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Preface

In my previous book entitled “Control Theory of Non-linear Mechanical Sys-
tems” published in 1996 through Oxford University Press, I mentioned at its
preface the difficulties of understanding human motor control and realizing in
mechanical robots everyday powers inherent to humans. Regrettably, I could
not discuss in that book any control–theoretic problem of dexterity in human
or mechanical hands from not only biological but also computational view-
points. Directly after my move to Ritsumeikan University in 1997, I started
a research project on control of multi-fingered hands with the intention of
exploring what is the underlying functionality of the human hand in prehen-
sion (stable grasping). Indeed, there was a dearth of papers that discussed the
derivation of any dynamic model of grasping under rolling constraints.

In this book I attempt to provide a study of robotic prehension (stable
grasping and object manipulation) from computational perspectives based
upon Newtonian mechanics. The principal approach is grounded on the deriva-
tion of a faithful mathematical model of grasping that is a physical interac-
tion between the fingerends and the object through rolling contacts. In the
sequel, Lagrange’s equation of motion of the overall fingers/object system is
formulated, together with holonomic or non-holonomic constraints of contact
and rolling, on the basis of the variational principle developed in analytical
mechanics. The most essential functionality of prehension that is referred to
for designing a coordinated control signal is the fingers–thumb opposability
that distinguishes the mankind from the chimpanzee and other primates, as
claimed in anthropology. Stable grasping is regarded in a dynamic sense as
a transient behaviour of a solution to the closed-loop equation of system dy-
namics that should converge to an equilibrium state or manifold satisfying
the balance of forces and torques exerted on the object.

I hope that this book will facilitate further indepth research works that
unveil the secrets of dexterity and versatility of the human hand and make a
contribution to the technological development of dexterous robot hands.
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1

Characterisations of Human Hands

It is said that the hand is an agency of the brain. It reflects activities of the
brain and thereby it is a sort of mirror to the mind. It is the hand that is the
most intriguing and most human of appendages.

This chapter firstly discusses why the human hand has attracted so many
research workers from a variety of different scientific domains including de-
velopmental psychology, neuro-physiology, kinesiology, anthropology, biome-
chanics and robotics. Napier’s book entitled “Hands” points out that mankind
separated several millions of years ago from the apes, who are intrinsically
brachiators. In the process of evolution, the human thumb has become fat
and long and acquired opposability to other fingers (index or/and middle fin-
gers). In the process of the perfection of fingers–thumb opposition, humans
have acquired dexterity, versatility, and multi-purpose functionality of the
hand, which has driven humans from tool-users to tool-makers. The second
part of this chapter focuses on a study of the functionality of the human hand
in grasping and prehension based upon such fingers–thumb opposability. One
important question is addressed, that is what kind of physical (or mechanics)
and neuro-physiological principles might be involved in the execution of pre-
cision prehension. Another question is also posed, that is, whether a complete
mathematical model of grasping can be developed and used to validate con-
trol models of prehensile functions. In the third part, the problem of everyday
physics is discussed in relation to Bernstein’s degree-of-freedom (DOF) prob-
lem. The human hand has many joints and is therefore redundant in DOF,
yet it is blessed with dexterity. In the last part, the least but necessary fun-
damentals of analytical mechanics based upon the variational principle are
summarised, based upon Newton’s laws of motion.

1.1 What Has Evolved the Human Hand?

What distinguishes humans from other primates? Anthropology differentiates
humans by four hallmarks 1) biped walking, 2) tool-making, 3) use of fire,
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and 4) speech communication. The analysis of sequences of genes in human
deoxyribonucleic acid which are coincident with those of the chimpanzee at
the rate of 98% reveals that mankind separated around several millions of
years ago from chimpanzees. According to the analysis of fossil remains of
bones that belonged to Australopithecus afarensis (which appeared of a few
millions years ago, the oldest mankind according to the present state of the
art of fossilology based upon fossil bones to date), the ancesters of mankind
already walked in a bipedal manner adduced by the shape of leg bones (crura).
The South African Australopitheceins were already adapted to ground living
by having become free from brachiation of locomotion style, swinging from
branch to branch as among most apes. Differently from living in the trees in a
forest, ground-living in a steppe of the Great Rift Valley of Africa did not allow
our human ancesters to obtain a regular supply of food. They were forced to
hunt small animals like hare and deer. They needed to develop a strong digit
for gripping sticks and stones and vigorous pounding and throwing. According
to John Napier’s book “Hands” [1-1], a fossil thumb metacarpal of the South
African Australopithecs found complete and undamaged has a good saddle
joint at the base of the bone. The bone itself was exceptionally robust and
the strong muscular markings indicate powerful action of the thumb. However,
no stone tools we found in association with the fossil bones, and stone artifacts
do not appear in the fossil record until 2.5 million years ago.

The transition from tool-users to tool-makers certainly ocurred between
the period of the fossil Australopithecus afarensis (3 millions of years ago)
and that of the so-called “handyman”, the fossil Homo habilis (1.75 million
years old), which was discovered in 1960 at Olduvai Gorge, Tanzania. After
explaining that “the most striking human features are the breadth and poten-
tial power of the terminal phalanges, particularly of the thumb, which clearly
carried a broad flat nail” and showing a photograph of the hand bones of
Homo habilis, Napier says in the book “Hands”:

“In combination with a very well developed saddle joint, the thumb gave
the appearance of a notably strong digit.

Functionally, it is very probable that the power grip was well developed and
effective but there is some doubt about precision grip that, while undoubtedly
possible, may not have been as fully evolved as in present-day humans.”

Handymen could already make simple stone artifacts called pebble choppers
and handy stone axes.

The most important movement of the human hand is opposition as was
claimed by Napier in the same book “Hands”, which gives the following defi-
nition:

“Opposition is a movement by which the pulp surface of the thumb is
placed squarely in contact with – or diametrically opposite to – the terminal
pads of one or all of the remaining digits”



1.1 What Has Evolved the Human Hand? 3

Fig. 1.1. A statue of the human hand symbolising the power and greatness of the
thumb. This status was installed in Tokyo by the Japanese Association of Finger-
Pressing Therapists

During the transition from tool-using to tool-making, the human hand must
have evolved steadily. Evolution of the saddle joint of the thumb promotes its
movements of flexion and rotation toward making easy contact with another
digit (index or middle finger). Fingers–thumb opposability enables the human
hand to carry out prehensile movements of the fingers to hold an object se-
curely. There are two main patterns in prehensile grasping, the precision grip
(or grasp) and the power grip (or grasp). The two grips are defined as follows:

The precision grip occurs between the terminal digital pad of the opposed
thumb and the pads of the fingertips. Large objects held in this way involve
all the digits, and small ones require only the thumb, the index, and the
middle digits. Smaller objects may be pinched specifically between the thumb
and index (or middle) finger, which should be adapted to perform fine control.

The power grip is executed between the surface of the fingers and the palm
of the thumb, which acts as a buttressing and reinforcing agent.

Today we live without being conscious of the power or skill of the thumb.
Even though we notice the power of the thumb, we easily grasp and manipulate
all kinds of objects in our everyday life without being aware of the functions
of precision grip that underlie in execution of object grasping and manipula-
tion. According to the dictionary of English, “he is all thumbs” means “he is
quite clumsy” However, nowadays not only youngsters but also elderly people
use primarily the thumb in pushing buttons of their cell phones or remote
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Fig. 1.2. A sketch of the hand of Amidabutsu which is considered to have been
separated from an old wooden buddha made in the eighth century. Presently the
hand is owned by the gallery of Harvard University

Fig. 1.3. A photograph of human execution of stable and beautiful precision grasp
based upon fingers–thumb opposability

control for channel selection or volume control of their television sets. Figure
1.1 shows a photograph of a statue of the human thumb, symbolising the
power and sophistication of the thumb in finger-pressing therapy. It has been
installed in front of the Dentsuin temple in Tokyo, dedicated by the Japanese
association of finger-pressure therapists. Figure 1.2 shows a sketch of the hand
of Amidabutsu which was an appendage to an old wooden statue of Buddah
presently belonged to the gallery of Harvard University, USA. A terminal pad
of its middle finger was missing, unfortunately. Nevertheless, it is possible to
suppose from the religious meaning of the shapes of Buddah’s fingers that
the fingertip of the middle finger might have been lightly contacting with the
thumb’s terminal pad in a beautiful example of fingers–thumb opposition.
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Figure 1.3 shows how elegantly and beautifully a human hand can pinch an
object by unconsciously using the thumb and index finger in everyday living.

1.2 Dexterity in Redundancy of Finger Joints

The hand of Homo sapiens represents millions of years of evolutionary pres-
sures and changes. Again, let us quote Napier’s book [1-1], in which he lists
names of his three heroes, Charles Bell, John Hunter and Charles Darwin,
and citing John Hunter’s principle that structure was the intimate expression
of function and function was conditioned by the environment, he writes:

“John Hunter turned our attention from the structure of the hand to its
function; Bell related the function of the hand to the environment; and Darwin
demonstrated that the environment, by process of natural selection, gave birth
to structure.”

Let us also quote a few phrases from the book entitled “The Grasping Hand”
by Christine L. Mackenzie and Thea Iberall [1-2]:

“The human hand is a highly complex structure that in many ways defies
understanding.” “The hand consists of five digits made up of a collection of
bones, muscles, ligaments, tendons, nails, and vascular structures encapsu-
lated by skin.” “Thousands of sensors in the skin, muscles, and joints let the
brain know its current state.” “Yet, what are the functions supported by that
form?”

This last sentence is really our incentive to pursue research on multi-fingered
hand from the robotics veiwpoint. It is the goal of this book to identify the un-
derlying functionality of the human hand in prehension. It attempts to unveil
which physical and/or mathematical principles might work in the derivation
of computational models of prehensile functions and the construction of coor-
dinated control signals (that must emanate from the central nervous system,
CNS, in the case of human hands) towards the perfection of precision grasp-
ing and object manipulation. Our approach is based on the assumption that a
complete model of grasping must be developed and validated both computa-
tionally and experimentally through creation of a robot hand. In other words,
the book is devoted to the first trial of understanding and exploring what
are the functions of the human hand from the standpoint of Turing (or AI,
artificial intelligence) and robotics. A designed and constructed multi-fingered
robot hand must eventually be controlled by a computer, an artificial central
nervous system.

In fact, there is no need to resort to Alan Turing’s computer and Alonzo
Church’s lamda calculus to argue that a line cannot be drawn between software
and mathematical expression [1-3].
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Fig. 1.4. Configuration of the joint variables of the thumb, where q0 denotes the
angle of rotation around the x-axis and q1, q2 and q3 denote the angles of rotation
around the z-axis perpendicular to the xy-plane

In this book, we focus on the functional aspects of the problem of precision
prehension with the intention of implementing such functions in a robotic hand
to promote its dexterity. In particular, our attention is focused on the problem
of what kind of functionally effective forces from the fingertips should be ap-
plied to an object under numerous constraints for a given task with specified
demands such as force/torque balance, stability, orientation control etc. We
must bear in mind the fact that the forces to be applied to an object should be
originally generated at finger joints as a rotational moment torque, that is, the
object is not directly regulated from finger-joint torques but indirectly con-
trolled by interactive constraint forces between fingertips and object surfaces
under existence of external forces such as gravity that affect the object.

For the purpose of developing a mathematically faithful but physically
simplified model of grasping, we devote our attention to the fact that the
human thumb has three joints but it has four DOFs since its third joint, named
the carpometacarpal joint, is of saddle type and is almost freely movable as
a ball-and-socket joint (see Figure 1.4). The index finger can be flexed or
straightened (extended) at the finger joints between the phalanges (see Figure
1.5). It has three joints and three DOFs that generate planar motions with
rotational axes of the common direction, which is described in Figure 1.5 by
the z-axis.

The ultimate goal of this book is to establish a mathematical model of
the dynamics of object grasping by means of a pair of robotic fingers with
similar mechanisms to the human thumb and index finger (see Figure 1.6).
The dynamics of the setup of such a fingers–object system must be subject to
contact constraints between the fingertips and object surfaces. The physical
conditions of this contact must vary depending on rolling between the finger-
tip and object surfaces. The conditions also differ depending on whether the
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fingertips are rigid or soft and deformable. Behind the overall structure of the
fingers–object system, there may arise a problem of redundancy of DOFs. In
Figure 1.6 the right finger has only three DOFs, one joint with one DOF and
another, saddle joint with two DOFs. Therefore, this right-hand finger is not
a robotic thumb. However, is this physical setup of robotic fingers capable of
grasping an object in a similar way to human pinching using the thumb and
index finger? Numerous questions regarding the problem of prehensility may
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arise even if considerations are limited to grasping and object manipulation
by means of robotic fingers.

1.3 Bernstein’s DOF Problems

The source of the complexity in the structures of mechanisms and fingers–
object system when it is involved in grasping and object manipulation is re-
lated to the famous Bernstein problem of overcoming excessive degrees of free-
dom (DOF) [1-4][1-5]. During virtually all voluntary movements of the limb,
the number of kinematic degrees of freedom, which can be associated with the
number of independent axes of joint rotation summed over all the joints of the
limb concerned, is higher than the number of variables necessary to execute a
motor task or to describe its execution. Specifically, in the problem of grasping
an object by means of a pair of multi-jointed fingers, the number of DOFs
should be discounted by the number of contact and rolling constraints. If other
constraints that must be called non-holonomic constraints are involved in the
motion of the overall system, it is uncertain how many DOFs are involved
in the motion dynamics. Even in the simpleset case of single-arm movement
of point-to-point reaching, in which motion is confined to a horizontal plane,
the Bernstein problem has not yet been completely solved not only from the
viewpoint of neuro-physiology but also from various viewpoints of develop-
mental psychology, kinesiology, biomechanics and robotics. Indeed, consider
the multi-joint reaching problem shown in Figure 1.7, where the task is to
manoeuvre the planar arm with four joints (shoulder, elbow, wrist and finger-
root joints, each of which has a single DOF) to let the arm endpoint reach
a given target position P = (xd, yd) in the xy-plane. Even if we assume that
all joints have a common axis in z-direction perpendicular to the xy-plane,
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there exist an infinite number of possible solutions to inverse kinematics, that
is, from the two-dimensional space (x, y) of the task description to the four-
dimensional configuration space composed of all possible combinations of joint
angles q = (q1, q2, q3, q4) that satisfy x(q) = xd = (xd, yd), where x = (x, y).

There is a vast literature on this simple multi-joint point-to-point reaching
problem not only from the areas of neuro-physiology, kinesiology and devel-
opmental psychology but also from robotics. In its history of almost a half
century, a great number of papers have made various proposals for how the
brain makes sensible choices among the myriad possibilities for movement that
the limb offers and how we can figure out what signals the brain transmits to
the many muscles involved in limb movement. Unfortunately, most joints of
human limbs have more than one axis of rotation and are controlled by more
than two muscles (agonist and antagonist muscles). In addition, a movement
in one joint may lead to a change in the relation between the muscle force
and joint torque. Thus, various active muscle forces may be required to bal-
ance a constant external force. In the following we summarise some important
hypothetical proposals for understanding of human multi-joint movements:

1) Equilibrium-point hypothesis.
2) Minimum-jerk hypothesis.
3) Virtual-trajectory hypothesis.
4) Minimum-torque-change hypothesis.
5) Internal-model hypothesis.
6) Virtual spring/damper hypothesis.

The first hypothesis was originally proposed by Anatol G. Feldman in 1966
[1-6] and later in 1986 [1-7] called the λ-model. By introducing the controllable
mechanical parameter λ of the zero length of the muscle, he hypothesised that
shifts in the threshold λ of the stretch reflex result in active movements of
joints and give rise to a shift in the equilibrium state. This hypothesis was
reinterpreted by I.A. Bizzi in 1976 [1-8] and N. Hogan in 1984 [1-9] on the
basis of observations of spring-like behaviours of muscles in such a way that
net spring-like forces, each of which depends on the muscle length, determine
the ultimate equilibrium state. From the standpoint of the interpretation of
muscle activities evoked by neuro-motor signals from the CNS, the equilibrium
point hypothesis has subtle differences from that of Feldman and Bizzi to that
of Hogan. In 1981 [1-10], Morasso observed that skilled human movement of
multi-joint point-to-point reaching had the following characteristics:

1) The profile of the endpoint trajectory in task space becomes a quasi-
straight line,

2) the velocity profile becomes symmetric and bell-shaped,
3) the acceleration profile has double peaks,
4) each time history of joint angles qi(t) and angular velocities q̇i(t) may

differ for i = 1, 2, · · · , 4.
Then, based on this observation, a formalism of using dynamic optimi-

sation theory to determine the reaching movement was proposed by Hogan
in 1884 [1-9] and the concept of a virtual trajectory was introduced, which
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could be applied by minimising the rate of change of acceleration (jerk) of the
limb. This principle for a class of voluntary movements is called the virtual-
trajectory or equilibrium-point trajectory hypothesis. Since then, a variety of
criteria or performance indices has been proposed not only for the endpoint
trajectory in task space but also at the level of joint trajectories in joint space
such as minimum joint jerk, minimum torque change, and minimum driving
force change. In parallel with this optimisation formalism for movements of
multi-joint reaching, robotics was concerned with redundancy resolution to
overcome the ill-posedness of inverse kinematics or dynamics in the case of
excess DOFs. Thus, roboticists took advantages of full computations of the
pseudo-inverse of a non-square m × n Jacobian matrix of task coordinates in
m-dimensional task space with respect to joint coordinates in n-dimensional
joint space when n > m. A variety of optimisation criteria for uniquely de-
termining the arm endpoint trajectory were proposed such as the maximum
manipulability index, minimum acceleration, minimum torque, etc. Neverthe-
less, no evidence has been found or observed to support the hypothesis that
the brain executes complex computations of the pseudo-inverse of Jacobian
matrix and mathematical optimisation in joint level, including computations
of boundary-value problems.

On the other hand, the EP hypothesis based upon spring-like forces is su-
perficially regarded as feedback-based control. However, experimental results
and numerous observations obtained in neuro-physiology indicate that, in the
case of fast voluntary movements of human limbs, open-loop (or feedforward)
control based upon anticipation is predominant, because dynamic movements
appear with a time delay relative to the electromyographic signal by a mag-
nitude of about 70 ∼ 100 [ms]. Furthermore, the process of sensing through
joint receptors, tendon receptors, and muscle spindles and transferring the
sensed information to the spinal chord has latency times between 30 and 70
[ms]. More substantially, medium-scale muscle contractile actions last at least
100 [ms]. Decisively, M. Ito discovered the fact that the vestibulo-ocular reflex
loop (see Figure 1.8) has no direct sensory feedoback path from the CNS and
therefore the regulation of an ocular target against eyeball movements must
be executed in a feedforward manner [1-11][1-12]. Thus, the EP hypothesis
was caught in a dilemma of whether to avoid computational complexity or
to counter-balance the lack of feedback loops from the CNS with some other
formalisation [1-13].

Thus, the internal model hypothesis was proposed to support the predom-
inancy of open-loop control on the basis of anticipation for fast voluntary
movements. It postulates that an internal model that eventually sends neuro-
motor signals to muscles to faithfully reconstruct a joint trajectory can be
organised in the cerebellum based on learning through a series of previous
practices (see Figure 1.8). This hypothesis was extended by M. Kawato [1-14]
to claim that “inverse dyamics through error-feedback learning” may be or-
ganised in the cerebellum. However, error-feedback learning does not match
numerous observations of human learning provided by many developmental
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Fig. 1.8. A signal flow graph of the vestibulo-ocular reflex loop

psychologists [1-15]. Almost 60 years ago, N. Bernstein already wrote that:

“What develops is never a moving pattern, and the repetition of one movement
pattern is by no means a guarantee that that pattern will be imprinted or more
likely to occur in future. What one learns is how to solve a motor problem or
how to act.”

These statements are seen on p. 437 of the article written by E.S. Reed and B.
Bril included in the book edited by M.L. Latash and M.T. Turvey and entitled
“Dexterity and Its Development” published in 1996 [1-5]. It is surprising that
the total of seven esseys included in the book had been written by Bernstein
in Russian more than 60 years ago. In Bernstein’s essay 6 in the book [1-5],
he noted further:

“stable forms [of action] have all the prerequisites for being easily reproducible
and, therefore, should be easily memorised. The result is that bad, unsuccess-
ful movements are not fixed in memory, where successful solutions to motor
problems tend to be firmly remembered.”

Then, what are successful movements that can be easily memorised? Devel-
opmental phychologists led, by E. Thelen, observed in the 1980s [1-16] that,

“The infants modulated reaches in task-approporiate ways in the weeks follow-
ing onset. Reaching emerges when infants can intentionally adjust the force
and compliance of the arm, often using muscle coactivation. These results
suggest that the infant central nervous system does not contain programs
that detail hand trajectory, joint coordination, and muscle activation pattern.
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Rather, these patterns are the consequences of the natural dynamics of the
system and the active exploration of the match between those dynamics and
the task.”

Based upon these observations, Thelen proposes a new approach for “develop-
ment”, by claiming that the dynamic point of view postulates that new spatio-
temporal orders emerge not from centrally prescribed programs but from the
system dynamics [1-15]. It is quite interesting to compare this dynamics-based
approach with the traditional approach based upon Piage’s theory of schema
that:

“Development arises from an increased control of the higher functions over the
skeletomotor system. This is supposedly made possible either by maturation
of the CNS allowing inhibition of the primitive responses and the development
of voluntary cortical control, or by cognitive progress allowing increasing rep-
resentations of schemes.”

From the robotics viewpoint, there still remains a substantial uncertainty
in what is the underlying dynamics that should match the task. Even in the
simplest multi-joint reaching task, psychologists have not yet explored the
details of the dynamics [1-15]. From the robotics viewpoint, some physical
principles entailing computational details of successful movements that match
the task must be found in order to acquire skills in robotic mechanisms with
multi-joints like those of human arms and hands through an artificial CNS, a
computer.

In view of all the arguments, the author and his group proposed very recently a
surpringly simple physical principle called the virtual spring hypothesis [1-17]
and then the virtual spring/damper hypothesis in 2005 [1-18][1-19], which is
visualised as in Figure 1.9. More explicitly, in the former case, coordinated
motor signals that should be generated by joint actuators take the form

u = −Cq̇ − JT(q)k∆x, (1.1)

and in the latter case

u = −C0q̇ − JT(q) {cẋ + k∆x} , (1.2)

where ∆x = x − xd, q = (q1, · · · , q4)T, ẋ = dx/dt, q̇ = dq/dt, t stands
for the independent variable of time, k denotes a single stiffness parameter,
c is a single damping factor, C and C0 stand for diagonal matrices whose
diagonal entries ci and c0i express positive damping factors and J(q) denotes
the Jacobian matrix of x(q) with respect to q, and JT(q) the transpose of
J(q).
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Fig. 1.9. A graphycal expression of the virtual spring/damper hypothesis

as the endpoint of the whole arm is drawn toward the target position by the
force virtually emanated from a spring/damper mechanism through a pulley
(that is located at the target). More explicitly, each component of the term
−JT(q){cẋ+ k∆x} in Equation (1.2) of the joint control signals is equivalent
to the reaction torque at each corresponding joint that may arise owing to
exertion of the virtual force drawing the arm endpoint to the target. Existence
of damping effect cẋ in Equation (1.2) is expected to decrease damping factors
in C of Equation (1.1) to C0 in (1.2) drastically. The most important finding
of the formalism of Equation (1.2) is that, if only two parameters k and
c are synergistically chosen, movements of reaching behave like the human
skilled motion satisfying conditions 1–4 discussed on page 10 regardless of
DOF redundancy. The formalism of Equation (1.1) or (1.2) is nothing but a
simple development of Newton’s third law of motion (the law of action and
reaction) to this multi-joint reaching movement.

The physical principle of the formalism of Equation (1.1) or (1.2) is clear
from Newtonian mechanics. The skilled reaching movement may likely arise
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Table 1.1. Size effect

Physical
    Quantities

Robot

Length
(link, radius) Mass

Inertia
Moment World

Redundancy
of DOF

Fingers 
  & Hand 1~5 [cm]

0.5~50.0
   10   [kg]

0.1~50.0
   10   
    [kgm  ]

Centimetre
World

Highly 
Redundant

Human Arm 10~30 [cm]
0.2~2.0 
         [kg]

0.5~5.0
   10 
   [kgm  ]

Deca-
Centimetre
World

Universal
Joints (Wrist
& Shoulder)

Robot
Manipulator

0.1~0.8 [m] 1.0~25.0
         [kg]

0.5~50.0
   10
    [kgm  ]

Sub-Metre
World

Non-
Redundant

-2

-6

2

2

2

-2

-2

1.4 Physical Principles Underlying Functionality of the
Human Arm and Hand

It was widely recognised among psychologists in the late 1980s that Bern-
stein’s concept of dexterity is ecological [1-5]. In developing skills of action
the CNS is learning, not to move the limb, but to solve motor problems by
external circumstances. In other words, the development of dexterity takes
place context-dependently. This psychological point of view suggests that ac-
tion skills are hardly spelled out in the generic formulation of mathematics
or control theory, even if their concrete dynamics as the limb moves through
the environment are explicitly expressed in mathematical formulae. Indeed,
in a specific task of multi-joint reaching under excess DOFs, the process of
skill acquisition must be context-dependent as well as being confronted with
redundancy resolution. In this case, differences among the physical scales of
the upper arm, lower arm, hand palm, and index finger (see Figure 1.7 and
Figure 1.9) are considerably noteworthy. According to Table 1.1 the discrep-
ancy between the upper arm and index finger inertia moments is beyond the
scale of 103–104 times. To gain a more physical insight into the acquisition
of skills of reaching movements, it is necessary at this stage to introduce the
dynamics of motion, expressed as

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇ = u, (1.3)

where q = (q1, · · · , q4)T, u = (u1, · · · , u4)T, and H(q) denotes the 4 × 4
inertia matrix of the whole arm shown in Figure 1.7. All the meanings of Ḣ(q)
(= dH(q)/dt) and S(q, q̇) will be provided in the last section of this chapter.
At this stage, we remark only the fact that H(q) is symmetric and positive
definite and that S(q, q̇) is skew-symmetric. The most important meaning of
the inertia matrix H(q) is that the total kinetic energy of arm movement is
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expressed as the quadratic form of joint velocity vector q̇ through H(q) in the
following way:

K =
1
2
q̇TH(q)q̇. (1.4)

In this quantity, the (4,4)-entry h44 of H(q) where H(q) = (hij(q)) stands
for the inertia moment of the index finger, is considerably smaller than the
other diagonal entries hii(q) (i = 1, 2, and 3). Therefore, synergistic choice of
damping factors C in Equation (1.1) and C0 in Equation (1.2) must reflect
different scales of inertia moments. To see this in detail more, let us substitute
the control input u of Equation (1.2) into Equation (1.3), which results in the
form:

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇ + C0q̇ + JT(q) {cẋ + k∆x} = 0. (1.5)

Taking the inner product of this equation with the angular velocity vector q̇
yields

d
dt

E(q, q̇) = −q̇TC0q̇ − c‖ẋ‖2, (1.6)

where

E(q, q̇) = K +
k

2
‖∆x‖2

=
1
2
q̇TH(q)q̇ +

k

2
‖∆x‖2. (1.7)

The quantity E(q, q̇) is called the total energy. Equation (1.6) shows that
the time rate of change of the total energy is equal to the instantaneous
energy dissipation. Since the right-hand side of Equation (1.6) is negative
definite in q̇, Equation (1.6) itself may be expected to play a similar role of a
Lyapunov relation as discussed in Section 1.9. However, E(q, q̇) is not positive
definite in q and q̇, because E includes only a quadratic form of the two-
dimensional position vector ∆x. Further, in the right-hand of Equation (1.6)
there does not arise any quadratic form of ∆x. Therefore, it is possible to see
that

∫∞
0 q̇TC0q̇ dt < +∞,

∫∞
0 ‖ẋ‖2 dt < +∞ but it is not possible to predict

anything about the boundedness of the two metrics
∫∞
0

√
1
2

∑
i,j hij(q)q̇iq̇j dt,∫∞

0

√
k
2‖∆x‖2 dt. The former quantity is nothing but the Riemannian metric

and the finiteness and the scale of the latter quantity are requisited to see
whether self-motion pertinent to redundant systems remains for a long time.
In order to check this, it is necessary to gain an indepth insight into the
physical interactions among the inertia term H(q)q̈, the dissipation C0q̇, and
the external torque JT(q)(cẋ + k∆x). It is claimed at the present stage of
research on redundant systems that the numerical orders of damping matrix



16 1 Characterisations of Human Hands

2F 02OO01 F1

Oc.m.

θ

Fig. 1.10. Grasping of a 2-D object based on the coordination of the opposition
forces F 1 and F 2 exerted from the centres O01 and O02 of finger-end spheres.

C or C0 should be chosen synergistically in relation to the square root of the
inertia matrix, H1/2(q), or roughly ci ≈

√
hii for i = 1, 2, 3 and 4.

In the case of grasp of a 2-D rigid object with parallel sides located on a
flat table by a pair of multi-joint fingers, the principal term of control signals
is composed on the basis of fingers–thumb opposability in the form

ui = (−1)i fd

2r
JT

0i(q)
(

x01 − x02

y01 − y02

)
, i = 1, 2, (1.8)

where r denotes the radius of the fingertip spheres, J0i(q) signifies the Ja-
cobian matrix of the position vector (x0i, y0i)T of O0i in finger joint vectors
qi = (qi1, qi2, · · · )T, and i = 1 corresponds to the left-hand finger and i = 2
the right-hand finger. In order to press the object from the left the reaction
torques at the finger joints (i = 1) should be generated to withstand the force
−F 1 whose direction is coincident with the straight line O01O02. It should
be noted that, in ordinary circumstances of grasping, it is difficult to know
the exact locations of the contact points between the fingertips and object
surfaces. Instead, the locations of O01 and O02 can be assumed to be known.
In order to maintain coordination of pressing forces from the left and right,
the direction of F 2 must be opposite to that of F 1 and the magnitudes of F 1

and F 2 must be equal also. The control signals of Equation (1.7) reflect these
requirements. However, stabilisation of grasps should be analyzed context-
dependently under various environmental conditions such as the existence or
absence of rolling contact constraints, gravity effect, robustness against the
arbitrariness of objects, viscoelasticity of fingertip material, etc.

The control signals given in Equation (1.2) and or (1.8) take the form of po-
sition feedback. The former corresponds to the potential function (k/2)‖∆x‖2

and the latter to (fd/2r)‖x01 −x02‖2, where x0i = (x0i, y0i)T. This may con-
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tradict the observation that fast voluntary movements of the human limb are
executed in a feedforward manner based on anticipation, as discussed in the
previous section. Nevertheless, if dynamic behaviours of coactivations of ag-
onist and antagonist muscles are taken into account, both signals −k∆x in
Equations (1.2) and (1.8) can be regarded to be exerted at joints in a feed-
forward manner. However, we do not discuss the details of muscle physiology
further, because the signal of Equation (1.8) can easily be constructed in real
time from the measured data on joint angles and the knowledge of finger
parameters only, irrespective of how it is constructed in a feedback manner.

Before closing this section, we emphasise that in differential geometry
Equation (1.3) is written in the following form:

4∑
j=1

hij(q)q̈j +
4∑

j,k=1

Γkij(q)q̇j q̇k = ui, (1.9)

where Γkij(q) is a Christoffel symbol of the first kind. By multiplying this
equation by H−1(q), we obtain another form of the differential equation:

d2

dt2
qi +

∑
m,n

Γ i
nm

dqm

dt

dqn

dt
=
∑

j

hijuj, (1.10)

where hij denotes the (i, j)-entry of H−1(q) and Γ i
nm is called a Christoffel

symbol of the second kind. When the external torque ui is zero for all i, a
solution trajectory q(t) of Equation (1.9) or (1.10) starting from a given initial
position q(0) = q0 to a target position q(1) = q1 is called the geodesic. Then,
the Riemannian distance between two points q0 and q1 in the configuration
manifold q ∈ CM4 can be defined as

R(q0, q1) = min
q(t)

∫ t

0

√
1
2

∑
i,j

hij(q(t))q̇i(t)q̇j(t) dt, (1.11)

where the minimisation is taken over all curves q(t) parameterised by t ∈ [0, 1]
in such a way that q(0) = q0 and q(1) = q1. This metric plays an important
role in defining neighbourhoods of a given position in the configuration man-
ifold that is composed of all the generalised position vector q, no matter how
components of q are mixed with physical variables with different physical units
such as length x [m] and angle θ with dimensionless units [radian].

1.5 Difficulty in the Development of Everyday Physics

We shall begin this section by quoting the abstract of the author’s old article
entitled “Robotics research toward explication of everyday physics”, which
was published in one of two special issues for the new millenium in the Inter-
national Journal of Robotics Research [1-20].
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Abstract. It is commonly recognized now at the end of the 20th century
that a general 6- or 7-degree-of-freedom robot equipped with an endeffector
with simple structure is clumsy in performing a variety of ordinary tasks that
a human encounters in his or her everday life. In this paper, it is claimed
that the clumsiness manifests the lack of our knowledge of everday physics.
It is then shown that even dynamics of a set of dual fingers grasping and
manipulating a rigid object are not yet formulated when the fingers’ ends are
covered by soft and deformable material. By illustrating this typical problem
of everday physics, it is pointed out that explication of everyday physics in
computational (or mathematical) languages is inevitable for consideration of
how to endow a robot with dexterity and versatility. Once kinematics and
dynamics involved in such everyday tasks are described, it is then possible to
discover a simple but fine control structure without the need of much compu-
tation of kinematics and dynamics. Simplicity of the control structure implies
robustness against parameter uncertainties, which eventually allows the con-
trol to perform tasks with dexterity and versatility by using visual or tactile
sensing feedback. Thus, a key to uncover the hidden secret of dexterity is
to characterize complicated dynamics of such a robotic task as seen when
a set of multifingers with multijoints covered by deformable material inter-
acts physically with objects or an enviounment. It is pointed out throughout
the paper that some of the generic characteristics of dynamics that ever-
day physics encounters must be “passivity”, “approximate Jacobian matrix
of coordinates transformation”, “feedback loops from sensation to action”,
“impedance matching”, and “static friction.”

In the introductory section of that paper, it was reported that around the
early 1980s there had been a dream and enthusiasm among robot engineers
and roboticists to create “intelligent robots”. This dream can be compared
with optimistic views that appeared in the history of artificial intelligence
spelled out as “within twenty years machines will be capable of doing any work
a man can do” [1-21] and “within a generation the problem of creating ‘arti-
ficial intelligence’ will be substantially solved” [1-22]. Around the mid 1980s,
American philosophers Huber Dreyhus and Stuart Dreyhus (Professors of Uni-
versity of California, Berkeley) asserted a heterogeneous opinion by claiming
[1-23] that the commonsense knowledge problem, including everyday physics
or commonsense physics, has dampened robot engineers’ enthusiasm and also
blocked progress in theoretical AI for the past decades. They spelled this out
as “Can there be a theory of the everyday world as rationalist philosophers
have always held? Or is the commonsense background rather a combination
of skills, practices, discrimination, and so on, which are not intentional states
and so, a fortiori do not have any representational content to be explicated in
terms of elements and rules?” They added: “Commonsense physics has turned
out to be extremely hard to spell out in a set of facts and rules.”
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Fig. 1.11. Robotics research sould evolve from precise modelling of a robotic task
to explication of everyday physics

The author’s view was the following. If robotics is an integration of various
domains involved in aiming to create an artificial reflection of the correspond-
ing real world with which a human is concerned, robotics must naturally aim
to account for the intelligibility of the real world or everyday physics. Here, the
term “everyday physics” is used as a scientific domain related to the account-
ability of the dexterous accomplishment of ordinary tasks by manipulating
things, with sensing and recognition, as seen in ordinary human beings. In
this meaning of everyday physics, the first stage toward unveiling the secret
of dexterity in a particular task assigned to a robotic system is to derive a
detailed description of the dynamics of motion of the system that must accom-
plish the task. The second stage is to discover some of the key characteristics
of such complicated dynamics to simplify the structure of control drastically
(see Figure 1.11). Then, the third stage must be to demonstrate both theoret-
ically and experimentally that such a simplified control scheme with the use
of minimum knowledge and approximate values of physical parameters works
well and accomplishes the task to some extent of satisfaction. The theoret-
ical demonstration of how it works should be carried out on the basis of a
complicated model of the full dynamics.

The present book intends to explore what is the core dynamics of hu-
man or robotic precision prehension and stable grasping of objects, believing
that it must be the first step toward challenging everyday physics for the ad-
vancement of robotics. At the same time, the book aims to explore what the
dexterity of robotic prehensility is and how such a dexterous way of grasping
and object manipulation can function in multi-fingered robotic hands [1-24]
[1-25]. In contrast to psychology and philosophy, robotics should challenge
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both the problems of the development of dexterity and everyday physics to
make them explicable, visible, and feasible in computational languages [1-26].

1.6 Newton’s Laws of Motion

If we turnned over the pages of Napier’s book [1-1] we find at p. 51 the
following two sentences:

“The thumb, the ‘lesser hand’ as Albinus called it, is the most specialized
of the digits. Isaac Newton once remarked that, in the absence of any other
proof, the thumb alone would convince him of God’s existence.”

The approach adopted in this book to explore of the dexterity and function-
ality of the multi-fingered hand is directly and solidly based on Newtonian
mechanics.

We begin by introducing the concept of a point particle, which is regarded
as a point endowed with mass m. In other words, a point particle is an ideali-
sation in which the mass is conceived to be concentrated at a single point. As
a matter of course, we must bear in mind that in many practical situations, as
discussed later, a material body with a volume can be well approximated by
such an idealised model of a point particle. Hence we will use the term parti-
cle or body conventionally, instead of point particle, on occasions when there
is no possibility of misunderstanding. In classical mechanics a point particle
preserves its identity and its mass does not vary with time or motion.

Next, we define the momentum p of a particle as the product of its mass
and its velocity, i.e.,

p = mv. (1.12)

Note that momentum is a vector since velocity is a vector.
Now we state Newton’s laws of motion in their conventional forms.

Newton’s first law: a body continues in a state of rest or constant velocity
(zero acceleration) unless it is acted on by an external force.

Newton’s second law: the rate of change of momentum of a body is propor-
tional to the force acting on the body and is effective in the direction of the
force.

Newton’s third law: the mutual actions of two bodies are always equal in
magnitude and opposite in direction.
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The first law is called the law of inertia, and was originally deduced by
Galileo. It introduces the concept of a force as the cause of non-uniform mo-
tion. In relation to this law, let us recall that the velocity depends on the
choice of reference frame, as noted in the previous section. For Newton’s laws
to have a physically consistent meaning, it is important to seek a frame of
reference which is non-accelerating. It is also important to know that, if the
laws hold in a frame at rest, they will also hold in any frame moving with
uniform velocity with respect to that frame. Such a non-accelerating frame of
reference is called an inertial frame.

The second law derives a quantitative definition of force, which may be
represented by

f = K
d
dt

(mv) = Km
d
dt

v = Kma, (1.13)

where we have assumed in the second and third equalities that m is a constant.
In this formula, K is a constant of proportionality. Since we are free to choose
suitable units for this new quantity |f |, we conveniently choose our units
so that K = 1. In SI units, m is measured in kilograms (kg), a in metres
per second squared (ms−2), and f in newtons (N). One newton is the force
which gives to a mass of one kilogram an acceleration of one metre per second
squared:

1N = 1kg × 1ms−2 = 1kgms−2. (1.14)

With this choice of units, the mathematical formula of Newton’s second law
is

d
dt

(mv) = f . (1.15)

This is called the equation of motion of the body. For a particle or body of
constant mass, the equation can be rewritten in the form

ma = f . (1.16)

The third law is described mathematically by

f12 = −f21, (1.17)

where f12 denotes the force that body 1 exerts on body 2, and f21 denotes
the force that body 2 exerts on body 1. This law gives a basis for the law of
conservation of momentum, which states that:

For an isolated system that is subject only to internal forces between
members of the system, the total momentum of the system does not
change in time.
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Fig. 1.12. A particle with mass m undergoes an infinitesimal small displacement
δr due to a force f acting on it

When a force f acts on a particle with mass m and thereby the particle
undergoes an infinitesimal displacement δr (see Figure 1.12), the inner product

δW = fTδr (1.18)

is called the work increment. If the particle undergoes a displacement r in a
constant direction under the constant force f , the quantity

W = fTr = |f ||r| cos θ (1.19)

is called the work, where θ stands for the angle between the vectors f and
r. However, the force exerted on the particle is dependent on the particle’s
position and hence it should be denoted by f(r). Then the work done by the
force f(r) as the particle moves from position P to position Q is defined to
be

W (P → Q) =
∫ Q

P

fT(r) dr, (1.20)

where the integration is taken over the path along which the particle moves.
The SI unit for work is the newon-metre (Nm) or joule (J), where 1 [J] = 1
[Nm]. The time rate of change of work

P =
dW

dt
(1.21)

is called the power. The SI unit of power is the joule per second, which is
called the watt (1 [W] = 1 [Js−1]).

The work can be expressed as the integral of the power
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Fig. 1.13. The work done on a particle with mass m by the gravitational field is
equal to W = mgh when it falls from height z = h to the ground z = 0

W (t1 → t2) =
∫ t2

t1

P (t) dt. (1.22)

On the other hand, since the free motion of a particle m on which the force f
acts implies the equation of motion f = m dv/dt, the work can be expressed
as

W (P → Q) = m

∫ Q

P

d
dt

vT dr. (1.23)

Substitution of dr = ṙ dt = v dt into this equation yields

m

∫ Q

P

d
dt

vT dr = m

∫ t(Q)

t(P )

(
d
dt

vT

)
v dt

=
m

2

∫ t(Q)

t(P )

(
d
dt

|v|2
)

dt =
m

2
(|vQ|2 − |vP |2

)
, (1.24)

where t(P ) and t(Q) denote the instants of time when the particle is at po-
sitions P and Q, respectively. According to Equations (1.23) and (1.24), the
work done by the particle’s free motion can be expressed as

W (P → Q) =
∫ Q

P

fTdr =
1
2
m|vQ|2 − 1

2
m|vP |2 = KQ − KP . (1.25)

This equation states that the work done on the free particle is equivalent to
the change in the kinetic energy.

A region in three-dimensional space is called a force field whenever there
is a force f(r, v, t) for each point r in the region. One good example is the



24 1 Characterisations of Human Hands

electromagnetic force field. However, we restrict our consideration to a field
such that the force exerted on a particle by the field depends only on the par-
ticle’s position, i.e., we consider only fields of the form f(r). A good example
is the gravity field. In the neighbourhood of the surface of the Earth it is well
approximated by a uniform field as

f = mg, (1.26)

where g = (0, 0,−g)T as shown in Figure 1.13. In the case of a particle m
falling freely from a height z = h to the ground z = 0, the work done on the
particle by this gravitational field is

W (h → 0) = (mg)Tr = m(0, 0,−g)

⎛
⎝ 0

0
−h

⎞
⎠ = mgh, (1.27)

where the work done between two points in space is

W (P → Q) =
∫ Q

P

fT(r) dr, (1.28)

which is independent of the path along which the infinitesimal displacement
is taken. This force field satisfying such a relation is said to be conservative.
Fortunately the gravity field is conservative.

The work is a function of only the starting point P and terminal point
Q for a conservative force field. Therefore, if a starting point P is fixed as
a standard point (taken on the ground in the case of the gravity field), the
work of integral (1.20) depends only on the present position Q. The negative
of Equation (1.20), i.e., the function

U(rQ) = −
∫ Q

P

fT dr (1.29)

is said to be the potential energy. From this definition it follows that U(rP ) =
0. It should be noted that U is a scalar function of the position r once the
starting point is fixed in space.

Directly from the definition of potential energy it follows that

δU = U(r + dr) − U(r) =
∫ r+dr

r
fT dr = −fT dr. (1.30)

This implies that

f = −∇U, (1.31)

which means that the potential’s negative gradient is the force exerted by
the force field on the particle. The value of the potential energy depends on
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the selection of the starting point P , but the relations (1.30) and (1.31) are
independent of the choice of P .

Finally we consider the relation of the potential to the kinetic energy.
When we apply Newton’s second law for a particle m that undergoes a free
motion, Equation (1.31) can be written as

m
d2

dt2
r = −∇U. (1.32)

Taking the inner product of this with v = dr/dt, we have

d
dt

(
1
2
m

∣∣∣∣ d
dt

r

∣∣∣∣
2
)

= −
(

d
dt

rT

)
∇U. (1.33)

Since the time rate of the potential function can be expressed as

d
dt

U(r) =
(

d
dt

rT

)
∇U (1.34)

Equation (1.33) implies

d
dt

(
1
2
m|v|2 + U

)
= 0. (1.35)

Integration of this with respect to time yields

1
2
m|v|2 + U(r) = E = const. (1.36)

Thus it is concluded that the total energy E (which is the sum of the kinetic
energy and the potential energy) remains constant throughout the free motion.
This is called the law of conservation of mechanical energy.

1.7 Kinetic Energy of a System of Particles

First, we prove the law of conservation of momentum in the case of the dy-
namic behaviour of a system of particles, which is a collection of material of
fixed identity. For this purpose, it is useful to distinguish between the forces
of interaction with other particles within the system and forces due to the
interaction with bodies external to the system or due to external factors, such
as a gravitational or magnetic field in which the system may exist. We there-
fore denote by f ij the force acting on the ith particle due to the jth particle,
and denote by f ie the force acting on the ith particle due to external factors.
Further, we denote the mass of the ith particle by mi, which for each i does
not change with time, and set a suitable inertial frame. Then, with the ob-
served acceleration denoted by ai for the ith particle, Newton’s second law is
written as
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f ie +
∑
j( �=i)

f ij = miai, i = 1, 2, · · · . (1.37)

Summing all these equations results in∑
i

f ie +
∑

i

∑
j( �=i)

f ij =
∑

i

miai. (1.38)

Since f ij = −f ji for i 	= j owing to Newton’s third law, the second term on
the left-hand side of Equation (1.38) vanishes. Hence, denoting the resultant
external force by f (=

∑
i f ie), we have∑

i

miai = f . (1.39)

At this stage, we must remark again upon the law of conservation of momen-
tum for the system of particles. In the absence of external forces, Equation
(1.39) is reduced to

0 =
∑

i

miai =
d
dt

∑
i

mivi =
d
dt

(∑
i

pi

)
. (1.40)

This demonstrates the conservation of momentum for the system of particles.
Now we introduce the concept of the centre of mass of the system, which

is defined by the position vector

rc =
∑

i

miri

/∑
i

mi, (1.41)

where ri denotes the position vector of the ith particle. In other words, the
centre of mass of the system is an average position vector for all the particles
within the system, weighted according to particle masses. Denoting the total
mass

∑
i mi of the system by m, we observe from Equation (1.41) that∑

i

miri = mrc. (1.42)

Differentiation of this with respect to time yields∑
i

mivi = mvc, (1.43)

which on repeated differentiation yields∑
i

miai = mac. (1.44)

Taking into account Equations (1.39) and (1.44), we finally obtain the formula

f = mac. (1.45)
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Fig. 1.14. Angular momentum H0 about point O

This is a remarkable result, which can be interpreted as follows:

The vector sum of external forces influences the motion of the
centre of mass as if the total mass of the system were concentrated
there and the resultant external force acted on it.

This principle plays an important role particularly in the anaylsis of rigid-
body dynamics to be treated in the next section.

In the absence of external forces, Equation (1.45) is reduced to

vc = const. (1.46)

This is another remarkable property of the centre of mass. It states that:

The velocity of the centre of mass does not vary with time in the
absence of external forces.

Next we introduce the important concept of angular momentum. The di-
mension of angular momentum is different from that of momentum, which is
termed the linear momentum when it is necessary to distinguish between the
two concepts.

Let O be an arbitrary point fixed in an inertial reference frame. For a
single particle, the angular momentum H0 about point O is defined as

H0 = r × p = r × mv, (1.47)

where r is the position vector of the particle relative to point O, and p is
the linear momentum (see Figure 1.14). If a force f acts on the particle, the
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momentum of force, or torque, is defined as

T0 = r × f . (1.48)

As predicted from Newton’s second law, there is a relationship between these
two quantities. In fact, differentiation of Equation (1.47) in time yields

d
dt

H0 = ṙ × p + r × ṗ = v × mv + r × f . (1.49)

Since v × v = 0 by the definition of outer product, this equation leads to the
important result

d
dt

H0 = T0. (1.50)

This states that:

The rate of change of angular momentum is equal to the torque.

For a system of particles, the angular momentum about O is defined as

H0 =
∑

i

ri × pi (1.51)

and the total torque is written in the form

Ttotal =
∑

i

ri × f i. (1.52)

Similar to Equation (1.50), we obtain the relationship

d
dt

H0 = Ttotal. (1.53)

However, it is possible to show that the sum of internal torques that may arise
from interaction forces among particles in the system does not contribute to
the total torque Ttotal. To see this, we resolve the force acting on the ith
particle into the form

f i = f ie +
∑
j( �=i)

f ij (1.54)

as discussed in the previous section. Corresponding to this expression, the
total torque is resolved into the form

Ttotal = T0 + Tint, (1.55)

where T0, defined by
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T0 =
∑

i

ri × f ie, (1.56)

is the torque due to external forces, and Tint, defined by

Tint =
∑

i

∑
j( �=i)

ri × f ij , (1.57)

is the torque due to internal forces among particles in the system. Now we
note that the latter expression can be rewritten in the form

Tint =
∑

i

∑
j( �=i)

ri × f ij =
1
2

∑
i�=j

(ri × f ij + rj × f ji)

=
1
2

∑
i�=j

(ri − rj) × f ij (1.58)

in which the last equality follows from Newton’s third law. Since f ij is parallel
to ri − rj (this is true if the forces between the particles are central forces),
this implies

Tint = 0. (1.59)

In view of Equations (1.53), (1.55), and (1.59), we conclude that

d
dt

H0 = T0. (1.60)

The total angular momentum of a system of particles can also be split into
two components as

H0 =
∑

i

mi(ri − rc) × vi +
∑

i

mirc × vi = Hc.m. + rc × p. (1.61)

where p =
∑

i mivi denotes the total linear momentum. The term rc × p is
the angular momentum due to the motion of the centre of mass about the
fixed point O. This term depends on the choice of point O, while the angular
momentum about the centre of mass, denoted by Hc.m. in Equation (1.61),
does not. If the point O is chosen at the centre of mass, then Equation (1.60)
may be written as

d
dt

Hc.m. = T0. (1.62)

Since only external forces contribute to T0, Equation (1.62) implies that the
rotation about the centre of mass is determined by the total external torque.

Finally we introduce the concept of kinetic energy for a particle or a system
of particles. For a particle Pi with mass mi, the quantity
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Ki =
1
2
mi|vi|2 (1.63)

is called the kinetic energy of particle Pi. The kinetic energy for a system of
particles is defined as

K =
∑

i

1
2
mi|vi|2. (1.64)

Notice that this form can be rewritten as

K =
∑

i

1
2
miv

T
i vi =

∑
i

1
2
mi {(vi − vc) + vc}T {(vi − vc) + vc}

=
∑

i

1
2
mi(vi − vc)T(vi − vc) +

1
2
mvT

c vc +
∑

i

mi(vi − vc)Tvc. (1.65)

According to Equation (1.43), we see that

∑
i

mi(vi − vc)Tvc =

{(∑
i

mivi

)
− mvc

}T

vc = 0. (1.66)

Substituting this into Equation (1.65), we obtain another important result:

K =
∑

i

1
2
mi |vi − vc|2 +

1
2
m|vc|2 = Kc.m. +

1
2
m|vc|2. (1.67)

This states that:

The total kinetic energy of a system of particles is expressed as the
sum of two components, one of which is the total kinetic energy of
particles relative to the centre of mass and the other is the kinetic
energy of the centre of mass with total mass m.

1.8 Kinematics and Dynamics of a Rigid Body

A rigid body may be treated as a special case of a system consisting of a very
large number of discrete particles. Hence, it is possible to apply Equations
(1.60), (1.61), (1.62), and (1.67) to rigid-body dynamics. Motion of a rigid
body can be completely characterised by the knowledge of translational ve-
locity vc.m. of the centre Oc.m. of mass of the body and the angular velocity
vector ω whose axis goes through Oc.m. (see Figure 1.15). In parallel with
Equation (1.62), first we derive angular momentum about the centre of mass
of the rigid body. This is defined as

Hc.m. =
∑

i

mi(ri × vi) =
∑

i

miri × (ω × ri)

=
∫

V

{
(rT

P rP )ω − (ωTrP )rP

}
dmP , (1.68)
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Fig. 1.15. Motion of a rigid body is characterised by the velocity vc.m. of the body
mass centre relative to the frame coordinates O−xyz and the angular velocity vector
! originates from the body mass centre Oc.m.

where we used the well-known vector formula

a × (b × c) = (aTc)b − (bTa)c. (1.69)

Here, dmP denotes the mass element of a particle at position P in the body
and the integration is taken over all volume elements that constitute the body.
Second, let us fix the coordinates of X , Y , Z axes at Oc.m., denote the unit
vectors along the X-, Y -, Z-axes by rX , rY , rZ , and define⎧⎨

⎩
Hc.m. = HXrX + HY rY + HZrZ ,
ω = ωXrX + ωY rY + ωZrZ ,
rP = xP rX + yP rY + zP rX .

(1.70)

Substituting these into Equation (1.68) and noting that

rT
P rP = x2

P + y2
P + z2

P (1.71)

we obtain that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

HX = ωX

∫
(y2

P + z2
P )dmP − ωY

∫
xP yP dmP − ωZ

∫
xP zP dmP ,

HY = −ωX

∫
yP xP dmP + ωY

∫
(z2

P + x2
P )dmP − ωZ

∫
yP zP dmP ,

HZ = −ωX

∫
zP xP dmP − ωY

∫
zP yP dmP + ωZ

∫
(x2

P + y2
P )dmP .

(1.72)
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Then, by defining⎧⎪⎨
⎪⎩

Ixx =
∫

(y2
P + z2

P )dmP , Iyy =
∫

(z2
P + x2

P )dmP ,

Izz =
∫

(x2
P + y2

P )dmP , Ixy = −
∫

xP yP dmP , etc.
(1.73)

we obtain

Hc.m. =

⎡
⎣ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤
⎦ω = Hω. (1.74)

Here, the 3 × 3 matrix H is called the inertia tensor or inertia matrix. Note
that H is symmetric and positive definite by definition.

Next, we derive total kinetic energy of the rigid body in such a way that

K =
1
2

∫
vT

P vP dmP =
1
2

∫
(vc.m. + ω × rP )T (vc.m. + w × rP ) dmP

=
1
2

∫ {
vT

c.m.vc.m. + 2vT
c.m.(ω × rP ) + (ω × rP )T(ω × rP )

}
dmP

=
1
2
M |vc.m.|2 +

1
2
ωT

∫
rP × (ω × rP ) dmP

=
1
2
M |vc.m.|2 +

1
2
ωTHω (1.75)

where the well-known formula aT(b×x) = bT(c×a) is used in the derivation
of the third equation, and M denotes the total mass of the body. Equation
(1.75) is an extended version of Equation (1.67) for the case of a rigid body
with distributed mass.

1.9 Variational Principle and Lagrange’s Equation

Given a system of particles or a system of rigid bodies like a robot arm or dual
robot fingers grasping a rigid object, a set of physical variables that can con-
veniently express the position of the system are called generalised coordinates.
A given set of generalised coordinates of the system is said to be complete,
if, for any configuration of the system, the coordinates can specify the posi-
tion corresponding to the configuration by appointing a set of corresponding
values for the coordinates, and moreover for any different configuration the
coordinates take different values. If any subset of a given set of generalised co-
ordinates is fixed while the remaining coordinates can vary continuously with
the configuration of the system, then the generalised coordinates are said to
be independent. In general, the number of degrees of freedom of the system
is defined as the number of physical variables of generalised coordinates that
are complete and independent.
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Given a system of particles or rigid bodies with complete and indepen-
dent generalised coordinates q = (q1, · · · , qn)T, its equation of motion can be
derived by the variational principle described as

∫ t2

t1

[
δ(K − P ) +

n∑
i=1

Fiδqi

]
dt = 0, (1.76)

where K denotes the total kinetic energy of the system, P the potential energy,
δ means to take a variation of (K −U) in terms of q, δq denotes an arbitrary
vector-valued function of infinitesimally small increments satsifying δq(t0) = 0
and δq(t1) = 0. In general, Fi comes from the assumption that a force f j

acts at the corresponding point Pj expressed as the position vector rj(q) for
j = 1, · · · , m and the increment of the total work done by the force can be
evaluated by

Fi =
n∑

j=1

(
∂rj

∂qi

)T

f j , i = 1, · · · , n, (1.77)

m∑
j=1

fT
i δrj =

m∑
j=1

n∑
i=1

fT
j

∂rj

∂qj
δqi =

n∑
i=1

⎧⎨
⎩

m∑
j=1

(
∂rT

j

∂qi

)
f j

⎫⎬
⎭

T

δqi. (1.78)

Lagrange’s equation of motion for the system follows from the variational
principle, i.e., it follows from Equation (1.76) that

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi, i = 1, · · · , n, (1.79)

where

L = K − P. (1.80)

The scalar quantity L is called the Lagrangian. Equation (1.79) can be ex-
pressed in the vector form

∂

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

m∑
j=1

JT
j (q)f j , (1.81)

where JT
j (q) signifies the transpose of the 3×n Jacobian matrix of rj(q) with

respect to the generalised position coordinates vector q, i.e.,

Jj(q) =
(

∂rj

∂q1
, · · · ,

∂rj

∂qn

)
=

∂rj

∂qT
. (1.82)

Throughout the book, vectors are expressed by columns and hence the gradi-
ent vector of the scalar L with respect to the column vector q̇ or q is expressed
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by ∂L/∂q̇ or ∂L/∂q, which is also a column vector. This rule is also applied
for expressing Jacobian matrices of position vectors with respect to the gen-
eralised coordinates q of column vector as shown in Equation (1.82).

When the generalised position coordinate q = (q1, · · · , qn) is complete but
not independent, there may be a number of physical constraints, each of which
can be described by an algebraic equation:

hj(q1, · · · , qn) = hj(q) = 0, j = 1, · · · , k. (1.83)

In this case, Lagrange’s equation of motion can be derived in a similar way to
that of Equation (1.81) from Equation (1.76) by replacing L = K − P with

L = K − P +
k∑

j=1

λjhj(q). (1.84)

In fact, it follows that

d
dt

(
∂L

∂q̇

)
− ∂L

∂q
=

k∑
j=1

λj∇hj(q) +
m∑

j=1

JT
j (q)f j , (1.85)

where ∇hj means the gradient vector of hj with respect to the column vector
q. The total number of DOFs of the system becomes n− m in this case if all
gradient vectors ∇hj for j = 1, · · · , k are independent and it is possible to
find (n−m) physical variables from the original n variables q = (q1, · · · , qn)T

so that the (n − m) variables are independent.
In order to understand the important meaning of algebraic constraint in

relation to Lagrange’s equation of motion, let us take a simple example. Con-
sider a simple system of the pendulum shown in Figure 1.16. In this case, the
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kinetic energy and the potential energy are easily evaluated as follows:

K =
m

2
(ẋ2 + ẏ2), P = mg(l − y), (1.86)

where we have ignored the mass of a string with length l [m] from which the
concentrated weight with mass m is hanging. The constraint equation can be
described as

h(x, y) =
√

x2 + y2 − l = 0, (1.87)

which means that the centre of the weight mass is constrained on a circle with
centre O and radius l (see Figure 1.16). Thus, the Lagrangian can be given in
the following way:

L = K − P + λh(q)

=
m

2
(ẋ2 + ẏ2) − mg(l − y) + λ

(√
x2 + y2 − l

)
. (1.88)

If we use the Cartesian coordinates q = (x, y)T to denote the position of
the mass centre of the weight as the generalised coordinates, then Lagrange’s
equation can easily be obtained from Equation (1.85), as⎧⎪⎨

⎪⎩
mẍ = λ

x√
x2 + y2

= λl−1x,

mÿ − mg = λ
y√

x2 + y2
= λl−1y,

(1.89)

where the quantity
√

x2 + y2 is replaced with l according to the constraint
equation (1.87). The pendulum system of Figure 1.17 superficially has two de-
grees of freedom if the generalised coordinates q = (x, y) is adopted. However,
since the motion of the weight is subject to the constraint equation (1.87),
the number of degrees of freedom of the system must be one [= 2 (variables)
− 1 (constraint)].

