designing Reputation and Trust

Management Systems
Roman Beck

Johann Wolfgang Goethe University, Germany

Jochen Franke

Johann Wolfgang Goethe University, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

This article analyzes the handling of customer complaints after shipping ordered goods by applying automated
reputation and trust accounts as decision support. Customer complaints are cost intensive and difficult to
standardize. A game theory based analysis of the process yields insights into unfavorable interactions be-
tween both business partners. Trust and reputation mechanisms have been found useful in addressing these
types of interactions. A reputation and trust management system (RTMS) is proposed based on design theory
guidelines as an IS artifact to prevent customers from issuing false complaints. A generic simulation setting
for analysis of the mechanism is presented to evaluate the applicability of the RTMS. The findings suggest that
the RTMS performs best in market environments where transaction frequency is high, individual complaint-
handling costs are high compared to product revenues, and the market has a high fraction of potentially
cheating customers.

IntRODUctIOn

The continued demand for automated interorga-
nizational business processes to reduce transac-
tion costs in supply chains has provided a strong
demand for extensive information systems (IS)
support. While areas for the application of IS in
supply chain management are growing rapidly, the

management and automation of personal relation-
ships in impersonal electronic business relations
is still an area that has not been adequately served
by existing IS research and development. In this
article, we describe how a reputation and trust
management system (RTMS) for an automated
evaluation of business relationships in supply
chains can be designed and implemented. As

 203

Designing Reputation and Trust Management Systems

RTMS research domain, we have chosen the
management of customer complaints since it is
also a largely unexplored, yet promising applica-
tion area. While empirical research and data are
limited in this area, two cases provide an indi-
cation of how much money can be saved by an
improved complaint-handling process: Eastman
Chemicals saved $2 million after improving its
business processes associated with investigating
and responding to complaints by cutting expenses
for waste removal and rework caused by off-
quality products or incorrect paperwork (Hallen
& Latino, 2003). The second example provides a
more accurate view on the de facto costs of han-
dling customer complaints manually: According
to Schilling and Sobotta (1999), a medium-sized
enterprise with approximately €5 million annual
revenue calculated the average processing costs
as €837.47 for each complaint handling process
in 1997.

The need for human interaction and decision
(e.g., to check complaints or to prevent opportu-
nistic customer behavior) historically has been
a major impediment to increasing the degree
of automation. Since handling of complaints is
costly for both suppliers and customers, only
5% to 10% of all dissatisfied customers decide to
complain at all (Tax & Brown 1998). Dissatisfied
customers are likely to switch providers, which
usually leads to future revenue losses higher than
the costs caused by complaints in the first place
(Fornell & Wernerfelt, 1987). Therefore, suppliers
face two dilemmas: First, they cannot automate
or standardize the complaint-handling process,
since opportunistic customers may benefit from
this lack of human diligence. Second, dissatisfied
customers, having switched to another supplier,
may never notify the errant supplier, since the
manual complaint-handling process is too expen-
sive in comparison to the value of the defective
or missing delivery.

This article proposes an RTMS-based
complaint-handling solution, not only to provide
benefits from the efficiency of computer-based

customer complaint management but also to pre-
vent opportunistic behavior and customer losses
in relevant market environments. We provide
a mechanism that allows increasing the role of
automated business processes while concurrently
mitigating incentives for opportunistic behavior
in business-to- business as well as business-to-
consumer relationships. We believe that this
approach is a contribution to IS literature, since
reputation and trust management research from
behavioral science has not yet been expatiated
adequately in existing IS research.

After describing the problem relevance, the
theoretical background of the article presents
foundations of reputation and trust as well
as transaction cost theory. Since we strive to
contribute to knowledge by following a design
science approach, the guidelines provided by
Hevner, March, and Park (2004) and further IS
design science contributions are related to this
research in the theoretical section. Next, we detail
the (predominantly) existing defective product
handling or customer complaint process after
receiving defective articles or failing to receive
articles. A game-theoretical model of supplier
and customer motivations is introduced providing
the formal representation and logic for process
redesign. Afterward, we modify the customer
complaint-handling process by introducing RTMS
to minimize the number of manual interactions.
To evaluate our solution, results of a simulation
model are provided for demonstrating the utility
and efficacy of the proposed design artifact. The
validity of the sociotechnical approach is discussed
and scenarios are identified where this IT artifact
may yield higher benefits for suppliers. The article
closes with a short summary of our findings and
a discussion of the design problems.

tHeORetIcAl bAckgROUnD

The need for efficient relationship management
arises whenever independent business partners

204

Designing Reputation and Trust Management Systems

have to coordinate interdependent activities
(Malone & Crowston, 1994). When engineer-
ing a rigorous RTMS that meets design science
requirements, we must consider reputation and
trust as well as economic demands. Both will
provide the theoretical foundation upon which
this research rests. Before digging deeper into
the theoretical foundations, basic guidelines for
engineering artifacts according to design science
requirements are given.

Design science and Artifact
engineering

According to Walls, Widmeyer, and El Sawy
(1992), design theory is different from grand
theories (e.g., as propagated by Popper). Serv-
ing human purposes by improving process per-
formance, building and evaluating constructs,
models, methods, and instantiations are typical
design science research activities (March & Smith,
1995). This differentiates design theory from,
for example, grounded theory (Eisenhardt, 1989;
Glaser & Strauss, 1967), which uses an empirical
inductive approach and qualifies design theory to
be part of middle-range theories (Merton, 1968).
Nevertheless, design theory is suggested to utilize
grand theories deductively as kernel theories. In
this article, reputation and trust, as well as eco-
nomic theories, serve as these so-called kernel
theories. According to Merton (1968), emerging
disciplines should develop special theories with
limited conceptual ranges that function as step-
ping stones or middle-range theories on the way
toward a total conceptualization or grand theory.
In this epistemological context of middle-range
theorizing, Walls et al. (1992) postulated that “the
IS discipline needs to articulate and develop a
class of ‘design theories’ and provide examples
where goal-oriented theorizing has successfully
led to executive information systems (EIS), man-
agement information systems (MIS), decision
support systems (DSS) (Walls et al., 1992), or
emergent knowledge process systems (EKPS)

(Markus, Majchrzak, & Gasser, 2002).” Inspired
by the idea of developing theories unique to the IS
discipline, Hevner et al. (2004) articulated seven
guidelines on how to evaluate and present rigorous
design science research. We use these guidelines
to create a purposeful RTMS artifact and, more
specifically, a method (guideline 1) for the trust
and reputation management in customer complaint
handling, which, as outlined before, represents a
relevant organizational problem (guideline 2). The
RTMS was evaluated by applying a simulation
approach (guideline 3) to reengineer and automate
the customer complaint handling to contribute to
a more effective and efficient customer complaint
process (guideline 4). Regarding research rigor
(guideline 5), the RTMS has been informed by
kernel theories, such as theories on reputation
and trust and transaction cost economics, and
subsequently defined and formally represented
as a game theoretical problem. Simulated ar-
tificial market scenarios are developed to find
the limitations of the RTMS artifact (guideline
6). Finally, the solution is communicated in this
article to allow for a thorough discussion in the
scientific community (guideline 7). In the follow-
ing sections, the kernel theories applied in this
research to comply with Hevner’s fifth guideline
are introduced.

Reputation and trust

In the business world, a supplier’s reputation
reflects an aggregate ratio incorporating multiple
factors: quality of merchandise, reliability of
financial transactions, and/or level of customer
service. It is often observed that reputation and
trust acquire fundamental importance in long-
term business-to-business (B2B) relations. Ac-
cording to Mui, Mohtashemi, and Halberstadt
(2002), reputation is a “perception that an agent
creates through past actions about its intentions
and norms” and trust is a “subjective expectation
an agent has about another’s future behavior based
on the history of their encounters.” It has been

 205

Designing Reputation and Trust Management Systems

shown that reputation reduces the complexity of
the decision process (Wigand, Picot,& Reich-
wald, 1997) by better estimating the likelihood
of failed orders and through a reduction in the
number of quality tests needed for a product
(Marsh, 1992).

It is important to distinguish between the
individual and social dimensions of reputation
(Sabater & Sierra, 2002). This article focuses on
the individual dimension of reputation relevant
for direct interactions between two business part-
ners. Experience of transactions with a partner
is directly reflected in an assigned reputation
value. The social dimension of reputation relies
on intermediates to propagate common reputa-
tion assessments and must be aggregated through
standardized processes. Due to the specific set-
ting of bilateral supplier-customer relationships,
the social aspect of reputation can be neglected
because, typically, only two partners are involved
in the complaint-handling process at hand.

Models of reputation and trust have been de-
veloped extensively in agent-based computational
economics. A broad overview of approaches to the
use of reputation in multiagent systems is provided
by Mui, Halberstadt, and Mohtashemi (2002).
Sabater and Sierra (2001) introduced a reputation
model, taking the individual and social dimension
of reputation into account for a multiagent society.
Others propose a formalization of reputation for
multiagent systems, applying the sociological con-
cept of role fulfillment for establishing a positive
reputation and for examining the link between
reputation and trust (Carter, Bitting, & Ghorbani,
2002). The role of trust in supply relationships and
the underlying implications were addressed by
Lane and Bachmann (1996) in an empirical study
of business relationships in Germany and U.K.
(Lane & Bachmann, 1996). As they pointed out,
trust relations are highly dependent on stable so-
cial, institutional, and legal structures. Moorman,
Zaltman, and Deshpande (1992) investigated the
specific relationship between providers and users
of market research reports, providing a reasonable

introduction to the role of trust in relationships
(Moorman et al., 1992).

Das and Teng (1998) argued that trust and
control are the two pivotal sources of confidence
in the cooperative behavior of business partners
in strategic alliances. Both sources of confidence
are highly interdependent. A large amount of con-
trol reflects a low amount of trust and vice versa.
Without any control, the trusting party assumes
the risk of the trustee’s opportunistic behavior.
As described, trust and control are inherently dif-
ferent approaches to business relationships. The
costs to control the behavior of business partners
can be extremely high. If reputation or trust is
not established and the threshold to behave in an
undesirable manner is low, the defrauded partner’s
control costs can be higher than the value of the
goods, and consequently one may accept—to
a certain degree—some fading in deliveries.
Business partners are anticipating that control is
difficult (e.g., in the case of defective, low-value
goods, where shipping them back to the vendor
is more expensive than accepting to discard them
by the customer). Such behavior is more likely
in new business relations and more anonymous
markets, such as electronic marketplaces, where
no face-to-face contact is established.

Reputation mechanisms and
transaction costs

Increasing the level of control by establishing
contracts or mechanisms to prevent opportunistic
behavior can result in higher transaction costs so
that, in the worst case, the handling of an order
might be more costly than the expected benefit.
In the context of reputation and trust, ex-post
transaction costs are of particular importance
(Williamson, 1975, 1985). Ex-post transaction
costs refer to costs that emerge after the order has
been shipped and before the transaction cycle is
completed. Ex-post transaction costs will increase
if the trust level decreases. In other words, the
monitoring and enforcement costs to prevent

206

Designing Reputation and Trust Management Systems

ex-post bargaining will be higher if the incentive
for opportunistic behavior increases (Dahlstrom
& Nygaard, 1999). For suppliers, such costly
uncertainties are based on unanticipated changes
in the behavior of business partners (Noordewier,
George, & Nevin, 1990). The greater the level of
uncertainty, the more difficult it is to formulate,
negotiate, and enforce a contract to reduce the
risk of being a victim of opportunistic behavior.
In long-term relations, expensive tracking and
monitoring instruments may be replaced by mu-
tual trust; however, trust and reputation must be
effectively managed in an automated way when
the number of business partners increases.

A RepUtAtIOn AnD tRUst
mAnAgement system fOR
cUstOmeR cOmplAInt-HAnDlIng
pROcesses: DesIgnIng An
ARtIfAct

In our RTMS, extensive control in the customer
complaint-handling process is replaced by trust to
reduce costs for suppliers and customers. A sup-
plier utilizing RTMS assigns individual reputation
values to its customers and tracks past actions in
complaint issues to assess the probability of future
opportunistic behaviors. The supplier can use this
reputation measure to decide whether to trust the
customer and accept the complaint without validat-
ing the claim, or to pursue a detailed investiga-
tion. In the following sections, we will elaborate
on the proposed automated system in detail and
introduce the artifact, referring to Hevner’s first
guideline for design science.

customer complaint Alternatives
and Implications

Many business processes are not yet fully auto-
mated. In order to discuss the complaint process,
both on the customer and supplier sides in more
detail, the alternatives and relevant business cases

are depicted in the following. Drawing from
the exit, voice, and loyalty model provided by
Hirschman (1970), and the customers problem
impact tree framework of Rust, Subramanian, and
Wells (1992), a problem tree of voice a complaint
or exit without making a complaint is utilized.
According to Hirschman, customers have two
potential feedback options: (1) to voice complaints
and thereby express the dissatisfaction directly
to the supplier or (2) to stop buying and exit the
relation. Both options have different but always
unfavorable impacts on suppliers, who must re-
spond with adequate defensive strategies to over-
come those problems. To elaborate, all possible
customer complaints scenarios are first described
briefly: After submitting an order and receiving
a delivery note from the supplier, the incoming
orders are checked by the customer’s receiving
department. In the case of a faultless shipment,
one expects that customers have no reason to
complain (see the upper branch of Figure 1). This
is true in nearly all cases: Customers receiving
correct deliveries will be satisfied, continue with
the supplier, and will not place any complaints.
The situation is slightly different if complaints are
not too costly and the supplier does not ask for the
defective items to be sent back in order to validate
the complaint. If customers do not perceive the
recall of defective items as a credible threat, then
they might be tempted to cheat and complain about
faultless shipments. Avoiding such an incentive is
a pivotal element when designing an automated
customer complaint-handling solution.

In the case of defective or partially missing
items in the shipment (see the lower branch of
Figure 1), the supplier must be contacted and/or
the broken parts sent back. Afterward, the supplier
sends the defective parts again and the customer
tracks the complaint until all replacement parts
are received. If the supplier handles the complaint
satisfactorily, the customer will buy again. If this
is not the case and the customer is dissatisfied with
the process management, then the exit strategy
might be chosen. In the latter case, the supplier has

 207

Designing Reputation and Trust Management Systems

no chance to contact the dissatisfied customer if a
defective shipment is delivered and the customer
decides not to complain. This can be the case if the
complaint process is more costly then the value
of the defective products. Dissatisfied with the
delivered quality, it is likely that such a customer
will discontinue the business relationship.

As Figure 1 reveals, dissatisfying scenarios can
emerge for suppliers, even when the shipment was
faultless. A solution to the dissatisfying results
for customers and suppliers might be offered by
an automated reputation-based system where
customers do not have to prove that parts of a
shipment are damaged or missing. Instead, the
supplier simply believes the customer based on
the reputation the customer has acquired in past
transactions and trusts him or her in the case of
complaints.

Designing an Rtms-based
Automated customer
complaint-Handling solution

In this section, a simplified customer complaint
process is described to reduce the handling costs
for suppliers and customers. It will be shown
that from a game-theoretical point of view, the
simplified customer complaint-handling process
dominates the conventional process if custom-
ers are always truthful. If truthful customers
cannot be assumed, a reputation mechanism is

introduced to inhibit cheating. Before digging
deeper into the conventional and the simplified
complaint-handling process from a game-theoretic
perspective, the assumptions our model is based
on are delimited:

• Neither supplier nor customer knows the
exact value of the defective ratio d.

• The exact quality of the products en route is
not known (e.g., due to unknown conditions
during the shipment).

• There is a long-term recurring business
relationship between supplier and customer.
Products are exchanged frequently between
both of them.

• The value of a single order is relatively low,
as can be observed for raw materials or office
supplies.

• The customer complaint-handling costs of
the new simplified process are ignored. In
the simplified process, the customer only
has to send an electronic notification to
the supplier without shipping the defective
items; the supplier does not have to perform
a manual check of the incoming goods and
thus is assumed to cause no relevant costs
compared to the conventional scenario,
where the customer has to process the de-
fective shipment for physically returning it
to the supplier.

Figure 1. Customer action alternatives

Customer order

Shipment
faultless

Shipment
defective

No voice

No voice,
no complaint

Voice
fraudulent
complaint

Voice
complaint

Satisfied customer

Cheating customer

Satisfied customer

Dissatisfied customer

Satisfying for supplier

Dissatisfying for suppliersContinue or exit

Continue or exit

Continue

Exit

{{

208

Designing Reputation and Trust Management Systems

• There are no limitations referring to legal
issues.

We use a game-theoretical design approach to
analyze the trade situation for the conventional
and the simplified complaint-handling process.
In a conventional complaint-handling process,
the customer checks the shipment, and if there
are defects, the defective parts of the shipment
are sent back freight forward to the supplier.
The supplier checks whether the complaint is
justified. Both partners have expenses due to the
manual processing and shipment of products.
Table 1 depicts the cost matrix in a game with a
conventional customer complaint process.

If the shipment is indeed defective and the
customer decides to reclaim (see the upper left
cell in Table 1), both customer and supplier pay
for manual handling of the customer complaints

C
Cc and C

Sc , respectively. Additionally, the supplier
will not be paid for its defective products, and the
value v (ranging from 0 to the total value of the
shipment if all parts are defective) of these parts is
lost. When the customer decides not to reclaim the
defective products (see the upper right cell in Table
1), his or her loss equals the value of the defective

shipped products v. If the shipped products have
only minor defects, the consumer may be able to
use the products partially, thereby reducing his
or her loss to a fraction of v, indicating the ship-
ment’s remaining utility. Nevertheless, compared
to flawless products, the consumer encounters
loss ranging from a cost of 0 for minor defects
to the value of the shipment v for major defects.
If the shipment is not defective and the customer
decides to issue a complaint (see the lower left cell
in Table 1), both partners will have to pay com-
plaint costs C

Cc and C
Sc . After the order is sent back,

the supplier checks the products and finds them
nondefective and may reship them or sell them
to another customer. Thus, there are no further
costs, despite the complaint processing costs. In
cases where the shipment is not defective and the
customer does not decide to reclaim (see the lower
right cell in Table 1), the transaction is completed
as originally intended with no additional cost
outside the regular transaction process.

Now an RTMS-supported, simplified customer
complaint-handling process is implemented, re-
ducing complaint costs for both partners. In cases
when the customer decides to complain about a
shipment, the supplier trusts the customer, as-

Table 1. Conventional customer complaint process cost matrix

Ye
s

(d
)

Y es
N

o
(1

-d
)

N o

C ustom er:
 com p la in t costs (c)

S upp lie r:
{0 ; fraction o f de fective sh ipm en t (v)+ }

com p la in t costs (c)

C ustom er:
com p la in t costs (c)

S upp lie r:
 com p la in t costs (c)

C ustom er:
{0; fraction o f de fective sh ipm en t (v) }

S upp lie r:
0

C ustom er:
0

S upp lie r:
0

Sh
ip

m
en

t d
ef

ec
t?

C ustom er com p la ins?

C
C

C
S

C
S

C
C

 209

Designing Reputation and Trust Management Systems

suming the products are indeed defective without
the need for validation. The customer subtracts
the invoice accordingly or a new shipment is
immediately scheduled and the supplier does not
audit the complaint further. This new setting is
described in Table 2.

If the shipment is not defective and the cus-
tomer decides not to reclaim (see the lower right
cell in Table 2), the situation is unchanged. In cases
where the products are defective and the customer
does not complain (see the upper right cell in Table
2), the situation is unchanged, despite the lack of
complaint costs. The critical case is a cheating
customer who lodges a complaint for a shipment
that is not defective at all (see the lower left cell
in Table 2). In this case, the customer does not
pay for the faultless products. She/he immediately
earns the value of the products (“negative loss
costs (-v)”). On the other hand, the supplier loses
the value of the products shipped.

Comparing both situations reveals that for
defective product shipments, the second scenario
with a simplified customer complaint process is
advantageous. If supplier-side complaint costs
are less than the value of the shipment, only the
lower left quadrant of the cost-matrix is disadvan-

tageous. This outcome, which implies a cheating
customer, should be avoided.

As we have seen, the costs of shipping and
handling complaints in a specific market are im-
portant for the viability of the simplified customer
complaint process. In the case of low or negligible
shipping and complaint-handling costs, it might
be rational to always return defective shipments,
depending on the relationship of total complaint
costs to the individual value of a shipment. How-
ever, if total complaint costs are high in relation
to the shipment’s value, the simplified complaint
process can realize substantial cost savings.

the Reputation and trust
management system to Inhibit
fraudulent behavior

In the case of accurate shipments, there is a
significant difference between the conventional
and simplified scenario. If the customer decides
to complain for faultless shipment, then she/he
will not have to pay for the faultless products
and immediately gains the value v. Concurrently,
the supplier loses the equivalent value because
it trusts the customer and does not perform a

Table 2. Simplified customer complaint process cost matrix

Ye
s

(d
)

Y es

N
o

(1
-d

)

N o

C ustom er:
0

S upp lie r:
fraction o f de fective sh ipm en t (v)

C ustom er:
- fraction o f de fective sh ipm en t (-v)

S upp lie r:
fraction o f de fective sh ipm en t (v)

C ustom er:
{0; fraction o f de fective sh ipm en t (v) }

S upp lie r:
0

C ustom er:
0

S upp lie r:
0

Sh
ip

m
en

t d
ef

ec
t?

C ustom er com p la ins?

210

Designing Reputation and Trust Management Systems

quality check on the reclaimed products that
would expose a cheating customer. If there is no
additional monitoring or control structure, the
customer will always reclaim the delivered ship-
ments, regardless of the actual status (whether it
is indeed defective or not) in the scenario with
the new system. It is a weakly dominant strategy
for the customer always to complain. Thus, the
supplier always loses the equivalent value of the
shipment if no mechanism is applied to counter
cheating behavior.

In an idealized world, customers would always
tell the truth to reduce transaction costs. Both
partners could improve their respective position
in all cases, because only the upper left and lower
right sections in Table 2 would be relevant. As-
suming a customer who is always telling the truth
reveals that the conventional complaint-handling
mechanism is dominated by the simplified auto-
mated complaint handling. Both parties benefit
from the reduction of transaction costs when
processing complaints. Nevertheless, the world
is not ideal, and the customer might be tempted
to complain about defective products even if it is
not justified. The pivotal question here is how to
assure that the customer has no interest in cheating.
One solution is to apply an inexpensive incentive
mechanism enforced by a RTMS.

Reputation in this context is based on business
transactions with a certain customer in the past.
The more orders successfully processed in the
past, the higher the reputation account (and the
higher the level of trust). Otherwise, the customer
withdraws from hid or her reputation account on
the supplier side if transactions failed in the past.
In the simplest case, the supplier could estimate
the defection rate d of its products r and adjust the
customer’s reputation account if his or her com-
plaint rate significantly differs from the estimated
quality (e.g., by applying a c2 test).

The supplier’s credible threat is to switch back
to the conventional customer complaint-handling
mechanism, imposing complaint-processing costs
on future transactions. This threat only works

for infinitely repeated games, as are assumed in
this model. This assumption seems appropriate
for our setting, since B2B relationships are often
characterized as long-term relationships with
frequently recurring transactions. The supplier
can implement several strategies to ensure that
the customer is truthful. The following strategies
can be applied, if the supplier knows the defection
rate d with reasonably high accuracy:

• The supplier can randomly select reclaimed

shipments and request the customer to re-
turn the products for an intensive test. If the
products are faultless, the customer cannot
be trusted and is removed from the simpli-
fied customer complaint-handling process.
The process is immediately switched back to
the traditional handling process. This grim
trigger strategy is potentially suboptimal if
the customer accidentally complains about
products that are not defective.

• The supplier can switch back to the conven-
tional complaint-handling process if the ratio
of complained products significantly exceeds
the defectiveness ratio d. This mechanism
only works if the supplier knows the defec-
tiveness ratio d with high accuracy.

• Each customer receives a reputation account
for a given period, calculated as the product
of the mean ordered value and the quality pa-
rameter d. If a customer reclaims a shipment,
the shipment’s value is subtracted from this
account and if the account is exhausted, the
customer has to justify his or her behavior.
This mechanism also relies strongly on the
accuracy of the parameter d.

The threshold for identifying cheating behavior
on the part of a customer should be chosen ac-
cording to the accuracy with which d is known.
If d is not known and is subject to change, this
threshold should be increased and vice versa.

If the supplier does not know the defectiveness
ratio d, it can improve the reputation mechanism

 211

Designing Reputation and Trust Management Systems

by taking into account the responses of all other
customers for each product. Each customer has
individual reputation values for each product. If
a customer reclaims a shipment, the value of this
shipment is subtracted from his or her reputation
account for the product in question. Afterward,
the reputation values of all customers receive a
bonus. This bonus for product r and customer
i is calculated as an adjusted ratio of the mean
quantity ordered by the customer. This value can
be regularly recalculated for all orders of a given
period (e.g., monthly). The following equation
calculates the reputation bonus for each customer
i and product r.

1

*
i

i dr
r r rn

j
r

j

qbonus p q
q

−

=

∑

pr: price of product r
i
rq : aggregated quantity of product r ordered by

customer i in a given period
j

rq : aggregated quantity of product r ordered by
customer j in a given period

n: number of customers with reputation ac-
counts

d
rq : quantity of defective product r that is re-

claimed

The RTMS works as follows: If all customers
are acting truthfully, the individual reputation ac-
counts for every product will be zero on average.
A simple example should illustrate the mechanism:
A defectiveness ratio d of 10%, a price of 1 for a
given product r and three customers are assumed.
The first customer regularly orders 1,000 units,
customer 2 orders 50 units and customer 3 orders
200 units. Each customer reclaims truthfully 10%
of the shipments. When the first customer reclaims
100 units, his or her reputation account is im-
mediately reduced by 100, equivalent to the total
value of the complaint. Afterwards, all customers’
reputation accounts are given a bonus (including
the customer initiating the claim), resulting in 80

bonus points for customer 1, 4 bonus points for
customer 2, and 16 bonus points for customer 3.
This process is also applied for the complaints of
the other customers, leading to neutral reputation
accounts at the end of the selected period.

If one of the customers decides to cheat and
complains with a higher ratio (e.g., 15%), then his
or her reputation account will be negative while
the accounts of the other customers will be posi-
tive. If the first customer complains 15% of his or
her shipments and the other customers complain
10%, their respective reputation accounts for the
illustrative example will be -10, +2, and +7.2.
Customers with a higher complaint ratio than
other customers can be identified by their negative
reputation accounts. The first cheating customer
will put him- or herself into an inferior position
compared to truthful customers. This system can
only be cheated if all customers collude to produce
a consistent and artificially inflated complaint
ratio. Furthermore, the mechanism does not work
with a small number of customers. If there were
only one customer, then the reputation value
would never deviate.

expeRImentAl evAlUAtIOn Of
tHe pROpOseD RepUtAtIOn AnD
tRUst mAnAgement system

To evaluate the developed solution as suggested
in Hevner’s third guideline regarding design
science, we constructed a simulation to conduct
sensitivity analyses for different transaction fre-
quencies and fractions of potential cheaters in
the market. For simplification and computational
reasons, we assume that the structure of relation-
ships remains unchanged within each simulation
run—customers are always able to correctly assess
the quality of the delivered products (faultless or
defective), and that the production capacities of
the suppliers’ facilities are not limited. Further, we
assume that there are no shortages and arbitrary
amounts of products ordered may be delivered.

212

Designing Reputation and Trust Management Systems

The following section describes the dynamic
behavior of the simulation and explains the core
processes performed by the simulated agents. In
the subsequent section, specific simulation settings
are described and the results are discussed.

model evaluation and simulation
setting

The simulation implements the proposed IS-based
reputation model and assesses environmental
conditions where suppliers using the proposed
solution would outperform comparable suppliers
without it. For the simulation, an idealized trad-
ing situation between suppliers and customers is
assumed. An arbitrary number of suppliers and
customers can be simulated, including truthful
acting, as well as cheating customers. The trans-
action starts with the customer who generates an
order. The receiving supplier executes and ships
the ordered goods to the customer who is checking
the incoming delivery. A random percentage of
products in the suppliers’ shipments is defective.
The customers check the shipments and decide
whether to complain or not. All suppliers receive
identical orders in order to compare different pa-
rameterizations of the reputation mechanism.

If the specified supplier implements the
reputation system, a new shipment will be sched-
uled immediately after a customer complaint is
lodged—if the customer’s reputation value is
high enough (in accordance with the reputation
mechanism outlined in section 0). Furthermore,
the system will also update reputation values of
all customers. If a customer exceeds a prespeci-
fied reputation threshold on the lower bound, the
supplier will switch back to conventional mode
and check all complained products. Although
we assume every supplier is deploying a quality
management program to ensure high standards
in production, a small but unavoidable ratio d
of defective products leaves every company
unnoticed. For our study, this defective ratio
follows a normal distribution but can be freely

configured in the model. The performance of
each supplier is assessed by the operating profit
resulting from the difference between revenues
and costs. Revenues are calculated for faultless
shipped and paid products that do not result in a
customer complaint. Occurring costs are (1) vari-
able costs for each product shipped (independent
of faultless or defective) and (2) costs imposed by
processing customer complaints if no RTMS is
in place. Customers in our simulation approach
randomly issue identical orders to all suppliers.
They also check all shipments arriving from the
suppliers. If they are truthful customers, they will
only complain if the shipment is indeed defective.
Cheating customers, in contrast, may also reject
a fraction of shipments that are not defective.
Simulation time is discrete and a fixed number
of processes are executed for all agents in every
simulated period (see Figure 2).

