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The analysis of data arising from biomedical research has undergone a revolution
over the last 15 years, brought about by the combined impact of the Internet and
the development of increasingly sophisticated and accurate bioinformatics tech-
niques. All research workers in the areas of biomolecular science and biomedicine
are now expected to be competent in several areas of sequence analysis and often,
additionally, in protein structure analysis and other more advanced bioinformatics
techniques.

When we began our research careers in the early 1980s all of the techniques that
now comprise bioinformatics were restricted to specialists, as databases and user-
friendly applications were not readily available and had to be installed on labora-
tory computers. By the mid-1990s many datasets and analysis programs had
become available on the Internet, and the scientists who produced sequences
began to take on tasks such as sequence alignment themselves. However, there was
a delay in providing comprehensive training in these techniques. At the end of the
1990s we started to expand our teaching of bioinformatics at both undergraduate
and postgraduate level. We soon realized that there was a need for a textbook that
bridged the gap between the simplistic introductions available, which concen-
trated on results almost to the exclusion of the underlying science, and the very
detailed monographs, which presented the theoretical underpinnings of a
restricted set of techniques. This textbook is our attempt to fill that gap.

Therefore on the one hand we wanted to include material explaining the program
methods, because we believe that to perform a proper analysis it is not sufficient to
understand how to use a program and the kind of results (and errors!) it can
produce. It is also necessary to have some understanding of the technique used by
the program and the science on which it is based. But on the other hand, we wanted
this book to be accessible to the bioinformatics beginner, and we recognized that
even the more advanced students occasionally just want a quick reminder of what
an application does, without having to read through the theory behind it.

From this apparent dilemma was born the division into Applications and Theory
Chapters. Throughout the book, we wrote dedicated Applications Chapters to
provide a working knowledge of bioinformatics applications, quick and easy to
grasp. In most places, an Applications Chapter is then followed by a Theory
Chapter, which explains the program methods and the science behind them.
Inevitably, we found this created a small amount of duplication between some
chapters, but to us this was a small sacrifice if it left the reader free to choose at what
level they could engage with the subject of bioinformatics.

We have created a book that will serve as a comfortable introduction to any new
student of bioinformatics, but which they can continue to use into their postgrad-
uate studies. The book assumes a certain level of understanding of the background
biology, for example gene and protein structure, where it is important to appreciate
the variety that exists and not only know the canonical examples of first-year text-
books. In addition, to describe the techniques in detail a level of mathematics is
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required which is more appropriate for more advanced students. We are aware that
many postgraduate students of bioinformatics have a background in areas such as
computer science and mathematics. They will find many familiar algorithmic
approaches presented, but will see their application in unfamiliar territory. As they
read the book they will also appreciate that to become truly competent at bioinfor-
matics they will require knowledge of biomedical science.

There is a certain amount of frustration inherent in producing any book, as the
writing process seems often to be as much about what cannot be included as what
can. Bioinformatics as a subject has already expanded to such an extent, and we
had to be careful not to diminish the book’s teaching value by trying to squeeze
every possible topic into it. We have tried to include as broad a range of subjects as
possible, but some have been omitted. For example, we do not deal with the
methods of constructing a nucleotide sequence from the individual reads, nor with
a number of more specialized aspects of genome annotation.

The final chapter is an introduction to the even-faster-moving subject of systems
biology. Again, we had to balance the desire to say more against the practical
constraints of space. But we hope this chapter gives readers a flavor of what the
subject covers and the questions it is trying to answer. The chapter will not answer
every reader’s every query about systems biology, but if it prompts more of them to
inquire further, that is already an achievement.

We wish to acknowledge many people who have helped us with this project. We
would almost certainly not have got here without the enthusiasm and support of
Matthew Day who guided us through the process of getting a first draft. Getting
from there to the finished book was made possible by the invaluable advice and
encouragement from Chris Dixon, Dom Holdsworth, Jackie Harbor, and others
from Garland Science. We also wish to thank Eleanor Lawrence for her skills in
massaging our text into shape, and Nigel Orme for producing the wonderful illus-
trations. We received inspiration and encouragement from many others, too many
to name here, but including our students and those who read our draft chapters.

Finally, we wish to thank the many friends and family members who have had to
suffer while we wrote this book. In particular JB wishes to thank his wife Hilary for
her encouragement and perseverance. MZ wishes to specially thank her parents,
Martin Scurr, Nick Lee, and her colleagues at work.

Marketa Zvelebil

Jeremy O. Baum

May 2007
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Organization of this Book
Applications and Theory Chapters
Careful thought has gone into the organization of this book. The chapters are
grouped in two ways. Firstly, the chapters are organized into seven parts according
to topic. Within the parts, there is a second, less traditional, level of organization:
most chapters are designated as either Applications or Theory Chapters. This book
is designed to be accessible both to students who wish to obtain a working knowl-
edge of the bioinformatics applications, as well as to students who want to know
how the applications work and maybe write their own. So at the start of most parts,
there are dedicated Applications Chapters, which deal with the more practical
aspects of the particular research area, and are intended to act as a useful hands-on
introduction. Following this are Theory Chapters, which explain the science, theory,
and techniques employed in generally available applications. These are more
demanding and should preferably be read after having gained a little experience of
running the programs. In order to become truly proficient in the techniques you
need to read and understand these more technical aspects. On the opening page of
each chapter, and in the Table of Contents, it is clearly indicated whether it is an
Applications or a Theory Chapter.

Part 1: Background Basics
Background Basics provides three introductory chapters to key knowledge that will
be assumed throughout the remainder of the book. The first two chapters contain
material that should be well-known to readers with a background in biomedical
science. The first chapter describes the structure of nucleic acids and some of the
roles played by them in living systems, including a brief description of how the
genomic DNA is transcribed into mRNA and then translated into protein. The
second chapter describes the structure and organization of proteins. Both of these
chapters present only the most basic information required, and should not in any
way be regarded as an adequate grounding in these topics for serious work. The
intention is to provide enough information to make this book self-sufficient. The
third chapter in this part describes databases, again at a very introductory level.
Many biomedical research workers have large datasets to analyze, and these need
to be stored in a convenient and practical way. Databases can provide a complete
solution to this problem.

Part 2: Sequence Alignments
Sequence Alignments contains three chapters that deal with a variety of analyses of
sequences, all relating to identifying similarities. Chapter 4 is a practical introduc-
tion to the area, following some examples through different analyses and showing
some potential problems as well as successful results. Chapters 5 and 6 deal with
several of the many different techniques used in sequence analysis. Chapter 5
focuses on the general aspects of aligning two sequences and the specific methods
employed in database searches. A number of techniques are described in detail,
including dynamic programming, suffix trees, hashing, and chaining. Chapter 6
deals with methods involving many sequences, defining commonly occurring
patterns, defining the profile of a family of related proteins, and constructing a
multiple alignment. A key technique presented in this chapter is that of hidden
Markov models (HMMs).

A NOTE TO THE READER
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Part 3: Evolutionary Processes
Evolutionary Processes presents the methods used to obtain phylogenetic trees
from a sequence dataset. These trees are reconstructions of the evolutionary history
of the sequences, assuming that they share a common ancestor. Chapter 7 explains
some of the basic concepts involved, and then shows how the different methods
can be applied to two different scientific problems. In Chapter 8 details are given of
the techniques involved and how they relate to the assumptions made about the
evolutionary processes.

Part 4: Genome Characteristics
Genome Characteristics deals with the analysis required to interpret raw genome
sequence data. Although by the time a genome sequence is published in the
research journals some preliminary analysis will have been carried out, often the
unanalyzed sequence is available before then. This part describes some of the tech-
niques that can be used to try to locate genes in the sequence. Chapter 9 describes
some of the range of programs available, and shows how complex their output can
be and illustrates some of the possible pitfalls. Chapter 10 presents a survey of the
techniques used, especially different Markov models and how models of whole
genes can be built up from models of individual components such as
ribosome-binding sites.

Part 5: Secondary Structures
Secondary Structures provides two chapters on methods of predicting secondary
structures based on sequence (or primary structure). Chapter 11 introduces the
methods of secondary structure prediction and discusses the various techniques
and ways to interpret the results. Later sections of the chapter deal with prediction
of more specialized secondary structure such as protein transmembrane regions,
coiled coil and leucine zipper structures, and RNA secondary structures. Chapter 12
presents the underlying principles and details of the prediction methods from basic
concepts to in-depth understanding of techniques such as neural networks and
Markov models applied to this problem.

Part 6: Tertiary Structures
Tertiary Structures extends the material in Part 5 to enable the prediction and
modeling of protein tertiary and quaternary structure. Chapter 13 introduces the
reader to the concepts of energy functions, minimization, and ab initio prediction.
It deals in more detail with the method of threading and focuses on homology
modeling of protein structures, taking the student in a stepwise fashion through the
process. The chapter ends with example studies to illustrate the techniques.
Chapter 14 contains methods and techniques for further analysis of structural
information and describes the importance of structure and function relationships.
This chapter deals with how fold prediction can help to identify function, as well as
giving an introduction to ligand docking and drug design.

Part 7: Cells and Organisms
Cells and Organisms consists of two chapters that deal in some detail with expres-
sion analysis and an introductory chapter on systems biology. Chapter 15 intro-
duces the techniques available to analyze protein and gene expression data. It
shows the reader the information that can be learned from these experimental
techniques as well as how the information could be used for further analysis.
Chapter 16 presents some of the clustering techniques and statistics that are
touched upon in Chapter 15 and are commonly used in gene and protein expres-
sion analysis. Chapter 17 is a standalone chapter dealing with the modeling of
systems processes. It introduces the reader to the basic concepts of systems biology,
and shows what this exciting and rapidly growing field may achieve in the future.

A Note to the Reader
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Appendices
Three appendices are provided that expand on some of the concepts mentioned in
the main part of this book. These are useful for the more inquisitive and advanced
reader. Appendix A deals with probability and Bayesian analysis, Appendix B is
mainly associated with Part 6 and deals with molecular energy functions, while
Appendix C describes function optimization techniques.

Organization of the Chapters
Learning Outcomes
Each chapter opens with a list of learning outcomes which summarize the topics to
be covered and act as a revision checklist.

Flow Diagrams
Within each chapter every section is introduced with a flow diagram to help the
student to visualize and remember the topics covered in that section. A flow
diagram from Chapter 5 is given below, as an example. Those concepts which will
be described in the current section are shown in yellow boxes with arrows to show
how they are connected to each other. For example two main types of optimal
alignments will be described in this section of the chapter: local and global. Those
concepts which were described in previous sections of the chapter are shown in
grey boxes, so that the links can easily be seen between the topics of the current
section and what has already been presented. For example, creating alignments
requires methods for scoring gaps and for scoring substitutions, both of which have
already been described in the chapter. In this way the major concepts and their
inter-relationships are gradually built up throughout the chapter.

A Note to the Reader
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Mind Maps
Each chapter has a mind map, which is a specialized pedagogical feature, enabling
the student to visualize and remember the steps that are necessary for specific appli-
cations. The mind map for Chapter 4 is given above, as an example.  In this example,
four main areas of the topic ‘producing and analyzing sequence alignments’ have
been identified: measuring matches, database searching, aligning sequences, and
families. Each of these areas, colored for clarity, is developed to identify the key
concepts involved, creating a visual aid to help the reader see at a glance the range of
the material covered in discussing this area. Occasionally there are important
connections between distinct areas of the mind map, as here in linking BLAST and
PHI-BLAST, with the latter method being derived directly from the former, but having
a quite different function, and thus being in a different area of the mind map.

Illustrations
Each chapter is illustrated with four-color figures. Considerable care has been put
into ensuring simplicity as well as consistency of representation across the book.
Figure 4.16 is given below, as an example. 

A Note to the Reader
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Further Reading
It is not possible to summarize all current knowledge in the confines of this book,
let alone anticipate future developments in this rapidly developing subject.
Therefore at the end of each chapter there are references to research literature and
specialist monographs to help readers continue to develop their knowledge and
skills. We have grouped the books and articles according to topic, such that the
sections within the Further Reading correspond to the sections in the chapter itself:
we hope this will help the reader target their attention more quickly onto the appro-
priate extension material.

List of Symbols
Bioinformatics makes use of numerous symbols, many of which will be unfamiliar
to those who do not already know the subject well. To help the reader navigate the
symbols used in this book, a comprehensive list is given at the back which quotes
each symbol, its definition, and where its most significant occurrences in the book
are located.

Glossary
All technical terms are highlighted in bold where they first appear in the text and are
then listed and explained in the Glossary. Further, each term in the Glossary also
appears in the Index, so the reader can quickly gain access to the relevant pages
where the term is covered in more detail. The book has been designed to cross-
reference in as thorough and helpful a way as possible.

Garland Science Website 
Garland Science has made available a number of supplementary resources on 
its website, which are freely available and do not require a password. For more
details, go to www.garlandscience.com/gs_textbooks.asp and follow the link to
Understanding Bioinformatics.

Artwork
All the figures in Understanding Bioinformatics are available to download from the
Garland Science website. The artwork files are saved in zip format, with a single zip
file for each chapter. Individual figures can then be extracted as jpg files.

Additional Material
The Garland Science website has some additional material relating to the topics in
this book. For each of the seven parts a pdf is available, which provides a set of useful
weblinks relevant to those chapters. These include weblinks to relevant and impor-
tant databases and to file format definitions, as well as to free programs and to
servers which permit data analysis on-line. In addition to these, the sets of data
which were used to illustrate the methods of analysis are also provided. These will
allow the reader to reanalyze the same data, reproducing the results shown here and
trying out other techniques.

A Note to the Reader
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PART 1

BACKGROUND BASICS

The understanding of a number of biological concepts
is very important in order to enable any type of bioin-
formatics research. As bioinformatics deals in large
part with the analysis of DNA and proteins, the first
two chapters of this book give an overview of some of
the most important aspects, essential for bioinfor-
matics analysis, of DNA, genes and the way genes code
for proteins, and protein structures.

Another vital aspect of bioinformatics is the use of, and
sometimes the creation of, databases—places used to
store, retrieve, and analyze data. Therefore the third
chapter in this part of the book gives an overview of
some of the more common database aspects that the
reader should be familiar with before proceeding with
the rest of the book.

All three chapters are introductory and in no way
attempt to deal with any of the subjects in detail. Many
books have been written on all the topics of these three
chapters, and the reader should consult these books
(examples given in the Further Reading sections) for
additional information.

Chapter 1
The Nucleic Acid World

Chapter 2
Protein Structure

Chapter 3
Dealing With Databases 
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THE NUCLEIC ACID WORLD

When you have read Chapter 1, you should be able to: 

State the chemical structures of nucleic acids.

Explain base-pairing and the double helix.

Explain how DNA stores genetic information.

Summarize the intermediate role of mRNA between DNA and proteins.

Outline how mRNA is translated into protein by ribosomes.

Outline how gene control is exercised by binding to short nucleotide sequences.

Show that eukaryotic mRNA often has segments (introns) removed before translation.

Discuss how all life probably evolved from a single common ancestor.

Summarize how evolution occurs by changes to the sequence of genomic DNA.

It is amazing to realize that the full diversity of life on this planet—from the simplest
bacterium to the largest mammal—is captured in a linear code inside all living cells.
In almost exactly the way the vivid detail of a musical symphony or a movie can be
digitally recorded in a binary code, so the four base units of the DNA molecule
capture and control all the complexity of life. The crucially important discovery of
the link between DNA, proteins, and the diversity of life came during the twentieth
century and brought about a revolution in the understanding of genetics. Since that
time we have amassed increasing amounts of information on the sequences of
DNA, RNA, and proteins and the great variety of these molecules in cells under
differing conditions. The growth of this information threatens to outstrip our ability
to analyze it. It is one of the key challenges facing biologists today to organize,
study, and draw conclusions from all this information: the patterns within the
sequences and experimental data, the structure and the function of the various
types of molecules, and how everything interacts to produce a correctly functioning
organism. Bioinformatics is the name we give to this study and our aim is to use it
to obtain greater understanding of living systems.

Information about nucleic acids and proteins is the raw material of bioinformatics,
and in the first two chapters of this book we will briefly review these two types of
biomolecules and their complementary roles in reproducing and maintaining life.
This review is not a comprehensive introduction to cell and molecular biology; for
that you should consult one of the excellent introductory textbooks of cell and
molecular biology listed in Further Reading (p. 24). Rather, it is intended simply as
a reminder of those aspects of nucleic acids and proteins that you will need as a
background to the bioinformatics methods described in the rest of the book. More

1
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information about the biological context of the bioinformatics problems we discuss
is also given in the biology boxes and glossary items throughout the book.

This chapter will deal with the nucleic acids—deoxyribonucleic acid (DNA) and
ribonucleic acid (RNA)—and how they encode proteins, while the structure and
functions of proteins themselves will be discussed in Chapter 2. In these two chap-
ters we shall also discuss how DNA changes its information-coding and functional
properties over time as a result of the processes of mutation, giving rise to the enor-
mous diversity of life, and the need for bioinformatics to understand it.

The main role of DNA is information storage. In all living cells, from unicellular
bacteria to multicellular plants and animals, DNA is the material in which genetic
instructions are stored and is the chemical structure in which these instructions are
transmitted from generation to generation; all the information required to make
and maintain a new organism is stored in its DNA. Incredibly, the information
required to reproduce even very complex organisms is stored on a relatively small
number of DNA molecules. This set of molecules is called the organism’s genome.
In humans there are just 46 DNA molecules in most cells, one in each chromosome.
Each DNA molecule is copied before cell division, and the copies are distributed
such that each daughter cell receives a full set of genetic information. The basic set
of 46 DNA molecules together encode everything needed to make a human being.
(We will skip over the important influence of the environment and the
nature–nurture debate, as they are not relevant to this book.)

Proteins are manufactured using the information encoded in DNA and are the mole-
cules that direct the actual processes on which life depends. Processes essential to
life, such as energy metabolism, biosynthesis, and intercellular communication, are
all carried out through the agency of proteins. A few key processes such as the

Chapter 1: The Nucleic Acid World
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synthesis of proteins also involve molecules of RNA. Ignoring for a moment some of
the complexity that can occur, a gene is the information in DNA that directs the
manufacture of a specific protein or RNA molecular form. As we shall see, however,
the organization of genes within the genome and the structure of individual genes
are somewhat different in different groups of organisms, although the basic princi-
ples by which genes encode information are the same in all living things.

Organisms are linked together in evolutionary history, all having evolved from one
or a very few ancient ancestral life forms. This process of evolution, still in action,
involves changes in the genome that are passed to subsequent generations. These
changes can alter the protein and RNA molecules encoded, and thus change the
organism, making its survival more, or less, likely in the circumstances in which it
lives. In this way the forces of evolution are inextricably linked to the genomic DNA
molecules.

1.1 The Structure of DNA and RNA
Considering their role as the carrier of genetic information, DNA molecules have a
relatively simple chemical structure. They are linear polymers of just four different
nucleotide building blocks whose differences are restricted to a substructure called
the base (see Flow Diagram 1.1). For efficient encoding of information, one might
have expected there to be numerous different bases, but in fact there are only four.
This was one of the reasons why the true role of DNA as the carrier of genetic infor-
mation was not appreciated until the 1940s, long after the role of the chromosomes
in heredity was apparent. But although chemically simple, genomic DNA molecules
are immensely long, containing millions of bases each, and it is the order of these
bases, the nucleotide sequence or base sequence of DNA, which encodes the infor-
mation for making proteins.

The three-dimensional structure of DNA is also relatively simple, involving regular
double helices. There are also larger-scale regular structures, but it has been clearly
established that the information content of DNA is held at the level of the base
sequence itself.

RNA molecules are also linear polymers, but are much smaller than genomic DNA.
Most RNA molecules also contain just four different base types. However, several
classes of RNA molecules are known, some of which have a small proportion of
other bases. RNA molecules tend to have a less-regular three-dimensional structure
than DNA.

DNA is a linear polymer of only four different bases
The building blocks of DNA and RNA are nucleotides, which occur in different but
chemically related forms. A nucleotide consists of a nitrogen-containing base that is
linked to a five-carbon sugar ring at the 1¢ position on the ring, which also carries a
phosphate group at the 5¢ position (see Figure 1.1A). In DNA the sugar is deoxyribose,
in RNA it is ribose, the difference between the two being the absence or presence,
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RNA DNA 

four bases/ 
nucleotides 

Flow Diagram 1.1
The key concept introduced in this
section is that DNA and RNA are
composed of subunits called
nucleotides, with only four
different nucleotide types in a
molecule, but a different set of four
nucleotides in each of the two types
of nucleic acid.
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respectively, of a hydroxyl group at the 2¢ position. These two types of nucleotide are
referred to as deoxyribonucleotides and ribonucleotides, respectively. Apart from
this, the only difference between nucleotides is the base, which is a planar ring struc-
ture, either a pyrimidine or a purine (see Figure 1.1B). In DNA only four different
bases occur: the purines guanine (G) and adenosine (A) and the pyrimidines cytosine
(C) and thymine (T). In most forms of RNA molecule there are also just four bases,
three being the same as in DNA, but thymine is replaced by the pyrimidine uracil (U).

Each nucleic acid chain, or strand, is a linear polymer of nucleotides linked
together by phosphodiester linkages through the phosphate on one nucleotide and
the hydroxyl group on the 3¢ carbon on the sugar of another (see Figure 1.1C). This
process is carefully controlled in living systems so that a chain is exclusively made
with either deoxyribonucleotides (DNA) or ribonucleotides (RNA). The resulting
chain has one end with a free phosphate group, which is known as the 5¢¢ end, and
one end with a free 3¢ hydroxyl group, which is known as the 3¢¢ end. The base
sequence or nucleotide sequence is defined as the order of the nucleotides along
the chain from the 5¢ to the 3¢ end. It is normal to use the one-letter code given
above to identify the bases, starting at the 5¢ end, for example AGCTTAG.

There are instances of bases within a nucleic acid chain being modified in a living
cell. Although relatively rare, they can be of great interest. In the case of DNA, in
vertebrates cytosine bases can be methylated (addition of a -CH3 group). This can
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The building blocks of DNA and
RNA. (A) Left, cytidylate (ribo-CMP);
right, deoxyguanylate (dGMP). Each
consists of three main parts: a
phosphate group, a pentose sugar,
and a base. It is the base part that is
responsible for the differences in the
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containing ring while the
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that is involved in linking the
building blocks together by a
phosphodiester linkage in DNA.
(From B. Alberts et al., Molecular
Biology of the Cell, 4th ed. New York:
Garland Science, 2002.)
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result in certain genes being rendered inactive, and is involved in the newly discov-
ered phenomenon known as genomic imprinting, where the change that may occur
in the offspring depends on whether the gene is maternally or paternally inherited.
The class of RNA molecules called tRNA (see Section 1.2) have modifications to
approximately 10% of their bases, and many different modifications have been seen
involving all base types. These changes are related to the function of the tRNA.

Two complementary DNA strands interact by base-pairing to
form a double helix
The key discovery for which the Nobel Prize was awarded to James Watson and
Francis Crick, who drew on the work of Rosalind Franklin and others (see Figure
1.2), was the elucidation in 1953 of the double-helical structure of the DNA mole-
cule, in which two strands of DNA are wound around each other and are held
together by hydrogen bonding between the bases of each strand. Their structure
was an early example of model building of large molecules, and was based on
knowledge of the chemical structure of the constituent nucleotides and experi-
mental X-ray diffraction data on DNA provided by, among others, Maurice Wilkins,
who was also awarded a share in the Nobel Prize. (Current methods of model
building as applied to proteins are discussed in Chapter 13.)

All the bases are on the inside of the double helix, with the phosphate-linked
sugars forming a backbone on the outside (see Figure 1.3A). Crucial to Watson and
Crick’s success was their realization that the DNA molecules contained two
strands and that the base-pairing follows a certain set of rules, now called
Watson–Crick base-pairing, in which a specific purine pairs only with a specific
pyrimidine: A with T, and C with G. Each strand of a DNA double helix therefore
has a base sequence that is complementary to the base sequence of its partner
strand. The bases interact through hydrogen bonding; two hydrogen bonds are
formed in a T–A base pair, and three in a G–C base pair (see Figure 1.3B). This
complementarity means that if you know the base sequence of one strand of DNA,
you can deduce the base sequence of the other. Note, however, that the two
strands are antiparallel, running in opposite directions, so that the complemen-
tary sequence to AAG is not TTC but CTT (see Figure 1.3A).
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Figure 1.2
Two scientists whose work was
influential on James Watson and
Francis Crick when they
elucidated the structure of DNA.
(A) Maurice Wilkins. 
(B) Rosalind Franklin. ( A and B
courtesy of Science Photo
Library.)
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Hydrogen bonds are noncovalent bonds, which in biomolecules are much weaker
than covalent bonds, often involving a binding energy of only 5–20 kJ mol–1. As a
consequence the two strands of the DNA double helix can be relatively easily sepa-
rated. There are a number of processes in which this strand separation is required,
for example when the molecules of DNA are copied as a necessary prelude to cell
division, a process called DNA replication. The separated strands each serve as a
template on which a new complementary strand is synthesized by an enzyme called
DNA polymerase, which moves along the template successively matching each base
in the template to the correct incoming nucleotide and joining the nucleotide to the
growing new DNA strand. Thus each double helix gives rise to two new identical
DNA molecules (see Figure 1.4). Genetic information is thus preserved intact
through generations of dividing cells. The actual biochemical process of DNA repli-
cation is complex, involving a multitude of proteins, and will not concern us here,
but at its heart is this simple structural property of complementarity.

One of the truly remarkable features of DNA in living systems is how few errors
there are in the complementarity of the two strands. The error rate is approximately
1 base in 109. This is very important, as it is vital to transmit the genome as accu-
rately as possible to subsequent generations. Many alternative base-pairings are
possible, although these are less favorable than the Watson–Crick base-pairing.
These energies can be used to predict the expected rate of incorrect base-pairing.
However, genomic DNA shows a much lower error rate than expected. This is a
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result of the controlled way in which the DNA polymerase builds the second strand,
including mechanisms for checking and correcting erroneous base-pairings.

DNA strands can pair with a DNA or RNA strand of complementary sequence to
make a double-stranded DNA or DNA/RNA hybrid. This property forms the basis of
a set of powerful experimental molecular biology techniques. Known generally as
nucleic acid hybridization, it is exploited in applications such as DNA microarrays
(described in Chapter 15), in situ hybridization to detect the activity of specific
genes in cells and tissues, and fluorescence in situ hybridization (FISH) for visually
locating genes on chromosomes.

RNA molecules are mostly single stranded but can also have
base-pair structures
In contrast to DNA, almost all RNA molecules in living systems are single stranded.
Because of this, RNA has much more structural flexibility than DNA, and some
RNAs can even act as enzymes, catalyzing a particular chemical reaction. The large
number of hydrogen bonds that can form if the RNA molecule can double back on
itself and create base-pairing makes such interactions highly energetically favor-
able. Often, short stretches of an RNA strand are almost or exactly complementary
to other stretches nearby. Two such stretches can interact with each other to form a
double-helix structure similar to that of DNA, with loops of unpaired nucleotides at
the ends of the helices. The interactions stabilizing such helices are often not stan-
dard Watson–Crick pairing. These structures are often referred to as RNA secondary
structure by analogy with protein secondary structure described in Section 2.1.

It is likely that all RNA molecules in a cell have some regions of stable three-
dimensional structure due to limited base-pairing, the unpaired regions being very
flexible and not taking up any specific structure. In some cases RNA folds up even
further, packing helices against each other to produce a molecule with a rigid struc-
ture. The three-dimensional structures that result have a functional role for many
RNA molecules. An example of such structures is shown in Figure 1.5, and is fairly
typical in that a significant fraction of the sequence is involved in base-pairing
interactions. The prediction of ribosomal secondary structures and three-dimen-
sional structure is not covered in this book, but introductory references are given in
Further Reading. Even more complex interactions are possible, one example of
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Figure 1.5
Example three-dimensional
structure of RNA. The structure
shown is the Tetrahymena ribozyme.
(A) Nucleotide sequence showing
base-pairing and loops. (B) Three-
dimensional structure as
determined by x-ray crystallography.
Entry 1GRZ of MSD database. (From
B.L. Golden et al., A preorganized
active site in the crystal structure of
Tetrahymena ribozyme, Science
282:259–264, 1998. Reprinted with
permission from AAAS.)
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which is illustrated in Figure 1.5A. To the right of the P4 and P6 labels are four bases
that are involved in two separate base-pairings, in each case forming a base triplet.
Such interactions have been observed on several occasions, as have interactions
involving four bases.

1.2 DNA, RNA, and Protein: The Central Dogma
There is a key relationship between DNA, RNA, and the synthesis of proteins, which
is often referred to as the central dogma of molecular biology. According to this
concept, there is essentially a single direction of flow of genetic information from
the DNA, which acts as the information store, through RNA molecules from which
the information is translated into proteins (see Figure 1.6 and Flow Diagram 1.2).
This basic scheme holds for all known forms of life, although there is some varia-
tion in the details of the processes involved. The proteins are the main working
components of organisms, playing the major role in almost all the key processes of
life. However, not all the genetic information in the DNA encodes proteins.
Molecules such as RNA can also be the end product, and other regions of genomes
have as yet no known function or product. The genomic DNA encodes all molecules
that are necessary for life, whether they are the proteins (such as enzymes) involved
in nearly all biological activities or RNA important for translation and transcription.

For example, all the information needed to build and maintain a human being is
contained in just 23 pairs of DNA molecules, comprising the chromosomes of the
human genome. These molecules are amongst the largest and longest known, the
smallest having 47 million bases and the largest 247 million bases, with the entire
human genome being composed of approximately 3 billion bases. Even bacterial
genomes, which are much smaller than this, tend to have several million bases. The
DNA of each chromosome encodes hundreds to thousands of proteins, depending
on the chromosome, each protein being specified by a distinct segment of DNA. In
simple terms, this segment is the gene for that protein. In practice, a gene is consid-
ered also to include surrounding regions of noncoding DNA that act as control
regions, as will be described in Section 1.3. These are involved in determining
whether the gene is active—in which case the protein is produced—or is inactive.
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The sequence of the protein-coding region of a gene carries information about the
protein sequence in a coded form called the genetic code. This DNA sequence is
decoded in a two-stage process (see Figure 1.6), the stages being called transcrip-
tion and translation. Both stages involve RNA molecules and will now be described.

DNA is the information store, but RNA is the messenger
The information encoded in DNA is expressed through the synthesis of other mol-
ecules; it directs the formation of RNA and proteins with specific sequences. As is
described in detail in Chapter 2, proteins are linear polymers composed of another
set of chemical building blocks, the amino acids. There are some 20 different amino
acids in proteins, and their varied chemistry (see Figure 2.3) makes proteins much
more chemically complex and biochemically versatile molecules than nucleic acids.

The sequence of bases in the DNA of a gene specifies the sequence of amino acids
in a protein chain. The conversion does not occur directly, however. After a signal to
switch on a gene is received, a single-stranded RNA copy of the gene is first made in
a process called transcription. Transcription is essentially similar to the process of
DNA replication, except that only one of the DNA strands acts as a template in this
case, and the product is RNA not DNA (see Figure 1.7). RNA synthesis is catalyzed by
enzymes called RNA polymerases, which, like DNA polymerases, move along the
template, matching incoming ribonucleotides to the bases in the template strand
and joining them together to make an RNA chain. Only the relevant region of DNA
is transcribed into RNA, therefore the RNA is a much smaller molecule than the
DNA it comes from. So while the DNA carries information about many proteins, the
RNA carries information from just one part of the DNA, usually information for a
single protein. RNA transcribed from a protein-coding gene is called messenger
RNA (mRNA) and it is this molecule that directs the synthesis of the protein chain,
in the process called translation, which will be described in more detail below. When
a gene is being transcribed into RNA, which is in turn directing protein synthesis,
the gene is said to be expressed. Expression of many genes in a cell or a set of cells
can be measured using DNA or RNA expression microarrays (see Chapter 15).

Only one of the DNA strands in any given gene is transcribed into RNA. As the RNA
must have a coding sequence that can be correctly translated into protein, the DNA
strand that acts as the physical template for RNA synthesis does not carry the coding
sequence itself, but its complement. It is therefore known as the noncoding strand
or anticoding or antisense strand. The sequence of the other, non-template DNA
strand is identical to that of the messenger RNA (with T replacing U), and this
strand is called the coding or sense strand. This is the DNA sequence that is
written out to represent a gene, and from which the protein sequence can be
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deduced according to the rules of the genetic code. Note that the polymerase tran-
scribes the anticoding strand in the direction from 3¢ to 5¢, so that the mRNA strand
is produced from the 5¢ to the 3¢ end.

Although only one segment of the DNA strand is transcribed for any given gene, it
is also possible for genes to overlap so that one or both strands at the same location
encode parts of different proteins. This most commonly occurs in viruses as a
means of packing as much information as possible into a very small genome.
However, overlapping genes can also occur in mammals; recently 774 pairs of over-
lapping genes were identified in the human genome (see Figure 1.8). 

The genomic DNA sequence contains more information than just the protein
sequences. The transcriptional apparatus has to locate the sites where gene tran-
scription should begin, and when to transcribe a given gene. At any one time, a cell
is only expressing a few thousand of the genes in its genome. To accomplish this
regulated gene expression, the DNA contains control sequences in addition to
coding regions. We shall return to these regulatory regions later, after first
discussing the details of the coding of protein sequences.

Messenger RNA is translated into protein according to the
genetic code
The genetic code refers to the rules governing the correspondence of the base
sequence in DNA or RNA to the amino acid sequence of a protein. The essential
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Second letter of the codon
5¢ end U C A G 3¢ end

UUU Phe UCU Ser UAU Tyr UGU Cys U
U UUC Phe UCC Ser UAC Tyr UGC Cys C

UUA Leu UCA Ser UAA Stop UGA Stop A
UUG Leu UCG Ser UAG Stop UGG Trp G

CUU Leu CCU Pro CAU His CGU Arg U
C CUC Leu CCC Pro CAC His CGC Arg C

CUA Leu CCA Pro CAA Gln CGA Arg A
CUG Leu CCG Pro CAG Gln CGG Arg G

AUU Ile ACU Thr AAU Asn AGU Ser U
A AUC Ile ACC Thr AAC Asn AGC Ser C

AUA Ile ACA Thr AAA Lys AGA Arg A
AUG Met ACG Thr AAG Lys AGG Arg G

GUU Val GCU Ala GAU Asp GGU Gly U
G GUC Val GCC Ala GAC Asp GGC Gly C

GUA Val GCA Ala GAA Glu GGA Gly A
GUG Val GCG Ala GAG Glu GGG Gly G

MUTYH TESK2 

TOE1 
5¢ 3¢

3¢ 5¢Figure 1.8
Overlapping genes. A schematic
showing the overlap of three human
genes. The dark green boxes show
protein-coding regions of the DNA
(exons) while the light green boxes
show regions that are untranslated.
(Adapted from V. Veeramachaneni
et al., Mammalian overlapping
genes: the comparative perspective,
Genome Res. 14:280–286, 2004.)
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amino acid code defined in Table 2.1
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problem is how a code of four different bases in nucleic acids can specify proteins
made up of 20 different types of amino acids. The solution is that each amino acid
is encoded by a set of three consecutive bases. The three-base sets in RNA are called
codons, and genetic code tables conventionally give the genetic code in terms of
RNA codons. The standard genetic code is given in Table 1.1. From this table you
can see that the genetic code is degenerate, in that most amino acids can be spec-
ified by more than one codon. The degeneracy of the genetic code means that you
can deduce the protein sequence from a DNA or RNA sequence, but you cannot
unambiguously deduce a nucleic acid sequence from a protein sequence.

There are three codons that do not encode an amino acid but instead signal the end
of a protein-coding sequence. These are generally called the stop codons. The
signal to start translating is more complex than a single codon, but in most cases
translation starts at an AUG codon, which codes for the amino acid methionine.
This initial methionine residue is often subsequently removed from the newly
synthesized protein. In general, all life uses the same genetic code, but there are
some exceptions and care should be taken to use the appropriate code when
deducing amino acid sequences from DNA sequences. The code tables can be
accessed through many of the sequence databases and through the National Center
for Biotechnology Information (NCBI) Taxonomy section. 

The translation of bases to amino acids occurs in nonoverlapping sets of three
bases. There are thus three possible ways to translate any nucleotide sequence,
depending on which base is chosen as the start. These three reading frames give
three different protein sequences (see Figure 1.9). In the actual translation process
the detailed control signals ensure that only the appropriate reading frame is trans-
lated into protein. When trying to predict protein-coding sequences in DNA
sequences, information about the control signals is often lacking so that one needs
to try six possible reading frames, three for each DNA strand. Usually, only one of
these reading frames will produce a functional protein. Proteins tend (with notable
exceptions) to be at least 100 amino acids in length. The incorrect reading frames
often have a stop codon, which results in a much shorter translated sequence.
When analyzing bacterial genome sequences, for example, to predict protein-
coding sequences, reading frames are identified that give a reasonable length of
uninterrupted protein code, flanked by appropriate start and stop signals, called
open reading frames or ORFs. Gene prediction is discussed in Chapters 9 and 10.

Translation involves transfer RNAs and RNA-containing
ribosomes
RNAs have a variety of roles in cells but are mainly involved in the transfer of infor-
mation from DNA and the use of this information to manufacture proteins. There
are three main classes of RNA in all cells—messenger RNA (mRNA), ribosomal RNA
(rRNA), and transfer RNA (tRNA)—as well as numerous smaller RNAs with a
variety of roles, some of which we will encounter in this book. The role of mRNA has
been described above. rRNAs and tRNAs are involved in the process of mRNA trans-
lation and protein synthesis.

The mRNA produced by transcription is translated into protein by ribosomes, large
multimolecular complexes formed of rRNA and proteins, in a process called transla-
tion. Ribosomes consist of two main subunit complexes, one of which binds the
mRNA (see Figure 1.10A). Amino acids do not recognize the codons in mRNA directly
and their addition in the correct order to a new protein chain is mediated by the
tRNA molecules, which transfer the amino acid to the growing protein chain when
bound to the ribosome. These small tRNA molecules have a three-base anticodon at
one end that recognizes a codon in mRNA, and at the other end a site to which the
corresponding amino acid becomes attached by a specific enzyme. This system is the
physical basis for the genetic code. There are different tRNAs corresponding to every
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amino acid, but some tRNA anticodons can bind to several similar codons. One
common mechanism for this flexibility, which is called wobble base-pairing,
involves the occurrence of modified bases in the anticodon. The human tRNA set has
48 different anticodons, but some species have less than 40. tRNA is a good example
of an RNA molecule with a specific three-dimensional structure that is crucial for its
function, and an example structure is shown in Figure 1.11.  The identification of
tRNA genes is described in Chapter 10, and the generalized sequence and secondary
structure of tRNA molecules are shown in Figure 10.2.

A simplified outline of the process of translation is given in Figure 1.10B and we shall
not go into details of it here. The decoding of mRNA starts at its 5¢ end, which is the
end of the mRNA that is first synthesized at transcription. This is the key justification
for the DNA sequence of a gene being conventionally written as the sequence of the
sense or coding strand starting at its 5¢ end. The site of binding of the ribosome grad-
ually moves along the mRNA toward the 3¢ end. The tRNA molecules bind to the
ribosome and are the physical link between the mRNA and the growing protein
chain. The enzymatic activity in the ribosome that joins amino acids together to
form a protein chain is due to the rRNA, not to the ribosomal proteins.

1.3 Gene Structure and Control
The description in the previous section of the details of the central dogma focused
almost exclusively on the way the protein sequence information is stored in the
genome and its conversion from nucleotides to amino acids. Little attention was
paid to the ways in which these processes are controlled. Additionally, there are
further complications, especially in eukaryotes, whose genes often have a more
complicated structure including noncoding regions called introns between
protein-coding regions. Expressing such genes involves an extra step in converting
the DNA information to proteins, called RNA splicing, in which the mRNA
produced initially is modified to remove the introns.
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The regulation of many processes that interpret the information contained in a
DNA sequence relies on the presence of short signal sequences in the DNA (see
Flow Diagram 1.3). There are many different signal sequences, the general term for
which is a regulatory element. For example, the molecules involved in transcrip-
tion and translation require signals to identify where they should start and stop. In
addition there are signals that are involved in the control of whether transcription
occurs or not. The majority of these regulatory sequences are binding sites for
specialized regulatory proteins that interact with the DNA to regulate processes
such as transcription, RNA splicing, and translation. In order to interpret a DNA
sequence correctly, it is important to have some understanding of the nature of
these signals and their roles, although the precise mechanisms by which gene regu-
latory proteins act are not relevant to this book and are not discussed further. In this
section we will survey the main aspects of the control of genes and how control
structures occur in gene structure.

There are two distinct classes of organism—prokaryotes and eukaryotes—whose
translation and transcription processes need to be considered separately. For a
description of the general characteristics of prokaryotic and eukaryotic organisms
see Section 1.4. We shall briefly review the general types of noncoding regulatory
sequences found in prokaryotic and eukaryotic genes and introduce their roles. As
prokaryotic control regions are, in general, less complicated than those of eukary-
otic genes, we shall use them first to describe the basic signals that direct RNA poly-
merase to bind and start transcription in the appropriate place.

RNA polymerase binds to specific sequences that position it
and identify where to begin transcription
The control regions in DNA at which RNA polymerase binds to initiate transcrip-
tion are called promoters. RNA polymerase binds more tightly to these regions
than to the rest of the DNA and this triggers the start of transcription. Additional
proteins binding with the polymerase are also required in order to activate tran-
scription. Bacterial promoters typically occur immediately before the position of
the transcription start site (TSS) and contain two characteristic short sequences,
or motifs, that are the same or very similar in the promoters for different genes.
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One of these motifs is centered at approximately 10 bases before the start, conven-
tionally written as –10, and the other at approximately 35 bases before, written as
–35 (see Figure 1.12). These two sequences are essential for the tight binding of the
RNA polymerase, and they position it at the appropriate location and in the correct
orientation to start transcription on the right strand and in the right direction.
Sequences located before the start point of transcription are commonly called
upstream sequences. Sequences located after the start point of transcription are
called downstream sequences. This terminology is easy to remember if one thinks
of the direction of transcription as the flow of a river.

One of the problems in finding promoters in DNA sequences is that the sequence
outside the particular conserved motifs varies considerably, and even the motifs
vary somewhat from gene to gene. Motifs like these are often described in terms of
their consensus sequence, which is made up of the bases that are most frequently
found at each position. In Escherichia coli, for example, the consensus sequence for
the –10 motif is TATAAT, and that of the –35 motif is TTGACA. Furthermore, the
separation between these two motifs can be between 15 and 19 bases. Note that by
convention these are the sequences found on the coding DNA strand, whereas in
reality the polymerase binds to double-stranded DNA, which also contains the
complementary anticoding strand sequence. RNA polymerase binds to a variety of
sequences but binds more strongly the closer the promoter is to a consensus
sequence. The tighter the binding, the more frequently the region will be tran-
scribed. Such variation in sequence is a common feature of many control sites, and
makes it harder to locate them.

The termination of transcription is also controlled by sequence signals. In bacteria
the terminator signal is distinct from the promoter in that it is active when tran-
scribed to form the end of the mRNA strand. In the mRNA the terminator sequence
produces two short stretches of complementary sequence that can base-pair to
form an RNA double helix, usually involving at least four to five CG base pairs; this
is followed, usually within five bases, by at least three consecutive U nucleotides
(see Figure 1.12). The prokaryotic terminator sequence is more variable than the
promoter sequence, and is usually not included in genome annotations, as
described in Chapter 9.

In addition to the promoter sequences, many bacterial genes have additional
controls, including binding sites for proteins other than the RNA polymerase. Some
of these proteins improve the efficiency of correct binding of the RNA polymerase
and are called activators, while others called repressors block the promoter sites
and thus inhibit the expression of the gene. These additional repressor and activator
proteins have a profound influence on whether, and when, transcription actually
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occurs, and so are of crucial biological importance. In this book, however, we shall
only be concerned with locating genes, not in trying to dissect their higher-level
control, so this aspect of gene control will not be discussed in any detail.

The signals initiating transcription in eukaryotes are generally
more complex than those in bacteria
In bacteria all genes are transcribed by a single type of RNA polymerase, whereas in
eukaryotes there are three different RNA polymerases, each of which transcribes a
different type of gene. All the mRNA that codes for proteins is produced by RNA
polymerase II, and in this and later chapters we shall focus mainly on this class of
genes. The other RNA polymerases are concerned with transcribing genes for
tRNAs, rRNAs, and other types of RNA and these have different types of promoters
from genes transcribed by RNA polymerase II.

There are differences in the mechanisms for initiating transcription in eukaryotes
compared with bacteria, but the principles are the same. Perhaps the most impor-
tant difference is the much greater degree of variation in the set of promoters
present to initiate transcription. There is a set of core promoter DNA sequence
signals located in the region of the transcription start site (see Figure 1.13) that are
initially bound by a complex of proteins known as general transcription initiation
factors, which in turn recruit the RNA polymerase to the DNA in the correct posi-
tion to start transcription. The most important core promoter sequence in genes
transcribed by RNA polymerase II is about 25 nucleotides upstream from the start
of transcription; this is called the TATA box and is characterized by a TATA sequence
motif. Details of the sequence variation of this promoter are given in Figure 10.12A,
but it should also be noted that this signal is not present in all eukaryotic genes. The
transcription factor that binds this motif is called the TATA-binding protein (TBP).
Many other protein components are involved in initiating and regulating RNA poly-
merase activity, but any given gene will only require a small subset for activation,
and thus only have a subset of the promoter signals. There appears to be no
promoter ubiquitous in eukaryotic genes. In further contrast to the situation in
prokaryotes, some of the eukaryotic protein-binding sites that modify RNA poly-
merase activity can be more than a thousand bases away from the promoter. It is
thought that the intervening DNA loops round so that all the gene regulatory
proteins come together in a complex that regulates the activity of the RNA poly-
merase and determines whether or not it starts transcription.

Although termination signals have been identified for both RNA polymerases I and
III, no specific signal has been identified for RNA polymerase II. However, it may yet
remain to be identified because following transcription the mRNA transcript
contains a AAUAAA sequence signal that results in cleavage of the 3¢ end of the tran-
script at a site some 10–30 bases after the signal and addition of a series of adeno-
sine nucleotides to form a new 3¢ end. This occurs very quickly and removes
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information about any signal which may be present to terminate transcription. In
eukaryotes, this initial mRNA transcript is further modified before translation, as
will be described below.

Eukaryotic mRNA transcripts undergo several modifications
prior to their use in translation
The major difference between eukaryotes and prokaryotes in terms of their tran-
scription and translation processes is that the eukaryotic mRNA transcripts are
substantially modified before translation. Two of these modifications have no effect
on the final protein product. The first modification, which occurs whilst transcrip-
tion is still in progress, involves the addition of a modified guanosine nucleotide
(7-methylguanosine) to the 5¢ end of the transcript, a process called RNA capping.
The last modification, which also occurs while transcription continues, is that
which produces the 3¢ end of the transcript as mentioned previously; this modifica-
tion consists of two separate steps. The first step is the cleavage of the mRNA tran-
script after a CA sequence. The second step, called polyadenylation, results in
approximately 200 adenosine nucleotides being added to the 3¢ end.

The other mRNA modification that occurs in eukaryotes has a significant effect on
the final protein products. The major structural difference between the protein-
coding genes of prokaryotes and those of eukaryotes is that the protein-coding DNA
of most plant and animal genes is interrupted by stretches of noncoding DNA called
introns; the blocks of protein-coding sequence between the introns are known as
exons (see Figure 1.14). Introns have lengths which vary from 10 to over 100,000
nucleotides, whereas exons tend to an average length of 100–200 necleotides and
rarely exceed 1000 nucleotides. Most bacterial protein-coding genes, on the other
hand, have an uninterrupted coding sequence. Introns are found in the genes of
most eukaryotes but are less frequent in some genomes, for example that of the
yeast Saccharomyces cerevisiae. They occur very rarely in prokaryotes.

The existence of introns necessitates an extra step between transcription and
translation in eukaryotes, which is known as RNA splicing. The complete gene is
initially transcribed into RNA; the introns are then excised and the exons joined, or
spliced, together to provide a functional mRNA that will give the correct protein
sequence when translated (Figure 1.14). In most protein-coding genes, RNA
splicing is carried out by a complex called a spliceosome, which consists of small
nuclear RNA molecules (snRNAs) and proteins. This complex contains the enzy-
matic activity that cleaves and rejoins the RNA transcript. The excised intron forms
a circular structure called a lariat with a branching point usually at an adenine
base (Figure 1.14). The lariat RNA is subsequently degraded. There are particular
sequence motifs present at the sites at which the RNA transcript is spliced, as well
as the position which will become the lariat branch point. However, these
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sequence motifs show considerable variability, with the exception of the first and
last two bases of each intron. In most cases these are GU and AG as shown in
Figure 1.14, but a few instances of another signal, namely AU and AC, have been
found in some complex eukaryotes. These are known as AT–AC or U12 introns,
after the DNA sequences or one of the components of the spliceosome, respec-
tively. In some even rarer cases the intron RNA itself has splicing activity.

It should be noted that although protein-coding sequences require a whole number
of codons to encode the protein sequence, and thus are a multiple of three bases in
length, individual exons do not have this requirement. Codons can be derived from
the spliced ends of two consecutive exons, as shown in Figure 1.14. This can lead to
further complications in gene prediction, as it adds to the difficulty of correctly
identifying the exons and from them the protein sequence. For this and other
reasons the possible existence of introns in eukaryotic genes significantly compli-
cates the process of gene prediction in eukaryotic compared with prokaryotic
genomes, as is discussed in more detail in Chapters 9 and 10.

Although usually all the exons are retained and joined together during RNA
splicing, there are cases where this does not happen and alternative splicing
occurs, excluding some exons or parts of exons, and thus producing different
versions of a protein from the same gene. Alternative splicing is quite common in
the genes of humans and other mammals, and is thought to be one means by which
the relatively small number of genes present in the genome can specify a much
greater number of proteins.

The control of translation
There are various sequence motifs in the mRNA transcripts that indicate the begin-
ning and end of a protein-coding sequence and the site at which the mRNA initially
binds to a ribosome. Most protein-coding sequences start with a methionine
codon, typically AUG, and invariably end with one of the stop codons of the genetic
code (see Table 1.1). In bacterial DNA there is also a distinct short sequence at the
5¢ end of the mRNA known as the Shine–Dalgarno sequence that indicates the
ribosome-binding site. This has a typical consensus sequence of AGGAGGU and
occurs a few bases upstream of the AUG translation start codon.

Eukaryotes do not use a Shine–Dalgarno sequence to position the ribosome, but
instead have components that bind specifically to the 7-methylguanosine
nucleotide at the 5¢ end of all eukaryotic mRNA transcripts. The ribosome binds to
this and then starts to search for an AUG codon. Occasionally, the first AUG is
missed and another downstream codon is used instead. Termination of translation
occurs on encountering a stop codon as in prokaryotes.

There is one feature of gene organization in bacteria that is rarely found in eukary-
otes, and which relates to the way the ribosome binds near the translation start site.
Functionally related protein-coding sequences are often clustered together into
operons (see Figure 1.15). Each operon is transcribed as a single mRNA transcript
and the proteins are then separately translated from this one long molecule. This has
the advantage that only one control region is required to activate the simultaneous
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expression of, say, all the enzymes required for a particular metabolic pathway. Not
all bacterial genes are contained in operons; many are transcribed individually and
have their own control regions.

1.4 The Tree of Life and Evolution
The integrity of the genetic information in DNA is carefully protected, and without
this protection life would soon disintegrate. Nevertheless, errors inevitably arise in
the genome, and these are extremely important as they also provide the genetic
variation on which natural selection and evolution can act. Over very long periods
of time some of those changes that do not prove to cause their carriers a disadvan-
tage are likely to spread and eventually occur in all genomes of the species (see Flow
Diagram 1.4). In this way species can evolve, and ultimately they can evolve into
entirely new species. It is generally thought that all existing life has evolved from a
single common, very distant ancestor. The evolutionary relationship of known
species to each other is commonly described as the tree of life (see Figure 1.16). In
this section we will briefly describe the most basic divisions of the tree of life, and
some of the modifications which are seen in genomes and their consequences.

Chapter 1: The Nucleic Acid World

20

THE NUCLEIC ACID WORLD

evolution

mutations
RNA 

transcription 

control elements 

mRNA 

protein 

splicing 
modifications 

DNA 

RNA 
polymerase 

control 
elements 

changes to DNA

different life
forms

four bases/ 
nucleotides 

translation 

Figure 1.16
Tree of life. Evolution branches out
like a real tree where the roots are
the origin and the branches are the
different groups of life form.

Flow Diagram 1.4
The key concept introduced in this
section is that the process of
evolution is based on mutations of
the DNA that result in different life
forms, which may then be subjected
to different evolutionary selective
pressures.

BIF CH1 5th proofs.qxd  16/7/07  15:51  Page 20



A brief survey of the basic characteristics of the major forms 
of life
In this context, all living organisms can be divided into two vast groups: the
prokaryotes, which are further divided into the unicellular bacteria and archaea,
and the eukaryotes, which include all other living organisms (see Figure 1.17).
Another class of objects that contain nucleic acid instructions for their reproduc-
tion is the viruses. These have very small genomes that encode the proteins that
make up the virus structure, but viruses can only replicate inside a living cell of
another organism, as they hijack the cell’s biochemical machinery for replicating
DNA and synthesizing proteins. Viruses may have either DNA or RNA genomes.
Although viral genes follow the basic rules by which DNA encodes RNAs and
proteins, it is worth noting that some viral genomes have unusual features not
commonly present in cellular genomes, such as overlapping genes, which need
careful interpretation.

The prokaryotes are a vast group of unicellular microorganisms. Their cells are
simple in structure, lacking a nucleus and other intracellular organelles such as
mitochondria and chloroplasts. Taxonomically, the prokaryotes comprise two
superkingdoms, or domains, called the Bacteria and the Archaea, which in evolu-
tionary terms are as distinct from each other as both are from the rest of the living
world. Their DNA is usually in the form of a single circular chromosome (although
linear chromosomes are known in prokaryotes), containing a single circular DNA
molecule, and is not enclosed in a nucleus. In favorable growing conditions,
prokaryotes reproduce rapidly by simple cell division, replicating their DNA at each
division so that each new cell receives a complete set of genetic instructions. Many
bacteria also contain extrachromosomal DNAs in the form of plasmids, small
circular DNAs that carry additional genes and which can often be transmitted from
bacterium to bacterium. Genes for drug resistance, the ability to utilize unusual
compounds, or the ability to cause disease are often carried on plasmids. The best-
studied bacterium, and the one that for many years provided virtually all our
knowledge about the processes of transcription and translation, is the gut
bacterium Escherichia coli, abbreviated to E. coli.

All other living organisms are eukaryotes and belong to the domain Eukarya. All
animals, plants, fungi, algae, and protozoa are eukaryotes. The eukaryotes include
both multicellular and unicellular organisms. Unicellular eukaryotes widely used as
model organisms for genetic and genomic studies are the yeasts and unicellular algae
such as Chlamydomonas. Eukaryotic cells are larger and more complicated than
those of prokaryotes. The DNA is contained inside a nucleus, and is highly packaged
with histones and other proteins into a number of linear chromosomes, ranging from
two to hundreds depending on the organism. Humans have 46 chromosomes in their
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body cells (made up of two sets of 23 chromosomes inherited from each parent), the
fruit fly Drosophila has 8, petunias have 14, while the king crab has 208. There
appears to be no particular reason why the DNA is divided up into such different
numbers of chromosomes in different organisms; the actual numbers of genes in the
genomes of multicellular organisms are much more similar and vary between 20,000
and 30,000 for those organisms whose genomes have been sequenced to date.

Eukaryotic cells are highly compartmentalized, with different functions being
carried out in specialized organelles. Two of these are of particular interest here, as
they contain their own small genomes. Mitochondria contain the components for
the process of energy generation by aerobic respiration, and chloroplasts contain
the molecular components for photosynthesis in plant and algal cells. These two
organelles are believed to be the relics of prokaryotic organisms engulfed by the
ancestors of eukaryotic cells and still retain small DNA genomes of their own—
mitochondrial DNA (mitDNA) and chloroplast DNA—and the protein machinery to
transcribe and translate them. These genomes encode some of the proteins specific
to mitochondria and chloroplasts, but most of their proteins are now encoded by
genes in the eukaryotic cell nucleus. 

Nucleic acid sequences can change as a result of mutation
There are a number of occasions, such as DNA replication, when the genomic DNA
is actively involved in processes that leave it vulnerable to damage. Sometimes this
damage will be on a large scale, such as the duplication of whole genes, but often it
involves just a single base being incorrectly replicated. The general term used to
describe such damage is mutation. Depending on which part of the DNA sequence
is affected, mutations can have a drastic effect on the information encoded, leading
to changes in the sequence of encoded proteins, or the loss of control signals.
Genes can be rendered inactive or proteins dysfunctional, although mutations can
also have beneficial effects (see Box 1.1). In organisms that use sexual reproduction,
unless the DNA affected is in a germ cell, the DNA will not be used to generate the
genomes of future generations, and so will only affect the organism in which the
damage occurred. In such cases, the organism might suffer, especially if the muta-
tion causes uncontrolled cell growth and division, as happens in tumors. The alter-
native is that the mutation is transmitted through to the next generation, in which
case it has a chance to eventually become part of the normal genome of the species.
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Not all the DNA sequence in a genome contains a mean-
ingful message or a known function. Regions without a
message are sometimes referred to as junk DNA, although
this term should not be taken too literally as we have
much still to learn, and these regions may yet come to be
seen as functional in some way. Mammalian genomes
contain large amounts of this type of DNA, both in the
form of introns and between genes. Simpler eukaryotic
organisms have less, and bacteria have very little.

Much of the so-called junk DNA is in the form of highly
repeated DNA sequences, which form significant
percentages of the genomes of many higher organisms.
Many of these DNA repeats are due to DNA elements
known as transposons, which can copy themselves and

insert themselves into other parts of the genome.
Transposons are present in both bacteria and eukary-
otes, but in mammalian genomes they have multiplied
to a much greater extent and appear to have largely lost
their function, existing now simply as apparently func-
tionless sequence repeats.

On a final note, changes in DNA sequences that occur
during evolution occasionally destroy some of the control
sequences needed for a gene to be expressed. When this
happens, the resultant inactive gene is called a pseudo-
gene. Soon after the initial inactivation, pseudogenes can
be hard to distinguish from active genes, but over time
they accumulate many more mutations than active
genes, and so diverge to (ultimately) random sequence.

Box 1.1 There is more to genomes than protein and RNA genes

BIF CH1 5th proofs.qxd  16/7/07  15:51  Page 22



The fate of the mutation, to be lost or to be retained, depends on the process of
natural selection that is the cornerstone of the theory of evolution.

The existence of similar DNA and protein sequences in different organisms is a
consequence of the process of evolution that has generated the multitude of living
organisms from an ancient ancestor held in common. The sequence similarities
reveal details of the ways that mutations arise and of the balance of forces which
will result in only a small group of mutations being preserved through evolutionary
selection. Therefore some details of the mechanism of mutation are of relevance in
a number of areas of bioinformatics, including sequence alignment (see especially
Sections 4.3 and 5.1) and phylogenetic analysis (see especially Sections 7.2 and 8.1).
In the phylogenetic analysis described in Chapters 7 and 8 an attempt is made to
reconstruct the evolutionary history of a set of sequences. This requires a detailed
model of evolution, which requires a comprehensive understanding of the kinds of
mutations that occur, their effects, and the process of natural selection by which
they are either accepted or lost. 

Summary
We have tried in this chapter to give a brief introduction to the nucleic acids and
their role in living systems. We have focused exclusively on the role of nucleic acids
in genomes, although a look at any introductory textbook on molecular biology will
show that, in addition, single nucleotides play a part in many other processes. We
have described how the sequence of DNA can encode proteins, and how simple
sequence signals are used to control the interpretation of the genomic DNA. The
material is sufficient to allow a novice to appreciate the techniques discussed in this
book, particularly those for gene detection. You should be aware, however, that
there are probably exceptions to every general statement we have made in this
chapter! (See Box 1.2.) For example, under certain circumstances, the codon UGA
can code for the unusual amino acid selenocysteine instead of being understood as
a stop signal. Many organisms have their own peculiarities, and one should prefer-
ably seek out an expert for advice.

Summary
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This chapter has given a brief introduction to the key
role of nucleic acids in the storage, interpretation, and
transmission of genetic information. The many genome
sequencing projects are producing results at a phenom-
enal rate, and the techniques of bioinformatics, such as
are described in Chapters 9 and 10, are required to iden-
tify and characterize the functional components of the
genomes. When working on such projects, it must be
remembered that the descriptions given in this and the
other chapters are general, and wherever possible care
must be taken to discover the specific details applicable
to the organism of interest.

A further warning is required in that even some of the
fundamental concepts described in this chapter are

much less well defined than might be supposed. Two
brief illustrations of this will be given, dealing with the
definition of a gene and of the human genome.
Processes such as alternative splicing are making it ever
harder to agree on a definition of a gene. The human
genome is another concept whose definition is proving
harder to agree on than expected. Recent studies have
shown that there is much greater variation in the
genome in humans than was expected. As well as many
small point mutations that were anticipated, it was
found that there were a surprising number of large-scale
differences between humans. As a result it is no longer
clear how to define a fully representative human
genome. There are reviews in Further Reading that
explain these points in more detail.

Box 1.2 Things are usually not that simple!
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PROTEIN STRUCTURE

When you have read Chapter 2, you should be able to: 

Discuss how proteins are important for function.

Describe how amino acids are the building blocks of proteins.

Show how amino acids are joined together to form a protein chain.

Explain that secondary structures are repeating structures found in most proteins.

Describe how the whole protein chain folds up into a fold.

Discuss how the structure of the fold is important for its function.

Outline how proteins often exist as a complex of more than one fold.

If there is one class of molecules which could be said to live life it would be the
proteins. They are responsible for catalyzing almost all the chemical reactions in
the cell (RNA has a more limited but important role, as we saw in Chapter 1), they
regulate all gene activity, and they provide much of the cellular structure. There is
speculation that life may have started with nucleic acid chemistry only, but it is the
extraordinary functional versatility of proteins that has enabled life to reach its
current complex state. Proteins can function as enzymes catalyzing a wide variety
of reactions necessary for life, and they can be important for the structure of living
systems, such as those proteins involved in the cytoskeleton. The size of a protein
can vary from relatively small to quite large macromolecules.

As we saw in Chapter 1, the DNA sequence of a gene can be analyzed to give the
amino acid sequence of the protein product. In that aspect alone, the ready avail-
ability of DNA sequences of genes and whole genomes from the 1980s onward revo-
lutionized biology, as it opened up this vital shortcut to determining the amino acid
sequence of virtually any protein. Bioinformatics uses this sequence information to
find related proteins and thus gather together knowledge that can help deduce the
likely properties of unknown proteins, plus their structures and functions. Knowing
the relationship between a protein’s structure and its function provides a greater
understanding of how the protein works, and thus often enables the researcher to
propose experiments to explore how modifying the structure will affect the function.
As the vast majority of currently marketed pharmaceuticals act by interacting with
proteins, structure–function studies are vital to the design of new drugs, and bioin-
formatics has an important role in speeding up this process and enabling computer
modeling of these interactions, as we shall see in Chapter 14.

2
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There are many excellent books that describe protein structures, form, and classi-
fication in detail (see Further Reading). In this chapter we will introduce proteins
and outline some concepts that are important for bioinformatics, providing a
minimum amount of information required to understand the techniques and algo-
rithms described in later chapters. Additional information is given where needed in
those chapters.

2.1 Primary and Secondary Structure
A protein folds into a three-dimensional structure, which is determined by its
protein sequence. The fold of the protein consists of repeating structural units
called secondary structures, that will be discussed in this section (see Flow Diagram
2.1). The fold of the protein is very important for the way the protein will function,
and whether it will function correctly. Therefore the study of the ways in which
proteins fold and understanding how they fold is an important area of bioinfor-
matics, as well as predicting the fold of a protein from its sequence.

Protein structure can be considered on several different levels
The analysis of protein structure by experimental techniques such as X-ray crystal-
lography and nuclear magnetic resonance (NMR) has shown that proteins adopt
distinct structural elements. In general there are four levels of protein structure to
consider (see Figure 2.1). The primary structure is the protein sequence, the types
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amino acids as 
building blocks 

several levels of 
protein structure 

amino acids joined 
in a chain: 

primary structure 

chain forms 
regular secondary 

structure 

Flow Diagram 2.1
The key concepts introduced in this
section are that proteins are linear
polymers of amino acids whose
order is often called the primary
structure or sequence, and that
proteins can fold into a limited
number of regular three-
dimensional forms called
secondary structures.
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b-strand
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Mind Map 2.1 
A mind map visualization of aspects
of protein structure.
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and order of the amino acids in the protein chain; the secondary structure is the
first level of protein folding, in which parts of the chain fold to form generic struc-
tures that are found in all proteins. The tertiary structure is formed by the further
folding and packing together of these elements to give the final three-dimensional
conformation unique to the protein. Many functional proteins are formed of more
than one protein chain, in which case the individual chains are called protein
subunits. The subunit composition and arrangement in such multisubunit proteins
is called the quaternary conformation. The structure adopted by a protein chain,
and thus its function, is determined entirely by its amino acid sequence, but the
rules that govern how a protein chain of a given sequence folds up are not yet
understood and it is impossible to predict the folded structure of a protein de novo
from its amino acid sequence alone. Helping to solve this problem is one of the
challenges facing bioinformatics.

Amino acids are the building blocks of proteins
Proteins are made up of 20 types of naturally occurring amino acids (see Table 2.1),
with a few other amino acids occurring infrequently. These 20 amino acids consist
solely of the elements carbon (C), nitrogen (N), oxygen (O), and hydrogen (H), with
the exception of cysteine and methionine, which also contain sulfur (S). The structure

Primary and Secondary Structure
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N terminus–...MYCATISEATINGFISHANDMEATANDWATER...–C terminus

PRIMARY 

SECONDARY 

TERTIARY 

QUATERNARY 

Figure 2.1
Simple schematic showing the
different levels of protein structure.
From the sequence alone (the
primary structure) to secondary
structure (which contains local
structural elements), to tertiary
structure (where the structural
elements fold to give a
three-dimensional structure), to
finally quaternary structure found
when several tertiary structures
form a multisubunit complex.
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of an amino acid can be divided into a common main chain part (see Figure 2.2) and
a side chain that differs in chemical structure among the different amino acids.  The
side chain is attached to the main chain carbon atom known as the a-carbon (Ca).

The 20 amino acids are given in Table 2.1 along with the abbreviations that will be
used in this book. When the amino acid sequence of a protein is written out, it is
usually given in the one-letter code. We will first look at the side-chain properties
that distinguish one amino acid from another, and then explore in some detail the
main chain component, whose properties are responsible for most of the general
features of protein structure.

The differing chemical and physical properties of amino acids
are due to their side chains
The functional properties of proteins are almost entirely due to the side chains of
the amino acids. Each type of amino acid has specific chemical physical properties

Chapter 2: Protein Structure
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Amino acid Three-letter One-letter Comment
code code

Glycine Gly G Only -H as side chain

Alanine Ala A

Valine Val V

Leucine Leu L

Isoleucine Ile I

Proline Pro P Side chain to N bond

Phenylalanine Phe F

Methionine Met M

Tryptophan Trp W

Cysteine Cys C Forms disulfide bonds

Asparagine Asn N Amide N polar

Glutamine Gln Q Amide N polar

Serine Ser S -OH group polar

Threonine Thr T -OH group polar

Tyrosine Tyr Y -OH group polar

Aspartic acid Asp D

Glutamic acid Glu E

Histidine His H

Lysine Lys K

Arginine Arg R

Table 2.1 
The 20 amino acids colored
according to their properties. The
amino acid name, the three-letter
code, and the one-letter code are
given. Note that the one-letter code
for amino acids can have the same
letter as found in the one-letter
codes that denote nucleotides, but
they mean different things. So for
example the letters C, G, A, and T in
a DNA sequence would stand for
cytosine, guanine, adenine, and
thymine, respectively. In protein
sequences these same letters would
refer to cysteine, glycine, alanine,
and threonine, respectively.

Nonpolar

Polar

Acidic

Basic

CaN 

N 

C 

C Ca

H 

H 

O 

O 

R 

R 

main chain side chain 

(A) (B) R = a side chain; can be
-H as in glycine
or as complicated as in arginine

H 

C C C 

C Ca N NH2 

NH2 

+ 

Figure 2.2
Diagram of an amino acid.
(A) shows the chemical structure of
two amino acids, where R
represents the side chains, which
can be different as shown in (B). The
amino acid consists of a central Ca
atom with a main chain N and C at
either side of it. The C is bonded to
an O with a double bond. The main
chain is colored red and the side
chain blue.
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that are conferred on it by the structure and chemical properties of its side chain.
They can, however, be classified into overlapping groups that share some common
physical and chemical properties, such as size and electrical charge. The smallest
amino acid is glycine, which has only a hydrogen atom as its side chain. This
endows it with particular properties such as great flexibility. The other extreme of
side-chain flexibility is represented by proline, an amino acid that has a side chain
bonded to the main-chain nitrogen atom, resulting in a rigid structure. Some
amino acids have uncharged side chains and these are generally hydrophobic (not
liking water, therefore tend to be buried within the protein surrounded by other
hydrophobic amino acids) while others are positively or negatively charged. The
charged or polar amino acids are hydrophilic; they like to be surrounded by water
molecules with which they can form interactions. Buried inside the protein they
will often have another oppositely charged hydrophilic residue to form an interac-
tion with, for example, the long side chain of the amino acid arginine, with its -NH3

+

groups is (relatively) large and basic (positively charged). The amino acid side
chains are shown in Figure 2.3. 

As there are 20 distinct amino acids that occur in proteins, there can be 20n different
polypeptide chains of length n. For example, a polypeptide chain 250 amino acids
in length will be one of more than 10325 alternative different sequences. Clearly, the
sequences that do occur are only a tiny fraction of those possible. Often only a few
sequence modifications are needed to destabilize the three-dimensional confor-
mation of a protein, and so it is probable that the majority of these alternative
sequences will not adopt a stable conformation.

Amino acids are covalently linked together in the protein
chain by peptide bonds
The primary structure of a protein is the sequence of amino acids in the linear
protein chain, which consists of covalently linked amino acids. This linear chain is
often called a polypeptide chain. The amino acids are linked by peptide bonds,
which are formed by a condensation reaction (the loss of a water molecule)
between the backbone carboxyl group of one amino acid and the amino group of
another (see Figure 2.4). When linked together in this way, the individual amino
acids are conventionally called amino acid residues. There are two key properties of
peptide bonds that are important in determining protein structure, and will be
discussed in this chapter. First, the bond is essentially flat, or planar; that is to say
that the carbon, nitrogen, and carbonyl oxygen atoms involved in the bond all
essentially lie in the same plane. This limits rotation around the bond. Second, both
the -NH and -C=O groups are capable of noncovalent hydrogen-bonding interac-
tions; this type of interaction is key to the folding up of the protein chain into a
three-dimensional structure. 

The peptide bonds and connecting Ca atoms are referred to as the protein back-
bone or main chain. A polypeptide will have a reactive amino group at one end and
a reactive carboxyl group at the other end. These are referred to as the amino
terminus (or N terminus) and carboxy terminus (or C terminus), respectively.
When a protein is synthesized by translation of an mRNA (see Chapter 1), the
amino terminus is synthesized first. Protein sequences are thus conventionally
written starting with the N terminus on the left. The relation of DNA coding-strand
sequence to mRNA sequence to protein sequence is shown in Figure 2.5

In principle, the atoms at either end of a bond are free to rotate in any direction but
due to atomic constraints this is not the case. Torsion angles are used to define the
conformation around bonds that can rotate and are defined for four atoms (see
Figure 2.6A). Torsion angles are usually described in the range of –180∞ to +180∞ and
are the number of degrees that atoms 1 and 2 have to move to eclipse atoms 3 and 4.
The groups on either side of the peptide bond can rotate to some extent around the
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bond. But the peptide bond itself is planar due to the phenomenon known as elec-
tronic resonance (the movement of delocalized electrons within the bond) that gives
it a partial double-bond character, and leads to a slightly shorter C-N bond than
might otherwise be expected. The torsion angle within the peptide bond (usually
called w) is rarely more than 10∞ from planarity (see Figure 2.6B). The polypeptide
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The side chains of the 20 commonly
occurring amino acids. They are arranged
according to their physicochemical
properties: acidic, basic, uncharged polar,
and nonpolar (hydrophobic). Some have

additional properties, such as aromaticity
(for example Phe). (Adapted from B. Alberts
et al., Molecular Biology of the Cell, 4th ed.
New York: Garland Science, 2002.)

Figure 2.3
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(A) transcription
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Figure 2.4
Peptide bonds. (A) gives the
chemical formulae of the peptide
bond that is formed between amino
acids to make a polypeptide chain.
(B) illustrates the above in a
diagrammatic form. (B, from B.
Alberts et al., Molecular Biology of
the Cell, 4th ed. New York: Garland
Science, 2002.)

Figure 2.5
Transcription and translation. The
relation of DNA coding-strand
sequence to mRNA sequence to
protein sequence. The exons (purple
boxes) of the DNA are transcribed
into mRNA which, using other
molecules (see Chapter 1), directs
the protein sequence.
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backbone can therefore be thought of as a chain of flat peptide units connected by
Ca atoms. Each Ca atom makes two single bonds, within this backbone, one to the N
and one to the carbonyl C, giving rise to two torsion angles per residue. These angles
are known as f (phi) and y (psi) (see Figure 2.6C) and are the main source of flexi-
bility of the polypeptide chain, allowing it to fold up. Although, in principle, f and y
could take any value between –180∞ and +180∞, they usually fall between certain
limits, and residues with a given side chain have a strong preference for a particular
value giving rise to repeating regular structural units in a protein. These preferences
arise in two ways. First, steric hindrance prevents certain combinations of angles
from occurring. Second, the hydrogen-bonding ability of the peptide groups can
lead to selective stabilization for other angle choices. If several consecutive residues
have the same (f,y) values, the resulting structure will be regular and repetitive.
Some regular structures will be stabilized by hydrogen bonding, and we will describe
the most commonly occurring structures below.

Additionally, the peptide bond is usually in the atomic conformation called the
trans conformation, as this is thermodynamically more favorable than the alterna-
tive cis conformation (see Figure 2.7). This preference is because of clashes
between two adjacent side chains (steric hindrance) in the cis conformation.
Because of the particular nature of its side chain, proline is found in the cis confor-
mation more frequently than other amino acids. 
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Interactions between protein atoms can be either
covalent or noncovalent. The covalent bond, which
occurs when an electron pair is shared between two
atoms, is a stronger bond than the noncovalent interac-
tion. Noncovalent interactions can take place by
different means, such as hydrogen bonding or van der
Waals or electrostatic interactions. 

Atoms can be thought of as a nucleus surrounded by a
cloud of constantly moving electrons. Sometimes there
are more electrons at one end of the atom than at the
other; this forms a dipole. A van der Waals interaction
occurs when atoms that have oppositely oriented
dipoles are near each other (see Figure B2.1). These
interactions are weak. 

Less weak are the hydrogen bonds, where there is a
weak sharing of electrons between a hydrogen atom

(donor) attached to a nitrogen or an oxygen and an
acceptor atom, which in proteins is usually a nitrogen
or an oxygen, although other atoms can act as acceptors
as well.

Electrostatic interactions occur between groups that are
of opposite charge.

Box 2.1 Interactions between protein atoms

d+

d
_

d+

d
_

Figure B2.1
Two atoms with opposing dipoles.

Figure 2.6
Torsion angles. (A) Angles between
atoms can be calculated and are
referred to as dihedral or torsion
angles. (B) The angle of the peptide
bond (O-C-N-H atoms) has a partial
double-bond character and is
therefore more rigid. (C) The angles
of the bonds flanking the peptide
bond can rotate more freely and are
called phi (f) and psi (y); these are
the main source of conformational
flexibility of the polypeptide chain.
Preferences for a limited number of
values for these angles arise from
steric hindrance and hydrogen
bonding.
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Perhaps the most important conformational property of a protein residue is its
(f,y) value. To reflect this, Ramachandran proposed plotting these values in a two-
dimensional plot for all the residues of protein structures, and calculating the
regions of (f,y) values where most of the amino acids were found (these are referred
to as favorable regions) and those (f,y) value areas of the plot where it is rare to find
an amino acid (these regions are referred to as unfavorable). Such plots are called
the Ramachandran plots and are very useful tools to estimate how plausible a
predicted protein structure is, as described in Chapter 13. The regions that were
highly populated correspond to the regular structures (a-helix, b-strand) that are
formed by the amino acid sequence in a protein structure (see Figure 2.8). 

Secondary structure of proteins is made up of aa-helices 
and bb-strands
In nature in general, regular structures are often helical, and a helix is found as a
secondary structure in proteins. Helices arise as a result of energetically favorable
hydrogen bonding between atoms of the backbone of the protein chain. In
stretches of the chain with repetitive (f,y) values of approximately (–60∞, –60∞), an
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Covalent bonds are formed between two atoms by
sharing electrons. The number of bonds an atom can
make depends on how many electrons are available for
this type of sharing. Most atoms form single bonds
sharing one electron each between them. But there are
some atoms that can form multiple bonds, such as
double bonds. Covalent bonds can be classified
according to their bond order. Single bonds have a bond
order of 1; double bonds a bond order of 2. Non-integral
bond orders are also possible, explained by the theory
of resonance. In proteins many bonds with orders inter-
mediate between 1 and 2 occur (usually shown as a
dashed line beside a solid line), such as in peptide
bonds and in carbon rings where the resonance makes
them planar (Figure B2.2). 

The arrangement of covalent bonds in a molecule
describes the molecular configuration, but this does not
necessarily define a single three-dimensional structure.
Single covalent bonds allow for free rotation about the
torsion angle of the bond, subject to any steric hindrance.

Multiple bonds create constraints to the movement
around the bond, resulting in some cases in distinct
conformations such as the trans and cis forms of
peptide bonds. 

Box 2.2 Covalent bonds

Figure B2.2
A six-membered ring with single bonds and resonant bonds.
The ring with single bonds has two hydrogens per carbon
atom, while the ring with resonant bonds has only one
hydrogen per carbon atom and is planar. 
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Figure 2.7
Trans versus cis conformation of a
peptide bond. The figure illustrates
the reasons for a preference for the
trans (t). A cis (c ) conformation
results in a considerable increase in
steric hindrance (atom clashes)
between the two side-chain atoms.
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especially stable right-handed helix is formed called the aa-helix (see Figure 2.9).
Left-handed helices can exist in proteins, but side-chain interactions favor the
right-handed helix, and this is overwhelmingly predominant.

The proteins we will deal with in this book are composed of one or more globular
domains, with most a-helices limited to a single domain, which restricts them
usually to 2 nm in length. This is useful to bear in mind when predicting secondary
structure from protein sequences, as described in Chapters 11 and 12. However,
there are some instances of globular proteins with long a-helices extending across
domains, of which an extreme example is hemagglutinin of the influenza virus,
which contains an a-helix over 100 mm long. Many a-helices in globular proteins
are only one or two turns long.

In an a-helix, the planes of the peptide bonds are nearly parallel with the helix axis
and the dipoles within the helix are aligned such that all C=O groups point in the
C-terminal direction and all N-H groups point in the N-terminal direction. The
side chains point outward from the helix axis and are generally oriented toward the
N terminus. The main chain -C=O and -NH groups in an a-helix are hydrogen
bonded to a peptide bond four residues away [O(i) to N(i+4)]. Within the helix, all
the backbone groups that can be are involved in hydrogen bonding. This gives a
very regular and stable arrangement (see Figure 2.9).

It should be noted that the structures found in globular proteins are not perfectly
regular, so it is frequently difficult to define the precise ends of the helices, and in
some cases the hydrogen-bonding patterns are intermediate between these ideal-
ized forms. Therefore prediction of these structures using bioinformatics
programs is made more difficult. A detailed discussion of this issue is given in
Section 12.1.

In the 1960s another common regular repeating structure was found in globular
proteins that consisted of extended strands aligned with each other to permit favor-
able hydrogen bonding. A single extended chain of this type is called a bb-strand,
and a set of b-strands hydrogen bonded together side by side forms a b-sheet
(Figure 2.10). A b-strand has two sides that can participate in hydrogen bonding.
The -NH groups occupy all of one side, and the -C=O groups the other; one side is
proton accepting and the other proton donating. This dictates how b-strands are
added to the b-sheet. Often, b-sheets are displayed by drawing out the pattern of
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Ramachandran plot. (A) An ideal
Ramachandran plot with the angle f
plotted on the x-axis and the angle y
plotted on the y-axis. The yellow
areas indicate the preferred
conformation for b-sheet residues,
the regular a-helix, the left-handed
helix, and P (p) the epsilon
structure. The darker colors show
more favorable conformations. (B)
The actual Ramachandran plot as
calculated for a model of a kinase
enzyme. Some residues fall within
the disallowed areas (non-colored)
and are identified by the residue
type and sequence number.
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hydrogen bonding involved. The backbone in a b-strand is not perfectly flat, but
undulates. It is possible for the backbone to be flat, with the chain fully extended,
but this is not the energetically favored conformation. One key difference between
the b-strand and a-helices is that there are no short-range hydrogen-bonding inter-
actions within an individual b-strand. The strands are stabilized by hydrogen
bonding between different strands.

Several different types of bb-sheet are found in protein
structures
As noted above, b-strands must face each other with correct orientation for
hydrogen bonding to occur. Even when this criterion is met, there are still two alter-
native orientations: the adjoining strands can run parallel (see Figure 2.10C) to
each other, or in opposite directions (antiparallel) as is seen in Figure 2.10B. The
difference between them is most easily seen by locating the N and C termini of the
strands. b-Strands are often drawn in schematics of protein structure as arrows
pointing in the N-terminal to C-terminal direction. In their ideal form, b-sheets
consist of an all-parallel or all-antiparallel arrangement of b-strands. These ideal b-
sheets rarely occur in real proteins, and often there is a mixture of parallel and
antiparallel b-strands in the same sheet. The order of the b-strands in the b-sheet is
often apparently random when the b-strands are numbered from the N terminus
onward. b-Sheets are usually not flat, being rather twisted instead, and a contin-
uous b-sheet can even form a complete cylinder. The protein pores, the porins, that
allow substances to pass through the outer membrane of some bacteria are formed
of such cylinders. Like a-helices, b-strands are usually restricted to a single globular
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Figure 2.9
Hydrogen bonding in the aa-helix.
In the a-helix all hydrogen (H-)
bonds involve the same element of
secondary structure. (A) A
representation of the a-helix. (B)
The helical structure repeats itself
every 0.54 nm (5.4 Å) along the helix
axis, therefore we say that the
a-helix has a pitch of 0.54 nm.
a-Helices have 3.6 amino acid
residues per helical turn. The
separation of residues along the
helix axis is 0.54/3.6 or 0.15 nm
(1.5 Å); i.e., the a-helix has a rise per
residue of 0.15 nm (1.5 Å).
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domain, and so rarely exceed 2 nm in length. However, b-sheets have been found
that extend over more than one domain, comprising many b-strands. 

Turns, hairpins, and loops connect helices and strands
Usually somewhere in the range of 50–80% of residues in globular proteins can be
classified into one of the regular structures described above. The third type of
secondary structure element is the bb-turn. These are short regions where the protein
chain takes a 180∞ change in direction, doubling back on itself (see Figure 2.11). Turns
are found, for example, between two adjacent b-strands in b-sheets formed from a
continuous stretch of protein chain. The remainder of the protein structure has much
less order, and can be viewed as simply the connecting pieces (loops) that allow the
a-helices and b-strands to pack, creating the protein structure. Whilst this view may
not be too unrealistic from the viewpoint of structure alone, it is not at all the case
when considering function. Most of the surface of proteins (and hence the accessible
regions) is not regular structure. These surface parts often hold substrate-binding
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bb-Sheets are composed of sets of bb-strands hydrogen bonded
together. A b-sheet may be formed from the folding of a
continuous stretch of the protein chain, or can be formed by
b-strands from different parts of the chain coming together. As
with other regular protein structures, the hydrogen bonds are
formed mainly between backbone groups. (A) A b-strand has
two sides that can participate in hydrogen bonding. The -NH
groups occupy all of one side, and the -C=O groups the other;
one side is proton-accepting and the other proton-donating.
This property dictates how b-strands are added to the b-sheet.
Often b-sheets are displayed by drawing out the pattern of
hydrogen bonding involved. In parallel b-sheets the strands all
run in one direction, whereas in antiparallel sheets they all run

in opposite directions. (B) An antiparallel b-sheet with the
hydrogen bonds in red dots and (C) a parallel b-sheet. Note the
different but specific hydrogen-bonding patterns in the
antiparallel and parallel b-sheets. From an examination of many
b-sheets seen in globular proteins, it appears that the
conformation of the b-strands is less fixed in terms of the (f,y)
angles than is the case with a-helices. The (f,y) angles for
idealized (i.e., perfectly straight) b-strands is (–120∞, +120∞), but
almost all b-strands are significantly curved and thus have some
deviation from these values. As mentioned above in the case of
helices, real structures in globular proteins are considerably
distorted from the ideal, and deciding which residues are
actually in a b-strand is nontrivial (see Section 12.1).

Figure 2.10
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residues and catalytic residues, and are therefore extremely important. For
example, the ligand-binding site of the phosphoinositol kinases (which will be used
later in this book) is in part formed by a relatively large loop on the surface. This
loop is so mobile that its structure could not be seen in a crystallographic analysis.

Any chain between two regular structures is referred to as a loop. In many cases a
loop will contain a turn (or even several). In general there are no classifications for
loops, but there is an important exception. In antibody recognition, immunoglob-
ulins employ loops at the edge of a b-sheet to recognize the antigen. There are vast
numbers of different immunoglobulin structures, all with the same overall chain
fold, but it is the difference at these loops that results in different affinities. With
many structures known, it has been observed that the loops take up one of a limited
number of structures (called canonical forms), so that in this particular case the
loops have been classified. This type of classification is important when trying to
predict both the structure and function of the protein.

2.2 Implication for Bioinformatics
In part, bioinformatics concerns itself with the analysis of protein sequence to
predict the secondary structure, the tertiary structure, and the function of the
protein, as well as its relationship to other proteins. Different secondary structures
tend to have subtle differences in chemical environments, resulting in amino acid
preferences. In addition, amino acid preferences are seen at particular locations in
proteins due to the functional role they play, for example as catalytic residues or
stabilizing the overall protein structure. These aspects of proteins, which influence
structure prediction and analysis, are described in more detail below.

Certain amino acids prefer a particular structural unit
Due to the various properties of the amino acid side chains, certain residues or
certain types are found more often in one or the other of the structural units. Some
residues have been classified, for example, as a-helix breakers (poor formers) or
formers. Proline, for example, is a poor helix former due to the fact that its back-
bone nitrogen atom is already bonded to its own side chain and cannot form
hydrogen bonds within the helix, and its rigid structure causes some steric
hindrance. Other poor a-helix formers are Gly and Tyr, while Ala, Glu, Leu, and Met
are good a-helix formers, whereas Val, Ile, Tyr, Cys, Trp, Phe, and Thr are more
frequently found in b-strands than in a-helices. In addition, Gly, Asn, Pro, Ser, and
Asp are more likely to be found in turn segments than in any other structure. These
types of preferences have been the driving forces in secondary structure prediction
programs (especially in the early development of the field) and are discussed
further in Chapters 11 and 12.
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Some short sequences of amino acids can adopt either
an a-helical or a b-strand conformation, depending on
the protein in which they occur. These sequences are
known as chameleon sequences. Recently it has been
found that this ability of a protein sequence played a
part in bovine spongiform encephalopathy. The prion
protein associated with this disease can adopt different
stable conformations. The conformation found in the

diseased state is a mixture of helices and sheets, while
in the normal state the prion protein consists of a
bundle of helices. Consequently, predictions based on
local sequence information will not be able to resolve
such conflicts as found in the prion protein. For a
further discussion of the consequences for secondary
structure prediction, see Figure 12.12 and Section 12.3.

Box 2.3 Chameleon sequences
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Figure 2.11
Turns. The two common types of
tight turn, called b-turns type I and
type II, respectively. The side chain
of R3 is usually hydrogen (glycine).
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Evolution has aided sequence analysis
Protein sequence similarity is a powerful tool for characterizing protein function
and structure since an enormous amount of information is conserved throughout
the evolutionary process (Chapters 7 and 8). Proteins that have a common ancestor
are referred to as being homologous (see Figure 2.12). Sequence alignment and
database search techniques (Chapters 4 and 5) can identify homologous proteins.
Homologous proteins usually have a similar three-dimensional structure with
related active sites and binding domains. Therefore homologous proteins will also
often have related functions, although this is not always the case. Most amino acids
that change during evolution are found in regions that are not structurally or func-
tionally important, such as many of the loops (or variable) regions. If the homolo-
gous protein is also functionally related then the amino acids involved in function
are often conserved during evolution, which helps in identifying the function of a
new protein (see Flow Diagram 2.2).

Visualization and computer manipulation of protein structures
There are a number of programs available that read the coordinate file and convert
it to a visible three-dimensional representation of the protein. The protein can be
rotated, specific regions highlighted, and some measurements can be calculated.
Some of these programs are very powerful and can be of great use in analyzing the
structural properties and molecular function, as well as allowing for the manual
modification of the molecule. Some of the programs are free or low cost, such as
Chimera, Yasara, and DeepView. Others are extremely powerful programs that allow
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amino acids as 
building blocks 

several levels of 
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effect of
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amino acids joined 
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chain forms 
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Flow Diagram 2.2
The key concept introduced in this
section is that, for a variety of
reasons related to protein structure
and function, each position in a
protein sequence has an associated
amino acid preference that is a
reflection of the evolutionary
selection pressure on the organism.
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Figure 2.12
Tree of life. This tree shows how life
may have evolved from a common
ancestor giving the diversity of life
forms that inhabit Earth.
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the user to carry out computationally intensive modifications to the molecule, but
are expensive. It would be helpful for the reader to gain some experience of using
these programs before reading the secondary and tertiary structure prediction
chapters (see Chapters 11 to 14).

There are many styles for viewing molecular structures, including those with
atomic-level detail such as space-filling models, ball and stick models, and wire-
frame models (also called stick models or skeletal models), as well as surface
models. However, it is often desirable to have a simplified model of the protein,
such as backbone or Caa models and schematic (cartoon) models. Such models can
be represented on a computer screen and can be represented in different styles and
colors. Molecular models are usually based upon an atomic coordinate file, which
in general give the (x,y,z) coordinates of each atom. Figure 2.13 shows some of the
more common structural representations. 
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wire-frame ball and stick 

space-filling surface 

Ca representation a/b schematic

Figure 2.13
Molecular representations. The
different representations that can be
used to illustrate molecules, from
very simple ones that only use the
Ca or backbone atoms to space-
filling models of all atoms in the
structure.
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2.3 Proteins Fold to Form Compact Structures
Most protein folds seem to be dominated by the appearance of regular structures
such as a-helices. It is now known that these are the first elements to form during
protein folding, which confirms that they are the most stable components of the
protein fold. Furthermore, the overall structure of a protein is so complex that these
smaller, more ordered elements are useful as an aid to understanding and classi-
fying the fold. Most proteins are composed of some combination of a-helices and
b-strands. There are also proteins that are all a-helix and some that are all b-sheet.

Protein chains themselves rarely have any biological function. Only when the chain
has folded up into a three-dimensional structure (however small) does the protein
have functional activity. Some proteins are enzymes that bind other molecules
(ligands) and catalyze their biochemical reactions (see Figure 2.14), others act by
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Supersecondary structures are fold-elements
composed of specific combinations of a-helices
and/or b-strands that are often repeated
throughout protein structures.

The figure illustrates schematically the most
commonly occurring supersecondary struc-
tures: (A) a bab repeat; (B) a b-meander; and
(C) a special b-unit called the Greek Key struc-
ture, which occurs when an antiparallel sheet
doubles back on itself. Part D in the figure is a
cartoon representation of a Greek Key form
gamma b-crystallin [Protein Data Bank (PDB)
code 1AMM].

Box 2.4 Supersecondary structure

(A) (B)

(C) (D)

Figure B2.3
Some examples of supersecondary structure.
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this section are that most proteins
exist in a well-defined three-
dimensional structure that is
thermodynamically favorable, and
that proteins often occur as
complexes of several protein
chains.
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binding other proteins and influencing their activity, and yet others bind to DNA and
regulate gene expression. Some proteins have a purely structural function, making
up the fabric of the cell. Large numbers of proteins are released, or secreted, from
cells and act as chemical messengers, influencing the behavior of other cells by acting
on yet another large functional class of proteins, known as receptors, on cell surfaces.

The proteins that will concern us most in this book are globular proteins, proteins
that are roughly spherical when folded up. The other main class of proteins are
fibrous proteins, such as the keratin of wool and hair, and the silk protein. As glob-
ular proteins, or proteins composed of multiple globular units, are the proteins that
carry out most cellular functions, they are the most studied. Some globular proteins
are composed of a single, folded, globular mass; in others, the protein chain folds
up into several such discrete structural units, each of which is termed a protein
domain. Many proteins are composed of a multiplicity of different domains, each
with a particular biochemical or binding function. The possibility of multidomain
structure poses challenges when comparing protein sequences or interpreting the
amino acid sequence of an unknown protein, as we shall see in Chapter 4.

The tertiary structure of a protein is defined by the path of the
polypeptide chain
In the tertiary structure of a protein, various combinations of secondary structure
pack together to form a compactly folded mass. For simplicity we will discuss
tertiary structure here as if a protein were folding up into just one globular domain,
but many proteins are composed of multiple domains joined by stretches of
polypeptide chain. In a multidomain protein it is thought that each domain folds
independently of the others. As will soon become clear in later chapters, bioinfor-
matics questions are often concerned with comparing the sequences and struc-
tures of different domains rather than whole proteins. A domain can be anything
from 50 to around 350 amino acids in length. The core of each domain is mainly
composed of tightly packed a-helices, b-sheets, or a mixture of both. The three-
dimensional structure of a protein is known as its conformation. More specifically,
the spatial path of any given folded polypeptide chain is known as its fold.

As proteins exist in an aqueous environment, folding tends to result in hydrophobic
regions of the protein ending up in the interior, while more hydrophilic regions are
on the outside. A variety of noncovalent interactions stabilize the fold, dominated
by hydrogen bonding and the clustering of hydrophobic groups. Secondary struc-
tures pack together in a variety of ways, such as the formation of b-sheets from
either parallel or antiparallel b-strands. The atoms pack together very efficiently in
most natural proteins.

There appears to be a limited number of ways in which secondary structures fold
into domains. There are several instances where proteins that seem to be
completely unrelated in terms of sequence are found to have the same fold and
some researchers estimate that there may be only a few thousand different folds in
nature. Currently, there are more than 35,000 known protein structures, and these
are classified into approximately 2000 fold families. The fact that so many proteins
fold into a similar structure even if their sequences are not very similar means that
we can use bioinformatics tools to model structures of various proteins on similar
folds as will be described in Section 13.2.

The stable folded state of a protein represents a state of 
low energy
A protein chain starts to fold as soon as it has been synthesized and thermody-
namic considerations mean that the final fold it adopts is a state of low free energy.
This is discussed in more detail in Section 13.1 and Appendix B. Folded proteins are
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FOLDING

binding site

amino acid
side chains

unfolded protein

folded protein

Figure 2.14
Distant residues can come close in
the folded structure. A schematic
which shows that when a
polypeptide chain (primary
structure) folds into a tertiary
structure, residues that are far apart
from each other in the sequence can
come close together to form a
functional unit, in this case a
binding/catalytic site. (From
B. Alberts et al., Molecular Biology of
the Cell, 4th ed. New York: Garland
Science, 2002.)
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generally stable in the conditions in which they have to operate, but in a wider
sense, proteins are unstable thermodynamically. Most proteins start to unfold
above about 60∞C, as the noncovalent bonds that hold them together are broken by
thermal energy; unfolded proteins are said to be denatured. As it becomes dena-
tured, a protein loses its function. Only specialized microorganisms are capable of
living at temperatures this high.

The stability of a protein is a fine balance between a number of effects. Predominant
among these is the hydrophobic nature of many side chains, and so structure that
depends on hydrophobic interactions is more stable away from contact with water.
As a result there is a tendency for large hydrophobic groups to cluster inside the
protein, with most of the polar groups on the protein surface. This is an oversimpli-
fication, however, as many nonpolar groups do reside on the surface, occasionally
even having an important role in binding nonpolar ligands.

Hydrogen bonds also play an important role in the structure of the protein,
although it is not as simple as the hydrophobic effect. The folded structure will form
internal hydrogen bonds, both between the main chain atoms and some of the side
chain atoms. However, in an unfolded state the atoms form hydrogen bonds with
water. Therefore all these water-mediated hydrogen bonds are lost when the
protein folds, which is not conducive to folding, but the release of all the otherwise
hydrogen-bonded water creates more entropy in the solvent and this contributes to
the folding effect.

Additionally, the residues in a protein pack together very effectively to occupy
space, and there is some evidence that those proteins that have unoccupied space
in the interior are less stable.

Many proteins are formed of multiple subunits
Individual folded polypeptides can interact with each other to form protein
complexes  or quaternary structures. Oligomeric proteins contain more than one
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Figure 2.15
The quaternary structure of muscle
creatine kinase. This structure is
formed by the complex of two
identical chains and structures.
Therefore it is called a homodimer.
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polypeptide chain. The individual chains are referred to as subunits or monomers
of the oligomer. The assembly of these monomers is the quaternary structure. A
protein consisting of two subunits is called a dimer, three a trimer, four a tetramer,
and so on. The subunits can be the same protein sequence, such as in the dimer
of muscle creatine kinase (see Figure 2.15), or made up of different polypeptide
chains, such as the tetrameric hemoglobin, which has two a and two b subunits
(see Figure 2.16). A quaternary structure associates in a similar way as the
secondary or tertiary structure using noncovalent interactions. However, when
quaternary structures assemble they often have hydrophobic groups that interact
and exclude water. Often quaternary structure forms only when the complex is
active, and frequently there is a sophisticated control of the activity involving
several subunits. It is much more difficult to predict or model the structure of a
quaternary structure compared to a single domain protein.

Summary
This chapter introduced the general principles associated with protein structure.
Proteins are linear polymers composed of amino acids. They have a complex struc-
ture that includes some more regular features. Large proteins consist of several
domains, each of which will have some regular secondary structures. The structures
form a scaffold on which the active groups are located, ready to bind ligands, or
carry information, and other roles in order for the protein to function properly.

One of the main aims of bioinformatics is to predict and analyze the structure of
proteins and the relationship of the structure to the function. Many programs have
been designed to predict protein secondary structure from the primary sequence
information. These types of studies are described in Chapters 11 and 12 of this
book. Further methods of modeling have been proposed that predict the three-
dimensional structure of proteins as well as the quaternary complexes and these
are described in Chapter 13. Some aspects of structure function analysis are dealt
with in Chapter 14. To perform accurate predictions and to obtain more informa-
tion about the protein sequence under study, it has to be aligned to other proteins
to find homologs. This type of research is dealt with in detail, both for protein and
nucleotide sequences, in Chapters 4 to 8 of this book.

Summary
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b b

a a

Figure 2.16
The quaternary structure of bovine
deoxyhemoglobin which is a
heterotetramer. In other words it is
made up of different chains and
structures from four folds. Two folds
are the same therefore it consists 
of two homodimers. The heme
groups are shown in red. (From
B. Alberts et al., Molecular Biology
of the Cell, 4th ed. New York:
Garland Science, 2002.)

BIF CH2 5th proofs.qxd  13/7/07  15:19  Page 43



Chapter 2: Protein Structure

44

Alberts B, Johnson A, Lewis J, Raff M, Roberts K &
Walter P (2008) Molecular Biology of the Cell, 5th ed.
New York: Garland Science. 

Branden C & Tooze J (1999) Introduction to Protein
Structure, 2nd ed. New York: Garland Science. 

Lesk AM (2000) Introduction to Protein Architecture.
Oxford: Oxford University Press. 

Mezei M (1998) Chameleon sequences in the PDB.
Protein Eng 11, 411–414.

Schulz GE & Schirmer RH (1984) Principles of Protein
Structure. New York: Springer Verlag.

Further Reading

BIF CH2 5th proofs.qxd  13/7/07  15:19  Page 44



DEALING WITH DATABASES

When you have read Chapter 3, you should be able to: 

Explain why databases are the backbone of bioinformatics research.

Discuss how flat files were the first type of database, and why they are still 
used today.

Show that relational databases are better for searching across tables.

Outline the many other types of database structure that exist.

Explain why databases contain both data and annotations of data.

Discuss how many different types of database exist.

Explain why the quality of data is important.

Explain why checking the data and human curation are necessary.

The first databases were simply collections of data. For example old cards-in-a-box
catalogs were noncomputerized databases. However, a database is more than just a
collection of data. The modern database indeed stores data, but it also contains
quite complex technology (such as ORACLE) to store the data in a structured
manner and it is a complex model of tables and accompanying connections. A
database is a sophisticated arrangement of storage, methods of storing, and archi-
tecture. It can be likened to a tax collection office, which not only contains the data
about people’s tax payments, but has a physical means of storing it, and methods
by which the data can be input, accessed, and analyzed. In this context, the term
architecture refers not only to the organized structure in which the data are kept but
also to the building itself which provides the resources needed by the staff (also part
of the architecture!) to process the data.

It is just over 50 years ago that the first protein sequence, that of bovine insulin, was
determined by Frederick Sanger. Ten years later there were already attempts to
collect all known sequences in a single database as an aid to the analysis of relation-
ships between similar sequences. At the same time, programs for extracting and
analyzing these sequences were written and the field of bioinformatics began,
although it did not receive this name for some years.

The number of documented nucleotide sequences now numbers in the hundreds of
thousands, and there are over a hundred thousand protein sequences too. This explo-
sion in the number of sequences has made the use of electronic databases for storage
and analysis essential. There has been a parallel increase in the quantity of data in
other areas of biomedical research, such as molecular structures, and through the use
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of new experimental techniques such as microarrays and gene expression measure-
ments. The need for databases has similarly increased in these areas. The existence of
many different databases in closely related areas makes it useful to include cross
references between related entries in different databases. As a result, today many of
these databases can be regarded as linked together into a large network of informa-
tion covering a broad range of biomedical and chemical research.

There are many different ways in which databases can be designed, both in terms
of the ways the information is stored and the ways it can be retrieved and analyzed.
There is no need to have a detailed technical understanding of these aspects in
order to use databases, but we will describe some of the basic concepts as they can
help in making effective use of these data sources.

Although there are many different types of databases, we will give an overview of
the types most commonly used in bioinformatics research. Only a small fraction of
the complete set of databases will be mentioned here, but the reader interested in
discovering more about those not covered will be directed to an extensive list.

It is important to be able to have confidence in the accuracy of the data extracted
from these sources. For this, certain aspects of database maintenance need to be
understood before accessing any type of data for further analysis. Data quality
issues are described in the last section of this chapter.

3.1 The Structure of Databases
A database is a repository of information that has a specific structure that enables
the entering and extraction of data and in many cases also aids analysis of the data
(see Flow Diagram 3.1). In general this database structure consists of files or tables,
each containing numerous records and fields. Figure 3.1A shows an example of a
very simple database table, in this case a single page with a contact list, with three
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structure can vary, and also that
data quality is very important.
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records each storing the details of one individual.  There are three fields—Name,
Telephone and Address—for each record.

A more complicated example would be a database of gene sequences stored in
paper form in a filing cabinet, with gene data for each species stored in a separate
file. Each file would contain many pages, each holding the information about a
single gene. The information given about each gene will be in several distinct parts,
such as the name of the gene, the gene sequence, or the name of the protein
encoded by the gene. Each of these different pieces of information can occur in all
genes, so that often the page used is printed with a standard form, with each section
of the form, called a field, used to record one of the types of information. When
databases are stored in electronic form their structure has many similarities to the
paper form. Often a single computer file stores the entire database, and is the
equivalent of the filing cabinet. Electronic database files consist of tables, which are
the equivalent of the individual files in the cabinet. Thus, a gene sequence database
might contain a separate table for each organism. Each gene would be listed in a
separate row of the table, called a record, the electronic equivalent of the page. Each
record will consist of several different pieces of information given in different
columns of the table, and called fields. An example of the beginning of a record for
gene TCP1-beta of Saccharomyces cerevisiae is shown in Figure 3.1B. This illustrates
that the GenBank flat-file format is readable by humans as well as computers, with
the field names shown here in blue. The complete record is very long, and so only
the top section is shown.
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NAME

S. Claus

M. Mouse

A. Moonman

ADDRESS

The North Pole, Lapland

Disneyworld, Florida

Craterland, The Moon

TELEPHONE

0203 450

0202 453

0104 459

CONTACT LIST

GenBank Flat-File Format

LOCUS       SCU49845     5028 bp    DNA       
DEFINITION  Saccharomyces cerevisiae TCP1-beta gene, partial cds, and 
      Axl2p
            (AXL2) and Rev7p (REV7) genes, complete cds.
ACCESSION   U49845
VERSION     U49845.1  GI:1293613
KEYWORDS    .
SOURCE      Saccharomyces cerevisiae (baker's yeast)
  ORGANISM  Saccharomyces cerevisiae
            Eukaryota; Fungi; Ascomycota; Saccharomycotina; 
     Saccharomycetes;
            Saccharomycetales; Saccharomycetaceae; Saccharomyces.

(A)

(B)

Figure 3.1
Two examples of flat-file database
structures. (A) shows a contact list
as a flat-file database in which a
record holds the contact
information for an individual, and
consists of a number of fields (in
this case three), such as name,
telephone number, and address. 
(B) shows that a flat-file format can
be very useful and is still used today,
especially with text-handling
computer languages. This is an
example of a flat-file format
obtained from the GenBank
sequence databank. It is a very small
part of the complete record, and the
words in blue are the field names.

DEALING WITH DATABASES

structure of
databases

flat-file

relational

other types

Flow Diagram 3.1
The key concept introduced in this
section is that there are several
distinct forms of electronic
databases, each with particular
advantages and disadvantages.
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There are various types of electronic databases which differ in their structure. A
structurally simple example of a database is the flat-file format, while a much more
complex and therefore more versatile database structure is the relational form.
Both of these will be discussed below in more detail. More modern database
management structures include object-oriented databases, data warehouses, and
distributed databases. These are also briefly described below. Note that a comput-
erized database needs software that is used to control the database; this software is
referred to as a database management system or DBMS for short.

Flat-file databases store data as text files
A flat-file database is the simplest form of a database, where collections of data,
such as nucleotide and amino acid sequence, are stored as either a large single text
file or as a collection of different text files. The file contains records, generally one
record per line. The data files are flat, as in a sheet of paper, in contrast to more
complex and versatile models such as a relational database discussed next.

A common example of a flat-file database is a simple name and address list. In this
example the record will consist of a small and fixed number of fields such as a
name, address, and contact number. Flat-file databases can be created by hand, for
example when you write on a piece of paper the name, address, and phone number
of your friends you will have created a flat-file database. However, although useful,
this has its limitations; as the number of friends grows and as friends change
addresses the database has to be updated, which would end up with the piece of
paper being filled up and looking very messy with many crossed-out fields.
Therefore using computers and computer programs to manipulate the data in a
flat-file format is useful and was first implemented a long time ago. In the nine-
teenth century Herman Hollerith decided that any resident of the United States
could be encoded by a string of exactly 80 digits and letters consisting of name, age,
and other information, filled with blank spaces to make everyone’s entry the same
length. This led to the first-ever computerized census, in 1890, encoded on punch
cards that were read by machines (see Figure 3.2). 

Nowadays, electronic flat-file databases can be organized and maintained by
sophisticated management software that provide a mechanism by which data can
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Figure 3.2
First computer databases. This
computer was designed in the late
19th century, and first used in the
1890 United States census. Hollerith
developed an integrating tabulator
housing separate adding
machines—the upright units—that
could simultaneously add totals
recorded in separate areas, or fields,
of a punched card. (Courtesy of
Science Photo Library.)
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be easily input and can be retrieved using detailed search queries. However, in
general, the data available to biologists involves so many different aspects that it
can be more effectively stored using more sophisticated database structures. Flat
files are still used, especially to distribute the data (see Figure 3.1B), because many
of the more complex database structures depend on specific, often expensive soft-
ware, whereas the flat files can be read and analyzed by many alternative programs
according to the user’s preferences.

Relational databases are widely used for storing biological
information
Probably the commonest type of database used for biological information is the
relational database. A relational database stores the data within a number of tables.
Each table consists of records and fields (rows and columns) as described above
and in general these will be different for each table. However, each table will be
linked to at least one other by a shared field called a key. It is these keys that distin-
guish a relational database from a flat-file database. It should be noted that not all
fields can be keys, as the data for a key must be unique in each record. A relational
database can have several different fields acting as keys, even in the same table, and
the structure of the database is often drawn to show the keys linking different tables
together.

For example, in Figure 3.3 a table called protab1 is shown where each row contains
a code for a protein, the name of the protein, the length of its sequence, and which
species it comes from. In this case protab1 is linked to other tables in a relational
database by the protein code field, which is the key. This enables the extraction of
related data from many tables so that, for example, using the protein code we can
extract the name of a protein from protab1 and the sequence of that protein from
protab2, a table that only stores the protein code and protein sequence. In this way,
the information held in different tables can be combined.