If we express the position of the centre of mass of the weight by

r = (x, y)T = (l sin θ, l cos θ)T (1.90)

then the velocity and acceleration can be given in the following form:{
v = ṙ = lθ̇(cos θ,− sin θ)T,

a = v̇ = r̈ = lθ̈(cos θ,− sin θ)T − lθ̇2(sin θ, cos θ)T.
(1.91)

Hence, the tensile force of the string (denoting its magnitude by T ) and the
gravity force affecting the weight are expressed as (see Figure 1.16)

f = m(0, g)T = mg, T = −T (sin θ, cos θ)T. (1.92)

Thus, Newton’s second law of motion ma = f can be described as
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Fig. 1.17. A pendulum-type robot arm with two degrees of freedom

mlθ̈

(
cos θ
− sin θ

)
− mlθ̇2

(
sin θ
cos θ

)
= m

(
0
g

)
− T

(
sin θ
cos θ

)
. (1.93)

Taking the inner product of this equation by the vector (cos θ,− sin θ)T yields

mlθ̈ = −mg sin θ (1.94)

from which we obtain the equation of motion as follows:

θ̈ + (g/l) sin θ = 0. (1.95)

On the other hand, if we substitute x = l sin θ, y = l cos θ into Equation
(1.89), we have

mlθ̈

(
cos θ
− sin θ

)
− mlθ̇2

(
sin θ
cos θ

)
− m

(
0
g

)
= λ

(
sin θ
cos θ

)
. (1.96)

Taking the inner product of this equation with the vector (cos θ,− sin θ)T

yields

mlθ̈ + mg sin θ = 0, (1.97)

which is equivalent to Equation (1.94). If we take the inner product of Equa-
tion (1.96) with the vector (sin θ, cos θ)T, then we obtain

λ = −mlθ̇2 − mg cos θ. (1.98)

This shows that λ as a Lagrange multiplier can be regarded as −T , i.e., the
reaction force to the tensile force of the string.
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Next, consider the two-DOF planar robot arm shown in Figure 1.17, which
consists of two rigid bodies connected at the hinge joint J2. The first joint J1

is fixed at the origin O of the frame coordinates and pivots around the z-
axis, which is perpendicular to the xy-plane. All the physical parameters of
the rigid bodies are specified in Figure 1.17. In order to derive Lagrange’s
equation of motion for the system, we first evaluate the total kinetic energy
of the system. The kinetic energy K1 of the first link is easily obtained from
Equation (1.75) as

K1 =
1
2
(
m1s

2
1 + I1z

)
q̇2
1 , (1.99)

where s1 denotes the distance from J1 to the centre of mass of the first rigid
body and I1z the inertia moment around the z-axis through its centre of mass.
For the sake of evaluating the kinetic energy of the second rigid link connected
with the first link at joint J2, let us denote the position of its mass centre by
r2c, which is given by

r2c = (l1 sin q1 + s2 sin(q1 + q2), l1 cos q1 + s2 cos(q1 + q2))
T . (1.100)

Hence, its velocity becomes

v2c = ṙ2c = (l1q̇1 cos q1 + s2(q̇1 + q̇2) cos(q1 + q2),
−l1q̇1 sin q1 − s2(q̇1 + q2) sin(q1 + q2))T. (1.101)

Then, it is easy to see that

‖v2c‖2 = vT
2cv2c = l1q̇

2
1 + s2

2(q̇1 + q̇2)2 + 2l1s2q̇1(q̇1 + q̇2) cos q2. (1.102)

Thus, by referring to Equation (1.75), we obtain the kinetic energy of the
second link as follows:

K2 =
1
2
m2

{
l21 + q̇2

1 + s2
2(q̇1 + q̇2)2 + 2l1s2q̇1(q̇1 + q̇2) cos q2

}
+

1
2
I2z(q̇1 + q̇2)2, (1.103)

where I2z signifies the moment of inertia of the second link about the z-axis
through the centre of mass. On the other hand, the total potential energy can
be evaluated in the following way:

P = g {(m1s1 + m2l1)(1 − cos q1) + m2s2(1 − cos(q1 + q2))} . (1.104)

If we denote by ui the driving torque at joint i generated by its corresponding
joint actuator, the variational principle can be expressed as∫ t1

t0

(δL + uTδq) dt = 0, (1.105)
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where L = K1 +K2 −P , u = (u1, u2)T and q = (q1, q2)T. Then, the Lagrange
equation follows from Equation (1.105) in the following way:

H(q)q̈ − m2l1s2

(
2q̇1q̇2 + q̇2

2

−q̇2
1

)
sin q2

+ g

(
(m1s1 + m2l1) sin q1 + m2s2 sin(q1 + q2)

m2s2 sin(q1 + q2)

)
=
(

u1

u2

)
, (1.106)

where

H(q) =
(

IJ1 + m2l
2
1 + IJ2 + 2m2l1s2 cos q2 IJ2 + m2l1s2 cos q2

IJ2 + m2l1s2 cos q2 IJ2

)
(1.107)

and, for simplicity, we put

IJ1 =
m1

2
s2
1 + Ic1, IJ2 =

m2

2
s2
2 + Ic2. (1.108)

Here, it is interesting to note that IJi signifies the moment of inertia of the
ith rigid link about the joint i, and K = K1 + K2 = (1/2)q̇TH(q)q̇. More
interestingly, the second term of the left-hand side of Equation (1.106) can
be expressed as the sum of (1/2)Ḣ(q)q̇ and S(q, q̇)q̇ with a skew-symmetric
matrix S(q, q̇). This can be verified as follows (in detail, see [1-27]):

−1
2
Ḣ(q)q̇ − m2l1s2

(
2q̇1q̇2 + q̇2

2

−q̇2
1

)
sin q2

= m2l1s2

⎛
⎜⎝ q̇2

1
2
q̇2

1
2
q̇2 0

⎞
⎟⎠(

q̇1

q̇2

)
sin q2 − m2l1s2

(
2q̇1q̇2 + q̇2

2

−q̇2
1

)
sin q2

= m2l1s2 sin q2

⎛
⎜⎝−q̇1q̇2 − 1

2
q̇2
2

1
2
q̇1q̇2 + q̇2

1

⎞
⎟⎠

=
m2l1s2(2q̇1 + q̇2)

2
sin q2

(
0 −1
1 0

)(
q̇1

q̇2

)
= S(q, q̇)q̇. (1.109)

Thus, from this expression, Equation (1.106) can be rewritten as

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇ + g(q) = u, (1.110)

where g(q) = ∂P/∂q, i.e., g(q) expresses the gradient vector of the potential
function with respect to the joint angle vector q. Note that S(q, q̇) is linear
and homogeneous in q̇ and therefore the second term on the left-hand side of
Equation (1.110) is quadratic in components of q̇ with coefficients of sinusoidal
functions of q̇.
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One of the most important advantages of such an expression of the La-
grange equation as in Equation (1.110) is that each term on the left-hand
side retains its own physical meaning. The first term is called the inertia term
and the third the potential term. Furthermore, the term S(q, q̇) can be re-
garded as a gyroscopic term because it is irrelevant to energy consumption
and conservation. Since the inner product of H(q)q̈+(1/2)Ḣ(q)q̇ with q̇ yields

q̇T
{

H(q)q̈ + (1/2)Ḣ(q)q̇
}

=
d
dt

{
1
2
q̇TH(q)q̇

}
(1.111)

it is easy to see, taking inner product of Equation (1.110) with q̇, that

d
dt

{
1
2
q̇TH(q)q̇ + P (q)

}
= q̇Tu (1.112)

from which it follows that∫ t

0

q̇T(τ)u(τ) dτ = E(t) − E(0), (1.113)

where

E(t) =
1
2
q̇T(t)H(q(t))q̇(t) + P (q(t)). (1.114)

Since in this example we take the potential function P (q) to be positive definite
in q and zero if and only if q1 = q2 = 0, it follows from Equation (1.113) that

∫ t

0

q̇T(τ)u(τ) dτ ≥ −E(0) (1.115)

for any t ≥ 0. This property is called passivity of the system with input u
and output q̇. If there is no external torque, i.e., u = 0, then Equation (1.113)
implies

E(t) =
1
2
q̇TH(q)q̇ + P (q) = const. (1.116)

This relation is nothing but the law of conservation of the mechanical energy
as discussed in Equation (1.36).
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Stability of Grasping in a Static or Dynamic
Sense

The first part of this chapter studies the geometry of grasping or immobilisa-
tion of a solid object by a number of frictionless fingers or fixtures. It shows
that at least four frictionless contact points or four fixtures are required to
immobilise planar objects. In particular, we show that three contact points
are necessary and sufficient for immobilising a two-dimensional (2-D) trian-
gular object but that four frictionless contacts or four fixtures are necessary
and sufficient to immobilise a parallelepiped or to establish force/torque clo-
sure grasp. In the case of 3-D polyhedra, seven frictionless contact points are
sufficient to establish a force/torque closure grasp.

The latter half of this chapter addresses another type of problem of grasp-
ing or immobilisation of a 2-D rigid object, in a dynamic sense: the simplest
but most fundamental problem for stopping or immobilising rotational motion
of a 2-D object with a flat side surface by a multi-joint robot finger where the
object can only pivot around a single axis. It is assumed that rotational motion
of the object pivoted around the fixed axis is frictionless and the finger-end is
hemispherical and therefore rolling between the finger-end and object surfaces
is induced without incurring any slip. Lagrange’s equation of motion of such
a testbed finger/object system is derived together with two constraints, the
point contact constraint and the rolling contact constraint. It is shown that
there arises a rolling constraint force tangential to both the finger-end sphere
and the object surface originates at the contact point. Another simple testbed
problem of dynamic grasping of a 2-D object by two one-DOF fingers with
spherical ends is proposed, where motion of the overall system is confined
to the horizontal plane. Rolling contacts play an essential role in stabilisa-
tion of dynamic grasping through force/torque balance. In the final section, a
class of coordinated motor-control signals based on fingers–thumb opposition
is shown to establish force/torque balance in a blind manner without knowing
the object kinematics or using visual or tactile sensing.
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2.1 Immobilisation of 2-D Objects

The problem of achieving a firm grip on an object is one of the most funda-
mental issues underlying the design and control of multi-fingered hands. There
are two approaches for defining the motion of a firm grip; form closure and
immobilisation. In this section, we deal with the problem of immobilising a
planar polygonal object. In the case of three-dimensional polyhedral objects,
we only show theoretical results without giving the proof.

Given a planar shape P in the horizontal plane, a set of points S is said
to immobilise P if any rigid motion of P in the plane forces at least one point
of S to penetrate the interior of P . By shape we mean a two-dimensional
set of points bounded by a Jordan curve. Evidently, any minimal S contains
only points belonging to the boundary of P . For the sake of gaining physical
intuition into the problem, we treat only polygonal objects (therefore, the disc
is excluded from this consideration).

For example, consider the parallelepiped shown in Figure 2.1 and choose
four points on the boundary as S = {P1, P2, P3, P4}. Apparently the set S
immobilises this parallelepiped. However, if any one of points in S is excluded,
then the set S′ = {Pi1, Pi2, Pi3} consisting of the remaining points does not
immobilise the object. Indeed, for example, the set S′ = {P1, P2, P3}, any
movement of P to the right does not make any point of S′ penetrate the
interior of P (that is, any fixed point Pi cannot get inside P by a certain
infinitesimally small translational movement of P ). Physically, a boundary
point Pi of the set S for a shape P can be regarded as a contact with the
boundary of P externally made by a rigid body, which is called a fixture
(mainly, in the case of immobilisation) and a frictionless finger (in the case of
form closure).

Next consider the problem of how many fixtures are necessary and suffi-
cient to immobilise triangles. In general, four fixtures are enough to immobilise
polygonal objects. We show the solution to the problem below.

Theorem 2.1. Three fixtures are necessary and sufficient to immobilise
any triangle.

To find a set of such contact points S = {P1, P2, P3} for the triangle P , let
us consider the maximally inscribed circle of P [see Figure 2.1(b)] and choose
S = {P1, P2, P3} by picking every point at which the inscribed circle touches
the boundary of P . Intuitively this set S = {P1, P2, P3} seems to immobilise
the triangle P . Nevertheless, the proof is not trivial.

To confirm this, first observe that each contact point should lie on a dif-
ferent side of the triangle. Next, the three orthogonal lines to the boundary
at the points P1, P2, and P3 should meet at a common point. To show this,
suppose that the three othogonal lines do not meet at a single point. Then,
these three orthogonals constitute a triangle as shown in Figure 2.2, where we
denote the original triangle by its vertices {A, B, C}. Let O be a point in the
interior of the triangle constituted by the three orthogonals. Then, the three
angles ∠OP1B, ∠OP2C and ∠OP3A are all acute, as shown in Figure 2.2.
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Fig. 2.1. Three fixtures are necessary and sufficient to immobilise triangles. In
general, four fixtures are enough to immobilise polygonal objects.

Or, for some choices for S = {P1, P2, P3}, all three of these angles become
obtuse. Therefore, in the case shown in Figure 2.2, the triangle {A, B, C}
can be rotated counterclockwise by a small angle around O and the points
{P1, P2, P3} remain outside the interior of {A, B, C}. In the latter case, the
triangle {A, B, C} can be rotated clockwise by a small angle. In either case,
the existence of such a rotation around O contradicts immobilisation of the
triangle. It is also possible to prove that the concurrency of the three or-
thogonals at the contact points {P1, P2, P3} is also a sufficient condition for
immobilisation of the triangle. However, we omit the proof of this sufficiency
but state this main result in the following theorem.
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Fig. 2.2. The set S = {P1, P2, P3} cannot immobilise this triangle

Theorem 2.2. A necessary and sufficient condition for immobilising a
triangle {A, B, C, } by the contact points S = {P1, P2, P3} is that the three
orthogonals at Pi (i = 1, 2, 3) to the corresponding sides meet at a common
single point.

Finally, we mention the following two results without proof.
Theorem 2.3. Any polygonal object in the plane can always be immo-

bilised by using four fixtures (contact points).
Theorem 2.4. Any polygonal object containing no parallel sides can

be immobilised by finding three fixtures.
Further, we summarize the theoretical results about immobilisation of

polyhedra obtained and proved in the literature in the following two theo-
rems.

Theorem 2.5. Any three-dimensional polyhedron can be immobilised
by using six fixtures.

Theorem 2.6. Any n-dimensional polytope can be immobilised by using
2n fixtures.

2.2 Force/Torque Closure

Another concept of a firm grip on a rigid object is form closure (equivalently
called force/torque closure), which is a finite set of wrench vectors (force–
moment combinations) applied on the object with the property that any other
wrench vector acting on the object can be balanced by a positive combination
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Fig. 2.3. The set of four forces {f1, f2, f3, f4} directed normally to the four sides
of the parallelepiped, respectively, achieves force/torque closure

of the original ones. It has already been pointed out that the form closure
of a two-dimensional object requires at least four wrench vectors and that of
a three-dimensional object requires at least seven wrench vectors. It is also
known that these numbers can be achieved by wrench vectors realisable as
forces normal to the surface of the object. Such wrench vectors are equivalent
to the supposition of frictionless fingers contacting pointwise to the object
surface. To gain physical insight into the concept of form closure, we discuss
first a problem of firm grip of a parallelepiped as an illustrative example of
two-dimensional objects.

Consider now a rigid parallelepiped lying on a horizontal xy-plane with
four sides as shown in Figure 2.3, and suppose that four forces f i (i = 1, 2, 3, 4)
are acting on different sides as in the figure. If we denote the magnitude of
the force vector f i by the positive number fi and set the coordinates (x, y)
as shown in Figure 2.3, the forces f i (i = 1, · · · , 4) can be expressed by the
vectors f1 = (f1, 0)T, f2 = (−f2, 0)T, f = (0,−f3)T and f4 = (0, f4)T. When
the force f1 is exerted on the object, the rotational moment with a magnitude
|f1Y1| arises clockwise around the object mass centre Oc.m. as shown in Figure
2.3. In the figure, all variables Yi (i = 1, 2) and Xi (i = 3, 4) are defined. If we
append such a rotational moment fiYi (i = 1, 2) or fiXi (i = 3, 4) to f i by
letting the sign of a counter-clockwise moment be positive, then it is possible
to consider the following four three-dimensional vectors:

w1 =

⎛
⎝ f1

0
−f1Y1

⎞
⎠ , w2 =

⎛
⎝ −f2

0
f2Y2

⎞
⎠ , w3 =

⎛
⎝ 0

−f3

−f3X3

⎞
⎠ , w4 =

⎛
⎝ 0

f4

f4X4

⎞
⎠ . (2.1)
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Such a vector wi is called a two-dimensional wrench vector. In the three-
dimensional case, such a wrench vector is expressed by the six-dimensional
vector w = (f , r×f)T, where f stands for the three-dimensional force vector
acting at a contact point normally to the object boundary surface and r is
the position vector originating from the object mass centre and terminating
at the contact point. The symbol × means the vector outer product.

Definition 2.1. Suppose that n frictionless fingers are applied to a
rigid object at different points with n wrench vectors W = {w1, · · · , wn}. If
any external wrench wex applied to the object can be balanced by pressing
fingertips against the object at the selected contact points, the grasp with the
set W of wrench vectors is said to be form-closure (or force/torque closure).

In more detail, the grasp W is form-closure if and only if for any external
wrench wex it is possible to find a set of non-negative parameters αi ≥ 0
(i = 1, · · · , n) that satisfy

n∑
i=1

αiwi + wex = 0. (2.2)

This formula expresses the fact that external wrench wex can be balanced by
the set of original fingers through modifying the magnitudes of the forces fi

to αifi (i = 1, · · · , n).
For example, in the case of the 2-D object shown in Figure 2.3, the set W

of four wrench vectors given in Equation (2.1) achieves force/torque closure
if fi (i = 1, · · · , 4) satisfies

f1 = f2 > 0, f3 = f4 > 0, f1Y1 = f3X3 (2.3)

provided that

Y1 + Y2 = 0, X3 + X4 = 0. (2.4)

This can be explicitly confirmed by the following argument.
For a given set of wrench vectors W = {w1, · · · , wn}, let us consider the

normalised set of wrenches W̄ = {w̄1, · · · , w̄n}, where w̄i = wi/‖wi‖, i =
1, · · · , n, and ‖w‖ denotes the Euclidean norm of vectors w. Then, consider
a set of all points P such that

P =
n∑

i=1

γiwi,

n∑
i=1

γi = 1, γi ≥ 0 (i = 1, · · · , n) (2.5)

and denote the set by H(W ), and call it the convex hull of the set of original
wrench vectors W .

Theorem 2.7. A necessary and sufficient condition for a grasp with a
set of wrench vectors W to reach form-closure is that the origin of the wrench
space lies exactly inside the convex hull H(W ) of the original set W of wrench
vectors.
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Fig. 2.4. The convex hull H(W̄ ) composed of four normalised wrenches W̄ =
{w̄1, w̄2, w̄3, w̄4} includes the origin O as an interior point

In the case of the parallelepiped shown in Figure 2.3 with wrench vectors
W = {w1, w2, w3, w4} satisfying Equations (2.3) and (2.4), the convex hull of
W can easily be constructed as shown in Figure 2.4, from which it is possible
to see that the origin O is exactly inside H(W ). This shows that the grasp
with this W achieves force/torque closure.

Straightforwardly from Theorem 2.2, it follows that
Theorem 2.8. The form closure of a two-dimensional object requires

at least four wrenches and that of a three-dimensional object requires at least
seven wrenches.

Theorem 2.9. Form closure of any two-dimensional bounded object
(except a circle) can be achieved by four frictionless fingers. For three dimen-
sions, form closure of three-dimensional objects with rotational symmetries
can be achieved with seven frictionless fingers.

It is also shown that
Theorem 2.10. For any convex polygon, four contact points S =

{P1, · · · , P4} at which the set of wrenches achieves form closure can immobilise
a polygonal object.

It is interesting to note that any three wrench vectors constructed at three
contact points S = {P1, P2, P3} of a triangle shown in Figure 2.1(b) cannot
achieve form closure, even if the three orthogonals meet at a common point
(that is, S immobilises the triangle).
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Fig. 2.5. Frictional fingers press the object against the sides in the directions of F 1

and F 2 due to the existence of the frictional forces –1 and –2 tangent to the object
surface

2.3 Frictional Grasp of 2-D Objects

In our everyday life, we pick up small objects on a desk quite easily by using
a thumb and index finger without dropping them. As a matter of course, our
thumb and fingers are not rigid but soft and flexible. In fact, our finger-end has
a curved surface and makes contact with a rigid object with some contacted
area caused by deformation of the finger-end soft material. Then, there may
arise a frictional force in the direction tangent to the contact area due to both
static and viscous (dynamic) friction. Even if the finger-end is rigid but has a
curved surface, it may cause rolling on the object surface without sliding or
slipping. In the next section, we will show that such rolling constraint induces
a constraint force in the direction tangential to both the finger-end and object
surfaces. This tangential force is a constraint force and hence is irrelevant to
energy consumption during motion, unlike the viscous friction.

In this section, we treat a force/torque closure problem for a 2-D rect-
angular object by using a pair of frictional fingers. Two frictional forces F 1

and F 2 acting at points P1 and P2, respectively, against the object can be
regarded as a sum of components f i normal and λi tangent to the object side
(i = 1, 2), as shown in Figure 2.5. Suppose that two straight lines drawn from
P1 and P2 in the directions of F 1 and F 2, respectively, meet at a point O′.
In other words, assume that the direction of f2 is just opposite to that of f1

and the straight line including the line segment OO′ (where O denotes the
centre of the rectangular) splits the rectangular into two parts with the same
shape and size. If we regard the point O′ as the origin of (x, y)-coordinates as
in Figure 2.3, then the vectors f i and λi (i = 1, 2) can be expressed in the
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following way:

f1 =f1

(
1
0

)
, f2 =f2

(−1
0

)
, λ1 =λ1

(
0
−1

)
, λ2 =λ2

(
0
−1

)
, (2.6)

where all the fi and λi (i = 1, 2) are positive constants. Correspondingly to
these four force vectors, the wrench vectors are given as follows:

wf1 = f1

⎛
⎝ 1

0
Y1

⎞
⎠ , wf2 = f2

⎛
⎝ −1

0
−Y1

⎞
⎠ ,

wλ1 = λ1

⎛
⎝ 0

−1
−l/2

⎞
⎠ , wλ2 = λ2

⎛
⎝ 0

−1
l/2

⎞
⎠ . (2.7)

Evidently, the set of wrenches W = {wf1, wf2, wλ1, wλ2} does not realise
force/torque closure, because the sum of these four wrenches cannot be bal-
anced except for the case f1 = f2 = 0 and λ1 = λ2 = 0. That is, the origin
cannot be included inside H(W ), the convex hull of W . Then, let us consider
the situation that the external force F 3 is exerted on the rectangular object
in the direction of the y-axis, down from the top, as shown in Figure 2.5. If
this 2-D object with mass M is placed in a vertical plane and subjected to
gravity, this external force F 3 can be regarded as the gravity force expressed
by F 3 = Mg(0, 1)T. Then it is easy to see that the set of wrenches W and
this additional wrench wF3 = Mg(0, 1, 0)T can be balanced by setting

f1 = f2 > 0, λ1 = λ2 = Mg/2, (2.8)

which yields ∑
i=1,2

(wfi + wλi) + wF3 = 0. (2.9)

It is interesting to note that the set of five wrenches W ′ = {wf1, wf2, wλ1,
wλ2, wF3} achieves force/torque closure, because the convex hull H(W ′) ap-
parently includes the origin as an interior point. In fact, suppose that a small
external force with wrench wd = (εx, εy, εm)T is exerted on the rectangular
object. In order to balance wd by the set W ′, it is necessary and sufficient to
choose fi > 0 and λi > 0 while fixing the value Mg so that∑

i=1,2

(wfi + wλi) + wF3 + wd = 0. (2.10)

This equality can be satisfied by choosing fi > 0 and λi > 0 so that they
satisfy ⎧⎨

⎩
f1 − f2 = −εx, λ1 + λ2 = Mg + εy

−εxY1 − lλ1 +
l

2
(Mg + εy) + εm = 0

(2.11)
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Fig. 2.6. A single-joint finger robot receives an external force F in the direction
from P to O0

from which it follows that⎧⎪⎨
⎪⎩

fi = fd + (−1)i εx

2

λi =
1
2
(Mg + εy) + (−1)i εxY1 − εm

l

i = 1, 2. (2.12)

where fd is a certain appropriate positive constant. Conversely, it is easy to
check that if fi and λi are chosen by Equation (2.12) then the force/torque
balance expressed by Equation (2.10) is realized. The arguments imply a po-
tential way of controlling the grasp of a 2-D polygonal object by using a pair of
fingers that exert not only pressing forces on the object normal to the object
surface but also frictional (or rolling constraint) forces tangent to it.

2.4 Rolling Contact Constraint

Before discussing how rolling constraint force emerges from the physical inter-
action of rolling between a robot finger-end and a 2-D object surface and how
effectively it is used to balance the force/torque, we show how an external
force acting on a robot finger enters Lagrange’s equation of motion for the
finger. First, consider the single DOF finger depicted in Figure 2.6 on which
the external force F is exerted at a fixed point P at a distance from the cen-
tre of curvature O0 of the spherical finger-end r. The finger is composed of a
rigid link wiht length l whose end is rigidly connected to the finger-end and
therefore the link together with the finger-end is regarded as a single rigid
body. Denote the pivoted origin of the robot finger by O and set the (x, y)
coordinates as shown in Figure 2.6. Then, the positions O0 and P can be
expressed as
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⎪⎪⎪⎪⎪⎩

O0 =

(
x0

y0

)
=

(
−l cos q

l sin q

)

P =

(
x1

y1

)
=

(
−l cos q − r cos(q + φ)
l sin q + r sin(q + φ)

) (2.13)

where the angles q and φ are defined in Figure 2.6. Since in this case the
xy-plane is regarded as horizontal, the effect of gravity can be ignored. At the
same time, we assume that rotational motion of the robot finger is frictionless.
Evidently, the kinetic energy of the robot finger is denoted by K = (1/2)Iq̇2

and the external force is expressed as

F = F (cos(q + φ), − sin(q + φ))T , (2.14)

where I denotes the moment of inertia of the finger around O and F de-
notes the magnitude of F . Then, applying the variational principle to the
Lagrangian L = K with the external force F yields∫ t1

t0

{
δL +

∂(x1, y1)
∂q

F δq

}
dt = 0 (2.15)

from which it follows that

Iq̈ = JT(q)F , (2.16)

where

J(q) =
(

∂x1/∂q
∂y1/∂q

)
=
(

l sin q + r sin(q + φ)
l cos q + r cos(q + φ)

)
. (2.17)

Hence, the right-hand side of Equation (2.15) can be calculated by using the
expressions for F and J(q) [Equations (2.13) and (2.16)] in such a way that

JT(q)F = −lF {sin q cos(q + φ) − cos q sin(q + φ)}
−rF {sin(q + φ) cos(q + φ) − cos(q + φ) sin(q + φ)}

= −LF sin φ. (2.18)

Thus, Equation (2.15) can be written in the form

Iq̈ = −lF sin φ. (2.19)

This shows that the external force F acting at the finger-end surface in the
direction normal to it can be regarded as being acting at the centre of cur-
vature of the finger-end sphere in the same direction. Furthermore, suppose
that an appropriate servo-motor actuator is installed at the pivotal joint O
to generate control torque signals, and denote the control input torque by u.
Then, this control torque can be regarded as an external torque at joint O
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Fig. 2.7. A two-DOF finger robot receives an external force −F that can be re-
garded as the sum of component forces −f and −– orthogonal to each other

and hence it is possible to express the equation of motion of the robot finger
in the following form:

Iq̈ = −lF sin φ + u. (2.20)

If all physical parameters l, F and φ are known, it is possible to design a control
input u to stop the rotational motion of the finger by setting u = lF sin φ so
as to withstand and balance the external force F .

Next consider the case of a two-DOF finger robot with a spherical end
with an external force −F exerted at the point P (= (x1, y1)) as shown in
Figure 2.7. For the convenience of discussions in subsequent sections, in this
case we use a minus sign to express the external force. This external force can
be regarded as the sum of two components −f and −λ as shown in Figure
2.7. Here the direction of −f is normal to the finger-end surface and that
of −λ is tangential to it. In order to derive Lagrange’s equation of motion,
denote the kinetic energy of the finger robot with two joints by

K = K(q, q̇) =
1
2
q̇T(t)H(q(t))q̇(t) (2.21)

where q = (q1, q2)T and H(q) denotes the inertia matrix of the planar robot
finger with two DOFs as expressed in Equation (1.107). Then, the variational
principle in this case can be described by the following form:∫ t1

t0

[
δK +

{
∂(x0, y0)

∂q
f +

∂(x1, y1)
∂q

λ + uTδq

}]
dt = 0. (2.22)

where u = (u1, u2)T denotes the control torques generated at joint actuators.
Note that −f and −λ can be described as
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⎪⎪⎪⎪⎪⎩

−f = f

(
cos(q1 + q2 + φ)
− sin(q1 + q2 + φ)

)
= −f

(
cos θ

− sin θ

)
,

−λ = −λ

(
sin(q1 + q2 + φ)
cos(q1 + q2 + φ)

)
= λ

(
sin θ

cos θ

)
,

(2.23)

where θ denotes the angle from the x-axis to the direction of the external force
f . Since the sign of the angle in a counter-clockwise direction is taken to be
positive, the angle θ in the case of Figure 2.7 is negative. Furthermore, it is
possible to write the position P relative to the position O0 in the following
way: (

x1

y1

)
=
(

x0 + r cos(q1 + q2 + φ)
y0 − r sin(q1 + q2 + φ)

)
=
(

x0

y0

)
+ r

(
cos θ
− sin θ

)
. (2.24)

Futher, it follows that

∂(x1, y1)
∂q

= JT
0 (q) − r

(
sin θ cos θ
sin θ cos θ

)
, (2.25)

where

JT
0 (q) =

∂(x0, y0)
∂q

. (2.26)

Hence, from Equations (2.23) and (2.25) it follows that

−∂(x1, y1)
∂q

f = −fJT
0 (q)

(
cos θ
− sin θ

)
, (2.27)

−∂(x1, y1)
∂q

λ = λ

{
JT

0 (q)
(

sin θ
cos θ

)
− r

(
1
1

)}
. (2.28)

Thus, it follows from the variational principle expressed as Equation (1.85)
that

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
+ fJT

0 (q)
(

cos θ
− sin θ

)

−λ

{
JT

0 (q)
(

sin θ
cos θ

)
− r

(
1
1

)}
= u. (2.29)

It is important to note that, for the generation of two torque components to
counter-balance the torques exerted by the external force −F whose direction
is changing instantaneously (φ is not constant), two independent actuators
installed separately at two joints are necessary. In other words, if u is a scalar
control variable and hence JT

0 (q) is a 1× 2 matrix, the total sum of the third
and fourth terms of the left-hand side of Equation (2.29) cannot be restored
into such two original terms.
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Fig. 2.8. A two-DOF finger robot immobilising a 2-D object pivoted at a fixed
point

2.5 Testbed Problems for Dynamically Stable Grasp

For the study of stable grasping and dexterious manipulation by a human-
like multi-fingered hand, a simple but canonical testbed problem underlying
control of motion of the simplest robot mechanism is very useful for gaining
both physical and mathematical insights into the problem. Such a prototype
problem may play a similar role to the well-known problem of stability and
control of the inverted pendulum that has contributed to advances in lin-
ear and non-linear control theory of mechanical systems. However, there is a
noteworthy difference between the two testbed problems. Even in the case of
the simpler testbed problems of stable grasp, Lagrange’s equation of motion
for a robot mechanism is subject to geometric constraints and therefore con-
trol inputs cannot enter explicitly into the equation of motion of the object
to be controlled. Grasping an object should be controlled indirectly through
constraint forces.

For the sake of mechanical simplicity but still to show the key role of the
rolling constraint, let us consider the mechanical setup shown in Figure 2.8,
which is composed of a two-DOF robot finger with a hemispherical finger-
end and a rigid rectangular 2-D object pinned at a point Om but pivoting
around it. It is assumed that the xy-plane is horizontal and the whole motion
of the finger and object is confined to this plane and therefore the effect of
gravity can be ignored. For convenience and simplicity, we assume further
that rotational motion of the object around the Om is frictionless. Comparing
Figure 2.8 with Figure 2.7, we can easily see that the equation of rotational
motion of the object follows directly from Newton’s law of action and reaction
in the following form:
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Iθ̈ − fY1 + λl = 0, (2.30)

where I denotes the inertia moment of the object around Om, l the distance
from Om to the left rectilinear side of the object as shown in Figure 2.8 and
Y1 the Y -component of the (X, Y )-coordinates of position O1 attached at the
object. The equation of motion of the finger is the same as that described
by Equation (2.29) in the previous section. These two equations are derived,
however, by assuming that there arises a force F pressing the object in the
direction shown in Figure 2.8 and a reactive force −F affecting the finger at
the common point O1 in the opposite direction.

We now show that these active and reactive forces F and −F , which
have tangential components λ and −λ, actually arise at the contact point O1

between the finger-end and the object surface. In reality, the physical situation
of contacting of the finger-end with the object should be expressed firstly by
the algebraic equation

r + l = (xm − x0) cos θ + (ym − y0) sin θ. (2.31)

Since the length of the line from O0 to P (see Figure 2.8) is r + l it must also
be equal to the right-hand side of Equation (2.31). Here, P is a point at which
the extended straight line from O0 to O1 crosses the Y -axis originates from the
origin Om. Secondly, if the spherical finger-end is rolling on the object surface
without slipping then the contact point velocity expressed on the finger-end
must be equal to that expressed on the object surface. This can be written as

d
dt

(rφ) = − d
dt

Y1, (2.32)

where φ denotes the angle specified in Figure 2.7. It is easy to verify that

φ = π + θ − q1 − q2 = π + θ − qTe, (2.33)
Y1 = (x0 − xm) sin θ + (y0 − ym) cos θ, (2.34)

where e = (1, 1)T and q = (q1, q2)T. Note that Equation (2.32) can be inte-
grated as follows:

rφ(t) = −Y1(t) − c0, (2.35)

where c0 denotes a constant of integration. Thus, it follows from Equation
(2.31) and substituting Equations (2.33) and (2.34) into Equation (2.35) that

Q(q, θ) = −(r + l) + (xm − x0) cos θ − (ym − y0) sin θ

= 0, (2.36)
R(q, θ) = c0 + Y + rφ

= c0 + (x0 − xm) sin θ + (y0 − ym) cos θ + r(π + θ − qTe)
= 0. (2.37)
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We call Equation (2.36) the contact constraint and Equation (2.37) the rolling
constraint. Both constraints can be regarded as holonomic. Then, by intro-
ducing Lagrange’s multipliers f and λ for Equations (2.36) and (2.37), respec-
tively, we can define the Lagrangian

L = K + fQ + λR, (2.38)

where K denotes the kinetic energy expressed by Equation (2.21). Applying
the variational principle described by Equation (1.76) to this Lagrangian, we
obtain the following Lagrange’s equation of motion:

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇ − f

∂Q

∂q
− λ

∂R

∂q
= u, (2.39)

Iθ̈ − f
∂Q

∂θ
− λ

∂R

∂θ
= 0. (2.40)

Obviously, Equation (2.39) expresses the motion of the robot finger and Equa-
tion (2.40) the rotational motion of the object. The gradient vectors ∂Q/∂q
and ∂R/∂q and partial differentials of Q and R with respect to θ can be
calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q

∂q
= −∂(x0, y0)

∂q

(
cos θ

− sin θ

)
= −JT

0 (q)

(
cos θ

− sin θ

)
,

∂R

∂q
=

∂(x0, y0)
∂q

(
sin θ

cos θ

)
− re = JT

0 (q)

(
sin θ

cos θ

)
− re,

∂Q

∂θ
= Y1,

∂R

∂θ
= −l.

(2.41)

Thus, it is possible to confirm that substituting these partial differentials from
Equation (2.41) into Equations (2.39) and (2.40) yields Equations (2.29) and
(2.30). Evidently the Lagrange multiplier f acts at the contact point as a
pressing force against the object and induces the rotational moment −fY1 for
the object around Om. Similarly, another multiplier λ induces the rotational
moment λl for the object around Qm. Then, their two-dimensional wrenches
acting on the object are written as follows:

wf = f

⎛
⎝ cos θ

− sin θ
Y1

⎞
⎠ , wλ = λ

⎛
⎝− sin θ

− cos θ
−l

⎞
⎠ . (2.42)

Apparently, wf acts at the contact point as a pressing force for the object in
the direction normal to the object side and wλ acts at the same contact point
as a shear force along the object side. The typical testbed control problem for
the set of motion Equations (2.29) and (2.30) that are subject to the constraint
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Fig. 2.9. A pair of single-DOF robot fingers grasping a 2-D rigid object with parallel
surfaces

Equations (2.36) and (2.37) is to design a controller for stabilising rotational
motion of the object by balancing induced moments of the object around Om

and maintaining some still state with a constant angle of θ and zero angular
velocity θ̇ = 0. Note that the control variables u = (u1, u2)T do not enter into
the dynamics of the object, i.e., Equation (2.30). The motion of the object
should be indirectly controlled and stabilised through the constraint forces
f and λ. This problem will be investigated in detail in subsequent sections,
which will help us in understanding physical meanings of control of precision
prehension by a pair of human-like robot fingers.

Next we shall propose another testbed problem of stable grasp with a sim-
ple mechanical structure. Let us consider a pair of single-DOF robot fingers
whose ends are spherical and a 2-D object which has parallel sides, as shown
in Figure 2.9. The motion of the overall fingers-object is confined to the hor-
izontal xy-plane. In this case, it is implicitly assumed that an object with
a flat bottom is placed on a desk and both the translational and rotational
motions of the object are frictionless. In contrast to the previous example of
Figure 2.8, the centre of mass Oc.m. of the object is free to move. Denote the
mass and the inertia moment of the object around Oc.m. by M and I, respec-
tively. All other physical variables are specified in Figure 2.9, as in Figures
2.7 and 2.8 except that in Figure 2.9 the position of the object centre of mass
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is expressed by the vector x = (x, y)T in terms of the frame coordinates with
origin O. Hence, the total kinetic energy of this overall fingers-object system
is expressed as

K =
∑

i=1,2

1
2
Iiq̇

2
i +

M

2
(ẋ2 + ẏ2) +

I

2
θ̇2, (2.43)

where I1 denotes the moment of inertia of the left finger around the origin O
and I2 that of the right finger around O′. In this case, the sign of angles q1

and θ is taken to be positive in the counter-clockwise direction but that of q2

is taken to be positive in the clockwise direction.
Now, in light of the arguments developed in the previous two sections,

it is rather evident that Lagrange’s equation of motion of this fingers-object
system is governed by the following set of equations:

Iiq̈i − fi
∂Qi

∂qi
− λi

∂Ri

∂qi
= ui, i = 1, 2, (2.44)

M

(
ẍ
ÿ

)
−
∑

i=1,2

{
fi

(
∂Qi/∂x
∂Qi/∂y

)
+ λi

(
∂Ri/∂x
∂Ri/∂y

)}
= 0, (2.45)

Iθ̈ −
∑

i=1,2

{fi(∂Qi/∂θ) + λi(∂Ri/∂θ)} = 0, (2.46)

where

Qi = −(li + ri) − (−1)i {(x − x0i) cos θ − (y − y0i) sin θ} = 0,

i = 1, 2 (2.47)

d
dt

riφi = −dYi

dt
, i = 1, 2 (2.48)

{
Yi = (x0i − x) sin θ + (y0i − y) cos θ

φi = π − (−1)iθ − qi

i = 1, 2 (2.49)

Ri = Yi + ri(φi − π) − c0i

= (x0i − x) sin θ + (y0i − y) cos θ − c0i − ri

{
(−1)iθ + qi

}
= 0, i = 1, 2 (2.50)

and c0i denotes an appropriate constant. Equation (2.47) for i signifies the
contact constraint at the contact point O0i and Equation (2.48) for i captures
the rolling constraint at the same point O0i. Since Equation (2.48) can be
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Table 2.1. Partial differentials of Qi and Ri

8>>>>><
>>>>>:

∂Qi

∂qi
= (−1)iJT

0i(qi)

 
cos θ

− sin θ

!

∂Ri

∂qi
= JT

0i(qi)

 
sin θ

cos θ

!
− ri

i = 1, 2

8>><
>>:

∂Qi

∂x
= (−1)i cos θ,

∂Qi

∂y
= (−1)i sin θ

∂Ri

∂x
= − sin θ,

∂Ri

∂y
= − cos θ

i = 1, 2

8>><
>>:

∂Qi

∂θ
= −(−1)iYi

∂Ri

∂θ
= (−1)ili

i = 1, 2

JT
0i(qi) =

∂(x0i, y0i)

∂qi
= li

`
(−1)i sin qi, cos qi

´
, i = 1, 2

where l1 = the length of OO01

and l2 = that of O′O02

integrated and Yi and φi can be expressed as in Equation (2.49), the rolling
constraint can be rewritten in the form of the holonomic constraint shown
in Equation (2.50). Therefore, the Lagrangian L of the overall system can be
expressed as

L = K +
∑

i=1,2

{fiQi + λiRi} (2.51)

and thereby Equations (2.44) to (2.46) follow from applying the variational
principle for the Lagrangian L. For the sake of convenience, we have calculated
all partial differentials of Qi and Ri in qi, x, y and θ, which are given in Table
2.1. Substituting all these partial differentials into Equations (2.44) to (2.46)
leads to

Iiq̈i − fi(−1)iJT
0i(qi)

(
cos θ
− sin θ

)
− λi

{
JT

0i(qi)
(

sin θ
cos θ

)
− ri

}
= ui,

i = 1, 2 (2.52)

M

(
ẍ
ÿ

)
− (f1 − f2)

(
cos θ
− sin θ

)
+ (λ1 + λ2)

(
sin θ
cos θ

)
= 0, (2.53)
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Iθ̈ − f1Y1 + f2Y2 + l1λ1 − l2λ2 = 0. (2.54)

Since it follows from the meaning of the constraints expressed by Equations
(2.47) and (2.50) that⎧⎪⎪⎨

⎪⎪⎩
dQi

dt
= q̇i

∂Qi

∂qi
+ ẋ

∂Qi

∂x
+ ẏ

∂Qi

∂y
+ θ̇

∂Qi

∂θ

dRi

dt
= q̇i

∂Ri

∂qi
+ ẋ

∂Ri

∂x
+ ẏ

∂Ri

∂y
+ θ̇

∂Ri

∂θ

i = 1, 2 (2.55)

the sum of multiplications of Equation (2.52) by q̇i (i = 1, 2) and Equation
(2.54) by θ̇ and inner product between Equation (2.53) and (ẋ, ẏ)T yields

d
dt

K =
∑

i=1,2

q̇iui. (2.56)

Now, we are ready to discuss how to design a controller that can stabilise
both translational and rotational motions of the object by balancing forces
and torques affecting the object. Obviously from Equations (2.53) and (2.54),
the wrench vectors exerted on the object are described as follows:

wf1 = f1

⎛
⎝− cos θ

sin θ
−Yi

⎞
⎠ , wf2 = f2

⎛
⎝ cos θ

− sin θ
Y2

⎞
⎠ ,

wλ1 = λ1

⎛
⎝ sin θ

cos θ
l1

⎞
⎠ , wλ2 = λ2

⎛
⎝ sin θ

cos θ
−l2

⎞
⎠ . (2.57)

In order that the sum of these four wrenches become zero, it is necessary and
sufficient that

f1 = f2 = fd, λ1 + λ2 = 0, −fd(Y1 − Y2) + λ1(l1 + l2) = 0, (2.58)

where fd must be some positive constant. One possible solution to the simul-
taneous conditions of Equation (2.58) is to control the overall system motion
so as to let fi → fd, Y1 − Y2 → 0 and λi → 0 (i = 1, 2). Following this
observation, we are able to devise the following control signal:

ui = −ciq̇i − (−1)ifd

{
JT

0i(qi)
(

cos θ
− sin θ

)
− ri

r1 + r2
(Y1 − Y2)

}
(2.59)

where f0 can be chosen as being equal to fd or any other positive constant.
Substituting Equation (2.59) into Equation (2.52) yields

Iiq̈i + ciq̇i − (−1)i

{
∆fiJ

T
0i(qi)

(
cos θ
− sin θ

)
+

rifd

r1 + r2
(Y1 − Y2)

}

−λi

{
JT

0i(qi)
(

sin θ
cos θ

)
− ri

}
= 0, (2.60)
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where ∆fi = fi − f0 (i = 1, 2). We conveniently rewrite Equations (2.53) and
(2.54) in the following equivalent formulae:

M

(
ẍ
ÿ

)
− (∆f1 − ∆f2)

(
cos θ
− sin θ

)
+ (λ1 + λ2)

(
sin θ
cos θ

)
= 0, (2.61)

Iθ̈ − ∆f1Y1 + ∆f2Y2 − fd(Y1 − Y2) + l1λ1 − l2λ2 = 0. (2.62)

Similarly to the derivation of Equation (2.56) by referring to Equation (2.55),
the sum of the multiplications of Equation (2.60) by q̇i for i = 1, 2, Equation
(2.62) by θ̇, and the inner product between Equation (2.61) and (ẋ, ẏ)T takes
the form

d
dt

K +
∑

i=1,2

{
ciq̇

2
i − (−1)i rifd

r1 + r2
q̇i(Y1 − Y2)

}
− fdθ̇(Y1 − Y2) = 0. (2.63)

Since from Equations (2.48) and (2.49) it follows that

Ẏ1 − Ẏ2 = −r1φ̇1 + r2φ̇2 = −r1(θ̇ − q̇1) + r2(−θ̇ − q̇2)
= −(r1 + r2)θ̇ + (r1q̇1 − r2q̇2) (2.64)

Equation (2.63) can be reduced to

d
dt

E(X , Ẋ) = −
∑

i=1,2

ciq̇
2
i , (2.65)

where X = (q1, q2, x, y, θ)T,

P =
fd

2(r1 + r2)
(Y1 − Y2)2, (2.66)

E(X , Ẋ) = K + P

=
∑

i=1,2

Ii

2
q̇2
i +

M

2
(ẋ2 + ẏ2) +

I

2
θ̇2 +

fd

2(r1 + r2)
(Y1 − Y2)2, (2.67)

and K is the total kinetic energy already given by Equation (2.43). Equation
(2.65) can be interpreted as stating that the time rate of the total energy
E(X) is equal to the instantaneous energy dissipation rate. Hence, we call
the scalar function P the artificial potential. It is important to note that
the closed-loop dynamics of Equations (2.60–2.62) is equivalent to Lagrange’s
equation of motion for the Lagrangian

L = K − P +
∑

i=1,2

{∆fiQi + λiRi} . (2.68)
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Note that the overall fingers–object system of Figure 2.9 has a single DOF be-
cause the system has five independent position variables X = (q1, q2, x, y, θ)T

but they are subject to four independent holonomic constraints. Therefore P
is positive definite with respect to X under the four constraints and therefore
the total energy E(X , Ẋ) is positive definite for the state variables (X, Ẋ)
under the following eight constraints⎧⎨

⎩
Qi = 0, Ri = 0

Q̇i = Ẋ
T ∂Qi

∂X
= 0, Ṙi = Ẋ

T ∂Ri

∂X
= 0

i = 1, 2. (2.69)

Hence, due to Dirichlet’s theorem of stability, the equilibrium state (X∞, Ẋ∞ =
0) that satisfies Y1 − Y2 = 0 at X = X∞ is stable.

Now, we show that the equilibrium state (X∞, 0) is asymptotically stable
for the system of Equations (2.60–2.62), i.e., there exists a positive number
δ > 0 such that any solution (X(t), Ẋ(t)) of Equations (2.60–2.62) subject
to constraints (2.69) starting from an arbitrary initial state (X(0), Ẋ(0)) sat-
isfying E(X(0), Ẋ(0)) ≤ δ converges asymptotically to the equilibrium state
(X∞, 0) as t → ∞. For the sake of convenience for proving this, we rewrite the
closed-loop dynamics of Equations (2.60–2.62) into the single matrix–vector
form:

HẌ + CẊ − A∆λ − fd

r1 + r2
(Y1 − Y2)e = 0 (2.70)

where

H =

⎛
⎜⎜⎜⎜⎝

I1 0 0 0 0
0 I2 0 0 0
0 0 M 0 0
0 0 0 M 0
0 0 0 0 I

⎞
⎟⎟⎟⎟⎠ , ∆λ =

⎛
⎜⎜⎝

∆f1

∆f2

λ1

λ2

⎞
⎟⎟⎠ , e =

⎛
⎜⎜⎜⎜⎝

−r1

r2

0
0

r1 + r2

⎞
⎟⎟⎟⎟⎠ , (2.71)

A =

⎛
⎜⎜⎝

−JT
01rX 0 JT

01rY − r1 0
0 JT

02rX 0 JT
02rY − r2

rX −rX −rY −rY

Y1 −Y2 −l1 l2

⎞
⎟⎟⎠ , (2.72)

C =

⎛
⎝ c1 0 02×30 c2

03×2 03×3

⎞
⎠ , rX =

(
cos θ
− sin θ

)
, rY =

(
sin θ
cos θ

)
. (2.73)

Obviously, the 5 × 4 matrix A is of full rank [i.e., rank (A) = 4] when the
pair of fingers in contact with the object takes an ordinary position like that
shown in Figure 2.9. The proof should go in the follows steps.
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1) According to the energy relation of Equation (2.68), E(X(t), Ẋ(t)) ≤
E(X(0), Ẋ(0)) ≤ δ for any t > 0. Hence, Ẋ(t) is uniformly bounded and
Y1 − Y2 is also bounded, in particular

|Y1(t) − Y2(t)| ≤
√

2(r1 + r2)δ
fd

. (2.74)

2) Next, note that

0 = Ṙ1 − Ṙ2 = (ẋ01 − ẋ02) sin θ + (ẏ01 − ẏ02) cos θ

−θ̇(l1 + l2 + r1 + r2) + (r1 + r2)θ̇ − r1q̇1 − r2q̇2 (2.75)

from which it follows that

θ̇ =
1

l1 + l2
{−r1q̇1 + r2q̇2 + (ẋ01 − ẋ02) sin θ + (ẏ01 − ẏ02) cos θ} . (2.76)

Hence, |θ̇| is bounded. Similarly, it follows from differentiations of Q1 and R1

with respect to t that

RT
θ

(
ẋ
ẏ

)
− RT

θ

(
ẋ01

ẏ01

)
+
(

Y1θ̇

r1q̇1 − l1θ̇

)
= 0, (2.77)

where

Rθ =
(
rX rY

)
=
(

cos θ sin θ
− sin θ cos θ

)
. (2.78)

Since Rθ is an orthogonal matrix, R−1
θ = RT

θ and therefore Equation (2.77)
is reduced to (

ẋ
ẏ

)
=
(

ẋ01

ẏ01

)
− Rθ

(
Y1θ̇

r1q̇1 − l1θ̇

)
(2.79)

from which (ẋ, ẏ)T is also bounded.
3) Note that multiplication of Equation (2.70) from the left by ATH−1

yields

−ȦTẊ + ATH−1CẊ − ATH−1A∆λ

− fd

r1 + r2
(Y1 − Y2)ATH−1e = 0, (2.80)

where we used the relation

0 =
d
dt

(ATẊ) = ATẌ + ȦTẊ. (2.81)

Multiplying Equation (2.80) by (ATH−1A)−1 from the left yields
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∆λ = (ATH−1A)−1

{
− ȦTẊ + ATH−1CẊ

− fd

r1 + r2
(Y1 − Y2)ATH−1e

}
. (2.82)

Since A is of full rank at the equilibrium state X = X∞, it is possible
to choose δ > 0 small enough that A is nondegenerate for all X satisfying
E(X, Ẋ) ≤ δ together with constraints of Equation (2.69). Hence, ∆λ is also
bounded.

4) Since Y1 − Y2, Ẋ, and ∆λ are all uniformly bounded, Ẍ must be
uniformly bounded according to Equation (2.70). This implies that Ẋ is uni-
formly continuous. In particular, q̇1 and q̇2 are uniformly continuous and also
belong to L2(0,∞) from the energy relation of Equation (2.65). Thus, on ac-
count of Lemma 2 of Appendix A, q̇1(t) and q̇2(t) converge to zero as t → ∞.
Then, according to Equations (2.76) and (2.79), θ̇(t) → 0 as t → ∞ and
subsequently ẋ(t) and ẏ(t) must converge to zero as t → ∞.

5) Since Ẋ and Y1−Y2 are uniformly continuous in t, Ẍ(t) is also uniformly
continuous. Since Ẍ is uniformly continuous and Ẋ(t) → 0 as t → ∞, Lemma
A of Appendix A implies that Ẍ(t) → 0 as t → ∞.

6) Thus, from Equation (2.70) it follows that

−[A, e]
[

∆λ
−fd(Y1 − Y2)/(r1 + r2)

]
→ 0 as t → ∞. (2.83)

Since the 5×5-matrix [A, e] is nonsingular obviously, Equation (2.83) implies

Y1(t) − Y2(t) → 0, fi(t) → fd, λi(t) → 0, i = 1, 2 (2.84)

as t → ∞.
Thus, the proof of the asymptotic stability of the equilibrium state (X∞, 0)

that satisfies Y1−Y2 = 0 together with fi = fd and λi = 0 has been completed.
However, there still remain uncertainties in the mathematical rigour of

the proof and the practical effectiveness of the control scheme given by Equa-
tion (2.59). In fact, we could not argue how rapidly the solution trajectory
(X(t), Ẋ(t)) of Equation (2.70) converges to the equilibrium state (X∞, 0).
We could not find out how large a neighbourhood of the equilibrium point
(X∞, 0) characterised by E(X(0), Ẋ(0)) ≤ δ with δ > 0 can be selected. If
any solution trajectories starting from any initial state inside such a neigh-
bourhood of (X∞, 0) converge asymptotically to (X∞, 0), the neighbourhood
is called an attractor of the equilibrium point (X∞, 0). In the process of prov-
ing the asymptotic convergence, we needed to show that boundedness of the
finger angular velocities q̇1 and q̇2 implies that of the velocities of the ob-
ject variables (x, y, θ) based on Equations (2.76) and (2.79) owing to the four
contact constraints. However, Equation (2.76) shows that the attractor of
(X∞, 0) may not be selected large enough if the object width l1 + l2 is very
small. Another problem is whether both contacts between the finger-ends and
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Fig. 2.10. A pair of single-DOF robot fingers grasping a 2-D object with parallel
flat sides

object surfaces are maintained during the motion of the overall system. In the
next section, a more mathematically rigorous treatment of the problem will
be presented by introducing a far more important class of coordinated motor
control signals for stable grasping.

2.6 Blind Grasping and Robustness Problems

Consider again a pair of dual single-DOF robot fingers contacting a 2-D rect-
angular object as shown in Figure 2.10. Now, let us consider the following
class of control signals:

ui = −ciq̇i + (−1)i fd

r1 + r2
JT

0i(qi)
(

x01 − x02

y01 − y02

)
, i = 1, 2. (2.85)

The first term on the right-hand side indicates damping injection for finger
joint motion and the second term is introduced to exert an approximated
opposition force, denoted by F i in Figure 2.10, that presses the object coordi-
natedly from the left by the left finger (i = 1) and from the right by the right
one (i = 2). If in the construction of the control signal of Equation (2.85) any
information about the object is not available, i.e., the positions of the contact
points O1 and O2 are uncertain, we must use the information only about finger
kinematics and measured data on finger joint angles. Hence we assume that
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the Jacobian matrices J0i(qi) for i = 1, 2 are known and the orientation vector
(x01 − x02, y01 − y02)T that has the same direction of O01O02 is also known
and available for the construction of the control signal. In other words, it is
expected that the direction of the opposition force, coincident with the line
O1O2 but unknown, can be well approximated by the known axis of O01O02.

Next, note that multiplication of Equation (2.85) by q̇i and summing the
resutant equations for i = 1, 2 yields∑

i=1,2

q̇iui

= −
∑

i=1,2

ciq̇
2
i − d

dt

[
fd

2(r1 + r2)
{
(x01 − x02)2 + (y01 − y02)2

}]
. (2.86)

Then, it is easy to show (see Figure 2.10) that

(x01 − x02)2 + (y01 − y02)2 = (Y1 − Y2)2 + l2w, (2.87)

lw = r1 + r2 + l1 + l2. (2.88)

On the other hand, it follows from Equations (2.47) and (2.48) that

RT
θ

(
x01 − x02

y01 − y02

)
=
( −lw

Y1 − Y2

)
(2.89)

from which it follows that(
x01 − x02

y01 − y02

)
= Rθ

( −lw
Y1 − Y2

)
= −lwrX + (Y1 − Y2)rY . (2.90)

Thus, the control signals ui (i = 1, 2) can be recast into the form

ui = −ciq̇i − (−1)if0J
T
0i(qi)rX +

fd

r1 + r2
(Y1 − Y2)(−1)i

{
JT

0i(qi)rY − ri

}
+(−1)i rifd

r1 + r2
(Y1 − Y2), (2.91)

where

f0 =
(

1 +
l1 + l2
r1 + r2

)
fd. (2.92)

Substituting Equation (2.91) into Equation (2.52) yields

Iiq̈i − (−1)i∆fiJ
T
0i(qi)rX − ∆λi

{
JT

0i(qi)rY − ri

}
−(−1)i rifd

r1 + r2
(Y1 − Y2) = 0, i = 1, 2, (2.93)
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where

∆fi = fi − f0, ∆λi = λi + (−1)i fd

r1 + r2
(Y1 − Y2), i = 1, 2. (2.94)

Note that Equation (2.93) becomes the same as Equation (2.60) if ∆λi is
replaced with λi. Equations (2.53) and (2.54) can be rewritten as

M

(
ẍ
ÿ

)
− (∆f1 − ∆f2) rX + (∆λ1 + ∆λ2) rY = 0, (2.95)

Iθ̈ − ∆f1Y1 + ∆f2Y2 + ∆λ1l1 − ∆λ2l2 − fd(Y1 − Y2) = 0. (2.96)

These are also the same as Equation (2.61) and Equation (2.62), respectively,
if ∆λi is replaced by λi for i = 1, 2. Thus, similarly to derivation of Equation
(2.70), Equations (2.93), (2.95) and (2.96) can be recast in the vector-matrix
equation:

HẌ + CẊ − A∆λ − fd

r1 + r2
(Y1 − Y2)e = 0, (2.97)

where

∆λ = (∆f1, ∆f2, ∆λ1, ∆λ2)
T

. (2.98)

Note that this ∆λ differs slightly from that in Equation (2.71). Similarly, by
taking inner product between Equation (2.97) and Ẋ or substituting Equation
(2.86) into Equation (2.56), we obtain

d
dt

E(X , Ẋ) = −
∑

i=1,2

ciq̇
2
i , (2.99)

where E is given by Equation (2.67). This relation is the same as Equation
(2.65).