As an initial condition, all suppliers will
designate all customers as trusted. If a customer
exceeds his or her reputation threshold, she/he
will be removed from trusted status, requiring
him or her to resend the shipment, thus generating
complaint handling costs.

At the beginning of a period, each customer
randomly decides with a prespecified probabil-
ity whether she/he issues an order in this period
or not (1). By varying the order likelihood of a
customer, the transaction frequency between
supplier and customer can be adjusted. If the
customer decides to order in this period, she/he
calculates an order quantity drawn randomly from
a normal distribution and issues identical orders
to all suppliers (2). Mean and standard deviation
are prespecified in the simulation setting. After
receiving orders from all customers, suppliers
process orders and ship goods according to the
quantities requested. A randomly drawn fraction
of products shipped is defective. The defective ra-
tio is normally distributed; the mean defective ratio
and the standard deviation are input parameters
of the simulation (3). After all goods have been
shipped, customers check the received shipments

 213

Designing Reputation and Trust Management Systems

to determine whether they have received defective
products (4). If defective products are included in
the shipment, the customer immediately issues a
complaint message to the supplier specifying the
amount of defective products (5). If the shipment
is faultless and the customer is configured to act
truthfully, nothing happens (6). If the shipment
is faultless but the customer is configured as a
potential cheater, she/he decides whether to cheat
or not (7). If she/he decides to cheat, a complaint
message is issued (8). In the next step, suppliers
process all complaints received and act according
to the trust status of the customer. If the customer
is in trusted mode, the shipment is rescheduled

without further checks and the reputation value
of the customer is adjusted. If the customer is not
in trusted mode, the shipment must be sent back
by the customer to allow the supplier to verify the
claim. If there are indeed defective products in the
shipment, a new shipment is scheduled containing
faultless products; otherwise nothing happens (9).
Finally, all suppliers update the reputation values
of all customers who are in trusted mode (10)
and decide which customers to keep in trusted
mode for the next period (11). Step 11 marks the
conclusion of the simulation period after which
a new period begins with customers deciding
whether to order.

C ustom er O rder (s pec ify ing Q uantity) (2)

S upp lie r de live rs G oods, fra ction d is defect (3)

C ustom ers check G oods (4)

C ustom er rec la im s (5)

S upp lie r reschedules D e live ry accord ing to the „m ode“
the C ustom er is in (9)

S upp lie r dec ides, w h ich C ustom ers rem a in in
„R epu ta tion m ode“ (1 1)

eva l. C hea ting (7)

S upp lie r updates R eputa tion tra ck of C ustom ers (10)

S h ipm ent O KS hipm ent defec t

C hea ting custom er?

do n o th ing (6)

yes no

chea t (8) do n o th ing

yes no

C ustom er O rder (r andom decis ion) (1)

p lace O rderdo n o th ing th is Period

yesno

Figure 2. Course of action of a simulated period

214

Designing Reputation and Trust Management Systems

To compare the different simulation runs, some
settings are kept constant throughout all simula-
tion runs. Each market simulation consists of
1,000 consumers and four suppliers each, trading
for 1,000 periods. Each simulation run is repeated
50 times. Furthermore, all suppliers produce with
an equal ratio of defective products (mean 0.02,
standard deviation 0.05) in all simulations. The
four simulated suppliers differ in terms of (1)
reputation account thresholds and (2) usage of
the reputation account mechanism:

• Suppliers 1, 2, and 3 differ in their threshold
for determining whether a consumer regu-
larly cheats or not.

• Supplier 1 applies a very high threshold,
which means that she/he will apply the
reputation account all the time (all custom-
ers will always be in trusted mode).

• Supplier 2 applies a medium threshold.
• Supplier 3 applies a low threshold.
• Supplier 4 does not apply the reputation ac-

count at all and marks the “bottom line” of a
supplier without the proposed mechanism.

• Therefore, Suppliers 1 and 4 will mark the
two extremes of the scale, with 1 always
trusting all consumers and 4 never using
reputation accounts (and therefore literally
distrusting all consumers).

The 1,000 consumers share consistent overall
parameters, differing only in their attitude toward
“cheating”. A fraction of the 1,000 consumers will
never cheat, while others will consider cheating,
the proportion of whom will be varied in the simu-
lation runs. When placing an order, all consumers
share the same normal distribution of order quan-
tity (mean = 100, SD = 75). They also will always
complain if there is at least one defective item in
a given shipment. If a consumer belongs to the
group of cheating consumers, she/he will try to
cheat with a likelihood of 15%. If she/he decides
to cheat, she/he will always try to complain 20%
of the original (faultless) shipment.

To assess in which market settings the RTMS
will be advantageous, different idealized markets
are simulated. In the following, the impact of
transaction frequency and the impact of different
fractions of cheating consumers on the reputation
system will be investigated (cf. Table 3).

sensitivity Analysis of the Rtms

To analyze the results, the average number of
cheated products per 1,000 items shipped was
calculated. Figure 3 provides the results for the four
simulated market scenarios. The headers depict
the type of market scenario (e.g., HFHC stands for
high frequency of transactions, and high fraction
of cheating consumers; see also Table 3).

As expected, Supplier 4, who always distrusts
all customers and does not apply the reputation
mechanism, does not experience loss through
cheating customers since, even if there is com-
plaint, it will always check whether the claim was
valid. On the other hand, Supplier 1, who always
trusts everyone and employs the new system, has a
ratio of approximately 12 cheated items per 1,000
shipped in the scenarios with a high fraction of
cheating consumers, and 3 cheated items per 1,000
shipped in the low cheating scenario. For the other
suppliers, the fraction of cheated products not
detected ranges between those extremes. There-
fore, it can be stated that for the given settings,
the reputation account system is able to identify
cheating customers and to eliminate them from the
trusted mode system (cp. Suppliers 2 and 3). In the
case of markets with low transaction frequency,
Supplier 2 is unable to achieve a better result than
Supplier 1. In these cases, the reputation account
system takes more time to identify the cheating
customers. The system works best in markets
with a high transaction frequency. In markets
with low transaction frequency, the system will
fail. In low-transaction-frequency scenarios, the
threshold ratios must be set lower to ensure that
cheating consumers are identified. In scenarios
with a low transaction frequency and a low frac-

 215

Designing Reputation and Trust Management Systems

tion of cheating customers (cp. LFLC), the effect
of the reputation account system is small.

Profitability Analysis of the RTMS

We now look at the profits of suppliers depending
on the customer complaint-handling costs. The
absolute number of complaints is independent of
the costs associated with the complaint. Based
on the mean values of the simulation runs, it is
feasible to calculate the financial flows in each
market scenario. For the HFHC market scenario,
the results for different complaint-handlings costs
levels are depicted in Figure 4. The main tendency
can also be found in the other scenarios, but it is
most clearly visible in this scenario. If customer
complaint-handling costs are high compared to
variable production costs, the reputation account
solution is always advantageous (cp. Supplier 4
without deploying a reputation account solution
has the highest losses of all suppliers in the upper
two diagrams of Figure 4). Not until customer
complaint handling costs nearly equal product
revenues (see Figure 4, lower left diagram) or are
below product revenues (see Figure 4, lower right

diagram), does the supplier without the reputation
account mechanism become profitable. In these
scenarios depicted in the lower two diagrams, the
reputation account mechanism is not always the
best solution, especially the “always trust” strategy
of Supplier 1 should not be applied.

In summary, the proposed reputation account
mechanism is especially advantageous in settings
where (a) the transaction frequency is high, (b)
the individual complaint-handling costs are high
compared to product revenues, and (c) the market
has a high fraction of potentially cheating consum-
ers. In markets where complaint-handling costs
are low compared to the individual production
costs, the reputation account mechanism should
not be deployed.

sUmmARy AnD cOnclUsIOns

The combination of information systems and
game-theory inspired reputation and trust ac-
counts in a RTMS establishes new solutions to
automate business transactions where human
decisions were formerly necessary. Through

Ye
s

(d
)

Y es

N
o

(1
-d

)

N o

5%

5%

30%

25%

M
ar

ke
t s

ce
na

rio
s

5%25%

5% 30%

F raction o f
chea ting consum ers

T ransaction
frequency (o rde r

p robab il i ty)

P aram ete riza tion

Lo w
tra n sa ctio n
fre q u e n cy,

 lo w fra ctio n
o f ch e a tin g
co n su m e rs

(L FL C)

Lo w
tra n sa ctio n
fre q u e n cy,

h ig h fra ctio n
o f ch e a tin g
co n su m e rs

(L FH C)

H ig h
tra n sa ctio n
fre q u e n cy,
lo w fra ctio n
o f ch e a tin g
co n su m e rs

(HF LC)

H ig h
tra n sa ctio n
fre q u e n cy,

h ig h fra ctio n
o f ch e a tin g
co n su m e rs

(H FH C)

Table 3. Parameterization of different market scenarios

216

Designing Reputation and Trust Management Systems

the reduction of manual handling and shipping
costs, quality of the complaint-handling process
may be increased both for customers and sup-
pliers, resulting in higher customer retention. A
game-theoretic analysis of the order and customer
complaint process has yielded insights into unde-
sired outcomes of the interaction of suppliers and
customers. While faulty deliveries will always
remain a problem, costs associated with customer
complaint-handling can be reduced significantly
if substituting human decision competence with
an automated information system. Thus, we be-
lieve that an economic interpretation of existing
information systems may help to uncover as-yet
unrealized potential for computer-mediated ap-

plications and offer the RTMS as an example for
this claim. The RTMS allows firms to deploy a
simplified customer complaint-handling process
while preventing customers from acting op-
portunistically. The RTMS has been developed
according to the guidelines put forward for
design science approaches and has been tested
in an agent-based artificial setting, indicating
its strength in specific market environments. In
more detail, the RTMS has been found applicable
in market environments where (a) the transaction
frequency is high, (b) the individual complaint-
handling costs are high compared to product
revenues, and (c) the market has a high fraction
of potentially cheating consumers.

0

4

8

12

ch
ea

te
d

pr
od

uc
ts

 p
er

 1
,0

00
 s

hi
pp

ed
HFHC HFLC

LFHC LFLC

1 2 3 4
Suppliers

0

4

8

12

ch
ea

te
d

pr
od

uc
ts

 p
er

 1
,0

00
 s

hi
pp

ed

1 2 3 4
Suppliers

Figure 3. Simulation results

 217

Designing Reputation and Trust Management Systems

RefeRences

Carter, J., Bitting, E., & Ghorbani, A. A. (2002).
Reputation formalization within information
sharing multiagent architectures. Computational
Intelligence, 18(4), 515-534.

Dahlstrom, R., & Nygaard, A. (1999). An Em-
pirical investigation of ex post transaction costs
in franchised distribution channels. Journal of
Marketing Research, 36(2), 160-171.

Das, T. K., & Teng, B.-S. (1998). Between trust
and control: Developing confidence in partner
cooperation in alliances. Academy of Management
Review, 23(3), 491-512.

Eisenhardt, K. M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4),532-550.

Fornell, C., & Wernerfelt, B. (1987). Defensive
marketing strategy by customer complaint
management: A theoretical analysis. Journal of
Marketing Research, 24(4), 337-346.

Glaser, B. G., & Strauss, A. L. (1967). The discov-
ery of grounded theory: Strategies for qualitative
research. New York: Aldien de Gruyter,.

Hallen, G., & Latino, R. J. (2003, June). East-
man Chemical’s success story. Quality Progres,
50-54.

Hevner, A. R., March, S. T., & Park, J. (2004).
Design science in information systems research.
MIS Quarterly, 28(1), 75-105.

Hirschman, A. O. (1970). Exit voice and loyalty:
Responses to decline in firms, organizations,
and states. Cambridge, MA: Harvard University
Press.

Lane, C., & Bachmann, R. (1996). The social con-
stitution of trust: Supplier relations in Britain and
Germany. Organization Studies, 17(3), 365-395.

Malone, T. W., & Crowston, K. (1994). The
interdisciplinary study of coordination. ACM
Computing Survey, 26(1), 87-119.

March, S. T., & Smith, G. F. (1995). Design and
natural science research on information technol-
ogy. Decision Support Systems, 15(4), 251-266.

Markus, L. M., Majchrzak, A., & Gasser, L.
(2002). A design theory for systems that support
emergent knowledge processes. MIS Quarterly,
26(3), 179-212.

Marsh, S. (1992). Trust and reliance in multiagent-
systems: A preliminary report. University of
Stirling, Department of Computer Science and
Mathematics,.

Merton, R. K. (1968). Social theory and social
structure. New York: The Free Press.

Moorman, C., Zaltman, G., & Deshpande, R.
(1992). Relationships between providers and users
of market research: The dynamics of trust within
and between organizations. Journal of Marketing
Research, 29(3), 314-328.

Mui, L., Halberstadt, A., & Mohtashemi, M.
(2002). Notions of reputation in multiagents
systems: A review. In Proceedings of the First
International Joint Conference on Autonomous
Agents and Multiagent Systems (pp. 280-287)l
New York: ACM Press.

Mui, L., Mohtashemi, M., & Halberstadt, A.
(2002). A computational model of trust and
reputation. In Proceedings of the 35th Hawaii
International Conference on System Science
(HICSS) (p. 188). Big Island, HI:

Noordewier, T. G., George, J., & Nevin, J. R.
(1990). Performance outcomes of purchasing ar-
rangements in industrial buy-vendor relationships.
Journal of Marketing Research, 54, 80-93.

Rust, R. T., Subramanian, B., & Wells, M. (1992).
Making complaints a management tool. Marketing
Management, 1(3), 40-45.

Sabater, J., & Sierra, C. (2001). REGRET: A
reputation model for gregarious societies. In Pro-
ceedings of the Fourth Workshop on Deception

218

Designing Reputation and Trust Management Systems

Fraud and Trust in Agent Societies (pp. 61-70).
Montreal, Canada:

Sabater, J., & Sierra, C. (2002). Reputation and
social network analysis in multiagent systems. In
Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multiagent
Systems (pp. 475-482). New York: ACM Press.

Schilling, V., & Sobotta, A. (1999). Prozessko-
stenrechnung der mittelständischen industrie.
Betriebswirtschaftliches Forschungszentrum
für Fragen der mittelständischen Wirtschaft e.V.
Bayreuth, Germany.

Tax, S. S., & Brown, S. W. (1998). Recovering and
learning from service failure. Sloan Management
Review, 40(1), 75-88.

Walls, J. G., Widmeyer, G. R., & El Sawy, O. A.
(1992). Building an information system design
theory for Vigiliant EIS. Information Systems
Research, 3(1), 36-59.

Wigand, R. T., Picot, A., & Reichwald, R. (1997).
Information, organization and management:
Expanding markets and corporate boundaries.
Chichester, England: Wiley.

Williamson, O. E. (1975). Markets and hierar-
chies: Analysis and antitrust implications. A Study
in the economics of internal organization. New
York: The Free Press.

Williamson, O. E. (1985). The economic institu-
tions of capitalism: Firms, markets, relational
contracting. New York: The Free Press.

This work was previously published in Journal of Electronic Commerce in Organizations, Vol. 6, Issue 4, edited by M. Khosrow-
Pour, pp. 8-29, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 219

Chapter XVI
SEACON:

An Integrated Approach to the
Analysis and Design of Secure Enterprise
Architecture–Based Computer Networks

Surya B. Yadav
Texas Tech University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

The extent methods largely ignore the importance of integrating security requirements with business
requirements and providing built-in steps for dealing with these requirements seamlessly. To address
this problem, a new approach to secure network analysis and design is presented. The proposed method,
called the SEACON method, provides an integrated approach to use existing principles of information
systems analysis and design with the unique requirements of distributed secure network systems. We
introduce several concepts including security adequacy level, process-location-security matrix, data-
location-security matrix, and secure location model to provide built-in mechanisms to capture security
needs and use them seamlessly throughout the steps of analyzing and designing secure networks. This
method is illustrated and compared to other secure network design methods. The SEACON method is
found to be a useful and effective method.

IntRODUctIOn

Designing and implementing a secure computer
network has become a necessity for companies big
or small. Network security is no longer just a tech-
nical issue anymore (Sarbanes-Oxley Compliance
Journal, 2005). It has also become an economic
and legal issue for most companies. According to

an IT security management survey, “Two-thirds of
those who took part in the survey acknowledged
that the wide range of government regulations,
such as Sarbanes-Oxley, HIPAA, and GLBA, has
affected their company’s handling of IT security
issues” (Sarbanes-Oxley Compliance Journal,
2005). According to CSI/FBI’s Tenth Annual
Computer Crime Security Survey, unauthorized

220

SEACON

access to information and theft of proprietary
information showed significant increases in aver-
age loss per respondent (CSI/FBI, 2005). Hackers
have also moved to new areas such as identity theft
(McMillan, 2005). As a consequence, the cost of
information theft has jumped considerably. These
surveys indicate that a better computer network
design method is needed for designing a more
secure computer network.

There has been increased activity in various
aspects of security, network system security, and
secure network design in the last several years.
There are several good articles (Cisco Systems,
2001; Fisch & White, 2001; Ghosh, 2001; Op-
penheimer, 2004; Southwick, 2003; Whitman &
Mattord, 2005; Whitmore, 2001) that deal with
secure network design. For example, Fisch and
White (2001) discuss security models and various
kinds of security measures in detail. Ghosh (2001)
discusses principles of secure network design
and an in-depth analysis of ATM networks and
their security. Oppenheimer (2004) uses a top-
down network design methodology to design an
enterprise computer network. The emphasis is
on the technical analysis and design of networks.
Whitman and Mattord (2005) present a Security
Systems Development Life Cycle (SecSDLC)
methodology paralleling the basic system develop-
ment life cycle (SDLC) methodology. There are
sophisticated network simulation and performance
tools such as OPNET (OPNET, 2005). Most of the
existing work on secure network design, however,
tends to lean more toward technical details. There
is very little research that addresses the issue of
security and business requirements of a computer
network simultaneously. It is very important to un-
derstand an organization’s business requirements
to design an effective network (Oppenheimer,
2004). It is equally important to understand the
organization’s security requirements as well.
To our knowledge, there is no published design
method that integrates secure network require-
ments with business requirements to develop a

secure network. In this article, we address the
following research questions:

1. How can we identify security and business
requirements of a network system seam-
lessly?

2. How can we identify all possible assets and
resources, including business processes and
data that need to be protected in a network
system?

3. How can we incorporate and document
security requirements into conceptual and
logical network diagrams?

This article follows the DEACON method
(Shaw & Yadav, 2001) and presents a new method
that provides built-in mechanisms to carry secure
network requirements along with business require-
ments seamlessly throughout the process of ana-
lyzing and designing secure network architecture.
We have developed, as part of the method, several
new concepts such as the security adequacy level,
process-location-security matrix, data-location-
security matrix, and secure location model to
achieve a good interplay between network security
requirements and business requirements.

cURRent WORk On DevelOpIng
secURe cOmpUteR netWORks

Computer networking and its security is a vast
area of research and study. The topics cover net-
work security concepts, principles, frameworks,
techniques, methods, laws, and practices. This
article draws from research on several of the top-
ics mentioned above; however, it is not practical
for this article to review even a fraction of the
literature covering those topics. Interested read-
ers are kindly referred to Ghosh (2001), Kizza
(2005), and Whitman and Mattord (2005) for a
good review of topics related to secure computer
networks. Here, we limit our literature discussion

 221

SEACON

to research that deals with secure network design
methods.

Paul Innella (Innella, 2001) presents a design
method based upon the software process model.
This is an interesting method but it is, in its cur-
rent form, too general and too brief to be of any
practical use.

Cisco Systems (2001) has developed a secure
blueprint for enterprise networks (SAFE) to pro-
vide best practice information on designing and
implementing secure networks. SAFE is not a
design method in the sense of providing specific
steps for designing a secure network. Instead, it is
a set of design and configuration guidelines that
should be followed to design a secure network.

James J. Whitmore presents a method for
designing secure solutions. He describes “a
systematic approach for defining, modeling, and
documenting security functions within a struc-
tured design process in order to facilitate greater
trust in the operation of resulting IT solutions”
(Whitmore, 2001). Using Common Criteria as a
basis, he proposes five interrelated security sub-
systems. These are (Whitmore, 2001):

1. Security audit subsystem
2. Solution integrity subsystem
3. Access control subsystem
4. Information flow control subsystem
5. Identity or credential subsystem

Whitmore’s approach develops network secu-
rity architectures. Once the security requirements
have been identified, they can be mapped to the
above mentioned security subsystems to develop
a security architecture for the system. This is a
very important step to designing secure solutions.
However, its focus is more on the technical side
of the network solution and does not address
the identification and determination of security
requirements. It also lacks in providing steps for
integrating security requirements with business
requirements in designing secure network solu-
tions.

Priscilla Oppenheimer presents a top-down
network design method consisting of the follow-
ing major steps (Oppenheimer, 2004):

1. Identifying customer needs and goals
2. Logical network design
3. Physical network design
4. Testing, optimizing, and documenting net-

work design

It is obvious that the top-down network design
method parallels the structured systems analysis
method for software development. The method
provides a detailed discussion of various topics
related to computer network design including
security. However, the method does not have
built-in steps and mechanisms to explicitly ad-
dress security requirements in addition to busi-
ness requirements. Also, the method has more
focus on technical details of network design. It
does not address the issue of network modeling
and simulation.

Whitman and Mattord (2005) present a Secu-
rity Systems Development Life Cycle (SecSDLC)
which is based upon the Systems Development
Life Cycle (SDLC) waterfall methodology. The
SecSDLC methodology consists of investigation,
analysis, logical design, physical design, imple-
mentation, and maintenance phases (Whitman
& Mattord, 2005). The SecSDLC has steps for
documenting security policies, analyzing threats,
and examining legal issues. However, the SecDLC
does not have steps to identify security or business
requirements. There is very little support in the
form of guidelines and techniques for designing
and documenting secure network models and ar-
chitectures based upon the security and business
requirements of an organization.

There is a very limited literature on design
methods that provide mechanisms to incorporate
security requirements along with business require-
ments in designing a secure computer network.
The next section discusses a new method to ana-

222

SEACON

lyze and design a secure network and shows how
to use these two requirements seamlessly.

An IntegRAteD AppROAcH tO
secURe netWORk AnAlysIs
AnD DesIgn

To deal with current security challenges, designing
a secure computer network must be an integral
part of the overall approach to design a computer
network. Security of computer networks cannot be

an afterthought anymore. This section discusses
the proposed integrated method to analyze and
design secure computer networks. The proposed
method has been named SEACON (design of
Secure Enterprise Architecture-based Computer
Networks). The SEACON method has built-in
mechanisms to capture a firm’s network security
needs from the analysis stage and carry them to
the implementation stage. Figure 1 shows the
detailed steps of the SEACON method. The fol-
lowing paragraphs discuss the SEACON method
in detail.

1. Problem Definition
a. Define organizational goals, objectives, and security policies using SVPSS
framework

 b . Define IS goals, objectives, and security policies
 c . Define network goals, objectives, and security policies

2. Requirement Specification
a. Model business processes and their security requirements (process model)
b. Model organizational data and their security requirements (data model)
c. Identify physical locations to be connected within the network
d. Identify information domains at each location using data-location-security and
process-location-security matrices
e. Construct secure location model (secure extended location connectivity
diagram) with security annotation
f. Perform the assessment of security risks for each asset such as process, data,
and network components and determine appropriate security requirements and
mechanisms

3. Secure Network Architecture

a. Identify enclaves and boundary controllers under each information domain
b. Specify security requirements and mechanisms for each enclave based upon
the security risk assessment conducted in step 3
c. Assign enclaves and boundary controllers to appropriate nodes
d. Create a secure network architecture diagram
e. Match available technology with specifications on architecture diagram

4. Secure Network Performance Evaluation
a. Simulate secure network operation (e.g. using software such as OPNET)
b. Identify performance bottlenecks and optimize network
c. Identify security holes and correct them
d. Refine secure network architecture

5. Implementation
 a . Implement the secure network architecture
 b . Prepare a conversion plan
 c . Convert to the new secure network system

Figure 1. The SEACON method

 223

SEACON

Problem Definition

The first step in the method requires the establish-
ment of goals, objectives, and security policies at
three levels, firm, information system (IS), and
computer network. The establishment of goals,
objectives, and security policies helps determine
the context and scope of the problem at hand.
Hopefully, the organizational and IS level goals,
objectives, and security policies have already been
established. If not, then these organizational an IS
policies should be defined along with the goals,
objectives, and security policies for the network
under consideration. Network security policies
are determined using the Six-View Perspective
of System Security (SVPSS) framework (Yadav,
2006). The SVPSS framework enables an analyst
to determine a comprehensive set of security
policies by providing a multiview look at system
security. Network security policies should be de-
fined under each security view, Threat, Resource,
Process, Management, Legal, and Assessment. A
firm’s security policies act as the bedrock on which
secure network and secure information systems
are designed and built. Network security policies
should be stated as precisely as possible. Access
rules and security requirements for internal as
well as external entities should be clearly stated.
Security risks should be assessed after the initial
set of network security policies has been identified.
There are several risk assessment methods (GAO,
1999; ASIS, 2003; Verdon & McGraw, 2004)
proposed in the literature. All of these methods
are quite similar to one another and any of them
can be used to assess risks in conjunction with
the SVPSS framework.

Requirement Specification

This step involves determining network security
needs in addition to traditional business and data
modeling activities. We used a process model, data
model, network model, and security risk register
as major tools to document security requirements

and mechanisms that should be included in a
network system. We discuss an extended version
of these tools below.

The modeling of business activities presented
by Shaw and Yadav (2001) and other researchers
do not address the integration of security activ-
ity modeling with business activity modeling.
Security has become too critical to leave it as an
afterthought when developing a secure network.
Security requirements should be modeled along
with business requirements simultaneously. Secu-
rity requirements modeling can be easily handled
by adopting certain conventions as part of exist-
ing process and data modeling techniques. For
example, a data flow diagram can be easily adapted
to capture process security requirements. The
entity-relationship data modeling (ERD) can be
adapted to capture data security requirements. A
business process detailed in a Data Flow Diagram
(DFD) must have with it an appropriate security
level required to secure the business process. We
need to identify and specify security for each
process and for each data object-entity. One way
to state security for processes and entities is to at-
tach a security classification level as a property of
an entity or process. We propose a concept of the
Security Adequacy Level (SAL) to easily state the
nature of security in a data model. SAL refers to the
degree of security-strength needed to adequately
protect a process or an entity (a data object). The
definition of the SAL concept is based on the
work on Strength of Mechanism Level (Arber,
Cooley, Hirsh, Mahan, & OSterritter, 1999) and
four hierarchical divisions of security protection
under the trusted computer system evaluation
criteria (Department of Defense, 1985). We define
six levels of SAL—Low, Basic, Medium, High,
and Very High—of security adequacy. The SAL
levels are hierarchical in nature, meaning that a
given security adequacy level subsumes all the
lower level security requirements, Low being the
lowest level and Very High being the highest level
of security adequacy. These levels are defined in
Figure 2.

224

SEACON

Defining the security adequacy level of a
business process enables one to explicitly pay
attention to the security issues of a process and
helps a designer to include the appropriate security
mechanisms to protect the process in a network
system. Figure 3 shows as an example a data flow
diagram with two business processes that includes
a security adequacy level for each process.

Organizational data modeling involves identi-
fying data objects, their attributes (properties), and
relationships among the data objects. The security
requirements for data objects are generally ignored
when developing a data model. We suggest that
security requirements for data objects should be
included as part of a data model. We propose to
attach an appropriate security adequacy level to
each data object in a data model.

Figure 4 shows an illustration of an ER model
with a security adequacy level attached to each

entity type in the model. The SAL attached to an
entity type specifies the level of protection needed
for that entity type. The security adequacy level
for data and processes should be determined in
consultation with the users as well as the manag-
ers (owners) of those process and data. We now
discuss the idea of a secure location model to
identify network components and their security
needs.

secure location model

A secure location model shows not only the loca-
tions (nodes) and connections, but also the security
requirements of those locations and connections.
Analysts need a mechanism to include security
requirements in various models along with the
process and data needs of a firm. This mechanism
should address the adequacy level of security of

Security Adequacy Level
(SAL)

Suggested security
mechanisms for the
level

Correspondence with
DOD’s Hierarchical
divisions (Department of
Defense, 1985)

Correspondence with
Strength mechanism
level (Arber et al.,
1999)

Low—defined as minimum
protection Password access Division D—Minimal

Protection N/A

Basic—defined as basic secu-
rity practice. It is adequate
enough to protect low value
data and deter unsophisti-
cated threats

Restrictive granting of
rights; enhancement of
strict account policies;
basic encryption

Division C—discretion-
ary protection (Class C1,
Class C2)

Basic

Medium—defined as
good security practice. It is
adequate enough to protect
medium value data and resist
sophisticated threats

Deactivation of un-
necessary network
services; staff training,
security update plan;
firewall; IPSec VPN

Division B—mandatory
protection (Class B1 and
Class B2).