In relational database applications a set of operators is provided that allows for easy
manipulation and analysis of the data. Some of these operators are mathematical in
nature (addition, multiplication, and so on) and some are concerned with data
handling, such as selecting specific subtypes of data from different tables.
Frequently, the operations performed on the data in the tables produce results that
are displayed in new tables. In the protein sequence example just described, the
results table would contain the protein code, protein name, and protein sequence. In
relational database management systems, the operators are written in query-specific
languages that are based on relational algebra. Structured Query Language (SQL) is
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Protein-code     Protein-name Length        Species-origin

P1001           Hemoglobin  145     Bovine

P1002           Hemoglobin  136     Ovine

P1003           Eye Lens Protein            234     Human

.....

protab1 

Protein-code     Protein-sequence  

P1001            

P1002            

P1003            

..... 

 

protab2 

MDRTTHGFDLKLLSPRTVNQWLMLALFFGHS… 

MDKTSHGFEIKLLTPKKLQQWLMIAIYFGHT… 

SRTHEEEGKLMQWPPRPLYIALFTEPPYP… 

 

Figure 3.3
Two example tables representing
the relational database model. In
this structure the records are
connected by an identifier, often
referred to as the primary key. There
can be a number of subidentifiers or
secondary keys. These connect
various types of data from as many
tables as necessary. Any field can be
a key as long as it is unique.
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commonly used and the examples below show how data could be extracted from the
tables in Figure 3.3. The first query is a simple extraction of data from a single table. 

Query 1
SELECT protein-code, protein-name
FROM protab1
WHERE species-origin = ‘Bovine’;

The SQL commands are in capital letters (this is a common standard when writing
SQL), and all this simple bit of SQL code means is: select all protein codes and
protein names from the table called “protab1” where the species of origin is bovine.
The second query is slightly more complex and extracts data from two different
tables using the key as the common factor.

Query 2
SELECT protab1.protein-name, protab2.protein-sequence
FROM protab1, protab2
WHERE protab1.protein-code = protab2.protein-code
AND protab1.protein-code = ‘P1002’;

In this example we are telling the program to search and extract all protein names from
protab1 and all sequences from protab2 where protein-code is p1002 in both tables.

These are just simple examples of basic queries. The queries can become extremely
complicated when one deals with complex database structures containing many
connections between many different tables. A detailed explanation of how rela-
tional databases and query languages work is outside the scope of this book; the
interested reader should consult Further Reading on p. 67. 

XML has the flexibility to define bespoke data classifications
Recent years have seen a significant effort to develop eXtensible Markup Language
(XML) as a general tool for the storage of data and information. XML, a very powerful
system for marking up (annotating) data, is one of many markup languages,
including hypertext markup language (HTML) and XHTML, which are commonly
used to write Web pages. In fact HTML and XHTML are subsets of XML, although
they are considerably less powerful. 

The key feature of these languages is the use of identifiers called tabs, which can
enclose sections of data, for example <title>Understanding Bioinformatics</title>.
While languages such as HTML can only use a restricted, small set of tabs, most of
which are concerned with the presentation format (for example <bold> which indi-
cates use of bold font), XML has mechanisms that allow arbitrary tags to be used. It
is possible to construct and disseminate sets of tags appropriate for specialized data
and for particular applications. For example, a <publisher> tag could be defined and
used to identify book publishers. Recent versions of many word processing applica-
tions also use special sets of tags, allowing them to generate XML files. The ability to
design appropriate specialized ways to classify data is one of the features that has
made XML an attractive alternative to the databases described above. A particularly
useful feature of XML is that it uses a plain file format, which makes XML files very
portable and accessible. An increasing number of bioinformatics databases are
being made available in XML format, although often their master copy is main-
tained using other solutions such as relational databases.

Having data marked up in XML or any other markup language is only useful if there
are methods available to access and interpret the data. HTML and XHTML are
interpreted by Web browsers, which identify the tags and use them as instructions
for formatting and displaying the data. Interpreting programs have been written for
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some specialized XML tag sets, for example the word processing applications
already mentioned. In other cases, especially those where the tags identify the
nature of the data, it is more appropriate to use general programs to extract the
data, and to create bespoke applications if further analysis is required.

The extraction of data from an XML file is very similar to database querying. For
example, although the underlying technical details might be very different, if an
XML file and a database both held lists of the same books, the result of
extracting/querying all book titles would be the same. There is an equivalent of SQL
for XML files, called Xquery, so that extracting information is equally easy from
either source. The XML language does not automatically have the complexity of
database applications, so that XML files may not necessarily be the method of
choice. However, they have the advantage of great flexibility, so that in certain situ-
ations they are likely to be preferred.

Many other database structures are used for biological data
There are other database models that are also used for biological systems, such as
the object-oriented model. Object-oriented databases do not necessarily need SQL
or any such special type of database programming language, and can use languages
such as Java or C++. The key feature of object-oriented databases is their user inter-
face. They have an apparent structure that consists of objects that correspond
closely to the objects and concepts which occur in the field of interest. For example,
the database structure might have cell objects with components and properties
reflecting those of biological cells. The user of such a database can frame their
queries in more familiar terms than is often possible using relational databases as
described above. However, the actual structure used to store the information in an
object-oriented database may still involve tables and have little, if any, real differ-
ences when compared to a relational database.
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source source

users

data
warehouse

programs to clean and
integrate the data

programs to extract
and monitor

source source

programs to extract
and monitor

Figure 3.4
A schematic of data warehousing.
The data come from different
sources and are extracted
automatically by special programs
that also usually monitor the original
source for updates. The data have to
then be cleaned, checked, and put
into a similar format so that
integration can take place. Finally,
the data are stored in a single
database and are accessible to users.
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Another form is the distributed database, in which although under the control of a
central database management system, the actual database part (tables) may be
stored in more than one computer located either in the same room or located
anywhere but connected through the network. An example of a distributed data-
base is the Reciprocal Net, which is a distributed database for crystallographers to
store information about molecular structures. The central database management is
at Indiana University but there are 19 other participating sites, ranging from those
in the United States to those in the United Kingdom as well as Australia.

Data warehousing has been developed to overcome the problem of data hetero-
geneity (see next section) and data management between databases. The data
warehouse basically stores information that has been integrated into one database
(see Figure 3.4). It is, in effect, the opposite of the distributed database model.

Most large biological database sites, such as the Macromolecular Structure Database
(MSD) at the European Bioinformatics Institute (EMBL-EBI), are made up of a mixture
of the above models. MSD uses the relational model as well as having the data ware-
house model for its structural information, integrating information about secondary
structure, active sites, ligands, as well as information from external databases.

Databases can be accessed locally or online and often link to
each other
Access to a database can be local, usually through user interface programs written
on-site, for example in Java, or external through Web-based interfaces. A database
stored locally has the advantages of faster access, more flexibility in designing
specific queries, and security. However, it is necessary not only to have enough disk
space to keep a database but also to invest time and money for the management
and maintenance of the database. Therefore the preferred choice for most users is
to access external databases via the Internet. A lot of effort has gone into providing
Web-based forms and interfaces to biological and related databases and database
resources, as can be seen by exploring the major bioinformatics database serving
sites at the National Center for Biotechnology Information (NCBI) and EMBL-EBI.

Often many biological and related databases contain records that are relevant to
the topic of interest. For example, there may be relevant entries for a protein in
many different databases including those for protein sequence, protein structure,
and gene sequence data. If each of these databases had to be separately queried it
could take a long time to learn all that is known about the system, and some infor-
mation may be missed if all databases are not searched. However, almost all data-
bases in the biomedical area have some links to relevant entries in other databases,
making it much easier to collate all the information. No database can be assumed
to have links to all other relevant databases, so some care is still needed to obtain
all the information, but much time can be saved. Note that some major sites such
as NCBI and EBI augment these links so that not all accessible versions of a partic-
ular database necessarily have the same set of links. These links have made the
collection of publicly available databases one of the most powerful resources in
biomedical research.

3.2 Types of Database
There is a very large number of databases covering a wide range of scientific data
with much duplication, both real and apparent. Just discovering what exists can be
a difficult task, because many of the databases are created by small, independent
teams and hosted on their own Web servers. In this section we will give a brief
survey of the existing databases (see Flow Diagram 3.2).
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An important feature of many databases is that they do not only store the data that
are supposedly their reason for being created. For example, entries in the major
protein and nucleotide sequence database often have a large amount of relevant
non-sequence information. For clarity, in the remainder of this chapter we will use
the term data to refer to the key information in the database entry: for example, the
sequence, structure, or expression levels together with the minimal information
required to identify the data, for example the name of the gene (and the organism)
whose sequence is contained in the entry. All of the additional information in the
database entry will be referred to as the annotation, and can include links to related
entries in other databases, interpretation of the data, and relevant research cita-
tions. We will begin by briefly looking at some aspects of database annotation.

There’s more to databases than just data
The minimal content of a database entry would include just the data and the 
data’s  identity (for example, protein name and source organism) and the author/
submitter responsible for the entry. However, usually much more information is
given, referred to as annotation, including published papers reporting the data,
other known facts or interpretations (for example, enzyme reactions and
substrates, or gene structures), and lists of highly relevant entries in other databases
(for example, entries about a sequence motif, if one is present). Thus, even though
the majority of databases concentrate almost wholly on one particular aspect (for
example, DNA sequence, protein structure, and human genetic disorders) they
contain information about a wide range of related aspects.

When the annotation lists related entries in other databases these are usually given
as URL pointers, called links, with which one can very quickly surf through many
databases. This makes the set of databases an extremely useful information
resource often far more powerful than standard literature reviews. A successful
database search will reveal many different aspects of the area of interest, and
provide raw data and its interpretation as well as important research papers.

In addition to simply providing information, some of the databases present their
data in an interactive graphical display. This enables the data to be browsed akin to
thumbing the pages of a book. Sometimes this is the best way to become familiar
with general features of the data, as well as being a more intuitive way to search
through some types of data. In addition, some databases also provide programs for
the online analysis of their data.

Primary and derived data
A distinction is sometimes made between databases of so-called primary data and
those that contain secondary data derived from these primary sources. In some
cases the primary data include the raw experimental results, for example scans of
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Flow Diagram 3.2
The key concept introduced in this
section is that most bioinformatics
databases contain some results
from analysis of the primary data,
greatly increasing their usefulness.
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gene expression arrays and two-dimensional (2-D) proteomic gels. In many cases
the primary data are the initial experimental interpretation, for example nucleotide
sequences. Although many protein sequences have been deduced from nucleotide
sequences, the main protein sequence databases such as SWISS-PROT are often
regarded as primary data sources. In general, except for experimental errors, these
data are regarded as very reliable. (Note that this does not extend to the further
annotation that might be present, especially in sequence databases.)

Examples of secondary databases are those that contain collections of conserved
protein sequence motifs, or comparisons of multiple sequences that give measures
of sequence similarity and relatedness. Because they can only be based on the data
existing at the time, some of the entries in this kind of database may be proved
incorrect once more primary data have been collected. For example, new protein
sequence information may mean that a sequence hitherto regarded as a complete
conserved motif turns out not to be conserved at all, or to be only part of a motif. If
such secondary databases are not rederived at regular intervals, their data must be
treated with a degree of suspicion.

How we define and connect things is important: Ontologies
The organization of the complex data found in databases, as well as merging data
from various places, is difficult when data are described using different terminology
for each database. Therefore formal and explicit specifications of the terms used and
the relationships between them have been defined; these are called ontologies. The
specific terms defined in ontologies can be reused between different biological fields;
this simplifies the sharing of data and the sharing of knowledge about the data, and
facilitates analysis by computer programs, such as the GOTM program that is used to
analyze and visualize sets of genes using the Gene Ontology. This widely used Gene
Ontology (GO) is a collaborative project across many laboratories to provide a
controlled vocabulary that describes gene and gene-associated information (but not
gene products) for all organisms. The building blocks of any ontology are terms. For
example in GO, each GO term has a number and a name, such as signal transduction.
Each term is also assigned to one of three subontologies in GO: molecular function,
cellular component, and biological process. Sharing a vocabulary such as GO
between databases is a step toward unification of databases. Similarly there is MGED
(Microarray Gene Expression Data), whose terms are developed to describe gene
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Figure 3.5
Schematic diagram of a section of
the MAO ontology architecture. The
gray boxes show terms and the arrows
represent relationships between
them. Red arrows indicate “is a”
relationship; for example, a domain
is a feature type. Green arrows
indicate “is attribute;” for example,
function is an attribute of amino
acid. Blue arrows indicate “part of,”
thus an atom is part of an amino
acid. (From J.D. Thompson et al.,
MAO: a multiple alignment ontology
for nucleic acid and protein
sequences, N.A.R. 33 (13):4164–4171,
2005, by permission of Oxford
University Press.)
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expression experiments, sequence ontology project (SOP), which aims to define
terms that describe features of a nucleotide or a protein sequence, and a multiple
alignment ontology (MAO) for sequences. Figure 3.5 shows a graphical representa-
tion of a part of the MAO ontology structure. In MAO the sequence is placed into a
context of the evolutionary family. It provides standard descriptions of most multiple
sequence alignments and their methods, as well as integration of other relevant data
such as structural or functional information. This facilitates inclusion of information
based on conservation and evolution in the final analysis.

3.3 Looking for Databases
Beyond a thorough literature and Internet search, there is a key site to use when
looking for relevant databases. Every year the first new issue in the journal Nucleic
Acids Research (NAR) is devoted to papers reporting new and updated databases. In
addition to the articles presented, there is a list of the URLs of databases that have
been reported in these annual issues of NAR. This list, called the Molecular Biology
Database Collection and numbering 858 entries in 2006, is available from the NAR
home page. To give a feel for the range of material available in the biomedical data-
bases, in 2006 the Molecular Biology Database Collection was divided into 14 cate-
gories (see Figure 3.6). Some of these categories will be described in more detail
below as they are closely related to the bioinformatics analyses that are dealt with
in the rest of this book (see Flow Diagram 3.3). Because of their importance as
primary data sources, we will discuss sequence databases in some more detail.

There are a number of centers that have been funded to provide access to a large
number of major databases in an integrated environment, to facilitate their use by
the research community. The major database centers include the NCBI
(http://www.ncbi.nlm.nih.gov/), the EBI (http://www.ebi.ac.uk), and the Sanger
Institute (http://www.sanger.ac.uk). Each has links to over 100 different databases
and is a very useful starting point for sequence, structure, and genome analysis.
However, although these include most of the major databases, they are only a small
fraction of the total available, and often a more specialist database can provide
better information in the case of specific queries. In particular, a number of high-
quality genome-specific databases have been produced, which would probably be
the best starting point for learning about a gene or protein of that species.

Sequence databases
Nucleotide sequence related databases (8% of the 858 listed in the Molecular
Biology Database Collection) include major international collaborations, such as
GenBank and the EMBL-EBI Nucleotide Sequence database, as well as resources
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The key concept introduced in this
section is that bioinformatics
databases can be classified
according to the type of data they
contain.
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that are more gene specific with information on introns, exons, and splice sites, as
well as motifs and transcriptional regulators and sites. RNA-specific databases
comprise 5% of the total and most have data on secondary structure and other
aspects in addition to sequence. Genomic databases form a large part of the data-
base list, with 19% nonhuman and 8% human and other vertebrate genomes.

There are a number of different types of DNA sequences stored in the databases
containing information about nucleic acids. These differ in the way they have been
obtained, and each type provides different biological information and must be
treated differently in terms of their analysis. The first type is raw genomic sequence,
representing the sequence of chromosomal DNA. This is the type of DNA sequence
derived from genome sequencing projects and is deposited in GenBank and the
organism-specific DNA sequence databases. These sequences include all the
elements present in genomic DNA, including noncoding regions, introns, and
control regions, as well as the sequences that code for proteins and RNAs. A second
type of DNA sequence that can be encountered, known as cDNAs, are the
sequences of DNA molecules that have been synthesized by reverse transcription
(copying of RNA into DNA) of mRNA molecules. The mRNA present at the time of
the experiment will depend on the nature of the sample, for example the type of cell
or tissue, the particular stage of development, or the particular disease. The set of
cDNA database entries for that sample represents the genes actually being
expressed in that sample. Because they are synthesized using the mRNA as a
template, these DNA sequences lack any introns that might exist in the gene and
any control sequences that lie outside the region transcribed into RNA (see
Chapter 1). The third type of DNA sequence held in databases is known as
expressed sequence tags (ESTs). An EST is a partial cDNA sequence. As with
cDNAs, a library of ESTs indicates the range of genes being expressed in a sample,
and they can be used to scan genome sequences to help identify genes. The NCBI
site hosts a special database of ESTs called dbEST.

Protein sequence databases form a large group of the NAR list (14%). These include
the major sequence databases such as UniProtKB, with its highly annotated
component Swiss-Prot, and the NCBI Protein Database, both being efforts to
collect information on all protein sequences. These protein databases are often
compiled and annotated from raw nucleotide sequence data. For example,
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Figure 3.6
Distribution of the type of
databases as classified at the
Nucleic Acids Research (NAR)
Molecular Biology Database
Collection Web site. In 2006 there
were 858 databases listed in total,
classified into 14 major categories,
of which the genome (27%) and
sequence (26%) databases form the
largest sections.
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LOCUS       NM_005358               7235 bp    mRNA    linear   PRI 02-AUG-2006
DEFINITION  Homo sapiens LIM domain 7 (LMO7), mRNA.
ACCESSION   NM_005358
VERSION     NM_005358.4  GI:111119012
KEYWORDS    .
SOURCE      Homo sapiens (human)
…
gene            1..7235
                /gene="LMO7"
                /note="synonyms: LOMP, FBX20, FBXO20, KIAA0858"
                /db_xref="GeneID:4008"
                /db_xref="HGNC:6646"
                /db_xref="HPRD:05078"
                /db_xref="MIM:604362"
CDS             1261..5310
                /gene="LMO7"
ORIGIN      
        1 ggaaagaagt ggaataatta ggaacctagg gtggggtagg gtagcaggac atttcaaaca
       61 ttaatgagca tatgagattc caggtcttgt taaaatgcaa attctgattc agctggtagg
      121 tgaggtctga gattgtgcat ttctaacaag cactcagata atcttaaggc tgttggcccc
      181 agggtcacac ttatagtgat tttctagaac ccagttgggg aagtgaatct tgggcaggag
      241 aaatacacac ctcttgcatt gagtttggag atctcatctg atataacttt ttaagaaaga
      301 aaaataattt tccaaatatc caattgataa gctttcccac taagtggctt tcccactaag
      361 tggctgcgtt atgaaaattg cttcactttg aaacttctgg tcttggtaat atagaatttc
      421 tgtgttctca cagtgcttga ttgagaatat gatattgaga ttatggcata aaatatagtg
      481 gctgtacaaa aaaaaataca ttattaggat ctctaacaat tatgtaaaag tcattgcttc
      541 atgggtagag ctcaaacttt ggtgtgagac ctggttttat tcttggcact tactctgagt
      601 tgtcttaggc aaattaatac cttaagcaaa aatattctca tgtacatttt acatgagaat
      661 tataaatgaa gtacataaag tccagcagtc acaaatgtta tctattatta ccatcgtcct
      721 aagactgcaa tcagctatag tgaaagtagt ctcaaagatt gtttcataaa tcatcagatt
      781 cacctaattt tctaaagaat ttaaataagg agatggaatg aatagattgc attttgtttc
      841 catgcacagg ggaactgtgc atatttcttc tgtgactcgg aaatggttta acttttaaaa
      901 atcccaaaat agctgaagtt agcagacatg caatttacca aggatgattg gaatttttat
      961 ctttcctgta ataatactat acccaagcac actgctcatg aggaaaacat ttttatgtga
     1021 atcttttact cttgggggca aagaatgctg tttttctttt tgataactat gtttatagaa
     1081 tctaaatcac cctgagcaat tatttcaaca tctaaagtta ttattaccat tcatgtttca
     1141 tttatagcta tttgaatttt gatgaatttc aatatggtgc tacagtgata gggcaagtgc
     1201 aaataagttc aatatatggg tacggtctaa agctatttta atttttttat tacaactgct
     1261 atgaagaaaa ttaggatatg ccatattttc acgttttaca gttggatgtc ctatgatgtt
     1321 ctcttccaga gaacagagct cggagctctg gaaatttgga ggcaactgat atgtgctcat
     1381 gtctgcatct gtgtgggttg gctgtatctc agggacagag tctgcagcaa aaaagatata
     1441 attttgagga ctgaacaaaa ttcaggaagg actattctca ttaaggcagt aacagagaag
     1501 aattttgaaa caaaagattt tcgagcctct ctagaaaatg gtgttctgct gtgtgatttg
     1561 attaataagc ttaaacctgg cgtcattaag aagatcaata gactgtctac accaatagca
     1621 ggattggata atataaacgt tttcttgaaa gcttgtgaac agattggatt gaaagaagcc
     1681 cagcttttcc atcctggaga tctacaggat ttatcaaatc gagtcactgt caagcaagaa
     1741 gagactgaca ggagagtgaa aaatgttttg ataacattgt actggctggg aagaaaagca
     1801 caaagcaacc cgtactataa tggtccccat cttaatttga aagcgtttga gaatctttta
     1861 ggacaagcac tgacgaaggc actcgaagac tccagcttcc tgaaaagaag tggcagggac
     1921 agtggctacg gtgacatctg gtgtcctgaa cgtggagaat ttcttgctcc tccaaggcac
     1981 cataagagag aagattcctt tgaaagcttg gactctttgg gctcgaggtc attgacaagc
     2041 tgctcctctg atatcacgtt gagagggggg cgtgaaggtt ttgaaagtga cacagattcg
     2101 gaatttacat ttaagatgca ggattataat aaagatgata tgtcgtatcg aaggatttcg
     2161 gctgttgagc caaagactgc gttacccttc aatcgttttt tacccaacaa aagtagacag
     2221 ccatcctatg taccagcacc tctgagaaag aaaaagccag acaaacatga ggataacaga
     2281 agaagttggg caagcccggt ttatacagaa gcagatggaa cattttcaag actctttcaa
     2341 aagatttatg gtgagaatgg gagtaagtcc atgagtgatg tcagcgcaga agatgttcaa
     2401 aacttgcgtc agctgcgtta cgaggagatg cagaaaataa aatcacaatt aaaagaacaa
     2461 gatcagaaat ggcaggatga ccttgcaaaa tggaaagatc gtcgaaaaag ttacacttca
     2521 gatctgcaga agaaaaaaga agagagagaa gaaattgaaa agcaggcact tgagaagtct
     2581 aagagaagct ctaagacgtt taaggaaatg ctgcaggaca gggaatccca aaatcaaaag
     2641 tctacagttc cgtcaagaag gagaatgtat tcttttgatg atgtgctgga ggaaggaaag
     2701 cgacccccta caatgactgt gtcagaagca agttaccaga gtgagagagt agaagagaag
     2761 ggagcaactt atccttcaga aattcccaaa gaagattcta ccacttttgc aaaaagagag
     2821 gaccgtgtaa caactgaaat tcagcttcct tctcaaagtc ctgtggaaga acaaagccca
     2881 gcctctttgt cttctctgcg ttcacggagc acacaaatgg aatcaactcg tgtttcagct
     2941 tctctcccca gaagttaccg gaaaactgat acagtcaggt taacatctgt ggtcacacca
     3001 agaccctttg gctctcagac aaggggaatc tcatcactcc ccagatctta cacgatggat
     3061 gatgcttgga agtataatgg agatgttgaa gacattaaga gaactccaaa caatgtggtc
     3121 agcacccctg caccaagccc ggacgcaagc caactggctt caagcttatc tagccagaaa
     3181 gaggtagcag caacagaaga agatgtgaca aggctgccct ctcctacatc ccccttctca
     3241 tctctttccc aagaccaggc tgccacttct aaagccacat tgtcttccac atctggtctt
     3301 gatttaatgt ctgaatctgg agaaggggaa atctccccac aaagagaagt ctcaagatcc
     3361 caggatcagt tcagtgatat gagaatcagc ataaaccaga cgcctgggaa gagtcttgac
     3421 tttgggttta caataaaatg ggatattcct gggatcttcg tagcatcagt tgaagcaggt
     3481 agcccagcag aattttctca gctacaagta gatgatgaaa ttattgctat taacaacacc
     3541 aagttttcat ataacgattc aaaagagtgg gaggaagcca tggctaaggc tcaagaaact
     3601 ggacacctag tgatggatgt gaggcgctat ggaaaggctg gttcacctga aacaaagtgg

     3661 attgatgcaa cttctggaat ttacaactca gaaaaatctt caaatctatc tgtaacaact
     3721 gatttctccg aaagccttca gagttctaat attgaatcca aagaaatcaa tggaattcat
     3781 gatgaaagca atgcttttga atcaaaagca tctgaatcca tttctttgaa aaacttaaaa
     3841 aggcgatcac aattttttga acaaggaagc tctgattcgg tggttcctga tcttccagtt
     3901 ccaaccatca gtgccccgag tcgctgggtg tgggatcaag aggaggagcg gaagcggcag
     3961 gagaggtggc agaaggagca ggaccgccta ctgcaggaaa aatatcaacg tgagcaggag
     4021 aaactgaggg aagagtggca aagggccaaa caggaggcag agagagagaa ttccaagtac
     4081 ttggatgagg aactgatggt cctaagctca aacagcatgt ctctgaccac acgggagccc
     4141 tctcttgcca cctgggaagc tacctggagt gaagggtcca agtcttcaga cagagaagga
     4201 acccgagcag gagaagagga gaggagacag ccacaagagg aagttgttca tgaggaccaa
     4261 ggaaagaagc cgcaggatca gcttgttatt gagagagaga ggaaatggga gcaacagctt
     4321 caggaagagc aagagcaaaa gcggcttcag gctgaggctg aggagcagaa gcgtcctgcg
     4381 gaggagcaga agcgccaggc agagatagag cgggaaacat cagtcagaat ataccagtac
     4441 aggaggcctg ttgattccta tgatatacca aagacagaag aagcatcttc aggttttctt
     4501 cctggtgaca ggaataaatc cagatctact actgaactgg atgattactc cacaaataaa
     4561 aatggaaaca ataaatattt agaccaaatt gggaacatga cctcttcaca gaggagatcc
     4621 aagaaagaac aagtaccatc aggagcagaa ttggagaggc aacaaatcct tcaggaaatg
     4681 aggaagagaa caccccttca caatgacaac agctggatcc gacagcgcag tgccagtgtc
     4741 aacaaagagc ctgttagtct tcctgggatc atgagaagag gcgaatcttt agataacctg
     4801 gactcccccc gatccaattc ttggagacag cctccttggc tcaatcagcc cacaggattc
     4861 tatgcttctt cctctgtgca agactttagt cgcccaccac ctcagctggt gtccacatca
     4921 aaccgtgcct acatgcggaa cccctcctcc agcgtgcccc caccttcagc tggctccgtg
     4981 aagacctcca ccacaggtgt ggccaccaca cagtccccca ccccgagaag ccattcccct
     5041 tcagcttcac agtcaggctc tcagctgcgt aacaggtcag tcagtgggaa gcgcatatgc
     5101 tcctactgca ataacattct gggcaaagga gccgccatga tcatcgagtc cctgggtctt
     5161 tgttatcatt tgcattgttt taagtgtgtt gcctgtgagt gtgacctcgg aggctcttcc
     5221 tcaggagctg aagtcaggat cagaaaccac caactgtact gcaacgactg ctatctcaga
     5281 ttcaaatctg gacggccaac cgccatgtga tgtaagcctc catacgaaag cactgttgca
     5341 gatagaagaa gaggtggttg ctgctcatgt agatctataa atatgtgttg tatgtctttt
     5401 ttgctttttt tttaaaaaaa agaataactt tttttgcctc tttagattac atagaagcat
     5461 tgtagtcttg gtagaaccag tatttttgtt gtttatttat aaggtaattg tgtgtgggga
     5521 aaagtgcagt atttacctgt tgaattcagc atcttgagag cacaagggaa aaaataagaa
     5581 cctacgaata tttttgaggc agataatgat ctagtttgac tttctagtta gtggtgtttt
     5641 gaagagggta ttttattgtt ttttaaaaaa aggttcttaa acattatttg aaatagttaa
     5701 tataaataca taattgcatt tgctctgttt attgtaatgt attctaaatt aatgcagaac
     5761 catatggaaa atttcattaa aatctatccc caaatgtgct ttctgtatcc ttccttctac
     5821 ctattattct gatttttaaa aatgcagtta atgtaccatt tatttgcttg atgaagggag
     5881 ctctattttc tttaccagaa atgttgctaa gtaattccca atagaaagct gcttattttc
     5941 attaatgaaa aataaccatg gtttgtatac tagaagtctt cttcagaaac tggtgagcct
     6001 ttctgttcaa ttgcatttgt aaataaactt gctgatgcat ttaacgagtg ggtcgtcttt
     6061 ttcttaggtg tatgtgtctg acctcaggcc ttttagccat atttcagtat gtggcctttt
     6121 ttgatgttat gttttatcca gtagctttac taaggtataa ttgatgtaat aaactgcata
     6181 tatttaaagt gtatactttg acaaattttg acatggtgta taccttcgaa actatgccac
     6241 agtctggatg tgtttactga aacattttaa taaggaagtt tatttttgat aaagttatgt
     6301 ttttggatac aatatatttg tatggtgaga gtgatgaatt gttggatcat ttgatctttt
     6361 actaacccca tgataaaagg agaagacaac agtgagctta gaatatctat aaagcaaaaa
     6421 atgtagtctc ttgtttaaaa aatctggagc gggaatgcaa ggatacaaaa ctttagcatg
     6481 ctttgagcaa aaatttaaac ttactggaat cttttataat aatgtaagtg gaatggagga
     6541 ttctaggaac tgagaactgt attggaatag gttcaaaata tgtaagaaat gctaatgtgg
     6601 gagataaaaa ttttatttag tacttattct gattattatt aaagtaataa tgtgttcctt
     6661 gaggataact tgtcaaatgc cccaaagcat aaagaatata attctgaatc ccaaattcca
     6721 aagacaagaa ctctgtgttt gaattcattc tgcatataat tatttataag tatagattgt
     6781 gaatttttcc atgttcttaa aattattttt atcttttttc atggttgcat agtgctccat
     6841 tgtttggcct tggtaatatt tagttgataa ttccattact gtgtattttt cacttgtttc
     6901 taagatcaaa cattttaata tgtgcatgtt atatataaat atgtaaattc tgtgatactc
     6961 tatgatcatc tctttcttta tattattttc atagacatga aatagttgct cagagattat
     7021 gcattttaag acactcatag tatatattgc caaagtggtt tccagaaagg cactgctggc
     7081 ttcgactcct ataagcagca cgtgggcttg ttcatctcac tgcatgttta tgaagataca
     7141 gttcttttgc cttgttctct gcctgatgtg tatgcagagg cagccctcaa tatgcagtgg
     7201 ttgaataaat gaatgaagaa accactaaaa aaaaa

Figure 3.7
An extract from a GenBank DNA sequence file with the
DNA sequence of human LIM domain 7. The type of
information on each line is preceded by the field name. 
A number of accession and version numbers are given,
including cross-references (xref) which are links to
related entries in other databases. Many lines have been
omitted from the file after the “SOURCE” line identifying
the sequence as of human origin. The section from “gene”
to the line after the “CDS” line identifies the protein-
coding sequence (CDS) as only bases 1261 to 5310 of 
the sequence. The final section of the file, from the
“ORIGIN” line, is the formatted nucleotide sequence.
Note that GeneID is the same as in the microarray data
(see Figure 3.9).
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UniProtKB is produced by analysis of all the translations of the EMBL database
nucleotide sequences. It has two components: Swiss-Prot mentioned above, which
has manual annotations incorporated, and the TrEMBL component, which is only
annotated using a computer. The latter has more entries, but the annotation is not
as accurate as Swiss-Prot.

The sequence databases tend to contain very extensive annotation, and large teams
are needed to help with this intensive task. In the case of nucleotide sequences, the
typical features identified include the presence of open reading frames, introns,
and promoter sites (see Chapter 1), as well as translated protein sequence. The
protein sequence databases have equally detailed annotation with more emphasis
on the protein, with various properties including their localization, their biological
targets, sequence motifs, active sites, and domains (see Chapter 2). A partial entry
for a DNA sequence of the LM07 gene is illustrated in Figure 3.7 and for its protein
sequence in Figure 3.8. 

Secondary databases such as Blocks and Prodom supply information regarding
sequence or structural patterns found in proteins. This information is very useful
when searching for proteins that are related by evolution (see Chapters 4 and 6).
The proteins are grouped together according to sequence or structural similarities
such as analogous active sites or substructures. In addition to the general DNA and
protein sequence databases, there are many databases that specialize in specific
groups of sequences. There are specialist databases covering most areas, including
repetitive DNA elements, protein motifs, and particular classes of proteins or RNA
molecules.

Microarray databases
Microarray data and gene expression databases make up 6% of the list. In contrast,
only 1% of databases deal with protein expression. These have data on 2-D acryla-
mide gels with their protein expression levels, as well as posttranslational modifica-
tions and mass spectroscopy identifications for some or all the spots on a 2-D gel.

Microarray databases are a repository of data from microarray experiments, often
accompanied by data analysis and tools to visualize the raw image. Gene expression
databases also contain expression data collected by other experimental methods
such as SAGE (serial analysis of gene expression) and EST sequencing. The databases
contain expression data and often extensive annotation as well as techniques to
visualize the numerical data and statistical analysis programs. One such resource is
the Stanford Microarray Database (SMD) where the data from more than 7000
microarray experiments are available and can be viewed, downloaded, and analyzed
using the tools provided by the SMD site (see Figure 3.9). Another important
microarray database is ArrayExpress, which is also a repository for microarray data.
In addition there is an ArrayExpress Data Warehouse that stores gene-indexed
expression profiles from a curated subset of experiments from the database.

Protein interaction databases
For most proteins to carry out their function they have to interact with other mol-
ecules, including other proteins. Therefore protein interaction databases are impor-
tant resources for understanding function and building up biological networks that
then can be used in systems biology (see Chapter 17). There are a number of protein
interaction databases available, each with different advantages and also limita-
tions. The Database of Interacting Proteins (DIP) contains information only on
protein–protein interactions but employs rigorous criteria for evaluating the relia-
bility of each interaction. The Molecular INTeraction database (MINT) contains
additional information on protein, nucleic acid, and lipid interactions. The
Biomolecular Interaction Network (BIND) describes interactions at the atomic level
for protein, DNA, and RNA. pSTIING (protein Signalling, Transcriptional Interaction
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and Inflammation Networks Gateway) is a Web-based application as well as an inter-
action database. pSTIING integrates protein–protein, protein–anything else interac-
tions as well as transcriptional associations. The search engine is very powerful,
allowing for integrated searching, for example linking disease types with protein
interaction networks. It also allows for the integration of experimental data such as
from gene expression experiments with the protein networks. Figure 3.10 shows a
snapshot of a pSTIING pathway and dynamically generated further interactions. 

Structural databases
Structural databases make up 9% of the 2006 NAR list, and include those containing
information on the structure of small molecules, carbohydrates, nucleic acids

Looking for Databases
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Key From    To   Length  Description            FTId

CHAIN     1   1683   1683   LIM domain only protein 7. PRO_0000075824
DOMAIN    54    168    115   CH.  

DOMAIN  1042   1128     87   PDZ.  

DOMAIN  1612   1678     67   LIM zinc-binding.  

        10         20         30         40         50         60 
MKKIRICHIF TFYSWMSYDV LFQRTELGAL EIWRQLICAH VCICVGWLYL RDRVCSKKDI 

        70         80         90        100        110        120 
ILRTEQNSGR TILIKAVTEK NFETKDFRAS LENGVLLCDL INKLKPGVIK KINRLSTPIA 

       130        140        150        160        170        180 
GLDNINVFLK ACEQIGLKEA QLFHPGDLQD LSNRVTVKQE ETDRRVKNVL ITLYWLGRKA 

Figure 3.8
An LIM domain 7 entry from a
protein point of view from the
Swiss-Prot database. As in Figure 3.7
the sequence is given at the bottom
of the entry (shown in part here). A
major section of the database entry
consists of annotations that are
linked to other tables, files, and
databases. For example, in the
References section there are links to
the PubMed research literature
database, with links to the
equivalent entry in five worldwide
locations of this database, including
the United States, Europe, and
Japan.
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(DNA and RNA), and proteins. These are the results of study using various experi-
mental techniques, usually X-ray crystallography or nuclear magnetic resonance
(NMR). The most widely used databases are the Structural Bioinformatics Protein
Databank (RCSB, PDB) and the Macromolecular Structure Database (MSD) at EBI.
Figure 3.11 shows the results of a text search through the RCSB server with the
keywords “LIM domain.” These types of databases are very important for structural
analysis and homology modeling (see Chapters 13 and 14). Protein secondary
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CLICK 
on the spot 

CLICK 
A whole list of information about LM07 – 
LIM domain 7, such as Gene information, 
OMIM (Online Mendelian Inheritance 
in Man), protein information, which 
chromosomes it is on and species. In 
addition, links to other databases such 
as gene ontologies, SWISS-PROT, PubMed, 
and much more.

(A)

(B)

(C)

Figure 3.9
Searching through the SMD
microarray database returns lots of
information. It also gives you the
possibility to see the whole
microarray image, which you can
enlarge (A) and choose a spot of
interest and click on it (B) to give
you a large view of the spot with
additional data such as numerical
spot information and biological
annotation of the spot, the gene
whose expression is measured (LIM
domain 7), and linkable IDs.
Clicking on the clone ID number
gives (C) further annotation and
links to other databases.
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structure databases have been produced by analysis of the structures for protein
folds and classifying them according to the conservation of the fold. These include
CATH and SCOP and are discussed in Chapter 14.

3.4 Data Quality
One of the great strengths of bioinformatics databases is that as well as the basic
data they often contain further analysis and interpretation and links to relevant
entries in other databases. However, analysis that is based upon incorrect data is
likely to lead to erroneous conclusions. Hence it is extremely important that the
data provided by databases be as accurate as possible, ideally even to the point of
including details of possible errors and levels of uncertainty (see Flow Diagram 3.4).
Furthermore, some results of analysis are more accurate than others, so that they
also require some measure of reliability. These accuracy issues are often noted in
the annotation of each entry, making these bioinformatics databases very useful. In
this section we will start by looking at data accuracy and how to identify uncertain-
ties. Following this, we will look at accuracy issues related to data analysis. There are
two distinct ways in which this can be done: computer-based analysis and manual
curating. Both methods make an important contribution to ensuring the accuracy
of database information.

Data Quality
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Figure 3.10
Interaction maps generated with
pSTIING. The pathway is divided
into functional modules, for
example the Chemokine module.
Each component node (protein or
gene) is linked to more extensive
information about the component
including interaction partners,
domains, gene ontology, other
homologous proteins, and links to
other databases. By clicking on the
node, some or all the information
can be displayed and further
interactions can be viewed,
extending the interaction network.
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A further potential complication is that many experimental methods are applied to
only small parts of the complete system. For example, an enzyme is often studied
purified from the cell, or protein structures are frequently reported as only a frag-
ment of the complete molecule. In these cases, while the data might be accurate,
caution is required when extrapolating back to the complete cellular system. The
database information must include sufficient experimental details, or references
to details in published papers, that the information can be understood in its
proper context.

Nonredundancy is especially important for some applications
of sequence databases
There are numerous occasions on which the same work has been subsequently
repeated, either by the same researchers or others. A typical example occurs when
the complete genome of an organism is sequenced, as often some of the genes will
have been individually sequenced previously. Another often-encountered situation
is that a confirmatory sequencing of a clone reveals a small sequence difference
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DEALING WITH DATABASES

structure of
databases

primary and
derived data

flat-file annotations

experimental
data

sequence data

protein
interaction data

structure data

types of databases

relational

other types

redundancy

checking data

human curation

updating data

quality of
data

Flow Diagram 3.4 
The key concept introduced in this
section is that it is important to
consider the quality of the data
within a database, how good quality
can be achieved, and how it can be
maintained.

Figure 3.11
An example of the results of a search
through the RCSB structural
database with the keywords “LIM
domain.” Ninety-one structures were
found, of general LIM domain
proteins and associated proteins.
Links are provided to further details
of each structure.
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with respect to the database entry, which may be due to errors in the original
sequencing or to the presence of mutations.

The database should ideally contain the results from all published work, but this can
lead to many entries with identical or almost identical data. In the case of identical
data, the entries are said to be redundant, in that for many applications they both
provide the same information. A typical application for which this is the case is
identifying similar database sequences to a query sequence. In most cases the data
are more usefully held in a single entry in the database, referring to all the inde-
pendent experiments, and summarizing all the separate database entries. This
allows researchers to discover all the information by reading the single entry. In
sequence databases it is normal practice to include in this single entry data that are
almost but not exactly identical due to mutations or possible experimental errors. A
database constructed in this fashion is known as a nonredundant database, and is
the usual form in which the database is queried. Note that the redundant database
with the original separate entries must be maintained, so that if in future errors
come to light, such as attribution to the wrong species, the corrected files can be
used to generate a corrected nonredundant database.

Although this issue has been presented in terms of several entries in the same data-
base, it can also arise when several databases have been constructed that hold over-
lapping sets of data. For example, there used to be several protein sequence
databases, all of which had some unique data as well as a large amount of common
data. Simply combining these databases resulted in a large degree of redundancy
that had to be removed for efficient use.

Automated methods can be used to check for data consistency
Usually the data present in database entries should have certain properties that
can be checked automatically. For example, a fully defined DNA sequence should
consist only of the four bases A, C, G, and T. However, sometimes there is experi-
mental uncertainty about the base identity at certain positions, leading to an
extended character set that describes all the possible uncertainty (see Table 3.1). A
similar situation occurs with protein sequences, leading to the one-letter codes B,
Z, and X to describe uncertainty in the amino acid present at a sequence position.
Other aspects of sequences can also be checked; for example, that the sequence
length and molecular weight, if reported, agree with the sequence.

Some data can be checked even more rigorously. The bonding geometry found in
protein structures is known to show only limited variation, for example the length
of the main chain double bond linking the C and O atoms (see Figure 2.2) averages
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Letter Base uncertainty

M A or C

R A or G

W A or T

S C or G

Y C or T

K G or T

V A or C or G

H A or C or T

D A or G or T

B C or G or T

X or N any nucleotide

Table 3.1 
The nomenclature used to
represent base uncertainty in
DNA sequences.
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0.123 nm (1.23 Å) with a standard deviation of 0.002 nm (0.02 Å). Protein structures
are defined in the databases by atomic coordinates relative to an origin, so that the
geometry is not explicitly given. However, it is easy to calculate the bond lengths of
a structure in the database and to check them against their known ranges. This can
be done for all bond lengths, bond angles, and torsion angles, as well as chirality
(see Chapter 2). Sometimes, when an error is detected, it is possible to identify and
correct the error in the atomic coordinates. In other cases the database entry can
be annotated to describe the error. Another typical feature of protein structure
entries in the databases is that they often lack certain atoms or even entire
residues. This is due to the nature of the experimental techniques used, and
frequently relates to the degree of freedom of movement of regions of the molecule.
Again, these missing atoms should be identified in the annotation.

Other forms of data present in the database entries may also be amenable to auto-
mated checking. For example, in the entry for a gene expression experiment, a check
can be made that expression levels are given for every gene under every condition.
Wherever cross-references are given to entries in other databases a check can be made
that the databases and entries exist. These sorts of automated checking are usually
only able to detect errors and highlight them for manual resolution. In addition, they
may often fail to identify other more subtle errors. In some cases, such as when
submitting microarray data to certain databases, the data must conform to a specific
standard that is intended to include sufficient experimental information in order for
the work to be accurately reproduced. One such data standard for microarray experi-
ments is called MIAME. MIAME describes the Minimum Information About a
Microarray Experiment that is needed to enable the interpretation of the results of the
experiment unambiguously and, potentially, to reproduce the experiment.

As the number and size of databases grew, and annotations became more exten-
sive, some potential problems were recognized in electronic text searching. Often
alternative spellings of the same word were encountered, as well as alternative
names. For example, it is not uncommon for an enzyme to have three or four alter-
native names. As a consequence it can be difficult to locate all relevant database
entries without searching for all names or spelling variants. To circumvent this
problem, ontologies have been proposed covering specific disciplines. By
restricting the words used in databases to those in the ontologies, text searches can
be rendered more effective. Automated methods can be used to identify alternative
terms and replace them with approved terms, as well as to find misspellings.

Initial analysis and annotation is usually automated
The data submitted in new database entries are increasingly generated in electronic
form by the experiments. In such cases it is relatively easy to include details of
important parameters used in obtaining the data. These can be extremely useful in
subsequent interpretation. An example of this occurs in the MSD molecular struc-
ture database, especially for those structures derived from crystallographic
methods. As well as details that may only be of interest to other experimentalists,
crystallographers report measures called the resolution and R factor, which are a
very useful guide to the overall accuracy of the structure. The resolution indicates
how much measured diffraction data were included in the work, while the R factor
measures the correlation between the structure and the experimental measure-
ments. Both give strong indications of the effective limit of accuracy with which
atomic coordinates can be determined. It is common practice when analyzing
general protein molecular geometry only to include structures whose resolution is
better than some threshold, such as 0.2 nm (2.0 Å).

As regards analysis of data already incorporated in the database, in many cases (and
certainly with sequences and molecular structure data) many of the forms of
analysis applied in bioinformatics are fully automatable. Many of these techniques

Chapter 3: Dealing with Databases

64

BIF CH3 5th proofs.qxd  13/7/07  15:25  Page 64



are described in detail in this book in the following chapters. An example of such a
method is the identification of similar sequences by alignment of all sequences in a
database. For example, by using such techniques on a protein sequence it is
possible to identify the protein family to which it belongs and its likely function.
The methods usually include statistical analysis that can assess the likely signifi-
cance of the result, information which should ideally be presented in the database
entry. One way of increasing the reliability of the analysis is to reduce the level of
detail, for example identifying a more general class of enzyme function instead of
trying to predict exactly which compounds are involved. However, this can render
the information too vague to be useful.

There is a particularly high potential for misleading analysis when genes are identi-
fied in nucleotide sequences by applying purely computational methods, a situa-
tion which is common in the early stages of genome sequence annotation. Such
methods are described in detail in Chapters 9 and 10. Sometimes there are no
experimental data available to support the predicted genes. In such cases the genes
and the proteins they encode are often labeled as “hypothetical” in the databases.
The gene prediction methods available are still relatively inaccurate, especially for
eukaryotes, so that considerable caution is required when encountering these
entries in the databases. In some cases the gene may be correctly predicted, but it is
also quite possible that no such gene exists, or that errors have been made in the
details of the prediction, resulting in a different protein sequence for example.
Often considerable experimental work occurs after genome sequencing is complete
to try to obtain experimental evidence for these hypothetical genes and proteins.

Human intervention is often required to produce the highest
quality annotation
While computer-based analysis has the benefit of being easily carried out in an
objective way for all database entries, it cannot produce annotation of the highest
quality because the methods used are not perfect and rely on data being present in
electronically accessible forms. In contrast, human database annotation can use
data in any form, such as information buried in the text of a research paper or the
knowledge of an expert in the field.

An example of the use of manual curation to produce high-quality annotation is the
Swiss-Prot protein sequence database, now a component of the UniProtKB
universal protein resource. However, production of such annotated entries is very
time consuming, and needs input from specialists. For example, the UniProtKB
database involves numerous researchers worldwide who have volunteered to assist
in the manual curation of entries relating to one or more specific protein families.
So far volunteers have been found for over 130 protein families. However, this is still
only a small proportion of all the entries in that database.

Manual annotation usually is most effective for entries whose data have been well
characterized experimentally, or are related to other entries for which this is the
case. As mentioned above, this relationship is usually one of similarity. If no experi-
mental evidence is available even for related entries, manual annotation is likely to
provide only limited benefit.

The importance of updating databases and entry identifier
and version numbers
Databases need to be regularly updated to reflect new information, not just
including new entries but also updating and correcting existing ones. In fields
that are actively evolving, major and minor releases may be required, with a few
major updates each year but minor updates on a weekly or even daily basis.
Individual database entries will change less often, but it is important that it is easy
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to recognize if the current entry differs from a copy made earlier. This can be
achieved by using version numbers for entries, or alternatively by reporting the
most recent date on which changes were made, as can be seen in the “Entry infor-
mation” section of the database shown in Figure 3.8. However, this is only of use
if there is also a unique identifier for the entry that is fixed and can be used to
ensure the two versions are indeed of the same entry. In Figure 3.8 this is called
the “Primary accession number.”

There are occasions when a decision is taken to make an existing database entry
obsolete. In most cases the data from this entry will still be in the database, but now
in a different entry with a different unique identifier. It is important that the current
database maintains some record of the obsolete entry identifier, the reasons for the
decision, and the fate of the data. This information and version records will some-
times be of great value in understanding the reasons why a repeated study
produces different results.

The eukaryotic genome sequencing projects are an extreme example of the impor-
tance of the issues just discussed. The experimental methods used involve breaking
the genome into many small overlapping pieces, which can be individually
sequenced, and then using the overlaps to assemble these into the complete chromo-
somes. Many of these projects were, and are, funded subject to intermediate data
being made publicly available very soon after it is obtained. As a consequence, a data-
base of the sequence data has to be constructed before the complete chromosomes
have been assembled. As the project progresses, the assembly progresses, resulting in
ever-longer sequences formed by merging the smaller sequences. This results in
some database entries becoming obsolete. Until the assembly has been completed,
features such as genes cannot be identified by reliable sequence base numbers, as the
true start of the chromosome will not be known. Every time sequences are merged
into a larger assembly there is a possibility of the sequence numbers changing. Great
care is needed to use suitable methods to identify features in the database such that
they can be traced over the development of the assembly to its final state.

Summary
In this chapter we have introduced the reader to the concept of a database and
looked at the wide variety of databases publicly available and easily accessible via
the Internet. There are many Web sites that serve locally created, highly specialized
databases, as well as large resource centers that integrate many key databases into
a unified network that facilitates identifying connections in the data, which is one
of the main aspects of bioinformatics analysis.

We have highlighted the importance of accuracy, both in data and in the annota-
tions. Equally important is that the database is kept up to date, as analysis based on
outdated or incorrect data will also be outdated and, quite possibly, incorrect.

Databases are often the starting point of many types of bioinformatics research that
will be described in the following chapters. They are a powerful tool for storing,
sharing, and describing data, as well as for extracting information for further
understanding and analysis. They can be regarded both as data repositories and on-
line libraries.

Finally, to appreciate the range of data available in the public databases and the
numerous ways in which it can be presented, the reader is recommended to go to
the NAR database list and click on the links, exploring all the possibilities, and let
their curiosity lead them on.
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PART 2

SEQUENCE ALIGNMENTS

DNA and proteins are coded for by chemicals that can
be represented by one-letter codes. This makes the
comparison of different DNA or protein sequences
possible and aids in identifying regions of similarity
that may show functional, structural, or evolutionary
relationships between the sequences. Therefore this is
a very important part of bioinformatics analysis and is
also often the first step in the analysis of newly found
DNA or protein sequences.

The first chapter introduces some of the concepts of
sequence alignment programs and illustrates how
these programs work. The rest of this chapter then
concentrates on the practical aspects of alignments
and how these methods can also be used to search
databases or sequence patterns to find homologs and
functionally related proteins. Examples are used to
illustrate the effectiveness of sequence alignments.

The subsequent two chapters focus on the methods
used for pairwise and multiple sequence alignment,
pattern searching, and database searching in detail,
giving the algorithmic steps used in the models. Study
of these two chapters should enable students to start
designing their own algorithms.

Chapter 4
Producing and Analyzing

Sequence Alignments 

Chapter 5
Pairwise Sequence

Alignment and Database
Searching 

Chapter 6
Patterns, Profiles, 

and Multiple Alignments 
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PRODUCING AND ANALYZING
SEQUENCE ALIGNMENTS

When you have read Chapter 4, you should be able to:

Determine homology by sequence alignment.

Describe different uses of protein and DNA sequence alignments.

Define scoring alignments.

Make alignments between two sequences.

Make multiple alignments between many sequences.

Compare local alignment techniques for finding limited areas of similarity.

Explain global alignment techniques for matching whole sequences.

Search databases for homologous sequences.

Look for patterns and motifs in a protein sequence.

Use patterns and motifs to locate proteins of similar function.

The revolution in genetic analysis that began with recombinant DNA technology
and the invention of DNA sequencing techniques in the 1970s has, 30 years later,
filled vast databases with nucleotide and protein sequences from a wide variety of
organisms. Genomes that have now been completely sequenced include human,
mouse, chimpanzee, the fruit fly Drosophila, the nematode Caenorhabditis, and the
yeast Saccharomyces, as well as numerous bacteria, archaea, and viruses. Although
entries for nucleotide and protein sequences in databases such as GenBank, dbEST,
and UniProt KB now number many millions, nothing is known about the structure
or function of the proteins specified by many of them. Converting this sequence
information into useful biological knowledge is now the main challenge.

To find out more about a newly determined sequence, it is subjected to the process
of sequence analysis. There are many aspects to this, depending on the source of
the sequence and what you ultimately want to find out about it. In this chapter, we
will focus on one of the key stages in most sequence analyses: the alignment of
different sequences to detect homology and the comparison of a novel sequence
with those in the databases to see whether there is any similarity between them.
The practical use of techniques and programs for general alignment, database
searching, and pattern searching will be described in this chapter, with the main
focus on the alignment and analysis of protein sequences. The theory underlying
programs for pairwise alignment is described in Chapter 5 and that dealing with
multiple alignments in Chapter 6, for both nucleic acid and protein sequences.
Techniques and programs for detecting genes and other sequence features in
genomic DNA are dealt with in Chapters 9 and 10.

4
APPLICATIONS
CHAPTER
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The identification of similar sequences has a multitude of applications. For raw,
uncharacterized genomic DNA sequences, comparison with sequences in a data-
base can often tell you whether the sequence is likely to contain, or be part of, a
protein-coding gene. The similarity search may retrieve a known gene or family of
genes with a strong similarity to the new sequence. This will provide the first clues
to the type of protein the new gene encodes and its possible function. Similarities
in sequence can also help in making predictions about a protein’s structure (see
Chapters 11–14). Sequences of proteins or DNAs from different organisms can also
be compared in order to construct phylogenetic trees, which trace the evolutionary
relationships between species or within a family of proteins (see Chapters 7 and 8).

As well as many general and specialized databases of DNA and protein sequences,
the fully sequenced genomes of various organisms are now available (see Chapter
3), providing vast amounts of information for comparison. It is, however, important
to remember that although many newly discovered sequences will share some or
considerable similarity to sequences in the databases, there will still be many that
are unique.

4.1 Principles of Sequence Alignment
Devising ways of comparing sequences has never been straightforward, not just
because of the vast amounts of information now available for searching. The diffi-
culties arise because of the many ways DNA and protein sequences can change
during evolution. Mutation and selection over millions of years can result in consid-
erable divergence between present-day sequences derived from the same ancestral
gene. Bases at originally corresponding positions, and the amino acids they encode,
can change as a result of point mutation, and the sequence lengths can be quite
different as a result of insertions and deletions. Even more dramatic changes may
have occurred; for example, the fusion of sequences from two different genes. Gene
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A mind map of the four major
sections relating to sequence
analysis and alignment: aligning
sequences, searching through
databases, measuring how well
sequences match, and looking for
families of proteins.
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duplications are common in eukaryotic genomes, and in many cases mutation has
disabled one copy of a gene so that it is either no longer expressed or, if transcribed,
does not produce a functional protein. Such genes are called pseudogenes (see Box
4.1) and can be found in homology searches. 

On superficial inspection, such changes in gene sequence and length can effectively
mask any underlying sequence similarity. To reveal it, the sequences have to be
aligned with each other to maximize their similarities. This crucial step in sequence
comparison is the main topic of the first half of this chapter (Sections 4.1 to 4.5).
Alignment methods are at the core of many of the software tools used to search the
databases, and in the second half of the chapter we will describe some of these tools
and how they can be used to retrieve similar sequences from the databases
(Sections 4.6 to 4.10). The first steps to consider are shown in Flow Diagram 4.1.

Alignment is the task of locating equivalent regions of two or
more sequences to maximize their similarity
As the result of mutation, even the sequences of the same protein or gene from two
closely related species are rarely identical. Ideally, what we want to achieve when
comparing sequences is to line them up in such a way that, when they do derive
from a common ancestor, bases or amino acids derived from the same ancestral
base are aligned. Without information to the contrary, this is best achieved by maxi-
mizing the similarity of aligned regions.

To illustrate the general principle, take the two hypothetical amino acid sequences
THISSEQUENCE and THATSEQUENCE. If we align them so that as many identical
letters as possible pair up we get

T H I S S E Q U E N C E

T H A T S E Q U E N C E

where the letters in red type are identical. As we can easily see with such short and
similar sequences, this alignment clearly identifies their strong similarity to each
other.

So far so good, but when sequences become more different from each other, they
become more difficult to compare. How would we go about comparing the two
sequences THATSEQUENCE and THISISASEQUENCE, in which a mutation has led
to the insertion of the three amino acids I, S, A into one of the original sequences?
Simply lining them up from the beginning loses much of the similarity we can see
exists. More subtly, because of the difference in length, it also creates false matches
between noncorresponding positions.
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Pseudogenes are sequences in genomic DNA that have
a similar sequence to known protein-coding genes but
do not produce a functional protein. They are assumed
to arise after gene duplication, when one of the gene
copies undergoes mutation that either prevents its tran-
scription or disrupts its protein-coding sequence. The
human genome is estimated to contain up to 20,000
pseudogenes. As the pseudogene sequence is no longer

under selection to retain protein function, it will gener-
ally accumulate further mutations at a higher rate than
the functional gene. Despite this, many pseudogenes
retain considerable sequence similarity to their active
counterparts. One case has even been found in which
the RNA from a transcribed pseudogene regulates the
expression of the corresponding functional gene.

Box 4.1 Genes and pseudogenes

Flow Diagram 4.1
The key concept introduced in
these first four sections is that in
order to assess the similarity of two
sequences it is necessary to have a
quantitative measure of their
alignment, which includes the
degree of similarity of two aligned
residues as well as accounting for
insertions and deletions.

PRODUCING AND ANALYZING
SEQUENCE ALIGNMENTS

looking for 
similarity 

assessing 
similarity 

scoring 
measures 

gaps in 
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T H A T S E Q U E N C E

T H I S I S A S E Q U E N C E

To get round this problem, gaps are introduced into one or both of the sequences
so that maximum similarity is preserved.

T H I S I S A - S E Q U E N C E

T H - - - - A T S E Q U E N C E

There is never just one possible alignment between any two sequences, and the best
one is not always obvious, especially when the sequences are not very similar to each
other. At the heart of sequence-comparison and database-searching methods are
algorithms for testing the fit of each alignment generated, giving it a quantitative
score, and filtering out the unsatisfactory ones according to preset criteria.

Alignment can reveal homology between sequences
In all methods of sequence comparison, the fundamental question is whether the
similarities perceived between two sequences are due to chance, and are thus of
little biological significance, or whether they are due to the derivation of the
sequences from a common ancestral sequence, and are thus homologous. The
terms “homology” and “similarity” are sometimes used interchangeably, but each
has a distinct meaning. Similarity is simply a descriptive term telling you that the
sequences in question show some degree of match. Homology, in contrast, has
distinct evolutionary and biological implications. In the molecular biological
context, it is generally defined as referring specifically to similarity in sequence or
structure due to descent from a common ancestor. Homologous genes are therefore
genes derived from the same ancestral gene. During their evolutionary history they
will have diverged in sequence as a result of accumulating different mutations.

Because homology implies a common ancestor, it can also imply a common func-
tion or structure for two homologous proteins, which can be a useful pointer to
function if one of the proteins is known only from its sequence. The operation of
natural selection tends to result in the acceptance of mutations that preserve the
folding and function of a protein, whereas those that destroy folding or function
will be eliminated. However, similar or identical aligned residues may simply be
due to relatively recent divergence of the two sequences, and so care must be taken
not to overestimate their functional importance. Moreover, mutation and selection
can generate proteins with new functions but relatively little change in sequence.
Therefore, sequence similarity does not always imply a common function.

Conversely, there are proteins with very little sequence similarity to each other but
in which a common protein fold and function are preserved. Consequently, low
sequence similarity does not necessarily rule out common function or homology.
Such cases require extra information, such as structural or biochemical knowledge,
to demonstrate their true relationship.

Sequences can also be significantly similar to each other, and yet not be evolution-
arily homologous, as a result of convergent evolution for similar function (see Box
4.2). In this case, identical or very similar aligned residues can be argued to have an
important functional role. Convergent evolution does not, however, usually
produce highly similar sequences of any great length. 

All these considerations have to be taken into account when analyzing the results
of a database search. An alignment of two sequences is, in effect, a hypothesis
about which pairs of residues have evolved from the same ancestral residue. But an
alignment in itself does not imply an evolutionary order of events, so that the two
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alternatives of homology and convergent evolution cannot usually be distinguished
without additional information.

Sequence comparison methods have to take account of such factors as the types of
mutation that occur over evolutionary time, differences in the physicochemical
properties of amino acids and their role in determining protein structure and func-
tion, and the selective pressures that result in some mutations being accepted and
others being eliminated. One has to consider the evolutionary processes that are
responsible for sequence divergence and find a way to include the salient features
in practicable schemes for testing the goodness of fit of the alignment. These must
be quantitative and hence involve a score. Such scoring schemes can then be incor-
porated in algorithms designed to generate the best possible alignments. Finally,
ways must be found to discriminate between fortuitously good alignments and
those due to a real evolutionary relationship.

As we shall see in this chapter, all computational methods of sequence comparison
take account of these factors in some way.

It is easier to detect homology when comparing protein
sequences than when comparing nucleic acid sequences
For most purposes, comparisons of protein sequences show up homology more
easily than comparisons of the corresponding DNA sequences. There are many
reasons for this greater sensitivity. First, there are only four letters in the DNA
alphabet compared to the 20 letters in the protein alphabet, and so a DNA sequence,
of necessity, provides less information at each sequence position than does a
protein sequence. In other words, there is a much greater probability that a match
at any one position between two DNA sequences will have occurred by chance.
Therefore, the degree of similarity, as judged by some appropriate quantitative
score, needs to be greater between DNA sequences than between protein sequences
for the alignment to be of importance. As we shall see later in this chapter, ways have
been devised of determining the likelihood that one amino acid can be substituted
for another during evolution, and this provides additional information beyond
simple identity for scoring an alignment and determining homology.

Second, as we saw in Chapter 1, the genetic code is redundant; that is, there are two
or more different codons for most amino acids (see Table 1.1). This means that
identical amino acid sequences can be encoded by different nucleotide sequences.
Finally, the complex three-dimensional structure of a protein, and hence its func-
tion, is determined by the amino acid sequence. The importance of maintaining
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Convergent evolution is the evolutionary process in
which organs, proteins, or DNA sequences that are unre-
lated in their evolutionary origin independently acquire
the same structure or function. This usually reflects a
response to similar environmental and selective pres-
sures. Convergent evolution is contrasted with the
process of divergent evolution, which produces different
structures or sequences from a common ancestor. An
example of convergent evolution for function can be seen
in the wings of insects and bats. Although adapted to the
same function—that of flight—insect wings and bat
wings do not derive from the same ancestral structure. 

Box 4.2 Convergent and divergent evolution

Figure B4.1
(A) Bat wings and (B) butterfly wings. (A, courtesy of Ron
Austing/Science Photo Library.)

(A) (B)
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protein function usually leads to amino acid sequences changing less over evolu-
tionary time than homologous DNA sequences. In this chapter we will concentrate
for the most part on protein sequence analysis.

There are many circumstances, however, in which it is necessary to compare DNA
sequences: when searching for promoters and other regulatory sequences, for
example, or in whole-genome comparisons. DNA alignment is also performed, to
some extent, as part of gene identification (see Chapters 9 and 10).

4.2 Scoring Alignments

The quality of an alignment is measured by giving it a
quantitative score
Two homologous sequences are often so different that a correct or best alignment
is not obvious by visual inspection. Furthermore, the large numbers of sequences
that can be examined for similarity nowadays oblige us to use automated compu-
tational methods to judge the quality of an alignment, at least as an initial filter.

Because it is possible for two sequences to be aligned in a variety of different ways,
including the insertion of gaps to improve the number of matched positions, how
does one objectively determine which is the best possible alignment for any given
pair of sequences? In practice, this is done by calculating a numerical value or score
for the overall similarity of each possible alignment so that the alignments can be
ranked in some order.

We can then work on the basis that alignments of related sequences will give good
scores compared with alignments of randomly chosen sequences, and that the
correct alignment of two related sequences will ideally be the one that gives the best
score. The alignment giving the best score is referred to as the optimal alignment,
while others with only slightly worse scores are often called suboptimal alignments.
No one has yet devised a scoring scheme that perfectly models the evolutionary
process, which is so complex that it defies any practical method of modeling. The
implication of this is that the best-scoring alignment will not necessarily be the
correct one, and conversely, that the correct alignment will not necessarily have the
best score. However, the scoring schemes now in common use, and which are
described in this chapter, are generally reliable and useful in most circumstances, as
long as the results are treated with due caution and regard for biological plausibility.
In principle, a scoring scheme can either measure similarity or difference, the best
score being a maximum in the former case and a minimum in the latter.

The simplest way of quantifying similarity between two
sequences is percentage identity
Identity describes the degree to which two or more sequences are actually identical
at each position, and is simply measured by counting the number of identical bases
or amino acids matched between the aligned sequences. Identity is an objective
measure and can be precisely defined. Percentage or percent identity is obtained
by dividing the number of identical matches by the total length of the aligned
region and multiplying by 100. For the THATSEQUENCE/THISISASEQUENCE
comparison, for example, the alignment given on page 74 is the best that can be
achieved, and has a percentage identity score of 68.75% (11 matches over a total
length of 16 positions, including the gaps).

One might think that an alignment of completely unrelated sequences would have
a percentage identity of zero. However, as there are only four different nucleotides
in nucleic acid sequences, and only 20 different amino acids in protein sequences,
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there is always a small but finite probability for any aligned sequences that identical
residues will be matched at some positions. Because there are often hundreds of
residues in a protein sequence and thousands in a nucleotide sequence, unrelated
sequences are expected to align matches at several positions. The length of the
sequence matters: a 30% identity over a long alignment is less likely to have arisen
by chance than a 30% identity over a very short alignment. Statistically rigorous
methods have been devised to measure the significance of an alignment, which will
be discussed later in connection with database searches and in Section 5.4.

The dot-plot gives a visual assessment of similarity based 
on identity
A dot matrix or dot-plot is one of the simplest ways to compare sequence similarity
graphically, and can be used for both nucleotide and protein sequences. To compare
two sequences X and Y, one sequence is written out vertically, with each residue in
the sequence represented by a row, while the other is written horizontally, with each
residue represented by a column. Each residue of X is compared to each residue of
Y (row to column comparison) and a dot is placed where the residues are identical.
In the simplest scoring system, identical residues are scored as 1 and nonidentical
residues as 0, and dots are placed at all positions that contain a 1. For example, if we
take the pair THISSEQUENCE/THISISASEQUENCE pair, then a simple dot-plot will
look like that illustrated in Figure 4.1. The dots in red, which form diagonal lines,
represent runs of matched residues. The pink dots scattered either side of the diag-
onals are the same residues found elsewhere in the sequence. The diagonals are
interrupted by a few cells, where a gap has been inserted.

Dot-plots can be useful for identifying intrasequence repeats in either proteins or
nucleic acids. However, dot-plots suffer from background noise. To distinguish
dot-patterns arising from background noise from significant dot-patterns it is
usually necessary to apply a filter. The most widely used filtering procedure uses
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Figure 4.1
Dot-plot representations. A dot-plot
matrix of the THISSEQUENCE/
THISISASEQUENCE example where
red dots represent identities that are
due to true matching of identical
residue-pairs and pink dots
represent identities that are due to
noise; that is, matching of random
identical residue-pairs.
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Two views of dot-plot representations of an SH2 sequence
compared with itself. (A) Unfiltered dot-plot (window length = 1
residue). The identity between the two sequences is shown by the
unbroken identity diagonal. Nevertheless, there is still

background noise. (B) Dot-plot of the same sequence comparison
with a window of 10 residues and a minimum identity score
within each window set to 3. The background noise has all been
removed, leaving only the identity diagonal.

Figure 4.2
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overlapping fixed-length windows and requires that the comparison achieve some
minimum identity score summed over that window before being considered; that
is, only diagonals of a certain length will survive the filter. Figure 4.2 shows a dot-
plot between two identical SH2 sequences (see Box 4.3). 

Figure 4.2A has a window length of 1; in other words, every residue is considered
individually. Although the diagonal line indicating matched identical residues is
clear and unbroken, as one would expect from a comparison of two identical
sequences, there is still a certain amount of background noise detracting from the
result, as most types of amino acid occur more than once in the sequence. Figure
4.2B shows the same comparison with a window of 10 residues and a minimum
score for each window set to 3. Only the main diagonal is now seen, representing
the one-to-one matching of the identical sequences.

Most dot-plot software provides a default window length and this is sufficient for an
initial analysis. But one can use the window length to greater effect by varying it
depending on what one is searching for. Window length can be set, for example, to
the length of an exon when comparing coding sequences, or to the size of an
average secondary structure within a protein when looking for structural motifs.
When searching for internal repeats, the length of the repeat can be used to cut out
background noise. In addition, rather than using 0 and 1 as the scores for noniden-
tical and identical residues, other values can be used and the score can be varied
depending on the type of residues involved.

Figure 4.3 illustrates how a dot-plot can be used to identify repeats within a
sequence. It shows two dot-plot calculations on the protein BRCA2 encoded by the
breast cancer susceptibility gene BRCA2. This protein contains eight repeats of a
short sequence of around 39 amino acids, called the BRC repeat (see Box 4.4).
Figure 4.3A shows an unfiltered version of a self-comparison dot-plot of a region of
BRCA2 containing two BRC repeats. The background noise is so strong that it is very
difficult to pick out the repeats. Figure 4.3B shows a highly filtered dot-plot of the
same comparison in which a diagonal line is now visible. This is the identity diag-
onal, where the one-to-one alignment of the sequence with itself is highlighted. But
two other runs of dots are now also visible; these represent the internal BRC repeats. 
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The SH2 or Src-homology 2 domain is a
small domain of about 100 residues found
in many proteins involved in intracellular
signaling in mammalian cells. It gets its
name from the protein tyrosine kinase Src,
where it was first found. It is one of
numerous protein-interaction domains
found in signaling proteins, which recog-
nize and bind to particular features on
other proteins to help pass the signal
onward. SH2 domains bind specifically to
phosphotyrosines on proteins; these are
formed by the phosphorylation—the
modification by covalent addition of a
phosphate group—of tyrosine residues in
specific peptide motifs by protein tyrosine

kinases. This type of kinase is often part of,
or associated with, cell-surface receptors,
and is activated in response to an extracel-
lular signal. The phosphotyrosine-binding
site on SH2 domains consists of two
pockets. One is conserved and binds the
phosphotyrosine residue (pY); the other is
more variable in sequence between
different SH2 domains and binds residues
located downstream from the pY, thereby
conferring specificity on the protein–
protein interaction. Because of its role in
intracellular signaling, the SH2 domain is
an important potential drug target for a
number of diseases, including cancer and
osteoporosis.

Box 4.3 The SH2 protein-interaction domain

Figure B4.2
A ribbon representation
of an SH2 domain.
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Genuine matches do not have to be identical
Although it is the simplest alignment score to obtain, and can be very useful as a
quick test of the quality of an alignment, percentage identity is a relatively crude
measure and does not give a complete picture of the degree of similarity of two
sequences to each other, especially in regard to protein sequences. For example,
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Two dot-plots involving the breast cancer susceptibility gene
protein BRCA2, which contains the small BRCA2 repeat
domain. (A) An unfiltered self-comparison dot-plot of part of the
human BRCA2 sequence containing two BRCA2 repeats (the first
and second BRCA repeat in the sequence). The background

noise is so strong that it is very difficult to pick out the repeats.
(B) The same dot-plot with a window length of 30 and a
minimum score of 5. In addition to the identity diagonal there
are two other clear diagonal runs of dots that represent the two
internal BRCA2 repeats.

Two genes that confer increased susceptibility to breast
cancer have been identified: the BRCA1 gene on chro-
mosome 17 in 1994 and the BRCA2 gene on chromo-
some 13 in 1995. Women with a mutation in either
BRCA1 or BRCA2 are at increased risk of developing
breast, ovarian, and some other cancers by a given age
than those without a mutation. The normal role of the
BRCA1 and BRCA2 proteins, which are not structurally
related, is to associate with the protein RAD51, a
protein essential for the repair of double-strand breaks
in DNA. Mutations in BRCA1 or BRCA2 can thus partly

disable this repair mechanism, leading to more errors
in DNA repair than usual, an increased mutation rate,
and, ultimately, a greater risk of tumorigenesis. The
BRCA2 protein has a number of repeats of 39 amino
acids, the BRC repeats. Eight BRC repeats in BRCA2 are
defined in the Pfam database, of which six are highly
conserved and are involved in binding RAD51. 

Box 4.4 The breast cancer susceptibility genes BRCA1 and BRCA2

BRC1 BRC2 BRC3 BRC4 BRC5 BRC6 BRC7 BRC8 

Some typical BRC repeats

xFxTASxKxIxVSxxxxxKxKxFFxD
xFxxAxGxxxxVSxxxLxKxKxLFkD

Figure B4.3
BRC repeats of the BRCA2 protein as defined by the Pfam
database.
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simply scoring identical matches as 1 and mismatches as 0 ignores the fact that the
type of amino acid involved is highly significant. In particular, certain nonidentical
amino acids are very likely to be present in the same functional position in two
related sequences, and thus are likely to represent genuine matches. This is chiefly
because certain amino acids resemble each other closely in their physical and/or
chemical properties (see Figure 2.3) and can thus substitute functionally for each
other. Mutational changes that replace one amino acid with another having similar
physicochemical properties are therefore more likely to have been accepted during
evolution. So pairs of amino acids with similar properties will often represent
genuine matches rather than matches occurring randomly.

The simplest way of taking this into account is simply to count such similar pairs of
amino acids as matches, and to refer to the score as percent similarity. In the now
familiar example sequences below, red is used to indicate residues that are similar
but not identical. Here the sequences have been realigned to take into account
similarity as well as identity. Isoleucine (I) and alanine (A) are similar as they are
both hydrophobic, whereas serine (S) and threonine (T) both have an -OH group in
their side chain and are polar.

T H I S I S A S E Q U E N C E

T H A T - - - S E Q U E N C E

Not all similar amino acid pairs are equally likely to occur, however, and more
sophisticated measures of assessing similarity are more commonly used. In these,
each aligned pair of amino acids is given a numerical score based on the probability
of the relevant change occurring during evolution. In such scoring schemes, pairs
of identical amino acids are assigned the highest score; then, pairs of amino acids
with similar properties (such as isoleucine and leucine) score more highly than
those with quite different properties (such as isoleucine and lysine), which are
rarely found in corresponding positions in known homologous protein sequences.

Other properties of amino acids can be added into scoring schemes for greater
accuracy. For example, the type of residue involved should be taken into account.
Many cysteine residues are highly conserved because of their important structural
role in forming disulfide bonds, and tryptophan residues are usually key compo-
nents of the hydrophobic cores of proteins. To mimic this, the scores for matching
residues can be varied according to the type, with pairs of cysteines and trypto-
phans, for example, being assigned particularly high values. When aligned amino
acid pairs are given varying scores in this way, summing the values at all positions
gives the overall alignment score.

Most currently used alignment-scoring schemes for protein sequences measure the
relative likelihood of an evolutionary relationship compared to chance. The theory
behind such assessments is explained further in Section 5.1. With such schemes,
the higher the alignment score, the more likely it is that the aligned sequences are
homologous.

Ideally, it would be possible to decide unequivocally whether two sequences are
homologous by simply looking at their best alignment score. This turns out to be
more difficult than might be imagined, as the significance of the score will depend
on the length of the sequences, their amino acid composition, and the number of
sequences being compared—for example when searching a large database. We shall
return to this topic later in the chapter.

The concept of similarity, rather than identity, has little relevance to comparisons of
nucleotide sequences, especially in generating alignments. Purines tend to mutate
to purines (A ´ G) and pyrimidines to pyrimidines (C ´ T). This information can
be used to help construct phylogenetic trees (see Sections 7.2 and 8.1), but is not
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helpful for sequence alignment. In the case of an alignment of nucleotide
sequences, the scoring scheme is almost always very simple. For example, in the
database-searching program FASTA, which is discussed later and in Section 5.3, a
score of +5 for matching bases and –4 for mismatches has been found to be effective
for DNA database searches. This simpler scoring scheme is sufficiently sensitive to
be useful in part because of the much higher percentage identity expected if there is
significant homology between the sequences, since there are only four types of
bases as compared to 20 amino acids.

There is a minimum percentage identity that can be accepted
as significant
What is the minimum percentage identity that can reasonably be accepted as signif-
icant? Burkhard Rost analyzed more than a million alignments of pairs of protein
sequences for which structural information was available to find a cut-off for the
level of sequence identity below which alignment becomes unreliable as a measure
of homology. He found that 90% of sequence pairs with identity at or greater than
30% over their whole length were pairs of structurally similar proteins. Given both
sequence and structural similarity, one can usually be confident that two sequences
are homologous, so 30% sequence identity is generally taken as the threshold for an
initial presumption of homology. Below about 25% sequence identity, however, Rost
found that only 10% of the aligned pairs represented structural similarity. The region
between 30% and 20% sequence identity has been called the twilight zone, where
homology may exist but cannot be reliably assumed in the absence of other
evidence. Even lower sequence identity (<20%) is referred to as the midnight zone.

There are many different ways of scoring an alignment
The function of an alignment score is to provide a single numerical value for the
degree of similarity or difference between two sequences. Most current applica-
tions measure similarity, and in this case the highest scores are best. A few applica-
tions, particularly those used for generating phylogenetic trees (see Chapters 7 and
8), use a score related to sequence difference, usually known as a distance, in which
case the most closely related sequences give alignments with the lowest scores. The
measure of difference between two homologous sequences from different species
is sometimes called the genetic or evolutionary distance.

There is no a priori reason why residue pair alignment scores cannot be negative,
for example to represent especially unlikely alignments. In fact, some of the
popular techniques require scores that can be negative, and most commonly used
schemes have both positive and negative scores for pairs of residues.

Scoring schemes have to represent two salient features of an alignment. On the one
hand, they must reflect the degree of similarity of each pair of residues; that is, the
likelihood that both are derived from the same residue in the presumed common
ancestral sequence. On the other hand, they must assess the validity of inserted
gaps. Ways of quantifying these two features will be described separately here,
although in fact they are used together to arrive at the final score. We will first go
through the ways of assessing the degree of similarity for pairs of aligned residues.

4.3 Substitution Matrices

Substitution matrices are used to assign individual scores to
aligned sequence positions
For alignments of protein sequences, the score is assigned to each aligned pair of
amino acids is generally determined by reference to a substitution matrix, which
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defines values for all possible pairs of residues. Various types of substitution
matrices have been used over the years. Some were based on theoretical consider-
ations, such as the number of mutations that are needed to convert one amino acid
into another, or similarities in physicochemical properties. The most successful,
however, use actual evidence of what has happened during evolution, and are
based on analysis of alignments of numerous homologs of well-studied proteins
from many different species.

The choice of which substitution matrix to use is not trivial because there is no one
correct scoring scheme for all circumstances. There is a wide range of variation in
the similarity of sequences, from almost complete identity to a few percent. On one
occasion we may need to align and score closely related sequences, whereas on
another we may want to identify very distant relationships reliably. In the first case,
the scoring scheme should be strongly biased toward giving high values to perfect
matches and highly conserved substitutions. In the second case, a wider range of
substitutions should be treated favorably.

Most scoring schemes for amino acid sequences use as reference a 20 ¥ 20 substi-
tution matrix, representing the 20 amino acids found in proteins. Each cell of the
matrix is occupied by a score representing the likelihood that that particular pair of
amino acids will occupy the same position through true homology, compared to the
likelihood of their occurring as a random match. The most important scoring
matrices will be described below, with general guidance as to which one to use
when. A more comprehensive description of the theory underlying the scoring
schemes discussed here is given in Section 5.1.

When an alignment is made, each aligned amino acid pair is given a score from the
substitution matrix. These scores are then summed to give the overall score (S) of
the alignment. For example, using the BLOSUM-62 matrix (see Figure 4.4A) we
would score our example alignment as follows (in this case “U” represents an
unknown residue; that is, a residue that could not be identified by sequencing tech-
niques and is thus not given a score). 

Seq1: T H I S S E Q U E N C E

Seq2: T H A T S E Q U E N C E

Score: 5 8 –1 1 4 5 5 0 5 6 9 5

Therefore the overall score S for this alignment equals 52. The BLOSUM matrices
are described in more detail below.

The PAM substitution matrices use substitution frequencies
derived from sets of closely related protein sequences
A commonly used set of substitution matrices is based on the observed amino acid
substitution frequencies in alignments of homologous protein sequences. These
matrices were first developed by Margaret Dayhoff and her co-workers in the 1960s
and 1970s, and have been found to be superior to substitution schemes that use
only the physicochemical similarities of amino acids, as they use real data to model
the evolutionary process. The sequences used to generate these matrices were all
very similar, allowing the alignment to be made with confidence. In addition, the
high similarity meant that there was a high probability that amino acid differences
at an alignment position were due to just a single mutation event, over a short
period of time, since it is unlikely that more than one mutation would occur at the
same site. A phylogenetic tree (see Section 7.1) was constructed for the protein
sequences, from which the individual mutations that had occurred could be
deduced. From this tree, the researchers calculated the ratio of the number of
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changes undergone by each type of amino acid to the total number of occurrences
of that amino acid in the sequence set.

From these ratios it was possible to calculate the probabilities that any one amino
acid would mutate into any other over a given period of evolutionary time. The final
matrix of substitution scores is a logarithmic matrix of the mutation probabilities.
Probabilities are converted to logarithms so that the final alignment score can be
calculated by summation of the individual scores from aligned pairs of amino acids,
rather than by multiplication of probabilities.

Substitution Matrices
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Figure 4.4
Amino acid substitution scoring
matrices. (A) The BLOSUM-62
matrix and (B) the PAM120
substitution matrix. Each cell
represents the score given to a
residue paired with another residue
(row ¥ column). The values are given
in half-bits, as discussed in Section
5.1. The colored shading indicates
different physicochemical
properties of the residues (see
Figure 2.3): small and polar, yellow;
small and nonpolar, white; polar or
acidic, red; basic, blue; large and
hydrophobic, green; aromatic,
orange.
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There is more than one such matrix and each matrix corresponds to a particular
quantity of accepted mutations — mutations that have been retained in the
sequence. This quantity is measured in PAM units, where PAM stands for Point
Accepted Mutations (accepted point mutations per 100 residues), and these
matrices are generally called PAM matrices. One of the more frequently used
substitution matrices corresponds to 250 PAM, which means that 250 mutations
have been fixed on average per 100 residues; that is, many residues have been
subject to more than one mutation. The matrix itself is called PAM250. This amount
of change is near the limit of detection of distant relationships. Other matrices,
such as PAM120, correspond to a smaller amount of mutation (see Figure 4.4B)

The currently used PAM matrices, also known as Dayhoff mutation data matrices
(MDMs), were originally created in 1978. More recent matrices have also been
constructed using newer and larger data sets. The PET91 matrix, for example, repre-
sents a new generation of Dayhoff-type matrices. 

The BLOSUM substitution matrices use mutation data from
highly conserved local regions of sequence
The BLOSUM matrix is another very commonly used amino acid substitution
matrix that depends on data from actual substitutions. It was derived much more
recently than the Dayhoff matrices, in the early 1990s, using local multiple align-
ments rather than global alignments. First, a large set of aligned highly conserved
short regions was generated from analysis of the protein-sequence database SWISS-
PROT. The sequences were then clustered into groups according to similarity, so that
sequences were grouped together if they exceeded a specified threshold for
percentage identity. Substitution frequencies for all possible pairs of amino acids
were then calculated between the clustered groups (without the construction of
phylogenetic trees) and used to compute BLOSUM (BLOck SUbstitution Matrix)
scores. Various BLOSUM matrices are obtained by varying the percentage cut-off for
clustering into similarity groups. For example, the commonly used BLOSUM-62
matrix was derived using a threshold of 62% identity (see Figure 4.4).

The choice of substitution matrix depends on the problem to
be solved
With many scoring matrices available, it is hard to know which one to use. Within a
group of matrices such as the PAM or BLOSUM series, different ones, for example
PAM250 versus PAM120 or BLOSUM-50 versus BLOSUM-80, are more suitable for
different types of problem. The PAM matrix number indicates evolutionary
distance whereas the BLOSUM matrix number refers to percentage identity. When
aligning sequences that are anticipated to be very distantly related, matrices such
as PAM250 and BLOSUM-50 may therefore be preferable. PAM120 and BLOSUM-80
may perform better for more closely related sequences.

Some matrices have been derived using additional information; the STR matrix, for
example, includes information from known protein structures. Because protein
structure is more conserved than sequence, more distantly related proteins can be
compared using such methods, even when sequence alignment alone would not
pick up any significant relationship.

Some scoring matrices have been designed to work well in special situations. For
example, the matrices SLIM (ScoreMatrix Leading to Intra-Membrane) and PHAT
(Predicted Hydrophobic And Transmembrane matrix) are especially designed for
membrane proteins, where the characteristic amino acid composition and the
selective forces for acceptable mutations are different from those for soluble
proteins. In 2006, there were 94 matrices collected in a database list called
AAINDEX and searchable at GenomeNet. 
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As well as the degree of evolutionary distance, the length of the sequences to be
aligned must be taken into account when choosing a suitable matrix. This is espe-
cially relevant when searching databases against a query sequence, as the length of
the sequence is taken into account when assessing the significance of the score: the
shorter the sequence, the higher the score needs to be in order to be judged signif-
icant. Short sequences need to use matrices designed for short evolutionary time
scales, such as PAM40 or BLOSUM-80. Longer sequences of 100 residues or more
can use matrices intended for use with longer evolutionary time scales (such as
PAM250 and BLOSUM-50). The reasons why the significance of a score depends on
the length of the sequences to be aligned are discussed in more detail in Section 5.4.

4.4 Inserting Gaps

Gaps inserted in a sequence to maximize similarity with
another require a scoring penalty
Homologous sequences are often of different lengths as the result of insertions and
deletions (indels) that have occurred in the sequences as they diverged from the
ancestral sequence. Their alignment is generally dealt with by inserting gaps in the
sequences to achieve as correct a match as possible. To signify that an insertion or
deletion has occurred, a letter or stretch of letters in one sequence is paired up with
blank spaces (usually indicated by hyphens) inserted into the other sequence to
achieve a better match.

Gaps must be introduced judiciously: forcing two sequences to match up simply by
inserting large numbers of gaps will not reflect reality and will produce a meaning-
less alignment. To place limits on the introduction of gaps, alignment programs use
a gap penalty: each time a gap is introduced, the penalty is subtracted from the
score, decreasing the overall score of the alignment. Structural analysis has shown
that fewer insertions and deletions occur in sequences of structural importance,
and that insertions tend to be several residues long rather than just a single residue
long. This information can be included in the scoring scheme by placing a smaller
penalty on lengthening an existing gap (gap extension penalty) than on intro-
ducing a new gap, thus penalizing single-residue gaps relatively more. The best
alignment is thus the one that returns the maximum score for the smallest number
of introduced gaps.

Gap penalties can usually be varied in an alignment program, so the user has to
decide what gap penalty to use. It should be kept in mind that the insertion of a gap
must improve the quality of the alignment and therefore the maximum-match
value. If a gap penalty is set high, then fewer gaps will be inserted into the align-
ment, as their inclusion will radically decrease the maximum-match value. If a low
gap penalty is chosen, then more and larger gaps will be inserted. Therefore, if you
are searching for sequences that are a strict match for your query sequence, the gap
penalty should be set high. This will often retrieve a region, or regions, of very
closely related sequence. If you are searching for similarity between distantly
related sequences, the gap penalty should be set low. Note that suitable gap-penalty
values may be different with different substitution matrices. It is advisable to start,
when possible, with a combination of matrix and gap penalties that have been
reported to give optimal performance.

In some alignment programs, a gap score depends on the type of residue with
which the gap is aligned. Some types of residues are more likely to be conserved
than others because their side chains tend to be more important in determining
structure or function. An example is tryptophan, and so a gap aligned with a tryp-
tophan will exact a larger gap penalty than a gap aligned with a glycine, for example.

Inserting Gaps
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It is best to start with the default values given by the program you are using and then
raise or lower the penalty to obtain a desired alignment. However, the number of
gaps should always be kept to the minimum possible. Figure 4.5 shows two pairwise
alignments of a phosphatidylinositol-3-OH kinase sequence (from bovine PI3-
kinase p110a) and a protein kinase sequence from a cyclic AMP (cAMP)-dependent
protein kinase (see Box 4.5), which have only limited similarity to each other. 

In the first alignment (see Figure 4.5A) the gap penalty was set very high; therefore
the program inserts as few gaps as possible. Any inserted gaps are found at the ends
of the sequence, as often, unless there is an obvious relationship between the
terminal amino acids, end gaps are not penalized. In the second alignment (see
Figure 4.5B) the gap penalty was set very low; the effect is that many more gaps are
inserted and the number of matched amino acids is increased (identities are shown
in green). Although there are more matched residues in the alignment with low gap
penalties, this does not necessarily mean that it is more accurate. In sequences that
share such low homology as these, expert knowledge, such as the location of active-
site residues, has to be used to decide if the alignment is accurate.

Dynamic programming algorithms can determine the optimal
introduction of gaps
In practice, it is nearly always necessary to insert gaps into sequences when
aligning them. The most obvious way of finding the best alignment with gaps would
be to generate all possible gapped alignments, find the score for each, and select
the highest-scoring alignment. This would be enormously time consuming,
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Bovine PI-3Kinase p110a       LNWENPDIMSELLFQNNEIIFKNGDDLRQDMLTLQIIRIMENIWQNQGLDLRMLPYGCLSIGDCVGLIEVVRNSHTIMQIQCKGGLKGAL

cAMP-dependent protein kinase --WENPAQNTAHLDQFERIKTLGTGSFGRVMLVKHMETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLY

Bovine PI-3Kinase p110a       QFNSHTLHQWLKDKNKGEIYDAAIDLFTRSCAGYCVATFILGIGDRHNSNIMVKDDGQLFHIDFGHFLDHKKKKFGYKRERVPFVLTQDF

cAMP-dependent protein kinase MVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWXLCGTPEYLAP

Bovine PI-3Kinase p110a       LIVISKGAQECTKTREFERFQEMCYKAYLAIRQHANLFINLFSMMLGSGMPELQSFDDIAYIRKTLALDKTEQEALEYFMKQMNDAHHGG

cAMP-dependent protein kinase EIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF

Bovine PI-3Kinase p110a       WTTKMDWIFHTIKQHALN-----------------------------------

cAMP-dependent protein kinase ATTDWIAIYQRKVEAPFIPKFKGPGDTSNFDDYEEEEIRVXINEKCGKEFSEF

 

Bovine PI-3Kinase p110a       LNWENPDIMSELLFQNNEIIFKNGDDLRQDMLTLQIIRIMENIWQNQGLDLRMLPYGCLSIGDCVGLIEVVRNSHTIMQIQCKGGLKGAL

cAMP-dependent protein kinase ?-WENPAQNTAHLDQFERIKTLGTGSFGRVMLVKHM--ETGNHYAMKILDKQKV-VKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDN-

Bovine PI-3Kinase p110a       QFNSHTLHQWLKDKNKGEIYDAAIDLFTRSCAGYCVATFILGIGDRHNSNIMVKD-DGQLFHIDFGHFLDHKKKKFGYKRERVPFVL--T

cAMP-dependent protein kinase -SNLYMVMEYVPGGEMFSHLRR-IGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWXLCGT

 

Bovine PI-3Kinase p110a       QDFL---IVISKGAQECTKTREFERF-QEMC--YKAYLAIRQHANLFINLFSMMLGSGMPELQSFDDIAYIRKTLALDKTEQEALEYFMK

cAMP-dependent protein kinase PEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFA-DQPIQIYEKIVSGKVRF--PSHFSSDLKDLLRNLLQVDLTKR--FGNLKN

 

Bovine PI-3Kinase p110a       QMNDAHHGGWTTKMDWI-----------------------FHTIKQHAL----N----------

cAMP-dependent protein kinase GVNDIKNHKWFATTDWIAIYQRKVEAPFIPKFKGPGDTSNFDDYEEEEIRVXINEKCGKEFSEF

(A)

(B)

Pairwise alignments of the PI3-kinase p110a and a cAMP-
dependent protein kinase. Note that the protein kinase
sequence is considerably longer than the p110a sequence.
(A) An alignment where the gap penalty has been set very high.
Gaps have therefore only been inserted at the beginning and end
of the sequences. The percentage identity of this alignment is

10%. (B) An alignment with a very low gap penalty. Many more
gaps have been inserted to maximize the number of matched
residues. Especially apparent is the lone matched pair of
asparagine (N) residues in the carboxy-terminal region. The
percentage identity of this alignment is 18%. Green shading,
identical amino acids.

Figure 4.5
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however. For example, approximately 1075 alignments would need to be generated
for a sequence of only 100 residues. It only became practicable to incorporate gaps
into an alignment with the development of dynamic programming algorithms.
These avoid unnecessary exploration of the bulk of alignments that can be shown
to be nonoptimal. The name “dynamic programming” reflects the fact that the
precise behavior of the algorithm is established only when it runs (in other words,
dynamically) because it depends on the sequences being aligned.

The first algorithm to use dynamic programming for sequence comparison was
that of S. B. Needleman and C. D. Wunsch, published in 1970. Their technique is still
the core of many present-day alignment and sequence-searching methods. In their
method, gaps, regardless of length, have an associated penalty score; newer
methods use more complicated gap penalties. The actual values of the gap scores
can be varied depending on the type of scoring matrix being used. One rule always
followed is that gaps can never be aligned with each other.

The basic concept of a Needleman–Wunsch-type algorithm is that comparisons are
made on the basis of all possible pairs of amino acids that could be made between
the two sequences. All possible pairs are represented as a two-dimensional matrix,
in which one of the sequences to be aligned runs down the vertical axis and the
other along the horizontal axis. All possible comparisons between any number of
pairs are given by pathways through the array, each of which can be scored. The
principles and method of the algorithm are dealt with in detail in Section 5.2. The
general idea is to grow the alignment from the amino or carboxy terminus, at each
step rejecting all possible alignments except that with the best score.

4.5 Types of Alignment

Different kinds of alignments are useful in different
circumstances
The general principles outlined in the previous sections can be used to make different
types of alignment (see Flow Diagram 4.2). Two closely related homologous
sequences will generally be of approximately the same length, so that their alignment
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Phosphorylation is one of the commonest ways of
rapidly altering a protein’s activity. The enzymes that
phosphorylate proteins are known as protein kinases
and add phosphate groups to specific amino acid
residues in the protein. Most, such as the cAMP-
dependent protein kinases, phosphorylate serine or
threonine residues, whereas others phosphorylate
tyrosine residues. The effect of protein phosphoryla-
tion can be reversed by phosphoprotein phosphatases,
which specifically remove the phosphate group.
Because of their important roles as regulators 
of cellular activity and behavior, the activity of protein
kinases is, in general, tightly controlled. The cAMP-
dependent protein kinases, for example, are activated
by binding the intracellular second messenger 
cAMP, which is specifically generated in response to a

variety of extracellular signals acting at cell-surface
receptors. 

The phosphatidylinositol-3-OH kinases (PI3-kinases)
phosphorylate inositol phospholipids in the cyto-
plasmic surface of the cell membrane, adding a phos-
phate group to position 3 on the inositol ring. Other
members of this family, the PI4-kinases, phosphorylate
the inositol ring on position 4. The phosphorylated
lipids then specifically bind and activate other proteins,
such as protein kinases, to initiate intracellular signal
transduction cascades. PI3-kinases are involved in initi-
ating the pathway by which the hormone insulin
controls carbohydrate metabolism. PI3-kinases and
protein kinases have very little sequence similarity to
each other except in the enzymatic kinase domain.

Box 4.5 Protein kinases and phospholipid kinases
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will cover the full range of each sequence. This is referred to as a global alignment,
and is generally the appropriate one to use when you want to compare or find closely
related sequences that are similar over their whole length.

On the other hand, there are many cases where only parts of sequences are related.
A simple example is the amino acid sequences of two proteins each consisting of
two domains, with only one domain common to both proteins and the other
domains completely unrelated. In this case, the only meaningful alignment will be
a local alignment of the shared domain. Looking only at global alignments may not
reveal the limited but important similarity between the sequences. This is particu-
larly the case for comparisons between multidomain proteins, such as PI3-kinases,
which consist of a number of small protein domains strung together (see Figure
4.6). Local alignment programs are therefore useful for detecting shared domains in
such proteins. 

When searching through a sequence database with a query sequence from an
unknown protein, local alignment is a very useful tool to use initially. Once
sequences with regions of high similarity are found using local alignment, global
alignment can be used to align the rest of the sequence that is not so similar. Local
alignment is also a good tool for identifying particular functional sites from which
sequence patterns and motifs can be derived.

A widely used local alignment algorithm is the Smith–Waterman algorithm, which
is a modification of the Needleman–Wunsch algorithm. Instead of looking at each
sequence in its entirety, which is what the Needleman–Wunsch algorithm does, the
Smith–Waterman method compares segments of all possible lengths and chooses
the segment that optimizes the similarity measure. The scoring matrix used must
include both positive and negative scores, and only alignments with a positive total
score are considered. Therefore, if on extending the alignment at a particular step
none of the possible alignments has a positive score, all previous alignments are
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Flow Diagram 4.2
The key concept introduced in this
section is that there are several
different types of sequence
alignment, one of which will be the
most appropriate for a particular
problem.

PRODUCING AND ANALYZING
SEQUENCE ALIGNMENTS

looking for 
similarity 

assessing 
similarity 

scoring 
measures 

pairwise 
alignment 

local 
alignment 

global 
alignment 

gaps in 
alignment 

multiple 
alignment 

C2
helical
domain

kinase
domain

ras-binding
domain PX C2

ABD
domain

F39B1.1_P13K_like

P13K68D

PK3B_HUMAN

P13K68D_HUMAN

P11G_HUMAN

P11B_HUMAN

p85-binding domain

P13K92E

P11D_HUMAN

KEY:

Figure 4.6
PI3-kinase is a multidomain
protein. One possible output from a
search of the Pfam database with the
p100a PI3-kinase catalytic domain
(yellow bar) is shown here.  The
figure also shows the complete
domain structure of the protein
family comprising the PI3-kinases
and the related PI4-kinases, which
catalyze phosphorylation of position
4 of the inositol ring of inositol
phospholipids. The other domains
and their arrangement are
represented by the other colored
bars.
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rejected, and new ones are considered starting from that point. This makes the
calculation sensitive to the precise match and mismatch scores and gap penalties.
Section 5.2 describes the algorithm in detail.

Figure 4.7 shows an example of local versus global alignment of the complete
protein sequences of the bovine PI3-kinase p110a and the cAMP-dependent
protein kinase shown in Figure 4.5, using the Web-based programs ALIGN (global)
and LALIGN (local). Although these proteins share structural homology within the
core kinase catalytic domain, there is very little sequence homology. Figure 4.7A
shows that local alignment of the catalytic domains has identified one important
conserved region, out of five regions that were aligned. This region is involved in
catalysis and also contains the three-residue motif DFG, which is conserved
between many kinases. Figure 4.7B shows that, in this case, a global alignment fails
to identify this region. The percentage sequence identity for these two sequences is
very low (17.8%), well into the midnight zone of sequence alignment. 

For both global and local alignments, methods exist for making pairwise alignments,
that is, the alignment of just two sequences, and for making multiple alignments,
in which more than two sequences are aligned with each other. In this part of the
chapter, we have mainly used examples of pairwise alignments to illustrate the
general principles of alignment scoring and quality assessment. Multiple alignment
introduces yet another dimension to the computational problems of alignment.
The theory is dealt with in detail in Chapter 6, but a few general points are
described here.
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PI3-kinase
cAMP PK 

PI3-kinase
cAMP PK 

10 20 30 40 50 

10 20 30 40 50 

PI3-kinase
cAMP PK 

60 70 80 90 100 110 

60 70 80 90 100 

PI3-kinase
cAMP PK 

120 130 140 150 160 

110 120 130 140 150 160 

PI3-kinase
cAMP PK 

170 180 190 200 210 220 

170 180 190 200 210 220 

PI3-kinase
cAMP PK 

230 240 250 260 270 

230 240 250 260 270 280 

PI3-kinase
cAMP PK 

280 290 300 310 

290 300 310 320 330 340 

HQLGNLR--LEECRI---MSSAKRPLWLNWENPDIMSELLFQNNEIIFKNGDDLRQDMLT

GNAAAAKKGXEQESVKEFLAKAKEDFLKKWENPAQNTAHLDQFERIKTLGTGSFGRVML-

LQIIRIME--NIWQNQGLDLRMLPYGCLSIGDCVGLIEVVRNSHTIMQ-IQCKGGLKGAL

---VKHMETGNHYAMKILDKQKVVK--------LKQIEHTLNEKRILQAVNFPFLVKLEF

QFNSHT-LHQWLKDKNKGEIYDAA--IDLFTRSCAGYCVATFILGIGDRHNSNIMVKD-D

SFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLK

GQLFHIDFGHFLDHKKKKFGYKRERVP-----FVLTQDFL---IVISKGAQECTKTREFE

PENLLIDQQGYI--QVTDFGFAK-RVKGRTWXLCGTPEYLAPEIILSKGYNKAVDWWALG

RF-QEMC--YKAYLAIRQHANLFINLFSMMLGSGMPELQSFDDIAYIRKTLALDKTEQEA

VLIYEMAAGYPPFFA-DQPIQIYEKIVSGKVR--FPSHFSSDLKDLLRNLLQVDLTKR--

LEYFMKQMNDAHHGGWTTKMDWI-----------------------FHTIKQHALN----

FGNLKNGVNDIKNHKWFATTDWIAIYQRKVEAPFIPKFKGPGDTSNFDDYEEEEIRVXIN

(B)   global 

(A)   local 

DRHNSNIMVKDDGQLFHIDFG

DLKPENLLIDQQGYIQVTDFG

Figure 4.7
Local and global alignments. The
complete sequences of PI3-kinase
p110a and the cAMP-dependent
protein kinase (cAMP PK) shown in
Figure 4.5 were compared. (A) Local
alignment using the program
LALIGN (a subset of the FASTA
package) has matched a short
conserved region in the kinase
domains that contains the
functionally important residues D
and N in the DLKPEN sequence and
the DFG repeat common to nearly
all kinases. (B) Because of the low
overall sequence similarity, a
standard global alignment of these
two sequences using the program
ClustalW has not matched these
functionally important residues
(boxed in each sequence). Green
shading, identical amino acids; gray
shading, similar amino acids.
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Multiple sequence alignments enable the simultaneous
comparison of a set of similar sequences
Multiple alignments can be used to find interesting patterns characteristic of
specific protein families, to build phylogenetic trees, to detect homology between
new sequences and existing families, and to help predict the secondary and tertiary
structures of new sequences, as we shall see in more detail in Chapters 11 to 14.

In general, the alignment of multiple sequences will give a more reliable assess-
ment of similarity than a pairwise alignment. The reason for this is that ambiguities
in a pairwise comparison can often be resolved when further sequences are
compared. Multiple alignment provides more information than pairwise alignment
on the individual amino acid positions, such as the overall similarity and evolu-
tionary relationships. This is especially important when using sequence-compar-
ison methods to construct taxonomic phylogenetic trees. Multiple alignment is
especially useful for illustrating sequence conservation throughout the aligned
sequences. Such conservation over many sequences can identify amino acids that
are important for function or for the structural integrity of the protein fold.

Multiple alignments can be constructed by several different
techniques
A number of methods are available for generating multiple alignments. One of
these is an extension of the dynamic programming method, so that instead of a
two-dimensional matrix for a pair of sequences, an alignment of n protein
sequences uses an n-dimensional matrix. However, this is limited by the prohibi-
tively large computational requirement of the algorithm, and none of the examples
discussed below uses this technique.

Other methods, while often using dynamic programming to align pairs of
sequences, use other techniques to combine these together into one multiple
alignment. Tree or hierarchical methods of multiple alignment are widely used, for
example in the multiple alignment program ClustalW. This method first compares
all the sequences in a pairwise fashion, then performs a cluster analysis on the
pairwise data to generate a hierarchy of sequences in order of their similarity (see
Figure 4.8A). The hierarchy is a simple phylogenetic tree and is often referred to as
the guide tree. A multiple alignment is then built based on the guide tree by first
aligning the most similar pairs, then aligning the other sequences with these pairs
until all the sequences have been aligned (Figure 4.8B). However accurate this
method is, there are problems with it in that any errors in the initial alignments
cannot be corrected later as new information from other sequences is added. This
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A
B

A
B

C
D

C
D

C
D
E

A
B
C
D
E

A
B
C
D
E

C
D
E

alignment 1

alignment 2

alignment 3

last
alignment

step

A B E C D

(A) (B)

Figure 4.8
The tree method for the multiple
alignment of sequences A, B, C, D,
and E. Pairwise alignments are first
made between all possible pairs of
sequences—that is, AB, AC, AD, and
so on—to determine their relative
similarity to each other (not shown).
(A) A cluster analysis is performed
on this preliminary round of
alignments, and the individual
sequences are ranked in a tree
according to their similarity to each
other. (B) In the next step, the most
similar sequences are aligned in
pairs as far as possible. These are
then aligned to the next closest
sequence. This is repeated until all
sequences or groups of sequences
are aligned.
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difficulty has been avoided in iterative or stochastic sampling procedures as in the
Barton and Sternberg program (see Chapter 6). 

Other methods for building multiple alignments include the segment method, the
consensus method, and the divide-and-conquer method. In the divide-and-
conquer alignment, the sequences are first cut several times to reduce the length of
the sequences to be aligned, the cut sequences are then aligned, and they are finally
concatenated into a multiple alignment (see Figure 4.9). Initially, each sequence is
divided into two segments at a suitable cut-position somewhere close to the
midpoint of the sequences. This procedure is repeated until the sequences are
shorter than a predetermined size, which is set as a parameter of the divide-and-
conquer algorithm. Therefore the problem of aligning one family of long sequences
is divided into several smaller alignment tasks. The segments are then aligned. The
last step concatenates the short alignments, giving a multiple alignment of the orig-
inal sequences. 

Multiple alignments can improve the accuracy of alignment
for sequences of low similarity
The same proteins with which we illustrated local versus global alignment—a
cAMP-dependent protein kinase and a PI3-kinase—will be used to illustrate the
improvement multiple alignment can make to the alignment of sequences of low
similarity. Figure 4.10A shows part of a pairwise alignment between the protein
kinase and the PI3-kinase. The active-site region and the DFG pattern are not
aligned. Figure 4.10B shows the result of a multiple alignment between five
different PI3-kinases and the protein kinase made using the program ClustalW with
the default settings. The effect of the multiple alignment is to give added weight to
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original sequences

divide divide

align optimally

concatenate

Figure 4.9
The divide-and-conquer method of
multiple alignment. The sequences
to be aligned are divided into two
regions, then into four, and so on
until the segments are considered
small enough for accurate optimal
alignment. The segments are then
aligned and in the last step the
alignments are concatenated to
form the final complete multiple
alignment.
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the conserved residues within the PI3-kinases, resulting in a better alignment for
that region of the kinase domain. 

ClustalW can make global multiple alignments of both DNA
and protein sequences
ClustalW uses a tree method of multiple alignment as described briefly above. The
program is easy to use with the default settings and can be accessed from a number
of Web sites. To use it, one must have collected a set of sequences, perhaps from a
database search. Either protein or DNA sequences can be used. The sequences are
cut and pasted into a dialog box; you can then run the program immediately with
the default settings (for gap penalties and type of scoring matrix, for example). All
the settings can be changed if required.

Multiple alignments can be made by combining a series of
local alignments
DIALIGN is a relatively recent method for multiple alignment developed by
Burkhard Morgenstern and colleagues. Whereas standard alignment programs such
as ClustalW compare residues one pair at a time and impose gap penalties, DIALIGN
constructs pairwise and multiple alignments by comparing whole ungapped
segments several residues long. The alignment is then constructed from pairs of
equal-length gap-free segments, which are termed diagonals because they would
show up as diagonal lines in the respective pairwise comparison matrices. The
segment length varies between diagonals. Many diagonals overlap, and the program
has to find a set that can be combined into one consistent alignment (see Section
6.5). As the segments are gap-free there is no need to use a gap-penalty parameter.
Every diagonal is given a weight reflecting the degree of similarity between the two
segments involved. The overall score of an alignment is the sum of the weights of all
the diagonals, and the program finds the alignment with the maximum score. A
threshold can be set so that diagonals are considered only if their weights exceed this
threshold, so that regions of lower similarity are ignored. As DIALIGN is a local align-
ment method it may not align the whole sequence, and may align several blocks of
residues with unaligned regions between them.