It can easily be reconfirmed that the closed-loop dynamics of Equations
(2.93–2.96) is derived as Lagrange’s equation of motion for the Lagrangian

L = K − P +
∑

i=1,2

{∆fiQi + ∆λiRi} , (2.100)

where Qi and Ri (i = 1, 2) are defined by (2.47) and (2.50), K is given by
(2.43) and P is the same artificial potential as given in (2.66). This means
that the same argument developed in the previous section for proving the
convergence of solution trajectories of Equation (2.70) can apply to Equations
(2.93), (2.95) and (2.96) or Equation (2.97). Then, it is concluded that

Y1(t) − Y2(t) → 0, ∆fi(t) → 0, ∆λi(t) → 0, i = 1, 2 (2.101)

as t → ∞. This means that
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Table 2.2. Physical parameters

m11 = m21 link mass 0.025[kg]

I11 = I21 inertia moment 3.333 × 10−6[kg · m2]

l11 = l21 link length 0.040[m]

r1 = r2 radius 0.01[m]

M object mass 0.027[kg]

h object height 0.025[m]

w = (l1 + l2) object width 0.03[m]

I object inertia moment 3.431 × 10−6[kg · m2]

l1 = l2 object length 0.015[m]

Table 2.3. Parameters of the control signals

fd internal force 1.0[N]

c1 = c2 damping coefficient 0.002[msN]

γf CSM gain 1500.0

γλ CSM gain 3000.0

fi(t) → f0, λi(t) → 0, i = 1, 2 (2.102)

as t → ∞. This concludes that solution trajectories of Equation (2.97) con-
verge asymptotically to the equilibrium state.

In order to see how rapidly such solution trajectories converge to the equi-
librium state, we will show results of numerical simulation conducted on the
basis of physical models of robot fingers and a 2-D rectangular object with
regular size and weight as shown in Table 2.2. In this simulation, Baumgarte’s
constraint stabilisation method (CSM) is employed by introducing a class of
over-damped second-order differential equation with gains γf and γλ to ap-
proximate the holonomic constraints well. The details of the CSM method
will be given in Section 4.5. By using the control gains given in Table 2.3 and
starting from the initial state with Ẋ(0) = 0 given in Table 2.3, we can obtain
a numerical solution to Equation (2.97). In Figure 2.11 we show the transient
behaviours of the key physical variables involved in Equation (2.97). As can
be seen from Figure 2.11, Y1−Y2, fi and λi (i = 1, 2) converge asymptotically
to each expected constant value. As a matter of course, the rotational angle
θ of the object also converges asymptotically to a certain constant. Further-
more, all the transient behaviours of the physical variables suggest that the
speed of all these convergences must be exponential in t. In the next section,
we shall confirm this exponential convergence of the solution trajectories in a
rigorous mathematical way.

Before closing the section we will show another coordinated control signal
for establishing force/torque balance for the physical setup shown in Figure
2.10. This is of the form
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Fig. 2.11. The transient responses of physical variables along a solution to Equation
(2.97) when the control signals of Equation (2.85) are exerted on finger joints
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ui = −ciq̇i + (−1)i fd

r1 + r2
JT

0i(qi)
(

x01 − x02

y01 − y02

)
− riN̂i, i = 1, 2 (2.103)

where

N̂i(t) = N̂i(0) + γ−1
i

∫ t

0

riq̇i(τ) dτ

= N̂i(0) + (ri/γi) {qi(t) − qi(0)} , i = 1, 2. (2.104)

The closed-loop dynamics obtained by substituting Equation (2.103) into
Equation (2.52) can be written as the vector–matrix form

HẌ + CẊ − A∆λ − fd

r1 + r2
(Y1 − Y2)e +

∑
i=1,2

riN̂iei = 0, (2.105)

where

e1 = (1, 0, 0, 0, 0)T, e2 = (0, 1, 0, 0, 0)T. (2.106)

Then, it is easy to see that taking inner product between Equation (2.105)
and Ẋ yields

d
dt

EN (X, Ẋ) = −
∑

i=1,2

ciq̇
2
i , (2.107)

where

EN (X , Ẋ) = K + PN , (2.108)

PN =
fd

2(r1 + r2)
(Y1 − Y2)2 +

∑
i=1,2

γi

2
N̂2

i . (2.109)

Applying a similar argument to that given in verifying the convergence of
solution trajectories to Equation (2.97), we can conclude that Ẋ and Ẍ tend
to vanish as t → ∞ and thereby as t → ∞

A∆λ +
fd

r1 + r2
(Y1 − Y2)e −

∑
i=1,2

riN̂iei → 0. (2.110)

Since matrix [A, e] is of 5 × 5 and non-singular at a regular position of the
fingers–object setup shown in Figure 2.10, it is expected from Equation (2.110)
that as t → ∞ physical variables ∆fi, ∆λi (i = 1, 2), Y1−Y2 and N̂i (i = 1, 2)
may converge to some constant respectively. More explicitly, let us consider
the minimisation problem:
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Fig. 2.12. Pressing forces F 1 and F 2 on the object must be collinear and oppositely
directed

Table 2.4. Parameters of the control signals

fd internal force 1.0[N]

c1 = c2 = cm damping coefficient 0.002[msN]

γi(i = 1, 2) regressor gain 0.001

N̂i(0)(i = 1, 2) initial estimate value 0.0

γf CSM gain 1500.0

γλ CSM gain 3000.0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimise PN =
fd

2(r1 + r2)
(Y1 − Y2)2 +

γ1

2
N̂2

1 +
γ2

2
N̂2

2

under the constraints
Q1 = 0, Q2 = 0, R1 = 0, R2 = 0

Then, the solution X = X∗ that minimises PN under the above constraints
must satisfy the equations

A∆λ +
fd

r1 + r2
(Y1 − Y2)e = r1N̂1e1 + r2N̂2e2. (2.111)

The minimising position state X = X∗ actually happens in a physical state
as shown in Figure 2.12 where the pressing force F 1 to the object from the left
finger and F 2 from the right finger must be collinear and oppositely directed.
Before asertaining this observation theoretically, we show how fast a solution
to Equation (2.105) tends to the position X = X∗ that attains force/torque
balance with the aid of computer simulation. Again, numerical simulation for
the closed-loop dynamics of Equation (2.105) has been carried out by using
the same physical parameters of the fingers–object system given in Table 2.2
and the control gains given in Table 2.4. We show the transient responses of
the key physical variables in Figure 2.13. Apparently from the last two graphs
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Fig. 2.13. The transient responses of physical variables along a solution to the
closed-loop equation when the control signals of Equation (2.103) are used
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of the figure, the solution converges to satisfy

fi(Y1 − Y2) + (−1)iλi(l1 + l2) = 0, i = 1, 2, (2.112)

which shows that as t → ∞ force/torque balance is established.
Let us now find a solution satisfying Equation (2.111). Since x and y

components of Equation (2.105) are the same as Equation (2.95), it should
follow that

∆f1 = ∆f2, ∆λ1 = −∆λ2. (2.113)

Substituting this into Equation (2.96), we obtain

−∆f1(Y1 − Y2) + ∆λ1(l1 + l2) − fd(Y1 − Y2) = 0. (2.114)

Subsequently, substituting Equation (2.94) into this equation yields

f1(Y1 − Y2) + λ1(l1 + l2) = 0, (2.115)

which together with Equation (2.113) implies Equation (2.112). Thus, once
f1 is determined, the other magnitudes of the constraint forces f2, λ1, and
λ2 can be determined through Equations (2.113) and (2.115). The remaining
six optimal values for the five components of X and f1 can be determined
by six equations, which are 1) the first two components of Equation (2.105),
where f2 and λ2 are substituted by f1 and −λ1, respectively, and again λ1 is
substituted by −f1(Y1 − Y2)/(l1 + l2) owing to Equation (2.115) and 2) the
four constraint equations Qi = 0 and Ri = 0 for i = 1, 2. Finally, we remark
that the last term −riN̂i of the control signal of Equation (2.103) plays a role
of saving abundant joint movements from initial angles.

In view of these theoretical arguments and simulation results shown in
Figure 2.13, Y1 − Y2 may not tend to zero as t → ∞ and therefore the λi

(i = 1, 2) also do not vanish with increasing t. This means that, around the
state of force/torque balance of the fingers–object system (see Figure 2.9 or
2.10), the control torque inputs of Equation (2.103) generated at the finger
joints are transmitted to the fingertips so as to withstand the reaction forces
−F i that are exerted on the contact points Oi for i = 1, 2. In other words,
in this case non-zero tangential forces λi at the contact points to the object
should be sustained by finger joint actuators even when the fingers–object
state converges approximately to a still state attaining force/torque balance.

One of the advantages of using the coordinated control signal of Equation
(2.103) is that it may be robust against the geometrical shapes of objects.
In fact, the signals of Equation (2.103) can be constructed without knowing
the geometrical shape of the object surface. In the next chapter, we shall
discuss stability problems of the closed-loop dynamics when the same control
signals as Equation (2.103) are used for 2-D objects with non-parallel but flat
surfaces. Robustness problems of the control signals of Equation (2.103) for a
general class of 2-D objects with smooth convex sides remain unsolved.
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2.7 Exponential Convergence to Force/Torque Balance

Some of the arguments of the last two sections can be brought out more clearly
and rigorously by discussing the speed of convergences of solution trajecto-
ries of the closed-loop dynamics toward the equilibrium point satisfying the
balance of forces and torques acting on the object.

We consider the closed-loop Equation (2.97) of motion of the fingers–object
system depicted in Figure 2.9 when the co-ordinated control signals of Equa-
tion (2.85) are used. First, we introduce a scale factor r > 0 and transform x
and y to x̄ and ȳ in such a way that

x̄ = r−1x, ȳ = r−1y. (2.116)

Then, by defining M̄ = r2M , we see that
1
2
M
(
ẋ2 + ẏ2

)
=

1
2
M̄
(
˙̄x2 + ˙̄y2

)
. (2.117)

The reason why such a scale transformation is required is that Equation (2.61)
expresses translational motion of the obejct on the basis of physical units [m]
but Equations (2.60) and (2.62) express the rotational motion based on physi-
cal units [radian]. This was caused by the adoption of the generalized position
coordinates X = (q1, q2, x, y, θ)T mixed with physical units [m] and [radian].
This also causes imbalance among the eigenvalues of the inertia matrix H de-
fined in Equation (2.71). Therefore, once Equation (2.61) for the translational
motion of the object is rewritten by this scale transformation as

M̄

(
¨̄x
¨̄y

)
− r (∆f1 − ∆f2) rX + r (λ1 + λ2) rY = 0 (2.118)

Equation (2.70) can be written in the form

H̄ ¨̄X + C ˙̄X − Ā∆λ − fd

r1 + r2
(Y1 − Y2)e = 0, (2.119)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̄ =
(
q1, q2, r

−1x, r−1y, θ
)
, r̄X = r

(
cos θ

− sin θ

)
,

H̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

I1 0 0 0 0
0 I2 0 0 0
0 0 r2M 0 0
0 0 0 r2M 0
0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

, r̄Y = r

(
sin θ

cos θ

)
,

Ā =

⎛
⎜⎜⎜⎝

−JT
01rX 0 JT

01rY − r1 0
0 JT

02rX 0 JT
02rY − r2

r̄X −r̄X −r̄Y −r̄Y

Y1 −Y2 −l1 l2

⎞
⎟⎟⎟⎠ .

(2.120)
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It is also necessary to introduce the pseudo-inverse of 4× 5 matrix ĀT, which
is defined as (

ĀT
)+

= Ā
(
ĀTĀ

)−1
. (2.121)

Evidently it follows that

˙̄XT
(
ĀT

)+
= ˙̄XTĀ

(
ĀTĀ

)−1
= 0. (2.122)

Let us define another important 5 × 5 matrix

P = I5 −
(
ĀT

)+
ĀT = I5 − Ā

(
ĀTĀ

)−1
ĀT. (2.123)

Then, it is easy to see that

PĀ = 05×4 (2.124)

and it follows that

PT = P, PP = P, eTPe ≤ eTe (2.125)

for any five-dimensional vector e.
Now we are in a position to prove the exponential convergence of a solution

to Equation (2.119). First, note that taking inner product between Equation
(2.119) and Pe(Y1 − Y2) yields

eTPH̄ ¨̄X(Y1 − Y2) + eTPC ˙̄X(Y1 − Y2) − fd(Y1 − Y2)2

r1 + r2
eTPe = 0 (2.126)

from which it follows that

d
dt

{
−eTPH̄ ˙̄X(Y1 − Y2)

}
= −fd(Y1 − Y2)2

r1 + r2
eTPe + eTPC ˙̄X(Y1 − Y2) + h( ˙̄X), (2.127)

where

h( ˙̄X) = −eT
{
Ṗ H̄ ˙̄X(Y1 − Y2) + PH̄ ˙̄X(Ẏ1 − Ẏ2)

}
. (2.128)

Here, e signifies the five-dimensional vector defined in Equation (2.71). Since
in general it follows that for any γ > 0

|ab| ≤ 1
2
(
γa2 + (1/γ)b2

)
(2.129)

we see that

eTPC ˙̄X(Y1 − Y2) ≤ fd(Y1 − Y2)2

2(r1 + r2)
eTPe +

r1 + r2

2fd

(
c2
1q̇

2
1 + c2

2q̇
2
2

)
. (2.130)
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Now we assume that at the equilibrium state (X̄∞, 0) satisfying Y1 − Y2 = 0,
fi = fd, λi = 0 (i = 1, 2) as discussed in the paragraph containing Equation
(2.84) and its subsequent paragraphs, matrix Ā is of full rank (non-degenerate)
and the matrix [Ā, e] is non-singular. Then, obviously at X̄ = X̄∞, eTPe does
not vanish. Let us define

0 < γe =
eTPe

eTe
=

{
1 − eT

(
ĀT

)+
ĀTe

eTe

}
, (2.131)

which is evaluated at X̄ = X̄∞. At this stage, we note that the Lyapunov
function E(X, Ẋ) [or equivalently, E(X̄ , ˙̄X)] is positive definite with respect
to (X̄ , ˙̄X) under the constraints Qi = 0, Ri = 0, Q̇i = 0 and Ṙi = 0 (i = 1, 2)
in a neighbourhood of X̄ = X̄∞. Hence, it is possible to choose δ > 0 such
that, at any (X̄ , ˙̄X) satisfying

E
(
X̄, ˙̄X

)
= E

(
X, Ẋ

)
< δ (2.132)

and constraints Qi = 0 and Ri = 0 (i = 1, 2), eTPe also satisfies

eTPe/eTe ≥ 1
2
γe (2.133)

and in addition that the matrix Ā is non-degenerate. Further, we choose fd

and ci (i = 1, 2) so that they satisfy

(r1 + r2)ci

fdγeeTe
≤ 1

2
i = 1, 2. (2.134)

Then, by substituting inequality (2.130) into (2.127) and referring to Equa-
tions (2.133) and (2.134), we obtain

d
dt

{
− 2

γeeTe
eTPH̄ ˙̄X(Y1 − Y2)

}

≤ −fd(Y1 − Y2)2

2(r1 + r2)
+

1
2
(
c1q̇

2
1 + c2q̇

2
2

)
+

2
γeeTe

h( ˙̄X). (2.135)

Now, we define

Vα = E
(
X̄, ˙̄X

)
− 2α

γeeTe
eTPH̄ ˙̄X(Y1 − Y2), (2.136)

where α is a positive parameter such that 0 < α ≤ 1. Obviously, Vα is a
quadratic function of X̄, ˙̄X and Y1 − Y2 and, according to Equations (2.99)
and (2.135), the time derivative V̇α becomes

d
dt

Vα ≤ −
(
1 − α

2

) (
c1q̇

2
1 + c2q̇

2
2

)
− αfd

2(r1 + r2)
(Y1 − Y2)2 + αh̄( ˙̄X). (2.137)
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where

h̄( ˙̄X) =
2

γeeTe
h( ˙̄X)

= − 2
γeeTe

eT
{
Ṗ H̄ ˙̄X(Y1 − Y2) + PH̄ ˙̄X(Ẏ1 − Ẏ2)

}
. (2.138)

Note that this can be regarded as a quadratic function of ˙̄X and further
|Y1 − Y2| is at least of O(r1 + r2). Hence, there is a constant β of O(1) such
that ∣∣∣h̄( ˙̄X)

∣∣∣ ≤ β

γe
K(Ẋ) =

β

γe
K( ˙̄X), (2.139)

where K denotes the kinetic energy defined by Equation (2.43). To simplify
the mathematical argument, we assume at this stage that c1 = c2 = cmax and
r1 = r2 = rm. Furthermore, we assume that the object width l1 + l2 is not
so small relative to ri (= rm). Then, as discussed around the derivation of
Equations (2.76) and (2.79), it is possible to confirm that{

θ̇2 ≤ βθ

(
q̇2
1 + q̇2

2

)
r−2

(
ẋ2 + ẏ2

) ≤ β0

(
q̇2
1 + q̇2

2

)
,

(2.140)

where βθ and β0 are positive constants of numerical order O(1), and the scale
factor r can be selected around r = 0.01–0.02 in relation to the physical
parameters given in Tables 2.2 and 2.3. Then, the total kinetic energy must
be of order

K( ˙̄X) = γ
(
q̇2
1 + q̇2

2

)
(2.141)

with a positive constant γ that is of O(10−5). Thus, referring to Equations
(2.139) and (2.141), we can conclude that

d
dt

Vα ≤ −
(

1 − α

2
− αβγ

γecm

)(
cmq̇2

1 + cmq̇2
2

)
− αfd

2(r1 + r2)
(Y1 − Y2)2. (2.142)

We now assume that γe defined by Equation (2.131) is large enough to satisfy
γe ≥ 0.2 and the finger joint damping coefficient cm (= c1 = c2) is chosen
around cm = 0.001–0.003 [Nms]. Then, βγ/γecm must be smaller than 1/4
and therefore inequality (2.142) can be reduced to, in reference to Equation
(2.141), the following fundamental inequality:

d
dt

Vα ≤ −αE
(
X̄, ˙̄X

)
. (2.143)

Next, we evaluate the upper bound of scalar function Vα in the following way:
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Vα ≤ E +
α

γeeTe

{
ηeTPe(Y1 − Y2)2 + η−1 ˙̄XTH̄H̄ ˙̄X

}
. (2.144)

Since eTe = (r1 + r2)2 + r2
1 + r2

2 = 6r2
m and eTPe/eTe ≤ 1, choosing

η = γefd/8(r1 + r2) = γefd/16rm (2.145)

yields

Vα ≤ E +
αfd

8(r1 + r2)
(Y1 − Y2)2 +

8(r1 + r2)α
γ2

efdeTe
λM (H̄)K(Ẋ), (2.146)

where λM (H̄) denotes the maximum eigenvalue of H̄ . Since λM (H̄) is of nu-
merical order O(10−6) and

8(r1 + r2)
γ2

efdeTe
=

2 × 102

3rmfd
= O(104) (2.147)

as far as fd is of O(1) in [N], Equation (2.146) can be reduced to

Vα ≤ E +
α

4
E =

(
1 +

α

4

)
E
(
X, Ẋ

)
. (2.148)

From the same argument, it also follows that

Vα ≥
(
1 − α

4

)
E
(
X, Ẋ

)
, (2.149)

that is, (
1 − α

4

)
E ≤ Vα ≤

(
1 +

α

4

)
E (2.150)

as far as 0 < α ≤ 1. Thus, it follows from Equations (2.143) and (2.150) that

d
dt

Vα(t) ≤ − 4α

4 + α
Vα(t). (2.151)

In particular, if we choose α = 1.0, then it follows from Equations (2.150) and
(2.151) that

E
(
X(t), Ẋ(t)

)
≤ 5

3
E
(
X(0), Ẋ(0)

)
e−0.8t. (2.152)

In conclusion, it has been proved that any solution (X(t), Ẋ(t)) start-
ing from an arbitrary initial state satisfying E(X(0), Ẋ(0)) < (3/5)δ and
constraints Qi = 0, Ri = 0, Q̇i = 0 and Ṙi = 0 for i = 1, 2 remains in
the neighbourhood M1(X∞) = {(X, Ẋ) : E(X , Ẋ) < δ and Qi = 0, Ri =
0, Q̇i = 0, Ṙi = 0 for i = 1, 2} of (X∞, 0) and converges exponentially to the
equilibrium point (X∞, 0).
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The proof presented is based upon the numerical orders of the physical
parameters of the fingers and object given in Table 2.2 and the control gains
given in Table 2.3. That is, the proof is not generic but context dependent as
is usually the case in human dexterity seen in our everyday life, as discussed
in Section 1.4. Notwithstanding such context dependency, a similar mathe-
matical argument can be developed for stability proof of grasping by similar
fingers–object mechanisms with different numerical orders. However, it should
be remarked that a synergistic choice for ci (the damping factors for finger
joints) and fd satisfying Equation (2.134) is vital to regulate the exponential
speed of convergence of solutions to the closed-loop dynamics. Furthermore, it
should be noted that, if the object width l1 + l2 becomes small relative to the
radius of the finger-end spheres, then the attracter region of convergence must
be shrunk and the parameter α in the definition of the function Vα should be
chosen considerably less than 1, that is, 0 < α << 1.0. Fortunately, however,
human finger-ends are not rigid but rather soft and deformable. In Chapter 6
we will show that the visco-elastic properties of the finger-end material widen
such attrator regions even if the object is very thin and light like a credit card
or a paper name card.

Finally, the exponential convergence of solutions to the closed-loop dy-
namics in the case that the control signals of Equation (2.103) are used will
be treated in Chapter 4 as a case of more general problems of grasping under
the effect of gravity and the condition that the object has non-parallel flat
surfaces.



3

Testbed Problems to Control a 2-D Object
Through Rolling Contact

This chapter poses a class of testbed problems of control for dynamic grasping
or immobilisation of a 2-D rigid object, in order to gain physical insight into
stable grasping in a dynamic sense. Such problems may play a principal role
in understanding the important concept of sensory feedback stabilisation sim-
ilarly to the inverted pendulum on a cart problem that played an essential role
in the history of stabilisation and control of mechanical systems. The simplest
problem is to stabilise or immobilise the rotational motion of a 2-D object with
a flat side surface by using a multi-joint robot finger where the object can only
rotate around a single fixed axis. It is assumed that the rotational motion of
the object pivoted around the fixed axis is frictionless, the finger-end is hemi-
spherical, and therefore that rolling between the finger-end and object surface
is induced without incurring any slip. Lagrange’s equation of motion for such
a testbed finger–object system is derived together with two constraints: the
point contact constraint and the rolling contact constraint. It is shown that
there arises a rolling constraint force tangential to both the finger-end sphere
and the object surface and originating at the contact point. By taking advan-
tage of induced tangential constraint force, rotational motion of the object can
be immobilised or torque-balanced by a single finger with at least two joints in
a dynamic manner, although the object can be controlled indirectly through
only constraint forces. This can be regarded as like an extended version of
the feedback control of inverted pendulums. Through studying these funda-
mental testbed problems, the basic concepts of the key mathematics including
constraint manifold, tangent space, Riemannian distance and Morse function
are introduced, which will play crucial roles in subsequent chapters where the
dynamics of grasping and its stabilisation by using a pair of multi-joint fingers
are analyzed.
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3.1 Stabilisation of Motion of a 2-D Object Through
Rolling Contact

Consider a simple control problem of how to stop the rotational motion of a
2-D object pivoted at a fixed point Om(xm, ym) by using a single-finger robot
with three joints as shown in Figure 3.1. The robot finger can be regarded
as an idealized physical model of a human index finger shown in Figure 3.2.
Differently from the human finger, we assume that the finger-end is hemi-
spherical and rigid. It is assumed that all the rotational axes of the three
finger joints and the object rotational axis have a direction in z perpendicular
to the xy-plane and therefore the overall motion of the finger–object system
is confined to the horizontal plane equivalent to the xy-plane. Further, we
assume that rotational motion of the object around Om(xm, ym) is free and
frictionless and that the translational motion of the object is pinned at the
point Om(xm, ym). In the following, the effect of gravity is reasonably ignored,
because only the motion of the system in the horizontal plane is considered.
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r l
Om (x  ,y  )m m 

y
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q
3
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O0 (x  ,y )0 0 
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O1 (x  ,y )1 1 

ym 

Fig. 3.1. Manipulation of an object by a three-DOF robot finger with a hemispher-
ical end. The object is pinned to the horizontal xy-plane but its rotational motion
around Om is free and frictionless

Now, let us derive the equation of motion of this finger–object system as
a Lagrange equation. To do this, denote the kinetic energy of the system by

K =
1
2
q̇TH(q)q̇ +

1
2
Iθ̇2, (3.1)
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Fig. 3.2. Skeletal mechanism of a human-like index finger
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Fig. 3.3. When the lateral axis of the object denoted by O0P is inclined to the x-axis
by θ [radian], the length of O0P (|O0P | = r + l) can be expressed as (xm − x0) cos θ
−(ym − y0) sin θ. Note that |OmP | = Y and |O0R| = xm − x0

where q = (q1, q2, q3)T, H(q) stands for the inertia matrix of the robot finger
and I the inertia moment of the object around the z-axis at the fixed point
Om. Obviously there arises a contact constraint reflecting the physical situ-
ation that the finger-end is in contact with the object surface. This contact
constraint can be expressed as the following equation:
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Q = −(r + l) + (xm − x0) cos θ − (ym − y0) sin θ = 0 (3.2)

as seen from Figure 3.3, where (x0, y0)T stands for the position of the centre
of the finger-end sphere, r is its radius, and l is the one-side width of the
object as shown in Figure 3.1. On the other hand, rolling contact is defined as
a physical condition that the velocity of the contact point on the finger-end
sphere is equivalent to that on the object surface, that is, the rolling contact
constraint is expressed as

d
dt

(rφ) = − d
dt

Y, (3.3)

where φ denotes the angle as specified in Figure 3.1 and Y the Y -component
of the contact point described by the coordinates (X, Y ) attached and fixed
to the object as shown in Figure 3.1. As observed from Figures 3.1 and 3.3,
it follows that

Y = (x0 − xm) sin θ + (y0 − ym) cos θ (3.4)
φ = π + θ − q1 − q2 − q3 = π + θ − qTe, (3.5)

where e = (1, 1, 1)T and θ denotes the angle of inclination of the object to the
x-axis as defined in Figure 3.1. The zero-relative-velocity constraint of rolling
contact expressed as Equation (3.3) can apparently be integrated in t, which
reduces it to

R = c0 + Y + rφ = 0, (3.6)

where c0 is a constant of integration. We assume that no contact slip arises
between the finger-end and object surfaces. Hence the constant c0 in Equation
(3.6) should be regarded as being fixed as long as the contact is maintained
and does not slip. Then, it is possible to introduce Lagrange’s multipliers f
and λ for the constraint Equations (3.2) and (3.6), respectively, and define
the Lagrangian

L = K + fQ + λR. (3.7)

Then, applying the variational principle for the Lagrangian in the form∫ t2

t1

{
δ(K + fQ + λR) + uTδq

}
dt = 0 (3.8)

we obtain Lagrange’s equation of motion [see Equations (2.39) and (2.40)]:{
H(q)

d
dt

+
1
2
Ḣ(q) + S(q, q̇)

}
q̇ − f

∂Q

∂q
− λ

∂R

∂q
= u (3.9)

Iθ̈ − f
∂Q

∂θ
− λ

∂R

∂θ
= 0 (3.10)
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As discussed in Section 1.9, S(q, q̇) is homogeneous in q̇ and skew-symmetric.
Equations (3.9) and (3.10) can be described in detail by using the Jacobian
matrix

J(q) =
∂(x0, y0)T

∂qT
=

⎛
⎜⎜⎜⎝

∂x0

∂q1

∂x0

∂q2

∂x0

∂q3

∂y0

∂q1

∂y0

∂q2

∂y0

∂q3

⎞
⎟⎟⎟⎠ (3.11)

and calculating the gradients of Q and R in q or θ, respectively, as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q

∂q
= −JT(q)rX , rX =

(
cos θ

− sin θ

)
,

∂R

∂q
= JT(q)rY − re, rY =

(
sin θ

cos θ

)
,

∂Q

∂θ
= Y,

∂R

∂θ
= −l.

(3.12)

Note that rX stands for the unit vector of the X-axis and rY for that of the
Y -axis attached to the object with the fixed origin Om(xm, ym). The equation
of motion of the object described by (3.10) can be written in detail as

Iθ̈ − fY + λl = 0. (3.13)

This equation evidently shows that the Lagrange multiplier f is regarded as
the contact force that is pressing the object in the direction normal to the
object surface and another multiplier λ as the rolling constraint force arising
at the contact point in the common direction tangential to both the finger-
end sphere and the object surface (see Figure 3.1). In order to stop rotational
motion of the object, two rotational moments fY and λl around the origin Om

must become equal. Before discussing control problems for stopping motion
of the object and/or controlling its rotational angle, we show an important
physical law called “passivity” concerning the input u and the output q̇ of
Lagrange’s equation described by Equations (3.9) and (3.10). This is shown
by taking inner products between q̇ and Equation (3.9) and between θ̇ and
Equation (3.10) and summing these results, from which it follows that

d
dt

{K} = q̇Tu. (3.14)

This implies ∫ t

0

q̇T(τ)u(τ) dτ = K(t) − K(0) ≥ −K(0), (3.15)

which is called the passivity, where K(t) denotes the value of the kinetic energy
K at time t. In the derivation of Equation (3.14), the velocity constraints
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Q̇ = q̇T(∂Q/∂q) + θ̇(∂Q/∂θ) = 0 and Ṙ = q̇T(∂R/∂q) + θ̇(∂R/∂θ) = 0 were
employed.

Next consider the problem of how to stop the motion of an object by
designing a control input u in the motion equation of the finger described by
Equation (3.9). It should be remarked that the motion of the object can be
controlled indirectly through the contact constraint forces f and λ as seen in
Equation (3.13). First, we intend not only to stabilise the motion of the object
but also to control the object rotational angle θ toward θ = θd. Assume that
not only the finger joint angle qi(t) (i = 1, 2, 3) but also θ(t) and Y (t) can be
measured. Then, it is possible to consider the following control signal:

u = −Cq̇ − fd

(
∂Q

∂q

)
− fdY e − β∆θ

(
∂R

∂q

)
, (3.16)

where ∆θ = θ − θd and C = diag(c1, c2, c3) with ci > 0. It should be noted
that the inner product between q̇ and u of Equation (3.16) yields

q̇Tu = −q̇TCq̇ + fdθ̇(∂Q/∂θ) − fdY q̇Te + β∆θ · θ̇(∂R/∂θ)

= −q̇TCq̇ + fdY (θ̇ − q̇e) − d
dt

βl

2
∆θ2

= −q̇TCq̇ − d
dt

{
1
2

(
fd

r
Y 2 + βl∆θ2

)}
. (3.17)

Substituting this equality into Equation (3.14) yields

d
dt

E = −q̇TCq̇, (3.18)

where

E =
1
2

{
q̇TH(q)q̇ + Iθ̇2 +

fd

r
Y 2 + βl∆θ2

}
. (3.19)

On the other hand, substituting u from Equation (3.16) into Equation (3.9)
leads to{

H(q)
d
dt

+
1
2
Ḣ(q) + S(q, q̇) + C

}
q̇ − ∆f

∂Q

∂q
− ∆λ

∂R

∂q
+ fdY e = 0, (3.20)

where ∆f = f − fd and ∆λ = λ − β∆θ. Equation (3.10) or (3.13) can be
rewritten in the form

Iθ̈ − ∆fY + ∆λl − fdY + βl∆θ = 0. (3.21)

In fact, the sum of the inner products between q̇ and Equation (3.20) and
between θ̇ and Equation (3.21) is reduced exactly to Equation (3.18).

We are now in a position to discuss the stability of an equilibrium state of
the system composed of Equations (3.20) and (3.21), which should satisfy
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∆θ = 0, Y = 0, ∆f = 0, ∆λ = 0
q̇ = 0, θ̇ = 0.

(3.22)

The state of the system denoted by

X = (qT, θ)T, Ẋ = (q̇T, θ̇)T (3.23)

can be regarded as belonging to (X , Ẋ) ∈ R8, but it is subject to two holo-
nomic constraints described by Equations (3.2) and (3.6). Hence, the system
has two DOFs and its state must lie on the following four-dimensional con-
straint manifold:

TB4 =
{
(X , Ẋ) : Q = 0, R = 0, Q̇ = 0, Ṙ = 0

}
. (3.24)

At the same time, the position X to be considered constitutes the two-
dimensional manifold

CM2 = {X : Q = 0, R = 0} , (3.25)

which is considered to be embedded in the four-dimensional configuration
space CS4 =

{
(qT, θ)T

}
= {X}. To develop the mathematical argument in

a more rigorous way, we rewrite Equations (3.20) and (3.21) in the following
single vector–matrix form:

H̃Ẍ +
(

1
2

˙̃H + S̃ + C̃

)
Ẋ − Aλ + Bη = 0, (3.26)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ =
(

∆f
∆λ

)
, η =

(
Y
∆θ

)
,

A =

⎛
⎜⎝

∂Q

∂q

∂R

∂q

Y −l

⎞
⎟⎠ , B =

(
fde 03×1

−fd βl

)
,

H̃ =
(

H(q) 03×1

01×3 I

)
, S̃ =

(
S(q, q̇) 03×1

01×3 0

)
, C̃ =

(
C 03×1

01×3 0

)
.

(3.27)

Since the holonomic constraints of Equations (3.2) and (3.6) imply that

Ẋ
T
A =

(
q̇T ∂Q

∂q
+ θ̇

∂R

∂θ
, q̇T ∂R

∂q
+ θ̇

∂R

∂θ

)
= 0, (3.28)

multiplication of ATH̃−1 by Equation (3.26) from the left yields

ATẌ + ATH̃−1

{(
1
2

˙̃H + S̃ + C̃

)
Ẋ + Bη

}
− ATH̃−1Aλ = 0. (3.29)
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Since ATẌ = −ȦTẊ according to Equation (3.28), it follows from Equation
(3.29) that

λ =
(
ATH̃−1A

)−1
[
−ȦTẊ + ATH̃−1

{(
1
2

˙̃H + S̃ + C̃

)
Ẋ + Bη

}]
. (3.30)

It is obvious from this that, if Ẋ → 0 as t → ∞ and the 4 × 2 matrix A is
non-degenerate during motion of the system, then as t → ∞

λ →
(
ATH̃−1A

)−1

ATH̃−1(Bη). (3.31)

At this stage it is quite important to note that the closed-loop equation
of motion of the system described by Equation (3.29) can be regarded as
Lagrange’s equation of motion with the external damping force Cq̇ and the
Lagrangian

L = K(X, Ẋ) − P (X) + ∆fQ + ∆λR. (3.32)

where K(X, Ẋ) is described in detail by Equation (3.1) and P (X) is the
artificial potential function given by

P (X) =
1
2

{
fd

r
Y 2 + βl∆θ2

}
(3.33)

[see Equation (3.19)] and the total energy can be expressed as

E(X, Ẋ) = K(X, Ẋ) + P (X) (3.34)

Actually, it is possible to see from Equations (3.20) and (3.21) that Equation
(3.26) is equivalent to

d
dt

(
∂L

∂Ẋ

)
− ∂L

∂X
= −C̃Ẋ. (3.35)

Since the position state X should lie on the two-dimensional constraint man-
ifold CM2, the scalar function P (X) must be positive definite on CM2 in the
vicinity of Y = 0 and θ = θd that corresponds to the condition of Equation
(3.22). Therefore, it is reasonable to suppose that there exists a position state
X = X∗ that attains the minimum of P (X) and assume that at that point
X = X∗ the 4 × 2 matrix A is non-degenerate. Such a physical situation ac-
tually can happen when in Figure 3.1 the rolling contact position O1(x1, y1)
moves upward on the object surface with decreasing Y and increasing θ to-
ward θd, where θd is given around π/4. It is easy to check that the 4 × 2
matrix A is degenerate if and only if the Jacobian matrix J(q) is degenerte,
i.e., rank{J(q)} = 1. This singularity of J(q) arises if and only if q2 = q3 = 0
in a region of q such that 0 < q1 ≤ π/2, 0 ≤ q2 ≤ π/2 and 0 ≤ q3 ≤ π/2.
Then, it is possible to see that such an optimal state X = X∗ that minimises
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P (X) is unique in a neighbourhood of X∗ on CM2. Thus, the problem is to
prove whether any solution of the closed-loop Equation (3.29) starting from
(X(0), Ẋ(0)) in a neighbourhood of (X∗, 0) on the four-dimensional manifold
TB4 defined by Equation (3.24) converges asymptotically to the equilibrium
point (X∗, 0) that minimises the artificial potential P (X) on the constraint
manifold CM2. In order to discuss this problem in a rigorous mathematical
way, it is crucial to define the concept of neighbourhoods around the equilib-
rium point not only in TB4 but also on CM2.

3.2 Stability Problems under Redundancy of DOFs

If we do not care about controlling the pose of the object by specifying the de-
sired orientation angle but concentrate only on stopping its rotational motion
and immobilise it securely, then it is reasonable to consider a control signal
of the form

u = −Cq̇ − fd

(
∂Q

∂q

)
− fdY e. (3.36)

Exertion of this control signal on the finger joints through joint actuators
corresponds to the introduction of the artificial potential function

P̃ =
1
2
(fd/r)Y 2. (3.37)

Note that minimisation of P̃ in X under the holonomic constraints of Equa-
tions (3.2) and (3.6) is equivalent to minimisation of the square of length
|O0Om| as shown in Figure 3.3, because

Y 2 + (r + l)2 = (xm − x0)2 + (ym − y0)2. (3.38)

Therefore, instead of the control signal of Equation (3.36), let us consider the
signal

u = −Cq̇ − (fd/r)JT(q)
(

x0 − xm

y0 − ym

)
. (3.39)

It is interesting to note that this control signal can be constructed by easy cal-
culation based on the knowledge of finger kinematics, the fixed point (xm, ym)
and measurement data of joint angles together with appropriate choices for
control gains fd > 0 and ci > 0 (i = 1, 2, 3). Note again that in the con-
struction of this control signal there is no need to know the object width l
or measure Y or θ. At this stage it is convenient to introdue the orthogonal
matrix parametrised by θ in such a form that

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
. (3.40)
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Then, it is important to note that from Equations (3.2) and (3.4) the following
relation follows: (

r + l
−Y

)
= −Rθ

(
x0 − xm

y0 − ym

)
. (3.41)

Since R−1
θ = RT

θ , multiplication of −RT
θ to Equation (3.41) from the left yields(

x0 − xm

y0 − ym

)
= −RT

θ

(
r + l
−Y

)
= −(r + l)

(
cos θ
− sin θ

)
+ Y

(
sin θ
cos θ

)
. (3.42)

Thus, by substituting this into Equation (3.39) and further substituting u
from Equation (3.39) into Equation (3.9), we obtain the closed-loop dynamics
of finger motion(

H
d
dt

+
1
2
Ḣ + S + C

)
q̇ − ∆f

(
∂Q

∂q

)
− ∆λ

(
∂R

∂q

)
+ fdY e = 0, (3.43)

where

∆f = f −
(

1 +
l

r

)
fd, ∆λ = λ − fd

r
Y. (3.44)

It should be noted that Equation (3.10) can be rewritten in the form

Iθ̈ − ∆f
∂Q

∂θ
− ∆λ

∂R

∂θ
− fdY = 0. (3.45)

Similarly to the derivation of Equation (3.26), we rewrite Equations (3.43)
and (3.45) in the following vector–matrix form:

H̃Ẍ +
(

1
2

˙̃H + S̃ + C̃

)
Ẋ − Aλ + (fdY/r)b = 0, (3.46)

where

λ = (∆f, ∆λ)T, b = (reT,−r)T, (3.47)

and ∆f and ∆λ are defined as in Equation (3.44). Note again that taking the
inner product between Ẋ(t) and Equation (3.46) leads to

d
dt

E0 = −Ẋ
T
C̃Ẋ = −q̇TCq̇, (3.48)

where

E0 = K + P̃ = K +
1
2
(fd/r)Y 2 (3.49)

and K is the kinetic energy as defined in Equation (3.1).
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Now, differently from the previous case where the Lyapunov relation ex-
pressed by Equation (3.18) holds with a positive definite function E defined
by Equation (3.34), Equation (3.48) does not have any meaning as Lyapunov’s
relation because E0 is no longer positive definite in TB4. Nevertheless, it is
fortunate to see through the relation of Equation (3.48) that the scalar func-
tion E0(X , Ẋ) is non-increasing with increasing t and hence Ẋ and Y must
be bounded uniformly in t. Furthermore, the constraint force λ also becomes
bounded uniformly in t according to Equation (3.30) [where Bη must be re-
placed with (fd/r)b], provided that A is non-degenerate during the motion of
the overall system (this condition will be analysed later in a rigorous way).
Thus, it follows from Equation (3.46) that Ẍ becomes uniformly bounded.
This means that Ẋ(t) becomes uniformly continuous in t. On the other hand,
Equation (3.48) implies that∫ ∞

0

q̇T(t)Cq̇(t) dt ≤ E0(X(0), Ẋ(0)) = E0(0). (3.50)

That is, q̇(t) ∈ L2(0,∞). Hence, owing to Lemma 2 (see Appendix A), q̇(t)
must converge to zero as t → ∞. In order to verify the convergence of θ̇(t) to
zero as t → ∞, it is necessary to use the constraint Equations (3.2) and (3.6).
Indeed, differentiation of R defined by Equation (3.6) with respect to t leads
to

0 = Ẏ + rφ̇ = ẋ0 sin θ + ẏ0 cos θ

−θ̇ {(x0 − xm) cos θ − (y0 − ym) sin θ} + r
(
θ̇ − q̇Te

)
= q̇T

{
JT(q)rY − re

}− θ̇(r + l) + rθ̇

= q̇T
{
JT(q)rY − re

}− lθ̇ (3.51)

from which it follows that

θ̇ = l−1q̇T
{
JT(q)rY − re

}
. (3.52)

This shows that θ̇(t) → 0 as t → ∞ provided that l is not too small to be
compared with r (the radius of the finger-end sphere). Thus, it is verified that
Ẋ(t) → 0 as t → ∞. Since Ẋ(t) is also continuous uniformly in t, Lemma 2
implies that Ẍ(t) → 0 as t → ∞. Thus, it can be concluded from Equation
(3.43) that as t → ∞

∆f

(
∂Q

∂q

)
+ ∆λ

(
∂R

∂q

)
− fdY e → 0. (3.53)

This expression can be written in the following vector–matrix form:

D(q, θ)λ̄ → 0, (3.54)

where



92 3 Testbed Problems to Control a 2-D Object Through Rolling Contact{
D(q, θ) =

(−JT(q)rX , JT(q)rY − re, −re
)

λ̄ = (∆f, ∆λ, (fd/r)Y )T
(3.55)

Since the 3 × 3 matrix D(q, θ) can be resolved into the multiplication of two
matrices such that

D(q, θ) =
(
JT(q), re

)(−rX rY 02×1

0 −1 −1

)
(3.56)

D(q, θ) is non-singular if and only if the matrix (JT(q), re) is non-singular.
The Jacobian matrix J(q) defined by Equation (3.11) can be calculated as
follows [for brevity, s1 = sin q1, s12 = sin(q1 + q2), c12 = cos(q1 + q2), etc.]:{

x0 = −(l1c1 + l2c12 + l3c123)
y0 = l1s1 + l2s12 + l3s123

(3.57)

J(q) =
(

l1s1 + l2s12 + l3s123 l2s12 + l3s123 l3s123

l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

)
. (3.58)

Therefore, J(q) is degenerate if and only if q2 = q3 = 0. That is, singularity
of the pose of the finger arises when it stretches straight so that q2 = 0 and
q3 = 0 (see Figure 3.1). Referring to this analysis of the structure of D(q, θ)
in Equation (3.55), we can see that D(q, θ) is non-singular and therefore the
convergence of D(q, θ)λ̄ to 0 as t → ∞ shown in Equation (3.54) implies

λ̄ = (∆f, ∆λ, (fd/r)Y )T → 0 as t → ∞ (3.59)

provided that during motion of the finger–object system the finger does not
take the singular pose. Equation (3.59) implies that

f(t) →
(

1 +
l

r

)
fd, Y (t) → 0, λ(t) → 0 as t → ∞. (3.60)

The argument of convergence of the physical variables f(t), λ(t) and Y (t)
along the solution trajectory (X(t), Ẋ(t)) to the closed-loop Equation (3.46)
is validated mathematically under the condition that the finger pose must not
be singular during its motion and the finger-end maintains contact with the
object, i.e., f(t) > 0 for all t > 0. Indeed, we cannot yet discuss anything
about convergences of position variables θ(t) and qi(t) (i = 1, 2, 3) as t tends
to infinity. We could show that q̇(t) ∈ L2(0,∞) and, as t → ∞, q̇(t) → 0 and
θ̇(t) → 0 but not verify whether q̇(t) ∈ L1(0,∞) and θ̇(t) ∈ L1(0,∞) or not.
Rather, there may arise self-motion of the system owing to the redundancy of
DOFs, that is, persistent rotational movements of the finger joints q1, q2, q3,
and object orientation angle θ even if θ −∑

i qi is kept constant [see Equa-
tions (3.4–3.6)]. Furthermore, there arises the possibility that the finger may
approach its sigular pose during its motion. All these problems can be treated
in a rigorous way by using the Riemannian metrics and distance introduced
on the constraint manifold CM2.
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3.3 Riemannian Distance and Stability on a Manifold

In order to treat the stability of motion with physical interaction between the
robotic finger and rigid object under DOF redundancy as shown in Figure
3.1 in a rigorous mathematical way, it is necessary and appropriate to intro-
duce the concept of Riemannian distance on the two-dimensional manifold
CM2 defined by Equation (3.25) and embedded in the configuration space
R4 =

{
(qT, θ)T = X

}
. For two given points X1, X2 ∈ CM2, the Riemannian

distance between X1 and X2 is defined as

R(X1, X2) = min
X(t)

∫ 1

0

√∑
i,j

1
2
hij(X(t))Ẋi(t)Ẋj(t) dt, (3.61)

where the minimisation is taken over all smooth curves X(t) parameterised by
t ∈ [0, 1] in such a way that X(0) = X1, X(1) = X2, constrained on Q = 0
and R = 0, and also with Ẋ(t) constrained on Q̇ = 0 and Ṙ = 0. Here, hij(X)
denotes the (i, j)-entry of the inertia matrix H̃(X) defined in Equation (3.27).
It is well known in differential geometry that the optimal curve that minimizes
the integral of Equation (3.61) satisfies the Euler-Lagrange equation:

4∑
j=1

hij(X)Ẍj +
4∑

j,k=1

ΓjikẊjẊk − Ai∆λ = 0, i = 1, · · · , 4, (3.62)

where Ai denotes the ith row of the 4×2-matrix A defined in Equation (3.27)
and Γijk is the Christoffel symbol of the first kind. Note that Equation (3.62)
is equivalent to the following expression:

H̃Ẍ +
(

1
2

˙̃H + S̃

)
Ẋ − A∆λ = 0. (3.63)

It should be remarked at this stage that:
1) The Riemannian distance R(z1, z2) is invariant under any transforma-

tion t = g(s) satisfying dt/ds > 0 and T = g−1(1) and 0 = g−1(0), because it
follows that

∫ T

0

√√√√∑
i,j

1
2
hij

(
X̃(s)

) dX̃i

ds

dX̃j

ds
ds

=
∫ T

0

√√√√∑
i,j

1
2
hij (X(t)) ·

(
dXi

dt

dt

ds

)
·
(

dXj

dt

dt

ds

)
ds

=
∫ 1

0

√∑
i,j

1
2
hij (X(t))

dXi

dt

dXj

dt
dt, (3.64)

where X̃(s) = X(g(s)).
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2) If the curve X(t) for t ∈ [0, 1] minimises the integral of Equation (3.61),
then the quantity

L(X, Ẋ) =
√

1
2

∑
i,j

hij(X)ẊiẊj (3.65)

is constant for all t ∈ [0, 1]. This follows from taking the inner product between
Ẋ(t) and Equation (3.63), which yields

0 = Ẋ
T
{

H̃Ẍ +
(

1
2

˙̃H + S

)
− A∆λ

}

=
d
dt

{
1
2
Ẋ

T
H̃(X)Ẋ

}
, (3.66)

that is, (1/2)Ẋ
T
H̃(X)Ẋ = const.

We shall now discuss the stability of an equilibrium state (X∗, 0), X∗ =(
(q∗)T, θ∗

)T, such that

0 = Y = −c0 − rφ = −c0 − r
{
π + θ∗ − eTq∗

}
(3.67)

and the finger pose at q = q∗ is sufficiently distant from the singular pose
in the sense of the Riemannian distance. To do this, it is necessary to define
neighbourhoods of the equilibrium pose X = X∗ on the manifold CM2 and
at the same time those of the equilibrium state (X∗, 0) on TB4 defined by
Equation (3.24), which can be also represented as a point in the Enclidean
state space R8 = {(X, Ẋ)}. The former can be defined naturally by using the
Riemannian distance in such a way that

N2(X∗; r0) = {X : R(X , X∗) < r0, X ∈ CM2} . (3.68)

The latter can be defined by introducing two positive parameters ρ and r0 in
such a way that

N4 {(X∗, 0); ρ, r0} =
{

(X, Ẋ) : E0(X, Ẋ) < ρ2

and R(X, X∗) < r0, (X, X∗) ∈ TB4

}
, (3.69)

where E0 = K + P̃ is described in detail as

E0(X , Ẋ) =
1
2
Ẋ

T
H̃(X)Ẋ +

1
2
(fd/r)Y 2. (3.70)

The reason we use the inequality E0(X , Ẋ) < ρ2 instead of local coordinates
on the manifold TB4 (which is equivalent to the tangent bundle, the set of all
tangent spaces T2(X) = {Ẋ : Ẋ

T
(∂Q/∂X) = 0 and Ẋ

T
(∂R/∂X) = 0} over

all X ∈ CM2) will be cleared later. The reason why we use the inequality
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Fig. 3.4. Definitions of stability on a manifold and transferability to a subset of the
equilibrium manifold

R(X, X∗) < r0 in the definition of N4 is only to avoid the occurence of
the singular pose of the finger at any instant. Therefore, once r0 is chosen
appropriately for the given X∗ so that there does not exist any singular pose
inside N2(X∗; r0), the constant r0 can be treated as fixed. Now we introduce
the definition of stability of the given equilibrium state (X∗, 0) on the manifold
TB4 regarding the closed-loop dynamics of Equation (3.46).

Definition 3.1. If for an arbitrarily given ε > 0 there exist a constant
δ > 0 depending on ε and another constant r1 > 0 independent of ε and
less than r0 such that a solution trajectory (X(t), Ẋ(t)) of the closed-loop
dynamics of Equation (3.46) starting from any initial state (X(0), Ẋ(0)) in-
side N4{(X∗, 0); δ(ε), r1} remains in N4{(X∗, 0); ε, r0}, then the equilibrium
state (X∗, 0) is said to be stable on a manifold (see Figure 3.4).

Definition 3.2. If for a reference equilibrium state (X∗, 0) ∈ M4 there
exist constants ε1 > 0 and r1 > 0 (r1 < r0) such that any solution of the
closed-loop dynamics of Equation (3.46) starting from an arbitrary initial state
in N4{(X∗, 0); ε1, r1} remains in N4{(X∗, 0); ε1, r0} and converges asymptot-
ically as t → ∞ to some point of the one-dimensional equilibrium manifold

EM1 =
{
(X , 0) : E0(X , Ẋ) = 0

}
(3.71)

then the neighbourhood N4{(X∗, 0); ε1, r1} is said to be treansferable to a
subset of EM1 containing the reference point (X∗, 0).

The intuitive idea behind introduction of the two neighbourhoods N2(X∗;r0)
of Equation (3.68) and N4{(X∗, 0); ρ, r0} of Equation (3.69) is that the func-
tion E0(X(t), Ẋ(t)) of t evaluated along a solution (X(t), Ẋ(t)) to the
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closed-loop dynamics of Equation (3.46) starting from an arbitrary initial
state (X(0), Ẋ(0)) in N4{(X∗, 0) : ε1, r1} with some ε1 > 0 and r1 > 0 con-
verges exponentially to zero, i.e., there exist some positive constants α∗ and
β of O(1) such that

E0(X(t), Ẋ(t)) ≤ βE0(X(0), Ẋ(0))e−α∗t (3.72)

though E0(X, Ẋ) is not a Lyapunov function for Equation (3.46). As to the
derivation of the inequality above we will discuss this in detail based on
the physical circumstances of the problem in the next section. Instead, we
shall close this section by showing how to choose the constants ε1 and r1 in
N4{(X∗, 0) : ε1, r1} to prove the stability of the reference equilibrium state
(X∗, 0) and the transferability of N4{(X∗, 0); ε1, r1} to a subset of EM1.
Indeed, it is possible to choose ε1 > 0 and r1 > 0 so that

r1 ≤ r0

2
, ε1 < min

{
α∗r0

4
√

β
, ρ

}
. (3.73)

Then, it is possible to see that for any T > 0

R(X(T ), X∗) ≤ R(X(T ), X(0)) + R(X(0), X∗)

≤ R(X(T ), X(0)) + r1 ≤ R(X(T ), X(0)) +
r0

2
(3.74)

along the solution (X(t), Ẋ(t)) to Equation (3.46) starting from (X(0), Ẋ(0))
in N4{(X∗, 0); ε1, r1}. Since the position trajectory X(t) starting from X(0)
at t = 0 and reaching X(T ) at t = T under the constraints of Equations
(3.2) and (3.6) is a special curve, it follows from the meaning of Riemannian
distance that

R(X(T ), X(0)) ≤
∫ T

0

√
1
2
Ẋ

T
(t)H̃(X(t))Ẋ(t) dt

≤
∫ T

0

√
E0(X(t), Ẋ(t)) dt ≤

∫ T

0

√
βE0(X(0), Ẋ(0)) e−(α∗/2)tdt

≤ 2
√

β

α∗
√

E0(0) <
r0

2
, (3.75)

where E0(0) denotes E0(X(0), Ẋ(0)) for abbreviation, and the last inequality
follows from Equation (3.73). Then, substituting Equation (3.75) into Equa-
tion (3.74) yields

R(X(T ), X∗) <
r0

2
+

r0

2
= r0. (3.76)

At the same time, Equation (3.73) together with the Lyapunov-like relation of
Equation (3.48) implies that E0(T ) = E0(X(T ), X∗(T )) < E0(0) ≤ ε2

1 ≤ ρ2.
This concludes that the trajectory (X(t), Ẋ(t)) remains in N4{(X∗, 0); ρ, r0}
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Table 3.1. Scales of a finger and object

Symbol Numerical order

link length li (i = 1–3) 0.02 ∼ 0.05 [m]

radius of finger-end sphere r 0.01 ∼ 0.03 [m]

link inertia momnet Ii (i = 1, 2, 3) 0.2 × 10−7 ∼ 1.0 × 10−6 [Nm]

object width l 0.005 ∼ 0.05 [m]

object inertia moment I 0.2 × 10−7 ∼ 5.0 × 10−6 [Nm]

and converge exponentially to some point on EM1. As for the proof of stability
on a manifold, if we choose δ(ε) for an arbitrarily given ε > 0 in such a way
that

δ(ε) < min
{

α∗r0

4
√

β
, ρ, ε

}
(3.77)

then the trajectory (X(t), Ẋ(t)) starting from an arbitrarily given initial
state (X(0), Ẋ(0)) in N4{(X∗, 0); δ(ε), r1} remains in N4{(X∗, 0); ε, r0}.
This shows the stability on a manifold of the reference equilibrium point
(X∗, 0) ∈ EM1.

3.4 Exponential Convergence for Stabilisation of
Rotational Moments

We shall discuss the speed of convergence of the Lyapunov function E0(X(t),
Ẋ(t)) evaluated along the trajectory of a solution to the closed-loop dynamics
of Equation (3.46). The convergence speed is, as a matter of course, dependent
on the scale of the concerned finger and object and the choice of control gains
ci (i = 1, 2, 3) and fd, where we set the damping matrix C in Equation (3.36)
as C = diag(c1, c2, c3). As discussed in Section 1.5, we consider a somewhat
broader class of robot fingers and rigid objects with ordinary scales shown in
Table 3.1. The control gains ci (i = 1, 2, 3) and fd are given as in Table 3.2.
In this section, we further assume that

A1) r/l = 0.3 ∼ 3.0

A2)
max{ci}

2rfd
= 0.05 ∼ 0.2 [s]

The case when the object width l is very small relative to the radius of the
finger-end sphere will be treated in Sections 6.3 and 6.7 that are concerned
with the case of soft and deformable finger-ends.

Suppose now that a concerned equilibrium point (X∗, 0) lies on the set
of equilibrium manifold EM1 and there exists a neighbourhood N2(X∗; r0)
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Table 3.2. Control gains

Symbol Numerical Order

damping gain ci (i = 1, 2, 3) 0.001–0.005 [Nms]

pressing force fd 0.05–2.0 [N]

such that, at any X ∈ N2(X∗; r0), the Jacobian matrix J(X) (= J(q), X =
(qT, θ)T) is non-degenerate. As discussed in Section 3.2, this means that the
two column vectors a1 = (∂Q/∂qT, Y )T and a2 = (∂R/∂qT,−l) of matrix A
and the vector b = r(eT,−1)T are independent of each other. To gain mathe-
matical insight into this mutual independence between the column vectors of
A and the vector b, we introduce the following two-dimensional subspaces at
the point X in the configuration space R4:

Im(A) = {Ar : r ∈ R2},
Ker(AT) = {sT : ATs = 0, s ∈ R4}.