Medium

High—defined as high secu-
rity practice. It is adequate
enough to protect high value
data and resist high-level
threats

Network and host-
based Intrusion detec-
tion systems (IDS);
contingency plans;
vulnerability analysis
tool; SSL VPN

Division B—mandatory
protection (Class B3—
security domains)

High

Very High—defined as a
formal and very high secu-
rity practice. It is adequate
enough to deal with any kind
of threats and protect very
high value data.

Application based
IDS; formal security
protection

Division A—verified
design (Class A1 and
beyond)

N/A

Figure 2. Description of security adequacy levels

 225

SEACON

various components of a system. The security
adequacy level classification discussed in Figure
2 can be used to specify security levels for various
network system components.

First, process-location-security and data-
location-security matrices should be developed
to identify the locational usage of processes and
data and to possibly revise their security adequacy
levels identified previously in the process and data
models. Security adequacy levels for processes
and data could be influenced by their locational
usage. For example, if a process or data is used
from more than one location then it may require
a higher level of security. Information domains
should be identified next based upon the process-
location-security and data-location-security ma-
trices. An information domain is used to group a
set of resources with similar characteristics and
functionalities. An information domain addresses
the issues of data management and data interop-
erability. Each location can contain one or more
information domains.

Network Security Mechanisms

Intrusion Detection System (IDS):
1) Network-Based IDS
2) Host-Based IDS
3) Application-Based IDS

Firewall:
1. Packet filtering
2. Proxy server
3. Stateful packet filtering

Virtual Private Network (VPN):
1. IPSec VPN
2. SSL VPN

Secure Configuration of Servers:
1. Deactivation of unnecessary network services
2. Password access protection
3. Restrictive granting of rights
4. Enforcement of strict account policies
5. Audit Logs

Network Policies and Procedures:
1. Staff training
2. Security update plan
3. Contingency plan
4. Vulnerability analysis tools

Figure 3. A list of network security mechanisms

Data store

User
1

sAl: medium

process 1

2
sAl: basic
process

2

note: A security Adequacy level of medium for process 1 means that process 1
needs a medium level of security protection.

specification of security Adequacy level for processes

Figure 4. An illustration of an ERD with security adequacy levels

226

SEACON

Secure extended location connectivity dia-
grams should be developed after the information
domains have been determined. A secure extended
location connectivity diagram is an extended loca-
tion connectivity diagram (Shaw & Yadav, 2001)
that incorporates the identification of security
adequacy levels for locations and connections.
As the process and data are allocated to their
appropriate locations, the corresponding process
and data security adequacy levels are combined
to determine the overall security levels for those
locations and connections. The secure extended
location diagrams should be drawn using tech-
nology independent generic symbols to represent
nodes and connections in the diagram. Locations
and connectivity links are labeled with security
adequacy levels. Figures 8A through 8D show
examples of such a diagram.

So far, we have used several types of models—
process, data, and network diagrams—to identify
various types of assets and resources that need
to be protected. Various kinds of threats pose
security risks to network assets and resources.
Network security requirements should be iden-
tified from various perspectives (Yadav, 2006)
while keeping in mind the various security risks
for the firm. Security risks should be assessed
under each view (Yadav, 2006) and prioritized
based upon their expected consequences. Users
and managers should be consulted in determining
network security risks and requirements under
each view.

The identification of security risks and their
assessment allows a company to compare and
evaluate consequences of various types of security
risks. It also enables the company to prioritize the
security risks and select, given a limited budget,
the most consequential security risks for mitiga-
tion. A general process for security risk assessment
can be stated as follows (Center for Medicare and
Medicaid Services, 2002; Yadav, 2006):

1. Identify assets under each security view.
2. Identify sources of risk for each asset.

3. For each source of risk, we estimate its like-
lihood of occurrence and the consequence
(impact) if the risk materializes. Using the
levels of likely hood of occurrence and the
levels of severity of consequence (impact),
determine the risk level for each risk. Also,
determine the acceptable risk level for each
risk.

4. Evaluate each risk based upon the risk level
and the acceptable risk level.

5. Identify security requirements and mecha-
nisms to reduce the risk level to an acceptable
level.

The above process is described in detail by
CMS (Center for Medicare and Medicaid Services,
2002) and Yadav (2006).

A security risk register can be used to document
the outputs of the above risk assessment process.
A security risk register is a tabular representa-
tion of details about identified risks and security
mechanisms for reducing those risks. Figure 5
shows a template for a security risk register.

Security views in the risk register refer to
various security perspectives of a network sys-
tem (Yadav, 2006). Assets are any IT or system
resource that needs to be protected. Assets are
identified under each security view. For each
identified asset, the sources of risks are then
determined. For each source of risk, the threat
likelihood estimate, the consequence if the threat
is realized, and the resultant risk level are com-
puted. An acceptable level of risk is specified for
each source of risk. A risk priority level is then
computed based upon the resultant risk level and
the acceptable risk level. Security requirements
and mechanisms are then specified for reducing
security threats from the sources of risks having
high priority levels. Figure 6 shows a tree-view
of the security risk register template shown in
Figure 5. It also shows the hierarchical nature of
the security risk register. For illustration, only
one branch is expanded in Figure 6.

 227

SEACON

This section has discussed several ways to
identify security requirements of a network sys-
tem. The identified security requirements and
mechanisms should be allocated and apportioned
among the various components of a network
system. A security mechanism is a method, tool,
technique, or procedure used to enforce a security
policy and to protect resources. Some examples of
network security mechanisms are firewalls, intru-
sion detection systems, virtual private networks
(VPN), and network access controls. Figure 7
shows a more complete list of network security
mechanisms. For more information about network
security mechanisms, please see Irvine and Levine
(1999), Fisch and White (2001), Bace and Mell
(2001), Rusli (2001), and Warren (2005).

The next section uses the idea of secure network
architecture to represent a logical network topol-
ogy and the security mechanisms apportioned
among the various network components.

Secure Network Architecture

Secure network architecture can be represented
using a network diagram. A network architecture
diagram (NAD) and a secure network archi-
tecture diagram (SNAD) are used as a tool to
model relationships among network hardware,
software, processes, data, and security policies.
These diagrams become the basis to simulate and
evaluate network architectures. First, information
enclaves and boundary controllers (Bionic Buffalo
Corporation, 2000; Defense Logistics Agency,
2002) are determined under each information
domain. An enclave is a set of resources that
are protected at the same level as a group. An
information domain may have several enclaves.
Generally, an information domain is physically
realized via a set of information enclaves (Bionic
Buffalo Corporation, 2000). Enclaves typically
contain computing resource components such
as switches, servers, printers, and workstations
(Defense Logistics Agency, 2002). A boundary
controller protects an enclave. For example, a

 se
cu

rit
y

vi
ew

s
As

se
ts

so
ur

ce
s

of
 R

is
k

th
re

at

li
ke

lih
oo

d
es

tim
at

e

co
ns

eq
ue

nc
e,

if

th
e

th
re

at
 is

re

al
ize

d

Re
su

lta
nt

Ri

sk
 l

ev
el

Ac
ce

pt
ab

le

Ri
sk

 l
ev

el

Ri
sk

pr

io
rit

y
le

ve
l

se
cu

rit
y

Re
qu

ire
m

en
ts

se
cu

rit
y

m
ec

ha
ni

sm
s

A
se

cu
rit

y
 R

is
k

Re
gi

st
er

 t
em

pl
at

e

Figure 6. A security risk register template for
documenting risks

228

SEACON

router with a firewall can act as a boundary con-
troller. Appropriate security adequacy levels are
assigned to each enclave. A network architecture
diagram without security mechanisms could be
created as a base network for network analysis
and design. Next, the security adequacy level of
each enclave is mapped to appropriate network
security mechanisms to be included in the secure
network architecture.

A secure network architecture diagram is then
created. A secure network architecture diagram
can be obviously drawn at various levels such as
at the logical and physical levels. A logical level
diagram uses generic symbols for nodes and links
in the diagram. A physical level SNAD, on the
other hand, is technology-dependent. Nodes and
links in a physical level SNAD are represented by
appropriate communication technology available

Figure 7. A hierarchical (tree) view of a security risk register
A tree view of a security risk register

Security Risk
Register

Threat View Management
View

Assessment
View

Legal View Resource
View

Process
View

Asset #1 Asset #n

Security-Risk
Source #1

Security-Risk
Source #n

Threat Liklihood
Estimate for this source

Consequence if this
threat is realized

Resultant Risk
Level

Acceptable Risk
Level for this
source-risk

Risk Priority
Level

Security
Requirments to
reduce this risk

Security Mechanism
to support the
requirements

 229

SEACON

in the market. A SNAD (logical as well as physical)
should be designed using network modeling tools
such as OPNET (OPNET, 2005) so that they can
be simulated and evaluated for performance.

Secure Network Performance Evaluation
A network should be evaluated for various

types of performance issues such as security holes,
network traffic, response, and throughput. Simu-
lation is a very powerful technique in evaluating
computer networks. It is very important to use
network modeling software that allows simula-
tion of secure networks under various scenarios.
A detailed discussion of network simulation and
performance evaluation is beyond the scope of this
article due to space and other limitations.

network Implementation

Implementation will entail buying the required
network equipment and other computing resourc-
es, and then deploying them onsite. A conversion
plan to transition to the new network will have
to be prepared. Users should be properly trained
in the new network’s security and its usage. A
detailed discussion of network implementation
is beyond the scope of this article.

A comparison of secure network
Analysis and Design methods

In order to differentiate the SEACON method
further from other methods we compare it with
two existing methods, top-down network design
(Oppenheimer, 2004) and secure network solu-
tions (Whitmore, 2001). Note that we are including
only those methods that address the security of
networks.

While there are no standard criteria for compar-
ing secure network design methods, the following
criteria are designed to give a representative and
objective view of the methods so that an organi-
zation may choose the most appropriate secure
network design method for a given situation. We
extend the criteria developed by Shaw and Yadav

(2001) to address the security issues in design.
The security-related criteria have been developed
using the notion of functional and assurance
requirements of the Target of Evaluation (TOE)
(Common Criteria Implementation Board, 1999a,
1999b, 1999c) and network security mechanisms.
Any secure network design method should have
built-in steps to guide an analyst in determining
an appropriate set of network security mechanisms
to be included in the overall design of a network.
A method should also use a network simulation
tool for analyzing and evaluating different secure
network design scenarios. An extended set of
comparison criteria is described below:

• Capture of multiview security require-
ments: (To what extent does the method
emphasize a complete and comprehensive
security requirements?)—The method
should provide guidelines to identify secu-
rity requirements from multiple perspectives
such as legal, privacy, management, assess-
ment, and resource (Yadav, 2006).

• Mapping of network security mecha-
nisms to firm’s security requirements:
(To what extent does the method provide
steps to relate security mechanisms to
security requirements?)—The method
should encourage an analyst to determine
the most appropriate set of network security
mechanisms to support a given set of security
requirements.

• Interplay between business and secu-
rity requirements: (To what extent does
the method provide explicit steps in us-
ing security and business requirements
simultaneously?)—The method should
provide built-in steps for using security and
business requirements together in creating
network architectures.

• Usability: (To what extent is the method
usable?)—The method should be easy for
an organization to apply (Shaw & Yadav,
2001).

230

SEACON

• Integration: (To what extent is the network
integrated with the IS architecture?)—The
method should integrate network architec-
ture with the information system(s) in an
organization.

• Documentation: (What level of documenta-
tion does the method provide?)—The method
should provide extensive documentation
including user requirements, security re-
quirements, and network architecture.

• Complexity: (How easy is the method to
learn and to apply?)—Ideally, the method
should be relatively easy to learn and to
apply.

• Allocation guidelines: (To what extent does
the method help allocate data, processes,
and security mechanisms to nodes?)—The
method should provide rules and guidelines
for determining which processes or data
and security mechanisms to assign to each
node.

• Principles: (What principles does the
method emphasize?)—The method should
be based on sound principles that have
been proven effective instead of relying on
intuitive ideas that have a low likelihood of
success (Shaw & Yadav, 2001).

• Outcomes: (What are the major end products
of the methodology and are the products of
a high caliber?)—The end products of the
method should be relevant to organizational
goals and business requirements and should
be of high quality.

• Simulation: (To what extent does the method
emphasize simulation?)—The method
should use network simulation tools to evalu-
ate alternative secure network designs.

Table 1 summarizes the results of applying
the criteria to each of the existing methods and to
the SEACON method. The table shows that each
design method has its own strength. However,
the SEACON method provides the advantage of
a multiview perspective of security, built-in steps

for seamless use of security and business require-
ments in network models, firm level integration
of the network, a set of guidelines for allocating
business processes and data across network nodes,
and emphasis on simulation.

An IllUstRAtIOn Of tHe
seAcOn metHOD

Consider a simple example to illustrate the ap-
plicability of the SEACON method. Although
the example is not very complex, it does help
illustrate the usefulness of the SEACON method.
The example problem is described below. It is
adapted from Shaw and Yadav (2001). The ex-
ample problem has been modified to incorporate
network security needs.

“SHIPIT is a fictitious firm that provides order
processing services for mail order companies. The
products are stored in a SHIPIT warehouse, and or-
ders are shipped as they are received. The SHIPIT
organization consists of three locations:

• The warehouse in Kansas City, Missouri,
• The office building in Dallas, Texas, and
• The call center in Albuquerque, New

Mexico.

Currently, each facility has computers, but they
are not integrated, and thus the only mechanism
for sharing information is to print reports and
physically send them to the other locations. Man-
agers at SHIPIT believe that a computer network
allowing them to share information securely over
the Internet/intranet would be beneficial, and they
decided to develop such a secure network using
the SEACON method. The primary business
driver for the company in its network design is
a desire to reduce business operating costs and
expedite access to various data and reports. A
secure network may be a little bit more costly, but
it will allow the company to run its operation with
minimal or no security breaches and avoid costly

 231

SEACON

security fixes down the road. As a general rule,
SHIPIT wants to have every computer connected
to the SHIPIT network properly administered
and secured.

The DEACON method, the forerunner of
SEACON method, was applied to the above ex-
ample (Shaw & Yadav, 2001). In this article, we
emphasize the discussion of SEACON’s security-
related steps. Under the SEACON method, the
secure network design steps would be similar to
the following:

• Business Problem Definition: Based upon
the brief security description, we infer that
SHIPIT should develop a network that pro-
vides error-free, reliable, and secure storage;
sharing; and transmission of data among the
facilities at SHIPIT. Appropriate security
mechanisms should be built at various lev-
els, those of application, operating system,
server, and network levels to safeguard the
storage, access, and flow of information on
the network. More specifically:

 Methods

Criteria
SEACON Top-Down Network

Design (21)
Designing Secure Solu-
tions (28)

Multiview Security Re-
quirements Yes No No

Mapping between Network
Security Mechanisms and
Security Requirements

High Medium High

Interplay between security
and business requirements

A seamless use
of security and
business require-
ments

No joint use of security
and business require-
ments

No joint use of security
and business require-
ments

Usability High High Medium

Integration High Low Low

Documentation High High Low

Complexity High Medium High

Allocation Guidelines Good None None

Principles

Systems
approach;
Completeness;
Consistency

Technical accuracy;
Top-down development

Systems approach;
Common criteria

Outcomes Implementation Implementation Network model

Quality High High Medium

Simulation

A secure network
architecture that
can be used for
Simulation model
and evaluation

No formal simulation No formal simulation

Table 1. A comparison of secure network design methods

232

SEACON

 Network hardware and software assets
such as Web servers, database servers,
routers, switches, databases, and so
forth, should be protected.

 Access to data stored at various loca-
tions such as the warehouse, the office
building, and the call center should be
allowed to only authorized personnel.

 Users should be identified and grouped
in various categories and their security
responsibilities should be delineated.

 User account administration, user
password policy, and privilege review
policy should be specified.

 Responsibility for network administra-
tion and security should be assigned to
a trained and technically competent
staff.

 Accounts should be promptly deleted
if remained unused for 3 months.

 Accounts belonging to terminated
employees should be disposed off im-
mediately.

 Personal equipment should not be con-
nected to the SHIPIT network.

• Requirement Specification: We document
SHIPIT’s security and business needs using
process, data, and network models as dis-
cussed. We document the final set of security
requirements and mechanisms in the form
of a security risk register created after the
secure location model was developed. The
process and data models are shown in Figures
8 and 9, respectively. The security risk reg-
ister in Table 4 shows security requirements
under each security view. Various security
views have enabled the SHIPIT firm think
about security requirements not only for
protecting resources and dealing with vari-
ous threats but also for legal requirements
and continuous security assessment.

Query,
Item Details

Management Report Log

Order Info.

Shipment, Invoice

Compliance Report

Legal RequirementManage
Order

Processing

1
SAL: Medium

Customer
Regulatory

Agency

System Log

SHIPIT
Administrator

The Context Level DFD for SHIPIT: Manage Order Processing

Figure 8A. Context level DFD-SHIPIT

 233

SEACON

Secure Location Model

Figure 10 shows an initial overall location model
for SHIPIT. It shows that the three locations, office,
warehouse, and call center, are connected to one
another. Each location shows, in parenthesis, the
number of people who may use SHIPIT network.
In some situations, it may be worthwhile to create
an initial location model for each location. Next,
we need to determine the information domains.
Tables 2 and 3 show process-location-security
and data-location-security matrices, respectively.
These tables reveal that the call center creates
customer and order data and the warehouse cre-

ates inventory data. The office uses the customer,
order, and inventory data. However, the call
center does more processing with the customers
and orders than any of the other locations. Simi-
larly, the warehouse does more processing with
the inventory data. This leads us to propose that
customer and order data should reside at the call
center and the inventory data should reside at the
warehouse. Even though the SHIPIT study case
is not very explicit about information on Web
sites and e-mails, we assume that it maintains
Web site and e-mail services. We propose three
information domains, Call Center, Warehouse, and
Corporate Office, to segregate and group each set

Compliance Report

Legal Requirement

Log

Item Details

Inventory Details

Management Report

Item Info

Query

Customer Details

Inventory
Database

Customer
Database

Item Details

Order Details

Order
Database

Order Info

Order Details

Shipment,
Invoice

Order Info

Customer Info

Level 0--Data Flow Diagram for SHIPIT

Fulfill
Order

Process
Order

Maintain
Inventory

Monitor
SHIPIT

2
SAL: High

3
SAL: Basic

1
SAL: High

4
SAL: Medium

System Log

Regulatory
Agency

SHIPIT
Administrator

Customer

Figure 8B. Level 0 DFD for SHIPIT

234

SEACON

Office Warehouse call center security adequacy
level

Process Order X High

Fulfill Order X High

Maintain Inventory X X Basic

Monitor SHIPIT X Medium

Print Invoice X Medium

Office Warehouse call center security adequacy
level

Customer RUD R CRU Medium

Order R RU CRUD Basic

Inventory RU CRUD R Low

Table 2. Process-location-security matrix

Table 3. Data-location-security matrix

C=Create; R=Read; U=Update; D=Delete

Customer
SAL: Medium

Order
SAL: Basic

Inventory
SAL: Low

Figure 9. Entity relationship diagram for SHIPIT

Figure 10. An overall SHIPIT location model (top level)

 235

SEACON

Table 4. Risk register showing risks, requirements, and mechanisms for SHIPIT-under various views

continued on following page

236

SEACON

views Assets sources of
Risk

threat
likelihood
estimate

consequence
, if the threat
is realized

Resultant
Risk level

Accept
able
Risk
level

Risk
priority
level

security Requirements

security policy Inadequate
policy low serious High nil 3

1. Identify faulty policy
2. take corrective action
3. establish security policy and
procedues
4. Review security policy and procedures
5. monitor security

management Accountability
guidelines

vague
Accountability
for Individuals

medium Damaging High nil 3 1. Review accountability policy
2. Refine accountability-assignment

lack of
Accountability
standards

low significant medium nil 2
1. Review accountability policy
2. Review accountability standards
3. establish accountability standards

processes (process
Order, fulfill Order,
maintain Inventory,
monitor sHIpIt)

poorly defined
process steps low Damaging medium nil 2

1. evaluate process
2. Rectify weak points/steps of the
process
3. secure each steps of the process
4. train users in the secure process

process process control lack of staff
training medium Damaging High nil 3 1. train users in the secure process

2. Review secure process

lack of
monitoring High minor medium low 1

1. Review process
2. establish process ownership
3. separate duties of actors involved in
the process
4. train users in the secure process
5. Revew process policy

process Interface
lack of Interface
Design
standards

low significant medium low 1
1. Review process policy
2. Review process design standards
3. evaluate process

Assessment criteria Inadequate
criteria medium significant medium low 1

1. evaluate assessment criteria
2. Define assessment criteria
3. Define measures for each criterion
4. collect data on measures
5. evaluate the measures' effectiveness

vague criteria medium significant medium low 1

1. evaluate assessment criteria
2. Define assessment criteria
3. Define measures for each criterion
4. collect data on measures
5. evaluate the measures' effectiveness

Assessment Assessment method no Assessment
method low significant medium nil 2 1. Define assessment method

2. train users in assessment

Inadequate
Assessment
training

low significant medium low 1 1. train users in assessment
2. evaluate assessment policy

Assessment
standards

Inadequate
standards low significant medium low 1

1. evaluate assessment policy
2. Define assessment standards
3. train users in assessment

Table 4. continued

of geographically separated information resources
and assets. Tables 2 and 3 also show the security
adequacy levels for processes and data. This infor-
mation makes it easier to determine the security
adequacy levels for the location connectivity
diagrams. The process-location-security matrix
reveals that there are two processes concentrated
in the call center. One of the processes, Process
Order, requires online interaction with custom-
ers. The order processing will require a faster
throughput. This suggests that there is a need to
have a faster and larger capacity communication

requirement for the link between the call center
and the rest of the network.

A secure extended location connectivity dia-
gram for the SHIPIT case is shown in Figures 11A,
11B, 11C, and 11D. There are two levels of the
secure extended location connectivity diagrams.
The first level diagram in Figure 8A shows the
overall connection among the three locations,
office, warehouse, and call center. Each connec-
tion is labeled with security, volume and response
time requirements. The second level diagrams
in Figures 11B, 11C, and 11D show the network

 237

SEACON

within each location. Each PC and other nodes are
labeled with security adequacy level. Connections
between servers and client PCs are labeled with
security, volume, and response time requirements.
Connections between servers are considered local
and hence are considered quite fast.

•	 SHIPIT Secure Network Architecture: There
are three enclaves, one under each infor-
mation domain. Because each information
domain has only one enclave, these enclaves
are called by the same name as that of their
information domain names. We propose to
use a specialized router with a firewall as a
boundary controller to protect each enclave.
The appropriate security mechanisms from
the security risk register should be incorpo-
rated into the secure network architecture
diagram (SNAD). Figure 12 shows a logical
SNAD for SHIPIT. The logical SNAD has
been drawn using the SmartDraw software.
The initial nodes in the diagram were derived
from the secure extended location connectiv-
ity diagrams as shown in Figures 11A-11D.

Figure 12 shows a site-to-site virtual private
network (VPN) design to provide a secure
network environment for SHIPIT branches.
A VPN design is more cost effective than
designing a private network using privately
leased lines. The concept of enclaves leads us
to create a subnet for each enclave. SHIPIT’s
logical SNAD can be modeled as a hierar-
chical secure network model consisting of
several subnets. The design of hierarchical
networks and subnets are better handled and
managed by network design and simulation
software such as OPNET (OPNET, 2005).
Due to space limitation, we do not address
the network modeling of SHIPIT using
network simulation software.

•	 Secure Network Performance Evaluation:
The logical secure network architecture
diagram for SHIPIT can be modeled and
simulated using network design and simu-
lation software such as OPNET (2005).
OPNET provides tools and techniques to
model secure computer networks. Please
see OPNET (2005) for more details.

Figure 11A. SHIPIT secure extended location connectivity diagram (conceptual)

238

SEACON

We do not discuss network performance and
evaluation here due to space limitations. Dis-
cussion of network simulation and performance
evaluation is quite involving and will be a subject
of another research article.

cOnclUsIOn AnD lImItAtIOns

We have proposed and discussed a new approach
to designing secure computer networks for firms.
The approach not only emphasizes the importance

of using organizational goals and requirements
in designing a secure network but also provides
built-in mechanisms to capture security needs and
use them seamlessly throughout the steps of ana-
lyzing and designing secure network architecture.
We have proposed and used extended versions
of DFD and ERD to not only capture business
process and data, but also their security require-
ments in the same diagrams. Firms can use the
SEACON method to design and implement secure
computer networks that are integrated with the
business requirements of that firm. An integrated

Figure 11B. SHIPIT secure extended location connectivity diagram (conceptual)—corporate office

 239

SEACON

approach with built-in steps for incorporating
security measures right from analysis is superior
to pure technical methods because it facilitates
seamless support for using business processes,
security needs, and the overall IS architecture
for a firm.

One of the limitations of the SEACON method
is the lack of guidelines for transforming a secure
network architecture into a network simulation
model that can be easily tested and evaluated
using network simulation software. Such guide-
lines will obviously have to take into account the
idiosyncrasies of the target simulation software.

Figure 11C. SHIPIT secure extended location connectivity diagram (conceptual)—warehouse

Figure 11D. SHIPIT secure extended location connectivity diagram (conceptual)—call center

240

SEACON

Figure 12. A logical secure network architecture diagram for SHIPIT

 241

SEACON

RefeRences

Arber T., Cooley, D., Hirsch, S., Mahan, M., &
Osterritter, J. (1999). Network security frame-
work: Robustness strategy. Retrieved November
30, 2007, from http://csrc.nist.gov/nissc/1999/
Proceeding/papers/p30.pdf

ASIS. (2003). General security risk assessment
guideline. An ASIS International Guideline.

Bace, R., & Mell, P. (2001). Intrusion detection
systems. NIST Special Publication on Intrusion
Detection System. National Institute of Standards
and Technology.

Bionic Buffalo Corporation. (2000). Concept for
a secure network computer. Retrieved November
30, 2007, from http://www.tatanka.com/doc/
technote/tn0110.htm

Centers for Medicare & Medicaid Services.
(CMS). (2002). CMS information security risk
assessment (RA) methodology (version #1.1).
Baltimore, MD: Department of Health & Human
Services.

Cisco Systems. (2001). SAFE: A security blue print
for enterprise networks. A white paper. Retrieved
November 30, 2007, from http://www.cisco.com/
warp/public/cc/so/cuso/epso/sqfr/safe_wp.pdf

Common Criteria Implementation Board. (1999a).
Common criteria for information technology
security evaluation, part 1: Introduction and
general model (version 2.1). Retrieved November
30, 2007, from http://csrc.nist.gov/cc

Common Criteria Implementation Board. (1999b).
Common criteria for information technology
security evaluation, part 2: Security functional
requirements (version 2.1). Retrieved November
30, 2007, from http://csrc.nist.gov/cc

Common Criteria Implementation Board. (1999c).
Common criteria for information technology
security evaluation, part 3: Security assurance

requirements (version 2.1). Retrieved November
30, 2007, from http://csrc.nist.gov/cc/

Defense Logistics Agency. (2002). Enclave bound-
ary defense. DLIA 8500.12. Retrieved November
30, 2007, from http://www.dlaps.hq.dla.mil/dlai/
i8500.12.htm

Department of Defense Standard. (1985). Depart-
ment of defense trusted computer system evalua-
tion criteria. DoD 5200.28-STD.

Duchessi, P., & Chengalur-Smith, I. (1998). Client/
server benefits, problems, best practices. Com-
munications of the ACM, 41(5), 87-94.

Fisch, E. A., & White, G. B. (2001). Secure
computers and networks: Analysis, design, and
implementation. CRC Press. Retrieved November
30, 2007, from www.crcpress.com

GAO. (1999, November). Information security
risk assessment—Practices of leading vs. ac-
counting and information management division.
United States General Accounting Office, GAO/
AIMD-00-33.

Ghosh, S. (2001). Principles of secure network
systems design. Springer-Verlag.

Gordon, L. A., Loeb, M. P., Lucyshyn, W., &
Richardson, R. (2005). Tenth annual CSI/FBI
computer crime and security survey. Retrieved
November 30, 2007, from www.GoCSI.com

Innella, P. (2001). Designing secure networks
based on the software process model. A white
paper. Retrieved November 30, 2007, from http://
www.securityfocus.com/infocus/1191

Irvine, C., & Levin, T. (1999). A note on map-
ping user-oriented security policies to complex
mechanisms and services (Tech. Rep.). Retrieved
November 30, 2007, from http://cisr.nps.navy.mil/
downloads/nps_cs_99_008.pdf

Kizza, J. M. (2005). Computer network security.
New York: Springer-Verlag.

242

SEACON

McMillan, R. (2005). Computer attacks
down, survey says. Retrieved November 30,
2007, from http://www.networkworld.com/
news/2005/072505-security.html

NSW. (2003). Information security guideline for
New South Wales (NSW) government, part 2: Ex-
amples of threats and vulnerabilities. The Office
of Information and Communications Technology,
Department of Commerce, New South Wales.
Retrieved November 30, 2007, from http://www.
oict.nsw.gov.au/content/2.3.17-Security-Pt2.asp

NSW. (2003). Information security guideline for
New South Wales (NSW) government, part 3:
Information security baseline controls. The Office
of Information and Communications Technology,
Department of Commerce, New South Wales.
Retrieved November 30, 2007, from http://www.
oict.nsw.gov.au/content/2.3.17-Security-Pt2.asp

OPNET Documentation. (2005). Retrieved No-
vember 30, 2007, from www.OPNET.com

Oppenheimer, P. (2004). Top-down network de-
sign (2nd ed.). Indianapolis, IN: Cisco Press.