Figure 4.11 illustrates the alignment of five SH2 domain sequences using ClustalW,
DIALIGN, and the divide-and-conquer algorithm (DCA) methods compared with
the structural/functional alignment from BAliBase, which can be considered accu-
rate. All three methods fail to some extent to align the residues of the first helix
correctly, inserting a gap. ClustalW does slightly worse in this region by splitting the
helix, but is better in conserving the integrity of the second core block around the
FLVR region important for binding. DCA does not align the last helix as well as
ClustalW or DIALIGN. However, all the alignment programs are generally good and
useful in that they often produce alignments very close to the correct ones based on
extra information, such as those found in BALiBase. 
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p110a

p110b

(A)

(B)
p110d
p110a
p110g
p110_dicti
cAMP-kinase

cAMP-kinase
TFILGIGDRHNSNIMVKDDG-QLFHIDFGHFLDHKKKKFGYKRERVPFVLT--QDFLIVI 142

SYVLGIG----------DRHSDNINVKKTGQLFHIDFGHILGNFKSKFGIKRERVPFILT 136

TYVLGIG----------DRHSDNIMIRESGQLFHIDFGHFLGNFKTKFGINRERVPFILT 136

TFILGIG----------DRHNSNIMVKDDGQLFHIDFGHFLDHKKKKFGYKRERVPFVLT 135

TFVLGIG----------DRHNDNIMITETGNLFHIDFGHILGNYKSFLGINKERVPFVLT 135

TYVLGIG----------DRHNDNLMVTKGGRLFHIDFGHFLGNYKKKFGFKRERAPFVFT 135

QIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWXLCG--TPEYLA 177

QIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWXLCGTPEYLAPE 179

Figure 4.10
Pairwise and multiple alignments
of part of the catalytic domains of
five PI3-kinases and a
cAMP-dependent protein kinase.
(A) Pairwise alignment of PI3-kinase
p110a and the protein kinase does
not align the important active-site
residues and the DFG motif (in
green). (B) Multiple alignment of the
protein kinase with a set of five PI3-
kinases (which have considerable
overall homology to each other) has
the effect of forcing the
best-conserved regions to be
matched. Here the DFG motif and
the important N and D (green)
residues are aligned correctly in all
the sequences. In addition it is
apparent that a G (green) is also
totally conserved (identical) and
that three more residues are
conserved in their physicochemical
properties (blue).
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Once a satisfactory alignment has been obtained, there are now numerous programs
available through the Web that allow you to view, analyze, and even edit alignments.
AMAS (Analyze Multiply Aligned Sequences), CINEMA (Colour Interactive Editor for
Multiple Alignments), and ESPript (Easy Sequencing in Postscript) are but a few.

Alignment can be improved by incorporating additional
information
The alignment of two or more sequences can be improved by incorporating expert
knowledge such as known structural properties of one or more sequences. For
example, if the structure of one of the proteins to be aligned is known, then the gap
penalty can be increased for regions of known secondary structures such as
a-helices or b-strands, as these regions are less likely to suffer insertions or dele-
tions. This will mean that few or no gaps are introduced into these regions. On the
other hand, gap penalties can be decreased for loop regions, in which insertions
and deletions are better tolerated.

Often the results of an automatic alignment program benefit from manual final
adjustment. For example, if specific residues are known to be important for struc-
ture, function, or ligand binding, then manual realignment may be necessary to
match these residues.

4.6 Searching Databases
Searching sequence databases now has a part to play in nearly every branch of
molecular biology, and is crucial for making sense of the sequence data becoming
available from the genome projects. For example, one may wish to search the
database with a DNA sequence to locate and identify a gene in a new genome.
When a protein sequence is available, then searching through the database can be
used to identify the potential function. Sometimes one wishes to find the gene for
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DIALIGN multiple sequence alignment 

ClustalW multiple sequence alignment 

structural/functional alignment from BAliBase 

divide-and-conquer multiple sequence alignment 
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Figure 4.11
Known structural alignments can
be useful in checking sequence
alignments. (A) Multiple alignment
of the sequences of five SH2
domains according to their
sequence/structure alignment in
BAliBase. a-Helices are shown in red
and b-strands in yellow. (B) Multiple
alignment for the same set of
sequences obtained by DIALIGN.
(C) Alignment obtained by ClustalW.
(D) Alignment obtained by the
divide-and-conquer method. There
is not much difference in
performance between the
algorithms (all were run with the
default settings), although some
alignment programs break the
secondary structure element
indicated by dashes. The coded
names of the domains on the left are
their identification numbers in the
Protein Data Bank (PDB).
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a particular protein in a genome, which can be done by searching with a homolo-
gous protein or DNA sequence.

We will now discuss the practical task of searching sequence databases to find
sequences that are similar to the query sequence or search sequence that we
submit to them (Flow Diagram 4.3). When searching a database with a newly deter-
mined DNA or protein query sequence, one does not usually know whether an
expected similarity might span the entire query sequence or just part of it; similarly,
one does not know if the match will extend along the full length of a database
sequence or only part of it. Therefore, one initially needs to look for local align-
ments between the query sequence and any sequence in the database. The top-
scoring database sequences are then candidates for further analysis. 

Database searching needs to be both sensitive, in order to detect distantly related
homologs and avoid false-negative searches, and also specific, in order to reject
unrelated sequences with fortuitous similarity (false-positive hits). This is not an
easy balance to achieve, and search results should be scrutinized with care.

In general, it is not possible to decide from a visual inspection of the alignment
whether the database and query sequences are truly homologous. However,
analysis of the score statistics has provided us with useful measures to estimate the
validity of a hit. This important aspect of database searching, which is required to
interpret any database search correctly, is discussed later in this chapter and in
more detail in Section 5.4.

Fast yet accurate search algorithms have been developed
The sequence databases are now extremely large and growing daily. This means
that aligning a query sequence with sequences in a database requires considerable
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PRODUCING AND ANALYZING
SEQUENCE ALIGNMENTS

looking for 
similarity 
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similarity 
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measures 

pairwise 
alignment 

searching 
databases 

local 
alignment 

global 
alignment 

gaps in 
alignment 

programs for 
searching databases 

scoring 
the match 

multiple 
alignment 

Flow Diagram 4.3
The key concept introduced in this
and the following section is that
applications have been designed to
overcome the problems associated
with searching a database for
sequences that are similar to a
query sequence, including the need
to pay special attention to the
statistical significance of the
alignment scores obtained.
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computer resources. In the past, this exceeded the available computing power and
so great effort was put into developing fast yet accurate alignment methods.
Almost all database search programs currently in use are modifications of the
rigorous methods discussed earlier. The Needleman–Wunsch and
Smith–Waterman methods are rigorous in the sense that given a scoring scheme
they are guaranteed to find the best-scoring alignments between two sequences.
Two suites of programs are in common use for database searching: FASTA and
BLAST. These use dynamic programming, but only for database entries that have a
segment sufficiently similar to the query sequences. The methods used to find
these entries are purely heuristic; that is, not rigorous.

FASTA is a fast database-search method based on matching
short identical segments
FASTA is a popular database-searching program that increases the speed of a search
at the expense of some sensitivity. It speeds up the searching process by using
k-tuples, short stretches of k contiguous residues. In protein searches k can equal 1
or 2, while 6 is a typical value for DNA. The program makes up a dictionary of all
possible k-tuples within the query sequence. Each entry contains a list of numbers
that describe the location of the k-tuple in the query sequence. This is called
hashing, and the theory behind it is described in Section 5.3. Therefore, for each k-
tuple in the searched sequences, FASTA only has to consult the dictionary to find
out if it occurs in the query sequence. However, sensitivity is reduced because a
partial match of a k-tuple (for example, AC to AG in DNA) is ignored. Therefore,
although speed increases with the length of a k-tuple, sensitivity will decrease.

In the first step of the FASTA method all possible pairwise k-tuples are identified:
these can be considered as diagonals in a set of dot-plots. In the second step, align-
ments of these diagonals are rescored using a scoring matrix such as one of those
described above. In this step, the k-tuple regions are also extended without
including gaps, and only those that score above a given threshold are retained. In
the third step, the program checks to see if some of the highest-scoring diagonals
can be joined together. Finally, the search sequences with the highest scores are
aligned to the query sequence using dynamic programming. The final alignment
score ranks the database entries and the highest-scoring set is reported.

BLAST is based on finding very similar short segments
BLAST (Basic Local Alignment Search Tool) or Wu-BLAST (a version of BLAST devel-
oped at Washington University, St Louis) is one of the most widely used database-
search program suites. It relies on finding core similarity, which is defined by a
window of preset size (called a “word”) with a certain minimum density of matches
(for DNA) or with an amino-acid similarity score above a given threshold (for
proteins). Note that these amino acid word-matches do not only include identities
and that they are scored with a standard substitution matrix. In the first step, all
suitable matches are located in each database sequence. Subsequently, matches are
extended without including gaps, and on this basis the database sequences are
ranked. The highest-scoring sequences are then subjected to dynamic program-
ming to obtain the final alignments and scores. BLAST and Wu-BLAST can be run
with or without the use of gaps. The gapped setting of BLAST, which is usually the
default setting, reports the best local alignments and is suitable for most applica-
tions. Both the FASTA and BLAST methods are described in detail in Section 5.3.

Different versions of BLAST and FASTA are used for different
problems
Many of the search algorithms can be used to search either nucleic acid or protein
sequences, or even to search a protein-sequence database using a nucleic acid
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sequence and vice versa. However, you need to choose the correct program for the
required type of search. In BLAST, for example, one can choose among blastp,
which compares an amino acid query sequence against a protein-sequence data-
base; blastn, which compares a nucleotide query sequence against a nucleic acid
sequence database; blastx, which compares a nucleotide query sequence trans-
lated in all reading frames against a protein-sequence database; tblastn, which
compares a protein query sequence against a nucleotide-sequence database
dynamically translated in all reading frames; and finally, tblastx, which compares
the six possible translations of a nucleotide query sequence against the six frame
translations of a nucleotide-sequence database. The FASTA suite has similar
versions of these search programs (see Table 4.1). 

PSI-BLAST enables profile-based database searches
Variations of BLAST such as PSI-BLAST (Position-Specific Iterative BLAST) have
been devised. This suite of programs makes use of features characteristic of a
particular protein family to identify related sequences in a protein database, and
can identify related sequences that are too dissimilar to be found in a straightfor-
ward BLAST search. In PSI-BLAST, a profile, or position-specific scoring matrix
(PSSM), of a set of sequences is constructed from a multiple alignment of the
highest-scoring hits returned in an initial BLAST search (see Section 6.1). The PSSM
is created by calculating new scores for each position in this alignment. A highly
conserved residue at a particular position is assigned a high positive score, while
other residues at that position are assigned high negative scores. At positions that
are weakly conserved throughout the alignment, all residues are given scores near
zero. The profile generated is used to replace the substitution matrix in a subse-
quent BLAST search. This process can be repeated many times; each time, the
results from the search are used to refine the profile. This type of iterative searching
results in increased sensitivity and has been used to good effect in protein-fold
recognition programs such as 3D-PSSM (see Chapter 13).
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Program

fasta

ssearch

fastx/fasty

tfastx/tfasta

fastf

tfastf

BLAST equivalent

blastp/blastn

blastx

tblastn (tblastx
compares translated
DNA to translated
DNA database)

Description

Protein compared to protein database or
DNA to DNA database. For protein, ktup = 2
by default (ktup = 1 is more sensitive);
default for DNA is 6; 4 or 3 is more sensitive.
1 should be used for short DNA stretches.

Uses Smith–Waterman algorithm. Can search
protein to protein or DNA to DNA. Can be
more sensitive than fasta with protein
sequences.

DNA compared to protein database. DNA
translated into all three frames. fasty slower
than fastx but better. Used to see if DNA
encodes a protein.

Protein compared to DNA database. Mainly
used to identify EST sequences. This is
preferred over fastx as protein comparison is
more sensitive than DNA.

Mixed peptide sequence (such as obtained
by Edman degradation) compared to protein
database. 

Mixed peptide sequence compared to DNA
database.

Table 4.1 
The various algorithms within the
FASTA package are given with
descriptions of their uses.
Equivalent programs in the BLAST
package are highlighted. The ktup
parameter of fasta defines the length
of a k-tuple, as explained in
Section 5.3.
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Ways of extracting more distantly related homologous sequences and finding links
between known families are now being explored. Such methods include, for
example, the use of intermediate sequences; that is, sequences that are found in
more than one family. Suppose we submit an unknown sequence A to a database
search and among the significant hits there is a protein called, for example, medi-
ator protein. We then submit an unknown sequence B to the same database search,
and this also returns mediator protein with a significant score. Then, especially if
more than one such intermediate sequence is found, we can deduce that sequences
A and B are homologous, as their families are related. Such ideas can be automated
for ease of application.

SSEARCH is a rigorous alignment method
Despite the computational requirements, some programs have been written that
use rigorous methods to search databases. SSEARCH is a search program based on
the Smith–Waterman algorithm and is therefore slower than either BLAST or FASTA.
SSEARCH performs a rigorous search for similarity between a query sequence and
the database. Other search algorithms based on the Smith–Waterman method have
been written and are gaining in popularity as computer power increases.

4.7 Searching with Nucleic Acid or Protein
Sequences

DNA or RNA sequences can be used either directly or after
translation
In general, nucleic acid sequence searches are more difficult to handle and analyze
than protein sequence searches. However, most primary data will be in the form of
nucleic acid sequences. If you have an untranslated DNA or RNA sequence and you
want to know if the DNA codes for a protein, you can use fasta, ssearch, or blastn
(see Table 4.1) to search the EST (expressed sequence tag), EMBL, or nr (nonredun-
dant) databases, or one of the species-specific genome EST databases, such as EST-
Rodent. The results may well be confusing, in that a lot of partial sequence matches
will be found. Many retrieved sequences will also be unknown sequences. An easier
search can be made using fastx/fasty (or blastx), which will translate the DNA in all
three reading frames on both strands—six translations in all—and search a protein
database of choice. More details and examples of dealing with DNA sequences can
be found in Chapter 9.

The quality of a database match has to be tested to ensure that
it could not have arisen by chance
How good is an alignment and how believable are the results of a database search?
These vital questions must be answered before any further use can be made of the
results. Every alignment reported will have been selected on the basis of its score.
What we need to know is whether the score is greater than we would expect from
the alignment of the sequence with a random (unrelated) sequence. However, there
is a complex relationship between the score and the significance of the sequence
similarity. For one thing, as each pair of aligned residues contributes to the score,
longer sequences are expected to give higher alignment scores, assuming the same
degree of similarity.

If a large number of random sequences are generated and aligned with the query
sequence, the resulting alignment scores will follow a particular distribution.
Because we always choose the best-scoring alignment, the distribution will be
related to the extreme-value distribution (see Section 5.4). Through application of
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this distribution it is possible to estimate the probability of two random sequences
aligning with a score greater than or equal to S. This is usually reported as an
expectation value or E-value, and is used to order the database search results.

The programs BLAST and FASTA calculate an E-value, which is the number of align-
ments with a score of at least S that would be expected by chance alone in searching
a complete database of n sequences. These E-values can vary from 0 to n. For
example, by chance alone, you would expect to find three sequence alignments
with an E-value of 3.0 or less in a database search, so an E-value of 3.0 suggests that
the database sequence is not related to the query sequence. Quite closely related
sequences often give very small E-values of 10–20 or less, and such scores clearly
indicate a significant similarity of the database and query sequences. However, we
really need to know how large an E-value can be while still reliably indicating a
significant sequence similarity. It is important to remember that the E-value
depends on the sequence length and the number of sequences in the database as
well as on the alignment score.

In general, the smaller the E-value the better the alignment, and the higher the
percentage identity the more secure the assessment of the significance of the simi-
larity between the database sequence and the query sequence. The default E-value
threshold in many search packages is set to either 0.01 or 0.001. However, most
programs permit the user to set the E-value threshold, and matches above that
threshold will not be included in the output.

To test new or existing sequence-alignment programs and their scoring schemes one
can compare the alignment obtained by the program against carefully constructed
alignments that are based on known structural features or biological function. There
are databases of such accurately aligned sequences, such as BAliBase.

Choosing an appropriate E-value threshold helps to limit a
database search
To illustrate some of the possible sequence searches, alignments, and analyses that
can be carried out via the Web, we will use two examples: the catalytic domain from
a PI3-kinase and the protein-interaction domain SH2. Structural information and
an accurate alignment in the BAliBase database are available for the family of SH2
domains.

The human Syk tyrosine kinase carboxy-terminal SH2 domain is the first query
sequence. Protein searches with BLAST through the SWISS-PROT database gave
149 sequences below the default E-value cut-off. All these were SH2-related
domains. That is a lot of information to cope with. All the E-values were very low,
indicating that all the hits were significant. This is a case of result overload.
Decreasing the E-value cut-off would have no effect in this case, as all the hits were
far below the threshold used.
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Figure 4.12
The results of a search of the SWISS-PROT
protein sequence database using BLAST
with PI3-kinase p100a as the query
sequence. (A) Output from a standard BLAST
search. Each line reports a separate database
sequence. The penultimate column gives the
alignment score, and the last column the E-
value. Hits before the arrow are significant,
while below the arrow the hit does not have a

significant score. (B) A BLAST search on one
month’s new sequences, using the same
query sequence as in (A), finds only two
matches. One is a PI4-kinase, which has
most of its sequence aligned to the query
sequence (magenta line). The other has only
a small region aligned (black line) and a
borderline score. (C) Output from a
Conserved Domain Database (CDD) search.
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To reduce the large number of hits one could search a subset of the data, for
example only the newest sequences in the database (the “month” option; that is,
those deposited in the last month) or a specific genome database. A search through
sequences released in the past month detected eight sequences, all with significant
scores, of which three had not been identified. A search through the Drosophila
genome data yielded three hits, all of which are unknown. Taking one of the regions
that matched our SH2 (a section of the Drosophila 3R chromosome arm) and
searching with this sequence through SWISS-PROT yielded a highly significant hit
to an SH2 domain of a rat protein. So we may have identified a previously unknown
Drosophila sequence as containing an SH2 domain.

This example illustrates a search through the database with a family that is very well
represented and shows the problems that can arise. We will now look at a family
that is not so well represented—the PI3-kinases.

First the SWISS-PROT database was searched using the catalytic domain protein
sequence from the PI3-kinase p110a using BLAST with the E-value cut-off set to 1.
Thirty-two hits were found. In this list there are three near-identical isoforms of p110a
which have an E-value of 0.0; that is, the chance of obtaining such a match with
random sequence is taken to be zero. There is one match that is not significant: ribonu-
cleoside-diphosphate reductase, with an E-value of 0.59 (see Figure 4.12A). From the
assigned function this is clearly a different enzyme, but the enzymatic reactions of both
this reductase and the kinases involve a nucleotide, which might have led to some
small degree of similarity between the sequences. Any such speculation would need
further and more thorough investigation. If we rerun the search with the E-value cut-
off set to 0.01 (the advised setting) only the significant matches are retrieved.

Searching with BLAST through a subset of sequences such as those that have only
been released in one month found two hits: one is a homolog of PI3-kinase, a PI4-
kinase with a significant E-value, and the other is a segment of an Arabidopsis
thaliana protein, atRad3, with an E-value score of borderline significance. From the
length of the matched sequence illustrated in the search output (see Figure 4.12B) the
segment seems far too short to be of interest; compare the length of the matched PI4-
kinase, in magenta. For this reason the hit can now be reclassified as not significant.

Another useful option available within the BLAST search server is a concurrent
search of the Conserved Domain Database (CDD) entries. Figure 4.12C shows the
results of using this option on the PI3-kinase sequence. Proteins often contain
several domains, and the program CD-Search can potentially identify domains
present in a protein sequence. CDD contains domains derived mainly from the
SMART and Pfam protein-family databases. To identify conserved domains in a
protein sequence, the CD method uses the BLAST algorithm where the query
sequence is matched with a PSSM designed from the conserved domain align-
ments. Matches are shown as either a pairwise alignment of the query sequence to
a representative domain sequence or as a multiple alignment.

A FASTA search with the p110a sequence through SWISS-PROT with default settings
(k-tuple = 2) yielded 36 hits, of which eight had a nonsignificant score (see Figure 4.13).
Of these eight, ribonucleoside-diphosphate reductase was also found by BLAST.
Although both FASTA and BLAST report an E-value, the actual values are different,
which reflects subtle differences in the methods used. An SSEARCH search of the
SWISS-PROT database with default settings found 29 significant hits. SSEARCH, a
more rigorous method, found fewer hits than BLAST or FASTA. 

Low-complexity regions can complicate homology searches
Among the many features that can complicate a sequence-similarity search is the
occurrence of low-complexity regions in protein sequences. These are regions with
a highly biased amino acid composition, often runs of prolines or acidic amino
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acids. In some cases, self-comparison dot-plots (see page 77) can identify low-
complexity regions in a protein sequence. Alignments of such regions in different
proteins can achieve high scores, but these can be misleading and can obscure the
biologically significant hits. It is better to exclude low-complexity regions when
constructing the alignment. By default, the BLAST program filters the query
sequence for low-complexity regions. In the BLAST output file, an X marks regions
that have been filtered out (using SEG for proteins and DUST for DNA) (see Box
5.2).

Figure 4.14A shows a self-comparison dot-plot of human prion protein precursor
(PrP), an abnormal form of which is found in large amounts in the brains of people
with neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD) and kuru
(see Box 4.6). It has several low-complexity regions, which are seen as dark diagonal
lines (apart from the main identity diagonal) and the ordered dark-shaded regions.
Figure 4.14B shows a search for homologs of the human PrP. The extensive low-
complexity regions have been filtered out in the query sequence (as indicated by
the strings of Xs). A BLAST search of SWISS-PROT with human PrP with the low-
complexity filter turned on gave approximately 40 hits, all prion proteins. One of
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SW:P11A BOVIN P32871 PHOSPHATIDYLINOSITOL 3-KINAS  (1068) 2228 493 1.2e-138

the best scores are:

SW:P11A HUMAN P42336 PHOSPHATIDYLINOSITOL 3-KINAS  (1068) 2216 490 7.4e-138
SW:P11A MOUSE P42337 PHOSPHATIDYLINOSITOL 3-KINAS  (1068) 2204 488 4.5e-137
SW:P11B HUMAN P42338 PHOSPHATIDYLINOSITOL 3-KINAS  (1070) 1126 254 1.1e-66

SW:ESR1 YEAST P38111 ESR1 PROTEIN.                 (2368)  144  41    0.028
SW:PRA2 USTMA P31303 PHEROMONE RECEPTOR 2.         ( 346)  116  35     0.35
SW:TEL1 YEAST P38110 TELOMER LENGTH REGULATION PR  (2787)  127  37     0.42
SW:YA51 METJA Q58451 HYPOTHETICAL PROTEIN MJ1051.  ( 513)  112  34     0.91
SW:RIR1 MYCGE P47473 RIBONUCLEOSIDE-DIPHOSPHATE R  ( 721)  106  33        3
SW:YAY1 SCHPO Q10209 HYPOTHETICAL 44.8 KDA PROTEI  ( 392)   99  31      5.1
SW:PAFA CAVPO P70683 PLATELET-ACTIVATING FACTOR A  ( 436)   96  30      8.8
SW:KC47 ORYSA P29620 CDC2+/CDC28-RELATED PROTEIN   ( 424)   95  30      9.9

other sequences

E(86391)
Figure 4.13
Output from a search of the SWISS-
PROT protein sequence database
using FASTA with PI3-kinase p110a
as the query sequence. Thirty-six
hits were obtained. Eight of these
have a nonsignificant score (below
the arrow). One of these,
ribonucleoside-diphosphate
reductase, was also found by BLAST.
The E-values in FASTA are different
from those in BLAST.

Scrapie in sheep, bovine spongiform encephalopathy
(BSE) in cattle, and Creutzfeldt–Jakob disease (CJD),
fatal familial insomnia, and kuru in humans are rare,
fatal, transmissible, neurodegenerative diseases known
generally as the transmissible spongiform encephalo-
pathies, after the characteristic damage they do to the
brain. They can arise sporadically, or as a result of the
inheritance of a faulty gene, or can be transmitted by
ingestion of infected material. Kuru, which was rela-
tively common in people in the Eastern Highlands of
Papua New Guinea in the 1950s and 1960s, was found to
be caused by the ritual custom of eating the brains of
dead relatives, while a variant form of CJD (vCJD), which
has appeared only recently, is thought to be caused by
people having eaten BSE-infected meat products.

The causal agent in the spongiform encephalopathies
is believed to be an infectious protein, a prion, rather
than a DNA or RNA virus. Prions are normal proteins
that have the property of being able to convert into an

alternative stable conforma-
tion, which is associated with
disease, although the mecha-
nism by which prions cause
cell death and neurodegener-
ation is not yet fully under-
stood. The normal form of
the prion protein (PrPc) is a
monomer with a struc-
ture consisting mainly of
a-helices, and is mainly
found at the cell surface,
whereas the abnormal form
(PrPSc), is mainly b-sheet and
has a tendency to aggregate
into clumps. PrPSc itself
appears to be able to induce the conversion of PrPc into
PrPSc. The prion protein is an example of a metastable
protein, where the same or similar sequences can exist
in different stable structural forms.

Box 4.6 Prions: Proteins that can exist in different conformations

Figure B4.4
A ribbon representation
of the normal form of
prion protein, PrPc.
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these is shown aligned with the query sequence in the figure. When the filter was
turned off, the number of hits rose to 220, most of which were not homologous. 

Sometimes one may wish to study low-complexity regions in particular. For
example, in the case of the tubulin and actin gene clusters it is thought that ampli-
fication of the protein-coding genes may be related to these regions. There are
options in BLAST that allow you to select these regions for study.

Different databases can be used to solve particular problems
To some extent, the choice of which database to search will depend on which
databases are provided by the site that runs the search algorithms. Most sites
contain a selection of the most popular databases, such as GenBank for DNA
sequences, SWISS-PROT for annotated protein sequences, TrEMBL, a translated
EMBL DNA-sequence database, and PDB, a database of protein structures with
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Figure 4.14
Dealing with low-complexity
regions of sequence. (A) The low-
complexity regions are clearly visible
on a self-comparison dot-plot of  a
human prion precursor protein
(PrP). They are indicated by the
black diagonal lines on either side of
the identity diagonal and by the
ordered dark-shaded regions. (B)
Results of a database search with
PrP from which sequences of low
complexity have been filtered out by
application of the program SEG,
which marks them with Xs (top row
of the alignment).
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>sp[P04156]PRIO HUMAN  MAJOR PRION PROTEIN PRECURSOR (PRP) (PRP27-30) (PRP33-35C) (ASCR)

Score =  312 bits (792), Expect = 5e-85
Identities = 154/236 (65%), Positives = 154/236 (65%)

Query: 64  MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYXXXXXXXXXXX 123
           MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRY
Sbjct: 1   MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYPPQGGGGWGQP 60

Query: 124 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTHSQWNKPSKPKTNMKHMXXXXXXXX 183
           XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTHSQWNKPSKPKTNMKHM
Sbjct: 1   HGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQGGGTHSQWNKPSKPKTNMKHMAGAAAAGA 120

Query: 184 XXXXXXXXXXXXXXXRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDEYSNQNNFVHDCV 243
                          RPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDEYSNQNNFVHDCV
Sbjct: 121 VVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDEYSNQNNFVHDCV 180

Query: 244 NITIKQHXXXXXXXXXXXXXXDVKMMERVVEQMCITQYERESQAYYQRGSSMVLFS 299
           NITIKQH              DVKMMERVVEQMCITQYERESQAYYQRGSSMVLFS
Sbjct: 181 NITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQRGSSMVLFS 236

Length = 253
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sequences (see Chapter 3). Some sites also provide access to expressed sequence
tag (EST) databases, such as dbEST, and genome-sequence databases from some
of the fully sequenced genomes

In general, a first pass should be run on a generic protein- or nucleic acid sequence
database. You can also carry out a search on the PDB to see if your query sequence has
a homolog with known structure. More specific searches can be performed to answer
particular questions. For example, if it is suspected that the query sequence belongs
to a family of immune-system proteins, the search could be carried out on the Kabat
database, which contains sequences of immunological interest. If the sequence orig-
inates from a mouse, you may want to know if a homolog exists in the rat, Drosophila,
or human genomes, and should therefore search the databases containing sequences
from the appropriate species. You also need to check that you are searching a database
that is up to date; sites such as those at NCBI and EBI are regularly updated.

If no match is found to the query sequence, it does not necessarily mean that there
is no homolog in the databases, just that the similarity is too weak to be picked up
by existing techniques. Techniques are continually being improved and the amount
of sequence data continues to increase; you should therefore periodically resubmit
your sequence.

Many other sequence-related databases can usefully be searched and provide addi-
tional information. For example the Sequences Annotated by Structure (SAS) server
is a collection of programs and data that can help identify a protein sequence by
using structural features that are the result of sequence searches of annotated PDB
sequences. Residues in the sequences of known structures are colored according to
selected structural properties, such as residue similarity, and are displayed using a
Web browser. SAS will perform a FASTA alignment of the query sequence against
sequences in the PDB database and return a multiple alignment of all hits. Each of
the hits is annotated with structural and functional features. That information can
be used to annotate the unknown protein sequence. Further links are provided to the
separate PDB files. Databases such as Clusters of Orthologous Groups (COGs) and
UniGene can help in gene discovery, gene-mapping projects, and large-scale expres-
sion analysis. Sites such as Ensembl provide convenient access for gene searches in
many different annotated eukaryotic genomes and useful associated information.

4.8 Protein Sequence Motifs or Patterns
If the similarity between an unknown sequence and a sequence of known function
is limited to a few critical residues, then standard alignment searches using BLAST
or FASTA against general sequence databases such as GenBank, dbEST, or SWISS-
PROT will fail to pick up this relationship. What is required is a method of searching
for the occurrence of short sequence patterns, or motifs (see Flow Diagram 4.4). A
motif, in general, is any conserved element of a sequence alignment, whether
composed of a short sequence of contiguous residues or a more distributed
pattern. Functionally related sequences will share similar distribution patterns of
critical functional residues that are not necessarily contiguous. For example,
conserved amino acid residues comprising an enzyme’s active site may be distant
from each other in the protein sequence but will still occur in a recognizable
pattern because of the constraints imposed by the requirement for them to come
together in a particular spatial configuration to form the active site in the three-
dimensional structure. 

There are three different types of activity associated with pattern searching. A query
sequence can be searched for patterns (from a patterns database) that could help
suggest functional activity. A sequence database can be searched with a specific
pattern, for example to determine how many gene products in a genome have a
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specific function. Lastly, we may want to define a new pattern specific for a selected
set of sequences.

In searches with new sequences, the whole database is searched and expert knowl-
edge, such as the known function of a homologous protein, is then used to extrap-
olate the function of the new sequence. In contrast, when new patterns and motifs
are used to search a database, the expert knowledge is needed right at the begin-
ning to construct the motifs that are intended to identify the specific function or
any other physicochemical property.

Pattern and motif searches are mostly used with protein sequences rather than
nucleotide sequences, as the greater number of different amino acids makes
protein patterns more efficient in discriminating truly significant hits. In addition,
many of the patterns identify biological function, which is mediated at the protein
level. There are, however, particular problems in DNA- and genome-sequence
analysis where searching for motifs is useful (see Chapters 9 and 10).

Creation of pattern databases requires expert knowledge
The construction of patterns or motifs is of prime importance in characterizing a
protein family, and much time and energy has gone into constructing pattern and
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looking for 
similarity 

assessing 
similarity 

scoring 
measures 

pairwise 
alignment 

searching 
databases 

local 
alignment 

global 
alignment 

gaps in 
alignment 

programs for 
searching databases 

using patterns to 
find function 

specific pattern 
databases 

scoring 
the match 

multiple 
alignment 

PRODUCING AND ANALYZING
SEQUENCE ALIGNMENTSFlow Diagram 4.4

The key concepts introduced in this
and the following two sections are
that sequence patterns can be very
useful in identifying protein
function and that special pattern
databases and search programs
have been designed to assist in
identifying patterns in a query
sequence.
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motif databases that one can search with an unknown sequence. One of the most
important steps is careful selection of the sequences used to define the pattern. If
these do not all share the same biological properties for which you wish to define a
pattern, you will almost certainly encounter problems later. Thus, experimental
evidence of function or clear homology is necessary for all the sequences used.

Some pattern databases have been constructed by hand by inspection of large
amounts of data. This is very time consuming, but necessary, as the task of
extracting a pattern is a complex one, depending on expert knowledge of the struc-
tures and/or functions of the sequences involved. For example, analysis of the X-ray
structure of a protein can delineate the functional residues involved in an enzyme
active site or a regulatory binding site, and an initial pattern can be generated. This
pattern can then be refined by multiple alignment of sequences of other members
of the same structural or functional protein family. If no structural data are avail-
able, multiple sequence alignment of short regions of similarity, assessed alone or
in conjunction with experimental data on biochemical and cellular function, can
be used to extract a pattern.

The simplest method of constructing a pattern or motif is the consensus method,
in which the most similar regions in a global multiple sequence alignment are used
to construct a pattern. Those positions in the alignment that are all occupied by the
same residue (or a limited subset of residues) are used to define the pattern at these
positions, by specifying just the allowed residues at each position. More sophisti-
cated patterns can be generated using scoring tables to assess the similarity of the
matched amino acids. In this case, instead of just defining the pattern as requiring,
for example, a glutamic or aspartic acid at a given position, different residues at this
position have associated scores.

The BLOCKS database contains automatically compiled short
blocks of conserved multiply aligned protein sequences
Sequence motifs can also be defined automatically from the multiple alignment of
a specified set of sequences. Blocks are multiple alignments of ungapped segments
of protein sequence corresponding to the most highly conserved regions of the
proteins. The blocks for the BLOCKS database are compiled automatically by
looking for the most highly conserved regions in groups of proteins documented in
the PROSITE database. The blocks are then calibrated against the SWISS-PROT
database to obtain a measure of the chance distribution of matches. The calibrated
blocks make up the BLOCKS database, against which a new sequence can be
searched. Both protein and DNA sequences (automatically translated into a protein
sequence) can be submitted to search the BLOCKS database. The BLOCKS Web site,
in addition to providing the BLOCKS database, will align your set of sequences and
automatically design a block with which you can search SWISS-PROT. Generating
blocks from your set of sequences and searching with them can find sequences that
have very weak sequence similarity but are, nevertheless, functionally related.
Generating patterns and/or blocks is also a useful method to search for hints to
function within an unknown sequence.

Another program that will analyze a set of sequences for similarities and produce a
motif for each pattern it discovers is MEME (Multiple Expectation maximization
for Motif Elicitation). MEME characterizes motifs as position-dependent proba-
bility matrices. The probability of each possible letter occurring at each possible
position in the pattern is given in the matrices. Single MEME motifs do not contain
gaps and therefore patterns with gaps will be divided by the program into two or
more separate motifs.

The program takes the group of DNA or protein sequences provided by the user
and creates a number of motifs. The user can choose the number of motifs that
MEME will produce. MEME uses statistical techniques to choose the best width,
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number of occurrences, and description for each motif (see Section 6.6). The
motifs found by MEME can also be given in BLOCKS format to allow further
analysis as described below.

If we submit the PI3-kinase p110a sequence and four homologs to the BLOCKS
program it creates six separate blocks of high similarity. Figure 4.15A illustrates the
block that contains residues important in PI3-kinase catalysis and ATP binding.
Letters that are large and occupy the whole position represent identities in the
multiple sequence alignment (see Section 6.1 for further details on this sequence
representation). The SCAGY, DRH, and DFG motifs that are the markers for PI3-
kinases are identified by the BLOCKS program and form part of the conserved
regions. If more distant sequences are submitted, fewer residues will form the
highly conserved regions with the largest residues, as shown in Figure 4.15B where
31 sequences were aligned. 

The six blocks can now be submitted to a database search using the program LAMA
(Local Alignment of Multiple Alignments), which compares multiple alignments of
protein sequences with each other. The program searches the BLOCKS database,
the PRINTS database (see below), or your own target data, to see if similar blocks or
patterns already exist. This is a sensitive search technique, detecting weak sequence
relationships between protein families. The LAMA search of the BLOCKS database
has identified seven blocks, of which three are significant: these are PI3/4-kinase
signatures.

The blocks can also be submitted to a MAST (Motif Alignment and Search Tool)
search of one of the online nucleotide- or protein-sequence databases. MAST is a
program that searches for motifs—highly conserved regions or blocks. Here we
submit the six PI3-kinase blocks to a MAST search of SWISS-PROT (to use this
program you need to have an e-mail address to receive the results). Twenty-four
sequences were found with significant scores, with the PI3-kinase sequences all
scoring more highly than the PI4-kinases.

The same set of PI3-kinase p110a sequences was submitted to the MEME motif-
generating program. The number of motifs to be generated was set to six (the same
number found by BLOCKS). The top-scoring motif (see Figure 4.16A) describes
similar residues as the BLOCK motif described above (see Figure 4.15). The MEME
motif starts at the end of the SCAGY motif (Y), contains the active site D, N, and DFG
residues, and extends a bit further than the BLOCKS motif. A nice feature of the
MEME program is that it generates a figure containing a summary of all motifs (see
Figure 4.16B). This illustrates where the motifs are located with respect to each other
within all the sequences (only three are shown for clarity). Submitting the MEME
motifs to a search through SWISS-PROT finds 21 matches. Matches with significant
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Figure 4.15
Residues that contribute to one of
the blocks returned by the BLOCKS
database after submission of the
PI3-kinase p100a sequence.
(A) A block for four homologous
sequences, and (B) for 31
homologous sequences. These
representations are called logos, and
are computed using a position-
specific scoring matrix. This block
contains the active-site amino acids
and the DFG kinase motif. The size
of the letters indicates the level of
conservation and the colors indicate
physicochemical properties of the
residues: acidic, red; basic, blue;
small and polar, white; asparagine
and glutamine, green; sulfur-
containing amino acids, yellow;
hydrophobic, black; proline, purple;
glycine, gray; aromatic, orange. 
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scores are all PI3-kinases and PI4-kinases. The significant scores usually match
most, if not all, of the motifs submitted. However, lower scores can be informative as
well; distant relationships can be found if only a subset of the motifs matches. 

For example, a search using the motifs of PI3-kinases finds the DNA-dependent
protein kinase catalytic subunit (PRKD), which has shared kinase activity with the
PI3-kinases. Four of the six motifs are matched (Figure 4.16C) and some are
repeated within the DNA-dependent kinase. Simple sequence-alignment searches
through the sequence databases may not pick up this type of relationship,
although in this case a blastp search with p110a through SWISS-PROT matches
PRKD with a score that would be considered significant, and a search with FASTA
gives a borderline score.

4.9 Searching Using Motifs and Patterns

The PROSITE database can be searched for protein motifs 
and patterns
The PROSITE database is a compilation of motifs and patterns extracted from
protein sequences and compiled by inspection of protein families. This database
can be searched with an unknown protein sequence to obtain a list of hits to
possible patterns or protein signatures. It is also possible to create your own pattern
in the manner of a PROSITE pattern to search another sequence database. The
syntax of a PROSITE pattern consists of amino acid residues interspersed with char-
acters that denote the rules for the pattern, such as distances between residues, and
so on (see Table 4.2). 

For example, a pattern for the kinase active site, starting from the conserved DRH
and making use of the very conserved DFG region, can be created manually from
the 31 sequences used in the BLOCKS example.

D-R-[KH]-X-[DE]-N-[IL]-[MILV](2)-X(3)-G-X-[LI]-X(3)-D-F-G

Inputting this pattern into the ScanProsite Web page and running it against the
SWISS-PROT database of protein sequences obtained 92 hits; all were PI3
(PI4)-kinases or protein kinases. If, on the other hand, we submit the catalytic
domain of the PI3-kinase p110a sequence to be scanned through the PROSITE data-
base to see if there are any existing patterns, the search retrieves two signature
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YCVATYVLGIGDRHSDNIMIRESGQLFHIDFGHFLGNFKTKFGINRERVP
YCVASYVLGIGDRHSDNIMVKKTGQLFHIDFGHILGNFKSKFGIKRERVP
YCVATFVLGIGDRHNDNIMITETGNLFHIDFGHILGNYKSFLGINKERVP
YCVATFILGIGDRHNSNIMVKDDGQLFHIDFGHFLDHKKKKFGYKRERVP
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Figure 4.16
MEME generates motifs. (A) The
top-scoring patterns are color coded
according to the physicochemical
properties of the amino acid side
chains: dark blue is used for the
residues ACFILVM; green for NQST;
magenta to indicate DE; red color is
used for residues KR; pink for H;
orange for G; yellow for P; and light
blue shows Y. (B) Summary motif
information where each motif is
represented by a colored block. The
number in a block gives the scored
position of the motif. The light blue
block, number 1, contains the motif
described in (A). The combined p-
value of a sequence measures the
strength of the match of the
sequence to all the motifs. (C)
Illustration of how lower-scoring
motif matches can still find
interesting and true homologs. The
distances between the motif blocks
are not representative. 
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sequences for PI3- and PI4-kinases. These give us a much more specific search
signature for the PI3/4-kinase family, but do not tell us, for example, that this kinase
family is also similar to the protein kinase family. The patterns for the signatures are:

(1) [LIVMFAC]-K-X(1,3)-[DEA]-[DE]-[LIVMC]-R-Q-[DE]-X(4)-Q

(2) [GS]-X-[AV]-X(3)-[LIVM]-X(2)-[FYH]-[LIVM](2)-X-[LIVMF]-X- D-R-H-X(2)-N

The second signature pattern contains at its right-hand end (underlined) the start
of the kinase pattern we created above to scan SWISS-PROT. Pattern 1 and the rest
of pattern 2 contain conserved regions within the PI3/4-kinase families that are
amino-terminal to our created pattern.

The pattern-based program PHI-BLAST searches for both
homology and matching motifs
The BLAST set of programs also has a version that uses motifs in the query
sequence as a pattern. PHI-BLAST (Pattern Hit Initiated BLAST) uses the PROSITE
pattern syntax shown in Table 4.2 to describe the query protein motif. The specified
pattern need not be in the PROSITE database and can be user generated.
PHI-BLAST looks for sequences that not only contain the query-specific pattern but
are also homologous to the query sequence near the designated pattern. Because
PHI-BLAST uses homology as well as motif matching, it generally filters out those
sequences where the pattern may have occurred at random. On the NCBI Web
server, PHI-BLAST is integrated with PSI-BLAST, enabling one or more subsequent
PSI-BLAST database searches using the PHI-BLAST results.

Patterns can be generated from multiple sequences using PRATT
The program PRATT can be used to extract patterns conserved in sets of unaligned
protein sequences. The patterns are described using the PROSITE syntax. The
power of PRATT is that it requires no knowledge of possible existing patterns in a set
of sequences. Figure 4.17 shows the results for the PI3-kinase p110a family. The
pattern illustrated in the figure contains the DFG motif which is highlighted in the
second PROSITE pattern. 
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Code

One-letter
codes

-

X

[]

{}

(n)  n =
number

(n,m)

<

>

Example explanation

Any amino acid allowed in
second place

L or I allowed in second place

R or K not allowed in sixth place

F repeated three times

One to three positions with any
amino acids (X) allowed

Examples

G-L-L-M-S-A-D-F-F-F

G-L-L-M-S-A-D-F-F-F

G-X-L-M-S-A-D-F-F-F

G-[LI]-L-M-S-A-D-F-F-F

G-[LI]-L-M-S-A-{RK}-F-F-F

G-[LI]-L-M-S-A-{RK}-F(3)

G-[LI]-L-M-S-A-{RK}-X(1,3)

Explanation

Standard amino acids

All positions must be separated by -

Any amino acid

Two or more possible amino acids

Disallowed amino acids

Repetition can be indicated by a number
in brackets after the amino acid

A range: only allowed with X

Pattern at amino-terminal of sequence

Pattern at carboxy-terminal of sequence

Table 4.2 
The various codes used to define a
PROSITE protein pattern for a
search through a sequence
database.
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The PRINTS database consists of fingerprints representing sets
of conserved motifs that describe a protein family
The PRINTS database is a next-generation pattern database consisting of fingerprints
representing sets of conserved motifs that describe a protein family. The fingerprint is
used to predict the occurrence of similar motifs, either in an individual sequence or in
a database. The fingerprints were refined by iterative scanning of the OWL composite
sequence database: a composite, nonredundant database assembled from sources
including SWISS-PROT, sequences extracted from NBRF/PIR protein sequence data-
base, translated sequences from GenBank, and the PDB structural database. A
composite, or multiple-motif, fingerprint contains a number of aligned motifs taken
from different parts of a multiple alignment. True family members are then easy to
identify by virtue of possessing all the elements of the fingerprint; possession of only
part of the fingerprint may identify subfamily members. A search of the PRINTS data-
base with our PI3-kinase sequence found no statistically significant results.

The Pfam database defines profiles of protein families
Pfam is a collection of protein families described in a more complex way than is
allowed by PROSITE’s pattern syntax. It contains a large collection of multiple
sequence alignments of protein domains or conserved regions. Hidden Markov
model (HMM)-based profiles (see Section 6.2) are used to represent these Pfam
families and to construct their multiple alignments. Searching the Pfam database
involves scanning the query sequence against each of these HMM profiles. Using
these methods, a new protein can often be assigned to a protein family even if the
sequence homology is weak. Pfam includes a high proportion of extracellular
protein domains. In contrast, the PROSITE collection emphasizes domains in intra-
cellular proteins—proteins involved in signal transduction, DNA repair, cell-cycle
regulation, and apoptosis—although there is some overlap. A search of the Pfam
database allows you to look at multiple alignments of the matched family, view
protein domain organization (see Figure 4.6), follow links to other databases by
clicking on the boxed areas, and view known protein structures.

A search in Pfam using the sequence of the PI3-kinase p110a catalytic domain will
find the PI3/4-kinase family. You can then retrieve the multiple alignment that has
been used to define the family and obtain a diagram of the domain structure of the
whole family. (Clicking on a domain will call up another Web page of detailed infor-
mation.) Figure 4.6 shows a snapshot of the interactive diagram; the yellow boxed
area is the catalytic domain upon which the search was based.

Only the most commonly used pattern and profile databases have been described
here; links to others are given on the Publisher’s Web page. 

4.10 Patterns and Protein Function

Searches can be made for particular functional sites in proteins
There are techniques other than simple sequence comparison that can identify
functional sites in protein sequences. In contrast to the methods discussed above,
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PRATT output : 

   p110-a:   qlfhi DFGHFLDhkKkkFGykRERVPFVLTqDFLiViskGaQE ctktr

   p110-b:   qlfhi DFGHILGnfKskFGikRERVPFILTyDFIhViqqGkTG ntekf

   p110-d:   qlfhi DFGHFLGnfKtkFGinRERVPFILTyDFVhViqqGkTN nsekf

   p110-g:   nlfhi DFGHILGnyKsfLGinKERVPFVLTpDFLfVm--GtSG kktsp

D-F-G-H-[FI]-L-[DG]-x(2)-K-x(2)-[FL]-G-x(2)-[KR]-E-R-V-P-F-[IV]-L-T-x-D-F-[ILV]-x-V-x(1,3)-G-x-[QST]-[EGN]

Figure 4.17
PRATT pattern search. Sequences of
the four types of PI3-kinase
sequences (a, b, g, and d) have been
submitted to PRATT to
automatically create PROSITE-like
patterns from a multiple alignment.
This figure shows the alignment
block and a PRATT-generated
PROSITE pattern of the region that
contains the DFG motif (shaded in
green and boxed in red).
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which tend to cover a very wide range of biological functions, these techniques are
usually made available in programs which predict only one specific functional site.

For example, signals from the environment are transmitted to the inside of the cell
where they induce biochemical reaction cascades called signal transduction path-
ways. These result in responses such as cell division, proliferation, and differentia-
tion and, if not properly regulated, cancer. During signal transduction, cellular
components are chemically modified, often transiently. One of the key modifica-
tions used in these pathways is the addition and removal of phosphate groups. Sites
susceptible to such modification can be predicted by the NetPhos server, which
uses neural network methods to predict serine, threonine, and tyrosine phosphory-
lation sites in eukaryotic proteins. PROSITE also has patterns describing sites for
phosphorylation and other posttranslational modifications, but specific programs
such as NetPhos are expected to be more accurate.

Sequence comparison is not the only way of analyzing protein
sequences
Apart from sequence comparison and alignment methods, there are various other
ways of analyzing protein sequences to detect possible functional features. These
techniques can be useful either when you have found a homolog in a database
search and want to analyze it further, or when you have failed to find any similar
sequence homolog and have no other avenue open. The physicochemical proper-
ties of amino acids, such as polarity, can be useful indicators of structural and func-
tional features (see Chapter 2). There are programs available on the Web that plot
hydrophobicity profiles, the percentage of residues predicted to be buried, some
secondary-structure prediction (see Chapters 11 and 12), and percentage accessi-
bility. ProtScale is one easy-to-use Web site that allows many of the above protein
properties to be plotted.

Hydrophobic cluster analysis (HCA) is a protein-sequence comparison method
based on a-helical representations of the sequences, where the size, shape, and
orientation of the clusters of hydrophobic residues are compared. Hydrophobic
cluster analysis can be useful for comparing possible functions of proteins of very
low sequence similarity. It can also be used to align protein sequences. The patterns
generated by HCA via the online tool drawhca can be compared with any other
sequences one is interested in. It has been suggested that the effectiveness of HCA
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Figure 4.18
(A) Hydrophobic cluster analysis
(HCA) of the prion protein using
drawhca. Hydrophobic residues are
in green, acidic in red, and basic in
blue. A star indicates proline, a
diamond glycine, an open box
threonine, and a box with a dot
serine. The same types of residues
tend to cluster together, forming
hydrophobic or charged patches.
One such patch is highlighted in
magenta. (B) X-ray structure of the
same protein, with the same
residues highlighted in magenta. As
shown by the X-ray structure, the
patch found by HCA forms a
hydrophobic core in the interior of
the protein.
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for comparison originates from its ability to focus on the residues forming the
hydrophobic cores of globular proteins. Figure 4.18 shows the prion protein
patterns that were generated using the program drawhca. 

Information about the possible location of proteins in the cell can sometimes be
obtained by sequence analysis. Membrane proteins and proteins destined for
organelles such as the endoplasmic reticulum and nucleus contain intrinsic
sequence motifs that are involved in their localization. Most secreted proteins, for
example and other proteins that enter the endoplasmic reticulum protein-sorting
pathway, contain sequences known as signal sequences when they are newly synthe-
sized (see Box 4.7). The PSORT group of programs predicts the presence of signal
sequences by looking for a basic region at the amino-terminal end of the protein
sequence followed by a hydrophobic region. A score is calculated on the basis of the
length of the hydrophobic region, its peak value, and the net charge of the amino-
terminal region. A large positive score means that there is a high possibility that the
protein contains a signal sequence. More methods of analyzing protein sequences to
deduce structure and function are described in Chapters 11 to 14. 

Summary
The comparison of different DNA or protein sequences to detect sequence simi-
larity and evolutionary homology is carried out by a process known as sequence
alignment. This involves lining up two or more sequences in such a way that the
similarities between them are optimized, and then measuring the degree of
matching. Alignment is used to find known genes or proteins with sequence simi-
larity to a novel uncharacterized sequence, and forms the basis of programs such as
BLAST and FASTA that are used to search sequence databases. Similarities in
sequence can help make predictions about a protein’s structure and function.
Sequences of proteins or DNAs from different organisms can be compared to
construct phylogenetic trees, which trace the evolutionary relationships between
species or within a family of proteins.

The degree of matching in an alignment is measured by giving the alignment a
numerical score, which can be arrived at in several different ways. The simplest
scoring method is percentage identity, which counts only the number of matched
identical residues, but this relatively crude score will not pick up sequences that are
only distantly related. Other scoring methods for protein sequences take into
account the likelihood that a given type of amino acid will be substituted for another
during evolution, and these methods give pairs of aligned amino acids numerical
scores which are summed to obtain a score for the alignment. The probabilities are
obtained from reference substitution matrices, which have been compiled from the

Summary
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Proteins are all synthesized on ribosomes in the cytosol
but, in eukaryotic cells in particular, have numerous
final destinations: the cell membrane, particular
organelles, or secretion from the cell. Intrinsic localiza-
tion signals in the protein itself help to direct it to its
destination and these can often be detected by their
sequence characteristics. Proteins sorted through the
endoplasmic reticulum (ER) for secretion or delivery to
the cell membrane and some other organelles usually

have a characteristic signal sequence at the amino-
terminal end. This interacts with transport machinery
in the ER membrane, which delivers the protein into the
ER membrane or into the lumen. The signal sequence is
often subsequently removed. Signal sequences are
characterized by an amino-terminal basic region and a
central hydrophobic region, and these features are used
to predict their presence.

Box 4.7 Protein localization signals
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analysis of alignments of known homologous proteins. Because insertions or dele-
tions often occur as two sequences diverge during evolution, gaps must usually be
inserted in either sequence to maximize matching, and scoring schemes exact a
penalty for each gap. As there are 20 amino acids, compared to only four different
nucleotides, it is easier to detect homology in alignments of protein sequences than
in nucleic acid sequences since chance matches are less likely.

There are several different types of alignment. Global alignments estimate the
similarity over the whole sequence, whereas local alignments look for short regions
of similarity. Local alignments are particularly useful when comparing multi-
domain proteins, which may have only one domain in common. Multiple align-
ments compare a set of similar sequences simultaneously and are more accurate
and more powerful than pairwise alignments in detecting proteins with only
distant homology to each other.

Algorithms that automate the alignment and scoring process have been devised
and are incorporated into various programs. Once an alignment has been scored,
the significance of the score has to be tested to determine the likelihood of its
arising by chance. Factors such as the length of the alignment and the total number
of sequences in the database are taken into account. In database search programs
such as BLAST and FASTA, potential matches are evaluated automatically and given
a significance score, the E-value.

Databases may also be searched to find proteins of similar structure or function by
looking for conserved short sequence motifs or discontinuous patterns of residues.
These are likely to relate to a functional feature, such as an active site, a binding site,
or to structural features. When sufficient members of a protein family have been
sequenced, a characteristic profile of the family, summarizing the most typical
sequence features, can be derived and can be used to search for additional family
members. Database searches can also be widened to include structural informa-
tion, where available. This is useful for finding homologs which have diverged so
much in sequence that their sequence similarity can no longer be detected, but
which retain the same overall structure.
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PAIRWISE SEQUENCE ALIGNMENT
AND DATABASE SEARCHING

When you have read Chapter 5, you should be able to: 

Compare and contrast different scoring schemes.

Summarize the techniques for obtaining the best-scoring alignments of a given type.

Describe ways to reduce the computational resources required.

Speed up database searches using index techniques.

Evaluate approximations used in common database search programs.

Summarize techniques for aligning DNA and protein sequences together.

Identify sequences of low complexity.

Identify significant alignments on the basis of their score.

Summarize the techniques for alignments involving complete genome sequences.

The identification of homologous sequences and their optimal alignment is one of
the most fundamental tasks in bioinformatics. As will be seen in many other chap-
ters of this book, there are very few topics in bioinformatics which do not at some
stage involve these techniques. A large part of Chapter 4 was devoted to an intro-
duction to some practical aspects of sequence comparison and alignment. In this
chapter we will focus in considerable detail on these methods and the science that
lies behind them, but will restrict our attention solely to methods of aligning two
sequences. The problems of obtaining multiple alignments and profiles and of
identifying patterns will be discussed in Chapter 6.

Given two sequences, and allowing gaps to be inserted as was described in Section
4.4, it is possible to construct a very large number of alignments. Of these, there will
be an optimal alignment, which in the ideal case perfectly identifies the true equiv-
alences between the sequences. However, there will be many alternative align-
ments with varying degrees of error that could potentially be seriously misleading.
Furthermore, the fact that an alignment can be constructed for any two sequences,
even ones with no meaningful equivalences, has the potential to be even more
misleading. Therefore, all useful methods of sequence alignment must not only
generate alignments but also be able to compare them in a meaningful way and to
provide an assessment of their significance.

Both the comparison of alignments and the assessment of their significance require
a method of scoring. As discussed in Chapter 4, by considering the evolutionary
processes that are responsible for sequence divergence it is possible to find ways of
including their salient features in an alignment scoring system. If the scoring

5
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scheme is accurate and appropriate, all meaningful alignments should have
optimal scores, i.e., they will have a better score when compared to any alternative.
In Section 5.1 some of the best scoring schemes will be presented.

The number of alternative alignments is so great, however, that efficient methods
are required to determine those with optimal scores. Fortunately, algorithms have
been derived that can be guaranteed to identify the optimal alignment between two
sequences for a given scoring scheme. These methods are described in detail in
Section 5.2, although it should be noted that the emphasis is mostly on the scien-
tific rather than the computer science aspects. As long as only single proteins or
genes, or small segments of genomes, are aligned, these methods can be applied
with ease on today’s computers. When searching for alignments of a query
sequence with a whole database of sequences it is usual practice to use more
approximate methods that speed up the search. These are described in Section 5.3.

Finding the best-scoring alignment between two sequences does not guarantee the
alignment has any scientific validity. Ways must be found to discriminate between
fortuitously good alignments and those due to a real evolutionary relationship.
Section 5.4 presents some of the concepts behind the theory of assessing the statis-
tical significance of alignment scores.

The large number of complete genome sequences has led to increased interest in
aligning very long sequences such as whole genomes and chromosomes. As
described in Section 5.5, these applications require a number of approximations
and techniques to increase the speed and reduce the storage requirements. In
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addition, the presence of large-scale rearrangements in these sequences has
required the development of new algorithms.

5.1 Substitution Matrices and Scoring
As discussed in Chapter 4, the aim of an alignment score is to provide a scale to
measure the degree of similarity (or difference) between two sequences and thus
make it possible to quickly distinguish among the many subtly different alignments
that can be generated for any two sequences. Scoring schemes contain two sepa-
rate elements: the first assigns a value to a pair of aligned residues, while the second
deals with the presence of insertions or deletions (indels) in one sequence relative
to the other. For protein sequence alignments, reference substitution matrices (see
Section 4.3) are used to give a score to each pair of aligned residues. Indels necessi-
tate the introduction of gaps in the alignment, which also have to be scored. The
total score S of an alignment is given by summing the scores for individual align-
ment positions. Special scoring techniques that are applicable only to multiple
alignments will be dealt with in Sections 6.1 and 6.4.

One might think that a relatively straightforward way of assessing the probability of
the replacement of one amino acid by another would be to use the minimum
number of nucleotide base changes required to convert between the codons for the
two residues. However, most evolutionary selection occurs at the level of protein
function and thus gives rise to significant bias in the mutations that are accepted.
Therefore the number of base changes required cannot be expected to be a good
measure of the likelihood of substitution. Currently used reference substitution
matrices are based on the frequency of particular amino acid substitutions
observed in multiple alignments that represent the evolutionary divergence of a
given protein. The substitution frequencies obtained thus automatically take
account of evolutionary bias.

Two methods that have been used in deriving substitution matrices from multiple
sequence alignments will be described here. These have provided two sets of
matrices in common use: the PAM and the BLOSUM series. Both these matrices
can be related to a probabilistic model, which will be covered first. The key
concepts involved in deriving scoring schemes for sequence alignments are
outlined in Flow Diagram 5.1. 

Alignment scores attempt to measure the likelihood of a
common evolutionary ancestor
The theoretical background of alignment scoring is based on a simple probabilistic
approach. Two alternative mechanisms could give rise to differences in DNA or
protein sequences: a random model and a nonrandom (evolutionary) model. By
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matrices
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Flow Diagram 5.1
The key concept introduced in this
section is that if alignments of two
sequences are assigned a
quantitative score based on
evolutionary principles then
meaningful comparisons can be
made. Several alternative
approaches have been suggested,
resulting in a number of different
scoring schemes including those
which account for insertions and
deletions.
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generating the probability of occurrence of a particular alignment for each model,
an assessment can be made about which mechanism is more likely to have given
rise to that alignment.

In the random model, there is no such process as evolution; nor are there any struc-
tural or functional processes that place constraints on the sequence and thus cause
similarities. All sequences can be assumed to be random selections from a given
pool of residues, with every position in the sequence totally independent of every
other. Thus for a protein sequence, if the proportion of amino acid type a in the pool
is pa, this fraction will be reproduced in the amino acid composition of the protein.

The nonrandom model, on the other hand, proposes that sequences are related—
in other words, that some kind of evolutionary process has been at work—and
hence that there is a high correlation between aligned residues. The probability of
occurrence of particular residues thus depends not on the pool of available
residues, but on the residue at the equivalent position in the sequence of the
common ancestor; that is, the sequence from which both of the sequences being
aligned have evolved. In this model the probability of finding a particular pair of
residues of types a and b aligned is written qa,b. The actual values of qa,b will depend
on the properties of the evolutionary process.

Suppose that in one position in a sequence alignment, two residues, one type a and
the other type b, are aligned. The random model would give the probability of this
occurrence as papb, a product, as the two residues are seen as independent. The
equivalent value for the nonrandom model would be qa,b. These two models can be
compared by taking the ratios of the probabilities, called the odds ratio, that is
qa,b/papb. If this ratio is greater than 1 (that is, qa,b > papb) the nonrandom model is
more likely to have produced the alignment of these residues. However, a single
model is required that will explain the complete sequence alignment, so all the
individual terms for the pairs of aligned residues must be combined.

In practice, there is often a correlation between adjacent residues in a sequence;
for example, when they are in a hydrophobic stretch of a protein such as a trans-
membrane helix (see Chapter 2). This type of correlation is ignored in both of these
models, so that each position in an alignment will be regarded as independent. In
that case, the odds ratios for the different positions can be multiplied together to
give the odds ratio for the entire alignment:

(EQ5.1)

where the product is over all positions u of the alignment.

It is frequently more practical to deal with sums rather than products, especially
when small numbers are involved. This can easily be arranged by taking logarithms
of the odds ratio to give the log-odds ratio. This ratio can be summed over all posi-
tions of the alignment to give S, the score for the alignment:

(EQ5.2)

where sa,b is the score (that is, the substitution matrix element) associated with the
alignment of residue types a and b. A positive value of sa,b means that the proba-
bility of those two residues being aligned is greater in the nonrandom than in the
random model. The converse is true for negative sa,b values. S is a measure of the
relative likelihood of the whole alignment arising due to the nonrandom model as
compared with the random model. However, as discussed later in this chapter, a
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positive S is not a sufficient test of the alignment’s significance. There will be a
distribution of values of S for a given set of sequences, which can be used to deter-
mine significant scores.

From this discussion one would expect there to be both positive and negative sa,b

values. In practice this is not always the case, because each qa,b/papb term can be
multiplied by a constant. Multiplication by a constant X will result in a term log X
being added to each sa,b. This could result in all sa,b values being positive, for
example. The alignment score S is shifted by Laln log X for an alignment of length
Laln. Similarly, all the sa,b values can be multiplied by a constant. In both cases,
scores of alternative alignments of the same length retain the same relative rela-
tionship to each other. However, local alignments discussed below involve
comparing alignments of different lengths, in which case adding a constant log X to
each sa,b will have an effect on the relative scores.

Note that the link between substitution matrices and the log-odds ratio described by
Equation EQ 5.2 may exist even if the matrix was derived without any reference to this
theory. Firstly, note that the expected score for aligning two residues can be written

(EQ5.3)

If this is negative, and there is at least one positive score, one can in principle
perform the reverse procedure to obtain the qa,b given the sa,b and the pa. The proce-
dure is not entirely straightforward, and interested readers should refer to the
Further Reading at the end of the chapter.

The PAM (MDM) substitution scoring matrices were designed
to trace the evolutionary origins of proteins
As we saw in Section 4.3, one commonly used type of matrix for protein sequences
is the point accepted mutations (PAM) matrix, also known as the mutation data
matrix (MDM), derived by Margaret Dayhoff and colleagues from the analysis of
multiple alignments of families of proteins, including cytochrome c, a- and b-
globin (the protein chains of which hemoglobin is composed), insulin A and B
chains, and ferredoxin.

These raw data are biased by the amino acid composition of the sequences, the
differing rates of mutation in different protein families, and sequence length. The
first step in an attempt to remove this bias is to calculate, for each alignment, the
exposure of each type of amino acid residue to mutation. This is defined as the
compositional fraction of this residue type in the alignment multiplied by the total
number of mutations (of any kind) that have occurred per 100 alignment positions.
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Figure 5.1
The identification of accepted point
mutations in the derivation of the
PAM/MDM amino acid substitution
scoring matrices. (A) Part of an
alignment that might have occurred
in the protein sequence data used to
obtain the Dayhoff PAM matrices.
(B) The phylogenetic tree derived
from this alignment. Note that this
tree hypothesizes the smallest
number of mutations required to
explain the observed sequences, but
does not necessarily represent the
actual evolutionary history. See
Chapters 7 and 8 for further details
on phylogenetic trees. The direction
of some mutations cannot be
resolved due to lack of knowledge of
the oldest ancestral sequence. This
is also the case for the other
ancestral sequences shown, which
are specified here for clarity only. 
(C) The matrix of accepted
substitutions derived from this tree.
Note that all observed mutations
have been assumed to be equally
likely in either direction, and hence
are counted in both directions.
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See below for a description of how the number of mutations is calculated. The value
for each residue type is summed over all the alignments in the data set to give the
total exposure of that residue type. The mutability of a specific residue type a is
defined as the ratio of the total number of mutations in the data that involve residue
a divided by the total exposure of residue a. Usually this is reported relative to
alanine as a standard, and is referred to as the relative mutability, ma. A few
residues have higher mutability than alanine, but more notable are those that are
less likely to change, especially cysteine and tryptophan. The mutability of these
residues is approximately one-fifth that of alanine.

Phylogenetic trees are constructed for each alignment by a method that infers the
most likely ancestral sequence at each internal node and hence postulates all the
mutations that have occurred. The observed substitutions are tabulated in a matrix,
A (accepted point mutation matrix) according to the residue types involved (see
Figure 5.1). It is assumed that a mutation from residue type a to type b was as likely
as a mutation from b to a, so all observed mutations are included in the count for
both directions. Where there is uncertainty as to which mutations have occurred, all
possibilities are treated as equally likely, and fractional mutations are added to the
matrix of accepted substitutions. The matrix element values are written Aa,b.
Dayhoff’s 1978 dataset contained 1572 observed substitutions, but even so, 35 types
of mutations had not been observed, for example tryptophan (W) Æ alanine (A). This
was due to the relatively small dataset of highly similar sequences that was used. 

From this information a mutation probability matrix, M, can be defined. Each
element Ma,b gives the probability that a residue of type b will be replaced by one of
type a after a given period of evolutionary time. The residue b has a likelihood of
mutating that is proportional to mb. The expected fraction of mutations of b into
residue a can be obtained from the accepted point mutation matrix (see Figure 5.1C)
with elements Aa,b. Thus the off-diagonal (a π b) terms of M are given by the formula

(EQ5.4)

where L is a constant that accounts in part for the proportionality constant of mb

and in part for the unspecified evolutionary time period. Note that matrix M is not
symmetrical because of the residue relative mutability mb. The diagonal terms (a =
b) of this matrix, corresponding to no residue change, are

(EQ5.5)

Note that the sum of all off-diagonal elements Ma,b involving mutation from a given
residue b to another type and the element Mb,b equals 1, as required for M to be a
probability matrix.

The percentage of amino acids unchanged in a sequence of average composition
after the evolutionary change represented by the matrix M can be calculated as

(EQ5.6)

where fb is approximately the frequency of residue type b in the average composi-
tion. In fact fb is the total exposure of residue b normalized so that the sum of all
values is 1, and is the residue composition weighted by the sequence mutation rate.
The value of L is selected to determine this percentage of unchanged residues. If L
is chosen to make this sum 99, the matrix represents an evolutionary change of 1
PAM (that is, one accepted mutation per 100 residues).
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The relationship between the
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two sequences. This shows that the
evolutionary model predicts
considerable identity even between
very distantly related sequences.
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According to the Dayhoff model of evolution, to obtain the probability matrices for
higher percentages of accepted mutations, the 1-PAM matrix is multiplied by itself.
This is because the model of evolution proposed was a Markov process (Markov
models are described in detail in Section 10.3). If the 1-PAM matrix is squared, it
gives a 2-PAM matrix; if cubed, a 3-PAM matrix; and so on. These correspond to
evolutionary periods twice and three times as long as the period used to derive the
1-PAM matrix. Similarly, a 250-PAM matrix is obtained by raising the 1-PAM matrix
to the 250th power.

These matrices tell us how many mutations have been accepted, but not the
percentage of residues that have mutated: some may have mutated more than
once, others not at all. For each of these matrices, evaluation of Equation EQ5.6
gives the actual percentage identity to the starting sequence expected after the
period of evolution represented by the matrix. The percentage identity does not
decrease linearly with time in this model (see Figure 5.2). 

So far, a probability matrix has been obtained, but not a scoring matrix. As
discussed earlier, such a score should involve the ratio of probabilities derived from
nonrandom and random models. The matrix M gives the probability of residue b
mutating into residue a if the two sequences are related, that is, if substitution is
nonrandom. It already includes a term for the probability of occurrence of residue
b in the total exposure term used to calculate mb. Thus the only term needed for the
random-model probability is fa, the likelihood of residue a occurring by chance.
Hence, the scoring matrix was originally derived from M by the formula

(EQ5.7)
s
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a b
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Figure 5.3
The PET91 version of the PAM250
substitution matrix. Scores that
would be given to identical matched
residues are in blue; positive scores
for nonidentical matched residues
are in red. The latter represent pairs
of residues for which substitutions
were observed relatively often in the
aligned reference sequences.
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and is in fact a symmetrical matrix. The resultant scoring matrices s are usually
named PAMn, where n is the number of accepted point mutations per 100 residues
in the probability matrix M from which they are derived. The exact scaling factors and
logarithm base are to some degree arbitrary, and are usually chosen to provide integer
scores with a suitable number of significant figures. In Figure 4.4B the PAM120 matrix
is shown, but a scaling factor of 2log2 has been used instead of 10log10, so that the
values are in units of half bits (a bit is a measure of information) (see Appendix A). 

There was a lack of sequence data available when the original work was done to
derive the PAM matrices, and in 1991 the method was applied to a larger dataset,
producing the PET91 matrix that is an updated version of the original PAM250
matrix (see Figure 5.3). This matrix shows considerable differences for aligning two
tryptophan (W) residues, with a score of 15, as opposed to two alanine residues (A),
which score only 2. About one-fifth of the scores for nonidentical residues have
positive scores, considerably more than occurs in PAM120 (see Figure 4.4B),
reflecting the longer evolutionary period represented by the matrix.

The BLOSUM matrices were designed to find conserved
regions of proteins
The BLOCKS database containing large numbers of ungapped multiple local align-
ments of conserved regions of proteins, compiled by Steven and Jorja Henikoff,
became available in 1991 (see Section 4.8). These alignments included distantly
related sequences, in which multiple base substitutions at the same position could
be observed. The BLOCKS database was soon recognized as a resource from which
substitution preferences could be determined, leading to the BLOSUM substitution
score matrices.

There are two contrasts with the data analysis used to obtain the PAM matrices.
First, the BLOCKS alignments used to derive the BLOSUM matrices include
sequences that are much less similar to each other than those used by Dayhoff, but
whose evolutionary homology can be confirmed through intermediate sequences.
In addition, these alignments are analyzed without creating a phylogenetic tree and
are simply compared with each other.

A direct comparison of aligned residues does not model real substitutions, because
in reality the sequences have evolved from a common ancestor and not from each
other. Nevertheless, as the large sequence variation prevents accurate construction
of a tree, there is no alternative. However, if the alignment is correct, then aligned
residues will be related by their evolutionary history and therefore their alignment
will contain useful information about substitution preferences. Another argument
in favor of direct analysis of aligned sequence differences is that often the aim is not
to recreate the evolutionary history, but simply to try to align sequences to test
them for significant similarity. The intention in producing the BLOSUM matrices
was to find scoring schemes that would identify conserved regions of protein
sequences.

One of the key aspects of the analysis of the alignment blocks is to weight the
sequences to try to reduce any bias in the data. This is necessary because the
sequence databases are highly biased toward certain species and types of proteins,
which means there are many very similar sequences present. The weighting
involves clustering the most similar sequences together, and different matrices are
produced according to the threshold C used for this clustering. Sequences are clus-
tered together if they have ≥ C% identity, and the substitution statistics are calcu-
lated only between clusters, not within them. Weights are determined according to
the number of sequences in the cluster. For a cluster of Nseq sequences, each
sequence is assigned a weight of 1/Nseq. The weighting scheme was used to obtain
a series of substitution matrices by varying the value of C, with the matrices named
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as BLOSUM-62, for example, in the case where C = 62%. The sequences of all the
alignments used to obtain the Dayhoff matrices fall in a single cluster for C ≤ 85%,
indicating that they were much more similar to each other than those used for
BLOSUM.

The derivation of substitution data will be illustrated using the example alignment
in Figure 5.4A and the case of C = 50%, which would lead to the BLOSUM-50 matrix.
There are three sequence clusters, with four, two, and one sequences, giving
weights to their constituent sequences of 1/4, 1/2,  and 1, respectively. These weights
are applied to the counts of observed aligned residues to produce the weighted
frequencies fa,b. The observed probability (qa,b) of aligning residues of types a and b
is given by

(EQ5.8)

Note that this ignores which sequence the residue a or b has come from, so that fa,b

and fb,a, and hence qa,b and qb,a, are equal.

Consider the calculation of qa,b for asparagine (N) and glutamine (Q) residues,
which occur only in column 5 in Figure 5.4A. If C = 62%, then all sequence clusters
will contain just one sequence and each sequence will have a weight of 1. (No pair
of sequences share more than 60% identical residues.) In this case there are 21
(7 ¥ 6/2) distinct cluster pairs and thus 21 pairs of aligned residues in any single
alignment column. Counting these, there are 12 QN pairs (= fQ,N), 3 QQ (= fQ,Q), and
6 NN (= fN,N), making a total of 21 pairs. As all sequence weights are 1, they play no
real part in this calculation. As there are five alignment columns, the total number
of aligned pairs (the denominator of Equation EQ5.8) is 105. From these data the
qa,b can be obtained, as listed in Figure 5.4B. Note that if other columns had
contained N and Q, they would also have needed to be included in the calculation. 

Considering the case of C = 50%, the sequences separate into three clusters, so the
total number of cluster pairs at position 5 will be 3 (3 ¥ 2/2). The top, middle, and
bottom clusters can be regarded as being {1/4Q, 3/4N}, {1/2Q, 1/2N}, and {Q}, respec-
tively, at this position. Remembering to consider only pairs between clusters and
not within them, the weighted number of QN aligned pairs is calculated as

(EQ5.9)

where the first term is for Q residues of the top cluster and N residues of the second
cluster; the second term is for N residues of the top cluster and Q residues of the
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Figure 5.5
The BLOSUM-62 substitution
matrix scores in half bits. Scores
that would be given to identical
matched residues are in blue;
positive scores for nonidentical
matched residues are in red. The
latter represent pairs of residues for
which substitutions were observed
relatively often in the aligned
reference sequences.

A
C
G
T

67

–96

–20

-117

–96

100

–79

–20

–20

–79

100

–96

–117

–20

–96

67

A C G T

(A)

A
C
G
T

91

–114

–31

-123

–114

100

–125

–31

–31

–125

100

–114

–123

–31

–114

91

A C G T

(B)

A
C
G
T

100

–123

–28

-109

–123

91

–140

–28

–28

–140

91

–123

–109

–28

–123

100

A C G T

(C)

Figure 5.6
Three nucleotide substitution
scoring matrices, derived by
Chiaromonte and co-workers. Each
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second cluster; the third term is for the Q residue of the third cluster; and the fourth
term is for the N residues of each of the other clusters. The equivalent values for fN,N

and fQ,Q are 3/8 and 7/8, respectively. Dividing these fa,b values by 15 (the weighted
total number of aligned pairs in the data, three for each alignment position) gives
the qa,b values shown in Figure 5.4B. The values for fQ,Q and fN,N differ between C =
62% and C = 50%, because in the latter case most of the N residues are in one
cluster. Note that in the case of C = 40% there is only one cluster, as each sequence
is at least 40% identical to at least one other, so that no intercluster residue pairing
exists to be counted! This example shows how the value of C can affect the derived
substitution matrix in a complicated manner.

The scores for the residue pairs are obtained using the log-odds approach
described earlier. The estimate ea,b of the probability of observing two residues of
type a and b aligned by chance is given (as in deriving PAM matrices) by a weighted
composition of the sequences, with pa being approximately the fraction of all
residues that is type a. The background residue frequencies pa are defined by

(EQ5.10)
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Figure 5.4B shows how these are affected by the choice of C. For identical residues,
ea,a is , whereas for different residues, ea,b is 2papb, because there are two ways in
which one can select two different residues. The BLOSUM matrices are defined
using information measured in bits, so the formula for a general term is

(EQ5.11)

One of the most commonly used of these matrices is BLOSUM-62, which is shown
in Figure 5.5 in units of half bits, obtained by multiplying the sa,b in Equation
EQ5.11 by 2. 

Scoring matrices for nucleotide sequence alignment can be
derived in similar ways
The methods described above for deriving scoring matrices have been illustrated
with examples from protein sequences. The same techniques can be applied to
nucleotides, although often simple scoring schemes such as +5 for a match and –4
for a mismatch are used. With certain exceptions, such as 16S rRNA and repeat
sequences, until quite recently almost all sequences studied were for protein-
coding regions, in which case it is usually advantageous to align the protein
sequences. This has changed with the sequencing of many genomes and the align-
ment of long multigene segments or even whole genomes.

Matrices have been reported that are derived from alignments of human and
mouse genomic segments (see Figure 5.6). The different matrices were derived
from sequence regions with different G+C content, as it is thought that this influ-
ences the substitution preferences. This is to be contrasted with the different PAM
and BLOSUM matrices, which are based on evolutionary distance. The matrices
were derived using a similar approach to that described for the BLOSUM series.
However, there is a difference worth noting when dealing with DNA sequences. Any
alignment of DNA sequences implies a second alignment of the complementary
strand. Thus, every observation of a T/C aligned pair implies in addition an aligned
A/G pair. 
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substitution matrices. (A) Plot for
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distance (Data from Altschul, 1991.)
(B) Plot for the BLOSUM matrices
according to the percentage cut-off
C used in clustering alignment
blocks. (Data from Henikoff and
Henikoff, 1992.)
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The substitution scoring matrix used must be appropriate to
the specific alignment problem
Many other substitution scoring matrices have been derived. Some are based on
alternative ways of analyzing the alignment data, while others differ in the dataset
used. Some are intended for specialized use, such as aligning transmembrane
sequences. The matrices can be compared in three ways, focusing on (1) the rela-
tive patterns of scores for different residue types, (2) the actual score values, or (3)
the practical application of the matrices.

Cluster analysis of the scores can be used to see if matrices distinguish between the
amino acids in different ways. For example, one matrix may be strongly dominated
by residue size, another by polarity. This may improve our understanding of the
evolutionary driving forces or, alternatively, highlight shortcomings in the
sequence data used to derive the matrix, but probably will not assist in determining
the relative usefulness of matrices for constructing alignments.

In common with most proposed amino acid substitution matrices, the PAM and
BLOSUM matrix series include both positive and negative scores, with the average
score being negative. The actual score values can be summarized in two measures
that have some practical use. The relative entropy (H) of the nonrandom model
with respect to the random model is defined as

(EQ5.12)

The scores sa,b are summed, weighted by qa,b, and H is a measure of the average
information available at each alignment position to distinguish between the
nonrandom and random models, and is always positive. (See Appendix A for
further discussion of this measure.) Figure 5.7 shows the variation of H for different
PAM and BLOSUM matrices. The shortest local alignment that can have a signifi-
cant score is in part dependent on the relative entropy of the scoring matrix used,
as discussed later in the chapter. The other measure of score values is the expected
score, defined in Equation EQ5.3, which is usually—but not necessarily—negative,
for example –0.52 for BLOSUM-62. This measure has been found to influence the
variation of alignment scores with alignment length. 

Perhaps the best way to compare matrices is to see how well they perform with real
data. Two different criteria have been used: the ability to discover related sequences
in searching a database, and the accuracy of the individual alignments derived.
There are many potential difficulties in making a meaningful comparison,
including the choice of data to use and the choice of gap penalties. Although some
matrices do perform better at certain tasks, often the differences for the commonly
used matrices are small enough that their importance is unclear, especially as a
poor choice of gap penalties can have a significant effect.

Gaps are scored in a much more heuristic way than
substitutions
A scoring scheme is required for insertions and deletions in alignments, as they are
common evolutionary events. The simplest method is to assign a gap penalty g on
aligning any residue with a gap; that is, a scoring formula g = –E, where E is a posi-
tive number. If the gap is ngap residues long, then this linear gap penalty is
defined as
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(EQ5.13)

Usually, no account is taken of the type of residue aligned with the gap, although
making the value of E vary with residue type would easily do this. The observed
preference for fewer and longer gaps can be modeled by using a higher penalty to
initiate a gap [the gap opening penalty (GOP), designated I] and then a lower
penalty to extend an existing gap [the gap extension penalty (GEP), designated E].
This leads to the affine gap penalty formula

(EQ5.14)

for a gap of ngap residues. Note that an alternative definition can give rise to the
formula

(EQ5.15)

Again, residue preferences can easily be added to this scheme by varying the value of E.

The values of the gap parameters need to be carefully chosen for the specific substi-
tution scoring matrix used. Failure to optimize these parameters can significantly
degrade the performance of the overall scoring scheme. This is illustrated by the
worked example later in the chapter. Some matrices seem less sensitive to gap para-
meterization than others. In practice, as optimization is a lengthy process, most
workers use previously reported optimal combinations. Typical ranges of the
parameters for protein alignment are 7–15 for I and 0.5–2 for E.

5.2 Dynamic Programming Algorithms
For any given pair of sequences, if gaps are allowed there is a large number of possi-
bilities to consider in determining the best-scoring alignment. For example, two
sequences of length 1000 have approximately 10600 different alignments, vastly
more than there are particles in the universe! Given the number and length of
known sequences it would seem impossible to explore all these possibilities.
Nevertheless, a class of algorithms has been introduced that is able to efficiently
explore the full range of alignments under a variety of different constraints. They
are known as dynamic programming algorithms, and efficiently avoid needless
exploration of the majority of alignments that can be shown to be nonoptimal.
There are several variants that produce different kinds of alignments, as outlined in
Flow Diagram 5.2.

The key property of dynamic programming is that the problem can be divided into
many smaller parts. Consider the following alignment:

X1 
. . . Xu Xu+1

. . . Xv Xv+1 
. . . XL

Y1 
. . . Yu Yu+1

. . . Yv Yv+1 
. . . YL

in which the subscripts u, v, etc. refer to alignment positions rather than residue
types, so that Xu, Yv, and so on each correspond to a residue or to a gap. The align-
ment has been divided into three parts, with positions labeled 1 Æ u, u + 1 Æ v, and

g n I n Egap gap( ) = − −

g n I n Egap gap( ) = − − −( )1

g n n Egap gap( ) = −
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v + 1 Æ L. Because scores for the individual positions are added together, the score
of the whole alignment is the sum of the scores of the three parts; that is, their contri-
butions to the score are independent. Thus, the optimal global alignment can be
reduced to the problem of determining the optimal alignments of smaller sections.
A corollary to this is that the global optimal alignment will not contain parts that are
not themselves optimal. While affine gap penalties require a slightly more sophisti-
cated argument, essentially the same property holds true for them as well.

Starting with sufficiently short sub-sequences, for example the first residue of each
sequence, the optimal alignment can easily be determined, allowing for all possible
gaps. Subsequently, further residues can be added to this, at most one from each
sequence at any step. At each stage, the previously determined optimal sub-
sequence alignment can be assumed to persist, so only the score for adding the next
residue needs to be investigated. A worked example later in the section will make
this clear. In this way the optimal global alignment can be grown from one end of
the sequence. As an alignment of two sequences will consist of pairs of aligned
residues, a rectangular matrix can conveniently represent these, with rows corre-
sponding to the residues of one sequence, and columns to those of the other.

Until the global optimal alignment has been obtained, it is not known which actual
residues are aligned. All possibilities must be considered or the optimal alignment
could be missed. This is not as impossible as it might seem.

Saul Needleman and Christian Wunsch published the original dynamic program-
ming application in this field in 1970, since then many variations and improve-
ments have been made, some of which will be described here. There have been
three different motivations for developing these modifications. Firstly, global and
local alignments require slightly different algorithms. Secondly, but less commonly,
certain gap-penalty functions and the desire to optimize scoring parameters have
resulted in further new schemes. Lastly, especially in the past, the computational
requirements of the algorithms prevented some general applications. For example,
the basic technique in a standard implementation requires computer memory
proportional to the product mn for two sequences of length m and n. Some algo-
rithms have been proposed that reduce this demand considerably.
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Flow Diagram 5.2
The key concept introduced in this
section is that the method of
dynamic programming can be
applied with minor modifications
to solve several related problems of
determining optimal and near-
optimal pairwise sequence
alignments.
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Optimal global alignments are produced using efficient
variations of the Needleman–Wunsch algorithm
We will introduce dynamic programming methods by describing their use to find
optimal global alignments. Needleman and Wunsch were the first to propose this
method, but the algorithm given here is not their original one, because significantly
faster methods of achieving the same goal have since been developed. The problem
is to align sequence x (x1x2x3…xm) and sequence y (y1y2y3…yn), finding the best-
scoring alignment in which all residues of both sequences are included. The score
will be assumed to be a measure of similarity, so that the highest score is desired.
Alternatively, the score could be an evolutionary distance (see Section 4.2), in which
case the smallest score would be sought, and all uses of “max” in the algorithm
would be replaced by “min.”

The key concept in all these algorithms is the matrix S of optimal scores of sub-
sequence alignments. The matrix has (m + 1) rows labeled 0 Æ m and (n + 1)
columns labeled 0 Æ n. The rows correspond to the residues of sequence x, and
the columns to those of sequence y (see Figure 5.8). We shall use as a working
example the alignment of the sequences x = THISLINE and y = ISALIGNED, with
the BLOSUM-62 substitution matrix as the scoring matrix (see Figure 5.5).
Because the sequences are small they can be aligned manually, and so we can see
that the optimal alignment is:

TH I S – L I – N E –
| | | | | |

– – I S A L I G N E D

This alignment might not produce the optimal score if the gap penalty were set very
high relative to the substitution matrix values, but in this case it could be argued
that the scoring parameters would then not be appropriate for the problem. In the
matrix in Figure 5.8, the element Si,j is used to store the score for the optimal align-
ment of all residues up to xi of sequence x with all residues up to yj of sequence y.
The sequences (x1x2x3…xi) and (y1y2y3…yj) with i < m and j < n are called sub-
sequences. Column Si,0 and row S0,j correspond to the alignment of the first i or j
residues with the same number of gaps. Thus, element S0,3 is the score for aligning
sub-sequence y1y2y3 with a gap of length 3.
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Figure 5.8
The initial stage of filling in the
dynamic programming matrix to
find the optimal global alignment
of the two sequences THISLINE and
ISALIGNED. The initial stage of
filling in the matrix depends only on
the linear gap penalty, defined in
Equation EQ5.13 with E set to –8.
The arrows indicate the cell(s) to
which each cell value contributes. 
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To fill in this matrix, one starts by aligning the beginning of each sequence; that is,
in the extreme upper left-hand corner. We could equally well start at the end of the
sequences (extreme bottom right-hand corner), but then the matrix should be
labeled 1 Æ m + 1 and 1 Æ n + 1. The elements Si,0 and S0,j are easy to fill in, because
there is only one possible alignment available. Si,0 represents the alignment

a1 a2 a3 . . . ai

– – – . . . –

We will start by considering a linear gap penalty g of –8ngap for a gap of ngap residues,
giving the scores of Si,0 and S0,j as –8i and –8j, respectively. This starting point with
numerical values inserted into the matrix is illustrated in Figure 5.8. 

The other matrix elements are filled in according to simple rules that can be under-
stood by considering a process of adding one position at a time to the alignment.
There are only three options for any given position, namely, a pairing of residues
from both sequences, and the two possibilities of a residue from one sequence
aligning with a gap in the other. These three options can be written as:

. . . xi . . . – . . . xi

. . . yj . . . yj . . . –

The scores associated with these are s(xi,yj), g, and g, respectively. The value of
s(xi,yj) is given by the element sa,b of the substitution score matrix, where a is the
residue type of xi and b is the residue type of yj. The change in notation is solely to
improve the clarity of the following equations.
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Figure 5.9
The dynamic programming matrix
(started in Figure 5.8) used to find
the optimal global alignment of the
two sequences THISLINE and
ISALIGNED. (A) The completed
matrix using the BLOSUM-62
scoring matrix and a linear gap
penalty, defined in Equation EQ5.13
with E set to –8. (See text for details
of how this was done.) The red
arrows indicate steps used in the
traceback of the optimal alignment.
(B) The optimal alignment returned
by these calculations, which has a
score of –4.

j-1

i-1

i

j

Si-1, j -1

Si, j -1 Si, j

Si-1, j

+s(xi,yj) +g

+g

Figure 5.10
Illustration of the application of
Equation EQ5.17 to calculate an
element of the dynamic
programming matrix. Only a small
part of the matrix is shown, as only
this part contributes directly to the
calculation of the element.
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Consider the evaluation of element S1,1, so that the only residues that appear in the
alignment are x1 and y1. The left-hand possibility of the three possibilities could
only occur starting from S0,0, as all other alignments will already contain at least one
of these two residues. The middle possibility can only occur from S1,0 because it
requires an alignment that contains x1 but not y1. Similar reasoning shows that the
right-hand possibility can only occur from S0,1. The three possible alignments have
the following scores:

(EQ5.16)

where s(I,T) has been obtained from Figure 5.5. Of these alternatives, the optimal
one is clearly the first. Hence in Figure 5.9, S1,1 = –1. Because S1,1 has been derived
from S0,0 an arrow has been drawn linking them in the figure. 

An identical argument can be made to construct any element of the matrix from
three others, using the formula

(EQ5.17)

The maximum (“max”) implies that we are using a similarity score. Figure 5.10 illus-
trates this formula in the layout of the matrix. Note that it is possible for more than
one of the three alternatives to give the same optimal score, in which case arrows
are drawn for all optimal alternatives. The completed matrix for the example
sequences is given in Figure 5.9A. Note that the number of steps in this algorithm is
proportional to the product of the sequence lengths. 

We now have a matrix of scores for optimal alignments of many sub-sequences,
together with the global sequence alignment score. This is given by the value of Sm,n,
which in this case is S8,9 = –4. Note that this is not necessarily the highest score in
the matrix, which in this case is S8,8 = 4, but only Sm,n includes the information from
both complete sequences. For each matrix element we know the element(s) from
which it was directly derived. In the figures in this chapter, arrows are used to indi-
cate this information.

S

S s x y

S g

S g
i j

i j i

i j

i j
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,
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1 1 1

1

1
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⎩
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Figure 5.11
Optimal global alignment of two
sequences, identical to Figure 5.9,
except for a change in gap scoring.
The linear gap penalty, defined in
Equation EQ5.13 using a value of –4
for the parameter E. (A) The
completed matrix using the
BLOSUM-62 scoring matrix. (B) The
optimal alignment, which has a
score of 7.
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We can use the information on the derivation of each element to obtain the actual
global alignment that produced this optimal score by a process called traceback.
Beginning at Sm,n we follow the arrows back through the matrix to the start (S0,0).
Thus, having filled the matrix elements from the beginning of the sequences, we
determine the alignment from the end of the sequences. At each step we can
determine which of the three alternatives given in Equation EQ5.17 has been
applied, and add it to our alignment. If Si,j has a diagonal arrow from Si – 1,j – 1, that
implies the alignment will contain xi aligned with yj. Vertical arrows imply a gap in
sequence x aligning with a residue in sequence y, and vice versa for horizontal
arrows. The traceback arrows involved in the optimal global alignment in Figure
5.9A are shown in red. When tracing back by hand, care must be taken, as it is easy
to make mistakes, especially by applying the results to residues xi – 1 and yj – 1

instead of xi and yj.

The traceback information is often stored efficiently in computer programs, for
example using three bits to represent the possible origins of each matrix element. If
a bit is set to zero, that path was not used, with a value of one indicating the direc-
tion. Such schemes allow all this information to be easily stored and analyzed to
obtain the alignment paths.

Note that there may be more than one optimal alignment if at some point along the
path during traceback an element is encountered that was derived from more than
one of the three possible alternatives. The algorithm does not distinguish between
these possible alignments, although there may be reasons for preferring one to the
others. Such preference would normally be justified by knowledge of the molecular
structure or function. Most programs will arbitrarily report just one single alignment.

The alignment given by the traceback is shown in Figure 5.9B. It is not the one we
expected, in that it contains no gaps. The carboxy-terminal aspartic acid residue (D)
in sequence y is aligned with a gap only because the two sequences are not the
same length. We can readily understand this outcome if we consider our chosen
gap penalty of 8 in the light of the BLOSUM-62 substitution matrix. The worst
substitution score in this matrix is –4, significantly less than the gap penalty. Also,
many of the scores for aligning identical residues are only 4 or 5. This means that if
we set such a high gap penalty, a gap is unlikely to be present in an optimal align-
ment using this scoring matrix. In these circumstances, gaps will occur if the
sequences are of different length and also possibly in the presence of particular
residues such as tryptophan or cysteine which have higher scores.

If instead we use a linear gap penalty g(ngap) = –4ngap, the situation changes, as
shown in Figure 5.11, which gives the optimal alignment we expected. Because the
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Dynamic programming matrix for
semiglobal alignment of the same
sequences as in Figure 5.9. In this
case, end gaps are not penalized. 
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determining the optimal global
alignment of THISLINE and
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alignment, which has a score of 11.
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gap penalty is less severe, gaps are more likely to be introduced, resulting in a
different alignment and a different score. In this particular case, four additional
gaps occur, two of which occur within the sequences. The overall alignment score
is 7, but this alignment would have scored –13 with the original gap penalty of 8. 

This example illustrates the need to match the gap penalty to the substitution
matrix used. However, care must be taken in matching these parameters, as the
performance also depends on the properties of the sequences being aligned.
Different parameters may be optimal when looking at long or short sequences, and
depending on the expected sequence similarity (see Figure 4.5 for a practical
example).

A simple modification of the algorithm allows the sequences to overlap each other
at both ends of the alignment without penalty, often called semiglobal alignment.
In this way, better global alignments can be obtained for sequences that are not the
same length. Instead of applying the gap penalty scores to matrix elements Si,0 and
S0,j, we set these to zero. The remaining elements are calculated as before (Equation
EQ5.17). However, instead of traceback beginning at Sm,n, it starts at the highest-
scoring element in the bottom row or right-most column. This is illustrated in
Figure 5.12 for the gap penalty g(ngap) = –8ngap. Note that now the expected align-
ment is obtained, despite the gap penalty being so high. This modified algorithm
gives the same optimal alignment with a gap penalty of g(ngap) = –4ngap. 

The methods presented above are for use when scoring gaps with a linear penalty
of the form g(ngap) = –ngapE. If we wish to differentiate between penalties for starting
and extending a gap, using a scoring scheme such as g(ngap) = –I – (ngap – 1)E, a
slightly different algorithm is required. The problem is not simply one of ensuring
that we know if a gap is just being started or is being extended. In the previous algo-
rithm, the decision for Si,j could be made without knowing the details of the align-
ment for any of Si – 1,j, Si – 1,j – 1, or Si,j – 1. Now we need to know if these alignments
ended with gaps, which means knowing details of their derivation, particularly
involving Si – 2,j and Si,j – 2.

Consider the general case of using a gap penalty, which is simply written as a func-
tion of the gap length ngap; that is, g(ngap). Now, for any matrix element Si,j, one must
consider the possibility of arriving at that element directly via insertion of a gap of
length up to i in sequence x or j in sequence y. Some of these routes are illustrated
in Figure 5.13. The algorithm now has to be modified to

(EQ5.18)

The algorithm now has a number of steps proportional to mn2, where m and n are
the sequence lengths with n > m. This is a significant increase in requirements over
the original, because there are approximately n terms involving gaps used to eval-
uate each matrix element. However, when we use the specific affine gap penalty
formula of Equation EQ5.14 it is possible to reformulate things and obtain the full
matrix in mn steps again. Let us define Vi,j as

(EQ5.19)
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from which

(EQ5.20) 

(EQ5.21)

(EQ5.22)

But from Equation EQ5.19 substituting i – 1 for i, we can see that

(EQ5.23)

so that

(EQ5.24)

Thus we have a recursive equation for the elements Vi,j, involving aligning residues
in sequence x with gaps in y. This can readily be evaluated from a starting point of
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V1,j = S0,j – I (Equation EQ5.19 with i = 1). In a similar manner, we can define Wi,j,
involving aligning residues in sequence y with gaps in x as

(EQ5.25)

This can readily be evaluated from a starting point of Wi,1 = Si,0 – I. These two recur-
sive formulae can be substituted into Equation EQ5.18 to give the faster (nm steps)
algorithm

(EQ5.26)

It should be noted that the original algorithm of Needleman and Wunsch differs in
some key details from those described here. Their method is slower (requiring more
computing steps) and is rarely used today. The types of path involved in calculating
the matrix elements with their algorithm are shown in Figure 5.14. Note that the
interpretation of the paths through the matrix differs from that presented above
(see the figure legend for details). 

Local and suboptimal alignments can be produced by making
small modifications to the dynamic programming algorithm
Often we do not expect the whole of one sequence to align well with the other. For
example, the proteins may have just one domain in common, in which case we
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j-4

i-3

i-2

i-1

i

j-3 j-2 j-1 j

Si-1, j -1

Si, j

Si-2, j -1

Si-3, j -1

Si-1, j -4 Si-1, j -3 Si-1, j -2

Figure 5.14
Illustration of some of the possible
paths that could be involved in
calculating the alignment score
matrix with the original Needleman
and Wunsch algorithm. All possible
gap sizes must be explored, with Si,j

being chosen as the maximum of all
these possibilities. The interpretation
differs from the previous matrices in
that if a path stops at an element Si,j

it indicates that residues xi and yj are
aligned with each other. Thus the
path Si–1,j–2 Æ Si,j represents the
alignment of xi –1–xi with yj– 2yj –1yj;
that is, an insertion in sequence x
aligned with yj –1.
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want to find this high-scoring zone, referred to as a local alignment (see Section
4.5). In a global alignment, those regions of the sequences that differ substantially
will often obscure the good agreement over a limited stretch. The local alignment
will identify these stretches while ignoring the weaker alignment scores elsewhere.

It turns out that a very similar dynamic programming algorithm to that described
above for global alignments can obtain a local alignment. Smith and Waterman first
proposed this method. However, it should be noted that the method presented here
requires a similarity-scoring scheme that has an expected negative value for random
alignments and positive value for highly similar sequences. Most of the commonly
used substitution matrices fulfill this condition. Note that the global alignment
schemes have no such restriction, and can have all substitution matrix scores posi-
tive. Under such a scheme, scores will grow steadily larger as the alignment gets
larger, regardless of the degree of similarity, so that long random alignments will ulti-
mately be indistinguishable by score alone from short significant ones.

The key difference in the local alignment algorithm from the global alignment
algorithm set out above is that whenever the score of the optimal sub-sequence
alignment is less than zero it is rejected, and that matrix element is set to zero. The
scoring scheme must give a positive score for aligning (at least some) identical
residues. We would expect to be able to find at least one such match in any align-
ment worth considering, so that we can be sure that there should be some posi-
tive alignment scores. Another algorithmic difference is that we now start
traceback from the highest-scoring matrix element wherever it occurs.

Chapter 5: Pairwise Sequence Alignment and Database Searching

136

(A) (B) SLI-NE

ALIGNE

             I    S    A    L    I    G    N    E    D

        0    0    0    0    0    0    0    0    0    0

  T     0    0    1    0    0    0    0    0    0    0

  H     0    0    0    0    0    0    0    1    0    0

  I     0    4    0    0    2    4    0    0    0    0

  S     0    0    8    1    0    0    4    1    0    0

  L     0    2    0    7    5    2    0    1    0    0

  I     0    4    0    0    9    9    1    0    0    0

  N     0    0    5    0    1    6    9    7    0    1

  E     0    0    0    4    0    0    4    9   12    4

Figure 5.15
The dynamic programming
calculation for determining the
optimal local alignment of the two
sequences THISLINE and
ISALIGNED. (A) The completed
matrix using the BLOSUM-62
scoring matrix with a linear gap
penalty, defined in Equation EQ5.13
with E set to –8. (B) The optimal
alignment, determined by the
highest-scoring element, which has
a score of 12.

(A) (B) IS-LI-NE

ISALIGNE

             I    S    A    L    I    G    N    E    D

        0    0    0    0    0    0    0    0    0    0

  T     0    0    1    0    0    0    0    0    0    0

  H     0    0    0    0    0    0    0    1    0    0

  I     0    4    0    0    2    4    0    0    0    0

  S     0    0    8    4    0    0    4    1    0    0

  L     0    2    4    7    8    4    0    1    0    0

  I     0    4    0    3    9   12    8    4    0    0

  N     0    0    5    1    5    8   12   14   10    6

  E     0    0    1    4    1    4    8   12   19   15

Figure 5.16
Optimal local alignment calculation
identical to Figure 5.15, except with
a linear gap penalty with E set to –4.
(A) The completed matrix for
determining the optimal local
alignment of THISLINE and
ISALIGNED using the BLOSUM-62
scoring matrix. (B) The optimal
alignment, identified by the highest-
scoring element in the entire matrix,
which has a score of 19.
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The extra condition on the matrix elements means that the values of Si,0 and S0,j are
set to zero, as was the case for global alignments without end gap penalties. The
formula for the general matrix element Si,j with a general gap penalty function
g(ngap) is

(EQ5.27)

which only differs from Equation EQ5.18 by the inclusion of the zero. The same
modifications as above can be applied for the cases of linear gap penalty given in
Equation EQ5.13 and affine gap penalty given in Equation EQ5.14.

Figures 5.15 and 5.16 show the optimal local alignments for our usual example in
the two cases of linear gap penalties g(ngap) = –8ngap and –4ngap, respectively. Both
result in removal of the differing ends of the sequences. In the first case, the higher
gap penalty forces an alignment of serine (S) and alanine (A) in preference to
adding a gap to reach the identical IS sub-sequence. Lowering the gap penalty in
this instance improves the result to give the local alignment we would expect. 

Sometimes it is of interest to find other high-scoring local alignments. A common
instance would be the presence of repeats in a sequence. There will usually be a
number of alternative local alignments in the vicinity of the optimal one, with only
slightly lower scores. These will have a high degree of overlap with the optimal
alignment, however, and contain little, if any, extra information beyond that given
by the optimal local alignment. Of more interest are those suboptimal local align-
ments that are quite distinct from the optimal one. Usually their distinctness is
defined as not sharing any aligned residue pairs.

An efficient method has been proposed for finding distinct suboptimal local align-
ments. These are alignments in which no aligned pair of residues is also found
aligned in the optimal or other suboptimal alignments. They can be very useful in a
variety of situations such as aligning multidomain proteins. Sometimes a pair of
proteins has two or more domains in common but other regions with no similarity.
In such cases it is useful to obtain separate local alignments for each domain, but
only one of these will give the optimal score, the others being suboptimal align-
ments. The method starts as before by calculating the optimal local alignment.
Then, to ensure that any new alignment found does not share any aligned residues
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(A) (B) IN

IS

             I    S    A    L    I    G    N    E    D

        0    0    0    0    0    0    0    0    0    0

  T     0    0    1    0    0    0    0    0    0    0

  H     0    0    0    0    0    0    0    1    0    0

  I     0    0    0    0    2    4    0    0    0    0

  S     0    00    0    0    0    0    4    1    0    0

  L     0    2    00    00    0    22    0    1    0    0

  I     0    4    00    00    22    0    0    00    0    0

  N     0    0    5    11    00    00    00    0    00    11

  E     0    0    1    4    00    00    00    00    0    22

Figure 5.17
The dynamic programming
calculation that follows on from the
calculation shown in Figure 5.16 to
find the best suboptimal local
alignment. (A) The completed
matrix for determining the best
suboptimal local alignment of
THISLINE and ISALIGNED using the
BLOSUM-62 scoring matrix with a
linear gap penalty with E set to –4.
The matrix elements that were
involved in the optimal local
alignment have been set to zero and
are shown with bold font. The
matrix elements that have changed
value from Figure 5.16(A) are also
shown with bold font, and extend
below and to the right of the optimal
alignment. (B) The best suboptimal
alignment, identified by the highest-
scoring element in the entire matrix,
has a score of 5.
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In this chapter the steps required to identify optimal
sequence alignments have been specified, but there has
been no discussion of the precise coding used in a
program. Such details are in general beyond the scope
of this book, although important for the production of
efficient and practical tools. The computer science and
other specialist texts cited in Further Reading at the end
of the chapter should be consulted for details of effi-
cient coding techniques. However, we will briefly
examine one algorithmic trick that can substantially
increase the range of alignment problems feasible with
limited computer resources.

All the methods presented so far calculate the whole of
matrix S, and by default it might be assumed that the
entire matrix was stored for traceback analysis. If the
sequences to be compared have lengths of up to a few
thousand residues, the matrix can be stored quite easily
on current computers. However, particularly in the case
of nucleotide sequences, we might wish to align much
longer sequences, for example mitochondrial DNA and
even whole genomes. Storage of the whole matrix S is
often not possible for such long sequences, sometimes
requiring gigabytes of memory. Without using an alter-
native, this memory problem could prevent the use of
these dynamic programming methods on such data.
However, a neat solution is available by modifying the
algorithm to store just two rows of the matrix. Note that
further calculation is then needed to recover the actual
alignment, as the basic method presented here only
provides the optimal alignment score.

The key to this algorithm is to notice that the calcula-
tion of any element only requires knowledge of the
results for the current and previous row (see Figure 5.10
and Equations EQ5.17 and EQ5.26); we could have
chosen to work with columns instead. The two rows will
be labeled R0,j and R1,j. The scoring scheme used here
will involve the linear gap penalty of Equation EQ5.13,
but the affine gap penalty scheme can also be used.
Similarly, the different variations in the treatment of
end gaps can be incorporated.

The steps can be summarized as follows. Firstly,
initialize row 0 according to the specific algorithm. For
standard Needleman–Wunsch with a linear gap penalty,
this means setting R0,j = – jE for j = 0 Æ m. For the 0th
column, R1,0 is then set to –E or whatever other
boundary conditions are required. This is equivalent to
the initialization of the full matrix method above. We
now step through each residue xi of sequence x, from x1

to xn, calculating all the elements of row R1,j, which at
each step is the equivalent of the ith row in the full

matrix. These elements are labeled with the letter j, and
correspond to residue yj of sequence y. Thus the
elements of the R0,j row correspond to the matrix
elements Si – 1,j, and those of the R1,j row to Si,j. The other
elements of R1,j are assigned a value according to the
equation (equivalent to Equation EQ15.17)

(BEQ5.1)

Once all the elements of the R1,j row have been calcu-
lated, the value of each matrix element of R1,j is trans-
ferred to R0,j, which now represents matrix row 1. In
practical programming, pointers would be used, so that
this step would take virtually no time. For the 0th
column, R1,0 is then set to –2E or whatever other
boundary conditions are required, with the R1,j

elements now representing matrix row 2. For the other
columns, R1,j is assigned a value as before. In this way
results keep being overwritten, but sufficient are kept to
continue the calculation.

Certain scores must be saved, the details differing
according to the precise type of alignment sought. Thus
for the basic Needleman–Wunsch scheme, only Rm,n

need be stored, while Smith–Waterman requires the
highest-scoring element and the associated values of i
and j. The storage requirements are twice the length of
the shorter sequence. Because this technique only
stores two rows of the matrix, it makes it possible to use
dynamic programming to align complete bacterial
genomes.

However, the saving in memory required comes at a
price, and the traceback procedure is much more
complicated than that which can be used if the full
matrix calculation has been stored. The traceback now
involves considerably more calculation and so produc-
tion of the overall alignment will require longer
computing times. Versions of this technique exist for all
the types of alignment mentioned in this chapter. Over
the past few years much effort has been devoted to
optimizing alignment programs for use with whole
genome sequences. See Section 5.5 for more practical
methods concerning whole genome sequence align-
ment. In contrast to the methods above, the methods
discussed in that section all involve approximations,
but a good argument can be made that such techniques
are more appropriate for that type of problem.
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Box 5.1 Saving space by throwing away the intermediate calculations
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with the optimal alignment, it is necessary to set all the matrix elements on this
initial path to zero (see Figure 5.17). Subsequently, the matrix needs to be recalcu-
lated to include the effect of these zeroed elements. If we recalculate the matrix,
only a relatively small number of elements near the optimal local alignment will
have new values. The key to the efficiency of the technique is the recognition that
these modified elements can only affect elements to their right and below them (see
Figure 5.13). Working along a matrix row from the zeroed elements, the new values
are monitored until an element is found whose value is unchanged from the orig-
inal calculation. Further elements on this row will also be unchanged, so calcula-
tion can now move to the next row down. In this way the new matrix is obtained
with a minimum of work. The suboptimal local alignment is identified by locating
the highest matrix element. Further suboptimal alignments can be found by
repeating the procedure, zeroing every element involved in a previous alignment.
For affine gap penalties the alignment elements in the matrices V and W are also
forced to zero and must also be unchanged before a row calculation can stop.