The former Im(A) is called the image space of A(X) at the point X and the
latter Ker(AT) the kernel space of AT(X). The configuration space R4 can
be expressed as the direct sum of the two subspaces in the following way:

R4 = Im(A)(+)Ker(AT). (3.78)

In other words, the constant vector b = r(eT,−1)T can be expressed as

b = bI(X) + bK(X), (3.79)

where bI(X) ∈ Im(A(X)) and bK(X) ∈ Ker(AT(X)) and bI and bK are
mutually orthogonal, that is, bT

I bK = 0. Independence of b from the column
vectors of A(X) implies that bK(X) 	= 0, that is, the constant vector b does
not lie on the image space of A. Further, the image component of b concerning
matrix A(X) can be calculated by the pseudo-inverse of AT as follows:

bI(X) = A(X)
(
AT(X)A(X)

)−1
AT(X)b = A(X)(AT)+b, (3.80)

where

(AT)+ = (ATA)−1AT. (3.81)

Then, we can calculate the kernel component bK(X) by the formula:

bK(X) =
{
I4 − A(X)(A(X)T)+

}
b, = PA(X)b, (3.82)

where PA(X) is called the projection matrix of A onto the kernel space.
We further remark that the tangent space TM2(X) = {Ẋ = (q̇T, θ̇) : Q̇ =
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0 and Ṙ = 0} is equivalent to the kernel space Ker(AT) of A(X) in this prob-
lem. Since A(X) is non-degenerate at any X in the neighbourhood N2(X∗; r0)
and therefore bK(X) 	= 0, it can be reasonably expected that

bT
K(X)bK(X)

bTb
≥ γ > 0, ∀X ∈ N2(X∗; r0) (3.83)

for some γ > 0. In particular at X = X∗, we denote

γ∗ = bT
K(X∗)bK(X∗)/‖b‖2 (3.84)

and assume that γ∗ > 0.2. Then, it is possible to find some number r̄0 (≤ r0)
such that

A3)
bT

K(X)bK(X)
‖b‖2

≥ 2
3
γ∗ ∀X ∈ N2(X∗; r̄0)

Choose such a number r̄0 as large as possible.
We are now in a position to prove the exponential convergence of trajecto-

ries (X(t), Ẋ(t)) of a solution to the closed-loop dynamics of Equation (3.46)
starting from an arbitrary initial state (X(0), Ẋ(0)) ∈ N4{(X∗, 0); δ, r1}
with δ > 0 and r1. The two parameters δ and r1 that specified the scale of
N4{(X∗, 0); δ, r1} will be determined necessarily in the following argument.
First, consider a scalar quantity

V =
(
H̃Ẋ

)T

PAb
(
Y/γ∗‖b‖2

)
(3.85)

and define

Wα = E0(X, Ẋ) + αV (3.86)

with some positive parameter α > 0 less than or equal to 1.0. Referring to the
inequality

βx2 + (1/β)y2 ≥ 2xy ≥ −βx2 − (1/β)y2 (3.87)

for any β > 0, we see that

V ≥ − r

fd(γ∗)2‖b‖2
Ẋ

T
H̃H̃Ẋ − fdb

TPAb

4r‖b‖2
Y 2

≥ − 1
4fd(γ∗)2r

Ẋ
T
H̃H̃Ẋ − fd

4r
Y 2

≥ −1
2
E0(X, Ẋ) (3.88)

since ‖b‖2 = 4r2, bTPAb ≤ ‖b‖2, γ∗ ≥ 0.2 and the maximum eigenvalue
of matrix H̃(X) is at most of numerical order O(10−6) (also see Table 3.1).
Next, let us differentiate V in time t. This results in
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V̇ =
(
H̃Ẍ

)T

PAb
(
Y/γ∗‖b‖2

)
+
(
H̃Ẋ

)T

PAb
(
Ẏ /γ∗‖b‖2

)
+
{(

˙̃HẊ
)T

PA +
(
H̃Ẋ

)T

ṖA

}(
Y/γ∗‖b‖2

)
. (3.89)

Then, substituting Equation (3.46) into the first term of the right-hand side
yields

V̇ = −bTPAb

γ∗‖b‖2
· fdY

2

r
−
(
C̃Ẋ

)T

PAb · Y

γ∗‖b‖2
+ h

(
X, Ẋ

)
, (3.90)

where

h(X, Ẋ) =

[{(
1
2

˙̃H − S

)
Ẋ

}T

PA +
(
H̃Ẋ

)T

ṖA

}
Y

γ∗‖b‖2
b

+
(
H̃Ẋ

)T

PA
Ẏ

γ∗‖b‖2
b (3.91)

and we refer to PAA = 0. Note that h(X, Ẋ) is quadratic in Ẋ. By comparing
the numerical order of H̃ with that of C, it is possible to verify that

‖h(X, Ẋ)‖ ≤ 1
4
ẊC̃Ẋ (3.92)

under the contact constraints of Equations (3.2) and (3.6), and in particular,
the relationship expressed by Equation (3.52). Next note that

−
(
C̃Ẋ

)T

PAb
Y

γ∗‖b‖2
≤ r

fdγ∗‖b‖2
Ẋ

T
C̃C̃Ẋ +

fdY
2

4r
· bTPAb

γ∗‖b‖2

≤ max{ci}
2rfd

· 1
2γ∗ Ẋ

T
C̃Ẋ +

fdY
2

4r
· bTPAb

γ∗‖b‖2
. (3.93)

According to the assumption A2, we obtain

−
(
C̃Ẋ

)T

PAb
Y

γ∗‖b‖2
≤ 1

2
Ẋ

T
C̃Ẋ +

fdY
2

4r
· bTPAb

γ∗‖b‖2
. (3.94)

Substituting inequalities (3.92) and (3.94) into Equation (3.90) yields

V̇ ≤ 3
4

{
Ẋ

T
C̃Ẋ − bTPAb

γ∗‖b‖2
· fd

r
Y 2

}
. (3.95)

Bearing in mind that PAb = bK(X) and referring to the assumption A3, we
conclude

V̇ ≤ 3
4
Ẋ

T
C̃Ẋ − fd

2r
Y 2. (3.96)
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Table 3.3. Physical parameters of a three-DOF finger

m1 link mass 0.045 [kg]

m2 link mass 0.025 [kg]

m3 link mass 0.015 [kg]

I1 inertia moment 9.375 × 10−6[kg · m2]

I2 inertia moment 3.333 × 10−6[kg · m2]

I3 inertia moment 1.125 × 10−6[kg · m2]

l1 link length 0.050 [m]

l2 link length 0.040 [m]

l3 link length 0.030 [m]

r radius 0.010 [m]

M object mass 0.009 [kg]

h object length 0.050 [m]

w object width 0.030 [m]

d object depth 0.010 [m]

I object inertia moment 3.000 × 10−6[kg · m2]

l object width 0.020 [m]

Hence,

Ẇα = Ė0 + αV̇

≤ −
(

1 − 3α

4

)
Ẋ

T
C̃Ẋ − αfd

2r
Y 2. (3.97)

Since 0 < α ≤ 1 and (1/4)Ẋ
T
C̃Ẋ ≥ K(X, Ẋ) due to the relation of Equation

(3.52) derived from the contact constraints, we finally obtain

Ẇα ≤ −αE0(X, Ẋ). (3.98)

On the other hand, we can obtain

V ≤ 1
2
E0(X, Ẋ)

similarly to derivation of Equation (3.88). Thus, it follows that

(
1 − α

2

)
E0(X, Ẋ) ≤ Wα ≤

(
1 +

α

2

)
E0(X , Ẋ) (3.99)

and hence it follows from Equation (3.98) that

Ẇα ≤ − α

1 + (α/2)
Wα (3.100)

and
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Table 3.4. Parameters of the control signals

fd internal force 0.250 [N]

c1 = c2 = c3 damping coefficient 0.001 [msN]

γf CSM gain 1500.0

γλ CSM gain 3000.0

E0(X(t), Ẋ(t)) ≤ 1 + (α/2)
1 − (α/2)

E0(X(0), Ẋ(0))e−α∗t, (3.101)

where α∗ = α/(1 + α/2). Note that α can be chosen maximally as α = 1.0 in
the concerned class of finger–object setups as shown in Table 3.1 under the
choice of control gains of Table 3.2 satisfying A3.

In order to confirm this theoretical proof of exponential convergence of
the closed-loop dynamics to an equilibrium state, we show some results of
computer simulation based on a physical model of the setup shown in Figure
3.1 with the physical parameters given in Table 3.3. The control gain fd and
damping coefficients ci (i = 1, 2, 3) for the ith diagonal entry of diagonal
damping matrix C as well as the CSM parameters (see Section 4.2) are given
in Table 3.4. We show transient responses of principal physical variables in
Figure 3.5. As seen from Figure 3.5, Y (t) converges to zero quickly as t → ∞
and λ(t) converges to zero with the same speed as t → ∞. In Figure 3.5, we see
also that p (= q11 + q12 + q13) and q1i (i = 1, 2, 3) converge to some constant
values exponentially as t → ∞. Finally, note that the pressing force f(t) in
the normal direction to the object converges exponentially to the specified
value f0 = (1 + l/r)fd.

3.5 Dynamic Force/Torque Balance Based upon Morse
Theory

In the previous two sections, we showed that, even if the finger–object system
has redundant DOFs, the control signal constructed without knowing the
object kinematics or sensing the object orientation can sustain the object
dynamically by balancing rotational moments of the object around the pivotal
axis, though the equilibrium state that attains the force/torque balance for
the overall system cannot be uniquely specified. In this section, we shall show
another type of control signal that cannot only accomplish the state of zero
moment for the object but also determine the final pose of the finger and
object uniquely.

Now, in addition to the right-hand side of the control signal described by
Equation (3.39), we append a signal that can be constructed as follows:
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Fig. 3.5. Transient responses of physical variables in the closed-loop dynamics of
Equation (3.46) when the control signal of Equation (3.39) is used
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N̂0(t) = N̂0(0) + γ−1
0

∫ t

0

rq̇T(τ)e dτ

= N̂0(0) + (r/γ0)
3∑

i=1

{qi(t) − qi(0)} , (3.102)

where γ0 is an appropriate positive control gain specified later. For conve-
nience, we set N̂0(0) = 0. Note that the signal N̂0(t) can also be constructed
by measurement data of finger joint angles and the knowledge of the radius r
of the finger-end sphere. As a total, the control signal is described as

u = −Cq̇ − (fd/r)JT(q)
(

x0 − xm

y0 − ym

)
− rN̂0e. (3.103)

Then, the closed-loop dynamics of motion of the finger/object system is given
by

Hq̈ +
(

1
2
Ḣ + S

)
q̇ + Cq̇ − ∆f

(
∂Q

∂q

)
− ∆λ

(
∂R

∂q

)
+ r∆N0e = 0, (3.104)

Iθ̈ − ∆fY + ∆λl + SN = 0, (3.105)

where ⎧⎪⎨
⎪⎩

∆N0 = N̂0 − N0, N0 = −fd

r
Y,

SN = −fdY.

(3.106)

The sum of the inner products between q̇ and Equation (3.104) and between
θ̇ and Equation (3.105) is reduced to

d
dt

E = −q̇TCq̇, (3.107)

where

E = K + P, P =
fd

2r
Y 2 +

γ0

2
N̂2 (3.108)

and K is the total kinetic energy expressed by Equation (3.1). For the sake
of convenience, we call the scalar function P the artificial potential. It is in
this case a quadratic function of Y and N̂ . At the same it is also a quadratic
function of θ and p where

p =
3∑

i=1

qi (3.109)

since Y = −c0 − rφ = −c0 − r(π + θ − p) according to Equations (3.5) and
(3.6) and N̂(t) = (r/γ0){p(t) − p(0)} according to Equation (3.102).
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Let us now confirm that the closed-loop dynamics of Equations (3.104)
and (3.105) must be equivalent to Lagrange’s equation of motion for the La-
grangian

L = K − P + ∆fQ + ∆λR (3.110)

with external dissipation −Cq̇. In fact,

d
dt

(
∂L

∂q̇

)
− ∂L

∂q
= H(q)q̈ +

{
1
2
Ḣ + S

}
q̇

−∆f
∂Q

∂q
− ∆λ

∂R

∂q
+

∂P

∂q
= −Cq̇ (3.111)

d
dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= Iθ̈ − ∆f

∂Q

∂θ
− ∆λ

∂R

∂θ
+

∂P

∂θ
= 0 (3.112)

and ⎧⎪⎪⎨
⎪⎪⎩

∂P

∂q
=
(

fdY + γ0N̂0 · r

γ0

)
e = r∆N0,

∂P

∂θ
= −fdY = SN .

(3.113)

Therefore, it is expected that any solution (X, Ẋ) (= (q(t)T, θ(t), q̇T(t),
θ̇(t))T) to the closed-loop dynamics of Equations (3.111) and (3.112) con-
verges asymptotically to the state (X∗, 0) that minimises the artificial po-
tential P (X). Nevertheless, it is important to remark that the dynamics of
Equations (3.111) and (3.112) should be treated under the contact constraints
of Equations (3.2) and (3.6). Minimisation of the artificial potential should
also be executed under the same constraints. In other words, the scalar func-
tion P (X) should be minimised on the two-dimensional constraint manifold
CM2 = {X : Q = 0 and R = 0}. Then, to find a point X = X∗ that min-
imises P (X) so that P (X) ≥ P (X∗) in a neighbourhood of X∗ in CM2, it
is reasonable to consider the scalar function

P̃ (X) = P (X) + ∆fQ(X) + ∆λR(X) (3.114)

with Lagrange multipliers ∆f and ∆λ corresponding to constraints Q = 0 and
R = 0, respectively, and derive the gradient equation of P̃ in X (= (qT, θ)T).
This results in the following:

−Aλ + Bη = 0, (3.115)

where λ = (∆f, ∆λ)T, η = (∆N0, r
−1
0 SN )T and

A =

⎛
⎜⎝

∂Q

∂q

∂R

∂q

Y −l

⎞
⎟⎠ , B =

(
re 03×1

0 r0

)
, (3.116)
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where r0 stands for a scale factor introduced for the purpose of balancing the
numerical orders of the two column vectors of matrix B. Note that the coeffi-
cient matrix A in Equation (3.115) is equivalent to that defined by Equation
(3.27). A point X = X∗ that satisfies Equation (3.115) with a certain vector
λ = λ∗ is called the critical point. In this case, there exists a unique critical
point X∗ at which

λ = 02×1, η = 02×1 (3.117)

because the 4 × 4 matrix (A, B) is non-singular in a certain region on CM2

as discussed in Section 3.3. Thus, at the critical point, Y = 0 according to
SN = 0 and p = p(0), from which all values of qi (i = 1, 2, 3) and θ can be
determined through constraint Equations (3.2) and (3.6).

Before concluding the argument, we must remark on some important prop-
erties of the Hessian matrix of the artificial potential P (X) in X, which is
derived in the following way:

G =
(

∂2P

∂Xi∂Xj

)
= r

⎛
⎜⎝
(

fd +
r

γ0

)
eeT −fde

−fde
T fd

⎞
⎟⎠ . (3.118)

This 4×4 matrix is non-negative definite but not positive definite. Apparently,
G has the two positive eigenvalues and the other two are zero. To see this
explicitly, consider the coordinate transformation⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
δX = ΓδZ, Γ =

⎛
⎜⎜⎜⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

δX = X − X∗, δZ = Z − Z∗,

(3.119)

where X∗ denotes the critical point on CM2, Z∗ = Γ−1X∗, and Z =
Γ−1X = (q1, q1 + q2, q1 + q2 + q3, θ)T. Then, it is easy to see that⎧⎪⎪⎨

⎪⎪⎩
δXTGδX = δZTΓTGΓδZ = δZTG̃δZ

G̃ = ΓTGΓ =

(
02×2 02×2

02×2 rG̃22

)
, G̃22 =

⎛
⎝ fd +

r

γ0
−fd

−fd fd

⎞
⎠ .

(3.120)

This shows that the 2× 2 sub-matrix rG̃22 is positive definite with respect to
the sub-vector δZ2 = (δp, δθ)T of δZ = (δZ1, δZ2). Further, this implies that
δZ2 = (δp, δθ)T can play a role of local coordinates for the two-dimensional
manifold CM2 in the vicinity of the critical point X = X∗. More explicitly,
let us consider a further coordinate transformation of the form:
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⎪⎪⎩

δZ2 = (δp, δθ)T = Γ22δZ̃2,

Γ22 =

(
1 0
1 1

)
.

(3.121)

Then, δZ̃2 = Γ−1
22 δZ2 = (δp, δθ − δp)T and

G̃2 = ΓT
22rG̃22Γ22 =

(
r2/γ0 0

0 rfd

)
. (3.122)

Hence, it follows that

1
2
δZ̃

T

2 G̃2δZ̃2 =
1
2

{
r2

δ0
δp2 + rfd(δθ − δp)2

}

=
1
2

{
γ0(δN̂)2 + (fd/r)(δY )2

}
= δP̃ . (3.123)

According to the theory of calculus of variations in the large, that is called
the Morse theory, the set of singular values (eigenvalues) of the Hessian with
respect to certain local coordinates at the critical point on the manifold is
called the Morse function, or equivalently the quadratic form of a diagonalised
Hessian matrix is called the Morse function. In this case, the form

(r2/γ0)δp2 + (rfd)(δθ − δp)2 (3.124)

is the Morse function at the critical point X = X∗ on the manifold CM2.
The Morse theory assures that if the Morse function is positive definite at
the critical point then the concerned scalar function attains a locally unique
minimum at the critical point. In this illustrative model for immobilisation of a
two-dimensional pivoted object, most parts of the argument developed above
may seem to be intelligible without taking advantage of the Morse theory,
because the Hessian matrix of the potential becomes constant. However, such a
rigorous argument will be crucial in later chapters where the stability analysis
of pinching or precision prehension of 3-D objects by using a pair of multi-
joint robot fingers with rigid or soft finger-ends with hemispherical shape will
be presented.

3.6 Minimum DOF for Dynamic Immobilisation of a 2-D
Pivoted Object

In the last section of this chapter, we shall present an answer to the question
posed in Section 2.5: how many actuated joints (or DOFs) must a finger have
to stop the rotational moment of the free pivotal motion of a 2-D rigid object
hinged at a point on a horizontal plane.
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Let us consider a robot finger with two joints as shown in Figure 2.8, whose
finger-end is in contact with a 2-D rigid object. Contact constraints are given
as in Equations (3.2) and (3.6). Then, the Lagrange equation of motion of
the finger/object system is given by Equations (3.9) and (3.10) or Equations
(2.39) and (2.40). As in the previous section, we consider the control input
signal described by

u = −Cq̇ − (fd/r)JT(q)
(

x0 − xm

y0 − ym

)
− rN̂0e, (3.125)

which is the same in form as Equation (3.103). However, in this case,
e = (1, 1)T, q = (q1, q2)T, and therefore the Jacobian matrix J(q) becomes
a 2 × 2 matrix. Substituting Equation (3.125) into Equation (3.9), we obtain
the same form of closed-loop dynamics in Equations (3.104) and (3.105). How-
ever, in this two-DOF finger case, the three two-dimensional vectors ∂Q/∂q,
∂R/∂q, and e are no more independent. Moreover, the constraint manifold
CM1 = {(qT, θ) : Q = 0 and R = 0} is of one dimension and therefore ei-
ther component of the coordinates (p = q1 + q2, θ) is dependent on the other
one. Hence, minimisation of the scalar function P̃ = (1/2){(fd/r)Y 2 + γ0N̂

2}
may certainly be attained at non-zero solutions ∆f = ∆f∞, ∆λ = ∆λ∞,
r−1SN = r−1SN∞, ∆N0 = ∆N0∞ that satisfy

−Aλ∞ + Bη∞ = 0, (3.126)

where λ∞ = (∆f∞, ∆λ∞)T, η∞ = (r−1SN∞, ∆N0∞),

A =

⎛
⎜⎝

∂Q

∂q

∂R

∂q

Y −l

⎞
⎟⎠ , B =

(
re 02×1

0 r

)
. (3.127)

In particular, the final balanced rotational moment around the pivotal axis at
Om is expressed by Equation (3.112) as follows:

−∆f∞Y∞ + ∆λ∞l − fdY∞ = 0. (3.128)

Since f∞ and λ∞ are expressed from the definitions of ∆f and ∆λ [see Equa-
tion (3.38)] as

f∞ = ∆f∞ +
(

1 +
l

r

)
fd, λ∞ = ∆λ∞ +

fd

r
Y∞. (3.129)

Equation (3.128) must be equivalent to

−f∞Y∞ + λ∞l = 0. (3.130)

This shows that the rotational moments induced by the contact constraint
force f∞ with the direction indicated in Figure 2.8 and the rolling constraint
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Table 3.5. DOF physical parameters

m1 link mass 0.025 [kg]

m2 link mass 0.015 [kg]

I1 inertia moment 3.333 × 10−6[kg · m2]

I2 inertia moment 1.125 × 10−6[kg · m2]

l1 link length 0.040 [m]

l2 link length 0.030 [m]

r radius 0.010 [m]

M object mass 0.009 [kg]

h object length 0.050 [m]

w object width 0.030 [m]

d object depth 0.010 [m]

I object inertia 3.000 × 10−6[kg · m2]

moment

l object width 0.020 [m]

Table 3.6. Parameters of the control signals

fd internal force 0.250 [N]

c1 = c2 damping coefficient 0.001 [msN]

γ0 regressor gain 0.001 [m · rad/N]

N̂0(0) initial estimate value 0.000 [N]

γf CSM gain 1500.0

γλ CSM gain 3000.0

force λ∞ with the direction tangential to the object surface have been bal-
anced.

All these theoretical predictions concerning the convergence of the closed-
loop dynamics to the equilibrium point that satisfies force/torque balance can
be confirmed through numerical simulation. In the simulation, a two-DOF
robot finger and a 2-D rigid object with the physical parameters in Table 3.5
are used. The control gains fd and γ0 and damping coefficients ci (i = 1, 2)
used in the simulation are given in Table 3.6. Figure 3.6 shows the transient
responses of the physical variables when the control signal of Equation (3.125)
is used. In this figure, α′ is defined as

α′ = tan−1(λ/f). (3.131)

As shown in Figure 3.7, at the convergent stage the net force vector F orig-
inating at the contact point P (= (x, y)) is directed toward the hinged point
Om (= (xm, ym)). As seen from Figure 3.7, α′ must converge to the angle α
specified in Figure 3.7 and defined by
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namics of Equations (3.104) and (3.105) when the control signal of Equation (3.125)
is used
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Fig. 3.7. Robot finger manipulating an object with parallel flat surfaces in a 2-D
plane

α = −θ∞ + tan−1

(
y1∞ − ym

xm − x1∞

)
, (3.132)

where θ∞ and (x1∞, y1∞) are constants to which θ(t) and (x1(t), y1(t)) con-
verge, respectively, as t → ∞. As discussed theoretically in the previous
paragraph, Y (t) converges to some constant value that is not necessarily
zero. Therefore, as seen from Figure 3.6 f(t) and λ(t) converge to some con-
stant values f∞ and λ∞ different from their corresponding values f0 and
λ = 0. It should be noted again that, from Equations (3.130), (3.131) and
(3.132) and the convergence of α′ to α as t → ∞, α must be coincident with
tan−1(λ∞/f∞), which is also equal to tan−1(Y∞/l).

For the sake of comparison of effects of the control signal of Equation
(3.125) with those of Equation (3.39) in the case of two-DOF finger, we present
Figure 3.8 that shows the transient responses of the principal physical vari-
ables of the closed-loop dynamics of Equation (3.46). In this simulation, the
same values for fd and ci (i = 1, 2) as given in Table 3.6 are employed. It
is interesting to note that the speed of convergence to the equilibrium state
(Y = 0, λ = 0, f = (1 + l/r)fd) becomes noticeably slower in comparison
with the former case where the term rN̂0e is included in the control signal.

Even in the case of a robot finger with redundant joints like the three-
DOF finger of Figure 3.1, is the performance of the closed-loop dynamics
using the control signal of Equation (3.103) superior to that using the control
of Equation (3.36) in which the term rN̂0e is missing? Unexpectedly and
contrarily to the case of use of a non-redundant two-DOF finger, we observe
from the computer simulation results that the addition of the term rN̂0e to the
control signal rather degrades the control performance by slowing down the
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Fig. 3.8. The transient responses of the physical variables of the closed-loop dy-
namics when the term rN̂0e in Equation (3.125) is missing

speed of the convergence of the trajectory to the equilibrium point satisfying
Y∞ = 0 and p∞ = p(0). The reason is that in this redundant DOF case the
physical variable p (= q1 + q2 + q3) should eventually converge and move back
to the initial value p∞ = p(0) in order for Y and N̂0 to converge to zero as
t → ∞, as discussed in Section 3.5.

Finally we turn to the simplest case of immobilisation of rotational motion
of the 2-D object by using a single-joint finger as shown in Figure 2.6. In this
case, it is possible to stop the object motion only at its definite orientational
angle specified by two constraint conditions expressed by Equations (3.2) and
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Fig. 3.9. When a finger-end sphere slowly contacts with the rigid object by increas-
ing q1, the finger motion is stacked at this contact position and immobilised in a
static sense

(3.6). In fact, at the instant when the finger-end sphere contacts with the rigid
object by slowly increasing q1 (see Figure 3.9), the value of q1 determines the
value of Y according to Equation (3.38), from which the inclination angle θ
of the object is determined through Equation (3.4). Then, the finger-end is
stacked at this position and immobilised in a static sense. In other words, it
is impossible to cause rolling between the finger-end sphere and the object
surface and therefore it is impossible to restabilise the object motion once the
contact is released by disturbances. Quite interestingly, however, a single-DOF
finger whose finger-end is soft and visco-elastic works well in stabilisation of an
equilibrium state of grasp in immobilising the object in a dynamic sense. This
simplest testbed problem for stabilising rotational motion of a 2-D object by
using a single-DOF robot finger with a soft fingertip will be treated in Section
6.2.



4

Two-dimensional Grasping by a Pair of Rigid
Fingers

This chapter discusses a sensory-motor coordination control scheme that re-
alises stable grasping (precision prehension) of rigid objects with parallel or
non-parallel flat surfaces movable in a two-dimensional vertical plane by a
pair of multi-joint robot fingers with hemispherical ends. The proposed con-
trol is composed of linear superposition of signals for gravity compensation
for fingers, damping shaping, exertion of forces to the object from opposite
directions, generation of moments for balancing of rotational moments, and
regressors for estimating unknown steady-state terms, all of which neither
need the knowledge of object parameters nor use any object sensing data.
In other words, stable grasping can be realised in a blind manner by using
measurement data of only finger joint angles without using force sensors or
tactile sensing. Stability of pinching motion with convergence to the state
of force/torque balance is defined on a constraint manifold based upon the
Riemannian distance. Exponential convergence of the closed-loop dynamics
to an equilibrium manifold satisfying the force/torque balance is verified by
examining the Morse function derived from the Hessian matrix regarding the
artificial potential. In the sequel, it is shown that the proposed coordinated
control scheme does not need any alteration even if the object side surfaces
are not parallel. It is also interesting to know eventually that the smallest
number of total DOFs for pair of fingers to realize stable grasping in a blind
manner in a veritical plane under the gravity effect is four, that is, each finger
should have at least two joints.

4.1 Dynamics of the Physical Interaction Between
Fingers and an Object

First, the dynamics of a pair of two-DOF finger robots and a 2-D object with
flat surfaces are derived. The coordinates of the overall system is shown in
Figure 4.1. The vector q1 = (q11, q12)T denotes the joint angles of the left-
hand side finger and vector q2 = (q21, q22)T denotes those of the right finger.
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Fig. 4.1. A pair of robot fingers pinching a rigid object

The fingertips are rigid and hemispherically shaped with radius ri. The centre
of mass of the object is denoted by Oc.m.. We define the vector w = (x, y, θ)T

in the coordinate system {O−xy}, where (x,y) denotes the position of the
object centre of mass and θ is the rotational angle of the object. The symbols
lij , mij and Iij (i, j = 1, 2) denote the length, mass and inertia moment of
link j of finger i, respectively. The symbols M and I denote the mass and
moment of inertia of the object, respectively, and L the distance between the
origin{O} of the left finger and the origin{O′} of the right finger.

The distance Yi between the contact point and the other surface point at
which the straight line (the X-axis shown in Figure 4.1) from the centre of
mass Oc.m. crosses the object surface perpendicularly is (see Figure 4.2):

Yi = (x0i − x) sin θ + (y0i − y) cos θ, i = 1, 2. (4.1)

This quantity must be subject to the constraint that the fingertip does not
slip on the object surface, or equivalently the velocity −dYi/dt on the object
surfaces equals that on its corresponding finger end ridφi/dt, that is,

ri
d
dt

φi = − d
dt

Yi, (4.2)

where φi is defined as

qi1 + qi2 + φi = π − (−1)iθ, i = 1, 2. (4.3)

Throughout this book, we adopt the rule of defining the sign of an angle θ
or q1j (j = 1, 2) to be positive when it directs counter-clockwise. However,



4.1 Dynamics of the Physical Interaction Between Fingers and an Object 117

x − x01
(x − x01) sin

Y1 = (x01 − x) sin   + (y01 − y) cos

O01

Oc.m.

(x01, y01)

(x, y)

Y1

θ

θ θ

θ

θ
y01 − y

Fig. 4.2. Geometric relations among the centre O01 of fingertip sphere, object centre
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exceptionally and for convenience, the joint angle q2j (j = 1, 2) for the right-
hand finger is defined to be positive if it directs clockwise. Then, integrating
Equation (4.2) with respect to t leads to

Yi = c0i − ri

{
π − (−1)iθ − q11 − q12

}
, i = 1, 2, (4.4)

where c01 and c02 are constant. Then, substituting Equation (4.1) into (4.4)
yields

Ri = (x0i − x) sin θ+(y0i − y) cos θ − c01+ri

{
π − (−1)iθ− qi1− qi2

}
= 0, i = 1, 2. (4.5)

These constraints lead to the introduction of the scalar function R0 in the
following way by using the Lagrange multipliers λ1 and λ2:

R0 = λ1R1 + λ2R2. (4.6)

It is easy to calculate the partial differentials of Ri(i = 1, 2) with respect to
qi as follows:

∂Ri

∂qi

= JT
0i

(
sin θ
cos θ

)
− riei, i = 1, 2 (4.7)

where ei = (1, 1)T and J0i denotes the Jacobian matrix defined by

JT
0i =

(
∂x0i

∂qi

∂y0i

∂qi

)
. (4.8)

The constraint that the fingertip is stuck to the object is described by the
following geometric relation:
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Qi = −(li + ri) − (−1)i
{
(x − x0i) cos θ − (y − y0i) sin θ

}
= 0,

i = 1, 2. (4.9)

From a similar derivation to that of Equation (4.7), it follows that

∂Qi

∂qi

= (−1)iJT
0i

(
cos θ
− sin θ

)
, i = 1, 2. (4.10)

These constraints represent the scalar Q in the following way by using the
Lagrange multipliers f1 and f2:

Q = f1Q1 + f2Q2. (4.11)

Thus, the Lagrangian of the overall fingers–object system is composed in the
form

L = K − (P1 + P2 − Mgy) + R0 + Q, (4.12)

where

K =
1
2

∑
i=1,2

q̇T
i Hi(qi)q̇i +

1
2
(Mẋ2 + Mẏ2 + Iθ̇2) (4.13)

and Hi(qi) denotes the finger inertia matrix, Pi stands for the finger potential
energy and K is the total kinetic energy. Then, by applying the variational
principle to the form∫ t1

t0

{
δL + vT

1 δq1 + vT
2 δq2

}
dτ = 0 (4.14)

we obtain a set of Lagrange’s equations of motion for the overall system as
follows: {

Hi(qi)
d
dt

+
1
2
Ḣi(qi)

}
q̇i + Si(qi, q̇i)q̇i + gi(qi)

−fi

(
∂Qi

∂qi

)
− λi

(
∂Ri

∂qi

)
= vi, i = 1, 2 (4.15)

⎧⎨
⎩

Mẍ − (f1 − f2) cos θ + (λ1 + λ2) sin θ = 0
Mÿ + (f1 − f2) sin θ + (λ1 + λ2) cos θ − Mg = 0
Iθ̈ − f1Y1 + f2Y2 + λ1l1 − λ2l2 = 0

(4.16)

where Si(qi, q̇i) is skew-symmetric. Equation (4.15) expresses the motion of
the fingers, and Equation (4.16) that of the object.

Second, the dynamics of a pair of three-DOF finger robots and a 2-D object
with non-parallel flat surfaces are derived. The coordinate system is shown in
Figure 4.3. The holonomic constraints in this case corresponding to Equations



4.1 Dynamics of the Physical Interaction Between Fingers and an Object 119

Table 4.1. Explicit formulae of Qi and Ri for an object with non-parallel flat
surfaces

Point contact constraint:
Qi = −(li + ri) − (−1)i

˘
(x − x0i) cos(θ + (−1)iθ0)

−(y − y0i) sin(θ + (−1)iθ0)
¯

= 0 i = 1, 2 (T-1)

Rolling constraint:

Ri = Yi − c0i + ri

n
π − (−1)iθ − θ0 −P3

j=1 qij

o
= 0 i = 1, 2 (T-2)

where
Yi = (x0i − x) sin(θ + (−1)iθ0)

+(y0i − y) cos(θ + (−1)iθ0), i = 1, 2 (T-3)
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Fig. 4.3. A pair of robot fingers pinching a rigid object with non-parallel surfaces

(4.5) and (4.9) are given in Table 4.1. In a similar way, it is possible to derive
the following equations:{

Hi(qi)
d
dt

+
1
2
Ḣi(qi)

}
q̇i + Si(qi, q̇i)q̇i + gi(qi)

−fi

(
∂Qi

∂qi

)
− λi

(
∂Ri

∂qi

)
= vi, i = 1, 2 (4.17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M ẍ −
∑

i=1,2

(
fi

∂Qi

∂x
+ λi

∂Ri

∂x

)
− Mg

(
0
1

)
= 0

Iθ̈ −
∑

i=1,2

(
fi

∂Qi

∂θ
+ λi

∂Ri

∂θ

)
= 0

(4.18)
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Table 4.2. Explicit formulae of the partial differentials of Qi and Ri with respect
to qi, x, θ and ψ for an object with non-parallel flat surfaces

Q = f1Q1 + f2Q2!$R = λ1R1 + λ2R2

∂Q

∂qi

= fi

„
∂Qi

∂qi

«

= (−1)ifiJ
T
i (qi)

„
cos(θ + (−1)iθ0)
− sin(θ + (−1)iθ0)

«
, i = 1, 2 (T-4)

∂R0

∂qi

= λi

„
∂Ri

∂qi

«

= λi

j
JT

i

„
sin(θ + (−1)iθ0)
cos(θ + (−1)iθ0)

«
− riei

ff
, i = 1, 2 (T-5)

∂Q

∂x
= f1 cos(θ − θ0) − f2 cos(θ + θ0) (T-6)

∂R

∂x
= −λ1 sin(θ − θ0) − λ2 sin(θ + θ0) (T-7)

∂Q

∂y
= −f1 sin(θ − θ0) + f2 sin(θ + θ0) (T-8)

∂R

∂y
= −λ1 cos(θ − θ0) − λ2 cos(θ + θ0) (T-9)

∂Q

∂θ
= f1Y1 − f2Y2 (T-10)

∂R

∂θ
= −λ1l1 + λ2l2 (T-11)

where the partial derivatives of Qi and Ri (i = 1, 2) with respect to qi,
x = (x, y)T and θ are given in Table 4.2.

4.2 Force/Torque Balance

According to the equation of motion of the object expressed by Equation
(4.16) or (4.18), the contact constraint forces fi (i = 1, 2) are exerted on the
object in the direction normal to the object surfaces, which can be described
by means of the following two-dimensional wrench vectors:

wf1 =

⎛
⎝ cos θ

− sin θ
Y1

⎞
⎠ , wf2 = −

⎛
⎝ cos θ

− sin θ
Y2

⎞
⎠ . (4.19)

On the other hand, the rolling contact contraint forces appear in directions
tangent to the object surfaces as shown in Figure 4.1, which can be described
the same by the wrench vectors:

wλ1 =

⎛
⎝ sin θ

cos θ
l1

⎞
⎠ , wλ2 =

⎛
⎝ sin θ

cos θ
−l2

⎞
⎠ . (4.20)
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In order to stop both the translational and rotational movements of the object,
the summation of these four wrench vectors should be equal to the external
force −Mg(0, 1, 0)T on the object due to gravity. This is expressed as

f1wf1 + f2wf2 + λ1wλ1 + λ2wλ2 = −Mg

⎛
⎝ 0

1
0

⎞
⎠ . (4.21)

Then, it is evident from this expression that, if fi and λi are chosen such that⎧⎪⎨
⎪⎩

f1 = f0 +
Mg

2
sin θ, f2 = f0 − Mg

2
sin θ,

λ1 = ξ +
Mg

2
cos θ, λ2 = −ξ +

Mg

2
cos θ,

(4.22)

then the first two components of Equation (4.21) are satisfied and the last
component implies

−
(

f0 +
Mg

2
sin θ

)
Y1 +

(
f0 − Mg

2
sin θ

)
Y2

+
(

ξ +
Mg

2
cos θ

)
l1 −

(
−ξ +

Mg

2
cos θ

)
l2 = 0 (4.23)

from which ξ should be equal to

ξ =
1

l1 + l2

[
f0(Y1 − Y2) +

Mg

2
{(Y1 + Y2) sin θ − (l1 − l2) cos θ}

]
. (4.24)

Now, denote the second term in the brackets of Equation (4.24) by N , that
is,

N =
Mg

2
{(Y1 + Y2) sin θ − (l1 − l2) cos θ} . (4.25)

This quantity has a physical meaning. In fact, N means the rotational moment
around the object centre of mass Oc.m. if the force with the magnitude Mg/2
is exerted at both contact points O1 and O2 upward in the vertical direction
as shown in Figure 4.4. On the other hand the first term f0(Y1 − Y2) in the
same brackets of Equation (4.24) is equivalent to the sum of the rotational
moments around the object centre of mass Oc.m. when forces with the same
magnitude f0 are exerted at the contact points O1 and O2, respectively, in
opposite directions normal to the object surfaces (see Figure 4.4). Hence,
the force/torque balance about the object is established under the effect of
gravity by setting four constraint forces fi and λi (i = 1, 2) as in Equation
(4.22) with ξ satisfying Equation (4.24) and f0 > Mg/2. However, we must
bear in mind that in the construction of the control signals we should not
assume knowledge of object kinematics such as the mass M , width l1 + l2, or
even the measurements data on movements of the centre of mass (x, y)T and
rotational angle θ.
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Fig. 4.4. Force/torque balance is established under the effect of gravity by setting
four constraint forces fi and λi (i = 1, 2) adequately so that the quantity ξ in
Equation (4.24) vanishes

At this stage, let us recall the typical methodology of robot control called
PD control with damping shaping, which is based upon the idea of using an
artificial potential to compensate for the gravity term or a causal estimator M̂
for estimating the unknown mass of a payload. In this problem, the potential
function of the object is −Mgy. Since we assume that the variable y cannot
be measured directly, we must employ some approximate variable that can
be accessible or calculated easily and in real time by referring only to the
kinematic parameters of the fingers. One possible candidate must be (y01 +
y02)/2. Therefore, it is important to evaluate the difference between y and
(y01 + y02)/2. To do this, multiply Equation (4.1) by cos θ and Equation (4.9)
by sin θ, and take a sum of those two resultant equations, and finally sum
these for i = 1, 2. Then, we obtain

∆y = y − y01 + y02

2

= −
{

Y1 + Y2

2
cos θ − 1

2
(l1 − l2 + r1 − r2) sin θ

}
. (4.26)

This shows that y can be regarded as a function of q1, q2 and θ. Then, it is
possible to show that, according to Equation (4.4),
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∂y(q1, q2, θ)
∂θ

=
Y1 + Y2

2
sin θ +

1
2
· ∂(Y1 + Y2)

∂θ
cos θ +

1
2
{l1 − l2 + r1 − r2} cos θ

=
Y1 + Y2

2
sin θ − l1 − l2

2
cos θ = N. (4.27)

Similarly, it is easy to show that

∂y(q1, q2, θ)
∂qi

=
1
2

{
∂y0i

∂qi

− riei cos θ

}
, i = 1, 2, (4.28)

where ei = (1, 1)T. From Equations (4.27) and (4.28) it follows that

d
dt

Mgy = θ̇N +
∑

i=1,2

Mg

2
q̇T

i

{
∂(y01 + y02)

∂qi

− riei cos θ

}
. (4.29)

In contrast, the opposing forces with magnitude of f0 are defined to exert at
contact points O1 and O2 in opposite directions on the line equivalent to the
direction of vector x1−x2. However, we are unable to access the values of xi,
the locations of the contact points O1 and O2. Instead of x1−x2, it is possible
to use the approximate vector x01 − x02, which is accessible from the finger
sides. Then, the approximate opposition forces exerted on the object along
the line x01 − x02 induce reactive rotational moments on the finger joints,
which are described as

−(−1)i fd

r1 + r2
JT

0i(qi)
(

x01 − x02

y01 − y02

)
, i = 1, 2, (4.30)

where fd > 0 is a constant specified later. Since it is evident from Equations
(4.1) and (4.9) that(

x01 − x02

y01 − y02

)
=
(

cos θ
− sin θ

)
(−lw) +

(
sin θ
cos θ

)
(Y1 − Y2), (4.31)

where

lw = l1 + l2 + r1 + r2 (4.32)

it is possible to obtain the following relation by substituting Equation (4.31)
into (4.30):

−(−1)i fd

r1 + r2
JT

0i(qi)
(

x01 − x02

y01 − y02

)

= (−1)if0J
T
0i(qi)

(
cos θ
− sin θ

)
− (−1)iJT

0i(qi)
(

sin θ
cos θ

)
fd(Y1 − Y2)

r1 + r2

= f0
∂Qi

∂qi

− (−1)i fd(Y1 − Y2)
r1 + r2

(
∂Ri

∂qi

)
− (−1)i rifd(Y1 − Y2)

r1 + r2
ei, (4.33)
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where the magnitude f0 [N] corresponds to the opposing force f0(∂Qi/∂qi),
(i = 1, 2), and hence fd should be defined as follows:

f0 =
lw

r1 + r2
fd =

(
1 +

l1 + l2
r1 + r2

)
fd. (4.34)

Finally, we evaluate the rotational moments at the finger joints evoked in
reaction to the constraint forces fi and λi with ξ = 0 defined by Equation
(4.22), which can be formulated in the following way:

−(−1)i Mg

2
(sin θ)

∂Qi

∂qi

+
Mg

2
(cos θ)

∂Ri

∂qi

= −Mg

2
JT

0i(qi)
(

cos θ
− sin θ

)
sin θ +

Mg

2

{
JT

0i(qi)
(

sin θ
cos θ

)
cos θ − riei

}

=
Mg

2
· ∂y0i

∂qi

− Mg

2
riei cos θ, i = 1, 2. (4.35)

In order to find a good candidate for control signals that may lead the
closed-loop dynamics to the state of force/torque balance, let us assume for
the time being that the object mass M is known and the quantity N defined
by Equation (4.25) is computationally available based upon the measurement
data on Yi (i = 1, 2) and θ. Then, let us consider the control signals defined
as

vi = gi(qi) − ciq̇ + (−1)i fd

r1 + r2
JT

0i(qi)
(

x01 − x02

y01 − y02

)

−Mg

2

(
∂y0i

∂qi

)
+

Mg

2
riei cos θ +

(−1)iN

l1 + l2

(
∂Ri

∂qi

)
, i = 1, 2 (4.36)

and define⎧⎪⎪⎨
⎪⎪⎩

fi = ∆fi + f0 − (−1)i Mg

2
sin θ

λi = ∆λi − (−1)i fd(Y1 − Y2)
r1 + r2

+
Mg

2
cos θ − (−1)iN

l1 + l2

i = 1, 2. (4.37)

Then, substituting Equations (4.36) and (4.37) into Equation (4.15) and re-
ferring to Equations (4.33) and (4.35) yields

Hiq̈i +
(

1
2
Ḣi + Si

)
q̇i + ciq̇i − ∆fi

(
∂Qi

∂qi

)

− ∆λi

(
∂Ri

∂qi

)
− (−1)i rifd(Y1 − Y2)

r1 + r2
ei = 0. (4.38)

At the same time, Equation (4.16) can be rewritten by using Equation (4.37)
into the form:
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M

(
ẍ
ÿ

)
− Rθ

(
∆f1 − ∆f2

−(∆λ1 + ∆λ2)

)
= 0 (4.39)

by using the 2-D orthogonal matrix Rθ [see Equation (2.78)], and

Iθ̈ − ∆f1Y1 + ∆f2Y2 + ∆λ1l1 − ∆λ2l2 − fd(Y1 − Y2) = 0, (4.40)

which is reformulated in such a way that

0 = Iθ̈ +
∑

i=1,2

(−1)i{fiYi − λili}

= Iθ̈ +
∑

i=1,2

(−1)i

[{
∆fi + f0 − (−1)i Mg

2
sin θ

}
Yi

−
{

∆λi − (−1)i fd(Y1 − Y2)
r1 + r2

+
Mg

2
cos θ − (−1)iN

l1 + l2

}
li

]
= Iθ̈ − ∆f1Y1 + ∆f2Y2 + ∆λ1l1 − ∆λ2l2 + N

−
{

Mg

2
(Y1 + Y2) sin θ − (l1 − l2) cos θ

}

−(Y1 − Y2)f0 +
l1 + l2
r1 + r2

fd(Y1 − Y2)

= Iθ̈ +
∑

i=1,2

(−1)i {∆fiYi − ∆λili} − fd(Y1 − Y2). (4.41)

Since it is easy to see from Equation (4.4) that

r1q̇
T
1 e1 − r2q̇

T
2 e2

r1 + r2
− θ̇ = Ẏ1 − Ẏ2 (4.42)

the sum of the inner products between q̇i and Equation (4.38) for i = 1, 2,
(ẋ, ẏ)T and Equation (4.39), and θ̇ and Equation (4.40) yields

d
dt

{
K +

fd

2(r1 + r2)
(Y1 − Y2)2

}
= −

∑
i=1,2

ci‖q̇i‖2, (4.43)

where K is the kinetic energy given in Equation (4.13). This formula looks like
the Lyapunov relation for the establishment of a stability theorem. However
note that the quantity

E = K +
fd

2(r1 + r2)
(Y1 − Y2)2 (4.44)

is not a Lyapunov function, because E is not positive definite even if all four
contact and rolling constraints are taken into account. In fact, E includes only
one independent position variable Y1 − Y2, though the overall fingers–object
system has three degrees of freedom. Nevertheless, Equation (5.82) plays an
important role in the stability analysis of grasping.
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4.3 Control Signals for Grasping in a Blind Manner

The design of such control signals as defined in Equation (4.36) in the previous
section is a mathematical fiction, because in our everyday life rigid objects
to be grasped are miscellaneous and therefore exact values of their masses
are not available. Hence, we replace this term in the definition of the control
signals of Equation (4.36) with an estimator M̂ for the true but unknown
mass M in such a way that

−Mg

2

(
∂y0i

∂qi

)
→ −M̂g

2

(
∂y0i

∂qi

)
, (4.45)

where M̂ should be given by the causal calculation of known parameters
and measurement data on finger joint angles. Indeed, one feasible method to
construct this estimator is as follows:

M̂(t) = M̂(0) +
gγ−1

M

2

∫ t

0

∑
i=1,2

q̇T
i

(
∂y0i

∂qi

)
dτ

= M̂(0) +
gγ−1

M

2

∑
i=1,2

{y0i(t) − y0i(0)} , (4.46)

where γM is a positive parameter. The term (Mg/2)riei cos θ in Equation
(4.36) should be also replaced with another estimator riN̂i, where we put

Ni = −Mg

2
cos θ + (−1)i fd

r1 + r2
(Y1 − Y2), i = 1, 2 (4.47)

and define with positive parameters γi (i = 1, 2)

N̂i(t) = N̂i(0) + γ−1
i

∫ t

0

riq̇
T
i eidτ

= N̂i(0) + γ−1
i ri

∑
j=1,2

{qij(t) − qij(0)} , i = 1, 2. (4.48)

Finally, as to the last term of vi in Equation (4.36), we had better not employ
it in the construction of control signals in practice, because it is assumed that
external sensing for the measurement of physical variables Yi (i = 1, 2) and θ
is not available. Thus, we design the following control signals for the pair of
robot fingers with two joints depicted in Figure 4.1:

vi = gi(qi) − ciq̇i + (−1)i fd

r1 + r2
JT

0i(qi)
(

x01 − x02

y01 − y02

)

−M̂g

2

(
∂y0i

∂qi

)
− riN̂iei, i = 1, 2. (4.49)
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The first term gi(qi) on the right-hand side expresses direct compensation
for the effect of gravity for finger i, the second damping injections for finger
joints, the third the opposing forces, the fourth plays a role of compensation
for the effect of gravity of the object through finger joints, and the fifth plays
a role of compensation for the remaining term.

Before explaining how the proposed control signals work in an effective
way, we show the closed-loop dynamics of motion of the overall fingers–object
system. Differently from the definitions of ∆fi and ∆λi (i = 1, 2) in Equation
(4.37), we set⎧⎪⎪⎨

⎪⎪⎩
∆fi = fi − f0 + (−1)i Mg

2
sin θ

∆λi = λi + (−1)i fd(Y1 − Y2)
r1 + r2

− Mg

2
cos θ

i = 1, 2. (4.50)

Note that the last term (−1)iN/(l1 + l2) in Equation (4.37) is excluded in
this expression of ∆λi corresponding to the fact that the last term of vi in
(4.36) is excluded in the practical design of control signals based on Equation
(4.49). Then, by substituting Equation (4.49) into Equation (4.15), we obtain
the following:

Hiq̈i +
(

1
2
Ḣi + Si

)
q̇i + ciq̇i − ∆fi

(
∂Qi

∂qi

)

− ∆λi

(
∂Ri

∂qi

)
+

∆Mg

2

(
∂y0i

∂qi

)
+ ri∆Niei = 0, i = 1, 2 (4.51)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mẍ −∑
i=1,2

(
∆fi

∂Qi

∂x
+ ∆λi

∂Ri

∂x

)
= 0

Mÿ −∑
i=1,2

(
∆fi

∂Qi

∂y
+ ∆λi

∂Ri

∂y

)
= 0

(4.52)

Iθ̈ − ∆f1Y1 + ∆f2Y2 + ∆λ1l1 − ∆λ2l2 + SN = 0, (4.53)

where ∆M = M̂ − M and ∆Ni = N̂i − Ni and SN is defined as

SN = −N − fd(Y1 − Y2). (4.54)

Note again that, differently from Equation (4.40), −N appears in Equation
(4.53) caused by excluding the last term (−1)iN/(l1 + l2) in Equation (4.37)
in the new definition of ∆λi given in Equation (4.50).

The major significance of the control signals defined in Equation (4.49)
comes from the principle of linear superposition implicitly utilised in the de-
sign of the effective control command. Notice again that the right-hand side
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Table 4.3. Definitions of N , SN , Ni, ∆fi and ∆λi (i = 1, 2)

N =
Mg

2
{Y1 sin(θ − θ0) + Y2 sin(θ + θ0)

−l1 cos(θ − θ0) + l2 cos(θ + θ0)} (T-12)

SN = −fd

j
d cos θ0 +

r1 − r2

r1 + r2
lw sin θ0

ff
− N (T-13)

where8>><
>>:

d = Y ′
1 − Y ′

2 − (r1 − r2) sin θ0

= (x01 − x02) sin θ + (y01 − y02) cos θ

lw = l̃ cos θ0 + (Y1 + Y2) sin θ0

= −(x01 − x02) cos θ + (y01 − y02) sin θ

(T-14)

j
Y ′

i = Yi cos θ0 − li sin θ0

l̃ = l1 + l2 + r1 + r2
(T-15)

Ni = −Mg

2
cos(θ + (−1)iθ0)

− fd

r1 + r2
{lw sin θ0 − (−1)id cos θ0}, i = 1, 2 (T-16)

∆fi = fi − f0 + (−1)i Mg

2
sin(θ + (−1)iθ0)

− fd

r1 + r2
{lw cos θ0 + (−1)id sin θ0}, i = 1, 2 (T-17)

∆λi = λi − Mg

2
cos(θ + (−1)iθ0)

− fd

r1 + r2
{lw sin θ0 − (−1)id cos θ0}, i = 1, 2 (T-18)

of Equation (4.49) is composed by superposing each independently and phys-
ically significant control signal in a linear sum. If the object is placed horizon-
tally on a desk and the motion of the overall fingers–object system is confined
to a horizontal plane, the control signals should be free from the effect of
gravity and thereby take the simpler form:

vi = −ciq̇i + (−1)i fd

r1 + r2
JT

0i(q)
(

x01 − x02

y01 − y02

)
− riN̂iei, i = 1, 2. (4.55)

Further, if the geometric shape of the object is known apriori, for example,
it were a parallelepiped, then the last term −riN̂iei in the right-hand side of
Equation (4.55) might be omitted. However, if the object geometry is uncer-
tain, for example, the side surfaces of the object are flat but not in parallel,
then the term −riN̂iei is indespensible as discussed later. Therefore, in order
to realise stable grasping in a blind manner without assuming any prior knowl-
edge of the object geometry, each term of the superposed signals of Equation
(4.49) is necessary for robustness against variability in the object geometry.
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Table 4.4. Physical parameters of the robot finger (three and three DOFs)

m11 = m21 link mass 0.045[kg]

m12 = m22 link mass 0.025[kg]

m13 = m23 link mass 0.015[kg]

I11 = I21 inertia moment 1.584 × 10−5[kg · m2]

I12 = I22 inertia moment 3.169 × 10−6[kg · m2]

I13 = I23 inertia moment 8.450 × 10−7[kg · m2]

l11 = l21 link length 0.065[m]

l12 = l22 link length 0.039[m]

l13 = l23 link length 0.026[m]

r1 radius 0.015[m]

r2 radius 0.020[m]

M object mass 0.040[kg]

h object height 0.05000[m]

I object inertia 1.26 × 10−5[kg · m2]

moment

θ0 object inclination angle −15[deg]

l1 object length 0.012859[m]

l2 object length 0.022390[m]

In Section 4.5 we will prove the stability of blind grasping in the case that the
same control signals vi (i = 1, 2) defined by Equation (4.49) is used for a 2-D
object with non-parallel but flat surfaces. Further, there is a conjecture that
the same control would be valid even for a broader kind of objects with non-
flat surfaces, though the mathematical verification seems difficult and has not
yet been tackled. Finally, we emphasise that even in the case of objects with
non-parallel surfaces the same closed-loop dynamics expressed by Equations
(4.51–4.53) are formulated if N , SN , Ni, ∆fi, ∆λi (i = 1, 2) are replaced with
those listed in Table 4.3, respectively. Observe that those functions N , SN ,
Ni, ∆fi, and ∆λi (i = 1, 2) defined in Table 4.3 are reduced to N of Equation
(4.25), SN of Equation (4.54), Ni of Equation (4.47), and ∆fi and ∆λi of
Equation (4.50), respectively, when θ0 is zero.

Before presenting theoretical verifications of the effectiveness of the control
signals of Equation (4.49) that can be constructed without using the knowl-
edge of object kinematics or any external sensing, we will show some results
from computer simulation.

First, we show simulation results for stable grasping of a rigid object with
non-parallel flat surfaces by means of a pair of robot fingers with three DOFs
as shown in Figure 4.2. In the simulation Lagrange’s equations of motion de-
scribed by Equations (4.17) and (4.18) [not by (4.15) and (4.16)] is used by
feeding the same control signals vi (i = 1, 2) of Equation (4.49). In order to
incorporate the holonomic constraints described in Table 4.1, the so-called
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Table 4.5. Parameters of the control signals

fd internal force 2.0[N]

c1 = c2 damping coefficient 0.006[msN]

γM regressor gain 0.01

γ1 regressor gain 0.001

γ2 regressor gain 0.001

Table 4.6. Initial values of the simulation

Y1(0) initial value of Y1(t) 0.001[m]

Y2(0) initial value of Y2(t) 0.000[m]

M̂(0) initial value of M̂(t) 0.010[kg]

N̂1(0) initial value of N̂1(t) 0.000[N]

N̂2(0) initial value of N̂2(t) 0.000[N]

constraint stabilisation method (CSM) can be used. The details of the con-
struction of a numerical simulator based on the CSM will be presented in
the next section. All physical parameters necessary for conducting the simu-
lation are given in Table 4.4, parameters and gains necessary for determing
the control signals are summarised in Table 4.5, and the initial values for Y ′

i

(i = 1, 2) and for the estimators M̂ and N̂i (i = 1, 2) are presented in Table
4.6. Figure 4.5 shows that all key physical variables Y ′

1 − Y ′
2 , θ, ∆M , SN ,

and ∆fi, ∆λi and ∆Ni (i = 1, 2) (see Table 4.3) converge to corresponding
constant values as t → ∞. Further, observe that in Figure 4.5 all ∆fi, ∆λi,
∆Ni (i = 1, 2), ∆M and SN asymptotically converge to zero as t → ∞ but θ
and Y ′

1 − Y ′
2 tend to some constant values as t → ∞. From this figure it can

be predicted that the trajectory of the solution to the closed-loop dynamics of
Equations (4.51) to (4.53) under the holonomic constraints of Table 4.1 con-
verge asymptotically to some equilibrium state that establishes in the sequel
the force/torque balance. Another interesting observation is that the estimate
M̂(t) for the unknown object mass converges to its true value through this
blind grasping. As discussed later in Section 4.5 this observation comes from
redundancy in the total DOFs of the overall fingers–object system.

Another similar simulation was conducted by using a pair of robot fingers,
one of which has two joints (two DOFs) and another three joints (three DOFs).
Even in this case one degree-of-freedom is redundant and thereby it is observed
in the simulation that not only ∆M but also other ∆fi, ∆λi and ∆Ni (for
i = 1, 2) converge to zero as t → ∞.

Next, we conducted one more computer simulation by using a pair of dual
robot fingers with the same two DOFs. To show how the control signals of
Equation (4.49) are robust against variability in the object shape, we employed
a rigid object with non-parallel surfaces and non-uniform mass density. All
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Fig. 4.5. The transient responses of the physical variables in the case of a pair of
fingers with three joints

physical parameters, control gains and initial conditions are given in Tables
4.7, 4.8 and 4.9, respectively. It is interesting to see from Figure 4.6 that all
physical values Y1 −Y2, θ, SN , ∆M , ∆fi, ∆λi and ∆Ni (i = 1, 2) converge to
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Table 4.7. Physical parameters of the robot fingers (two and two DOFs)

m11 = m21 link mass 0.0451[kg]

m12 = m22 link mass 0.0252[kg]

I11 = I21 inertia moment 2.53 × 10−5[kg · m2]

I12 = I22 inertia moment 7.94 × 10−6[kg · m2]

l11 = l21 link length 0.082[m]

l12 = l22 link length 0.0615[m]

r1 radius 0.015[m]

r2 radius 0.020[m]

M object mass 0.040[kg]

h object height 0.05000[m]

I object inertia 1.26 × 10−5[kg · m2]

moment

θ0 object inclination angle -15[deg]

l1 object length 0.012859[m]

l2 object length 0.022390[m]

Table 4.8. Parameters of the control signals

fd internal force 2.0[N]

c1 = c2 damping coefficient 0.006[msN]

γM regressor gain 0.01

γ1 regressor gain 0.001

γ2 regressor gain 0.001

Table 4.9. Initial values of the simulation

Y1(0) initial value of Y1(t) -0.0035[m]

Y2(0) initial value of Y2(t) -0.003[m]

M̂(0) initial value of M̂(t) 0.010[kg]

N̂1(0) initial value of N̂1(t) 0.000[N]

N̂2(0) initial value of N̂2(t) 0.000[N]

their corresponding constants as t → ∞. Differently from the overall system
with redundant DOFs, this configuration of two fingers with the same two
joints in planar motion of object grasping is not redundant and thereby the
estimation error ∆M for the object mass converges to some constant value
that is not necessarily zero. Nevertheless, the force/torque balance was estab-
lished in a dynamic sense as t → ∞ even in this case, as seen from Figure
4.6.
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Fig. 4.6. The transient responses of physical variables in the case of fingers with
two joints and an object with parallel surfaces

4.4 Construction of Simulators for Object Grasping and
Manipulation

Numerical simulation of movements of the whole fingers–object system ex-
hibiting physical interactions between fingertips and a rigid object can be
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carried out by using Baumgarte’s method called the constraint stabilization
method together with the Runge–Kutta method for numerically solving a
system of differential equations. In order to apply the CSM for a system of
differential equations of Equations (4.17–4.18) with control inputs vi of Equa-
tion (4.49) under the holonomic constraints described in Table 4.1, the four
constraints Qi = 0 and Ri (i = 1, 2) must be approximated by the following
set of over-damped second-order linear differential equations:{

Q̈i + γfiQ̇i + ωfiQi = 0

R̈i + γλiṘi + ωλiRi = 0
i = 1, 2 (4.56)

where γfi and γλi are damping coefficients and ωfi and ωλi stiffness parame-
ters. It is recommended to choose these constants to satisfy

γ2
fi = 4ωfi, γ2

λi = 4ωλi, i = 1, 2 (4.57)

and in both simulations shown in Figures 4.5 and 4.6 we set γfi = 3.0 × 103

and ωλi = 2.25 × 106 for i = 1, 2. Next, we must introduce the following
symbols for convenience:⎧⎪⎪⎨

⎪⎪⎩
JQqi =

∂Qi

∂qi

, JRqi =
∂Ri

∂qi

JQiw =
∂Qi

∂w
, JRiw =

∂Ri

∂w

i = 1, 2. (4.58)

Then, the set of second-order differential equations of Equation (4.56) can be
equivalently recast into the form:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

JT
Qqiq̈i + JT

Qiwẅ +
(
J̇Qqi + γfiJQqi

)T

q̇i

+
(
J̇Qiω + γfiJQiω

)T

ẇ + wfiQi = 0,

JT
Rqiq̈i + JT

Riwẅ +
(
J̇Rqi + γλiJRqi

)T

q̇i

+
(
J̇Riω + γλiJRiw

)T

ẇ + ωλiRi = 0,

i = 1, 2. (4.59)

In order to express the set of all the second-order differential equations of
Equations (4.17), (4.18) and (4.59) in a unified vector–matrix form, we define
the following:

λ =
[
q̈T

1 , q̈T
2 , ẅT,−f1,−f2,−λ1,−λ2

]T
, (4.60)

H[9×9] = diag (H1(qi), H2(q2), MI2, I) , (4.61)
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A[9×4] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Q1

∂q1

03
∂R1

∂q1

03

03
∂Q2

∂q2

03
∂R2

∂q2

∂Q1

∂x

∂Q2

∂x

∂R1

∂x

∂R2

∂x

∂Q1

∂θ

∂Q2

∂θ

∂R1

∂θ

∂R2

∂θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.62)

hi = vi −
{

1
2
Ḣi(qi) + S1(qi, q̇i)

}
q̇i, i = 1, 2, (4.63)

hw =
(
hT

x, hθ

)T

= 03, (4.64)

h10 = −
(
J̇Qq1 + γf1JQq1

)T

q̇1 −
(
J̇Q1w + γf1JQ1w

)T

ẇ − ωf1Q1, (4.65)

h11 = −
(
J̇Qq2 + γf2JQq2

)T

q̇2 −
(
J̇Q2w + γf2JQ2w

)T

ẇ − ωf2Q2, (4.66)

h12 = −
(
J̇Rq1 + γλ1JRq1

)T

q̇1 −
(
J̇R1w + γλ2JR1w

)T

ẇ − ωλ1R1, (4.67)

h13 = −
(
J̇Rq2 + γλ2JRq2

)T

q̇2 −
(
J̇R2w + γλ2JR2w

)T

ẇ − ωλ2R2. (4.68)

It should be remarked that JQqi = ∂Qi/∂qi, JQiw = ∂Qi/∂w = ((∂Qi/∂x)T,
∂Qi/∂θ)T, and JRqi and JRiω have analogous meanings. Thus, it is possible
to express all the differential equations of Equations (4.17), (4.18) and (4.59)
in the following form:

T[13×13] × λ =
[
hT

1 , hT
2 , hT

w , h10, h11, h12, h13

]T
, (4.69)

where

T[13×13] =

(
H[9×9] A[9×4]

AT
[4×9] 0[6×6]

)
. (4.70)

The final formula of Equation (4.69) can be solved numerically by using the
Runge–Kutta method.