Rusli, R. (2001). Secure system architecture and
design. A white paper. SANS GIAC Security
Essentials—Practical Assignment, GSEC Web
site. Retrieved November 30, 2007, from http://
www.giac.org/certified_professionals/practicals/
gsec/1422.php

Shaw, N., & Yadav, S. B. (2001). DEACON: An
integrated approach to the analysis and design of
enterprise architecture-based computer networks.
Communications of the Association for Informa-
tion Systems, 7.

Southwick, P. (2003). Secure network design.
A white paper. Retrieved November 30, 2007,
from the Hill Associates Web site: http://www.
hill.com/archive/pub/papers/2003/10/paper.
pdf#search=’secure%20network%20design’

Survey says: Government regulations help secure
networks. (2005). Sarbanes-Oxley Compliance
Journal. Retrieved November 30, 2007, from http://
www.s-ox.com/news/news.cfm?articleID=338

Vaidyanathan, G., & Devaraj, S. (2003). A five
framework for analyzing online risks in e-
businesses. Communications of the ACM, 46(12),
354-361.

Verdon, D., & McGraw, G. (2004). Risk analysis
in software design. IEEE Security & Privacy,
2(4), 79-84.

Warren, P. (2005). Ten steps to secure networking.
TechWorld. Retrieved November 30, 2007, from
http://www.techworld.com/security/features/
index.cfm?FeatureID=1862

Whitman, M. E. (2003). Enemy at the gate: Threats
to information security. Communications of the
ACM, 46(8), 91-95.

Whitman, M. E., & Mattord, H. J. (2005). Prin-
ciples of information security (2nd ed.). Canada:
Thomson Course Technology.

Whitmore, J.J. (2001). A method for designing
secure solutions. IBM Systems Journal, 40(3),
747-768.

Yadav, S. B. (2006). A six view perspective of
system security—issues, risks, requirements, and
mechanisms (Tech. Rep. #ISQSYadav2006-1).
Lubbock, TX: Rawls College of Business, Texas
Tech University.

This work was previously published in International Journal of Information Security and Privacy, Vol. 2, Issue 1, edited by
J.N.D. Gupta, S.K. Sharma, and J. Hsu, pp. 1-25, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 243

Chapter XVII
Formal Methods for Specifying

and Analyzing Complex
Software Systems

Xudong He
Florida International University, USA

Huiqun Yu
East China University of Science and Technology, China

Yi Deng
Florida International University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

Software has been a major enabling technology for advancing modern society, and is now an indispens-
able part of daily life. Because of the increased complexity of these software systems, and their critical
societal role, more effective software development and analysis technologies are needed. How to develop
and ensure the dependability of these complex software systems is a grand challenge. It is well known
that a highly dependable complex software system cannot be developed without a rigorous development
process and a precise specification and design documentation. Formal methods are one of the most
promising technologies for precisely specifying, modeling, and analyzing complex software systems.
Although past research experience and practice in computer science have convincingly shown that it is
not possible to formally verify program behavior and properties at the program source code level due
to its extreme huge size and complexity, recently advances in applying formal methods during software
specification and design, especially at software architecture level, have demonstrated significant benefits
of using formal methods. In this chapter, we will review several well-known formal methods for software
system specification and analysis. We will present recent advances of using these formal methods for
specifying, modeling, and analyzing software architectural design.

244

Formal Methods for Specifying and Analyzing Complex Software Systems

IntRODUctIOn

It is wildly agreed that the main obstacle to “help
computers help us more” and relegate to these
helpful partners even more complex and sensitive
tasks is not inadequate speed and unsatisfactory
raw computing power in the existing machines,
but our limited ability to design and implement
complex systems with sufficiently high degree
of confidence in their correctness under all cir-
cumstances (Clarke, Grumberg, & Peled, 1999).
This problem of design validation—ensuring
the correctness of the design at the earliest
stage possible—is the major challenge in any
responsible system development process, and the
activities intended for its solution occupy an ever
increasing portion of the development cycle cost
and time budgets.

Two major approaches to analyze the system
quality are testing and verification. Traditional
and widely used quality assurance techniques
based on software testing are inadequate to ensure
the reliability of complex systems. In addition
to the inherent limitation of testing from being
able to guarantee system properties, many of
today’s software systems are designed to adapt
in a wide range of environments and evolve over
time. Because of this, the range of possible testing
scenarios at code level becomes extremely large
and potentially uncontrollable.

Formal methods (Harel, 1987; Hoare, 1985;
Manna & Pnueli, 1992; Milner, 1989; Murata,
1989) for software specification and verification
have been viewed as a promising way to address
the problems associated with testing. These meth-
ods are precise and rigorous and can prevent and
detect system defects introduced at the early stages
of development, which are often more costly to
fix and have more severe consequences. Despite
tremendous advances (Clarke & Wing, 1996),
however, widely spread application of formal
methods in practical system development still
remains to be seen (Craigen, Gerhart, & Ralston,
1995). A major cause for the problem is that results
on formal methods are to large extent fragmented.

Formal techniques are viewed as difficult and
expensive to use because their application is ad
hoc, and they are too fine grained to deal with the
complexity in practical-sized development. Thus
it is necessary to precisely define, measure, and
analyze software dependability at a level higher
than source code. Recent research (Knight, 2002)
has shown that it is especially important to ex-
plore technologies how to handle dependability
attributes at the software architecture level for
the following reasons:

• A software architecture description presents
the highest-level design abstraction of a
system (Shaw & Garlan, 1996). As a result,
it is relative simple compared to a detailed
system design. Thus it is more likely to
develop an effective methodology to study
dependability attributes.

• As the highest-level design abstraction, a
software architecture description precedes
and logically and structurally influences
other system development products. Thus
an error in a software architecture has a
much larger impact than an error introduced
at a later development stage. Prevention and
detection of errors at software architectural
level are thus extremely important. Hence, it
is necessary to study and measure depend-
ability attributes before the actual software
systems are developed and deployed.

Many studies, especially those done at the
Software Engineering Institute at Carnegie Mellon
University (Kazman, Klein, & Clements, 2000),
have shown that a software architecture reveals,
influences, or even dictates many system depend-
ability features such as reliability, performance,
security, and faulty-tolerance. Therefore, the
dependability attributes measured at software
architecture level can serve as the basis to predict
and validate the dependability attributes of the
developed and deployed systems.

In this chapter, we will review several well-
known formal methods for complex software

 245

Formal Methods for Specifying and Analyzing Complex Software Systems

system specification and analysis. We will illus-
trate these methods and their applications in the
software architecture model (SAM) (He & Deng,
2002; Wang, He, & Deng, 1999), which is a general
software architecture model for developing and
analyzing software architecture specifications.

bAckgROUnD

visualizing the structures of
software Architectures

Specification is the process of describing a system
and its desired properties. Formal specification
uses a language that is usually composed of three
primary components: (1) a syntax that defines the
specific notation with which the specification is
represented; (2) a semantics that helps to define
a “universe of objects” (Wing, 1990) that will
be used to describe the system; and (3) a set of
relations that define the rules that indicate which
objects properly satisfy the specification.

In SAM, a software architecture is visual-
ized by a hierarchical set of boxes with ports
connected by directed arcs. These boxes are
called compositions. Each composition may

contain other compositions. The bottom-level
compositions are either components or connec-
tors. Various constraints can be specified. This
hierarchical model supports compositionality in
both software architecture design and analysis,
and thus facilitates scalability. Figure 1 shows a
graphical view of an SAM software architecture,
in which connectors are not emphasized and are
only represented by thick arrows. Each component
or connector is defined using a Petri net. Thus
the internal logical structure of a component or
connector is also visualized through the Petri
net structure.

Textually, an SAM software architecture is
defined by a set of compositions C = {C1, C2,
…,Ck} (each composition corresponds to a design
level or the concept of sub-architecture) and a hi-
erarchical mapping h relating compositions. Each
composition Ci = {Cmi, Cni, Csi} consists of a set
Cmi of components, a set Cni of connectors, and a
set Csi of composition constraints. An element Cij
= (Sij, Bij), (either a component or a connector) in
a composition Ci has a property specification Sij
(a temporal logic formula) and a behavior model
Bij (a Petri net). Each composition constraint in
Csi is also defined by a temporal logic formula.
The interface of a behavior model Bij consists of a

A1 A

A3

A3

B1 B2

B3

Environmental
Constraint (C1)

Component
Constraint (C2)

Composition
Constraint (C3)

Figure 1. An SAM architecture model

246

Formal Methods for Specifying and Analyzing Complex Software Systems

set of places (called ports) that is the intersection
among relevant components and connectors. Each
property specification Sij only uses the ports as
its atomic propositions/predicates that are true
in a given marking if they contain appropriate
tokens. A composition constraint is defined as a
property specification; however it often contains
ports belonging to multiple components and / or
connectors. A component Cij can be refined into
a lower-level composition Cl, which is defined
by h(Cij) = Cl.

modeling the behaviors of software
Architectures

In SAM, the behavior of a component or a connector
is explicitly defined using a Petri net. The behavior
of an overall software architecture is implicitly
derived by composing all the bottom-level
behavior models of components and connectors.
SAM provides both the modeling power and
flexibility through the choice of different Petri
net models. We have used several Petri net
models including time Petri nets (Wang, He, &
Deng, 1999), condition event nets, and predicate
transition nets (He & Deng, 2000, 2002) in our
previous work. The selection of a particular
Petri net model is based on the application under
consideration. A simple Petri net model such as
condition event nets is adequate when we only
need to deal with simple control flows and data-
independent constraints; while a more powerful
Petri net model such as predicate transition nets
is needed to handle both control and data. To
study performance related constraints, a more
specialized Petri net model such as stochastic
Petri nets is more appropriate and convenient. In
the following sections, we give a brief definition
of predicate transition nets (PrT nets) using the
conventions in He (1996). Readers not interested
in the technical details may skip this section, and
just look at the examples.

The Syntax and Static Semantics of
PrT Nets

A PrT net is a tuple (N, Spec, ins) where

1. N = (P, T, F) is the net structure, in which
i. P and T are non-empty finite sets

satisfying P ∩ T = ∅ (P and T are
the sets of places and transitions of N
respectively),

ii. F ⊆ (P × T) ∪ (T × P) is a flow relation
(the arcs of N);

2. Spec = (S, OP, Eq) is the underlying specifica-
tion, and consists of a signature S = (S, OP)
and a set Eq of S-equations. Signature S =
(S, OP) includes a set of sorts S and a fam-
ily OP= (OPs1,...,sn

, s) of sorted operations
for s1, ..., sn, s ∈ S. For each s ∈ S, we use
CONs to denote OP ,s (the 0-ary operation
of sort s), that is, the set of constant symbols
of sort s. The S-equations in Eq define the
meanings and properties of operations in OP.
We often simply use familiar operations and
their properties without explicitly listing the
relevant equations. Spec is a meta-language
to define the tokens, labels, and constraints
of a PrT net. Tokens of a PrT net are ground
terms of the signature S, written MCONS.
The set of labels is denoted using LabelS
(X) (X is the set of sorted variables disjoint
with OP). Each label can be a multiple
set expression of the form {k1x1, ..., knxn}.
Constraints of a PrT net are a subset of first
order logic formulas (where the domains of
quantifiers are finite and any free variable
in a constraint appears in the label of some
connecting arc of the transition), and thus
are essentially propositional logic formulas.
The subset of first order logical formulas
contains the S-terms of sort bool over X,
denoted as TermOP,bool(X).

3. ins = (φ, L, R, M0) is a net inscription that
associates a net element in N with its denota-
tion in Spec :

 247

Formal Methods for Specifying and Analyzing Complex Software Systems

i. φ: P → ℘(S) is the data definition of N
and associates each place p in P with
a subset of sorts in S.

ii. L: F → LabelS (X) is a sort-respecting
labeling of PrT net. We use the fol-
lowing abbreviation in the following
definitions:

L x y

L x y x y F
(,)

(,) (,)
=

∈
∅

 otherwise

iii. R: T → TermOP,bool(X) is a well-
defined constraining mapping, which
associates each transition t in T with
a first order logic formula defined in
the underlying algebraic specifica-
tion. Furthermore, the constraint of a
transition defines the meaning of the
transition.

vi. M0: P → MCONS is a sort-respecting
initial marking. The initial marking
assigns a multi-set of tokens to each
place p in P.

Dynamic Semantics of PrT Nets

1. Markings of a PrT net N are mappings M:
P → MCONS;

2. An occurrence mode of N is a substitution α
= {x1 ← c1, …, xn ← cn}, which instantiates
typed label variables. We use e:α to denote
the result of instantiating an expression
e with α, in which e can be either a label
expression or a constraint;

3. Given a marking M, a transition t ∈ T, and
an occurrence mode α, t is α_enabled at M
iff the following predicate is true: ∀p: p ∈
P.(L(p,t):α) ⊆ M(p)) ∧ R(t):α;

4. If t is α_enabled at M, t may fire in occurrence
mode α. The firing of t with α returns the
marking M’ defined by M’(p) = M(p) −	L	
(p,t):α ∪(t,p):α for p ∈ P. We use M[t/α>M’
to denote the firing of t with occurrence α
under marking M. As in traditional Petri nets,

two enabled transitions may fire at the same
time as long as they are not in conflict;

5. For a marking M, the set [M> of markings
reachable from M is the smallest set of mark-
ings such that M ∈ [M> and if M’∈ [M> and
M’[t/α>M’’ then M’’∈ [M>, for some t ∈ T
and occurrence mode α (note: concurrent
transition firings do not produce additional
new reachable markings);

6. An execution sequence M0T0M1T1… of N
is either finite when the last marking is
terminal (no more enabled transition in the
last marking) or infinite, in which each Ti
is an execution step consisting of a set of
non-conflict firing transitions;

7. The behavior of N, denoted by Comp(N), is
the set of all execution sequences starting
from the initial marking.

The Dining Philosophers problem is a classic
multi-process synchronization problem intro-
duced by Dijkstra. The problem consists of k phi-
losophers sitting at a round table who do nothing
but think and eat. Between each philosopher, there
is a single chopstick. In order to eat, a philosopher
must have both chopsticks. A problem can arise
if each philosopher grabs the chopstick on the
right, then waits for the stick on the left. In this
case, a deadlock has occurred. The challenge in
the Dining Philosophers problem is to design a

Eating

Putdown

Thinking
f1 f2

Pickup Chopstick

f3

f4

f5 f6

Figure 2. A PrT Net model of the Dining Philoso-
phers problem

248

Formal Methods for Specifying and Analyzing Complex Software Systems

protocol so that the philosophers do not deadlock
(i.e., the entire set of philosophers does not stop
and wait indefinitely), and so that no philosopher
starves (i.e., every philosopher eventually gets his/
her hands on a pair of chopsticks). The following
is an example of the PrT net model of the Dining
Philosophers problem.

There are three places (Thinking, Chopstick
and Eating) and two transitions (Pickup and Put-
down) in the PrT net. In the underlying specifica-
tion Spec = (S, OP, Eq), S includes elementary sorts
such as Integer and Boolean, and also sorts PHIL
and CHOP derived from Integer. S also includes
structured sorts such as set and tuple obtained
from the Cartesian product of the elementary sorts;
OP includes standard arithmetic and relational
operations on Integer, logical connectives on
Boolean, set operations, and selection operation
on tuples; and Eq includes known properties of
these operators.

The net inscription (φ, L, R, M
0
) is as fol-

lows:

• Sorts of predicates:
 φ(Thinking) = ℘(PHIL), ϕ(Eating) =

℘(PHIL×CHOP×CHOP),

 φ(Chopstick) = ℘(CHOP),
 where ℘ denotes power set.
•	 Arc definitions:
 L(f1) = {ph} , L(f2) = {ch1,ch2}, L(f3) =

{<ph,ch1,ch2>} ,
 L(f4) = {<ph,ch1,ch2>}, L(f5) = {ph}, L(f6)

= {ch1,ch2}.
•	 Constraints of transitions:
 R(Pickup) = (ph = ch1) ∧ (ch2 = ph ⊕ 1),

R(Putdown) = true.
•	 The initial marking m0 is defined as fol-

lows:
 M0(Thinking) = {1, 2, ..., k}, M0(Eating) = {

}, M0(Chopstick) = {1, 2, ..., k}.

This specification allows concurrent ex-
ecutions such as multiple non-conflicting (non-
neighboring) philosophers picking up chopsticks
simultaneously, and some philosophers picking up
chopsticks while others putting down chopsticks.
The constraints associated with transitions Pickup
and Putdown also ensure that a philosopher can
only use two designated chopsticks defined by
the implicit adjacent relationships. Table 1 gives
the details of a possible run of five dining phi-
losophers PrT net.

Table 1. A possible run of five Dining Philosophers problem
Markings mi Transitions ni

Thinking Eating Chopstick Fired
Transition Token(s) consumed

{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=1, ch1=1, ch2=2
{2,3,4,5} {<1,1,2>} {3,4,5} Putdown <ph,ch1,ch2>=<1,1,2>
{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=2, ch1=2, ch2=3
{1,3,4,5} {<2,2,3>} {1,4,5} Pickup ph=4, ch1=4, ch2=5

{1, 3, 5} { < 2 , 2 , 3 > ,
<4,4,5>} {1} Putdown <ph,ch1,ch2>=<2,2,3>

{1, 2, 3, 5} {<4, 4, 5>} {1,2,3} Putdown <ph,ch1,ch2>=<4,4,5>
{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=5, ch1=5, ch2=1
{1,2,3,4} {<5,5,1>} {2,3,4} Pickup ph=3, ch1=3, ch2=4

{1,2,4} { < 5 , 5 , 1 > ,
<3,3,4>} {2} Putdown <ph,ch1,ch2>=<3,3,4>

{1,2,3,4} {<5,5,1>} {2,3,4} Putdown <ph,ch1,ch2>=<5,5,1>
{1,2,3,4,5} { } {1,2,3,4,5} … …

 249

Formal Methods for Specifying and Analyzing Complex Software Systems

specifying sAm Architecture
properties

In SAM, software architecture properties are
specified using a temporal logic. Depending on
the given Petri net models, different temporal
logics are used. In this section, we provide the
essential concepts of a generic first order linear
time temporal logic to specify the properties of
components and connectors. We follow the ap-
proach in Lamport (1994) to define vocabulary
and models of our temporal logic in terms of PrT
nets without giving a specific temporal logic.

Values, State Variables, and States

The set of values is the multi-set of tokens MCONS
defined by the Spec of a given PrT net N. Multi-sets
can be viewed as partial functions. For example,
multi-set {3a, 2b} can be represented as {a 3,
b 2}.

The set of state variables is the set P of places
of N, which change their meanings during the ex-
ecutions of N. The arity of a place p is determined
by its sort φ (p) in the net inscription.

The set of states St is the set of all reachable
markings [M0> of N. A marking is a mapping
from the set of state variables into the set of val-
ues. We use M[|x|] to denote the value of x under
state (marking) M.

Since state variables take partial functions as
values, they are flexible function symbols. We
can access a particular component value of a state
variable. However there is a problem associated
with partial functions, that is, many values are
undefined. This problem can easily be solved by
extending state variables into total functions in
the following way: for any n-ary state variable p,
any tuple c ∈	MCONS

n and any state M, if p(c) is
undefined under M, then let M[| p(c) |] = 0. This
extension is consistent with the semantics of PrT
nets, that is, there is no token c in place p under
marking M. Furthermore, we can consider the
meaning [|p(c)|] of the function application p(c)

as a mapping from states to Nat using a postfix
notation for function application M[|p(c) |].

Rigid Variables, Rigid Function, and
Predicate Symbols

Rigid variables are individual variables that do
not change their meanings during the executions
of N. All rigid variables occurring in our temporal
logic formulas are bound (quantified), and they
are the only variables that can be quantified. Rigid
variables are variables appearing in the label
expressions and constraints of N. Rigid func-
tion and predicate symbols do not change their
meanings during the executions of N. The set of
rigid function and predicate symbols is defined
in the Spec of N.

State Functions, Predicates, and
Transitions

A state function is an expression built from
values, state variables, rigid function, and predi-
cate symbols. For example [|p(c) + 1|] is a state
function where c and 1 are values, p is a state
variable, + is a rigid function symbol. Since the
meanings of rigid symbols are not affected by
any state, thus for any given state M, M[|p(c) +
1|] = M[|p(c) |] + 1.

A predicate is a boolean-valued state function.
A predicate p is said to be satisfied by a state M
iff M[|p|] is true.

A transition is a particular kind of predicates
that contain primed state variables, for example,
[|p’(c) = p(c) + 1|]. A transition relates two states
(an old state and a new state), where the unprimed
state variables refer to the old state and the primed
state variables refer to the new state. Therefore,
the meaning of a transition is a relation between
states. The term transition used here is a temporal
logic entity. Although it reflects the nature of a
transition in a PrT net N, it is not a transition in
N. For example, given a pair of states M and M’:
M[|p’(c) = p(c) + 1|]M’ is defined by M’[|p’(c) |]=

250

Formal Methods for Specifying and Analyzing Complex Software Systems

M[|p(c) |]+ 1. Given a transition t, a pair of states
M and M’ is called a “transition step” iff M[|t
|]M’ equals true. We can easily generalize any
predicate p without primed state variables into a
relation between states by replacing all unprimed
state variables with their primed versions such
that M[|p’|]M’ equals M’[|p|] for any states M
and M’.

Temporal Formulas

Temporal formulas are built from elementary
formulas (predicates and transitions) using logical
connectives ¬ and ∧ (and derived logical connec-
tives ∨, ⇒, and ⇔), universal quantifier ∀ and
derived existential quantifier ∃, and temporal
operators always , sometimes ◊, and until U.

The semantics of temporal logic is defined
on behaviors (infinite sequences of states). The
behaviors are obtained from the execution se-
quences of PrT nets where the last marking of a
finite execution sequence is repeated infinitely
many times at the end of the execution sequence.
For example, for an execution sequence M0,...,Mn,
the following behavior σ = <<M0,...,Mn,Mn,... >>
is obtained. We denote the set of all possible be-
haviors obtained from a given PrT net as St∞.

Let u and v be two arbitrary temporal formu-
las, p be an n-ary predicate, t be a transition, x,
x1,…,xn be rigid variables, σ = <<M0, M1, ... >>
be a behavior, and σk = <<Mk, Mk+1, ... >> be a
k step shifted behavior sequence; we define the
semantics of temporal formulas recursively as
follows:

1. σ [|p(x1,…,xn)|] ≡ M0[| p (x1,…
,xn)|]

2. σ [|t|] ≡ M0[| t|]M1
3. σ [|¬u|] ≡ ¬ σ [|u|]
4. σ [|u ∧ v|] ≡ σ [|u|] ∧ σ [| v |]
5. σ [|∀x. u|] ≡ ∀x.σ [|u|]

6. σ [|u|] ≡ ∀n ∈Nat. σn[|u|]
7. σ [|uUv|] ≡ ∃ k.σk[|v|] ∧ ∀ 0 ≤ n ≤

k.σn[|u|]

A temporal formula u is said to be satisfiable,
denoted as σ |= u, iff there is an execution σ such
that σ [|u|] is true, i.e. σ |= u ⇔ ∃ σ ∈ St∞. σ
[|u|]. u is valid with regard to N, denoted as N |=
u, iff it is satisfied by all possible behaviors St∞
from N: N |= u ⇔ ∀σ ∈ St∞. σ [|u|].

Defining System Properties in Temporal
Logic

Specifying architecture properties in SAM be-
comes defining PrT net properties using temporal
logic. Canonical forms for a variety of system
properties such as safety, guarantee, obligation,
response, persistence, and reactivity are given in
Manna and Pnueli (1992). For example, the fol-
lowing temporal logic formulas specify a safety
property and a liveness property of the PrT net
in Figure 2, respectively:

•	 Mutual exclusion:
 {1, ..., } (, _, _ 1, _, _)ph k ph Eating ph Eating∀ ∈ ¬ < >∈ ∧ < ⊕ >∈

 which defines that no adjacent philosophers
can eat at the same time.

•	 Starvation freedom:
 {1, ..., } (, _, _)ph k ph Eating∀ ∈ ◊ < >∈ ,
 which states that every philosopher will

eventually get a chance to eat.

fORmAl metHODs fOR
DesIgnIng sOftWARe
ARcHItectURes

There are two distinct levels of software architec-
ture specification development in SAM: element
level and composition level. The element level
specification deals with the specification of a
single component or connector, and the composi-
tion level specification concerns how to combine
(horizontal) specifications at the same abstraction
level together and how to relate (vertical) specifi-
cations at different abstraction levels.

 251

Formal Methods for Specifying and Analyzing Complex Software Systems

Developing element level
Specifications

In SAM, each element (either a component or a
connector) is specified by a tuple <S, B>. S is a
property specification, written in temporal logic,
that specifies the required properties of the ele-
ment, and B is a behavior model, defined by a
PrT net, that defines the behavior of the element.
S and B can be viewed as the specification and
the implementation respectively as in many other
software architecture models such as Wright
(Allen & Garlan, 1997). Therefore to develop
the specification of an element is essentially to
write S and B.

Although many existing techniques for writ-
ing temporal logic specifications (Lamport, 1994;
Manna & Pnueli, 1992) and for developing Petri
nets (He & Yang, 1992; Jensen, 1992; Reisig,
1992) may be directly used here. There are several
unique features about <S, B>. First, S and B are
related and constrain each other. Thus we have
to develop either S or B with respect to a possibly
existing B or S. Depending on our understanding
of a given system; we can either develop S or B
first. Second, the predicate symbols used in S are
exterior (either input or out) ports of B. Third, S
should in general be weaker than B, that is, B may
satisfy more properties than S. Thus the view of
implementation as implication is valid here. With
these unique features in mind, we offer the fol-
lowing heuristics for developing S and B:

Heuristic 1: How to Write S

To define an element constraint, we can either
directly formulate the given user requirements
or carry out a cause effect analysis by viewing
input ports as causes and output ports as effects.
Canonical forms (Manna & Pnueli, 1992) for a
variety of properties such as Safety, Guarantee,
Obligation, Response, Persistence, and Reac-
tivity are used as guidelines to define property
specifications.

A simple example of applying Heuristic 1 is
as follows. Let us consider a simple automated
library system that supports typical transaction
types such as checkout and return a book. A
transaction is initiated with a user request that
contains user identification, a book title, and a
transaction type (checkout/return). The transac-
tion is processed by updating the user record and
the book record, and is finished by sending the user
a message—either successful or a failure reason.
One desirable property of an automated library
system is that each request must be proposed. This
property is a type of response property (Manna &
Pnueli, 1992), and thus can be defined as ∀(req).
((Request(req) ⇒ ◊Response(msg))), where req
and msg stand for a request and message (Success
or Failure) respectively, and Request and Response
are predicate symbols, and must correspond to an
input port and an output port respectively.

Heuristic 2: How to Develop B

We follow the general procedure proposed in He
and Yang (1992) to develop B.

Step 1: Use all the input and output ports as
places of B.

Step 2: Identify a list of events directly from the
given user requirements or through Use
Case analysis (Booch, Rumbaugh, & Ja-
cobson, 1999).

Step 3: Represent each event with a simple PrT
net.

Step 4: Merge all the PrT nets together through
shared places to obtain B.

Step 5: Apply the transformation techniques (He
& Lee, 1991) to make B more structured and
/ or meaningful.

Again, we use this simple library system as an
example. We only provide a partial behavior model
without the complete net inscription to illustrate
the application of Heuristic 2. A more complete
example of a PrT net specification of a library

252

Formal Methods for Specifying and Analyzing Complex Software Systems

system can be found in He and Yang (1992). Since
we developed a property specification first in this
case and we identified an input port Request and
an output port Response, we use them as places
in the behavior model B according to Step 1. We
can easily identify two distinct types of events:
checkout and return. According to Step 3, we come
up with the following two PrT nets Figures 3a and
b, each of which models an event type. Figure 3c
is obtained by merging shared places according
Step 4, and Figure 3d is obtained by restructur-
ing Figure 3c through combining Checkout and
Return into a generic transaction type.

Developing composition level
Specifications

SAM supports both top-down and bottom-up
system development approaches. The top-down
approach is used to develop a software archi-
tecture specification by decomposing a system
specification into specifications of components
and connectors and by refining a higher level
component into a set of related sub-components
and connectors at a lower level. The bottom-up
approach is used to develop a software architecture

specification by composing existing specifications
of components and connectors and by abstracting
a set of related components and connectors into
a higher level component. Thus the top-down
approach can be viewed as the inverse process of
the bottom-up approach. Often both the top-down
approach and the bottom-up approach have to be
used together to develop a software architecture
specification.