In the example shown in Figure 5.17, the first suboptimal local alignment is found
for the linear gap penalty g(ngap) = –4ngap; that is, following on from Figure 5.16. All
the matrix elements of the optimal alignment are in bold font, as are those elements
that have been recalculated. Only 27 elements needed to be recalculated, all below
or to the left of the elements of the optimal alignment. If we had not monitored for
unchanged elements we would have had to recalculate 54 elements. 

Time can be saved with a loss of rigor by not calculating the
whole matrix
High-scoring local alignments indicating significant sequence similarity usually do
not have many insertions and deletions. Global alignments may contain large
insertions, for example if there is a whole domain inserted in one sequence, but
such situations are only rarely encountered. In terms of the matrix, this means that
these alignments generally follow a diagonal quite closely. This has led people to try
to save time in deriving alignments by only calculating matrix elements within a
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iU+1

iU

next iU

next iL

iL

d–2 d–1 d

i

j
Figure 5.18
The X-drop method, proceeding by
antidiagonals indexed by d = i + j.
The boxes shaded in blue are matrix
elements which have a score that
falls X below the current best score,
and therefore have been assigned a
value of – •. The normal three
possible paths used to determine
the score are shown in one case by
red arrows. (Adapted from Z. Zhang
et al., A greedy algorithm for
aligning DNA sequences, J. Comput.
Biol. 7 (1–2):203–214, 2000.)
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short range of a specified diagonal. Note that such techniques are not guaranteed
to find the optimal alignment!

There are two ways of assigning the diagonal around which the alignment will be
sought. One can assume that both sequences are similar at a global level, and use
the diagonal Si,i of the matrix. Alternatively, especially in the case of database
searches, one can use the diagonal of a high-scoring ungapped local alignment
found in an initial alignment search, as discussed later.

There are two ways of restricting the coverage of the matrix away from the central
diagonal. If a limit is imposed for the maximum difference Mins between the number
of insertions in each of the two sequences, the algorithm can simply be set to include
only Mins diagonals on either side of the central one; that is (2Mins + 1) diagonals 
in total. The database search program FASTA (see Section 4.6 and below) uses this
technique, especially for nucleotide sequences, when Mins is frequently set to 15. A
second method of restricting the matrix elements examined is to limit the search
according to how far the scores fall below the current best score. In this X-drop
method, used in the database searching program BLAST (see Section 4.6 and below),
the current best score is monitored. When calculating elements along a row, calcula-
tion stops when an element scores a preset value X below this best score, and calcu-
lation restarts on the next row. A large value of X results in more of the matrix being
evaluated, in which case the true optimal alignment is more likely to be determined.

The X-drop algorithm that follows aligns two sequences x and y of length m and n,
respectively. The matrix elements are processed for each antidiagonal in turn. The
d th antidiagonal is defined by d = i + j. Only a restricted region of the d th antidiag-
onal is evaluated, defined by variables iL and iU, as illustrated in Figure 5.18. The
current best alignment score is stored in the variable Sbest.

In some cases, such as occur in the database search methods described in Section
5.3, the algorithm is started at element Si0,j0

, which has been identified by a prelim-
inary local alignment step. In this instance Sbest is initially set to the value of element
Si0,j0

, and the other variables are initialized to d = i0 + j0 and iL = iU = i0. Alternatively,
the algorithm can be started at element S0,0, which has the value zero, so that Sbest is
initially set to zero, as are d, iL, and iU. With these initial values, the algorithm
proceeds as follows.

Each antidiagonal is evaluated in turn. We will describe the method as proceeding
from smaller to larger values of d. The changes required to proceed to decreasing
values of d will be discussed afterwards. If there are elements of the antidiagonal to
calculate, residues xi are evaluated in order of increasing i, from iL to iU + 1. For each
value of i the relevant j for this antidiagonal can be obtained using j = d – i. This iden-
tifies the matrix element Si,d – i under consideration. Initial evaluation is as described
previously, for example, Equation EQ5.17 when a linear gap penalty is used.

After this initial evaluation of the antidiagonal elements, a check is first made to see if
the score of any of these elements improves on the best score so far, in which case Sbest

is set to this value. The antidiagonal elements are then evaluated to identify any that
fall more than X below this current best score, Sbest. All elements that have such low
scores are assigned the value – •, so that they play no further part in later calculations. 

In the next step, iL and iU are redetermined. iL is chosen as the lowest i in the
selected region of the current antidiagonal such that Si,j π – •. iU is set to the highest
i in the selected region of the current antidiagonal such that Si,j π – •. Sometimes
this will result in a smaller region being defined for the next antidiagonal, the situ-
ation illustrated in Figure 5.18. When the elements at the edge of the antidiagonal
region do not have the value – • the region must be extended. This extension might
be based on the calculation of scores for further elements of the antidiagonal, or
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Figure 5.19
The matrix elements calculated 
in the BLAST program using the
X-drop method for the example of
aligning broad bean leghemoglobin
I and horse bb-globin. The value of X
used was 40, with BLOSUM-62
substitution matrix and an affine
gap penalty of g(ngap) = – 10 – ngap.
The alignment starts at S60,62, alanine
in both sequences, which is the
location determined by the process
illustrated in Figure 5.24. Calculated
elements are shown black. (From
S.F. Altschul et al., Gapped BLAST
and PSI-BLAST: a new generation of
protein database search programs,
N.A.R. 25 (17):3389–3402, 1997, by
permission of Oxford University
Press.)
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may be limited to a prespecified number of extra elements. If iU + 1 ≤ iL there are no
matrix elements in the selected region, and the calculation is finished. Otherwise,
the next antidiagonal, that is, the (d + 1)th, is now evaluated.

If the calculation started at an element Si0,j0
, that is not S0,0, it must be carried out in

reverse as well to trace the alignment toward the start of the sequences. Note that
there is no difference in principle between using dynamic programming to find
optimal alignments forward or backward. Some indices need to be changed,
however, as for example, element Si,j now depends on the values of Si+1,j+1, Si+1,j, and
Si,j+1. The score of such an element Si,j now relates to an alignment starting with
residues xi and yj and ending at xu and yv. The full alignment is found by two trace-
backs, one from the forward and one from the backward region of the matrix, both
of which end at . Figure 5.19 shows an example of the matrix elements calcu-
lated for a real alignment by an algorithm like this. 

5.3 Indexing Techniques and Algorithmic
Approximations
The huge increase in the size of the sequence databases and their daily updating
has obliged the general research community to access these databases through
central facilities. This makes it easier for people to be confident of searching all
known data, but serves to concentrate the demands for similarity searches on a few
machines. Even though the power of computers has greatly increased over the
years, the methods of full-matrix dynamic programming described above are too
demanding for general use in database searches.

A number of alternative procedures have been developed that are considerably
faster, although there is a penalty to pay in that they do not guarantee to find the
highest-scoring alignment. The key to their success is the use of indexing techniques
to locate possible high-scoring short local alignments. These initial local alignments
are then extended, subject to certain constraints, to provide scores that are used to
rank the database sequences by similarity. In most implementations, modified
dynamic programming algorithms are used to examine the best-scoring sequences
and to produce final scores and alignments.

In the following sections we will examine in detail the two major methods imple-
mented in the two program suites in widest use today: BLAST and FASTA. These both
start by considering very short segments of sequence that they call “words,” “k-tuples,”
or “k-mers.” A k-tuple (as used in FASTA) is simply a stretch of k residues in the query
sequence. A k-mer (as used in BLAST) is a stretch of k residues, which when aligned
with all k residue stretches of the query sequence will score above some threshold
value (T) at least once. The term “word” is used more generally, meaning simply any
short sub-sequence. The initial steps of both methods find high-scoring ungapped
local alignments, referred to in BLAST as high-scoring segment pairs (HSPs), of which
the highest-scoring one for a given pair of sequences is the maximal segment pair
(MSP). Flow Diagram 5.3 gives an outline of the steps covered in this section. 

Suffix trees locate the positions of repeats and unique
sequences
One method of indexing uses a device known as the suffix tree. A variant of this
technique is used in the BLAST programs. The example given here will be for a
nucleotide sequence because an example using a realistic protein sequence would
be too complex to illustrate the method. Consider a short segment of a nucleotide
sequence ATCCGAGGATATCGA$, where the $ is used to identify the end of the
sequence. This has a number of short repeats, such as AT. A suffix tree is a way of

Si j0 0,
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representing the sequence that uses these repeats to reduce the space needed for a
full description. In addition, the form of the tree makes it very easy to find specific
sequences and sequence repeats.

A suffix is defined as the shortest sub-sequence starting at a particular position that
is unique in the complete sequence and can therefore be used to clearly identify
that position. For example, the third base in the sequence above is C. As there are
several Cs in the whole sequence, the sub-sequence C is not sufficiently unique to
label position 3. However, by including the next base, as in CC, we have found a
unique sub-sequence, and the suffix at position 3 is CC.

The suffix tree for the example sequence is given in Figure 5.20. Looking at it you
can easily see that the longest repeats are the triplets ATC and CGA, which occur at
positions (1,11) and (4,13), respectively. The efficiency of this technique may not be
so apparent with this example because the sequence is rather short. Although
longer sequences will tend to have longer suffixes, they will also tend to have more
repeats, resulting in a more efficient tree.
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PAIRWISE SEQUENCE ALIGNMENT AND DATABASE SEARCHING 

scoring 
gaps 

alignments 

database 
searching 

potentially
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protein/DNA 
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sequence 
complexity SEG 

Flow Diagram 5.3
The key concept introduced in this
section is that database sequence
similarity searches require
refinements in the pairwise
alignment methods to make them
more efficient, although at the cost
of decreasing the chance of finding
the best-scoring alignment.

BIF CH5 5th proofs.qxd  17/7/07  16:33  Page 142



Constructing the tree is straightforward. First, all positions in the sequence are
grouped according to their base type; for a protein sequence this would be amino
acid residue type. These groups correspond to the first row of nodes from the root.
Each of these groups is then regrouped according to the following base to give the
second row of nodes. This procedure is continued, stopping for a group when it
only contains one sequence position. For a sequence of length L, this method
requires a number of steps proportional to L log L. Faster methods, requiring a
number of steps proportional to L, are known but are more involved. 

Hashing is an indexing technique that lists the starting
positions of all k-tuples
The basic aim of hashing is to construct a list of the starting positions of all k-tuples
that occur in a query sequence. If we subsequently want to find where a particular
k-tuple occurs in the sequence we simply look up the list. This procedure is used in
FASTA.

Before construction of the list can begin we need to create a code for each k-tuple.
Suppose we are dealing with nucleotide sequences, and k-tuples of length k = 3.
Because there are four possible bases, there are 43 (= 64) possible k-tuples, trinu-
cleotides in this case. We can easily create a number code for these. First, assign
each base a number from 0 to 3, for example A = 0, C = 1, G = 2, and T = 3. If we label
this variable e, any 3-tuple xixi+1xi+2 can be assigned a number (ci) according to the
formula

(EQ5.28)

For example, the trinucleotides AAA, CAA, ACA, and AAC would be assigned the
numbers 0, 16, 4, and 1, respectively. The ci will vary from 0 to 63 (= 43 – 1). As an
example, the sequence TAAAACTCTAAC has 10 trinucleotides with c1 to c10 given by
48, 0, 0, 1, 7, 31, 55, 28, 48, and 1, respectively. In the case of protein sequences, the
amino acids would be numbered from 0 to 19, and instead of using powers of 4,
powers of 20 would be used.

If the sequence in question is of length L, there will be (L – k + 1) k-tuples that will
be coded into the values of c1 to cn – k + 1. Because we ultimately want to search for
particular k-tuples, which means finding particular values of the ci, we need to sort
the ci into numerical order. For the example given above, the ordering will be c2, c3,
c4, c10, c5, c8, c6, c1, c9, c7. There are many textbooks on numerical algorithms that
give details of efficient sorting methods, so they will not be discussed here (see
Further Reading).

c e x e x e xi i i i= ( ) + ( ) + ( )+ +4 4 42
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1
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Figure 5.20
The suffix tree for the sequence
ATCCGAGGATATCGA$. There are
alternative ways of showing and
labeling suffix trees, and often they
are labeled with the whole suffix, but
this form has been used because
parallels can then be seen readily
with finite-state automata (Figure
5.23). The numbered terminal nodes
(leaves) correspond with the
numbered positions in the
sequence. Thus 6 refers to the sixth
position, at which the base is A. The
suffix for position 6 is AG. All suffix
positions are clustered according to
the 5¢-terminal part of their
sequence (or amino terminal if
dealing with a protein sequence),
grouping together all suffixes
starting with a G for example.
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For each different k-tuple we need to know whether it occurs, and if so at which
base(s) it starts. There are several ways of doing this, of which a particularly efficient
one is chaining. For sequence of length L, two arrays are required: one, a, as long as
the number of different possible k-tuples (4k for nucleotides) and one, b, of length
(L – k + 1). The element ai contains a pointer to the first base of the first occurrence
of the ith k-tuple if it exists in the sequence, or else a value that signifies its absence.
Suppose that this pointer is to base xj. In that case, bj contains a pointer to xk, the
first base of the second instance of the ith k-tuple, or else a value that signifies there
is no second instance. If there is an xk in bj, then bk will contain information about
the presence of a further instance of the ith k-tuple.

The first eight elements of a for the example sequence TAAAACTCTAAC will be (2,
4, 0, 0, 0, 0, 0, 5), where a value 0 indicates the absence of that particular 3-tuple. The
elements of b are (9, 3, 0, 10, 0, 0, 0, 0, 0, 0). This contains three pointers because
three 3-tuples are present more than once in the sequence. It can be seen that no
3-tuple occurs more than twice, because these pointers in b are to elements that
contain 0. Hashing and chaining techniques are used to great effect in the FASTA
programs, as we discuss next.

The FASTA algorithm uses hashing and chaining for fast
database searching
A series of programs have been written by William Pearson and colleagues that
allow fast and accurate searching of both protein and nucleic acid databases with
both protein and nucleotide query sequences. They are based on a very fast
heuristic algorithm that has four distinct steps, which are applied to each database
sequence independently. In the first step, local ungapped alignments of k-tuples
are located. These are then scored using a standard scoring scheme, and only the
highest-scoring aligned regions are retained. Still retaining the ungapped regions,
an attempt is then made to join these into a single crude alignment for the pair of
sequences, resulting in an initial alignment score. This score is used to rank the
database sequences. In the final step, the highest-scoring sequences are aligned
using dynamic programming. Depending on the program parameters selected, this
may use only a band of the full matrix including the region containing the crude
alignment. We will now describe some of these steps in more detail.

FASTA starts by hashing and chaining the query sequence. A parameter, ktup, gives
the size of the k-tuples to be hashed, and is usually set to 2 amino acids for proteins
and 6 bases for nucleotides. Note that these values produce 400 and 4096 different
possible k-tuples, respectively. As the program will search for k-tuples shared by
both sequences, using smaller values of the ktup parameter makes the search more
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Definition of the labeling of matrix
diagonals dj–i. A word length of k is
used, so the last (k – 1) elements of
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This is why the diagonal labels range
from k – m to n – k.
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sensitive. However, this is usually only beneficial for distantly related sequences,
and searches based on family profiles (see Sections 4.6 and 6.1) would be expected
to be even more sensitive.

In what follows, we will assume that the chaining arrays a and b have been calcu-
lated as described in the previous section. For each database entry, successive
k-tuples of the sequence are searched against these arrays to identify where iden-
tical k-tuples align in the two sequences. As these alignments are ungapped, they lie
on diagonals in an alignment matrix (such as the one in Figure 5.11). We want to
find those diagonals that have many such k-tuples aligned along them.

Before giving the details of the search algorithm, a few comments about labeling
diagonals in an alignment matrix will be helpful. As in the alignment matrices
shown in Section 5.2, the alignment diagonals descend to the right. Suppose the
two sequences have m and n residues, respectively. Remembering that there are
(m – k) k-tuples in an m residue sequence, there will be (n + m – 2k + 1) diagonals,
which can be labeled dk – m to dn – k (see Figure 5.21). 

With this diagonal labeling, if the same k-tuple is located at position i of the query
sequence and at position j of the database sequence, the alignment of these k-
tuples will lie on the diagonal dj – i. The chaining arrays make it simple to determine
all the identical k-tuples, and on which diagonals they lie. All such aligned k-tuples
are given the same (positive) score s. We just need to account for residues between
these aligned k-tuples to complete the scoring of diagonals. These can be scored
with a penalty g(l) proportional to their length l. Using these scores, a straightfor-
ward algorithm finds the highest-scoring local regions of the diagonals. This is
related to the Smith–Waterman algorithm, although as there are only matching
residues it is much simpler (and quicker). A score is maintained for each diagonal
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Figure 5.22
The four steps in the FASTA method
for database searching. (A) For a
given database sequence, all
ungapped local alignments (against
the query sequence) of suitably high
score are shown. (B) The ten
highest-scoring alignments are
rescored with the PAM250 matrix,
the highest having score init1. (C)
Attempts are made to join together
some of these ungapped alignments,
allowing some gaps, to obtain score
initn. (D) Dynamic programming is
used to extend the alignment and
give the final score opt.
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of the alignment matrix. Let this score be sj – i for diagonal dj – i, and suppose the last
k-tuple match on this diagonal was at location j0. As the database sequence is
scanned, another k-tuple match is found on dj – i. The score of the diagonal is
updated according to the formula

(EQ5.29)

The value of l is calculated using j0, and j0 is updated to the current value of j. Note
the zero alternative, as in Equation EQ5.27, which makes this a local alignment
search method. The locations of the highest-scoring local alignments are recorded,
so that more than one region of the same diagonal can be found. An example of the
result of this step can be seen in Figure 5.22A.

Current implementations of this scheme identify the 10 highest-scoring ungapped
alignments for each particular pair of sequences and use them in further analysis.
In assessing these alignments, no account has yet been taken of conservative
replacements (if comparing amino acid sequences) or even of identical matches in
runs shorter than k residues. We now address this shortcoming by rescoring these
10 alignments using a substitution matrix such as PAM250, thus generating a more
reasonable score. In the case of nucleotide sequences, matches and mismatches are
by default scored +5 and –4, respectively. This stage is shown in Figure 5.22B. 

Early versions of this program (called FASTP for protein sequences and FASTN for
nucleotides) ranked all the database sequences according to the highest-scoring
local alignment, the score being referred to as “init1.” The later FASTA versions first
combine some of the top-scoring alignments into a single longer alignment using a
simple dynamic programming technique. The scoring scheme for this technique is
based on the scores of the individual alignments and a joining penalty to score the
regions between them. The resultant alignment score is called “initn,” and is used
to make a preliminary ranking of the database sequences. This stage is shown in
Figure 5.22C.

In the last step, suitably high-scoring database sequences are further investigated
with a Smith–Waterman local alignment procedure to produce the final alignment
and score. This will introduce gaps to give the best alignment. In most cases the older
versions of the program used a banded version of the algorithm, centered on the
initial approximate alignment. In general, a band of 16-residue width was used,
except in the case of protein sequence alignments with 1-tuple indexing, when a
32-residue band was employed. This stage is shown in Figure 5.22D. In later versions,
such as FASTA3, all alignments of protein sequences use the full-matrix
Smith–Waterman method by default. The default for nucleotide sequences is still to
use the banded version, as the full-matrix method is very time consuming for the
longer sequences.

The resultant alignment score, opt, is used for the final sequence ranking, but the
ranking itself is according to the estimated significance of the score. This is based
on theories such as the extreme-value distribution discussed in the final part of the
chapter. The significance estimates involve the sequence lengths as well as the
score, and thus the ranking reported can differ from that based directly on opt. By
default, the alignments reported by FASTA are those given by the Smith–Waterman
method, and therefore may contain gaps.

By restricting the initial search to ungapped perfect matches, joining these together
in a simple way, and using the resulting score to filter out very dissimilar database
sequences, FASTA can achieve a considerable speed-up in database searches over a
straightforward application of the Smith–Waterman method. Furthermore this has
been achieved for a very small loss of sensitivity.
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The BLAST algorithm makes use of finite-state automata
To evaluate the alignment of a database sequence with the query sequence, one
needs to know the significance of its score relative to that expected for a random
sequence. It proved very hard to derive a theory from which the significance could
be calculated. The inclusion of gaps in alignments proved to be one of the major
complications. In 1990, Samuel Karlin and co-workers derived a theory for
ungapped local alignment scores. The BLAST programs were written to take advan-
tage of the rigorous scoring significance estimates that could now be derived for
ungapped local alignments.

For this reason the original program did not consider gaps at all, and reported one
or more local ungapped alignments per pair of sequences. Subsequent versions of
BLAST allow gaps in alignments after an initial search without them, so that
currently BLAST will produce a final local gapped alignment. In this respect the
latest versions of BLAST are similar to FASTA.

The initial stage of BLAST uses short words to search for identities in the database
sequence. It differs from FASTA in two respects. First, FASTA only looks for k-tuples
that are identical to query-sequence k-tuples. BLAST, on the other hand, searches
for k-mers that would score above a given threshold (T) when aligned with a query
k-mer. These aligned k-mers need not be identical. Second, FASTA uses hashing
and chaining to aid rapid identification of k-tuple matches. BLAST uses a scheme
based on finite-state automata (FSA) to achieve the same goal. The input for such
an automaton is a linear string of symbols taken one at a time. The automaton is
designed to be able to identify particular patterns in the input string. These
patterns may be more complex than a specific sequence and can cover a range of
variation. Such automata usually report the existence of one or more of these
patterns, possibly including location information, by emitting data under specific
circumstances.

Each state of an automaton has well-defined responses to any possible input,
responses that can include both the transition to a new state and the emission of
symbols. A key response to a new symbol is not to accept it, meaning that the input
string is rejected. Some automata always start reading a new string from a partic-
ular state, in which case rejection can also be written as transition back to this state.
Figure 5.23 shows an example of such a finite-state automaton, in which rejection
(denoted by ¶1 and ¶2) results in transition back to state 0.

As hidden Markov models (HMMs) are discussed in detail in further chapters
(especially Sections 6.2 and 9.3) it is useful to note here that in contrast to HMMs,
the transitions and emissions in FSA models are not probabilistic. Each input
symbol leads to a deterministic outcome.

Unlike FASTA, at all stages BLAST calculates scores using a realistic substitution
matrix such as BLOSUM-62 (that is, it does not use a simple sum of identities such
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Figure 5.23
The deterministic finite-state
automaton that can be used to find
instances of the 3-mers CHH, CHY,
and CYH in an input sequence.
Input starts at state 0. The input that
causes a particular transition is
given near the start of the relevant
arrow. Thus the transition from state
2 to state 1 is triggered by input C.
The symbol ~ means “not,” so ~CHY
means any input except C, H or Y.
The transitions 2 Æ 0 and 3 Æ 0 are
triggered by several different inputs
as listed, some of which also result
in an output from the automaton.
No other transitions produce an
output. The output in this example
is simply the 3-mer matched in the
input, but it could be the residue
number of the start of the matching
3-mers, or any other useful
information.
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as Equation EQ5.29); as in FASTA, nucleotide sequences are by default scored +5
and –4 for matches and mismatches, respectively. Typically, a k-mer of length 3 is
used for protein sequences, and of length 11 for nucleotide sequences. In the
following discussion, unless explicitly stated, we will assume we are dealing with
protein sequences.

For each 3-mer in the query sequence all possible 3-mers that have an alignment
score greater than T are generated. This list is then used to scan the database
sequence to find all possible similar regions. A typical value for T was 14 in early
versions of BLAST when used with the BLOSUM-62 matrix, meaning an average
alignment score per residue of over 4. This meant that 3-mers composed only of
alanine, isoleucine, leucine, serine, or valine could not reach the threshold (see
Figure 5.5), as they all score a maximum of 4. (Some implementations of the algo-
rithm allow the exact 3-mer, i.e., the identical tripeptide, in such a case.) In fact, the
large number of negative scores in the BLOSUM-62 matrix, and the maximum
possible score of 11 (for aligning two tryptophan residues), mean that all the
possible 3-mers are highly similar, if not identical, to the query 3-mer. If T is raised,
the number of possible 3-mers is reduced, and they will be even closer to the query
3-mer. This will be the case even for 3-mers including residues that have high scores,
such as cysteine and histidine. For example, if T = 19, only CHH, CHY, and CYH will
score sufficiently highly against the query sequence 3-mer CHH with BLOSUM-62.

For protein sequences there are a total of 203 = 8000 possible different 3-mers, and
an n-residue query protein will have (n – 2) 3-mers. Each possible 3-mer must be
associated with the position of the query sequence 3-mer. The default choice of
parameters can result in about 50 words, making a long list of potentially tens of
thousands of k-mers for even an average-length query sequence.

For nucleotide sequences, a word size of 11 is often used, and instead of allowing
nonidentical matches, only exact matches to these query words are allowed. In this
case, construction of the word list used for searching resembles that in FASTA.

Returning to the case where we are matching nonidentical k-mers, given the list of
k-mers, a deterministic finite-state automaton can be constructed such that if the
database sequences are input to the automaton, all possible matches will be output
in an efficient way. Finite-state automata are best explained with an example, and
Figure 5.23 shows one for the CHH 3-mer mentioned above. The figure assumes
that only the three 3-mers CHH, CHY, and CYH are to be searched for.

The automaton is started in state 0. The database sequence is input to the
automaton one residue at a time. From state 0, only state 1 can be reached,
requiring a C, because all desired 3-mers start with a C. Note, however, that all
inputs to state 0 that are not C (~C) are regarded as causing a transition from 0 to
itself (shown by the curled arrow on the left in Figure 5,23). In fact the results of any
input to any state are defined by an unambiguous transition, which is why this is
called a deterministic finite-state automaton. 

From state 1, an H input leads to state 2, which can only be reached this way,
requiring an input sequence CH. Similarly, state 3 can only be reached with the
input sequence CY. Thus we are gradually building up the desired 3-mers, in a way
analogous to the suffix tree (see Figure 5.20). If the input at state 1 is C there is a
transition back to state 1, because this second C can be regarded as a second
attempt to start one of the 3-mers. All other inputs give a transition back to state 0,
from where the search starts all over again with the next input.

From states 2 and 3, unless the input is C, the transition is to state 0. Certain inputs
result in the output of a 3-mer name, and these transitions can only occur if the
input sequence contains the relevant 3-mer at that point. Thus, if the input
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Figure 5.24
Illustration of BLAST word hits for a
comparison of horse bb-globin and
broad bean leghemoglobin I. 
The + symbols indicate the 15 hits
with T = 13, as used in the original
BLAST algorithm. All 15 would be
extended to give ungapped HSPs.
The • symbols show a further 22 hits
with T = 11, the setting of the more
recent gapped BLAST program.
From this total of 37 hits, there are
two pairs on the same diagonal
within 40 residues. Only these two
are extended, as shown by the lines.
The left-hand one gives the higher
ungapped HSP score, and is
subsequently extended into a
gapped alignment as shown in
Figure 5.19. (Redrawn from
S.F. Altschul et al., Gapped BLAST
and PSI-BLAST: a new generation of
protein database search programs,
N.A.R. 25 (17):3389–3402, 1997, by
permission of Oxford University
Press.)
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sequence is CHCYHC, the states visited will be 0121301 and the transition to state 0
will be accompanied by the output CYH. Thus the 3-mer has been identified. In the
BLAST algorithm, instead of storing the 3-mer sequence, as in the first stage of
FASTA the positions of the 3-mers in the two sequences are kept for further analysis
in the next stage of the algorithm. An example of the results at this stage is shown
in Figure 5.24. 

In a real case, with several thousand k-mers to find, a diagram of the automaton is
extremely large, with many crossing transitions. Whenever input is such as to
require restarting the search with a new initial residue, transition is made to the
state that can reuse as much as possible of the failed k-mer. For example, if a state
was reached via input ABCD but no desired k-mer has sequence ABCDE, then input
E will cause a transition to a state that can only be reached via input of BCDE, CDE,
DE, or E, or else will return to state 0. These transitions will be considered in the
order given, to try to retain as much information as possible. These transition
choices depend only on the k-mer list, and so can be constructed with fixed transi-
tions as soon as the list is available. Using this approach, all suitably high-scoring k-
mer matches between the query and database sequences can be listed.

In the original version of BLAST, all k-mer matches scoring above T are extended in
both directions without using gaps. Such extended ungapped local alignments are
called high-scoring segment pairs (HSPs). The score is monitored and the extension
is stopped when the score falls by some set amount Xu from the maximum found so
far for this match. This procedure tries to allow an HSP to contain a region of lower
similarity. For protein sequences, a typical value Xu for the permitted drop in score
is 20. It is possible that the best-scoring HSP has a sufficiently poor-scoring internal
region that the extension will stop prematurely, but the parameters are set to try to
minimize the likelihood of this occurring. The highest-scoring region (MSP,
maximal segment pair) for this pair of sequences is used with some statistical meas-
ures discussed in the final part of this chapter to estimate the significance of the
alignment. In some cases, more than one HSP may score above some threshold
value, in which case two or more HSP scores may be used in determining the signif-
icance. The alignment reported by BLAST can be a relatively short stretch of the
whole sequence, and no attempt is made to extend it further using gaps.

Newer versions of BLAST take a different approach to generating alignments from
the initial hits, called the two-hit method. This starts from the premise that any
significant alignment is likely to have at least two high-scoring k-tuple matches on
the same diagonal of the alignment matrix. Thus the initial matches are searched to
find pairs on the same diagonal within a given distance (typically 40 residues) of
each other. The scoring threshold T for k-mers is then lowered, for example to 11 for
protein sequences scored with BLOSUM-62, producing more k-mers, and thus
more initial hits (see Figure 5.24). However, only a few of these will pair up suitably
close to each other on the same diagonal. Only the second hit of such pairs is
extended, initially ungapped, as for the older BLAST version. The Xu parameter is
used in obtaining the extension, as described above. This ungapped extension must
produce an HSP with a score greater than a threshold value Sg if it is not to be
discarded. Sg is set such that approximately 2% of database sequences will have an
HSP of greater score.

Alignments with scores exceeding Sg are used to seed a dynamic programming calcu-
lation of a gapped alignment. This is started from the center of the highest-scoring
11-mer of the HSP. The matrix is filled both forward and backward, as described in
Section 5.2, with elements calculated until the score falls a set amount Xg below the
current highest-scoring alignment. In this way the amount of calculation is minimized
without restricting the alignment to a predetermined band of the matrix. Only one
gapped alignment is generated for a database sequence, and its score is used to deter-
mine the significance, as discussed in Section 5.4.
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The parameters of the gapped BLAST program are set to make it approximately
three times as fast as the ungapped version, yet more sensitive. This is achieved by
severely reducing the number of extensions attempted. A gapped extension takes
approximately 500 times as long as an ungapped one.

Comparing a nucleotide sequence directly with a protein
sequence requires special modifications to the BLAST and
FASTA algorithms
There are several situations where a comparison between a nucleotide sequence
and a protein sequence is necessary. Most protein databases tend to be nonredun-
dant and only contain highly reliable sequences (that is, minor variants and many
hypothetical genes are excluded). When analyzing new sequences, a much stronger
signal for significant similarity can be obtained by comparing against protein
sequences. Thus, new nucleotide sequences are often compared with the protein
sequence databases. Conversely, there are occasions when one wants to search for
homologous proteins in large genomic sequences.

Two new problems arise in these circumstances. First, a nucleotide sequence can be
translated into protein in six different reading frames (three on each strand), so that
there are six different potential protein sequences to be examined for each
nucleotide sequence. Second, insertion or deletion errors can be present in the
nucleotide sequence. This can result in the actual protein sequence being in different
reading frames for different parts of the sequence, a situation called frameshift. The
algorithms described earlier for comparing protein with protein or nucleotide with
nucleotide sequences require modifications to allow for these new factors.

In the BLAST program suite the two programs blastx and tblastx allow searches with
different reading frames, but neither allows for frameshifts. In addition to the 20
possible amino acids, there may be some stop codons present, and by default, the
score for aligning a stop codon with an amino acid is taken as the most negative
score in the substitution matrix, although other scoring schemes are possible. Both
these programs convert the nucleotide sequence into protein sequence and then
work exactly as a standard protein BLAST search. The only difference is that the
query-sequence reading frame used in each alignment is reported.

The FASTA program suite contains four programs relevant to this problem. Two of
these (tfastx and tfasty) are for searching nucleotide databases with protein
sequences, and the others (fastx and fasty) are for nucleotide query-sequence
searches of protein databases. All these programs can account for frameshifts to some
degree, as well as the alternative reading-frames, and thus are, in principle, more
powerful than blastx at generating suitable alignments. However, in practice blastx is
still very useful, and all these programs have their place in database searching.

The fastx and tfastx programs use an algorithm that only allows for nucleotide
insertions and deletions. The possibility of a base being incorrectly given, for
example an A where there should have been a T, is not considered. The nucleotide
sequence is translated in all six frames, each set of three being considered in a
single run of the alignment program.

Each of the three reading frames is analyzed in a separate matrix. However, at each step,
the possibility of moving between matrices is considered. Thus, the alignment could
arrive at matrix element Si,j from Si – 1,j – 1 in the same frame, or from Ti – 1,j – 1 or Ui – 1,j – 1

in the alternative frames. The other (i – 1,j and i,j – 1) elements are also possible sources
of the new (i,j) element. Any move between matrices incurs an extra penalty — the
frameshift penalty. This can be set higher when the sequences are expected to be more
accurate, to prevent excessive numbers of frameshifts in the alignments, and is often
set a little higher than the gap-opening penalty. The full details of the algorithm will not
be given here, but a sequence example is given to illustrate the effects of frameshifts.
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Many protein and nucleotide sequences contain regions
that can be described as being of low compositional
complexity: low-complexity regions or simple sequences.
Examples include stretches of identical amino acids in
proteins, repeated short sequences, and longer DNA
repeats (see Box 1.1). It is estimated that roughly half of all
database sequences contain at least one such region. If
alignments are made with these regions present, many
spurious similarities will be reported because many unre-
lated sequences contain similar low-complexity regions.
These stretches also cause problems in database searches
because they are nonrandom, violating the assumptions
on which the calculations of statistical significance are
based (Section 5.4). It is important to be able to define
these stretches and mask them to prevent their biasing the
database search results. Many databases have such
sequences masked when they are made available for
sequence searches, so that often there is only a need to
find these regions in the query sequence.

Three different properties of these simple sequences can
be distinguished. Precisely repeating sequences are
referred to as patterns. These can be very short, for
example ATT, and are not necessarily in a single
contiguous block, for example ATTCATTGCATTATT. If
there is a clear period of repeat—for example, ATTATTAT-
TATT has a repeat of three—this is called a periodicity. The
periodicity need not necessarily be an integer, as can
occur, for example, in an amino acid repeat relating to an
a-helix. Furthermore, patterns and periodicities can both
involve some degree of error, in that the repeat need not
be exact. The final property that we will discuss is the
compositional complexity, which is a measure of bias in
the sequence composition.

In general terms, a sequence of length L is made up from
Ntype possible different components (i.e., Ntype is 20 for
proteins, 4 for nucleic acids) in a composition defined by
the ath component occurring na times. The general
complexity-state vector is defined as a list of these inte-
gers na in numerical order, disregarding the specific
components. Thus both nucleotide sequences ATA and
CAC are represented by the same vector {2, 1, 0, 0}. The
number of distinct sequences of length L with this
composition is given by

(BEQ5.2)

(The term L! is called “L factorial”, and means the product
L ¥ (L – 1) ¥ (L – 2) … 3 ¥ 2 ¥ 1, so 4! = 4 ¥ 3 ¥ 2 ¥ 1 = 24. By
definition, 0! = 1.) The na can vary in value from 0 to L, and

will always sum to L. The number of these na that have the
value c is written rc, and the rc will sum to Ntype. The
number of different compositions that will give rise to the
same complexity-state vector is given by

(BEQ5.3)

Thus the total number of distinct sequences correspon-
ding to a particular complexity-state vector is

(BEQ5.4)
The more distinct sequences available to a complexity
state, the more complex the sequence.

As an example consider the five-nucleotide sequence
ATTAT. The composition of this sequence can be repre-
sented as {T3, A2, C0, G0} where the bases have been
ordered according to their abundance. There are 10
possible sequences with the same composition: AATTT,
ATATT, ATTAT, ATTTA, TAATT, TATAT, TATTA, TTAAT,
TTATA, and TTTAA. Note that this is 5!/(3!2!). Now
consider how many different compositions are possible
by switching the bases around but maintaining the
proportion of bases at 3:2:0:0. There are 12 of these: A3C2,
A3G2, A3T2, C3A2, C3G2, C3T2, G3A2, G3C2, G3T2, T3A2, T3C2,
and T3G2. Note that this is 4!/(2!1!1!). Therefore for the
general complexity state represented by the vector {3, 2,
0, 0} there are a total of 10 ¥ 12 = 120 distinct DNA
sequences. For comparison, the complexity state repre-
sented by vector {5, 0, 0, 0} has only four unique DNA
sequences [(5!/5!) ¥ 4!/(3!1!)], compared to 360 for the
state {2, 2, 1, 0} [5!/(2!2!1!) ¥ 4!/(2!1!1!)].

Several programs are available that attempt to distinguish
between simple and other regions of a sequence. We will
only discuss one, the program SEG, which uses composi-
tional complexity as a measure to determine regions of
simple sequences. SEG works in two steps to determine
regions that satisfy certain complexity constraints. The
compositional complexity ISEG, which is a measure of the
information required per sequence position to specify a
particular sequence, given the composition, is defined by

(BEQ5.5)
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Consider the following short stretch of sequence and three forward translations:

A C C A G A G C C A A C T

Frame 1 T R A N
Frame 2 P E P T
Frame 3 Q S Q

The translations have been placed under the central base of each codon, so that T
is placed under the first C of ACC. Consider all the possible moves, including
frameshifts, from a matrix element at position 2 in the translated sequence to one
at position 3. This means that the alignment of TR, PE, and QS has already been
considered, and we are now considering adding A, P, or Q, referring to frame 1, 2, or
3, respectively. When translated back into nucleotides, the possible interpretations
of the sequence are:

1 Æ 2 (AGA)G(CCA)

1 Æ 3 (AGA)GC(CAA)

2 Æ 1 (GA(G)CC) or (GAG)CC(AAC)

2 Æ 3 (GAG)C(CAA)

3 Æ 1 (A(GC)C) or (AGC)C(AAC)

3 Æ 2 (AG(C)CA) or (AGC)CA(ACT)
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For example, for a five-nucleotide sequence, ISEG can vary
from 0 for {5, 0, 0, 0} to ~1.92 for {2, 1, 1, 1}. In the first step
of the SEG method, a more computationally efficient
approximation is used to search the sequence. Windows
of length L are identified for which the value of 

(BEQ5.6)

is less than a given threshold ISEG1. Note that I ¢SEG approx-
imates ISEG for large L. These initial low-complexity
regions are augmented by any overlapping windows that
have a value of I ¢SEG that is exceeded by a less-strict
threshold ISEG2 (that is, ISEG2 > ISEG1).

In the second step, SEG determines the sub-sequence of
each initial low-complexity region whose composition
has the least probability of occurrence, based on a model
with all residues equally likely. The probability is calcu-
lated using the formula

(BEQ5.7)

By inclusion of the first term, this value can be compared
for different window sizes. 

Versions of SEG are available that are designed to search
for specific periodicities, which can be useful in some
instances. For example, a number of proteins have
regions of low complexity, often short repeats, which can
indicate nonglobular structure. Since these sequences
tend not to be exact repeats, SEG can be a powerful tool
for identifying these regions. DUST is an equivalent
program for DNA sequences. There are other programs
designed to search for specific known repeat sequences
such as the DNA repeats found in many genomes, usually
defined in a small repeat database.
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where codons are in parentheses. Bases that are ignored in translation (deletions)
are in italic, while those used in two successive codons (insertions) are in bold. Thus
the sequence written (A(GC)C) is interpreted as (AGC)(GCC). Similarly
(AGC)CA(ACT) is interpreted as (AGC)(ACT). Note that deletions and insertions
only occur at the boundaries of codons; that is, the sequence ACGT is only inter-
preted as ACG or CGT, never ACT or AGT.

A greater variety of errors in the nucleotide sequence can be allowed for by fasty
and tfasty. Any two, three, or four consecutive nucleotides can be interpreted as a
codon, of which only the middle alternative does not involve an indel. In each case,
base errors are considered. A penalty scheme for modifying the codons is combined
with a BLOSUM-50 scoring of the aligned amino acids to find the best codon for
that alignment; if indels are involved they also incur a penalty. Note that in this case,
as well as allowing all four interpretations of ACGT mentioned above, base-pair
changes are also considered. If the base change and frameshift penalties are not
sufficiently punitive, almost any pair of sequences could be aligned with a high
score. Both of these are commonly set to up to twice the gap opening penalty. 

5.4 Alignment Score Significance
In this section we will examine how to determine whether the score of an optimal
alignment is significantly higher than would be expected for two unrelated
sequences (see Flow Diagram 5.4). This is not the only way of trying to assess signif-
icance, but it is probably the most sensitive currently available. The simpler tech-
nique of observing the percentage of identical or similar residues in the alignment
(see Section 4.2), although useful, is far less precise. 

If the alignment scores were normally distributed—that is, Gaussian—then knowl-
edge of their mean and standard deviation would allow us to calculate the proba-
bility of observing any given score using standard tables. The situation is not so
simple, however, because the score that is reported in a database search is that of
the optimal alignment; that is, it is the best possible score for that particular pair of
sequences. This means that the scores are always from the extreme end of the
distribution of all alignment scores.

The statistics of optimal alignment scores have only been rigorously derived in the
case of ungapped local alignments, for which the scores follow an extreme-value
distribution. Using this theory, precise evaluation of score significance for
ungapped local alignments is readily calculable. For gapped local alignments, only
approximations are available for the statistical score distribution. Both gapped and
ungapped local alignments have been found to have very similar distributions, but
differ in their parameterization.

Before discussing the details of the practical application of these score distribu-
tions, two general points about scores have to be made. First, one can ask how
much information is required to define the position of an alignment in two
sequences. Information is usually measured as bits, which can be regarded as yes or
no answers. For example, distinguishing the numbers 0–255 requires eight digits in
a binary (i.e., 0 or 1) number representation, which is log2256. For a sequence of
length m, we have to distinguish among the m possible alignment starting posi-
tions, which in general requires log2m bits of information. If this sequence is
aligned to an n-residue sequence, positioning the start of the alignment on this
second sequence will require a further log2n bits of information. Therefore the
alignment requires a total of log2m + log2n = log2(mn) bits of information to define
its start position on both sequences.

Alignment Score Significance
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In performing a database search, if m is the length of the query sequence, then n is
the total length of the database entries. Considering a protein sequence database of
100 million residues and an average-length query sequence of 250 residues, a score
of approximately 35 bits would be required to define the location of the best align-
ment between the sequences.

The second general aspect of optimal alignment scores relates to how they vary
with the length of the alignment. Waterman has shown that for global alignments
with gaps, the score grows linearly with sequence length. For local alignments the
situation is more complex, and depends on a property of the substitution matrix
used. If the expected score of a random sequence with a given substitution matrix,
given by Equation EQ5.3 is positive, the local alignment score grows linearly with
sequence length regardless of the gap penalties. However, if the expected score is
negative, which is the case for most amino acid substitution matrices in common
use, then unless gap penalties are very low, the optimal local alignment score will
grow logarithmically; that is, as log n where n is the number of residues. In what
follows, it is assumed we are using scoring parameters such that the scores grow
logarithmically with sequence length. The alignment scores need to be corrected
for length as part of the process of determining their significance.
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The key concept introduced in this
section is that when comparing
optimal alignments between a
query sequence and a database of
sequences, care must be taken to
evaluate the true significance of the
alignment score, since even the best
scoring database sequence cannot
be assumed to show significant
similarity.
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The distribution of alignment scores for optimal ungapped local alignments has
been rigorously derived from first principles. A database search only carries out
further analysis of the highest-scoring alignment of each database entry with the
query sequence. Omitting the considerable amount of analysis required, it can be
proved that the optimal ungapped local alignment score follows the Gumbel
extreme-value distribution. With m and n defined as above, this distribution peaks
at a value

(EQ5.30)

where K and l are constants that depend on the scoring matrix used and the
sequence composition. l is a scaling parameter of the substitution matrix, and is
the unique positive solution of the equation

(EQ5.31)

where the summation is over all residue types a and b, the pa and pb are frequencies
of occurrence of the residues as defined in Section 5.1, and sa,b are the substitution
scores.

The probability of the alignment score S being less than x is given by the cumula-
tive distribution function

(EQ5.32)

from which the complementary probability of the score being at least x is

(EQ5.33)

Substituting for U we arrive at the formula for the probability of obtaining an align-
ment of score S greater than a value x:

(EQ5.34)

The extreme-value distribution is shown in Figure 5.25. The key feature of interest
is the tail for high values. Notice that this decays much more slowly than the low-
value tail; that is, the distribution is asymmetric with a bias to high values. It is
important that we have the correct distribution if we are to estimate the signifi-
cance of any given score accurately. In general, if P(S ≥ x) is less than 0.01, the align-
ment is significant at the 1% level. The level chosen as cut-off depends on the
particular problem, and is discussed in more detail in Section 4.7. 
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Figure 5.25
The extreme-value distribution of
optimal alignment scores. (A) The
distribution for l and K of 0.286 and
0.055, respectively, for two
sequences both of length 245
residues. (These values are from
Altschul and Gish (1996) for a
BLOSUM-62 substitution matrix,
with affine gap opening and
extension penalties –12 and –1,
respectively.) (B) The probability,
given the distribution in part A of an
observed score S being at least x,
plotted so that a value y on the
vertical axis represents a
probability 10–y.
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Formulae exist for calculating K and l for a given substitution matrix and sequence
database composition. The original (ungapped) version of BLAST used this theory
to estimate the significance of the alignments generated in a database search.

The statistics of gapped local alignments can be approximated
by the same theory
For gapped local alignments, examination of actual database searches has shown
that the scores of optimal alignments also fit an extreme-value distribution.
However, in this case there is no rigorous theory to provide the parameters l and K.
These can be estimated by studying sample database searches for particular values
of the scoring schemes (including gap penalties). Note, however, that they will
depend on the composition of the database sequences, so that the parameteriza-
tion should really be done according to the actual database to be searched. Both
BLAST and FASTA use such methods to derive score significance.

The programs in the BLAST and FASTA suites report E-values, which are related to
the probability P(S ≥ x). The value of P is calculated for the particular lengths of the
query and database sequences, and varies from 0 to 1. The E-values are obtained
from this by multiplying by the number of sequences in the database. Thus, if there
are D database sequences, the E-values range from 0 to D.

The E-value is the number of database sequences not related to the query
sequence that are expected to have alignment scores greater than the observed
score. Thus an E-value of 1 is not significant, as one unrelated database sequence
would be expected to have such a score. The E-value deemed to indicate a signifi-
cant similarity as shown by the alignment score is a practical problem discussed in
Section 4.7.

5.5 Aligning Complete Genome Sequences
As more genome sequences have become available, of different species and also of
different bacterial strains, there are several reasons for wanting to align entire
genomes to each other. Such alignments can assist the prediction of genes because
if they are conserved between species this will show up clearly in the alignment. In
addition, other regions of high conservation between the genomes can indicate
other functional sequences. The study of genome evolution needs global align-
ments to identify the large-scale rearrangements that may have occurred. Although
in principle the dynamic programming methods presented in Section 5.2 could be
used, the lengths of the sequences involved makes the demands on computer time
and disk space prohibitive. As in the case of database searches, other techniques
must be used that are not guaranteed to find the optimal scoring alignment.

When aligning two complete genome sequences, problems arise that are quite
distinct from those discussed above in relation to aligning two related proteins or
making simple database searches. In the case of complete genomes, the alignment
problem is more complex because the intergene regions may be subject to higher
mutation rates; in addition, large-scale rearrangements may have occurred. Many
discrete, locally similar segments may exist, separated by dissimilar regions. Unlike
in the BLAST and FASTA methods, therefore, it is insufficient to determine a single
location from which to extend the alignment. The solution is to modify the
indexing techniques for genome alignments to locate a series of anchors. The rela-
tionship of this subject to the other topics discussed in this chapter is shown in
Flow Diagram 5.5. 

A second problem is the linking together of the anchors to form a scaffold for the
alignment, and doing this in such a way as to identify the large-scale rearrangements.
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Both of these problems require complex solutions that are only briefly outlined here.
This area is still undergoing rapid development, and new techniques may yet emerge
that are a significant advance in the field.

Another application involving a complete genome sequence is the alignment to it
of many smaller nucleotide sequences. These could be from a variety of sources,
including sequence data from related species at various stages of assembly. The
latter task, in particular, can give rise to the problems noted above.

Indexing and scanning whole genome sequences efficiently is
crucial for the sequence alignment of higher organisms
Both FASTA and BLAST use indexing techniques to speed up database searches,
and both index the query sequence. For genome alignments it is now practical to
index the complete genome sequence, as long as the computer used has sufficient
memory to store the whole index. In contrast to usual database searches with single
gene sequences, this requires careful planning of the data storage. If the index is
larger than the available computer memory, the time required for the alignment

Aligning Complete Genome Sequences
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The key concept introduced in this
section is that when aligning
extremely long sequences,
refinements are required in order to
make the alignment search more
efficient. The section also deals with
the observation that long sequences
often show large-scale
rearrangements, a feature that needs
to be included in the alignment
methods.
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can increase by a factor of four or more. If suffix trees are used for the indexing,
then with efficient techniques the space requirements are proportional to the
sequence length. Hashing methods require storage according to the lengths of the
sequence and the k-tuples. However, the space required can often be reduced
significantly if the most common k-tuples, defined as those occurring more than a
threshold number of times, are omitted on the grounds that they are likely to be
uninformative for the alignment. The hashing methods often also reduce the index
size by only considering nonoverlapping k-tuples; that is, bases 1 Æ k, k + 1 Æ 2k,
and so on.

The index is used to identify identical k-tuples in the two sequences. Because the
sequences involved are very long, the k-tuples must be much longer than in the
example of database searching discussed above, or many matches will be found
with random sequence. The expected number of matches depends on the lengths
of the k-tuples and the percentage identity of the aligned sequences, and was thor-
oughly analyzed during development of the BLAT (BLAST-like Alignment Tool)
package. k-tuples of 10–15 bases are used by the Sequence Search and Alignment by
Hashing Algorithms (SSAHA) program, and lengths of 20–50 bases have been used
in suffix tree methods.

One technique that has proved to be particularly effective is the spaced seed
method. When searching using the long k-tuples mentioned above, all k positions
of the k-tuples are compared. It has been found that these are not the most efficient
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Figure 5.26
Four examples of possible
relationships between two long
nucleotide sequences. (A) Both
sequences are similar along their
whole length, with three particularly
similar segments identified. No
rearrangements during evolution
from the most recent common
ancestor need be proposed. This is
the only case in which a global
alignment can be given. (B) A
translocation has changed the order
of the red and blue segments for one
of the sequences. (C) The red
segment has been inverted in the
horizontal sequence. (D) The red
segment has been duplicated in the
horizontal sequence. The black lines
indicate regions of alignment
outside the main segments.
(Adapted from M. Brudno et al.,
Global alignment: finding
rearrangement during alignment,
Bioinformatics 19, Supplement
1:i54–i62, 2003.)

(A) (B) (C)

Figure 5.27
An example of the application of
the SLAGAN method. (A) The set of
identified potential anchors for the
alignment of two long nucleotide
sequences. (B) The path of anchors
identified. The anchors are ordered
progressively along the vertical
sequence but not the horizontal one
because of large-scale
rearrangements. (C) The regions
identified as locally consistent.
Individual alignments are
determined for each of the three
regions. (Adapted from M. Brudno
et al., Global alignment: finding
rearrangement during alignment,
Bioinformatics 19, Supplement
1:i54–i62, 2003.)
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probes for identifying matches that are useful seeds for genome alignment. In the
development of the PatternHunter program it was found that searching for a
specific pattern of 12 bases in a stretch of 19 was more effective. The 19mer can be
represented as 1110100110010101111, where 1 indicates a position whose match is
sought, and 0 indicates a position whose base is disregarded. The later versions of
the BLASTZ program made a further improvement by allowing any one of the 12
positions to align bases A and G or bases C and T, so long as the other 11 sites were
perfect matches.

The complex evolutionary relationships between the genomes of
even closely related organisms require novel alignment algorithms
Many anchor points must be identified between the two genome sequences, each
initially as matched k-tuples which are usually extended in a gapless way as in
FASTA and BLAST. The original MUMmer approach was to include only unique
k-tuples common between the sequences; that is, k-tuples present just once on
each sequence. Such matches can be expected with confidence to identify truly
homologous segments. Most methods (including MUMmer 2) are not so restrictive,
and include k-tuples that occur several times on a sequence. As a consequence,
many matches are recorded, some of which are expected to be incorrect.

In contrast to the database search methods, which only need to select a single
anchor for the alignment that is then extended using dynamic programming, for
genome alignment a set of anchors is needed that spans the lengths of the
genomes, identifying the true homologous segments. This step is usually similar to
the third step of FASTA (see Figure 5.22C) and involves dynamic programming
where each anchor and potential gap is given a score. Anchors are not allowed to
overlap and must be arranged sequentially along the sequences. 

In addition, a number of large-scale sequence rearrangements may have occurred
since the last common ancestor of the species whose sequences are being aligned. As
a consequence, the correct alignment will not have the straightforward character of
the alignments discussed so far. Some examples of common rearrangements are
shown in Figure 5.26, and a real example is shown for aligning equivalent chromo-
somes in mouse and rat in Figure 10.21. Most existing programs cannot automatically
recognize large-scale rearrangements and thus cannot correctly assign segments to
the overall alignment. An exception is the Shuffle-Limited Area Global Alignment of
Nucleotides (SLAGAN) program, which attempts to identify rearrangements. The
FASTA-type step referred to above requires each successive anchor to occur in succes-
sion along both sequences. However, any rearrangements that produce sequence
reversal of a segment (such as in Figure 5.26C) will result in the successive anchors
occurring progressively but in opposite directions along the two sequences. SLAGAN
only requires the anchors to occur in succession along one of the sequences. A further
step then identifies those regions that contain anchors that are locally consistent with
a sequence reversal segment. An alignment is obtained for each of these regions. An
example of a successful application of this method is shown in Figure 5.27. 

In all the methods, an attempt is made to extend identified homologous segments,
often using standard alignment techniques but trying to identify the limits beyond
which the sequences are not recognizably similar. The alignments derived by these
methods are often fragments separated by unaligned regions.

Summary
In the first part of this chapter, we looked at the derivation of the specialized algo-
rithms that are used in automated methods to determine the optimal alignment
between two sequences. Such algorithms are needed because if the insertion of
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gaps is allowed there are a very large number of possible different alignments of two
sequences. Before an algorithm can be applied, a scoring scheme has to be devised
so that the resulting alignments can be ranked in order of quality of matching.
Scoring schemes involve two distinct components: a score for each pair of aligned
residues, which assesses the likelihood of such a substitution having occurred
during evolution, and a penalty score for adding gaps to account for the insertions
or deletions that have also occurred during evolution. The first score has its foun-
dations in the concept of log-odds, and is assigned on the basis of reference substi-
tution matrices that have been derived from the analysis of real data in the form of
multiple alignments. The penalty scores given to gaps have a more ad hoc basis,
and have been assigned on the basis of the ability of combined (substitution and
gap) scoring schemes to reproduce reference sequence alignments. (Confidence in
these reference alignments is usually based on a combination of structural infor-
mation and regions of sufficiently high similarity.)

The automated construction and assessment of gapped alignments only became
possible with the development of dynamic programming techniques, which
provide a rigorous means of exploring all the possible alignments of two sequences.
The essence of dynamic programming is that optimal alignments are built up from
optimal partial alignments, residue by residue, such that nonoptimal partial align-
ments are efficiently identified and discarded. The technique ensures that the
optimal alignment(s) will be identified. A number of different schemes have been
developed, which treat gaps in different ways. Only minor variations in the dynamic
programming algorithms are required to alter the type of alignment produced from
global to local, or to identify repeat or suboptimal alignments. Thus the same tech-
nique can be used to answer several different problems of sequence similarity and
relatedness.

The problem with dynamic programming methods is that despite their efficiency
they can place heavy demands on computer memory and take a long time to run.
The speed of calculation is no longer as serious a barrier as it has been in the past,
but the problem of insufficient computer memory persists, particularly as there are
now many very long sequences, including those of whole genomes, available for
comparison and analysis. Some modifications of the basic dynamic programming
algorithm have been made that reduce the memory and time demands. One way of
reducing memory requirements is by storing not the complete matrix but only the
two rows required for calculations. However, to recover the alignment from such a
calculation takes longer than if all the traceback information has been saved. By
only calculating a limited region of the matrix, commonly a diagonal band, both
time and space saving can be made, although at the risk of not identifying the
correct optimal alignment.

Often the first step in a sequence analysis is to search databases to retrieve all
related sequences. Such searches depend on making pairwise alignments of the
query sequence against all the sequences in the databases, but because of the scale
of this task, fast approximate methods are usually used to make such searches more
practicable. The algorithms for two commonly used search programs—BLAST and
FASTA—make use of indexing techniques such as suffix trees and hashing to locate
short stretches of database sequences highly similar or identical to parts of the
query sequence. Attempts are then made to extend these to longer, ungapped local
alignments which are scored, the scores being used to identify database sequences
that are likely to be significantly similar. This process is considerably faster than
applying full-matrix dynamic programming to each database sequence. At this
point, both techniques revert to the more accurate methods to examine the
highest-scoring sequences, in order to determine the optimal local alignment and
score, but this is only done for a tiny fraction of the database entries.

There are instances where it is necessary to align a protein sequence with a
nucleotide sequence. In such cases one solution is simply to translate the
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Protein Sequence and Structure, vol 5 suppl 3 (MO
Dayhoff ed.), pp 345–352.  Washington, DC: National
Biomedical Research Foundation.

Jones DT, Taylor WR & Thornton JM (1992) The rapid

generation of mutation data matrices from protein
sequences. Comput. Appl. Biosci. 8, 275–282. (The
PET91 version of PAM matrices.)

Yu Y-K, Wootton JC & Altshul SF (2003) The composi-
tional adjustment of amino acid substitution matrices.
Proc. Natl Acad. Sci. USA 100, 15688–15693. 

See appendix for deriving target frequencies.

The BLOSUM matrices were designed to find
conserved regions of proteins

Henikoff S & Henikoff JG (1992) Amino acid substitution
matrices from protein blocks. Proc. Natl Acad. Sci. USA
89, 10915–10919.

Further Reading

nucleotide sequence in all possible reading frames and then use protein–protein
alignments. However, this approach is rather bad at dealing with errors in the
sequence that give rise to frameshifts. The dynamic programming method can be
modified to overcome this problem by using three matrices, one for each possible
reading frame in the given strand direction, with a set of rules for moving from one
matrix to another. In this way, an optimal alignment can be generated that uses
more than one reading frame, simultaneously proposing sequence errors.

Another problem that arises in database searches is the occurrence of regions of
low sequence complexity, which can cause spuriously high alignment scores for
unrelated sequences. Such regions can be defined either by identifying a repeating
pattern or on the basis of their composition, and can then be omitted from the
comparison.

To be sure that two sequences are indeed homologous, it is important to know
when the alignment score reported is statistically significant. In the case of
sequence alignments, the statistical analysis is very difficult; in fact the theory has
not yet been fully developed for alignments including gaps. Part of the reason for
this difficulty is that the alignments reported are always those with the best scores.
These will not be expected to obey a normal distribution, but rather an extreme-
value distribution. Furthermore, the scores are also dependent on the scoring
scheme used, the sequence composition and length, and the size of the database
searched. For alignments without gaps, formulae have been derived that allow the
score to be converted to a probability from which the significance can be gauged.

The last section of the chapter deals with the alignment of very long sequences, for
example those of whole genomes. The straightforward application of dynamic
programming is often not feasible because of the lack of computer resources. This
difficulty can be overcome by using similar indexing methods to those in the data-
base search programs. However, there are significant differences, which lead to the
indexing being applied to the genome sequence rather than the query sequence,
and to searching for much longer identical segments than in database searches.
Nevertheless, there is often an additional problem because frequently there are
large-scale genome rearrangements even over relatively short periods of evolu-
tionary time. To overcome this, local alignments must be identified that can then be
joined together into a global alignment by a specific dynamic programming tech-
nique that allows for translations and inversions of segments of the sequence.
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Scoring matrices for nucleotide sequence alignment
can be derived in similar ways

Chiaromonte F, Yap VB & Miller W (2002) Scoring pair-
wise genomic sequence alignments. Pac. Symp.
Biocomput. 7, 115–126. 

The substitution scoring matrix used must be
appropriate to the specific alignment problem

Altschul SF (1991) Amino acid substitution matrices
from an information theoretic perspective. J. Mol. Biol.
219, 555–565.

May ACW (1999) Towards more meaningful hierarchical
classification of amino acid scoring matrices. Protein.
Eng. 12, 707–712. (A comparative study of substitution
matrices in terms of the way they group amino acids.)

Yu Y-K & Altschul SF (2005) The construction of amino
acid substitution matrices for the comparison of
proteins with non-standard compositions. Bio-
informatics 21, 902–911.

Yu Y-K, Wootton JC & Atschul SF (2003) The composi-
tional adjustments of amnio acid substitution matrices.
Proc. Natl Acad. Sci USA 100, 15688–15693.

Gaps are scored in a much more heuristic way than
substitutions

Goonesekere NCW & Lee B (2004) Frequency of gaps
observed in a structurally aligned protein pair database
suggests a simple gap penalty function. Nucleic Acids
Res. 32, 2838–2843. (This recent paper on scoring gaps
for protein sequences includes a good listing of older
work.)

5.2 Dynamic Programming Algorithms
Waterman MS (1995) Introduction to Computational
Biology: Maps, Sequences and Genomes, chapter 9.
London: Chapman & Hall. (A more computational 
presentation of dynamic programming alignment 
algorithms.)

Optimal global alignments are produced using effi-
cient variations of the Needleman–Wunsch algorithm

Gotoh O (1982) An improved algorithm for matching
biological sequences. J. Mol. Biol. 162, 705–708. 

Needleman SB & Wunsch CD (1970) A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

Local and suboptimal alignments can be produced by
making small modifications to the dynamic
programming algorithm 

Smith TF & Waterman MS (1981) Identification of
common molecular subsequences. J. Mol. Biol. 147,
195–197.

Waterman MS & Eggert M (1987) A new algorithm for
best subsequence alignments with application to
tRNA–tRNA comparisons. J. Mol. Biol. 197, 723–728.

Time can be saved with a loss of rigor by not
calculating the whole matrix 

Zhang Z, Berman P & Miller W (1998) Alignments
without low-scoring regions. J. Comput. Biol. 5, 197–210.

Zhang Z, Scwartz S, Wagner L & Miller W (2000) A greedy
algorithm for aligning DNA sequences, J. Comput. Biol.
7 (1–2), 203–214.

5.3 Indexing Techniques and Algorithmic
Approximations
Suffix trees locate the positions of repeats and unique
sequences; Hashing is an indexing technique that
lists the starting positions of all k-tuples

Gusfield D (1997) Algorithms on Strings, Trees and
Sequences: Computer Science and Computational
Biology. Cambridge: Cambridge University Press.

Waterman MS (1995) Introduction to Computational
Biology: Maps, Sequences and Genomes, chapter 8.
London: Chapman & Hall.

The FASTA algorithm uses hashing and chaining for
fast database searching; The BLAST algorithm makes
use of finite-state automata

Altschul SF, Gish W, Miller W et al. (1990) Basic Local
Alignment Search Tool. J. Mol. Biol. 215, 403–410. (The
original BLAST paper.)

Altschul SF, Madden TL, Schäffer AA et al. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein data-
base search programs. Nucleic Acids Res. 25, 3389–3402.

Pearson WR & Lipman DJ (1988) Improved tools for
biological sequence comparison. Proc. Natl Acad.
Sci.USA 85, 2444–2448. (The original FASTA paper.)

Pearson WR, Wood T, Zhang Z & Miller W (1997)
Comparison of DNA sequences with protein sequences.
Genomics 46, 24–36. (fastx, fasty.)

Box 5.2: Sometimes things just aren’t complex enough

Morgulis A, Gertz EM, Schäffer AA & Agarwala R (2006)
A fast and symmetric DUST implementation to mask low-
complexity DNA sequences. J.Comput.Biol. 13, 1028–1040.

Wootton JC & Federhen S (1996) Analysis of composi-
tionally biased regions in sequence databases. Methods
Enzymol. 266, 554–571 (SEG.)

5.4 Alignment Score Significance
Altshul SF & Gish W (1996) Local alignment statistics.
Methods Enzymol. 266, 460–480.

Mott R (2000) Accurate formula for P-values of gapped
local sequence and profile alignments. J. Mol. Biol. 300,
649–659.

Waterman MS (1995) Introduction to Computational
Biology: Maps, Sequences and Genomes, chapter 11.
London: Chapman & Hall.

5.5 Alignments Involving Complete Genome
Sequences
The field of genome sequence alignment is moving very
quickly. Some useful references in this area are:

Brudno M, Malde S, Poliakov A et al. (2003) Glocal align-
ment: finding rearrangements during alignment. Bio-
informatics 19(suppl. 1), i54–i62. SLAGAN.
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algorithms for large-scale genome alignment and
comparison. Nucleic Acids Res. 30, 2478–2483. MUMmer 2.

Kent WJ (2002) BLAT—the BLAST-like alignment tool.
Genome Res. 12, 656–664. 

Ma B, Tromp J & Li M (2002) PatternHunter: faster and
more sensitive homology search. Bioinformatics 18,
440–445.

Ning Z, Cox AJ & Mullikin JC (2001) SSAHA: A fast search
method for large DNA databases. Genome Res. 11,
1725–1729. 

Schwartz S, Kent WJ, Smit A et al. (2003) Human–mouse
alignments with BLASTZ. Genome Res. 13, 103–107.

Further Reading

163

BIF CH5 5th proofs.qxd  17/7/07  16:33  Page 163



This page is intentionally left blank



PATTERNS, PROFILES, AND
MULTIPLE ALIGNMENTS 

When you have read Chapter 6, you should be able to:

Explain how to produce position-specific scoring matrices (PSSMs).

Describe the methods to overcome a lack of data.

Compare and contrast scoring methods for alignments and profiles.

Explain the graphical illustration of sequence profiles and patterns.

Explain how to produce profile HMMs.

Describe the alignment of profiles with sequences and other profiles.

Obtain multiple alignments.

Discover sequence patterns.

Discuss the statistical scoring of patterns.

The great majority of protein sequences share significant similarity with others in
the databases, as can be determined by the techniques described in Chapters 4 and
5. When these sequences are carefully compared they can reveal important infor-
mation about the special role played by specific residues at particular sequence
locations. The degree and kind of residue conservation found can improve our
understanding of the interplay of protein function and structure. Furthermore,
sequences that are all related by a common ancestral sequence hold the key to
uncovering the evolutionary history since that ancestor. Techniques that are able to
recover this information are presented in Chapters 7 and 8. All of these facets of
protein sequence analysis are dependent at some stage on having a multiple align-
ment or profile constructed from all the available sequences. The main focus of this
chapter is the description of the scientific bases of the many different techniques
that have been proposed to achieve this crucial task.

In addition, many cases have been identified of short sequences, usually showing
high levels of conservation, that have been found to correlate with specific func-
tional properties, such as serine protease activity. These patterns are now used for
function prediction purely on the basis of sequence. The last part of this chapter
will explore the ways in which such patterns can be identified, including the use of
methods that do not require alignments.

6
THEORY
CHAPTER
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Because of their general use in multiple alignment methods, in the first part of the
chapter we describe methods for producing profiles, which at one level can be
regarded as representations of alignments. Multiple alignments can be used in
various ways to generate special scoring schemes for searching for other similar
sequences. Position-specific scoring matrices (PSSMs), which take into account the
position in the alignment when scoring matches, have been very successful in this
context. Programs that use PSSMs include PSI-BLAST, for searching sequence data-
bases, and LAMA, for searching a database of alignments with a query alignment.

We then discuss the use of hidden Markov models (HMMs), especially profile
HMMs to define a sequence profile of a protein family. Sequence profiles can then
be used to search for other family members. HMMs are based on a sound proba-
bilistic theory, and are used in many multiple alignment and sequence-profile
programs. Unlike PSSMs, HMMs do not require an alignment, and can produce a
description of a family of related sequences without any prior alignment.
Relationships between sequence families can be discovered by aligning profiles,
which can be the most sensitive way to detect homology.

Most methods of multiple alignment are based on modifications of the pairwise
dynamic programming techniques described in Section 5.2. In these methods the
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A mind map illustrating the topics
covered in patterns, profiles, and
multiple alignments. A large part is
devoted to the all-important subject
of scoring schemes.
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alignment is built up by adding sequences one at a time. As with pairwise align-
ments, the goodness-of-fit of the sequence to the alignment is tested by giving it a
score, and the overall quality of the multiple alignment can also be tested quantita-
tively. The scoring schemes used have many similarities to those used for pairwise
alignments but, as we shall see, additional scoring schemes are available, and
different approaches can be taken to the practical task of building up the alignment.

There are several other ways of constructing multiple alignments that differ in
important respects from the pairwise dynamic programming approach. In a later
part of the chapter we look at methods that construct alignments using all the
sequences simultaneously. 

The final part of the chapter deals with methods that can detect common sequence
patterns in a multiple alignment, and those that can identify patterns in unaligned
sequences. These have been used to create pattern databases such as PROSITE,
which can be used to help predict a protein’s function on the basis of the presence
of specific sequences.

6.1 Profiles and Sequence Logos 
In Chapter 5 we looked at some techniques for aligning one sequence to another.
Very often many similar sequences are known, all presumably descendants of a
common ancestral sequence. From experience these sequences will be expected to
have similar properties at equivalent regions, leading for example to protein
sequences sharing a common protein fold and patterns of residue conservation. A
frequently encountered problem is the alignment of a sequence to such a set of
similar sequences. Rather than align the new sequence to a single member of the
set, it would be better to find a way to represent the general properties of the set of
sequences such that the new sequence can be aligned to this representation. Such
a representation is called a profile, and in this section we will consider the ways in
which profiles can be constructed and used in pairwise alignment of new
sequences (see Flow Diagram 6.1).

Profiles can be constructed in a form that makes it possible to use the dynamic
programming techniques of Section 5.2 to align sequences to the profile. An impor-
tant aspect of generating these profiles is the frequent lack of sufficient data for
parameterization. A number of techniques are presented to overcome this
problem. Following this we will briefly look at how the PSI-BLAST program uses
these techniques. Finally, a method will be presented that gives a graphical display
of the residue preferences of profile positions.

Profiles and Sequence Logos 
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Flow Diagram 6.1
The key concept introduced in this
section is that analysis of multiple
alignments can identify the specific
preferences of each alignment
position, which can be used to
define a profile. The profile can be
used to define a scoring scheme
such as a position-specific scoring
matrix (PSSM), which can be used to
search for further examples of the
profile, and can also be illustrated
graphically as a logo.
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Position-specific scoring matrices are an extension of
substitution scoring matrices
All the alignment methods discussed in Chapter 5 apply a substitution score matrix
to an alignment of residue type a with residue type b without regard for their envi-
ronment; that is, the score sa,b for aligning these two residue types is always the
same. Note that in Section 5.2 this was written s(xi,yj) where xi is the residue at the
ith position of sequence x. Similarly, the gap penalties discussed in Section 5.1 are
the same regardless of where the gaps occur along the sequence. One can view
database searches with these general scoring schemes as using the query sequence
without any added information beyond the general features of evolution used to
generate the substitution score matrix.

One of the common uses of database searches is to discover all known sequences
that belong to the same sequence family as the query sequence, namely those
sequences that align well over the whole of a specific region (often the entire
length) of the query. Sequence variability within the family will usually prevent all
members from being detected with a search based on a single query sequence.
One method to try to identify potentially missed sequences is to perform several
searches with different family members in the hope that all members will be iden-
tified by at least one of the searches. When the family examples used for further
searches have been detected in the initial query-sequence search, and each newly
discovered sequence is used in a further query, this method is referred to as an
iterated sequence search (ISS).

An alternative and usually more efficient way of finding all family members takes
account of known residue preferences at each alignment position. This informa-
tion is obtained from the alignment of an initial set of family members, such as
those discovered from the first database search. Inclusion of these position-
specific preferences in the scoring scheme is achieved with the use of a scoring
profile in which each alignment position has its own substitution scores. Such
constructions are often referred to as position-specific scoring matrices (PSSMs),
although usually this terminology is reserved for cases without the position-
dependent gap penalties that will also be described. The alignment of a sequence
to a PSSM can proceed using dynamic programming in exactly the same way as
described in Section 5.2 for aligning two sequences, except that the scores differ
for each column. We will now discuss some of the ways of obtaining profiles,
including methods that are designed to overcome the problems that may arise as
a result of a lack of data. 

In order to generate a PSSM, a set of sequences is required, all of which are aligned
to a common reference. Two sources of such alignments exist: the results of a data-
base search or a multiple alignment. In the first case, the common reference is the
query sequence with which each database entry has been aligned. The common
reference for multiple alignments is harder to define, but all the sequences are
aligned with reference to all the other sequences. Either source can be used to
define the preferences for each alignment position. The scores assigned must
represent the residue preference found at a given position. If the alignment only
contains a few sequences it will not be possible to determine an accurate residue
preference at all alignment positions. This problem can be tackled in several related
ways. A further aspect of determining PSSMs is that the data usually require
weighting.

Suppose we have an alignment of Nseq sequences with Laln positions; that is, Laln

alignment columns. The PSSM for this alignment will also have Laln columns, each
of which will (for protein sequences) have 20 rows. Each row corresponds to an
amino acid type. An example of a PSSM can be seen in the top part of Figure 11.24,
where the alignment is used to improve secondary structure prediction. However,
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note that in that example the PSSM has been transposed, so that the 20 rows have
become 20 columns. It is possible to use one or two extra rows with parameters that
relate to position-dependent gap penalties. Such matrices are usually referred to as
profiles rather than PSSMs. (A PSSM, with only 20 rows, will use identical gap penal-
ties at all sequence positions.) The values assigned to the PSSM are a weighted func-
tion of the values of a standard substitution matrix of the form discussed in Section
5.1, for example BLOSUM-45. We will write a substitution score matrix element sa,b

for the alignment of residue types a and b, and will label the elements of the PSSM
mu,a for column u and row (residue type) a.

One possible derivation of PSSM values uses the average of the scores of the residue
types found at each alignment position. If a particular alignment column contains
a perfectly conserved tyrosine residue, for example, the score on aligning a residue
from another sequence to that position is taken to be the same as if we were dealing
with just a single tyrosine residue. The elements of that column in the PSSM are the
sa,b elements that relate to tyrosine; that is, for row (residue type) a they are sa,Y,
using the one-letter amino acid code for the subscript. If instead the residue pref-
erence of that column was exactly shared by tyrosine and tryptophan, then each
row a of the PSSM column will have the score (sa,Y + sa,W)/2. Generalizing this, if
there are nu,b residues of type b at column u, comprising a fraction fu,b of the column
residues, i.e.,

(EQ6.1)

then the score associated with row a and column u will be

(EQ6.2)

If the residue type in an alignment column is found to be highly conserved, it seems
sensible to give the preferred residues extra support, because the residue types
rarely found are probably highly disfavored at that position. Rather than using the
fraction fu,b, the following logarithmic form of weighting the substitution scores has
been proposed:

(EQ6.3)

where differs from fu,b as defined by Equation EQ6.1, in that the denominator
is (Nseq + 1) instead of Nseq. (This is necessary to avoid the numerator becoming – •
for alignment columns only containing a single residue type.) The value of the ratio
of the logs varies between 0 and 1 as does fu,b, but residues present in a smaller frac-
tion of the sequences are relatively under-weighted.

Although the two methods just described have been applied successfully to create
useful PSSMs, neither is of the log-odds ratio form that was shown in Section 5.1 to
be particularly appropriate for alignment scoring. We will define the probability of
residue type a occurring in column u of the PSSM as qu,a, and the probability of
residue type a occurring at any position in any sequence, including those not
related to the PSSM sequence family (i.e., the background frequency), as pa. The qu,a

are the PSSM equivalent of the qa,b of Section 5.1, which are the probability of
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aligning two residues of types a and b when they are part of a meaningful alignment.
The log-odds form for a PSSM element can then be written

(EQ6.4)

If there are sufficient sequence data available, qu,a can be identified with fu,a as given by
Equation EQ6.1. The pa are readily obtained from the analysis of database composition.

Because PSSMs are often used in database searches for other members of the
sequence family, it is important to understand the scoring statistics, as was the case
for BLAST and FASTA searches as discussed in Section 5.4. As was explained then,
each substitution matrix has a value l associated with it that has a strong influence
on the statistics. The following general formula applies to log-odds substitution
matrices relating the alignment of two residues of types a and b:

(EQ6.5)

(Compare this equation with Equation EQ5.31, which was encountered in the discus-
sion of the significance of alignment scores.) Equation EQ6.5 can be rearranged to give

(EQ6.6)

By analogy, an alternative to Equation EQ6.4 is

(EQ6.7)

where the value of l can be specified to control the scoring statistics. It is a simple
scaling factor for the scores, and so could be omitted. However, this method of
obtaining PSSM values has been applied in the PSI-BLAST method described
below, where the l parameter is used to selectively scale the scores as desired.

If position-dependent gap penalties are included, these can be assigned manually on
the basis of the location of secondary structural elements to give smaller penalties for
creating alignment gaps between these elements. An alternative approach is to have
a position-specific multiplier of the gap penalty at column u, , such that an affine
gap penalty for a gap of length ngap extending across this column has a penalty

(EQ6.8)

where I and E are the gap opening and extension penalties, respectively (see
Equation EQ5.14). One proposed assignment of values to starts by identifying
the length of the longest gap that occurs that includes column u and the highest
possible score in the substitution matrix used. These values are used to scale so
that the penalty applied to the longest observed gap is of the same magnitude as the
highest possible score in the substitution matrix.

Thus far, we have treated each sequence in the alignment equally. The best PSSM
will represent the full range of diversity within the sequence family in an unbiased
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fashion. However, a partial set of family sequences will most probably be biased
toward a certain subgroup. Hence, we must weight the different sequences, and the
weighting should be reduced for very similar sequences. We will look at two
sequence weighting schemes, one of which applies the weight to all residues of a
sequence, the other specifying different weights for each alignment column.

Some PSSMs have been derived using a sequence weighting scheme proposed by
Peter Sibbald and Patrick Argos. In this scheme, weights are assigned to the
sequences on the basis of an iterative procedure. The sequence weights are first
initialized to zero. Random aligned sequences are generated where the residue at
each position is chosen at random from the residues (including any gap) that occur
at that particular position in the aligned sequences. The closest sequence or equally
close sequences to each random sequence are identified, and a weight of 1 is evenly
distributed between them. The sequence weights are normalized to sum to 1.
Further random sequences are generated until the sequence weights are seen to
have converged.

The position-based sequence-weight method assigns weights based on a multiple
alignment. The basic unit used to assign weights is not the whole sequence, but the
individual alignment columns. For each column, the number of different residues
present is counted. If there are m different residues, each is assigned a weight of
1/m. Then for each residue type, the number of sequences that have this residue at
this position is counted. If there are n sequences with this residue, the weight is
equally divided amongst them; that is, the weight becomes 1/mn. These weights
can be used as sequence weights for the individual column, and the total for all
aligned residues is always 1. If desired, an overall weight for the whole sequence can
be defined by adding the individual column weights and then normalizing by the
number of columns, so that the sequence weights also sum to 1. This weighting
scheme is illustrated in Figure 6.1 for a simple example alignment. 

If the weights are labeled for column u of sequence x (including the possibility
that there may be no variation across the alignment columns) the above formulae
can be modified by replacing fu,b with

(EQ6.9)

where is 1 if sequence x has residue b in alignment column u, and 0 otherwise.
Note that both weighting methods discussed above do not require the denominator
sum of Equation EQ6.9, as they both produce weights that sum to 1 for a column.

Methods for overcoming a lack of data in deriving the values
for a PSSM
The log-odds schemes for calculating the PSSM elements mu,a using the formulae
given above all have the property that if any residue type is not observed in the
column u, the score for aligning that residue type in that column will always have
the value – •. As a consequence, no sequence being aligned to the PSSM will be able
to align that residue type at that location. While this might be appropriate for
perfectly conserved and functionally vital positions, even in extreme cases it is
almost certainly too restrictive. (We most probably want to be able to use the PSSM
to align any sequences that code for related but dysfunctional proteins.)
Furthermore, the absence of a particular residue type in a particular column of the
alignment used to derive the PSSM is more likely to indicate a lack of sequence
alignment data rather than the true residue preferences. Such situations are
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12345   Weight
HSAPL   0.280
HTADV   0.171
HTAEV   0.171
HTGLI   0.188
HTGVI   0.188

Figure 6.1
Illustration of the position-based
sequence weight scheme of
Henikoff and Henikoff. There are
five sequences, each of them is five
residues long. Column 1 contains
only one residue type (H) but there
are five occurrences, so each
histidine has a weight of 1⁄5. Column
4 contains five different residue
types, each of which will be
weighted as 1⁄5. Note that this scheme
does not distinguish between these
two situations, which can be
understood by observing that
neither can be used to prefer any
sequence over any other. In column
2, there are two residue types (S and
T), each of which will be assigned an
initial weight of 1⁄2. As there is only
one instance of S, it is assigned a
weight of 1⁄2. The four Ts will each
have a weight of 1⁄8. After assigning
weights to each residue, the
sequence weights are obtained by
adding the residue weights together
and dividing by the number of
columns. The resulting sequence
weights are given in the right-hand
column.
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common in fitting profile models, and a variety of possible solutions have been
proposed that will now be described.

The pa of Equations EQ6.4 and EQ6.7 does not cause the – • values mentioned
above, nor does their estimation suffer from a lack of data. The problem rests
entirely with the estimation of the qu,a and is almost always due to a lack of data.
(The exception to this would be a rare case of a truly perfectly conserved residue
type—an extremely rare occurrence.) All the methods described to overcome the
problem can include sequence weights but they make the formulae more complex,
so for simplicity we will not use them here. The starting point for estimating qu,a is
to use fu,a as given by Equation EQ6.1.

A simple way of trying to overcome the lack of data would be to assume at least one
occurrence of each residue type at each alignment position. It is preferable to treat all
residues and all columns the same way, so in this case Equation EQ6.1 is modified to

(EQ6.10)

in the case of a PSSM with 20 rows (i.e., no position-dependent gap parameters).
Note that the denominator becomes (Nseq + 20) as this is the sum of the numerators
for the 20 different terms. The sum of the qu,a for all possible a must always equal 1
as each sequence must be represented at column u. The inclusion of the extra
observation means that qu,a will never be 0 nor ever reach 1. It is as if we have
increased the amount of data available by 20 residues in each column, and such
additional data are usually called pseudocounts.

It is easy to see that there are more sophisticated ways of adding pseudocounts that
take advantage of the knowledge we have of the properties of sequences. We know
that the amino acid composition of proteins is not uniform and, as discussed in
Section 5.1, the frequency of occurrence pa of residue type a. This knowledge can
readily be incorporated into the formula to obtain

(EQ6.11)

where the parameter b is a simple scaling parameter that determines the total
number of pseudocounts in an alignment column. The advantage of introducing
the b parameter is that we can easily adjust the relative weighting of the pseudo-
counts and real data. When there are a lot of data (i.e., Nseq is large) there is little if
any need for pseudocounts, and b should be much smaller than Nseq, whereas when
there are less data, b should be larger relative to Nseq. A simple formula that has been
found useful is to make b equal to , although this can result in b being too
small for small values of Nseq. At large values of Nseq this formula approaches

as desired. Often an additional parameter a is used to weight the
observed data, giving a formula more easily expressed in terms of the fu,a than the
nu,a:

(EQ6.12)

In the absence of any data, the pseudocounts would completely determine the
PSSM values. In Bayesian analysis terms, the pseudocounts represent the prior
distribution, which expresses our prior knowledge of the system before we intro-
duce the data. (They can also be seen as an expression of our prejudices and bias!)
See Appendix A for a discussion of Bayesian analysis.
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We can improve on the pseudocount distribution suggested by Equations EQ6.11
and EQ6.12, because the substitution matrices contain a more accurate distribu-
tion based on the data from which they were derived. By definition, log-odds
substitution matrices have embedded in them the information about the relative
probabilities of residues aligning because their sequences are related as opposed to
purely random alignment. This is expressed by the terms qa,b/papb for residue types
a and b. Rearranging Equation EQ6.5 we find

(EQ6.13)

If a column u contains a fraction fu,b of type b residues, the probability of finding a
residue of type a aligned with these is proportional to fu,bqa,b/papb. Adding these
terms for all residue types b gives the overall probability of finding a residue of type
a aligned at column u on the basis of existing residues in that column. Because
residue type a occurs at a background frequency pa , this sum needs to be multiplied
by pa to obtain a suitable pseudocount for residue type a. Thus the formula for the
number of pseudocounts of residue type a is

(EQ6.14)

Note that because of the summation, the gu,a can never be 0. If the intermediate
results are available that were used to derive the substitution matrix, the values of
the terms qa,b/papb may be available. If this is not the case, they can be recovered
from the substitution scores sa,b by applying Equation EQ6.13, although the data are
likely to be less accurate. Replacing pa with this in Equation EQ6.12 we obtain the
improved estimate of qu,a:

(EQ6.15)

One possible value for a is Nseq – 1. If the PSSM elements mu,a are calculated using
Equation EQ6.7, then with only one sequence this particular a will result in the mu,a

being the substitution matrix values sa,b (see Equation EQ6.13). The value of b
controls how much the PSSM is biased to the substitution matrix when there are
few data available. In PSI-BLAST (see below) a value of 10 is used by default.

The derivation of pseudocounts from substitution scoring matrices goes some way
toward using a more realistic prior distribution. However, that method as well as
all the others described so far have qualitatively inaccurate features. Only the rela-
tive frequency of different amino acids in an alignment column affects the PSSM
values. All PSSM columns based on the observation of a single fully conserved
amino acid will have the same values regardless of whether the alignment
contained just three or a thousand sequences. Clearly the latter case, with no
exceptions in a thousand observations, should be treated differently, with far
greater penalties for the presence of a different residue than when the PSSM has
been derived from only three sequences. The second incorrect feature is that no
distinction is made between the different possible environments of a residue. The
probabilities associated in these methods with any two aligned residue types are
the same in all circumstances. However, it is well known that alignment columns
often show a clear preference for a small set of residues with similar properties,
such as charge, size, or polarity. In reality the alignment probabilities will differ for
a given pair of residue types according to these preferences. The probability of
aligning a leucine to a column will differ according to whether that column has a
perfectly conserved leucine, conserved residues that are small and hydrophobic,
or no apparent residue preference.
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It is possible to avoid the shortcomings of the methods described so far by using a
Dirichlet mixture, more accurately described as a mixture of Dirichlet distribution
densities. Dirichlet distributions are often used as the prior distribution in
Bayesian analysis of data where each observation is one of a limited set of possibil-
ities. In this case, the 20 amino acids constitute the set, and each Dirichlet density
describes a particular residue composition that might occur at an alignment
column. The Dirichlet mixture is a linear combination of these densities with multi-
plying coefficients that are the probability of their occurrence. Therefore these coef-
ficients sum to 1. A set of densities and mixture coefficients has been fitted by
Kimmen Sjölander and co-workers to the BLOCKS database of protein multiple
alignments. The details of the fitting are beyond the scope of this book, but involve
maximum likelihood and the EM (expectation maximization) method. For further
information on these methods see Further Reading.

Figure 6.2 gives the values for a nine-component Dirichlet mixture derived from the
BLOCKS database. The ith Dirichlet density component is labeled Blocks9.i and has
a linear mixture coefficient (probability of occurrence in the BLOCKS data) ci. The
amino acid distribution of each density component is defined by the numbers in
each column, labeled bi,a for residue type a. Note that these do not add to 1, their
sum bi being given for each density, so the frequency for residue a in density i is
given by bi,a/bi. The density components can be analyzed to identify their residue
preferences. As the BLOCKS database like all real protein sequences has a nonuni-
form residue composition—equivalent to the background composition pa of the
previous formulae—the component residue preferences are best measured as the
component frequency relative to the background frequency. These preferences are
shown on the bottom row of Figure 6.2, where all residues present at greater than
twice the background frequency are listed. For example, the first component favors
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Figure 6.2
The nine-component Dirichlet
mixture derived from the BLOCKS
alignment database. The
components are labeled Blocks9.1 to
Blocks9.9, and their mixture
coefficients ci are given in the first
row. Subsequent rows give the
distributions (unnormalized) for the
individual amino acids in each
component. Those amino acids of a
component that are present at more
than double the background
frequency are highlighted in yellow,
and summarized in the last row.
Thus positively and negatively
charged residues dominate
components Blocks9.4 and
Blocks9.7, respectively. The overall
amino acid composition predicted
by this mixture is obtained by
weighting these component
distributions by their coefficients ci.
(Data K. Sjölander, K. Karplus,
M. Brown et al. Dirichlet mixtures: a
method for improved detection of
weak but significant protein
sequence homology. Comput. Appl.
Biosci. 12:327–345, 1996.)
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small neutral residues; the second component favors aromatic residues. The ninth
component has the largest mixture coefficient, and is the most common compo-
nent in the BLOCKS database. It is the component with the closest composition to
the background frequency, and favors highly conserved individual residues such as
tryptophan and proline. Other Dirichlet mixtures have been derived to represent
amino acid alignments, including one with twenty components that is regarded as
an improvement over the Blocks9 mixture.

The application of Dirichlet mixtures is more complex than using pseudocounts,
because for each alignment column the weights have to be assigned to each of the
components. The equations for residue type a in alignment column u is given by

(EQ6.16)

where the term means the posterior probability (see Appendix A for a
definition of this term) of the ith Dirichlet component with a vector of residue coef-
ficients , given the vector of observed residue occurrences in alignment
column u. The symbol stands for all the Dirichlet mixture parameters. This term
is the weight of the ith Dirichlet component. This equation should be compared
with Equation EQ6.11.

After considerable algebraic manipulation, it is possible to derive a useful expres-
sion for terms , which can then be normalized to sum to 1 to obtain the qu,a. The
formula is

(EQ6.17)

where the mixture coefficients ci are now clearly involved, and the function B is the
Beta function, which is defined in terms of the more familiar mathematical Gamma
function (G) by

(EQ6.18)

Thus the observed residue counts in a column can readily be combined with the
coefficients of the Dirichlet mixture components to obtain an improved estimate of
the qu,a.

Figure 6.3 compares some of the alternative methods discussed to overcome a lack
of data, using as an example two cases. In one case, only a single sequence is
present in the data, with a leucine residue at the column of interest. In the other
case, 10 sequences all have a leucine at that position. The column composition is
identical in the two cases, but clearly there is more information when the data
consist of 10 sequences instead of just one. The figure shows how different
methods can incorporate that information, with the Dirichlet mixture method
clearly superior to the others.

B n

n

Nu

u,b i,b

b

s

r r
+( ) =

+( )∏
β

β

i

Γ

Γ

residue
type

eeq i+( )β

′ =
+( )
( ) +

+
q c

B n

B

n

N
u a i

u i

i

u a i a

seq i
,

, ,

r r

r
β

β

β

βDirichlet
components i

S ( )

′qu a,

θ
r
nu

r
βi

P ni u

r rβ θ,( )

q P n
n

Nu a i u
u a i a

i
,

, ,,= ( ) +
+

r rβ θ
β
βseqDirichlett

components i

S

Profiles and Sequence Logos 

175

BIF CH6 5th proofs.qxd  18/7/07  10:45  Page 175



PSI-BLAST is a sequence database searching program
When a PSSM is carefully constructed it can be a very sensitive tool in database
searches, finding many distant members of a protein sequence family not easily
found by a standard sequence search. For this reason Steven Altschul and co-
workers decided to enhance their BLAST database searching method to incorpo-
rate PSSMs. They created the program PSI-BLAST (Position-Specific Iterated
BLAST) which has proved extremely successful.

A PSI-BLAST database search incorporates a number of steps. The first step usually
involves performing a standard BLAST search of a database using the BLOSUM-62
substitution matrix with a single query sequence. This results in an initial set of
related sequences. These sequences will be determined as those whose BLAST
score gives an E-value smaller than a predetermined cut-off, often quite stringent
to ensure that only truly significant matches are identified (see Section 5.4). The
alignments of these significant matches with the query sequence are used to create
a PSSM. The PSSM is then scanned against the database using a variant of the
BLAST program to identify new sequences with suitably small E-values. If this
second search finds some newly identified related sequences, these are used to
update the PSSM. Successive cycles of PSSM refinement and database searching
can be carried out until no new sequences are found.

Clearly, the cut-off threshold of the E-value is a critical parameter. If it is too large,
as well as homologs, false positive sequences (i.e., unrelated to the initial query
sequence) will be collected. These will result in PSSM corruption, which in further
cycles will most likely give rise to a substantial fraction of false positive sequences.
If the cut-off is too small, the run may fail to identify some of the more distantly
related sequences, or will require many search cycles to locate them. A commonly
used E-value cut-off is 0.001, although this may still result in a corrupted PSSM in
some cases.
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Figure 6.3
The estimated probabilities for
amino acids according to some
methods for dealing with a lack of
data. The results shown are those
given when the data indicate a
conserved site with only isoleucine
residues. Two cases are considered,
observing either 1 or 10 isoleucine
residues at the site. (A) The
estimates given by using the
BLOSUM-62 matrix with Equation
EQ6.3 compared with those
obtained using a pseudocount
method of adding 1 to each
observed amino acid frequency
(Equation EQ6.10). Note that
Equation EQ6.3 is only sensitive to
observed composition, so that the
probabilities are the same. (B) The
estimates given by the nine-
component Dirichlet mixture of
Sjölander et al. (see Figure 6.2).
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We will concentrate here on how the PSSM is constructed in PSI-BLAST. The PSSM
is restricted to those residues that have been aligned to a residue in the query
sequence. This removes from consideration any residues of database sequences
that align with insertions in the query sequence. Thus the PSSM will have the same
length as the query sequence. The PSSM constructed does not explicitly consider
gaps, the usual gap penalties being used even when searching with the PSSM. Thus
the gaps are treated exactly as in BLAST, i.e., not position-specific.

For any given alignment column, only those sequences that actually have a residue
aligned are considered, so that the number of sequences in the alignment changes
from column to column (see Figure 6.4). Each sequence is weighted using the posi-
tion-based sequence weight scheme (see Figure 6.1), slightly modified to include gaps
as another residue type, and to ignore fully conserved residues. The resulting weighted
frequencies are used in Equations EQ6.14 and EQ6.15, which are then substituted into
Equation EQ6.7 to obtain the PSSM parameters. The value of a used is not Nseq – 1,
where Nseq is the number of sequences, but N ¢ – 1, where N ¢ is the number of different
residue types observed in the column, including gaps, and thus varies from 1 to 21.
The initial version of PSI-BLAST used standard substitution score matrices and
Equation EQ6.13, but recent versions use the values of the terms qa,b/papb.

The scaling l used is that given by the chosen substitution matrix. The gap penal-
ties used are those applied in a standard BLAST run in combination with this
substitution matrix. This results in the scoring statistics for the PSSM being the
same as for standard BLAST with the same matrix. This was confirmed using align-
ment data for real sequences, as the theory has not been derived for these align-
ments. Consequently, the measure of significance for PSI-BLAST scores is readily
available, and one can readily ascertain which new sequences should be included in
the recalculation of the PSSM. The technique has proved very successful, as shown
by a comparison with some other sequence-search methods (see Table 6.1). A
further refinement of l, resulting in improved accuracy, has been applied in recent
versions of PSI-BLAST. The value is modified to take account of deviations from the
scoring statistics that result from compositional bias in the sequences.

Representing a profile as a logo
The score parameters of a PSSM are useful for obtaining alignments, but do not
easily show the residue preferences or conservation at particular positions. This
residue information is of interest because it is suggestive of the key functional sites
of the protein family. A suitable graphical representation would make the identifi-
cation of these key residues easier. One solution to this problem uses information
theory, and produces diagrams that are called logos.

In any PSSM column u residue type a will occur with a frequency fu,a. The entropy
(uncertainty—see Appendix A) in that position is defined by

(EQ6.19)
H f fu u a u a

a

=−∑ , ,log2
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X Figure 6.4
Illustration of how PSI-BLAST uses
the pairwise sequence alignments
from a database search in PSSM
construction. The BLAST local
alignments to the query sequence
(the top blue sequence) are shown
as rectangles. At each residue
position of the query, a PSSM is
constructed using only those
sequences whose BLAST alignments
involve that position. Thus at
position X only six residues are
considered in order to derive the
PSSM, as only six of the sequences
(including the query sequence) have
local alignments including this
position.
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where the summation is over all the residue types, and the entropy units are bits of
information. If only one residue is found at that position, all terms are zero and Hu

is zero; that is, there is no uncertainty. The maximum value of Hu occurs if all
residues are present with equal frequency, in which case Hu takes the value log2 20
for proteins. The information present in the pattern at that position Iu is given by

(EQ6.20)

Thus a position with a perfectly conserved residue will have the maximum amount
of information.

In practice this equation must be slightly modified. Firstly, the average amino acid
composition will not be uniform, and the entropy of that composition can be used
instead of log2 20. Also, account must be taken of the small sample sizes, which
potentially underestimate the information content. (If there are only two
sequences, for example, Hu can never exceed log2 2.) For details of this correction
see Further Reading.

Thomas Schneider and Michael Stephens used the information measure to
produce a simple graphic that shows not only the amount of information present at
each position but also the residues and their contributions. The contribution of a
residue is simply defined as fu,aIu. At every position the residues are represented by
their one-letter code, with each letter having a height proportional to their contri-
bution. An example is given in Figure 6.5. These logos are a good visual summary of
the profile, although they cannot easily cope with variable insertions. The same
method can be equally successfully applied to nucleotide sequences, as will be seen
in Chapter 10.

I Hu u= −log2 20
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Protein family

Interferon a
Serine protease

Serine protease inhibitor

Glutathione transferase

Ras

Globin

Smith–Waterman

53

275

108

83

255

28

Gapped BLAST

53

275

108

81

252

28

PSI-BLAST

53

286

111

142

375

623

SWISS-PROT id

P05013

P00762

P01008

P14942

P01111

P02232

Table 6.1 
An illustration of the greater
effectiveness of the PSI-BLAST
method as compared with some
other algorithms for detecting
significantly similar sequences.
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Figure 6.5
Example of a protein sequence
alignment logo, taken from the
BLOCKS database. This is block
IPB000399E, constructed from an
alignment of 186 sequences of TDP
(thymine diphosphate)- binding
enzymes.  This region of sequence is
also present in PROSITE (entry
PS00187), which reports a TPP
(thiamine pyrophosphate)- binding
pattern [LIVMF]-[GSA]-x(5)-P-x(4)-
[LIVMFYW]-x-[LIVMF]-x-G-D-[GSA]-
[GSAC]. (See Table 4.2 for the
notation used in PROSITE patterns.)
Note that this pattern is only found in
a subset of 44 of the 186 sequences
whose alignment is shown here. The
conserved proline of this pattern is in
column 18, and the G-D-[GSA] at
columns 27–29. Produced at
http://weblogo.berkeley.edu

A protein sequence from each of the example families (designated by a protein i.d. in the SWISS-PROT sequence database) was submitted
to a search using one of the three methods. For each search algorithm the number of sequences found for that family is reported. The
Smith–Waterman method uses full matrix dynamic programming as described in Section 5.2 to determine the local alignment of optimal
score. Gapped BLAST uses a method described in Section 5.3 that is faster but in principle cannot guarantee to find the optimal alignment.
In all cases except the Ras family it is as successful as Smith–Waterman. The PSI-BLAST method is notably more successful than the other
two, especially in three cases shown here, indicating that it is considerably more sensitive in homology searches. In the first step a gapped
BLAST search is run, so it always reports at least as many similar sequences. Only in the case of interferon a does it fail to find any more
sequences. (Data from Table 3 of Altschul et al., 1997.)

BIF CH6 5th proofs.qxd  18/7/07  10:45  Page 178



6.2 Profile Hidden Markov Models
In Section 5.3 we saw how finite-state automata can be used to find a specified sub-
sequence or string within a sequence (see Figure 5.23). The automaton model has
to be specially constructed for the desired string. The model consists of several
states and it can only be in one type of state at any one time. There is a limited set
of transitions allowed between states, and the output of the model (the sequence)
is referred to as the emission of, in this case, one residue at a time. This idea can be
extended to make models that can be used in many other sequence-recognition
applications. An important aspect of some of these more complex models is the
introduction of probabilities for transitions between states and emissions from
states. The class of models that will be presented here are generally called hidden
Markov models (HMMs) (see Flow Diagram 6.2). HMMs can be designed for many
different tasks, of which sequence alignment is just one. In this section we will study
HMMs designed to align a sequence to a profile. Other applications of HMMs will
be encountered elsewhere in this book, for example for gene identification in
Chapter 10 and for transmembrane helix prediction in Section 12.5, as it is a versa-
tile way of constructing a variety of models of relevance to bioinformatics.

An HMM is defined by having a set of states, each of which has a limited number of
transitions to other states and a limited number of emissions from a given state.
Each transition between states will have an assigned probability, the value of which
is independent of the history of previous states encountered. It is this property that
makes these a class of Markov models. Each of the models considered here has a
start state and an end state, and any path through the model from the start to the
end state will produce a sequence. In these HMMs the state emission is of a residue
of the sequence. As will be shown below, there are many alternative paths through
the model that can produce the same sequence, and the ith residue of the sequence
may have been emitted from any of a number of alternative states. The sequence
alone has no information about the state from which each residue arose. This is the
hidden nature of these models.

It is possible to define an HMM that contains the information present in a multiple
alignment so that it becomes an alternative representation of a PSSM. The
resultant model is usually referred to as a profile HMM. Profile HMMs can be seen
as a more sophisticated version of a PSSM, especially because of the position-
dependent way in which insertions and deletions are treated. Many HMM practi-
tioners emphasize the fact that HMMs have a sound theoretical foundation,
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Flow Diagram 6.2
The key concept introduced in this
section is that a class of hidden
Markov models (HMMs) can be
constructed to represent a sequence
profile, and methods are defined for
generating such models for use in
searching for the profile in
sequences.
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permitting accurate estimation of the likelihood of observing the alignment
produced. This can be especially useful when searching for new members of a
sequence family. It is always preferable to be able to take decisions about the inclu-
sion of a distantly related member based on precise statistical analysis. (This is why
the PSI-BLAST PSSM parameters were scaled so carefully.)

This section starts with a look at the structure of profile HMMs. Each alignment
position has a standard structure, consisting of several different states with a
limited set of allowed transitions. Some additional model architectures are required
to permit the alignment of sequences that either do not fully or do not only cover
the profile. After this, the model parameters will be defined and a method
presented for deriving their values when a multiple alignment is available. (This is
the exact analogy of fitting the PSSM values and, as will be seen, involves a similar
concern for the potential lack of sufficient data.) Once a profile HMM has been
defined, sequences can be aligned to it. Any path through the model and the asso-
ciated emitted sequence can be assigned a probability based on the transition and
emission probabilities. As is the case for pairwise sequence alignment, there are
many possible alignments, paths, of which we are most likely only to be interested
in the optimal alignments. These will be shown to be obtainable for profile HMMs
in ways related to the dynamic programming techniques shown in Section 5.2.
However, profile HMMs can produce the same alignment by many different paths
through different states. This is not the case with the dynamic programming
methods mentioned, for which a particular alignment is associated with only one
path. A way to identify the most probable sequence will be discussed, as will be the
ability to estimate the most likely state from which a given residue was emitted. The
final part of this section will explore how a profile HMM can be parameterized
using unaligned sequences.

The basic structure of HMMs used in sequence alignment 
to profiles
All the HMMs discussed here consist of a number of states that are linked together
by transitions. An example of a state is one that matches (i.e., aligns) residues at a
specific position (column) of an alignment. This state may be linked to the
matching state for the next alignment position by a transition that specifies the
direction of the connection. All transitions have an associated probability, such that
for every state that has transitions to other states, the sum of all such probabilities
must sum to exactly 1. Thus, it is certain that a transition will occur from any such
state, although it is possible for the transition to be directly back to the same state.
The only state present in the HMMs discussed here that does not have this property
is the end state, because on reaching the end state the HMM terminates, so that
state has no transitions. The sum of probabilities for all transitions to a given state
need not add to 1, resulting in certain states being more likely to be visited.

A state of a profile HMM may emit a residue, so that a path through the model via
a series of states will define the alignment of a sequence. The order of the residues
emitted along the path must correspond to that of the query sequence. In general,
any state that emits residues can emit any type and has defined probabilities for
each possible type, with the total emission probability summing to 1. Not all states
in a model are required to emit residues, and those that do not are sometimes called
silent states.

It should be noted that there are some significant differences between the HMM and
the finite-state automaton of Figure 5.23. In the latter, the sequence is emitted on
transition from one state to another, and the transitions are labeled with these
residues. In HMMs, the emission occurs when the state has been entered, and the
transitions themselves are not directly connected to the query sequence. In addition,
the costs associated with transitions in finite-state automata are not necessarily
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probabilities, and paths through such models are unlikely to have a probabilistic
interpretation.

There are three possible outcomes when considering aligning the next residue of a
query sequence to a reference sequence alignment. First, the query sequence
residue may align (or match) with the next residue of the reference. Second, it may
correspond to an insertion relative to the reference. Third, the query sequence
residue may correspond to a later position in the reference, indicating a gap (or
deletion) in the query. Profile HMMs contain a set of three states associated with
each alignment position to model these alternatives. For the uth alignment position
the match, delete, and insert states will be referred to as Mu, Du, and Iu, respectively,
and will be represented on diagrams by a square, circle, and diamond, respectively
(see Figure 6.6). The delete state is an example of a silent state, as it does not emit
any residues of the sequence. 

A few transitions are allowed between Mu, Du, and Iu in all profile HMMs (see
Figure 6.6A). As the insert state emissions correspond to residues inserted after the
uth position, there is a transition from Mu to Iu. In many models there is also a tran-
sition from Du to Iu, although a number of models omit this because when such
transitions are present they tend to have low probability, often resulting in low-
scoring paths. Furthermore, the alignments they represent can be obtained by
alternative paths through the HMM involving the match state. In addition, there is
a transition from the Iu state to itself to allow insertions of more than one residue
before alignment position u + 1. (The alignment is strictly only of those residues
emitted by the match states, so that sequence residues emitted by the insert states
are not regarded as occupying an alignment position.)

Several transitions connect the uth position states to states at position u + 1, all in
the forwards direction from u to u + 1 (see Figure 6.6B). The Mu+1 and Du+1 states can
be reached from all three of the uth position states. This means that there is a path
connecting successive delete states, corresponding to a large deletion. The insert
states are only accessed via transitions from the match and delete states at the same
position. Transitions between insert states Iu and Iu+1 are not allowed because they
would imply the absence of a match state between them, and hence delete state
Du+1 should be involved. However, note that the transition from Iu to Du+1 is often
omitted, for the same reasons given above in the case of Du to Iu. The full set of states
for positions u and u + 1 are shown in Figure 6.6C, together with all the transitions
involving just this set of states.

As discussed above, in addition to transitions between states, HMMs also have
emissions from states. Match and insert states emit a residue, while delete states do
not. Recalling the discussion of substitution matrices in Section 5.1, there are two
basic models of sequence alignment to consider: the random and nonrandom (that
is, related) models. If there is an insertion in the query sequence relative to the
HMM, the residues involved are, by definition, not related to residue information in
the HMM. The emission probabilities for insert states are often assigned according
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The repeating architecture of a
profile HMM. (A) The transitions
between the three states of a profile
HMM associated with position u.
The match, insert, and delete states
are labeled Mu, Iu, and Du,
respectively. Note the red transition,
which is often not included in
models. (B) The transitions from the
three states of a profile HMM
associated with position u and those
states associated with position u + 1.
Again, a red transition is often
omitted from models. (C) The full
model, being the two sets of
transitions combined.
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to the basic residue frequencies pa as described in Section 5.1. In contrast, the
residues emitted by match states are related, and so the emission probabilities
depend on the multiple alignment. They are most closely related to the PSSMs
discussed above, as they vary with position in the alignment.

Unlike the PSSMs discussed above, which were constructed with as many positions
as in the query sequence, the structure of the equivalent profile HMM is not quite
as straightforward. Firstly, in contrast to PSSMs, profile HMMs can be obtained
from a set of unaligned sequences. In such cases the number of match states is
often set to the average length of the sequences that define the profile, since this
will hopefully reduce the need for insert and delete states. However, it is often
useful to try some alternative models, as they can lead to better results. The HMM
program SAM examines the existing HMM to identify match states that are used by
relatively few sequences, or insert states used by many sequences, and then respec-
tively removes or inserts positions in the HMM. The process of exploring alternative
model structures is sometimes called model surgery. When fitting a profile HMM
to a multiple alignment a different approach is often taken, in which those align-
ment columns that have more gaps than some specified fraction are assumed to be
insertions, other columns being taken as indicating a match state.

Each transition and emission in the model is a parameter that needs to be defined.
The basic HMM structure for an alignment position normally has either nine or
seven transitions (see Figure 6.6C). If all insert states are assigned identical emis-
sion probabilities, these can be precalculated from the residue composition or
refined as 20 parameters. The match-state emission probabilities will be different
for each alignment position, each requiring 20 parameters. Ignoring the insert-state
emission, this adds up to as many as 29 parameters for each alignment position, so
that a profile HMM with 100 match positions and associated states, transitions, and
emissions will have several thousand parameters. This has important conse-
quences, as almost certainly a lot of sequence data will be required to derive a good
parameter set for an HMM of this size.