4.5 Stability of Blind Grasping

We are now in a position to discuss the problem of the stability of an equilib-
rium still state satisfying the force/torque balance in a dynamic sense. At the
same time, we shall prove a theorem on the convergence of a trajectory of any
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solution to the closed-loop dynamics of Equations (4.51–4.53) starting from a
neighbourhood of the reference equilibrium state with force/torque balance.

Firstly, note that, in the case of a pair of robot fingers depicted in Figure
4.2, the trajectory of any solution to the closed-loop dynamics of Equations
(4.51–4.53) should lie on the 10-dimensional manifold in the state space R18

defined by

CM10 =
{(

qT
1 , qT

2 , wT, q̇T
1 , q̇T

2 , ẇT
)T

:

Qi = 0, Ri = 0, Q̇i = 0, Ṙi = 0, i = 1, 2
}
. (4.71)

Since the condition of force/torque balance for the 2-D object is described by∑
i=1,2

∆fiwfi + ∆λiwλi − (0, 0, SN)T = 0,

where

wfi =
(

∂Qi

∂x
,
∂Qi

∂y
,
∂Qi

∂θ

)T

, wλi =
(

∂Ri

∂x
,
∂Ri

∂y
,
∂Ri

∂θ

)T

, i = 1, 2 (4.72)

any equilibrium state of force/torque balance and zero-velocity should belong
to the two-dimensional manifold defined as

EM2 = {(z, ż = 0) : Qi = 0, Ri = 0, i = 1, 2} , (4.73)

where z = (qT
1 , qT

2 , xT, θ)T. This set is called the equilibrium-point mani-
fold (EP-manifold) and can be regarded as the 2-D configuration manifold
embedded in the nine-dimensional position state space of R9 = {z}.

Second, we show that the closed-loop dynamics of Equations (4.51–4.53)
can be regarded as Lagrange’s equation of motion concerning the Lagrangian

L = K − P̃ +
∑

i=1,2

(∆fiQi + ∆λiRi) (4.74)

under the constraints Qi = 0 and Ri = 0 (i = 1, 2) described in Table 4.2
and the external finger joint damping force −ciq̇i for i = 1, 2, where K is the
kinetic energy given by Equation (4.13) and P̃ is a scalar function called the
artificial potential described as

P̃ =
1
2

{
γM∆M2+

fd

r1 + r2
‖x01 − x02‖2+ γ1N̂

2
1 + γ2N̂

2
2

}
− Mg∆y, (4.75)

where ∆y = y− (y01 +y02)/2 was defined previously in Equation (4.26) in the
case of Figure 4.1 but in a general case of grasping an object with non-parallel
surfaces as shown in Figure 4.2 it is given by
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∆y = y − y01 + y02

2
= −1

2

[
{Y1 cos(θ − θ0) + Y2 cos(θ + θ0)}

+ {(l1 + r1) sin(θ − θ0) − (l2 + r2) sin(θ + θ0)}
]
. (4.76)

This can be ascertained by taking the inner products between q̇i and Equation
(4.17) for i = 1, 2, ẇ and Equation (4.18), and −q̇i and vi of Equation (4.49)
for i = 1, 2 and summing all the resultant products. In fact, the sum of inner
products between q̇i and Equation (4.17) for i = 1, 2 and ẇ and Equation
(4.18) yields

∑
i=1,2

q̇ivi =
d
dt

{K + P1(q1) + P2(q2) − Mgy} (4.77)

and the sum of inner products between −vi of Equation (4.49) and q̇i for
i = 1, 2 yields

−
∑
i=1,2

q̇T
i vi =

d
dt

{
−P (q1) − P2(q2) +

fd‖x01 − x02‖2

2(r1 + r2)

+
γM

2
M̂2 +

∑
i=1,2

γi

2
N̂2

i

⎫⎬
⎭−

∑
i=1,2

ci‖q̇i‖2. (4.78)

Since

(γM/2)∆M2 = (γM/2)
{
M̂2 − 2M̂M + M2

}
= (γM/2)M̂2 − γM

{
M̂(0) + (g/2γM )(y01 + y02)

}
M + (γM/2)M2

= (γM/2)M̂2 − Mg

2
(y01 + y02) + (γM/2)(M2 − 2M̂(0)) (4.79)

the addition of Equation (4.77) to (4.78) is reduced to

d
dt

(K + P̃ ) = −
∑

i=1,2

ci‖q̇i‖2, (4.80)

where P̃ is just given in Equation (4.75).
Third, we shall show that the artificial potential function P̃ has a minimum

value at some still state z = z∞ and ż = 0 under the constraints Qi = 0 and
Ri = 0 for i = 1, 2. To do this, it is important to notice that
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∂

∂qi

{
fd

2(r1 + r2)
(l2w + d2) − Mg∆y

}

=
fd

r1 + r2

(
lw

∂lw
∂qi

+ d
∂d

∂qi

)
− Mg

∂∆y

∂q

=
fd

r1 + r2

(
lwri sin θ0 − (−1)idri cos θ0

)
ei

−Mg
(
−ri

2
cos(θ + (−1)iθ0)

)
ei

= −riNiei, i = 1, 2. (4.81)

Hence, by bearing in mind that ‖x01−x02‖2 = d2 + l2w, it is possible to obtain

∂P̃

∂qi

=
∆Mg

2

(
∂y0i

∂qi

)
+ ri∆Niei, (4.82)

which is equivalent to the sum of last two terms in the left hand side of
Equation (4.51). Further, since ∆y can be regarded as a function of Y1, Y2,
and θ, it follows that

∂P̃

∂x
= 0. (4.83)

Finally, it follows that

∂P̃

∂θ
=

fd

r1 + r2

(
lw

∂lw
∂θ

+ d
∂d

∂θ

)
− ∂Mg∆y

∂θ

= − fd

r1 + r2
{(r1 + r2)d cos θ0 + (r1 − r2)lw sin θ0} − N

= SN , (4.84)

which is equivalent to the last term of the left-hand side of Equation (4.53).
At this stage, it is important to note that if we consider

P0 = P̃ − (1/2)γM∆M2

=
1
2

{
fd

r1 + r2
(l2w + d2) + γ1N̂

2
1 + γ2N̂

2
2

}
− Mg∆y (4.85)

then ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂P0

∂qi

= ri∆Niei

∂P0

∂x
= 0

∂P0

∂θ
= SN

i = 1, 2 (4.86)
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Since the gradient vector ∂P0/∂qi has a fixed orientation ei in R3, it is possible
to reduce the analysis for finding the minimum of P0 on the configuration space
to that in a set of only three variables θ, p1 and p2 such that

p1 =
3∑

j=1

q1j , p2 =
3∑

j=1

q2j . (4.87)

In fact, it is possible to confirm from the definitions lw and d in Tables 4.1
and 4.3 and ∆y in Equation (4.26) that P0 is a function of only p1, p2 and θ.
Evidently from Equation (4.86) it follows that{

∂P0/∂pi = ri∆Ni, i = 1, 2
∂P0/∂θ = SN .

(4.88)

Further, the Hessian matrix of P0 in p1, p2 and θ can be obtained in the
following way:

∂2P0

∂p2
i

= r2
i

(
1
γi

+
fd

r1 + r2

)
, i = 1, 2 (4.89a)

∂2P0

∂p2∂p1
=

r2r2fd

r1 + r2

(
sin2 θ0 − cos2 θ0

)
(4.89b)

∂2P0

∂θ2
= fd

{
(r1 + r2) cos2 θ0 +

(r1 − r2)2

r1 + r2
sin2 θ0

}
− ∂N

∂θ
,

∂N

∂θ
=

Mg

2

∑
i=1,2

{
Yi cos(θ + (−1)iθ0)

−(−1)i(li − ri) sin(θ + (−1)iθ0)
}

(4.89c)

∂2P0

∂θ∂pi
=

rifd

r1 + r2

{
(−1)i(r1 + r2) cos2 θ0 − (r1 − r2) sin2 θ0

}
−Mg

2
ri sin(θ + (−1)iθ0), i = 1, 2. (4.89d)

Since fd is selected to be considerably larger than Mg and γi (i = 1, 2) are
selected sufficiently small in comparison with (r1 + r2)/fd as seen from Table
4.5, the Hessian matrix is positive definite. Thus, P0 has a minimum value
P0∞ at some point pi = pi∞ (i = 1, 2) and θ = θ∞. We define Ē = E − P0∞
and note that from Equation (4.80) it follows that

d
dt

Ē =
d
dt

(
K + P̃ − P0∞

)
= −

∑
i=1,2

ci‖q̇i‖2. (4.90)

This means that ∫ ∞

0

‖q̇i(t)‖2dt ≤ c−1
i Ē(0), i = 1, 2 (4.91)
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and K(t) ≤ Ē(0) and P̃0 − P0∞ ≤ Ē(0), where Ē(0) denotes the value of
Ē at the initial state z(0). At this stage we reasonably assume that Ē(0)
is sufficiently small that (p1, p2, θ) remains in the vicinity of (p1∞, p2∞, θ∞).
Then, all components of velocity vector ż(t) remain bounded. Further, it
is necessary to show that all accelration components of z̈(t) are bounded.
To show this, we rewrite the closed-loop dynamics of Equations (4.51–4.52)
in the following vector–matrix form by setting z̄ = (qT

1 , qT
2 , r−1xT, θ)T and

x̄ = r−1xT with a non-dimensional scale factor r:

H ¨̄z +
(

1
2
Ḣ + S

)
˙̄z − A∆λ − B∆m + dN = 0, (4.92)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H =

⎛
⎜⎜⎝

H1 03×3 03×2 03×1

03×3 H2 03×2 03×1

02×3 02×3 r2MI2 02×1

01×3 01×3 01×2 I

⎞
⎟⎟⎠ , S =

⎛
⎝ S1 03×3 03×3

03×3 S2 03×3

03×3 03×3 03×3

⎞
⎠ ,

A =

⎛
⎜⎜⎝

∂Q1/∂q1 03 ∂R1/∂q1 03

03 ∂Q2/∂q2 03 ∂R2/∂q2

∂Q1/∂x̄ ∂Q2/∂x̄ ∂R1/∂x̄ ∂R2/∂x̄
∂Q1/∂θ ∂Q2/∂θ ∂R1/∂θ ∂R2/∂θ

⎞
⎟⎟⎠ ,

B =

⎛
⎜⎜⎝

−∂y01/∂q1 −r1e1 03

−∂y02/∂q2 03 −r2e2

02 02 02

0 0 0

⎞
⎟⎟⎠ ,

∆λ = (∆f1, ∆f2, ∆λ1, ∆λ2)
T

,

∆m = (∆Mg/2, ∆N1, ∆N2)
T

,

dN = (0, · · · , 0, SN)T.

(4.93)

Multiplying this equation by ATH−1 from the left yields

AT¨̄z + ATH−1

(
1
2
Ḣ + S

)
˙̄z − ATH−1A∆λ

= ATH−1B∆m − ATH−1dN . (4.94)

Since

AT ˙̄z = 0, AT¨̄z = −ȦT ˙̄z (4.95)

Equation (4.94) is reduced to

∆λ = (ATH−1A)−1

{
−ȦT ˙̄z + ATH−1

(
1
2
Ḣ + S

)
˙̄z

−ATH−1B∆m + ATH−1dN

}
(4.96)
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from which it can be concluded that ∆λ is bounded, because the first two
terms in the brackets { } are quadratic functions of components of ˙̄z and
the last two terms have already been shown to be bounded, provided that A
is of full rank for all t ∈ [0,∞). This last property about matrix A can be
confirmed in a similar manner to in Section 3.2. This shows that boundedness
of all ∆λ, ∆m, dN and ˙̄z implies the boundedness of the acceleration vector
¨̄z, which means that ˙̄z is uniformly continuous in t. Then, by virtue of Lemma
2 (see Appendix A), inequality (4.91) implies that q̇i(t) → 0 as t → ∞ for
i = 1, 2. Next we show that convergence of q̇i(t) to zero as t → ∞ for i = 1, 2
means convergence of ˙̄x(t) → 0 and θ̇(t) → 0 as t → ∞ due to the holonomic
constraints given in Table 4.1. To do this, we differentiate d and lw defined by
Equations (T-14) and (T-15) in Table 4.3 with respect to t. This results in

(Ẏ1 − Ẏ2) cos θ0 = (ẋ01 − ẋ02) sin θ + (ẏ01 − ẏ02) cos θ

+θ̇ {(x01 − x02) cos θ − (y01 − y02) sin θ} . (4.97)

By taking into account the constraint of Equation (T-2) in Table 4.1 and
the equations of Equations (T-14) and (T-15) in Table 4.3, we can rewrite
Equation (4.97) in the form

−(r1 + r2) θ̇ cos θ0 + r1e
T
1 q̇1 − r2e

T
2 q̇2

= −{(l1 + l2 + r1 + r2) cos θ0 + (Y1 + Y2) sin θ0} θ̇

+(ẋ01 − ẋ02) sin θ + (ẏ01 − ẏ02) cos θ, (4.98)

which reduces to

{(l1 + l2) cos θ0 + (Y1 + Y2) sin θ0} θ̇

= −r1e
T
1 q̇1 + r2e

T
2 q̇2 + (ẋ01 − ẋ02) sin θ + (ẏ01 − ẏ02) cos θ. (4.99)

At this stage we need to assume that |θ0| ≤ π/6 and |Y1 +Y2| < l1 + l2 during
movements of the overall fingers–object system. The necessity and reason-
ableness of this assumption will be discussed in detail in the next section. In
Equation (4.99) all the ẋ0i and ẏ0i for i = 1, 2 are linear and homogeneous
in q̇ij (i = 1, 2, j = 1–3) and thereby converge to zero as t → ∞. Since
(l1 + l2) cos θ0 + (Y1 + Y2) sin θ0 > (l1 + l2)/3, Equation (4.99) implies

|θ̇| ≤ 3
l1 + l2

⎧⎨
⎩‖ẋ01 − ẋ02‖ +

∑
i=1,2

ri

∣∣eT
i q̇i

∣∣
⎫⎬
⎭ , (4.100)

which shows that θ̇(t) → 0 as t → ∞. Next, we rewrite Equations (T-1) and
(T-3) in Table 4.1 into the compact form

RT
(θ+(−1)iθ0)

(
x − x0i

y − y0i

)
= −

(
(−1)i(li + ri)

Yi

)
, (4.101)

which reduces to
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x − x0i = −RT
(θ+(−1)iθ0)

(
(−1)i(li + ri)

Yi

)
, (4.102)

where R(θ−θ0) or R(θ+θ0) is a two-dimensional orthogonal matrix defined in
Equation (2.78). By taking the derivative of Equation (4.102) in t, we obtain

ẋ = ẋ01 − θ̇ΩRT
(θ−θ0)

(−l1 − r1

Y1

)
+ r1R

T
(θ−θ0)

(
0

θ̇ − eT
1 q̇1

)
, (4.103)

where Ω is a 2 × 2 skew-symmetric matrix defined as

Ω =
(

0 1
−1 0

)
. (4.104)

Since q̇1, θ̇ and ẋ01 converge to zero as t → ∞, Equation (4.103) implies that
ẋ(t) → 0 as t → ∞. Thus we conclude that all components of ˙̄z tend to zero
as t → ∞. Since ˙̄z is continuous uniformly in t, ¨̄z tend to zero as t → ∞
according to Lemma 1 (see Appendix A). This concludes that

[A, B](∆λT, ∆m)T − dN → 0 as t → ∞. (4.105)

Since the 9 × 7 matrix [A, B] is of full rank, Equation (4.104) means that

∆λ(t) → 0, ∆m(t) → 0, SN (t) → 0, as t → ∞. (4.106)

Thus, the proof of the convergence of ż(t) → 0 and p(t) → p∞ together with
Equation (4.106) has been completed.

In the case that one of the fingers has two joints and another has three
joints, a similar result to the above can be obtained. However, in the case
that each robot finger has two joints, as shown in Figure 4.1, the situation of
convergence of solution trajectories differs from the case of robot fingers with
redundant joints. In this case, the position state vector z̄ is seven-dimensional
and [A, B] is a 7 × 7 matrix, that is, it becomes a square matrix. Notwith-
standing this fact, Proposition B.1 and B.2 can be applied in an analogous
way as discussed in the previous paragraph. Then, Equation (4.105) should
be regarded as

A → A∞, B → B∞, ∆λ → λ∞, and dN → d∞ (4.107)

as t → ∞ so that

[A∞, B∞]λ∞ = d∞, (4.108)

where A∞ and B∞ are constant matrices and λ∞ and d∞ are constant vec-
tors. Furthermore, even in this case, it is possible to show that the speed of
asymptotic convergence of ż → 0, z → z∞ and ∆λ → λ∞ is exponential in
time t as discussed in the next section.



4.5 Stability of Blind Grasping 143

Now we are in a position to discuss the problem of the stability of an
equilibrium point with a still state satisfying the force/torque balance in a
dynamic sense. In the case of a pair of robot fingers with three joints as shown
in Figure 4.2, the trajectory of any solution to the closed-loop dynamics of
Equations (4.51–4.53) should lie on the 10-dimensional manifold that can be
defined as

CM10 =
{
(z̄, ˙̄z) : Qi = 0, Ri = 0, Q̇i = 0, Ṙi = 0, for i = 1, 2

}
. (4.109)

Next, we consider the case that once N̂i(0) (i = 1, 2) and M̂(0) are set as in
Table 4.6 and fixed forever. Then, there is an infinite number of equilibrium-
point solutions z̄ with still state satisfying

A∆λ + B∆m − dN = 0, (4.110)

which is equivalent to Equation (4.92) when ˙̄z = 0. All z̄ satisfying Equation
(4.110) constitutes a two-dimensional manifold defined as

EM2 ={(z̄, ż=0): Qi = 0, Ri = 0 (i= 1, 2) and Equation(4.110)} . (4.111)

This is called in this book the equilibrium-point manifold (EP-manifold) and
can be regarded as a 2-D manifold embedded in the nine-dimensional config-
uration space defined as C9 {z̄} =

{
(qT

1 , qT
2 , x̄T, θ)

}
. Any point on this EP

manifold should minimise the scalar function P0 defined by Equation (4.85)
and satisfies ∆M = 0. That is, any point on EM2 minimises P̃ . Hence, we
consider such an equilibrium point z̄∞ =

(
qT

1∞, qT
2∞, x̄T

∞, θ∞
)T that attains

the minimum of P̃ and takes a pose of Figure 4.2, i.e., all finger joint angles qij

(i = 1, 2, j = 1, 2, 3) are in the range (π/12, π/2). For convenience we further
assume that, at z̄ = z̄∞, |Yi| ≤ ri for i = 1, 2. Now we introduce the concept
of neighbourhoods of the point z̄∞ ∈ EM2 on the constraint manifold CM10,
which are defined with two positive parameters δ > 0 and ρ0 > 0 as

N10(δ, ρ0) =
{
(z̄, ˙̄z) : Ē(z̄, ˙̄z) ≤ δ2 and R(z̄, z̄∞) ≤ ρ0

}
, (4.112)

where Ē = K + P̃ − P0∞ and R(z̄, z̄∞) denotes the Riemannian distance
between z̄ and z̄∞ on CM5 = {z̄ : Qi = 0, Ri = 0 for i = 1, 2}, which is
defined as (see Section 3.3)

R(z̄, z̄∞) = min
z̄(t)

∫ 1

0

√∑
i,j

1
2
hij(z̄) ˙̄zi(t) ˙̄zj(t) dt (4.113)

and H(z̄) = (hij(z̄)) denotes the 9 × 9 inertia matrix defined in Equation
(4.93). The necessity of imposing the inequality condition R(z̄, z̄∞) ≤ ρ0

comes from avoidance of self-motion that may possibly arise caused by the
redundancy of DOF in finger joints. In order to avoid complication of the
mathematical argument, we select ρ0 > 0 adequately small so that at any z̄
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Fig. 4.7. Definitions of stability on a manifold and transferability

satisfying R(z̄, z̄∞) ≤ ρ0 the 9 × 4 Jacobian matrix A of the four algebraic
constraints with respect to z̄ is not degenerate (of full rank). Now we define
the stability of such an equilibrium point lying on the manifold EM2.

Definition 4.1. If for an arbitrarily given ε > 0 there exists a constant
δ > 0 depending on ε > 0 and another constant ρ1 > 0 independent of
ε and less than ρ0 such that the trajectory of a solution (z̄(t), ˙̄z(t)) to the
closed-loop dynamics of Equation (4.92) starting from an arbitrary initial state
(z̄(0), ˙̄z(0)) inside N10(δ(ε), ρ1) remains in N10(ε, ρ0), then the equilibrium
state (z̄∞, ˙̄z = 0) is said to be stable on a manifold (see Figure 4.7).

Definition 4.2. If for an equilibrium point z̄∞ there exist constants ε1 > 0
and ρ1 > 0 such that any solution trajectory to the Equation (4.92) starting
from N10(ε1, ρ1) remains in N10(ε1, ρ0) and conveges asymptotically as t → ∞
to some point on EM2 ∩ N10(ε1, ρ0), then this neighbourhood N10(ε1, ρ1) is
said to be transferable to a subset of M2.

It should be remarked that any solution to the closed-loop Equation (4.92)
is subject to the eight algebraic constraints Qi = 0, Ri = 0, Q̇i = 0, Ṙi =
0 (i = 1, 2) and therefore lies on the constraint manifold CM10 defined in
Equation (4.109). Accordingly, both metrics Ē(z̄, ˙̄z) and R(z̄, z̄∞) should be
defined under restrictions on the set of states (z̄, ˙̄z) that satisfy all such eight
algebraic constraints.
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4.6 Stability on a Manifold and Transferability to the
EP Manifold

As discussed in the paragraph above Equation (4.92), if we choose δ > 0
sufficiently small and ρ0 > 0 adequately then (p1, p2, θ) remains in the vicinity
of (p1∞, p2∞, θ∞). Then, the scalar function P̃ can be written in the form

P̃ =
γM

2
∆M2 +

1
2
(p − p∞)TG∞(p − p∞) + P0∞ + O(‖∆p‖3), (4.114)

where p = (p1, p2, p3)T, p3 = θ and p∞ denotes the vector to which p con-
verges as t → ∞, ∆p = p − p∞, and G∞ the Hessian matrix of P0 in p
evaluated at p = p∞. Similarly, the last two terms of the left-hand side of
Equation (4.92) can be expressed as

−B∆m + dN =
∆Mg

2
ēM + ∆N2ē1 + ∆N2ē2 + r−1

3 SN ē3

= [−B, ē3][∆mT, r−1
3 SN ]T

=
∆Mg

2
ēM +

3∑
i=1

3∑
j=1

gij∞∆pj
ēj

rj
+ O(‖∆p‖2), (4.115)

where gij∞ denotes the ij-th entry of G∞ and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ēM =

⎛
⎜⎝∂y01/∂q1

∂y02/∂q2

03

⎞
⎟⎠ , ē1 =

⎛
⎜⎝ r1e1

03

03

⎞
⎟⎠ ,

ē2 =

⎛
⎜⎝ 03

r2e2

03

⎞
⎟⎠ , ē3 =

⎛
⎜⎝03

05

r3

⎞
⎟⎠ ,

(4.116)

and r3 > 0 is a constant parameter specified later. Next, we need to introduce
the following four 7 × 9 matrices:{

AM = (A, ē1, ē2, ē3)T, A1 = (A, ēM , ē2, ē3)T,

A2 = (A, ēM , ē1, ē3)T, A3 = (A, ēM , ē1, ē2)T,
(4.117)

and the following four 9 × 9 projection matrices:{
PM = (I9 − A+

MAM ), P1 = (I9 − A+
1 A1),

P2 = (I9 − A+
2 A2), P3 = (I9 − A+

3 A3),
(4.118)

where A+
M denotes the pseudo-inverse of 7× 9 matrix AM and A+

i that of Ai

for i = 1–3. Note that
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PξA = 0, Pηēξ = 0 (ξ 	= η), (4.119)

where ξ and η denote one of symboles 1, 2, 3 and M .
Before proceeding to prove the exponential convergence of a closed-loop

solution to Equation (4.92), we remark on the physical conditions because the
proof must be context dependent, that is, dependent on the scales and initial
poses of the fingers and object. These are summarised as follows:

1) l1 + l2 ≥ (r1 + r2)/2 [m]
2) |Yi(0)| ≤ ri, i = 1, 2 at t = 0
3) 5.0 [N] ≥ fd ≥ 3Mg

4) 0.1 ≥ γM ≥ 0.001 [m2/s2kg]

5) 0.001 ≥ γi ≥ 0.00001 [mN−1]

6) r3 =
max(c1, c2)

fd(r1 + r2) cos2 θ0
= 0.03–0.3 [s−1] (4.120)

7)

{
1 ≥ ēT

MPM ēM/‖ēM‖2 ≥ √
γM/g

1 ≥ ēT
i Piēi/‖ēi‖2 ≥ 2ri, i = 1, 2, 3

(4.121)

In addition, we implicitly assume that |θ0| < π/6. Conditions 1 and 2 may
be relaxed, but they are necessary for rigorous treatment of the convergence
proof. Conditions 3–5 together with conditions 1–2 are necessary to assure that
the diagonal matrix GD∞ of the Hessian G∞ defined as GD∞ = diag(gii∞)
satisfies inequalities

1
2
G∞ ≤ GD∞ ≤ 3

2
G∞. (4.122)

Condition 6 suggests the choice of finger joint damping factors ci (i = 1, 2)
based on Hill’s model of force/velocity characteristics of muscle contraction
(the details of this discussion have been given in the paper [4-9]). The inequal-
ities of Equation (4.121) are reasonably satisfied in most ordinary poses of the
fingers and object such as the pose shown in Figure 4.2.

Now we proceed to prove the exponential convergence of a solution tra-
jectory to Equation (4.92) starting from (z̄(0), ˙̄z(0)) that lies in N10(δ, ρ1),
where δ > 0 and ρ1 > 0 will be specified later. First, we bear in mind the
basic relation of Equation (4.90), from which it follows that Ē(z̄, ˙̄z) is a non-
increasing function of t and therefore each magnitude of ∆M , ∆p1, ∆p2 and
∆θ remains small correspondingly to a chosen δ > 0 for an arbitrarily given
ε > 0. Second, let us introduce the following nine-dimensional vector:

w =
( √

γM

‖ēM‖2
∆M

)
PM ēM +

3∑
i=1

∆pi

‖ēi‖2
Piēi. (4.123)

Then, consider a scalar quantity
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V = ˙̄zTHw (4.124)

and notice that every positive eigenvalue of the 9×9 inertia matrix H(z̄) is at
most of numerical order O(10−5) and each diagonal entry gii of the Hessian
matrix G is positive and at least of O(10−1). Since it follows that∣∣∣∣ ˙̄zTHPM ēM

√
γM

‖ēM‖2
∆M

∣∣∣∣ ≤ ˙̄zTHH ˙̄z
‖ēM‖2

+
ēT

MPM ēM

4‖ēM‖2
γM∆M2

≤ ˙̄zTHH ˙̄z
‖ēM‖2

+
γM

4
∆M2 (4.125)

∣∣∣∣ ˙̄zTHPiēi
∆pi

‖ēi‖2

∣∣∣∣ ≤ (3/2)
gii∞‖ēi‖2

˙̄zTHH ˙̄z +
gii∞

6
∆p2

i (4.126)

the absolute value of V can be bounded as follows:

|V | ≤
(

1
‖ēM‖2

+
3∑

i=1

3/2
gii∞‖ēi‖2

)
˙̄zTHH ˙̄z

+
1
3

(
3
4
γM∆M2 +

3∑
i=1

gii∞
2

∆p2
i

)
. (4.127)

The first term of the right-hand side is less than (1/2) ˙̄zTH ˙̄z (= K/2) because
the maximum eigenvalue of H is at most of order O(10−5). Then, by referring
to Equation (4.122) we can rewrite Equation (4.127) in the following way:

|V | ≤ 1
2
K +

1
3

(
3
4
γM∆M2 +

3
4
∆pTG∞∆p

)

≤ 1
2
(K + P̃ − P0∞) =

1
2
Ē. (4.128)

Next, we define a scalar function

W (α) = Ē − αV (4.129)

with a positive parameter α > 0. Then, evidently from Equation (4.128) it
follows that (

1 +
α

2

)
Ē ≥ W (α) ≥

(
1 − α

2

)
Ē. (4.130)

Since we are concerned with the derivative of W (α) in time t, we evaluate V̇
in such a manner that

d
dt

V = ¨̄zTHw + ˙̄zḢw + ˙̄zHẇ

=
{

[A, B]∆λ − dN −
(

1
2
Ḣ + S

)
˙̄z − C ˙̄z

}T

w

+˙̄zḢw + ˙̄zHẇ. (4.131)
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Note that ATw = 0, as shown in Equation (4.119). Hence, Equation (4.131)
is reduced to

V̇ = wT(B∆m − dN ) − wTC ˙̄z + ˙̄zTHẇ + h( ˙̄z)w, (4.132)

where h( ˙̄z) is a vector composed of quadratic functions of the components
of ˙̄z whose coefficients are at most of order hM , where we denote by hM

the maximum eigenvalue of H . Substituting Equation (4.115) into Equation
(4.132) leads to

V̇ = wTC ˙̄z +
2ēT

MPM ēM√
γM‖ēM‖2

· γM

2
∆M2g

+
3∑

i=1

ēT
i Piēi

ri‖ēi‖2
· gii∞∆p2

i + O(‖ ˙̄z‖2)(‖w‖ + 1)hM , (4.133)

where O(‖ ˙̄z‖2) denotes a vector whose norm is of order of ‖ ˙̄z‖2. On the other
hand, it is possible to show that

−wTC ˙̄z ≤ 1
2

∑
i=1,2

ci‖q̇i‖2 +
cm

2
‖w‖2

≤
∑

i=1,2

ci

2
‖q̇i‖2 +

cm

2

{
ēT

MPM ēM

‖ēM‖4
γM∆M2

+
3∑

i=1

ēT
i Piēi

‖ēi‖4
∆p2

i

}
, (4.134)

where cm = max{c1, c2}. Thus, substituting Equations (4.133) and (4.134)
into the derivative of W (α) with respect to t yields

d
dt

W (α) ≤ −
∑

i=1,2

ci

2
‖q̇i‖2 − α

{(
2g√
γM

− cm

‖ēM‖2

)
ξM · γM

2
∆M2

+
3∑

i=1

(
1
ri

− cm/2
gii∞‖ēi‖2

)
ξi · gii∞∆p2

i

}

+α
{
O(‖ ˙̄z‖2)(‖w‖ + 1)hM

}
, (4.135)

where we set

ξM =
ēT

MPM ēM

‖ēM‖2
, ξi =

ēT
i Piēi

‖ēi‖2
, i = 1, 2, 3. (4.136)

From the choice of γM , ci and ri discussed above, it can be reasonably con-
cluded that ⎧⎪⎪⎨

⎪⎪⎩
2g√
γM

− cm

‖ēM‖2
≥ g√

γM

1
ri

− cm

2gii∞‖ēi‖2
≥ 1

2ri
, i = 1, 2, 3.

(4.137)



4.6 Stability on a Manifold and Transferability to the EP Manifold 149

Comparing the right-hand sides of this inquality with inequalities of Equation
(4.121), we see from Equation (4.135) that

d
dt

W (α) ≤ −
∑

i=1,2

ci

2
‖q̇i‖2 − α

{
γM

2
∆M2 +

3∑
i=1

gii∞∆p2
i

}

+α
{
O(‖ ˙̄z‖2)(‖w‖ + 1)hM

}
. (4.138)

It should be noted again that according to Equation (4.122) we have

γM

2
∆M2 +

3∑
i=1

gii∞∆p2
i

≥ γM

2
∆M2 +

1
2

∑
i,j

gij∞∆pi∆pj + O(‖∆p‖3)

≥ P̃ − P0∞ + O(‖∆p‖3), (4.139)

where ∆p = (∆pT
1 , ∆pT

2 )T. Finally, it should be remarked that from Equa-
tions (4.100) and (4.103) derived from the velocity constraints Q̇i = 0 and
Ṙi = 0 for i = 1, 2 it follows that

r−2(ẋ2 + ẏ2) + θ̇2 ≤ O

⎛
⎝∑

i=1,2

‖q̇i‖2

⎞
⎠ . (4.140)

Since hM is far less than ci (i = 1, 2), that is, hM is of O(10−5) and ci is of
O(10−3) (i = 1, 2), we have

−
∑
i=1,2

ci

2
‖q̇i‖2 + α

{
O(‖ ˙̄z‖2)(‖w‖ + 1)hM

} ≤ −α

2
˙̄zTH ˙̄z

= −αK (4.141)

as long as 0 ≤ α ≤ 1.0. By substituting Equations (4.139) and (4.141) into
Equation (4.138), we now obtain

d
dt

W (α) ≤ −α(K + P̃ − P0∞) = −αĒ, (4.142)

which implies, from Equation (4.130), that

d
dt

W (α) ≤ −αĒ ≤ −2α

2 + α
W (α). (4.143)

In particular, set α = 1 and denote the value of W (1) at time t by W (t).
Then, Equation (4.143) is reduced to

Ē(t) ≤ 2W (t) ≤ 2e(−2/3)tW (0)
≤ 3e−(2/3)tĒ(0). (4.144)
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This shows exponential convergences of ˙̄z(t) to zero as t → ∞, ∆p to zero
and ∆M to zero.

Finally, we prove the stability of such an equilibrium point z̄∞ on EM2

on the constraint manifold CM10.
Proposition 1. For a given equilibrium point z̄∞ lying on EM2 there

exist constants ε1 > 0 and ρ1 > 0 (ρ1 < ρ0) such that any solution trajectory
starting from an arbitrary initial state (z̄(0), ˙̄z(0)) belonging to N10(ε1, ρ1)
converge asymptotically to some still state on EM2, that is, N10(ε1, ρ1) is
transferable to a subset of EM2. In particular, the equilibrium state (z̄∞, 0)
is stable on a manifold.

Proof. We first note that the Riemannian distance between z̄(0) and
z̄(t) at any fixed t > 0 must be less than the Riemannian metric along a
special trajectory, τ ∈ [0, t], defined by the position trajectory z̄(τ) of the
solution (z̄(τ), ˙̄z(τ)) to Equation (4.92) starting from (z̄(0), ˙̄z(0)). This fact
is described as

R(z̄(0), z̄(t)) ≤
∫ t

0

√
1
2

∑
i,j

hij(z̄(τ)) ˙̄zi(τ) ˙̄zj(τ) dτ. (4.145)

Since K ≤ Ē(z̄, ˙̄z), Equation (4.145) together with (4.144) leads to

R(z̄(0), z̄(t)) ≤
∫ t

0

√
Ē(z̄(τ), ˙̄z(τ)) dτ

≤
√

3Ē(0)
∫ t

0

e−τ/3 dτ

= 3
√

3Ē(0)(1 − e−t/3) ≤ 3
√

3ε1. (4.146)

In particular, we have as t → ∞
R(z̄(0), z̄∞) ≤ 3

√
3ε1. (4.147)

Hence, if we choose ε1 and ρ1 such that

ε1 =
ρ0

6
√

3
, ρ1 =

ρ0

2
(4.148)

then it follows from (4.147) that

R(z̄(t), z̄∞) ≤ R(z̄(t), z̄(0)) + R(z̄(0), z̄∞)

≤ 3
√

3ε1 + ρ0/2 ≤ ρ0 (4.149)

as long as Ē(t) ≤ Ē(0) ≤ ε2
1 and R(z̄(0), z̄∞) ≤ ρ1. This proves the stability of

the equilibrium point z̄∞ on a manifold. At the same time, every component
of the velocity vector ˙̄z(t) tends to zero exponentially as t → ∞ and Ē(t) →
0 exponentially as t → ∞, too. This means that z̄(t) converges to EM2

asymptotically and hence N8(ε1, ρ1) is transferable to a subset of EM2.
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Fig. 4.8. Experimental setup of a pair of robot fingers and a grasped object

Table 4.10. Details of the physical parameters of the experimental setup

Actuator power 4.55 [W]

(Maxson encoder 512 [p/r]

DC motor) gear ratio 23:1

Robot fingers

l11 = l21 length 0.039 [m]

m11 = m21 mass 0.040 [kg]

l12 = lα length 0.039 [m]

m12 = mα mass 0.030 [kg]

l13 = l22 length 0.033 [m]

m13 = m22 mass 0.020 [kg]

L base length 0.053 [m]

α constant joint angle 50.00 [deg]

ri radius 0.001 [m]

Pinched object

M object mass 0.410 × 10−1 [kg]

h object height 0.050 [m]

li object length (i=1,2) 0.010 [m]

θ0 inclination angle -10.00 [deg]

4.7 Experiments of Blind Grasping

In this section we show experimental results of stable grasping conducted
by using the experimental setup of dual robot fingers shown in Figure 4.8.
The physical parameters of robot fingers and the rigid object used in the
experiment are given in Table 4.10. In this experiment, all three joints of the
left finger were actuated by DC motors with the same characteristics, but only
two joints of the right finger were actuated while its second joint was fixed at
the angle q22 = α (= 50.00 [deg]). Before using the coordinated control signal
based upon Equation (4.49), we carried out several experiments on tuning
the damping forces (ciq̇i, i = 1, 2) and gravity compensation terms for the
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Table 4.11. Physical parameters of the control signals

Control signals

fd internal force 0.25 [N]

γM regressor gain 0.088 [m2/kgs2]

γN1 regressor gain 0.0002 [s2/kg]

γN2 regressor gain 0.0002 [s2/kg]

M̂(0) initial object mass 0.000 [kg]

fingers themselves. Actually, the first two terms of the control signals were
adjusted separately from the remaining three terms, which can be generated
as output torques from current-controlled DC motors with reduction gears
based on tunings of the direct-current amplifications. Therefore, the actual
control signals should be expressed as

vi = ĝi − ĉiq̇i + ui, i = 1, 2 (4.150)

ui = κi

{
(−1)

fd

r1 + r2
JT

0i(gi)
(

x01 − x02

y01 − y02

)

−M̂g

2

(
∂y0i

∂qi

)
− riN̂iei

}
, i = 1, 2, (4.151)

where κi stands for physically appropriate constants related to motor torque
constant, reduction gear ratio and current amplication constant. All the net
constants κifd, κiγM and κiγNi (i = 1, 2) are evaluated and denoted anew
by fd, γM and γNi (i = 1, 2) having confirmed that all these constants κi are
the same for different joints since all the DC motors used in the experiment
are the same with the same gear ratios. All such control gains and initial
value of M̂ are given in Table 4.11. It is diffecult to evaluate the viscosity
constants ĉi (i = 1, 2) for each joint because there exists uncertainty in the
frictions inherent to driving mechanisms. The lateral thin plate is attached
intentionally to the object with non-parallel flat surfaces to evaluate of the
inclination angle θ(t) through external measurment of both distances from
two separate fixed points in the frame coordinates to two corresponding laser
spots on the plate. Figure 4.9 shows the transient responses of the physical
variables Y ′

1 − Y ′
2 , θ, M̂ , N̂i (i = 1, 2) and S′

N . In this figure, the graphs of
θ and Y ′

1 − Y ′
2 are based on measurement data obtained by external distance

laser sensors and the others are plotted on the basis of computations based
on measurement data of the joint angles (measured via internal sensors). It
is interesting to note that all M̂ , N̂i (i = 1, 2) and S′

N do not converge to
their corresponding target constants due to static friction latency existing
tangentially between the fingertip and object surfaces. In this experiment, we
set fd = 0.25 [N], relatively small in comparison with the numerical value of fd

used in computer simulation specified in Table 4.5. As usual, the regressor gain
γM is chosen as γM = 0.088 [m2/s2kg], relatively large in comparison with
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the γM = 0.01 used in the simulation (see Table 4.5 too). Such careful choices
for fd and γM resulted in good performance for the estimator M̂(t), which
quickly converged to a constant sufficiently approximating the true value M
of the object mass.

According to the experimental observations when we changed the values
of fd and γM , grasping of the object would become stabilisable by increasing
the gain fd and decreasing γM inverse proportionally, but the estimated value
of the object mass varied more from its true value. Large values of fd and
inverse proportionally smaller γM were apt to induce slipping between the
fingertips and the object rather than rolling. If the object shown in Figure
4.8 was grasped upside down by the robot fingers, stable grasp of control
of the object would become hard in practice without using rough surfaces
on the fingertip spheres. It should be remarked that throughout this chapter
it is assumed that the sum of the pressing force vector f i and the rolling
constraint force vector λi for i = 1 or 2 is always contained in a friction cone
at the corresponding contact point, even if in addition the gravity force due
to the object weight acted on the contact point.



5

Three-dimensional Grasping by a Pair of Rigid
Fingers

This chapter extends the stability theory of 2-D object grasping to cope with
three-dimensional (3-D) object grasping by a pair of multi-joint robot fingers
with hemispherical ends. It shows that secure grasping of a 3-D object with
parallel surfaces in a dynamic sense can be realised in a blind manner like
human grasping an object by a thumb and index finger while the eyes closed.
Rolling contacts are modelled as Pfaffian constraints that cannot be integrated
into holonomic constraints but exert tangential constraint forces on the object
surfaces. A noteworthy difference of modelling 3-D object grasping from the
2-D case is that the instantaneous axis of rotation of the object is fixed in
the latter case but is time-varying in the former case. Hence, the dynamics
of the overall fingers–object system are subject to non-holonomic constraints
regarding a 3-D orthogonal matrix consisting of three mutually orthogonal
unit vectors fixed at the object. A further difference arises due to the physical
assumption that spinning around the opposing axis between the two contact
points no long arises, which induces another non-holonomic constraint. La-
grange’s equation of motion for the overall system can be derived from the
variational principle without violating the causality that governs the non-
holonomic constraints. Then, a simple control signal constructed on the basis
of finger–thumb opposable forces together with an object-mass estimator is
shown to accomplish stable grasping in a dynamic sense without using object
information or external sensing. This is called blind grasping if in addition the
overall closed-loop dynamics converges to a state of force/torque balance. The
closed-loop dynamics can be regarded as Lagrange’s equation of motion with
an artificial potential function that attains its minimum at some equilibrium
state of force/torque balance. A mathematical proof of stability and asymp-
totic stability on a constraint manifold of the closed-loop dynamics under the
non-holonomic constraints is presented. A differential geometric meaning of
the exponential convergence of the solution trajectory is also discussed with
the aid of Riemannian metrics. In the last section, modelling and control of
full dynamics of 3-D grasping admitting spinning around the opposing axis
are discussed.
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5.1 Introduction

When a human grasps an object securely, the thumb plays a crucial role.
Napier [1-1] says that, “The movement of the thumb underlies all the skilled
procedures of which the hand is capable,” and further, “Without the thumb,
the hand is put back 60 million years in evolutionary terms to a stage when the
thumb had no independent movement and was just another digit. One can-
not emphasize enough the importance of finger–thumb opposition for human
emergence from a relatively undistinguished primate background.” Finger–
thumb opposition is defined by a movement in which the pulp surface of the
thumb is placed squarely in contact with the terminal pads of one or all of the
remaining digits (Figure 5.1). According to the literature of research works on
multi-fingered robotic hands, however, there is a dearth of papers concerned
with the dynamics and control of stable precision prehension or grasping of an
object through finger-thumb opposition. Rather, most research is concerned
with the kinematics and plannings of motions establishing force/torque clo-
sure for secure grasping in a static sense by using multi-fingers with frictionless
contacts. There are a few exceptional papers [3-1][3-2], however, that treated
the problem of rolling contacts and analysed the kinematics and dynamics of
multi-fingered hands. However, their proposed control schemes were based on
the computed torque method. Furthermore, the previous works in the 1990s
overlooked the crucial role of non-holonomic constraints that arise from time-
varying change of the instantaneous axis of rotation of the object induced
by rolling contacts between the finger-ends and object surfaces. Thus, it had
been thought that some difficult problems of coping with such non-holonomic
constraints through the overall complicated fingers–object dynamics are veiled

(Opposition)

Fz

X

Z

Y

O1O2

Mg

Oc .m.

Fig. 5.1. Stable grasping of a 3-D object with parallel surfaces in a dynamic sense.
The third finger (middle finger) is used to stop spinning motion about the opposition
axis, which may be induced by the gravity
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and, regardless of this, finding a simple control signal actualising stable grasp-
ing in a dynamic way is indispensable. Thus, the state of the art of control
of multi-fingered hands is expressed by Bicchi [1-24] as “a difficult road to
simplicity.” Very recently in the 2000s, however, it has been shown by the
author’s group that grasping of a 2-D rigid object by a pair of multi-DOF
fingers can be stabilised dynamically under gravity by taking into account
the tangential forces induced by rolling contacts [4-5]. Further, a remarkable
result has been shown [4-6][4-7] that blind grasping without using knowledge
of object kinematics or external sensing can be realised, provided that the
overall fingers–object movements are confined to a 2-D plane.

However, modelling of the dynamics of pinching a 3-D rigid object re-
mained unsolved until 2006, because of difficulties coping with non-holonomic
constraint problems under redundancy of the total DOFs of fingers and an
object and finding a simple control signal that cannot directly control the ob-
ject but controls it indirectly through constraint forces. In 2006, however, the
problem of modelling 3-D object grasping was tackled by the author’s group
and a mathematical model was derived as a set of Lagrange’s equations of
motion of the fingers–object system under non-holonomic constraints induced
by continuous change of the instantaneous axis of rotation of the object and
Pfaffian constraints of rolling contacts.

5.2 Non-holonomic Constraints

Consider the motion of a rigid object with parallel flat surfaces, which is
grasped by a pair of robot fingers with three DOFs and four DOFs as shown
in Figure 5.2. When the distance from the straight line

−−−→
O1O2 (the opposi-

tion axis) connecting two contact points between the finger-ends and object
surfaces to the vertical axis through the object centre of mass in the direc-
tion of gravity becomes large, there arises a spinning rotation of the object
around that opposition axis. This chapter considers the problem of modelling
of pinching in the situation that this spinning motion has ceased after the
centre of mass of the object came sufficiently close to a point just beneath the
opposing axis and no more such spinning rotation will arise due to dry friction
and micro-deformations near the contact points between the finger-ends and
object surfaces. The ceasing of spinning, however, induces a non-holonomic
constraint among rotational angular velocities ωx, ωy and ωz around the x,
y and z axes, respectively, that is, the vector ω = (ωx, ωy, ωz)T denotes the
vector of rigid-body rotation in terms of the frame coordinates O − xyz. At
the same time, we introduce the cartesian coordinates Oc.m. − XY Z fixed at
the object frame and denote three orthogonal unit vectors at the object frame
in each corresponding direction X , Y and Z by rX , rY and rZ as shown in
Figure 5.3. Since the opposing axis is expressed as

−−−→
O1O2 = x1 − x2, where

xi = (xi, yi, zi)T denotes the Cartesian coordinates of the contact point Oi

(see Figure 5.3), the ceasing of spinning motion around the axis
−−−→
O1O2 implies
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Fig. 5.2. Coordinates of the overall fingers–object system. The coordinates O−xyz
are fixed to the frame. The symbol ! expresses the axis of rotation

that the instantaneous axis of rotation of the object is orthogonal to x1 −x2,
that is,

ωT(x1 − x2) = 0, (5.1)

which can be rewritten in the form

ωx = −ξyωy − ξzωz (5.2)

ξy =
y1 − y2

x1 − x2
, ξz =

z1 − z2

x1 − x2
, (5.3)

where ω = (ωx, ωy, ωz)T. On the other hand, denote the Cartesian coordi-
nates of the object mass centre Oc.m. by x = (x, y, z)T based on the frame
coordinates O − xyz and three mutually orthogonal unit vectors fixed at the
object frame by rX , rY and rZ , which may rotate dependently on the angular
velocity vector ω of body rotation. Then, the 3 × 3 rotation matrix

R(t) = (rX , rY , rZ) (5.4)

belongs to SO(3) and is subject to the first-order differential equation

d
dt

R(t) = R(t)Ω(t), (5.5)
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Fig. 5.3. Mutually orthogonal unit vectors rX , rY and rZ express the rotational
motion of the object. The pair (ηi, φi) for (i = 1, 2) expresses the spherical coordi-
nates of each hemispherical finger end

where

Ω(t) =

⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠ . (5.6)

Equation (5.5) expresses another non-holonomic constraint on the rotational
motion of the object. Next, denote the position of the centre of each hemi-
spherical finger-end by x0i = (x0i, y0i, z0i)T. Then, it is possible to notice that
(see Figure 5.3)

xi = x0i − (−1)irirX , (5.7)
x = x0i − (−1)i(ri + li)rX − YirY − ZirZ . (5.8)

Since each contact point Oi can be expressed by the coordinates ((−1)ili, Yi, Zi)
based on the object frame Oc.m. − XY Z, taking an inner product between
Equation (5.8) and rX gives rise to

Qi = −(ri + li) − (−1)i(x − x0i)TrX = 0, i = 1, 2, (5.9)

which express holonomic constraints of the contacts between finger-ends and
the object. A rolling constraint between one finger-end and its contacted ob-
ject surface can be expressed by equality of the two contact point velocities
expressed on either of finger-end spheres and on its corresponding tangent
plane (that is, coincident with one of the object’s flat surfaces).
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Fig. 5.4. Contact conditions of the rigid object with the left-hand finger-end sphere.
The rotational axes of q1j (j = 1, 2, 3), p1, φ1 and θ are in the direction of the z-axis

5.3 Three-dimensional Rolling Contact Constraints

The derivation of faithful mathematical expressions for the rolling contact
constraints between spherical finger-ends and object surfaces was regarded as
rather hard to tackle until 2006. Therefore, before constructing mathematical
models of 3-D rolling contact constraints, it may be helpful to reconsider
the 2-D rolling contact constraints in a physically reasonable way. Thus, it
is convenient to see the 2-D setup of rolling contact between a finger-end
sphere and a rigid object with a flat surface in the 3-D Euclidean space with
orthogonal coordinates O−xyz as shown in Figure 5.4. In this figure we assume
that the finger has three joints having the same common axis of rotation in the
direction of the z-axis and that the axis of rotational movement of the object is
also fixed in the z-direction. We also assume that the inertial frame of Figure
5.4 denoted by O − xyz expresses the right-hand orthogonal coordinates and
hence all the signs of the angles q1i (i = 1, 2, 3) and θ around the z-axis are
taken to be positive in the clockwise direction. At the contact point O1, define
the orthogonal unit vectors rX and rY as shown in Figure 5.4 and also choose
a unit vector rZ in such a way that the frame (rX , rY , rZ) constitutes the
right-hand orthogonal coordinates.

Suppose that the point contact itself between the object and the finger-end
sphere is maintained on the xy-plane, that is, the object will not detach from
the finger-end. Movement of the contact point O1 on the circle with radius
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r1 around the centre O01 in the xy-plane is induced by both the rotational
movement of the finger-end circle around O01 with angle p1 (= q11 +q12 +q13)
inside the xy-plane and the rotation of the rigid object in terms of the angle
θ around the z-axis. The angular velocity with time rate ṗ1 around O01 in the
xy-plane can be expressed by the vector ṗ1ez with ez = (0, 0, 1)T in terms of
O − xyz. This angular velocity induces the velocity of the contact point O1

that is expressed as

v1z = ṗ1ez × r1rX . (5.10)

On the other hand, rotational movement of the xy-plane tangent to the finger-
end sphere is expressed by ṙX , the time rate of change of rX . Hence, the
difference between these two velocities induces rolling movement of the contact
point on the object surface (in this case, the plane perpendicular to the vector
rX), which is expressed by

r1

{−ṙX + (ez × rX)(q̇T
1 e1)

}
= −Ẏ1rY , (5.11)

where e1 = (1, 1, 1)T. This can be equivalently expressed by

r1r
T
Y {−ṙX + (ez × rX)(q̇1e1)} = −Ẏ1. (5.12)

In this planar case, rX = (cos θ, sin θ, 0)T and rY = (− sin θ, cos θ, 0)T since
the clockwise direction of the angle θ in the xy-plane is positive. Hence ṙX =
θ̇rY that corresponds to the equality ṙX = ωzrY − ωyrZ with ωz = θ̇ and
ωy = 0 as the first column in Equation (5.5). On the other hand, it is easy to
see that rT

Y (ez × rX) = eT
z (rX × rY ) = eT

z rZ = 1. Hence, Equation (5.12) is
reduced to

r1{θ̇ − ṗ1} = Ẏ1, (5.13)

which corresponds to the rolling constraint of Equation (4.2) or (4.5) discussed
in the case of planar rolling. Unlikely the case of Equation (4.2), θ̇ (= ωz) and
ṗ1 (= q̇11 + q̇12 + q̇13) must be positive when their directions of rotation are
clockwise.

Let us now consider the case of the 3-D rolling contact constraint by re-
ferring to Figures 5.3 and 5.5. Note that, even if the contact point O1 slides
from the xy-plane and thereby rX is not inside xy-plane, the velocity vector
at O1 on the left-hand finger-end sphere induced by the net angular veloc-
ity ṗ1ez is expressed by the form of Equation (5.10). Note that rotational
movement of the object surface is also expressed by ṙX , the time rate of
change of rX perpendicular to the object surface. In this 3-D case, note that
ṙX = ωzrY − ωyrZ according to Equation (5.5). If r1ṙX is coincident with
v1z of Equation (5.10), no rolling arises between the left-hand finger-end and
object. If v1z minus riṙX is not zero, rolling of the object on the finger-end
sphere arises with the following relative velocity condition:

r1 {−ṙX + (ez × rX)ṗ1} = −Ẏ1rY − Ż1rZ . (5.14)
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Fig. 5.5. 3-D contact constraint of the rigid object with a flat surface rolling on the
left-hand finger-end sphere

This is also expressed componentwise as follows:{
r1r

T
Y

{−ṙX + (ez × rX)q̇T
1 e1

}
= −Ẏ1,

r1r
T
Z

{−ṙX + (ez × rX)q̇T
1 e1

}
= −Ż1,

(5.15)

which is reduced to {
r1 {ωz − rZz ṗ1} = Ẏ1,

r1 {−ωy + rY zṗ1} = Ż1.
(5.16)

Equation (5.14) or equivalently (5.15) or (5.16) can be interpreted as stating
that the velocity of the contact point O1 relative to the finger-end sphere is
coincident with the velocity of O1 on the object surface. We call this the zero-
relative-velocity condition. In what follows, we use the symbols θ̇ = ωz and
ψ̇ = ωy based on the rule of denoting indefinite integrals of ωz and ωy by θ
and ψ, respectively.

Next consider the rolling constraint conditions of the object rolling on the
right-hand finger-end sphere as shown in Figure 5.6. First, we shall derive
the angular velocity vector of O02 as the instantaneous axis of rotation of the
finger-end sphere originating from the centre O2. When the first joint rotates
around the x-axis with angular velocity q̇20, it induces q̇20ex as one possible
component of the axis of rotation of O02. Another component is induced by
the net rotational angular velocity ṗ2 (= q̇21 + q̇22 + q̇23 = q̇T

2 e2) around the
z′-axis, the z-axis rotated by angle q20 around the x-axis, as shown in Figure
5.6, which has the direction ez0 = (0,− sin q20, cos q20)T. This induces the
velocity of the contact point on the right-hand finger-end sphere denoted by
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−ṗ2e20 × r2rX . On the other hand, rotation of the right-hand surface of the
object can be denoted by −ṙX , whose direction is just reverse to that of ṙX .
Thus, rolling of the object on the right-hand finger-end sphere is expressed by
the following zero-relative-velocity condition:

r2

{
ṙX − (ez0 × rX)(q̇T

2 e2) − (ex × rX)q̇20

}
= −Ẏ2rY − Ż2rZ , (5.17)

which can be expressed component-wise in the following way:{
r2r

T
Y {ṙX − (ez0 × rX)ṗ2 − (ex × rX)q̇20} = −Ẏ2,

r2r
T
Z {ṙX − (ez0 × rX)ṗ2 − (ex × rX)q̇20} = −Ż2.