Heuristic 3: How to Refine an Element
Specification <S, B>

Step 1: Refining B:
 A behavior model B may be refined in several

ways, for example, structure driven refine-
ment, in which several sub-components and
their connectors are identified, or function-
ality driven refinement, in which several
functional units can be identified. Although,
we do not exactly know what refinement
approaches are effective in general. One
thing is for sure, that is, the input and output
ports of the element must be maintained at
a lower level. Petri net specific heuristics
(He & Lee, 1991; He & Yang, 1992) may be

Request Response Checkout

 (a)

Request Response Return

(b)

Request Response Checkout

(c)

Return

Request Response Transaction

(d)

Figure 3. (a) A PrT model of checkout; (b) A PrT model of return; (c) A connected PrT model; (d) A
PrT model of checkout

 253

Formal Methods for Specifying and Analyzing Complex Software Systems

used to maintain the validity of resulting
lower level B’. If only behavior-preserving
transformations are used to obtain B’ from
B, we can assure the correctness of <S,
B’> based on the correctness of <S, B>;
otherwise new analysis is needed to ensure
the satisfiability of S (He, 1998).

Step 2: Refining S:
 Refining S into S’ in general indicates the

change of requirements (a special case is
when S is logically equivalent to S’), and
thus results in the change of B. Once S’ is
known, the new B’ can be developed using
the approach for developing element level
specification. Not any S’ can be taken as a
refinement of S. We require that S’ maintain
S, which can be elegantly expressed as S’ ⇒
S (Abadi & Lamport, 1991). Simple heuristics
such as strengthening S always result in a
valid refinement S’.

As an example, Figure 4 shows a possible
refinement of transaction into two possible sce-
narios in the dotted box, one is for valid request
and the other for invalid request. A corresponding
refinement of the property specification is

∀(req).((Request(req) ∧ req ∈ Valid ⇒
◊Response(S))) ∧

∀(req).((Request(req) ∧ req ∉ Valid ⇒
◊Response(F)))

where S and F stand for success and failure re-
spectively. This refinement implies the original
property specification and is thus a correct refine-
ment according to Heuristic 3.

Heuristic 4: How to Compose Two Ele-
ment Specifications <S1, B1> and <S2,
B2>

In SAM, only a pair of related component and
connector can be composed meaningfully.

Step 1: Compose B1 and B2 by merging identical
ports.

Step 2: Compose S1 and S2 by conjoining S1 ∧
S2.

The soundness of viewing specification com-
position as logical conjunction has been shown
by several researchers (Abadi & Lamport, 1993;
Zave & Jackson, 1993).

If we view the two transaction types, Checkout
and Return, in the preceding library example as
two separate components, then Figure 3c illus-
trates the application of Heuristic 4.

specify element Instances

An element specification <S, B> obtained earlier is
generic when the initial marking in B is ignored. In
PrT net, instances sharing the same net structure
are distinguished through token identifications.

Request Response Update Validate ValidRequest

ReportFailure

Figure 4. A refined PrT model of transactions

254

Formal Methods for Specifying and Analyzing Complex Software Systems

Thus to obtain concrete elements, we only need
to provide specific initial marking and general-
ize transition constraints to differentiate tokens
with unique identifications. In general, there is no
need to change the property specification S. For
example, let B1, B2, and B3 be three PrT nets with
the same net structure and net inscription except
the initial markings; then <S, B1>, <S, B2>, and <S,
B3> are three element specifications. The above
view shows the expressive power of PrT nets and
first order temporal logic over that of low-level
Petri nets and propositional temporal logic.

fORmAl sOftWARe
ARcHItectURe AnAlysIs

formal Analysis techniques

A SAM architecture description is well-defined if
the ports of a component are preserved (contained)
in the set of exterior ports of its refinement and the
proposition symbols used in a property specifica-
tion are ports of the relevant behavior model(s).
The correctness of a SAM architecture description
is defined by the following criteria:

1. Element (Component/Connector) Correct-
ness: The property specification Sij holds in
the corresponding behavior model Bij, that
is, Bij |= Sij. Note we use Bij here to denote
the set of behaviors or execution sequences
defined by Bij.

2. Composition Correctness: The conjunction
of all constraints in Csi of Ci is implied by the
conjunction of all the property specifications
Sij of Cij, i.e. ∧ Sij |− ∧ Csi. An alternative
weaker but acceptable criterion is that the
conjunction of all constraints in Csi holds in
the integrated behavior model Bi of composi-
tion Ci; i.e. Bi |= ∧ Csi.

3. Refinement Correctness: The property
specification Sij of a component Cij must
be implied by the composition constraints

Csl of its refinement Cl with Cl = h(Cij), that
is, ∧ Csl |− Sij. An alternative weaker but
acceptable criterion is that Sij holds in the
integrated lower level behavior model Bl of
Cl, that is, Bl |= Sij.

The refinement correctness is equivalent to
the composition correctness when the property
specification Sij is inherited without change as
the composition constraint Csl of its refinement
Cl = h(Cij). This correctness criteria are the
verification requirements of a SAM architecture
description.

To ensure the correctness of a software
architecture specification in SAM, we have to
show that all the constraints are satisfied by the
corresponding behavior models. The verification
of all three correctness criteria given can be done
by demonstrating that a property specification S
holds in a behavior model B and, that is, B |= S.
The structure of SAM architecture specifications
and the underlying formal methods of SAM nicely
support an incremental formal analysis methodol-
ogy such that the verification of above correctness
criteria can be done hierarchically (vertically) and
compositionally (horizontally).

Two well-established approaches to verifica-
tion are model checking and theorem proving.

• Model checking is a technique that relies
on building a finite model of a system and
checking that a desired property holds in
that model. Roughly speaking, the check
is performed as an exhaustive state space
search that is guaranteed to terminate since
the model is finite. The technical challenge in
model checking is in devising algorithms and
data structures that allow us to handle large
search spaces. Model checking has been used
primarily in hardware and protocol verifica-
tion (Clarke & Kurshan, 1996); the current
trend is to apply this technique to analyzing
specifications of software systems.

 255

Formal Methods for Specifying and Analyzing Complex Software Systems

• Theorem proving is a technique by which
both the system and its desired properties are
expressed as formulas in some mathemati-
cal logic. This logic is given by a formal
system, which defines a set of axioms and
a set of inference rules. Theorem proving is
the process of finding a proof of a property
from the axioms of the system. Steps in
the proof appeal to the axioms and rules,
and possibly derived definitions and inter-
mediate lemmas. Although proofs can be
constructed by hand, here we focus only on
machine-assisted theorem proving. Theorem
provers are increasingly being used today
in the mechanical verification of safety-
critical properties of hardware and software
designs.

element level Analysis

For each <Sij, Bij> in composition Ci, we need to
show that Bij satisfies Sij, that is, Bij |= Sij. Both
model checking and theorem proving techniques
are applicable to element level analysis. In the
following, we briefly introduce model checking
technique by reachability tree (Murata, 1989),
and theorem proving technique by temporal logic
(He, 1995, 2001).

Model Checking

A reachability tree is an unfolding of a PrT net,
which explicitly enumerates all possible markings

or states that the behavior model Bij generates.
The nodes of a reachability tree are reachable
markings and directed edges represent feasible
transitions (Murata, 1989). The main advantage
of reachability tree technique is that the tree
can be automatically generated. Once the tree
is generated, different system properties can be
analyzed. The main problem is space explosion
when a PrT net has too many reachable states or
even infinite reachable states. One possible way
to deal with this problem is to truncate the tree
whenever a marking is covered by a new marking
and this results in a variant of reachability trees
called coverability trees. In this case, informa-
tion loss is unavoidable. Thus this technique may
not work in some cases. The following heuristic
provides some guidelines to use the reachability
tree analysis technique.

The basic idea of model checking technique for
element level analysis is: (1) generating a reach-
ability tree from Bij; and (2) evaluating Sij using
the generated reachability or coverability tree.
It should be noted that when a formula contains
an always operator , the formula needs to be
evaluated in all nodes of the tree before a conclu-
sion can be made.

As an example, we use the simple library
system given in Figure 4 with the assumption
of one valid token req1 and one invalid token
req2 in place Request. When transition Update
receives a valid request, it updates the user and
book records, and generates a response S denoting
success. When transition ReportFailure receives

({req1, req2}, { }, { })

({req2}, {req1 }, { })

({req2}, { }, {S})

Validate

Update

({req1}, { }, {F})
ReportFailure

Validate

({ }, { req1}, {F})
ReportFailure

Update
ReportFailure

({ }, { }, {S, F})

Figure 5. The reachability tree of Figure 4

256

Formal Methods for Specifying and Analyzing Complex Software Systems

an invalid request, it produces a failure message
F. The resulting reachability tree of Step (1) is
shown in Figure 5.

Based on Step (2), it is easy to see that the
following property specification

∀(req).((Request(req) ∧ req ∈ Valid ⇒
◊Response(S)))

is satisfied in the reachability tree by all three possi-
ble paths: Validate—Update, ReportFailure—Val-
idate—Update, and Validate—ReportFailure—
Update. Similarly, we can evaluate the following
property specification: ∀(req).((Request(req) ∧
req ∉ Valid ⇒ ◊Response(F))).

Theorem Proving

The basic idea is to axiomatize Bij (He & Ding,
1992; He & Lee, 1990) and then use the obtained
axiom system to prove Sij, that is, Axiom(Bij) |
Sij. The axiom system consists of general system
independent axioms and inference rules and
system dependent axioms and inference rules
(Manna & Pnueli, 1983). Each transition in Bij
generates a system dependent temporal logic rule
that captures the causal relationships between the
input places and output places of the transition.
The canonical form of system dependent inference
rules has the form: fired(t/M) ⇒ enabled(t/M),
where t is a transition, M is a given marking.
Fired and Enabled are two predicates representing
the post-condition and precondition of t under M
respectively. The advantage of this technique is
that a syntactic approach rather than a semantic
approach is used in verification. Since no explicit
representation of states is needed, there is no
space explosion problem as in the reachability
tree technique. The main problems are that the
technique is often difficult to automate and its
application requires substantial knowledge of
first order temporal logic and general knowledge
of theorem proof.

To demonstrate the application of this heuristic,
we axiomatize the net structure in Figure 4, and

the resulting system dependent inference rules
after Step 1 are:

1. ¬ M [| V a l i d R e q u e s t (x) |] ∧
M’[|ValidRequest(x)|] ⇒ M[|Request(x)|] ∧
M[|R(Validate)|]

2. ¬ M[|Response(S)|] ∧ M’[|Response(S)|] ⇒
M[|ValidRequest(x)|] ∧ M[|R(Update)|]

3. ¬ M[|Response(F)|] ∧ M’[|Response(F)|] ⇒
M[|Request(x)|] ∧ M[|R(ReportFailure)|]

In these inference rules, M and M’ stand for
a given marking and its successor marking, re-
spectively. R(t) is the constraint associated with
transition t. To prove property specification

∀(req).((Request(req) ∧ req ∈ Valid ⇒
◊Response(S)))

We instantiate ◊ to a marking M’ and apply
rule (2) to obtain M[|ValidRequest(x)|], and we
apply rule (1) to obtain M[|Request(x)|]. With
some simple logical manipulations, we can easily
deduce the required property.

composition Analysis

We need to show that the connected behavior
model Bi (again a PrT net) of composition Ci ob-
tained from all the individual behavior models
Bij (j = 1,…,k) of components and connectors
satisfies all the constraints c

iCsc∈̂
 in Csi, that is, Bi

|= c
iCsc∈̂

. Due to the SAM framework, the analysis
techniques at element level can be directly applied
here. This global approach works in general, but
may not be efficient.

An ideal approach is to carry out the com-
position level analysis compositionally. In this
approach, we first analyze components and
connectors individually, that is, Bij |= Sij for all
components and connectors in a composition
Ci, and then synthesize the properties, that is,
∧ Sij |	 c

iCsc∈̂
. Despite some existing results on

compositional verification techniques in temporal

 257

Formal Methods for Specifying and Analyzing Complex Software Systems

logic (Abadi & Lamport, 1993) and Petri nets
(Juan, Tsai, & Murata, 1998), their general use
and application to SAM are not ready yet.

The following is a modest yet effective incre-
mental analysis approach.

Step 1: Identify partial order relationships among
the components and connectors based on
their causal relationships.

Step 2: Compose and analyze the components
and connectors in a partial order incremen-
tally, starting from the least element (most
independent).

Step 3: Compose and analyze mutually dependent
components and connectors together.

Step 4: Once we have shown that the initial
condition or marking used to prove every
individual element can be ensured by the
composed behavior model, then we can
conclude that all the property specifications
hold simultaneously.

To illustrate the ideas of this approach, let
us view the refined PrT model of transactions
in Figure 4 as a composition, which consists of
three trivial components Request, ValidRequest,
and Response, and three trivial connectors Vali-
date, Update, and ReportFailure. Based on the
PrT net structure, we can identify the following
incremental analysis order:

1. (Request, Validate, ValidateRequest);
2. (ValidateRequest, Update, Response);
3. (Request, Validate, ValidateRequest, Up-

date, Response);
4. (Request, ReportFailure, Response).

where #4 is independent of the first three analy-
ses.

To further improve the effectiveness of this
approach, we are working on some Petri net reduc-
tion techniques such that the behavior models used
in incremental analysis are simplified versions of
the original behavior models.

Refinement Analysis

For each component Cij = <Sij, Bij> with h(Cij)
= Cl, we need to show that either the connected
behavior model Bl of composition Cl satisfies Sij,
that is, Bl |= Sij or alternatively ∧ Csl | Sij.
Three techniques discussed in element analysis
can be used to show Bl |= Sij. Formal temporal
deduction technique (He & Ding, 1992, He, 1995)
can be used to prove ∧ Csl | Sij.

As an example, if we view Figure 4 as a
refinement of Figure 3d. We can easily prove
the following to assure the correctness of the
refinement:

∀(req).((Request(req) ∧ req ∈ Valid ⇒
◊Response(S))) ∧ ∀(req).((Request(req) ∧
req ∉ Valid ⇒ ◊Response(F))) | ∀(req).
((Request(req) ⇒ ◊Response(msg))).

studying Dependability Attributes
Using sAm

We have studied a variety of functional proper-
ties and several non-functional dependability at-
tributes at software architecture level using SAM
(He & Deng, 2002; Wang, He, & Deng, 1999). We
have applied SAM to specify and analyze sched-
ulability (Xu, He, & Deng, 2002), performance
including end-to-end latency (Shi & He, 2003a;
Wang & Deng, 1999; Yu, He, Gao, & Deng, 2002),
security (Deng, Wang, Beznosov, & Tsai, 2003;
He & Deng, 2002), fault-tolerance (Shi & He,
2002), reliability (Shi & He, 2003a, 2003b), and
many other functional behavior properties such
as deadlock and response (He & Deng, 2002; He,
Ding, & Deng, 2002; He, Yu, Shi, Ding, & Deng,
2004; Shi & He, 2002).

Since several Petri net models and temporal
logics as well as a variety of formal analysis
techniques were used to specify and verify these
system architectures and dependability attributes.
Here we just briefly mentioned our approach
without providing technical details.

258

Formal Methods for Specifying and Analyzing Complex Software Systems

• End-to-End Latency
 In Wang et al. (1999), time Petri nets

(Berthomieu & Diaz, 1991) and real-time
computational tree logic (CTL) (Emerson,
Mok, Sistla, & Srinivasian, 1992) were used
to specify the software architecture of a
control and command system. End-to-end
latency was then verified by generating a
reachability tree from the time Petri net
model and evaluating timing properties
specified in real-time CTL formulas. We also
used stochastic Petri nets to study latency
(Shi & He, 2003a).

• Schedulability
 In Yu et al (2002), predicate transition

nets (PrT nets) (Murata, 1989) and first-
order linear-time temporal logic (FOLTTL)
(Manna & Pnueli, 1992) were used to specify
the software architecture of a simplified
multi-media system. Timing requirements
were dealt with by adding a time stamp at-
tribute in tokens and by adding lower and
upper bounds in transition constraints in
predicate transition nets. Timing properties
were specified in first-order temporal logic
formulas by an additional clock variable.
Verification of schedulability was again
done using the theorem prover STeP.

•	 Security
 In He and Deng (2002), PrT nets and FOLTTL

were used to specify the software architec-
ture of an access authorization subsystem.
Several system components were explicitly
modeled to handle security check process.
Security policies were defined as part of
transition constraints within these security-
checking components. Security related
properties were specified using FOLTTL.
Verification of security properties was done
using reachability tree technique at the
component level and using theorem proving
at the composition level.

•	 Fault-Tolerance

 In Shi and He (2002), PrT nets and FOLTTL
were used to specify the software architec-
ture a communication protocol. To handle
possible communication faults such as loss of
information, additional system timer compo-
nents were introduced to detect such losses.
Fault-related properties were specified us-
ing FOLTTL and were verified using the
symbolic model checker SMV (McMillan,
1993).

•	 Reliability
 In Shi and He (2003a, 2003b), PrT nets were

used to model a software architecture. PrT
nets were then unfolded into stochastic
reward nets (SRNs). Probabilistic real-time
Computation Tree Logic (PCTL) (Hansson
& Johnson, 1994) was used to specify sys-
tem reliability. The probability of system
failure was then calculated using tool SPNP
(Trivedi, 1999) in Shi and He (2003a) and
tool SMART (Ciardo, Jones, Marmorstein,
Miner, & Siminiceanu, 2002) in Shi and He
(2003b).

RelAteD WORk

Many formal methods have been developed and
applied to specifying and verifying complex
software systems. For example, Z (Spivey, 1992)
was used to specify software architecture (Abowd,
Allen, & Garlan, 1995), CSP (Hoare, 1985) was
used as the foundation of Wright (Allen & Garlan,
1997), and CHAM (Inverardi, & Wolf, 1995) (an
operational formalism) was proposed to specify
software architectures. Rapide (Luckham, Ken-
ney, Augustin et al., 1995) used a multiple language
approach in specifying software architectures,
while some language has a well-defined formal
foundation (for example the specification language
uses a combination of algebraic and pattern con-
straints), others offer constructs similar to those
in a typical high-level programming language.

 259

Formal Methods for Specifying and Analyzing Complex Software Systems

Two complementary formal methods, Petri
nets and temporal logic, are used in SAM to de-
fine behavior models and property specifications
respectively. The selection of these formal methods
is based on the following reasons. Well-known
model-oriented formal methods include Petri nets
and finite state machines. Finite state machines are
simple, but have difficulty to deal with concurrent
systems especially distributed systems. Petri nets
are well suited for modeling concurrent and dis-
tributed systems, which characterize the majority
of embedded systems being used by NASA and
other government agencies. However, Petri nets
are often misunderstood and even prejudiced in
the U.S. Many researchers’ knowledge of Petri
nets is limited to the 1st generation low-level
Petri nets used primarily for modeling control
flows. Petri nets have evolved tremendously in
the past 20 years, from the 2nd generation high-
level Petri nets in 1980s (Jensen & Rozenberg,
1991) and the 3rd generation hierarchical and
modular Petri nets in early 1990s (He, 1996; He
& Lee, 1991; Jensen, 1992) to the 4th generation
object-oriented Petri nets in late 1990s (Agha, De
Cindio, & Rozenberg, 2001). More importantly,
Petri nets have been extended in many different
ways to study system performance, reliability,
and schedulability (Haas, 2002; Marsan, Balbo,
Conte, Donatelli, & Franceschinis, 1994; Wang,
1998), which are the central attributes of complex
dependable systems. There are vast existing re-
search results on Petri nets (over 10,000 publica-
tions). Despite many different types of temporal
logic, for example, propositional vs. first-order,
linear time vs. branch time, timed vs. un-timed,
probabilistic vs. non-probabilistic, it is widely ac-
cepted that temporal logic in general is an excellent
property-oriented formal method for specifying
behavioral properties of concurrent systems. We
are familiar with and have extensive experience
in using Manna and Pnueli’s (1992, 1995) linear-
time first order temporal logic; Lamport’s (1994)
linear-time first order temporal logic (Temporal
Logic of Actions); and Clarke and Emerson’s

(1981) branch time propositional logic CTL, and
its extension CTL* (Clarke, Emerson, & Sistla,
1986); and various timed versions of the above
temporal logics (Abadi & Lamport, 1994; Alur
& Henzinger, 1992; Emerson et al., 1992). One
major problem of using a dual-formalism is how
to integrate two formal methods in a consistent
and meaningful way, our own research results
(He, 1992; He & Ding, 1992; He & Lee, 1990)
and other’s work (Mandrioli, Morzenti, Pezze,
Pietro, & Silva, 1996) have provided a satisfac-
tory solution to integrate Petri nets and temporal
logic in SAM.

Almost all ADLs support the specification and
analysis of major system functional properties
such as safety and liveness properties (Medvi-
dovic & Taylor, 2000). Several ADLs also provide
capabilities to represent some dependability at-
tributes. MetaH (Binns, Engelhart, Jackson, &
Vestal, 1996) supported the description of non-
functional properties such as real-time schedula-
bility, reliability, and security in components but
not in connectors. Unicon (Shaw, Deline, Klein
et al., 1995) supported the definition of real-time
schedulability in both components and connec-
tors. Rapide (Luckham et al., 1995) supported
the modeling of time constraints in architectural
configurations. The analysis of non-functional
properties in these ADLs was not performed at the
architecture specification level instead of during
the simulation and implementation. As pointed out
in Stavridou and Riemenschneider (1998), “ADLs
need to be extended with appropriate linguistic
support for expressing dependability constraints.
They also need to be furnished with an appropri-
ate semantics, to enable formal verification of
architectural properties.”

DIscUssIOn AnD cOnclUsIOn

Commercial pressure to produce higher quality
software is always increasing. Formal methods
have already demonstrated success in specify-

260

Formal Methods for Specifying and Analyzing Complex Software Systems

ing commercial and safety-critical software, and
in verifying protocol standards and hardware
designs. In this chapter, we have provided a well-
defined integration of two well-known formal
methods predicate transition nets and first order
linear-time temporal logic as the foundation for
writing software architecture specifications in
SAM. This dual formal methods approach sup-
ports both behavioral modeling and property
analysis of software architectures. Unlike many
other architecture description language research
efforts that primarily focus on the representa-
tion issues of software architectures, we have
further presented a unified framework with a
set of heuristics to develop and analyze software
architecture specifications in SAM. The heuris-
tics are supported by well-developed existing
techniques and methods with potential software
tool assistance. We have demonstrated the ap-
plications of several of the heuristics with regard
to the development and analysis in a non-trivial
example. Our contributions are not limited to
software architecture research, but also shed
some light on how mature formal methods can be
effectively used in real-world software develop-
ment. While it is true that every formal method
has its limits and weaknesses, it is important to
rely on its strengths while avoiding and mini-
mizing its weaknesses in practical applications.
This philosophy has been used both in designing
our dual formal methods foundation of SAM as
well as our framework consisting of a variety of
development and analysis techniques.

From our own experience in teaching and
using formal methods, students can learn system
modeling using high-level Petri nets and speci-
fication using first order temporal logic in a one
semester course. The first author has taught these
materials in several software engineering related
courses in the past 15 years, and has found that
the majority students can master the methods
without major problems. Therefore, we are quite
convinced that the SAM approach is practical and
effective. Furthermore, we have applied SAM to

model and analyze the software architectures of
several systems, including a control and command
system (Wang et al., 1999), a flexible manufac-
turing system (Wang & Deng, 1999), popular
architectural connectors (He & Deng, 2000),
the alternating bit communication protocol, and
a resource access decision system (He & Deng,
2002). More recently, we are using SAM to model
and analyze a middleware architecture for deliv-
ering a variety of multimedia applications based
on various internet communication protocols.
We have developed methods to translate Petri
net models into state transition systems based on
several popular model checkers including SMV
(McMillan, 1993), STeP (Bjorner et al., 1995), and
SPIN (Holzmann, 2003) for property analysis.
These translation algorithms are linear to the
size of given Petri net models and translations
can be automated. The complexity of analysis
is largely dependent on given properties. In our
own experience, architecture level properties are
relative simple and can be effectively checked
using these model checkers.

We are carrying out more case studies to
explore the effectiveness of combining differ-
ent development and analysis techniques and
to determine the practical limitations of each
individual technique. To support this whole SAM
framework, we are adding software components to
our existing SAM environment, which consists of a
graphical editor for building behavioral models, a
textual editor for defining property specifications,
a simulator to execute behavioral models, and a
translator to covert a behavior model in Petri nets
into a Promela program in model checker SPIN
for property analysis.

AcknOWleDgment

This research was supported in part by the Na-
tional Science Foundation of the USA under grant
HRD-0317692, and by the National Aeronautics
and Space Administration of the USA under

 261

Formal Methods for Specifying and Analyzing Complex Software Systems

grant NAG2-1440. Huiqun Yu’s work was also
partially supported by the NSF of China under
grant No. 60473055.

RefeRences

Abadi, M., & Lamport, L. (1991). The existence
of refinement mappings. Theoretical Computer
Science, 82, 253-284.

Abadi, M., & Lamport, L. (1993). Composing
specification. ACM Trans. on Programming
Languages and Systems, 15, 73-130.

Abadi, M., & Lamport, L. (1994). An old-fash-
ioned recipe for real time. ACM Transactions on
Programming Languages and Systems, 16(5),
1543-1571.

Abowd, G., Allen, R., & Garlan, D. (1995). Formal-
izing style to understand descriptions of software
architecture. ACM Transaction on Software En-
gineering and Methodology, 4(4), 319-364.

Agha, G., De Cindio, F., & Rozenberg, G. (Eds.)
(2001).Concurrent object-oriented programming
and Petri nets – Advances in Petri nets. Lecture
Notes in Computer Science, 2001. Berlin: Springer
Verlag.

Allen, R., & Garlan, D. (1997). A formal basis
for architectural connection. ACM Transaction
on Software Engineering and Methodology, 6(3),
213-249.

Alur, R., & Henzinger, T. (1992). Logics and
models of real time: a survey. Lecture Notes in
Computer Science, 600, 74-106.

Berthomieu, B., & Diaz, M. (1991). Modeling and
verification of time dependent systems using time
Petri nets. IEEE Trans. Software Engineering,
17(3), 259-273.

Binns, P., Engelhart, M., Jackson, M., & Vestal, S.
(1996). Domain-specific software architectures for
guidance, navigation, and control. International

Journal of Software Engineering and Knowledge
Engineering, 6(2), 201-228.

Bjorner, N. et al. (1995, November). Step: The
Stanford temporal prover – User’s manual. Tech-
nical Report STAN-CS-TR-95-1562, Department
of Computer Science, Stanford University.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999).
The unified modeling language – User guide.
Reading, MA: Addison Wesley.

Ciardo, G., Jones, R., Marmorstein, R., Miner, A.,
& Siminiceanu, R. (2002). SMART: stochastics
model-checking analyzer for reliability and tim-
ing. In the Proc. of Int’l Conf. on Dependable
Systems and Networks, Bethesda, MD, June. Los
Alamitos, CA: IEEE Computer Society Press.

Clarke, E., & Emerson, E. (1981). Characterizing
properties of parallel programs as fixpoints. Lec-
ture Notes in Computer Science, 85.

Clarke, E., Emerson, E., & Sistla, A. (1986).
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. on Programming Languages and Systems,
8(2), 244-263.

Clarke, E., Grumberg, O., & Peled, D. (1999).
Model checking. Cambridge, MA: MIT Press.

Clarke, E., & Kurshan, R. (1996). Computer-aided
verification. IEEE Spectrum, 33(6), 61-67.

Clarke, E., & Wing, J. (1996). Formal methods:
state of the art and future. ACM Computing Sur-
veys, 28(4), 626-643.

Craigen, D., Gerhart, S., & Ralston, T. (1995).
Formal methods reality check: Industrial usage.
IEEE Trans. On Software Engineering, 21(2),
90-98.

Deng, Y., Wang, J., Beznosov, K., & Tsai, J. P.
(2003). An approach for modeling and analysis
of security system architectures. IEEE Transac-
tions on Knowledge and Data Engineering, 15(5),
1099-119.

262

Formal Methods for Specifying and Analyzing Complex Software Systems

Emerson, E., Mok, A., Sistla, A., & Srinivasian,
J. (1992). Quantitative temporal reasoning. Real-
Time Systems, 4, 331-352.

Haas, P. (2002). Stochastic Petri nets: Modeling,
stability, simulation. Berlin, Germany: Springer-
Verlag.

Hansson, H., & Johnson, B. (1994). A logic for
reasoning about time and reliability. Formal
Aspects of Computing, 6(4), 512-535.

Harel, D. (1987). Statecharts: A visual formal-
ism for complex systems. Science of Computer
Programming, 8, 231-274.

He, X. (1992). Temporal predicate transition nets
– A new formalism for specifying and verifying
concurrent systems. International Journal of
Computer Mathematics, 45(1/2), 171-184.

He, X. (1995). A method for analyzing properties
of hierarchical predicate transition nets. In the
Proc. of the 19th Annual International Computer
Software and Applications Conference, Dallas,
Texas, August (pp. 50-55). Los Alamitos, CA:
IEEE Computer Society Press.

He, X. (1996). A formal definition of hierarchi-
cal predicate transition nets. Lecture Notes in
Computer Science, 1091, 212-229.

He, X. (1998). Transformations on hierarchical
predicate transition nets: Abstractions and re-
finements. In the Proc. of the 22nd International
Computer Software and Application Conference,
Vienna, Austria, August (pp.164-169). Los Alami-
tos, CA: IEEE Computer Society Press.

He, X. (2001). PZ nets – A formal method integrat-
ing Petri nets with Z. Information and Software
Technology, 43, 1-18.

He, X., & Deng, Y. (2000). Specifying software
architectural connectors in SAM. International
Journal of Software Engineering and Knowledge
Engineering, 10, 411-432.