The path taken through the model, resulting in the emission of a sequence, can be
interpreted as assigning each of the residues to be either aligned to a particular HMM
position (corresponding to the particular match state) or else inserted at a particular
position (corresponding to the particular insert state). Note that when comparing
the assignments for several sequences, those residues from different sequences that
were emitted by the same match state are regarded as aligned with each other.
However, those emitted by the same insert state are not regarded as aligned, even
though they may be shown in the same column of a summary alignment.

So far we have only discussed the states required in the section of the profile HMM
that aligns the relevant region of the query sequence (for example, the domain that
the profile HMM represents). The HMM must also contain special sections for
starting and ending the alignment. In addition, some HMMs contain features
designed to cope with query sequences containing unrelated regions of sequence
as well as the relevant region, for example other domains not modeled in this
HMM. Such HMMs model local as opposed to global alignments. Other HMMs are
designed to allow for repetition of segments of sequence, even a complete domain.
We will now examine these other features of profile HMMs as used in some of the
commonly available packages.

All the profile HMMs described here require states at the start and end of the model.
Figure 6.7A shows a profile HMM configuration including such start and end states.
The start state does not emit any residues and has no transitions to itself, but has
three transitions to other states. All paths through the HMM start at this state. The
transition to M1 will occur when the query sequence amino-terminal residue
matches the first position in the profile HMM. If the query sequence has extra
residues at its amino terminus, these will be emitted by the I0 state. Finally, if the
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first-position residue is missing from the query the transition used will be from start
to D1. The end state shown in Figure 6.7A has transitions to it from the three states
associated with the final profile position and does not emit a residue, nor have any
transitions from itself. All paths through the HMM terminate at this state. In the
model shown, any extra residues in the query sequence after the profile will have to
be emitted by the last insert state. Figure 6.7B shows example emission probabili-
ties from the four match states. These sum to 1 for each state, and show that each
alignment position has particular residue preferences. For example, state M1 repre-
sents a highly conserved proline, and M3 a conserved small polar residue. The insert
state emission probabilities are not shown, but would normally be the same for all
insertion states and related to the overall amino acid composition.

All the models considered here represent a profile against which a query sequence
is to be aligned. We must allow for the query sequence to be wholly unrelated to the
profile. In the model discussed so far, such an unrelated sequence would be emitted
by paths that visited many delete and insert states. It should be recalled that only
the sequence emitted by the match states can be regarded as aligned to the profile
HMM, and any residues emitted by insert states are unaligned by definition. In
addition, an unrelated sequence will align to a profile HMM with a very low proba-
bility or log-odds score. As in the case of database searches, unrelated sequences
will usually be identified on these quantitative scores rather than a qualitative
assessment of the alignment itself.

Another possible situation arises if the query sequence is longer than the profile, so
that there are segments of sequence that are unrelated. The initial and final insert
states can represent any unrelated flanking sequences, allowing for a local align-
ment of the query sequence. However, the model of Figure 6.7 is not the full equiv-
alent of Smith–Waterman local alignment (see Section 5.2) because the path taken
through the HMM by the sequence will still include all profile positions. Alignment
of only a part of the profile will involve a path through many delete states, which
will almost certainly occur with very low probability if the model is parameterized
for sequences with the full-length profile. A more realistic local alignment model is
shown in Figure 6.8A. This involves two new silent states that are directly connected
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Figure 6.7
A complete profile HMM model,
with a start and end state and four
match states. The existence of states
I0 and I4 allows the profile to occur
anywhere within a larger sequence.
(A) The organization of the states
and allowed transitions. Note that
each of the transitions in the model
will in general have a different value
for the transition probabilities. One
of the possible paths through the
model is marked by blue transition
arrows, and produces a sequence
that has two or more residues at the
amino terminus, followed by the
profile with no insertions,
immediately followed by the
carboxyl terminus. (B) The emission
probabilities from the four match
states. Ignoring the residues emitted
from state I0, the sequence PATH has
the greatest probability of being
emitted, but many other sequences
are almost as likely to be emitted, for
example, PETS. Note that the
emissions for each state sum to 1.
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to every match state of the model, as well as to two insert states that model the
flanking sequences of the query. These silent states are not necessary, but they
reduce the number of transitions required in the model, making parameterization
easier. Without them, the start and end states would also need to be connected to
all match states to allow for the absence of flanking regions. Note that the red tran-
sitions of Figure 6.6C are missing in this model.

Although the insert states I0 and I4 of Figures 6.7 and 6.8 can model any flanking
sequence segments that are not part of the profile, further design is needed to
appropriately model such regions. For example, if simple insert states are used, at
least one residue must be emitted at each end of the sequence, and these terminal
residues will not be part of the profile alignment. This can be avoided by a more
complex model structure. In the SAM program such structures are referred to as
free insertion modules (FIMs) and, in addition to the insert state, include a delete
state. The FIM is always entered via this delete state and can be left via either state.
This allows for the possibility of no residues in a flanking sequence. The delete state
has a transition to the FIM insert state, the insert state has a transition back to itself,
and both have transitions that leave the FIM.

As described so far, with probabilities constrained to sum to 1 for every state, all
transitions and emissions in a profile HMM will affect the overall probability or
score for the sequence. This is undesirable in the case of flanking sequences, as it is
only the region related to the profile that is of interest. The contribution of these
flanking regions can be controlled by relaxing the probability constraints to set the
transition from the FIM delete to the FIM insert state and all the transitions leaving
a FIM a probability of 1. The only remaining influence on scoring will be from the
emitted residues, but these are usually assigned the probabilities of the null, i.e.,
random model, and as a result have no influence.
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The HMM can be further enhanced to permit repeats of the profile by connecting
the silent states of Figure 6.8A together. The connecting transition goes via an insert
state (shown in Figure 6.8B) or more correctly via a FIM to model any intervening
sequence, and must lead back to the state that has transitions to all the profile
match states. This is the model used in the program HMMER2 but is closely related
to those used in several other HMM packages.

The final issue relating to the basic HMM structure that we will consider is that the
number of model states and the transition structure have an important influence
on the distribution of path lengths through the HMM. This is easiest to understand
by looking at some simpler HMMs, such as the one shown in Figure 6.9. All paths
through the model shown in Figure 6.9 must pass at least once through each of the
emitting states 1, 2, and 3, each of which emits a residue. Therefore, the minimal
sequence length this HMM can model is three residues long. Furthermore, states 1,
2, and 3 have identical transition probabilities. Thus, any path corresponding to a
sequence of L residues will involve three transitions of probability t (to move from
start to end states) and (L – 3) transitions of probability (1 – t). Thus the probability
of any path emitting L residues is t3(1 – t)L–3. However, there are many different
equally probable paths that emit L residues. We need to know how many in order to
calculate the probability of this model producing an L-residue sequence. First, note
that every path must begin with a transfer from the start state into match state 1.
Thus, the paths can only differ in their remaining (L – 1) transitions, of which there
will be (L – 3) transitions returning to the same match state (1 to 1, 2 to 2, or 3 to 3).
The paths can only differ in the ordering of these (L – 3) transitions within the
remaining (L – 1). Combinatorial analysis tells us that there are

(EQ6.21)

different orderings and hence different paths. As these are all of equal probability,
the probability of a path in this model having length L is . For a
general model with N match states, the probability of a path of length L is

(EQ6.22)

This distribution is shown in Figure 6.10 for several different values of t and
numbers of match states N. It can have an important influence on the success of the
HMM, because the model should ideally have the same distribution of lengths as
the set of sequences it is trying to represent. If t is made sufficiently small, the most
likely path lengths can become very long, but such models are not encountered in
realistic protein-sequence problems. 

Estimating HMM parameters using aligned sequences
The structure and parameters of a profile HMM can be derived from a set of protein
sequences. These sequences may already be in a multiple alignment or they may 
as yet be unaligned, waiting for the HMM to do the work. Here we will consider
parameterization using alignments, leaving the unaligned case until later.
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Figure 6.9
A simple HMM used in the
discussion of the length
dependence of HMM models. There
are three match states between the
start and end states. As there are no
insert or delete states, all the match
states must be included at least once
in each path.
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To use a multiple sequence alignment for profile HMM parameterization we must
first decide which alignment positions correspond to which HMM match states,
and which are to be modeled as insert states. An alignment column that contains
no gaps should be assigned to a match state, and one with a majority of gaps to an
insert state, but intermediate situations need careful consideration. Usually, a
threshold proportion of gaps is selected to determine the assignments. Once these
assignments have been made, the path that each sequence follows through the
HMM can be deduced. In this way, the alignment data can be translated into the
frequencies of transitions between particular states along the path and the
frequencies of emission of individual residues from particular states. Note that
more sophisticated parameterization methods have been proposed that simulta-
neously try to find the best column assignment during the parameterization (see
Further Reading).

Given a set of sequences with known paths through the profile HMM, parameteri-
zation is in principle straightforward. All states in the HMM, except the end state,
have some transitions from that state to others (in some cases including looping
transitions back to itself). The total probability for these transitions must sum to 1
for each state, so that there is certainty that one of these transitions will be taken.
(Exceptions such as states in FIMs will be ignored here.) For the state u the transi-
tion to another state v will be written t(u,v). The summation over all states w that
are connected to state u by transitions (including possibly state u itself) gives

(EQ6.23)

If the paths taken by the sequences used for parameterization contain a total of mu,v

transitions from u to state v, then the model transition probabilities can be esti-
mated by

(EQ6.24)

Emission probabilities for match states can be derived in an analogous way. The
emission probabilities eMu

(a) for a residue a from the uth match state Mu add up
to 1 where all possible residue types are considered. If the parameterization data
contain nMu

,a emissions of residue a from match state Mu (which would result
from observing that number of occurrences of residue a in the alignment column
corresponding to match state Mu), then the model emission probability can be
estimated by
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numbers of match states when the
transition probability t is 0.20.
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(EQ6.25)

where the summation is over all the residue types b. The insert state emission prob-
abilities are not calculated in this way. The model for insert states is the
random model, so that the probabilities are usually taken from the overall amino
acid composition of a selected data set. Thus

(EQ6.26)

Unfortunately, parameterization is more difficult in practice because there is
almost always a lack of data. If there are insufficient sequences for parameteriza-
tion, many of the counts mu,v and especially nMu

,a will be zero or very small,
resulting in very poor estimates of the probabilities. This is especially the case for
emission parameters. For protein sequence HMMs a minimum of 20 sequences is
required simply to observe each possible match state emission, but many more are
required to obtain realistic estimates of the emission probabilities. If no transitions
or emissions have been observed, this will lead to t(u,v) or eMu

(a) being set to zero
for these events. Using zero probabilities will result in the HMM being unable to
accurately align sequences that require these events as they will be impossible in
the model. An HMM that has zero probability for emission of a particular residue
from a given match state cannot align a sequence with that residue at that position.
It can only make the residue an insertion before or after the position, in which case
it does not count as aligned. Even when a relatively large quantity of sequence data
is available, parameterization problems often occur for positions with very highly
conserved residues or sequence segments.

This problem is identical to that discussed above in the context of PSSM parame-
terization. In the case of emission probabilities the solution is very similar. The
formulae presented earlier for qu,a can be applied immediately, so that for example
the equivalent of Equation EQ6.10 is

(EQ6.27)

Other pseudocount methods can be applied, deriving expressions by reference to
the previous formulae for PSSM parameters.

Scoring a sequence against a profile HMM: The most probable
path and the sum over all paths
Given a parameterized profile HMM, any given path through the model will emit a
sequence with an associated probability. This path probability will be the product
of all the transition and emission probabilities along the path. In addition, the path
defines how the emitted sequence is aligned to the model. Residues emitted from
match states will be aligned to that position in the profile. Residues emitted from
insert states should not be regarded as aligned, but the position of the insertion is
clear. Normally, the sequence is specified and we wish to find the alignment and
score against the profile HMM.

There can be many paths through the HMM that result in the same emitted
sequence, each with a different alignment to the profile. This is analogous to the
many possible alignments of one sequence to another. Of these many paths, some
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or one will be the most probable, analogous to the best-scoring alignment in
dynamic programming. However, the probability of the sequence being emitted by
the HMM is given by the sum of the probabilities for all possible paths. This has no
equivalent in dynamic programming.

Methods exist for calculating the most probable path and the total probability, both
of which are quite similar to the dynamic programming methods discussed in
Section 5.2. Using probabilities is computationally impractical, because in realistic
situations it leads to very small numbers. This technical problem can be avoided by
taking logarithms. However, log-odds scores (the log of the ratio of probabilities of
alternative models) are preferable, using a random model as in Section 5.1, as this
is easier to analyze to provide an estimate of the significance of the score. The
random model of an L residue sequence is the product of all the L terms pa (the
residue composition frequency). If each of the L emission probabilities, each for a
particular state u emitting eu(a), is divided by its associated pa then the emission
terms will include all the terms of the random model and the transition terms t(u,v)
can remain unchanged. Therefore the equations that follow will contain terms such
as ln(eu(a)/pa) and ln(t(u,v)) where u and v are model states and a is the emitted
residue type.

We will deal first with calculating the most probable path, which can be found using
the Viterbi algorithm. This will be applied to a profile HMM with a structure very
similar to that shown in Figure 6.7A, except that it will have an arbitrary number of
sets of match M, delete D, and insert I states. The states are labeled as was described
earlier when presenting the basic profile HMM structure. At a profile position u,
these states will be called Mu, Iu, and Du. Hence the transition probability from Mu

to Mu+1 will be written t(Mu,Mu+1). The start and end states will here be labeled
“Start” and “End,” respectively. However, the formulae will only be shown for the
regular repeating structure. The formulae involving the Start and End states are a
modification of those presented here. If the query or emitted sequence x is L
residues long and is labeled x1x2x3...xL, then the emission probability for residue xi

from insert state Iu is written eIu
(xi).

During the Viterbi algorithm, a record must be kept of the highest probability or
best log-odds score up to that point in the model and for a given amount of
emitted sequence. For example, at the state Du, when the sequence up to and
including residue xi has been emitted, the highest probability will be written 
VDu

(xi) and the best log-odds score will be written VDu
(xi). Note that this calcula-

tion is equivalent to a dynamic programming matrix with one side of length equal
to the number of states in the HMM, and the other side being the length of the
query or emitted sequence

The Viterbi algorithm, like dynamic programming, starts with very short emitted
sequences involving paths of only very few HMM states, so that the best path prob-
abilities and log-odds scores are readily calculated, and then builds on these. The
calculation usually uses initialization values that start the path at a particular state
with no sequence emitted. For example, in probability calculations the initializa-
tion for the model in Figure 6.7A might be vStart(0) = 1, vu(0) = 0 for any or other state
u. The log-odds equivalents are VStart(0) = 0, Vu(0) = – • for any or other state u. This
results in all paths beginning at the Start state.

The key stage in the algorithm is to derive values for the states in the uth profile
position based on values at states which have transitions to them, wholly or mostly
from the u–1th profile position. The following equations deal only with the basic
profile HMM model shown in the central part of Figure 6.7A. We will also assume
that the insert state emission probabilities are given by the amino acid composition
pa for residue type a, written pxi

in the following equations where they represent
emission of the residue type present at position xi.

Chapter 6: Patterns, Profiles, and Multiple Alignments

188

BIF CH6 5th proofs.qxd  18/7/07  10:45  Page 188



The formulae for the probability calculation are

(EQ6.28)

Note that other transitions, such as those shown in red in Figure 6.6C, may also
occur in some other model profile HMMs. These would lead to extra terms corre-
sponding to these extra transitions. For traceback to determine the path, a record
must be kept of which term was selected as the maximum in each formula. For
computational reasons the logarithms of probabilities are always used, which
replaces the multiplication with addition. For example,

(EQ6.29)

Using a null model the same as the model used for insert emissions (Equation
EQ6.26), we can obtain log-odds scores. Using the HMM model of Figure 6.6C, we
can derive log-odds scores as

(EQ6.30)

V x
e x

pM i
M i

x
u

u

i

( ) =
( )⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
+log maxx

log ,V x t M M

V x

M i u u

I i

u

u

−

−

− −

−

( ) + ( )
( ) +
1

1

1 1

1 log ,

log ,

t I M

V x t D M

u u

D i u uu

−

− −

( )
( ) + (

−

1

1 11
))

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

( ) =V xI iu
max

log ,V x t M I

V x

M i u u

I i

u

u

−

−

( ) + ( )1

1(( ) + ( )
( ) + ( )

⎧

−

log ,

log ,

t I I

V x t D I

u u

D i u uu 1

⎨⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

( ) =V xD iu
max

log ,V x t M D

V

M i u u

I

u

u

−

−

( ) + ( )−1

1

1

xx t I D

V x t D

i u u

D i uu

( ) + ( )
( ) +

−

−−

log ,

log

1

11
,, Du( )

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

log ( ) log ( ) max

log log

v x e x

v x

M i M i

M i

u u

u

= +

( ) +
− −1 1 tt M M

v x t I M

v

u u

I i u uu

−

− −

( )
( )+ ( )

−

1

1 11

,

log log ,

log DD i u u

I

u
x t D M

v

− − −( ) + ( )

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪ 1 1 1log ,

log
uu i

ux p
v x t M I

i x

M i u      u
( ) log max

log log ,
= +

( )+−1 ( )
( )+ (        )

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪ −log log ,

log

v x t I II i u      u
u 1

vv x
v x t M D

vD i

M i u u

u

u( ) max
log log ,

log
=

( ) + ( )
− −1 1

uu
x ti u u−

( ) + ( )
⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪ −1 1log ,D D D

v x e x

v x t M ,M

vM i M i

M i u u

Iu u

u

( ) ( ) max=

( ) ( )
− − −1 1 1

uu

u

x t I ,M

v x t D ,M

i u u

D i u u

−

−

− −

− −

( ) ( )
( ) ( )

⎧

⎨
1

1

1 1

1 1

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

=v x p
v x

I i x

M i

u i

u( ) max
−

−

( ) )
( ) ( )

⎧
⎨
⎪⎪⎪

⎩
⎪

1

1

t M ,I

v x t I ,II i u     u
u⎪⎪⎪

=
( )

− −
v x

v x t M ,D
D i

M i u

u

u( ) max 1 1 uu

u uv x t ,D
u

( )
( ) ( )

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪ − −1 1D i D

u     u(

Profile Hidden Markov Models

189

BIF CH6 5th proofs.qxd  18/7/07  10:45  Page 189



For comparison with the previous equations, these are for the basic profile HMM
unit as shown in Figure 6.6C, with all nine possible transitions given in these equa-
tions. Only the match state Mu equations include an emission term because the
delete state Du does not emit, and the insert state Iu emission term becomes 0 on
dividing by the null model. Note that the emitted residue is dictated by the query
sequence, and must be the the next residue in the sequence x.

The termination of this calculation will depend on the precise details of the model
in the region of the end state. If the end state is called End the value of VEnd(xL) will
be the log-odds score of this best path. Because this state does not emit a residue,
this last formula will lack emission terms.

Algorithms quite similar to these can calculate the total probability or total log-odds
score for all paths that emit the query sequence. The main difference is that instead of
determining the maximum of three alternatives, the three probabilities are summed.
However, there is a significant practical difference, because actual probabilities must
be calculated, not log-odds scores. The method is known as the forward algorithm
because it progresses from the start state to the end state of the HMM. At the state Mu,
when the sequence up to and including residue xi has been emitted, the total proba-
bility is written fMu

(xi) and the total log-odds score is written as FMu
(xi). The initial-

ization is performed as was discussed previously. By analogy with Equation EQ6.28
we have

The log-odds score version of this, by analogy to Equation EQ6.30 is

As for the Viterbi algorithm, FEnd(xL) will be the total log-odds score for obtaining the
query sequence via all possible paths with this HMM. Again the End state does not
emit a residue, so the formula to calculate it will lack this emission term.

An equivalent algorithm has also been proposed going backwards from the End
state to the Start state. This is called the backward algorithm, and defines the terms
b and B that are exactly analogous to the terms f and F. We are only interested here
in the probabilities b as they will be used later. The probability of the sequence xi+1

to xL being emitted, starting from state Mu when it emitted residue xi, is written bMu
(xi). The initialization is bu(xL) = t(u,End ) for all states u, which is only non-zero for
those states with a direct transition to the End state. By analogy with Equations
EQ6.28 and EQ6.31, using the HMM model of Figure 6.7A we have
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Note that fu(xi) is the probability of obtaining the sequence x from the start up to the
ith residue in a path that ends at the uth model state. Similarly, bu(xi) is the proba-
bility of obtaining the sequence x from the (i + 1)th residue to the end having
emitted the ith residue by the time state u was left. Also note that fEnd(xL) = bStart(0)
= P(x), the probability of observing the whole sequence x from the HMM.

Estimating HMM parameters using unaligned sequences
Returning now to the case where the sequences to be used for parameterization are
not aligned, we must begin by deciding on the number of match states. These
sequences (called the training sequences) should have been selected on the basis of
having a common sequence region, possibly only a small part of the complete
sequence. The number of match states should be fixed according to the anticipated
features of the common region; that is, how many alignment columns are expected
to contain residues as opposed to gaps in a majority of the sequences.

A starting set of parameters is required, which will be improved by iteration as
described below. This set should be as good as possible to increase the chances of
determining a good parameter set. For this reason, Dirichlet priors are often used
to obtain a first estimate of the parameters. Furthermore, because there are general
problems in locating the optimal parameter set, it is often advisable to generate
several starting parameter sets and try each of them.

Several algorithms can be used to obtain HMM parameters. Pierre Baldi has
proposed a technique involving maximum likelihood estimation methods where
the optimization occurs via gradient descent. For more detail see Further Reading,
although some of the key concepts are discussed in Appendix C.

The method we will discuss here is the Baum–Welch expectation maximization
algorithm. The essential idea is to try to estimate the number of times each transi-
tion and emission occurs in the model when using the training sequences. These
values are obtained by summation over all possible paths that produce the
sequences, using the HMM with the current parameter set. The method uses the
forward and backward algorithms. (A faster but less accurate variant uses only the
highest-scoring paths; that is, Viterbi paths.) The estimated transition and emission
frequencies are used to derive an improved parameter set. The training sequences
are then rerun with the HMM parameters now set at their new values. Several cycles
are run until the parameters have converged. This method is an example of the
expectation maximization (EM) method (see Further Reading), and involves itera-
tively improving the values of the parameters, such that the likelihood of observing
the sequences with the HMM should increase with each iteration.

First, note that fu(xi)t(u,v)ev(xi+1)bv(xi+1) is the probability of emitting the sequence x
summed over all paths that pass through states u and v, emitting xi+1 at state v.
From this, the probability that the transition from state u to state v is taken with the
emission of xi+1, is given by

(EQ6.34)

where P(x) is the probability of observing sequence x by any path. (As noted above,
the value of P(x) can be obtained by the forward or backward algorithm.) By
summing this formula over all values of sequence position i and over all training
sequences, one can obtain the expected number of transitions mu,v for the training
set. For the model illustrated in Figure 6.6C, with extra transitions allowed, we
obtain the nine equations
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(EQ6.35)

Using similar logic, and this time restricting paths to those that emit a residue of
type a at state Mu (that is, the residue emitted can be any residue a in the sequence
x), we obtain

(EQ6.36)

where the summation is over all residues of type a in the whole sequence. The insert
state emission probabilities can also be fitted with an equivalent equation for Iu.

The process starts with rough estimates of the transition and emission parameters.
These values are used to obtain a new set of parameters, using Equations EQ6.35
and EQ6.36 with EQ6.27 or other methods to take account of a lack of data as
described in Section 6.1. An improved parameter set should make the emission of
the training sequences more likely. The likelihood of observing all the training
sequences is given by the product of the P(x) for all sequences x. Normally the log
likelihood is used, which is the sum of the FEnd (xL) for each sequence. The method
is repeatedly used to (hopefully) improve the HMM parameters, until the log likeli-
hood of the training data does not improve any further. After repeating this proce-
dure from several alternative starting points, the best parameters are kept, and the
HMM is regarded as parameterized.

Thus far we have not considered weighting the training sequences, even though we
might expect some to be more helpful in the parameterization than others. The
sequence weighting methods discussed in Section 6.1 are only applicable to
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aligned sequences and so do not help here, unless the poorly parameterized HMM
is used for their “alignment”. (Aligning each sequence to the profile HMM cannot
be said to create a true multiple alignment, despite the results appearing in a
similar form. However, the output could be treated in the same way to obtain
sequence weights.) Most profile HMM programs weight training sequences
according to their log-odds score. Typically the worst-scoring sequence is assigned
a weight of 1, and the others are weighted on a scale that assigns a weight of
0.01–0.001 to the best-scoring sequence. These weights are typically updated
during each iteration of the parameterization.

6.3 Aligning Profiles
The methods of generating PSSMs and profile HMMs from sequences are now well
established, and several databases exist that provide such models for different
protein families and subfamilies. It has become common practice to use these
models in searching for remote homologs, during which sequences are aligned to
them. More recently it has been appreciated that aligning two PSSMs or profile
HMMs can be even more effective at identifying remote homologs and evolu-
tionary links between protein families (see Flow Diagram 6.3). (Generally families
are thought to have no evolutionary relationship to each other.) As a result several
methods have been proposed that can perform such analysis.

Comparing two PSSMs by alignment
The alignment of two PSSMs cannot proceed by a standard alignment technique.
Consider the alignment of two columns, one from each PSSM. As neither represents
a residue or even a mixture of residues, but both in fact are scores, there is no
straightforward way of using them together to generate a score for use in an align-
ment algorithm. The solution to this problem is to use measures of the similarity
between the scores in the two columns.

The program LAMA (Local Alignment of Multiple Alignments) solves one of the
easiest formulations of this problem, not allowing any gaps in the alignment of the
PSSMs. Suppose the two PSSMs A and B consist of elements and for
residue type a in columns u and v, respectively. Various methods can be used to try

mv a
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A
,
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The key concept introduced in this
section is that methods have been
designed that align two profiles.
There is a hierarchy of related
protein sequences, so that often two
profiles can be aligned to identify
features of their common ancestral
sequence.
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to measure the similarity of these two columns. LAMA uses the Pearson correlation
coefficient rAu ,Bv

defined as

(EQ6.37)

where and are the means of the respective PSSM columns and the summa-
tions are over all residue types a. The value of rAu ,Bv

ranges from 1 for identical
columns to –1. In a random alignment test it was found that the average column
score was just slightly negative (–0.05). The score for aligning two PSSMs is defined
as the sum of rAu ,Bv

for all aligned columns.

As no gaps are permitted in aligning the two PSSMs, all possible alignments can
readily be scored by simply sliding one PSSM along the other, allowing for overlaps
at either end of each PSSM. The highest-scoring alignment is then taken as the best
alignment of the two families.

There still remains the difficulty of assessing the significance of a given score. The
scores are proportional to the length of the shorter PSSM, but this is easily
corrected. To estimate the score distribution, the columns of the PSSMs are shuffled
many times, recording the possible alignment scores each time. (Shuffling is used
to preserve the overall residue composition of the PSSMs.) Assuming normal statis-
tics, these can be used to estimate the mean and standard deviation of the score
distribution. In this way the highest-scoring alignment can be assigned a z-value
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OXDA_FUSSO  319  LDDETWIVHNYGHSGWGYQGSYGCAENVVQLVD  351
OXDD_BOVIN  294  DSRRLPVVHHYGHGSGGIAMHWGTALEATRLVN  326
OXDA_HUMAN  299  GPSNTEVIHNYGHGGYGLTIHWGCALEAAKLFG  331
OXDA_MOUSE  297  GSSSAEVIHNYGHGGYGLTIHWGCAMEAANLFG  329
OXDA_PIG    299  GSSNTEVIHNYGHGGYGLTIHWGCALEVAKLFG  331
OXDA_RABIT  299  GPSKTEVIHNYGHGGYGLTIHWGCALEAAKLFG  331

DHSA_BACSU  229  GEFIQIHPTAIPGDDKLRLMSESARGEGGRVWT  261
DHSA_ECOLI  234  QDMEMWQFHPTGIAGAGVLVTEGCRGEGGYLLN  266
FRDA_WOLSU  249  GNMEAVQFHPTPLFPSGILLTEGCRGDGGILRR  281
DHSA_BOVIN  289  QDLEFVQFHPTGIYGAGCLITEGCRGEGGILIN  321
DHSA_RICPR  238  QDMEFVQFHPTGIYGAGCLITEGARGEGGYLVN  270
DHSA_YEAST  279  QDLEFVQFHPSGIYGSGCLITEGARGEGGFLVN  311
FRDA_ECOLI  224  RDMEFVQYHPTGLPGSGILMTEGCRGEGGILVN  256
FRDA_PROVU  225  RDMEFVQYHPTGLPGSGILMTEGCRGEGGILVN  257
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Figure 6.11
Illustration of LAMA alignment of
two protein families using PSSMs.
(A) The top protein family sequence
alignment is of a set of D-amino
oxidase flavoenzymes, entry
BL00677D of the BLOCKS database.
The lower alignment is of a set of
succinate dehydrogenase and
fumarate reductase enzymes, from
entry BL00504D of the BLOCKS
database. The sequences are
identified by their SWISS-PROT
identifiers. Highly conserved
positions in each alignment have a
colored background, green
indicating identity and yellow highly
conserved alignment columns.
Highly conserved residues identified
after aligning these two alignments
are shown by red letters. (B) A plot of
the LAMA column scores rAu ,Bv
(Equation EQ6.37) for the aligned
alignments. This plot has been
scaled so that the scores are
vertically below the relevant
columns in the alignments of part A.
(Adapted from S. Pietrokovski,
Searching databases of conserved
sequence regions by aligning protein
multiple-alignments, N.A.R.
24:3836–3845, 1996.)
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(number of standard deviations from the mean) and hence a statistical significance.
There is no sound basis for this analysis, but it has proved useful, and all alignments
with z-scores greater than 5.6 are taken as significant. Once a significant alignment
has been detected, a plot of the rAu ,Bv

values can help to identify the columns for
which the families have similar residues (see Figure 6.11). 

Golan Yona and Michael Levitt formulated an alternative way of aligning PSSMs
called prof_sim. This allows for gap insertion in the PSSMs and uses the
Smith–Waterman local alignment technique. Instead of using the PSSM score
values, this method uses the original sequence alignments to define the amino acid
distribution in each column. These distributions are compared for one column at a
time from each PSSM using a score that measures the similarity of the two distribu-
tions and their deviation from the average distribution.

Yet another method has been proposed, called COMPASS (COmparison of Multiple
Protein alignments with Assessment of Statistical Significance), which also performs
local alignments including gaps. The main difference when compared with prof_sim
is that the column residue distributions are calculated using sequence weights and
pseudocounts in a similar way to that used by PSI-BLAST (see Equations EQ6.14 and
EQ6.15) except that gaps are treated as another residue type. Column comparisons
are scored using a method related to log-odds. By carefully following the BLAST and
PSI-BLAST methodology, COMPASS scores can be readily converted into E-values,
making assessment of the score significance easier and more rigorous.

Aligning profile HMMs
The first method we will describe is called COACH (COmparison of Alignments by
Constructing HMMs), and its intended application is the alignment of two align-
ments by firstly reducing one of them to a profile HMM. This HMM defines the
equivalence of alignment columns and the HMM states. A modification of the
Viterbi method is then used to find the most probable set of paths, which together
emit the other alignment. (The probabilities for each sequence path must be multi-
plied together to get the overall probability for the alignment.) For details of the
algorithm, see Further Reading. The paths can be used to construct the alignment
of the two alignments. The advantage of this method over the PSSM-based ones
presented above is that the gap scoring is position dependent.
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Figure 6.12
An example of the alignment of two
HMMs using HHsearch. (A) Two
HMMs are aligned over a region that
results in a six-residue sequence
segment being emitted by both
models. HMM2 has an inserted
residue (state I2) that is aligned with
the residue emitted by the M3 state
of HMM1. Note that position 6 of
HMM1 has no equivalent in HMM2,
so that its delete state D6 aligns with
a gap inserted in HMM2. The
alignment corresponds to a path
through a pair state model shown in
(B). The pair states of this path are
shown at the bottom of (A), as is the
corresponding emitted sequence.
(Adapted from J. Söding, Protein
homology detection by HMM-HMM
comparison, Bioinformatics
21:951–960, 2005.)
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The HHsearch method of Johannes Söding aligns two profile HMMs and is designed
to identify very remote homologs. It uses a variant of the Viterbi method to find the
alignment of the two HMMs that has the best log-odds score. For details of the algo-
rithm, see Further Reading. An example of an alignment of two HMMs is shown in
Figure 6.12A. Both HMMs emit the same sequence x1x2x3x4x5x6, but using (in this
case) different paths in the two HMMs. The states in each HMM are aligned and are
labeled in the figure. For example, two aligned match states are labeled MM. In addi-
tion to the usual match, insert, and delete states, gap states G can also occur. The
emitting states (M and I) can only be aligned with each other; the same restriction
holds for the silent states D and G. Both II and DD aligned pair states could occur in
principle, but ignoring them makes the model and computations more tractable,
and has not been found to lead to any difficulty in obtaining good alignments. Figure
6.12B shows the possible aligned pair states and allowed transitions between them.
Other transitions are also possible, but were ignored for reasons similar to those
employed in ignoring the red transitions shown in Figure 6.6. For truly related HMMs
the ignored pair states and transitions would be expected only rarely, if ever. Some
account is also taken of predicted secondary structure for the two HMMs, justified by
the observation that protein folds are much better conserved than sequences.

The representation of Figure 6.12 is not especially informative because the
sequence details are omitted. A solution to this problem has been proposed that
shows both HMMs aligned but includes a logo representation of the emission prob-
abilities at each match state (see Figure 6.13). 

6.4 Multiple Sequence Alignments by Gradual
Sequence Addition
When a number of related sequences have been identified, for example as a result
of database searches such as those described in Section 4.6 or using PSI-BLAST, it is
usually informative to construct a multiple alignment that includes all the
sequences (see Flow Diagram 6.4). Multiple alignments are more powerful for
comparing similar sequences than profiles because they align all the sequences
together, rather than using a generalized representation of the sequence family. If
there are subgroups of sequences with extra features in common that do not occur
in the complete sequences set, these features may be lost on generating a profile.
The multiple alignment methods described here should be able to identify and
analyze such features. The profile methods can do so only after the subgroup has
been identified and separated. Identifying such a subgroup can lead to creating a
new profile with which to search for other sequences. Using profiles in database
searches is the most powerful current technique for identifying distant homologs.
In addition, databases exist with collections of profiles for specific subfamilies.
These have been found to be extremely useful in sequence analysis.
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Figure 6.13
An example of the visualization of
the alignment of two HMMs using
logos to illustrate the emission
probabilities for different residue
types at each match state. The top
HMM is the Toxin_7 family, while
the lower HMM is the Toxin_9
family, both HMMs are from the
Pfam database. The similarities in
the pattern of cysteine residues are
striking, as are some differences
between the HMMs, such as the
preferred tyrosine at position 6 in
Toxin_9 and the preferred
tryptophan at position 12 in Toxin_7.
(From B. Schuster-Böckler and
A. Bateman, Visualizing profile-
profile alignment: pairwise HMM
logos, Bioinformatics 21
(12):2912–2913, 2005, by permission
of Oxford University Press.)
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One way of building a multiple alignment is simply to superpose each of the pair-
wise alignments from a database search using the query sequence as the reference.
In favorable cases this method can reveal conserved regions. However, this method
of construction does not take account of the direct alignment of pairs of sequences
not including the query, and is therefore unlikely to give the optimal multiple align-
ment. In practice, the pairwise alignments can often be significantly improved by
multiple alignment with other similar sequences. An example of this is shown in
Figure 4.10A, which shows that a pairwise alignment of PI3-kinase p110a and a
protein kinase does not align the important active-site residues. Figure 4.10B shows
a multiple alignment of the same protein kinase with a set of five PI3-kinases: the
multiple alignment has successfully aligned the functionally important residues.

The pairwise dynamic programming algorithms described in Section 5.2 can produce
the highest-scoring alignment of two sequences given a substitution scoring matrix
and a gap scoring method. It is possible to modify the algorithms to find the optimal
alignment of more than two sequences. This will be discussed briefly in the next
section but is actually too demanding of computer memory and time to be very prac-
tical. As a result many alternative multiple alignment methods have been proposed,
which are not guaranteed to find the optimal alignment but can nevertheless find
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The key concept introduced in this
section is that multiple sequence
alignments can be produced 
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techniques, which are based on 
the pairwise sequence alignment
methods.
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good alignments with the limited resources available. The majority of these heuristic
methods create a multiple alignment by gradually building it up, adding sequences
one at a time. This is often referred to as progressive alignment, although the same
method also occurs at the start of iterative alignment methods discussed later.

When multiple alignments are built up by gradually adding sequences, the order in
which they are added can be crucial to the successful generation of an accurate
alignment. A number of alternative ways of determining this order will be
presented. Once this has been done, the actual multiple alignment itself can be
constructed. Although some methods use scoring schemes related to those
discussed in Section 5.1, they often incorporate modifications designed to improve
the results. For example, many methods use weights for the different sequences,
and gap scoring can be much more sophisticated. Other methods use very different
scoring schemes, and the range of schemes used will be reviewed. The final part of
this section will look at some aspects of building the multiple alignment using the
scores and order of adding sequences.

The order in which sequences are added is chosen based on
the estimated likelihood of incorporating errors in the
alignment
The dynamic programming methods such as Smith–Waterman or Needleman–
Wunsch, presented in Section 5.2 in the context of pairwise alignment, can be
extended to simultaneously align more than two sequences. The resulting algo-
rithms are, however, impractical with current computational capabilities unless
limited to about 6–10 sequences of moderate (200–300 residue) length. This is
because the matrices that have to be constructed will have as many dimensions as
there are sequences, so that to store a full matrix for even six sequences would
require almost 60,000 GB of memory (at 1 byte per matrix element). Even using a
linear gap penalty (see Section 5.1) the calculation of a single matrix element will
require consideration of all possible combinations of gaps and residue matches
among the sequences; that is, alternatives for Nseq sequences. In fact, even
the practical limits given above are for modified dynamic programming algorithms
that attempt to limit the regions of the matrix explored to those most likely to
contain the optimum alignment. See Further Reading for references to methods
that use such modified algorithms. Even with ever-growing computing resources,
these methods will not be practical when hundreds of sequences are involved, and
more heuristic algorithms must be used. Most of these are based on building up a
multiple alignment by gradually adding sequences, as will now be discussed.

In a group of related sequences, some will be more similar to the average while others
will be relatively different. Those sequences that are more similar can usually be
aligned with high confidence, meaning that a high proportion of the residues will be
expected to align with their true equivalents in the other sequences. In contrast,
often less confidence can be placed in the alignment of more divergent sequences,
which can be expected to give more alignment errors. Where errors occur in an inter-
mediate alignment (an alignment to which further sequences remain to be added)
they can cause further errors during the continuing construction of the multiple
alignment. This is largely because the intermediate alignments are kept fixed as
further sequences are added. Therefore it is desirable to delay the addition of
sequences whose alignment is more likely to contain errors until as late as possible.

Note that some multiple alignment programs report the alignment as soon as all
sequences have been added, and are therefore especially susceptible to these
errors. A number of methods try to circumvent this potential problem, some by
removing sequences from the multiple alignment or dividing it into two subsets of
aligned sequences and realigning them. These and other related techniques are
called iterative alignment, and are described in detail later in this section.

2 1Nseq −
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An illustration of the potential importance of the order of adding sequences can be
seen in the following example. If the two sequences GG and DGG are to be aligned
to the reference sequence DGD, and GG is the first one to be aligned, both

D – G – D
|

G – G

and

D – G – D
|

G – G

would score equally in most scoring schemes. However, given the third sequence,
DGG, aligning the second sequence as -GG would clearly be preferable

D – G – D
|

G – G
| |

D – G – G

But if the first two sequences have already been aligned according to the second
scheme, then this better multiple alignment is not available in the progressive
alignment method. Such methods are often referred to as greedy because once the
method has determined an intermediate alignment, it will continue to use it even
though, subsequently, there may be better alternatives.

Most multiple alignment methods deal with this issue by analyzing every pair of
sequences to get a measure of their similarity. Of course, to obtain a very accurate
similarity measure between two sequences requires the correct alignment as in the
multiple alignment, which will not be available at this point. The majority use this
measure to derive a phylogenetic tree, usually referred to in this context as the
guide tree, which is then used to guide the order of constructing the multiple align-
ment. In the example above, most measures used would result in a guide tree that
indicates that DGD and DGG should be aligned first, followed by GG. As already
shown, this leads to a better final alignment. The full explanation of how the guide
tree is used will be given later.

We will not discuss the algorithms used to generate such trees here, as this topic is
covered in detail in Chapters 7 and 8. The methods used are amongst the simplest
and fastest, mostly the clustering methods UPGMA or neighbor-joining (see
Section 8.2). The important feature for discussion here is the use of a simple
measure of the similarity of each pair of sequences.

Several multiple alignment programs, including ClustalW and T-Coffee, perform
Needleman–Wunsch global alignment for every pair of sequences, and from these
alignments obtain the measure used in constructing the guide tree. To be precise, this
measure is usually the evolutionary distance, a measure of dissimilarity, which is
discussed in detail in Section 8.1. The simplest evolutionary distance measure is the
percentage of alignment sites at which different residues have been aligned. However,
obtaining a precise estimate of the evolutionary distance between two sequences is
not trivial, and numerous formulae have been proposed, as discussed in Chapter 8.

When the number of sequences to be aligned is very large, the Needleman–Wunsch
alignment of all sequence pairs can take a very long time. Therefore some faster
although more approximate methods of obtaining a distance measure have been
proposed. The MUSCLE and MAFFT methods both have the option of using meas-
ures based on the presence of k-mers (stretches of k residues) in common for two
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sequences. The advantage of this approach is that the two sequences do not need
to be aligned. Typically, hexamers are used, and instead of distinguishing all 20
amino acids, they are grouped according to their physicochemical properties.
Measures used include such properties as the fraction of hexamers not in common
to the two sequences.

The ProbCons method differs from those discussed above, in that every pair of
sequences is aligned using a pair HMM (the HMM equivalent of Needleman–Wunsch
alignment). Because of the probabilistic nature of HMMs it is possible to define an
estimate of the accuracy of an alignment. This estimate is then used in a procedure
similar to UPGMA to generate the guide tree.

Another method involving HMMs is used in SATCHMO. Every sequence is used to
generate its own profile HMM, and the similarity measure used is the average score
of one sequence in the profile HMM of the other, and vice versa. The most similar
sequences according to this measure are aligned first. However, SATCHMO does
not use a guide tree, and the way a multiple alignment is constructed will be
presented later.

The computer time and space requirements of generating similarity measures and
guide trees can easily dominate multiple alignment programs unless care is taken
to choose the most efficient algorithms. The paper in which MUSCLE is presented
discussed this point, and compares the less accurate but more efficient methods
such as k-mers and UPGMA with the results from Needleman–Wunsch and
neighbor-joining. In that case the faster methods were fortuitously found to ulti-
mately produce the more accurate multiple alignments, but this result may not
hold for other work.

The information such as pair alignments used to generate the guide tree is often not
used further in generating the multiple alignment. There are exceptions to this as
shown below, including those methods that use the COFFEE (Consistency based
Objective Function For alignmEnt Evaluation) scoring system and some schemes
for weighting sequence that use the guide tree branch lengths. The ProbCons
method uses the pair HMM alignments to derive terms referred to as quality match
scores, discussed in more detail later, which are then used as the scoring scheme for
the multiple alignment.

Many different scoring schemes have been used in
constructing multiple alignments
Most of the early sequence alignment programs used scoring schemes closely
related to those described in Chapters 4 and 5 for pairwise alignment and database
searching. Of these the most complex is probably that used by ClustalW, which will
be described below. More recently a number of other methods for scoring have
been used, some of which will also be presented.

By analogy to the pairwise alignment problem as discussed in Section 5.2 we need
a quantitative score of the quality of a multiple alignment. In pairwise alignment,
the scores used have been based on measures of evolutionary distance and a
similar basis proves useful here. Assuming that all the sequences being aligned have
evolved from a common ancestor (as is often the case), their evolutionary relation-
ship can be described in the form of a phylogenetic tree, as is shown in Figure
6.14A. However, we do not know these relationships at the time of making the align-
ment. As an interim measure, we could assume relationships between pairs of
sequences as shown in Figures 6.14B and 6.14C. Based on these we need to propose
a method for scoring an alignment. However, although the scoring of a multiple
alignment must take account of all the sequences, we are only going to deal with
those scoring methods that involve combinations of pairwise alignment scores.
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Figure 6.14
Some possible general scoring
schemes based on pairwise
alignment scores for use in scoring
multiple alignments. Three
alternative methods are shown for
the case of six sequences (A–F). Part
(A) shows a phylogenetic tree; (B)
star; and (C) sum-of-pairs. In the
formulae, SAB is the score for the
alignment of sequences A and B,
and so on.
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This means that the substitution matrices such as PAM and BLOSUM presented in
Sections 4.3 and 5.1 for scoring pairwise alignments can be used here.

A star tree (Figure 6.14B) would be obtained if one of the sequences were arbi-
trarily chosen to be the central node and scored against every other sequence, but
no other pairs are directly scored against each other. This is the scheme that is, in
effect, being used when combining database search results using the query
sequence as a template. For highly similar sequences this method can generate a
reasonable alignment (not necessarily the best), but when the percentage identity
between sequences is low, multiple alignments obtained by this method can be
very poor.

In most multiple alignments there is no rationale to choose one sequence to be the
central node (unlike in a database search) and therefore the star tree method is not
appropriate. The most commonly used alternative general scoring scheme is
known as sum-of-pairs or SP (Figure 6.14C). It involves scoring the alignment of
every possible pair of sequences and adding all the scores together.

When the sum-of-pairs method is used to score alignments, all sequences should
not be regarded as equally independent or useful, and should be weighted to take
account of this. At one extreme, two identical sequences will not provide any more
information than one sequence alone, and so they should be given lower weights.
Conversely, two very different sequences will provide a lot of information about
acceptable alternative residues at particular positions and so should be weighted
more highly.

We will now discuss some simple weighting schemes that are based on the branch
lengths of a phylogenetic tree constructed from the sequences. The multiple align-
ment program ClustalW uses such a scheme, and also makes a distinction between
the weights applied when generating a new multiple alignment from individual
sequences and those applied when adding a sequence to an existing alignment.
When generating a new alignment, weights are determined from the guide tree. To
obtain a sequence weight, the path from each sequence to the tree root is analyzed.
Each branch on the path contributes to the sequence weight an amount propor-
tional to its length divided by the number of sequences that share the ancestral
nodes of that branch (see Figure 6.15). When two very similar sequences occur,
their common ancestor will be very recent, so most of their paths to the root of the
tree will be shared, and their weights will be effectively halved, as in B and C in the
example shown in Figure 6.15.

When sequences are added to an existing alignment, the weighting required is
different. Now, an almost identical sequence in the alignment should be weighted
more highly, as the new sequence should have almost the same alignment. To
achieve this, pairwise alignments are used to calculate the distance of the new
sequence(s) from those already in the alignment. The new weights are simply (1 –
distance). In ClustalW, these are then multiplied by the original weights from the
tree (see Figure 6.15) to give final weights for adding the sequence. Note that there
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Figure 6.15
Illustration of the sequence
weighting scheme applied in
ClustalW when constructing a
multiple alignment. The five
sequences A–E have been related by
a tree based on their pairwise
alignment scores, with branch
lengths as indicated. The sequence
weights, listed against each
sequence on the right of the tree, are
the sum of branch lengths from each
sequence to the tree root (left-hand
end of tree), each branch length
being divided by the number of
sequences whose paths to the root
share that branch. For example, the
weight of sequence A is obtained as
0.40 + (0.06/3) + (0.04/4) = 0.430.
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are a number of alternative schemes for obtaining sequence weights, many of
which do not use trees. Some of these were described in Section 6.1.

If the alignment of two protein sequences is biologically meaningful, there will also
be a high degree of similarity between the two protein structures specified by these
sequences. For two structures with the same protein fold, most of the secondary
structural elements should be preserved as a constant core. There can, of course, be
some additional secondary structural elements, as well as minor rearrangements.
However, the essential difference to be expected between related structures is that
the polypeptide chain loops connecting elements of secondary structure will vary in
size. This will show up in the sequence alignment as gaps of different lengths within
the loop sequences, i.e., gaps tend to occur in specific regions that correspond to
parts of the protein structure where there are residues exposed to the solvent.

The many known protein structures have been analyzed to examine if there are any
preferences for particular residues in the loop regions. Attempts have been made to
distinguish between the physicochemical type of residues between which gaps are
inserted and the residues of an insertion. These have the same residue preferences,
but their preferences are significantly different from those found in secondary
structural elements. For soluble globular proteins, the dominant preference is for
hydrophobic residues not to be associated with regions containing indels (inser-
tions or deletions) as these loop regions generally represent regions of the protein
structure exposed to the solvent. For membrane proteins, the preferences may be
different, but as yet, far fewer structures of membrane proteins are known.

The program ClustalW uses a scale of residue-specific gap opening penalty factors
(see Section 5.1). The actual calculation of the affine gap penalties in this program
entails a complicated modification of a set of initial default values. In deriving the
gap opening penalties, the manipulations take account of sequence lengths,
sequence similarity, and average mismatch scores, as well as the positions of gaps
in intermediate alignments (partial alignments produced during the generation of
the complete multiple alignment). One of the aims of this scheme is to concentrate
gaps into the same alignment column, which is achieved in part by raising the gap
opening penalties to either side of an existing gap. The method is ad hoc, but seems
to work quite effectively. An example alignment showing the effects of the variation
in gap opening penalty is given in Figure 6.16. 

The discussions above have presented ways of scoring a multiple alignment that are
based closely on the scoring schemes used for pairwise alignment. An alternative
approach has been proposed that uses the pairwise alignments of all sequence-pairs

Chapter 6: Patterns, Profiles, and Multiple Alignments

202

30

20

10

0

HLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQRFFESFGD
QLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYPWTQRFFDSFGD
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDL
VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDL

g
ap

 o
p

en
in

g
 p

en
al

ty

Figure 6.16
The variation of the gap opening
penalty along an example
alignment as applied in the
ClustalW program. The initial gap
opening penalty (GOP) is shown by
the horizontal line. Note the very low
GOP at the location of a gap in the
alignment, and the very high GOP to
either side of the gap. The other
region of low GOP is due to the two
hydrophilic stretches shown in red.
(Adapted from D.G. Higgins et al.,
Methods in Enzymology 288, 1996.)
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as the basis of a scoring scheme. The set of pairwise alignments is regarded as a
reference library. When scoring a multiple alignment, the alignment of two indi-
vidual sequences within it is compared with the equivalent pairwise alignment in
the library. The score is based on the consistency found between these two pairwise
alignments, in other words the frequency of occurrence of identical alignment
columns. The scoring function based on this has been called COFFEE.

The alignment of sequences x and y can be extracted from the multiple alignment
to give an alignment A(x,y). The length of this alignment is the number of positions
that contain at least one residue from either sequence and is given by |A(x,y)|. When
compared at every position with a given pairwise alignment, R(x,y) of the same
sequences, taken from the reference library, a score can be assigned. The number of
identical alignment columns nident(R(x,y), A(x,y)) is counted between the aligned
sequence-pairs R(x,y) and A(x,y). The pairwise alignment R(x,y) in the reference
library is assigned a weight wR(x,y) that is intended to be a measure of its quality. The
weight assigned to each library alignment is the percentage identity between the
two sequences according to this specific alignment. The total score S for an align-
ment of Nseq sequences is given by

(EQ6.38)

where the is over the library of alignments for those alignments that contain
sequences x and y.

The T-Coffee alignment program uses a score based on the COFFEE scheme. Each
pair of residues that are aligned in one of the reference library alignments is assigned
a score that is to be used in scoring the multiple alignment. Initially, the score is the
weight assigned to that particular pairwise alignment (the percentage identity). This
score is subsequently modified to favor regions of the alignment that are consistent
with the equivalent aligned region in other library alignments. The method is
referred to as library extension, and is done by considering all possible intermediate
sequences as illustrated in Figure 6.17. When calculating the library extension for the
alignment of sequences x and y, the alignments of x with z, and y with z, need to be
considered, where z is all other sequences present in the library. Residues that are
aligned identically in all three pairs receive extra weight, and in this way each residue
can be assigned a unique weight in each library alignment. These weights are then
used by T-Coffee in the construction of the multiple alignment.

The library of reference pairwise alignments may contain more than one alignment
for a given pair of sequences. These alternatives may have been generated by
different alignment techniques (for example global or local alignments), by using
different substitution matrices or gap scores. It is also possible to include sequence
alignments based on structural alignments, a method known as 3D-Coffee.

The SATCHMO program uses the COACH method to align two alignments. (These
two alignments can include single sequences as well as intermediate alignments.)
This was presented in the previous section, and uses the HMM scores that result
from the profile HMM parameterization of one of the alignments. The scores are
added for the path taken by each sequence of the other alignment through the
profile HMM. As mentioned above, ProbCons uses match-quality scores to score the
multiple alignment. These are a measure of the probability that two given residues
in two sequences are aligned, taking into account the other alignments involving
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these sequences, and are derived from the pair HMM alignment calculations used to
generate the guide tree. The scores are affected by how consistently the two residues
are aligned in the pairwise alignments. To illustrate the concept of consistency in this
context, if for example residues xi and yj are aligned in the (x,y) pairwise alignment,
then if xi is also found aligned to residue zk in the (x,z) alignment, yj will also be
aligned to zk in the (y,z) alignment if the alignments are consistent.

The multiple alignment is built using the guide tree and profile
methods and may be further refined
There are a number of alternative methods available to construct a multiple align-
ment given a guide tree and a scoring scheme. There is a choice of using dynamic
programming or HMM alignment techniques, and in addition there are some ways
to try to speed up the creation of good alignments. A number of techniques have
also been proposed that try to refine the multiple alignment produced by iteratively
realigning sequences to it.

The essential idea of progressive alignment is to add the sequences one at a time,
producing intermediate alignments that are subsequently used to build the final
multiple alignment. In this step-by-step construction process three different types
of alignment may occur: aligning a sequence with a sequence, aligning a sequence
with an intermediate alignment, and aligning two intermediate alignments. When
using an intermediate alignment in a subsequent step, the only modification of the
intermediate alignment that is allowed is the addition of gaps. These gaps must be
added at the same site within all sequences in the intermediate alignment (see
Figure 6.18). Clearly, with this limitation for intermediate alignments the multiple
alignment produced will depend on the order in which the sequences are added,
defined usually by the guide tree as was discussed earlier.

Each internal node of the guide tree corresponds to an intermediate alignment of
all the sequences descended from that node (see Figure 6.19). These intermediate
alignments are built up gradually so that the first steps involve pairs of sequences,
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Seq x GARFIELD THE LAST FAT CAT

Seq y  GARFIELD THE FAST CAT

Seq x GARFIELD THE LAST FAT CAT

Seq v GARFIELD THE VERY FAST CAT

Seq y  GARFIELD THE      FAST CAT

Seq x GARFIELD THE LAST FAT CAT

Seq z          THE      FAT CAT

Seq y  GARFIELD THE      FAST CAT

Seq x GARFIELD THE LAST FAT  CAT

Seq y GARFIELD THE      FAST CAT

(A)

(B)

w = 88

w = 77

w = 100

w = 100

w = 100

Figure 6.17
The library extension process used
in the COFFEE scoring method to
assign weights to individual aligned
residues of reference pairwise
alignments. Three possible
alignments for sequence x and y are
illustrated in (A): that resulting from
direct alignment of the sequences x
and y; that resulting from aligning x
with v, and then v with y; and that
resulting from aligning x with z, and
then z with y. The initial weights w
given to the right of each pairwise
alignment are related to the
percentage identity of the shorter
sequence. (B) The alignments are
combined to produce a single
alignment of sequences x and y in
the extended library. In the direct
alignment of x and y the first
residues x1, y1, are glycine ‘G’ in both
sequences, with a corresponding
weight of 88. When x and y are
aligned through v, the G is matched
between all three sequences. The
weight added to the extended library
is the sum of the previous weight
and the lowest weight of the two
weights in the two new alignments
(i.e., 77 + 88 for the G in sequence-
pair x and y). No further information
is gained about this first residue G
from the alignment of x and y
through z, and thus it has no
influence on the weight associated
with aligning x1 and y1. (Adapted
from C. Notredame, D.G. Higgins
and J.Heringa, T-Coffee: a novel
method for fast and accurate
multiple sequence alignment,
J.Mol.Biol. 302:205–217, 2000.)
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but as the alignment progresses, intermediate multiple alignments will be aligned
with each other or with another sequence.

The alignment of a pair of sequences is usually performed exactly as described in
Section 5.2. When generating a combined alignment that involves intermediate
alignments, consideration needs to be given to the scoring method. The simplest,
but least accurate, technique involves finding the best-scoring pair of sequences,
one from each intermediate alignment, and then using them as a template to
construct the combined alignment. However, most currently used techniques take
advantage of the methods of profile alignment discussed earlier in this chapter.

Programs such as ClustalW use dynamic programming with the sum-of-pairs
scoring method that takes account of all the sequences. At each step, the scores of all
pairs of sequences must be taken into account, remembering that any gap intro-
duced must be introduced at the same point in all sequences in the relevant inter-
mediate alignment (see Figure 6.18). This would require a lot of computational effort
if the calculation were done in a naive fashion. This can be overcome because it is
possible to rearrange the terms for much more efficient calculation by using profiles.

We will consider the alignment of two intermediate alignments, A and B, with nA and
nB sequences, respectively. The residue in the uth column of the xth sequence of A
will be denoted . Suppose that we are using a linear gap penalty with no distinc-
tion between gap opening and extension. In that case, each intermediate alignment
can be treated as a single alignment that is the average of its constituent sequences.
For any given alignment column u of intermediate alignment A we can obtain the
frequency of occurrence of residue a, . These frequencies can then be used to
obtain the score for aligning a residue b with this column, which is simply given by

(EQ6.39)

where sa,b is an element of the substitution matrix, and the summation is over all
possible residue types. By comparison with Equation EQ6.2 it can be seen that the
set of all is the alignment profile.

The total score SAu ,Bv
or aligning column u from intermediate alignment A and

column v from intermediate alignment B can then be written in several alternative
ways:

Depending on the number of sequences in each intermediate alignment relative to
the number of possible residue types, one of these formulae can be chosen for
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    1234567
 1  AC-EFGH  AC--EFGH
 2  ACD--GH  ACD---GH
 3  AC---GH  AC----GH
 4  ACDEFGH  ACD-EFGH
       +      ACDWEFGH
 5  ACDWEFGH

Figure 6.18
Illustration of profile alignment and
the scoring problems caused by
gaps. The addition of sequence 5 to
the intermediate alignment of
sequences 1–4 requires a gap to be
inserted after position 3. As a
consequence, sequence 4 has a new
gap, scored with a gap opening
penalty, while the other three
sequences all require a gap
extension penalty to be added.

1 1 +

3 +

2 +

4 +

3

2

4

(B) (C)(A)

Figure 6.19
Schematic illustrating the steps
involved in a typical progressive
alignment technique. (A) Initial
pairwise alignments are made and
scored in order to find sequences
most similar to each other. The
darkness of the space between the
aligned sequences indicates the
degree of similarity, going from
white, indicating low similarity, to
black, indicating high similarity. (B)
Construction of the guide tree using
the similarity scores determined in
(A). The numbers 1 to 4 identify the
nodes of the tree, and correspond to
intermediate and final alignments.
(C) Each of the labeled tree nodes
corresponds to a step in building up
the complete alignment by creating
intermediate alignments composed
of the sequences associated with
the nodes.

(EQ6.40)
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optimal efficiency. ProbCons uses a very similar method of progressive alignment.
The terms in Equation EQ6.40 are the usual elements of the substitution
matrix. The combined alignment of A and B is calculated by dynamic programming
using the scores SAu ,Bv

.

These formulae must be adjusted if affine gap scores are used. The alignment in
Figure 6.18 illustrates the consequences of distinguishing between gap opening
and extension. The intermediate alignment shown (sequences 1 to 4) requires an
insertion after the residue D to allow for the extra residue W in the new sequence, 5.
For sequence 4 this corresponds to a gap opening, and for the others to a gap exten-
sion. Care must be taken to account correctly for gaps in these circumstances.

Rather than use the standard pairwise or profile alignment algorithms, which can
still take a long time for large numbers of sequences, some programs use fast
methods that attempt to identify diagonals (i.e., gapless segments) of the optimal
alignment. Once identified, the dynamic programming can be restricted to a small
region around these diagonals, rather than performing calculations over the
complete dynamic programming matrix. One of the current, most accurate
methods, developed by Kazutaka Katoh and colleagues and named MAFFT
(Multiple Alignment using Fast Fourier Transform), uses such a technique. In order
to speed up the alignment steps, a fast Fourier transform (FFT) method is used to
quickly identify key regions of sequence similarity. For the Fourier transform, the
sequence is represented by the general physicochemical properties of the residues.
The method is significantly faster than ClustalW or T-Coffee (which is no doubt also
due to the different methods used to obtain the guide tree as discussed above) and
has been used to successfully align several thousand sequences. MUSCLE can also
identify diagonals, using a technique based on k-mers, but in that case it was found
that this resulted in a reduction in the accuracy of the final alignment for minimal
improvements in speed, and so is not the default method. MAFFT also gives more
accurate alignments with the full dynamic programming matrix calculation.

The progressive methods discussed above use a guide tree to define an order of
addition of sequences to create a multiple alignment in which each sequence is
fixed once it has been added. Several attempts have been made to improve on this
by allowing some element of realignment of sequences to the existing multiple
alignment. Geoff Barton and Michael Sternberg proposed the most straightforward
of these. Once the initial multiple alignment has been produced, each sequence in
turn is removed and realigned to the remaining alignment. When the sequence is
realigned, all details of how it had previously been aligned to the other sequences
are removed. This procedure is continued until no further change is observed.

When only a few sequences are being aligned, some comprehensive searching is
possible. For Nseq sequences there are 2Nseq –1 – 1 different ways of splitting the
sequences into two groups (see Figure 6.20A). Improvements can be sought from
the initial multiple alignment by realigning these groups and selecting the final
alignment with the best score. This can be repeated until no further improvement
is obtained. When there are too many sequences the same approach can be modi-
fied to look at some of the smaller intermediate alignments, or to choose a random
subset of the possible splits. One way of limiting the search in a rational way is to
restrict the splits to those present in the guide tree (see Figure 6.20B).

In the program prrp, Osamu Gotoh has added a further level of iteration for the case
of weighted-sequence sum-of-pairs scoring. Since the weights are derived from an
initial alignment of sequences, it is more consistent to reevaluate the weights with
the new multiple alignment, and then proceed to a new alignment. This program
also tries to identify regions of the alignment that are more reliable than others and
are thus expected to be locally optimal. Leaving these out of the iterative procedure
effectively reduces the sequence length to be aligned and makes the program more
efficient.

s x yu
A

v
B,( )
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1 2345 
2 1345
3 1245 
4 1235 
5 1234
12 345 
13 245 
14 235 
15 234 
23 145 
24 135 
25 134 
34 125 
35 124 
45 123 

1 2345
2 1345
3 1245
4 1235
5 1234
12 345
45 123

(A)

(B)   For the tree:

5 1

24

3

Figure 6.20
Lists of the realignments to be
made and scored for an alignment
of five sequences (1–5) in an
iterative alignment method. (A)
Some iterative alignment methods
involve all possible realignments;
that is, all possible unique
combinations of subsets of the
sequences. Each line represents a
realignment of the aligned
sequences in green with the aligned
sequences in yellow to form a new
complete alignment, keeping the
green and yellow alignments fixed
(as in Figure 6.18). (B) An iterative
alignment method involving only
the splits that exist in the guide tree.
(See Section 7.1 for a definition of
splits.) In both cases the best-
scoring new alignment can be used
as the starting point for a repeat
round of realignment. The process
stops when there has been no
improvement in the score during
the last cycle or when a given
number of cycles is exceeded.
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6.5 Other Ways of Obtaining Multiple Alignments
The previous section presented methods of constructing multiple sequence align-
ments based on gradual addition of sequences to a growing multiple alignment. Here
we discuss two alternative techniques (see Flow Diagram 6.5). The first of these is the
program DIALIGN, which focuses on short ungapped alignments, from which the
complete alignment is built. The second, SAGA, uses a genetic programming tech-
nique to optimize the complete alignment while always considering all sequences.

The multiple sequence alignment program DIALIGN aligns
ungapped blocks
We saw in Section 5.3 that exploring ungapped local alignments, a technique used in
FASTA and BLAST database searches, can generate useful pairwise alignments. The
basic concept of the DIALIGN multiple alignment method is that the complete align-
ment can be constructed from such local alignments between pairs of sequences.
The name DIALIGN derives from the fact that these ungapped alignments show up
as diagonals in a dynamic programming matrix (see Figure 4.3 where diagonals are
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involve constructing pairwise
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shown), and we will refer to such alignments as diagonals in this context. The
method is unusual in that regions of a sequence that do not form part of a diagonal
are not considered part of the final multiple alignment. For comparison, recall that
residues emitted by the insert states of profile HMMs are also not regarded as aligned.
Two stages are involved in producing the final alignment. First, all possible pairs of
sequences are aligned to determine the set of all diagonals, and to assign weights to
diagonals. These are then built up into a multiple alignment, adding consistent diag-
onals in order of decreasing weight. As low-scoring diagonals are often not included
in the initially constructed alignment, the program iteratively explores all remaining
unaligned regions in an attempt to include them whenever possible.

All possible diagonals between each pair of sequences are considered. For a diag-
onal D of length l residues, a score s is obtained by adding the individual scores for
each position in the alignment obtained from a standard substitution matrix. Two
of the key requirements of this method are that each diagonal has an associated
weight, and that diagonals of different lengths can be compared in a meaningful
way. To obtain the weighting of a diagonal, we consider two random sequences of
the same length as the sequences under consideration. One can calculate the prob-
ability that any diagonal of length l in these random sequences has a score at least
as large as s, P(l,s). The weight of the diagonal is then given by w(D) = –log(P(l,s)). A
diagonal with an average score will have a weight of approximately 0. By including
the lengths in the weighting scheme, diagonals of different lengths can be
compared. This is necessary for the next stage of the alignment.

The pairwise weighting scheme described so far ignores a crucial aspect of biologically
meaningful multiple alignments. These should contain regions that are conserved in
several if not all of the sequences. From the separate pairwise alignments, such
regions will produce a set of diagonals that overlap in a consistent way with each
other. Such sets of diagonals are almost certainly an important component of the
correct multiple alignment, and the weighting of diagonals can be biased towards this
group. To do this, every pair of diagonals in the set is examined to find overlaps. These
overlaps are themselves diagonals that can be assigned a weight. The weight of the
overlap diagonal is then added to the existing weights of the two original diagonals.
The details of weight calculation are different, but the concept is quite similar to that
described in the library extension of the COFFEE scoring scheme (see Figure 6.17). In
this way the weighting is biased toward overlapping diagonals.

The diagonals must be consistent with each other (see Figure 6.21). To clarify this
concept, if the residues that are aligned in two diagonals are listed together and the
pairs ordered according to one sequence, then the two diagonals are consistent if
the residues of the other sequence are simultaneously in order. One further neces-
sary condition is that no residue occurs more than once in the list, as this would
mean it had been aligned to two residues on the other sequence.

Once all possible pairs of sequences have been examined, the large set of diagonals
accumulated is used to construct the multiple alignment. We start including diag-
onals by choosing them in order of their weights. In general, not all diagonals can
be used, as they will not form a single consistent set (see Figures 6.21A and 6.21C).
It is necessary to find a subset of the diagonals that is consistent. Every time
another diagonal is considered it must be checked to ensure that it is consistent
with those already selected.

Chapter 6: Patterns, Profiles, and Multiple Alignments

208

I A V L F A S 
  
L A V I F G E D
     
W D D V T E D

(A) (B) (C) 

- I A V L F A s -
     
- L A V I F G E D
          
w d d V T - - E D 

I A V L F A S  
 
L A V I F G E D

W D D V T E D

Figure 6.21
The use of diagonals in the
DIALIGN method, and the concept
of a consistent set. (A) All three
diagonals shown are consistent with
each other, leading to a possible
alignment shown in (B) with those
residues that are not included in the
alignment (and thus are unaligned)
shown in blue. (C) Another set of
diagonals for the same three
sequences, but the diagonal shown
in red is inconsistent with the two
other diagonals. The three diagonals
cannot be present together in an
alignment.
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Once all diagonals have been considered for addition to the growing alignment,
some sequence regions may remain unaligned. These regions are now realigned in
pairs to generate a new set of diagonals that can be considered for addition to the
existing alignment. Usually only two such iterations are needed to produce the final
alignment. Any residues that have not been involved in any of the diagonals used to
construct the alignment are regarded as unaligned (see Figure 6.21B).

The availability of a growing number of genome sequences has led to a need for
multiple alignments of very large sequences. Some techniques that can deal with
these problems have been discussed in Section 5.5. Michael Brudno and
colleagues, finding DIALIGN too slow for such tasks, developed the CHAOS (CHains
Of Seeds) algorithm to rapidly identify some unambiguous short local alignments
(seeds) that allow the sequences to be divided into smaller regions. DIALIGN can
align the remaining smaller regions sufficiently quickly that the combination can
align three 1 Mb sequences in a few hours.

The SAGA method of multiple alignment uses a genetic
algorithm
Cedric Notredame and Desmond Higgins took a completely different approach to
the multiple alignment problem and proposed using a genetic algorithm to find
the optimal alignment. In their method, called SAGA (Sequence Alignment by
Genetic Algorithm), a collection of possible alignments is modified according to a
set of rules to form a new collection. The set of alignments is referred to as a gener-
ation, and in its normal implementation there are 100 alignments in each genera-
tion. Several hundred successive generations may be produced en route to the final
alignment. Subsequent generations are designed to gradually improve the align-
ment scores until an optimum is found.

Three basic procedures are used to create the next generation. First, a subset of the
current generation of alignments is selected to be passed on to the next generation.
Subsequently, this subset of alignments is used to create new members of the next
generation. An important last step is to ensure that all the alignments are different,
as SAGA does not allow duplication of an alignment in any generation. These proce-
dures will now be considered in detail.

Once a new generation has been formed it must be scored. Each multiple alignment
can be scored using scoring methods similar to those discussed previously. However,
SAGA is less restricted in the scoring schemes allowed than most of the other methods
considered, and can also use the COFFEE scoring function described above.

After each multiple alignment in the generation has been scored, the next step is to
select the subset that will survive to the next generation. Alignments are chosen for
survival directly on the basis of their scores: the highest-scoring alignments
survive. Typically, half the new generation is formed by survival from the preceding
one and the other half is derived by selected modification (breeding). This modifi-
cation process uses either one or two of the surviving alignments to create one new
alignment. Not all the surviving alignments are used in the breeding process,
however, while some alignments are used more than once. The surviving align-
ments are assigned an expected number of offspring (EO), typically between 0 and
2. This number is based on the alignment scores, where better scores give more
offspring. Alignments are selected for breeding at random with a probability
proportional to their EO. If an alignment is selected for breeding, its EO is reduced
by 1 in subsequent random selections.

Breeding involves taking one (sometimes two) parent alignments and modifying
them according to a randomly chosen method referred to as an operator. SAGA has
22 different operators that, initially, are equally likely to be selected. The operators
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used in SAGA can be divided into those that require two parents as input, producing
two offspring of which the better-scoring one is kept, and those that take one
parent and produce a single offspring.

An example of this process is shown in Figure 6.22. The “crossover operator” takes
two alignments and combines parts from each to create two offspring. It can
combine alignments in two different ways, referred to as uniform (see Figure 6.22A)
and one-point (see Figure 6.22B). The uniform method searches for two alignment
columns that are identical in the two parents and then swaps the region between
them. In the one-point method a point is randomly selected in one parent at which
the alignment is cut into two, preserving all the alignment columns. The other
parent is cut in such a way that each sequence is split as in the first, and gaps are
inserted to repair any jagged edges. The halves from different parents can now be
combined, producing two offspring, of which the better-scoring one is kept. Of these
two methods, the uniform method has been found to be most successful at deriving
good offspring.

The “gap insertion operator” is an example of a single parent operator, shown in
Figure 6.23. In this case a crude phylogenetic tree is constructed from the parent,
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Figure 6.22
Illustration of the crossover
operator in SAGA and the two ways
in which it can create the offspring
of the next generation. (A) The
uniform crossover operator. The two
parent alignments in green and blue
are consistent between columns A
and B. That means that columns A
and B are the same in the two
alignments, so that the central
regions correspond to the same
residues of each sequence. An
offspring alignment is produced by
randomly choosing three colored
blocks from the parents. (B) The
one-point crossover operator. One
parent alignment, in this case the
one on the left, is divided into two
parts by a straight cut between two
alignment columns. The other
parent is divided into two parts in
such a way that the sequences are
separated at the equivalent
positions. Two alternative offspring
can be constructed from these, of
which only the higher-scoring one is
kept. (B, adapted from C. Notredame
and D.G. Higgins, SAGA: sequence
alignment by genetic algorithm,
N.A.R. 24:1515–1524, 1996.)
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and a split is chosen from this tree. A random-length gap is then inserted at the
same, randomly chosen place in all the sequences of one split. The sequences of the
other split receive a gap of the same length at a nearby location.

Other operators move small blocks of residues or gaps in a random or partially
optimal way, and another group of operators performs a limited local optimal
alignment. Some of these operators make considerable efforts to obtain good
offspring by local optimization, but without the random operators the process
would get stuck in poor local minima. Both forms of operator are necessary for
SAGA to work efficiently and effectively.

The resultant offspring alignment is accepted into the new generation as long as it
is not a duplicate of one already present. As different operators are found to vary in
their efficiency at producing new offspring, the weightings used in randomly
selecting operators are modified to favor success. Once the new generation is
complete it can be scored and compared to the previous generation. The process is
terminated when no improvement in score has occurred for a given number of
generations.

All this requires initial construction of the first generation of sequence alignments.
For this, a simple procedure suffices in which each sequence is offset a random
number of residues from the amino terminus. The offsets are commonly up to a
quarter of the sequence length. This procedure is followed for each member of the
first generation making sure that there are no alignment duplicates.

Once it has been decided that the run has converged, the best-scoring multiple
alignment can be reported as the final result. However, there may be many other
alignments in the last generation that have potentially useful information. Other
high-scoring alignments may suggest useful alternatives in some regions, and
where they are in agreement can also be used as a measure of confidence in the
common features.

6.6 Sequence Pattern Discovery
So far we have considered alignments and profiles that involve either the complete
sequence of a protein or (in the case of local alignments) a substantial region such
as a complete protein domain. Shorter segments will probably not score sufficiently
highly to be regarded as significant. (See the discussion in Section 5.4 on score
significance.) However, examination of multiple alignments of large numbers of
related sequences shows that high conservation tends to occur only for short
stretches of sequence. These sequences often have a significant role in stabilizing
important protein structural features or are actively involved in the protein’s func-
tion. These shorter regions are often very useful for finding or confirming putative
members of protein families that are highly diverged from other members, as in
such cases the global alignment score is often too low to be confident of family
assignment.
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Figure 6.23
Illustration of the gap insertion
operator as defined in the SAGA
alignment method. A crude
phylogenetic tree is estimated for a
parent generation alignment (A) and
is randomly split into two subtrees,
giving two sets of sequences (G1 and
G2). (B) Two positions are randomly
chosen in the alignment (P1 and P2)
and a gap of random length (length
2 in this case) is inserted at position
P1 in the G1 set of sequences, while
the same length gap is inserted at
position P2 in the G2 set of
sequences.
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The ideal sequence pattern for such predictive purposes will occur only in a specific
protein family or subfamily, or only in sequences with a particular function. Such a
pattern often has high predictive value for the protein function. If a pattern is too
highly specified, many sequences of the family or with the function of interest will
be missed because their equivalent region will differ slightly from the defined
pattern. Such sequences are often referred to as false negatives for that pattern. At
the other extreme are patterns that detect all the desired sequences but at the
expense of obtaining many false positives (sequences with that pattern that do not
belong to the family). Very few patterns are perfect in detecting all the correct
sequences and no others.

Here we will cover some of the ways in which short, highly conserved sequence
patterns can be discovered from a set of sequences (see Flow Diagram 6.6). The
techniques described fall into two distinct groups. The first of these takes a multiple
alignment previously generated, and analyzes it for conserved patterns. The alter-
native is to search all sequences for a particular pattern, leading if desired to a
partial multiple alignment based on the positions of the patterns found. The first
group of methods should find any pattern that happens to be present, regardless of
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sequences have not been previously
aligned.
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its form. The second group of methods requires searching with a comprehensive set
of patterns, and therefore requires more computer resources, but has the advantage
of not relying on the accuracy of the alignment. Furthermore, some of the second
group of methods can locate repeated patterns in the same sequence. However, the
set of patterns searched for will of necessity be incomplete, creating the possibility
of not discovering a pattern in the sequence.

Before describing these techniques in detail it is useful to look briefly at how
patterns can be described. In Section 6.1 the logo representation based on informa-
tion theory was presented. This is just as useful for the analyses of short sequence
patterns as it is for profiles. An example logo is shown in Figure 6.5. The other
description of patterns that we will explore gives a representation that is extremely
helpful in defining patterns in text, and is therefore the form used by most programs.

As useful patterns are expected to have highly conserved positions with a very
limited number of allowed residues, a representation not too dissimilar to that of a
basic sequence is often possible. This can, moreover, be used to represent insertion
variability, and so is a useful way of writing sequence patterns. Three sequential
fully conserved residues are represented as, for example, GYT, sometimes written
G-Y-T to distinguish the three positions. If several residues can occur at a given
position, they are represented as, for example [YWF] as in G-[YWF]-T. Note that
there is no further detail about relative preferences for each residue type. Thus posi-
tions 27–29 of the logo of Figure 6.5 can be written as [G]-[DE]-[GSA]. This scheme,
with a few extensions, is used to define many of the PROSITE database entries (see
Table 4.2).

Finally, it should be noted that there are two separate tasks in this area, of which
only one will be described in this section. Here we will survey some of the methods
used for identifying sequence patterns. Often, as well as producing a pattern-
finding program using the algorithm, a complementary program is provided to
locate discovered patterns in other sequences. For example, the MAST program will
search for patterns discovered by MEME, and scan does the same job for Gibbs.
Practical examples of pattern searching are described in Sections 4.8 to 4.10.

Discovering patterns in a multiple alignment: eMOTIF and
AACC
From an analysis of two databases of multiple alignments, Craig Nevill-Manning
and co-workers derived a number of sets of amino acids that they refer to as
substitution groups. The sets contain residues that are often found to substitute
for one another, but in addition, the residues of one set were found to substitute for
those of another set only rarely. A total of 20 such sets were found in common to
both databases and are used in the program eMOTIF. These 20 substitution groups
are shown in Figure 6.24A. Note that, in addition, there are the 20 individual
residues to consider, making a total of 40 groups. 

eMOTIF analyzes every position in a given multiple alignment, initially simply
determining the single substitution group that covers all the observed residues. If
none of the 20 groups gives full coverage, the position is assigned the group of all
residues (written “.” in the discussion of MOTIF). At each position one can define
allowable groups, namely those that define subsets of the initial group.

eMOTIF examines the patterns that can be defined by choosing all combinations of
allowable groups at the different positions. For each such pattern, the number of
sequences that contain it is readily obtained, giving an estimate of the coverage of the
family by this pattern. (In some cases a lack of full coverage may still lead to useful
patterns that distinguish between recognized subsets of the protein family; that is,
subfamilies.) A lower limit is set to the percentage of sequences that contain the
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pattern, the default being 30%. This reduces the number of patterns to be explored,
speeding up the program and also limiting the number of false negatives. The proba-
bility of each pattern occurring by random is estimated using the observed residue
frequencies in a large sequence database. This leads directly to a prediction of the
number of false positives in a database search. These two calculations permit some
discrimination between potentially useful patterns. Those that are predicted to give
rise to fewer false positives for the same level of cover are always favored.

One way of improving the ability to identify the desired sequences from sequence
patterns involves the use of several patterns in conjunction. First, one determines a
pattern that is highly specific for a subset of the sequences. These are then removed,
and another pattern obtained that fits a further subset of sequences with high
specificity. In this way a set of patterns is found, which together can distinguish the
sequence members with a low error rate. Often these patterns are found to separate
the sequences into subfamilies that have some biological significance.

Randal Smith and Temple Smith developed an alternative pattern-derivation
method that also uses aligned sequences. The technique, called AACC (Amino Acid
Class Covering), uses an alternative set of residue groupings, as shown in Figure
6.24B, and is a modification of the progressive alignment techniques described
earlier in this chapter. The sequences are arranged using a guide tree and pairwise
alignment is initiated. At each stage, once the alignment has been obtained by
dynamic programming, the two sequences are condensed to one. If a position has
identical residues, or residues from the same grouping, in each sequence it is
simply represented by that residue or residue group. If the residues or groups differ,
the smallest group that contains both residues is used to represent the position. In
this way, internal nodes of the guide tree are assigned a single sequence that repre-
sents those of the lower leaves. When the root node has been reached, its sequence
will contain the pattern common to all the sequences.

This method is very straightforward, but has two main disadvantages compared
with eMOTIF. First, unless all the sequences contain very similar patterns, none will
be found. A single distantly related sequence could prevent AACC reporting a
pattern shared by almost all the other sequences. Second, because no analysis is
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to determine conserved residue
types in alignments during searches
for sequence patterns. (A) The
groupings used in eMOTIF. (B) The
groupings used in AACC. The
residue letters are colored as in A to
aid comparison of these alternative
groupings.
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made of the likelihood of the pattern occurring by random chance, it is possible
that the reported pattern will result in many false positives in a database search.

Probabilistic searching for common patterns in sequences:
Gibbs and MEME
Finding patterns in an already existing multiple alignment is relatively fast and easy,
but if there are errors in the alignment, there is no possibility of correction. So
although searching unaligned sequences for a given pattern is more computation-
ally intensive, techniques based on this approach are preferred. The difficulty lies in
the large number of different patterns that need to be explored. One way to restrict
the number of possible patterns is to consider only patterns that occur in a short
contiguous stretch of sequence. This reduces the problem sufficiently so that quite
sophisticated methods can be applied by comparison with those used when
searching for variable-width patterns. Both methods involve estimating the proba-
bility of obtaining observed patterns given a pattern model.

The Gibbs program searches for a pattern of length W present in a set of Nseq

sequences. It uses a probabilistic formalism, distinguishing between background
residues, that is, those not in the pattern, and residues at specific positions in the
pattern. The model has (W + 1) different preferred residue distributions (that is,
residue probabilities), one for each pattern position (qu,a for residue type a to be at
the uth pattern position) and one for the background (ra). The latter is the set of
probabilities applicable for any positions not designated in the pattern. The final
element of the Gibbs model is the position in each sequence at which the pattern
starts: xs for the xth sequence.

In its basic form this method assumes a single occurrence of the pattern in each
sequence. If some of the sequences do not contain the pattern, this can reduce the
likelihood of finding it, but in practice the method is quite robust. Modifications
can be made to allow for a number of negative examples. The model can be further
enhanced to find several copies of the same pattern in each sequence, and to find
several patterns simultaneously. These more complex models will not be discussed
further here, except to say that the number of patterns must be stated in advance.

The search starts with a fixed pattern length of W and a random set of locations xs.
This means that the initial pattern is completely random. One sequence y is
selected at random and an attempt is made to improve its pattern position as
defined by ys. First, new values of qu,a are obtained from the (Nseq – 1) other
sequences using

(EQ6.41)

where nu,a is the number of times residue a is found at position u in the pattern
located in the other (Nseq – 1) sequences by the parameters xs. The pseudocounts are
proportional to the residue frequencies pa in the whole dataset, and weighted to sum
to b, which is taken as in the standard implementation of this method.
(Compare this with Equation EQ6.11.) The background frequencies ra are obtained
in an analogous fashion with the same pseudocounts. Using these values, the prob-
ability can be calculated that any stretch of W residues starting at the ith residue yi

in sequence y is or is not the pattern. The likelihood that it is the pattern is obtained
using the qu,a to get Qyi

, the likelihood that it is not by using the ra to get Pyi
. Weights

are then assigned to each position yi using , and normalizing these
values so that they sum to 1 over the whole sequence. The new ys is chosen by
random selection with probabilities given by the normalized wyi

. This will be biased
toward a region of sequence similar to the patterns defined by the other sequences.
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This process is iterated many times (approximately 100Nseq) until convergence has
occurred. When several of the xs correctly locate a pattern, the wyi

will be more likely
to favor the correct starting residue. Otherwise, the xs will explore the sequence
essentially at random until eventually by chance the pattern is picked up, hence the
large number of iterations.

Using only the step above, the model can become stuck with the sequences
correctly aligned for the pattern, but the window of W residues shifted from the
correct pattern so as to cover only part of it. To get round this problem, after several
iterations an alternative method of finding new xs is tried. All the xs are moved t
residues from their current positions, where t takes all values positive and negative
up to some threshold T. At each value of t an equivalent of wyi

is calculated, normal-
ized over the (2T + 1) alternatives, and a random selection made to obtain the new
set of xs.

So far we have taken the pattern width W as a given constant. We could simply run
the program several times with different values. The Gibbs program can try to esti-
mate W by calculating a quantity that is proportional to the quantity of information
per parameter of the model. This allows an objective estimation of the pattern
width as that which has the most information per model parameter.

The program MEME uses many similar concepts to Gibbs, such as the residue prob-
abilities, but uses the EM (expectation maximization) method (see Further Reading).
In the program Gibbs, the parameter xs points at the position of the pattern in
sequence x of length Lx. In MEME, each sequence position i that can be the start of
a pattern of length W (that is, residues 1 to Lx – W + 1) has a probability proportional
to w ¢xi

actually being the start of the pattern. This is not identical to the wyi
in Gibbs

as will become clear below.

One of the parameters in MEME is the expected number of appearances of a
pattern in the sequences, Nexp. This allows MEME to work with many negative
examples, when Nexp will be less than the number of sequences Nseq, and will simply
define the pattern on the basis of the Nexp estimated occurrences. The same param-
eter can also be used when there is more than one pattern instance expected in
each sequence.

MEME systematically uses each sub-sequence of length W in the set of sequences
to provide an initial estimate of the pattern residue probabilities qu,a. A modified
form of Equation EQ6.41 is used, the difference being that the pseudocounts are
often derived using a Dirichlet distribution. Using these, the probability of
obtaining the sequence of length W starting at position i in sequence x as a pattern
w ¢xi

is obtained by simple multiplication of the qu,a. By analogy with the wyi
, the w ¢xi

must be normalized, but in this case the normalization is such that the sum of the
w ¢xi

over all sequences is Nexp.

Some additional modification of the w ¢xi
is required. First, as they represent proba-

bility, they must have values between 0 and 1. Second, long repeating patterns such
as AAAAAA could lead to many consecutive having values close to 1, when in fact
they all refer to the same instance of the pattern. To circumvent this situation, the
w ¢xi

are also constrained to sum to a maximum of 1 over any W consecutive sites.
From these w ¢xi

the qu,a can be reestimated, and these can be used to calculate the
log likelihood of the model given the data. This is an example of the expectation
maximization (EM) optimization method, and can be iterated to convergence,
defined in this case to be a negligible change in the qu,a.

MEME carries out a single EM iteration for every length W sub-sequence in the
sequences, and finds the model with the highest log likelihood. This model is then
iterated to convergence, at which point the largest w ¢xi

will predict the presence of
instances of the pattern, now defined by the converged qu,a. These patterns can now

′wxi
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be probabilistically erased by weighting those sequence positions by (1 – w ¢xi
) after

which the method can be restarted to locate other patterns. In this way, MEME can
find several patterns in the same dataset. MEME searches for patterns of varying
widths by restarting the algorithm with different values of W and by a pattern
expansion step. The expansion step attempts to add (or remove) columns at the
edges of the motif. An objective function that approximates the E-value of the motif
is used to choose the best motif. This function considers the width of the motif,
number of occurrences of the motif, and information content of the motif, as well
as the size of the training set.

Searching for more general sequence patterns
The methods described in the previous section will find a pattern that has several
highly conserved residues in a short sequence segment. In many cases, patterns
have been found that have a few highly conserved residues but these are separated
by positions that have little or no residue preference, and the highly conserved posi-
tions are a small minority of the whole pattern segment. This can cause problems
for methods such as Gibbs and MEME by reducing the distinction between the
pattern and the background. The methods described next have been designed to
search specifically for such patterns.

The MOTIF program searches for patterns of the form X–x1–Y–x2–Z where X, Y, and
Z are particular residues and x1, x2 are unspecified intermediate sequence
segments of length between zero and some specified maximum (often around 20).
Such patterns are often called 3-patterns or, in general, d-patterns, where there are
d positions at which a single residue occurs, including the first and last residues of
the segment. Searches are limited in practice owing to the very large number of
different patterns possible. For example, given that there are 20 different amino
acids there are 1.8 million possible different 3-patterns with intervening stretches
of up to 15 residues.

MOTIF scans the sequences for 3-patterns, scoring them in a very large array.
Attention is focused on those patterns found more often than expected on the basis
of a statistical model. Motifs with more than three conserved positions will result in
several 3-patterns; for example, the pattern A–B–C–D will be observed as A–B–C,
A–.–C–D, A–B–.–D, and B–C–D. Some of these are filtered out before analyzing the
data according to the number of observed instances of each 3-pattern. A 3-pattern
that passes this test is used to align the sequences in the region of the potential
pattern, aligned according to the observed 3-patterns. A region of 30–55 residues
centered on the pattern is realigned crudely (not allowing insertions). The final
definition of the pattern is given by finding all columns with fully conserved
residues, all columns with more than half the sequences having the same residue at
that position, and all positions whose mean sum-of-pairs score with the PAM250
matrix (see Figure 5.3) is positive.

MOTIF uses a very inefficient technique, because the sequences from which the
pattern is to be found contain far fewer patterns than are possible. If the method
were being used to locate patterns in 12 sequences each 250 residues long, each
sequence would have (250 – 10 + 1), that is, 241, different sub-sequences of length
10. In total, there will be 2892 sub-sequences. For longer patterns this number
decreases slowly. For 2-patterns with up to eight intervening residues, there are
3600 different 2-patterns up to 10 residues long. As seen above, the number of 3-
patterns is very large by comparison. From a computational perspective, therefore,
rather than searching the sequences for a set of patterns it is more efficient to
discover common patterns from the sub-sequences.

Given the range of possible patterns, this is still difficult to do efficiently. The PRATT
method is perhaps the most advanced yet. It is efficient enough to allow searches of
patterns of up to 50 residues long, consisting of up to 10 specified positions. Other
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positions are completely unspecified, and the length between two specified posi-
tions can be variable (within limitations). Patterns must occur in the sequences a
specified minimum number of times. All these patterns are scored according to a
measure of their information content. This ensures the patterns with more speci-
fied residues are preferred. Otherwise, more general patterns may be found more
frequently and then given greater significance.

Attempting to identify residue preferences in those positions previously undefined
can further refine the highest-scoring patterns. In addition, positions after the
carboxy-terminal end of the pattern are analyzed to try to extend it. The allowed
residue combinations are restricted as for eMOTIF and AACC, but they are fully
under user control; they are a user-defined list.

Summary
This chapter has dealt with the many ways in which a set of related sequences can
be analyzed to create a multiple alignment or to identify the key common features,
even short conserved patterns. It has also dealt with ways that sets of sequences can
be compared by aligning their alignments or profiles.

A multiple alignment can be analyzed to determine the degree of conservation at
any position. This leads to the concepts of sequence profiles and position-specific
scoring matrices. These tools are useful for discovering related sequences in data-
base searches, because they can represent the general characteristics of a sequence
family better than a single example. The PSI-BLAST database search method is one
of the most powerful of these methods available.

A more sophisticated way of representing the properties of a sequence family is to use
a profile hidden Markov model. These models are based on sound probabilistic prin-
ciples, and can represent insertions and deletions in a consistent way. This comes at a
cost, however, as HMMs require numerous parameters to be specified. Nevertheless,
HMMs are perhaps the most sensitive way available to represent a protein family.

Once a profile representation is available for a set of sequences, either as a PSSM or
a profile HMM, it can be used to find further related sequences, or to compare with
other profiles to explore the relationship between protein families.

Many techniques have been proposed for constructing multiple alignments. Most
are closely related to the pairwise alignment techniques described in Chapters 4
and 5, using dynamic programming as the basic step. Other approaches have been
proposed, including the use of HMMs. Some more sophisticated scoring schemes
are possible, because the protein structures are assumed to be related, leading to
predictions about regions of sequence insertion and conservation. The majority of
multiple alignment techniques have to choose the order in which the sequences
are added. Some make only one attempt to construct the alignment using this
order while others make more extensive searches to find the optimal alignment. A
few methods have been proposed that are not based on pairwise alignments, of
which two were given here: one based on sequence blocks and the other on genetic
programming.

If there are very highly conserved regions in a multiple alignment, it can be rela-
tively easy to propose a sequence pattern that is a useful indicator of membership
of the family. Often, however, the pattern is subtle, and methods have been
proposed to search for these patterns. Some analyze multiple alignments, but in
difficult cases these may contain errors that obscure the pattern. The best pattern-
finding methods do not require alignments and can search for quite complex
patterns involving variable-length insertions and partially conserved positions.
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Further Reading
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The literature in this field is vast, necessitating careful selec-
tion of methods for presentation here. We have attempted to
cover the range of applications and theoretical techniques
without exhaustively listing all variations and implementa-
tions. More complete presentations in specific areas are
given by:

Durbin R, Eddy S, Krogh A & Mitchison G (1998)
Biological Sequence Analysis. Cambridge: Cambridge
University Press. (This is an excellent introduction to the
use of HMM techniques in this area.)

Gotoh O (1999) Multiple Sequence Alignment:
Algorithms and Applications. Adv. Biophys. 36, 159–206.

Higgins D & Taylor WR (eds) (2000) Bioinformatics.
Sequence, Structure and Databanks. Oxford: Oxford
University Press. (Especially Chapters 3, 4, 5, & 7.)

The references for those methods specifically referred to in
this chapter are as follows:

6.1 Profiles and Sequence Logos 

Altschul SF, Carroll RJ & Lipman DJ (1989) Weights for
data related by a tree. J. Mol. Biol. 207, 647–653.

Altschul SF, Madden TL, Schäffer AA et al. (1997)
Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25,
3389–3402.

Gribskov M, McLachlan AD & Eisenberg D (1987) Profile
analysis: Detection of distantly related proteins. Proc.
Natl Acad. Sci.USA 84, 4355–4358.

Henikoff S & Henikoff JG (1994) Position-based
sequence weights. J. Mol. Biol. 243, 574–578.

Henikoff S & Henikoff JG (1997) Embedding strategies
for effective use of information from multiple sequence
alignments. Protein Sci. 6, 698–705.

Luthy R, Xenarios I & Bucher P (1994) Improving the
sensitivity of the sequence profile method. Protein Sci. 3,
139–146.

Schäffer AA, Aravind L, Madden TL et al. (2001)
Improving the accuracy of PSI-BLAST protein database
searches with compositions-based statistics and other
refinements. Nucleic Acids Res. 29, 2994–3005.

Schneider TD & Stephens RM (1990) Sequence logos: a
new way to display consensus sequences. Nucleic Acids
Res. 18, 6097–6100.

Schneider TD, Stormo GD, Gold L & Ehrenfeucht A
(1986) Information content of binding sites on
nucleotide sequences. J. Mol. Biol. 188, 415–431.

Sibbald PR & Argos P (1990) Weighting aligned protein
or nucleic acid sequences to correct for unequal repre-
sentation. J. Mol. Biol. 216, 813–818.

Sjölander K, Karplus K, Brown M et al. (1996) Dirichlet
mixtures: a method for improved detection of weak but
significant protein sequence homology. Comput. Appl.
Biosci. 12, 327–345.

Tatusov RL, Altschul SF & Koonin EV (1994) Detection of
conserved segments in proteins: Iterative scanning of
sequence databases with alignment blocks. Proc. Natl
Acad. Sci. USA 91, 12091–12095.

6.2 Profile Hidden Markov Models
Baldi P, Chauvin Y, Hunkapiller T & McClure MA (1994)
Hidden Markov models of biological primary sequence
information. Proc. Natl Acad. Sci. USA 91, 1059–1063.

Barrett C, Hughey R & Karplus K (1997) Scoring hidden
Markov models. Comput. Appl. Biosci. 13, 191–199.

Eddy SR (1998) Profile hidden Markov models.
Bioinformatics 14, 755–763.

Karchin R & Hughey R (1998) Weighting hidden Markov
models for maximum discrimination. Bioinformatics
14, 772–782.

Two more advanced HMM models that include the phylogeny
explicitly are:

Holmes I & Bruno WJ (2001) Evolutionary HMMs: a
Bayesian approach to multiple alignment. Bioinformatics
17, 803–820.

Qian B & Goldstein RA (2003) Detecting distant
homologs using phylogenetic tree-based HMMs.
Proteins 52, 446–453.

6.3 Aligning Profiles
Edgar RC & Sjölander K (2004) COACH: profile–profile
alignment of protein families using hidden Markov
models. Bioinformatics 20, 1309–1318.

Pietrokovski S (1996) Searching databases of conserved
sequence regions by aligning protein multiple-align-
ments. Nucleic Acids Res. 24, 3836–3845. (LAMA)

Sadreyev R & Grishin N (2003) COMPASS: A tool for
comparison of multiple protein alignments with assess-
ment of statistical significance. J. Mol. Biol. 326, 317–336.

Schuster-Bockler B & Bateman A (2005) Visualizing
profile–profile alignment: pairwise HMM logos.
Bioinformatics 21, 2912–2913.

Söding J (2005) Protein homology detection by
HMM–HMM comparison. Bioinformatics 21, 951–960.
(HHsearch)

Wang G & Dunbrack RL (2004) Scoring profile-to-profile
sequence alignments. Protein Sci. 13, 1612–1626.

Yona G & Levitt M (2002) Within the twilight zone: A
sensitive profile-profile comparison tool based on
information theory. J. Mol. Biol. 315, 1257–1275.
(prof_sim)

6.4 Multiple Sequence Alignments by Gradual
Sequence Additions
Brudno M, Chapman M, Göttgens B et al. (2003) Fast
and sensitive multiple alignment of large genomic
sequences. BMC Bioinformatics 4, 66–77. (CHAOS and
DIALIGN)
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Chenna R, Sugawara H, Koike T et al. (2003) Multiple
sequence alignment with the Clustal series of programs.
Nucleic Acids Res. 31, 3497–3500.

Do CB, Mahabhashyam MSP, Brudno M & Batzoglou S
(2005) ProbCons: Probabilistic consistency-based
multiple sequence alignment. Genome Res. 15, 330–340.

Edgar RC (2004) MUSCLE: multiple sequence alignment
with high accuracy and high throughput. Nucleic Acids
Res. 32, 1792–1797.

Edgar RC (2004) MUSCLE: a multiple sequence align-
ment with reduced time and space complexity. BMC
Bioinformatics 5, 113.

Gupta SK, Kececioglu J & Schäffer AA (1995) Improving
the practical space and time efficiency of the shortest-
paths approach to sum-of-pairs multiple sequence
alignment. J. Comput. Biol. 2, 459–472. (MSA)

Higgins DW, Thompson JD & Gibson TJ (1996) Using
CLUSTAL for multiple sequence alignments. Methods
Enzymol. 266, 383–402. (ClustalW)

Katoh K, Misawa K, Kuma K & Miyata T (2002) MAFFT: a
novel method for rapid multiple sequence alignment
based on fast Fourier transform. Nucleic Acids Res. 30,
3059–3066.

Katoh K, Kuma K, Toh H & Miyata T (2005) MAFFT
version 5: improvement in accuracy of multiple
sequence alignment. Nucleic Acids Res. 33, 511–518.

Notredame C, Holm L & Higgins DG (1998) COFFEE: an
objective function for multiple sequence alignments.
Bioinformatics 14, 407–422.

Notredame C, Higgins DG & Herringa J (2000) T-Coffee:
A novel method for fast and accurate multiple sequence
alignment. J. Mol. Biol. 302, 205–217.

O’Sullivan O, Suhre K, Abergel C et al. (2004) 3DCoffee:
Combining protein sequences and structures within
multiple sequence alignments. J. Mol. Biol. 340,
385–395.

Thompson JD, Higgins DW & Gibson TJ (1994) CLUSTAL
W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, posi-
tion-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 22, 4673–4680.

6.5 Other Ways of Obtaining Multiple
Alignments
Morgenstern B (1999) DIALIGN 2: Improvement of the
segment-to-segment approach to multiple sequence
alignment. Bioinformatics 15, 211–218.

Morgenstern B, Frech K, Dress A & Werner T (1998)
DIALIGN: Finding local similarities by multiple sequence

alignment. Bioinformatics 14, 290–294.

Notredame C &, Higgins DG (1996) SAGA: sequence
alignment by genetic algorithm. Nucleic Acids Res. 24,
1515–1524.

6.6 Sequence Pattern Discovery
Bailey TL & Elkan C (1995) Unsupervised learning of
multiple motifs in biopolymers using expectation maxi-
mization. Machine Learning 21, 51–83. (MEME)

Jonassen I (1997) Efficient discovery of conserved
patterns using a pattern graph. Comput. Appl. Biosci. 13,
509–522.

Jonassen I, Collins JF & Higgins DH (1995) Finding flex-
ible patterns in unaligned protein sequences. Protein
Sci. 4, 1587–1595. (PRATT)

Lawrence CE, Altschul SF, Boguski MS et al. (1993)
Detecting subtle sequence signals: a Gibbs sampling
strategy for multiple alignment. Science 262, 208–214.
(Gibbs)

Nevill-Manning CG, Wu TD &, Brutlag DL (1998) Highly
specific protein sequence motifs for genome analysis.
Proc. Natl Acad. Sci. USA 95, 5865–5871. (EMOTIF)

Smith RF & Smith TF (1990) Automatic generation of
primary sequence patterns from sets of related protein
sequences. Proc. Natl Acad. Sci. USA 87, 118–122. (AACC)

Smith HO, Annau TM & Chandrasegaran S (1990) Finding
sequence motifs in groups of functionally related
proteins. Proc. Natl Acad. Sci. USA 87, 826–830. (MOTIF)

One area not covered at all in this chapter is the evaluation
of the different methods. Several workers have proposed test
datasets. Readers interested in this area could start by
examining:

Mizuguchi K, Deane CM, Blundell TL & Overington JP
(1998) HOMSTRAD: a database of protein structure
alignments for homologous families. Protein Sci. 7,
2469–2471.

Raghava GPS, Searle SMJ, Audley PC et al. (2003)
OXBench: A benchmark for evaluation of protein
multiple sequence aligment accuracy. BMC
Bioinformatics 4, 47–70.

Thompson JD, Plewniak F & Poch O (1999) A compre-
hensive comparison of multiple sequence alignment
programs. Nucleic Acids Res. 27, 2682–2690. (BAliBASE)

Thompson JD, Plewniak F & Poch O (1999) BAliBASE: a
benchmark alignment database for the evaluation of
multiple alignment programs. Bioinformatics 15, 87–88.
(BAliBASE)
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PART 3

EVOLUTIONARY
PROCESSES

Evolution is a vital part of the process of life. In general,
the changes that give rise to evolution occur in the
form of mutations at the level of the genetic sequence
but are often observed at the protein level, when the
effect of the change is noticeable. This is not always the
case, as some mutations at the genetic level will not
change the code for the protein and some important
mutations may not occur in the regions that code for
proteins.

This part of the book consists of two chapters: the first
is an Applications Chapter, while the second is a
Theory Chapter. The first chapter in this part explains
the basic ideas involved in reconstructing the evolu-
tionary history of the gene or protein sequences and
illustrates how the methods can be applied to various
scientific problems. The second chapter gives details of
the techniques involved in evolutionary analysis.

Chapter 7
Recovering 

Evolutionary History 

Chapter 8
Building 

Phylogenetic Trees 
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RECOVERING EVOLUTIONARY
HISTORY

When you have read Chapter 7, you should be able to: 

Discuss the evolutionary basis of sequence variation.

Show how phylogenetic trees represent evolutionary history.

Outline basic phylogenetic tree structure.

Show the consequences of gene duplication for phylogenetic tree construction.

Summarize the methods of constructing trees from a sequence alignment.

Select an evolutionary model for use in phylogenetic analysis of sequences.

Recount practical examples of tree construction.

Test the support for tree features.

Propose function from phylogenetic analysis.

When a group of aligned sequences shows significant similarity to each other, as
described in Chapters 4 to 6, this can usually be taken as evidence that they are the
result of divergent evolution from a common ancestral sequence. In this case, the
sequence alignment will contain traces of the evolutionary history of these
sequences. It is possible to infer this history by complex analysis of a multiple
sequence alignment. In this and the following chapter we will describe the ways in
which the evolutionary history can be recovered and used to investigate the evolu-
tionary relationships between present-day sequences.

This type of analysis can be applied to a number of distinct problems. By studying
sequences that have both a common ancestor and common function—known as
orthologous sequences or orthologs—from different species, one can investigate
the evolutionary relationships between species. These results can usefully be
compared with an accepted taxonomic classification, which has probably been
derived using different data. Alternatively, by studying a set of sequences from a
single protein class we can examine the evolution of functions such as enzymatic
activity. Techniques have also been developed that attempt to reconstruct ancestral
sequences in order to examine the molecular properties of these hypothetical
ancient genes and their products. That aspect of phylogenetic analysis is beyond
the scope of this book and those interested should consult the Further Reading at
the end of the chapter.

In this chapter we will consider the reconstruction of the evolutionary history of a
set of sequences from a multiple alignment, and how this history can be repre-
sented as a graphical structure called a phylogenetic tree. We start by describing

7
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APPLICATIONS
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the types of trees and their features and how they can be interpreted. The evolu-
tionary history we hope to recover from the data will encompass many different
types of mutational events, and we will discuss the relative evolutionary impor-
tance of different types of mutation in sequence change. Often, simplifications
must be introduced into the analysis, restricting the possible evolutionary history.
Understanding these limitations clarifies the kinds of issues that can be explored
and the way that answers may be derived.

In Chapters 4 to 6, we examined the relationships between sequences in terms of the
degree of similarity of the sequences to each other. When analyzing sequences with
evolution in mind, however, it is the differences between them—often summarized
as the evolutionary distance or genetic distance—that are of interest and which need
to be quantified and scored. Before one can quantify the changes that have occurred
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A mind map showing the major
steps that are taken when
reconstructing phylogenetic trees.
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during evolution and generate an evolutionary distance, a simplified model of evolu-
tion as a framework is needed. Numerous models have been proposed, and a
number of them are presented with the emphasis on the assumptions made and the
parameters used. As mutation events occur at the nucleotide level, most of the
models reflect this. Some models of protein evolution have been proposed similar to
those discussed in connection with the derivation of the PAM matrices (see Section
5.1), which consider evolution at the level of amino acid changes.

Many different ways of reconstructing the evolutionary history of a set of sequences
from a multiple alignment have been proposed. These can be divided into methods
that use the sequence alignment directly and those that use the evolutionary
distances. In this chapter we look at the practicalities of selecting an evolutionary
model and tree construction method, and how to justify the choice; the detailed
algorithmic description and theoretical justifications are considered in Chapter 8.

As the actual relationship of one sequence or species to another is a matter of
historical fact, fixed by the course of past evolution, one would hope to recover this
true tree whatever the type of data used. But, as we shall see, differences can occur
depending on the data available, the particular model of molecular evolution used,
and the tree-building method.

7.1 The Structure and Interpretation of
Phylogenetic Trees
The purpose of the phylogenetic tree representation is to summarize the key
aspects of a reconstructed evolutionary history. Even if a multiple alignment
contained an unambiguous record of every mutation that had occurred (which is
rarely the case, as we shall see), a shorthand method of representing this in an easily
understandable way is still needed. In this section we will present the different
types of phylogenetic tree and explain how they should be interpreted. We will also
define many of the terms used in this area. The section will end with a description
of ways in which the reliability and uncertainty of some of the tree features can be
indicated (see Flow Diagram 7.1).

Phylogenetic trees reconstruct evolutionary relationships
A phylogenetic tree is a diagram that proposes an hypothesis for the reconstructed
evolutionary relationships between a set of objects—which provide the data from
which the tree is constructed. These objects are referred to as the taxa (singular
taxon) or operational taxonomic units (OTUs) and in phylogenies based on
sequence data they are the individual genes or proteins. When orthologous
sequences from different species are being used with the aim of determining rela-
tionships between species, the taxa are labeled with the species name. Such trees
are called species trees to distinguish them from those trees that are intended to
show the relationships between the genes or proteins in a large gene family. Species
trees can also be constructed from data other than sequences, such as the morpho-
logical features used in traditional taxonomy, the presence of certain restriction
sites in the DNA, or the order of a particular set of genes in the genome. Such data
can often be treated, in principle, in much the same way as sequences; with the
proviso that differences may be qualitative rather than quantitative. When exam-
ining a phylogenetic tree, care should be taken to note exactly what information
was used to produce it because, as will be discussed in detail later in this chapter,
the evolutionary history of a set of related genes is often not the same as that of the
species from which the genes were selected.