(5.18)

Since ṙX = θ̇rY −ψ̇rZ according to Equation (5.5), Equation (5.18) is reduced
to {

r2{−ωz + (rZz cos q20 − rZy sin q20)ṗ2 + rZxq̇20} = Ẏ2,

r2{ωy − (rY z cos q20 − rY y sin q20)ṗ2 − rY xq̇20} = Ż2.
(5.19)

At this stage, it is important to note that from Equation (5.9) Yi and Zi can
be expressed as

Yi = (x0i − x)TrY , Zi = (x0i − x)TrZ , i = 1, 2. (5.20)

The rolling constraint conditions expressed through Equations (5.16) and
(5.19) are non-holonomic but linear and homogeneous with respect to the
velocity variables. Hence, Equations (5.16) and (5.19) can be treated as Pfaf-
fian constraints that can be expressed with accompaning Lagrange multipli-
ers {λY 1, λZ1} for Equation (5.16) and {λY 2, λZ2} for Equation (5.19) in the
forms
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⎩

λY i{Y T
qiq̇i + Y T

xiẋ + Yθiθ̇ + Yψiψ̇} = 0

λZi{ZT
qiq̇i + ZT

xiẋ + Zθiθ̇ + Zψiψ̇} = 0
i = 1, 2 (5.21)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y qi =
∂Yi

∂qi
− ri{(−1)i(rZz cos qi0 − rZy sin qi0)ei + rZxe0i}

Y xi =
∂Yi

∂x
, Yθi =

∂Yi

∂θ
+ (−1)iri, Yψi =

∂Yi

∂ψ

i = 1, 2

(5.22)

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Zqi =
∂Zi

∂qi
+ ri{(−1)i(rY z cos qi0 − rY y sin qi0)ei + rY xe0i}

Zxi =
∂Zi

∂x
, Zθi =

∂Zi

∂θ
, Zψi =

∂Zi

∂ψ
− (−1)iri

i = 1, 2

(5.23)

and q10 = 0 and e01 denotes the four-dimensional zero vector.
The Lagrangian for the overall fingers–object system can be expressed by

the scalar quantity L = K − P + Q, where

Q = f1Q1 + f2Q2 = 0 (5.24)

that corresponds to the holonomic constraints of Equation (5.9) and K denotes
the total kinetic energy expressed as

K =
1
2

∑
i=1,2

q̇T
i Hi(qi)q̇i +

1
2
M
(
ẋ2 + ẏ2 + ż2

)

+
1
2
(ωz, ωy)H0(ωz , ωy)T (5.25)

and P denotes the total potential energy expressed as

P = P1(q1) + P2(q2) − Mgy, (5.26)

where Hi(qi) stands for the inertia matrix for finger i, M the mass of the
object, Pi(qi) the potential energy of finger i, g the gravity constant and H0

is given by

H0 =

⎛
⎜⎜⎜⎜⎝

IZZ + ξ2
zIXX IY Z + ξyξzIXX

−2ξzIZX −ξzIY X − ξyIXZ

IY Z + ξyξzIXX IY Y + ξ2
yIXX

−ξzIY X − ξyIXZ −2ξyIY X

⎞
⎟⎟⎟⎟⎠ (5.27)
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provided that the inertia matrix of the object around its centre of mass Oc.m.

is expressed as

H̄ =

⎛
⎝ IXX IXY IXZ

IXY IY Y IY Z

IXZ IY Z IZZ

⎞
⎠ . (5.28)

It should be noted that the kinetic energy of the object can be expressed as
K0 = (1/2)ωT

0 H0ω0 = (1/2)ωTH̄ω under the non-holonomic constraint of
Equation (5.1), where ω0 = (ωz, ωy)T.

It should be remarked at this stage that the inertia matrix H̄ of the object
introduced in Equation (5.28) is not constant but configuration dependent,
because the vector ω of the instantaneous axis of rotation is expressed in terms
of the frame coordinates O−xyz (not in terms of the body coordinates Oc.m.−
XY Z). Therefore, if the object inertia matrix is expressed by a constant 3×3
matrix H based on the object coordinates Oc.m.−XY Z, the kinetic energy of
the object should be expressed as K = (1/2)ω̄THω̄, where ω̄ = (ωX , ωY , ωZ)T

expresses the vector of instantaneous axis of rotation in terms of the Cartesian
coordinates of the object, that is, ω = ωXrX + ωY rY + ωZrZ = R(t)ω̄.
Hence, K = (1/2)ωT(RHRT)ω and thereby H̄ = RHRT. It should be noted,
however, that H̄ is not dependent on the finger joint angles qij or the variables
x, y, z of the object centre of mass. Partial derivatives of H̄ with respect to
θ and ψ will be discussed in Section 5.12.

5.4 Lagrange’s Equation for the Overall Fingers–Object
System

We are now ready to derive Lagrange’s equation of motion for the overall
fingers–object system depicted in Figure 5.2 under rolling contact constraints.
By applying the variational principle for the form

∫ t1

t0

−δLdt =
∫ t1

t0

⎧⎨
⎩uT

1 δq1 + uT
2 δq2 +

∑
i=1,2

(
λY iY

T
i + λZiZ

T
i

)
δX

⎫⎬
⎭ dt (5.29)

where X = (qT
1 , qT

2 , xT, θ, ψ)T, Y 1 = (Y T
q1, 04, Y

T
x1, Yθ1, Yψ1), Y 2 = (03,

Y T
q2, Y

T
x2, Yθ2, Yψ2), and Z1 and Z2 express similar meanings, we obtain

Hi(qi)q̈i +
{

1
2
Ḣi(qi) + Si(qi, q̇i)

}
q̇i − ∂

∂qi
K0 − (−1)ifiJ

T
0i(qi)rX

−λY iY qi − λZiZqi + gi(qi) = ui, i = 1, 2 (5.30)

M ẍ− (f1 − f2)rX −
∑

i=1,2

λY iY xi −
∑

i=1,2

λZiZxi − Mg

⎛
⎝0

1
0

⎞
⎠ = 0, (5.31)
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Table 5.1. Partial derivatives of holonomic constraints with respect to the position
variables

∂Q

∂qi
= fi

„
∂Qi

∂qi

«
= (−1)ifiJ

T
i (qi)rX , i = 1, 2 (U-1)

∂Q

∂x
= f1

„
∂Q1

∂x

«
+ f2

„
∂Q2

∂x

«
= (f1 − f2)rX (U-2)

∂Q

∂θ
= f1

∂Q1

∂θ
+ f2

∂Q2

∂θ
= −f1Y1 + f2Y2 (U-3)

∂Q

∂ψ
= f1

∂Q1

∂ψ
+ f2

∂Q2

∂ψ
= f1Z1 − f2Z2 (U-4)

Y qi = JT
i (qi)rY − ri

˘
(−1)i(rZz cos qi0 − rZy sin qi0)ei + rZxe0i

¯
(U-5)

Zqi = JT
i (qi)rZ + ri

˘
(−1)i(rY z cos qi0 − rY y sin qi0)ei + rY xe0i

¯
(U-6)

Y xi = −rY , Zxi = −rZ , where q10 = 0 and e01 = 0 (U-7)

Yθi =
∂Yi

∂θ
+ (−1)iri = −(−1)ili − ξzZi (U-8)

Yψi =
∂Yi

∂ψ
= −ξyZi, Zθi =

∂Zi

∂θ
= ξzYi (U-9)

Zψi =
∂Zi

∂ψ
− (−1)iri = (−1)ili + ξyYi (U-10)

∂Yi

∂θ
= (x0i − x)T

∂rY

∂θ
= (x0i − x)T (−rX − ξzrZ)

= −(−1)i (ri + li) − ξzZi (U-11)

∂Yi

∂ψ
= (x0i − x)T

∂rY

∂ψ
= (x0i − x)T (−ξyrZ) = −ξyZi (U-12)

∂Zi

∂θ
= (x0i − x)T

∂rZ

∂θ
= (x0i − x)T ξzrY = ξzYi (U-13)

∂Zi

∂ψ
= (x0i − x)T

∂rZ

∂ψ
= (x0i − x)T (rX + ξyrY )

= (−1)i (ri + li) + ξyYi (U-14)

H0ω̇0 +
1
2
Ḣ0ω0 + S0ω0 +

∑
i=1,2

1
2

∑
j

{
q̇ij

(
∂H0

∂qij

)}
ω0

+
(

f1Y1 − f2Y2

−f1Z1 + f2Z2

)
−
∑

i=1,2

(
Yθi Zθi

Yψi Zψi

)(
λY i

λZi

)
= 0. (5.32)
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The derivation of the partial derivatives of the Lagrangian with respect to q̇i,
qi, ẋ and x, is straightforward as discussed in Section 4.2 and the results are
summarised in Table 5.1. Here, gi(qi) = {∂Pi(qi)/∂qi}, i = 1, 2, and

S0 =
(

0 s12

−s12 0

)
,

s12 =
1
2

(
∂h11

∂ψ
− ∂h12

∂θ

)
ωz +

1
2

(
∂h12

∂ψ
− ∂h22

∂θ

)
ωy, (5.33)

where we denote the (i, j)-entry of H0 by hij . The partial derivatives of h11,
h12 (= h21) and h22 in ψ and θ and as well as those of Yi and Zi in ψ and θ
should be derived in a careful manner so that the resultant formulae do not
contradict the non-holonomic constraint of Equation (5.5). The details will be
discussed in the last part of this chapter (Section 5.12). Obviously from the
variational principle of Equation (5.29), it follows that

∫ t

0

⎧⎨
⎩
∑

i=1,2

q̇T
i ui

⎫⎬
⎭dτ = K(t) + P (t) − K(0) − P (0). (5.34)

This relation can be utilised later in the derivation of the passivity for a
class of closed-loop dynamics when the control signals ui are designed in the
form of smooth functions of the state variables of robot fingers. Note that
the dynamics of the object expressed by Equations (5.31) and (5.32) cannot
be controlled directly from the control ui (i = 1, 2) but must be controlled
indirectly through the constraint forces fi, λZi and λY i (i = 1, 2). It is also
important to note that the position variables θ and ψ do not appear explic-
itly in Equation (5.32), which expresses the Lagrange equation for rotational
motion of the object, because they (θ and ψ) do not appear in the right-
hand sides of (U-8) to (U-10) of Table 5.1. Also, note that θ and ψ do not
explicitly appear in the partial derivatives of hij in ψ or θ, as discussed in
Section 5.12. All these partial derivatives in ψ and θ can be determined on
the basis of non-holonomic constraint expressed by Equation (5.5). Thus, it
can be claimed that the overall system dynamics of Equations (5.30), (5.31)
and (5.32) together with the non-holonomic constraint of Equation (5.5) do
not contradict the causality.

5.5 Physical Meaning of Opposition-based Control
Under Rollings

The mechanism of a human-like thumb and index finger illustrated in Figure
5.7 can be roughly represented by the pair of robot fingers shown in Figure
5.2, if fingertips are rigid and their shapes can be approximated by a sphere
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Fig. 5.7. Mechanisms of the human index finger and thumb

around a contact point. The first two joints of the thumb constitute a sad-
dle joint that has two axes of rotation, one axis with joint angle q0 is fixed
and assumed to direct in the x-axis and the other axis with joint angle q1 is
changeable depending on q0 inside the yz-plane but always orthogonal to the
x-axis. More precisely, the second joint with angle q1 has its axis of rotation
in the direction expressed by the vector z′ = (0,− sin q2, cos q2)T in terms of
O′ − xyz. The other two MP and IP joints, with angles q2 and q3, have the
same axis of rotation as the second joint of q1. The index finger is regarded as
a planar finger robot because all three joints have a common and fixed axis
of rotation in the z-direction but the contact point with a rigid object can
move on the finger-end sphere and therefore the contact point can move in
a three-dimensional region. Thus, the pinching motion of the robot fingers–
object system depicted in Figure 5.2 can be regarded as characterising the
essentials of human-like pinching by using a thumb and index finger combina-
tion. Then, what control signal can best realise stable precision prehension?
It must be designed on the basis of fingers–thumb opposability even in this
three-dimensional case.

In order to gain an in-depth insignt into the physical meanings of each
term of the motion equations of the fingers–object system, it is necessary to
spell out Lagrange’s equations of motion of Equations (5.30–5.32) in more
explicit forms as in the following:

L1(q1, q̇1, q̈1, ω0) + f1J
T
01(q1)rX − λY 1{JT

01(q1)rY + r1rZze1}
−λZ1{JT

01(q1)rZ − r1rY ze1} + g1(q1) = u1 (5.35)
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L2(q2, q̇2, q̈2, ω0) − f2J
T
02(q2)rX

−λY 2{JT
02(q2)rY − r2(rZz cos q20 − rZy sin q20)e2 + rZxe02}

−λZ2{JT
02(q2)rZ + r2(rY z cos q20 − rY y sin q20)e2 + rY xe02}

+g2(q2) = u2, (5.36)

where

Li(qi, q̇i, q̈i, ω0)

=Hi(qi)q̈i +
{

1
2
Ḣi(qi) + Si(qi, q̇i)

}
q̇i − ∂

∂qi

(
1
2
ωT

0 H0ω0

)
, i = 1, 2 (5.37)

and

M ẍ− (f1−f2)rX + (λY 1+λY 2)rY + (λZ1+λZ2)rZ−Mg

⎛
⎝0

1
0

⎞
⎠= 0, (5.38)

L0(q1, q2, q̇1, q̇2, ω0, ω̇0) +
(

f1Y1 − f2Y2

−f1Z1 + f2Z2

)
−
(

l1λY 1 − l2λY 2

−l1λZ1 + l2λZ2

)

+
(

ξz

ξy

)
(Z1λY 1 + Z2λY 2 − Y1λZ1 − Y2λZ2) = 0. (5.39)

The physical meaning of the leading terms L1, L2, M ẍ and L0 becomes ap-
parent if we notice the basic relation:∑

i=1,2

q̇T
i Li(qi, q̇i, q̈i, ω0) + ẋTM ẍ + ωT

0 L0

=
d
dt

⎧⎨
⎩
∑

i=1,2

1
2
q̇T
i Hi(qi)q̇i +

M

2
‖ẋ‖2 +

1
2
ωT

0 H0ω0

⎫⎬
⎭

=
d
dt

K (5.40)

Equation (5.38) explicitly expresses Newton’s second law of motion concerning
translational motion of the object. The second and third terms on the left-
hand side of Equation (5.39) express rotational moments that are evoked by
rolling between the object and finger-ends and affect rotation of the object
represented by ω0. The last term on the left-hand side of Equation (5.39)
comes from the implicit effect of rotational moments of spinning around the
rX -axis.

Now, for the sake of gaining physical insight into the problem of control
for precision prehension, we consider the elementary situation in a state of
weightlessness as if the pair of robot fingers is pinching an object in an artificial
satellite without the effect of gravity. In this case, the gravity terms gi(qi)
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(i = 1, 2) in Equations (5.35) and (5.36) are missing and the term Mg(0, 1, 0)T

in Equation (5.38) is also missing. Then, let us consider the control signals
defined as

ui = −Ciq̇i + (−1)i fd

r1 + r2
JT

0i(qi)(x01 − x02), i = 1, 2, (5.41)

where Ci (i = 1, 2) denote a positive definite matrix for damping and fd

a positive constant appropriately chosen to determine the magnitude of the
fingers–thumb opposing force. Note that the right-hand side of Equation (5.41)
can be calculated from knowledge of the finger kinematics and measurement
data of finger joint angles alone. In other words, the control signals ui can
be constructed without using the kinematics of the object or measured data
from external sensors like visual or tactile sensing.

Now, it is important to note that taking inner products between ui of
Equation (5.41) and q̇i for i = 1, 2 and summing these two products yields

∑
i=1,2

q̇T
i ui = −

∑
i=1,2

d
dt

{
fd

2(r1 + r2)
‖x01 − x02‖2

}
−
∑

i=1,2

q̇T
i Ciq̇i. (5.42)

Since from Equation (5.20) it follows that{
Y1 − Y2 = (x01 − x02)TrY

Z1 − Z2 = (x01 − x02)TrZ

(5.43)

it is easy to see that

f0rX +
fd

r1 + r2
(x01 − x02) =

fd(Y1 − Y2)
r1 + r2

rY +
fd(Z1 − Z2)

r1 + r2
rZ (5.44)

‖x01 − x02‖2 = l2w + (Y1 − Y2)2 + (Z1 − Z2)2, (5.45)

where lw and f0 are positive constants defined as

lw = l1 + l2 + r1 + r2, f0 =
(

1 +
l1 + l2
r1 + r2

)
fd. (5.46)

Hence, by substituting Equation (5.42) into Equation (5.34) and referring to
Equations (5.44) and (5.45), we obtain

d
dt

E = −
∑
i=1,2

q̇T
i Ciq̇i, (5.47)

where

E = K +
fd

2(r1 + r2)
{
(Y1 − Y2)2 + (Z1 − Z2)2

}
(5.48)

and K denotes the kinetic energy defined by Equation (5.25).
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5.6 Stability of Blind Grasping under the Circumstances
of Weightlessness

Under the circumstances of weightlessness explained in the previous section,
the closed-loop dynamics of the fingers–object system when the control signals
of Equation (5.41) are applied can be expressed as

Li(qi, q̇i, q̈i, ω0) − (−1)iJT
0i(qi)∆firX + Ciq̇i

− (−1)iJT
0i(qi)

fd

r1 + r2
{(Y1 − Y2)rY + (Z1 − Z2)rZ}

− λY i

{
JT

0i(qi)rY − ri

(
(−1)irZ(qi0)ei + rZxe0i

)}
− λZi

{
JT

0i(qi)rZ + ri

(
(−1)irY (qi0)ei + rY xe0i

)}
= 0, i = 1, 2, (5.49)

where e01 = 0, q10 = 0, ∆fi = fi − f0, and{
rZ(qi0) = rZz cos qi0 − rZy sin qi0,

rY (qi0) = rY z cos qi0 − rY y sin qi0,
(5.50)

M ẍ − (∆f1 − ∆f2)rX + (λY 1 + λY 2)rY + (λZ1 + λZ2)rZ = 0 (5.51)

and

L0 +
(

∆f1Y1 − ∆f2Y2

−∆f1Z1 + ∆f2Z2

)
+ f0

(
Y1 − Y2

−Z1 + Z2

)
−
(

l1λY 1 − l2λY 2

−l1λZ1 + l2λZ2

)

+
(

ξz

ξy

)
(Z1λY 1 + Z2λY 2 − Y1λZ1 − Y2λZ2) = 0. (5.52)

We now show a computer simulation result based upon the mathematical
model of the closed-loop dynamics described above with physical parameters
given in Table 5.2 and the parameters of the control signals in Table 5.3, where
C1 = diag(c1, c1, c1) and C2 = diag(c20, c2, c2, c2). The transient responses of
the key variables of the dynamics are shown in Figure 5.8. Apparently from
the figure we see that Y1 − Y2 → 0, Z1 − Z2 → 0, fi → f0, λY i → 0 and
λZi → 0 (i = 1, 2) as t → ∞. It is also noticeable that the set of closed-loop
equations expressed through Equations (5.49–5.52) has a special equilibrium
solution expressed as⎧⎪⎨

⎪⎩
Y1 = Y2, Z1 = Z2,

f1 = f2 = f0, λY 1 = λY 2 = 0, λZ1 = λZ2 = 0,

q̇1 = 0, q̇2 = 0, ẋ = 0, ωy = 0, ωz = 0.

(5.53)

Evidently this satisfies the closed-loop dynamics of Equations (5.49–5.50). It
should be noted that there is an infinite number of equilibrium states satis-
fying Equation (5.53), which constitutes a four-dimensional manifold in the
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Table 5.2. Physical parameters of the fingers and object

l11 = l21 length 0.040 [m]

l12 = l22 length 0.040 [m]

l13 = l23 length 0.030 [m]

m11 weight 0.043 [kg]

m12 weight 0.031 [kg]

m13 weight 0.020 [kg]

l20 length 0.000 [m]

m20 weight 0.000 [kg]

m21 weight 0.060 [kg]

m22 weight 0.031 [kg]

m23 weight 0.020 [kg]

IXX11 inertia moment 5.375 × 10−7[kgm2]

IY Y 11 = IZZ11 inertia moment 6.002 × 10−6[kgm2]

IXX12 inertia moment 3.875 × 10−7[kgm2]

IY Y 12 = IZZ12 inertia moment 4.327 × 10−6[kgm2]

IXX13 inertia moment 2.500 × 10−7[kgm2]

IY Y 13 = IZZ13 inertia moment 1.625 × 10−6[kgm2]

IXX21 inertia moment 7.500 × 10−7[kgm2]

IY Y 21 = IZZ21 inertia moment 8.375 × 10−6[kgm2]

IXX22 inertia moment 3.875 × 10−7[kgm2]

IY Y 22 = IZZ22 inertia moment 4.327 × 10−6[kgm2]

IXX23 inertia moment 2.500 × 10−7[kgm2]

IY Y 23 = IZZ23 inertia moment 1.625 × 10−6[kgm2]

IXX = IZZ inertia moment(object) 1.133 × 10−5[kgm2]

IY Y inertia moment(object) 6.000 × 10−6[kgm2]

r0 link radius 0.005 [m]

ri(i = 1, 2) radius 0.010 [m]

L base length 0.063 [m]

M object weight 0.040 [kg]

li(i = 1, 2) object width 0.015 [m]

h object height 0.050 [m]

Table 5.3. Parameters of the control signals

fd internal force 1.000 [N]

c1 = c2 damping coefficient 0.001 [Nms]

c20 damping coefficient 0.006 [Nms]
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Fig. 5.8. The transient responses of the physical variables including all contact
constraint forces
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six-dimensional configuration manifold CM6, because there are 12 position
variables but two holonomic constraints and four constraints among infinites-
imal displacements due to the four Pfaffian constraints. Note that E = 0 on
this equilibrium manifold. Since E includes only two positive quadratic terms
of position variables, (Y1 − Y2)2 and (Z1 − Z2)2, the scalar quantity E is not
a Lyapunov function for the closed-loop dynamics of Equations (5.49–5.52).
Nevertheless, E is non-negative definite with respect to the state variables
even under these constraints, but is positive definite with respect to the ve-
locity variables. Further, the time rate of E is only non-positive definite, but
it is possible to show that q̇i(t) → 0 as t → ∞ for i = 1, 2 implies, by
virtue of the rolling constraints, that ẋ(t) → 0, ωz(t) → 0, ωy(t) → 0 as
t → ∞. We see from Figure 5.8 that the transient responses of Z1 − Z2, λZi

(i = 1, 2) and ωy are well behaved and comparable with those of the corre-
sponding physical variables Y1 − Y2, λY i (i = 1, 2), and ωz. Note that such
mild responses of λZi (i = 1, 2) and ωy can be obtained by setting a larger
damping factor c20 = 0.006 [Nms] for the single joint q20 rotating around
the x-axis than other damping factors ci = 0.001 [Nms] (i = 1, 2) for other
joints qij (i = 1, 2, j = 1, 2, 3). This simulation was started from a still state
(q̇ij(0) = 0(i = 1, 2, j = 1, 2, 3), ωz(0) = 0, ωy(0) = 0, ẋ(0) = 0) but two
variables Y1 − Y2 and Z1 − Z2 are set at the initial time.

We now prove the convergence of a solution of Equations (5.49–5.52) to
some equilibrium state satisfying Equation (5.53) at t → ∞ under the as-
sumption that the object width l1 + l2 is of the same order as the radius
ri of each finger-end sphere. First note that from Equation (5.47) the non-
negative function E is non-increasing with t and hence both angular velocities
q̇i(t) (i = 1, 2) belong to L2(0,∞). Then, by applying a similar argument de-
veloped to that in the case of planar pinching in the previous chapter, it is
possible to show that q̈i(t) for i = 1, 2 become bounded and therefore q̇i(t)
for i = 1, 2 are continuous uniformly in t provided that the following 6 × 12
Jacobian matrix A is of full rank:

AT =

⎛
⎜⎜⎜⎜⎝

−JT
01rX 03 JT

01rY + r1rZze1 03

04 JT
02rX 04 JT

02rY − r2rZ(q20)e2 − r2rZxe02

rX −rX −rY −rY

−Y1 Y2 l1 − ξzZ1 −l2 − ξzZ2

Z1 −Z2 −ξyZ1 −ξyZ2

JT
01rZ − r1rY ze1 03

04 JT
02rZ + r2rY (q20)e2 + r2rY xe02

−rZ −rZ

ξzY1 ξzY2

−l1 + ξyY1 l2 + ξyY2

⎞
⎟⎟⎟⎟⎠ . (5.54)

Next, it is important to note that differentiation of Equation (5.43) with
respect to time t leads to
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Ẏ1 − Ẏ2 = (ẋ01− ẋ02)TrY + (x01− x02)TṙY

= (ẋ01− ẋ02)TrY + {lw − ξz(Z1− Z2)}ωz − ξy(Z1− Z2)ωy, (5.55)

where the second equality is derived by referring to Equations (5.2), (5.5),
(5.9) and (5.43). Analogously, it follows from Equation (5.43) that

Ż1− Ż2 = (ẋ01− ẋ02)rZ + {−lw + ξy(Y1− Y2)ωy} + ξy(Y1− Y2)ωz. (5.56)

Note that ẋ0i(t) → 0 for i = 1, 2 as t → ∞ because q̇i(t) → 0 for i = 1, 2
as t → ∞. On the other hand, the rolling contact constraints expressed by
Equations (5.16) and (5.19) mean that

Ẏ1 − Ẏ2 = r1{ωz − rZz ṗ1} − r2{−ωz + rZ(q20)ṗ2 + rZxq̇20}
= (r1 + r2)ωz − hz(ṗ1, ṗ2, q̇20), (5.57)

Ż1 − Ż2 = −(r1 + r2)ωy + hy(ṗ1, ṗ2, q̇20), (5.58)

where {
hz = r1rZz ṗ1 + r2{rZ(q20)ṗ2 + rZxq̇20},
hy = r1rY z ṗ1 + r2{rY (q20)ṗ2 + rY xq̇20}.

(5.59)

Comparing these equations with Equations (5.55) and (5.56), we obtain the
following relation:(

l1 + l2 − ξz(Z1 − Z2) −ξy(Z1 − Z2)
ξz(Y1 − Y2) −(l1 + l2) + ξy(Y1 − Y2)

)(
ωz

ωy

)

=
(−hz + (ẋ01 − ẋ02)TrY

hy + (ẋ01 − ẋ02)TrZ

)
. (5.60)

Since the magnitudes of Y1 − Y2 and Z1 − Z2 can remain arbitrarily small
by selecting an arbitrary small value E(0) for the value of the total energy
function E in Equation (5.48) at the initial time t = 0, the absolute values
of both ξy and ξz remain of O(1), the diagonal entries of the 2× 2 coefiicient
matrix of the left-hand side of Equation (5.60) are dominantly approximated
by the matrix diag(l1 + l2,−l1 − l2). Further, since all velocities ẋ0i, ṗi for
i = 1, 2 and q̇20, and therefore both hz and hy, tend to vanish as t → ∞, it is
evidently seen from Equation (5.60) that

ωy → 0 and ωz → 0 as t → ∞. (5.61)

Then, it is easy to check from the rolling constraints expressed by Equations
(5.16) and (5.19) that Ẏi → 0 and Żi → 0 as t → ∞ for i = 1, 2. Finally, it is
possible to see from differentiation of Equation (5.20) with respect to t that
ẋ → 0 as t → ∞. Since all the velocity variables are uniformly continuous in
t and tend to zero as t → ∞, all the acceleration variables ẍ(t), ω̇y(t) and
ω̇z(t) tend to zero as t → ∞ according to Lemma 1 of Appendix A. Thus, it
is possible to conclude from Equations (5.49–5.52) that
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−AT∆λ + BT∆m → 012 as t → ∞, (5.62)

where

∆λ = (∆f1, ∆f2, λY 1, λY 2, λZ1, λZ2)T, (5.63)
∆m = (Y1 − Y2, Z1 − Z2)T, (5.64)

B =

⎛
⎜⎜⎝

fd

r1 + r2
rT

Y J01, − fd

r1 + r2
rT

Y J02, 03, f0, 0

fd

r1 + r2
rT

ZJ01, − fd

r1 + r2
rT

ZJ02, 03, 0, −f0

⎞
⎟⎟⎠ . (5.65)

Since the 12× 8 matrix [AT, BT] is of full rank, Equation (5.62) implies that

Y1 − Y2 → 0, Z1 − Z2 → 0, ∆λ → 0 (5.66)

as t → ∞. This concludes that the solution trajectory of the closed-loop
system consisting of Equations (5.49–5.52) together with the constraints ex-
pressed by Equations (5.9), (5.16) and (5.19) converges asymptotically to the
four-dimensional equilibrium manifold on which the condition of Equation
(5.53) is satisfied. Unfortunately, asymptotic convergence of each individual
finger joint trajectory qij (i = 1, 2, j = 1, 2, 3) and q20 to each corresponding
constant has not yet been proved by the argument developed above. This will
be treated in a more general situation in the next two sections.

5.7 Control for Stable Blind Grasping

Even if gravity affects the motion of the object and fingers as shown in Figures
5.1 and 5.2, it is possible to construct a control signal for stable grasping in
a dynamic sense without knowing the object kinematics or using external
sensing (visual or tactile). The signal is defined as

ui = gi(qi) − Ciq̇i +
(−1)ifd

r1 + r2
JT

i (qi)(x01 − x02)

−M̂g

2
∂y0i

∂qi
− riN̂iei − riN̂0ie0i, i = 1, 2, (5.67)

where e01 = 0 and e02 = (1, 0, 0, 0)T, and

M̂(t) = M̂(0) + (g/2γM )
∑

i=1,2

(y0i(t) − y0i(0)), (5.68)

N̂i(t) = N̂i(0) + (ri/γi)
3∑

j=1

{qij(t) − qij(0)} , i = 1, 2, (5.69)

N̂02(t) = N̂02(0) + (r2/γ02) {q20(t) − q20(0)} . (5.70)
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Note that M̂(t) plays the role of an estimator for the unknown object mass
M . The signals N̂i(t) and N̂0i(t) are not estimators but play an important role
in suppressing excess rotation of the finger joints together with the damping
terms −Ciq̇i. Next, note that from Equation (5.9) it follows that

x01 − x02 = −lwrX + (Y1 − Y2)rY + (Z1 − Z2)rZ (5.71)

x − 1
2
(x01 + x02) =

l0
2

rX − Y1 + Y2

2
rY − Z1 + Z2

2
rZ , (5.72)

where {
lw = r1 + r2 + l1 + l2,
l0 = (r1 − r2) + (l1 − l2).

(5.73)

It is also important to note that

MgR(t)

⎛
⎝ rXy

rY y

rZy

⎞
⎠− Mg

⎛
⎝0

1
0

⎞
⎠ = 0, (5.74)

where rXy, rY y or rZy denotes the y-component of the vectors rX , rY or rZ

respectively. Finally, it is necessary to define{
∆λ = [∆f1, ∆f2, ∆λY 1, ∆λY 2, ∆λZ1, ∆λZ2]

T
,

∆m = [∆M, ∆N1, ∆N2, ∆N02]
T

.
(5.75)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆fi = fi − f0 − (−1)i Mg

2
rXy, f0 =

(
1 +

l1 + l2
r1 + r2

)
fd

∆λY i = λY i − Mg

2
rY y + (−1)i fd(Y1 − Y2)

r1 + r2

∆λZi = λZi − Mg

2
rZy + (−1)i fd(Z1 − Z2)

r1 + r2

∆M = M̂ − M

∆Ni = N̂i − Ni, ∆N02 = N̂02 − N02

i = 1, 2 (5.76)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ni = −Mg

2
(−1)i {rY yrZ(qi0) − rZyrY (qi0)}

+
fd

r1 + r2
{(Y1 − Y2)rZ(qi0) − (Z1 − Z2)rY (qi0)} , i = 1, 2

N02 = −Mg

2
(rY yrZx − rZyrY x) +

fd

r1 + r2
{(Y1 − Y2)rZx − (Z1 − Z2)rY x}.

(5.77)

Thus, by substituting Equation (5.67) into Equation (5.30) and rewriting
Equations (5.31) and (5.32) with reference to Equations (5.74–5.77), we obtain
the following closed-loop dynamics of the overall fingers–object system:
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HẌ +
(

1
2
Ḣ + S

)
Ẋ + CẊ − AT∆λ + BT∆m − d = 0, (5.78)

where

X =

⎛
⎜⎜⎜⎜⎝

q1

q2

r−1x
θ
ψ

⎞
⎟⎟⎟⎟⎠ , H =

⎛
⎜⎜⎝

H1 03×4 03×3 03×2

04×3 H2 04×3 04×2

03×3 03×4 Mr2I3 03×2

02×3 02×4 02×3 H0

⎞
⎟⎟⎠ , (5.79)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S =

⎛
⎜⎜⎝

S1 03×4 03×3 S14

04×3 S2 04×3 S24

03×3 03×4 03×3 03×2

−ST
14 −ST

24 02×3 S0

⎞
⎟⎟⎠ ,

C = diag(C1, C2, 03, 02),

d = (0, · · · , 0, SZ, SY )T.

(5.80)

Here, r denotes a scale factor introduced to balance the magnitude r2M with
the other magnitudes of eigenvalues of H1, H2 and H0. Note that K + K0 =
(1/2)Ẋ

T
HẊ, Si4 = −(1/2)

{
∂(ωT

0 H0)/∂qi

}
(i = 1, 2), ST

0 = −S0, and

SZ = SZM + SZf , SY = SY M + SY f , (5.81)

SZM =
Mg

2

{
(Y1 + Y2)(rXy + ξzrZy)

−(Z1 + Z2)rY yξz + (l1 − l2)rY y

}
, (5.82)

SY M = −Mg

2

{
(Z1 + Z2)(rXy + rY yξy)

−(Y1 + Y2)rZyξy + (l1 − l2)rZy

}
, (5.83)

SZf = −fd(Y1 − Y2), (5.84)
SY f = fd(Z1 − Z2) (5.85)

and A is defined in Equation (5.54), and

BT =

⎛
⎜⎜⎜⎜⎜⎝

g

2

(
∂y01

∂q1

)
r1e1 0 0

g

2

(
∂y02

∂q2

)
0 r2e2 r2e02

05×5

⎞
⎟⎟⎟⎟⎟⎠ , (5.86)

where x̄ = r−1x. It is interesting to note that the matrix S in Equation (5.80)
is again skew-symmetric. Then, note that taking the inner product between
Equation (5.78) and Ẋ yields the following energy relation
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d
dt

(K + W ) =
∑

i=1,2

−q̇T
i Ciq̇i, (5.87)

where

W =
fd

2(r1 + r2)
{
(Y1 − Y2)2 + (Z1 − Z2)2

}
+

γM

2
∆M2

+
∑
i=1,2

{γi

2
N̂2

i +
γ0i

2
N̂2

0i

}

+
Mg

2
{(Y1 + Y2)rY y − l0rXy + (Z1 + Z2)rZy} . (5.88)

In the derivation of this relation the skew-symmetry of the matrix S is used in
such a way that Ẋ

T
SẊ = 0 and the relation of the holonomic contact point

and non-holonomic rolling constraints with the velocity vector Ẋ is referenced
in such a way that AẊ = 0. Further, it is interesting to note that the last term
on the right-hand side of Equation (5.88) plus −Mg(y01 +y02)/2 is equivalent
to cancellation of the potential energy of the object caused by the gravity
(that is, P = −Mgy), as seen from Equation (5.72). Then, it is easy to check
that the scalar quantity W is quadratic in terms of the position state variables
θ, ψ, qi0 (i = 1, 2), pi(= qi1 +qi2) (i = 1, 2), and y01+y02. Further, by choosing
constant gains γM , γi (i = 1, 2), γ0i (i = 1, 2) and fd (which must be bigger
than Mg) appropriately, it is possible to verify that W has a minimum Wm

in a neighbourhood of a given initial position state X(0). Then, define

Em = K + W − Wm. (5.89)

This quantity becomes non-negative definite in (X, Ẋ) even if the value of
Wm is dependent on the unit vector (rXy, rY y, rZy) at initial time t = 0.
Nevertheless, it is possible to assume that W is always bounded from below
by some constant value W0.

Finally, it is crucial to remark that the closed-loop dynamics of Equa-
tion (5.78) can be re-derived by applying the variational principle to the La-
grangian L(= K −W ) by using partial derivatives of W with respect to θ and
ψ that do not explicitly appear in the original equation of motion described
as Equations (5.30–5.32). Partial derivatives of W in θ and ψ can be obtained
by using the partial derivatives of unit vectors rX , rY and rZ in θ and ψ,
which can be calculated from the concept of infinitesimal rotation discussed
fully in Section 5.12.

5.8 Numerical Simulation Results

In this section, we will give only a sketch of the proof of trajectory convergence.
Since Em = K +W −Wm ≥ 0 for any (rXy, rY y, rZy), Equation (5.87) implies
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0

∑
i=1,2

q̇T
i (t)Ciq̇i(t)dt ≤ Em(0) − Em(t) ≤ Em(0). (5.90)

This shows that q̇i(t) ∈ L2(0,∞) (i = 1, 2). Since there are six independent
constraints of Equations (5.10), (5.11) and Q̇i = 0 (i = 1, 2), it is possible to
verify that the other velocity variables ẋ(= (ẋ, ẏ, ż)T), ωz and ωy also become
square-integrable, that is, ω0(t) ∈ L2(0,∞). Then, it is also possible to verify
that, according to the boundedness of the overall kinetic energy K(t) and the
artificial potential energy W (t), every component of the velocity vector Ẋ(t)
is uniformly continuous in t. Hence, by virtue of Lemma 2 in Appendix A, it
can be concluded that Ẋ(t) → 0 as t → ∞. This also implies that Ẍ(t) → 0
as t → ∞. Thus, it follows from Equation (5.78) that

AT∆λ − BT∆m + d → 0 (5.91)

as t → ∞. Since the 12 × 10 matrix [AT,−BT] is non-degenerate at any
ordinary posture of the fingers–object system as depicted in Figure 5.2, it is
reasonable to expect that ∆λ(t) → λ∞ and ∆m → m∞ as t → ∞, where
λ∞ and m∞ are constant vectors. At the same time, the convergence of ∆m
to m∞ as t → ∞ intuitively implies that all six variables θ, ψ, q20 and pi

(i = 1, 2) converge to their corresponding constant values θ∞, ψ∞, q20∞ and
pi∞ (i = 1, 2), and these convergences together with contact constraints of
Equations (5.9–5.11) may imply that all qij (for i = 1, 2 and j = 1, 2, 3)
converge respectively to constant values qij∞ (i = 1, 2 and j = 1, 2, 3) as
t → ∞. Then, the matrices A and B, and vector d in Equation (5.78) are
also convergent to constant matrices A∞ and B∞, and constant vector d∞,
respectively. However, all these convergences should be treated and proved in
a more rigorous way, which will be presented in the next section.

Nevertheless, in order to ascertain this intuitive argument, we have con-
ducted a numerical simulation based on a physical model of such fingers–
object grasping with the physical parameters shown in Table 5.4. Then, a
control signal defined by Equation (5.67) with the constant gains in Table 5.5
and Ci = ciI3 for i = 1, 2 is fed into the finger dynamics of Equation (5.30)
with initial conditions that are also specified in Table 5.5. As shown in Figure
5.9, all the key variables Y1 − Y2, Z1 − Z2, SY , SZ , and all components of
∆λ and ∆m converge asymptotically to their corresponding constant values.
It is also confirmed from Figure 5.9 that |∆fi| < 0.05(<< 1.0) for all t ≥ 0.
This means that both contacts between finger-ends and object surfaces are
maintained throughout the pinching motion. Further, it is possible to evaluate
convergent values of ∆λ and ∆m based on the relation

− [AT,−BT
]( ∆λ

∆m

)
− d → 0 as t → ∞ (5.92)

from which (
λ∞
m∞

)
= lim

t→∞

(
AAT −AAT

−BAT BBT

)−1(−A
B

)
d. (5.93)
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Table 5.4. Physical parameters for three and four DOFs

l11 = l21 length 0.040 [m]

l12 = l22 length 0.040 [m]

l13 = l23 length 0.030 [m]

m11 weight 0.043 [kg]

m12 weight 0.031 [kg]

m13 weight 0.020 [kg]

l20 length 0.000 [m]

m20 weight 0.000 [kg]

m21 weight 0.060 [kg]

m22 weight 0.031 [kg]

m23 weight 0.020 [kg]

IXX11 inertia moment 5.375 × 10−7[kgm2]

IY Y 11 = IZZ11 inertia moment 6.002 × 10−6[kgm2]

IXX12 inertia moment 3.875 × 10−7[kgm2]

IY Y 12 = IZZ12 inertia moment 4.327 × 10−6[kgm2]

IXX13 inertia moment 2.500 × 10−7[kgm2]

IY Y 13 = IZZ13 inertia moment 1.625 × 10−6[kgm2]

IXX21 inertia moment 7.500 × 10−7[kgm2]

IY Y 21 = IZZ21 inertia moment 8.375 × 10−6[kgm2]

IXX22 inertia moment 3.875 × 10−7[kgm2]

IY Y 22 = IZZ22 inertia moment 4.327 × 10−6[kgm2]

IXX23 inertia moment 2.500 × 10−7[kgm2]

IY Y 23 = IZZ23 inertia moment 1.625 × 10−6[kgm2]

IXX = IZZ inertia moment (object) 1.133 × 10−5[kgm2]

IY Y inertia moment (object) 6.000 × 10−6[kgm2]

r0 link radius 0.005 [m]

ri(i = 1, 2) radius 0.010 [m]

L base length 0.063 [m]

M object weight 0.040 [kg]

li(i = 1, 2) object width 0.015 [m]

h object height 0.050 [m]

Table 5.5. Parameters of the control signals

fd internal force 1.000 [N]

c1 = c2 damping coefficient 0.001 [Nms]

c20 damping coefficient 0.006 [Nms]

γM regressor gain 0.05 [m2/kgs2]

γ0 regressor gain 0.0005 [s2/kg]

γi (i = 1, 2) regressor gain 0.0005 [s2/kg]
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Fig. 5.9. The transient responses of the physical variables
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When we construct Figure 5.9 from the numerical simulation, we calculate
the vector value of the limit in Equation (5.93) at transient time t and have
certified that around t = 1.5 [s] its value becomes steady and almost converges
to (λT

∞, mT
∞)T.

Finally, we remark that it is possible to prove that the speed of conver-
gences of ∆m(t) and ∆λ(t) to m∞ and λ∞ is exponential in t as t → ∞.
Thus, it is possible to conclude that the Riemannian metric∫ t

0

√
1
2
Ẋ

T
(τ)H(X(τ))Ẋ(τ) dτ (5.94)

remains finite when t tends to infinity, that is,∫ ∞

0

√
1
2
Ẋ

T
H(X)Ẋ dt < +∞. (5.95)

Further, in a similar argument, it is possible to show that∫ ∞

0

‖Ω(t)‖dt < +∞. (5.96)

From these results it can be concluded that, at the equilibrium state (X =
X∞, Ẋ = 0), the force/torque balance is established except for rotation
around the opposition axis. It should be claimed that the equilibrium state
(X∞, Ẋ = 0) is stable on a 12-dimensional constraint manifold M12 that is
defined as

M12 =
{

(X, Ẋ) : Qi = 0, Q̇i = 0, Y T
i δX = 0, ZT

i δX = 0,

Equations (5.16) and (5.19) (i = 1, 2)
}
. (5.97)

On the other hand, the set of all vectors X constitutes superficially a 12-
dimensional space C12, which can be called the configuration space in the
terminology of differential geometry. Then, the constraint manifold of six-
dimension can be defined as follows:

CM6 = {X : Qi = 0, Y T
i δX = 0, ZT

i δX = 0, i = 1, 2}, (5.98)

which is regarded as a Riemannian manifold embedded in the configuration
space C12. Further, at each point X on CM6 it is possible to define a tangent
space TM6 in such a way that

TM6(X) =
{

Ẋ : AẊ = 0
}

. (5.99)

Thus, the 12-dimensional tangent bundle is constituted in the following way:

T12 =
{
Ẋ(X) : X ∈ CM6

}
, (5.100)

which is equivalent to M12 defined in Equation (5.97). By using such terminol-
ogy from differential geometry, it is possible to deal with the stability problem
mentioned above in a rigorous mathematical way. The details are presented
in the next section.
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5.9 A Mathematical Proof of the Stability of Blind
Grasping

In this section, we present a rigorous mathematical proof of asymptotic con-
vergence of the whole solution trajectory (X(t), Ẋ(t)) of the closed loop of
Equation (5.78) to an equilibrium state of force/torque balance. First we show
that the gradient vector of W of Equation (5.88) with respect to X defined
by Equation (5.79) is deduced as follows:

∂W

∂X
= BT∆m − d. (5.101)

In fact, it follows from Equation (5.88) that

∂W

∂θ
=

fd

r1 + r2

{
(Y1 − Y2)

∂(Y1 − Y2)
∂θ

+ (Z1 − Z2)
∂(Z1 − Z2)

∂θ

}

+
Mg

2

{
(Y1 + Y2)

∂rY y

∂θ
− l0

∂rXy

∂θ
+ (Z1 + Z2)

∂rZy

∂θ

}

+
Mg

2

{
∂(Y1 + Y2)

∂θ
rY y +

∂(Z1 + Z2)
∂θ

rZy

}
. (5.102)

From Section 5.12 we see that

∂rXy

∂θ
= rY y,

∂rY y

∂θ
= −rXy − ξzrZy ,

∂rZy

∂θ
= ξzrY y. (5.103)

On the other hand, we see from the rolling constraints of Equations (5.16)
and (5.19), referring to the last paragraph of Section 5.12,

∂Y1

∂θ
= r1,

∂Y2

∂θ
= −r2,

∂Z1

∂θ
=

∂Z2

∂θ
= 0. (5.104)

Substituting Equations (5.103) and (5.104) into Equation (5.102) yields

∂W

∂θ
= fd(Y1 − Y2) +

Mg

2

{
(Y1 + Y2)(−rXy − ξzrZy) − l0rY y

+(Z1 + Z2)ξzrY y

}
+

Mg

2
{(r1 − r2)rY y}

= fd(Y1 − Y2) − Mg

2

{
(Y1 + Y2)rXy − (l1 − l2)rY y

+ξz(Y1 + Y2)rZy − ξz(Z1 + Z2)rY y

}
= −SZ . (5.105)

Similarly, we see from Section 5.12 that

∂rXy

∂ψ
= −rZy,

∂rY y

∂ψ
= −ξyrZy,

∂rZy

∂ψ
= rXy + ξyrY y, (5.106)

∂Z1

∂ψ
= −r1,

∂Z2

∂ψ
= r2,

∂Y1

∂ψ
=

∂Y2

∂ψ
= 0. (5.107)
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By substituting these relations into the mathematical formula for ∂W/∂ψ, we
obtain

∂W

∂ψ
= −SY . (5.108)

Since W of Equation (5.88) is not dependent on x in an explicit form, it is
reasonable to see that

∂W

∂x
= 0. (5.109)

Finally, it is necessary to derive the following partial derivatives:

∂W

∂q1
=

fd

r1 + r2

{
(Y1 − Y2)

∂Y1

∂q1
+ (Z1 − Z2)

∂Z1

∂q1

}

+γM∆M
∂∆M

∂q1
+ γ1N̂1

∂N̂1

∂q1

+
Mg

2

{
∂Y1

∂q1
rY y +

∂Z1

∂q1
rZy

}
(5.110)

∂W

∂q2
= − fd

r1 + r2

{
(Y1 − Y2)

∂Y2

∂q2
+ (Z1 − Z2)

∂Z2

∂q2

}

+γM∆M
∂∆M

∂q2
+ γ2N̂2

∂N̂2

∂q2
+ γ02N̂02

∂N̂02

∂q2

+
Mg

2

{
∂Y2

∂q2
rY y +

∂Z2

∂q2
rZy

}
. (5.111)

In a similar manner to the derivation of Equations (5.102) and (5.105), it is
possible to deduce from the rolling constraints of Equations (5.16) and (5.19)
with the aid of the variational principle (see Section 5.12)

∂Y1

∂q1
= −r1rZze1,

∂Z1

∂q1
= r1rY ze1, (5.112)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Y2

∂q2
= r2(rZz cos q20 − rZy sin q20)e2 + r2rZxe02,

∂Z2

∂q2
= −r2(rY z cos q20 − rY y sin q20)e2 − r2rY xe02.

(5.113)

Substituting Equations (5.112) into (5.110) and calculating ∂∆M/∂q1 and
∂∆N̂1/∂q1, directly we obtain
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Table 5.6. Gradient vector of W̄

∂W̄

∂pi
= ri∆Ni, i = 1, 2

∂W̄

∂q20
= r2∆N02

∂W̄

∂θ
= −SZ ,

∂W̄

∂ψ
= −SY

∂W

∂q1
= − r1fd

r1 + r2
{(Y1 − Y2)rZz − (Z1 − Z2)rY z}e1

−∆Mg

2
∂y01

∂q1
+ r1N̂1e1

−Mg

2
{rY yrZz − rZyrY z} r1e1

= r1∆N1e1 − ∆Mg

2

(
∂y01

∂q1

)
. (5.114)

Analogously, it follows from Equation (5.111) together with Equation (5.113)
that

∂W

∂q2
= r1∆N2e2 + r2∆N02e02 − ∆Mg

2

(
∂y02

∂q2

)
. (5.115)

In the proof we implicitly assume that the numerical values of the physi-
cal parameters of the robot fingers and the object have similar orders corre-
spondingly to those given in Table 5.4. We set damping coefficient matrices
as Ci = ciI3 with ci given in Table 5.5 and other gains fd, γM , γi (i = 1, 2)
and γ0i (i = 1, 2) as in Table 5.5.

Now consider the following scalar quantity

W̄ = W − γM

2
∆M2

=
fd

2(r1 + r2)
{
(Y1 − Y2)2 + (Z1 − Z2)2

}
+
∑

i=1,2

{γi

2
N̂2

i +
γ0i

2
N̂2

0i

}
+

Mg

2
ỹ, (5.116)

where

ỹ =
1
2
{(Y1 + Y2)rY y − l0rXy + (Z1 + Z2)rZy} . (5.117)

Evidently this scalar function depends on p1, p2, q20, θ and ψ. Partial deriva-
tives of W̄ with respect pi, q20, θ and ψ can be obtained as in Table 5.6. In
this derivation we used the following relations:
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Table 5.7. The hessian matrix of W̄

∂2W̄

∂p2
1

= r2
1

j
1

γ1
+

fd

r1 + r2
(r2

Zz + r2
Y z)

ff
(V-1)

∂2W̄

∂p2
2

= r2
2

j
1

γ2
+

fd

r1 + r2

`|rZ(q20)|2 + |rY (q20)|2
´ff

(V-2)

∂2W̄

∂q2
20

= r2
2

j
1

γ02
+

fd

r1 + r2
(r2

Zx + r2
Y x)

ff
(V-3)

∂2W̄

∂p2∂p1
=

r1r2fd

r1 + r2
{rZzrZ(q20) + rY zrY (q20)} (V-4)

∂2W̄

∂q20∂p1
=

r1r2fd

r1 + r2
(rZzrZx + rY zrY x) (V-5)

∂2W̄

∂q20∂p2
=

fd

r1 + r2
{(Y1 − Y2)r̄Z(q20) − (Z1 − Z2)r̄Y (q20)}

+
r2fd

r1 + r2
{rZxrZ(q20) − rY xrY (q20)}

−Mg

2
{rY y r̄Z(q20) − rZy r̄Y (q20)} (V-6)

where
r̄Z(q20) = rZz sin q20 + rZy cos q20

r̄Y (q20) = rY z sin q20 + rY y cos q20

∂2W̄

∂θ2
= (r1 + r2)fd − Mg

2
(Y1 + Y2)rY y

−Mg

2

j
l0rXy + (l1 − l2)ξzrZy +

∂

∂θ
(ξzη)

ff
(V-7)

η = (Y1 + Y2)rZy − (Z1 + Z2)rY y , l̄0 = (r1 − r2) − (l1 − l2)

∂2W̄

∂ψ2
= (r1 + r2)fd

−Mg

2

j
l̄0rXy + (Z1 + Z2)rZy − (l1 − l2)ξyrY y +

∂

∂ψ
(ξyη)

ff
(V-8)

∂2W̄

∂ψ∂θ
=

Mg

2

j
(Y1 + Y2)rZy − (l1 − l2)ξyrZy − ∂

∂ψ
(ξzη)

ff
(V-9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂Y1

∂p1
= −r1rZz ,

∂Z1

∂p1
= r1rY z ,

∂Y2

∂p2
= r2(rZz cos q20 − rZy sin q20),

∂Y2

∂q20
= r2rZx,

∂Z2

∂p2
= −r2(rY z cos q20 − rY y sin q20),

∂Z2

∂q20
= r2rY x.

(5.118)
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Table 5.7. The hessian matrix of W̄ (continued)

∂2W̄

∂θ∂p1
=

−r1fd

r1 + r2
{(r1 + r2)rZz + (Y1 − Y2)ξzrY z

+(Z1 − Z2)(rXz + ξzrZz)} +
r1Mg

2
{rXyrZz − rZyrXz} (V-10)

∂2W̄

∂ψ∂p1
= − r1fd

r1 + r2
{(r1 + r2)rY z + (Y1 − Y2)(rXz + ξyrY z)

+(Z1 − Z2)ξyrZz} − r1Mg

2
{rXzrY y − rY zrXy} (V-11)

∂2W̄

∂θ∂q20
=

−r2fd

r1 + r2
{(r1 + r2)rZx + (Y1 − Y2)ξzrY x

+(Z1 − Z2)(rXx + ξxrZx)} − r2Mg

2
(rXyrZx − rZyrXx) (V-12)

∂2W̄

∂ψ∂q20
= − r2fd

r1 + r2
{(r1 + r2)rY x + (Y1 − Y2)(rXx + ξyrY x)

+(Z1 − Z2)ξyrZx} +
r2Mg

2
(rY yrXx − rXyrY x) (V-13)

∂2W̄

∂θ∂p2
=

−r2fd

r1 + r2
{(r1 + r2)rZ(q20) + (Y1 − Y2)ξzrY (q20)

+(Z1 − Z2)(rX(q20) + ξxrZ(q20))}

−r2Mg

2
{rXyrZ(q20) − rZyrX(q20)} (V-14)

where rX(q20) = rXz cos q20 − rXy sin q20

∂2W̄

∂ψ∂p2
=

−r2fd

r1 + r2
{(r1 + r2)rY (q20) + (Y1 − Y2)(rX(q20) + ξyrY (q20))

+(Z1 − Z2)ξyrZ(q20)} − r2Mg

2
{rXyrY (q20) − rY yrX(q20)} (V-15)

Next, the Hessian matrix of W̄ with respect to those five variables can be
derived as shown in Tables 5.7 by using Equation (5.118) together with the
relations presented in Section 5.12. Then, it is possible to verify that the
diagonal entries of this Hessian matrix are dominant relatively to their corre-
sponding off-diagonal entries if γ1, γ2, and γ02 are properly chosen as in Table
5.5, fd � Mg, and Y1 + Y2 < 0. In other words, if the 5 × 5 Hessian matrix
is denoted by G(X) and its diagonal part by the form

GD(X) = diag
(

∂2W̄

∂p2
1

,
∂2W̄

∂p2
2

,
∂2W̄

∂q2
20

,
∂2W̄

∂θ2
,
∂2W̄

∂ψ2

)
(5.119)

then it is possible to expect that
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1
2
G(X) ≤ GD(X) ≤ 3

2
G(X) (5.120)

for any X in a neighbourhood of X(0) in the configuration space and lying
on CM6 defined by Equation (5.98).

Dominance of diagonal entries of the Hessian matrix shown in Equation
(5.120) implies that the Morse function is no-negative. Hence, it is possible
to construct a modified scalar function like V of Equation (4.124) and W (α)
of Equation (4.129) with a similar property to that of Equation (4.130) by
using a similar argument that given in Section 4.6 for the proof of exponential
convergence in the case of 2-D grasping. The details of the proof, however,
must be left to the readers.

Finally, we should remark that the necessary combination of numbers of
finger joints can be reduced to (2, 3) as far as stable prehension is concerned,
two DOFs for the left planar finger and three DOFs for the right 3-D finger
with a saddle joint. Under weightless circumstances, it can be reduced to
(1, 2).

5.10 Stable Manipulation of a 3-D Rigid Object

Once a rigid object is grasped in a blind manner stably so that force/torque
balance is attained, it is possible to manoeuvre the object by specifying
an ideal 3-D trajectory as a time function described by the form xd(t) =
(xd(t), yd(t), zd(t)) so that a superficial object centre x̂(t) (= (x01(t) +
x02(t))/2) should track the trajectory xd(t). Since x0i(t) can be easily calcu-
lated in real time from measurement data of finger joint angles and knowledge
of the finger kinematic parameters, it is possible to devise the feedback signal

upi = −JT
0i(qi)(γx∆x, γy∆y, γz∆z)T, i = 1, 2 (5.121)

where γx, γy and γz are positive constants that express feedback gains, and
∆x = x̂ − xd, ∆y = ŷ − yd and ∆z = ẑ − zd. This control signal can be
superimposed linearly with the control signal ui defined by Equation (5.67)
in such a way that

ui = gi(qi) − ciq̇i +
(−1)ifd

r1 + r2
JT

i (qi)(x01 − x02)

−M̂g

2
∂y0i

∂qi
− riN̂iei − riN̂0ie0i − JT

i (qi)Γ∆x, i = 1, 2, (5.122)

where Γ = diag(γx, γy, γz) and ∆x = (∆x, ∆y, ∆z)T.
We show one numerical simulation result of manipulation of an object

through imposing such a trajectory tracking task for the pair of finger robots
shown in Figure 5.10, where the left finger is planar with three joints in a
common z-axis and the right finger is 3-dimensional with one joint in the x-
axis and the other three joints in a common z-axis. All the physical parameters
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Fig. 5.10. Motions of manipulating an object in 3-D space

Table 5.8. Initial values

q11 6.000 × π/18 [rad] q12 2.678 × π/18 [rad]

q13 8.474 × π/18 [rad] q20 −1.975 × π/18 [rad]

q21 4.311 × π/18 [rad] q22 5.687 × π/18 [rad]

q23 6.000 × π/18 [rad] Y1 − Y2 0.002 [m]

Z1 − Z2 0.002 [m] M̂(0) 0.04 [kg]

N̂1(0),N̂2(0),N̂0(0) 0.000,0.000,0.000 [N]

Table 5.9. Parameters of the control signals

fd internal force 1.000 [N]

c1 = c2 damping coefficient 0.001 [Nms]

c20 damping coefficient 0.006 [Nms]

γM regressor gain 10.00 [m2/kgs2]

γi(i = 1, 2) regressor gain 0.010 [s2/kg]

γ0 regressor gain 0.010 [s2/kg]

γx regressor gain 100.0 [N/m]

γy regressor gain 100.0 [N/m]

γz regressor gain 50.0 [N/m]

of the fingers and the object used in the simulations are given in Table 5.8
and the initial conditions are shown in Table 5.9. It should be remarked that
both robot fingers are a little bigger than parameters given in Table 5.4. The
ideal trajectory is given as
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Fig. 5.11. Loci of (x̂,ŷ)
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Fig. 5.12. Loci of (x̂,ẑ)

⎧⎪⎨
⎪⎩

xd(t) = x̂(0) + 0.01 sin(6t),
yd(t) = ŷ(0) + 0.01 sin(12t),
zd(t) = ẑ(0) + 0.01 sin(3t),

(5.123)

which is a Lissajous curve and control gains are set as in Table 5.9. Note
that in this simulation the initial estimate M̂(0) for the object mass is set as
M̂(0) = 0.04 [kg], which is the true value of M . We show numerically obtained
trajectories of x̂(t), ŷ(t) and ẑ(t) in Figures 5.11 and 5.12. As predicted from
physical reasoning, the performance of trajectory tracking in the xy-plane is
quite satisfactory owing to the excess joints that have the common z-axis of
rotation as seen from Figure 5.11. On the contrary, both trajectory trackings
in the xz-plane and yz-plane are considerably deteriorated due to shortage of
freedoms of rotational motion in the x- and z-axes. It is interesting to remark
that during trajectory tracking of the object centre through movements of the
overall system, the object mass estimator M̂(t) fluctuates within ± 20% of
the true value M = 0.04 [kg], even if the starting value M̂(0) is adjusted to
the true value M = 0.04 [kg]. However, it is important to remark that this
object mass estimator is indispensable even for trajectory tracking. Another
important change is made in re-adjustment of the choice for the gain γM of
the object mass estimator and other gains γi (i = 1, 2). All these gains are
chosen to be 3 × 102 times or more larger than the values given for blind
grasping (compare Table 5.9 with Table 5.5).

5.11 Full-DOF Model of 3-D Grasping

Throughout the previous sections of this chapter, the physical and mathemat-
ical analysis has been developed based upon the assumption that spinning
around the opposing axis connecting the two contact points O1 and O2 (see
Figure 5.2) will no longer arise after the spinning motion has ceased due to
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Table 5.10. Partial derivatives of constraints in (ϕ, ψ, θ)

∂Q1

∂ϕ
=

∂Q2

∂ϕ
= 0,

∂Q

∂ϕ
= 0

∂Yi

∂ϕ
= (x0i − x)T

∂rY

∂ϕ
= (x0i − x)TrZ = Zi

∂Yi

∂ψ
= (x0i − x)T

∂rY

∂ψ
= 0

∂Yi

∂θ
= (x0i − x)T

∂rY

∂θ
= −(x0i − x)TrX = −(−1)i(ri + li)

∂Zi

∂ϕ
= (x0i − x)T

∂rZ

∂ϕ
= −(x0i − x)TrY = −Yi

∂Zi

∂ψ
= (x0i − x)T

∂rZ

∂ψ
= (x0i − x)TrX = (−1)i(ri + li)

∂Zi

∂θ
= (x0i − x)T

∂rZ

∂θ
= 0

Yϕi =
∂Yi

∂ϕ
= Zi, Zϕi =

∂Zi

∂ϕ
= −Yi

Yψi =
∂Yi

∂ψ
= 0, Zψi =

∂Zi

∂ψ
− (−1)iri = (−1)ili

Yθi =
∂Yi

∂θ
+ (−1)iri = −(−1)ili, Zθi = 0

static friction when the object centre of mass approaches nearly to a point
beneath the opposing axis. This assumption induces another non-holonomic
constraint expressed as Equation (5.1), which implies that one of the three
angular velocities ω = (ωx, ωy, ωz)T is not independent. Therefore, motion of
the grasped object has been expressed by Lagrange’s equation in terms of five
variables (ẋ, ẏ, ż, ωy, ωz).