He, X., & Deng, Y. (2002). A framework for
developing and analyzing software architecture
specifications in SAM. The Computer Journal,
45(1), 111-128.

He, X., & Ding, Y. (1992). A temporal logic ap-
proach for analyzing safety properties of predicate
transition nets. In V. Leewun (Ed.), Information
processing’92 (pp.127-133). Amsterdam: North
Holland.

He, X., Ding, J., & Deng, Y. (2002). Analyzing
SAM architectural specifications using model
checking. In the Proc. of SEKE2002, Italy, June
(pp.271-274). Skokie, IL: Knowledge Systems
Institute.

He, X., & Lee, J. A. N. (1990). Integrating predicate
transition nets and first order temporal logic in
the specification of concurrent systems. Formal
Aspects of Computing, 2(3), 226-246.

He, X., & Lee, J. A. N. (1991). A methodology
for constructing predicate transition net specifi-
cations. Software – Practice & Experience, 21,
845-875.

He, X., & Yang, C. (1992). Structured analysis
using hierarchical predicate transition nets. In
the Proc. of the 16th Int’l Computer Software
and Applications Conf., Chicago, IL, September
(pp.212-217). Los Alamitos, CA: IEEE Computer
Society Press.

He, X., Yu, H., Shi, T., Ding, J., & Deng, Y.
(2004). Formally analyzing software architectural
specifications using SAM. Journal of Systems and
Software, 71(1-2), 11-29.

Hoare, C. A. R. (1985). Communicating sequential
processes. London, UK: Prentice-Hall.

Holzmann, G. (2003). The SPIN model checker:
Primer and reference manual. Boston, MA: Ad-
dison Wesley.

Inverardi, P., & Wolf, A. (1995). Formal speci-
fication and analysis of software architectures

 263

Formal Methods for Specifying and Analyzing Complex Software Systems

using the chemical abstract machine model.
IEEE Transaction on Software Engineering,
21(4), 373-386.

Jensen, K. (1992). Coloured Petri nets. Berlin:
Springer-Verlag.

Jensen, K., & Rozenberg, G. (Eds.) (1991). High-
level Petri nets – Theory and applications. Berlin,
Germany: Springer Verlag.

Juan, E., Tsai, J. P., & Murata, T. (1998). Com-
positional verification of concurrent systems
using Petri-net-based condensation rules. ACM
Transactions on Programming Languages and
Systems, 20(5), 917-979

Kazman, R., Klein, M., & Clements, P. (2000).
ATAM: A method for architectural evaluation.
Software Engineering Institute Technical Re-
port CMU/SEI-2000-TR-004, Carnegie-Mellon
University.

Knight, J. (2002). Dependability of embedded
systems. In the Proc. of ICSE’02, Orlando, FL,
May (pp.685-686). New York: ACM Press.

Lamport, L. (1994). The temporal logic of actions.
ACM Transactions on Programming Languages
and Systems, 16(3), 872-923.

Luckham, D., Kenney, J., & Augustin, L. et al.
(1995). Specification and analysis of system
architecture using Rapide. IEEE Transaction on
Software Engineering, 21(4), 336-355.

Mandrioli, D., Morzenti, A., Pezze, M., Pietro, P.
S., & Silva, S. (1996). A Petri net and logic ap-
proach to the specification and verification of real
time systems. In Formal methods for real time
computing. Hoboken, NJ: John Wiley & Sons.

Manna, Z., & Pnueli, A. (1983). How to cook a
temporal proof system for your pet language. In
the Proc. Of the 10th ACM Symp. On Principle of
Programming Languages, Austin, TX, January
(pp.141-154). New York: ACM Press.

Manna, Z., & Pnueli, A. (1992). The temporal
logic of reactive and concurrent systems – Speci-
fication. Berlin: Springer-Verlag.

Manna, Z., & Pnueli, A. (1995). The temporal
verification of reactive systems – Safety. Berlin:
Springer-Verlag.

Marsan, M., Balbo, G., Conte, G., Donatelli,
S., & Franceschinis, G. (1994). Modeling with
generalized stochastic Petri nets. Hoboken, NJ:
John Wiley and Sons.

McMillan, K. (1993). Symbolic model checking.
Boston: Kluwer Academic Publishers.

Medvidovic, N., & Taylor, R. (2000). A classifi-
cation and comparison framework for software
architecture description languages. IEEE Transac-
tion on Software Engineering, 26(1), 70-93.

Milner, R. (1989). Communication and concur-
rency. London, UK: Prentice-Hall.

Murata, T. (1989). Petri nets, properties, analysis
and applications. Proc. of IEEE, 77(4), 541-580.

Reisig, W. (1992). A primer in Petri net design.
Berlin: Springer-Verlag.

Shaw, M., Deline, R., & Klein, D. et al. (1995).
Abstractions for software architecture and tools
to support them. IEEE Trans. on Software Eng.,
21(4), 314-335.

Shaw, M., & Garlan, D. (1996). Software architec-
ture. Upper Saddle River, NJ: Prentice-Hall.

Shi, T., & He, X. (2002). Modeling and analyzing
the software architecture of a communication
protocol using SAM. In J. Bosch et al. (Eds.),
Proc. of the 3rd Working IEEE/IFIP Conference
on Software Architecture, Montreal, Canada,
August (pp. 63-78). Boston, MA: Kluwer Aca-
demic Publishers.

Shi, T., & He, X. (2003a). Dependability analysis
using SAM. In the Proc. of the ICSE Workshop on

264

Formal Methods for Specifying and Analyzing Complex Software Systems

Software Architectures for Dependable Systems,
Portland, Oregon, May (pp. 37-42).

Shi, T., & He, X. (2003b). A methodology for
dependability and performability analysis in
SAM. In the Proc. of the International Confer-
ence on Dependable Systems and Networks, San
Francisco, CA, June (pp. 679-688). Los Alamitos,
CA: IEEE Computer Society Press.

Spivey, J. (1992). Z reference manual. London,
UK: Prentice-Hall.

Stavridou, V., & Riemenschneider, R. (1998).
Provably dependable software architectures. In
the Proc. of 3rd International Software Archi-
tecture Workshop, Orlando, FL, November (pp.
133-136).

Trivedi, K. (1999). SPNP User’s Manual, version
6.0. Department of ECE, Duke University.

Wang, J. (1998). Timed Petri nets, theory and
application. Boston, MA: Kluwer Academic
Publisher.

Wang, J., & Deng, Y. (1999). Incremental mod-
eling and verification of flexible manufacturing

systems. Journal of Intelligent Manufacturing,
10(6), 485-502.

Wang, J., He, X., & Deng, Y. (1999). Introducing
software architecture specification and analysis
in SAM through an example. Information and
Software Technology, 41, 451-467.

Wing, J. (1990). A specifier’s introduction to for-
mal methods. IEEE Computer, 23(9), 8-24.

Xu, D., He, X., & Deng, Y. (2002). Compositional
schedulability analysis of real-time systems us-
ing time Petri nets. IEEE Trans. On Software
Engineering, 28(10), 984-996.

Yu, H., He, X., Gao, S., & Deng, Y. (2002). Model-
ing and analyzing SMIL documents in SAM. In
the Proc. of Fourth IEEE International Symposium
on Multimedia Software Engineering, Newport
Beach, CA, December (pp. 132-139). Los Alami-
tos, CA: IEEE Computer Society Publishing.

Zave, P., & Jackson, M. (1993). Conjunction as
composition. ACM Transaction on Software En-
gineering and Methodology, 2(4), 379-411.

This work was previously published in Advances in Machine Learning Applications in Software Engineering, edited by D.
Zhang; J. Tsai, pp. 319-345, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 265

Compilation of References

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abdallah, S., & Lesser, V. (2005). Modeling task alloca-
tion using a decision theoretic model. In Proceedings of
the Fourth international Joint Conference on Autonomous
Agents and Multiagent Systems (The Netherlands, July
25 - 29, 2005). AAMAS ‘05. ACM, New York, NY, (pp.
719-726).

Abrial, J. R. (1974). Data semantics. In J. W. Klimbie
& K. L. Koffemen (Eds.), Data base management (pp.
1–59). Amsterdam: North-Holland.

Aizamil, Z. (2005). Towards an effective software en-
gineering course project, ICSE’05, St. Louis, Missouri,
USA, 631–632.

Albayrak, O. (2003). Proposals to contribute computer
engineers education (in Turkish), Proceedings of the first.
Elektrik Elektronik Bilgisayar Mühendislikleri Eğitimi
Sempozyumu ve Sergisi (pp. 220-221), Ankara, Turkey.

Albayrak, O. (2007). Experiences of teaching systems
analysis and design to undergraduate software engineers,
AISSIGSAND 2007, (pp. 109–115), Sopot, Poland.

Albayrak, O. (2007). Software engineering education:
Experience and applications of requirements determina-
tion and analysis phases (in Turkish) Proceedings of the
third National Software Engineering Symposium, UYMS
2007, (pp. 15–18), Ankara, Turkey.

Ambler, S. W. (2005). The Elements of UML 2.0 Style.
Cambridge: Cambridge University Press.

Ambler, S. W. (last updated 2006). Introduction to
class normalization. Retrieved 2008, from http://www.
agiledata.org

Archer, C. B. (1985). A realistic approach to teaching
systems analysis at the small or medium-sized college,
ACM SIGCSE Bulletin, Proceedings of the sixteenth
SIGCSE technical symposium on Computer science
education SIGCSE ‘85, 17,1, 105–108.

Ariadne Training (2001). UML Applied – Object Oriented
Analysis and Design using the UML. Ariadne Training
Limited.

Ashforth, B. E., & Mael, F. (1989). Social identity Theory
and the Organization. Academy of Management Review,
14(1), 20-39.

Avison, D. E., Wood-Harper, A. T., Vidgen, R. T., &
Wood, J. R. G. (1998). A further exploration into informa-
tion systems development: The evolution of multiview2.
Information Technology & People, 11(2), 124-139.

Bagert, D. J. (1998). The challenge of curriculum mod-
eling for an emerging discipline: software engineering,
Frontiers in Education Conference, FIE ‘98. 28th An-
nual, 2, 910–915.

Bagert, D. J., Hilburn, T. B., Hislop, G. W., & Mengel,
S. A. (1998). Guidelines for software education: meeting
the needs of the 21st Century, Frontiers in Education
Conference, 1998. FIE ‘98. 28th Annual, 2, 909.

Barki, H., & Hartwick, J. (1989). Rethinking the concept
of user involvement. MIS Quarterly 13(1), 53-64.

Baskerville, R., & Pries-Heje, J. (2001). Racing the e-
bomb: How the internet is redefining information systems
development methodology. In N. L. Russo, B. Fitzgerald
& J. I. DeGross (Eds.), Realigning research and practice
in information systems development: The social and

266

Compilation of References

organizational perspective. Ifip wg8.2 conference, boise,
idaho, usa, 27-29 july 2001 (pp. 49-68). Boston: Kluwer
Academic Publishers.

Baskerville, R., & Pries-Heje, J. (2004). Short cycle time
systems development. Information Systems Journal,
14(3), 237-264.

Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual
database design: An entity-relationship approach: The
Benjamin/Cummings Publishing Company.

Bergamaschi, S., & Sartori, C. (1998). Chrono: A con-
ceptual design framework for temporal entities. Paper
presented at the 17th International Conference on Con-
ceptual Modeling, Singapore.

Bertino, E., Bettini, C., Ferrari, E., & Samarati, P.
(1998). An access control model supporting periodicity
constraints and temporal reasoning. ACM Transactions
on Database Systems, 23(3), 231-285.

Bettini, C., Jajodia, S., & Wang, S. X. (2000). Time
granularities in databases, data mining, and temporal
reasoning: Springer-Verlag.

Bhattacharya, C. B., Rao, H., & Glynn, M. A. (1995).
Understanding the Bond of Identification: An Investiga-
tion of its Correlates Among Art Museum Members.
Journal of Marketing, 59(4), 46-57.

Boehm, B. (2006). A view of 20th and 21st Century
Software Engineering, ICSE’06, Shanghai, China, (pp.
12–29).

Booch G., Rumbaugh J., & Jacobson I. (1999). UML user
guide. Addison Wesley.

Booch, G., Rumbaugh, J., & Jacobson, I. (2004). The
UML Reference Manual. 2nd Edition. Boston: Addison-
Wesley.

Bostrom, R. P., & Heinen, J. S. (1977). Mis problems
and failures: A socio-technical perspective, part 1: The
causes. MIS Quarterly, 1(3), 17-32.

Brinkkemper, S. (1996). Method engineering: Engi-
neering of information systems development methods
and tools. Information and Software Technology, 38(4),
275-280.

Burkhardt, J. M., & Détienne, F., (2007). An empirical
study of software reuse by experts in object-oriented
design. arXiv:cs/0702005v1.

Burrell, G., & Morgan, G. (1979). Sociological Paradigms
and Organisational Analysis: Elements of the Sociology
of Corporate Life. Heinemann.

Burton, P. J., & Bruhn, R. E. (2004). Using UML to
Facilitate the Teaching of Object-Oriented Systems
Analysis & Design. Journal of Computing Sciences in
Colleges, 19.

Calvanese, D., Lenzerini, M., & Nardi, D. (1998). Descrip-
tion logics for conceptual data modeling. In J. Chomicki
& G. Saake (Eds.), Logics for databases and information
systems (pp. 229-263). Kluwer.

Carroll, J. M. (2002). Human-computer Interaction in the
New Millennium. ACM Press, Addison-Wesley.

Cavaye, A. L. M. (1995). User participation in system
development revisited. Information and Management
28(5), 311-323.

Chaki, S., Clarke E. M., Groce, A., Jha, S., & Veith, H.
(2004). Modular Verification of Software Components
in C. IEEE Transactions on Software Engineering,
30(6), 388-402.

Chang, A., Bordia, P., & Duck, J. (2003). Punctuated
equilibrium and Linear Progression: Toward a New
Understanding of Group development. Academy of
Management Journal, 46(1), 106-117.

Chen, P. P. (1976). ACM Transactions on Database
Systems, 1, 9-36.

Chen, P. P. (1976). The entity-relationship model - toward
a unified view of data. ACM Transactions on Database
Systems, 1(1), 9-36.

Chomicki, J. (1995). Efficient checking of temporal in-
tegrity constraints using bounded history encoding. ACM
Transactions on Database Systems, 20(2), 149-186.

Chomicki, J., & Revesz, P. (1997). Constraint-based in-
teroperability of spatiotemporal databases. Proc. of the
5th Intl. Symposium on Large Spatial Databases, LNCS
1262, 142-162. Springer-Verlag.

 267

Compilation of References

Chomicki, J., Lobo, J., & Naqvi, S. A. (2003). Conflict
resolution using logic programming. IEEE Transactions
on Knowledge and Data Engineering, 15(1), 244-249.

Ciancarini, P. (2005). On the Education of Future Soft-
ware Engineers, ICSE’05, St. Louis, Missouri, USA,
(pp. 649–650).

Cifuentes, C., & Hughes, J. (1994). SE curriculum design:
methodologies, formal methods, and life cycle models,
Proceedings of II. Formal methods Software Education
Conference, (pp. 344–346).

Clark, N. (2005). Evaluating student teams developing
unique industry projects, Australian Computing Educa-
tion Conference, Newcastle, Australia, 42, 21–30.

Coad, P., & Yourdon, E. (1990). Object-oriented analysis.
Englewood Cliffs: Yourdon Press.

Cockburn, A. (2000). Selecting a project’s methodology.
IEEE Software, 17(4), 64-71.

Computing Curricula 2001. Computer Science. Final
Report. (2001) The Joint Task Force on Computing
Curricula, IEEE Computer Society, Association for
Computing Machinery. Retrieved April 23, 2006 from
http://acm.org/education/curric_vols/cc2001.pdf

Currim, F. (2004). Spatio-temporal set-based constraints
in conceptual modeling: A theoretical framework and
evaluation. Unpublished Doctoral Dissertation, Univer-
sity of Arizona, Tucson.

Currim, F., & Ram, S. (2006). Understanding the
concept of “completeness” in frameworks for model-
ing cardinality constraints. Paper presented at the 16th
Workshop on Information Technologies and Systems,
Milwaukee, WI.

Currim, F., & Ram, S. (2008). Conceptually modeling
windows and bounds for space and time in database con-
straints. Communications of the ACM, 51(11), 125-129.

Cusumano, M. A., & Yoffie, D. B. (1999). Software
development on internet time. IEEE Computer, 32(10),
60-69.

Dawson, R. (2000). Twenty Dirty Tricks to Train Software
Engineers, Proc. 22nd Int’l Conf. Software Eng. (ICSE
00), IEEE CS Press, (pp. 209–218).

Dawson, R., & Newsham R. (1997). Introducing Soft-
ware Engineers to the Real World, IEEE Software,
14(6), 37–43.

Decree of the Minister of National Education and Sport
from April 18th 2002 on designation of teaching stan-
dards for respective studies and levels of education [in
Polish - Rozporządzenie Ministra Edukacji Narodowej
i Sportu z dnia 18 kwietnia 2002 r. w sprawie określenia
standardów nauczania dla poszczególnych kierunków
studiów i poziomów kształcenia]. (2002). Dziennik
Ustaw, 116, 1004.

Decree of the Minister of National Education and Sport
from June 13th 2003 changing decree on designation of
teaching standards for respective studies and levels of
education [in Polish - Rozporządzenie Ministra Edukacji
Narodowej i Sportu z dnia 13 czerwca 2003 r. zmieniające
rozporządzenie w sprawie określenia standardów nauc-
zania dla poszczególnych kierunków studiów i poziomów
kształcenia]. (2003). Dziennik Ustaw, 144, 1401.

Decree of the Minister of Science and Higher Education
from July 12th 2007 on designation of teaching standards
for respective studies and levels of education, as well as a
procedure of creating and conditions which should be sat-
isfy in order to run cross-field and macro-field studies [in
Polish - Rozporządzenie Ministra Edukacji i Szkolnictwa
Wyższego z dnia 12 lipca 2007 r. w sprawie określenia
standardów kształcenia dla poszczególnych kierunków
studiów i poziomów kształcenia, a także trybu tworzenia
i warunków, jakie musi spełniać uczelnia, by prowadzić
studia międzykierunkowe oraz makrokierunki]. (2007).
Dziennik Ustaw, 164, 1166.

Deflem, M. (1991). Ritual, Anti-Structure, and Religion:
A Discussion of Victor Turner’s Processual Symbolic
Analysis. Journal for the Scientific Study of Religion,
30(1), 1-25.

DeGrace, P., & Stahl, L. H. (1990). Wicked Problems,
Righteous Solutions: A Catalogue of Modern Software

268

Compilation of References

Engineering Paradigms. Englewood Cliffs, NJ: Prentice
Hall, Inc.

DeLooze, L. L. (2005). Minimal UML Diagrams for a
Data-Driven Web Site. SIGITE.

DeMarco, T. (1978). Structured analysis and system
specification. Englewood Cliffs: Prentice Hall.

Desouza, K. C., Awazu, Y., & Tiwana, A., (2006). Four
dynamics for bringing use back into software reuse.
Communications of the ACM, 49(1), 96-100.

Dey, D., Barron, T. M., & Storey, V. C. (1995). A concep-
tual model for the logical design of temporal databases.
Decision Support Systems, 15(4), 305-321.

Dick, M. (2005). Student interviews as a tool for assess-
ment and learning in a systems analysis and design course,
ACM SIGCSE Bulletin, Proceedings of the 10th annual
SIGCSE conference on Innovation and technology in
computer science education ITiCSE ‘05, 37(3), 24–28.

Dobing, B., & Parsons, J. (2006). How UML is Used.
Communications of ACM, 49.

Doherty, N. F., & King, M. (2005). From technical to
socio-technical change: tackling the human and organiza-
tional aspects of systems development projects. European
Journal of Information Systems 14(1), 1.

Dwyer, S., Richard, O., & Shepherd, C. D. (1998). An
Exploratory Study of Gender and Age Matching in
the Salesperson-Prospective Customer Dyad: Testing
Similarity-Performance Predictions. The Journal of
Personal Selling & Sales Management, 18(4), 55.

Dyczkowski, M., & Skwarnik, M. (2004). National
Academic Institutions Curricula Review [in Polish -
Prezentacja programów kształcenia w uczelniach kra-
jowych]. In A. Nowicki (Ed.), Doskonalenie kształcenia
informatycznego na kierunku Informatyka i Ekonome-
tria na wydziale Zarządzania i Informatyki Akademii
Ekonomicznej we Wrocławiu. Część 1. Identyfikacja
kształcenia w obszarze informatyki (pp. 46-66). Wrocław:
Akademia Ekonomiczna we Wrocławiu.

Dyczkowski, M., & Wójtowicz, R. (2003). The concept
of computer laboratory courses for non information

systems students, example of business informatics [in
Polish - Koncepcja prowadzenia zajęć laboratoryjnych
dla studentów kierunków nieinformatycznych na
przykładzie przedmiotu informatyka ekonomiczna].
In A. Nowicki, W. Olejniczak (Eds.). Dydaktyka infor-
matyki ekonomicznej – kształcenie dla społeczeństwa
informacyjnego (pp. 133-138). Wrocław: Akademia
Ekonomiczna we Wrocławiu.

Dymek, D., & Kotulski, L. (2006). Evaluation of Risk
Attributes Driven by Periodically Changing System
Functionality. Transaction on Engineering, Computing
and Technology, vol.16 November 2006, ISSN 1305-5313,
(pp. 315-320).

Dymek, D., & Kotulski, L. (2007). On the load balancing
of Business Intelligence Reporting Systems. Proceed-
ings of the AIS SIGSAND European Symposium on
Systems Analysis and Design, University of Gdansk,
(pp. 121-125).

Dymek, D., & Kotulski, L. (2007). On the hierarchical
composition of the risk management evaluation in com-
puter information systems. Proceedings of the Second
International Conference DepCoS - RELCOMEX, Sz-
klarska Poreba, 14-16 June, 2007, ISBN-0-7695-2850-3,
IEEE Computer Society (pp. 35- 42).

Dymek, D., & Kotulski, L. (2008). Estimation of System
Workload Time Characteristic using UML Timing Dia-
grams. Proceedings of the Third International Conference
DepCoS – RELCOMEX 2008, IEEE Computer Society
No. P3178, (pp. 9-14).

Ehrig, H., Engels, G., Kreowski, H.-J., & Rozenberg, G.
(1999a). Handbook of Graph Grammars and Computing
By Graph Transformation: Volume II, Application, Lan-
guages and Tools. World Scientific Publishing Co., NJ.

Ehrig, H., Kreowski, H.-J., Montanari, U. & Rozenberg,
G. (1999b). Handbook of Graph Grammars and Com-
puting By Graph Transformation: Volume III, Concur-
rency, Parallelism , and Distribution, World Scientific
Publishing Co., NJ.

Eldredge, N., & Gould, S. J. (1972). Punctuated Equilib-
ria: An Alternative to Phyletic Gradualism. In T. J. M.

 269

Compilation of References

Schopf (Ed.), Models in Paleobiology (pp. 82-115). San
Francisco, CA: Freeman.

Ellis, H. J. C., Mead, N. R., Moreno, A. M., & Seidman,
S. B. (2003). Industry/University software engineering
collaborations for the successful reeducation of non-
software professionals. Software Engineering Educa-
tion and Training, Proceedings. 16th Conference, (pp.
44–51).

Elmasri, R., & Navathe, S. B. (1994). Fundamentals of
database systems (Second ed.): Benjamin Cummings
Publishing Co., Redwood City, CA.

Elmasri, R., & Navathe, S. B. (2006). Fundamentals of
database systems (Fifth ed.): Addison Wesley.

Elmasri, R., & Wuu, G. T. J. (1990). A temporal model
and query language for er databases. Paper presented at
the Sixth International Conference on Data Engineering,
Los Angeles, California, USA.

Elmasri, R., Ihab El-Assal, & Kouramajian, V. (1990,
October 8-10). Semantics of temporal data in an extended
er model. Paper presented at the Ninth International
Conference on Entity-Relationship Approach, Lausanne,
Switzerland.

Elmasri, R., Wuu, G. T. J., & Kouramajian, V. (1993). A
temporal model and query language for eer databases.
In A. U. Tansel, J. Clifford, S. K. Gadia, A. Segev &
R. T. Snodgrass (Eds.), Temporal databases: Theory,
design, and implementation (pp. 212-229): Benjamin/
Cummings.

Embley, D. W., Kurtz, B. D., & Woodfield, S. N. (1992).
Object-oriented systems analysis: A model-driven ap-
proach. Englewood Cliffs, N J: Prentice-Hall.

Engels, G., & Groenewegen, L. (2000). Object-Oriented
modeling: A road map. In A. Finkelstein (Eds) Future of
Software Engineering 2000. ACM, (pp.105-116).

Engels, G., Küster, J. M., Heckel, R., & Groenewegen,
L. (2001). A methodology for specifying and analyzing
consistency of object-oriented behavioral models. The 8th
European Software Engineering Conference held jointly
with ESEC/FSE-9. ACM, New York, (pp.186-195).

Enterprise Architect Home Page, http://www.sparxsys-
tems.com/

Erwig, M., Güting, R. H., Schneider, M., & Vazirgi-
annis, M. (1998). Abstract and discrete modeling of
spatio-temporal data types. In Proceedings of ACM
International Symposium on Geographic Information
Systems, (pp. 131-136).

Essinck, L. J. B. (1988). A conceptual framework for
information systems development methodologies. In
H.-J. Bullinger, E. N. Protonotarios, D. Bouwhuis & F.
Reim (Eds.), Information technology for organisational
systems (pp. 354-362). Amsterdam: North-Holland.

Fellers, J. W. (1996). Teaching teamwork: exploring the
use of cooperative learning teams in information systems
education, ACM SIGMIS Database, 27(2), 44–60.

Ferg, S. (1991, 23-25 October, 1991). Cardinality con-
straints in entity-relationship modeling. Paper presented
at the 10th International Conference on Entity-Relation-
ship Approach, San Mateo, alifornia, USA.

Finkelstein, C. (1990). An introduction to information
engineering: From strategic planning to information
systems.

Fitzgerald, B., Russo, N. L., & O’Kane, T. (2003). Software
development method tailoring at motorola. Communica-
tions of the ACM, 46(4), 65-70.

Fitzgerald, B., Russo, N. L., & Stolterman, E. (2002).
Information systems development: Methods in action.
London: McGraw-Hill.

Fitzgerald, G. (1991). Validating new information systems
techniques: A retrospective analysis. In H.-E. Nissen, H.
K. Klein & R. Hirschheim (Eds.), Information systems
research: Contemporary approaches and emergent
traditions (pp. 657-672): Elsevier Science Publishers
B.V. (North-Holland).

Flint, S., Gardner, H., & Boughton, C. (2004). Execut-
able/Translatable UML in Computing Education. In R.
Lister & A. Young (Eds.), Conferences in Research and
Practice in Information Technology, 30.

270

Compilation of References

Flower, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D.
(1999). Refactoring: Improving the Design of Existing
Code. Addison-Wesley.

Forrester, J. W. (1958). Industrial Dynamics: A Major
Breakthrough for Decision Makers. Harvard Business
Review, 38(4), 37-66.

Forrester, J. W. (1961). Industrial Dynamics. Pegasus
Communications, Waltham, MA.

Frakes, W., & Terry, C. (1996). Software Reuse: Met-
rics and Models. ACM Computing Surveys, 28(2),
415-435.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).
Design Patterns: Elements of Resuable Object- Oriented
Software. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).
Design Patterns: Elements of Resuable Object- Oriented
Software. Addison-Wesley.

Gane, C., & Sarson, T. (1979). Structured systems
analysis: Tools and techniques. Englewood Cliffs:
Prentice-Hall.

García, F., Bertoa, M. F., Calero, C., Vallecillo, A., Ruíz, F.,
Piattini, M., & Genero, M. (2006), “Towards a consistent
terminology for software measurement “,Information
and Software Technology, 48(8), 631-644.

Gasson, S. (1999). A social action model of situated in-
formation systems design. DATA BASE (ACM SIGMIS),
30(2), 82-97.

Gersick, C. J. G. (1988). Time and Transition in Work
Teams: Toward a New Model of Group development.
Academy of Management Journal, 31(1), 9-41.

Gersick, C. J. G. (1989). Marking Time: Predictable
Transitions in Task Groups. Academy of Management
Journal, 32(2), 274-309.

Gertz, M., & Lipeck, U. W. (1995, September 17-18).
Temporal” integrity constraints in temporal databases.
Paper presented at the International Workshop on Tem-
poral Databases, Zürich, Switzerland.

Ghezzi, C., & Mandrioli, D. (2005). The challenges of
software engineering education, Software Engineer-
ing, 2005. ICSE 2005. Proceedings. 27th International
Conference, (pp. 637–638).

Gibbs, W. W. (1994, September). Software’s chronic
crisis. Scientific American, 72-81.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of
grounded theory: Strategies for qualitative research.
New York: Aldine de Gruyter.

Glass, R. L. (1995). Software creativity.Englewood Cliffs,
NJ: Prentice Hall.

Glass, R. L. (1998). Is there really a software crisis? IEEE
Software, 15(1), 104-105.