The basic features of phylogenetic trees are illustrated in Figure 7.1, using imagi-
nary bird species as the objects or taxa. The species are connected via a set of lines,
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called branches or edges, which represent the evolutionary relationships between
them. Those species that occur at the external nodes or leaves of the tree are either
existing species that have not as yet evolved into new species, or else are extinct
species whose lineage died out without leaving any descendants. To be precise, we
should say that the dataset used to produce the tree lacks such descendant
species, as it is quite possible for the dataset not to contain data from all related
species. The branches do not join any of the external nodes together directly, but
via internal nodes, which represent ancestral states that are hypothesized to have
occurred during evolution. In our bird species tree, for example, the internal
branch points represent speciation events that produced two descendant diver-
gent species. Likewise, when sequence data have been used to build a species tree,
with each species represented by one sequence, the internal nodes represent the
ancestral sequences from which the present-day sequences have diverged after
speciation. However, in trees representing gene or protein families, which may
contain several sequences from a single species, a branch point can also represent
the point at which a gene duplication event has occurred within a genome,
followed by the divergence of the two copies within the same species. We shall
return to this important point later.

Under normal evolution, a given taxon will have evolved from a single recent
ancestor and if it does not become extinct first, may diverge into two separate
descendant taxa. As a consequence, any internal node of a phylogenetic tree is
expected to have three branches; one to an ancestor and the other two to descen-
dants. This branching pattern is called bifurcating or dichotomous. The external
nodes, which have not yet produced descendants, have a single connection to their
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Flow Diagram 7.1
The key concept introduced in this
section is that there are several
different types of phylogenetic tree
that can be used to represent the
evolutionary history of a group of
sequences, some of which convey
much more quantitative
information than others.
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ancestral taxon. There are very rare evolutionary events that do not obey this rule.
Two species can merge into one, as is thought to have occurred when eukaryotic
cell ancestors entered into symbiosis with the prokaryotes that eventually became
mitochondria and chloroplasts (see Section 1.4). Alternatively, a single population
might simultaneously give rise to three or more distinct new species. If all the
internal nodes have three branches the tree is said to be fully resolved, meaning
that it hypothesizes a location for all the expected speciation or gene duplication
events. A partially resolved tree will have at least one internal node with four or
more branches, sometimes described as multifurcating or polytomous.

Trees can be either unrooted (see Figure 7.1A) or rooted (see Figure 7.1B). Rooted
trees represent the divergence of a group of related species from their last common
ancestor, the root, by successive branching events over time. Unrooted trees, on
the other hand, show the evolutionary relationship between taxa but do not iden-
tify the last common ancestor. In a rooted tree the direction of evolution along each
of the branches is unambiguous. In an unrooted tree, by contrast, which ancestral
species evolved from which is not clear once one gets to the internal branches.

There are two further components to the description of a phylogenetic tree—the
tree topology or the way it branches, and the branch lengths. In some types of tree
there are no defined branch lengths, and in general it is the topology that is the
main interest (see Box 7.1). Even for a small number of sequences there are many
possible trees with different topologies. Each of these tree topologies represents a
possible evolutionary history that differs from any tree with alternative topology in
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(A) (B)

branch
(edge)

external nodes
(leaves)

internal node

root

Unrooted and rooted phylogenetic trees. These trees
reconstruct the evolutionary history of a set of six imaginary
extant bird species, which are shown at the outermost tips of the
branches—the external nodes or leaves. These are the species
from which the data to construct the tree have been taken.
These data could be morphological data or sequence data. The
birds shown at the internal nodes are the predicted
(reconstructed) extinct ancestor species. (A) A fully resolved
unrooted tree. This tree is fully resolved in that each internal
node has three branches leading from it, one connecting to the
ancestor and two to descendants. However, the direction of
evolution along the internal branches—that is, which ancestral
species has evolved from which—remains undetermined. Thus
we cannot distinguish from this tree alone whether the yellow

birds evolved from a brown bird, or vice versa. (B) A fully
resolved rooted tree for the same set of existing species. The
brown bird marked “root” can now be distinguished as the last
common ancestor of all the yellow and brown birds. The line
upward from the root bird indicates where the ancestors of the
root bird would be. In a rooted tree, there is a clear timeline
(shown as a gray arrow) from the root to the leaves, and it is
clear which species has evolved from which. Thus, the yellow
birds did evolve from a brown bird. Apart from the region
around the root in (B), the two trees are identical in the
relationship between the taxa and give the same information.
The arrangement of the branches in space is different, but the
information in a phylogenetic tree is contained solely in the
branch connections and branch lengths.

Figure 7.1
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the way that major events such as speciation and gene duplication are hypothe-
sized to have occurred. The differences are usually in both event order and ancestry.
The major task of phylogenetic tree reconstruction is to identify from the numerous
alternatives the topology that best describes the evolution of the data.

Apart from the presence or absence of a root, there are three basic types of tree
representation. Figure 7.2A shows a rooted cladogram, which shows us the
genealogy of the taxa but says nothing about the timing or extent of their diver-
gence. In this type of tree the branch lengths have no meaning, and only the tree
topology is defined. The cladogram simply tells us that the four taxa—the four
birds—have a common ancestor that initially evolved into two descendants, one the
common ancestor of the yellow birds and the other the common ancestor of the
brown birds. Although the tree has been drawn with different branch lengths, so
that the brown birds appear to have diverged more recently than the yellow birds, it
is important to note that this is only for artistic effect, and the branch lengths have
no scientific basis. Unlike in Figure 7.1, the ancestors are not shown on the tree, only
the branches. This is the normal way of presenting trees, with the ancestors only
implied by the internal nodes. Most tree-reconstruction methods do not explicitly
predict any properties for the ancestral states, and thus would have no useful repre-
sentation to put at internal nodes. It is also easier to see the connectivity in this form
of tree representation. Because the techniques used to reconstruct trees using
sequences almost always give more quantitative information, cladograms are rarely
used in sequence analysis.

Figure 7.2B shows an additive tree constructed from the same data as Figure 7.2A,
in which branch lengths represent a quantitative measure of evolution, such as
being proportional to the number of mutations that have occurred. The tree shown
here is rooted, but unrooted additive trees can also be made. The evolutionary
distance between any two taxa is given by the sum of the lengths of the branches
connecting them. This tree contains all the information given by Figure 7.2A, but
also tells us that the common ancestor of the yellow birds is a smaller evolutionary
distance (3) from the root than is the common ancestor of the brown birds (4). From
this representation alone, however, we cannot say for certain that the brown birds
diverged from their ancestor at a later time than the yellow birds from their
ancestor because we have no information about the rates of mutation along the
branches. Evolution from the root to the brown birds’ ancestor could have occurred
at a much faster rate than to the yellow birds’ ancestor. If that were the case, the
brown birds could actually have diverged before the yellow birds evolved from their
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Tree topology is the organization of the branches that
make the tree structure. An individual tree topology is
defined by the specific connectivity between the nodes
in the tree. At this rather abstract level there are two
distinct types of tree topology to be considered: one
involves the identification of particular taxa with specific
places on the tree (that is, the leaves are labeled with the
taxa); the other is solely concerned with the branch
structure, the leaves remaining unlabeled. A tree
constructed from N currently existing taxa (an N-taxa
tree) will have N leaves and N external branches. An
unrooted, fully resolved N-taxa tree will have N – 3
internal branches and N – 2 internal nodes. The equiva-

lent numbers for a rooted, fully resolved N-taxa tree are
N – 2 and N – 1, respectively. For a given number of taxa
there are many alternative unlabeled tree topologies,
each of which could be labeled in many different ways.
Some of the methods for reconstructing trees need to
sample amongst all of the possible trees and require effi-
cient ways to do this. With the same number of taxa,
there are more topologies for rooted trees than unrooted
trees. The number of possible topologies increases very
quickly with the number of taxa (see Equation EQ8.33);
for 10 taxa they exceed 1 million. It is likely that very few
of these possible topologies will be a good representa-
tion of the data.

Box 7.1 Tree Topology 
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most recent ancestor. But although we cannot make confident assertions about the
relative times of events on an additive tree, by adding up the lengths of branches it
is possible to make meaningful comparisons of the relative amounts of evolu-
tionary divergence.

Figure 7.2C shows an ultrametric tree, which in addition to the properties of the
additive tree, has the same constant rate of mutation assumed along all branches.
This last property is often referred to as a molecular clock, because one can, in
principle, measure the actual times of evolutionary events from such trees. All
ultrametric trees have a root, and one axis of the tree is directly proportional to
time. In our depiction this is the vertical axis, with the present day at the bottom
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Four different rooted phylogenetic trees, illustrating the variety
of types of tree. (A) A cladogram in which branch lengths have
no meaning. (B) An additive tree, in which branch lengths are a
measure of evolutionary divergence. The branch lengths here are
given in arbitrary units proportional to the number of mutations
per site, from which we can see that the evolutionary distance
between the two yellow birds (3 + 6 = 9) is three times that
between the two brown birds (1 + 2 = 3). (C) An ultrametric tree,
which in addition to the properties of the additive tree has the

same constant rate of mutation assumed along all branches. The
scale on the right of the tree is in this case proportional to time
as well as to the number of mutations per site. This tree is an
ultrametric version of the tree shown in Figure 7.1B. (D) An
additive tree for the same set of species as in Figure 7.1B, which
has been rooted by the addition of data for a distantly related
outgroup (orange bird). Note that in this tree the external nodes
are at different distances from the root.

Figure 7.2
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and the last common ancestor at the top. The horizontal lines in Figure 7.2C have
no meaning, and are simply used to display the tree in a visually pleasing way on
the page. Note that the evolutionary distance from a common ancestor to all its
descendants is the same, a condition not usually observed in an additive tree.

Sequence data often do not conform to a molecular clock, however. Non-clock-like
sequence evolution probably results from a variety of causes, including changes in
mutation rate as a result of changes in evolutionary pressure and increasing
constraints on change in an organism’s morphological structure and metabolism. If
an ultrametric tree is used to represent such data it can lead to an incorrect tree
topology as well as incorrect branch lengths. In such cases an additive tree will be
more accurate. Unlike ultrametric trees, which are always rooted, additive trees
often lack a root. When a rooted tree is required, the most accurate method of
placing the root is to include in the dataset a group of homologous sequences from
species or genes that are only distantly related to the main set of species or genes
under study. This is known as the outgroup, while the group of more closely related
species are known as the ingroup. Figure 7.2D shows an additive tree constructed
using the same species as Figure 7.2C with the addition of the orange bird as an
outgroup. The root can then be located between the outgroup and the remainder of
the taxa. There are other ways of placing a root if the dataset does not include an
outgroup, and these are mentioned later. They are, however, less reliable.

There are many different ways in which a tree can be drawn to illustrate a given set
of relationships between taxa. For example, as shown in Figure 7.2D, the additive
tree can be drawn in a style similar to that of an ultrametric tree. As is the case for
the ultrametric tree, in this representation only one axis is a measure of evolu-
tionary events, now proportional to accepted mutation events instead of time; the
other axis is for visual clarity. If as is usually the case there is no constant molecular
clock, the leaves will not all occur at the same distance from the root.

There are a number of ways in which a tree can be drawn to show the same infor-
mation. For example, it is possible to reflect a part of the tree (a subtree) about the
internal branch connecting it to the rest of the tree. Reflecting the yellow birds’
subtree in Figure 7.2C about the branch Y swaps the pair of yellow birds that will be
drawn next to the brown birds. However, as long as branch lengths and connectivity
are maintained, the trees will have the same meaning. Such changes are often made
to bring particular taxa into proximity to illustrate a point more clearly.

It is important to be aware of the distinction between sequence-based phylogenetic
trees intended primarily to show evolutionary relationships between species (see
Figure 7.3A), and those intended to show relationships between members of a family
of homologous genes or proteins from different species (see Figure 7.3B). A gene
family tree charts the way in which an ancestral gene has become duplicated and
reduplicated within genomes, giving rise to distinct gene subfamilies, and how the
copies have diverged within the same species during evolution as well as between
species. In gene family trees, some branch points represent gene duplication events
within the same species while others represent speciation events.

Tree topology can be described in several ways
Some tree-construction methods can produce several alternative trees that seem
equally good at representing the data. Another occasion when alternative trees can
arise is when different methods, models, or parameters are used to analyze the same
data. Finally, there are occasions when it is interesting to compare the reconstructed
evolutionary history produced by two or more sets of data, such as different genes
from the same set of species. We therefore need ways of describing tree topology in
a form that makes it possible to compare the topologies of different trees.
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The graphical views of trees are convenient for human visual interpretation, but
not for other tasks such as comparison. One way of summarizing basic informa-
tion about a tree in computer-readable format is to subdivide or split it into a
collection of subgroups. Every branch in a tree connects two nodes, and if that
branch is removed, the tree is divided into two parts. Such a division is called a
split or partition, and a tree contains as many splits as there are branches. Note
that since every split contains two groups, which together make up the entire tree,
only one group need be given to define the other. The set of splits formed by
removing an external branch are inherently uninteresting because every possible
tree for the same set of taxa will produce this set. Splits involving internal branches
are more interesting as they can confirm a common origin of a set of taxa. Figure
7.4A shows a tree connecting eight mammalian taxa. By removing the branch with
the label X, it can be seen that the sea lion and seal form a group of their own,
distinct from the other animals. Figure 7.4B shows the set of internal branch splits
for this tree. A fully resolved unrooted tree with N taxa has N – 3 splits; the equiva-
lent number in the case of a rooted tree is N – 2.

When splits are calculated for a rooted tree, one of the two groups of taxa will always
be monophyletic; that is, the group will contain all the descendant taxa from the
ancestor represented by the internal node at the end of the cut branch more distant
from the root. On occasions, it has been found that some of the groups of organisms
traditionally classified together are not monophyletic, suggesting that the classifi-
cation scheme needs revision. We shall see this in the species tree produced using
16S RNA discussed later in this chapter.

The complete list of splits of a tree can be written in computer-readable form using
the Newick or New Hampshire format. Each split is written as a bracketed list of the
taxa as in (sea_lion, seal). (Note the use of the underline character, “sea_lion” not
“sea lion,” so that a computer does not misunderstand this as two taxa called “sea”
and “lion.”) A complete tree can be described in a similar fashion that identifies
every split. Figure 7.4A can be written as

((raccoon, bear), ((sea_lion, seal), ((monkey, cat), weasel)), dog);

from which all possible splits are identifiable by all groups enclosed by matching
parentheses. The semicolon (;) at the end completes the Newick format, indicating
that this is the end of the tree.

Given the many graphical ways in which the same tree can be represented through
reflection about internal branches, it can be difficult to be certain that two trees do
in fact differ only in their aesthetics. In fact, most trees can be represented in many
different ways using the Newick format by listing the splits in different orders.
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Figure 7.3
Examples of a species tree and a
gene tree. (A) A species tree showing
the evolutionary relationships
between seven eukaryotes, with one
more distantly related to the others
(Hydra) used as an outgroup to root
the tree. Xenopus is a frog,
Catostomus a fish, Drosophila a fruit
fly, and Artemia the brine shrimp.
(B) The gene tree for the Na+–K+ ion
pump membrane protein family
members found in the species
shown in (A). In some species, e.g.,
Hydra, and Xenopus, only one
member of the family is known,
whereas other species, such as
humans and chickens, have three
members. The small squares at
nodes indicate gene duplications,
discussed in detail in Section 7.2.
(Adapted from N. Iwabe et al.
Evolution of gene families and
relationship with organismal
evolution: rapid divergence of
tissue-specific genes in the early
evolution of chordates. Mol. Biol.
Evol. 13:483–493, 1996.)
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However, the format is computer-readable making it easier for trees to be
compared. More information, such as branch lengths, can be added to this format,
so that the tree could be written

((raccoon:0.20, bear:0.07):0.01, ((sea_lion:0.12, seal:0.12):0.08,

((monkey:1.00, cat:0.47):0.20, weasel:0.18):0.02):0.03, dog:0.25);

The branch distances follow colons (:). If you are not used to this format, it is not
always easy to see which branch the distances refer to, but looking at Figure 7.4A
should make it clearer.

Consensus and condensed trees report the results of
comparing tree topologies
As mentioned above, there are occasions when a set of trees might be produced that
are regarded as equally representative of the data. These trees may differ in their
topology and branch lengths. Differences in topology imply a disagreement about
the speciation and/or gene duplication events, and it is important to quantify these
uncertainties. The topology comparison methods are based on the concept of the
frequency of occurrence of particular splits in the set of trees, which renders the
problem relatively straightforward.

There are two different circumstances where this analysis may prove useful, which
differ in the treatment of the trees. When the trees have been produced by several
methods of tree construction applied to a single set of data, or by the same method
applied to several different datasets, all trees are treated equally in the analysis. In
these cases the analysis can identify support across a range of techniques or data
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Figure 7.4
A tree can be represented as a set of
splits. (A) An unrooted additive tree
using fictitious data for eight
mammalian taxa. The horizontal
lines carry the information about
evolutionary change; the vertical
lines are purely for visual clarity.
This common depiction of an
unrooted tree is drawn as if the tree
were rooted at the midpoint of the
distance between the most widely
separated taxa; that is, the two taxa
connected by the longest total line
length. Note that because the tree is
unrooted, the branch connecting
the monkey to the rest of the tree is
not an internal branch. Thus, the
evolutionary distance from the
monkey to its nearest internal node
is represented by the sum of the
lengths of the two horizontal lines
connected by the leftmost vertical
line in the figure. The scale bar refers
to branch length and in this case
represents a genetic distance of 0.2
mutations per site. (B) A table
representing all the possible internal
branch splits of the tree shown in
(A). The columns correspond to the
taxa and the rows to the split. The
two groups of each split are shown
by labeling the taxa in one group
with an asterisk, and leaving the
others blank. As every split contains
two groups that together make up
the entire tree, only one group need
be given to define the other.
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for a given topology. However, the analysis will not indicate the degree of support
present in a dataset for particular topological features produced on applying a
given tree construction method. Bootstrap analysis is designed to estimate this
support, based on repeating the tree construction for different samplings of the
same dataset. This technique is discussed in more detail in Box 8.4. In this case,
during tree topology comparison the tree constructed from the actual data is
treated as the standard against which all the other trees are compared.

When bootstrapping is used, all the observed splits of the tree produced from the
original data are listed, and each bootstrap tree produced from sampled data is
examined to see if it contains the same splits. The percentage of the bootstrap trees
that contain each split is either reported in a splits list or displayed on the tree as a
number. The tree of Figure 7.4A with bootstrap percentages added to all internal
branches is shown in Figure 7.5A. Sometimes, as a visual aid, all internal branches
that are not highly supported by the bootstrap are removed. Such a tree is called a
condensed tree, and if poorly supported branches do occur, when they are
removed such a tree will have multifurcating internal nodes. In the case of the tree
shown in Figure 7.5A, if all branches with bootstrap support less than 60% are
removed, then the raccoon, bear, dog, and common ancestor of the sea lion and
seal all diverge from the same internal node (Figure 7.5B). This shows that the data
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Figure 7.5
A condensed tree showing
well-supported features is derived
by applying the bootstrap
procedure. The bootstrap procedure
assigns values to individual
branches that indicate whether their
associated splits are well supported
by the data. (A) Each internal branch
of the tree shown in Figure 7.4 has
been given a number that indicates
the percentage occurrence of these
branches in a bootstrap test. (B) A
condensed tree is produced by
removing internal branches that are
supported by less than 60% of the
bootstrap trees. This procedure
results in multifurcating nodes. Note
that the branch lengths no longer
have meaning, so all line lengths are
for aesthetic purposes only.
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do not show high support for any particular order for the speciation events that
gave rise to the raccoon, bear, dog, and seal/sea lion lineages.

When several equally well-supported trees are obtained from the same data, it can
be useful to identify in a single tree diagram those features that are always (or
frequently) observed. These are known as the consensus features. Such a proce-
dure can also be useful when trees obtained using different data are expected to
reveal essentially the same evolutionary history. This would be the case when
several different genes are used to infer the relationships between a set of species.
Even though the trees constructed with the different genes may differ, one can at
least identify those features that are shared by all or some trees. For example,
certain sequences may always group together, despite the details of their interrela-
tionships differing in different trees, and the grouping itself may be the most
informative feature. A useful way of summarizing this information is to calculate a
consensus tree in which only sufficiently commonly occurring topological features
are retained (see Figure 7.6). Trees used to generate a consensus tree do not need to
have been generated using the same evolutionary model or tree construction
method. Despite looking like a condensed tree, consensus trees are different, in
principle, in that the features omitted may well have strong support in some of the
individual trees. However, the strong support for the omitted features will be
limited to the minority of combinations of data, model, and method that produced
those particular features.

There are a number of approaches to generating consensus trees, two of which are
particularly commonly used. Strict consensus trees only show those topological
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Figure 7.6
Consensus trees show features that
are consistent between trees.
Assuming that the four trees in (A)
are all equally strongly supported
they can be represented by the strict
consensus tree shown in (B), in
which only splits that occur in all
the trees are represented: that is,
(A,B,C) and (D,E,F). (C) Majority-
rule consensus trees (60% and 50%)
for the four trees in (A). The (A,B)
split occurs in only 50% of the trees,
and thus is not included separately
in the 60% consensus tree, whereas
the (E,F) split occurs in 75%. The
(A,B) split can be included in the
50% tree.
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features that occur in all trees, and are thus fully supported. Thus, any branching-
pattern conflicts between trees are resolved by making the relevant sequences all
emanate from the same node; that is, the tree has multifurcating nodes (see Figure
7.6B). Majority-rule consensus trees allow a degree of disagreement between trees
before the branch pattern is removed. An X% majority-rule consensus tree will
contain any branch pattern that occurs in at least X% of the trees and is the majority
pattern (see Figure 7.6C). In this way, some idea of the strongly supported features
of the tree is obtained. In the trees shown in Figure 7.6A, for example, the split
(A,B,C) is always observed, and therefore can be considered relatively reliable.
There is no established way of determining branch lengths for consensus trees.

7.2 Molecular Evolution and its Consequences
To reconstruct the evolutionary history of DNA or protein sequence data, we need
to understand some of the principles of molecular evolution and appreciate how
molecular evolution is constrained by biological considerations. The Darwinian
concept of evolution by natural selection concentrates on the consequences of
evolutionary changes for the fitness of the organism: its ability to survive and
transmit its genes to the next generation by producing offspring. Fitness depends
on the properties of the organism as a whole, and thus change at the DNA sequence
level will be constrained by considerations of how it affects protein expression and
function, and how these affect cellular properties and whole-organism physiology
and behavior. Since the sequences we work with are, by definition, from lineages
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that have survived the evolutionary process, these aspects of evolution will be
inherent in the data. In the case of sequence-based phylogenetic reconstruction,
the changes that occur in genomic DNA are the main focus and, where relevant,
their effects on amino acid sequence. We shall look first at changes that affect just
one or a few nucleotides, and then at events such as gene duplication and gene loss.
Finally, we will briefly explore evolutionary changes that occur at the scale of chro-
mosomes or whole genomes (see Flow Diagram 7.2).

Most related sequences have many positions that have
mutated several times
Phylogenetic reconstruction from a set of homologous sequences would be consid-
erably easier than it is if two conditions had held during sequence evolution; first,
that all the sequences evolved at a constant mutation rate for all mutations at all
times; and second, that the sequences have only diverged to a moderate degree
such that no position has been subjected to more than one mutation. If the latter
condition were true, once the sequences have been accurately aligned, all the
mutational events could be observed as nonidentical aligned bases and the muta-
tion could be assumed to be from one base to the other. If, in addition, the first
condition held, then the number of observed differences between any two aligned
sequences would be directly proportional to the time elapsed since they diverged
from their most recent common ancestor. Reconstruction of a phylogenetic tree in
such cases would present no problem.

In reality, neither condition usually holds. As we saw in Section 5.1, over the long
periods of time separating most present-day sequences from each other, many
sequence positions will have mutated several times. Even apparently conserved
bases may in the past have mutated to a base that subsequently mutated back to
the original base; any such pairs of mutations that have occurred are undetectable
from the sequence alignment. The simplest way of estimating the evolutionary
distance from an alignment is to count the fraction of nonidentical alignment posi-
tions, to obtain a measure called the p-distance. However, because of the possi-
bility of overlapping mutations, this p-distance is almost always an underestimate
of the number of mutations that actually occurred (see Figure 7.7) and corrections
are needed to improve the estimated evolutionary distance. 

A way of correcting this error is essential to obtain accurate results in phylogenetic
tree reconstruction, which depends on estimations of the actual numbers of muta-
tions that have occurred. Various models of evolution have been proposed for use
in phylogenetic tree reconstruction that attempt to predict the amount of multiple
mutation and thus the actual mutation rate at each position. The features of the
evolutionary processes that affect the relative mutation rate of a base in a particular
position in a sequence can be incorporated into models. From an evolutionary
model an equation can be formulated to make a distance correction to the number
of mutations observed directly in the alignment, which will hopefully convert the
observed distance between the aligned sequences into a value nearer to the correct
evolutionary distance. Some tree-reconstruction methods rely on the distance
correction being directly applied to the data, while others can use the model
directly without the need for the correction to be explicitly defined. Details of such
models and their application are given later in this chapter, with the more technical
aspects described in Section 8.1.

The rate of accepted mutation is usually not the same for all
types of base substitution
The models of evolution used for phylogenetic analysis define base mutation rates
and substitution preferences for each position in the alignment. The simplest
models assume all rates to be identical and time-invariant with no substitution
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preferences, but more sophisticated models have been proposed that relax these
assumptions. To use the models properly, it is important to understand their limi-
tations and how accurate their assumptions are. Most mutations that are retained
in DNA will have occurred during DNA replication as the result of uncorrected
errors in the replication process. Whether a mutation is retained or whether it is
immediately lost from the population’s gene pool will depend on many factors. In
the case of protein-coding sequences, these factors include whether it alters the
amino acid sequence or not, and what effect amino acid changes at the various
positions in a protein-coding sequence have on protein function. If the altered
protein has altered function or is nonfunctional, this can affect cellular functions
and thus the organism as a whole. The consequence of all these influences is that
the rate of mutation and the substitution preference can vary at each position along
the genome. To add to the complications, there is also likely to be a variation in
mutational preferences with time, as organisms probably had to evolve under
different evolutionary pressures at different times.

Models of molecular evolution have been formulated that take account of at least
some of these considerations, although the more complex effects of mutation at the
level of the organism cannot be sufficiently defined to be modeled in this way.
Because of the structure of DNA (see Figure 1.3), if a purine base is replaced by
another purine on mutation, or a pyrimidine by a pyrimidine, the structure will suffer
little if any distortion. Such mutations are called transition mutations, as opposed to
transversions in which purines become pyrimidines or vice versa (see Figure 7.8A).
One factor that is included in some evolutionary models is the fact that transition
mutations are much more commonly observed than transversions (see Figure 7.8B).
This is despite the fact that there are twice as many ways of generating a transversion
than of generating a transition. The observed relative preference for transition muta-
tions over transversion mutations is described as the transition/transversion ratio,
and will be written R, defined as the number of transitions per transversion during
the evolution of the sequences being studied. The value of R relates to mutations that
have been accepted during the evolutionary process, and may be very different from
the relative rates for the chemical and physical mechanisms that lead to their initial
occurrence. If all the mutations shown in Figure 7.8A were equally likely, then R
would be ©. However, values of 4 and above are often seen, indicating that in those
cases there is some evolutionary pressure significantly favoring transition mutations.
In practice, R varies significantly between different sequences, so that if the evolu-
tionary model requires a value for R this should be obtained from the data being
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The number of observed mutations
is often significantly less than the
actual number of mutations
because of overlapping mutations.
The straight red line represents the
p-distance—the fraction of
nonidentical sites in an alignment—
that would be observed if each site
only received one mutation at most.
The observed p-distance in an
alignment is plotted (black line)
against the average number of
mutations at each site as calculated
by the PAM model described in
Section 5.1. This can be compared
with Figure 5.2, which shows the
fraction of identical alignment sites
for different PAM distances. It can
be seen that the observed fraction of
nonidentical sites in an alignment is
always an underestimate of the
actual number of mutations that
have occurred, except when the
number of mutations is very small.
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used. The calculation of R from the alignment is not as straightforward as one might
think and is explained in Box 8.1.

Different codon positions have different mutation rates
Another factor that affects the acceptance rates of mutations in protein-coding
sequences is the effect of the mutation on the amino acid sequence, and thus,
potentially, on the function of the protein. Nucleotide mutations that do not change
the encoded amino acid are called synonymous mutations, and it is apparent from
the standard genetic code (see Table 1.1) that most changes at the third codon posi-
tion will be synonymous. These mutations can generally be considered to be
neutral, that is, to have no effect. One exception might be when tRNAs that recog-
nize the new codon are present at significantly different levels from those for the
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Transition and transversion
mutations. (A) The possible
transitions (blue) and transversions
(red) between the four bases in
DNA. Note that there are twice as
many ways of generating a
transversion than a transition. (B)
The observed numbers of
transitions, transversions, and total
mutations in an aligned set of
cytochrome c oxidase subunit 2
(COII) mitochondrial gene
sequences from the mammalian
subfamily Bovinae. (Data from
L.L. Janacek et al. Mitochondrial
gene sequences and the molecular
systematics of the Arteriodactyl
subfamily Bovinae. Mol. Phylogenet.
Evol. 6:107–119, 1996.)

Figure 7.9
A comparison of the average
percentage GC content of codons in
different bacteria. The points on
each line represent percentage GC
values for each of 11 bacteria at the
codon position indicated, plotted
against the overall genome
percentage GC content. While all
three codon positions adapt to some
extent to the compositional bias of
the genome, the third position
adapts most. In some bacteria this
even results in a more extreme
percentage GC value at the third
codon position than for the overall
genome. The data were taken from a
large sample of genes in each
organism, but the analysis is
expected to carry over to the entire
genome. (Adapted from A. Muto and
S. Osawa, The guanine and cytosine
content of genomic DNA and
bacterial evolution, Proc. Natl Acad.
Sci. USA 84:116–119, 1987.)
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original codon, thus potentially affecting the rate of translation. When a nucleotide
change alters the encoded amino acid, the change is said to be nonsynonymous.
The protein product will have a different sequence, and may thus have altered
properties: it might, for example, be nonfunctional or less efficient, or be less, or
more, stable. Whether the function is affected will depend on where the change
occurs in the protein chain and what type of amino acid is substituted. While
complete nonfunction is likely to be unfavorable, whether other, more subtle
changes turn out to be unfavorable, beneficial or neutral will also depend on the
evolutionary pressures being exerted on the organism at the time. The relative like-
lihood of synonymous and nonsynonymous mutations being retained in the
genome is discussed in Box 7.2. 

Because nucleotide substitutions at the third codon position are almost always
synonymous, the accepted mutation rate at these sites would be expected to be
higher than at the first and second positions, and this has been verified from
sequence data. The fact that almost all third-position mutations are synonymous is
also shown by the phenomenon of biased mutation pressure. Most of a bacterial
genome (in contrast to those of most eukaryotes) consists of protein-coding
sequences, and so when such a genome has a very high or very low GC content, this
bias must be accommodated within the codon usage. An examination of the GC
content of the three codon positions in a number of bacterial genomes demon-
strates the considerably greater flexibility of the third position to respond to this
pressure (see Figure 7.9). 

Evolutionary models exist that can accommodate variation in mutation rates at
different sites, usually using the Gamma correction (see Section 8.1). If the dataset
involves long evolutionary timescales, many of the third codon positions may have
experienced multiple mutations and show almost random base content. In such
cases it has been found useful to remove the third codon sites from the data before
further analysis.

Only orthologous genes should be used to construct species
phylogenetic trees
The key assumption made when constructing a phylogenetic tree from a set of
sequences is that they are all derived from a single ancestral sequence, i.e., they are
homologous. As we will now see, there are different forms of homology, and some
homologs are more suitable than others for particular kinds of phylogenetic
analysis. Homologous genes can arise through a variety of different biological
processes. One is by speciation, which results in two homologous genes diverging
in different lineages. Pairs of homologous genes derived this way are described as
orthologous and called orthologs. Orthologs can be formally defined as pairs of
genes whose last common ancestor occurred immediately before a speciation
event (see Figure 7.10). Because the function of the gene is at least initially required
in each new species, and will thus likely be conserved, pairs of orthologous genes
are expected to have the same or almost identical biochemical functions in their
respective species. In fact, the term ortholog is often employed in this more restric-
tive manner to mean those genes in different species that are both homologous and
carry out the same function. Note that the first definition, although expecting that
orthologs will most likely have the same function, does not demand it.

Another way in which homologous genes arise is by gene duplication, the process by
which a gene becomes copied, within the same genome. Gene duplication is
believed to be a key process in evolution and has occurred to some extent in all
organisms whose genomes have been explored. A pair of genes arising from a gene
duplication event is described as paralogous, and are called paralogs, which can be
more formally defined as a pair of genes whose most recent common ancestor
occurred immediately before a gene duplication event (see Figure 7.10B). These
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A mutation occurring in an individual organism will
either be maintained and become ubiquitous in the
species gene pool or will be quickly lost. The fate of the
mutation will depend on the selective pressure on the
species at the time and on whether the mutation makes
a significant difference in the fitness of the organism. In
the absence of selective pressure, the mutation will be
kept or lost through a series of random events: random
genetic drift. If a mutation confers an advantage on the
organism, then positive selection will increase the likeli-
hood of it being kept. Conversely, a mutation that causes
the organism to be disadvantaged will most likely be lost
due to negative (or purifying) selection. It has been
suggested in the neutral theory of evolution that in prac-
tice most mutations do not encounter strong selection.

Given two aligned protein-coding sequences, it is, in
principle, possible to identify the type of selection oper-
ating during the evolution of each from their common
ancestor. If we ignore any possible effects on transla-
tion, synonymous mutations will not affect the fitness of
the organism and thus are not selected for or against.
Thus, the proportion of synonymous mutations in a
protein-coding gene will form a baseline against which
the proportion of nonsynonymous mutations can be
measured, and this ratio can be used to determine
whether that gene has been subject to positive selec-
tion, negative selection, or no selection. If the resulting
protein is more effective as a result of a nonsynonymous
mutation, under selective pressure the mutation is likely
to be retained. Thus the observation of a greater number
of nonsynonymous mutations than expected under
neutral evolution implies that the gene was being
subject to positive selection. If a mutation decreases the
effective role of a protein, under selective pressure it is
likely to be lost. Negative selection will result in fewer
nonsynonymous mutations than expected, implying
that change is being strongly selected against; that is,
the sequence is being conserved.

There are a number of ways of counting the numbers of
synonymous and nonsynonymous mutations. The
following is due to Masatoshi Nei and Takashi Gojobori.
Suppose that a sequence alignment aligns the two
codons CAG (Gln) and CGC (Arg). If the two observed
base changes are assumed to have occurred as two
separate events, and assuming no other mutations
occurred, the evolution of CAG (Gln) to CGC (Arg), or
vice versa, could have occurred by either of two path-
ways (see Figure B7.1). The first pathway has two
nonsynonymous mutations, whereas the second
pathway only has one, as the second change is synony-
mous. Since we cannot distinguish between the two

Box 7.2 The Influence of Selective Pressure on the Observed Frequency of
Synonymous and Nonsynonymous Mutations 

aligned
codons

-CAG-
-CGC-

pathway 1

Gln
(CAG)

His
(CAC)

NS Arg
(CGC)

NS

pathway 2

Gln
(CAG)

Arg
(CGG)

NS Arg
(CGC)

S

Figure B7.1
Two possible mutation
pathways that connect
the aligned codons CAG
and CGC. The pathways
consist of steps, each of
which is a single base
change. Transitions and
transversions are colored
as in Figure 7.8, and
classified as synonymous
(S) or nonsynonymous
(NS).

possibilities, these two aligned codons are counted as
1.5 nonsynonymous and 0.5 synonymous mutations (by
adding up the number of mutations in each category
and dividing by the number of pathways). If a proposed
pathway contains a stop codon at some stage, the entire
pathway is ignored in the calculation. Counting muta-
tions is trivial for aligned codons that are identical or
that differ in just one base, and those that differ in all
three bases are counted by considering all six possible
pathways. Adding these up over the whole alignment
produces the total number of synonymous differences
(Sd) and nonsynonymous differences (Nd).

If one wants to identify the type of selection operating
during evolution of a particular gene, as well as counting
the numbers of mutations, it is necessary to assess the
number of possible sites of synonymous and nonsyn-
onymous mutations. This is done by considering in turn
each of the codons in the two sequences. As each of the
three codon positions can mutate into any of three other
bases, each codon can mutate nine possible codons
with a single mutation. In the example given in Figure
B7.2, one of the nine possible mutations results in a stop
codon, so this mutation is ignored. Each codon position
is considered separately. The first position gives rise to
three nonsynonymous mutations out of three, and
counts overall as one possible nonsynonymous muta-
tion site. By similar arguments, the third position counts
as one possible synonymous mutation site. At the
second site only the two mutations avoiding a stop
codon are considered, and they also give rise (as two out
of two) to one possible nonsynonymous mutation site.
The total number of possible mutation sites for a codon
is three, in this case two nonsynonymous and one
synonymous. In this way each codon can be assigned a
number of possible synonymous (S) and nonsynony-
mous (N) mutation sites, and the total number of sites is
calculated as the average for the two sequences.
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From this analysis, the simplest estimate of the propor-
tion of synonymous mutations observed from the
possible synonymous sites is pS = Sd/S, with the nonsyn-
onymous equivalent being pN = Nd/N. However, these
values ignore the fact that there will almost certainly
have been multiple mutations at the same site, so that
these are underestimates. In the same way, a distance
correction can be applied to these values. In the case of
the Nei–Gojobori method, the Jukes–Cantor model,
which is described in Section 8.1, is used which gives the
synonymous substitutions per synonymous site as

(BEQ7.1)

and the nonsynonymous equivalent as

(BEQ7.2)

dS and dN are sometimes also called Ks and Ka, respectively.

To determine whether positive selection has occurred
during the evolution of the two sequences, it is necessary
to apply a statistical test to determine if the value of dN is
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Box 7.2 The Influence of Selective Pressure on the Observed Frequency of
Synonymous and Nonsynonymous Mutations (continued)

significantly greater than that of dS. This involves esti-
mating the uncertainty (variance) of the values and is
beyond the scope of this book (see Further Reading).
There are other methods of estimating these values:
some take account of transition/transversion mutational
preferences while others depend on more complicated
techniques such as likelihood (see Further Reading).

An interesting application of the dS measure has been
proposed that arises from the assumed minimal
involvement of selection in determining the fate of
synonymous mutations. The application involves
distinguishing between sets of duplicated genes within
a genome when more than one large-scale duplication
event has occurred. In this case the difference between
the dS measure within the two sets should be indicative
of the time since divergence, and the technique has
indeed identified two major duplication events at
different times in Arabidopsis (see Figure B7.3). 

TCG
Ser

TCC
Ser

TCT
Ser

TCA
Ser

TAG
stop

TGG
Trp

ACG
Thr

CCG
Pro

GCG
Ala

TTG
Leu

Figure B7.2
The nine possible single-base mutations of the TCG triplet.
Mutations are labeled according to whether they involve a
transition (blue) or transversion (red), and whether they are
synonymous (bold circle) or nonsynonymous (dashed
circle). One possible mutation (dashed) leads to the stop
triplet TAG. (Adapted from Figure 1 of Goldman & Yang, 1994.)

recent
old

block pairs
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Figure B7.3
At least two distinct periods of large-scale duplication events
can be distinguished in Arabidopsis from examination of
synonymous mutations. Each column represents the dS value
for a pair of sequence segments (blocks) resulting from
duplication. Each pair of blocks has in common at least six
duplicated genes. The spread of dS measurements (one for
each gene pair) is shown for each block, with more extreme
values shown by asterisks. There is one set of block pairs with
a similar dS measurement of about 1, which can be postulated
to have arisen due to a major gene duplication event of
relatively recent origin. The other blocks have larger dS values,
indicating much greater sequence divergence, and thus are
likely to have arisen from one or more earlier duplication
events. (Adapted from G. Blanc, K. Hokamp and K.H. Wolfe, A
recent polyploidy superimposed on older large-scale
duplications in the Arabidopsis genome, Genome Res.
13:137–144, 2003.)
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duplicate genes can then diverge through evolution, developing new functions.
Occasionally, the extra gene will evolve to have a new function of use to the organism,
and selective pressure will preserve this new gene. Alternatively, both genes may
evolve to different functions that together accomplish the required functional
aspects of the original gene as well as possible new functions. The detail of the mech-
anisms whereby this divergence produces new protein functions is hotly debated
and beyond the scope of this book, but see Further Reading. Figure 7.10 illustrates a
typical sequence of events that can lead to a set of homologous genes in two species,
some of which are orthologs and some paralogs that have acquired new functions.

Because initially after duplication there will only be a requirement for one of the
genes, often instead of evolving to an alternative function one of the genes becomes
nonfunctional through mutation. Nonfunctional genes can arise through the loss of
control sequences, resulting in a failure to generate the protein product, or alterna-
tively by modification of the protein sequence rendering the protein inactive.
Genes that have mutated so as to no longer give rise to protein products are called
pseudogenes. Usually these pseudogenes will then steadily accumulate mutations
until they are no longer detectable. This entire process is known as gene loss.

Note that gene loss can also occur without gene duplication. The occurrence of gene
loss can make the gene and species trees appear very different (see Figure 7.11).
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gene
duplication
event 1

gene duplication event 1
(both genes initially identical)

genes undergo functional divergence
to functions a and b 

gene duplication event 2
(both genes initially identical)

Ba genes undergo functional 
divergence to functions a and g 

speciation

speciation

gene
duplication
event 2

Aa

a

a

a

Ab

a b

Aa Ab Ba

BaBa

Bb

Bb

Bb

Aa Ab

Aa Ab

BbBa Bg

Ba Bg

timetime

(A) (B)

species A species B

The evolutionary history of a gene that has undergone two
separate duplication events. (A) A species tree is depicted by the
pale blue cylinders, with the branch points (nodes) in the
cylinders representing speciation events. In the ancestral species
a gene is present as a single copy and has function a (blue). At
some time a gene duplication event occurs within the genome,
producing two identical gene copies, one of which subsequently
evolves a different function, identified as b (red). These are
paralogous genes. Later a speciation event occurs, resulting in
two species (A and B) both containing genes a and b. Gene Ba
(in species B) subsequently undergoes another duplication
event, which after further divergent evolution results in genes Ba
and Bg, the latter with a new function g (green). The Ba gene is
still functionally very similar to the original gene. At the end of
this period of evolution, all five genes in both species are

homologous, with three orthologous pairs: Ab/Bb, Aa/Ba, and
Aa/Bg. The Ba and Bg genes are paralogous, as are any other
combinations except the orthologous pairs. Note that Aa and Bg
are orthologs despite their different functions, and so if the
intention is to study the evolution of a particular functional
product, such as the a function, we need to be able to
distinguish the Aa/Ba pair from the Aa/Bg pair. This can be
done using sequence similarity, which would be expected to be
greater for the Aa/Ba pair as they will be evolving under almost
identical evolutionary pressures. Errors in functional orthology
assignment can easily occur, depending on sequence and
functional similarity and whether all related genes have been
discovered. (B) The phylogenetic tree that would be drawn for
these genes, here drawn as a cladogram.

Figure 7.10
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Attempts have been made to combine gene and species trees so as to clearly iden-
tify the speciation and duplication events and the gene losses. Such trees are called
reconciled trees, an example of which, reconciling the trees shown in Figure 7.3, is
shown in Figure 7.12. 

As can be seen in Figure 7.10B, only orthologous sequences will identify the specia-
tion times, paralogous sequences producing the gene duplication events. Therefore,
species phylogenetic trees should ideally be constructed using only orthologous
sequences. But distinguishing orthologs from paralogs is not always easy. The best
indication of orthologs apart from similarity of sequence is identity of function. But
as experimental proof of gene function is frequently not available, we usually have to
fall back on sequence similarity. One approach to identifying orthologs in this way is
to construct a phylogenetic tree using a large set of potential functional homologs.
As we saw in Figures 7.3 and 7.12, such a tree can help distinguish duplication events
(paralog formation) from speciation events (ortholog formation). But phylogenetic
tree reconstruction is sometimes not practical for this purpose. Some protein fami-
lies and superfamilies comprise thousands of homologous sequences. Constructing
a tree using all these sequences, if feasible at all, would only be possible with the least
sophisticated methods, and not a great deal of confidence could be placed in the
results. The process would also be very demanding of computer resources. The
easiest and quickest current method of identifying paralogs and orthologs, without
the need to generate phylogenetic trees, is by using the COG (Clusters of Orthologous
Groups) and KOG (Eukaryotic Orthologous Groups) methodology (see Box 7.3). 

Although orthologs often have the same function, not all proteins with identical or
similar function are orthologs, or even homologs. As discussed in Chapter 4, unre-
lated nonhomologous genes can sometimes develop equivalent functions as the
result of convergent evolution, although sequence identity between such genes is
usually very limited. Convergence is best characterized in enzymes. The nonhomol-
ogous serine proteases chymotrypsin and subtilisin, for example, have independ-
ently evolved an identical catalytic mechanism (see Figure 7.13). Such functionally

Molecular Evolution and its Consequences

243

Aa AaCa Da DaBb Bb

a b

a b

a b

Cb CbDb

A B C D

(A)

(B) (C)

time
Figure 7.11
The effects of gene loss and missing
gene data on phylogenetic trees. (A)
The phylogenetic tree for the species
A, B, C, and D is depicted using pale
blue cylinders. The branch points
(nodes) in the cylinders represent
speciation events. The evolutionary
history of a gene family is shown by
the lines in the cylinders. A gene
duplication of the common
ancestral gene gives the paralogs a
(blue) and b (red). The genes a in all
species are orthologs, as are all the
genes b. As a result of gene loss, in
species A the b gene has been lost,
and the same has happened for gene
a in species B. Both the a and b
genes are present in species C and
D. (B) The gene tree for a and b
corresponding to their history as
shown in (A). (C) The gene tree that
would result if only the four genes
shown were included, as might
happen if the Ca and Db genes were
not known. From this tree the
erroneous conclusion would be
drawn that species A was more
closely related to D than to B. On the
basis of this tree alone the gene
duplication could not be spotted,
and all four genes would be thought
to be orthologous.
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similar yet unrelated enzymes are referred to as analogous enzymes. Two proteins
with similar three-dimensional folds but no common evolutionary ancestor are also
referred to as analogous. Two sequences that are similar by convergent evolution do
not share a common ancestor, and thus should not be used together in the same
phylogenetic tree. Sequence similarities that are not due to homology are known
generally as homoplasy. Convergent evolution is just one cause of homoplasy;
others are parallel evolution and evolutionary reversal (see Further Reading).
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human(A)

chicken

human 2

chicken 2

human

chicken

human 1

chicken 1

human

chicken

Xenopus

Catostomus

Xenopus

Catostomus

Drosophila

Drosophila Drosophila

Xenopus 1

Artemia Artemia

Artemia Artemia

Hydra Hydra

Catostomus

human 3

chicken 3

d3

d2

d1

(B) human

chicken

Xenopus

Catostomus

Drosophila

Artemia

Hydra

d3

d2

d1

(A) (B)

Figure 7.12
An example of a reconciled tree and the equivalent
species tree. (A) shows the reconciled tree that
combines the information from the two trees of Figure
7.3, which are for a selected set of eukaryotes and the
Na+–K+ ion pump membrane protein family. Three
gene losses are identified, drawn on the tree in gray
lines. Each external node is labeled first by the species
and then by the protein, according to the labels on the
trees of Figure 7.3. Three duplication events were
identified, shown as the boxes labeled d1, d2, and d3. (B)
shows the related species tree, on which the
duplication events have been superposed along the
branches where they occurred. (Part A is taken from
Figure 8 of Page and Charleston, 1997.)

Figure 7.13
Chymotrypsin and subtilisin have
independently evolved to an
identical catalytic triad of residues.
(A) The superposed catalytic triad of
histidine, aspartic acid, and serine
residues in the active sites of
chymotrypsin (yellow) and subtilisin
(green). The almost exact
equivalence makes it extremely
likely that the catalytic mechanism
is identical in the two enzymes. (B)
The complete folds of these two
proteins with the triad still
superposed, showing that the two
protein folds are completely
unrelated, and that therefore the
two proteins do not share a
common ancestor. (PDB database
entries 1AB9 and 1CSE.)
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Figure 7.14 shows the orthologous and homologous relationships between the
genes of the chicken genome and the human and puffer fish genomes. The method
used to define these relationships is based on the scores of BLAST searches within
genomes. This approach identified a core set of orthologs in all three genomes that
are also likely to have conserved functions. The use of orthologous genes to predict
function depends on the function having been conserved over the evolutionary
period since divergence. This assumption is, in principle, testable using the statis-
tics of synonymous versus nonsynonymous mutations as discussed in Box 7.2. If
the proportion of nonsynonymous mutations (dN) is observed to be greater than
that observed for synonymous mutations (dS), this is indicative of selection for
retention of function.

Although duplication events usually lead to the existence of two closely related genes
they can also result in a longer protein sequence if the duplication occurs within a
single gene. This should be detectable through the use of dot-plots or by aligning the
sequence to itself (see Section 4.2), which will reveal significant similarity between
two sections. Note that the set of sequences used in phylogenetic analysis must be of
the equivalent regions from the ancestral sequence. If one is studying the evolution
of the organisms as opposed to the genes, gene duplication and gene loss can cause
considerable difficulties. One way around this problem is to examine trees for many
different genes, looking for the evolutionary history supported by a majority of trees.
An alternative approach to this is to try to restrict the analysis to those genes that
appear not to have duplication events in their evolutionary past.
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The COG (Clusters of Orthologous Groups) and KOG
(euKaryotic Orthologous Groups) databases have been
constructed using a careful analysis of BLAST hits. First,
low-complexity sequence regions and commonly
occurring domains are masked to prevent spurious hits
and also to improve the likelihood that the statistical
score analysis (E-values) will be correct (see Chapters 4
and 5 for details). All gene sequences from one genome
are then scanned against all from another genome,
noting the best-scoring BLAST hits (BeTs) for each gene,
and this is repeated for all possible pairs.

Paralogous genes within a genome that result from gene
duplication since divergence of two species are identi-
fied as those that give a better-scoring BLAST hit with
each other than their BeTs with the other genome.
Orthologous genes are found as groups of genes from
different genomes that are reciprocal BeTs of each other,
the simplest COG making a triangle of genes from three
genomes (see Figure B7.4). This approach would have
correctly identified orthologous and paralogous genes in
the example shown in Figure 7.11B. By careful analysis of
such BeT relationships, clusters of orthologous genes
can be constructed for large numbers of genomes. In the
case of Figure 7.11B there should be two COGs, associ-
ated with the a and b parts of the tree.

Gene loss can cause problems, as the remaining paral-
ogous gene may provide a misleading BeT relationship,

Box 7.3 Identifying Paralogs and Orthologs via COGs and KOGs

gene in
species A

gene in
species C

gene in
species B

Figure B7.4
The simplest type of cluster of orthologous genes (COG).
Each arrow represents the best-scoring BLAST hit (BeT) found
on searching for the gene at the start of the arrow in the
genome of the gene at the end of the arrow. If all three genes
in the three species have each other as BeTs, then the three
genes form a COG. More complex arrangements of BeTs can
occur in COGs, especially when there are more species. See
Further Reading for more details.

resulting in two COGs being combined. An example of
this would occur on comparing species A and B of Figure
7.11. Examining the initial COGs for sequence-similarity
patterns can sometimes identify the two correct COGs.
All sequences in a COG or a KOG are assumed to have a
related function, and thus the method can be used to
predict gene and protein function.

BIF CH7 5th proofs.qxd  17/7/07  11:39  Page 245



Another evolutionary event that can confuse phylogenetic analysis is the process
of horizontal gene transfer (HGT), also known as lateral gene transfer (LGT). This
event is significantly different from all the others discussed so far, in that it
involves a gene from one species being transferred into another species: the term
“horizontal” is applied to contrast it with the vertical transmission from parent to
offspring. For a long time HGT was thought not to occur in eukaryotes, but viral
genes have been identified in the human genome. However, HGT is far more
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Figure 7.14
The numbers of orthologous,
homologous, and unique genes in
the human (Homo sapiens), chicken
(Gallus gallus), and puffer fish
(Fugu rubripes) genomes. Orthologs
present as one copy in each of the
three species are represented in dark
blue on the histogram and are
labeled 1:1:1; genes represented in
lighter blue and labeled n:n:n are
orthologous genes present in all
three species, which have been
duplicated in at least one of the
species. These two groups are
considered as core orthologs for the
three species. Orthologs (and
duplicated orthologs) found in only
two species are labeled pairwise
orthologs, represented as 1:1 (or n:n)
and colored green. Homologous
genes for which no clear
orthologous relationships can be
determined in the pairwise
comparison are in yellow, and
unique genes are in gray. (Reprinted
by permission from Macmillan
Publishers Ltd: Nature 432:695–716,
International Chicken Genome
Sequencing Consortium, Sequence
and comparative analysis of the
chicken genome provide unique
perspectives on vertebrate
evolution, 2004.)

Figure 7.15
A sketch of the tree of life including
a considerable amount of
horizontal gene transfer (HGT).
HGT is distinguished from normal
vertical gene transmission by yellow
shading. The tree should not be
interpreted too precisely, but does
show that Eukaryotes are largely
unaffected by HGT except in their
earliest evolutionary period,
whereas the Archaea and Bacteria
continue to experience these events.
(Adapted from W.F. Doolittle,
Phylogenetic classification and the
universal tree, Science
284:2124–2128, 1999.)
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prevalent in the other kingdoms of life: the Bacteria and the Archaea. When there
is no HGT in the evolutionary history, the phylogenetic tree branches much in the
way a real tree does, with branches remaining apart. If they could be correctly
identified, HGT events would be represented in a phylogenetic tree as branches
that rejoin. A tree of all life would then look something like Figure 7.15, although it
should be noted that there is dispute between researchers about the degree to
which HGT events have actually occurred. 

Shortly after HGT, the sequence of the gene in the donor and recipient species will
be very similar. Such pairs of genes are called xenologous genes. If such genes are
included in a standard phylogenetic analysis, the resultant tree will have the gene
from the recipient species appear in a much closer relationship to that of the donor
species than should be the case (see Figure 7.16). Proving that HGT has occurred is
usually very difficult, however. If the genome-wide base compositions of the two
species involved are very different, it may be possible to deduce the direction of a
recent transfer. A proper discussion of this topic is beyond the scope of this book,
and the reader is referred to Further Reading.

Major changes affecting large regions of the genome are
surprisingly common
It might have been hoped that once whole genome sequences became available, it
would be a relatively easy task to identify equivalent regions in different species
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Figure 7.16
Evidence of horizontal gene
transfer of the gene for
N-acetylneuraminate lyase from
bacteria to the eukaryote flagellate
Trichomonas vaginalis. If an extra
24-residue N-terminal sequence is
ignored, there is 80% identity at the
amino acid level between the
Trichomonas sequence and the
sequences from the bacteria
Actinobacillus and Haemophilus.
The three sequences at the bottom
of the tree are of different enzymes
from the same protein superfamily
and were used as an outgroup to
root the tree. This tree gives strong
evidence for the horizontal transfer
of the gene from bacteria to
Trichomonas. Whilst this is an
unusual event, it is partly explained
by the lifestyle of Trichomonas.
(Adapted from A.P. de Koning et al.
Lateral gene transfer and metabolic
adaptation in the human parasite
Trichomonas vaginalis. Mol. Biol.
Evol. 17:1769–1773, 2000.)
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(so-called syntenic regions containing the related genes in the same order) and
hence identify the orthologous genes. However, many changes have been found in
genomes at larger scales than that of individual genes. Duplication of entire chro-
mosomes and even entire genomes has occurred. In addition, chromosomes have
split into smaller fragments that have rejoined to make new chromosomes, some-
times with sections shuffled in order or inverted (see Figure 10.22). The frequency
of such rearrangements is surprisingly high given the potential danger they pose to
genome integrity and the organism’s survival. One consequence of large-scale
rearrangements is that orthologous genes usually do not occupy equivalent posi-
tions even in related species, although they often do retain a similar local environ-
ment. Hence complete genome sequences do not help to identify orthologous
genes as much as might have been hoped.

7.3 Phylogenetic Tree Reconstruction
We will now explore the ways in which phylogenetic trees are reconstructed, using
two examples. The first focuses on nucleotide data and the evolutionary relationships
between species. The second uses a set of sequences from one protein superfamily,
and examines how the resulting tree can be used to examine the history of protein
evolution within the superfamily and to predict the function of uncharacterized
superfamily members.
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Small ribosomal subunit rRNA sequences are well suited to
reconstructing the evolution of species
If one is trying to reconstruct the evolutionary history of life to show where different
species diverged, great care must be taken in the choice of the data. The ideal is a
genomic region that occurs in every species but only occurs once in the genome.
This avoids any potential misassignment of orthology. It is also crucial that there is
little if any HGT within this region. The rate of change in this sequence segment must
be fast enough to distinguish between closely related species, but not so fast that
regions from very distantly related species cannot be confidently aligned. These
contradictory requirements can be satisfied, in principle, by a single sequence that
has some highly conserved regions and other regions that are more variable between
species. When comparing sequences from two closely related species there will be no
information in the highly conserved regions (they will be identical) but the more
rapidly changing regions will have useful data. Conversely, when comparing data
from two distantly related species, the rapidly changing regions will show almost
uniform dissimilarity, but the more conserved regions will now have useful variation.

The DNA sequence specifying the small ribosomal subunit rRNA (called 16S RNA in
prokaryotes) has been found to be one of the best genomic segments for this type
of analysis, despite occurring in several copies in some genomes. This sequence
formed the basis of the work by Carl Woese, which led to the original proposal that
the prokaryotes comprised two quite distinct domains or superkingdoms and thus
that all life should be split into the three domains: Bacteria, Archaea, and Eukarya
(see Section 1.4). This work relied on the ability to correctly align sequences from
very distantly related organisms. The 16S RNA sequence is now also the basis for a
standard method of bacterial identification. A few protein-coding sequences have
also been found suitable for determining the evolutionary relationships of species,
and some are particularly useful for studying specific groups of species. Those that
have been used in bacterial studies include enzymes such as the DNA gyrases GyrA
and GyrB, and genes for chaperonins such as Hsp60. A major project is under way
to identify for each known species a barcode of unique sequence. For the animal
kingdom this project proposes using a 648-base pair segment of the gene for
cytochrome c oxidase I, a component of the mitochondrial machinery involved in
cellular aerobic respiration and found in all animals.

In the following example, we will reconstruct a phylogenetic tree for 38 species of
bacteria from the phylum Proteobacteria, using the 16S RNA sequence. We will
judge whether our reconstruction is a reasonable one by comparing it with Bergey’s
classification from 2001 (see Further Reading) in which the Proteobacteria
are subdivided into five classes: Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria, Deltaproteobacteria, and Epsilonproteobacteria. Our 38
proteobacteria are spread across these five classes.

Four decisions must be made before starting the analysis, each of which is not
necessarily independent of the others: which data to use, which method to use,
which evolutionary model to use, and which (if any) tests to perform to assess the
robustness of the prediction of particular tree features. We have already explained
why we are using 16S RNA, and although it is advisable to consider possible tests of
tree features at an early stage, the decision will be almost independent of the other
choices, and so we will delay discussion of this until some trees have been generated.

The choice of the method for tree reconstruction depends to
some extent on the size and quality of the dataset
Numerous algorithms have been proposed for reconstructing phylogenetic trees
from a multiple sequence alignment. Methods can be divided into two broad
groups: those that first derive a distance measure from each aligned pair of
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sequences and then use these distances to obtain the tree; and those that use the
multiple alignment directly, simultaneously evaluating all sequences at each align-
ment site, taking each site separately. A number of different methods have been
developed in each of these groups, making this a potentially confusing subject for
the beginner. Nearly all the methods are available as freeware that will run on
almost any type of computer, and there are also some excellent commercial pack-
ages. Some applications run as a single program (for example MEGA3) with
different methods corresponding to different menu choices, and others such as
PHYLIP are suites of programs, each of which implements one method.

Commonly used distance-based methods that are mentioned in this chapter and
will be discussed in Section 8.2 are UPGMA (unweighted pair-group method using
arithmetic averages) and neighbor-joining (NJ). These both produce a single tree
with defined branch lengths. Other methods of obtaining branch lengths from
evolutionary distances are the least-squares method and the Fitch–Margoliash
method, which are also discussed in Section 8.4. UPGMA makes the assumption
that the sequences evolved at a constant equal rate (the molecular clock hypoth-
esis), and produces rooted ultrametric trees with all sequences at the same distance
from the last common ancestor. The NJ method belongs to the group of minimum
evolution methods, and produces additive trees. It is derived from an assumption
that the most suitable tree to represent the data will be that which proposes the
least amount of evolution, measured as the total branch length in the tree.
Maximum parsimony methods also involve a minimum evolution principle, but
are based directly on the alignment and minimize the number of mutations
required to reconstruct the phylogeny. The maximum likelihood (ML) method
estimates the likelihood of a given tree topology to have produced the observed
data assuming a given model of evolution, and reports the topology that produces
the greatest likelihood as the most appropriate hypothesis of the evolutionary
history. Bayesian methods take this statistical approach a step further, trying to
include the likelihood of the tree topology. Table 7.1 lists some of the methods avail-
able, and gives a basic classification of them. Further details of methods and the
underlying assumptions are given in Section 8.4. Some nondistance methods, such
as the ML and Bayesian methods, can claim to produce results based on a stronger
statistical foundation than others, such as maximum parsimony, and are certainly
to be preferred to distance-based methods when adequate resources are available.
However, all methods are known to give incorrect results under certain conditions,
and each has its supporters and detractors.

Some methods are much more computationally demanding than others and may
be impracticable for large datasets. The largest datasets can only be analyzed using
distance methods, although improvements in algorithms for methods such as
maximum likelihood are making their application more feasible. As an alternative,
a subset of a large dataset could be chosen, either for a preliminary analysis to
assess suitable models and parameters, or following the application of distance
methods to examine some specific features with these more demanding techniques.

In general, the techniques that use distances produce a single tree, whereas most of
those methods using the alignment directly can score and report a number of trees
that best represent the data, and can also be used to evaluate tree topologies spec-
ified by the user. This latter feature allows these techniques to compare particular
hypotheses about the data embodied in different trees and to get a quantitative
measure of the differing degrees of fit to the sequence data. These considerations
will also influence the choice of method.

As we shall see, although the data analyzed here give rather similar phylogenetic
trees regardless of the method, the differences between trees can lead to signifi-
cantly different conclusions. It is highly desirable to be able to justify the methods
used and results obtained, and techniques such as maximum likelihood and
Bayesian methods offer far more support than those such as neighbor joining. We
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will use a maximum likelihood method to construct the 16S RNA tree. We chose the
program PHYML because it is one of the fastest implementations available, and also
because scripts are available, which make choosing the evolutionary model easier.

A model of evolution must be chosen to use with the method
Many different evolutionary models have been proposed and Table 7.2 gives a
summary of the most commonly used. The simplest ones assume little or no variation
between sequence sites, and ignore base mutation preferences. They could be
expected to perform badly if the actual evolutionary history of the data is more
complex than they describe. At the other extreme are models that try to allow for many
of the possible variations. These more complex models contain more parameters and,
in principle, can fit data that have arisen under a greater range of evolutionary condi-
tions. It should be noted that almost all tree-construction methods available assume
that the same model and same model parameters apply at all times on all branches of
the phylogenetic tree. The evolutionary model can be applied in two different ways.
Those methods that distil the alignment into distances use the model to convert the
percentage differences observed in the alignment into more accurate (corrected)
evolutionary distances. No further use of the model is made during the reconstruction
of the tree. In contrast, techniques that work directly with the sequence alignment use
the evolutionary model at all stages of tree reconstruction.

The evolutionary distances used by some of the methods and the branch lengths
produced by any method both measure the average number of substitutions (a
change in the nucleotide or amino acid) per site. The uncorrected p-distance meas-
ured from the alignment is simply the fraction of sites that have a difference. When
this distance is small, for example 0.1 substitution per site, it is a reasonably accurate
measure of the true evolutionary distance. However, an uncorrected distance of
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Method name

UPGMA

Neighbor-joining (NJ)

Fitch–Margoliash

Minimum evolution

Quartet puzzling

Maximum parsimony

Maximum 
likelihood (ML)

Bayesian

Resulting tree type

Ultrametric 

Unrooted, additive

Unrooted, additive

Unrooted, additive

Unrooted, additive

Unrooted,
additive/cladogram†

Unrooted, additive

Unrooted, additive

Always
results in a
single tree

Yes

Yes

Yes

No

No

No

No

No

Tree
scores

No

No

No

Yes

Yes

Yes

Yes

Yes

Testing of
specified

trees

No

No

No

Yes

Yes

Yes

Yes

Yes

Common
implementations

neighbor*, MEGA3

neighbor*, MEGA3

fitch*

MEGA3

Tree-Puzzle

dnapars*, protpars*,
MEGA3

dnaml*, proml*,
HyPhy, PHYML

MrBayes

Conversion of
alignment to

distances

Yes

Yes

Yes

Yes

No

No

No

No

*Part of the PHYLIP package.
†Maximum parsimony can determine the best tree topology without explicitly calculating branch
lengths, which is done in a separate optional step.

All the listed programs can use the sequence alignment, generating distances where necessary.
Some methods can report several trees if their scores are all very close to the optimum. These
same methods can read a tree file and give a score for that particular topology, allowing
hypothesis testing. All methods can be used to test the confidence in the reported topology by the
bootstrap or other techniques. A comprehensive listing of relevant programs is available at
http://evolution.genetics.washington.edu/phylip/software.html.

Table 7.1 
Some features of commonly used
phylogenetic tree reconstruction
methods and commonly available
programs in which they are
implemented.
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even 0.2 substitution per site will conceal some multiple substitutions at the same
site, and hence underestimate the true evolutionary distance (see Figure 7.7). The
models of evolution can be used to derive distance corrections, with equations such
as those presented in Section 8.1, giving a corrected distance d in terms of the uncor-
rected p-distance. Some examples of the effects of distance corrections are shown in
Figure 7.17. 

Regardless of the model chosen, it will have one or more parameters whose values
will need to be specified. Among the parameters that might be required are the tran-
sition/transversion rate ratio R, the base composition, and parameters to specify the
variation of mutation rates at different positions. Many of the parameter values can
be determined from an analysis of the sequence alignment, and this is often done by
default by the programs used to generate the trees. In this respect the maximum like-
lihood and Bayesian methods have an advantage, because they can both fit parame-
ters along with the tree to obtain the best tree and model parameters simultaneously.

An apparently sensible approach to selecting the evolutionary model would be to
try several different models, and select the tree that best fits the data. This has prob-
lems, however. For distance methods such as neighbor-joining there is no clear way
of measuring goodness of fit, as such methods do not use the evolutionary model
after calculating the distances. Thus, one could only judge the effectiveness of the
model by looking for disagreement between the intertaxon distances in the data
and in the trees generated by each model. The situation is a little easier for those
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Figure 7.17
Some examples of the corrections
applied to p-distances and their
effects. In all three graphs the
horizontal axis is the fraction of
alignment positions at which base
differences occur between a pair of
sequences being compared (the
uncorrected p-distance). Each blue
dot represents an individual pairwise
comparison taken from a large
multiple alignment. The vertical axes
represent corrected distances. In all
the graphs, a plot of the uncorrected
p-distances against each other would
lie along the red line. (A) The
standard Jukes–Cantor (JC)
correction, with corrected distances
(blue dots) always being larger than
the p-distance. (B) A plot of the
uncorrected p-distance calculated
using all codon positions against the
p-distance calculated using only the
first and second codon positions.
Because mutations at the third
position in a codon are mostly
synonymous, they accumulate at a
faster rate than at the first and
second positions. As a consequence,
after a sufficiently long evolutionary
period there might be no
phylogenetic signal at these
positions. In such circumstances it
has been suggested that the third
codon position is best ignored, giving
altered p-distances as shown. For
small uncorrected p-distances these
altered distances are very small, as
most of the accepted mutations have
occurred in the third codon position.
These altered distances are always
smaller than the uncorrected value,
as any changes at the third codon
position are ignored. At larger
p-distances the two values are highly
correlated, so that this technique
may result in very similar trees. An
alternative solution to the problem of
obtaining accurate large evolutionary
distances would be to use protein
sequences instead, still using a
correction to the protein sequence
p-distance. (C) The result of applying
the JC correction to the p-distance
measured without the third codon
position. Such a correction results in
large changes to the distances and
may produce quite different
phylogenetic trees. However, care
must be taken to choose correction
methods carefully, as they may not
necessarily be appropriate for the
particular dataset, as is discussed
later in the chapter. 
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methods that work directly from the alignment, as there is a clearer connection
between the model and the resulting tree. This is especially true in the case of
maximum likelihood and Bayesian methods, where each tree can be given a score
and thus can be compared to identify the best model. The statistical bases for the
methods presented below that can be used to recognize when the tree produced
using one model is significantly better than the tree of another model are beyond
the scope of this book, and there is some debate as to their true merit. However, at
present these statistical techniques are the only ones that can claim any rigor in
choosing a model beyond personal preference and prejudice.

A way of comparing two evolutionary models has been proposed, called the 
hierarchical likelihood ratio test (hLRT), which can be used when one of the
models is contained in, or nested in, the other. One model is nested within another
if the latter model is more flexible than the former by having more parameters, and
it must be possible to convert the more complex model into the simpler one by
restricting specific parameter values. Examples of suitable pairs are JC and F81
(derived by Joseph Felsenstein in 1981), where the latter is the former plus variable
base composition, and JC and Kimura-2-parameter (K2P), where the latter is the
former plus transition/transversion rate ratios (see Table 7.2). In this method both
models must be assessed with the same tree topology. Using the ML method for
each evolutionary model in turn, the tree branch lengths are found that give the
highest likelihood of having observed the sequences. These two likelihood values
can then be compared using hLRT, which is a chi-squared test based on the differ-
ence in likelihoods and the difference in numbers of parameters in the two models.
Figure 7.18 outlines the procedure for choosing a model. 

There are problems with hLRT, in particular the fact that it is difficult to include
some models in the scheme because of the requirement that models are nested.
Also, to decide between a number of models requires several tests, which leads to
problems in deciding the order of testing and the significance levels to use. Two
other methods have been proposed, both based on a statistical analysis of the
expected value of the maximum likelihood of trees, and taking account of the
number of parameters in the evolutionary model used. The Akaike information
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Model name

JC (JC69)

Felsenstein 81 (F81)

K2P (K80)

HKY85

Tamura-Nei (TN)

K3P (K81)

SYM

REV (GTR)

Different transition
and transversion

rates

No

No

Yes

Yes

Yes

Yes

Yes

Yes

All transition
rates identical

Yes

Yes

Yes

No

No

No

No

No

All transversion
rates identical

Yes

Yes

Yes

No

Yes

Yes

No

No

Reference

Jukes and Cantor (1969)

Felsenstein (1981)

Kimura (1980)

Hasegawa et al. (1985)

Tamura and Nei (1993)

Kimura (1981)

Zharkikh (1994)

Rodriguez et al. (1990)

Base
composition

1:1:1:1

Variable

1:1:1:1

Variable

Variable

Variable

1:1:1:1

Variable

In its basic form each of these models assumes that all sites in a sequence behave
identically. A site-variation model can be imposed on any of these. The most common site-
variation model used is the Gamma distribution, in which case often +G or +G is added to
the model name, for example HKY85+G. It is also possible to allow some sites to be
invariant, in which case ‘+I’ is often added to the name. Commonly used alternative names
are given in parentheses.

Table 7.2 
Models of molecular evolution that
have been used in phylogenetic
analysis.
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criterion (AIC) is defined as –2 ln Li + 2pi, where Li is the maximum likelihood value
of the optimal tree obtained using the evolutionary model i in a calculation which
has pi parameters. These pi parameters are not just those of the model i, but also
include the variables in the tree, normally the N – 3 branch lengths of an unrooted
fully resolved N-taxa tree. The Bayesian information criterion (BIC) depends on
the size of the dataset N as well as pi and is defined by –2 ln Li + pi ln(N). However,
the precise meaning of the dataset size N in this context is not well defined, and has
been associated with both the total number of alignment positions and also with
just the number of variable alignment positions. Whichever is used, in most phylo-
genetic studies models with more parameters should be penalized more by the BIC
than by the AIC. These methods do not require the evolutionary models to be
nested, and also in contrast to the hLRT tests do not require the identical tree
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4 
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HKY85 vs HKY85+G
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HKY85+I HKY85 

evidence no 
evidence 

HKY85 vs HKY85+I

Checking for equal base frequencies: 
 
H0:  JC  Log-likelihood =  -19864.051      17 parameters 
H1 : F81  Log-likelihood =  -19859.027      20 parameters 
 
Likelihood ratio statistic:  10.048 
Degrees of freedom:  3 
Probability:   0.018156  (< 0.05) 
 
Null hypothesis H0 rejected:        F81 chosen 

Examples of hierarchical likelihood ratio tests (hLRT) for
determining the appropriate evolutionary model to use. The
values shown are those from the analysis of the 10-sequence
subset of the 16S RNA dataset with the HyPhy program. (A)
Initial tests are used to determine whether the 16S RNA data
require an evolutionary model that includes unequal base
composition and whether allowance must be made for
differences in transition and transversion mutation rates. A
series of hLRT model comparisons are run. The first models
tested are Jukes–Cantor (JC) versus Felsenstein 81 (F81).
Depending on the outcome of this test, the models used in the
subsequent rates test will be different as shown. As the base
composition rate is unequal according to the test (blue arrow),
the JC model is discarded and F81 is tested against the HKY85
model by testing to see if transitions and transversions have

different accepted mutation rates. HKY85 is an extension of the
Kimura two-parameter model that takes into account the %GC
ratio of the sequences being considered. The HKY85 model fits
the data best. (B) Using hLRT, HKY85 is tested against HKY85+G,
which incorporates the Gamma distribution to take into account
mutation rate variation at different sites. Eventually, HKY85+G+I
(which also includes the existence of a set of invariant sites) is
chosen as the most appropriate model. Note that in practice
many more models and tests were made than shown here. The
full set of tests used resulted in the selection of the REV+G
model. (C) The results of the first test, with the log-likelihoods of
the trees, numbers of parameters involved in the models and
trees, the statistical test values, and conclusion. In this case, the
conclusion is that the data have significantly unequal base
frequencies, leading to the rejection of the JC model.

Figure 7.18
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topology to be used in all calculations. Analysis using the AIC, which measures the
support in the data for the given model, is straightforward: the model with the
smallest AIC value is regarded as the most suitable. Any models having an AIC
within two units of this are regarded as also being supported by the data, and those
models up to seven units away as having a smaller level of support. Beyond this, the
models are not supported. The analysis using the BIC proceeds in a similar manner.
We will use the AIC method to choose an evolutionary model for the 16S RNA data.
Note that there is evidence of a tendency of these methods to support more
complex models when simpler models can produce better trees. Much more
research is needed in this area to establish the usefulness of these methods.

All phylogenetic analyses must start with an accurate multiple
alignment
A multiple alignment of the 16S RNA data is required to construct the phylogenetic
tree. Using the Web interface to a database that contains accurate multiple align-
ments of 16S RNA sequences, the Ribosomal Database Project (the RDP database),
we can select a set of species and download the multiple alignment. This alignment
is the starting point for the phylogenetic analysis and its accuracy is key to the
whole process. Because the RDP database covers a very wide range of life, and
because some of the set of 16S RNA sequences contain extensive insertions, there
are numerous gaps in the alignment at many different positions. As a result, the
downloaded alignment is extremely large compared with the actual lengths of the
sequences. The multiple alignment for the entire database extends over 40,000
positions, but the small subset of chosen sequences has aligned bases at fewer than
2500 of these positions. It is useful therefore to start by removing all the columns
that contain gaps only. This facility is present in almost every program that can
view alignments.

Phylogenetic analyses of a small dataset of 16S RNA 
sequence data
A protocol based on the AIC method for selecting an evolutionary model is freely
available as a script called MrAIC. This script was used with the PHYML program to
generate AIC values for a number of alternative models, using the set of 16S RNA
sequences. The dataset used in this example is small enough to use in its entirety
for the AIC analysis, but a subset might need to be chosen for some other datasets.
Three evolutionary models were reported to have significant support as defined by
AIC values within two units of the best-supported model, which in this case was
REV+G, the general time-reversible model (known as GTR or REV) with an addi-
tional Gamma distribution model of site-rate variation (see Section 8.1). Other
resources for such exploratory studies are available, including a program called
ModelTest that can perform hLRT and AIC analyses based on likelihood values that
can be obtained independently from any program of choice. The HyPhy program is
slower than PHYML, but can perform a more complete analysis as it can calculate
ML trees as well as apply AIC and nested model tests using the hLRT. The HyPhy
results for a 10-sequence subset of this dataset are presented in Table 7.3 and give
further support for the use of REV+G. The reason for using just the subset was
purely due to the higher computational requirements of the HyPhy program.

Using the REV+G evolutionary model, an unrooted maximum likelihood phylogenetic
tree is generated from our data using the program PHYML. This maximum likelihood
tree is shown in three representations in Figure 7.19. If the current formal taxonomic
classification reflects the true evolutionary history, then all five classes should be
monophyletic. That is, the members of the class should form a group that includes only
themselves and their last common ancestor. The unrooted tree reported by PHYML
(see Figure 7.19A) shows three of the classes—the Alphaproteobacteria (green),
Betaproteobacteria (blue), and Epsilonproteobacteria (yellow)—as monophyletic. The
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Gammaproteobacteria (red) and the Deltaproteobacteria (magenta) are not mono-
phyletic, however, according to this tree, but form clades with the Betaproteobacteria
and the Epsilonproteobacteria, respectively. In fact, in phylogenetic studies, the
Gammaproteobacteria (red) are often found to form a clade with the
Betaproteobacteria, and it has been proposed that the two should be combined into
a new taxonomic class called Chromatibacteria.

Most tree-viewing programs allow the user to choose a root for an unrooted tree.
From other phylogenetic studies, the root of the proteobacterial tree is generally
considered to lie either between the Deltaproteobacteria/Epsilonproteobacteria
and the other classes, as shown in Figure 7.19B, or between the
Epsilonproteobacteria and other classes. An alternative, but unreliable, way of
choosing a root is to find the midpoint of the route between the most distantly
related taxa, in this case Buchnera aphidicola and Campylobacter jejuni, which
produces the tree shown in Figure 7.19C.

The rooted maximum likelihood trees show considerable variation in the
distances from the leaves to the root, as shown by the branch lengths. One might
suspect from this that using UPGMA, which assumes a molecular clock, to recon-
struct the tree would lead to a significantly different tree. Figure 7.20 shows two
rooted ultrametric trees reconstructed from the data using UPGMA and the JC
distance correction model of evolution. The two trees differ in the way that align-
ment gaps are treated in the distance correction. The tree in Figure 7.20A ignores
any alignment position that includes a gap, even if only one of the 38 sequences
has a gap at this position. Since the distances are calculated between two
sequences at a time, this means that any two sequences may have aligned
sequence that is ignored because of gaps in other sequences. The tree in Figure
7.20B ignores only the positions with gaps in the particular pair of sequences for
which the distance is being calculated, and thus uses more of the sequence data.
Arguments can be made in favor of both methods of dealing with gaps, and it can
be useful to try both. While the complete deletion method potentially ignores
useful data, it can also avoid potentially misleading results from using regions that
occur in only a subset of the taxa and whose evolution has been significantly
different from the other parts of the sequences. Both of these UPGMA trees differ
in several places from the presumably more accurate tree of Figure 7.19, and so it
is not possible in this example to say which deletion method has in this case given
the poorer result. For example, the Betaproteobacteria appear to evolve in a
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Model

JC

F81

HKY85

HKY85+I

HKY85+G

HKY85+G+I

REV+G

log-likelihood (ln L)

–19864.051

–19859.027

–19779.596

–19602.542

–19462.357

–19456.705

–19426.581

AIC

39762.103

39758.054

39601.191

39249.084

38968.715

38959.411

38905.161

Number of parameters

17

20

21

22

22

23

26

The values of the log-likelihood and AIC for the trees created by HyPhy using the 10-sequence
subset of the 16S RNA dataset with the different evolution models listed. The number of
parameters in the system is also shown, as it is used in hLRT tests as well as in calculating the
AIC values.

Table 7.3 
Some of the data used to select the
best model of evolution for use in
further work on the 16S RNA
dataset.

BIF CH7 5th proofs.qxd  17/7/07  11:39  Page 256



Phylogenetic Tree Reconstruction

257

Ph
ot

or
ha

bd
us

lu
m

in
es

ce
ns

 

Sh
ig

el
la

 fl
ex

ne
ri

Escherich
ia coli K12

Salmonella typhimurium

Yersinia pestis

Wigglesworthiaglossinidia

Buchneraaphidicola

Haemophilus influenzae

Pasteurella m
ultocida

Vibrio cholerae
Photobacterium

profundum

Shew
anella

oneidensis M
R-1

A
cinetobacter sp.

Ps
eu

do
m

on
as

 s
yr

in
ga

e
Ps

eu
do

m
on

as
 p

ut
id

a

Pseudomonas a
eruginosa

Xan
th

om
on

as
 a

xo
no

po
di

s p
v. 

cit
ri

Xylella fastidiosa 9a5c

Neisse
ria meningitidis

Chromobacterium violaceum

Ralstonia solanacearum

Bordetella pertussisBordetella parapertussis

Coxiella burnetii

Helicobacter hepaticus

Helicobacter pylori

Cam
pylobacter jejuni

Desulfovibrio vulgaris

Bdellovibrio bacteriovorus

G
eobacter sulfurreducens PCA

Rickettsia conorii

W
ol

ba
ch

ia
 p

ip
ie

nt
is

Ri
ck

et
ts

ia
 p

ro
w

az
ek

ii

Ca
ul

ob
ac

te
r 

cr
es

ce
nt

us
 C

B1
5

Br
uc

el
la

 m
el

it
en

si
s

Br
ad

yr
hi

zo
bi

um
 ja

po
ni

cu
mBartonella quintana

Bartonella henselae

0.05 

(A) 

0.05 0.05 

(B) (C) 
 Photorhabdus luminescens
 Shigella flexneri

 Escherichia coli K12
 Salmonella typhimurium

 Yersinia pestis
 Wigglesworthia glossinidia

 Buchnera aphidicola
 Haemophilus influenzae

 Pasteurella multocida
 Vibrio cholerae

 Photobacterium profundum
 Shewanella oneidensis MR-1

 Acinetobacter sp.
 Pseudomonas syringae
 Pseudomonas putida

 Pseudomonas aeruginosa
 Xanthomonas axonopodis pv. citri

 Xylella fastidiosa 9a5c
 Neisseria meningitidis

 Chromobacterium violaceum
 Ralstonia solanacearum

 Bordetella pertussis
 Bordetella parapertussis

 Coxiella burnetii

 Photorhabdus luminescens
 Shigella flexneri

 Escherichia coli K12
 Salmonella typhimurium

 Yersinia pestis
 Wigglesworthia glossinidia

 Buchnera aphidicola
 Haemophilus influenzae

 Pasteurella multocida
 Vibrio cholerae

 Photobacterium profundum
 Shewanella oneidensis MR-1

 Acinetobacter sp.
 Pseudomonas syringae

 Pseudomonas putida
 Pseudomonas aeruginosa

 Xanthomonas axonopodis pv. citri
 Xylella fastidiosa 9a5c

 Neisseria meningitidis
 Chromobacterium violaceum

 Ralstonia solanacearum
 Bordetella pertussis
 Bordetella parapertussis

 Coxiella burnetii
 Rickettsia conorii

 Wolbachia pipientis
 Rickettsia prowazekii
 Caulobacter crescentus CB15

Brucella melitensis
 Bradyrhizobium japonicum

 Bartonella quintana
 Bartonella henselae  Rickettsia conorii

 Wolbachia pipientis
 Rickettsia prowazekii
 Caulobacter crescentus CB15

Brucella melitensis
 Bradyrhizobium japonicum

 Bartonella quintana
 Bartonella henselae

 Helicobacter hepaticus
 Helicobacter pylori
 Campylobacter jejuni

 Helicobacter hepaticus
 Helicobacter pylori
 Campylobacter jejuni

 Desulfovibrio vulgaris
 Bdellovibrio bacteriovorus

 Geobacter sulfurreducens PCA

 Desulfovibrio vulgaris
 Bdellovibrio bacteriovorus

 Geobacter sulfurreducens PCA

Figure 7.19
The maximum likelihood tree for the 16S RNA
dataset, as calculated using PHYML with the
REV+G model. (A) The unrooted tree initially
produced by the program. The taxa are
color-coded according to their class in the
Bergey bacterial classification: green,
Alphaproteobacteria; blue, Betaproteobacteria;
red, Gammaproteobacteria; magenta,
Deltaproteobacteria; and yellow,
Epsilonproteobacteria. In this case the root has
to be applied manually. (B) The same tree with
the root chosen so that the Deltaproteobacteria
and Epsilonproteobacteria diverge from the
other classes first. (C) The same tree but now
rooted at the midpoint between the two taxa
furthest apart on the tree.

Alphaproteobacteria 

Betaproteobacteria 

Gammaproteobacteria 

Deltaproteobacteria 

Epsilonproteobacteria
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different way from the Gammaproteobacteria in Figure 7.20A when compared
with Figure 7.19. But both these trees differ from Figure 7.20B in which all five
classes are monophyletic, which is how the tree would be expected to appear if
both the tree and the preexisting taxonomic classification were an accurate repre-
sentation of the evolutionary history of the species.

It would be useful to know how strongly certain features of the trees are supported
by the data. The reliability of the topology can be tested by the bootstrap (see Figure
7.5). In Figure 7.21 a condensed tree resulting from Figure 7.20A is shown. In this
case we have removed branches with a bootstrap value less than 75%, and this gives
a tree which shows that within the limits of confidence given the five classes are
monophyletic. The bootstrap test can thus give some indication of the reliability of
conclusions drawn from the trees. Bootstrap values are in fact conservative,
however, so that the 5% significance level will occur for branch values somewhat
less than 95%. It should be noted that what the bootstrap measures is the degree of
support within the data for the particular branch, given the evolutionary model and
tree reconstruction method. The bootstrap values give no indication of the robust-
ness of these features to changing the model or method.

In this example, we have rooted the tree using information from other studies, or by
using the UPGMA method, which always produces rooted trees. There is no alter-
native in this case because our data do not contain any sequences from species that
are more remote from the majority, known as the outgroup (see Figure 7.2D). When
an accurately rooted tree is required, such groups should be included. The root can
then be located between the outgroup and the remainder of the taxa.

This small study shows, albeit using evolutionary models and tree-reconstruction
methods that differ greatly from each other, that the choice of model and recon-
struction method can make a significant difference to the resulting tree and thus
the conclusions that one draws from it. One should in any case be wary of using
even the most carefully reconstructed single tree to deduce evolutionary relation-
ships between species. And in all cases it is important to assess the reliability of the
tree topology, using tests such as bootstrapping. In addition, in classification
studies it is useful to compare trees generated for the same set of species with
different genes. It is quite possible that some genes will have evolved in an anom-
alous way for some of the species, and this will become obvious when these trees
are compared.
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Figure 7.20
UPGMA trees calculated for the 16S
RNA dataset using the JC model
distance correction in two different
ways. (A) Any alignment position at
which any sequence that has a gap
is ignored. (B) Alignment positions
are only ignored when one of the
two sequences being compared has
a gap. The colors of the taxa labels
are as in Figure 7.19.
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Building a gene tree for a family of enzymes can help to
identify how enzymatic functions evolved
As the number of known sequences has increased, many have been classified into
families and superfamilies of homologs with related sequence and functions (see
Box 7.4). In our second example, we are going to build a tree for a small selection of
sequences taken from a large superfamily of enzymes. Note that the protein family
databases generally classify the domains of proteins individually. The proteins used
in this example all consist of three domains so will be identified as belonging to up
to three entries in some databases.

In this example, we shall show the usefulness of phylogenetic analysis to address
two common questions that are often asked about superfamilies. The first is
predicting the function of a superfamily member if only its sequence is known. In
principle, this might be done by multiple sequence alignment or a sequence
pattern search (see Chapters 4 and 6), but is often helped by reconstructing a phylo-
genetic tree for superfamily members from a range of species and determining
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Figure 7.21
The condensed tree obtained by a
bootstrap analysis of the UPGMA
tree of Figure 7.20. Branches with
bootstrap values below 75% have
been removed. The colors of the taxa
labels are as in Figure 7.19.

A gene or protein family is generally defined as a group
of closely related homologs with essentially the same
function. Note that function in this context usually
refers only to biochemical function; in the case of
enzymes, for example, proteins in the same family will
carry out the same chemical reaction, have identical
catalytic mechanisms, and act on rather similar
substrates. For example, the acetolactate synthase (ALS)
family contains enzymes that use the cofactor thiamine
diphosphate (TDP). Homologous families are grouped
into superfamilies. Because the protein families that
make up a superfamily will have distinct (but usually
related) functions, individual members of a superfamily

will all be homologs but can have different functions
from each other. For example, the ALS protein family
belongs to a superfamily in which all the members bind
and use the cofactor TDP, but their use of the additional
cofactor flavin adenine dinucleotide (FAD) varies, and
the reactions they catalyze are related but different.
Many proteins consist of two or more distinct domains,
and protein family databases usually classify domains
individually into domain families. The nature of protein
domains and their relation to the classification of
protein structures will be discussed in more detail when
we consider protein structure prediction in Section 14.1.

Box 7.4 Protein families and superfamilies
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orthologs, as discussed earlier. The second question, relating particularly to super-
families of enzymes, is how to elucidate the evolution of enzyme function within
the superfamily. This can only be done using phylogenetic analysis.

The superfamily of enzymes we shall look at all use the cofactor thiamine diphos-
phate (abbreviated TDP or TPP after its alternative name of thiamine pyrophos-
phate). Some of the constituent families also use the cofactor flavin adenine
dinucleotide (FAD), however. Unusually, in some cases, FAD does not participate in
the reaction but it must still be bound for the enzyme to be active. We have selected
enzymes from various families to build the tree, and should like to see what the
phylogeny of these enzymes can tell us about how these properties evolved. The
evolution of the superfamily must have involved either the development or loss of
an FAD-binding site (or both), possibly on more than one occasion, and a correct
reconstruction of the phylogenetic tree will reveal this history. A number of the
bacterial enzymes included in this analysis have been studied experimentally,
which enables a clear assignment of their catalytic function and cofactor use. In
addition, structures are available for representatives of several families. All those
determined have the same protein fold, but not all bind FAD. These experimental
data will be extremely useful in analyzing the results of the phylogenetic recon-
struction.

Out of the hundreds of sequences in this superfamily, we have selected a subset of
sequences from enterobacteria (the gut bacteria such as Escherichia coli and
Salmonella and their relatives), which are a subgroup of the Gammaproteobacteria.
Some sequences that could have been included are only distantly related, causing
problems with alignment, and are not well characterized experimentally; these
were not included in the study. Eight experimental structures for the whole super-
family were available at the time of the analysis, and we have included the corre-
sponding sequences, even though some are from yeast and not from bacteria. In
total, 39 sequences were used. For reasons discussed below, no attempt was made
to include an outgroup.

The first task is to obtain an accurate multiple sequence alignment. It is usually
preferable to carry out phylogenetic analysis on nucleotide sequence data, in which
synonymous as well as nonsynonymous mutations will be visible. An exception is
when the sequences are so distantly related that the large number of mutations has
resulted in a poor phylogenetic signal. In these cases amino acid sequences can be
used. It is, however, more difficult to accurately align protein-coding nucleotide
sequences than protein sequences because the methods do not recognize the exis-
tence of codons, a feature that, as has been discussed above, plays a very important
role in the evolution of such sequences. In general, alignments of such nucleotide
sequences should include only insertions or deletions of entire codons. As all the
data in our example are protein-coding, the ideal alignment procedure is to trans-
late the nucleotide sequence to protein, align this protein sequence, and then
retranslate the alignment back to the nucleotide sequences before generating the
tree. A number of programs conveniently perform this commonly required proce-
dure, including the free programs BioEdit and MEGA3. The end result is an accurate
multiple alignment of nucleotide sequences that can readily be retranslated to
protein if required. Any additional information such as protein structure or key
functional conserved amino acids should be included to try to make the alignment
as accurate as possible, using manual adjustment to achieve this.

The complete evolutionary history of a large superfamily such as the one being
used here is best studied in several steps, initially exploring the evolution of those
sequences that are more closely related. Once different parts of the superfamily are
better understood, attempts can be made to put the whole picture together.
Because we have selected a group of closely related sequences, our dataset lacks
clear outliers and a root cannot be justifiably identified. The lack of a root will,
however, limit the conclusions that can be made.
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Figure 7.22
The unrooted neighbor-joining (NJ)
tree for the TDP-dependent enzyme
superfamily dataset produced using
two different distance corrections.
(A) Tree constructed using the JC
model distance correction. (B) Tree
constructed using the K2P model
distance correction. Proteins for
which an experimental structure is
known that does not contain a
bound FAD cofactor are indicated by
red squares. Proteins known to bind
FAD and to use it as an active
cofactor in the reaction are
indicated by green squares. Proteins
known to bind FAD, but which do
not use it in catalysis, are indicated
by orange squares. Filled green or
orange squares indicate proteins
whose structures are known. The
enzyme names have been
abbreviated as follows:
ALS, acetolactate synthase;
CEAS, carboxymethylarginine
synthase; ILV, acetolactate synthase;
I3P, indolepyruvate decarboxylase;
PDC, pyruvate decarboxylase;
GCL, glyoxylate carboligase;
MDLC, benzoylformate
decarboxylase; OXC, oxalyl-CoA
decarboxylase; POX, pyruvate
oxidase; PDH, pyruvate
dehydrogenase; UNK, proteins of
unknown enzymatic function.
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Once a multiple alignment has been generated, it is simple to use distance-based
methods to generate trees, making arbitrary choices for the model and parameters.
This approach can be used to take a very preliminary look at the data, but has the
significant disadvantage that it can potentially be rather misleading. Figure 7.22
shows the unrooted trees that are produced using the neighbor-joining method
with two simple evolutionary models: JC and K2P. Looking at individual clusters,
many features are conserved between the two trees. For example, both contain
three related clusters that separate the acetolactate synthase sequences ALS1, ALS2,
and ALS3. However, the K2P tree (see Figure 7.22B) shows a split between those
proteins known not to bind FAD (red labels) and those that do bind FAD (orange
and green labels). This split does not occur for the JC tree (see Figure 7.22A).
Because we cannot assign a root with any certainty, we cannot determine if the last
common ancestor of these proteins did or did not bind FAD. Whichever is the case,
the history represented by the JC tree would require more complex evolution of the
potential/actual FAD-binding site than the K2P tree.

Using the same methods as for the 16S RNA example, the appropriate evolutionary
model was again determined using PHYML and AIC to be REV with a Gamma-
distribution mode of site mutation rate distribution, this time also including a
parameter for the fully conserved (invariant) fraction of sites (REV+G+I). With this
model and the maximum likelihood method of tree reconstruction, the tree in
Figure 7.23A was obtained. From the perspective of evolution of the FAD-binding
site, this tree shows simpler evolution than the NJ trees, as all three clusters (red,
orange, and green) are monophyletic. While this might be an intuitive reason to
prefer this tree, it is the method of model selection and use of maximum likelihood
that give us the proper basis on which to prefer it to the trees in Figure 7.22.

This tree can now be used to try and predict protein functions for the two
sequences from Shigella flexneri and Erwinia carotovora (highlighted in Figure
7.23A) for which no function has previously been assigned. The Shigella sequence
is found very close to the OXC (oxalyl-CoA decarboxylase) of Escherichia coli, and
will almost certainly have the same biochemical function. The Erwinia sequence is
also in that region of the tree, but is not so closely associated with any protein
whose function has been determined experimentally. From its position, it will prob-
ably function in a similar way to either OXC or pyruvate oxidase (POX), although it
is also not far from the glyoxylate carboligase (GCL) cluster. This type of analysis has
been given the name phylogenomics, and is of increasing importance because of
the large number of genome sequences now available for which no experimental
data on function are available.

If the tree is rooted along the branch separating the FAD-binding and non-FAD-
binding proteins (see Figure 7.23B), the acetolactate synthase ALS1, ALS2, and ALS3
clusters can be clearly seen to be derived from two duplications that occurred
before the species diverged. Note that (allowing for some gene loss) each cluster has
almost identical species topology. From the order of the branching, one can see that
the first duplication gave rise to the ALS3 gene lineage and another lineage that
subsequently duplicated to give ALS1 and ALS2. The ALS 1JSC sequence in this part
of the tree can be ignored in this context, as this protein is from yeast and is
included as the closest structure known so far in this part of the superfamily.
Examination of more sequences from the databases shows that the duplications of
the ALS genes appear to have occurred in the enterobacteria only, and thus after the
enterobacteria diverged from other Gammaproteobacteria.

We will not pursue this study further here, but there are some obvious ways to
proceed. Firstly, alternative hypotheses as represented by trees such as those of
Figures 7.22 and 7.23 can be compared, to see just how much confidence can be
placed in the monophyly of the different groups of FAD-binding enzymes. This is
easily done using maximum likelihood methods, as most ML programs allow the
user to input their own tree topologies. Secondly, other regions of the superfamily
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could be examined to learn more about their evolutionary history. Finally, a
complete tree for the superfamily could be attempted through careful selection and
alignment of sequences. In this way the evolutionary history could be revealed, and
the functional prediction of related sequences might be improved.
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Figure 7.23
The maximum likelihood (ML) tree
for the TDP-dependent enzyme
superfamily dataset using the
REV+G+I model. Two of the proteins
are assigned in the sequence
database as UNK, meaning that
their function was not known or
proposed on the basis of sequence
analysis. Their positions within the
tree have been highlighted, and
possible function predictions are
discussed in the text. (A) The
unrooted tree, with enzyme
abbreviations as in Figure 7.22. The
colored squares relate to structural
and cofactor use information as
described in the legend to Figure
7.22. (B) The same tree rooted along
the branch that separates the FAD-
binding proteins (green and orange
squares) from those that do not bind
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Summary
Phylogenetic trees reflect the evolutionary history of a group of species or a group
of homologous genes and are constructed using the information contained in
alignments of multiple homologous sequences. They work on the general assump-
tion that the more similar two sequences are to each other, the more closely related
they will be. The evolution of a set of homologous existing sequences can thus be
represented in the form of a branching tree, with hypothetical common ancestral
sequences at the base, the extant sequences at the tips of the branches, and inter-
mediate hypothetical ancestors forming the internal nodes.

The choice of sequences is important and is determined by what type of tree is
required. If an accurate tree reflecting the evolutionary history of a set of species is
to be built, the sequences chosen to represent each species must be orthologs, and
must also not include genes that might have been acquired by horizontal gene
transfer. Gene family trees, in contrast, can include any homologous sequences that
can be accurately aligned. Trees may also be unrooted or rooted. To obtain a root,
one needs a known sequence or group of sequences that are remote from those of
real interest, and yet are sufficiently related so that they can be aligned. In all cases,
it is imperative to start with the best-possible multiple sequence alignment, which
for protein-coding regions means not using nucleotide sequences for that step.
However, as the nucleotide sequence contains the evolutionary history, it is quite
usual to begin with a set of nucleotide sequences, convert them into protein-coding
sequences for alignment, and then convert the alignment back to nucleotide
sequences for actual tree construction.

There are numerous methods and algorithms for tree construction. Some work
directly from the multiple sequence alignment, whereas others use evolutionary
distances calculated between each pair of sequences in the alignment. Distance
methods tend to produce a single tree, whereas other methods often produce a set
of trees that then have to be compared and evaluated using additional techniques
in order to choose the one most likely to be correct. In all cases, a method has to
work in conjunction with a simplified model of molecular evolution, which aims to
take account of some of the constraints on sequence evolution and the fact that not
all the evolutionary history will be visible in the alignment. In general, different
methods and models will produce different trees, so it is important to make the best
choice for the data. Given that different methods give different trees, and not all
features of the tree are equally well-supported by the data and methods used to
generate them, care must be taken not to overinterpret phylogenetic trees.
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BUILDING PHYLOGENETIC TREES

When you have read Chapter 8, you should be able to: 

Describe the models for estimating evolutionary distances from aligned sequences.

Describe the models for estimating time-dependent probabilities 
of specific mutations.

Reconstruct trees using evolutionary distances between sequences.

Contrast the methods for generating tree topologies.

Reconstruct trees using alignments directly.

Evaluate the methods for calculating branch lengths.

Contrast the methods for the comparative evaluation of alternative tree topologies.

Show the ways of quantifying the reliability of tree features.

This chapter deals with the theoretical basis of the techniques and algorithms that
are used to reconstruct phylogenetic trees from sequence-alignment data. These
techniques are mostly based on particular models of molecular evolution, which
were briefly introduced in Chapter 7. In the so-called distance methods of tree
construction, the models are used to obtain estimates of the evolutionary
distances between sequences, and these distances become the raw data for tree
generation, producing a single tree as the reconstruction of the evolutionary
history. Other methods of tree construction use the sequence alignment directly,
together with a particular evolutionary model. As we shall see, these latter
methods explore many different tree topologies and potentially produce several
possible trees. All nondistance methods have in common the ability to give a score
for any tree topology and we shall look at the variety of functions used to give these
scores. Finally, we shall discuss ways in which the resulting trees can be tested to
determine the likelihood that certain features are correct. Section 7.1 described
the basic types of phylogenetic trees and their nomenclature, and Section 7.2
presented some key concepts in molecular evolution. This knowledge will be
assumed here. All discussions in this chapter also assume that the set of aligned
sequences submitted for analysis are homologous.

8
THEORY
CHAPTER
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8.1 Evolutionary Models and the Calculation of
Evolutionary Distance
Analysis of reliable sequence alignments has revealed some general rules
governing the ways in which mutation leads to changes in DNA sequences over
time (see Section 7.2). These observations have been incorporated into models of
molecular evolution, which are used in all methods of tree-building (see Flow
Diagram 8.1). Our focus in this chapter will be on DNA rather than protein
sequences, and most of the models of mutation and evolution discussed here will
refer to nucleotide sequences. Very similar schemes are, however, used to model
amino acid sequence evolution, similar to that described in Section 5.1 in the
context of PAM scoring matrices. Some features of nucleotide sequence evolution
can easily be included in very simple models. Others have proved much more diffi-
cult to incorporate in a practical way, and are frequently ignored. After describing
some simple models in common current use, we will briefly discuss a few features
that are at present usually not modeled properly.

A simple but inaccurate measure of evolutionary distance is
the p-distance
As explained in Chapter 7, the evolutionary distance between two sequences is an
estimate of the number of mutations that has occurred since those sequences
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diverged from their common ancestor. The simplest, if unrealistic, measure of
evolutionary distance is the fractional alignment difference; that is, the observed
fraction of sites in two aligned sequences that have different bases. If an alignment
of two sequences has L positions (without counting positions at which one
sequence has a gap), of which D differ, then the fractional alignment difference,
usually called the p-distance, is defined as

(EQ8.1)

This is an evolutionary distance, but can also be considered as an estimate of the
probability of a site being mutated and is used in this way in some of the later
discussion.

This measure is usually too inaccurate for serious work, as was explained in Section
7.2. For low rates of mutation and/or short evolutionary times, very few sequence
differences are observed. Thus, for the relatively short sequence lengths that are
often used to reconstruct phylogeny there is considerable statistical variation
between sequences, leading to potentially large errors in p-distance estimates.
Much more frequently encountered is the case that at longer evolutionary times
many sites have undergone mutation more than once. Observed differences are
thus an underestimate of the total number of mutations that have occurred over
that time, and it is the total number we are interested in for phylogenetic tree
construction. Finally, not all species evolve at the same rate, and neither do all
genes in the same species, because they are under different evolutionary pressures
at different times. There may be fortuitous averaging out for sufficiently long times
but this is by no means always the case. To take account of these sources of error in
the p-distance, the evolutionary distance measure needs to be modified by the
application of a more sophisticated evolutionary model.

p
D
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The Poisson distance correction takes account of multiple
mutations at the same site
A simple correction to the p-distance can be derived by assuming that the proba-
bility of mutation at a site follows a Poisson distribution, with a uniform mutation
rate r per site per time unit. After a time t, the average number of mutations at each
site will be rt. The formula gives the probability of n mutations having
occurred at a given site during time t. We want to derive a formula that relates the
observed fraction of sites that have mutated (the p-distance) to the actual number
of mutations that have occurred, which is not measurable from the data.

Consider two sequences that diverged time t ago. The probability of no mutation
having occurred at a site is given by e–rt for each sequence, given the assumption of
a Poisson distribution of mutations. Thus the probability of neither sequence
having mutated at that site is given by the expression e–2rt. We also assume that no
situation has occurred in which several mutations at a site have resulted in both
sequences being identical, such as identical mutations at both sequence sites. In
this case this probability can be equated with the observed fraction of identical
sites, given by (1 – p) where p is the p-distance.

Because each sequence has evolved independently from the common ancestor,
they are an evolutionary distance 2rt from each other, which we will write as d.
This evolutionary distance d is measured in terms of the average number of muta-
tions that have occurred per site, not the time since divergence. This leads to the
equation

(EQ8.2)

from which we can derive the Poisson corrected distance

(EQ8.3)

This corrected evolutionary distance, dP, starts to deviate noticeably from the p-
distance for p > 0.25 (see Figure 8.1). 

The Gamma distance correction takes account of mutation
rate variation at different sequence positions
Another assumption shown to be highly questionable is that of an equal rate of
mutation at different positions in the sequence; that is, the assumption that there
is only one value of r, which applies to the whole sequence. This is far from true for
protein-coding and other functional sequences. In 1971, Thomas Uzzell and
Kendall Corbin reported that a Gamma distribution (GG) can effectively model real-
istic variation in mutation rates. Such a distribution can be written with one
parameter, a, which determines the site variation (see Figure 8.2). Using this, it is
possible to derive a corrected distance, referred to as the Gamma distance dG:

(EQ8.4)

where p is the p-distance. Values of a have been estimated from real protein-
sequence data to vary between 0.2 and 3.5. The Gamma distance is not significantly
different from the p-distance for p < 0.2 (see Figure 8.1) but can diverge markedly
for greater values of p.
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The Gamma distribution model of
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The Jukes–Cantor model reproduces some basic features of
the evolution of nucleotide sequences
The mutation models described so far do not include any information relating to
the chemical nature of the sequences, which means that they can be applied
directly to both nucleotide and protein sequences. Some evolutionary models have
been constructed specifically for nucleotide sequences. One of the simplest models
of this type is that due to Thomas Jukes and Charles Cantor. It makes a number of
assumptions that are known to be incorrect in most cases, but despite this it has
proved useful. Its simplicity allows us to derive the formula for the evolutionary
distance between two sequences. Some more complex models will be presented
later for which the equivalent results will be given but not proved.

In the Jukes–Cantor (JC) model all sites are assumed to be independent and to have
identical mutation rates. Furthermore, all possible nucleotide substitutions are
assumed to occur at the same rate a per unit time. A matrix can represent the
substitution rates as follows:

(EQ8.5)

where the rows and columns of the matrix represent the four different bases as
shown. The mutations occur from the i th row to the j th column. Each row sums to
zero, meaning that the number of sites (that is, sequence length) remains constant.
In addition, each column sums to zero, which means that the numbers of each base
(that is, the base composition) remains constant.

Suppose that an ancestral sequence diverged time t ago into two related sequences.
After this time t, the fraction of identical sites between the two sequences is q(t),
and the fraction of different sites is p(t), so that p(t) + q(t) = 1. We can calculate the
fraction of identical sites after time t + 1, written q(t+1). If we restrict ourselves to
terms in a (a is usually so small that terms in a2 are negligible by comparison) then
there are only two ways of getting an identical site at time t + 1. Since a fraction a of
sites will mutate to each of the three other bases between t and t + 1, the fraction of
sites having no mutations occurring in this time period is (1 – 3a). Thus the proba-
bility of an aligned pair of identical residues not mutating in this time is (1 – 3a)2,
which is (1 – 6a) ignoring terms in a2. Since a fraction q(t) of sites were identical at
time t, we can expect that a fraction (1 – 6a)q(t) remain identical at time t + 1. The
other route to identical sites at time t + 1 is if the aligned residues are different at
time t, which is the case for a fraction p(t), but one mutates to become identical to
the other. A fraction a of any base will mutate to each of the other three bases in that
time period, but only one of these is the same as the aligned base of the other
sequence. This site on the other sequence must not have mutated, which, as
already discussed, is the case for a fraction (1 – 3a). Furthermore, this event can
happen in two equivalent ways, depending on which of the two aligned bases
mutates. Thus, the probability of such an event occurring between times t and t + 1
is 2a (1 – 3a)p(t). Ignoring terms in a2, this is 2ap(t). Therefore the fraction of iden-
tical sites at time t + 1, q(t+1), is

(EQ8.6)q t q t p t( ) ( ) ( )+ = −( ) +1 1 6 2α α
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This can be manipulated [recall that p(t) = 1 – q(t)] to estimate the derivative of q(t)
with time as

(EQ8.7)

It is easily confirmed by substitution into Equation EQ8.7 that

(EQ8.8)

which includes the condition that at time t = 0 all equivalent sites on the two
sequences were identical [q(0) = 1]. Note that at very long times q• = 1/4, so this
model predicts a minimum of 25% identity even on aligning unrelated nucleotide
sequences. Finally, 3at mutations would be expected during a time t for each
sequence site on each sequence. At any time each site will be a particular base, which
will mutate to one of the other three bases at the rate a. Hence the evolutionary
distance between the two sequences under this model is 6at. By rearrangement this
corrected distance (dJC) can be obtained from Equation EQ8.8 in terms of p:

(EQ8.9)

To obtain a value for the corrected distance, one simply substitutes p with the
observed proportion of site differences in the alignment. This attempt to account
for multiple mutations at the same site is more sophisticated than the Poisson
correction, but there is a clear similarity between Equations EQ8.3 and EQ8.9.