Instead of the assumption of Equation (5.1) based on static friction, we
assume that there arises an external force of viscous friction cϕωx effective for
damping the spinning around the x-axis in relation to rotational motion of
the grasped rigid object. Even in this case, the derivation of rolling contact
contraints at both the contact points O1 and O2 developed in Section 5.3
is valid as far as Equations (5.14–5.20) are concerned. However, the Pfaffian
constraints of Equation (5.21) should be expressed in this case by introducing
the state vector X = (qT

1 , qT
2 , xT, ϕ, ψ, θ)T as follows:⎧⎪⎨

⎪⎩
λY i

{
Y T

qiq̇i + Y T
xiẋ + Yϕiωx + Yψiωy + Yθiωz

}
= 0

λZi

{
ZT

qiq̇i + ZT
xiẋ + Zϕiωx + Zψiωy + Zθiωz

}
= 0

i = 1, 2 (5.124)

where we add



5.11 Full-DOF Model of 3-D Grasping 193

Yϕi =
∂Yi

∂ϕ
, Zϕi =

∂Zi

∂ϕ
(5.125)

to Equations (5.22) and (5.23), respectively. Here, we use the symbol ϕ to
express an indefinite integral of ωx, that is, ϕ̇ = ωx. In relation to this mod-
ification, it is necessary to modify some formulae of Table 5.1 and add the
partial derivatives of Yi and Zi in ϕ. All these can be recast into Table 5.10.
The overall kinetic energy of the fingers–object system should be described,
instead of Equation (5.25), as follows:

K =
1
2

∑
i=1,2

q̇T
i Hi(qi)q̇i +

1
2
M‖ẋ‖2 +

1
2
ωTRHRTω, (5.126)

where ω = (ωx, ωy, ωz)T, R denotes the orthogonal matrix defined by Equa-
tion (5.4) and H stands for the constant inertia matrix of the object evaluated
on the basis of object coordinates Oc.m. − XY Z (see Figure 5.1 or 5.2). The
total potential energy can be expressed as in Equation (5.26). Thus, owing to
the variational principle applied in the form

∫ t1

t0

δL dt =
∫ t1

t0

⎧⎨
⎩cϕωxδϕ −

∑
i=1,2

{
uiδqi+

(
λY iY

T
i +λZiZ

T
i

)
δX

}⎫⎬
⎭ dt, (5.127)

where L = K − P + Q, Y 1 = (Y T
q1, 04, Y

T
x1, Yϕ1, Yψ1, Yθ1)T, Y 2 = (03, Y

T
q2,

Y T
x2, Yϕ2, Yψ2, Yθ2)T and Z1 and Z2 express similar meanings, we obtain

Hi(qi)q̈i +
{

1
2
Ḣi(qi) + Si(qi, q̇i)

}
q̇i − (−1)ifiJ

T
0i(qi)rX

−λY iY qi − λZiZqi + gi(qi) = ui, i = 1, 2, (5.128)

M ẍ − (f1 − f2)rX + (λY 1 + λY 2)rY

+(λZ1 + λZ2)rZ − Mg

⎛
⎝ 0

1
0

⎞
⎠ = 0, (5.129)

H̄ω̇ +
(

1
2

˙̄H + S

)
ω + cϕ

⎛
⎝ωx

0
0

⎞
⎠− f1

⎛
⎝ 0

Z1

−Y1

⎞
⎠− f2

⎛
⎝ 0

−Z2

Y2

⎞
⎠

−λY 1

⎛
⎝Z1

0
l1

⎞
⎠− λY 2

⎛
⎝ Z2

0
−l2

⎞
⎠− λZ1

⎛
⎝−Y1

−l1
0

⎞
⎠− λZ2

⎛
⎝−Y2

l2
0

⎞
⎠= 0, (5.130)

where H̄ = RHRT. Similary to Equation (5.34), taking inner products be-
tween q̇i and Equation (5.128), ẋ and Equation (5.129), and ω and Equation
(5.130), we obtain the relation
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∑
i=1,2

q̇T
i ui =

d
dt

(K + P ) + cϕϕ̇2. (5.131)

Finally, it is intersting to note that six vectors associated with fi, f2, λY 1,
λY 2, λZ1 and λZ2 from the fourth term to the ninth term on the right-hand
side of Equation (5.130) constitute, together with corresponding six vectors
of Equation (5.129), a set of wrench vectors exerted on the three-dimensional
rigid object. The last term on the left-hand side of Equation (5.129) is regarded
as an external force vector caused by gravity.

First consider the stability of control of blind grasping under weightless
circumstances when gi(qi) in Equation (5.128) and Mg(0, 1, 0)T in Equation
(5.129) are missing. The control signal is the same as that in Equation (5.41).
Substituting this control signal into Equation (5.128) yields

Hi(qi)q̈i +
{

1
2
Ḣi(qi) + Si(qi, q̇i) + Ci

}
q̇i − (−1)iJT

0i(qi)∆firX

−(−1)iJT
0i(qi)

fd

r1 + r2
{(Y1 − Y2)rY + (Z1 − Z2)rZ}

−λY i

{
JT

0i(qi)rY − ri((−1)irZ(qi0)ei + rZxe0i)
}

−λZi

{
JT

0i(qi)rZ + ri((−1)irY (qi0)ei + rY xe0i)
}

= 0, i = 1, 2, (5.132)

where ∆fi = fi − f0 and f0 is defined in Equation (5.46). These formulae are
the same as those in Equation (5.49). To accompany the closed-loop expres-
sion for the finger dynamics, we rewrite Equations (5.129) and (5.130) as the
following:

M ẍ − (∆f1 − ∆f2)rX + (λY 1 + λY 2)rY + (λZ1 + λZ2)rZ = 0, (5.133)

H̄ω̇ +
(

1
2

˙̄H + S

)
ω + cϕ

⎛
⎝ωx

0
0

⎞
⎠− ∆f1

⎛
⎝ 0

Z1

−Y1

⎞
⎠− ∆f2

⎛
⎝ 0
−Z2

Y2

⎞
⎠

−λY 1

⎛
⎝Z1

0
l1

⎞
⎠−λY 2

⎛
⎝Z2

0
−l2

⎞
⎠−λZ1

⎛
⎝−Y1

−l1
0

⎞
⎠−λZ2

⎛
⎝−Y2

l2
0

⎞
⎠−

⎛
⎝SX

SY

SZ

⎞
⎠=0, (5.134)

where

SX = 0, SY = f0(Z1 − Z2), SZ = −f0(Y1 − Y2). (5.135)

Then, similarly to the derivation of Equation (5.47), it follows that

d
dt

E = −cϕϕ̇2 −
∑

i=1,2

q̇T
i Ciq̇i, (5.136)

where
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E = K +
fd

2(r1 + r2)
{
(Y1 − Y2)2 + (Z1 − Z2)2

}
(5.137)

and K is defined as in Equation (5.126).
The overall fingers–object system depicted in Figure 5.2 superficially has

13 DOFs since the pair of fingers has seven joints and the object has three
independent translational variables (x, y, z) and three independent angular
velocity variables (ωx, ωy, ωz). On the other hand, it has two holonomic con-
straints Q1 = 0 and Q2 = 0. Further, it is subject to four rolling contact
constraints as shown in Equations (5.16) and (5.18). These four constraints
are non-holonomic, but they are Pfaffian, that is, they are linear and homoge-
neous in the velocity variables [components of Ẋ = (q̇T

1 , q̇T
2 , ẋT, ωx, ωy, ωz)T].

Hence, in the sense of infinitesimal displacements δX, these Pfaffian con-
straints can be written as

Y T
i δX = 0, ZT

i δX = 0, i = 1, 2, (5.138)

where Y 1 = (Y T
q1, 04, Y

T
x1, Yϕ1, Yψ1, Yθ1)T, Y 2 = (03, Y

T
q2, Y

T
x2, Yϕ2, Yψ2,

Yθ2)T and Z1 and Z2 have similar meanings as treated in the derivation of
the variational form described by Equation (5.127). Hence, the total number of
DOFs of the fingers–object system is seven. Apparently, under weightlessness
the number of finger joints is redundant; in particular some joints of the fingers
in the z-axis are redundant. As an extreme case under the circumstances of
weightlessness, it may be possible to consider a pair of robot fingers, one of
which has a single joint in the z-axis and the other of which has two joints in
the x- and z-axes. However, even in this setup with the minimum number of
finger joints, the total number of degrees of freedom becomes three. In other
words, the scalar function defined by Equation (5.137) cannot be regarded as a
Lyapunov function, though it satisfies the Lyapunov-like relation of Equation
(5.136).

Notwithstanding the redundancy in the system DOF, it is possible to prove
that the closed-loop dynamics of Equations (5.135–5.137) converges asymp-
totically to the equilibrium manifold satisfying{

Ẋ(t) → 0, Y1(t) − Y2(t) → 0, Z1(t) − Z2(t) → 0
fi(t) → f0, λY i(t) → 0, λZi(t) → 0 (i = 1, 2)

(5.139)

as t → ∞. Uniform boundedness of Ẋ, Y1−Y2 and Z1−Z2 follows immediately
from the basic relation of Equation (5.136). Then, uniform boundedness of
all multipliers ∆fi, λY i and λZi (i = 1, 2) can be deduced by applying a
similar argument to that presented in Section 5.8. Then, it is possible to see
that Ẍ becomes bounded uniformly in t. This implies that Ẋ(t) is uniformly
continuous in t. Then, it is important to note that q̇i(t) (i = 1, 2) and ϕ̇(t)
(= ωx(t)) are square-integrable over t ∈ (0,∞). Thus, according to Lemma 2
in Appendix A, it can be concluded that q̇i(t) → 0 (i = 1, 2) and ϕ̇(t) → 0
as t → ∞. Convergences of ψ̇(t) and θ̇(t) to zero as t → ∞ can be verified
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Table 5.11. Physical parameters of the fingers and object

l11 = l21 length 0.040 [m]

l12 = l22 length 0.040 [m]

l13 = l23 length 0.030 [m]

m11 weight 0.043 [kg]

m12 weight 0.031 [kg]

m13 weight 0.020 [kg]

l20 length 0.000 [m]

m20 weight 0.000 [kg]

m21 weight 0.060 [kg]

m22 weight 0.031 [kg]

m23 weight 0.020 [kg]

IXX11 inertia moment 5.375 × 10−7[kgm2]

IY Y 11 = IZZ11 inertia moment 6.002 × 10−6[kgm2]

IXX12 inertia moment 3.875 × 10−7[kgm2]

IY Y 12 = IZZ12 inertia moment 4.327 × 10−6[kgm2]

IXX13 inertia moment 2.500 × 10−7[kgm2]

IY Y 13 = IZZ13 inertia moment 1.625 × 10−6[kgm2]

IXX21 inertia moment 7.500 × 10−7[kgm2]

IY Y 21 = IZZ21 inertia moment 8.375 × 10−6[kgm2]

IXX22 inertia moment 3.875 × 10−7[kgm2]

IY Y 22 = IZZ22 inertia moment 4.327 × 10−6[kgm2]

IXX23 inertia moment 2.500 × 10−7[kgm2]

IY Y 23 = IZZ23 inertia moment 1.625 × 10−6[kgm2]

IXX = IZZ inertia moment (object) 1.133 × 10−5[kgm2]

IY Y inertia moment (object) 6.000 × 10−6[kgm2]

r0 link radius 0.005 [m]

ri(i = 1, 2) radius 0.010 [m]

L base length 0.063 [m]

M object weight 0.040 [kg]

li(i = 1, 2) object width 0.015 [m]

h object height 0.050 [m]

in a similar argument to that developed through Equations (5.55–5.61) to
reach Equation (5.61). Finally, it is possible to confirm by differentiation of
Equation (5.20) with respect to t that ẋ(t) → 0 as t → ∞. In order to show
convergence of Y1−Y2, Z1−Z2, ∆fi, λY i and λZi (i = 1, 2) to zero as t → ∞,
we can apply a similar argument to that presented in Equations (5.62–5.65)
to conclude Equation (5.66).

Finally, it should be remarked that exponential convergence of Equation
(5.138) in t can be assured by using a similar approach to that discussed in
some cases of planar pinching or by devising a similar proof to that given in
Section 5.9.
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Table 5.12. Parameters of the control signals

fd internal force 1.000 [N]

c1 = c2 damping coefficient 0.001 [Nms]

c20 damping coefficient 0.006 [Nms]

cϕ damping coefficient 0.001 [Nms]

To confirm theoretical predictions for convergence of the physical variables
of the fingers–object system depicted in Figure 5.2, we show computer simu-
lation results based on the physical parameters of the system model given in
Table 5.11. Control gains are given in Table 5.12, where C1 = diag(c1, c1, c1)
and C2 = diag(c20, c2, c2, c2). Note that c20 for damping of rotational move-
ment of the first joint of the right-hand finger (corresponding to the thumb)
is set considerably larger than c1 and c2 for the other joints, whose rotational
axes are in the z-direction. The transient behaviours of all the key variables
are presented in Figure 5.13. All six velocity variables of the object converge
to zero within almost one second. Spinning motion around the x-axis arises
at an early stage of the transient process but is very small. Note that in this
simulation all the velocity variables are set to zero at the initial time t = 0.
Initial discrepancies between Y1 and Y2 and between Z1 and Z2 are given as
shown in Figure 5.13, that is, Y1(0)−Y2(0) = 2.0 [mm] and Z1(0)−Z2(0) = 2.0
[mm]. Nevertheless, the transient behaviours of Y1−Y2, λY i, and ωz are more
oscillatory than those of Z1 − Z2, λZi and ωy.

Next, we discuss the ordinary case of pinching under the effect of gravity
by considering the same control signal for blind grasping defined in Equation
(5.67). By substituting this control signal into Equation (5.128), we obtain
the closed-loop dynamics of the fingers–object system as follows:

Hi(qi)q̈i +
{

1
2
Ḣi(qi) + Si(qi, q̇i) + Ci

}
q̇i − (−1)iJT

0i(qi)∆firX

− ∆λY i

{
JT

0i(qi)rY − ri(−1)irZ(qi0)ei + rZxe0i

}
− ∆λZi

{
JT

0i(qi)rZ + ri(−1)irY (qi0)eu + rY xe0i

}
− ∆Mg

2
· ∂y0i

∂qi
− ri∆Ni − ri∆N0i = 0, i = 1, 2, (5.140)

M ẍ − (∆f1 − ∆f2)rX + (∆λY 1 + ∆λY 2)rY

+(∆λZ1 + ∆λZ2)rZ = 0, (5.141)
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Fig. 5.13. The transient responses of the physical variables
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H̄ω̇ +
(

1
2

˙̄H + S

)
ω + cϕ

⎛
⎝ωx

0
0

⎞
⎠− ∆f1

⎛
⎝ 0

Z1

−Y1

⎞
⎠

−∆f2

⎛
⎝ 0

−Z2

Y2

⎞
⎠− ∆λY 1

⎛
⎝Z1

0
l1

⎞
⎠− ∆λY 2

⎛
⎝ Z2

0
−l2

⎞
⎠

−∆λZ1

⎛
⎝−Y1

−l1
0

⎞
⎠− ∆λZ2

⎛
⎝−Y2

l2
0

⎞
⎠−

⎛
⎝SX

SY

SZ

⎞
⎠ = 0, (5.142)

where ∆fi, ∆λY i, ∆λZi, ∆Ni for i = 1, 2, ∆M and ∆N02 are defined in
Equation (5.77) and Ni (i = 1, 2) and N02 are also defined in Equation (5.77),
∆N01 = 0, and SX , SY and SZ are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SX =
Mg

2
{(Z1 + Z2)rY y − (Y1 + Y2)rZy} ,

SY = fd(Z1 − Z2) − Mg

2
{rXy(Z1 + Z2) + rZy(l1 − l2)} ,

SZ = −fd(Y1 − Y2) +
Mg

2
{rXy(Y1 + Y2) + rY y(l1 − l2)} .

(5.143)

Along a solution trajectory to the closed-loop dynamics of Equations (5.140)
to (5.142), the following equality relation follows:

d
dt

(K + W ) = −cϕω2
x −

∑
i=1,2

q̇T
i Ciq̇i, (5.144)

where W is defined as Equation (5.88) and K signifies the total kinetic en-
ergy described by Equation (5.126). It is quite interesting to compare Equation
(5.144) with Equation (5.87), by bearing in mind the difference in modelling
physical behaviours of rolling contact constraints about spinning motion of
the object around the opposing axis between the contact points. In the for-
mer case, it is assumed that rotational movement around the opposing axis
is stacked by static friction under the assumption that the object centre of
mass remains nearly beneath the opposing axis. This assumption deprives the
angular velocity variable ωx of independence. In the latter case, rotational
movements of the object around the x-axis are always accompanied by vis-
cous friction. This does not deprive the velocity ωx of independence.

We shall show numerical simulation results in Figures 5.14–5.16 by using
the same physical setup of the fingers-object system depicted in Figure 5.2,
whose parameters are given in Table 5.11. Note that each of the numerical
values of Table 5.11 is identical with the corresponding parameter in Table
5.4. However, the simulation results using the control gains given in Table
5.5 lead to considerably slow convergence of most of the physical variables.
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Fig. 5.14. Motions of pinching an object with parallel flat surfaces in 3-D space

Table 5.13. Parameters of the control signals

fd internal force 0.300 [N]

c1 = c2 damping coefficient 0.001 [Nms]

c20 damping coefficient 0.006 [Nms]

cϕ damping coefficient 4.0×10−4 [Nms]

Instead of the control signals in Table 5.5, we show numerical simulation
results in Figure 5.15 using the control signal gains given in Table 5.13 and
set the gains γM , γi (i = 1, 2) and γ0 as in Table 5.5. In particular, the target
pushing force parameter fd had to be decreased to fd = 0.3 [N], which is
almost comparable with the numerical value of Mg/2. According to Figure
5.16, the speed of convergence of SX is slow in comparison with that of SY

or SZ . The reason is that the early mismatch of the object mass estimator M̂
with the true value M induces a large amount of spinning motion as shown
in the graph of ωx in Figure 5.16, which is significant compared with the
responses of ωy and ωz. Figure 5.14 shows a superimposition of two poses of
the overall fingers–object system, the initial pose at t = 0 and the final pose
satisfying force/torque balance when t tends to infinity. From this figure, we
see that the object rotated considerably around the x-axis until establishing
force/torque balance. This phenomenon might happen due to the selection of
a relatively small damping gain cϕ in Table 5.13. Based on this simulation
result, there still remains a lot of interesting problems in the tuning of control
gains in relation to the geometry and physical scales of the objects to be
grasped.
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Fig. 5.15. The transient responses of the physical variables
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Fig. 5.16. The transient responses of the angular velocities of the object

Theoretical discussions of proofs of convergence of the solution trajec-
tories to the closed-loop dynamics of Equations (5.132–5.134) can be de-
veloped in parallel with the mathematical arguments presented in the pre-
vious section. The most essential part of the discussions is the derivation
of the linear gradient equation for the artificial potential function W in
Equation (5.144) defined as Equation (5.88) with respect to q1, q2, x and
(ϕ, ψ, θ)T. This gradient equation is coincident with the set of Equations
(5.140), (5.141) and (5.142) in which q̇i, q̈i (i = 1, 2), ẍ, ω and ω̇ vanish, that
is, all the acceleration and velocity terms vanish. Then, what values does the
vector ∆λ = (∆f1, ∆f2, ∆λY 1, ∆λY 2, ∆λZ1, ∆λZ2, ∆M, ∆N1, ∆N2, ∆N02)T

converge to as t → ∞? According to Equation (5.141), it is possible to
notice that ∆f1 and ∆f2 converge to the same certain value f∞, similarly
λY 2 converges to −λY ∞ if λY 1 converges to λY ∞ as t → ∞ and λZ2 con-
verges to −λZ∞ if λZ1 does to λZ∞. Hence, the limiting values of the vector
∆λ′ = (∆f1, ∆λY 1, ∆λZ1, ∆M, ∆N1, ∆N2, ∆N02)T should satisfy the follow-
ing linear equation:



5.12 Supplementary Results 203

∆λ′
∞ = lim

t→∞
(
(A′)TA′)−1

(A′)T d′, (5.145)

where ∆λ′
∞ = (∆f∞, ∆λY ∞, ∆λZ∞, ∆M∞, ∆N1∞, ∆N2∞, ∆N02∞)T, and

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Q1

∂q1
Y q1 Zq1

g

2
· ∂y01

∂q1
r1e1 03 03

∂Q2

∂q2
−Y q2 −Zq2

g

2
· ∂y02

∂q2
04 r2e2 r2e02

0 Z1 − Z2 −Y1 + Y2 0 0 0 0
Z1 + Z2 0 −l1 − l2 0 0 0 0

−(Y1 + Y2) l1 + l2 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.146)

d′ = −(07, SX , SY , SZ)T. (5.147)

The Hessian matrix of W̄ (= W − (γM/2)∆M2) with respect to p1, p2, q20

and (ϕ, ψ, θ)T can be calculated in a manner similar to the case when the
Hessian in the five-variables problem is obtained in Tables 5.7.

5.12 Supplementary Results

Under the constraints of Equation (5.1) or (5.2) and Equation (5.5), it is
possible to derive partial derivatives of rX , rY and rZ with respect to θ and
ψ, where

θ(t) =
∫ t

0

ωz(τ) dτ, ψ(t) =
∫ t

0

ωy(τ) dτ. (5.148)

First note that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṙY =
(

∂rY

∂θ

)
θ̇ +

(
∂rY

∂ψ

)
ψ̇ =

(
∂rY

∂θ

)
ωz +

(
∂rY

∂ψ

)
ωy,

ṙZ =
(

∂rZ

∂θ

)
ωz +

(
∂rZ

∂ψ

)
ωy.

(5.149)

On the other hand, it follows from Equations (5.5) and (5.2) that{
ṙY = −ωzrX + ωxrZ = −ωz(rX + ξzrZ) − ωy(ξyrZ),
ṙZ = ωyrX − ωxrY = ωy(rX + ξyrY ) + ωz(ξzrY ).

(5.150)

Comparison of Equation (5.148) with Equation (5.149) leads to

∂

∂θ
rY = −rX − ξzrZ ,

∂

∂θ
rZ = ξzrY , (5.151)

∂

∂ψ
rY = −ξyrZ ,

∂

∂ψ
rZ = rX + ξyrY . (5.152)
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As to the partial derivatives of rX in θ and ψ, we see that⎧⎪⎨
⎪⎩

ṙX =
(

∂rX

∂θ

)
ωz +

(
∂rX

∂ψ

)
ωy,

ṙX = ωzrY − ωyrZ ,

(5.153)

which leads to

∂

∂θ
rX = rY ,

∂

∂ψ
rX = −rZ . (5.154)

Next, we will discuss how to derive the partial derivatives of the inertia
matrix H̄ of Equation (5.28) with respect to θ or ψ. On account of Equations
(5.151) and (5.154), we see that

∂

∂θ
R(t) =

(
∂rX

∂θ
,
∂rY

∂θ
,
∂rZ

∂θ

)
= (rY ,−(rX + ξzrZ), ξzrY )

= R(t)Ωθ, (5.155)

where Ωθ denotes the following skew-symmetric matrix:

Ωθ =

⎛
⎝0 −1 0

1 0 ξz

0 −ξz 0

⎞
⎠ . (5.156)

Hence,

∂

∂θ
H̄ =

(
∂

∂θ
R

)
HRT + RH

(
∂R

∂θ

)T

= R (ΩθH − HΩθ)RT. (5.157)

Analogously, we obtain

∂

∂ψ
H̄ = R (ΩψH − HΩψ)RT (5.158)

where

Ωψ =

⎛
⎝ 0 0 1

0 0 ξy

−1 −ξy 0

⎞
⎠ . (5.159)

Thus, the partial derivatives of each entry of H̄ with respect to θ and ψ can
be found from Equations (5.157) and (5.158). On the other hand, the partial
derivatives of ξy and ξz with respect to θ or ψ can be calculated from the
relations
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⎪⎪⎩

∂

∂θ
(x1 − x2) = (r1 + r2)

∂

∂θ
rX = (r1 + r2)rY ,

∂

∂ψ
(x1 − x2) = (r1 + r2)

∂

∂ψ
rX = −(r1 + r2)rZ .

(5.160)

Thus, the partial derivatives of each entry hij (i, j = 1, 2) of H0 with respect
to θ or ψ appearing in Equation (5.33) can be systematically calculated using
Equations (5.157), (5.158) and (5.160).

Before closing this chapter, we show how to evaluate the partial derivatives
of Yi and Zi for i = 1, 2 with respect to θ or ψ under the rolling constraints of
Equations (5.16) and (5.19). Since those rolling constraints are of a Pfaffian
form, Equation (5.16) can be re-interpreted by the analysis of infinitesimally
small variation as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
δY1 =

∂Y1

∂θ
δθ +

(
∂Y1

∂q1

)T

δq1,

δZ1 =
∂Z1

∂θ
δψ +

(
∂Z1

∂q1

)T

δq1.

(5.161)

Comparing these two equations with Equation (5.16) yields⎧⎪⎪⎨
⎪⎪⎩

∂Y1

∂θ
= r1,

∂Y1

∂ψ
= 0,

∂Y1

∂q1
= −r1rZze1,

∂Z1

∂θ
= 0,

∂Z1

∂ψ
= −r1,

∂Z1

∂q1
= r1rY ze1.

(5.162)

Similarly, we see that ⎧⎪⎪⎨
⎪⎪⎩

∂Y2

∂θ
= −θ,

∂Y2

∂ψ
= 0

∂Z2

∂θ
= 0,

∂Z2

∂ψ
= r2

(5.163)

and the partial derivatives ∂Y2/∂q2 and ∂Z2/∂q2 are evaluated as in Equation
(5.113).



6

Dexterity and Control for Stable Grasping by
Soft Fingers

In the previous chapters, stable grasping by a pair of robot fingers interacting
rigidly with a rigid object was analysed on the basis of indirect control of
rolling contact constraint forces to establish force/torque balance. A class of
coordinated control signals based on fingers–thumb opposability was shown
to be effective in realising stable grasping in a blind manner.

This chapter extends these results obtained in the case of rigid contacts
to the case of robot fingers equipped with soft and deformable finger-ends.
The most crucial difference of prehensility between the rigid contact and the
soft area contact is that in the former case the stability region of grasping
of a thin light object becomes narrow but in the latter case a thinner ob-
ject with flat surfaces can be grasped securely with a larger stability margin.
Dexterity can be enhanced by expansion of the stability margin owing to
coordinated regulation of reproducing and damping forces of finger-tip de-
formations that increase the net DOFs of the system. Another noteworthy
difference arising in the latter case is that rolling contact constraints should
be treated as non-holonomic. Nevertheless, those constraints can be incor-
porated into Lagrange’s equation of motion of the system accompanied by
Lagrange’s multipliers. Again, stability analysis becomes applicable with the
aid of differetial-geometric concepts such as Riemannian metrics and Morse
functions.

6.1 Lumped-Parameterisation of the Behaviours of Soft
and Visco-elastic Fingertips

As shown in Figure 6.1 a narrow strip with width rdθ and radius r sin θ in
the contact area produces a reproducing force in the direction to the centre
O0i of curvature of the hemisphere with magnitude

k(2πr sin θ)dθ × r(cos θ − cos θ0) cos θ, (6.1)
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Fig. 6.1. Geometric relations related to lumped parameterisation of fingertip stress
distribution into a single reproducing force focussed on the centre of curvature O0i

where k denotes the stiffness parameter of the soft and deformable material
per unit area, (2πr2 sin θ)dθ is the area of the narrow circular strip as shown
in Figure 6.1, and

r(cos θ − cos θ)
cos θ

=
(

r − r − ∆x

cos θ

)

= r − r cos θ0

cos θ
(6.2)

denotes the length of deformation at angle θ. Since the total reproducing force
with magnitude (6.1) generated from the narrow circular strip contributes to
the direction ∆x (the arrow denoted by f in Figure 6.1) by cos θ, the total
reproducing force can be expressed as the integral

f̄ =
∫ θ0

0

2πkr2 sin θ(cos θ − cos θ0)dθ

= πkr2(1 − cos θ0)2 = πk∆x2. (6.3)

This means that the reproducing force produced by the deformed area can
be approximately expressed by an increasing function of ∆x (the maxi-
mum length of displacement). It should be noted that the moment M =
(Mx, My, Mz)T around O0i becomes

−−−→
O0iP × k

−−→
PQdS, (6.4)

where dS = r2 sin θdθdφ (which denotes an infinitesimally small area as shown
in Figure 6.1). It is evident that the area integral of Equation (6.4) with
respect to dS over φ ∈ [0, 2π] and θ ∈ [0, θ0] vanishes due to the symmetry of
the sinusoidal functions sinφ and cosφ appearing in Equation (6.4). Thus, the
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Fig. 6.2. Control for immobilisation of rotational motion of a 2-D object pivoted
about the z-axis through Om by a single-DOF soft finger

moment acting around the point O0i caused by overall deformations of the soft
material becomes zero. As to the lumped parametrisation of the distributed
viscous forces, a similar argument can be applied. It can be concluded that the
viscous force acting on the point O0i can be expressed in the form ξi(∆xi)∆ẋi,
where ξi(∆xi) is an increasing function of ∆xi.

6.2 Stabilisation of a 2-D Object by a Single DOF Soft
Finger

It is small wonder that we could find the name of Isaac Newton in John
Napier’s book “Hands”. On page 51 of the book, Napier wrote:

The thumb, the “lesser hand” as Albinus called it, is the most specialized
of the digits. Isaac Newton once remarked that, in the absence of any other
proof, the thumb alone would convince him of God’s existence.

No solid reason for quoting the name of Newton was presented in Napier’s
book. Hence we attempt to put forward a fact supporting the statement by
illustrating the role played by Newtonian mechanics in the simplest model of
a robotic thumb in the stabilisation of the physical interaction between the
robot thumb and an object.

Consider the simplest testbed problem of control for immobilising a 2-D
rigid object rotating around a fixed pivotal axis by a single-DOF finger with a
spherical tip made of visco-elastic material. The overall finger–object system
is depicted in Figure 6.2, where motion of the finger and object is confined to
a horizontal plane. As discussed in Section 3.6 the total DOFs of the system is
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zero when the finger-end is rigid and contacts rigidly and pointwise with the
rigid object (Figure 3.9). In that case, rotational motion of the object cannot
be stabilized in a dynamic sense. Differently from that case, such a soft finger
with a single joint can stabilise the motion of a 2-D object in a dynamic sense
because the net number of DOFs of the system becomes one. However, the
rolling constraint must not be treated as a holonomic constraint.

For the sake of the derivation of Lagrange’s equation of motion for the
finger–object system depicted in Figure 6.2, we derive the kinetic energy K
of the overall system and the potential energy P of the fingertip deformation.
The former becomes as follows:

K =
1
2
I1q̇

2
1 +

1
2
Iθ̇2, (6.5)

where I1 denotes the moment of inertia of the finger around the axis through
the joint O and I that of the object around Om. Referring directly to Equation
(1.29) and bearing in mind that the reproducing force f(∆x) due to finger-tip
deformation can be regarded as −f̄(∆x) given in Equation (6.3), we can see
that the potential energy P of fingertip deformation is described as

P (∆x) =
∫ ∆x

0

f̄(η) dη, (6.6)

where f̄(η) = πkη2 as shown in Equation (6.3). In the following, however, we
regard the function f̄(∆x) as a rapidly increasing function with increasing ∆x
that is proportional to the stiffness parameter k [N/m2]. Next, note that the
condition of contact between the fingertip and the object should be expressed
in the direction normal to the object surface as follows:

(r − ∆x) + l = (xm − x0) cos θ − (ym − y0) sin θ (6.7)

[see Equation (3.2)]. However, this equality cannot be treated as a holonomic
constraint, because ∆x is not a fixed constant but a changeable variable,
though it is not a component of the generalized coordinates that are taken
as X = (q1, θ)T. On the other hand, the rolling contact constraint in the
direction tangential to the object surface should be expressed as

(r − ∆x)
d
dt

φ = − d
dt

Y, (6.8)

where Y and φ are given by

Y = (x0 − xm) sin θ + (y0 − ym) cos θ, (6.9)
φ = π + θ − q1 (6.10)

[see Equations (3.4) and (3.5)]. It should be remarked that Equation (6.8)
cannot be integrated in time t and therefore it must be treated as a non-
holonomic constraint. Notwithstanding this fact, Equation (6.8) can be re-
garded in a form written in terms of infinitesimally small variation δX as
follows:
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(r − ∆x)

∂φ

∂XT
+

∂Y

∂XT

}
δX = 0. (6.11)

Thus, the variational form for the Lagrangian L = K−P with external forces
of control input u, damping ξ(∆x)∆ẋ, and the non-holonomic constraint of
Equation (6.11) can be expressed as follows:

∫ t2

t1

[
δL − ξ(∆x)∆ẋ

∂∆x

∂XT
δX + uTδq1

+λ

{
(r − ∆x)

∂φ

∂XT
+

∂Y

∂XT

}
δX

]
dt = 0 (6.12)

where λ expresses a Lagrange multiplier introduced correspondingly to the
non-holonomic constraint of Equation (6.8). Applying the variational principle
to the above form it follows that

I1q̈1 +
{
f̄(∆x) + ξ(∆x)∆ẋ

} ∂∆x

∂q1
− λ

{
(r − ∆x)

∂φ

∂q1
+

∂Y

∂q1

}
= u, (6.13)

Iθ̈ − {
f̄(∆x) + ξ(∆x)∆ẋ

} ∂∆x

∂θ
− λ

{
(r − ∆x)

∂φ

∂θ
+

∂Y

∂θ

}
= 0. (6.14)

Since it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂Y

∂θ
= −(r − ∆x) − l,

∂φ

∂θ
= 1,

∂∆x

∂θ
= Y,

∂Y

∂q1
= JT

0 (q1)rY ,
∂φ

∂q1
= −1,

∂∆x

∂q1
= JT

0 (q1)rX − Y,

JT
0 (q1) =

∂(x0, y0)
∂q1

, rX = (cos θ,− sin θ)T, rY = (sin θ, cos θ).

(6.15)

Equation (6.13) and (6.14) are reduced to

I1q̈1 +
{
f̄(∆x) + ξ(∆x)∆ẋ

}
JT

0 (q1)rX

−λ
{
(r − ∆x) − JT

0 (q1)rY

}
= u, (6.16)

Iθ̈ − {
f̄(∆x) + ξ(∆x)∆ẋ

}
Y + lλ = 0, (6.17)

respectively. From this equation we see that the tangential constraint force
with the magnitude λ emerges at the centre of the contact area in the direction
tangential to the object surface.

Now, applying a similar argument given in Chapter 3 for the dynamics of
the overall finger-object system of Figure 6.2, we show stability of the closed-
loop dynamics when the following control signal is used:

u = −cq̇1 − (fd/r)JT
0 (q1)

(
x0 − xm

y0 − ym

)
. (6.18)
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This control signal is the same as that of Equation (3.30), though in this
case the finger has a single joint whereas in the case of the system shown in
Figure 3.1 the finger has three joints. In a similar manner to the derivation of
Equation (3.42), we see that(

x0 − xm

y0 − ym

)
= −(r − ∆x + l)rX + Y rY . (6.19)

Hence, substituting Equation (6.18) into Equation (6.16) yields

I1q̈1 + c1q̇1 +
{

f̄(∆x) + ξ(∆x)∆ẋ − r − ∆x + l

r
fd

}
JT

0 (q1)rX

+λ(r − ∆x) −
(

λ − fd

r
Y

)
JT

0 (q1)rY = 0. (6.20)

Multiplying Equation (6.20) by q̇1 and Equation (6.17) by θ̇ yields

d
dt

{
1
2
(I1q̇

2
1 + Iθ̇2) + P (∆x) +

fd

2r

(
Y 2 + (l + r − ∆x)2

)}
= −cq̇2

1 − ξ(∆x)∆ẋ2 . (6.21)

If we define

E =
1
2
(I1q̇

2
1 + Iθ̇2) + P (∆x) +

fd

2r

{
Y 2 + (l + r − ∆x)2

}
(6.22)

then Equation (6.21) is rewritten in the form

d
dt

E = −cq̇2
1 − ξ(∆x)∆ẋ2. (6.23)

Evidently, E attains its minimum value Em when q̇1 = 0, θ̇ = 0, Y = 0 and
∆x = ∆xd, where ∆xd denotes the value of ∆x satisfying

f̄(∆xd) =
(

1 +
l

r

)
fd − fd

r
∆xd (6.24)

because, at ∆x = ∆xd, ∂E/∂∆x = 0 (see Figure 6.3). Then, it is possible to
rewrite Equation (6.23) as

d
dt

Ē = −cq̇2
1 − ξ(∆x)∆ẋ2. (6.25)

where

Ē = E − Em ≥ 0. (6.26)

Note that Ē is positive definite with respect to the state vector X = (q1, θ)T

and Ẋ = (q̇1, θ̇)T. Thus, Ē in Equation (6.25) plays a role of a Lyapunov
function. By applying Lemma 2 of Appendix A, we conclude that, as t → ∞,
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Fig. 6.3. The pressing force f̄(∆xd) realising the force/torque balance is determined
by the crossing point of the curve y = f̄(∆x) and the straight line y = f0−(fd/r)∆x,
where f0 = (1 + l/r)fd

q̇1 → 0 and ∆ẋ → 0. (6.27)

On the other hand, Equation (6.8) implies that

(r − ∆x)(θ̇ − q̇1) = θ̇ {(r − ∆x) + l} − ẋ0 sin θ − ẏ0 cos θ (6.28)

from which it follows that

θ̇ =
1
l
{ẋ0 sin θ + ẏ0 cos θ − (r − ∆x)q̇1} . (6.29)

This shows that θ̇ → 0 as t → ∞ owing to Equation (6.27). Thus, applying
a similar argument to that developed in Section 3.1, we can conclude that as
t → ∞

Y → 0, ∆x → ∆xd, λ → 0. (6.30)

In addition to the control signal introduced in Equation (6.18), it is possible
to append another term −rN̂0 with a similar meaning to the term −rN̂0e in
Equation (3.103), which was discussed fully in Section 3.5. Hence, let

N̂0(t) = N̂0(0) + γ−1
0

∫ t

0

rq̇1(τ) dτ

= N̂0(0) + (r/γ0)(q1(t) − q1(0)) (6.31)

and

u = −cq̇1 − (fd/r)JT
0 (q1)

(
x0 − xm

y0 − ym

)
− rN̂0. (6.32)
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Table 6.1. Physical parameters for the case of one DOF

m1 link mass 0.025[kg]

I1 inertia moment 3.333 × 10−6[kg · m2]

l1 link length 0.040[m]

r radius 0.010[m]

M object mass 0.009[kg]

h object length 0.050[m]

w object width 0.030[m]

I object inertia 3.000 × 10−6[kg · m2]

moment

l object length 0.020[m]

k stiffness 3.000 × 105[N/m2]

c∆ viscosity 1000.0[Ns/m2 ]

Table 6.2. Parameters of the control signals

fd internal force 0.250[N]

c damping coefficient 0.001[msN]

γ0 regressor gain 0.001

N̂0(0) initial estimated value 0.0

γλ CSM gain 3000.0

Convergence of the closed-loop dynamics when the control signal of Equation
(6.32) is substituted into Equation (6.16) to the equilibrium state can be
proved in a similar way to that given in Section 6.5.

To confirm this theoretical prediction, we shall show a numerical simula-
tion result obtained by a model of the finger–object system whose physical
parameters are given in Table 6.1. In the table, the viscosity c∆ stands for a
constant governing the relation

ξ(∆x)∆ẋ = c∆(∆x)2∆ẋ, (6.33)

that is, the viscosity affecting the finger-end O01 in the direction −f is pro-
portional to the square of ∆x similarly to the stiffness. The parameters of
the control signal of Equation (6.32) and the initial value for N̂0 are shown
in Table 6.2. We show the transient responses of all the physical variables
in Figure 6.4. In this case, Y and λ do not converge to zero as t → ∞ but
converge to some constant values very quickly within 0.15 [s]. The result for
α + θ shown in Figure 6.3 implies that the sum of two forces originating at
the centre of area contact with magnitude f̄(∆x) normal to the object surface
and the magnitude λ tangent to the object surface should be directed to-
ward the pivot point Om. The details of this observation about the condition
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Fig. 6.4. The transient responses of the physical variables when the control input
of Equation (6.32) is used
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Table 6.3. Physical parameters for dual single-DOF fingers

m11 = m21 link mass 0.025[kg]

I11 = I21 inertia moment 3.333 × 10−6[kg · m2]

l11 = l21 link length 0.040[m]

r1 = r2 radius 0.010[m]

M object mass 0.009[kg]

h object length 0.050[m]

w = (l1 + l2) object width 0.030[m]

d object height 0.010[m]

I object inertia 2.550 × 10−6[kg · m2]

moment

l1 = l2 object length 0.015[m]

k stiffness 3.000 × 105[N/m2]

c∆ viscosity 1000.0[Ns/m2 ]

of force/torque balance is the same as in the rigid contact case discussed in
Section 3.6 (in particular, refer to Equation (3.132).

6.3 Stable Grasping of a 2-D Object by Dual
Single-DOF Soft Fingers

The thumb itself is rather big and fat in comparison with the other digits
such as the index and middle fingers. It is strong and therefore can generate a
large pressing force on an object. It plays a vital role in finger-pressure therapy.
Nevertheless, the thumb can be dexterous through deliberate exercises as seen
in our everyday life. In fact, nowadays, even elderly people use it to push
buttons on a cell phone while grasping it by other four digits.

The thumb and index (or middle) finger can be used for prehensing a
small, light, and thin object easily and quickly based upon the fingers–thumb
opposability. The dexterity of precision prehension of a thin object on the
basis of such opposability is deeply indebted to the softness of the thumb
and finger pads. In this section, we shall analyse the stability of the precision
prehension of a small, light, thin object by a pair of dual single-DOF fingers
with spherical fingertips that are soft and visco-elastic. Before this, we show
some computer simulation results of a 2-D object with ordinary width l =
l1 + l2, l1 = l2 = 0.015 [m] being grasped by a pair of dual single-DOF fingers
whose physical parameters are shown in Table 6.3. A schematic of the fingers–
object system is quite similar to Figure 2.10, where in this case the fingertip
spheres are soft and deformable. Firstly we show the transient responses of
the physical variables of the system in Figure 6.5, where the following control
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Table 6.4. Parameters of the control signals

fd internal force 0.250[N]

c1 = c2 damping coefficient 0.001[msN]

γf CSM gain 1500.0

γλ CSM gain 3000.0

signal is employed:

ui = −ciq̇i + (−1)i fd

r1 + r2
JT

0i(qi)
(

x01 − x02

y01 − y02

)
, i = 1, 2. (6.34)

Control gains are given in Table 6.4. The second term on the right-hand side
of Equation (6.34) stands for exertion of the pressing force F i (i = 1, 2) on the
object in the direction shown in Figure 6.6. In this case, Lagrange’s equation
of motion for the overall finger–object system can easily be derived in a similar
manner to in the previous section for the system of Figure 6.6 [also refer to
the derivation of Equations (2.52) and (2.53)]. This results in the equations:

Iiq̈i − (−1)ifiJ
T
0i(qi)rX

+λi

{
(ri − ∆xi) − JT

0i(qi)rY

}
= ui, i = 1, 2, (6.35)

M ẍ − Rθ(f1 − f2,−(λ1 + λ2))T = 0, (6.36)
Iθ̈ − f1Y1 + f2Y2 + l1λ1 − l2λ2 = 0, (6.37)

where x = (x, y)T, x0i = (x0i, y0i)T, J0i(qi) = ∂(x0i, y0i)/∂qi and

fi(∆xi, ∆ẋi) = f̄i(∆xi) + ξi(∆xi)∆ẋi (6.38)

and rX = (cos θ,− sin θ)T, rY = (sin θ, cos θ)T and Rθ = (rX , rY ). It should
also be remarked that the maximum displacements ∆xi (i = 1, 2) of deforma-
tion arising at the centres of the contact areas are dependent on the position
state variables according to

∆xi = ri + li + (−1)i(x − x0i)TrX , i = 1, 2 (6.39)

and similarly it follows that⎧⎪⎨
⎪⎩

xi = x0i − (−1)i(ri − ∆xi)rX , i = 1, 2
x = x1 + l1rX − Y1rY = x2 − l2rX − Y2rY

Yi = (x0i − x)TrY , i = 1, 2
(6.40)

and

−(ri − ∆xi)
d
dt

(
3π

2
− (−1)iθ − qi

)
=

d
dt

Yi, i = 1, 2. (6.41)
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robot fingers with soft fingertips

The last equations for i = 1, 2 express non-holonomic constraints due to rolling
of the fingertips and object surfaces.

According to Figure 6.5, Y1−Y2 converges asymptotically to zero as t → ∞
and, coincidently, the constraint forces λ1 and λ2 converge to zero as t → ∞
with the same speed of convergence as that of Y1 − Y2. In contrast, ∆x1 and
∆x2 together with f̄1(∆x1) and f̄2(∆x2) quickly converge to their correspond-
ing constants within 0.2 [s]. In this simulation, we use the same characteristics
of fingertip visco-elasticity, that is,{

f̄1(∆x) = f̄2(∆x) = k∆x2

ξ1(∆x)∆ẋ = ξ2(∆x)∆ẋ = c∆(∆x)2∆ẋ
(6.42)

and the constants k and c∆ are specified in Table 6.3. As seen from Figure 6.5,
both ∆x1 and ∆x2 converge to the same value ∆xd and f̄1(∆x) and f̄2(∆x)
converge to the same value f̄(∆xd). In what follows, however, we will show
that, even if the parameters of fingertip stiffness and viscosity are different for
the left and right fingers, f̄1(∆x1) and f̄2(∆x2) must converge asymptotically
to the same common value f̄d as t → ∞. To do this, let us show the closed-loop
dynamics of robot fingers when Equation (6.34) is substituted into Equation
(6.35), which results in the form

Iiq̈i + ciq̇i − (−1)i∆fiJ
T
0i(qi)rX

+∆λi

{
(ri − ∆xi) − JT

0i(qi)rY

}− Ni = 0, i = 1, 2, (6.43)

where Ni = (−1)i (ri−∆xi)
r1+r2

fd(Y1 − Y2) and
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⎪⎪⎩

∆fi = fi +
fd

r1 + r2
(x01 − x02)TrX ,

∆λi = λi + (−1)i fd

r1 + r2
(x01 − x02)TrY .

(6.44)

In relation to this, it is convenient to rewrite the dynamics of the object
expressed by Equations (6.36) and (6.37) equivalently in the following forms:

M ẍ − Rθ(∆f1 − ∆f2, −∆λ1 − ∆λ2)T = 0, (6.45)
Iθ̈ − ∆f1Y1 + ∆f2Y2 + l1∆λ1 − l2∆λ2 + S = 0, (6.46)

where

S = −fd

(
1 − ∆x1 + ∆x2

r1 + r2

)
(Y1 − Y2). (6.47)

It is then easy to derive Lyapunov’s relation by calculating∑
i=1,2

q̇i × (6.43) + ẋT × (6.45) + θ̇ × (6.46),

which results in

d
dt

E =
∑

i=1,2

−{ciq̇
2
i + ξ(∆xi)∆ẋ2

i

}
, (6.48)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K =
1
2

{
I1q̇

2
1 + I2q̇

2
2 + Mẋ2 + Mẏ2 + Iθ̇2

}
,

P =
∑

i=1,2

∫ ∆xi

0

f̄i(η) dη +
fd

2(r1 + r2)
(Y1 − Y2)2,

E = K + P.

(6.49)

In the derivation of S in Equation (6.46), we use the relations{
(x01 − x02)TrY = Y1 − Y2

−(x01 − x02)TrX = l1 + l2 + r1 + r2 − (∆x1 + ∆x2)
(6.50)

and

fd

r1 + r2
(x01 − x02) = − l(∆x1 + ∆x2)

r1 + r2
fdrX +

Y1 − Y2

r1 + r2
fdrY (6.51)

that can easily be obtained from Equation (6.40). Since E is positive def-
inite with respect to X = (q1, q2, x, y, θ)T and Ẋ under the non-holonomic
constraints of Equation (6.41) and the relation of Equation (6.39), E in Equa-
tion (6.48) plays the role of a Lyapunov function. Hence, Lemma 2 stated in
Appendix A concludes that, as t → ∞,
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Table 6.5. Parameters of the control signals

fd internal force 0.25[N]

c1 = c2 damping coefficient 0.001[msN]

γi(i = 1, 2) regressor gain 0.001

N̂i(0)(i = 1, 2) initial estimate value 0.0

γf CSM gain 1500.0

γλ CSM gain 3000.0

q̇i(t) → 0, ∆ẋi(t) → 0, i = 1, 2. (6.52)

Then, applying a similar argument to that developed in the previous section,
we conclude

∆fi → 0 and ∆λi → 0, i = 1, 2 (6.53)

as t → ∞. In particular, ∆fi → 0 and ∆ẋi → 0 as t → ∞ imply that

f̄i(∆xi) − fd

r1 + r2
{(l1 + l2 + r1 + r2) − (∆x1 + ∆x2)} → 0,

i = 1, 2. (6.54)

This shows that the constants ∆xdi (i = 1, 2) should be determined so that
they satisfy the following two equations simultaneously:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f̄1(∆xd1) =

(
1 +

l1 + l2 − ∆xd1 − ∆xd2

r1 + r2

)
fd,

f̄2(∆xd2) =
(

1 +
l1 + l2 − ∆xd1 − ∆xd2

r1 + r2

)
fd,

(6.55)

from which it can be concluded that both reproducing forces f̄1(∆x1) and
f̄2(∆x2) must converge to the same value of f̄d in such a way that

f̄1(∆x1) and f̄2(∆x2) → f̄d =
(

1 +
l1 + l2 − ∆xd1 − ∆xd2

r1 + r2

)
fd (6.56)

as t → ∞.
We conducted another computer simulation for the setup of Figure 6.6 by

using the control signal

ui = −ciq̇i + (−1)i fd

r1 + r2
JT

0i(qi)(x01 − x02) − riN̂i, i = 1, 2, (6.57)

where

N̂i(t) = N̂i(0) + γ−1
i ri {qi(t) − qi(0)} , i = 1, 2. (6.58)



222 6 Dexterity and Control for Stable Grasping by Soft Fingers

Y
1-

Y
2[

m
m

]

time[s]

Y1-Y2

0 0.5 1

-4.4

-4.3

-4.2

-4.1

[d
eg

]

time[s]
0 0.5 1

4.8

5

5.2

5.4

f 1
[N

]

time[s]

f1
f0

0 0.5 1

0

0.2

0.4

0.6

0.8

f 2
[N

]

time[s]

f2
f0

0 0.5 1

0

0.2

0.4

0.6

0.8

[N
]

time[s]

 The value of zero

0 0.5 1
-0.2

-0.1

0

0.1

[N
]

time[s]

 The value of zero

0 0.5 1
-0.2

-0.1

0

0.1

N
1[

N
]

<

time[s]

 N1

<

0 0.5 1

0

0.1

0.2

0.3

0.4

N
2[

N
]

<

time[s]

 N2

<

0 0.5 1

0

0.1

0.2

0.3

0.4

Fig. 6.7. The transient responses of the physical parameters when the control signals
of Equation (6.57) are employed
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Fig. 6.8. The transient responses of the physical variables when the same control
signals as those in Figure 6.7 are employed

The control gains used in this simulation are given in Table 6.5. We show the
transient responses of the physical variables in Figures 6.7 and 6.8. Comparing
Figure 6.7 with Figure 6.5, the convergence speeds of λi (i = 1, 2) to their
corresponding constants have been drastically improved. Accompanying this
improvement in convergences of λi (i = 1, 2), the convergence performance of
the variables Y1 −Y2 and θ is also improved in this case, though Y1 − Y2 does
not converge to zero. Nevertheless, force/torque balance is established in the
sequel in such a way that
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Fig. 6.9. Prehension of a thin object by a pair of single-DOF fingers with soft tips

f̄i(Y1 − Y2) − λi(l1 + l2) → 0, i = 1, 2 (6.59)

as t → ∞, as seen in Figure 6.8. The maximum displacements ∆x1 and ∆x2

of the soft fingertips also converge quickly to their corresponding constant
values ∆xd1 and ∆xd2, respectively, which must be determined so as to satisfy
Equations (6.55) and (6.56).

Let us now return to the problem posed in the second paragraph of this
section, namely the problem of the stability of grasping a thin light object with
a pair of single-DOF dual fingers with soft fingertips as sketched in Figure 6.9.
When the thickness l1 + l2 of the object becomes small, the attractor region
of the equilibrium state corresponding to the state of force/torque balance
may shrink. In fact, in the case of the testbed problem discussed in Section
6.2, the smaller width l of the object may result in a larger angular velocity
θ̇ of rotational motion of the object owing to Equation (6.29). In the case of
grasping a thin object as in Figure 6.9, the constraint Equations (6.39) and
(6.41) lead to the relation

θ̇ =
1

l1 + l2
{−(r1 − ∆x1)q̇1 + (r2 − ∆x2)q̇2}

+(ẋ01 + ẋ02) sin θ + (ẏ01 + ẏ02) cos θ} , (6.60)

which can be derived in a similar manner to Equation (2.76). Hence, if l1 + l2
becomes small, large rotational movements of the object may result. Notwith-
standing this theoretical observation, the control signals of Equation (6.57)
can still be applied for stable precision prehension of a thin light object as
in Figure 6.9. We show a computer simulation result in Figure 6.10 when the
object is a paper card with thickness l1 + l2 = 0.001 [m] and mass M = 0.0003
[kg]. The parameters of the fingers and the card are given in Table 6.6 and the
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Table 6.6. Physical parameters for dual single-DOF fingers

m11 = m21 link mass 0.025[kg]

I11 = I21 inertia moment 3.333 × 10−6[kg · m2]

l11 = l21 link length 0.040[m]

r1 = r2 radius 0.010[m]

M object mass 0.0003[kg]

h object length 0.050[m]

w = (l1 + l2) object width 0.001[m]

d object height 0.010[m]

I object inertia 7.003 × 10−8[kg · m2]

moment

l1 = l2 object length 0.0005[m]

k stiffness 2300.0[N/m2 ]

c∆ viscosity 30.0[Ns/m2 ]

Table 6.7. Parameters of the control signals

fd internal force 0.1[N]

c1 = c2 damping coefficient 0.001[msN]

γi(i = 1, 2) regressor gain 0.001

N̂i(0)(i = 1, 2) initial estimate value 0.000[N]

control gains are given in Table 6.7. Comparing Figure 6.10 with Figures 6.7
and 6.8, we see that the convergences of ∆x1 and ∆x2 to their corresponding
constants become slow due to the choice of a smaller fd = 0.1 [N] in the case
of Figure 6.10. As predicted theoretically, transient movements of Y1−Y2 and
θ in Figure 6.10 are inflational at an early stage after the instant t = 0 of
grasping compared with in Figures 6.7 and 6.8. Nevertheless, the transient
motions of Y1 − Y2 and θ quickly cease after around 0.25 [s] and converge to
their corresponding constants that attain the state of force/torque balance,
though the magnitude |Y1 − Y2| remains large relative to the object thick-
ness. This convergence might become possible because it is assumed in the
simulation that no slipping arises between the fingertips and object surfaces.
We should bear in mind that, in the case of human pinching of a thin and
light object, control of slip between the finger-tips and the object becomes
more dominant than that of rolling if the initial value of |Y1 −Y2| is relatively
large. A theoretical proof that validates the convergence of the overall closed-
loop dynamics to the state of force/torque balance seems difficult without
assuming the additional presence of viscous-like forces induced by fingertip
deformations at both contact points in the directions tangent to the object
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Fig. 6.10. The transient responses of the physical variables in the case of manipu-
lation of a thin object by a pair of robot fingers with soft ends

surfaces. This point will be discussed again in the last paragraph of the next
section.
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6.4 Convergence to Force/Torque Balance by a Pair of
Soft Fingers

This section concentrates on the mathematical proof of asymptotic conver-
gence of closed-loop dynamics of the overall fingers–object system to the
equilibrium state of force/torque balance when the control signals of Equation
(6.34) are employed and the object thickness l1 + l2 is of order of the fingertip
radius ri (i = 1, 2).

First, we spell out in the following the closed-loop dynamics of the overall
fingers–object system when the control signals of Equation (6.34) are substi-
tuted into Equation (6.35):

Iiq̈i + ciq̇i − (−1)iJT
0i(qi)

{
firX − l(∆x1 + ∆x2)

r1 + r2
fdrX +

Y1 − Y2

r1 + r2
fdrY

}
+ λi

{
(ri − ∆xi) − JT

0i(qi)rY

}
= 0, i = 1, 2, (6.61)

M ẍ− Rθ

(
f1 − f2

−(λ1 + λ2)

)
= 0, (6.62)

Iθ̈ − f1Y1 + f2Y2 + l1λ1 − l2λ2 = 0. (6.63)

At the same time, we note that from Equation (6.51) it follows that

‖x01 − x02‖2 = l2(∆x1 + ∆x2) + (Y1 − Y2)2, (6.64)

where we define the length l as a function of the magnitude of ∆x1 + ∆x2 as
follows:

l(∆x1 + ∆x2) = l1 + l2 + (r1 − ∆x1) + (r2 − ∆x2)
= l1 + l2 + r1 + r2 − (∆x1 + ∆x2). (6.65)

On the other hand, it is easy to check and confirm that the sum of q̇i times
Equation (6.61) for i = 1, 2, ẋ times Equation (6.62), and θ̇ times Equation
(6.63) yields

d
dt

⎧⎨
⎩K + P +

fd

2(r1 + r2)
‖x01 − x02‖2 +

∑
i=1,2

γi

2
N̂2

i

⎫⎬
⎭

= −
∑

i=1,2

{
ciq̇

2
i + ξi(∆xi)∆ẋ2

i

}
, (6.66)

where

P =
∑

i=1,2

∫ ∆xi

0

f̄i(η) dη. (6.67)

The symbol K signifies the total kinetic energy of the overall fingers–object
system defined in Equation (6.49).
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Next, by using X = (q1, q2, r
−1x, r−1y, θ)T, ∆fi and ∆λi (i = 1, 2) defined

by Equation (6.44), where r stands for a scale factor, we rewrite Equations
(6.61–6.63) in a vector–matrix form:

HẌ + CẊ +
∑

i=1,2

ξi(∆xi)∆ẋi
∂∆xi

∂X

−A(X)∆f̄ + B(X)∆λ − (Y1 − Y2)fde = 0, (6.68)

where H = diag(I1, I2, r
2M, r2M, I), C = diag(c1, c2, 0, 0, 0) and

A(X) =
(

∂∆x1

∂X
,
∂∆x2

∂X

)
=

⎛
⎜⎜⎜⎜⎝

−JT
01(q1)rX 0

0 JT
02(q2)rX

r cos θ −r cos θ
−r sin θ r sin θ

Y1 −Y2

⎞
⎟⎟⎟⎟⎠ , (6.69)

B(X) =
(
−(r1 − ∆x1)

∂φ

∂X
− ∂Y1

∂X
,−(r2 − ∆x2)

∂φ2

∂X
− ∂Y2

∂X

)

=

⎛
⎜⎜⎜⎜⎝

(r1 − ∆x1) − JT
01(q1)rY 0

0 (r2 − ∆x2) − JT
02(q2)rY

r sin θ r sin θ
r cos θ r cos θ

l1 −l2

⎞
⎟⎟⎟⎟⎠ , (6.70)

e =
(
−r1 − ∆x1

r1 + r2
,
r2 − ∆x2

r1 + r2
, 0, 0,

r1 + r2 − ∆x1 − ∆x2

r1 + r2

)T

, (6.71)

∆f̄ = (∆f̄1, ∆f̄2)T, ∆λ = (∆λ1, ∆λ2)T. (6.72)

We remark that, by referring to Equation (6.51), four contact forces as com-
ponents of ∆f̄ and ∆λ can be written explicitly in the form:

∆f̄i = f̄i +
fd

r1 + r2
(x01 − x02)TrX

= f̄i(∆xi) − l(∆x1 + ∆x2)
r1 + r2

fd, i = 1, 2, (6.73)

∆λi = λi + (−1)i fd

r1 + r2
(x01 − x02)TrY

= λi + (−1)i Y1 − Y2

r1 + r2
fd, i = 1, 2. (6.74)

It is also important to remark that, according to Equation (6.55), we can
conveniently define the potential functions of fingertip deformation in the
following way:

∆P (δxi) =
∫ δxi

0

{
f̄i(∆xid + η) − f̄d

}
dη, i = 1, 2, (6.75)
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Fig. 6.11. A potential function ∆P (δx) induced from the reproducing force f̄(∆x)
relative to a fixed value ∆x = ∆xd, which is defined as the area by Equation (6.75)

where δxi = ∆xi − ∆xid and f̄d = f̄1(∆xd1) = f̄2(∆xd2) = {1 + l(∆xd1 +
∆xd2)/(r1 +r2)}fd [see Equations (6.55) and (6.56)]. As shown in Figure 6.11,
the function ∆Pi(δxi) is positive definite in δxi as far as 0 ≤ ∆xdi + δxi < ri

(i = 1, 2).