Gnatz, M., Marschall, F., Popp, G., Rausch, A., & Schw-
erin, W. (2003). The living software development process.
Software Quality Professional, 5(3), 4-16.

Golden, D. G. (1982). Development of a systems analysis
and design course, ACM SIGCE Bulletin, Proceedings of
the thirteenth SIGCSE technical symposium on Computer
science education SIGCSE ’82, 14(1), 110–113.

Gorgone, J. T., Davis, G. B., Valacich, J. S., Topi, H.,
Feinstein, D. L., & Longenecker, H. E. Jr. (2002). IS 2002.
Model curriculum and guidelines for undergraduate
degree programs in information systems. Association
for Computing Machinery (ACM), Association for In-
formation Systems (AIS), Association of Information
Technology Professionals (AITP). Retrieved April 23,
2006 from http://www.acm.org/education/is2002.pdf

Gorgone, J. T., Gray, P., Feinstein, D. L., Kasper, G. M.,
Luftman, J. N., Stohr, E. A., Valacich, J. S., & Wigand, R.
T. (1999). MSIS 2000. Model Curriculum and Guidelines
for Graduate Degree Programs in Information Systems.
Association for Computing Machinery (ACM), Associa-
tion for Information Systems (AIS). Retrieved April 23,
2006 from http://cis.bentley.edu/isa/pages/documents/
msis2000jan00.pdf

Goroff, I. (1982). A systems analysis and design course
sequence, ACM SIGCE Bulletin, Proceedings of the

 271

Compilation of References

thirteenth SIGCSE technical symposium on Computer
science education SIGCSE ’82, 14(1), 123–127.

Gregersen, H., & Jensen, C. S. (1998). Conceptual
modeling of time-varying information (No. TR-35):
TimeCenter.

Gregersen, H., & Jensen, C. S. (1999). Temporal entity-
relationship models - a survey. IEEE Transactions on
Knowledge and Data Engineering, 11(3), 464-497.

Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C.
S., Lorentzos, N. A., Schneider, M., & Vazirgiannis,
M. (2000). A foundation for representing and query-
ing moving objects. ACM Transactions on Database
Systems, 25(1), 1-42.

Hammer, M., & McLeod, D. (1981). Database description
with sdm: A semantic database model. ACM Transactions
on Database Systems, 6(3), 351-386.

Hanna, H., & Mouaddib, A. (2002). Task selection
problem under uncertainty as decision-making. In Pro-
ceedings of the First international Joint Conference on
Autonomous Agents and Multiagent Systems: Part 3
(Bologna, Italy, July 15 - 19, 2002). AAMAS ‘02. ACM,
New York, NY, (pp. 1303-1308).

Hardgrave, B. C., Davis, F. D., & Riemenschneider, C.
K. (2003). Investigating Determinants of Software De-
velopers’ Intentions to Follow Methodologies. Journal of
Management Information Systems, 20(1), 123-151.

Hartwick, J., & Barki, H. (2001). Communication as a
dimension of user participation. IEEE Transactions on
Professional Communication 44(1), 21-36.

Hawthorne, M. J., & Perry D. E. (2005). Software Engi-
neering Education in the Era of Outsourcing, Distributed
Development, and Open Source Software: Challenges
and Opportunities, ICSE’05, St. Louis, Missouri, USA,
(pp. 643–644).

Hazzan, O., & Tomayko J. (2005). Teaching Human
Aspects of Software Engineering, ICSE’05, St. Louis,
Missouri, USA, 647–648.

Henninger, S. (1999). An Evolutionary Approach to
Constructing Effective Software Reuse Repositories.

ACM Transactions on Software Engineering and Meth-
odology, 6(2), 111-140.

Herbst, H. (1997). Business rule-oriented conceptual
modeling. Heidelberg: Physica-Verlag.

Hidding, G. (1996). Method engineering: Experiences
in practice. In S. Brinkkemper, K. Lyytinen & R. Welke
(Eds.), Method engineering: Principles of method con-
struction and tool support.London: Chapman & Hall.

Hilburn, T. B. W., & Watts S. (2002). The Impending
Changes in Software Education. IEEE Software, 19(5),
22–25.

Hirschheim, R. A., Klein, H.-K., & Lyytinen, K. (1995).
Information Systems Development and Data Modeling:
Conceptual and Philosophical Foundations. Cambridge
University Press.

Hirschheim, R., & Klein, H. K. (1989). Four paradigms
of information systems development Communications
of the ACM 32(10).

Hogg, M. A., & Terry, D. J. (2000). Social identity and
Self-Categorization Processes in Organizational Con-
texts. Academy of Management Review, 25(1), 121-140.

Huang, B., & Claramunt, C. (2005). Spatiotemporal
Data Model and Query Language for Tracking Land Use
Change. Transportation Research Record: Journal of the
Transportation Research Board, 1902, 107-113.

Hull, R., & King, R. (1987). Semantic database modeling
survey, applications, and research issues. ACM Comput-
ing Surveys, 210-260.

Hunter, M. G. (1994). Excellent Systems Analyst: Key Au-
dience Perceptions. Computer Personnel, (pp. 15–31).

Hwang, M. I., & Thorn, R. G. (1999). The effect of user
engagement on system success: A meta-analytical inte-
gration of research findings. Information and Manage-
ment 35(4), 229-236.

IBM Rational Unified Process, Retrieved November 05,
2008, from http://www-01.ibm.com/software/awdtools/
rup/

272

Compilation of References

IEEE (2004). SWEBOK, Guide to the Software Engineer-
ing Body of Knowledge. Los Alamitos, California.

Iivari, J., Hirschheim, R., & Klein, K. (2001). Dynamic
framework for classifying information systems devel-
opment: Methodologies and approaches. Journal of
Management Information Systems 17(3), 179-218.

Introna, L. D., & Whitley, E. A. (1997). Against method-
ism: Exploring the limits of method. Information Tech-
nology & People, 10(1), 31-45.

Jackson, M. (2000). The origins of jsp and jsd: A personal
recollection. IEEE Annals of Software Engineering,
22(2), 61-63.

Jacob, R. J. K. (1986). ACM Transactions on Graphics,
5, 283-317.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard,
G. (1992). Object-Oriented Software Engineering: A Use-
Case Driven Approach. Boston: Addison-Wesley.

Jayaratna, N. (1994). Understanding and evaluating
methodologies, nimsad: A systemic framework.London:
McGraw-Hill.

Jensen, C. S., Dyreson, C. E., Böhlen, M. H., Clifford,
J., Elmasri, R., Gadia, S. K., et al. (1998). The consensus
glossary of temporal database concepts - february 1998
version. In C. S. Jensen, J. Clifford, R. Elmasri, S. K. Ga-
dia, P. J. Hayes & S. Jajodia (Eds.), Temporal databases:
Research and practice (pp. 367-405): Springer.

Jonasson, I. (2000). Developing the information sys-
tems of tomorrow - competencies and methodologies.
Unpublished M.Sc. Dissertation, University of Skövde,
Sweden.

Kaminski, A., Polak, P., & Wieczorkowski, J. (2005).
Process approach in MIS implementation – business
process modeling tools [in Polish - Podejście procesowe
we wdrażaniu SIZ – narzędzia modelowania procesów
biznesowych]. In E. Niedzielska, H. Dudycz & M. Dy-
czkowski (Eds.), Nowoczesne technologie informacyjne
w zarządzaniu, Prace Naukowe Akademii Ekonomicznej
we Wrocławiu, 1081, 278-287.

Khalifa, M., & Verner, J. M. (2000). Drivers for Soft-
ware development Method Usage. IEEE Transactions on
Engineering Management, 47(3), 360-369.

Khatri, V., Ram, S., & Snodgrass, R. T. (2004). Aug-
menting a conceptual model with geo-spatio-temporal
annotations. IEEE Transactions on Knowledge and Data
Engineering, forthcoming.

Kirk, D., Roper, M., & Wood, M., (2006). Identifying and
addressing problems in object-oriented framework reuse.
Empirical Software Engineering, 12(3), 243-274.

Kirsch, L. J., Sambamurthy, V., Ko, D.-G., & Purvis, R.
L. (2002). Controlling Information Systems Develop-
ment Projects: The View from the Client. Management
Science, 48(4), 484-498.

Knoke, D., & Yang, S. (2008). Social Network Analysis
(2nd ed.) Sage Publications.

Kobylinski, A. (2004). The comparison of business infor-
matics curriculum at the Warsaw School of Economics
with model IS 2002 curriculum [in Polish - Porównanie
programu nauczania informatyki gospodarczej w Szkole
Głównej Handlowej w Warszawie z modelowym cur-
riculum IS 2002]. In J. Goliński, D. Jelonek, A. Nowicki
(eds.), Informatyka ekonomiczna. Przegląd naukowo-
dydaktyczny, Prace Naukowe Akademii Ekonomicznej
we Wrocławiu, 1027, 270-279.

Kontio, M. (2005). Architectural Manifesto: Designing
Software Architectures. Part 5. Introducing the 4+1 View
Model. http://www-128.ibm.com/developerworks/wire-
less/library/wi-arch11.

Korth, H., Silberschatz, A., & Sudarshan, S. (2005).
Database Systems Concepts. McGraw Hill, New York.

Kotulski, L.(2006). Nested Software Structure Main-
tained by aedNLC graph grammar. Proceedings of the
24th IASTED International Multi-Conference Software
Engineering, (pp. 335-339).

Kotulski, L., & Dymek, D. (2007). On the Evaluation
of the Refactoring in UML Environment, Information
Systems Architecture and Technology - Information
Technology and WEB Engineering: Models, Concepts and

 273

Compilation of References

Challenging, Wydawnictwo Politechniki Wrocławskiej,
ISBN 978-83-7493-345-2, (pp.185-193).

Kotulski, L., & Dymek, D.(2008). On the modeling
timing behavior of the system with UML(VR). In M.
Bubak, et al. (Eds), ICCS 2008, part I, LNCS 5101, (pp.
386-395).

Kotulski, L. (2000). Model wspomagania generacji
oprogramowania w środowisku rozproszonym za po-
mocą gramatyk grafowych. Wydawnictwo Uniwersytetu
Jagiellońskiego, Kraków, ISBN 83-233-1391-1.

Koubarakis, M. (1995, September 17-18). Databases and
temporal constraints: Semantics and complexity. Paper
presented at the International Workshop on Temporal
Databases, Zürich, Switzerland.

Kraemer, K. L., & Dutton, W. H. (1991). Survey research
in the study of management information systems. In K.
L. Kraemer (Ed.), The information systems research
challenge: Survey research methods. Volume 3 (pp. 3-58).
Boston, Massachusetts: Harvard Business School.

Kruchten, P. (1995). Architectural Blueprints – the
“4+1” View Model of Software Architecture. IEEE
Software, 12.

Kuhn, T. S. (1996). The structure of scientific revolutions
(3rd ed.). Chicago: University of Chicago Press.

Kumar, K., & Bjørn-Andersen, N. (1990). A cross-cultural
comparison of is designer values. Communications of the
ACM, 33(5), 528-538.

Kumar, K., & Welke, R. J. (1992). Methodology engi-
neering: A proposal for situation-specific methodology
construction. In W. W. Cotterman & J. A. Senn (Eds.),
Challenges and strategies for research in systems de-
velopment (pp. 257-269): John Wiley & Sons.

Kuźniarz L., Reggio, G., Sourrooille, J., & Huzar, Z.
(2002). Workshop on “Consistency in UML-based Soft-
ware Development”, Retrieved November 05, 2008, from
http://www.ipd.bth.se/uml2002/RR-2002-06.pdf

Lai, V. S., Kuilboer, J.-P., & Guynes, J. L. (1994). Tem-
poral databases: Model design and commercialization
prospects. DATA BASE, 25(3), 6-18.

Lang, M. (2002, April 29-30). The use of web-based
international surveys in information systems research.
Paper presented at the European Conference on Research
Methodology for Business and Management Studies
(ECRM 2002), Reading, England.

Langran, G., & Chrisman, N. R. (1988). A framework
for temporal geographic information systems. Carto-
graphica, 25(3), 1-14.

Larmour, R. (1997). A survey into the relevance and
adequacy of training in systems analysis and design.
ACM SIGCSE Bulletin, 29(2) , 54–64.

Laverie, D. A., & Arnett, D. B. (2000). Factors Affecting
Fan Attendance: The Influence of Identity Salience and
Satisfaction. Journal of Leisure Research, 32(2), 225.

Lenzerini, M., & Santucci, G. (1983). Cardinality con-
straints in the entity-relationship model. Paper presented
at the 3rd International Conference on Entity-Relationship
Approach, Anaheim, California.

Liddle, S. W., Embley, D. W., & Woodfield, S. N. (1993).
Cardinality constraints in semantic data models. Data
and Knowledge Engineering, 11(3), 235-270.

Lin, L. T., & Shao, B. M. (2000). The relationship between
user participation and system success: A simultaneous
contingency approach. Information and Management
37(6), 283-295.

Lindemann, C., Lohmann, M., & Thümmler, A. (2004).
Adaptive call admission control for QoS/revenue optimi-
zation in CDMA cellular networks. Wireless Network.
10, 4 (Jul. 2004), (pp. 457-472).

Liu, C. (2005). Enriching Software Engineering Courses
with Service-Learning Projects and the Open-Source Ap-
proach, ICSE’05, St. Louis, Missouri, (pp. 613–614).

Locke, K. (2001). Grounded theory in management
research.London: Sage.

Loucopoulos, P., McBrien, P., Persson, U., Schmaker,
F., & Vasey, P. (1990, November). Tempora-integrating
database technology rule based systems and temporal
reasoning for effective software. Paper presented at the
ESPRIT Conference, Brussels, Belgium.

274

Compilation of References

Maciaszek, L. (2005). Requirements Analysis and Systems
Designs. Addison Wesley.

Malouin, J.-L., & Landry, M. (1983). The mirage of
universal methods in systems design. Journal of Applied
Systems Analysis, 10, 47-62.

Marcinkowski, B., & Wrycza, S. (2005). Interaction Oc-
currences and Combined Fragments in System Dynamics
Modelling with UML 2 Sequence Diagram art. In G.
Nilsson, R. Gustas, W. Wojtkowski, G. Wojtkowski, S.
Wrycza, & J. Zupancic (Eds.), ISD 2005 Proceedings of
the Fourteenth International Conference on Information
Systems Development, Karlstad University Studies, s
(pp. 59-68), Karlstad.

Markus, M. L., & Robey, D. (1988). Information Tech-
nology and Organizational Change: Causal Structure
in Theory and Research. Management Science, 34(5),
583-598.

Martin, J. (1990). Information engineering, Book II:
Planning and analysis: Pearson Education.

Martin, J., & Odell, J. J. (1992). Object- oriented Analysis
And Design. Prentice Hall.

Martin, R. C. (2003). Agile Software Development.
Pearson Education.

Matthies, L. (1977). The new playscript procedure.
Stamford: Office Publications Inc.

Mattia, A.M., & Weistroffer, H.R. (2008). Information
systems development: A categorical analyis of user
participation approaches. Proceedings of the 41st Hawaii
International Conference on System Sciences.

McAllister, A. (1998). Complete rules for n-ary rela-
tionship cardinality constraints. Data and Knowledge
Engineering, 27(3), 255-288.

McBreen, P. (2002). Software craftsmanship: The new
imperative.Boston: Addison Wesley.

McConnell, S. (2004). Code Complete (2nd ed.). Red-
mond, WA: Microsoft Press.

McFadden, F. R., Hoffer, J. A., & Prescott, M. B. (2002).
Modern database management (Sixth ed.): Prentice
Hall.

McLeod, R. (1996). Comparing undergraduate courses
in systems analysis and design. Communication of the
ACM, 39–5, (pp. 113–121).

McMenamin, S. M., & Palmer, J. F. (1984). Essential
systems analysis. New York: Yourdon Press.

Mellarkod, V., Appan, R., Jones, D. R., & Sherif, K.
(2007). A multi-level analysis of factors affecting soft-
ware developers’ intention to reuse software assets: An
empirical investigation. Information & Management,
2007, 44(7), 613-625.

Mens, T., & Tourwé, T. (2004). A Survey of Software
Refactoring. IEEE Transactions on Software Engineer-
ing, 30(2), 126-139.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data
analysis: An expanded sourcebook (2nd ed.). Thousand
Oaks, CA: Sage.

Mili, H., Mili, F., & Mili, A. (1995). Reusing Software:
Issues and Research Directions. IEEE Transactions on
Software Engineering, 21(6), 528–562.

Misic, M. M., & Russo, N. L. (1999). An assessment
of systems analysis and design courses. The Journal of
Systems and Software, 45, 197–202.

Mohagheghi, P., & Conradi, R., (2007). Quality, produc-
tivity and economic benefits of software reuse: a review
of industrial studies. Empirical Software Engineering,
May 2007, (pp. 471-516).

Mohay, G., Morarji, H., & Thomas, R. (1994). Under-
graduate, graduate and professional education in software
engineering in the ‘90s: a case study, Software Education
Conference Proceedings, (pp. 22–25, 103–110).

Morgan, G. W., & Lear, F. A. (1994). The role of a
software engineering project within an undergraduate
applied computing degree, Software Education Confer-
ence Proceedings, (pp. 230–236).

Morgenstern, M. (1984). Constraint equations: Declara-
tive expression of constraints with automatic enforce-
ment. Paper presented at the 10th Conference on Very
Large Databases, Singapore.

 275

Compilation of References

Morrogh, P. (2000). Is software education narrow-
minded?—A position paper, Software Engineering,
2000. Proceedings of the 2000 International Conference,
(pp. 545–546).

Muller, R. J. (2000). Databases –UML In database mod-
eling. MIKOM 2000 (in Polish).

Murugesan, S., & Deshpande, Y. (1999, May 16-22).
Preface to icse’99 workshop on web engineering. Paper
presented at the 21st International Conference on Software
Engineering (ICSE), Los Angeles, California, USA.

Murugesan, S., Deshpande, Y., Hansen, S., & Ginige, A.
(1999, May 16-17). Web engineering: A new discipline
for development of web-based systems. Paper presented
at the 1st ICSE Workshop on Web Engineering, Los
Angeles, California, USA.

Myers, B., Hudson, S. E., & Pausch, R. (2000). ACM Trans-
actions on Computer-Human Interaction, 7, 3-28.

N. Derrett, W. K. a. P. L. (1985). Some aspects of op-
erations in an object-oriented database. IEEE Database
Engineering Bulletin, 8(4), 66-74.

Naur, P., & Randell, B. (Eds.). (1969). Software engineer-
ing: Report on a conference sponsored by the nato sci-
ence committee, garmisch, germany, 7-11 october 1968.
Brussels: Scientific Affairs Division, NATO.

Nielsen, J. (1993). Usability Engineering, Academic
Press.

Object Management Group (2006). UML Diagram
Interchange v.1.0 OMG document number: for-
mal/2006-04-04, Retrieved November 05, 2008, from
http://www.omg.org/technology/documents/formal/
diagram.htm

Object Management Group (2007). UML Infrastruc-
ture Specification v.2.1.2, OMG document number:
formal/2007-11-04, Retrieved November 05, 2008, from
http://www.omg.org/spec/UML/2.1.2/

Object Management Group (2007). UML Superstruc-
ture Specification v.2.1.2, OMG document number:
formal/2007-11-02, Retrieved November 05, 2008, from
http://www.omg.org/spec/UML/2.1.2/

Oinas-Kukkonen, H., Alatalo, T., Kaasila, J., Kivelä, H.,
& Sivunen, S. (2001). Requirements for web engineering
methodologies. In M. Rossi & K. Siau (Eds.), Information
modeling in the new millennium (pp. 360-382). Hershey,
PA: Idea Group Publishing.

Olfman, L. and Bostrom, R.P. (1992). Innovative teaching
materials and methods for systems analysis and design,
ACM SIGMIS Database, 23,2, 7–12.

Olsen, D. R. (1986). ACM Transactions on Information
Systems, 5, 318-344.

Olson, M. H., & Ives, B. (1981). User involvement in sys-
tem design: An empirical test of alternative approaches.
Information and Management 4(4), 183-195.

OMG (2005). Object Management Group. Unified Mod-
eling Language 2.0 Superstructure Specification. http://
www.omg.org/cgi-bin/doc?formal/05-07-04.

OMG (2006). Object Management Group. The UML 2.1
Superstructure Convenience Document. http://www.omg.
org/cgi-bin/doc?ptc/2006-04-02.

OMG. (2004). Unified modeling language (uml), v2.0.

OMG. (2006). Object constraint language specification,
v 2.0.

Omland, H. O. (1999). Educating systems analyst em-
phasizing the human factor, ACM SIGCSE Bulletin,
Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE
conference on Innovation and technology in computer
science education ITiCSE ‘99, 31(3), 44–47.

Orlikowski, W. J., & Gash, D. C. (1994). Technological
frames: Making sense of information technology in or-
ganizations. ACM Transactions on Information Systems,
12(2), 669-702.

Osborne, M. (1992). APPGEN: a tool for teaching systems
analysis and design, ACM SIGCSE Bulletin, Proceed-
ings of the twenty-third SIGCSE technical symposium
on Computer science education SIGCSE ‘92, 24(1),
259–263.

Otso, K. J. (1995). A Systematic Process for Reusable
Software Component Selection. Technical Report, Uni-
versity of Maryland.

276

Compilation of References

Oudshoorn, M.J. and Maciunas, K.J. (1994). Experience
with a project-based approach to teaching software
engineering, Software Education Conference, 1994.
Proceedings. (pp. 220–225).

Parent, C., Spaccapietra, S., & Zimanyi, E. (1999). Spatio-
temporal conceptual models: Data structures + space
+ time. Paper presented at the 7th ACM Symposium on
Advances in Geographic Information Systems, Kansas
City, USA, 1999.

Parnas, D. (1999). Software Engineering Programs
Are Not Computer Science Programs, IEEE Software,
16(6), 19–30.

Peckham, J., & Maryanski, F. (1988). Semantic data
models. ACM Computing Surveys, 20(3), 153-189.

Peuquet, D., & Duan, N. (1995). An Event-Based Spatio-
temporal Data Model (ESTDM) for Temporal Analysis
of Geographical Data. Int. Journal of Geographical
Information Systems, 9(1), 7-24.

Polak, P., & Polak, D. (2006). The changes in curricu-
lum of business informatics computer laboratories in
economic universities [in Polish - Zmiany w programie
laboratorium z informatyki gospodarczej na uczelniach
ekonomicznych]. In A. Szewczyk (Ed.), Dydaktyka
informatyki i informatyka w dydaktyce (pp. 188-191).
Szczecin: Uniwersytet Szczeciński.

Powell, T. A., Jones, D. L., & Cutts, D. C. (1998). Web
site engineering: Beyond web page design.Upper Saddle
River: Prentice Hall.

Price, R. J., Tryfona, N., & Jensen, C. S. (2000). Extended
SpatioTemporal UML: Motivations, Requirements and
Constructs. Journal of Database Management, 11(4),
14-27.

Publication, F. I. P. S. (1993). Integration definition for
function modeling (idef1x) (No. Technical Report 184):
National Institute of Standards and Technology, Gaith-
ersburg, MD 20899.

Pullan, W. and Oliver, D. (1994). Development of an un-
dergraduate software engineering degree, Software Edu-
cation Conference, 1994. Proceedings, (pp. 111–117).

Rahim, M. S. M., Shariff, A. R. M., Mansor, S., Mahmud,
A. R., & Alias, M. A. (2006). Volumetric spatiotemporal
data model. In Innovations in 3D Geo Information Sys-
tems, Lecture Notes in Geoinformation and Cartography,
(pp. 547-556).

Ram, S., & Khatri, V. (2005). A comprehensive framework
for modeling set-based business rules during conceptual
database design. Information Systems, 30(2), 89-118.

Ratbe, D., King, W. R., & Kim, Y.-G. (1999). The fit
between project characteristics and application develop-
ment methodologies: A contingency approach. Journal
of Computer Information Systems, 40(2), 26-33.

Renolen, A. (1996). History graphs: Conceptual modeling
of spatio-temporal data. In Proceedings of GIS Frontiers
in Business and Science, International Cartographic
Association, 2, Brno.

Rickman, D. M. (2000). A Process for Combining Object
Oriented and Structured Analysis and Design. 3rd An-
nual Systems Engineering & Supportability Conference.
Retrieved February 14, 2007 from http://www.dtic.mil/
ndia/systems/ Rickman2.pdf

Rob, M. A. (2004). Issues of structured vs. object-oriented
methodology of systems analysis and design. Issues in
Information Systems, 5, 275-280.

Rob, P., & Coronel, C. (2001). Database systems: Design,
implementation, and management (Fifth ed.): Course
Technology.

Robey, D., & Markus, M. L. (1984). Rituals in Informa-
tion Systems Design. MIS Quarterly, 8(1), 5-15.

Rochfeld, A. (1986, November 17-19). Merise, an informa-
tion system design and development methodology, tuto-
rial. Paper presented at the Fifth International Conference
on Entity-Relationship Approach, Dijon, France.

Ross, R. G. (1997). The business rule book: Classifying,
defining and modeling rules, version 4.0 (Second ed.):
Business Rule Solutions, Incorporated.

Rowley, T. J., & Moldoveanu, M. (2003). When Will
Stakeholder Groups Act? An Interest- and Identity-based
Model of Stakeholder Group Mobilization. Academy of
Management Review, 28(2), 204-219.

 277

Compilation of References

Rozenberg, D., & Scott, K. (2001). Applying Use Case
Driven Object Modeling with UML: An Annotated e-
Commerce Example. Addison Wesley.

Rozenberg, G. (1997). Handbook of Graph Grammars
and Computing By Graph Trans-formation: Volume I,
Foundations. Ed. World Scientific Publishing Co., NJ.

Rumbaugh, J. (1995). What is a method? Journal of
Object Oriented Programming, 8(6), 10-16;26.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., &
Lorensen, W. (1991). Object-oriented modeling and
design. Englewood Cliffs, NJ: Prentice-Hall.

Rundensteiner, E. A., Bic, L., Gilbert, J. P., & Yin, M.-L.
(1991, April 8-12). A semantic integrity framework: Set
restrictions for semantic groupings. Paper presented at
the Seventh International Conference on Data Engineer-
ing, Kobe, Japan.

Russo, N. L., & Graham, B. R. (1999). A first step in
developing a web application design methodology:
Understanding the environment. In A. T. Wood-Harper,
N. Jayaratna & J. R. G. Wood (Eds.), Methodologies for
developing and managing emerging technology based
information systems: 6th international bcs information
systems methodologies conference (pp. 24-33). London:
Springer.

Sabau, A. (2007a). The 3SST Model: A three step spatio-
temporal conceptual model. In Proceedings of the 2nd
AIS SIGSAND European Symposium on System Analysis
and Design, Gdansk.

Sabau, A. (2007b). The 3SST Relational Model. Studia
Universitatis “Babeş-Bolyai”, Informatica, LII(1), 77-
88.

Sahraoui, S. (1998). Is information systems education
value neutral? Journal of Computer Information Systems,
38(3), 105-109.

Schneider, J.-G.; Johnston, L., & Joyce, P. (2005). Cur-
riculum development in educating undergraduate soft-
ware engineers—Are students being prepared for the
profession?, Software Engineering Conference, 2005.
Proceedings. Australian, (pp. 314–323).

Schön, D. A. (1983). The reflective practitioner: How
professionals think in action.London: Temple Smith.

Shalloway, A., & Trott, J. R. (2002). Object oriented
design – Design Patterns. HELION (in Polish).

Shaw, M., & Garlan, D. (1996). Software architecture:
Perspectives on an emerging discipline:Prentice Hall.

Shepard, A., & Kerschberg, L. (1984). Prism: A knowl-
edge-based system for semantic integrity specification
and enforcement in database systems. Paper presented
at the ACM SIGMOD Conference, Boston.

Shneiderman, B. (1998). Designing the User Interface.
Addison Wesley Longman.

Shneiderman, B. (1998). Designing the User Interface:
Strategies for Effective Human-Computer-Interaction
(3rd ed.) Addison Wesley Longman.

Shneiderman, B. (2002). Leonardo’s Laptop: Human
Needs and the New Computing Technologies. MIT
Press.

Silberschatz, A., Korth, H., & Sudarshan, S. (1997).
Database system concepts (Third Edition ed.): McGraw
Hill.

Sistla, A. P., Wolfson, O., Chamberlain, S., & Dao, S.
(1997). Modeling and querying moving objects. Proceed-
ings of the 13th IEEE International Conference on Data
Engineering, Birmingham, (pp. 422-432).

Slocombe, T. E., & Bluedorn, A. C. (1999). Organiza-
tional Behavior Implications of the Congruence Between
Preferred Polychronicity and Experienced Work-unit
Polychronicity. Journal of Organizational Behavior,
20, 75-99.

Śmiałek, M. (2005). Understanding UML 2.0 Methods
of object oriented modeling, HELION (in Polish).

Smith, J. M., & Smith, D. C. P. (1977). ACM Transactions
on Database Systems, 2, 105-133.

Snodgrass, R. T. (1999). Developing time-oriented da-
tabase applications in sql. Morgan Kaufmann Series in
Data Management Systems.

278

Compilation of References

Snook, C. & Butler, M.(2006). UML-B: Formal modeling
and design aided by UML. ACM Transaction on Software
Engineering Methodology, 15(1), 92-122.