More complex models distinguish between the relative
frequencies of different types of mutation
Progressive improvements have been made to the JC model, of which only a few
will be discussed here. While it is easy to identify models that are formally more
realistic, these are not necessarily more effective in representing real data. Their
success will depend on the actual evolutionary history of the dataset under study,
and how to choose the best model in practice is discussed in Section 7.3.

One improvement over the JC model involves distinguishing between rates of tran-
sitions and transversions, as was described in Section 7.2 and illustrated in Figure
7.8. To distinguish the different rates of transitions and transversions, they are
assigned the values a and b, respectively. If this is the only modification made to the
JC model, the resulting model is called the Kimura two-parameter (K2P) model, and
has the rate matrix

(EQ8.10)

This model results in a corrected distance, dK2P, given by
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(EQ8.11)

where P and Q are the observed fractions of aligned sites whose two bases are
related by a transition or transversion mutation, respectively. These values are
obtained from the alignments of the real data. Note that the p-distance, p, equals
P + Q. The transition–transversion ratio, commonly written R, is defined as a/2b for
the K2P model. As explained in Box 8.1, R is directly obtainable from the data, but
is not required in order to apply the distance correction defined by the above equa-
tion. 

Both the JC and the K2P models considered so far predict a 1:1:1:1 equilibrium base
composition. This is almost never the case in reality; multicellular eukaryotes have
an average genomic GC content of 40%, and bacteria show a wide range of varia-
tion, with measured GC contents ranging from approximately 25% to 74% (see
Figure 7.9). The rate matrices can easily be modified to account for any particular
base composition pA:pC:pG:pT. When applied to the K2P model this modification
gives a model called HKY85 (after M. Hasegawa, H. Kishino and T. Yano, who
published it in 1985) and has the matrix

(EQ8.12)

More complex models have been proposed in which more, or even all, types of base
substitutions have their own rate constants. A selection of the more commonly
used models is listed in Table 7.2 (page 253), but many more have been described.
It should be noted, however, that these models still suffer from the incorrect
assumption that all sites have the same mutation rate. To help overcome this, the
Gamma distribution can be applied. If it is applied to the JC model (the JC+G
model) with G parameter a, the corrected distance equation becomes

(EQ8.13)

Evolutionary models can be used in two ways in methods for phylogenetic tree
reconstruction. For some methods, distance formulae such as Equations EQ8.9,
EQ8.11, and EQ8.13 are derived and are applied to the sequence-alignment data to
obtain corrected evolutionary distances. Other methods use a formula such as
Equation EQ8.8 to calculate the probability of particular mutations having
occurred along a tree branch of a particular length.

For these latter methods, values for the parameters in the models, such as a, b, and
the base composition, must be specified. Although many tree-building programs
allow parameters to be specified by the user, it is also common practice for
programs to calculate parameter values whenever possible from the data under
study. The estimation of one of these parameters—the transition/transversion rate
ratio R—is discussed in Box 8.1 to illustrate that in many cases the calculation of
these quantities is not difficult, but still not trivial.
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There are good reasons for wanting to estimate the tran-
sition/transversion rate ratio R. Not all evolutionary
models include this mutational preference, and it would
be useful if the sequence data could be analyzed to
detect any signs that such a preference had occurred.
This would help in selecting an appropriate model and
also in suggesting parameter values where required. The
simplest evolutionary model to include a transition/
transversion rate ratio is the Kimura two-parameter
(K2P) model, and we will focus exclusively on this model
in the following discussion. Note that if the model is
only to be applied as a distance correction the value of R
is not required, as the correction formula does not
involve this parameter directly (Equation EQ8.11).

Given an alignment of two nucleotide sequences, it is
easy to distinguish those sites at which a transition or a
transversion mutation would convert between the two
aligned bases. The fractions of these two types of sites in
the alignment are usually called P and Q, respectively, as
in Equation EQ8.11. The ratio P/Q could be used as the
value of the transition/transversion rate ratio R in

models that require it, such as K2P, but in fact, as will
now be explained, that is generally a poor estimate of
this parameter.

Recall that in the K2P model the actual transition rate (a)
and transversion rate (b) are used (Equation EQ8.10), in
terms of which R is given as a/2b. However, following the
K2P analysis the distance correction is expressed in terms
of P and Q alone, as they are directly observable from the
sequence alignment. To see why there is a problem with
using P/Q as an estimate of R we will use the K2P model
equations that are the equivalents of the JC model
(Equation EQ8.8), giving the variation with time t of the
fraction of sites P and Q as defined above, namely

(BEQ8.1)

and

(BEQ8.2)
Q t e t( ) = −( )−1
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Box 8.1 Calculating the transition/transversion rate ratio R
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A demonstration of the unsuitability of using the
measurement P/Q as an estimator of the
transition/transversion rate ratio R. The Kimura two-
parameter model is assumed throughout. The expected fraction
of sites in the sequence alignment where a transition (blue line)
or transversion (pink line) mutation would convert between the
two aligned bases according to the K2P model is plotted against
2at, the actual number of transitions that has occurred per site
in the two sequences since divergence time t ago. Two different

values of R were used to calculate these curves: 
(A) R = 10 and (B) R = 2. The black line represents the total
number of all mutations that have actually occurred per site.
The green line shows the P(t)/Q(t) ratio, a possible estimator of
the value of R as a fraction of the correct value of R. A value of 1
for the green curve means that at this point P(t)/Q(t) gives the
correct value; a value of 0.8 indicates that it is only 80% of the
correct value, and so on. The ratio P/Q is only close to the
correct value of R when there have been very few mutations.

Figure B8.1
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One of the very common assumptions present in models of evolution is that
sequence positions behave identically and independently in respect to mutation.
Almost no sequence segments are truly random, however, as they almost invariably
exhibit some mutation correlation between positions. This is particularly the case
for protein-coding genes, for DNA that specifies functional RNAs such as tRNAs
and rRNAs, and for sequences that recognize and bind gene-regulatory and other
proteins. All these are subject to evolutionary pressure to conserve functionally
important parts of the sequence, and thus display different mutation rates at these
sites compared with the rest of the sequence.

By their very nature these correlations are sequence-specific, and for this reason
cannot be properly included in a model of evolution without making that model
sequence-specific too. One partial solution is to include in the model a method that
assigns sequence positions to blocks that have similar evolutionary properties,
such as mutation rates, with a procedure to assign the block boundaries. An
example of such a method is the hidden Markov model used in combination with a
variant of the Gamma correction by Joseph Felsenstein and Gary Churchill (see
Further Reading).

There is a nucleotide bias in DNA sequences
If sequences were truly random, one would expect the four bases to occur equally
frequently. Taking account of the difference in thermal stability between GC and AT
base pairs, one might expect base preferences, but these would have a simple
dependence on temperature. In fact, the true situation is far more complex, as
shown by the range of GC content of bacterial genomes (see Figure 7.9). Not all the
bacteria shown in that figure live at exactly the same temperature, but none lives in
extreme conditions of heat or cold. In addition, there are regions of different GC
content within genomes, a feature that is clearly important in humans, where
regions of distinct GC composition, which are known as isochores, have distinct
properties, as discussed in Section 10.4.
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Using these formulae we can calculate the expected
values of P, Q, and R as they vary over time (see Figure
B8.1). Notice that for extremely long divergence times,
regardless of the absolute or relative values of a and b, P
will tend to 1/4, and Q will tend to 1/2, with a remaining 1/4

of sites identical between the two sequences. Hence in
this model the value of P/Q will always be close to 1⁄2 for
highly divergent sequences whatever the actual transi-
tion/transversion preference. Shorter divergence times
will give estimates of P and Q from these equations that
reveal the underlying mutational preferences, but as
seen in Figure B8.1, only measurements obtained from
the most recently diverged sequences will give estimates
of R that are close to the true value. However, the small
number of mutations in closely related sequences is
likely to make such an estimate highly unreliable, except
when very long sequences are available, because of the
statistics of the mutations observed.

By rearranging equations BEQ8.1 and BEQ8.2, the
following formula can be derived to estimate R:

(BEQ8.3)

This formula is reliable at all times in estimating R,
assuming the sequence data are sufficient to obtain
good sampling statistics.

However, even this formula has been criticized. The
calculated value of R relates only to the two sequences
selected. When analyzing a real dataset, this value could
be different for each pair of sequences in the multiple
alignment. A possible solution is to use maximum like-
lihood methods to estimate the best single value of R to
use. This can be done for all the data simultaneously,
and in parallel with the optimization of other model
parameters and the reconstruction of the tree (see
Further Reading).
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Box 8.1 Calculating the transition/transversion rate ratio R (continued)
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Whatever the reasons for this variation in base composition, it is extremely hard to
model realistically. Detailed studies have shown that base composition varies in a
nontrivial way throughout evolution, so that each branch of a phylogenetic tree
may show a different trend in composition variation. All the models discussed
above use a fixed and universal base composition. Some methods have been
proposed to deal with this problem but have not yet been widely applied (see
Further Reading).

Models of protein-sequence evolution are closely related to
the substitution matrices used for sequence alignment
The discussion so far has focused on nucleotide sequences, although some
concepts, such as the Poisson correction, can be easily applied to protein
sequences. Any models of protein evolution will share many similarities with the
models presented above, but have a 20 ¥ 20 rate matrix to account for the 20
different amino acids. A protein model related to the JC nucleotide model in having
just a single rate for all possible mutations can be readily analyzed to yield a
distance correction equation

(EQ8.14)

where p is now the fraction of identical sites in an alignment of two protein
sequences.

It is now common practice to use empirical matrices based on the work that
derived some of the substitution scoring schemes described in Chapters 4 and 5. In
particular, the PAM matrices apply an evolutionary model. One of the most popular
protein matrices for phylogenetic studies—the JTT matrix derived by David Jones,
Willie Taylor, and Janet Thornton—is the result of attempts to update the PAM
matrix work. These models have been developed to take account of the specific
amino acid composition of the datasets (see Further Reading).

8.2 Generating Single Phylogenetic Trees
There are two main classes of techniques for reconstructing phylogenetic trees.
Clustering methods gradually build up the tree, starting from a small number of
sequences and adding one sequence at each step. The output from these methods
is a single tree that attempts to recover the evolutionary relationships between the
sequences (see Flow Diagram 8.2). In the second group of methods, many different
tree topologies are generated and each is tested against the data in a search for
those that are optimal or close to optimal according to particular criteria. We will
discuss clustering methods first, followed by the other techniques. 

Clustering methods produce a phylogenetic tree based on
evolutionary distances
The strength of clustering methods is their speed and robustness, and their ability
to reconstruct trees for very large numbers, even thousands, of sequences. In
contrast, many of the techniques that search tree topology are unable to process
more than about 100 sequences. Along with this strength come weaknesses,
however. There is no associated measure of how well the resulting trees fit the data,
so that alternatives (for example, trees reconstructed using the same technique but
different distance corrections) cannot be easily compared. As a consequence, it is
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not possible to test evolutionary hypotheses by comparing a particular tree
topology with that identified by the method as the best. This is not the case with the
topology search methods, and is their strength.

Most clustering methods reconstruct a phylogenetic tree for a set of sequences on
the basis of their pairwise evolutionary distances. Derivation of these distances will
have involved the application of an equation such as Equations EQ8.9, EQ8.11, or
EQ8.13, which use some basic measures (for example, the p-distance) taken from the
alignment together with some parameters that may have been previously specified
or, alternatively, derived from the data (for example, the transition/transversion rate
ratio R as described in Box 8.1).

Obtaining evolutionary distances is quite straightforward, but there are potential
problems. First, the alignments may contain errors, leading to incorrect distances.
Second, some assumptions (such as identical rates of change at all sites) made in
the evolutionary models may not hold for the particular dataset being used. As a
consequence, the corrected evolutionary distance equations used may not be
appropriate and may lead to errors in the distances. One important point to be
aware of with evolutionary distance methods of tree construction is that the
complete set of distances will almost certainly not be perfectly self-consistent, as
this method of generating distances has limitations even if the model exactly
reflects the evolution of the sequence data. This is because the formulae are exact
only in the limit of infinitely long sequences. These limitations mean that evolu-
tionary distances cannot always be recovered exactly, even for test sequences
generated by the same model. As a consequence, any reconstructed tree will almost
certainly not reproduce all the distances correctly.
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The UPGMA method assumes a constant molecular clock and
produces an ultrametric tree
The first distance method we will look at—UPGMA—is simple to apply, but has the
disadvantage that it assumes a constant molecular clock. This method is one of the
oldest, having been devised by Robert Sokal and Charles Michener in 1958. The
name UPGMA is an acronym of unweighted pair-group method using arithmetic
averages, a description of the technique used. Assumption of a constant rate of
evolution has important consequences for a dataset of sequences that are all asso-
ciated with the same evolutionary time point, namely the present day, as it dictates
that the same number of substitutions will have occurred in each sequence since
the time of the last common ancestor. Thus, the distance from any node to any leaf
that is its descendant will be the same for all descendants. The trees produced by
this method are rooted and ultrametric (see Figure 7.2C), and all the leaves are at
the same distance from the root.

The two sequences with the shortest evolutionary distance between them are
assumed to have been the last to diverge, and must therefore have arisen from the
most recent internal node in the tree. Furthermore, their branches must be of equal
length, and so must be half their distance. This is how the construction of the tree
is started. The method must recover all the internal nodes in the tree and at each
step another internal node is recovered.

The sequences are grouped into clusters as the tree is constructed, each cluster
being defined as the set of all descendants of the new node just added. Initially, all
sequences are regarded as defining their own cluster. At each stage, the two clusters
with the shortest evolutionary distance are combined into a new cluster. The tree is
complete when all the sequences belong to the same cluster, whose node is the root
of the tree.

The distance between two clusters is defined as follows. Consider the construction
of a tree for N sequences and suppose that at some stage you have clusters X
containing NX sequences and Y containing NY sequences. Initially, each cluster will
contain just one sequence. The evolutionary distance (dXY) between the two clus-
ters X and Y is defined as the arithmetic average of the distances between their
constituent sequences, that is

(EQ8.15)

where i labels all sequences in cluster X, j labels all sequences in cluster Y, and dij is
the distance between sequences i and j. When two clusters X and Y are combined to
make a new cluster Z there is an efficient way of calculating the distances of other
clusters such as W to the new cluster. The new distances can all be defined using
existing cluster-to-cluster distances without the need to use the constituent
sequence-to-sequence distances, using the equation

(EQ8.16) 

This method is very straightforward to apply, and can be used to construct trees for
large sets of sequences. The method is illustrated in Figure 8.3 for six sequences. In
the first step, sequences A and D are found to be the closest (dAD = 1) and are
combined, creating cluster (and node) V at a height of © (= dAD/2) (see Figure 8.3A).
Following calculation of the distances of V from the other sequences, the closest
pair is E and V, which are combined into cluster W at a height of 1 (= dEW/2) (see
Figure 8.3B). Continuing in this way, the final tree is obtained (see Figure 8.3E).
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If the data being analyzed did not evolve under conditions of a molecular clock,
however, the tree produced by UPGMA could be seriously in error. A dataset can,
however, be tested beforehand for likely compatibility with the method. For an
ultrametric tree to be appropriate for the dataset, for all sets of three sequences A,
B, and C, the three distances dAB, dAC, and dBC should either all be equal or two
should be equal and the third distance be the shortest. This is the case for the
dataset of Figure 8.3.

The Fitch–Margoliash method produces an unrooted 
additive tree
We shall now look at some methods that do not make the assumption of constant
mutation rate, but do assume that the distances are additive. The Fitch–Margoliash
method is based on analysis of a three-leaf tree as shown in Figure 8.4. The
distances dij between leaves A, B, and C are trivially given in terms of the branch
lengths by the formulae
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Figure 8.3
A worked example of the UPGMA method of
phylogenetic tree reconstruction for six
sequences A to F. (A) The initial evolutionary
distance (dij) matrix (left) showing that sequences
A and D are closest. They are selected in the first
step to produce internal node V (right). The
evolutionary distance is shown by the gray arrow.
(B) The distance matrix including node V (left),
from which it can be deduced that V and E are
closest, resulting in internal node W (right). (C,D)
Subsequent steps defining nodes X, Y, and Z and
resulting in the final tree (E).
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(EQ8.17)

This means the tree is being treated as additive. We can readily derive formulae for
the branch lengths in terms of the distances

(EQ8.18)

which are estimates of the branch lengths based solely on the evolutionary
distances.

Trees with more than three leaves can be generated in a stepwise fashion similar to
that used by the UPGMA method. At every stage three clusters are defined, with all
sequences belonging to one of the clusters. The distance between clusters is
defined (as in UPGMA) by a simple arithmetic average of the distances between
sequences in the different clusters (see Equation EQ8.15). At the start of each step
we have a list of sequences not yet part of the growing tree and of clusters repre-
senting each part (if there is more than one) of the growing tree. The distances
between all these sequences and clusters are calculated, and the two most closely
related (those with the shortest distance) are selected as the first two clusters of a
three-leaf tree. A third cluster is defined that contains the remainder of the
sequences, and the distances to the other two are calculated. Using the above equa-
tions one can then determine the branch lengths from this third cluster to the other
two clusters and the location of the internal node that connects them (see Figure
8.4). These two clusters are then combined into a single cluster with distances to
other sequences again defined by simple averages. There is now one less sequence
(cluster) to incorporate into the growing tree. By repetition of such steps this tech-
nique is able to generate a single tree in a similar manner to UPGMA. Because the
method of selecting closest cluster pairs is identical to that used in UPGMA, the tree
topology produced from a set of data is the same for both methods. The differences
in the trees produced are the branch lengths and that the UPGMA tree is ultra-
metric whereas the Fitch–Margoliash tree is additive.

A worked example of the Fitch–Margoliash method is shown in Figure 8.5, which
also illustrates the minor extra complication involved in finding branch lengths
between internal nodes. This example also illustrates a weakness of the method in
using the evolutionary distances directly to select nearest neighbors. If there are
very different evolutionary rates along different tree branches the two closest
sequences as measured by evolutionary distance may not really be neighbors. This
situation occurs in the data of Figure 8.5 for the sequences A and C, as will be
proved when the same data are analyzed using the neighbor-joining method
presented below. In this case it leads to a negative branch length. The true evolu-
tionary history cannot give rise to a tree with negative branch lengths, so this is
clearly an error of the method. In addition, the tree produced does not exactly
reproduce the distances between sequences. There are many occasions when the
rate variation is not so great as to produce these effects, in which case the method
is capable of reconstructing the correct tree. Another application of the
Fitch–Margoliash method is to calculate branch lengths for any given tree topology,
which is useful when comparing different trees, as we shall see in Section 8.4.
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B

Figure 8.4
The small tree from which the
Fitch–Margoliash method
equations (Equation EQ8.18) are
derived. The leaves A, B, and C are
all connected to the same internal
node by the branches b1, b2, and b3.
The same formulae apply when
there are other internal nodes of the
tree on the paths between the three
leaves and the common internal
node, so long as the bi are
interpreted as the sum of all path
branch lengths.
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Figure 8.5
A worked example of the
Fitch–Margoliash method
reconstruction of a phylogenetic
tree for five sequences (N = 5). At
each step the three-leaf tree that is
the equivalent of Figure 8.4 is shown
in red on the left-hand tree. (A) In
the first step the shortest distance is
used to identify the two clusters (A,
C) which are combined to create the
next internal node. A temporary
cluster W is defined as all clusters
except these two, and the distances
calculated from W to both A and C.
The method then uses Equations
EQ8.18 to calculate the branch
lengths from A and C to the internal
node that connects them. (B) In the
second step, A and C are combined
into the cluster X and the distances
calculated from the other clusters.
After identifying B and X as the next
clusters to be combined to create
cluster Z, the temporary cluster Y
contains all other sequences. X is a
distance b3 from the new internal
node, and the distance between the
internal nodes is b4. Branch length b4

is calculated to be negative, which is
clearly not realistic. However, in the
further calculations this branch is
treated like all the others. (C)
Combining sequences A, B, and C
into cluster Z, the sequences D and E
are added to the tree in the final step.
(D) The final tree has a negative
branch length, and also does not
agree with all the original distance
data. The tables list the patristic
distances Dij—the distances
measured on the tree itself—and the
errors eij. This tree has the wrong
topology, as becomes clear later
using neighbor-joining (see Figure
8.7), which in this case can
successfully recover the correct tree.
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The neighbor-joining method is related to the concept of
minimum evolution
The neighbor-joining (NJ) method proposed by Naruya Saitou and Masatoshi Nei
in 1987 does not assume all sequences have the same constant rate of evolution
over time, and so like the Fitch–Margoliash method is more generally applicable
than UPGMA. The basis of the method lies in the concept of minimum evolution,
namely that the true tree will be that for which the total branch length, S, is shortest.
This has its origin in the idea that any model used to explain data should be as
simple as possible, which in the case of evolution equates to a model with as few
mutation events as are consistent with the data. As we will see in the discussion of
parsimony methods later in the chapter, some other applications of the principle of
minimum evolution require the calculation of many different tree topologies, from
which the one with the smallest S is chosen. The neighbor-joining technique is a
simple approximation, but one that is very effective at constructing trees for large
datasets. The resulting tree is not rooted and is additive, a property that is assumed
in deriving the formulae for its construction.

Neighbors in a phylogenetic tree are defined as a pair of nodes that are separated by
just one other node. As with the methods described above, pairs of tree nodes are
identified at each step of the method and used to gradually build up a tree. The way
in which pairs of clusters are identified as neighbors in each step is different from
that used by Fitch–Margoliash and UPGMA, resulting in the potential to generate a
different topology. As will be shown by example, the method used to identify neigh-
bors is more effective than that used by Fitch–Margoliash, so that this method is
more robust with data having a large range of rates of evolution. The method is best
explained by starting with all sequences arising from the same node and gradually
distinguishing pairs of nodes that are neighbors.

To derive the neighbor-joining equations, consider N sequences, labeled 1 to N. The
two trees of Figure 8.6 illustrate one step of the neighbor-joining technique. The
tree in Figure 8.6A is a star tree, in which all sequences are related directly to a single
ancestral sequence at node X. Figure 8.6B shows a closely related tree in which
neighbor sequences 1 and 2 have been separated from node X by another node, Y.
Note that because these trees are not rooted, the direction of evolution along the
branch connecting X and Y is not clear. The distance between two sequences is
written dij for sequences i and j. The length of a branch of a tree between leaf (or
node) e and node f is called bef, and the total branch length S of a star tree such as
that in Figure 8.6A is given by

(EQ8.19)

where the second equality follows from assuming that the tree correctly reproduces
the dij.

S b di ij
i< j

N

i

N

= =
− ∑∑

=
X

1
11 N
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X XY

(A) (B)Figure 8.6
The first step of the neighbor-
joining method. (A) The situation at
the start of neighbor-joining, with a
star tree in which all sequences are
joined directly to a single internal
node X with no internal branches.
(B) After sequences 1 and 2 have
been identified as the first pair of
nearest-neighbors, they are
separated from node X by an
internal branch to internal node Y.
The method calculates the branch
lengths from sequences 1 and 2 to
node Y to complete the step.
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The total branch length of the tree in Figure 8.6B, where sequences 1 and 2 have
been removed from the central node X by internal node Y, is given by

(EQ8.20)

which needs to be converted into a form that uses the sequence distances d. To
perform this conversion, three equivalences should first be noted. Firstly, the last
term of Equation EQ8.20 is equivalent to Equation EQ8.19 with N = N – 2; secondly,
b1Y + b2Y = d12, and thirdly

(EQ8.21)

Making appropriate substitutions we obtain

(EQ8.22)

It remains to convert the last term to a sum over dij using Equation EQ8.19, after
which it can be combined with the penultimate term to give

(EQ8.23)

This can be simplified if we define the following terms:

(EQ8.24)

(EQ8.25)

and

(EQ8.26)

Substitution and careful manipulation give

(EQ8.27)

Every pair of sequences i and j, if separated from the star node as shown in Figure
8.6B, for the case of sequences 1 and 2 will produce a tree of total branch length Sij.
According to the minimum evolution idea, the tree that should be chosen is that
with the smallest Sij. Noting that the sum of the evolutionary distances for all
sequence pairs in the dataset, dsum, is constant for the data being studied and inde-
pendent of the particular sequences i and j, in this case the minimum evolution
principle can be shown to be equivalent to finding the pair of sequences with the
smallest value of the quantity dij defined by
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Figure 8.7
A worked example of the neighbor-
joining method reconstruction of a
phylogenetic tree for five sequences
(N = 5). This example uses the same
five sequences as in Figure 8.5. At
each step the evolutionary distances
dij are converted to dij using
Equations EQ8.24 and EQ8.28. The
values (N – 2)dij have been listed to
make the working clearer. At each
step the pair of clusters with
smallest (i.e., least positive) dij are
identified and combined into the
next cluster. The final tree is in exact
agreement with the original data for
the distances between taxa. The
topology of the tree differs from that
produced by the Fitch–Margoliash
method in Figure 8.5.
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(EQ8.28)

Once this pair has been found, the distances to the new node Y (see Figure 8.6B) must
be calculated. From the tree in Figure 8.6B, the following equality is seen to hold:

(EQ8.29)

Thus, once the neighbors i and j have been identified from calculating dij, the new
node Y can be added to the tree such that

(EQ8.30)

and

(EQ8.31)

We now require the distances from Y to the other sequences, k, which can be seen
from inspection of Figure 8.6B to be easily calculable using

(EQ8.32)

This formula is exactly equivalent to Equation EQ8.18 of the Fitch–Margoliash
method. To add more nodes, we now repeat the process, starting with the star tree
formed by removing sequences i and j, to leave a star tree with node Y as a new leaf
(that is, 1 and 2 are omitted from Figure 8.6B). Note that at each step, the value of N
in the formulae decreases by 1. A worked example of neighbor-joining is shown in
Figure 8.7. The data for this example are identical to those used for the
Fitch–Margoliash example in Figure 8.5, and neighbor-joining is much more
successful at recovering the correct tree topology and distances. In particular the
neighbors A and B (as opposed to A and C) are correctly identified, leading to a tree
with no negative branch lengths that exactly reproduces the given distance data.

Some variants of the neighbor-joining method use weighted distances derived from
estimates of variance in the corrected distance. For many evolutionary models, it is
possible to derive formulae that estimate this variance, which can be used as a
measure of the confidence in the distance and converted into a weighting. Two
examples of weighted neighbor-joining related methods are the weighbor and
BIONJ methods (see Further Reading).

Stepwise addition and star-decomposition methods are
usually used to generate starting trees for further exploration,
not the final tree
Two other more general methods are also frequently used to generate a starting tree
for further exploration. They differ from the methods discussed so far in that they
do not necessarily use the evolutionary distances to construct the tree. Because of
the large number of possible tree topologies for even quite small datasets, methods
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that explore alternative topologies almost always start from an initial tree and
explore some similar tree topologies, rather than try every single possible tree.
Neighbor-joining is often used to provide the initial tree, but alternatives exist, of
which we will discuss two: stepwise addition and star decomposition. As with
neighbor-joining, these methods could be used to simply generate a single tree with
no further optimization. However, this is rarely if ever done.

Stepwise addition proceeds from an initial three-sequence tree, adding one
sequence at a time. At each addition the tree is evaluated using an optimizing
function of the type that will be described in Section 8.4, which returns an
optimum value as a score for that topology. In both this method and star decom-
position a number of different functions can be used to obtain an optimal value,
such as total branch length, total number of mutations, or the likelihood of a
specific tree given a particular evolutionary model. We will use the symbol S for the
value of the function used.

Each time a sequence is added, it is added at each possible branch of the tree, and
the new tree with the optimal value of S is retained for subsequent steps. Several
variants of the method exist, which differ in how one chooses the next sequence to
add. Sequences can simply be added in any order, but this is not likely to produce
a satisfactory tree. Alternatively, a number of randomized orderings of the
sequences can be examined, and the best tree chosen. Probably the best method,
although more time-consuming, is to try all remaining sequences on all branches
and choose the best of these trees.

The star-decomposition method starts with all sequences linked to the same single
internal node X, as in the neighbor-joining method discussed above (see Figure
8.6). As before, two sequences are selected and joined together via their own
internal node. For the neighbor-joining method, the function being optimized is
S12, but in this case other functions are used for evaluating which sequences to
detach from the X node next. All possible pairs are examined, and the tree with the
optimal value of S is retained. At each subsequent step, another two sequences or
other internal nodes joined to node X are combined to create another new internal
node, until node X has only three branches. Only the tree with optimal S is retained
each time.

8.3 Generating Multiple Tree Topologies
Unlike the techniques discussed previously, the other tree-construction algorithms
we describe in this chapter involve two processes. One generates multiple possible
tree topologies, which are then evaluated in a subsequent procedure to obtain
branch lengths and measures of optimality. The generation of the topology is, in
principle, separate from the evaluation, but in many cases the measure of optimality
is calculated as tree-building proceeds, and is used as feedback during the construc-
tion process to exclude some topologies from consideration. The algorithms for
constructing tree topologies will be presented in this section (see Flow Diagram 8.3),
and the evaluation phase will be discussed in more detail in Section 8.4. We do,
however, need to introduce here two important concepts used in tree evaluation:
maximum parsimony and maximum likelihood. Maximum parsimony evaluates
trees by looking for the one that uses the least possible number of mutations to
reconstruct the phylogeny. Maximum likelihood evaluates a number of comparable
trees on the criterion of which is most likely to be a correct representation of the
data. All the tree-generation methods discussed here require a starting topology,
which is obtained using one of the techniques described in Section 8.2, such as
neighbor-joining, stepwise addition, or star decomposition. We will mainly discuss
the generation of unrooted trees, as this is the situation most often encountered in
practice. Usually, if a rooted tree is required, the root is determined separately from
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the overall topology and branch lengths. The techniques used to determine the root
will be discussed at the end of this section. 

An unrooted tree of N sequences that only has bifurcating nodes has (2N – 3)
branches. For three or more sequences, the number of distinct unrooted trees, TN,
is given by

(EQ8.33)

which increases quickly with the number of sequences. There are only 15 different
trees with five sequences, but 2,027,025 with 10 sequences. There are TN+1 different
rooted trees with N sequences. An exhaustive search of all possible tree topologies
is obviously impractical for even modest numbers of sequences, and methods
have been proposed that limit the search while, hopefully, including all relevant
tree topologies.

The measure of optimality used by these methods is given the symbol S, which, as
noted in Section 8.2, will be qualitatively different for different kinds of measures used.
For example, in parsimony methods it is related to the total branch length or total
number of mutations; in maximum-likelihood methods it is the likelihood of that
particular tree given the model. In the former case S will be minimized, and in the
latter it will be maximized. For the present discussion, this is all we need to know
about S.
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The key concept introduced in this
section is that a number of
techniques have been proposed
that can generate a set of trees
based on modifications of one tree.
These techniques can be combined
with tree scoring to produce
methods of identifying the tree(s)
with optimal score.
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The branch-and-bound method greatly improves the
efficiency of exploring tree topology
As there is only one topology for a tree with three sequences, by choosing any three
sequences we can generate a partial tree of the correct topology. Adding one
sequence at a time in all possible different ways to an existing partial tree can
generate all possible unrooted trees. Even if there are only a few sequences, if all
possible tree topologies are to be generated, the number quickly grows to a point
where the trees must be evaluated using the measure S as they are created, because
they cannot all be stored simultaneously.

In general, we are only interested in trees that have extreme values of S (maximum
or minimum, as required by the evaluation method to be used). Depending on the
way in which S is estimated, a shortcut can be available, which improves the effi-
ciency of the search. This technique, called branch-and-bound, identifies sets of
tree topologies that cannot have suitable S values. In the case of maximum parsi-
mony, we can exploit the fact that the total number of nucleotide substitutions
cannot decrease when another sequence is added to a partial tree. So, keeping with
maximum parsimony, if a partial tree has more mutations than a known complete
tree, adding further branches to the partial tree cannot possibly produce an optimal
tree. If a record is kept of the best complete tree found so far, of length Sm, we can
identify such dead-end situations and stop exploring related trees. In this way the
branch-and-bound method performs an exact search of the tree topologies in the
sense that no relevant trees are omitted from the study. However, all trees that have
a value S sufficiently close to Sm may be stored for further analysis.

The branch-and-bound technique can benefit from judicious choice of the order in
which sequences are added. For example, the starting three-sequence tree is
selected by calculating the branch lengths of all such trees and picking the one (in
the case of parsimony) with the most substitutions. This will give you a tree with the
three most divergent sequences, even though the tree will still be the most parsimo-
nious one for those sequences. A fourth sequence is then added to this tree,
exploring all remaining sequences in all possible topologies, and again choosing
the topology that gives the maximum parsimony tree with the most substitutions.
This is repeated until all sequences have been added and a complete tree produced.
This should be contrasted with many of the methods discussed above, in which the
most closely related sequences are selected first.

The rationale is that this order will rapidly produce trees with many substitutions.
Once the partial tree’s S-value approaches that of the current optimum tree, the
suboptimal partial trees will often have values exceeding Sm and further branch
addition can be ruled out. If a new complete tree is generated with a smaller S than
Sm, it becomes the new current optimal tree, and Sm is updated accordingly.

Optimization of tree topology can be achieved by making a
series of small changes to an existing tree
When there are many sequences, it becomes impractical to perform a full search of
all possible tree topologies, even taking advantage of the branch-and-bound
method. In such cases a suboptimal complete tree can be generated and used as a
starting point for subsequent exploration of similar tree topologies. The methods
we will discuss involve making small modifications to an existing tree and seeing if
it is better according to criterion S. There may, however, be local extrema for S,
which can prevent us finding the tree with the globally optimal S (see Appendix C
for discussion on the question of finding global minima in other contexts).

As well as comparing trees on the basis of their S-values, it is useful to have a quan-
titative measure of the difference between the topology of two different trees that is
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independent of the branch lengths. One such measure, called the symmetric
difference, is described in Box 8.2. 

One method of making small differences to a tree is to switch the order of the
branches in a procedure known as branch swapping. There are three main branch-
swapping techniques. The nearest-neighbor interchange (NNI) method creates
modified trees with a symmetric difference of 2 from the starting tree. Any internal
branch of a bifurcating tree will have four neighboring nodes (see Figure 8.8), each
of which may represent an individual sequence or a subtree. Without changing the
four nodes, there are three possible different topologies for this branch, of which
one is present in the starting tree. In the NNI method, the other two topologies of
this internal branch are produced and examined to see if they have more optimal S
values. Usually all (N – 3) internal branches are examined, generating 2(N – 3) alter-
native trees. When the best of the new trees has been found it becomes the next
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If two different trees have been proposed to represent
the evolutionary history of the same data, it is useful to
have a quantitative measure of the difference between
them. If the two trees have the same topology, the
branch lengths can be compared to highlight differ-
ences. If they have different topologies, however, the
branch lengths will not give a full measure of the
discrepancies. What is required is a quantitative topo-
logical measure. 

The difference between tree topologies can be quantified
through the use of splits (Figure B8.2; see also Section
7.1).  A topological distance between two trees can be
defined using the number of splits that differ. This is
known as the symmetric or Robinson–Foulds differ-
ence. For unrooted trees of N sequences, there are N – 3
internal branches, and the number of different splits
between two trees will therefore range from 0 to 2(N – 3).

In the example shown in the Figure B8.2, eight sequences
were used to build the tree and there will therefore be a
maximum of 10 possible different splits. The number of
different splits produced is sometimes divided by the
total number of splits (in this case 10) to give a clearer
measure of the relative extent of the difference.

It can be shown that the number of different splits is
equal to the minimum number of elementary opera-
tions—operations where nodes are merged or split—
that are needed to convert one topology to the other.
Alternative definitions of distances have been proposed
that measure the minimum number of operations
required when using the nearest-neighbor interchange
(NNI), the subtree pruning and regrafting (SPR), or the
tree bisection and reconnection (TBR) methods of
branch swapping  to modify trees (see Further Reading).

Box 8.2 Measuring the difference between two trees
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H(A) (B) (C)

Three trees constructed from the same set of data to illustrate
how the topological difference between trees can be
calculated in the form of the symmetric difference. The
symmetric distance is calculated as the number of splits that
differ between the two trees. (A) A tree for the eight sequences
A–H, with three internal branches labeled a, b, and c. (B) Tree
as in (A) but with the positions of nodes C and D switched, as

indicated by the red arrows. (C) Tree as in (A) but with the
positions of nodes F and G switched. The symmetric distance
between trees (A) and (B) is 2 because they have different splits
for branch a — (A,B,C)(D,E,F,G,H) compared with
(A,B,D)(C,E,F,G,H), respectively. Tree (C) is a distance of 4 from
(A), because of alternative splits for branches b and c, and it is
6 from (B) because of alternative splits for branches a, b, and c.

Figure B8.2

BIF CH8 5th proofs.qxd  17/7/07  11:44  Page 289



starting tree. This technique is easy to apply but only makes small changes in the
tree, and so is susceptible to local extrema. It is possible to extend the technique by
altering several internal branches simultaneously to create larger modifications
that may overcome these problems. The search is continued until no further
improvement in the S value has been obtained after some prespecified number of
attempts.

Subtree pruning and regrafting (SPR) can produce more drastic changes in
topology. One branch of the current tree is cut to produce two subtrees (see Figure
8.9). Each of these is then reattached to the other subtree using the cut branch.
Attachment is explored at all possible branches of the other subtree. This method
can produce substantially more new trees than NNI at each step; in fact, a number
proportional to the square of the number of branches.

The third technique, tree bisection and reconnection (TBR), is related to SPR, but
now the cut branch is removed from the subtrees, and they are rejoined by
connecting any two branches, one from each subtree. This produces even more
new trees. As before, the optimal new tree is used as the starting tree in the
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Figure 8.8
The basic structure around an
internal branch of a phylogenetic
tree. Each such branch will have
four neighboring nodes, which may
be individual sequences or subtrees.
There are three distinct topologies
for this branch.

E F

G

H

I

DC
B

A

E F

G

H

I

DC

B

A

E F

G

H

I

DC
B

A

E F

G

H
I

DC
B

A

b2

b3

b1

(A) (C)

(B) (D)

Figure 8.9
An example of subtree pruning and
regrafting (SPR). (A) The initial tree
has nine sequences labeled A–I. A
branch of the tree is cut at the point
indicated by the gray arrows,
creating a large subtree and the
smaller subtree with taxa E, F, and G.
(B) In this tree the subtree has been
placed on the external branch b1 to
taxon H, thus creating a new node.
The symmetric difference (see Box
8.2) between this tree and tree A is 2.
(C) In this tree the subtree has been
placed on the external branch b2 to
taxon B. The symmetric difference
between this tree and A is 6. (D) This
tree has been produced by
reattaching the larger subtree to the
smaller subtree E, F, G at its original
location but this time creating a new
node on branch b3 between E and F.
This tree has a symmetric difference
of 2 from A. In general, the
symmetric difference between the
initial and new trees depends on
many factors relating to the size of
the tree and subtrees and where the
regrafting occurs relative to the
pruning.
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following step. These two methods, SPR and TBR, produce new trees that have
greater variation from the starting tree than the nearest-neighbor interchange, and
so may be better at finding the globally optimal tree.

To understand the practical problems that may occur during optimization we must
imagine a surface for the criterion S. Given a topological distance measure such as
the symmetric distance (see Box 8.2) we can now conceive of a spatial arrangement
of the trees according to this measure (see Figure 8.10). This space will have a region
in which one tree has a more optimal S-value than the surrounding trees, and will
appear as a peak in Figure 8.10. Unfortunately, in most cases there will be more
than one such region, indicating that the optimal tree in this region may be only
locally optimal. We are searching for the globally optimal tree, however. The
branch-swapping methods allow us to explore this space, but at each step they can
only move a small distance. If this step size is smaller than required to move from a
locally optimal tree out of the group of nearby less optimal trees, the search will not
be able to escape from this region, and the globally optimal tree will not be found.
Two simple techniques can help us to avoid this situation. We can take bigger steps,
although this can make it harder to home in on the optimal tree. Alternatively, we
can perform many searches using different starting trees, in the hope that at least
one of these will lead to the best tree. This multiple minima problem is presented in
more detail in Appendix C for other optimization problems. In regard to trees,
however, it is distinct from the examples discussed there, in that tree topology can
only be changed in finite steps.

The tree-construction methods that search multiple different tree topologies often
give a similar optimal S-value for several trees. It may be that there is benefit in
reporting them all individually, but often it is more useful to obtain a consensus tree
that illustrates those features of the trees that are well conserved and thus may be
regarded as more reliable (see Figure 7.6). Consensus trees are not the only way of
assessing and representing alternative or uncertain topologies, and methods using
networks instead of trees have also been developed. Ways of assessing how strongly
certain tree features are supported by the data are discussed in Section 8.5.

Finding the root gives a phylogenetic tree a direction in time
Many of the techniques discussed in this chapter produce unrooted trees, yet it is
often desirable to know where the root lies, so that all the branches can be assigned
a direction in time. There are several ways of producing a root, but they all involve
inexact assumptions and it is usually advisable to resist defining the root when
possible. One way of defining a root on any tree is to arbitrarily choose the midpoint
between the two most distantly related sequences. This is very speculative,
however, and not to be recommended.

The most usual method of rooting a tree is to include a set of sequences that is
known to be an outgroup; that is, sequences relatively distant from all the other
sequences (see Figure 7.2D). It is preferable to use several outgroup sequences, and
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Figure 8.10
An imaginary landscape surface of
criterion S. In this case the tree
which best describes the data will be
that with the highest value of S.
There are several maxima in the
landscape. The methods described
in this chapter to optimize S move
over the landscape in small steps,
following a path such as represented
by trees A to D. If they find tree D,
most methods will terminate and
not locate tree O, which is an even
better fit.
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see that they cluster together, and also to try to use an outgroup that is still relatively
close to the other sequences. This method is often used, but requires care. If the
outgroup is very distantly related to the main set, accurate sequence alignment can
be problematic, and in addition the long length of the branches connecting them to
the other parts of the tree can cause errors in tree topology, as a result of the
phenomenon of long-branch attraction, which will be discussed in Section 8.5.

Another proposed technique for rooting trees is based on detecting gene duplica-
tion events. This method has its origins in attempts to create reconciled trees,
which combine species and gene phylogeny (see Figure 7.12). As discussed in
Section 7.2, gene duplications and other evolutionary events can cause the
phylogeny of genes to differ from the phylogeny of the species they have come
from. Methods have been proposed to reconcile these differences; they are based
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There is no difficulty in producing a phylogenetic tree
that connects the main domains of life if the sequences
chosen are similar enough for a meaningful alignment to
be created. It is quite common, however, to find that the
details of tree topology change significantly when
different genes are used. Assuming the alignments are
correct, there are two key reasons for such disagreements.

Firstly, there have been numerous horizontal gene
transfer (HGT) events in the history of life, which result
in some species appearing in unexpected locations on
trees if those genes are used (see Figure 7.16). There
have even been suggestions that in the very early stages
of evolution there was so much gene transfer that it may
be almost impossible to resolve the deepest evolu-
tionary connections. It has been observed that genes
involved in functions such as the processing of genetic
information, as in transcription and translation, give
more consistent trees, possibly because they are less
likely to have undergone gene transfer.

The second reason for different tree topologies is due to
the combination of two different genomes, a phenom-
enon known as genome fusion. Familiar examples are
the presumed symbioses between a proto-eukaryotic
cell and prokaryotes that gave rise to eukaryotic cells
containing mitochondria and chloroplasts. There is also
a suggestion that the eukaryotic cell itself arose from the
fusion of two distinct prokaryotes. If this is the case,
different eukaryotic genes will have originated in one or
other of these prokaryotes, and thus the eukaryotes as a
group will be found to have a different origin depending
on the genes used to reconstruct their phylogeny.

The standard tree-reconstruction techniques presented
in this chapter cannot model these evolutionary
processes and will produce incorrect trees. Careful
analysis of the tree can reveal HGT events (see Figure
7.16) while a genome fusion would appear in a tree as two

ancestors joining to form the descendant. James Lake
and Maria Rivera have proposed a method called condi-
tioned reconstruction that is able to produce such trees,
and have proposed a ring of life instead of a root (see
Figure B8.3). While the idea of a genome fusion origin for
eukaryotes is quite well accepted, it is too soon to know
how well this proposed ring of life will be received.

Box 8.3 Going back to the origins of the tree of life

Eukaryotes

Eocyta 
Proteobacteria 

Cyanobacteria 

Bacilli Euryarchaea 

Figure B8.3
A proposed schematic diagram of the ring of life. According
to this scheme, the eukaryotes have been derived by genome
fusion of an ancestor of the present-day bacterial lineage
Proteobacteria (or possibly a common ancestor of the
Proteobacteria and Cyanobacteria) with an ancestor of the
archaeal lineage Eocyta (Crenarchaeota). The bacterial
ancestor is assumed to have provided the operational genetic
content of the eukaryotic cell (genes and structures involved
in amino acid biosynthesis, energy generation, and so on),
while the eocyte provided the informational content (genes
involved in transcription, translation, and related processes).
(Adapted from M.C. Rivera and J.A. Lake, The ring of life
provides evidence for a genome fusion origin of eukaryotes,
Nature 431:152-155, 2004.)
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on identifying a unifying phylogeny that involves the fewest gene duplications and
gene losses necessary to explain the data. The same concept can be used to root
trees. If gene duplications are present in the phylogenetic history, a root can be
sought that minimizes the number of duplications. The speciation duplication
inference (SDI) method of Christian Zmasek and Sean Eddy is one such method,
and requires knowledge of the evolutionary tree for the species as well as the pres-
ence of several gene duplications within the dataset.

One important issue in evolutionary studies is the root of all known life—the last
universal common ancestor—and the evolutionary events leading to the separa-
tion of major domains of life, such as the eukaryotes. This area is briefly discussed
in Box 8.3 as it involves problems and proposed solutions not usually encountered
in normal phylogenetic analysis. 

8.4 Evaluating Tree Topologies
Each tree topology generated must be evaluated to see how consistent it is with the
data. There are a number of methods for doing this, each of which quantifies the
agreement between the data and the tree through application of a mathematical
function such as the estimated number of mutations involved in the reconstructed
phylogeny (see Flow Diagram 8.4). As in the previous section, the symbol S will be
used to represent the value of any of these functions. In some methods, such as
maximum parsimony, the optimal value is the minimum value for S, while in others
it is the maximum. The optimization of S has two separate steps. First, the optimal
value of S is found for each given tree topology. This exercise will involve calculating
the branch lengths, except for the parsimony approach, which calculates the total
length of all branches. In the second step, trees are ranked according to their value
of S. If several trees are identified as relevant, because they all have near-optimal
values of S, it can be helpful to construct a consensus tree (see Figure 7.6). 

One group of methods uses the evolutionary distances between sequences as the
basis for their optimizing functions. These distances are the same as those used by
the techniques described previously, obtained by application of a formula derived
using a model of evolution. In contrast to techniques such as UPGMA and
neighbor-joining, however, the methods applied here can give a score for any
submitted tree topology, and are also able to identify several equally or almost
equally good alternative topologies. After these distance-based methods, we will
discuss techniques that use the sequence alignment directly in evaluating the tree.

Functions based on evolutionary distances can be used to
evaluate trees
When functions involving evolutionary distances are used to optimize a tree
topology, the function optimized during the calculation of branch lengths for a
particular tree may not necessarily be the same function that will be used to
compare different trees. For example, branch lengths may be calculated by a least-
squares fit of the evolutionary distances, but trees might be compared according to
their total branch length. We will start by explaining some of the ways in which
branch lengths are derived for given tree topologies, and then look at some of the
functions used in comparing topologies.

The Fitch–Margoliash method as presented in Figure 8.5 can be used to calculate
branch lengths for a tree of specified topology, as long as all internal nodes of the
tree are resolved so that they all have three branches. By selecting one node at a
time from the specified topology, the formulae of Equation EQ8.18 can be used to
calculate branch lengths and so reconstruct the tree. In principle, the neighbor-
joining method can be applied in an equivalent way.
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Another method, which can be employed when calculating branch lengths, obtains
a best fit to the distances derived from analysis of the sequence alignment by
applying a least-squares fitting approach. The aim is to minimize a function of the
errors in the tree. A criterion of the form

(EQ8.34)

is used, where the dij are the distances between sequences i and j calculated from
the alignment, the Dij are the sequence distances calculated from the tree (some-
times referred to as patristic distances) and m is an integer, usually 2. The weights
wij although sometimes not used (all assigned the value 1) are often a function of
the distance dij. Sometimes the inverse of dij is used, implying that the errors and
uncertainty in the data are proportional to the distances.

The least-squares method can determine all branch lengths simultaneously
through the use of matrix algebra, although this technique is computationally
expensive. Suppose we have the tree given in Figure 8.11 and suppose that the
distances Dij in the tree between nodes i and j may not be the exact evolutionary
distances dij obtained from the sequence alignment. Then any pair of sequences i
and j have a patristic distance which in the case of Figure 8.11 can be written as

S w dij ij ij
i

m

j

= −( )
<
∑ Δ
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(EQ8.35)

This can be written in matrix notation as

(EQ8.36)

where DD and b are column vectors, DD with six elements in the order shown above
and b with five elements in the order b1 to b5. T is a matrix which holds the tree
topology, defined as

(EQ8.37)

We want there to be no errors in the Dij so that when the weights are also included
we have

(EQ8.38)

for all sequences i and j, which can also be represented using vectors and matrices
as

(EQ8.39)

d is a column vector equivalent to DD but containing the distances from the align-
ment, w is a square matrix with only the diagonal elements non-zero, in this case

(EQ8.40)

To obtain the least-squares estimate of the branch lengths the equations must be
solved for b. Using standard matrix algebra techniques, we first multiply by the
transpose matrix T T (element ). t tij ji
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Figure 8.11
Phylogenetic tree used in the
worked example of the least-
squares method. The patristic
distances are specified in Equation
EQ8.35, followed by the theory,
which can be used to determine the
values of the branch lengths b1 to b5.
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(EQ8.41)

Because T TwT is square, we can now obtain its inverse, and hence the solution is

(EQ8.42)

Using the matrix method of least-squares for a large number of topologies is
demanding of computer resources, and there are simpler and faster methods. One
of these will be described here, but others are described in or referenced by David
Bryant and Peter Waddell (see Further Reading). It was realized that for fully resolved
trees the determination of any given branch length involved very similar formulae
of two kinds, one for internal and one for external branches. These formulae can be
written down without the need to create and invert the matrix T, considerably
speeding up the calculation. For internal branches, the tree is simplified to one with
four clusters of sequences, as shown in Figure 8.12. Labeling the clusters W, X, Y and
Z, a distance dYZ is defined as the arithmetic mean of all inter-cluster distances. If the
clusters have nW, nX, nY, and nZ sequences respectively, we have

(EQ8.43)

Note that this is identical to the cluster distance defined for UPGMA in Equation
EQ8.15. The internal branch length bint can then be expressed as

(EQ8.44)

where

(EQ8.45)

For exterior branches, the length of the branch to cluster W is given by

(EQ8.46)

exactly analogous to the formula of the Fitch–Margoliash method (Equation EQ8.18).
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Figure 8.12
The tree structure for four clusters
W, X, Y, and Z used in describing the
least-squares method of Bryant and
Waddell. The clusters, drawn as
circles, represent one or more
sequences, with all sequences
belonging to one of the four clusters.
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The methods described so far in this section determine the branch lengths for a tree
of defined topology. This is the first step in assessing a given tree topology. However,
when comparing alternative topologies the trees are not necessarily ranked on the
basis of these calculations. Two different concepts have been applied to the
problem of assessing trees based on evolutionary distance data. The minimum-
evolution method attempts to identify the tree with the smallest total branch
length, as this will be the tree with fewest mutations required to explain the data. It
uses as its criterion

(EQ8.47)

where the bi are the lengths of the branches of the tree and the summation is over
all the tree branches; that is, S is the total length of all the tree branches. In some
variants the magnitude of each branch length is used in the formula. This is
because the correct tree (assuming the data consist of evolved sequences correctly
aligned) should have no negative branch lengths, yet the formula as written in
Equation EQ8.47 actually rewards such instances. The optimum tree is that with the
smallest value of S, although several trees may have S-values close to this optimum.
Note that the neighbor-joining method is closely related to minimum evolution
(compare Equations EQ8.47 and EQ8.19).

The second way of assessing the trees with their branch lengths involves applying
the idea of least-squares, attempting to minimize the discrepancy between the
evolutionary distances measured on the tree and those of the data. The criterion
used is of the form previously shown in Equation EQ8.34, the value of S being used
to rank the different tree topologies to identify the tree that most closely agrees with
the data evolutionary distances. The original Fitch–Margoliash method of tree
reconstruction used an inverse-square weighting scheme at this stage to compare
alternative topologies whose branch lengths had been determined as described in
Section 8.2.

Unweighted parsimony methods look for the trees with the
smallest number of mutations
The parsimony method of tree evaluation differs from the methods discussed
previously in that it uses the actual sequence alignment rather than distance meas-
ures. Although most parsimony methods use the nucleotide sequence, modifica-
tions have been proposed that enable the technique to be applied to protein
sequences. The idea behind the parsimony method is to give a tree based on as
simple an evolutionary history as possible, which in this case is equated with the
minimum number of mutations required to produce the observed sequences. The
philosophy of the approach is similar to that of the methods of minimum evolution
and neighbor-joining. Parsimony does not use the evolutionary models described
in Section 8.1, and so there is a potential risk of underestimating the number of
mutations between distantly related sequences, as a single mutation event will be
preferred at a given site unless the data give clear evidence for multiple mutations.
It is possible to weight mutations so that they are not all regarded as equal. We will
first discuss unweighted parsimony, followed by the different techniques that are
required for weighted parsimony methods.

In parsimony methods each position (site) in the multiple alignment is considered
separately. For a given tree topology we must determine the minimum number of
mutations required to reproduce the observed data for that site. The total for all
sites for that topology is the measure S, which is used to compare alternative
topologies; the tree with the smallest value of S is taken as the predicted tree. One
unusual feature of the method is that it is not necessary to calculate the branch

S bi
i

= ∑
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lengths in order to calculate the number of mutations. The calculation of branch
lengths can be applied just to the optimal trees.

The first stage is to distinguish between informative sites that can help to distin-
guish between alternative topologies and other sites. Sites that are not informative
require the same minimum number of mutations regardless of the tree topology,
for example because they are fully conserved (invariable sites), or because only one
base (or amino acid residue) is present more than once in the alignment (singleton
sites). Singleton sites are not informative because, regardless of the tree topology
proposed, each unique base or residue will require just a single substitution. Once
informative sites have been identified, we need to determine the minimum number
of mutations required to reproduce the data. This is easier to do for rooted than for
unrooted trees, and so a root is arbitrarily assigned for the purposes of the calcula-
tion. This can be done because, fortunately, the number of minimal mutations is
the same regardless of root position. This arbitrary root is only used for these calcu-
lations.

In unweighted parsimony all mutations are given the same weight. The minimal
number of changes at a given position in the sequence at an ancestral internal node
can be counted using a simple method called the Fitch algorithm, which gradually
moves back to the root from the leaf sequences. This is often referred to as post-
order traversal. At each node a set of bases is assigned; just a single base is assigned
to each leaf unless there is uncertainty at that sequence position. If the two imme-
diate descendants of an internal node have some bases of their sets in common,
these bases are also assigned to the ancestral node. If the descendants have no
bases in common, then all bases of both descendants are assigned to the internal
node. Each time there is no base in common in the descendants a mutation must
have occurred and is added to the count for the tree.

The process is illustrated in Figure 8.13, which shows a tree for six sequences, with
the base present at a particular alignment position shown at the leaves. Thus, the
immediate descendant sequences of node V in this figure have C and T at the
given position. Following the post-order traversal method, both C and T are
assigned to node V, and one mutation is counted. Similarly, internal node X is
assigned A and T with addition of another mutation. Working further back, the
internal node of which V and X are descendants, node Y, can then be assigned a T,
the base in common between V and X. This procedure is carried out at each align-
ment site for each tree topology under consideration. The mutations can be
summed in a straightforward manner for all alignment positions to give the final
total S for that tree. The trees with different topologies can be ranked according to
the value of S.
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Figure 8.13
A worked example of post-order
traversal to determine the states at
the ancestral nodes of a tree for six
sequences. The base is shown that
occurs in each sequence at a
particular alignment position where
three T bases are aligned with two A
and one C. Node V is assigned the
possible set of bases {C, T} because
its daughter nodes do not have any
bases in common, so that the
assignment must contain all bases
assigned to the daughter nodes.
Internal node Y is assigned base T
only, as T is common to its daughter
nodes V and X. The total mutation
count for the tree is 3.
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While this method correctly counts the minimal number of mutations, it does not
give the information required to calculate branch lengths. It turns out that the sets
of bases assigned at each internal node are not a complete list of those that might
have occurred for the minimal number of mutations. To obtain the complete list of
possible base assignments to the internal nodes, which is a prerequisite for deter-
mining the branch lengths, two calculation steps are needed. The first is a modified
version of the post-order traversal described above, counting mutations and gath-
ering information about possible node assignments. In the second step, which
proceeds from the tree root to the leaves, all possible sets of consistent internal
node assignments are obtained.

In the modified first step, each internal node i is assigned two sets of bases F(i) and
H(i) according to the assignment F(j) for its immediate descendant, or daughter
nodes j. We sum the numbers of each base k in the daughter nodes F(j) to get ni(k).
For example, if there were two daughter nodes with sets of base assignments {A,C}
and {C}, then ni(A) = 1, ni(C) = 2, ni(G) = ni(T) = 0. F(i) is assigned the set of all bases
that have the largest value of ni, in this case {C}. The second set H(i) is assigned the
set of all bases whose ni is one less than this maximum, in this case H(i) = {A}. In
addition, during this step, a cost S(i) is assigned to each node, which is the cost of
the tree of all descendants from node i. The cost S(i) is calculated using the formula

(EQ8.48)

For initialization of the calculation, the leaves (that is, the present-day sequences)
are assigned S(j) = 0 and their set F(j) is simply the base at that sequence site. A
worked example is given in Figure 8.14, using the same tree as in Figure 8.13. As
shown in Figure 8.14B, the sets F created are identical to the assignments from the
simpler technique discussed above and shown in Figure 8.13. The value of S at the
tree root is the cost for the whole tree, 3 for the example shown, in agreement with
the post-order traversal calculation.
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(D) Summary of alternative assignment sets: 
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(C) SECOND STEP: 
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Figure 8.14
A worked example of the technique
for identifying all possible states of
the internal nodes of a tree with
unweighted parsimony. (A) The tree
of Figure 8.13. (B) The first step in
which each internal node is
assigned its base sets F(i) and H(i)
as described in the text, proceeding
from the leaves to the root. (C) The
second step, in which the internal
node assignments are refined
working from the root to the leaves.
(D) A summary of the possible sets
of base assignments for the 
internal nodes.
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The second step involves starting at the tree root and working toward the leaves. For
each possible assignment [taken from F(i)] of a base k to a parent node i, one or
more possible assignments can be given to the daughter nodes j. If base k is in the
set F(j), the node j is assigned this base too. (For example the third line of Figure
8.14C.) If it is not in F(j) but is in H(j), then j has a set of possible assignments that
includes all the bases in set F(j) and base k in addition. (For example the second line
of Figure 8.14C.) If k is not in either of sets F(j) and H(j) then node j is assigned all
the bases in set F(j). (For example the sixth line of Figure 8.14C.) This leads to a set
of assignments for all the internal nodes, each of which will have the cost S, as illus-
trated in the worked example of Figure 8.14. To see that this technique recovers
more possible assignments than the method of Figure 8.13, note that originally
node Y was assigned only base T. Now, in the case of node Z being assigned base A,
Y is assigned a new set of bases {A,T}, as a result of which the possible assignment
of A at node Y arises.

All possible sets of internal node assignments are given in Figure 8.14D. From
Figure 8.13 we might easily have found sets 1 and 2, but the others, especially set 3,
would not have been found. It is particularly important to have all these sets when
calculating branch lengths, when all possible patterns of mutation should be
considered. If the second step of working upward from the root to the leaves is
omitted, we can only determine the most parsimonious tree topology, but not
determine actual branch lengths. When calculating branch lengths, the location of
mutations in each of the alternative assignment sets must be considered. If alterna-
tives exist (for example, see Figure 8.14D) the number of mutations assigned to a
branch is usually taken as the average of all these. The uninformative singleton sites
must also be included in the branch length calculation, as they are only uninforma-
tive in comparing alternative topologies.

Mutations can be weighted in different ways in the parsimony
method
Unweighted parsimony uses the total number of nucleotide substitutions required
for the tree as the criterion S. However, not all mutations are equally likely and a
weighting scheme may produce better results. In unweighted parsimony all
nucleotide substitutions are weighted equally (see Figure 8.15A), while in weighted
parsimony the substitutions are given different values that reflect, for example, the
transition/transversion bias (see Figure 8.15B). Because transitions usually occur at
a greater rate than transversions, over long times it is possible that sufficient tran-
sitions will have occurred to lose any clear phylogenetic signal. It has therefore been
proposed that such data are best analyzed with a weight of 0 for transitions, so that
only transversions are counted (transversion parsimony).

A different form of weighting is to weight different sites in the alignment. In
protein-coding sequences, for example, different weights are given to mutations at
different codon positions. If protein sequences themselves are being studied, the
mutations observed are at the amino acid level, and can correspond to one, two, or
three nucleotide mutations. Weighting schemes have been proposed that try to
account for this.

When weights are applied, the Sankoff algorithm should be used to evaluate
maximum parsimony. This algorithm is a form of dynamic programming, a tech-
nique that was introduced in Section 5.2 in the context of pairwise sequence align-
ment. As in the dynamic programming methods of Chapter 5, there are two stages in
the calculation. The first is to calculate the lowest total mutation cost of the tree
(equivalent to the sequence alignment score) and the second is traceback to deter-
mine the sets of possible node assignments and thus the branch lengths (equivalent
to determining the actual alignment as described in Section 5.2). The initial stage of
this algorithm is a post-order traversal. At each node each of the possible bases is
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Figure 8.15
Weight matrices for use in
maximum parsimony to distinguish
between different types of
mutation. (A) This matrix has all
nucleotide substitutions weighted
equally, as in unweighted
parsimony. (B) This matrix is
weighted to favor transitions over
transversions by a factor of R, which
represents the excess of transitions
over transversions (see Box 8.1).
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considered in turn. For each of these bases, the lowest possible cost is calculated of
obtaining the observed descendant leaves. This cost is the weighted count of muta-
tions, S. The calculation relies on having the cost (weight) of each mutation speci-
fied, denoted here by wij for a mutation from base i to base j. The wij values will not
necessarily be independent of alignment site, but this will not be indicated in the
notation for simplicity. Each internal node will be the ancestor of two daughter
nodes, with calculated costs at the three nodes being written as Sa, Sd1, and Sd2,
respectively. The minimal cost at the ancestral node when the base i is assigned to
it will be identified as Sa(i). This can be calculated from values at the daughter nodes
as follows:

(EQ8.49)

All possible base assignments must be considered: that is, having any possible base
at either daughter node give rise to any possible base at the ancestral node. The
calculations must be started at the tree leaves where the base assignments are
unambiguous, and the connecting internal nodes can then be calculated, followed
by other nodes back to the root. At the leaves the observed base should be assigned
a cost of 0, and all other possibilities infinite costs, forcing all subsequent calcula-
tions to use only the observed bases in their cost estimates. All those assignments
of the two daughter nodes that produce a minimal cost for a given ancestral node
assignment should be stored for later use. In Figure 8.16 the calculation previously
outlined for the other parsimony methods has been redone using the Sankoff
method. In this case, all the weights have been assigned a value of 1, so that the
results should be identical to those previously achieved, so that all the methods can
be readily compared. The costs associated with assigning each of the four bases to
the internal nodes are given, together with a list of base pairs that contributed to
this score. For a base pair listed as ab, the left-hand daughter node, as the tree is
drawn, had the a assignment, and the right-hand daughter node, the b.

Once all costs have been calculated back to the root, the score associated with this
alignment site and this tree topology is given by the smallest score, in this case the
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Figure 8.16
Application of the Sankoff
algorithm for weighted parsimony.
The algorithm is applied to the same
tree as used in Figures 8.13 and 8.14.
Note that although differing weights
could have been used, in this case
all the weights are 1 so that the
result is exactly identical to that of
Figures 8.13 and 8.14. At each of the
five internal nodes V to Z (calculated
in that order) the score is given for
each of the four possible bases in
order (A,C,G,T). Underneath each
base is a list of the combinations of
bases in the daughter nodes that
lead to the given score. The base
combinations show the bases on
each of the two daughter nodes,
with the left base corresponding to
the left daughter node as the tree is
drawn. Thus for node Y, if it is
assigned as A with a score of 3, this
could arise from node V being
assigned as A, C, or T and node X
always being assigned as A. These
base combinations are the
equivalent of the traceback arrows
in the dynamic programming
matrices of Section 5.2. All the
scores and base combinations
involved in the traceback are
colored red. If all possible traceback
options are explored, the table of
Figure 8.14D is reproduced exactly.
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value 3, given for assignments at the root of bases A or T. The sets of possible base
assignments at the internal nodes can be obtained by a traceback procedure,
following the different contributing assignments. These are all colored red in Figure
8.16. If this procedure is followed, all the sets listed in Figure 8.14D will be recov-
ered, so that the method is in full agreement with the previous results.

Trees can be evaluated using the maximum likelihood method
The probability of the occurrence of a particular evolutionary history as repre-
sented by a particular tree can also be calculated with the assumption of a specific
model of evolution. This is called the likelihood of the model (see Appendix A). The
tree that has the maximum likelihood—that is, the highest probability assuming
the model—will be predicted to be the correct tree. If the model is a reasonable
representation of the evolutionary processes that have occurred then this should be
the case. The likelihood is defined in terms of a particular tree topology and branch
lengths together with a specific model of evolution. In this discussion we will
assume that the model used is time-reversible, a property of all the models
discussed in this chapter and Chapter 7. Time-reversible models give the same like-
lihood regardless of which time direction is assumed for a branch, so that conse-
quently the location of the root is unimportant in the calculation.

We will first see how the likelihood of a tree can be calculated, using the example in
Figure 8.17. This is a tree with four leaves at nodes labeled 1 to 4, with observed
sequences at these leaves, but unknown ancestral sequences at the internal nodes
Y and Z. The probabilities calculated depend, among other things, on the tree
topology (T). Each branch will be considered separately, and the probability of base
i at any position mutating into base j in a time t will be written P(j|i,t). The precise
mathematical form of this will depend on the evolutionary model used. In the JC
case with mutation rate parameter a, we have

(EQ8.50)

Note that this differs from Equation EQ8.8 in having terms in e -4at rather than e -8at

because that equation referred to the simultaneous evolution of two sequences.

As with parsimony, we are considering the sequence data themselves, and look at
each alignment position in turn, ignoring sites with gaps. Another feature in
common with parsimony is the arbitrary and temporary use of a tree node as the
root during the calculation. The likelihood of specific bases xY and xZ occurring at a
particular sequence position at internal nodes Y and Z of the tree with topology T
and branch lengths ti (see Figure 8.17) is given by

(EQ8.51) 

where qxY
is the probability of the base at internal node Y (here taken as the root)

being xY. (This is assumed to be simply related to the composition of the sequences
under consideration—that is, these qa are equivalent to the sequence composition
qa in Section 5.1.) Each branch is assumed to have evolved independently, so the
probabilities are multiplied together.
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Figure 8.17
Example phylogenetic tree for
which the maximum likelihood
equations in the text are derived.
The branches are labelled ti here as
opposed to bi in other figures
because the lengths are modeled as
evolutionary time in the equations.
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The internal nodes Y and Z could have any possible base for the ith position and
this must be taken into account. The likelihood Li, of the observed sequences x1 to
x4 is obtained by considering all possible bases (residues) at xY and xZ to obtain

(EQ8.52)

Note that at each node these alternative bases are mutually exclusive possibilities,
and so are added together. Considering all the positions, we can obtain the total
likelihood L by multiplying these individual terms together; or alternatively by
taking logarithms, we obtain

(EQ8.53)

where the sum is over all sequence positions i. Note that node Z could equally well
have been used as the root, and the same result would have been obtained.

For the given tree topology we still need to find the tree with maximum likelihood by
varying the available parameters. The parameters to be optimized include the
branch lengths and possibly also the parameters specific to the evolutionary model
used, for example substitution rate a in the case of Jukes–Cantor. The partial deriva-
tives with respect to the parameters of the individual terms of the equations for like-
lihood are readily derived, and these can be used in standard function minimization
routines to obtain the optimal parameter values and the maximum likelihood.

A search of tree topologies must be made as described previously, calculating the
maximum likelihood L for each. As with parsimony, there may be several trees with
similar values of L that may all be regarded as relevant, and some form of consensus
tree may be produced. 

As an example of this method, consider the determination of the maximum likeli-
hood tree for four sequences of one base each (two being A and the other two C)
under the (unrealistic but here usefully simplifying) constraint of all five branches
having the same length t, using the Jukes–Cantor evolutionary model. The base
composition will be assumed to be equal for all four bases, that is 25% each. The
two possible tree topologies are shown in Figure 8.18. This problem has only one
parameter to determine, namely the branch length.

As the sequences are only one base long there is only one site, and the likelihood of
a tree is given by Equation EQ8.52 with each P term replaced by one from Equation
EQ8.50. All possible bases must be considered for the internal nodes Y and Z, giving
16 different terms in the equation. All bases are assumed to be equally present; that
is, qA = qC = qG = qT = 1/4. Because all branches are the same length, only two
different terms will occur in the equations: E is the probability of a branch of length

ln lnL Li
i

= ∑

L q x x ,t x x ,t x x ,t x x ,i x=
Y

P( )P( ) P( )P(Y Y Z Y Z1 1 2 2 5 3 tt x x ,t
xx

3 4 4)P( )Z
A,C,G,TA,C,G ZY ==
∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥,,T

∑

Evaluating Tree Topologies

303

A

A

Y Z

C

C

A

C

Y Z

A

C

(A) (B) Figure 8.18
Two possible trees that could be
generated by the maximum
likelihood method for four
sequences composed of one 
base each (A, A, C, and C). Note 
that all five branch lengths are
(unrealistically) constrained to 
be equal. 
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3at (where a is the rate parameter of the JC model, and t is time) between nodes
with identical bases

(EQ8.54)

and D is the probability of a branch of length 3at between nodes with different
bases

(EQ8.55)

For the tree in Figure 8.18A, if the nodes Y and Z have bases A and C, respectively,
four of the branches have the same base at each end, giving an E term, and that
joining Y and Z has a D term. The likelihood for this particular choice of bases and
topology is given by 1/4E4D where the initial 1/4 arises from the qA term. In a similar
way, the likelihood for the tree summing over all base choices for nodes Y and Z is
given by

(EQ8.56)

where the first term is from base choice (A,C) and the second from base choices
{(A,A) and (C,C)} where the first base is on node Y and the second on node Z. The
tree in Figure 8.18B results in the equation

(EQ8.57)

where now the first term arises from base choices {(A,A) and (C,C)} and the second
from {(A,C) and (C,A)}.

To predict the branch length and tree topology, we need to know the maximum like-
lihood, which in this simple case we can determine by plotting these functions with
varying at (see Figure 8.19). It is clear from comparing the curves in Figures 8.19A
and 8.19B that the optimal tree (that with greatest L) will have the topology shown
in Figure 8.18A and at of approximately 0.103, giving branch lengths of approxi-
mately 3at = 0.31. Note that although the likelihood of this tree is dominated by the
contribution from the first term of Equation EQ8.56, other trees with different bases
at Y and Z contribute about one-sixth of the total. From Figure 8.19B, the topology
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Figure 8.19
The variation of the maximum
likelihood L and some of its
components for the two trees of
Figure 8.18. (A,B) Plots of the total
likelihood L (light blue) and selected
components for the trees of Figures
8.18A and 8.18B, respectively,
plotted against at, where a is the
rate parameter of the JC model, and
t is time. These correspond to
Equations EQ8.56 and EQ8.57,
respectively. Two components have
been separated from the total. That
labeled “A,A or C,C” (red) is the
likelihood term when both internal
nodes Y and Z are base A or both are
base C. The component “A,C” in (A)
(black) is the likelihood term when
node Y has the base A and node Z
has the base C. In (B) the black line
includes both this tree and also the
tree in which node Y has the base C
and node Z has the base A. The
other components of the likelihood
are shown by the yellow line.
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shown in Figure 8.18B never reaches half the likelihood value for the optimal tree
and so that topology can be discarded.

In realistic cases, only the top-scoring topology, its branch lengths, and likelihood
are reported. This simple case allows us to investigate individual contributions and
understand the model a little better. The dominant base choice for the base assign-
ment to the node Y and Z of the tree of Figure 8.18A is (A,C) as might have been
guessed for this simple problem. At sufficiently long times for many mutations to
have occurred (at approaching 1), ultimately all base choices for nodes Y and Z
become equally likely to have produced any base at an external node. At these long
times, the tree is essentially indistinguishable from random. The plots in Figure 8.19
confirm this and show that the total likelihood at large at converges to the same
value for both topologies.

This presentation is intended to give an insight into the nature of the science
behind a maximum likelihood calculation. The details of practical algorithms have
been omitted as beyond the scope of this book. However, without an efficient algo-
rithm the method would be impractical because of the significant computational
effort required. For further insights into the algorithmic developments that have
made the maximum likelihood method viable, see Further Reading. As well as opti-
mizing branch-length calculation algorithms, the improvements involve careful
attention to the efficiency of topology sampling.

The quartet-puzzling method also involves maximum
likelihood in the standard implementation
Quartet puzzling was proposed as a response to the practical limitations imposed
by the computational demands of maximum likelihood methods. A quartet is any
set of four taxa chosen from a tree. Each quartet of a tree will have one of the three
topologies of Figure 8.8. If the topologies of all quartet subtrees are known, it is
possible to reconstruct the correct topology of the complete tree. This property of
quartets is exploited to determine the topology of the complete tree.

In the first of three steps all possible quartet subtrees of the data are generated,
considering all three possible topologies for each quartet. The maximum likelihood
method is used to determine the best tree from each set of three. In fact, the method
tries to allow for the lack of a clear preference for one of the topologies, although in
the next step only one of any possible alternatives is used. The next step only
requires the topology of the quartets, and involves generation of a complete tree.
Taxa are added one at a time in such a way as to minimize the disagreement
between the resultant tree and the splits present in the quartet trees. This is the
process known as quartet puzzling, and results in a tree topology that is often
dependent on the order of addition of taxa to the tree. To overcome this bias, many
trees are determined adding the taxa in different orders. In the final step these trees
are summarized into a majority rule consensus tree.

An example of the method is given in Figure 8.20 using six taxa. The correct tree that
is to be reconstructed from the data is shown in Figure 8.20A. It has 15 possible
quartet trees with the splits obtained from maximum likelihood analysis listed in
Figure 8.20B. One of these is chosen at random as the starting point. We will use
quartet 1 (AD)(BC) and follow the construction of one complete tree. Two further
taxa must be added to this tree, and in general will be selected in random order.
Here we will add E first and then F.

Four quartets contain information about the tree with taxa A–E that is not present in
the starting tree. These quartets are 2, 4, 7, and 11 of Figure 8.20B. For each quartet
we consider the addition of E at every possible branch of the starting tree. Whenever
adding E at a branch would result in a different split from that of the quartet, the
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branch is penalized with a value of 1. If the split of the quartet is correctly given, that
branch receives no penalty. The penalties are added up for the four quartets, and the
branch with the lowest penalty is chosen as the site to add E to the tree. In the case
of a tie, the branch is selected at random from the favored branches. Figure 8.20C
shows the process in action, resulting in the tree of Figure 8.20D.

It now remains to add taxon F. This is done using the same technique, now
involving all quartets that include F and three of the taxa A–E. There are 10 of these,
as listed in Figure 8.20B. The branch penalties clearly disfavor branches 1–4 as
numbered in Figure 8.20D. Branch 6 is (correctly) favored over 5 and 7, as a result of
the splits of quartets 9, 13, and 15. These each penalize branches 5 and 7, but not
branch 6, resulting in total penalties for branches 5, 6 and 7 of 3, 0, and 3, respec-
tively. The quartet splits in this example were all consistent, leading to a clear result
that is independent of the order of addition of taxa. However, data errors will lead
to some inconsistencies and to different final topologies that are dependent on the
addition order. To cope with this, many trees are constructed adding the sequences
in different orders, and the consensus tree is reported.

Bayesian methods can also be used to reconstruct
phylogenetic trees
The maximum likelihood method calculates the optimal tree to represent the data
by calculating the probability that the assumed evolutionary model (the hypothesis
H) produced the data D, written P(D|H). This is the likelihood of the model. In
contrast, Bayesian methods involve statistical analysis that includes estimates of
the probability that a given model has occurred, based on prior assumptions. (See
Appendix A, where the key concepts of Bayesian methods are presented.) The
assumed model in this case is in fact not simply an evolutionary model as defined
and discussed in Section 8.1, but also includes the tree topology. The reason for this
becomes clear on realizing that the speciation and gene duplication events that
give rise to the bifurcations at the nodes are not included in the likelihood calcula-
tions discussed above, and so must be included in some other way. Ideally, we
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(C)

(A) (B) quartet split comment

1 (AD)(BC) –

2 (AB)(CE) +E

3 (AB)(CF) +F

4 (AD)(BE) +E

5 (AD)(BF) +F

6 (AB)(EF) +EF

7 (AD)(CE) +E

8 (AD)(CF) +F

9 (AE)(CF) +EF

10 (AD)(EF) +EF

11 (BD)(CE) +E

12 (BD)(CF) +F

13 (BE)(CF) +EF

14 (BD)(EF) +EF

15 (CF)(DE) +EF

(D)

Figure 8.20
A worked example of the quartet-
puzzling method of tree
reconstruction. (A) The correct tree
whose topology is to be
reconstructed from the data. (B) A
list of the quartet splits of this tree,
with a comment to indicate the taxa
not present in the ABCD quartet that
is used as the starting point for
building the tree. In a real case the
splits will have been determined
from the data using maximum
likelihood, and would include errors
as well as possibly some splits not
fully resolved. (C) The starting tree
with taxa A–D, showing the branch
weights used to determine the
position of taxon E. (D) The tree
with E added, and the branches
numbered as in the text discussion.
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would like to know the posterior probability of the model given the data, written
P(H|D), and would then choose the model with the highest such probability. As
shown in Appendix A, to calculate such quantities we need an estimate of the prior
probability of the model, which includes the tree topology.

There are currently no generally agreed prior probabilities for tree topology, and a
number of different aspects need specifying in order to apply Bayesian methods,
for example the distribution of speciation events in time. The issues involved are
very different from the others described in this book, and the interested reader is
directed to Further Reading for details. Some skepticism about Bayesian methods
has been expressed because of the lack of clear evidence that the prior probabilities
used are realistic. An additional problem is that the method ultimately needs to
calculate the posterior probability of the model, but this calculation is very difficult
as a result of the nature of the formula. It requires a weighted average of values
calculated (in principle) on all possible tree topologies. A technique called Markov
chain Monte Carlo (MCMC) is used to achieve this. In essence, the method runs for
many thousands of cycles, each cycle consisting of two steps. In the first step an
attempt is made to change the model, typically the tree topology. This change is
either accepted or rejected using a test that involves the prior probability distribu-
tion of the model as well as the calculated likelihood P(D|H). The current tree—the
unchanged tree if the change was rejected—is then included in the set of trees used
in the second step to calculate the average mentioned above. Typically, because
only relatively small topology changes are made in each cycle, consecutive trees are
highly correlated. The initial tree will probably be very different from the optimal
topology, which it may take several hundred or even tens of thousands of cycles to
approach. These early trees are not truly representative of the data, and should be
omitted from the averaging process. Hundreds of thousands of cycles are typically
run in the averaging phase, but the number depends on many factors including the
size of the dataset and the properties of the topology change step.

The Bayesian method just described appears, together with maximum likelihood,
to be among the most accurate available for constructing trees, and is proving
increasingly popular. The result is usually reported as a summary of the different
trees produced, and thus automatically has indications of feature reliability
commonly only obtained by running a bootstrap analysis, which is described in the
next section.

8.5 Assessing the Reliability of Tree Features and
Comparing Trees
If sufficient computer resources are available in most cases any of the techniques
described in this chapter can be applied to any dataset to produce one or more
phylogenetic trees. Failures are most likely with methods using corrected evolu-
tionary distances, for example if using Equation EQ8.9 for the JC model and
encountering more than 75% base differences between two aligned nucleotide
sequences. This particular problem can often be overcome by using a series expan-
sion of the logarithm in this equation. However, even when it is the best tree found
in a thorough topology search, a reported tree is not necessarily correct in all
details, and further tests must be carried out to explore the reliability of the tree
features. Most trees produced from real data by any of the methods discussed in
this chapter will contain some features that are strongly present in the data and
very reliable, and others that are not well supported and possibly spurious. It is
important to be able to estimate the strength of evidence for different tree features,
and some methods for doing this are discussed next (see Flow Diagram 8.5). 

It is useful to briefly consider the reasons why an incorrect tree may have been
produced. The method used may have involved the assumption of an evolutionary
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model that was inconsistent with the data, either because of incorrect parameteri-
zation or because the model was too simple. Alternatively, the data themselves can
cause problems if there is insufficient sequence or if inconsistencies or errors are
present. Highly variable mutation rates can also cause problems. Many methods
are vulnerable to certain evolutionary features that can lead to particular types of
errors occurring in the tree. One of these is long-branch attraction.

Another situation where further analysis is required occurs when some of the
suboptimal trees are reported. In this case, even if each tree has a score, such as the
number of mutations from maximum parsimony analysis, this score does not easily
translate into a measure of the relative support in the data for the alternative trees.
Methods for trying to assess tree support are therefore required. The same tech-
niques can be applied to examine competing hypotheses presented as two or more
alternative tree topologies.

The long-branch attraction problem can arise even with
perfect data and methodology
As the amount of data used increases, one would hope that all methods would
become more likely to determine the correct tree, and in general this is the case.
However, there is at least one exception, often referred to as long-branch attraction
(or the Felsenstein zone), which results in a tree that is inconsistent with the data.
This potential problem involves trees in which some branches are considerably
longer than others, as illustrated by the trees in Figure 8.21. 
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This example involves four sequences, with the phylogenetically correct tree being
that in Figure 8.21A. Considering the parsimony method, one can readily see how
that method will produce the incorrect tree, Figure 8.21B, in which the two long
branches are neighbors. The two short branches are assumed to be sufficiently short
that at most sites in the sequences S and R no mutations have occurred and the
sequences have the same base. Using parsimony, a site will only be informative, and
thus be included in the analysis, if the bases at that site in the two long branch
sequences (P and Q) are different from that at the short branches and yet the same
as each other. Otherwise the site will be a singleton. In this case, however, maximum
parsimony will propose that the long branches are neighbors, and the tree in Figure
8.21B will be proposed. The same problem can also arise with other phylogenetic
tree methods. It is hard to determine the extent to which this problem arises in real
data, although there are a number of cases where it has been suspected.

Tree topology can be tested by examining the interior
branches
When investigating the reliability of the features of a phylogenetic tree it is particu-
larly important to assess the accuracy of splits that identify key evolutionary events
such as when clades diverge from each other. The methods for doing this fall into two
categories. Some explore the range of branch lengths for a given confidence interval,
usually to see if the range includes zero, in which case the associated split may be
poorly supported. An alternative, the bootstrap technique (see Box 8.4), involves
deriving a series of trees and looking at the fraction that contain the same split. 

The normal bootstrap test method generates a large number of trees with poten-
tially different topologies. These are usually analyzed on the basis of the topology,
ignoring the branch lengths. Each split in the original tree is searched for in the new
trees, and the percentage occurrence in the set of trees is noted. This percentage is
taken to indicate the reliability of the split. It has been noticed, however, that there
is a difference between 95% confidence intervals and a split present in 95% of the
bootstrap trees. In general, the bootstrap values underestimate strong support for
splits. Methods that are more complex have been proposed as improvements, of
which currently the best is possibly the AU (approximately unbiased) method (see
Further Reading for a detailed discussion of this issue).

Analytical methods have been derived for calculating the standard deviations of the
branch lengths obtained by some of the distance-based methods, usually involving
considerably more calculation than is needed to produce the tree. If the branch-
length estimates in these methods are assumed to follow a normal distribution, a
simple z-test (see Section 16.4) can be used to determine the possible range of
lengths for a given confidence interval. If the length range includes zero length, the
related split will be assigned correspondingly low confidence.
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Figure 8.21
Two trees that illustrate the
potential problem of long-branch
attraction. In trees where some
branches are considerably longer
than others, maximum parsimony
may incorrectly favor a tree with the
wrong topology. In a situation where
the tree in A is the true tree, the
method of maximum parsimony will
always prefer the tree in B instead.
To see why this will happen,
consider a single site that has base X
in the sequences R and S. Unless
this site is not X and the same base
in both sequences P and Q it will be
an uninformative site. However, if it
is not X, parsimony will propose that
the tree in B is to be preferred.

BIF CH8 5th proofs.qxd  17/7/07  11:45  Page 309



A procedure has been proposed that can be used to obtain a numerical estimate of
the branch length standard deviations. Called the bootstrap interior branch test, it
involves generating new datasets by sampling the original one, and then obtaining
the branch lengths on the same tree topology with the new data. Note that the repli-
cate datasets are not analyzed exactly as the original data were, since the only tree
topology analyzed is that produced by the original data. In this way, sample distri-
butions are obtained for each branch length. These can be used to estimate the
confidence of the interior branches being non-zero. A further set of tests has been
proposed for examining whether there has been a constant molecular clock (rate of
evolution) for the period of evolution covered by the data (see Further Reading).

Tests have been proposed for comparing two or more
alternative trees
There are many occasions when there are competing hypotheses concerning the
evolutionary origins of particular groups of species. If two trees are generated based
on the two competing hypotheses, then some of the methods described earlier can
be used to score both trees. However, it is not immediately apparent how to assess
the relative weight to be given to each tree on the basis of, for example, their calcu-
lated likelihoods. The likelihood ratio tests described in Section 7.3 when choosing
evolution models cannot be applied here, because both trees will have the same
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As well as obtaining a result from applying a technique
to a set of data, we frequently want to have an estimate
of the possible variability or uncertainty in that result.
On some occasions it is possible to obtain more data, for
example by taking more measurements, but often, as in
the case of sequence data, this is not an option. More
new sequences can be added, but there is no real equiv-
alent of a repeat measurement for a given sequence. In
1979, Bradley Efron proposed a method he called the
bootstrap analysis, which uses the original dataset to
generate estimates of the variability of the results.

The method is remarkably simple and yet usually very
effective. If we knew the true distribution from which
the data came we could calculate any properties of
interest from it. The key to the technique is to assume
that the original dataset is sampled in an unbiased
manner from the real but unknown distribution. A new
dataset can be produced by sampling from the original
one. If it is sampled correctly, it will also be an unbiased
sample of the true distribution, and can be used to esti-
mate property variances. Typically the identical analysis
is run on the new datasets as was run on the original
one. Normally several hundred new datasets—boot-
strap replicates—are created and analyzed.

To generate unbiased replicate datasets, one simply
randomly selects data points from the original data,
making each selection with equal probability of
choosing any of the data points. If there are N data
points in the original dataset, normal bootstrapping
involves selecting N replicate data points. A crucial
feature of the selection process is that every selection is
from the complete set of the original data. Some points
will not be selected for the replicate, and others will be
selected more than once. This is referred to as sampling
with replacement. 

Variations on this theme exist. The technique just
described is nonparametric bootstrapping. It suffers
from the disadvantage that biases present in the orig-
inal data will simply reappear in the replicates. In favor-
able circumstances an alternative called parametric
bootstrapping can be used. In this case, the model fitted
to the original data (here the phylogenetic tree and
evolution model) is used to generate replicate datasets.
These datasets are then reanalyzed as before. However,
if the fitted model has serious errors compared with
reality, this will propagate through to the replicates.

Box 8.4 The bootstrap method 
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number of degrees of freedom, so there are no degrees of freedom for the chi-
squared test comparing them.

One approach to this problem is the set of methods known as paired-site tests. The
basis of these tests is to examine which tree is given support by each sequence site.
If both trees are equally well supported, the relative measure of support at each site
should average to zero for all sites. A variety of statistical tests have been proposed
for the distribution of this site support. For example, in the RELL method, rather
than make assumptions about the properties of the distribution, bootstrapping is
used to estimate the significance of the results.

A similar problem can arise when more than two trees need to be compared. Each
pair of trees can be analyzed separately with methods such as RELL, but there are
serious problems with such multiple testing. One proposed solution, in much the
same spirit as the RELL test, is the SH test in which the actual distribution is
sampled with bootstrapping. This is still a very difficult problem, however, and
these methods are not straightforward to apply.

Summary
In this chapter we have presented many of the theoretical and technical aspects
relevant to deducing phylogenetic trees from sequence data. All interpretations
require a model of evolution, and a number of these are presented. The simplest
models are clearly incorrect, for example in assuming that substitutions occur at
the same rates at all sequence positions. Nevertheless, these models seem to
contain sufficient realism to permit some useful analysis. In tree-building methods,
the sequence data are used in two key forms—the individual positions in the align-
ment itself or in the form of estimates of evolutionary distance. In the latter case,
application of an evolutionary model only requires the equation for distance
correction.

The quickest and most simplistic tree-generating techniques result in a single tree.
These can be useful, and even quite accurate, and can handle very large numbers
of sequences. More sophisticated methods involve optimization of certain criteria
for a large number of different tree topologies. There are many ways to generate tree
topologies, some being more efficient at exploring the possible range of topologies.
However, some rare events in evolution such as genome fusions require topologies
that are outside the range normally considered. The parsimony method attempts to
identify all the mutations that have occurred, but does not use evolution models. In
contrast, the maximum likelihood technique makes explicit use of the time-
dependent mutation probabilities provided by these models to estimate the most
likely representation of the evolutionary history of the data, as do the quartet-
puzzling and Bayesian methods.

The large number of different techniques available indicates that none has yet
demonstrated clear superiority, and there is still much debate in the research
community about their relative performance. Some techniques can only analyze a
few dozen sequences at most, and cannot rigorously search all tree topologies.
Furthermore, there are difficulties in determining the statistical confidence that
can be placed on tree features. Despite the problems, methods exist that attempt to
indicate the reliability of certain tree features. In addition, tests have been proposed
that allow two or more trees to be compared for their support by the data, the most
commonly used of which is the bootstrap.

Summary  

311

BIF CH8 5th proofs.qxd  17/7/07  11:45  Page 311



Chapter 8: Building Phylogenetic Trees

312

The following books cover a much broader range of topics
than could be covered here and are highly recommended. In
particular, several go into details of the evolutionary models,
and discuss some other methods of tree construction. They
also present a statistical analysis of the parameterization of
the models.
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MA: Sinauer.
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Systematics. Sunderland, MA: Sinauer.

Li WH (1997) Molecular Evolution. Sunderland, MA:
Sinauer.
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Nei M & Kumar S (2000) Molecular Evolution and
Phylogenetics. Oxford: Oxford University Press.

8.1 Evolutionary Models and the Calculation
of Evolutionary Distance

For models of evolution see Further Reading for Section 7.3.

The Gamma distance correction takes account of
mutation rate variation at different sequence
positions

Felsenstein J & Churchill GA (1996) A hidden Markov
model approach to variation among sites in rate of
evolution. Mol. Biol. Evol. 13, 93–104.

Uzzell T & Corbin KW (1971) Fitting discrete probability
distributions to evolutionary events. Science 172,
1089–1096.

More complex models distinguish between the
relative frequencies of different types of mutation 
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nucleotide substitutions: new methods of estimating
transition bias underscore its significance. Trends Ecol.
Evol. 11, 158–163.
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related to the substitution matrices used for
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Sunderland, MA: Sinauer.

Goldman N & Whelan S (2002) A novel use of equilib-
rium frequencies in models of sequence evolution. Mol.
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8.2 Generating Single Phylogenetic Trees
The UPGMA method assumes a constant molecular
clock and produces an ultrametric tree

Sneath PHA & Sokal RR (1973) Numerical Taxonomy.
San Francisco: Freeman.

The Fitch–Margoliash method produces an unrooted
additive tree 

Fitch WM & Margoliash E (1967) Construction of phylo-
genetic trees. Science 155, 279–284.

The neighbor-joining method is related to the
concept of minimum evolution 

Bruno WJ, Socci ND & Halpern AL (2000) Weighted
neighbor-joining: a likelihood-based approach to
distance-based phylogeny reconstruction. Mol. Biol.
Evol. 17, 189–197.

Gascuel O (1997) BIONJ: an improved version of the NJ
algorithm based on a simple model of sequence data.
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Saitou N & Nei M (1987) The neighbor-joining method:
a new method for reconstructing phylogenetic trees.
Mol. Biol. Evol. 4, 406–425.

8.3 Generating Multiple Tree Topologies
Optimization of tree topology can be achieved by
making a series of small changes to an existing tree

Allen BL & Steel M (2001) Subtree transfer operations
and their induced metrics on evolutionary trees. Ann.
Combinatorics 5, 1–15.

Felsenstein J (2004) Inferring Phylogenies, chapter 20.
Sunderland, MA: Sinauer.

Finding the root gives a phylogenetic tree a direction
in time 

Lake JA & Rivera MC (2004) Deriving the genomic tree of
life in the presence of horizontal gene transfer: condi-
tioned reconstruction. Mol. Biol. Evol. 21, 681–690.

Rivera MC & Lake JA (2004) The ring of life provides
evidence for a genome fusion origin of eukaryotes.
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472–479.

Zmasek CM & Eddy SR (2001) A simple algorithm to
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8.4 Evaluating Tree Topologies
Functions based on evolutionary distances can be
used to evaluate trees

Bryant D & Waddell P (1998) Rapid evaluation of least
squares and minimum evolution criteria on phyloge-
netic trees. Mol. Biol. Evol. 15, 1346–1359.

Trees can be evaluated using the maximum
likelihood method

Felsenstein J (2004) Inferring Phylogenies, chapter 16.
Sunderland, MA: Sinauer.
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PART 4

GENOME
CHARACTERISTICS

The genome encodes all the machinery and informa-
tion for any living organism, from the most simple to
the most complex. Knowing the whole genome of a
species and what each part of the genome does would
increase our understanding of how the organism
works. Recently, the genomes of whole organisms have
been sequenced and mapped. Computational tech-
niques play a vital role both in the assembly of
genomic sequences and in the analysis. Comparing
genomes provides important information both for
studying evolution and medical science.

This part of the book consists of two chapters divided
into an introduction plus Applications Chapter and a
more detailed Theory Chapter. The first chapter
describes the most easily obtainable techniques to
locate, predict, and annotate genes within a genomic
sequence, and also shows how complex some of the
output from these predictions can be. It deals both
with prokaryotic and eukaryotic genomes. The next
chapter surveys the major methods used for gene
detection and genome annotation and also describes
how models of whole genes can be built from indi-
vidual components such as ribosome-binding sites.

Chapter 9
Revealing Genome

Features 

Chapter 10
Gene Detection and

Genome Annotation 
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REVEALING GENOME FEATURES

When you have read Chapter 9, you should be able to:

Identify regions with nonprotein gene features.

Discuss how homology aids gene prediction.

Explain why prokaryotic gene prediction is generally easier.

Search for separate gene components such as exons.

Identify splice sites.

Describe the varying success of promoter prediction programs.

Compare and contrast methods for measuring the accuracy of predictions.

Use experimental results as well as prediction in genome annotation.

This chapter will describe the practical use of some common gene-prediction and
associated programs that are accessible online. There has been a need for such
analysis since the earliest nucleotide sequencing experiments. However, the tech-
nological advances that enabled the human genome sequencing project to be
completed so quickly have resulted in many more multi-megabase sequences
being produced. It is important to have automated accurate analysis methods,
which can identify the functional elements of these sequences as fast as they are
being produced. In this chapter we will explore some of the practical aspects of
such analysis, whereas in Chapter 10 the basic concepts and techniques underlying
gene-prediction methods will be discussed. 

We will limit our presentation in this chapter to identifying genes and gene control
regions, and to obtaining the sequences of any related proteins. This is only the
beginning of an analysis of the genes found in a nucleotide sequence, which should
ultimately involve many of the techniques described in other chapters of this book.
For example, the protein sequences should be subjected to the methods described
in Chapter 4 to identify homologous sequences and propose protein function on
the basis of conserved sequence patterns. Depending on the results of such work,
further analysis may be performed, either to investigate evolutionary relationships,
as described in Chapter 7, or to model the protein structure and function using the
techniques of Chapters 11, 13, and 14. Finally, expression studies of the kind
described in Chapter 15 can be useful to help confirm gene predictions, for
example by confirming that predicted mRNA molecules are indeed expressed.

9
APPLICATIONS
CHAPTER
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This chapter starts with a description of the techniques that can be applied to
identify tRNA molecules and genes in prokaryotes. In both areas there are well-
established methods, which have a high degree of success. Following that we will
explore the methods used to identify eukaryotic genes and control regions.
Because the gene structure is more complex in eukaryotes many different methods
have been proposed, and they tend to result in more modest success. The methods
described in this chapter are only a subset of those available in this active area of
research. Before reading this chapter, the reader is advised to review the basic
structural features of genes and their control, as presented in Chapter 1.

9.1 Preliminary Examination of Genome Sequence
As described in Chapter 1, regions of DNA that code for proteins are first tran-
scribed into messenger RNA and then translated into protein. During translation,
codons consisting of three nucleotides determine which amino acid will be added
to the growing protein chain and at what point translation starts and stops. The
region that is translated into a protein is called an open reading frame (ORF). Every
stretch of DNA has six possible reading frames, three in each direction. A particular
reading frame will establish the sequence of amino acids encoded by that
sequence, and in the vast majority of cases a gene is translated in only one reading
frame. An ORF ends with a stop codon and usually starts with a methionine codon
(see Section 1.2 and Table 1.1). Therefore, the most common method of finding
protein-coding regions in DNA is to look for ORFs in a genomic sequence. In a
prokaryotic genome, ORFs for individual proteins are relatively easy to detect, as
the protein-coding region between the methionine codon and the stop codon is not
interrupted by noncoding introns. ORFs in prokaryotes can thus be identified by
searching for a region of DNA that has an uninterrupted sequence of codons that
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A mind map to help the reader
remember the steps that can be
taken in predicting genes from DNA
sequences.
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code for amino acids and a start and a stop codon in the same reading frame. The
longer the ORF, the more likely it is to be a true protein-coding sequence.

In eukaryotes the presence of introns, which break up the coding sequence into
separate exons, makes the situation more complicated (see Section 1.3). Regions of
DNA that do not code for protein, such as introns, usually have very short runs of
amino acid encoding codons and many stop codons. Introns can be numerous and
very long, much longer than the exon sequences. It is therefore necessary to predict
not only where the whole gene starts and finishes, but where each exon starts and
finishes. It is possible to distinguish the exons in the form of relatively long runs of
amino acid encoding codons. In addition, there are splice sites at the beginning and
end of each intron, which have characteristic sequence motifs that can aid predic-
tion. Many eukaryotic genes can, however, be spliced in different ways to give
different proteins (see Section 1.3), which is a further complication.

In addition to the coding sequence, a gene also has a transcription start site and a basal
(or core) promoter region at which transcription of the gene is initiated (see Figures
1.12 and 1.13). Many genes also have a more extensive promoter region upstream of
the core promoter, sometimes extending as much as 200 base pairs (bp) farther
upstream. Basal promoters, located within 40 bp of a transcription start site, are
usually recognizable and can be used in identifying an ORF. Eukaryotic genes are
generally each preceded by their own promoter. In prokaryotes, however, several
genes are often arranged in a single transcription unit—an operon—which is preceded
by a single promoter region and a single transcription start site (see Figure 1.15).

A region of genomic sequence rarely has more than one function. That function
might be to encode a protein, a tRNA or other functional RNA, a transposon, or one
of several other genetic elements. The major exception to the one sequence–one
function rule is some viral genomes, where the same sequence segment uses two
different reading frames to encode two or more proteins. In all other genomes only
small overlaps, if any, occur.

Whole genome sequences can be split up to simplify 
gene searches
Most gene analysis programs cannot deal with more than a few megabases of
sequence at one time. Therefore, especially in the case of eukaryotes, the genome
must be split into many smaller fragments for analysis (see Flow Diagram 9.1). The
splitting is further justified by the existence of regions of significantly different GC
content, as many gene prediction programs use different parameters according to
the GC content. In practice, the splitting is usually automated using scripts so that
the sequence is divided into manageable fragments, each of which is then analyzed
by gene prediction. This genome annotation pipeline approach can give the
impression of full genome analysis at the press of a button. The pipeline can consist
of a number of different analysis programs whose results are combined into the
final prediction. These pipeline programs are not usually available for Web-based
prediction, however, and the user has to find their own method of dividing the
sequence. Because prokaryotic genomes are that much smaller than eukaryotic
genomes, they often do not require a splitting step.

Structural RNA genes and repeat sequences can be excluded
from further analysis
Genes for which RNA, rather than protein, is the functional product are often
known as noncoding RNA (ncRNA) genes. Identifying noncoding RNA genes and
repeat sequences has been found to be easier than identifying protein-coding
genes. It is therefore advantageous when analyzing a genome sequence to identify
those regions that are not coding for proteins first.
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presented that should be explored
before applying the more
sophisticated gene detection
methods that form the main subject
of this chapter.
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We shall illustrate the detection of noncoding RNAs with the case of the tRNA genes
in E. coli. As discussed in Section 10.1, all tRNAs have a highly conserved structure,
which is based on base-pairing (see Figure 1.5); knowledge of this structure can be
used to help interpret sequence. Programs are available on the Web that attempt to
specifically locate tRNA genes. The annotated genome of E. coli illustrated in Figure
9.1A shows the tRNA genes for various amino acids as green-shaded boxes. The
gene for tRNAVal and the lysW gene for tRNALys are highlighted by sequence. To
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Figure 9.1
A detailed view of a tRNA coding
region and the secondary structure
of the tRNA molecule. (A) A tRNA
gene (lysW) identified within a
genomic DNA sequence. The tRNA
gene sequence is shown in the lower
right part of the figure, with a green
background surrounded by thick
black lines, starting GGGTCGTT... 
A detailed description of this
sequence representation can be
found in the legend of Figure 9.3. (B)
A schematic illustration of the
secondary structure of lysW tRNA.
the sequence starts on the left of the
upper helix, now shown as RNA, i.e.,
GGGUCGUU... 

Figure 9.2
A flow chart of steps involved in the
identification and annotation of
gene sequences. The first step is to
search for homology, if no homologs
are found, gene prediction programs
must be used. Both methods can be
explored to verify the predictions.

BIF Ch9 5th proofs.qxd  18/7/07  11:34  Page 320



predict the tRNA genes, a region of E. coli sequence containing both protein-coding
ORFs and tRNA genes was submitted to the specialist program tRNAscan, which
correctly picks out the genes coding for the tRNAs, gives the type of amino acid the
tRNA carries, and gives a diagram of the secondary structure of the molecule (see
Figure 9.1B). Repeat sequences can be identified using programs like SEG, as
discussed in Section 4.7 and Box 5.2.

Preliminary Examination of Genome Sequence

321

Expressed sequence tags (ESTs) are short sequences in
the 3¢ untranslated regions (UTR) of complementary
DNA (cDNA). 5¢ ESTs can also be generated, but 3¢ ESTs,
because they tend to form part of the UTR, will have less
cross-species conservation. Thus an EST is a small—
usually 200 to 500 nucleotides long—portion of an
intact gene that can be used to help identify unknown
genes and map their positions within a genome. This is
done by using the ESTs as hybridization probes to fish
for the gene in genomic DNA. A number of EST data-
bases exist, such as dbEST, which is the EST part of
NCBI’s GenBank. The ESTs in these databases are anno-
tated as soon as new information is available.

When a genomic sequence is aligned to an EST, align-
ment of the rest of the cDNA will reveal the intron–exon
pattern. Figure B9.1 shows a DNA segment that has
three known exons (160–263, 524–605, and 1164–1236)
which have been submitted to a BLAST search through
the human EST database. It is immediately evident that
three EST segments have been found that match well

with the unknown sequence. These three segments
correspond well with the actual exons. The color coding
of the homology search signifies the strength of the hits,
ranging from red (a strong hit, strong possibility of it
being correct) to blue (a weak hit, probably not a
correct match).

If a search through the various EST databases does not
give a significant match, then the genomic sequence
must be run through gene identification programs. If
these predictions give relatively consistent results then
the sequence can be translated to protein sequence and
checked. If very inconsistent prediction or no predic-
tions are obtained, however, then further analysis of the
genome sequence, such as prediction of splice junc-
tions and promoter regions, can be helpful to delineate
exon regions. Once a predicted exon has been obtained
it must be translated to a protein sequence. This will
check the correctness of the prediction and allow for
annotation and further online analysis.

Box 9.1 Expressed sequence tags

160 263 522 607 1166 1237 putative exons

unknown

0 500 1000 1500

weak strong

Figure B9.1
Homology search with the PISSRLE
DNA sequence that contains three
exons (5 to 7) against the EST
database. The search identifies three
consecutive hits that illustrate the
three exons. The color coding of the
homology search signifies the strength
of the hits ranging from red to blue. 
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Homology can be used to identify genes in both prokaryotic
and eukaryotic genomes
Figure 9.2 shows a flow chart of the steps that can be followed in the process to
identify and annotate a new genomic sequence. A new DNA sequence can be sent
for a homology search against a number of databases. Now that many prokaryotic
genomes have been completely sequenced, searching for homologous sequences is
a powerful tool for gene prediction. A newly completed bacterial genome can, for
example, be sent for a homology search against other prokaryotic genome data-
bases. One can expect to identify more than half the genes in a prokaryotic genome
by homology. Database searching and the alignment of homologous sequences are
described in Chapters 4 to 6. If a significant hit is found, especially with a sequence
for which the protein and its function are known, then it is possible to infer that the
unknown sequence is a homolog and very probably has a similar function.

For eukaryotes, because the protein sequence being used for the search may corre-
spond to separate exons in the DNA sequence, a homology search is more compli-
cated. A useful aid is the databases of expressed sequences by which protein-coding
genes can be identified by means of ESTs (see Box 9.1). 

9.2 Gene Prediction in Prokaryotic Genomes 
Although introns do exist in prokaryotes they are extremely rare and therefore are
ignored by the programs discussed below. We will not discuss their identification in
this chapter, but one should be aware of their possible presence.

In prokaryotes the promoter regions are usually well defined. Thus, because of the
general lack of introns, the beginnings and ends of genes are easier to detect. The rela-
tive simplicity of bacterial gene structure has led to some very successful gene-
prediction techniques for prokaryotes that use functional signals such as the
ribosome-binding site, the stop codon that signals the end of translation, and other
well-defined features.

We will illustrate gene prediction in prokaryotes (see Flow Diagram 9.2) with a
region of approximately 4000 bases from the E. coli genome. Figure 9.3 shows the
annotation of this region, where the blue-colored bars denote protein-coding genes,
which are identified by a gene name (for example tolQ). Although not shown in the
figure, information about protein homology and other functional predictions is
available for each of these genes. The light green bars in the “annot for all” line show
the location of tRNA genes (see Section 9.1). In the lower (more detailed) part of the
figure the bright green-colored base sequence is the promoter of the pal gene
starting at position –35 relative to the start of its transcription. (We shall deal with
the details of promoter prediction later in the chapter.) Above this, is the end of the
tolB gene, which ends with a TGA stop triplet that signals the end of translation. One
feature that is immediately apparent is that the promoter for the pal gene overlaps
the end of the tolB gene (which may cause problems for prediction programs).
There is an ATG triplet (coding for a methionine, M) signaling the start of translation
at the beginning of the pal gene.

Due to their relatively small size it is possible to analyze a complete prokaryotic
genome as a single sequence. Table 9.1 lists a selection of some of the prokaryotic
genomes that are now fully sequenced. 

A number of gene-prediction programs are available and are routinely used within
major research groups. Even among prokaryotes, different species can have
species-specific features such as a bias in the use of particular codons. When avail-
able, it is preferable to choose a prediction program that has been trained on the
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In this section some of the practical
aspects of prokaryotic gene
prediction are described.
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particular species under study. The most popular programs of recent years have
been ORPHEUS and GLIMMER, which are discussed in Section 10.3. These are not
available on the Web but can be downloaded and run on a UNIX machine. Some
programs can be used for both prokaryotic and eukaryotic gene prediction. Grail,
for example, has specific E. coli gene-prediction features as one of its datasets.
However, these programs are very rarely used by those groups that specialize in
prokaryotic genome analysis. Small sequence sections can be submitted to Web-
based programs, as described later, to determine all the ORFs, which can subse-
quently be used in database searches for homologous sequences. This will usually
not be as effective for gene prediction as the genome-scale programs mentioned
above but can still be of use for small-scale work.