E = K + ∆P1(δx1) + ∆P2(δx2) +
fd(Y1 − Y2)2

2(r1 + r2)
(6.76)

then it is possible to derive the relation along a solution trajectory to the
closed-loop dynamics of Equation (6.68)

d
dt

E = −
∑

i=1,2

{
ciq̇

2
i + ξi(∆xi)δẋ2

i

}
. (6.77)

As discussed earlier, the closed-loop system of Equation (6.68) or equivalently
Equations (6.61–6.63) has three DOFs because it has five independent position
variables q1, q2, x, y and θ and two constraints

−(ri − ∆xi)δφi = δYi, i = 1, 2, (6.78)

which corresponds to Equation (6.41), where φi = 3π/2 − (−1)iθ − qi, i =
1, 2. On the other hand, the energy function E defined by Equation (6.76) is
positive definite in Ẋ and X under the constraints of Equation (6.78), which
has a unique minimum E = 0 at Y1 − Y2 = 0, δx1 = 0 and δx2 = 0.

Now, we prove the exponential convergence of the closed-loop dynamics of
Equation (6.68) to the state of force/torque balance, i.e.,

Y1 − Y2 → 0, ∆fi → 0, λi → 0 (i = 1, 2) (6.79)
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as t → ∞. Note that ∆fi → 0 as t → ∞ implies that δxi(= ∆xi −∆xdi) → 0
as t → ∞ for i = 1, 2, where the ∆xdi (i = 1, 2) can be determined uniquely
so that they satisfy Equation (6.55). Similarly to the proof of exponential
stability given in Section 2.7, we consider the pseudo-inverse of 4 × 5 matrix

UY = [A(X),−B(X)]T (6.80)

that is defined as

U+
Y = UT

Y (UY UT
Y )−1. (6.81)

Then, if we define the 5 × 5 projection matrix

PY = I5 − U+
Y UY (6.82)

then it follows that

PY UT
Y = PY [A(X),−B(X)] = 0. (6.83)

Similarly, if we introduce⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Uf1 =
[
∂∆x2

∂X
,−B(X), e

]T

,

Uf2 =
[
∂∆x1

∂X
,−B(X), e

]T

,

Pf1 = I5 − U+
f1Uf1, Pf2 = I5 − U+

f2Uf2,

(6.84)

where Ufi denotes the pseudo-inverse of Ufi for i = 1, 2, then it follows that⎧⎪⎪⎨
⎪⎪⎩

Pf1
∂∆x2

∂X
= 0, Pf1B(X) = 0, Pf1e = 0,

Pf2
∂∆x1

∂X
= 0, Pf2B(X) = 0, Pf2e = 0.

(6.85)

We are now in a position to prove the exponential convergence of the
trajectory (X(t), Ẋ(t)) of the closed-loop dynamics of Equation (6.68) to the
equilibrium state (X∞, Ẋ = 0) as t → ∞, where at X = X∞ the scalar
function E of Equation (6.76) is minimised so that E(X∞) = 0, that is,
δx1 = 0, δx2 = 0 and Y1−Y2 = 0, and at the same time ∆f̄ = 0 and ∆λ = 0.
To do this, it is convenient to modify E in such a way that

Vα =E − αẊ
T
HPY ∞e∞

Y1 − Y2

γ(r1 + r2)
− α

∑
i=1,2

Ẋ
T
HPfi∞ei∞

δxi√
γi

, (6.86)

where α > 0 is a parameter and we define

γ = eT
∞PY ∞e∞, γi = eT

i∞Pfi∞ei∞, i = 1, 2 (6.87)
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and

ei = ∂δxi/∂X, i = 1, 2 (6.88)

and use the symbols PY ∞, Pfi∞, e∞ and ei∞ to denote the convergent values
of PY , Pfi, e and ei when t → ∞ and X converges to X∞. We also rewrite
Equation (6.68) conveniently in the following form:

HẌ + CẊ +
∑

i=1,2

{ξi(∆xid)ei∞}∆ẋi − A(X∞)∆f̄

+B(X∞)∆λ − (Y1 − Y2)fde∞ + h(X − X∞) = 0, (6.89)

where

h(X− X∞)=
∑

i=1,2

{ξi(∆xi)ei − ξi(∆xid)ei∞}∆ẋi − {A(X) − A(X∞)}∆f̄

+ {B(X) − B(X∞)}∆λ − (Y1 − Y2)fd(e − e∞) = 0. (6.90)

Similarly to the derivation of Equation (2.130) in Section 2.7, it is possible to
see that

Ẋ
T
HPY ∞e∞

Y1 − Y2

(r1 + r2)γ
≤ 2λM (H)Ẋ

T
HẊ

fd(r1 + r2)γ
+

fd(Y1 − Y2)2

8(r1 + r2)
(6.91)

Ẋ
T
HPfi∞ei∞

δxi√
γi

≤ λM (H)Ẋ
T
HẊ

2k0
+

k0

2
(δxi)2, i = 1, 2, (6.92)

where λM (H) denotes the maximum eigenvalue of the matrix H . Since at this
stage it is difficult to continue the argument in a generic way, we specialise
the proof on the basis of configuration-dependent values of the fingers–object
system whose kinematic parameters and control gains are provided in Tables
6.3 and 6.4, respectively. In this specialised case, it is easy to check that

2λM (H)
fd(r1 + r2)

= O(10−3). (6.93)

Further, we assume that f̄i(∆x) for each i (= 1 or 2) is expressed by Equation
(6.3) with k = 3.0 × 105 [N/m2]. Then, it is possible to check that

λM (H)
2k0

≤ O(10−7),
k0

2
(δxi)2 ≤ 1

8
Pi(δxi) (6.94)

provided that k0 is set as k0 = 15π and the maximum length of deformation
∆xi eventually lies in an interval 0.5 × 10−3 [m] ≤ ∆xdi ≤ 5.0 × 10−3 [m].
Then, if we assume that

eT
∞PY ∞e∞ ≥ 0.2,

√
ei∞Pfi∞ei∞ ≥ O(10−3), i = 1, 2 (6.95)
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then it is possible to see that

Ẋ
T
HPY ∞

Y1 − Y2

(r1 + r2)γ
≤ K

16
+

fd(Y1 − Y2)2

8(r1 + r2)
, (6.96)

∑
i=1,2

Ẋ
T
H

{
Pfi∞ei∞

δxi√
γi

}
≤
∑

i=1,2

{
K

32
+

1
8
Pi(δxi)

}

=
K

16
+

1
8
{P1(δx1) + P2(δx2)} . (6.97)

Thus, substituting these two equations into Equation (6.68), we obtain(
1 − α

4

)
E ≤ Vα ≤

(
1 +

α

4

)
E. (6.98)

We next evaluate the derivative of Vα in time t in such a way that

V̇α = Ė − αẌ
T
H

⎧⎨
⎩PY ∞e∞

Y1 − Y2

(r1 + r2)γ
+
∑

i=1,2

Pfi∞e∞
δxi√

γi

⎫⎬
⎭

−αẊTH

⎧⎨
⎩PY ∞e∞

Ẏ1 − Ẏ2

(r1 + r2)γ
+
∑

i=1,2

Pfi∞ei∞
δẋi√

γi

⎫⎬
⎭ . (6.99)

Referring to the relations of Equation (6.85) and substituting Equations (6.89)
and (6.77) into Equation (6.99), we obtain

V̇α = −
∑
i=1,2

(ciq̇
2
i + ξi(∆xi)∆ẋ2

i ) − α
fd(Y1 − Y2)2

r1 + r2
− α

∑
i=1,2

∆f̄iδxi

+α(CẊ)T

⎧⎨
⎩PY ∞e∞

Y1 − Y2

(r1 + r2)γ
+
∑

i=1,2

Pfi∞ei∞
δxi√

γi

⎫⎬
⎭

+
∑
i=1,2

αξi(∆xdi)∆ẋiδxi

−αẊ
T
H

⎧⎨
⎩PY ∞e∞

Ẏ1 − Ẏ2

(r1 + r2)γ
+
∑

i=1,2

Pfi∞ei∞
∆ẋi√

γi

⎫⎬
⎭

+αhT(X− X∞)

⎧⎨
⎩PY ∞e∞

Y1 − Y2

(r1 + r2)γ
+
∑
i=1,2

Pfi∞ei∞
δxi√

γi

⎫⎬
⎭ . (6.100)

Similarly to the derivation of Equation (2.130) in Section 2.7, it is possible to
see that

(CẊ)TPY ∞e∞
Y1 − Y2

(r1 + r2)γ
≤ fd(Y1 − Y2)2

2(r1 + r2)
+

c1q̇
2
1 + c2q̇

2
2

2fd(r1 + r2)
(6.101)
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if ci (i = 1, 2) are chosen so as to satisfy

ci

fd(r1 + r2)
= 0.05 ∼ 0.2, i = 1, 2. (6.102)

In fact, according to Table 6.4, the choices of ci = 0.001 [msN] and fd = 0.25
[N] together with the assumption γ ≥ 0.2 in Equation (6.95) yield

ci

fd(r1 + r2)γ
≤ 1.0, (6.103)

which makes Equation (6.101) reduce to

(CẊ)TPY e∞
Y1 − Y2

(r1 + r2)γ
≤ 1

2
(c1q̇

2
1 + c2q̇

2
2) +

fd(Y1 − Y2)2

2(r1 + r2)
. (6.104)

Similary, it is possible to see that

(CẊ)TPfi∞efi∞
δxi√

γi
≤ c2

1q̇
2
1 + c2q̇

2
2

2β
+

β(δxi)2

2
(6.105)

with an appropriate parameter β > 0. Then, by choosing β = O(10−2), it is
possible to see that

(CẊ)TPfi∞efi∞
δxi√

γi
≤ 1

16
(c1q̇

2
1 + c2q̇

2
2) +

1
8
Pi(δxi), i = 1, 2. (6.106)

Next, it is necessary to note that differentiation of both equalities of Equation
(6.50) with respect to t leads to⎧⎪⎪⎨

⎪⎪⎩
Ẏ1 − Ẏ2 = (ẋ01 − ẋ02)TrY + (x01 − x02)Tθ̇rY

= (ẋ01 − ẋ02)TrY − l(∆x1 + ∆x2)θ̇,

∆ẋi = (−1)i
{
(ẋ − ẋ0i)TrX + Yiθ̇

}
, i = 1, 2.

(6.107)

By using these relations, it is possible to confirm that the last term on the
right-hand side of Equation (6.99) is bounded from above in such a manner
that

−Ẋ
T
H

⎧⎨
⎩PY ∞e∞

Ẏ1 − Ẏ2

(r1 + r2)r
+
∑

i=1,2

Pfi∞ei∞
∆ẋi√

γi

⎫⎬
⎭

≤ O(K) ≤ 1
8
(
ciq̇

2
1 + c2q̇2

)
, (6.108)

where K denotes the total kinetic energy and the last inequality follows from
a similar argument to that given in the paragraph including Equations (2.140)
and (2.141). Now, note that the non-linear remaining term h(X−X∞) defined
in Equation (6.90) is already quadratic in components of ∆X (= X − X∞)
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and ∆ẋi (i = 1, 2), X → X∞ (and hence Y1 − Y2 → 0 and δxi → 0 for
i = 1, 2) and Ẋ → 0 as t → ∞, and E is decreasing with increase of t as long
as Ẋ 	= 0. This implies that there exists a small positive number δ0 such that
for any (X(0), Ẋ(0)) satisfying E(X(0), Ẋ(0)) ≤ δ0 it follows that

hT(X − X∞)

⎧⎨
⎩PY ∞e∞

Y1 − Y2

(r1 + r2)γ
+
∑

i=1,2

Pfi∞ei∞
δxi√

γi

⎫⎬
⎭

≤
∑

i=1,2

{
ξi(∆xi)∆ẋ2

i +
1
8
ciq̇

2
i

}
+

fd(Y1 − Y2)2

8(r1 + r2)
+
∑

i=1,2

1
8
Pi(δxi). (6.109)

Thus, substituting Equations (6.104), (6.106), (6.108) and (6.109) into Equa-
tion (6.100), we can show that

V̇α ≤ −
(

1 − 7α

8

)
(c1q̇

2
1 + c2q̇

2
2)

−3α

8
· fd(Y1 − Y2)2

(r1 + r2)
− α

2
{P1(δx1) + P2(δx2)} , (6.110)

where we used the inequality ∆f̄iδxi ≥ 2Pi(δxi) for i = 1, 2. Particularly if we
choose α = 1.0 and remark that (1/8)(c1q̇

2
1 + c2q̇

2
2) is larger than or equal to

the total kinetic energy K under the equality conditions of Equations (6.39)
to (6.41), it is possible to conclude that

V̇1 = −3
4
E. (6.111)

This inequality, by using Equation (6.98) and setting α = 1.0, is reduced to

V̇1 ≤ −3
5
V1, (6.112)

from which it is concluded that

E(t) ≤ 4
3
V1(t) ≤ 4

3
V1(0)e−0.6t ≤ 4

3
· 5
4
E(0)e−0.6t

=
5
3
E(0)e−0.6t (6.113)

Exponential convergence of the closed-loop dynamics to the equilibrium
state of force/torque balance when the control signals of Equation (6.57) are
used can also be proved theoretically in a similar manner to the discussion
given above.

Before closing this section, we remark that the control signals of Equa-
tion (6.34) based on fingers–thumb opposition may work well even in the case
of precision prehension of a thin light object if the control gains fd and ci

(i = 1, 2) are carefully chosen and the fingertip stiffness and damping param-
eters k and c0 are smaller. As an illustrative example, we conducted numerical
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Table 6.8. Physical parameters for dual single-DOF fingers

m11 = m21 link mass 0.025[kg]

I11 = I21 inertia moment 3.333 × 10−6[kg · m2]

l11 = l21 link length 0.040[m]

r1 = r2 radius 0.010[m]

M object mass 0.0003[kg]

h object length 0.050[m]

w = (l1 + l2) object width 0.001[m]

d object height 0.010[m]

I object inertia 7.003 × 10−8[kg · m2]

moment

l1 = l2 object length 0.0005[m]

k stiffness 1.0 × 104[N/m2]

c∆ viscosity 5.0[Ns/m2]

Table 6.9. Parameters of the control signals

fd internal force 0.1[N]

c1 = c2 damping coefficient 0.003[msN]

γf CSM gain 1500.0

γλ CSM gain 3000.0

simulation of pinching motion of a pair of single-DOF fingers whose kinematic
parameters are given in Table 6.8. In Figure 6.12 we show the transient re-
sponses of the physical variables of the fingers–object system under the choice
of control parameters given in Table 6.9. In this case, the damping factors ci

for the finger joints are chosen larger than those in Table 6.5. Even though
these choices of ci = 0.003 [msN] and fd = 0.1 [N] do not satisfy the conditions
of Equation (6.102), all the physical variables converge to their corresponding
constant values that reflect the state of force/torque balance. In fact, we see
from Figure 6.12 that Y1−Y2 → 0, f̄1− f̄2 → 0, λ1 → 0 and λ2 → 0 as t → ∞.
It is quite interesting to notice that the transient responses of the physical
variables Y1−Y2, θ, λ1 and λ2 are oscillatory at initial time t = 0, though they
eventually converge exponentially to their corresponding constant values. In
contrast, the variables ∆xi and f̄i for i = 1, 2 converge quickly and smoothly
to their constants as t → ∞, as seen in Figure 6.12. This simulation result
suggests that there must arise viscous-like forces induced by rollings of the
deformed fingertips against the rigid object and they work as a whole at the
contact areas in directions tangential to the object surfaces. If such viscous-
like forces in the directions tangential to the object surfaces were introduced
in the model of the dynamics of the overall fingers–object system, oscillatory
phenonomena of Y1 − Y2, θ and λi (i = 1, 2) might disappear provided that
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Fig. 6.12. The transient responses of pinching by dual single-DOF soft fingers

the damping parameters ci (i = 1, 2) for the finger joints could be readjusted.
Certainly, a theoretical proof of the exponential convergence of the closed-loop
dynamics to the state of force/torque balance would be devised in a similar
but extended way to that presented above.
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Fig. 6.13. Two robot fingers pinching an object with parallel flat surfaces under
gravity.

6.5 Precision Prehension of a 2-D Object under Gravity

Let us consider the stability of grasping a 2-D object by a pair of multi-joint
fingers with soft spherical fingertips under gravity. First we derive Lagrange’s
equation of motion of the overall fingers–object system depicted in Figure
6.13. It is assumed that all rotational motions of finger joints and the object
together with translational motion of the object are confined in the vertical
plane (xy-plane in Figure 6.13) directly affected by the gravity. We also assume
that lumped parameterisation of the contact forces caused by deformation of
fingertip material gives rise to the form

fi(∆xi, ∆ẋi) = f̄i(∆xi) + ξi(∆xi)∆ẋi, i = 1, 2 (6.114)

and f̄i(∆xi) can be well approximated as in Equation (6.114) and ξi(∆xi)
are also proportional to ∆x2

i for i = 1, 2, respectively. In this case, the total
kinetic energy and potential energy are expressed as follows:

K =
1
2

⎧⎨
⎩
∑

i=1,2

q̇T
i Hi(qi)q̇i + M‖ẋ‖2 + Iθ̇2

⎫⎬
⎭ , (6.115)

P = P1 + P2 − Mgy +
∑

i=1,2

∫ ∆xi

0

f̄i(η) dη, (6.116)

where q1 = (q11, q12, q13)T, q2 = (q21, q22)T, x = (x, y)T, and Hi and I denote
the moments of inertia of the fingers i = 1, 2 and the object, M denotes the
mass of the object, Pi the potential energy for finger i (i = 1, 2) and −Mgy
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denotes that of the object. Rolling contact constraints can be expressed by
focussing on the relative velocities at the centre of each contact area in the
direction tangential to the object surface. Therefore, similarly to Equation
(6.41), we consider the following non-holonomic constraints:

−(ri − ∆xi)
d
dt

(
3π

2
− (−1)iθ − qT

i ei

)
=

d
dt

Yi, i = 1, 2, (6.117)

where e1 = (1, 1, 1)T and e2 = (1, 1)T. Then, in a similar derivation to that of
Equations (6.13) and (6.14) and Equations (6.35–6.37), we obtain Lagrange’s
equations of motion for the system in the following form:

Hi(qi)q̈i +
(

1
2
Ḣi(qi) + Si(qi, q̇i)

)
q̇i − (−1)ifiJ

T
0i(qi)rX

+λi

{
(ri − ∆xi)ei − JT

0i(qi)rY

}
+ gi(qi) = ui, (6.118)

M ẍ − Rθ(f1 − f2, −λ1 − λ2)T − (0, Mg)T = 0, (6.119)
Iθ̈ − f1Y1 + f2Y2 + l1λ1 − l2λ2 = 0, (6.120)

where JT
0i(qi) = ∂xT

0i/∂qi (i = 1, 2). Then, it is obvious that the input–output
pair u = (uT

1 , uT
2 )T, q̇ = (q̇T

1 , q̇T
2 )T concerning the overall dynamics described

above satisfies the relation∫ t

0

(q̇T
1 u1 + q̇T

2 u2) dτ

= E(t) − E(0) −
∫ t

0

∑
i=1,2

ξ(∆xi(τ))∆ẋ2
i (τ) dτ, (6.121)

where E(t) denotes the value of the total energy E = K + P at time t.
Now we will consider the same control signals as those proposed in Section

4.3 [see Equation (4.49)] for stable grasping of a 2-D object in a blind manner
in the case of rigid contact. We repeat it in the following:

ui = gi(qi) − ciq̇i + (−1)i fd

r1 + r2
JT

0i(qi)(x01 − x02)

−M̂g

2

(
∂y0i

∂qi

)
− riN̂iei, i = 1, 2, (6.122)

where
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M̂(t) = M̂(0) +
∫ t

0

gγ−1
M

2

∑
i=1,2

(
∂y0i

∂qi

)T

q̇i(τ) dτ

= M̂(0) +
gγ−1

M

2

∑
i=1,2

{y0i(t) − y0i(0)} , (6.123)

N̂i(t) = N̂i(0) −
∫ t

0

γ−1
Nirie

T
i q̇i(τ) dτ

= N̂i(0) − γ−1
Nirie

T
i {qi(t) − qi(0)} , i = 1, 2. (6.124)

In the design of the control signals, we implicitly assume that all joint angles
of fingers can be measured by optical encoders mounted in the joint actuators
and thereby the effect of gravity at the finger joints can be compensated. At
the same time, all other terms of ui together with M̂(t) and N̂i(t) (i = 1, 2) can
be easily calculated by using only the finger kinematics and measurements of
the finger joint angles. In other words, there is no need to use prior knowledge
of the object or sensing data by visual, force or tactile sensing. There is no
need to assume that the object side surfaces are parallel. In fact, the same
control signals as Equation (6.122) can be applied for other 2-D object whose
side surfaces are not parallel, as shown in Figure 6.14. However, the dynamics
of Lagrange’s equation of motion of the system in the case of Figure 6.14 differ
from Equation (6.118–6.120). In fact, similarly to the derivation of Table 5.4,
we obtain the following forms of the dynamics for the overall fingers–object
system of Figure 6.14:

Hiq̈i +
(

1
2
Ḣi + Si

)
q̇i − (−1)ifiJ

T
0irXi

+λi

{
(ri − ∆xi)ei − JT

0irY i

}
+ g(qi) = ui, (6.125)

where

rXi =
(

cos(θ + (−1)iθ0)
− sin(θ + (−1)iθ0)

)
, rY i =

(
sin(θ + (−1)iθ0)
cos(θ + (−1)iθ0)

)
(6.126)

and

M ẍ + Rθ−θ0

(
f1

λ1

)
− Rθ+θ0

(
f2

−λ2

)
− Mg

(
0
1

)
= 0, (6.127)

Iθ̈ − f1Y1 + f2Y2 + λ1l1 − λ2l2 = 0. (6.128)

Before discussing theoretically the effectiveness of such control signals
and the proof of the convergence of the closed-loop dynamics to a state of
force/torque balance, we will show a computer simulation result for the over-
all system depicted in Figure 6.14. The physical paramters of the fingers and
the object are given in Table 6.10 and the control gains together with the
initial value for M̂ are given in Table 6.11. We set N̂i(0) = 0 for i = 1, 2.
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Fig. 6.14. Two robot fingers pinching an object with non-parallel flat surfaces under
gravity

We show the transient responses of the key variables in Figure 6.15. Similarly
to the case of precision prehension in the case of rigid fingers discussed in
Chapter 4, the physical model of the overall fingers–object system in Figure
6.14 is redundant in DOF and therefore all physical variables ∆f̄ ′

i , ∆λ′
i, ∆N ′

i

(i = 1, 2), ∆M and S′ converge to zero as t → ∞, as seen in Figure 6.15.
Here, physical variables mentioned above are defined as follows:

∆f̄ ′
i = fi + (−1)i Mg

2
sin(θ + (−1)iθ0)

− fd

r1 + r2

{
l′w cos θ0 + (−1)id′ sin θ0

}
, i = 1, 2, (6.129)

∆λ′
i = λi − Mg

2
cos(θ + (−1)iθ0)

− fd

r1 + r2

{
l′w sin θ0 + (−1)id′ cos θ0

}
, i = 1, 2, (6.130)

∆M = M̂ − M, (6.131)
∆N ′

i = N̂i − (1 − ∆xi/ri)Ni, i = 1, 2, (6.132)

N ′
i = −

{
fd

r1+r2
(l′w sin θ0−(−1)id′ cos θ0)+

Mg

2
cos(θ+(−1)iθ0

}
, (6.133)

d′ = (x01 − x02) sin θ + (y01 − y02) cos θ, (6.134)
l′w = −(x01 − x02) cos θ + (y01 − y02) sin θ, (6.135)

Y ′
1 − Y ′

2 = (Y1 − Y2) cos θ0 − (l1 − l2) sin θ0, (6.136)
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Table 6.10. Physical parameters for the pair of fingers with three-DOFs and two-
DOFs

l11 = l21 length 0.065 [m]

l12 length 0.039 [m]

l13 length 0.026 [m]

l22 length 0.065 [m]

m11 = m21 weight 0.045 [kg]

m12 weight 0.025 [kg]

m13 weight 0.015 [kg]

m22 weight 0.040 [kg]

I11 = I21 inertia moment 1.584 × 10−5[kgm2]

I12 inertia moment 3.169 × 10−6[kgm2]

I13 inertia moment 8.450 × 10−7[kgm2]

I22 inertia moment 1.408 × 10−5[kgm2]

r1 radius 0.010 [m]

r2 radius 0.020 [m]

L base length 0.063 [m]

M object weight 0.040 [kg]

l1 object width 0.013 [m]

l2 object width 0.023 [m]

h object height 0.050 [m]

I inertia moment 1.248 × 10−5[kgm2]

θ0 object inclination −15.00[deg]

angle

ki(i=1,2) stiffness 3.000 × 105[N/m2]

c∆1 viscosity 1000[Ns/m2 ]

c∆2 viscosity 500.0[Ns/m2 ]

Table 6.11. Parameters of the control signals & initial value of the estimator

fd internal force 1.0 [N]

ci i=1,2 damping coefficient 0.006 [Nms/rad]

γM regressor gain 0.01

γNi i=1,2 regressor gain 0.001

M(0) initial value 0.010[kg]

S′ = −fd

{
l′w

(
r1 − r2 − ∆x1 + ∆x2

r1 + r2

)
sin θ0

+d′
(

1 − ∆x1 + ∆x2

r1 + r2

)
cos θ0

}
− Mg

2
N ′, (6.137)

N ′ =
∑

i=1,2

{
Y1 sin(θ + (−1)iθ0 + (−1)ili cos(θ + (−1)iθ0)

}
. (6.138)
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Fig. 6.15. The transient responses of the physical variables

The physical meanings of all these variables have been provided in Section
4.3 and compare well with those given in Table 4.3. It is also interesting
to notice from Figure 6.15 that the physical variables with physical units of
force and torque, that is, ∆f ′

i (i = 1, 2), ∆λ′
i (i = 1, 2) and ∆M , are quite

oscillatory just after manoeuvring the system, though such oscillations decay
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quickly. The true cause of such oscillatory phenomena of the force and torque
variables is the large mismatch between the initial guess M̂(0) of the object
mass and its true value M and inadequate gain tuning for γM in the object
mass estimator. It should be remarked that this simulation starts at t = 0
under the condition that ∆x1 = ∆x2 = 0 and hence f1(∆x1) = f2(∆x2) = 0
and q̇i(0) = 0 (i = 1, 2), ẋ(0) = 0, and θ̇(0) = 0. Therefore, at the instant
just after t = 0, ∆fi (i = 1, 2) jumps to a negative value around −2.0 [N] but
f̄i(t) remains positive after this instance as seen in (c) and (d) of Figure 6.15.

Theoretical analysis of the stability of the closed-loop dynamics of the
overall fingers–object system depicted in Figure 6.15 can be carried out in
parallel with the arguments developed in Sections 4.5 and 4.6 by devising
adequate modifications for the treatment of the visco-elastic characteristics
of the soft fingertips, as already treated in the simplest case given in the
previous section. One of the most important differences of grasping by means
of a pair of rigid fingers and with soft fingers is that the attractor region of
a certain state of force/torque balance is inclined to shrink when the grasped
object becomes thinner and lighter, as remarked on in the previous section. It
can be remarked that, in the design of coordinated control signals for stable
grasping of such a thin and light object, the term for estimation of the object
mass can be omitted and therefore the analysis of the behaviour of the object
mass estimator is unnecessary. In the next section, some results of numerical
simulation of grasping of thin and light objects by means of a pair of 2-D and
3-D robot fingers with soft fingertips will be exhibited, where the oscillatory
phenomena in the force and torque variables will disappear.

6.6 Prehension of a 3-D Object by a Pair of Soft Fingers

As discussed in Chapter 5, even in the case of stable grasping of a 3-D object
with parallel flat surfaces by means of a pair of soft fingers, the same structure
of coordinated control signals as shown in Equation (6.122) can be used. We
consider a setup of two robot fingers with soft hemispherical fingertips as
shown in Figure 6.16, which is a soft-fingertip version of the setup shown
in Figure 5.2. Then, the coordinated control signals based on fingers–thumb
opposition are defined as follows:

ui = gi(qi) − ciq̇i + (−1)i fd

r1 + r2
JT

i (qi)(x01 − x02)

−M̂g

2
∂y0i

∂qi
− riN̂iei − riN̂0ie0i, (6.139)

where e1 = (1, 1)T, e2 = (0, 1, 1)T, e01 = 0 and e02 = (1, 0, 0)T, and M̂(t),
N̂(t) (i = 1, 2), and N̂0i (for i = 2 only) are defined in the same forms as
in Equations (5.68), (5.69) and (5.70) respectively. Although the theoreti-
cal analysis of the closed-loop dynamics has not yet been tackled, computer



244 6 Dexterity and Control for Stable Grasping by Soft Fingers

x

y

z

l11

l12

l20

l21

l22

L

q22

q21

q12

q11

q20

1 2

01 02

r1
r2 x1 x2

X

Y

Z

Mg

c.m.

l1
l2

X

Z (= )

Y (= )

´

O

O
O

O
O

O

O

Fig. 6.16. Two robot fingers pinching a 3-D thin object with parallel flat surfaces
under gravity

Table 6.12. Physical paramaters (in the case of 3-D grasp)

l11=l21 length 0.040 [m]

l12=l22 length 0.040 [m]

l20 length 0.000 [m]

m11 = m21 weight 0.045 [kg]

m12 = m22 weight 0.035 [kg]

m13 weight 0.020 [kg]

Ixx11 = Ixx21 inertia moment 5.625 × 10−7[kgm2]

Iyy11 = Iyy21 inertia moment 1.613 × 10−5[kgm2]

Izz11 = Izz21 inertia moment 1.613 × 10−5[kgm2]

Ixx12 = Ixx21 inertia moment 4.375 × 10−7[kgm2]

Iyy12 = Iyy21 inertia moment 1.254 × 10−5[kgm2]

Iyy22 = Iyy22 inertia moment 1.254 × 10−5[kgm2]

r0 link radius 0.005 [m]

ri(i=1,2) radius 0.01 [m]

L base length 0.063 [m]

M object weight 6.667 × 10−3 [kg]

li(i=1,2) object width 2.500 × 10−3 [m]

h object height 0.050 [m]

ki (i=1,2) stiffness 3.000 × 105[N/m2]

c∆i(i=1,2) viscosity 1000[Ns/m2 ]
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Table 6.13. Parameters of the control signals and initial values

fd 0.100 [N] ci (i=1,2) 0.006

cq20 0.006 γM 0.001

γNi (i=1,2) 0.001 γN0 0.001

M(0) 0.000 [kg] N̂1(0) 0.000 [N]

N̂2(0) 0.000 [N] N̂0(0) 0.000 [N]

Table 6.14. Physical paramaters

M object weight 1.000 × 10−3 [kg]

li (i=1,2) object width 5.000 × 10−4 [m]

h object height 0.050 [m]

ki stiffness parameter 2300.0[N/m2 ]

c∆i (i=1,2) viscosity parameter 50.00[Ns/m2 ]

Table 6.15. Parameters of the control signals and initial values

fd 0.050 [N] ci (i=1,2) 0.004

cq20 0.004 γM 0.01

γNi (i=1,2) 0.0004 γN0 0.0004

M(0) 0.000 [kg] N̂1(0) 0.000 [N]

N̂2(0) 0.000 [N] N̂0(0) 0.000 [N]

simulations can be carried out in line with treatments of reproducing forces
of fingertip deformations instead of contact constraint forces normal to the
object surfaces as discussed in the previous section. We show two numerical
simulation results based on the physical parameters of the pair of robot fingers
and the object given in Table 6.12. We show firstly a numerical simulation
result for pinching motion of the system of a pair of fingers and an object
whose physical parameters are given in Table 6.12. In this first simulation,
the object thickness and weight were set as follows:

l1 + l2 = 5.0 [mm], M = 6.667 [g]. (6.140)

The parameters of the control signals of Equation (6.139) and the initial data
for the estimators M̂ , N̂i (i = 1, 2) and N̂02 (= N̂0) are given in Table 6.13.
We show the transient responses of the concerned physical variables in Figure
6.17. In comparison with the responses in the case of a pair of robot fingers
with rigid fingertips shown in Figure 5.8, the transient behaviour of the object
mass estimator M̂(t) is rather smooth, but that of Y1 − Y2 together with the
constraint forces λY i and λZi (i = 1, 2) is oscillatory before converging to a
constant value.
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Fig. 6.17. The transient responses of the physical variables
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Fig. 6.18. The transient responses of the physical variables
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Fig. 6.19. Motions of pinching an object with parallel flat surfaces in 3-D space

We show another simulation result on pinching motion in Figure 6.18 when
the object is thinner and lighter as given in Table 6.14, i.e.,

l1 + l2 = 1.0 [mm], M = 1.0 [g]. (6.141)

In this case, the control parameters and initial conditions for the estimators
M̂ , N̂i (i = 1, 2) and N̂02 are set as in Table 6.15. The transient behaviours
of the physical variables in this case are shown in Figure 6.18, in which each
transient response behaves like the corresponding result in Figure 6.17. It
should be remarked or rather emphasised that in the latter simulation the
stiffness parameter ki (i = 1, 2) for the elasticity of the fingertip material
had to be chosen sufficiently small in order to obtain smooth convergence of
physical variables as shown in Figure 6.18. In fact, note that ki = 3.0 × 105

[N/m2] and c∆i = 1000 [Ns/m2] in the former case but ki = 2.3× 103 [N/m2]
and c∆i = 50 [Ns/m2] in the latter case. In the latter case, the fourth term of
the estimator M̂ in the control signals of Equation (6.139) might be discarded
for practical situations of controlling the motion of the pinching task.

6.7 Dynamics of a Full–Variables Model for 3-D
Grasping by Soft Fingers

In this final section, we will show the full dynamics of the physical interaction
between a pair of soft fingers and a rigid object with parallel surfaces as
shown in Figure 6.19 without assuming non-occurence of spinning motion
of the object around the opposing axis. In this case, the finger mechanisms
are the same as Figure 5.2, but the fingertips are soft and visco-elastic as in
Section 6.1. Then, the Lagrangian of the system can be described as

L = K − P, (6.142)



6.7 Dynamics of a Full–Variables Model for 3-D Grasping by Soft Fingers 249

where

K =
1
2

∑
i=1,2

q̇T
i Hi(qi)q̇i +

1
2
M‖ẋ‖2 +

1
2
ωRHRTω, (6.143)

P = P1(q1) + P2(q2) − Mgy +
∑

i=1,2

∫ ∆xi

0

f̄i(η) dη. (6.144)

Note that the kinetic energy of Equation (6.143) is the same as that of Equa-
tion (5.126) and the potential energy of Equation (6.144) includes the sum
of potential energies of fingertip deformation for both fingers. In this case,
the geometric relations among the positions of the centres of fingertip spheres
are denoted by x0i or O0i (i = 1, 2), the positions of the centres of the area
contacts denoted by xi or Oi (i = 1, 2), the position x of the object mass
centre Oc.m. is given as follows instead of by Equations (5.7), (5.8) and (5.9):{

xi = x0i − (−1)i(ri − ∆xi)rX

x = x0i − (−1)i(ri − ∆xi + li)rX − YirY − ZirZ

i = 1, 2, (6.145)

At the same time, rolling contact constraints should be expressed, instead of
by Equations (5.16) and (5.19), as follows:{

(r1 − ∆x1){ωz − rZz ṗ1} = Ẏ1,

(r1 − ∆x1){−ωy + rY zṗ1} = Ż1,
(6.146)

{
(r2 − ∆x2){−ωz + (rZz cos q20 − rZy sin q20)ṗ2 + rZxq̇20} = Ẏ2,

(r2 − ∆x2){ωy − (rY z cos q20 − rY y sin q20)ṗ2 − rY xq̇20} = Ż2.
(6.147)

Then, the variational principle of the form∫ t1

t0

δL dt =
∫ t1

t0

−
∑
i=1,2

{
uT

i δqi + (λY iY
T
i + λZiZ

T
i )δX

}
dt

+
∫ t1

t0

{
cϕωxδϕ + cψωyδψ + cθωzδθ

+
∑

i=1,2

ξi(∆xi)∆ẋi
∂∆xi

∂XT
δX

}
dt (6.148)

can be applied for the system, where Y 1 = (Y T
q1, 04, Y

T
x1, Yϕ1, Yψ1, Yθ1)T and

Y 2, Z1, Z2 express similar meanings, and X = (qT
1 , qT

2 , xT, ϕ, ψ, θ)T. This
yields the following set of Lagrange equations:

Hi(qi)q̈i +
{

1
2
Ḣi(qi) + Si(qi, q̇i)

}
q̇i − (−1)ifiJ

T
0i(qi)rX

−λY iY qi − λZiZqi + gi(qi) = ui, i = 1, 2, (6.149)
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Table 6.16. Parameters of the control signals

fd internal force 1.000 [N]

c1 = c2 damping coefficient 0.001 [Nms]

c20 damping coefficient 0.006 [Nms]

γM regressor gain 0.050 [m2/kgs2]

γNi(i = 1, 2) regressor gain 5.000 × 10−4 [s2/kg]

γN02 regressor gain 5.000 × 10−4 [s2/kg]

M ẍ − (f1 − f2)rX + (λY 1 + λY 2)rY

+(λZ1 + λZ2)rZ − Mg

⎛
⎝0

1
0

⎞
⎠ = 0, (6.150)

H̄ω̇ +
(

1
2

˙̄H + S

)
ω + Cωω − f1

⎛
⎝ 0

Z1

−Y1

⎞
⎠− f2

⎛
⎝ 0

−Z2

Y2

⎞
⎠

−λY 1

⎛
⎝Z1

0
l1

⎞
⎠− λY 2

⎛
⎝ Z1

0
−l2

⎞
⎠− λZ1

⎛
⎝−Y1

−l1
0

⎞
⎠− λZ2

⎛
⎝−Y2

l2
0

⎞
⎠= 0, (6.151)

where Cω = diag(cϕ, cψ, cθ) and

fi = f̄i(∆xi) + ξi(∆xi)∆ẋi, i = 1, 2. (6.152)

Note that Equations (6.149), (6.150) and (6.151) can be respectively compared
with Equations (5.128), (5.129) and (5.130) in the case of rigid fingers. It
should be remarked that, in Equation (6.149), Y qi and Zqi (i = 1, 2) are
defined in Table 5.1 but in this case ri in Equations (T-5) and (T-6) should
be replaced with ri − ∆xi for i = 1, 2.

Even though spinning motion around the opposition axis may arise, the
same control signal of Equation (6.139) can be applied for stabilisation of the
system toward the force/torque balance. We will show first one simulation
result based on numerical solutions of the closed-loop dynamics of Equations
(6.149–6.151) when the “blind grasp” control signals of Equation (6.139) are
substituted into Equation (6.149). The control gains of the signals are given
as in Table 6.16 and the physical parameters of the fingers and object are
presented in Table 6.17. The viscosities for the rollings are given in the last
part of Table 6.17. Figure 6.19 shows the superposition of the initial configura-
tion of the fingers–object system with the final configuration as time tends to
infinity. The details of the transient responses of physical variables are given
in Figures 6.20 and 6.21. It is interesting to note that the magnitudes of
the normal forces f̄i(∆xi) (i = 1, 2) converge quickly to their corresponding
constant values together with maximum deformations ∆xi (i = 1, 2) without
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Table 6.17. Physical parameters of the fingers and object

l11 = l21 length 0.040 [m]

l12 = l22 length 0.040 [m]

l13 = l23 length 0.030 [m]

m11 weight 0.043 [kg]

m12 weight 0.031 [kg]

m13 weight 0.020 [kg]

l20 length 0.000 [m]

m20 weight 0.000 [kg]

m21 weight 0.060 [kg]

m22 weight 0.031 [kg]

m23 weight 0.020 [kg]

IXX11 inertia moment 5.375 × 10−7[kgm2]

IY Y 11 = IZZ11 inertia moment 6.002 × 10−6[kgm2]

IXX12 inertia moment 3.875 × 10−7[kgm2]

IY Y 12 = IZZ12 inertia moment 4.327 × 10−6[kgm2]

IXX13 inertia moment 2.500 × 10−7[kgm2]

IY Y 13 = IZZ13 inertia moment 1.625 × 10−6[kgm2]

IXX21 inertia moment 7.500 × 10−7[kgm2]

IY Y 21 = IZZ21 inertia moment 8.375 × 10−6[kgm2]

IXX22 inertia moment 3.875 × 10−7[kgm2]

IY Y 22 = IZZ22 inertia moment 4.327 × 10−6[kgm2]

IXX23 inertia moment 2.500 × 10−7[kgm2]

IY Y 23 = IZZ23 inertia moment 1.625 × 10−6[kgm2]

IXX = IZZ inertia moment(object) 1.133 × 10−5[kgm2]

IY Y inertia moment(object) 6.000 × 10−6[kgm2]

r0 link radius 0.005 [m]

ri(i = 1, 2) radius 0.010 [m]

L base length 0.063 [m]

M object weight 0.001 [kg]

li(i = 1, 2) object width 0.015 [m]

h object height 0.050 [m]

ki(i = 1, 2) stiffness 3.000 × 105[N/m2]

c∆i(i = 1, 2) viscosity 1000.0[Ns/m2 ]

cϕ viscosity 0.001 [Nms]

cψ viscosity 5.0×10−4 [Nms]

cθ viscosity 5.0×10−4 [Nms]

oscillatory phenomena. It should be remarked that meanings of ∆fi, ∆λyi,
∆λzi, ∆M , ∆Ni, ∆N02 can be found in Equations (5.76) and SX in Equation
(5.143) but Ni (i = 1, 2), N02, SY and SZ should become
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Fig. 6.20. The transient responses of the physical variables

Ni =
fd(ri − ∆xi)
(r1 + r2)ri

{(Y1 − Y2)rZ(qi0) − (Z1 − Z2)rY (qi0)}

−(−1)i (ri − ∆xi)Mg

2ri
{rY yrZ(qi0) − rZyrY (qi0)} , i = 1, 2, (6.153)
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Fig. 6.21. The transient responses of the physical variables

N02 = (−1)i fd(r2 − ∆x2)
(r1 + r2)r2

{(Y1 − Y2)rZx − (Z1 − Z2)rY x}

− (r2 − ∆x2)Mg

2r2
(rY yrZx − rZyrY x), (6.154)
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Table 6.18. Parameters of the control signals

fd internal force 0.020 [N]

c1 = c2 damping coefficient 3.000 ×10−4 [Nms]

c20 damping coefficient 0.001 [Nms]

γM regressor gain 0.050 [m2/kgs2]

γNi(i = 1, 2) regressor gain 5.000 × 10−4 [s2/kg]

γN02 regressor gain 5.000 × 10−4 [s2/kg]

SY = fd

(
1 − ∆x1 + ∆x2

r1 + r2

)
(Z1 − Z2)

−Mg

2
{rXy(Z1 + Z2) + rZy(l1 − l2)} , (6.155)

SZ = −fd

(
1 − ∆x1 + ∆x2

r1 + r2

)
(Y1 − Y2)

+
Mg

2
{rXy(Y1 + Y2) + rY y(l1 − l2)} . (6.156)

However, the convergences of the physical variables Y1 − Y2 and Z1 − Z2

becomes slow relatively to the rapid growth of the angular velocity ωx as shown
in Figure 6.21 inducing a large spinning motion around the opposition axis as
seen in Figure 6.19. We see from Figure 6.21 that the variable ϕ(t) changes
from ϕ(0) = 0 [deg] to about ϕ(∞) = −45 [deg]. Nevertheless, increasing
the viscosity cϕ for rotational motion around the x-axis may degrade the
speed of convergence, as predicted through computer simulation trials. In this
simulation, the object width l (= l1 + l2) is not small in comparison with the
fingertip radius ri (i = 1, 2). Therefore, even if cθ = cψ = 0, it is possible
to confirm that solutions to the closed-loop dynamics converge to a state of
force/torque balance.

In the case that the object to be grasped is very thin and light, the viscosi-
ties cθ and cψ are crucial to some extent for the convergence of the solution
trajectories of the closed-loop dynamics. We show another simulation result
based on the use of the control gains given in Table 6.18, with an object size
l1 + l2 = 1.0 × 10−3 [m] and object mass M = 1.0 × 10−3 [kg]. We set in
this case cϕ = 1.0 × 10−3 [Nms] and cψ = cθ = 1.0 × 10−4 [Nms]. Figure 6.22
shows a superposition of the initial pose of the fingers–object system with its
final pose as t tends to infinity and the force/torque balance is attained. In
this simulation we intentionally used the object mass estimator though the
true mass is so small that it can be reasonably neglected in a practical situ-
ation. Figure 6.23 shows transient behaviours of principal physical variables.
As shown in the graph of ∆M , around at the beginning of manoeuvring of
the system M̂(t) becomes negative, which may cause oscillatory phenomena
about the variables Y1 − Y2 and constraint forces ∆λY i (i = 1, 2). These os-
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Fig. 6.22. Motions of pinching an object with parallel flat surfaces in 3-D space

cillations can be suppressed by letting γi (i = 1, 2) and γ02 become smaller or
neglecting the effect of gravity. Spinning around the opposition axis is note-
worthy, as seen in Figure 6.22 and the graphs of ωx and ϕ of Figure 6.23,
though the coefficient of viscous friction cϕ around the x-axis is taken to be
considerably larger than the other viscous coefficients cψ and cθ of the y- and
z-axes. In this same simulation, ∆x1 and ∆x2 eventually converge to around
2.5 [mm] despite the light weight of the object and the small pressing force fd

(= 0.02 [N]), because the stiffness parameters ki (i = 1, 2) of the soft finger-
tips are chosen small enough in comparison with the case of Figures 6.19, 6.20
and 6.21 together with Table 6.17. The transient behaviours of most physical
variables in this simulation shown in Figure 6.23 resemble those of the cor-
responding variables in Figure 6.17 except for a noteworthy spinning motion
around the x-axis in the former case. From the figure we can observe that
|Y1 −Y2| converges to around 0.5 [mm] and |Z1 −Z2| converges to around 0.7
[mm] as t → ∞. Both the maximum deformations ∆x1 and ∆x2 converge to
around 2.5 [mm] as t → ∞. All of these results suggest that for sufficiently
long times the two contact areas of the fingertips interlace the thin and light
flat object firmly.

Through computer simulations of such a pair of soft fingers, we observe
that the choice of stiffness parameter k [Nm−2] for the fingertip material is
quite sensitive to the physical order of the object mass, and as well viscosities
cϕ, cψ and cθ. Looking at human fingers, these viscosities rely heavily on the
physiological and structural characteristics of the finger skin and, in particular,
the process of the finger print may increase these viscosities drastically. The
speed of convergences toward force/torque balance depends crucially on the
magnitudes of the viscosities cϕ, cψ and cθ. Fingerprints play a crucial role
in the regulation of the frictional characteristics of rolling contacts between
fingertips and a grasped object.
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Fig. 6.23. The transient responses of the physical variables
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Mathematical Supplements

Lemma 1

Two basic lemmata concerning the convergence of functions in t defined over
t ∈ [0,∞) as t → ∞ are presented, as referred to frequently in the text.

Lemma. If a differentiable scalar function ω(t) defined over t ∈ [0,∞)
converges to 0 as t → ∞ and its derivative ω̇(t) (= dω(t)/dt) is uniformly
continuous in t, then ω̇(t) → 0 as t → ∞.

Proof. By denying the convergence of ω̇(t) to zero as t → ∞, it is possible
to derive a contradiction. Since ω̇(t) does not converge to zero as t → ∞, there
exist some positive constant c > 0 and a time sequence {tk} with tk → ∞
as k → ∞ such that |ω̇(tk)| ≥ c for any positive integer k. On the other
hand, it follows from the uniform continuity of ω̇(t) that for any ε > 0 there
exists a number µ(ε) > 0 such that |t − s| < µ(ε) implies |ω̇(t) − ω̇(s)| ≤
ε. Since |ω̇(tk)| ≥ c, this shows that |ω̇(t)| ≥ c/2 for any t satisfying |t −
tk| ≤ µ(c/2), where we set ε = c/2. Next, we select a sub-sequence {tk(1) =
t1, tk(2), tk(3), · · · } from the original sequence {tk, i = 1, · · · } in such a way
that

tk(l+1) > tk(l) + µ(c/2), l = 1, 2, · · · , (A.1)

where the number k(l +1) is defined as the smallest integer k(l)+ r for which
tk(l)+r becomes greater than tk(l). Then, if we set δ = µ(c/2), it follows that

∣∣ω(tk(l) + δ) + ω(tk(l) − δ)
∣∣ =

∣∣∣∣∣
∫ tk(l)+δ

tk(l)−δ

ω̇(t)dt

∣∣∣∣∣ ≥ cδ. (A.2)

Since tk(l) → ∞ as l increases and tends to infinity, Equation (A.2) contradicts
the convergence of ω(t) to zero as t → ∞.
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Lemma 2

Lemma. If an n-dimensional vector-valued function q(t) is bounded and
uniformly continuous in t, and moreover q(t) ∈ L1(0,∞) or L2(0,∞), then
q(t) → 0 as t → ∞.

Proof. Similarly to the proof of Lemma 1, we derive a contradiction by
denying the convergence of q(t) to 0 as t → ∞. Then, there exist a constant
c > 0 and an infinite sequence {tk} with tk → ∞ as k → ∞ such that
‖q(tk)‖ > c for any k. On the other hand, from the uniform continuity of
q(t) it follows that for any ε > 0 there exists a number µ(ε) > 0 such that
|t − s| < µ(ε) implies

‖q(t) − q(s)‖ ≤ ε. (A.3)

Since it is possible to take ε = c/2, it follows from Equation (A.3) and in-
equality ‖q(tk)‖ ≥ c that, for any t satisfying |t − tk| ≤ µ(c/2),

‖q(t)‖ ≥ c

2
. (A.4)

Since it is possible to assume without loss of generality that tk+1 > tk +µ(c/2)
as remarked in the proof of Lemma A, it follows from Equation (A.4) that

∫ ∞

0

‖q(t)‖ dt ≥
∞∑

k=0

c

2
µ(c/2). (A.5)

The right-hand side tends to infinity, which contradicts the assumption that
q(t) ∈ L1(0,∞). The proof for the case q(t) ∈ L2(0,∞) is similar to the above
argument.



B

A Bibliographic Note on the References

Chapter 1

The motif of the introductory chapter is actually indebted to the three books
cited as [1-23], [1-1], and [1-15] in the references. The author first recognised
the difficulty of “everyday physics” from the article authored by H.L. Drey-
fus and S.E. Dreyfus entitled “Making a Mind versus Modeling the Brain:
Artificial Intelligence Back at a Branchpoint”, which is included in the book
[1-23] as the second chapter, pp. 15–43. Later, this let the author claim in his
own article [1-20] that robotics should be directed toward making everyday
physics intelligible. Napier’s book [1-1] attracted his attention to the human
ability of precision prehension based on fingers–thumb opposability, which is
one of the most crucial distinctions of humankind from primates. From the
book [1-15] the author also noticed that modern psychologists have already
noted the importance of dynamics of the physical interactions of human body
movements with the environment in the development of infants. Regardless of
this dynamics point of view, developmental psychology or anthropology has
not explored every possibility for expressing the details of such dynamics in a
mathematical form. Robotics, however, must design and make multi-fingered
hands or multi-joint arms and implement programs in their central processing
units to let them fulfill tasks. Around the beginning of the 21st century, this
standpoint of robotics had reached a wall of silence in front of Bernstein’s
DOF problem. The author first came across the name of Bernstein, when he
found it in the famous textbook of robotics [1-26] on page 303. At the same
time, Chapter 6 of the book [1-26] was instructive for people working in re-
search of multi-fingered hands. Difficulties in controlling such systems with
many DOFs have been noted in the field of psychology, as in [1-26], as well as
in the field of robotics as claimed in the elaborate survey papers by Shimoga
[1-25] and Bicchi [1-24].

The last three sections of Chapter 1 summarise the fundamentals of robot
dynamics by referring to the author’s previous book [1-27].
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Chapter 2

As for the geometry of immobilisation and force/torque closure (or form clo-
sure) the general results were given in the paper [2-1] for immobilisability and
in [2-2] for form closure grasping. The research history of both problems in
relation to multi-fingered hands is detailed in the survey papers [1-24] and
[1-25] and the book [1-26] previously quoted. Computational problems for ob-
taining grasps with force/torque closure have been solved in [2-3] and [2-4].
The existence of force/torque balance in a dynamic sense for 2-D polygonal
objects was first discussed in [2-5]. The testbed problem for immobilisation
of a 2-D object pivoted at a point was first dealt with in the paper [2-6]. It
was found first in the paper [2-7] in the case of 2-D grasping that the rolling
contact constraint accompanied a tangential constraint force dynamically in
the direction tangential to the object surface. Discussions on the stability of
dynamic grasping with force/torque balance in Sections 2.5–2.8 were devised
firstly in this book. Physical and mathematical essences of the problem of
dynamic grasping is appparently captured by this simple setup of dual robot
fingers with a single DOF. Stability of an equilibrium configuration of grasp-
ing satisfying force/torque balance can be regarded as an extension of the
Lagrange–Dirichlet theorem [2-8], which says that an equilibrium configura-
tion of a mechanical system is stable if it has a minimum potential relative to
neighbouring positions. The original idea of the use of an artificial potential
generating position feedback signals in stabilisation of point-to-point control
of a robot arm was first presented in the paper [2-9].

Chapter 3

This chapter was prepared with the author’s intention to help the reader gain
a physical insight into rolling constraints that may play an important role
in controlling physical interactions of a multi-DOF mechanical system with
environments. Traditionally, rolling constraints have been considered to be a
source of static friction because of the generic condition expressed as the zero
relative velocity between contacting surfaces of two rigid bodies. Historically,
control of physical interactions under rolling contact has drawn much attention
from roboticists since the late 1990s as seen in the literature [3-1][3-2]. There
are a great number of papers concerned with the kinematics of rolling contact
as surveyed by Bicchi [1-24], including the papers treating a class of ball-
plate control problems [3-3][3-4][3-5][3-6][3-7]. Notwithstanding the abundant
literature on kinematic studies of rolling, there is a dearth of papers discussing
the dynamic aspects of rolling constraints that may accompany constraint
forces between contacting objects. Through the derivation of dynamics of
the testbed problem for dynamic immobilisation, the importance of indirect
control of shear forces arising tangentially to the object through rolling has
been disclosed. Differently from the kinematic analysis of rolling, this approach
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can express the crucial role of internal forces/torques through the closed-loop
dynamics of the system. The reason for the introduction of the Riemannian
distance comes from the viewpoint that the configuration space under contact
constraints can be treated locally as a Riemannian manifold and therefore the
concept of neighbourhoods must be developed on the basis of the Riemannian
metrics.

Chapter 4

Even in the case of planar grasp of 2-D objects by a pair of robot fingers,
rolling constraints were analysed from the kinematics and motion planning as
seen in the literature [4-1][4-2][4-3]. Stability of control of the overall fingers–
object system toward an equilibrium configuration by using a coordinated
control signal was first tackled in [4-4]. An expository paper about this planar
grasp was presented in [4-5]. The effectiveness of a coordinated signal based
on the opposable force was first shown in [4-6]. The concept of blind grasping
was presented in [4-7] by applying the principle of superposition of control
signals [4-8] to cope with a general robustness problem of grasping under the
effect of gravity and the unknown geometry of a grasped object. A gain tuning
method for choosing control gains is discussed in [4-9] by referring to Hill’s
model of force/velocity characteristics of muscles. Eponential convergence of
the closed-loop dynamics to an equilibrium pose in the case of a rigid object
with non-parallel surfaces was completed very recently [4-10].

Chapter 5

It has been pointed out by prominent roboticists [5-1][5-2][5-3][5-4] that one
of the key difficulties in research of the grasp by a multifingered hand is the
rolling contact between the fingertip and the object. However, analysis of a
grasp with rolling contact has been restricted to kinematics and motion plan-
ning. In fact, initiated by Brockett’s paper [5-5], there is a vast literature
on a variety of ball–plate problems as [3-3][3-4][3-5][3-6][3-7] and one more
recent publication [5-6]. In particular, Montanna [3-3] derived a set of equa-
tions, called the contact equations, and applied them to derive the velocity
relationship between the relative motion of two fingers grasping an object.
Nevertheless, most of the previous investigations for rolling contact did not
step further toward the dynamics viewpoint beyond kinematics and statics,
though it is well known that the velocity relationship on rolling contact can
be expressed as a set of Pfaffian constraints, some of which accompany actual
constraint forces [2-8]. The set of velocity relations between spherical finger-
tips and an object with parallel flat surfaces derived in this chapter was first
reported in [5-7][5-9], which is a corrected version of the previous paper [5-8]
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with a naive treatment of 3-D grasping by means of a blind grasp. The dynam-
ics of a rigid object with five variables treated in this chapter is related to the
so-called Suslov problem that is concerned with the motion of a generalised
rigid body with some of its body angular velocity components set equal to
zero. The full dynamics of a rigid object with six variables contacted with a
pair of spherical fingertips has been derived in a recent paper [5-10].

Chapter 6

Modelling of the stiffness characteristics of the area contact of the spherical
visco-elastic fingertip based upon lumped parametrisation was first presented
in [2-7]. The relation f(∆x) = k∆x2, where f denotes the reproducing force
of deformation, ∆x the maximum deformation, and k the stiffness per square
meter is coincident with experimental observations on the dynamic behaviours
of a soft material reported by Shimoga [6-1]. In the case of a spherical fingertip
made of elastic but hard and metallic material, it is well known [6-2][6-3][6-4]
that f(∆x) = k0∆x3/2. An early experimental result on grasp of a rigid object
by using a pair of single-DOF robot fingers was reported in [6-5]. Theoretical
treatments of the problem were presented in [2-7] and [6-6]. Mathematically
rigorous treatments of 2-D grasping by dual soft fingers were presented in
[6-7][6-8]. The analysis and simulation on 2-D or 3-D grasping by means of
soft fingers presented here will be published in [6-9] and elsewhere.
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