Song, X. (1997). Systematic integration of design meth-
ods. IEEE Software, 14(2), 107-117.

Spence, J. W., & Grout, J. C. (1978). Systems analysis and
design in a computer science curriculum, ACM SIGCSE
Bulletin, 10(4), 24–27.

Spinellis, D. (2007). Cracking Software Reuse. IEEE
Software, 24(1), 12-13.

Stolterman, E., & Russo, N. (1997). The paradox of infor-
mation systems methods: Public and private rationality.
Paper presented at the 5th British Computer Society
Conference on Information Systems Methodologies,
Lancaster, England.

Storey, V. C. (1993). Understanding semantic relation-
ships. The VLDB Journal — The International Journal
on Very Large Data Bases, 2(4), 455-488.

Storey, V. C., Yang, H., & Goldstein, R. C. (1996). Se-
mantic integrity constraints in knowledge-based database
design systems. Data and Knowledge Engineering,
20(1), 1-37.

Strauss, A. L. (1970). Discovering new theory from
previous theory. In T. Shibutani (Ed.), Human nature
and collective theory (pp. 46-53). Englewood Cliffs,
NJ: Prentice Hall.

Strauss, A., & Corbin, J. (1998). Basics of qualitative
research: Techniques and procedures for developing
grounded theory (2nd ed.). Thousand Oaks, CA: Sage.

Su, S. Y. W. (1983). A semantic association model for
corporate and scientific statistical databases. Journal of
Information Sciences, 29, 151-199.

Suchman, L. A. (1987). Plans and situated actions: The
problem of human-machine communication.Cambridge:
Cambridge University Press.

Szekely, P. A. (1996). In F. Bodart, & J. Vanderdonckt
(Eds.), Design, Specification and Verification of Inter-
active Systems: Proceedings of the Third International
Eurographics Workshop. Namur, Belgium.

Tajfel, H. (1981). Human Groups and Social Categories:
Studies in Social Psychology. Cambridge, England:
Cambridge University Press.

Tauzovich, B. (1991). Towards temporal extensions to
the entity-relationship model. Paper presented at the
10th International Conference on Entity-Relationship
Approach, San Mateo, California.

Taylor, P. R. (2004). Vernacularism in software design
practice: Does craftmanship have a place in software
engineering? Australasian Journal of Information Sys-
tems, 11(12), 14-25.

Ter Hofstedt, A. H. M., & Verhoef, T. F. (1997). On the
feasibility of situational method engineering. Information
Systems, 22(6-7), 401-422.

Thalheim, B. (1996, December 1-10, 1996). An overview
on semantical constraints for database models. Paper pre-
sented at the 6th International Conference on Intellectual
Systems and Computer Science, Moscow, Russia.

Thalheim, B. (2000). Entity-relationship modeling:
Foundations of database technology: Springer-Verlag.

The Ministry of Finance GIFI. Counteracting money
laundering.

Theodoulidis, C. I., Loucopoulos, P., & Wangler, B. (1991).
A conceptual modelling formalism for temporal database
applications. Information Systems, 16(4), 401-416.

Thomas, R., Semeczko, G., Morarji, H., & Mohay, G.
(1994). Core software engineering subjects: a case study
(‘86–’94), Software Education Conference Proceedings,
(pp. 24–31).

Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., & Schach,
S. R. (2004). Evaluating Software Reuse Alternatives:
A Model and Its Application to an Industrial Case
Study. IEEE Transactions on Software Engineering,
30(9), 601-612.

Trice, H. M., & Beyer, J. M. (1984). Studying Organiza-
tional Cultures Through Rites and Ceremonials. Academy
of Management Review, 9(4), 653-669.

 279

Compilation of References

Truex, D., & Avison, D. (2003, August 4-6). Method
engineering: Reflections on the past and ways forward.
Paper presented at the 9th Americas Conference on In-
formation Systems (AMCIS), Tampa, Florida, USA.

Trujillo, J. (2006). A Report on the First International
Workshop on Best Practices of UML. SIGMOD Record,
35.

Tryfona, N., & Jensen, C. S. (1999). Conceptual data
modeling for spatiotemporal applications. GeoInfor-
matica, 3(3), 245-268.

Tryfona, N., & Jensen, C. S. (2000). Using abstractions
for spatio-temporal conceptual modeling. Proceedings
of the 2000 ACM Symposium on Applied Computing,
Italy, (pp. 313-322).

Tuckman, B. W., & Jensen, M. A. C. (1977). Stages in
Small Group development Revisited. Group & Organiza-
tion Studies, 2(4), 419-427.

Turner, V. W. (1974). Dramas, Fields, and Metaphors:
Symbolic Action in Human Society. London, England:
Cornell University Press.

Turner, V. W. (1995). The Ritual Process: Structure and
Anti-Structure (Reprint ed.). Chicago: Aldine Transac-
tion.

Turner, V. W., & Turner, E. (1978). Image and Pilgrimage
in Christian Culture. New York: Columbia University
Press.

Underwood, R., Bond, E., & Baer, R. (2001). Building
Service Brands via Social identity: Lessons from the
Sports Marketplace. Journal of Marketing Theory and
Practice, 9(1), 1.

Urban, S. D., & Lim, B. B. (1993). An intelligent frame-
work for active support of database semantics. Interna-
tional Journal of Expert Systems, 6(1), 1-37.

Valiente, M., Genova, G., & Cerretero, J. (2005). UML
2.0 Notation for Modeling Real-Time Task Scheduling.
Journal of Object technology, 5(4), 91-105.

Van Gennep, A. (1960). The Rites of Passage (M. B.
Vizedom & G. L. Caffe, Trans.). London, England:
University of Chicago Press

Vidgen, R., Avison, D., Wood, B., & Wood-Harper,
T. (2002). Developing web information systems: From
strategy to implementation.Oxford: Butterworth Hei-
nemann.

Virtanen, P. (2001). Empirical Study Evaluating Com-
ponent Reuse Metrics. Proceedings of the ESCOM,
(pp. 125-136).

Vliet, H. (2005). Some Myths of Software Engineering
Education, ICSE’05, St. Louis, Missouri, USA, (pp.
621–622).

Vliet, H. (2006). Reflections on software engineering
education. Software, IEEE, 23(3), 55–61.

Wand, Y., & Weber, R. (2002). Research commentary:
Information systems and conceptual modeling - a research
agenda. Information Systems Research, 13(4), 363-376.

Wang, Z., Fang, Y., & Xie, X. (2005). A spatio-temporal
data model based on the parcel in cadastral. In Proceed-
ings of Geoscience and Remote Sensing Symposium, 2.

Ward, P. T. (1989). How to integrate object orientation
with structured analysis and design. IEEE Software,
6(2), 74-82.

Ware, C. (2000). Information Visualization: Perception
for Design. Morgan Kaufman.

Wasserman, S., & Faust, K. (1994). Social Network
Analysis: Methods and Applications. Cambridge Uni-
versity Press.

Weisert, T. (2006). Systems Analysis Methodology Slid-
ing Backwards, Chicago: Information Disciplines Inc.
Retrieved January 15, 2007 from http://www.idinews.
com/story.html

Wheelan, S. A. (1994). Group Processes: A Develop-
mental Perspective. Needham Heights, MA: Allyn and
Bacon.

Wheelan, S. A., Davidson, B., & Tilin, F. (2003). Group
development Across Time: Reality or Illusion? Small
Group Research, 34(2), 223-245.

White, M. (2000). Leonardo: The first scientist.London:
Little, Brown & Company.

280

Compilation of References

Whitley, E. A. (1998, December 13-16). Method-ism in
practice: Investigating the relationship between method
and understanding in web page design. Paper presented
at the 19th International Conference on Information
Systems (ICIS), Helsinki, Finland.

William, B., Frakes, W. B., & Kang, K. (2005). Software
Reuse Research: Status and Future. IEEE Transactions
on Software Engineering, 31(7), 529-536.

Wolfson, O., Xu, B., Chamberlain, S., & Jiang, L. (1998).
Moving objects databases: Issues and solutions. Proceed-
ings of the 10th International Conference on Scientific
and Statistical Database Management (SSDBM98), (pp.
111-122).

Wollin, A. (1999). Punctuated equilibrium: Reconciling
Theory of Revolutionary and Incremental Change. Sys-
tems Research and Behavioral Science, 16(4), 359-367.

Wolstenholme, E. F. (1990). System Enquiry: a System
Dynamics Approach. John Wiley & Sons, New York.

Worboys, M. F. (1994). A Unified Model for Spatial and
Temporal Information. The Computer Journal, 37(1),
27-34.

Wrifs-Brock, R., & McKean, A. (2006). Object design –
Role, responsibility and cooperation, Helion 2006

Wroblewski, D. A. (1991). The construction of human-
computer interfaces considered as a craft. In J. Karat
(Ed.), Taking software design seriously: Practical
techniques for human-computer interaction design (pp.
1-19): Academic Press.

Wrycza, S., & Marcinkowski, B. (2006). UML 2
Academic Course – Methodological Background and
Survey Benchmarking. Proceedings of ISECON 2006,
23, Dallas. AITP Foundation for Information Technol-
ogy Education.

Wrycza, S., & Marcinkowski, B. (2006). UML 2 Teach-
ing at Postgraduate Studies – Prerequisites and Practice
art. In D. Colton, & T. Janicki (Eds.), The Proceedings
of ISECON 2005, Columbus, Ohio, Volume 22, the 22nd
Annual Conference foe Informations Systems Educa-

tors, AITP Foundation for Information technology
Education.

Wrycza, S., Marcinkowski, B., & Wyrzykowski, K.
(2005). UML 2.0 in Information Systems Modeling.
Helion 2005 (in Polish), (pp.1-448).

Wrycza, S., Marcinkowski, B., & Wyrzykowski, K.
(2005a). Systems Modeling with UML 2 (in Polish).
Helion, Gliwice, (pp. 1-456).

Yamaura, T., & Onoma, A. K. (2002). University
software education matched to social requests, Cyber
Worlds, Proceedings. First International Symposium,
(pp. 331–336).

Ye, Y. (2002). An Empirical User Study of an Active Re-
use Repository System. Proceedings of 7th International
Conference on Software Reuse, (pp. 281-292).

Ye, Y., & Fischer, G., (2002). Supporting Reuse by De-
livering Task-Relevant and Personalized Information.
Proceedings of International Conference on Software
Engineering, (pp. 513-523).

Yourdon, E. (1989). Modern structured analysis. Engle-
wood Cliffs: Yourdon Press.

Yuan, M. (1996). Modeling semantical, temporal, and
spatial information in geographic information systems.
In M. Craglia & H. Couclelis (Eds.), Geographic Infor-
mation Research: Bridging the Atlantic (pp. 334-347).
London: Taylor & Francis.

Yuan, M. (1999). Use of a three-domain representation
to enhance GIS support for complex spatiotemporal
queries. Transactions in GIS, 3(2), 137-159.

Zhou, J., & Baumann, P. (1992, October 7-9, 1992).
Evaluation of complex cardinality constraints. Paper
presented at the 11th International Conference on the
Entity-Relationship Approach, Karlsruhe, Germany.

Zimányi, E., Parent, C., Spaccapietra, S., & Pirotte, A.
(1997, November 26-28). Terc+: A temporal conceptual
model. Paper presented at the International Symposium
on Digital Media Information Base (DMIB ‘97), Nara,
Japan.

 281

About the Contributors

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Akhilesh Bajaj is Chapman associate professor of MIS, at the University of Tulsa. He received a B
Tech in chemical engineering from the Indian Institute of Technology, Bombay in 1989, an MBA from
Cornell University in 1991, and a PhD in MIS (minor in computer science) from the University of Ari-
zona in 1997. Dr. Bajaj’s research deals with the construction and testing of tools and methodologies
that facilitate the construction of large organizational systems, as well as studying the decision models
of the actual consumers of these information systems. He has published articles in several academic
journals such as Management Science, IEEE Transactions on Knowledge and Data Engineering, Infor-
mation Systems and the Journal of the Association of Information Systems. He is on the editorial board
of several journals in the MIS area. His research has been funded by the department of defense (DOD).
He teaches graduate courses on basic and advanced database systems, management of information
systems, and enterprise wide systems.

* * *

Ozlem Albayrak currently teaches at Bilkent University, computer technology and information systems
(CTIS) Department, Turkey. Her current research interests include software engineering education,
requirements engineering, software quality and empirical software engineering. She has graduate level
studies on information systems at University of Maryland College Park, USA. She received her PhD
from Ankara University (Financial Information Systems), MBA (Management Information Systems)
and CS degrees from Bilkent University. For more than 10 years, she worked as a software engineer at
all levels of software development. Contact her at Bilkent University, CTIS 06800 East Campus, Bilkent
Ankara/ Turkey. ozlemal@bilkent.edu.tr. http://www.bilkent.edu.tr/~ozlemal/

Jeff Crawford is an assistant professor in the School of Accounting and Management Information Systems
at The University of Tulsa. He holds a PhD in management information systems from The University
of Oklahoma and an MS in telecommunications management from Oklahoma State University. Prior
to his academic career, Jeff spent 7 years managing software development projects within the financial
services sector and several years serving as a computer network consultant. Jeff’s research interests
include IT project management, small group dynamics, and IT innovation and adoption within organiza-
tions. His research has been published in the Proceedings of the Americas Conference on Information
Systems and the Symposium on Research in Systems Analysis & Design, and has been presented at the
International Conference on Information Systems, the Annual Meeting of the Academy of Management
and the DIGIT Workshop.

282

About the Contributors

Faiz Currim is an assistant professor in the Department of Management Sciences, Tippie College of
Business, at the University of Iowa. Dr. Currim has published articles in journals like Data and Knowl-
edge Engineering and Communications of the ACM. His research interests like in the area of databases
and data management. This includes conceptual data modeling, database constraints, applications in
healthcare, management of spatial and temporal data, XML Schema, and RFID data management.

Dariusz Dymek received the MS degree in Mathematics from Institute of Mathematic, Jagiellonian
University, Kraków, 1989, the MS degree in computer science from Institute of Computer Science,
Jagiellonian University, Kraków, 1991, and the PhD degree in economics from Cracow University of
Economics, Krakow, 2000. He works as assistant professor at the Department of Computer Science at
the Cracow University of Economics. His research interests include project management, information
systems, risk management, software quality management and software development methodology.

Roy Gelbard is head of the Information System Program at the Graduate School of Business Admin-
istration, Bar-Ilan University. He received his PhD and MSc degrees in Information Systems from
Tel-Aviv University. He holds also degrees in biology and philosophy. His main areas of interest are:
(i) software engineering and software project management; (ii) data and knowledge modeling for data
mining and decision-making.

Jason Knight was an undergraduate MIS student at the University of Tulsa as the time of this project.
His research was partially funded by the Tulsa Undergraduate Research Colloquium.

Leszek Kotulski received the MS degree in Computer Science from Institute of Computer Science,
Jagiellonian University, Kraków, 1979, the PhD degree in computer science from AGH University of
Science and Technology, Krakow, 1984, and the DSc degree in theoretical computer science from Wro-
claw University of Technology, Wrocław, 2002. He works as a professor at AGH University of Science
and Technology. His research interests include graph grammars, foundation of distributed computing,
agents systems and software development methodology. Prof. Kotulski is member of ACM.

Michael Lang is a lecturer in information systems at National University of Ireland, Galway. His principal
research interest is methods, approaches, and techniques for business information systems analysis and
design. His research has been published in a number of international journals and conferences, includ-
ing Information Systems Management, Requirements Engineering, IEEE Software, IEEE Multimedia,
Information & Software Techology, and Communications of the AIS. You may visit his personal Web
page at: http://www.nuigalway.ie/bis/mlang/

Angela M. Mattia is an information systems doctoral candidate in the School of Business at Virginia
Commonwealth University in Richmond, Virginia. Her current research interests include project man-
agement and information systems development, particularly the influence of social networks in these
domains.

Przemyslaw Polak is an associate professor and the Head of the Center for Software Technology in the
Department of Business Informatics (Information Systems) at the Warsaw School of Economics. He is
also an independent consultant in the field of Information Systems and Information Technology. Born in

 283

About the Contributors

1967 in Warsaw, Poland, he graduated in 1992 and received a PhD in 2002 from the Warsaw School of
Economics. He was granted scholarships from the British Council (Department of Management Science,
Strathclyde University, Glasgow, UK) and the Canadian Consortium of Management Schools (Faculty
of Management, University of Calgary, Canada). He received teaching mobility grants to lecture at the
Fachhochschule Nordostniedersachsen, Germany and the Hasselt University, Belgium.

Sudha Ram is McClelland professor, management information systems in the Eller College of Manage-
ment at the University of Arizona. Dr. Ram has published articles in such journals as Communications of
the ACM, IEEE Expert, IEEE Transactions on Knowledge and Data Engineering, Information Systems,
Information Systems Research, Management Science, and MIS Quarterly. Dr. Ram’s research deals with
issues related to Enterprise Data Management. Specifically, her research deals with Interoperability
among Heterogeneous Database Systems, Semantic Modeling, BioInformatics and Spatio-Temporal
Semantics, Business Rules Modeling, and Automated software tools for database design. Dr. Ram serves
on editorial board for such journals as Information Systems Research, Decision Support Systems, Infor-
mation Systems Frontiers, Journal of Information Technology and Management, Journal of Database
Management, and the Journal of Systems and Software. She is the director of the Advanced Database
Research Group based at the University of Arizona.

Andreea Sabău graduated in 2001 the Faculty of Mathematics and Computer Science, Babes-Bolyai
University, Cluj-Napoca, Romania. She followed the master’s degree program “Databases in Internet
and Electronic Commerce” between 2001 and 2002 within the same institution. She obtained my PhD
with the thesis “The Management of Spatio-Temporal Databases” in 2007, under the supervision of Prof.
Dr. Leon Tambulea. Her research interests are in the areas of modeling the spatio-temporal data and
designing and implementing spatio-temporal access methods. She joined the Department of Computer
Science of the Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca,
Romania in 2002 as teaching assistant, and since February 2008 she became an assistant professor within
the same department. Her teaching activity includes seminars and laboratory classes for the Databases
course, and the courses of transaction management and distributed databases, semistructured data and
electronic commerce.

Kumar Saurabh works as a manager in Satyam Learning Center, Satyam Computer Services Ltd.
Hyderabad, India. He is author of the book entitled “Unix Programming- The First Drive” published by
Wiley Publications. He has over 6 years of professional experience in systems performance and capacity
planning, UNIX internals, device drivers and Kernel programming, systems design and architecture,
reliability and availability, operations research, simulation and modeling, system dynamics, software
engineering, and network technologies. He has designed several systems stability and software con-
sistency related methodologies to analyze and quantify hardware and software performance/capacity
and availability/reliability related issues. Over the years, he has conducted several large-scale systems
performance and capacity planning projects in a wide range of professional environments such as science
& research, software companies and R & D products. Specific areas of expertise include UNIX systems
architecture, design, setup, and maintenance, UNIX operating systems, I/O subsystem performance,
performance modeling and simulation, operations research, device drivers and Kernel technologies,
and all phases of the SDLC. He authored over twenty papers in international journals, proceedings of
the international conferences. He is life member of ISTE. He will receive his PhD degree from Devi

284

About the Contributors

Ahilya University, Indore, India shortly. He is M Tech from the same University and M Sc in computer
science from Bhopal University, India.

Heinz Roland Weistroffer is an associate professor of information systems in the School of Business at
Virginia Commonwealth University in Richmond, Virginia. His research has appeared in such journals
as IEEE Transactions on Software Engineering, Journal of Computer Information Systems, Expert Sys-
tems, Journal of Multi-Criteria Decision Analysis, Socio-Economic Planning Sciences, and Computational
and Mathematical Organization Theory. His current research interests include information systems
development, decision support, and information technology for development.

 285

Index

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

A
abstract interface items 147, 148, 149, 150
accomplish relation (AR) 44
adaptation costs 156
AIG toolkits 152
appearance constraints 28
applicability bounds 37
Association for Computing Machinery (ACM)

91, 94
Association for Information Systems (AIS)

91, 94
Association of Information Technology Profes-

sionals (AITP) 91, 94
associative multiplicity 29

B
behavioral model 260
behaviors of software architectures 246
bi-temporal data 2
blogs 169, 171
Bologna declaration 90
build time 185
business rules frameworks 35

C
cardinality 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 39, 40, 137, 148
cardinality for attributes 26
cardinality rules 26
cardinality semantics 27
CASE tools 26, 38, 55, 70, 93, 117, 132, 1

35, 140

causal loop diagram 112, 113
C-EPC notation 188
Chrono conceptual model 34
complete UI 152
complex software systems 243
component 245, 249, 251, 252, 253, 254,
 256, 258, 259, 260
composition analysis 256
composition correctness 254
composition level specifications 252
compositions 245
computational tree logic (CTL) 258
configurable connectors 189
configurable EPC 187
configurable functions 188
configurable reference model 188
configurable reference modeling language 180,

185, 186
configurable reference process model 182
configuration 181
configuration guidelines 189
configuration requirements 189
configuration time 185
configuration using configurable EPCs 190
configured connectors 192
conformance testing 195
connector 245, 250, 252, 253, 256, 259,
 260
constraints for the configuration of connectors

189
continuous evolution 2, 5, 9, 12
co-occurrence constraints 28

286

Index

cost-benefit 154, 156
coverability tree 255

D
data warehouses 42
DEACON method 220, 231
dependability attributes using SAM 257
deployment of system theories 96
derivation rules for configured functions 192
design-by-committee syndrome 175
designer-encapsulated factors 167
designing software architectures 250
design principles 185
design time 185
discrete evolution 9, 10
dynamic semantics of PrT Nets 247

E
element (component/connector) correctness

254
element instances 253
element level analysis 255
element level specifications 251
end-to-end latency 258
enhanced browser capabilities 161
enterprise resource planning (ERP) 181
enterprise systems (ES) 181
entity-relationship modeling (ERM) 196
entity-relationship-time (ERT) 33
evaluation windows 37
event-driven process chains (EPCs) 183

F
fault-tolerance 258
feature creep 173
firing rate 106
first order temporal logic 254, 256, 259, 262
formal analysis techniques 254
formalised organisational guidelines 174
formal methods xii, 243, 250, 258, 259, 260
formal software architecture analysis 254
formal verification 259

G
general inspection 117, 119, 121, 124
graph reduction 192

graph repository 44, 45, 55
graph transformations mechanism 44
grounded theory (GT) 166
group development

15, 16, 17, 18, 20, 21, 22, 24

H
heuristics 62, 63, 169, 251, 252, 253, 260
Hevner’s fifth guideline 204
high-level Petri net 259, 260
hiring rate 106
human computer interaction (HCI) 145, 146
hypermedia design 175

I
independent business 203
information system development approaches

(ISDA) 62
information systems development (ISD)

58, 59
information systems (IS) 58, 202
instant messaging (IM) 59
institutions under obligation (IUO) 117
interaction overview diagrams 140
International Federation for Information Pro-

cessing (IFIP) 91
intrinsic design context 171
IS 2002 91, 93, 94, 95
ISD tangible 59

K
kernel theories 204

L
Light UML 134
load balancing 42, 43, 54, 56
lookacross 29, 30
low-level Petri net 254, 259

M
management technology 98
Massachusetts Institute of Technology (MIT)

99
“Method-in-Action” model 166
micro-level research 65

 287

Index

Microsoft IIS(Internet Information Services)
131

mining configurable reference models 194
model-based interface development tools 145
model checking 254, 255, 261
model checking technique 255
MSIS 2000 91, 93, 94

P
participation 28, 29, 30, 34, 36, 58, 62,
 63, 64, 65
participation constraints 28
Petri net 245, 249, 251, 252, 254, 257,
 258, 259, 260
potential configurable reference model 188
potential reference model 184
pragmatic satisficing 173, 175
predicates 249
predicate symbols 249
predicate transition net 246, 258, 260, 262
pre-fabricated “productised” solutions 173
process-aware information systems 181
process discovery 195
process mining 194
process mining techniques 195
process-orientation 181
projection constraints 28, 30
project success 16, 17, 22
property specification 245, 246, 251, 252,
 253, 254, 256, 257, 259, 260
propositional temporal logic 254
PrT net 246, 248, 249, 250, 251, 253, 255,

257, 258
PrT Net 246
punctuated equilibrium (PE) 15, 16

R
reachability tree 255, 256, 258
reachability tree technique 255, 256, 258
reference model lifecycle 185
reference models 181, 182, 194
refinement analysis 257
refinement correctness 254
relational mapping 147, 148, 149
relationships, attributes, keys and entities

(RAKE) 32

relationship sets 148
relationship types 198
Reliability 258
reporting data mart 43, 48, 49
reputation and trust management system

(RTMS) 202
reputation mechanisms 205
reuse models 156
rigid function 249
rigid variables 249
rites of passage 15, 18, 19, 22
RTMS artifact 204
run time 185

S
SAM 245, 246, 249, 250, 252, 253, 254,
 257, 259, 260
SAM architecture properties 249
SAM software architecture 245
Schedulability 258
SEACON method 219, 222, 229, 230, 231,

238, 239
secure location model 219, 220, 224, 232
security 258
security risk register

223, 226, 227, 228, 232, 237
security risks 223, 226
semantic temporal EER 32
service oriented architecture 93
SHIPIT secure network architecture 237
simple EER schema 151
social identity 15, 18, 19, 20, 21
software architecture 243, 244, 246, 250,

251, 252, 254, 257, 258, 260
software architecture model (SAM) 245, 251
software architecture specification

245, 250, 252, 254, 260
software component 260
software development (SD) 16
software engineering 68, 69, 85, 91, 178
software engineering education 68, 85
software marketing management (SMM) 110
software reuse 154, 155, 156, 160
Sparx Systems Enterprise Architect CASE tool

136
spatio-temporal data 1, 2, 3, 4, 12, 13

288

Index

spatio-temporal databases (STDB) 1
specification 57, 116, 143, 153, 223, 232,
 243, 245, 246, 247, 248, 250, 251,
 252, 253, 254, 256, 257, 258, 259,
 260, 263
specification 252, 253
state functions 249
state-of-the-art practices 182
states 249
state variables 249
structures of software architectures 245
Syntax and Static Semantics of PrT Nets 246
system dynamics 99, 100, 101, 103, 104
system engineering activities 99
system engineering concepts 96
system properties in temporal logic 250
system simulation analysis and design 100
system theory 97

T
teaching systems analysis and design

69, 85, 87
temporal EER (TEER) 32
temporal entity-relationship (TER) 33
temporal event-entity relationship model

(TEERM) 34
temporal formulas 250
temporal identity 15, 16, 18, 19, 20, 21
temporal logic 245, 249, 250, 251, 254, 255,
 256, 257, 258, 259, 260
temporal logic formula 245, 249, 250, 258
temporal objects 1, 2, 3, 4, 5, 6, 10, 11
temporal success 15, 16, 19, 20, 22, 24
TERC+ 34, 37
theorem proving 256
theoretical saturation 163, 165
timing diagrams 42, 43, 46, 47, 48, 50,
 51, 52, 53, 54, 55

transaction time 2, 6, 7
transitions 249

U
UI mapping 147, 148, 149
UML 2.0 55, 57, 115, 116, 117, 131, 132,

133, 135, 136, 143
UML 2.x 46, 134, 135, 136, 140, 141,
 142, 143
UML complexity 136, 137
UML(VR) 55, 57
unified modeling language (UML)

2, 25, 43, 115, 134
use cases 42, 47, 49, 74, 116, 120
user interface (UI) 145, 146
user participation approach (UPA) 58, 59, 62

V
valid time 2, 6, 7
values 249
variation points 186
verification 244, 254, 256, 258, 259, 261
verification technique 256
vertical consistency 43, 44, 55
visibility 29, 30, 143

W
Warsaw School of Economics (WSE) 92
“Waterfall” software development model 170
Web-based systems development 161
Web designers 162, 167, 170, 173
Web development 161, 162, 163, 164, 165,

169, 171, 172, 173, 174, 175
Web environment 172
Wiki’s 169, 171
Windows Server 2003 131
workforce 106
Wroclaw University of Economics (WUE) 92

	Title
	Table of Contents
	Detailed Table of Contents
	Preface
	3SST Model:A Three Step Spatio-Temporal Conceptual and Relational Data Model
	An Identity Perspective for Predicting Software Development Project Temporal Success
	Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models
	On the Load Balancing of Business Intelligence Reporting Systems
	Information Systems Development: Understanding User Participation as a Social Network
	Solutions to Challenges of Teaching “Systems Analysis and Design” for Undergraduate Software Engineers
	Systems Analysis and Design in Polish Universities Curricula: Structured or Object-Oriented
	Systems Engineering Modeling and Design
	UML 2.0 in the Modelling of the Complex Business Processes of Reporting and Control of Financial Information System
	The UML 2 Academic Teaching Challenge: An Integrated Approach
	User Interface Generation from the Data Schema
	Decision Rule for Investment in Reusable Code
	Web-Based Systems Development: An Empirically-Grounded Conceptual Framework
	Configurable Reference Modeling Languages
	Designing Reputation and Trust Management Systems
	SEACON: An Integrated Approach to the Analysis and Design of Secure Enterprise Architecture–Based Computer Networks
	Formal Methods for Specifying and Analyzing Complex Software Systems
	Compilation of References
	About the Contributors
	Index