9.3 Gene Prediction in Eukaryotic Genomes
Compared to prokaryotes, gene prediction in eukaryotes is a much more daunting
task (see Flow Diagram 9.3). To identify protein-coding genes in eukaryotic genomic
DNA, a number of additional factors have to be taken into account. These include low
gene density in many regions of the genome and the more complicated gene struc-
ture. These are explained in detail in Section 10.4. In eukaryotic genes, both exons and
introns have to be located by a combination of exon prediction and splice-site predic-
tion. The predicted exons then have to be translated to see if together they can
generate a protein sequence that is homologous to a known functional protein.
Figure 9.4 shows an example of eukaryotic gene structure and the resulting expressed
protein. There are a few eukaryotic genomes in which very few genes have any
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Annotations. A segment of the E. coli genome that has been fully
annotated, illustrated using the Artemis program. In the top half,
there is a ruler showing the base numbers (approximately from
base 773,800 to 782,800). Above and below the ruler are
summary lines of the annotation for the 5¢3¢ and 3¢5¢ strands. In
this region of the genome all the annotations are on the 5¢3¢
strand. The three lines above and below these summary lines
show the different reading frames, with every stop codon shown
by a vertical black line. The protein-coding genes (shown in blue

boxes) are free of stop codons. tRNA genes are shown as green
boxes. The lower part of the figure gives the same information
but in protein translation and also at a higher scale, in this case
from base 778,218 to 778,362. All reading frames are translated,
and colored boxes are shown matching those in the upper part
of the figure. The region of the end of the tolB gene and start of
the pal gene is shown. The dark green box shows an identified
promoter upstream of the pal gene.
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introns, for example the budding yeast Saccharomyces cerevisiae. In such cases the
prokaryotic gene-prediction programs may be sufficient for initial analysis of the
sequence. Homology searches can be used to confirm the gene predictions.

Programs for predicting exons and introns use a variety of
approaches
A number of methods are available for the prediction of exon DNA regions. Most
programs available on the Web use a combination of two or more approaches, for
example database similarity searches and statistical pattern recognition. The use of the
programs summarized below will be illustrated by two examples of eukaryotic gene
sequences: exons 1 and 2 of the human ALDH10 gene, encoding a fatty aldehyde dehy-
drogenase, and exons 5 to 7 of the human protein kinase gene CDK10 (see Box 9.2). 
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Archaea Length (bp)

Aeropyrum pernix 1,669,695

Halobacterium sp. NRC-1 2,014,239

Methanococcus maripaludis 1,661,137

Pyrococcus abyssi 1,765,118

Pyrococcus furiosus DSM 3638 1,908,256

Thermoplasma acidophilum 1,564,906

Thermoplasma volcanium 1,584,804

Bacteria

Chlamydophila pneumoniae 1,229,853

Enterococcus faecalis V583 3,218,031

Escherichia coli CFT073 5,231,428

Escherichia coli K12 4,639,221

Helicobacter hepaticus ATCC 51449 1,799,146

Helicobacter pylori 26695 1,667,867

Listeria innocua Clip11262 3,011,208

Pseudomonas aeruginosa PAO1 6,264,403

Salmonella enterica
subsp. enterica serovar Typhi 4,809,037

Phages

Alteromonas phage PM2 10,079

Bacillus phage GA-1 21,129

Bacteriophage 77 41,708

Bacteriophage 933W 61,670

Viruses

Abelson murine leukemia virus 5,894

Acute bee paralysis virus 9,491

African swine fever virus 170,101

Avian sarcoma virus 3,718

Bovine leukemia virus 8,419

Table 9.1 
A few examples of known
prokaryotic genomes. At the time of
writing, 18 archaeal, 141 bacterial,
124 bacteriophage, and about 850
viral genomes have been sequenced.
Compared to the size of the human
genome (3,140,575,725 bp in all 24
chromosomes), archaeal and
bacterial genomes are relatively
small, while phage and virus
genomes are even smaller.
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Where a choice of parameters was available, the default settings for that particular
prediction program were used for both examples. We have chosen the particular
exons in each gene to give examples of the different types of exons that will be
encountered in a eukaryotic gene. A gene that is a complex of multiple exons not
only contains internal exons separated from their adjacent exons by introns (such
as CDK10 exons 5, 6, and 7), but also an initial exon (such as exon 1 of ALDH10) and
a terminal exon. These first and last exons are less easy to detect accurately, as they
are flanked on one side by regulatory regions signaling the start or stop of transcrip-
tion and translation, which are not easy to predict.

Gene predictions must preserve the correct reading frame
When predicting exons, one must remember that they will have to be spliced
together to produce a complete protein-coding sequence all in the same reading
frame. Because the genetic code involves three-base codons it is important that the
correct frame is retained at the splice sites, which may even be in the middle of a
codon. If this does not occur, then the following exon will be translated in the wrong
frame. While this idea is simple to understand, interpreting it in practice is more
complicated than might be expected. The outcome depends on two properties of
each predicted exon: its starting point and its length. The effects of errors in these two
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Figure 9.4
From eukaryotic DNA to protein.
The transcribed mRNA gene
structure is shown with exons in
green and noncoding intron regions
in blue. Translation starts from a
promoter region. The promoter
region, which can be sequentially
upstream or downstream from the
gene, contains sequences to
enhance or inhibit the transcription
of a gene. The introns are noncoding
and are excised after transcription.
Each end of the transcribed gene is
flanked by untranslated regions
(UTRs), which have specific roles in
the formation of the mature mRNA
transcript. The mature mRNA is
translated by the ribosome into the
protein product.
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3’ UTR 5’ UTR 

C-terminusN-terminus protein

Start of exon

Correct

Incorrect,
correct frame

Incorrect,
wrong frame

Effect on translation of this exon

Correct 

Correct but extra or missing residues

Correct but extra or missing residues

Correct but extra or missing residues

Correct but extra or missing residues

Correct but extra or missing residues

Incorrect

Incorrect

Incorrect

Effect on translation of correctly
starting next exon

Correct

Correct except possibly the first residue

Incorrect

Correct except possibly the first residue

Correct except possibly the first residue

Incorrect

Incorrect

Incorrect

Possibly correct if the two first exon
frameshifts cancel

Length of exon

Correct

Incorrect, correct frame

Incorrect, wrong frame

Correct

Incorrect, correct frame

Incorrect, wrong frame

Correct

Incorrect, correct frame

Incorrect, wrong frame

Table 9.2 
The possible consequences for the
translated protein of mistakes in
the prediction of an exon. The term
“incorrect, correct frame”in the
“length of exon” column means that,
although the exon has the wrong
length, the number of bases is such
that the resulting relative frameshift
in the following exon is correct.
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Box 9.2 Two different gene sequences for prediction

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
cgatccaagg agcccagcgc ctagggcgga cccgcgggag cgtctattga gtaaccgttg
ttataggaga cgaagcccgg gaaggagctt tcgcgcctgc gccgcggggc cgtccgcgtc
tgcgcctgcg cgcaagagag gcggggccag cgctcggcat ggcggagcca gatctggagt EXON 1
gcgagcagat ccgtctgaag tgtattcgta aggagggctt cttcacggtg cctccggaac
acagggtgcg cggggtgcca cccgggcagc tctgcccgcc tcgctagcgg cactgcccgg
ctgggtctgg ggagcctcgt gtcgcgctgc cgcgccgagg cttccggcac gggcgggaac
gacagtccca gagttccccg cggcgggggc ggaagccggg gcggggcggg ctcaggaccc
ccgacagccg gtccctggag atctgagggg ccggggcggg ctcagggatg cttcgcgccc
gcggagagac gggcccggga cttgggaaga gcaggctccg ggatccagct cgggcgctgc
tgggttcagc gcccgagctg ggctttgcag gctgagccgc gagccacttg tttgtgggga
gaatttacac ccgcgacgag ttcgagcttg aaggctcccg ctgggcttgg gctgcatgga
gcggggtcca gcgctgctgg cggcttcacg cgaaccctgg gcgcgtccct tgcggaggtg
ccggtgcctc cctctgccgg cttcacgcga accctgggcg tcccttgcgg aggtgccggt
gcctccctct gcagagacca ggagagagcc tctgggcgtg tgggcggtgt tgcccaggtg
cacggctggt gggggtggag agccctgaac tttggccgct ggtttgtgtt tttaactgct
ggctggtgct ctgagaggcc aagccacgtg ttcagtaaga atcattaaca gatcgtggct
cgggcaggct gctgcagctg ggaaccctga gcttttagta actccacagg ggcagcagag
tcaggcctca gccgaatttg tgcttccaac tctgcctagc tgtcacccac ctgtggataa
tgaagttcct gtggcagata ctggaggccc cggagcacct gcagcacgat gcacttgacc
tgtgcagagg gtcagaggta ccagtcaggg tgagcctgca gggggatgac aacaggagcc
acactttact catccagacg tgcagcaggc gctcaccgcg ttgagagccg tgtgctggac
tctggggtga agtagtgagt tggcctttcc ttttttgttg tttttttgag acagggtcta
gcgctctcgc ccaggctgga atgcagtggc gtgatcacgg ctcagtgcat cgtcagcctc
ctgggctcaa gtgatcttcc tgcctcggcc tcccaagtgc tggaattaca ggcgtgagcc EXON  2
accgccccca gcctggcctg gcatttcttt gagttcagga agtgtgacaa ggatttggac
acccagaaat aagcgtgtcg agaagagcac aagcagagga tgtgagaagg . .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .gtttca gctgggacga tgccggagtg EXON  3
tgaaggagtt tgagaagctg aaccgcattg gagagggtac ctacggcatt gtgtgtgatg 
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 
.atcgggccc gggacaccca gacagatgag attgtcgcac tgaagaaggt gcggatggac EXON  4
aaggagaagg atg .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..cag
gcatccccat cagcagcttg cgggagatca cgctgctgct ccgcctgcgt catccgaaca EXON  5
tcgtggagct gaaggaggtg gttgtgggga accacctgga gag .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
catcttcctg gtgatgggtt actgtgagca ggacctggcc agcctcctgg agaatatgcc EXON  6
aacacccttc tcggaggctc ag.. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
gtcaagtgca tcgtgctgca ggtgctccgg ggcctccagt atctgcacag gaacttcatt EXON  7
atccacag .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
cagggacctgaag gtttccaact tgctcatgac cgacaagggt tgtgtgaaga cag. .. EXON  8
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..cag
cggatttcgg cctggcccgg gcctatggtg tcccagtaaa gccaatgacc cccaaggtgg EXON  9
tcactctctg. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
gtaccgagcc cctgaactgc tgttgggaac caccacgcag accaccagca tcgacatgtg EXON 10
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
ggctgtgggc tgcatactgg ccgagctgct ggcgcacagg cctcttctcc ccggcacttc
cgagatccac cagatcgact tgatcgtgca gctgctgggc acgcccagtg agaacatctg EXON 11
gccg. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
ggcttttcca agctgccact ggtcggccag tacagcctcc ggaagcagcc ctacaacaac EXON 12
ctgaagcaca agttcccatg gctgtcggag gccgggctgc gcctgctgca cttcctgttc
atgtacgacc ctaagaaaag.. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
ggcgacggcc ggggactgcc tggagagctc ctatttcaag gagaagcccc tac. .. .. EXON 13
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
cctgtgagcc ggagctcatg ccgacctttc cccaccaccg caacaagcgg gccgccccag EXON 14
ccacctccga gggccagagc aagcgctgta aaccctg. .. .. .. .. .. .. .. ..  

The PISSRLE DNA sequence (CDK10 gene) with the exons
highlighted in red illustrating the large intron regions that
intersperse the exon segments. The start codon ATG is found

12 nucleotides into the delineated exon (highlighted by a red
box). The 5¢ UTR is shown in yellow letters. Only the first
intron sequence is shown in full.

Figure B9.2A
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properties on that particular exon and the following one are given in Table 9.2. This
is further illustrated in Figure 9.5, which compares the region including the first two
exons of ALDH10 as determined by experiment and by a gene-prediction program. 

These types of problems can be circumvented by translating the individual
predicted exons and checking the translations against a database search. Coding
regions can be translated in three different reading frames and also both in the 5¢ to
3¢ and 3¢ to 5¢ direction. The most suitable protein candidate for database searches
should be the segment that contains no or the least number of stop codons in its
sequence. Figure 9.6 shows the predicted exon regions of exons 5, 6, and 7 of the
kinase gene. When the predicted segment of DNA for exon 5 is translated there are
two translations that contain only one stop codon (the other translations have
more). One is a 5¢ to 3¢ translation and the other 3¢ to 5¢. When both of these are
submitted to a database search of the Swiss-Prot database, only the 5¢ to 3¢ transla-
tion gives hits that match the same region in a set of homologous proteins. The 3¢ to
5¢ translation has hits that span various sequence segments and the set of proteins
it finds are not obviously homologous. Therefore, we would choose the 5¢ to 3¢ frame
3 translation as the most likely to be correct. Exons that are part of the same gene
can be translated in different reading frames.

One further issue illustrated in Figure 9.7 is the effect of the correct location of the
start codon (see FGENESH prediction below). In eukaryotic genes the first tran-
scribed ATG codon is not always the translation start site (for more detail see
Section 10.6). In this example it has been experimentally determined that the
second ATG is the start site and the first exon has a 5¢ UTR of about 250 bases. The
UTR is poorly predicted by most current prediction programs.

Some programs search for exons using only the query
sequence and a model for exons
We will now describe two methods that identify exons using the properties of the
query sequence. In both cases no attempt is made to generate a multi-exon gene
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The example sequences used in this chapter are exons 1
and 2 of the human ALDH10 gene, encoding a fatty
aldehyde dehydrogenase, and exons 5 to 7 of the human
cyclin-dependent kinase (cdk) gene CDK10 (initially
know as PISSLRE, Swiss-Prot ID: CDK10_HUMAN). This
encoded protein is related to other cyclin-dependent
kinases and is important in certain cancers. This gene
has many homologs in the databases and it is highly
probable that it or its homologs were used in the
training of the prediction programs; thus it is used as an
easy eukaryotic example throughout this chapter. The
complete kinase gene consists of 14 exons separated by
large introns (Figure B9.2A). The exons are highlighted

in red illustrating the large intron regions that inter-
sperse the exon segments. The start codon ATG is found
12 nucleotides into the delineated exon (highlighted by
a red box). The 5¢ UTR is shown in yellow.

ALDH10 codes for a fatty aldehyde dehydrogenase. The
protein-coding region consists of 10 exons (Figure
B9.2B). Exons 1 and 2 were chosen to illustrate the diffi-
culties of predicting the first exon, especially when it
contains more then just a protein-coding segment. The
ALDH10 gene is a relatively new entry in the databases
and most programs will not have included it in their
training datasets.

Box 9.2 Two different gene sequences for prediction (continued)

1 2 3 4 5 6 7 8 9 10
Figure B9.2B
A schematic representation
of the ALDH10 gene with the
exons colored blue.
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structure, let alone identify the 5¢ or 3¢ UTR regions. They are true ab initio methods
in that neither of them uses any prior knowledge of existing genes and gene products.

The program MZEF is designed specifically to predict internal protein-coding
exons. It starts with a potential internal exon, which is defined to include the AG of
the 3¢ splice site of the preceding intron followed by an ORF and then by the GT of
the 5¢ splice site of the next intron. It employs statistical analysis of sequence
patterns that enables exons to be discriminated from the rest of the DNA
sequence. Sequence analysis of large numbers of known exons has highlighted
certain recurring sequence characteristics. For example, there is a preference in
exons compared to introns for particular six-nucleotide sequences, which are
known as hexamers, codon-pairs, or dicodons (see Sections 10.2 and 10.3). A
dicodon preference score for exons can be calculated on the basis of these obser-
vations. In addition, the statistical preferences observed at, for example, the 5¢ and
3¢ splice sites can be used to derive a preference score for these and other regions.
The program calculates scores for nine discriminant variables (Table 9.3). When
the scores are plotted for known exons and introns they appear in distinct regions
of the graph. When an unknown sequence is submitted to the program, it is simi-
larly scored and plotted. If the score falls within the exon region the sequence is
predicted to be an exon, and vice versa for an intron. The program is based on
quadratic discriminant analysis and is explained in more detail in Section 10.5 and
Figure 10.16.

By default, the current minimum ORF size is 18 bp and the maximum is 999 bp.
Because the genome of the model plant Arabidopsis thaliana (see Box 9.3) has been
found to contain some very long ORFs, the default maximum is increased to 2000
bp for this species. 

The GeneMark gene-prediction algorithm uses a modified version of HMM, the
inhomogeneous Markov Chain (IMC) models, which are described in Chapter 10.
Like MZEF it is based on statistical analysis of short nucleotide sequences but in
this case up to 8 bp in length. Essentially, GeneMark generates a maximum likeli-
hood parse of the DNA sequence into coding and noncoding regions. It can be used
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Figure 9.5
Comparison of the prediction of
FGENESH with the experimental
data for the first two exons of the
ALDH10 gene. Exons are shown as
green bars while the introns and
intragene regions are shown as blue
bars. Individual bases are shown as
narrow vertical boxes. The 5¢ UTR
region is shown as light gray bases,
and the introns are shown as dark
gray bases. The three reading frames
are illustrated by coloring successive
protein-coding bases yellow, orange,
and red. The base positions are as
given in Table 9.4 and are indicated
above the bars. The splice sites as
predicted by FGENESH and their
experimental positions are shown by
numbered arrows. FGENESH does
not predict a 5¢ UTR region, and has
an incorrect start position for exon
1, which has an incorrect reading
frame compared with experiment.
As a consequence, predicted codon
24 is one base downstream of actual
codon 1. However, the length of the
predicted first exon is identical to
the experimental protein-coding
region for exon 1, so both first
introns start immediately after
codon 51, and start the second exon
in reading frame 1. FGENESH does
not predict the correct 5¢ end of
exon 2, but as it is 57 bases (i.e., a
multiple of 3) downstream of the
correct start, the predicted codons
match the experimental data, and
predicted codons 52–109 are
identical to experimental codons
71–128.

1542 1694 2226 2400 

FGENESH

1352 1610 1762 2169 2400 

Experimental 

codon 1:1542–1544 

codon 23:1608–1610 

codon 24:1611–1613 

codon 51:1692–1694 

codon 52:2226–2228 

codon 109:2397–2399 

codon 1:1610–1612 

5’ UTR region 1352–1609 

codon 28:1691–1693 

codon 29:1694–1696 

codon 51:1760–1762 

codon 52:2169–2171 

codon 70:2223–2225 

codon 71:2226–2228 

codon 128:2397–2399 
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for both prokaryotic and eukaryotic genes, and its application to prokaryotic genes
is discussed in Section 10.3. It is one of the few programs designed for prokaryotic
gene prediction that has been found useful for eukaryotic sequence analysis.
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Genie predictions. Genie-predicted exons 5 to 7 of the CDK10
DNA (green), their translated product, and the various searches
through the Swiss-Prot database. (A) The actual exons as given in
Figure B9.2A are shown in capital letters. Most prediction
programs will search for an ATG start codon in the first exon
(red).The correct hit of exon 5 is illustrated by the matching of
many homologous proteins in the same region of the unknown
sequence (C). The blue lines indicate low confidence in the match.
The correct translation of the actual exons as given in Figure 9.15

is highlighted in yellow in part (B). The incorrect translation of
exon 5 (3¢5¢) is also shown in part (B). When this incorrect
translatopn is submitted to a Swiss-Prot database search, it gives
matches that are not associated with the same region, and are
from different types of proteins (illustrated in box D). Exon 7 has
not been correctly identified. Translation of that region gives two
segments with no stop codon. When these translated segments are
submitted to a BLAST search low homology hits are found with a
citrus virus protein and a hypothetical protein, respectively.

aaaaaaaaaa aatgcttatt ggggtcgccc cagttctccc tgaggtgggg cactgcagc
acctgctatc aggtgttcgt gaagcccaag agtggctggg gttggggctt ccccgccat 
tcactggggt ggggctcgct gaggccacct ccctcccCAG GCATCCCCAT AGCAGCTTG 
CGGGAGATCA CGCTGCTGCT CCGCCTGCGT CATCCGAACA TCGTGGAGCT AAGGAGGTG 
GTTGTGGGGA ACCACCTGGA GAGgtacgtg gtctcctggt ctgcacattg gccctaggg 
agcatgtgtc ttgggctaga ggtgttgcac agagcgagga ctgagtgtca tgggcatga 
ggttgtcaga gaagagatga ccccacctca ccgcctggct cagcccattg ctgaggggg 
acacaggttg tcctgcccat gtcccctcct gcagcagggg aggctccact ccacccctt 
aggagaaggc cggagagtgg catgcatctt ctgtttcttc cagCATCTTC TGGTGATGG 
GTTACTGTGA GCAGGACCTG GCCAGCCTCC TGGAGAATAT GCCAACACCC TCTCGGAGG 
CTCAGgtgcg tggcagaggg gcctggggtg ggggaatggg cttcatgggc cttgtggtg 
cacatttata acgaaacagg gcacttgggg acttgaagag ctgctgctgc tctgcctcc 
acctcccagt gtttcagcga gcttcagtga ggtggaattc ctgtggtggg gcatctgct 
gggagcgggc agccccaggg ccgagagcct tatgagggca ctggtttcct ggctgttgg 
gagcaggcag ccccggggct gagagccttc tgagggcact ggtttcctgg ctgctggga 
gcggggagcc ctgggcggag agccttctga gggcactggt tttctgggct atgggagag 
tgcagccccc ggggccaaga gccttgtgag ggcactggtt tcctgggctg tgggagcgt 
gcagcccccg gggccgagag ccttctgagg gcactggttt cctgggctat gggactgct 
agtcctgctg gccagtgtgg gtgtggcagg gcccagctgg gcttccctgc ggctcaccc 
tgactggtac ctctgaccct ctgcacagGT CAAGTGCATC GTGCTGCAGG GCTCCGGGG 
CCTCCAGTAT CTGCACAGGA ACTTCATTAT CCACAGgtgg gtgacagcta gcagagttg 
gaagcacaaa ttcggctgag gcctgactct gctgcccctg tggagttact aaagctcag 
gggttcccag ctgcagcagc ctgcccgctg ctcgcactcc atttgtgttt tttctaaaa 
tagagaaggg gtctctctgt gttgcccagg ctggtctcac acacttgggg tcaagtgat 
ccacccacct tggcctccca aagtgctggg attacaggtg ggagccacca acccgggca 
tgcactccga tttttaaaag gtccaaacat caacagcatg taagagttaa ggaaaaaaa 
aaataataaa gatactacgc cgggcacagt ggctcacgcc tgt

(A)

(B)

(D)

(C)
5'3' Frame 3
CLLGSPQFSLRWGTAAPAIRCSStopStop
SPRVAGVGASPPFTGVGLAEATSLPR
HPHSSLREITLLLRLRHPNIVELRRW
LWGTTWR
3'5' Frame 3
LQVVPHNHLLSSTMMFGStopStopRRRSS
SVISRKLLWGCLGREVASASPTPVN
GGEAPTPATLGLHEHLIAGAAVPHL
RENWGDPNKH

EXON 5

EXON 6

EXON 7

Figure 9.6
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tttaaaaggg aggagcgggc tggaggggaa agagggagaa catggtcatt actgaatcca       60
cacattgcac aaatagaaaa aggaacaggc aggggaatag tcaattatgt atttgcctcc       120
tgctgtgtaa atcagcactt cagtaagata aggtgaggac agagcagcta cctgtgggga       180
catttaacct tttatctgta gctatctgct tagggacata gagaaaggca gnttcttgca       240
tgactcagct ttttgcttaa ttttttcctt ttggcatatg aattgagctc ccacgngntt       300
ttggttggtt ttgggcataa gtggagagtt caattggggc cagggccccg agttattttc       360
ttttcacaaa tatacccttt agagttcaga ggaaaggctg ggattagagc cttctttgag       420
cactattcat ggattacatg agggagtngc tgtgaaaaga gggccccgga ctaagccctg       480
ggcacctgaa caagtgagag gtcaggaagg ggagaaaaat ccagcaaagg aaccccagag       540
gacccggcca gtagctaaaa agaaaagtgc ggaagagtgc agggaaatgg taaagaaaag       600
aaagctttcc acaagacagg accgatcagc tgagccaact gctgctgagt acagtgatga       660
gagctgaagt ctctcgcccg aaaggcaata aggcgggagg gggaaacctg agggcagcgg       720
gttctctctt gggagcggga acacggaacc atgggcagcg aggcaaatgc agcctgggga       780
gaagctctga gtaacggacg tgcgaggatg atgcttgtgc aagaaggaaa tgaccgctgt       840
cccggctccg cgggagacga accccggctt cccgccctca gggactagct ctccagggaa       900
ctgggacggt cagtgccggt cgaggcagct cctcgctgaa ggaaggagca ggggacaggg       960
aacggaatgg ggagcgctag cccccaacta cgtccatctg gccatgtttg aagagccana      1020
aaatggagga gggaacccct agagcgtgcc agacggagac tgctctccgt ngcagtcggg      1080
gcgcttccgg cagggcgccn actcccagcc gagcgccctc cgcctgctcc tccaggattc      1140
ctcttcgccc tttctggggc cgccccgggg cgctctcagn aggatggcca acaccttccc      1200
tccatcccta caccccgccg ccccctgccc gtggccgcgc tcggctcccg cactgctcac      1260
tccaccccct acatcccagc ccgctgccag agccggggag agggcggggg ccgcgtgggc      1320
gagaccgtga acagcggctg tcacgtgggc cgcccaggcc aataggggtg aggctttggg      1380
tccagctcag tcctcccccg gcgcctccga ctggcagtgg gactcagcgg gcgtggaggt      1440
cgcggctgag cgagcgagcc ctgggcgagt gaattgtggc tgtgggttga cggtggagac      1500
accccccgga gggaggcgga gggaagggag gcgaggcctg cacctgcatg cttcccgcct      1560
cccactcccc agcgcccccg gaccgtgcag ttctctgcag gaccaggccAA TGTGGAGCTCGA      1620
AGTCCGGCGG GTCCGACAGG CGTTCCTGTC CGGCCGGTCG CGACCTCTGC GGTTTCGGCT      1680
GCAGCAGCTG GAGGCCCTGC GGAGGATGGT GCAGGAGCGC GAGAAGGATA TCCTGACGGC      1740
CATCGCCGCC GACCTGTGCA AGgtancacg cgtgcggcgg ggtgtgggga aactggcccc      1800
cgccgngcac ttgtggactg gagtcttcgg ctgggttttg tttttgcttt tacatttngg      1860
attactccac cactgggagt atgatctcca gcgatacaga taaagccaaa gttcccgcag      1920
actttccagg tcctctagca ctcagaaggg catatgttac ctagcttctg tggttccttt      1980
tctgtatatt agagaattag caagccctta ccagggcgtg aagggtgcaa aaggagtctg      2040
aatggcaaac agctagtctg ataatgccag ttgttgtcac tacaggtgta cctggtnnnt      2100
gttctgacat tnagggccaa gtgtatcata cttacnctgn aagnttaact gtgattctct      2160
tataacagAG TGAATTCAAT GTGTACAGTC AGGAAGTCAT TACTGTCCTT GGGGAAATTG      2220
ATTTTATGCT TGAGAATCTT CCTGAATGGG TTACTGCTAA ACCAGTTAAG AAGAACGTGC      2280
TCACCATGCT GGATGAGGCC TATATTCAGC CACAGCCTCT GGGAGTGGTG CTGATAATCG      2340
GAGCTTGGAA TTACCCCTTC GTTCTCACCA TTCAGCCACT GATAGGAGCC ATCGCTGCAG      2400
gtctggttgc caccttatgt ctatatacct ttttagggag gcttattttc tcatattaat      2460
tggnattaag gatagtggct aattaaatac atttacttgg tgatttgcct ttgtttacac      2520
caccagtgta ctggaattca tacatccata cata

In contrast to the CDK10 gene, in the ALDH10 gene, translation
does not begin at the first ATG codon (boxed in red) in the first
exon. It has been experimentally determined that the second
ATG codon (bold capitals) is used. This is 62 bases downstream
of the first ATG codon, so that if the first ATG codon was

predicted as the start of translation, the wrong reading frame
would be used. The experimentally determined exons are
highlighted in red, and translated bases are written in capital
letters. Note that this sequence corresponds to the lower line of
Figure 9.5.

Figure 9.7

Arabidopsis thaliana is a small, flowering
plant that is widely used as a model
organism in plant biology. Arabidopsis is a
member of the mustard family, which also
includes cultivated species such as
cabbage and radish. Arabidopsis offers
important advantages for basic research in
genetics and molecular biology because it
is small and has a rapid life cycle, is easy to

grow, and there are a large number of
mutant lines. Its genome (114.5 Mb out of
125 Mb total) was sequenced in 2000 and
consists of five chromosomes. 

Box 9.3 Arabidopsis thaliana: a model plant

Figure B9.3
Arabidopsis thaliana. (Courtesy of A. Davis,
Bioimaging JIC.)
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Both of our example genes were submitted to both programs. Tables 9.4 and 9.5
show the results for ALDH10 and CDK10, respectively. From Table 9.5, we can see
that exons 5, 6, and 7 of the kinase gene were located exactly with MZEF. In the case
of the ALDH10 gene, MZEF predicted one exon position that located the protein-
coding part of the first exon (see Table 9.4). This is interesting, as in theory MZEF
would be expected to be more successful in predicting the second (internal) exon
than the first (initial) exon. It did not, however, find the second exon at all. GeneMark
correctly predicts exon 5 of the kinase gene and overpredicts the length slightly of
exons 6 and 7 (see Table 9.5). Because exon 6 is predicted 22 bases too long (not a
multiple of three) the sequence of the seventh exon will be in the wrong reading
frame if these predicted exons are used to construct the whole protein-coding
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Table 9.4 
Comparison of predictions of exons
1 and 2 in the human ALDH10
gene. The numbers indicate
nucleotide position. The
Experimental row shows the real
exon boundaries. Color coding is
according to the main type of
techniques used by the prediction
programs. The bottom row shows
the average predicted region from
all the programs in the table.

The scores used in the MZEF exon-prediction program
Table 9.3

Scores

Exon length

Intron–exon transition

Branch-site score

3¢ splice site score

Exon score

Strand score

Frame score

5¢ splice site score

Exon–intron transition

Method of calculation

Log10 of the actual length in base pairs (bp)

(Intron hexamer frequency preference in 54-bp window to the left of the 3¢ splice site) – (exon
hexamer frequency preference in 54-bp window to the right of 3¢ splice site)

Maximum branch score in –54 to –3 window with respect to 3¢ splice site

Based on 3¢ flanking splice-site characteristics

Position-dependent triplet frequency preference for true 3¢ splice sites versus pseudo-3¢ splice sites
in –24 to 3 window

Hexamer frequency preference for the forward strand versus the reverse strand

Frame-specific hexamer frequency preference for exon versus intron in frame i

Based on 5¢ flanking splice site characteristics

(Exon hexamer frequency preference in 54-bp window to the left of the 5¢ splice site) – (intron
hexamer frequency preference in 54-bp window to the right of 5¢ splice site)

Program

Experimental

MZEF

GeneMark

HMMGene

FGENESH

GenScan

GrailEXP

AAT

GeneBuilder

GeneWalker (Gene 1)

GeneWalker (Gene 2)

TWINSCAN

Average predicted 

Exon 2

2169–2400

–

2169–2400

2169–2400

2226–2400

2169–2400

2169–2459

2169–2459

2169–2400

2226–2400

2086–2148

2169–2400

2169–2400

Exon 1

1352–1762

1601–1762

1610–1762

1610–1762

1542–1694

1610–1762

1601–1762

1607–1762

1601–1783

–

1601–1762

1610–1762

1596–1759
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sequence (see Figure 9.8). If the overprediction was a length divisible by three, then
the subsequent exons would be correctly translated.

With ALDH10, GeneMark correctly identifies the translated region of the first exon
and the whole of the second exon. In addition, it predicts the first exon to be an
initial exon and the second an internal exon (see Table 9.4). The length of the first
exon is such that the reading frame of the second exon will be correct (that is, the
difference from the correct length is a whole number of exons).

A method called FirstEF has been derived that is similar to MZEF but specifically
used for predicting the first exons. This recognizes the fact that most gene-predic-
tion programs only identify the protein-coding region and miss the UTR. When run
on the ALDH10 sequence, FirstEF predicts the first exon to be bases 1437 to 1762,
which is still missing some of the UTR but is the best of the predictions reported
here for this exon. It does not report which ATG codon is the translation start site.

Some programs search for genes using only the query
sequence and a gene model
Two programs both using the HMM method will be used to illustrate the prediction
of complete genes with a gene model and a query sequence. These programs,
HMMGene and FGENESH, differ in the way the different components of the genes
are identified and the relative weights given to each.

The HMMGene program predicts whole genes and can predict several whole or
partial genes in one sequence using the HMM method. HMMGene can also be used
to predict splice sites and start or stop codons. If some aspects of the sequence to
be predicted are known, such as hits to ESTs, proteins, or repeat elements, these
regions can be locked as coding or noncoding, and the program will then find the
best gene structure using these as constraints. Note that any such constraints based
on sequence similarity must be obtained using other programs.
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Program

Experimental

MZEF

GeneMark

HMMGene

FGENESH

GenScan

GrailEXP

AAT

GeneBuilder

GeneWalker 

TWINSCAN

Exon 6–

524–605

524–605

524–627

524–605

530–611

524–605

524–605

524–605

524–605

524–605

524–605

Exon 7

1169–1236

1169–1236

1164–1266

1169–1279

1175–1242

1169–1236

1169–1236

1169–1279

1169–1236

1133–1156

1169–1236

Comments

Choice of organism needed

Need to choose species carefully

Translates predicted gene

Predicts internal, all as excellent

With database search

Translates predicted gene

Need to register. Only deals with
human genes

Exon 5

161–263

161–263

161–263

161–263

167–269

161–263

161–263

161–263

161–263

161–263

161–263

Comparison of predictions of exons 5, 6, and 7 in the gene for the human cyclin-dependent protein kinase CDK10.
Table 9.5

These predictions may look very good but that is due to the fact that the example sequence has many homologs in the databases and
these may have been used in training the programs. The example used here is to illustrate how to use the methods rather than to test
their accuracy, although some do perform better than others.
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FGENESH is a gene-prediction algorithm that is one of a set of similar methods;
among these are FGENES, FGENESH, and FGENESH+. FGENES is basically a
pattern-based gene predictor using dynamic programming, FGENESH is similar
but uses the HMM method, while FGENESH+ also includes sequence similarity.
FGENESH is based on recognition of sequence patterns of different types of exons,
promoter sequences, and the polyadenylation signals that occur at the 3¢ end of
many protein-coding genes in eukaryotes. Using dynamic programming, the algo-
rithm finds the optimal combination of these patterns in the given sequence and
constructs a set of gene models  as is illustrated for the rice genome (see Box 9.4).

HMMGene correctly predicts the location of exons 5 and 6 in the kinase gene;
however, exon 7 is slightly overpredicted in length (see Table 9.5). An overprediction
of 43 bases (not divisible by three) occurs in the seventh exon, which will have an
effect on subsequent exons (see Table 9.2). HMMGene predicts both exons for the
ALDH10 sequence (see Table 9.4) identically to GeneMark.

FGENESH predicted the three exons of the kinase gene slightly downstream of their
true locations. All are shifted by six bases, but are the correct length and therefore
the correct reading frame is conserved. However, the first two amino acids of each
exon are lost, but two extra residues at the 3¢ end of the exon are added (see Figure
9.8C). The gene prediction for ALDH10 by FGENESH gives the wrong length for both
exons but in both cases a correct multiple of base content (MBC) is kept (see Figure
9.5). The first exon is predicted to start just upstream of an ATG codon, which
happens not to be the experimentally determined translation start site. However,
when the two exons are joined together and translated in all reading frames, this first
ATG codon is the start of an ORF that includes all of the second exon. Scanning this
predicted protein against the protein database produces high-scoring hits to
ALDH10 homologs, but only for the second part of the sequence (see Figure 9.9).
This part of the sequence corresponds to the second exon, which has been correctly
translated. However, by starting translation at the wrong ATG codon, the first exon is
incorrectly translated and has no high-scoring homologs. This error in interpreting
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MAEPDLECEQIRLKCIRKEGFFTVPPEHRLGRCRSVKEFEKLNRIGEGTYGIVYRARDTQTDEIVALKKVR
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IVLQVLRGLQYLHRNFIIHRDLKVSNLLMTDKGCVKTADFGLARAYGVPVKPMTPKVVTLWYRAPELLLGT
TTQTTSIDMWAVGCILAELLAHRPLLPGTSEIHQIDLIVQLLGTPSENIWPGFSKLPLVGQYSLRKQPYNN
LKHKFPWLSEAGLRLLHFLFMYDPKKRATAGDCLESSYFKEKPLPCEPELMPTFPHHRNKRAAPATSEGQS
KRCKP

(A) 

(B) GeneMark Prediction

5'3' Frame 3
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D)  GeneWalker Prediction
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Figure 9.8
Figure illustrating another way in
which prediction programs can
result in the wrong reading frame
being used for translation. Part (A)
shows the correct gene translation of
the CDK10 gene, composed of a
series of exons. Exons 5, 6, and 7 are
colored red, blue, and green
respectively. The resulting
translations of three prediction
programs for exons 5 to 7 are shown
in parts (B) to (D). The predicted
exons are separated in the translated
protein by a˙̇ symbol. Correctly
translated parts of exons are colored
according to part (A). Black
underlined residues are shown when
the exon is predicted to extend
further at the 3¢ end than is correct.
FGENESH predicts the correct
reading frame for all three exons
despite incorrectly predicting the
exon start and stop positions.
GeneMark, because it predicts an
extension to exon 6 that is a number
of bases not divisible by three, gets
the reading frame wrong for exon 7.
A similar result is seen for
GeneWalker, but this time on
predicting premature termination of
exon 6.
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the first exon could be overcome in one of two ways. Alternative ATG codons could
be explored, in this case revealing only one alternative—the correct translation start
site—or the equivalent region of a high-scoring homolog could be used to identify
similar protein-coding regions in the ALDH10 DNA sequence.

Genes can be predicted using a gene model and sequence
similarity
As has just been illustrated with the predictions of FGENESH, known sequences
can prove very useful in helping to predict new genes. Various sequence databases
can be used to augment the ab initio predictions. For some organisms, databases
of experimental ESTs and cDNAs can be used to identify protein-coding regions,
introns, and even alternative splicing. While one might hope to find exact
sequence matches, experimental techniques (especially for ESTs) give significant
sequencing errors, leading to potential ambiguities. Where sequences are not
available for the same organism as the query sequence, use of homologous
sequences can still be of benefit.

The program GenScan (see Section 10.5) is based on a probabilistic model of
human genomic sequences. The model used by GenScan approximates widespread
structural and compositional features of human genes such as common promoter
elements, exons, introns, and splice sites. Specialized features specific to very few
genes are omitted, but general features, such as the presence of the promoter TATA-
box sequence, are included. For further details on the gene model used by GenScan
see Figure 10.19. This means that although the model was designed for human
genes, it should model any eukaryotic DNA equally well with suitable parameteri-
zation. GenScan uses this model to predict the locations of exons in genomic DNA
sequence. GenScan can predict the presence of more than one gene in a sequence,
and can deal with incomplete genes. It also analyzes both of the DNA strands, and
thus can predict the presence of genes on either strand.

With GrailEXP, a list of the most likely protein-coding regions in the submitted
genomic DNA sequence is predicted by integrating pattern-recognition informa-
tion of the type discussed earlier with information on those regions with similarity
to EST sequences. The outcome of this analysis is then evaluated using a neural
network method to calculate the likelihood that these coding regions are true
exons. GrailEXP is a versatile program suite that can also be used to locate
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Figure 9.9
A combination of prediction errors
described and illustrated in Figures
9.5 and 9.8. For the ALDH10 gene,
FGENESH predicts the wrong length
for both exons but in both cases a
correct multiple of base content
(MBC) is kept (see Figure 9.5). The
first exon is incorrectly predicted to
start just upstream of an ATG codon
(see Figure 9.5), resulting in the
wrong reading frame for the first
exon. However, if the predicted
coding region is translated in all
reading frames and submitted in a
database search, the correct
product can sometimes be
identified. In the search results
shown here the reading frame used
was such that the query sequence
has the correct translation of the
second exon. As a consequence,
some database hits are reported
that have a significant score, and
only align with that region.
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EST/mRNA alignments, certain types of promoters, polyadenylation sites, CpG
islands, and repetitive elements.

The AAT (Analysis and Annotation Tool) Web site has a program that combines
database searches with gene predictions. It will work best on human sequences,
because the gene-sequence statistics were collected from human DNA. Basically it
identifies genes in a DNA sequence by comparing the query sequence against
cDNA (GAP2 program) and protein sequence (NAP program) databases. Then the
prediction program combines the matches with gene-prediction results. The gene-
location algorithm, called GSA2, computes exon sequence statistics using the
method of the MZEF program.

GeneBuilder predicts functional DNA sites and coding regions using several
approaches, which it then combines with similarity searches in protein and EST
databases. The models of the gene structure are obtained using the dynamic
programming method (see Section 5.2). A number of parameters can be used for
the prediction. Different exon homology levels with a protein sequence can
improve the prediction.

GeneBuilder has two options for predictions: the predict exon option and the gene
model option. The gene option is used for predicting the full gene model while the
exon option is used to select the exons with the best scores. We have run the predic-
tions on the kinase and ALDH10 genes using both modes. Using the gene option for
ALDH10, only one exon is predicted, which spans the protein-coding segment of
the first exon and is in the correct frame. The exon option predicts seven potential
exons. Four predicted exons are before the first exon, the fifth and sixth predicted
exons span the protein-coding region of exon 1, and the seventh predicted exon
correctly identifies exon 2 (as shown in Table 9.4 and discussed below). GeneBuilder
correctly identified all three exons of the kinase gene in the gene mode (as shown
in Table 9.5) but the exon mode predicted five exons, of which none was correct.

GeneWalker is a Web-based program developed by Japan Science and Technology
Corporation. It locates general exonic regions in human DNA by analyzing the
DNA sequence for tell-tale signals such as TATA boxes. In addition, it uses simi-
larity matching to look for sequence fragments that may delineate exon-specific
sites such as start and stop codons, and 5¢ and 3¢ splice sites. The program then
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Rice is one of the most important crops
in the world, feeding a large proportion
of the global population. The program
FGENESH was one of the programs used
to predict and annotate the rice genome.
It was found to be very successful,
generating 53,398 gene predictions with
initial and terminal exons.

The quality of the predictions was meas-
ured by using base-level specificities
and sensitivities (see Section 9.6) which
showed that false-negative predictions
were more likely to be a problem than
false-positive predictions. In other
words FGENESH was more likely to miss

an exon fragment than to label some-
thing as part of an exon incorrectly.
Exon-level sensitivities and specificities
were much worse, meaning that the
exon–intron boundaries were not
precisely delineated, even though the
existence of a gene was correctly
detected.

The predicted genes were then
compared to the Arabidopsis genome to
obtain some of the annotations: 80.6% of
predicted Arabidopsis genes had a
homolog with rice, but only about 50% of
the predicted rice genes had a homolog
in Arabidopsis. 

Box 9.4 FGENESH and the rice genome

Figure B9.4
Flowering rice. (Courtesy of
A. Davis, Bioimaging JIC.)
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calculates a coding potential (CP) at each nucleotide position, on the basis of a
statistical analysis of the local segment. The CP then gives the likelihood that the
nucleotide forms part of a coding region.

Subsequently, GeneWalker predicts the likely promoter, exon, or terminator
regions, and compiles this information into a global prediction of the DNA
sequence. The GeneWalker Web viewer gives the final predictions and other infor-
mation predicted by the program, such as likely signal sequences, start and stop
codons, and splice sites.

Identical correct predictions of 5, 6, and 7 exons were obtained for the kinase gene
by all the above programs, with the exception of AAT and GeneWalker, which have
errors in the seventh exon prediction. AAT predicts the seventh exon to extend 43
bases downstream, but is otherwise correct. GeneWalker predicts a very short (24
base) exon that is just upstream of the experimental seventh exon (see Figure 9.8D).

These programs do not all predict the same start for the first exon of ALDH10, but
they all start at or just before the correct translation start site. All, apart from
GeneBuilder, correctly predict the 3¢ end of the first exon, but GeneBuilder predicts
21 extra bases, giving rise to an extra seven amino acids in the predicted protein. All
the programs predict the first exon to end in the same frame and, apart from
GeneWalker, all correctly predict the start of the second exon. GenScan and
GeneBuilder correctly predict the second exon, but AAT and GrailEXP predict an
extra 59 bases at the 3¢ end. As well as predicting another 19  amino acid residues in
both cases, this is likely to lead to problems with the third exon frame. GeneWalker
predicts two possible genes from the ALDH10 DNA sequence (see Table 9.4). The
first is a gene consisting of only one exon, which contains the region of the second
true exon (2226–2400) and is identical to the FGENESH prediction. The second
GeneWalker gene prediction consists of three exons, of which the first lies upstream
of the first real exon (1136–1344), the second spans the region of the protein-coding
region of the ALDH10 exon (see Table 9.4), and the third (from nucleotides
2086–2148) is predicted just before the location of the second real exon (2169–2400).

Genomes of related organisms can be used to improve gene
prediction
Sequences with a functional role, which currently are thought to constitute only
about 5–10% of the human genome, will be conserved in evolution, whereas other
sequences will usually not be. There are exceptions; for example, some segments of
noncoding DNA (also referred to as junk DNA) exceeding 200 bases in length are
perfectly conserved across several eukaryotic species. Examples of these are some
of the genetic elements known as transposons. Initially it was thought that trans-
poson function was purely selfish. However, recent research has shown that trans-
posons play an important role by their ability to change the way DNA code is
edited before translation by introducing new splice sites into a gene (see Box 9.5).
As a consequence of these findings there is active research into the functions of
these elements. 

When comparing equivalent regions of the genomes of two related organisms,
sequence segments showing similarity can be taken to indicate that these regions
have a function. Exons and promoters, for example, would be expected to share
similarity to a greater extent than introns. This observation has been exploited by a
number of recent prediction programs to improve gene-prediction accuracy. Note
that as well as requiring two genomic sequences, this approach assumes that the
gene is present in both. TWINSCAN is an example of this type of program and has
been used here to predict the CDK10 and ALDH10 genes. Both predictions were
carried out using the human and mouse genomes. The kinase exons are all
correctly predicted, as well as identified as internal genes. TWINSCAN successfully
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predicts the protein-coding region of the first exon and second exon in the ALDH10
gene, as well as identifying the first exon as an initial exon.

The prediction programs described in this chapter were chosen because of their
easy availability and to demonstrate the use of various gene-finding schemes.
These programs change in algorithms and parameterization, and databases are
updated daily, so that the results given here may not be reproducible when
repeated after publication of this book. These results should be taken as examples
that illustrate general principles, and not of the success or failure of specific
methods. More and better programs, often with more user-friendly interfaces, are
continually becoming available.

9.4 Splice Site Detection
A full characterization of most eukaryotic genes requires a prediction of their
splicing structure; that is, the way their RNA will be spliced to remove introns and
produce a continuous coding sequence (see Flow Diagram 9.4). As splice sites, by
definition, demarcate intron–exon boundaries, some of the exon-prediction
programs discussed earlier incorporate splice-site information to help locate exons.
There are some programs, however, that are specifically designed to recognize splice
sites. In addition, one will want to predict at which end of the exon the splice junc-
tion is located. In other words, is it an exon–intron (donor) or an intron–exon
(acceptor) boundary (see Figure 9.10). 

Examples of the sequence signals for these splice sites are shown in Figure 10.11.
The signal is dominated by dinucleotides in both cases, with weak signals extending
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Transposons (sometimes known as jumping genes or
selfish DNA) are segments of DNA that can move
around to different positions in the genome of a cell. In
the process, they may cause mutations or increase or
decrease the amount of DNA in the genome.

The first transposons were discovered in the 1940s by
Barbara McClintock. She worked with maize (Zea mays)
and found that transposons were responsible for a
variety of gene mutations with unusual behavior. She
was awarded the Nobel Prize in 1983 for her discovery.

One of the most highly repeated elements in the human

genome are the Alu elements, which are relics of a type
of transposon known as a retrotransposon, which is
derived from RNA. HIV-1—the cause of AIDS—and
other human retroviruses act similarly to retrotrans-
posons, inserting a DNA copy of their RNA genome into
the host cell DNA. Alu elements are common in introns
and some are recognized by the spliceosome and can be
spliced into mRNA, thus creating a new exon that will be
transcribed into a new protein product. As alternative
splicing can provide not only the new mRNA but also
the old, nature can test new proteins without getting rid
of the old ones (see Figure B9.5). 

Box 9.5 Transposons and repeated elements

exon exon 

exon exon exon 

exon intron intron exon Alu 

mRNA

normal splicing

3¢ pre-mRNA

alternative splicing

mRNA

Figure B9.5
Intronic Alu elements, which
can be spliced into mRNA
creating a new exon. (Adapted
from J.W. Kimball,
http://users.rcn.com/jkimball.
ma.ultranet/BiologyPages/T/T
ransposons.html)
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mostly on the intron side. If one tries to identify splice sites solely on the basis of the
GT and AG dinucleotides this will lead to so many false-positive predictions that it
will be impractical. For this reason, more sophisticated methods to identify splice
sites have been devised. Multilayer neural networks (discussed in Section 12.4),
decision trees, and position-specific oligonucleotide counts have all been used.

Splice sites can be detected independently by specialized
programs
Four splice-site recognition programs were used to predict splice sites for our
ALDH10 sequence. The results are illustrated in Figure 9.10. The program
SpliceView has an exceptionally user-friendly interactive splice-site analysis tool
(see Figure 9.11). It illustrates the predicted regions as a bar chart. The user can then
choose the threshold above which to view the splice sites (in Figure 9.11 only sites
that are excellent have been chosen). The exact position for each site can then be
found interactively.

9.5 Prediction of Promoter Regions
Many of the programs used above to predict exons also incorporate information
about the location of the core promoter regions in the vicinity of the transcription
start site (TSS). Some programs focus exclusively on these and other promoter
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Flow Diagram 9.4
In this and the following section
some of the practical aspects of
splice site and promoter prediction
are presented.
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Figure 9.10
A schematic of acceptor and donor
sites (AS and DS, respectively) and
intron–exon, exon–intron
boundaries on a DNA sequence. The
top numbers give the true exon 1
and 2 nucelotide positions of the
ALDH10 gene, while the numbers at
the bottom give the splice prediction
sites. The predictions are shown for
those splice sites that had a
reasonable score and fitted with the
exon prediction as given in Table 9.3.
A “–” indicates no satisfactory
prediction was found.
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signals. In addition to predicting the TSS, some of these programs can suggest
regions involved in controlling expression of these particular genes. The inde-
pendent prediction of these promoter regions can help analyze information about
gene or protein expression gained experimentally.

Promoters are the regions of DNA where RNA polymerase and associated general
transcription factors bind to initiate the transcription of a nearby coding sequence.
For prokaryotic genes, and for genes transcribed by RNA polymerase II in eukary-
otes, a core promoter site is typically a short distance upstream from the transcrip-
tion start site. The sequence patterns are better defined for the core promoter
regions and a database of eukaryotic promoters for RNA polymerase II has been
created—the Eukaryotic Promoter Database (EPD). In the case of eukaryotic genes
there are additional, more extensive promoter regions that may cover thousands of
base pairs and contain binding sites for numerous other gene-regulatory proteins
that determine when and where the gene will be switched on in the organism.

Prokaryotic promoter regions contain relatively well- 
defined motifs
In prokaryotes such as E. coli, the RNA polymerase is composed of two functional
components: the core enzyme and a so-called sigma factor (s). The sigma factor
plays an important part in promoter sequence recognition. There are several
different sigma factors, each recognizing specific subsets of promoters that have
different nucleotide sequences.

Comparison of E. coli promoters identified four conserved patterns that can be
used to find promoter regions in most prokaryotes: the Pribnow box, which is a
TATAAT segment at position –10 from the transcription start site; a TTGACA box at
position –35; a somewhat conserved transcription start site; and an AT-rich region
before the TTGACA box. These conserved patterns can be used to predict promoter
regions. These are similar to the core promoters identified in eukaryotes but have
slightly different consensus sequences and positions. In addition, there are some
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position 1139

Figure 9.11
A snapshot illustration of the
interactive interface provided by
the SpliceView program.
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prokaryotic promoters found within a few hundred bases upstream of the gene
that are involved in the control of specific genes or classes of genes. These would
form part of a system that could, for example, cause expression of a set of genes in
response to external conditions such as temperature.

Eukaryotic promoter regions are typically more complex than
prokaryotic promoters
Promoter prediction in eukaryotes is more difficult, especially as some of the
regions that regulate eukaryotic gene expression can be thousands of nucleotides
away from the transcription start site. In addition, control regions may be found
either upstream or downstream of genes. Therefore, locating all the control sites for
a eukaryotic gene is no simple matter. There has, however, been some success in
predicting the well-characterized promoter regions associated with genes tran-
scribed by RNA polymerase II, which comprise the majority of the protein-coding
genes. In addition, eukaryotic promoters contain multiple elements or control
regions, binding various transcription factors, and these elements are often found
in more than one promoter region.

Various methods have been explored for the prediction of promoter regions. Some
are concerned with recognizing the regions of the core promoter of genes tran-
scribed by RNA polymerase II, such as TATA boxes, CAAT boxes, and the transcrip-
tion initiation region (Inr). Other methods extend this by also looking for
combinations of other common gene-regulatory motifs.

A variety of promoter-prediction methods are available online
This section will briefly note some promoter-prediction programs that are acces-
sible online. Some methods, which can be used for both prokaryotes and eukary-
otes, use a score or weight matrix to search and score a sequence for segments that
are specific for promoter regions, such as the Pribnow box in prokaryotes. It should
be noted, however, that different matrices must be used for different groups of
organisms. The principles underlying the application of weight matrices in eukary-
otic promoter prediction is dealt with in more detail in Section 10.5. For example,
the FunSiteP algorithm uses a weight matrix to predict promoters by locating puta-
tive binding sites for transcription factors. In addition to giving the predicted site of
the promoter, by detecting different sets of binding sites, the program predicts
which class the promoter will belong to as classified in the EPD. This is given in the
last column of the output file from FunSiteP. For example, the number 6.1.5 corre-
sponds to promoters of regulatory proteins in the EPD.

Neural network methods have also been used to predict promoter regions. The
network is trained to distinguish between promoter and nonpromoter sequences.
The algorithm NNPP (Neural Network Promoter Prediction), which is discussed in
Section 10.5, was developed for the Berkeley Drosophila Genome Project (BDGP),
and uses time-delay neural network architecture and recognition of specific
sequence patterns to predict promoters (see Figure 10.14 for details). The Promoter
2.0 algorithm uses a combination of perceptron-like neural networks and genetic
algorithms to optimize the weights used in the neural networks.

TSSG and TSSW algorithms predict potential transcription start sites (TSSs) using
the linear discriminant method. Predictions are based on characteristics
describing functional motifs and oligonucleotide composition of the promoter
sites. The difference between TSSG and TSSW is that the model composition of the
promoter sites is based on different promoter databases. CorePromoter is also
based on discriminant analysis (in this case, quadratic discriminant anlysis) of
human core-promoter sequences (see Figure 10.16). It is similar in concept to the
MZEF program described in Section 9.3.
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The ProScan promoter-prediction program is based on the analysis of promoter-
specific binding sites that are also found by chance in nonpromoter regions. The
ratio of the densities of these sites in promoter and nonpromoter sequences has
been calculated from experimental data, and these ratios were then used to build a
scoring profile called the Promoter Recognition Profile. ProScan uses this profile, in
combination with a Phillipe Bucher weighted scoring matrix for a TATA box (see
Figure 10.12), to differentiate between promoter and nonpromoter regions. This
program has been parameterized using only primate data, and therefore may not
perform as well on data from other species.

As is shown in Section 10.5, there is a biased distribution of short oligonucleotides
in regions containing promoters relative to other regions of the genome. These are
used in the program PromoterInspector to identify the location of promoter
regions, achieved by sliding a window along the DNA sequence and classifying its
content. The distribution of a number of these oligonucleotides is used to predict
the site of promoters but does not identify the strand involved.

Promoter prediction results are not very clear-cut
The promoter-prediction methods discussed above are available on the Web and
have been run on our example sequence from ALDH10 (the kinase example does not
contain the promoter sequence). The results are given in Table 9.6. A promoter
prediction was considered correct if it was within 200 bp 5¢ or 100 bp 3¢ of the exper-
imentally determined transcription start site. The predictions shown in Table 9.6 are
those with the highest scores. Only TSSW, ProScan, and PromoterInspector fall
within the criteria for a correctly predicted promoter. FunSiteP predicts 14 possible
promoter sites, all of which fall within the criteria, but all were defined as low scoring.

Even though some of the programs failed to find the correct promoter region in this
example, they should not be dismissed. All the methods described have strengths
as well as weaknesses, and will perform better on certain types of DNA than on
others. For a raw genomic DNA sequence, a range of programs should be used, and
the consensus used as the best prediction.

Although the prediction of promoter regions may not necessarily help in gene iden-
tification, putative promoter sites may be used in the analysis of gene or protein
expression experiments. Genes or proteins that show similar expression may be
controlled by the same regulatory proteins. To test this hypothesis, the promoter
regions of the genes in question can be predicted and inspected for similarities.
Similar promoter regions may indicate coregulation. For example, operons (sets of
adjacent genes in bacteria that form a single transcriptional unit) such as those
coding for flagella, have been implicated in pathogenicity. Virulence factors of
pathogenic bacteria such as toxins or invasins can be encoded by specific regions
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Promoter predictions TSS
1416

BDGP-NNPP 444–494

CorePromoter 1034

TSSG 0

TSSW 1372

ProScan 1078–1328

FunSiteP 14 sites

Promoter 2.0 800 & 1200

PromoterInspector 1205–1400

Table 9.6
Comparison of the promoter
prediction in the ALDH10
sequence. The numbers
indicate the nucleotide
position of the predicted start
site. The experimentally
determined transcription start
site (TSS) is given in white at
the top. 
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of the prokaryotic genome termed “pathogenicity islands.” For example, more than
10 pathogenicity islands have been recognized in Salmonella.

Similarly, if a set of proteins is coexpressed, then the proteins can be identified, the
sequences reverse translated into DNA, the genes located, and the upstream
regions analyzed for similar promoter sequences. This is an especially effective
approach in prokaryotes, where the promoter regions are more easily identified. In
eukaryotes, where promoter regions are not easily identified, one can analyze the
upstream sequence for common patterns.

9.6 Confirming Predictions 
It is important to be able to confirm gene predictions or have an idea of their accu-
racy. In this section we first describe how the prediction accuracy of a specific
program can be measured; this is particularly useful information for potential
programmers but also for users, to have a general idea of the quoted accuracy of the
program of their choice. Subsequently, we look at how translation of the gene
product can confirm a correct gene prediction (see Flow Diagram 9.5).

There are various methods for calculating the accuracy of
gene-prediction programs
Authors often give a numerical value for the accuracy of their prediction program
and it is important to have at least some idea of what these numbers mean. Being
able to calculate an accuracy measure that can be compared to other programs is
important for program developers, especially when automated annotation of
genomic sequences is being considered. This is because the steps during automatic
annotations cannot be checked by a user and running automatic annotation
implies annotation on a grand scale making user-checks more difficult. 
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In this section some of the methods
that can be used to check the
predictions of genes and control
signals are described.
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The accuracy of exon predictions can be measured at three different levels: coding
nucleotide (base level); exonic structure (exon level); and protein product (protein
level). At the nucleotide level, prediction accuracy for each nucleotide can be
defined by discriminating between true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN) predictions (see Box 10.1). Figure 9.12 shows some
examples of the nucleotide-defined prediction terms. These measure the accuracy
by comparing the predicted coding value, whether coding or noncoding, with the
actual coding value for each nucleotide. These are expressed by sensitivity (Sn) and
specificity (Sp).

At the exon level, determining prediction accuracy depends on the exact prediction
of exon start and end points. Here, Sn is the proportion of the real exons that is
correctly predicted while Sp is the proportion of predicted exons that is correctly
predicted. At the level of protein sequence, prediction accuracy can be measured as
percent similarity between the translated predicted gene product and the actual
gene product. This, however, depends on obtaining a correct translation frame (see
Section 9.3).

Sn and Sp values are often quoted on papers and Web sites describing a specific
exon-prediction program. In this chapter we have been using qualitative descrip-
tions of the prediction and the translated products rather than these values, as this
chapter deals mainly with the user’s view of gene prediction, and the user, working
with unknown sequences, cannot calculate the Sn, Sp, or any of the above values.
However, the user should be aware of the meaning of these values, and the future
program developer should be able to calculate them by reference to how well a
program works on known genes.

Translating predicted exons can confirm the correctness of the
prediction
The most reliable method of checking the accuracy of exon prediction is by detec-
tion of homology of the resulting protein sequence to sequences already present in
the protein-sequence databases. Any predicted exon must be translated to a
protein sequence for confirmation of the correctness of the prediction. Translating
predicted exons into protein sequence, using one of the programs available on the
Web, will give segments of protein sequence that can be pooled together and run
using a sequence search program against a protein database. For example BLASTX
translates the nucleotide sequence in all six reading frames and then automatically
compares the translated products against a protein sequence database. Figure 9.13
illustrates the result of a search against a correct exon-to-protein translation. All the
significant matches are spanning the same region of the sequence and the proteins
found by the test sequence are homologs. Any DNA sequence can, in principle, be
translated in three different reading frames, and also in both the 5¢ to 3¢ and 3¢ to 5¢
direction; to allow for the fact that the coding sequence may be on the complemen-
tary DNA strand, you should test each option.

Constructing the protein and identifying homologs
Once the promoters, possible introns, exons, and splice sites have been predicted,
it is necessary to combine these results and predict the protein sequence that
would be expressed. A generally useful exercise is to take the most commonly
occurring exon predictions as correct, or an average of the predictions when there
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TN FN TP FP TN FP TP FP TN FN FN TN

real 
 

predicted 

TP Figure 9.12
The various ways a prediction can
be defined. The figure illustrates the
meaning of true negative (TN), true
positive (TP), false negative (FN),
and false positive (FP) predictions
based on the overlap of predicted
versus true genes. Exons are said to
be correctly predicted when the
overlap between the actual exon
(red) and the predicted exon (blue)
is greater than or equal to a specific
threshold. It also shows how even
when an exon is correctly located,
part of it can be incorrectly
predicted; for example, it can be
underpredicted or overpredicted on
either end, or shorter than the
actual exon.
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EXON Dir Frame Translated amino acid sequence
1 5'3' 3 MAEPDLECEQIRLKCIRKEGFFTVPPEHR
2 5'3' ? 
3 5'3' 3 LGRCRSVKEFEKLNRIGEGTYGIV
4 5'3' 3 RARDTQTDEIVALKKVRMDKEKD
5 5'3' 3 RHPHSSLREITLLLRLRHPNIVELRRWLWGTTWR
6 5'3' 2 IFLVMGYCEQDLASLLENMPTPFSEAQ
7 5'3' 1 VKCIVLQVLRGLQYLHRNFIIH
8 5'3' 2 RDLKVSNLLMTDKGCVKT
9 5'3' 3 ADFGLARAYGVPVKPMTPKVVTL
10 5'3' 2 YRAPELLLGTTTQTTSIDM
11 5'3' 2 WAVGCILAELLAHRPLLPGTSEIHQIDLIVQLLGTPSENIWP
12 5'3' 1 GFSKLPLVGQYSLRKQPYNNLKHKFPWLSEAGLRLLHFLFMYDPKK
13 5'3' 2 RATAGDCLESSYFKEKPLR
14 5'3' 3 PCEPELMPTFPHHRNKRAAPATSEGQSKRCKP

BLAST search

(A)

(B)

CDK10 gene translation searches. (A) The translated CDK10
exons are given in a table with the direction and frame of
translation. (B) This illustrates the BLAST search results through

the Swiss-Prot database of the spliced translated exons. All the
searches are significant (red colored lines) and all are to CDK-like
kinases.

Figure 9.13
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is no clear preference (for example, in ALDH10 exon 1 this would be 1610 or 1601 to
1762), and to calculate an average or a consensus prediction of all the hits for the
promoter region. From our results for ALDH10 this consensus gives us an exon 1
from position 1610 to 1759, and an exon 2 from 2169 to 2400. Comparing this with
the experimentally determined exons it is quite a good prediction, with a putative
promoter around position 1289. That is all very well, but we still, in principle, do not
know what the protein is, what it does, and if the exons are correct.

The next step is to take the predicted exons and run them through the various trans-
lation programs available. The translation should be performed for all three reading
frames and in both directions (5¢ to 3¢ and 3¢ to 5¢). Easy-to-use translation programs
that perform all six translations are found on the ExPASy site, and TRANSLATOR is
on the JustBio site. Figure 9.14 shows the result of the Frame 3 translation of the first
predicted ALDH10 exon in the 5¢ to 3¢ direction, using the ExPASy translator. Once
the translations have been obtained, the ones that contain the least number of stop
codons (if any) are submitted to a database search program. Here we have used the
default BLAST. The Frame 3 translation BLAST search through the Swiss-Prot data-
base found the correct protein (ALDH) and its close homologs as the highest-
scoring hits (see Figure 9.14).

Thus from having an unknown piece of DNA, we now know that the region
predicted as exon 1 is at least partially correct, and that the gene is most likely to
encode a member of the fatty aldehyde dehydrogenase family of proteins. It may
now be possible to delineate the exact exon position by taking the protein
sequence of the homolog and using the program GeneWise to align this with our
ALDH10 DNA sequence. GeneWise allows the comparison of a DNA sequence to a
protein sequence. This comparison enables the simultaneous prediction of gene
structure (exons and introns) with homology-based alignment. GeneWise uses a
gene-prediction model and an HMM of a protein domain to do this.
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atggagctcgaagtccggcgggtccgacaggcgttcctgtccggccggtcgcgacctctgcggtttcggc
tgcagcagctggaggccctgcggaggatggtgcaggagcgcgagaaggatatcctgacggc

A MetELEVRRVRQAFLSGRSRPLRFRLQQLEALRRMetVQEREKDILT

DHA4_HUMAN (ALDH10)  Fatty aldehyde dehydrogenase   5e-19 
DHA4_RAT   (ALDH4)   Fatty aldehyde dehydrogenase   2e-15 
DHA4_MOUSE (ALDH4)   Fatty aldehyde dehydrogenase   6e-14
DHAP_HUMAN (ALDH3A1) Aldehyde dehydrogenase         2e-09 
DHAP_RAT   (ALDH3A1) Aldehyde dehydrogenase50       4e-07 
DHAP_MOUSE (ALDH3A1) Aldehyde dehydrogenase         4e-07 
DHA7_HUMAN (ALDH3B1) Aldehyde dehydrogenase         4e-04

translate (5’3’Frame3) 

BLAST (Swiss-Prot)

Figure 9.14
ALDH10 translation and searches.
The DNA sequence of the exon
prediction for the first exon of
ALDH10 is taken and submitted to
translations, of which the correct
result is shown. This translated
segment is then sent off for a
homology search through a protein
database (in this case BLAST
through the Swiss-Prot database).
The best-scoring hits are shown,
colored according to their alignment
scores S, as given by the key along
the base of the figure.
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We chose the rat protein homolog to compare with our target ALDH10 DNA
sequence. The first exon is now delineated precisely—from 1610 to 1762—and the
second exon from 2169 to 2400. Submitting the whole ALDH10 DNA sequence
consisting of 10 exons (7709 bp) for alignment with the rat protein homolog
provides a complete exon–intron map (see Figure 9.15). The accuracy of such an
analysis will depend on the degree of similarity between the protein homolog found
by BLAST and the gene under investigation. Thus, if the only homolog found was a
betaine aldehyde dehydrogenase from E. coli, then the GeneWise analysis would
not delineate the correct exon. Comparison of the E.coli protein with exons 1 and 2
of human ALDH10 finds a putative exon in the region 2301 to 2402, which does span
the 3¢ end of the true second exon, but it does not give a clear-cut answer such as
one obtains with rat fatty aldehyde dehydrogenase.

A typical series of steps in eukaryotic gene prediction and confirmation is shown in
Table 9.7. 

9.7 Genome Annotation
Once all the genes have been predicted, it remains to determine what function the
encoded proteins might play. The obvious way to start to determine gene function
is by sequence analysis of the kind discussed in Chapter 4, although often that step
will be part of the exon (gene) identification method. If they have significantly
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information 

virtual 
excising 

virtual splicing translation 

homology search 

investigate Web
pages/databases

further annotation:
protein type, chromosome
location, SNPs, disease
association, probable
function, etc.

1 2 3 4 5 6 7 8 9 10 

introns 

promoter site 
(1289) 

1:   1610–1762 
2:   2169–2402 
3:   2709–2794 
4:   3047–3255 
5:   3453–3570 
6:   4061–4202 
7:   4692–4858 
8:   5160–5259 
9:   6570–6694 
10: 6892–7076 

delineated exons 
by homology 

Figure 9.15
Annotating the gene. A schematic of
the annotated gene-structure DNA
sequence of ALDH10 and illustration
of further steps to be taken to obtain
more information for a more
detailed annotation(such as single
nucleotide polymorphism (SNP) and
chromosome location) once the
gene structure has been predicted.

1 Submit DNA sequence to exon prediction programs

2 Take average or consensus exon prediction

3 Translate predicted exon into protein sequences in all frames and directions

4 Take translation with least or no stop codons

5 Search protein database with the translated segment

6 If hit found use protein homolog in GeneWise to delineate exon(s)

7 Repeat for all other exons

8 Annotate and splice exon to obtain putative protein sequence

Table 9.7 
A typical series of steps in
eukaryotic gene prediction.
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scoring hits in searches against sequence and pattern databases, the sequences can
be predicted with considerable confidence to have similar function and other prop-
erties. In all genomes to date, however, many gene products do not yield to such
analysis, and other steps are required. (In any case, the similarity may be to only a
part of the protein, such as a single domain.) In most cases, the only realistic way of
assigning functions is by further experimental work. Thus, there is often a large
effort following sequencing to discover the phenotype on disrupting an individual
gene. The phenotype may be described by gross features, such as overall cell size,
but often will be in terms of the different gene or protein expression as compared
with the wild type. Such experiments can also demonstrate linked control with
other genes whose function is better understood. Such methods can yield gene
functions at several levels of description.

Genome annotation is the final step in genome analysis
There is more to genomes than just the genes, and a full genome annotation must
cover all the aspects (see Flow Diagram 9.6). The location of tRNA genes has already
been discussed, and the rRNA genes also need to be located. In addition, there are
repeat sequences that can be of interest and can have functional roles. A significant
fraction of almost any genome is repetitive. Repetitive sequences fall primarily into
three classes: local repeats (tandem repeats and simple sequence repeats), families
of dispersed repeats (mostly transposable elements and retrotransposed cellular
genes), and segmental duplications (duplicated genomic fragments). Repetitive
sequences are so numerous that simply annotating them well is an important
problem in itself. There are a few Web-based packages available to identify repeat
sequences within a genome; RECON and RepeatMasker are good examples, and
both programs are largely based on alignment procedures.
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split 
genome 

exclude items 
from analysis 

check for 
homology 

splice site and 
promoter 

predictions 

prokaryotic 
exon prediction 

confirming 
predictions 

annotation 

REVEALING GENOME FEATURES

eukaryotic 
exon prediction 

Flow Diagram 9.6
In this section the technique of
genome annotation is described to
explain how the prediction methods
presented in this chapter are
complemented by other work.
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Beyond this, there are features that encompass several genes, such as operons and
pathogenicity islands. In addition, other genes may show signs of recent lateral
transfer. It is beyond the scope of this book to cover the methods by which these
and other features can be identified.

In addition, the use of pathway information can aid gene and genome annotation,
especially in later stages, when after a first round of annotation many proteins have
been identified as hypothetical. These are predicted gene products for which no
function or identification is yet possible. They can be true ORFs or mispredictions.
Some are conserved through many species (conserved hypothetical) indicating that
they are true ORFs. Quite large sections of a genome that has undergone annotation
are classed as hypothetical; for example, around 50% of the Neisseria meningitidis
ORFs are of unknown function. Comparing a new genome to a well-annotated and
functionally defined one (such as that of E. coli) can aid the analysis of specific
pathways [such as those obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG)] and may identify missing components or blanks in pathways.
These blanks can mean either that no equivalent protein exists in the genome
under investigation or that one of the hypothetical proteins is the blank (see Figure
9.16). Figure 9.16A shows the general gluconeogenesis pathway, while Figure 9.16B
illustrates that of human (Homo sapiens); the green boxes illustrate those enzymes
identified in the human genome that are associated with this pathway, with
ALDH10 highlighted. Figure 9.16C and 9.16D show the same pathway for
Bifidobacterium longum (BL), which also has the ALDH10 enzyme, and for
Neisseria meningitidis (NM), which does not. The pathways could be used to try
and find the gene products that are in the same pathway as ALDH10 in B. longum
by careful examination of the sequence of the other enzyme members, or could be
used to explore the possibility that N. meningitidis has an ALDH10-like enzyme.
More careful study of the hypothetical ORFs can identify missing pathway
members.

Gene ontology provides a standard vocabulary for gene
annotation
One of the important aspects of genome annotation has been the recognition of the
importance of gene ontology (see Section 3.2). In this context, gene ontology is a set
of standardized and accepted terms that encompass the range of possible functions
and can be found on the Gene Ontology Consortium’s Web site. Wherever possible
these terms should be used, as they make it easier to do meaningful further analysis
such as a search for genes of similar proposed function. To enable exchange of
annotation information, a common description language should also be used, for
example the GFF (General Feature Format).

It is also important to be able to compare (or exchange) results between groups that
are involved in annotating a genome. Currently, much of the valuable information
is spread out over a multitude of Web sites and databases that are not integrated.
Some recent attempts have been made by the coordinated effort of a number of
scientific communities to create annotation system consortia (for example, the
Human Genome Project consortium). A new method of sharing annotation has
recently been set up; the Distributed Annotation System (DAS) allows for the inte-
gration of data from different and distributed databases. It works with the concept
of layers, where each layer contains particular annotation data. These third-party
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Gluconeogenesis pathways. (A) A general
overview of all possible molecules involved
in this pathway. All are not colored as this
picture is not associated with any organism.
(B) The gluconeogenesis pathway in

humans. Green-filled boxes show proteins
that have been identified in humans and
are associated with this pathway. The
numbers in the boxes give the EC (enzyme
family) numbers.

Figure 9.16
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(D) NEISSERIA MENINGITIDIS PATHWAY

Figure 9.16 (continued)
Gluconeogenesis pathways. (C) A similar
treatment for Bifidobacterium longum and (D)
Neisseria meningitidis.
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servers are controlled by individual annotators (or groups), but this system works
on the basis of a common data-exchange standard—the DAS-XML. This allows for
the provision of layers from various servers, which are overlaid to produce a single
integrated view by a DAS client program (see Figure 9.17). 

The ALDH10 DNA sequence will be used as an example, as we know with some
degree of confidence from the analysis described in the previous sections where the
exons, introns, and putative promoters are. The exons can be spliced together to
obtain the coding sequence and translated to the protein product. From the
previous searches the protein was shown to be homologous to fatty aldehyde dehy-
drogenase. Therefore it should be possible to extract the putative function of the
DNA product using the DAS server and other Web pages.

For example, from a Web BLAST search at Swiss-Prot we find that this gene is the
cause of a serious disease, the Sjögren–Larsson syndrome (see Box 9.6). The occur-
rence and effects of allelic variations can be investigated and looked for in the query
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TAATG
 

TTATC
 

Figure 9.17
Basic Distributed Annotation
System (DAS) architecture. Separate
servers provide annotations relative
to the reference sequence (sequence
server such as University of
Washington Genome Center) and
the client can fetch the data from
multiple servers (such as Ensemble
and Pathways) and automatically
generate an integrated view on the
client.

Also known as the ichthyosis, spasticity, oligophrenia
syndrome, this is a genetic (inherited) disease charac-
terized by three criteria: ichthyosis (thickened fish-like
skin), spastic paraplegia (spasticity of the legs), and
oligophrenia (mental retardation). The gene defect
linked to Sjögren–Larsson syndrome has been located
on chromosome number 17 (17p11.2). The mutation is
recessive: the presence in a person of one copy of the
mutated gene is not detrimental, but if two of these
carriers have children, the risk for each child of
receiving both defective genes and having the
Sjögren–Larsson syndrome is 0.25. Mutations in the
gene lead to a deficiency of the enzyme fatty aldehyde
dehydrogenase 10 (FALDH10). The syndrome, there-
fore, is due to a deficit of FALDH10.

The Sjögren–Larsson syndrome was described by
Torsten Sjögren (1896–1974), a professor of psychiatry
at the Karolinska Hospital in Stockholm and a pioneer
in modern psychiatry and medical genetics.
Sjögren–Larsson syndrome is also known as SLS; other
terms are fatty alcohol: NAD+ oxidoreductase deficiency
(FAO deficiency); fatty aldehyde dehydrogenase defi-
ciency (FALDH deficiency); and fatty aldehyde dehy-
drogenase 10 deficiency (FALDH10 deficiency).

To find out more, search the ExPASy site for ALDH10
and then link to the MIM database.

Box 9.6 The Sjögren–Larsson syndrome
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sequence using the MIM Web site and associated links. Other good sites for further
investigation are the Genome Browser at the University of California, San Francisco,
Gene Ontology consortium, and Ensemble Web sites.

Once the gene product has been identified (ALDH10 in the working example) one
can go to the UCSC Genome Browser and search the human genome with the
name. Searching with ALDH10, we find that it is located on chromosome 17 and an
interactive graphical representation is provided with further information (see
Figure 9.18) where much of the information is summarized. Clicking on one of the
links will lead to another Web page with more detail. Links from the Genome
Browser lead to the Online Mendelian Inheritance in Man (OMIM) Web site, which
provides a catalog of human genes and genetic disorders, and to GeneCards, which
gives further links and summaries of information gathered from each linked Web
site. These links should be visited to explore the gene product and gather more
information on its function and medical importance.
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Figure 9.18
A snapshot of the Genome Browser
interactive window. Information
from many other databases and Web
pages is summarized in one view.
Clicking on any of the information
will open a more detailed
description.

(A) (B)

(C) (D)

Figure 9.19
Graphical illustration of the LAGAN
method. Initially, LAGAN generates
local alignments between the two
sequences (A) and assigns a weight
to each aligned fragment. It then
joins the local alignments if the end
of one precedes the start of the next
local alignment (B). Finally, it
calculates optimal alignments in the
limited area (boxed) around the
local-alignment anchors using the
Needleman–Wunsch algorithm (C).
Figure D shows the final product.
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9.8 Large Genome Comparisons
Although it is not within the scope of this chapter to go into detail of whole-genome
comparisons, many of the methods used are similar to those for part-genome
comparisons. New methods are becoming available, however, that allow whole-
genome alignments (see Section 5.5) and also whole- or part-genome annotation.
Two such tools, available by Web access, are LAGAN and Multi-LAGAN. These
methods allow the global alignment of relatively large genomic sequences, correctly
aligning protein-coding exons between distant homologs such as the human and
chicken sequences. LAGAN first generates local alignments between the sequences,
subsequently constructs a rough global map of the aligned local sets, and finally
calculates a final global alignment using the Needleman–Wunsch algorithm (see
Sections 5.2 and 5.5) by choosing the best alignment near the area around the
rough global map (see Figure 9.19). After alignment, the aligned sequences can be
annotated and graphically represented using the program VISTA. To use the
program with annotation, the user needs to have the sequence files and at least
annotation for one of the sequences. Figure 9.20 illustrates the alignment of the
whole human ALDH10 gene with a mouse sequence. The homologous parts of the
alignment are shown as peaks in the graph and contain the annotation for the
exons of the human gene. Therefore, once we have identified the ALDH10 gene, the
identification can either be verified using alignments, or the same genes can be
identified or predicted in other organisms.
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Figure 9.20
The VISTA output of the LAGAN alignment
with the exon regions colored blue. The
peak heights relate to sequence identity. We
can see that the exonic areas and areas
around the human exons are highly
conserved in the mouse sequence. Other
colored annotations can be visualized as
well; these include UTRs, conserved
noncoding sequences (CNS), mRNA,
contigs, and genes. For example, a gene
labeled unk (given by thin dark-gray arrows
above the sequence bar) is seen top left,
and a SINE repeat is shown as a green bar
just upstream of the penultimate exon. 
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The VISTA server consists of a number of programs and databases that allow
comparative analysis of genomic sequences. The set of programs allows the user to
align sequences from different species to compare a user-specified sequence with
whole genome assemblies (see Figure 9.21). This makes it possible to consider the
phylogenetic relationships and graphically visualize the results. However, the VISTA
server accepts only 20 kilobase sequence lengths.

Summary
In this chapter we have discussed the process of analyzing an unannotated DNA
sequence and discovering the protein-coding regions (if any) within the DNA,
followed by identifying the encoded protein product. Initially the DNA sequence
should be submitted for homology searches through a DNA or EST database as this
may provide a quick and comprehensive answer if the DNA or a close homolog has
already been sequenced and analyzed and is in the database. It may provide a clue
to the gene structure or function if a less close homolog is available. However, if no
match is found then the next step is to try and predict the exon–intron structure of
the DNA. The predicted exons can be translated and sent for a homology search
through a protein database. Finding a significant hit at this level does not only
enable a more accurate delineation and therefore annotation of the DNA sequence
but also will often provide clues to the function and cellular location of the gene
product. Through a series of translation and search steps it should be possible to
obtain a relatively accurate map of intron–exon sites. The predicted and translated
exons can be spliced together to form a putative protein sequence, which can be
further analyzed as described in the preceding and following chapters.
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Figure 9.21
The human sequence of the
ALDH10 gene matched to other
ALDH10 or ALDH10-like genes in
mouse and frog genomes, as shown
by the VISTA server. We can see that
all the exons are present in the more
closely related mouse genome, but
the first and last exons in the figure
are missing from frog. Exons are
shown in dark blue, UTRs in light
blue and conserved non-coding
sequences (CNS) in pink.
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GENE DETECTION AND GENOME
ANNOTATION

When you have read Chapter 10, you should be able to:

Recount the methods of detecting tRNA genes.

Show how protein coding regions can be identified from subtle signals.

Explain why prokaryotic gene detection is much easier than eukaryotic.

Describe how the binding of components of transcription and translation often
leave detectable sequence signals.

Explain why gene detection can be assisted by identifying sequence homologs in
databases.

Describe how separate techniques are often employed to identify particular gene
components.

Show that gene models are composed of combinations of gene components.

Describe how splice-site predictions focus on eliminating false positives.

Discuss how genome comparison can help resolve ambiguities in gene
prediction.

As more whole-genome sequences become available, these very long DNA
sequences must be analyzed to delineate and identify the protein-coding genes and
other genetic elements in these largely uncharacterized genomes. There are often
some experimental data available to assist in this task, such as sequences of previ-
ously characterized genes and gene products and EST sequences. The EST data,
which should be from the same organism as the genome sequence, can be aligned
with the sequence to identify translated regions of genes. Reported sequences of
genes and gene products can also be aligned, and even homologous sequences
from other organisms can be useful in identifying potential homologs in the
genome. However, the set of genes revealed by such analysis will almost certainly
be incomplete and, in any case, other features of genomes such as repeat and
control sequences will be missing. In order to obtain a full description of genomes,
accurate automated methods of interpreting the nucleotide sequence have been
developed to define the genes, functional RNA molecules, repeats, and control
regions, and to characterize the gene products. This whole procedure is known
generally as annotation, and frequently runs in parallel with the completion of
sequencing and sequence assembly (see Figure 10.1). 

10
THEORY
CHAPTER
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To date, most genome annotation projects have been restricted to the major
sequencing laboratories. For bacterial genomes, these large teams can take just 2 or
3 months from finishing the sequence to generating an annotation and analysis for
publication. The genomes of higher organisms are not so straightforward to
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analyze, and it will be some time before the human genome is annotated to the
same accuracy as is routine for prokaryotes. In addition, the availability of many
annotated bacterial genomes and the speed and ease with which such genomes can
be sequenced has encouraged many new studies, in particular comparing genomes
to investigate strain differences and the evolution of closely related species. These
developments are making genome annotation projects much more common, and
taking them outside the domain of the major laboratories.

This chapter takes a detailed look at some of the typical algorithms used in gene
detection and genome annotation. The practical aspects of using gene-prediction
programs, with these or similar algorithms, are covered in Chapter 9. Many of the
algorithms used in genome annotation are very complex, often involving several
separate components such as neural nets, hidden Markov models (HMMs), and
decision trees that are then combined. In this chapter we shall describe only some
of these in detail. Neural nets are dealt with in detail in Section 12.4 on secondary
structure prediction and only the general structures will be presented here. The
HMMs used for genome annotation are more complex than those introduced in
Section 6.2 for sequence alignment, but the same principles hold, and only their
general structures will be given here. The other types of algorithms will be
presented in detail.

Because of significant differences both in biological features and practical method-
ology, eukaryotic and prokaryotic genome annotation will be considered separately,
starting with the prokaryotes. In both cases, however, the task can be considered as
comprising two steps. Firstly, genes and other functional components must be
located in the genome sequence. The second step involves identifying the likely
properties, especially the biochemical and cellular function, of the gene products.
Some annotation tools perform both of these steps. This second step will be given
relatively little attention in this chapter, because it involves the application of tech-
niques described elsewhere in this book such as sequence similarity in Chapter 4.
Before reading this chapter you are advised to look at Chapter 1, especially Section
1.3, to familiarize yourself with the details of gene structure (including the control
elements) and functional RNA molecules. Many of the techniques described below
take advantage of known consensus sequences and RNA secondary structures to
detect these features.

The identification of genes in prokaryotic genomes would appear to be relatively
simple, as one can easily locate all ORFs. If we examine all ORFs as long as or longer
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Figure 10.1
A general scheme for a genome
sequencing project focusing on the
major computational analysis
steps. The process of constructing
and annotating a genome is often
cyclic, starting before the entire
sequence has been assembled. The
figure is very simplistic, omitting
many details, but shows how the
computer-based gene-prediction
methods discussed here fit into the
overall scheme. Note that
experimental data are added at
several points, namely the new
sequence data, ESTs, and genetic
data. The latter will be information
relating to the effects of gene
disruption and/or mutation. The
database construction referred to
after annotation could be an
organism-specific database, or
simply the relevant entries in the
standard databases such as EMBL
and UniProt.
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than the shortest gene then the set will necessarily include all the genes. However,
when looking for short genes such a procedure will generate many false positives;
that is, predicted genes that are not genuine genes and are not expressed. There can
be several reasons why an ORF is not expressed; most commonly, it is not associated
with regulatory sequences that are required to initiate transcription. Some evidence
for the incorrect prediction of a putative gene can be deduced from gene expression
experiments, suggested by a lack of expression at any life stage under many
different conditions. However, such work is time-consuming and largely unproduc-
tive, so significant attention has been paid to reducing the prediction error rates as
much as possible.

Because the control of gene expression occurs in several stages, each of which has
a signal present in the sequence, improved prediction accuracy can be obtained by
paying attention to the presence of each known signal, building up a complex
model of the gene. Ways of detecting these individual components will be discussed
first, followed by the models of protein-coding genes. The genes specifying RNA
molecules are significantly different in their control, but due to their high level of
sequence conservation, other techniques can be used to locate them.

Eukaryotic genomes present a far more difficult case and their analysis can result in
extremely high false-positive rates of ORF prediction unless great care is taken. This
is because in eukaryotes a single protein is often encoded by several exons, and
examples are known of very short exons coding for only a dozen residues. In addi-
tion in some regions of eukaryotic genomes only a few percent of bases are protein-
coding. Thus short ORFs must be considered as potentially in exons, but many such
ORFs will occur in those regions that do not contain genes.

Eukaryotic genes contain much more structure than prokaryotic genes (for
example, introns and exons and their splice sites, longer and more complex
promoter regions, and 3¢ signals for poly(A) addition). However, these extra signals
are often less distinct and harder to identify than the signals in prokaryotic
genomes. For example, upstream signals for promoters and enhancers are much
harder to identify, in part because in eukaryotes some act much further away from
the start of transcription (often several kilobases upstream) and also because of the
large number of different potential molecules involved. Furthermore, as already
mentioned, the lengths of coding ORFs in eukaryotes tend to be far less distinct
from those of random ORFs than in prokaryotes, as the eukaryotic genomes are
much larger and the coding sequences are often only a very small proportion of the
whole genome. The derivation of methods that can accurately identify the indi-
vidual components of eukaryotic gene structure, or combine them into an accurate
gene-prediction program is a very active area of research. In this chapter we can
only summarize the general approaches taken and show some of the types of model
investigated to date.

It has been found that even in highly efficient prokaryotic genomes, in which
almost the entire length of one or other strand is part of a gene, there is no exten-
sive overlapping between genes. The major exception to this occurs in viral
genomes, which need to be extremely efficient since they must use the least
possible amount of nucleic acid, which has to be contained in a very small capsid.
In prokaryotes, however, small overlaps are quite common and prokaryotic gene-
prediction programs have been designed to recognize this feature and deal with it.

Repeat sequences are very rarely found in protein-coding genes. Therefore, the first
step in the analysis of a new genome sequence is usually to identify the repeat
sequences, so that these regions can be excluded from the subsequent analysis for
protein-coding genes. Usually the second step is to identify and exclude those
regions that code for functional RNA molecules. This is because they can be readily
identified due to their sequence conservation.

Chapter 10: Gene Detection and Genome Annotation

360

BIF Ch10 5th proofsUSE  17/7/07  13:53  Page 360



A distinction must be made between those methods that attempt to identify genes
without reference to known sequences (sometimes called intrinsic methods) and
those that take advantage of similarity to database sequences (sometimes called
extrinsic methods). The former can, in principle, discover any new gene (that is,
one that is not related to another known sequence), and as it is common for 20% of
the genes in an organism not to be homologous to any other known sequence this
can be an important advantage. Perhaps in time, when many genomes over the full
range of the tree of life are known, such methods will not be so important.

Another recent innovation is to use two or more equivalent regions from the genomes
of related organisms, e.g., rat and mouse. When the two sequences are sufficiently
similar this can make it easier to identify those regions that are more conserved and
thus probably have a function. In addition, such methods give an immediate appre-
ciation of the evolutionary relationship between the two sequences.

10.1 Detection of Functional RNA Molecules Using
Decision Trees
Whether the genome is prokaryotic or eukaryotic, an important class of genes that
should be located before using the gene-detection methods discussed below are
those that are not translated into protein, such as rRNA and tRNA (see Flow
Diagram 10.1). rRNA sequences are sufficiently well characterized and well
conserved that they can be identified by sequence similarity with little difficulty,
and so will not be discussed further. There will be many tRNA genes (more than 50
in a bacterial genome, and even more in larger genomes), and it would be useful to
know the set of tRNA molecules available to an organism, as this might suggest that
some codons are not used, which would be valuable information when it comes to
detecting protein-coding sequences by the methods presented below. The detec-
tion of tRNAs is more complicated but techniques exist that effectively solve the
problem. The method described here in detail is implemented in a program called
tRNAscan, which is one of the most commonly used programs for analysis of
prokaryotic genomes. Because of the false-positive rate, this method cannot be
usefully used for eukaryotes, but another called tRNAscan-SE (described briefly
below) is available that has the required accuracy.

Detection of tRNA genes using the tRNAscan algorithm
tRNA molecules have a highly conserved structure with a number of short double-
helical stems and short loops, forming a cloverleaf secondary structure (see Figure
10.2). Alignment of many known tRNA sequences has identified regions of particu-
larly high sequence and structure conservation that have been used to construct a
very specific tRNA-detection algorithm. The algorithm consists of a sequence of
steps, each testing for the presence of a specific element of the tRNA sequence
and/or structure, such as conserved bases or conserved base-pairing (see Figure
10.3). This algorithm is a simple form of a decision tree, where at each step the
sequence has to pass a test.

Often, decision trees involve several further steps regardless of the outcome of the
current step, whereas in this case all but one step terminates the search if the
sequence fails to pass the test. In addition to the basic test at each step of the algo-
rithm, a note is made of whether the sequence performs particularly well, such as
having three of four expected invariant bases, instead of just the minimum two. A
record is kept of how often the sequence passes a test at a higher level of stringency,
counting the number of steps at which this is achieved, the value of which is
referred to as SG. The details of each step are given in Figure 10.3. The final test
before accepting that sequence as a tRNA gene depends on the value of SG.
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The key concept introduced in this
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This method has proved to be extremely accurate in predicting tRNA genes,
correctly assigning about 97.5% of them. It is estimated to predict only one false
positive per 3 million bases, which means just one false positive (if that) in a bacte-
rial genome.

Detection of tRNA genes in eukaryotic genomes
The error rate for tRNAscan is estimated at one per three megabases, which
means very few if any false positives for a bacterial genome. However, this is too
high a false-positive rate to use in detecting tRNA genes in eukaryotes, producing
about 1000 false positive tRNA genes from the human genome sequence. (This is
almost as many false positives as expected real tRNA genes.) To circumvent this,
Todd Lowe and Sean Eddy proposed a more sophisticated algorithm called
tRNAscan-SE.

The tRNAscan-SE method combines several tRNA-prediction programs into a
single highly accurate prediction program. Each of the programs has a quite
different method of predicting tRNA genes. The programs used include tRNAscan,
which as shown above looks for specific conserved bases at specified relative
distances. Another used was developed by Angelo Pavesi and colleagues and

Chapter 10: Gene Detection and Genome Annotation

362

47L

47K

47J

47I

47H
47G47F

47E
47D

47C

47B

47A

46

45

44
43

42

41

40

39

27

26
25242322

21
20B20A

20

19

18

17A

17 16 15
14

13 12 11 10
9

8

7

6

5

4

3

2

1

66

67

68

69

70

71

72

73

74

75

76

28

29

30

31

38

37
363534

33

32

47M
47N

47O
47P

48

49 50 51 52 53
54 55

56

57

58
5960

6162636465

aminoacyl arm

anticodon arm

anticodon loop

anticodon signal variable loop

D loop

D arm

T-Y-C loop

T-Y-C arm

Figure 10.2
The cloverleaf structure of a tRNA
molecule, showing those features
that are used in tRNAscan for
detection. The bases are numbered,
allowing for insertions such as occur
in the variable loop. The different
parts of the structure that are
involved in the tRNAscan algorithm
(see Figure 10.3) are identified,
including in dark blue the key
invariant bases and the base-
pairings, which are expected to be
very highly conserved. (Adapted
from G.A. Fichant and C. Burks,
Identifying potential tRNA genes in
genomic DNA sequences, J. Mol.
Biol. 220:659–671, 1991.)

BIF Ch10 5th proofsUSE  21/10/09  15:23  Page 362



searches for sequences related to the control of RNA polymerase III, the enzyme
responsible for transcribing tRNA genes. A third method by Sean Eddy and Richard
Durbin uses covariance models (a more advanced form of HMM) that take
account of the sequence and secondary structure of tRNAs. This method is the
most accurate of the three, but far too slow for full-scale application to the
genomes of higher organisms. Each method has distinct strengths and weak-
nesses. It was noticed that the first two methods identified effectively all real tRNA
genes, in addition to many false positives. The predictions of these first two
methods are combined together and then further analyzed in a decision tree that
includes the covariance models in a way that successfully identifies almost all the
false-positive predictions. In this way a false-positive rate of less than one per
15,000 megabases is achieved.
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10.2 Features Useful for Gene Detection in
Prokaryotes
Much of the early work on gene detection used bacterial genes as the model, largely
because of the considerable amount of reliable data available. The complete
sequences of many bacterial genes were already known and genes are packed into
a bacterial genome at relatively high density, with little noncoding intergenic DNA.
The relative simplicity of bacterial gene structure led to some very successful gene-
prediction techniques for prokaryotes.

Before presenting the background concepts and their implementation in gene-
detection programs, it is worth pointing out that some problems are trivial. For
example, one can easily enumerate all the potential ORFs present in the genome,
and thus all possible protein products. (By a potential ORF we mean any stretch of
sequence beginning at a start codon and proceeding to the first stop codon.) If the
intended application is identification of proteins by their molecular masses (as in
proteomic studies that utilize mass spectroscopy as an identification tool; see
Section 15.2) then such a list may be sufficient, despite containing many nonex-
istent proteins. It should be noted that the true gene will not necessarily start at the
beginning of such potential ORFs, and may begin at a start codon downstream of
this, a situation which as will be seen can be difficult to predict, but is nevertheless
trivial to overcome for such proteomic studies by identifying all possible start
codons and listing all possible proteins. The longer the potential ORF, the more
likely it is to really be a gene, as the likelihood of internal stop codons occurring in
a random sequence increases with its length. Thus a key problem in prokaryote
gene detection is to distinguish the true and false genes in the set of short potential
ORFs of, say, 150 bases or fewer.

A consequence of this situation is that by accepting some false positives, a gene-
detection method can achieve very high rates of detection. Put another way, these
methods should really be detecting the false ORFs. One must be wary of some of the
high success rates quoted (even over 98%), and false-positive rates would be more
informative, but are often not quoted (see Box 10.1). The reason for this is simple: we
are only slowly getting to the point where we know with some certainty the full range
of true genes in a limited sample of species, and thus cannot as yet distinguish false
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Flow Diagram 10.2
The key concept introduced in this
section is that prokaryotic genes
have certain features and signals
that can be used to identify genes in
uninterpreted sequence.
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Authors often report a numerical value for the accuracy
of their prediction program and it is useful to have an
understanding of what these numbers mean. The ability
to calculate an accuracy measure that enables the
comparison of rival programs is important, especially
when they are often the major method of predicting
genes for new genomic sequences.

In the field of gene prediction, accuracy can be meas-
ured at three different levels: (1) coding nucleotides
(base level); (2) exon structure (exon level); and (3)
protein product (protein level). The second of these is
only relevant to eukaryotes and will be discussed in Box
10.3. Here we will examine the first of these, accuracy at
the nucleotide level. This subject was discussed exten-
sively by Moises Burset and Roderic Guigo, and we will
present their analysis and definitions, which are largely
accepted within the field.

Figure B10.1 shows the four possible comparisons of
real and predicted genes. Every base is assigned as gene
or non-gene by the prediction program, and compar-
ison with the real genes allows us to label each base.
Considering first those bases correctly predicted, those
that are within genes are labeled as a true positive (TP),
while those predicted correctly not to be in a gene are
labeled as a true negative (TN). Looking now at the
bases whose prediction was incorrect, those wrongly
assigned as within a gene are labeled as a false positive
(FP), while those incorrectly omitted from a gene are
labeled as a false negative (FN). Usually the base assign-
ment is to be in a coding or noncoding segment, but this
analysis can be extended to include noncoding parts of
genes, or any other functional parts of the sequence.

The fraction of the bases in real genes that are correctly
predicted to be in genes is the sensitivity (Sn) defined as

(BEQ10.1)

This can also be interpreted as the probability of
correctly predicting a nucleotide to be in a gene given
that it actually is. The fraction of those bases which are
predicted to be in genes that actually are is called the
specificity (Sp) defined as

(BEQ10.2)

This can also be interpreted as the probability of a
nucleotide actually being in a gene given that it has
been predicted to be.

Note that this last definition is different from that
usually used in other fields for specificity:

(BEQ10.3)

This is because in eukaryotes the proportion of
nucleotides in genes is rather small, so that TN is very
large, and the normal formula results in uninformative
values. A program that simply predicts the human
genome to contain no genes will give a high value for
the normally defined specificity despite not being of
any use in gene prediction.

Sp
TN

TN FPstandard =
+

Sp
TP

TP FP
=

+

Sn
TP

TP FN
=

+

Box 10.1 Measures of gene prediction accuracy at the nucleotide level

TN FN TP FP TN FP TP FN TN

TN FP TP FP TN FN TP FN TN

real

predicted

real

predicted

Figure B10.1
Comparison at the base level of actual and
predicted genes. Red bars are entire actual genes in
the case of prokaryotes or exons in the case of
eukaryotes. Blue bars are entire predicted genes in
the case of prokaryotes or exons in the case of
eukaryotes. Regions of the sequence are assigned
as true positive (TP), true negative (TN), false
positive (FP), or false negative (FN). The accuracy
of the predictions can be described using terms
and formulae of Equations BEQ10.1 and BEQ10.2. 
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positives from potential new (previously unknown) genes. This point is discussed
further later in this chapter.

The interactions of components of the transcription and translation machinery
with the nucleotide sequence, coupled with the constraints imposed on protein-
coding nucleotide sequence, have resulted in a number of distinct features that can
be used to identify genes on the basis of their sequence (see Flow Diagram 10.2).
Some of these aspects have been discussed in Section 1.3. Almost all gene-detection
methods utilize one or more of these sequence features. For this reason, and
because the methods require a more technical analysis than was presented in
Chapter 1, they are briefly reviewed here.
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Figure 10.4
A logo of the ribosome-binding sites
and start codon in E. coli genes. (See
Section 6.1 for a definition of logos.)
One hundred and forty-nine
sequences were aligned on their
start codons. Note that the number
of bases between the ribosome-
binding site (RBS) around position
–10 and the start codon is not fixed,
so the RBS signal is possibly stronger
than shown here, as those sites are
not properly superposed. The bases
at positions 1 and 2 are fully
conserved as T and G, respectively.
However, at position 0, although the
vast majority of observed bases are
A, in addition G and to a very small
degree T are also observed. Thus a
small number of start codons in
E.coli are TTG. (From T.D. Schneider
and R.M. Stephens, Sequence logos:
a new way to display consensus
sequences, N.A.R. 18 (20):6097–6100,
1990, by permission of Oxford
University Press.)

Care has to be taken in using these two values to assess a
gene-prediction program because, as with the normal
definition of specificity, extreme results can make them
misleading. For example if all the sequence is predicted
as a gene, we have Sn = 1.0 although Sp may be small. If
only a very few nucleotides are predicted as in genes, but
all of them are in real genes, Sp can be 1.0 while Sn is
small. Burset and Guigo proposed the approximate
correlation coefficient (AC) as a single measure to
circumvent these difficulties. This is defined as 

(BEQ10.4)

where ACP (the average conditional probability) is
defined as

(BEQ10.5)

Note that the first two terms of ACP are the sensitivity
and specificity, and the third is the usual definition of
specificity. AC varies between –1 and +1, and is like a
normal correlation coefficient. The standard Pearson
correlation coefficient could have been used to obtain
almost identical results, but has problems if both the real
and predicted sequences do not contain genes and non-
gene regions. The AC does not have problems in such
circumstances.

ACP
TP

TP FN
TP

TP FP
TN

TN FP
TN

TN FN
=

+
+

+
+

+
+

+
⎡

⎣
⎢
⎢

⎤

⎦

1
4

⎥⎥
⎥

AC ACP= × −2 1

Box 10.1 Measures of gene prediction accuracy at the nucleotide level (continued)
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The most basic characteristic of a gene is that it must contain an open reading
frame (ORF) that begins with a start codon (ATG, coding for methionine) and ends
with a stop codon (one of TAA, TAG, or TGA). In accordance with convention, we
give here the codons found on the so-called coding or sense DNA strand, which has
the same sequence as the RNA, which is physically transcribed from the comple-
mentary template strand: the mRNA will have the start codon AUG. If other recog-
nition sequences are being looked for, care is needed to prevent confusion between
the two DNA strands. It is important to appreciate that there are exceptions to these
standard codons. For example, E. coli uses GTG for 9% and TTG for 0.5% of start
codons (see Figure 10.4), and many mitochondria (with the exception of plant
mitochondria) translate TGA as “tryptophan” rather than “stop.” Once the genetic
code relevant to the data has been ascertained, it is a simple matter to identify ORFs
longer than some minimum length. 

An ORF can have only a single stop codon, and that must be right at the 3¢ end. As
a result the statistics of relative frequency of codon occurrence are distinct for
coding as opposed to noncoding sequences and can be used as a gene-prediction
feature. Codon frequency will also be influenced by the amino acid composition of
the encoded protein and by any codon bias imposed by tRNA availability.
Examination of known genes has confirmed the validity of this premise, and
distinct codon frequencies have been observed in the coding reading frame, other
reading frames, and in noncoding sequence. In this context, noncoding sequence
refers to sequence that does not have a gene in any reading frame. Figure 10.5
shows the observed frequencies for genes and noncoding sequence in the case of
four eukaryotes. Practical applications of this gene feature tend to focus on the
frequency distributions of hexanucleotides—stretches of six nucleotides, also
called a dicodon—as this has been found to give better predictions than looking at
individual codons.

As illustrated in Figure 1.12 there are three distinct recognition sequences in
prokaryotic genes: two promoter-specific sequences just 5¢ of the coding sequence
and a translation-termination sequence 3¢ of the stop codon. Characteristic
consensus sequences were given for these in Section 1.3, but they can vary between
organisms, and care has to be taken to use the best available information for the
species whose sequence is being analyzed. Note also that prokaryotic genes are
often arranged in operons (see Figure 1.15), with one promoter serving a cluster of
individual protein-coding sequences.

One other property used in prokaryotic gene detection is the persistence of signifi-
cant sequence similarity even after very long evolutionary periods. It is common to
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Figure 10.5
Plot showing the frequency of
occurrence of different amino acid
codons in genes and intergenic
DNA. The amino acids are
represented by their one-letter code,
and the three stop codons are
combined and represented by the
dot. (A) shows a comparison of the
amino acid codon frequencies in
genes for humans, D. melanogaster
(fly), C. elegans (worm), S. cerevisiae
(yeast), and E. coli (E. coli). The
amino acids have been ordered to
show most difference between
species on the left side of the graph.
(B) shows the amino acid codon
frequencies for C. elegans in genes
and intergenic DNA. Clearly some of
the amino acid codons show a
considerable difference in
occurrence in coding and noncoding
segments. (Adapted from N. Echols
et al., Comprehensive analysis of
amino acid and nucleotide
composition in eukaryotic genomes,
comparing genes and pseudogenes,
N.A.R. 30:2515–2523, 2002.)
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be able to detect protein-sequence homology between mammalian and bacterial
species despite the considerable time since divergence from a common ancestor
(see Chapters 4 and 5). Hence, one of the ways to detect genes is by sequence
comparison with known coding sequences from other organisms. It is more effec-
tive to use protein sequences for this type of analysis.

10.3 Algorithms for Gene Detection in Prokaryotes
Numerous methods have been proposed to detect bacterial genes ever since the
first sequences were determined (see Flow Diagram 10.3). Initial techniques were
quite basic, as little was known of the recognition sequences or codon-distribution
statistics noted above. As more information became available, gene-detection
methods developed to take advantage of them. We will examine three methods
that are among the most successful currently available: GeneMark and its
successor GeneMark.hmm, GLIMMER, and ORPHEUS. While these do not cover
the full range of techniques that have been applied, they are representative of most
published methods. In addition, we will briefly present the model used in the
EcoParse method, as it is an HMM model with basic similarities to those described
in Section 6.2.

GeneMark uses inhomogeneous Markov chains and 
dicodon statistics
GeneMark uses a Markov chain model to represent the statistics of coding and
noncoding reading frames. The method uses the dicodon statistics to identify
coding regions. Consider the analysis of a sequence x whose base at the ith position
is called xi. The Markov chains used are fifth-order, and consist of terms such as
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In this section the methods used to
detect prokaryotic gene features are
described.
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P(a|x1x2x3x4x5), which represent the probability of the sixth base of sequence x
being a given that the previous five bases in the sequence x were x1x2x3x4x5,
resulting in the first dicodon of the sequence being x1x2x3x4x5a. These terms must
be defined for all possible pentamers with the general sequence b1b2b3b4b5. The
values of these terms can be obtained by analysis of training data, consisting of
nucleotide sequences in which the coding regions have been accurately identified.
When there are sufficient data for good statistics without the need to resort to
pseudocounts (see Section 6.1) they are given by

(EQ10.1)

where nb1b2b3b4b5a is the number of times the sequence b1b2b3b4b5a occurs in the
training data. This is the maximum likelihood estimator of the probability from the
training data.

GeneMark assumes each reading frame has unique dicodon statistics, and thus has
its own model probabilities. These are labeled P1(a|b1b2b3b4b5), P2(a|b1b2b3b4b5),
and so on, where the coding reading frame is labeled 1, the other two reading
frames in the same direction are labeled 2 and 3, and the three reading frames on
the complementary strand are labeled 4–6. Note that the reading frames 1–3 are
identified here by the codon position of the last base of the pentamer, so that b5 is
the ith base in a codon for the Pi term, and in a similar fashion for reading frames
4–6. The regions of sequence that do not code for a protein are assumed to have the
same statistics on all six reading frames, so they only have one set of parameters,
labeled as Pnc(a|b1b2b3b4b5). These sets of parameters form seven distinct models,
which can be used to estimate the likelihood that any given sequence is coding or
noncoding, and, if coding, which reading frame is involved.

The probability of obtaining a sequence x = x1x2x3x4x5x6x7x8x9 in a coding region in
the translated reading frame 3 (that is, x1x2x3 is a translated codon) is given by

(EQ10.2)

where the first term is the probability of finding the pentamer x1x2x3x4x5 in the
coding frame 2, which will result in x9, the last base of x, being in reading frame 3.
Note the cycling of successive terms through P1(a|...), P2(a|...), and P3(a|...). Such
models are called periodic, phased or inhomogeneous Markov models (see Figure
10.6). (The noncoding model is a homogeneous Markov model.) The probability of
obtaining the sequence x on the complementary strand to the coding sequence can
be obtained by a similar formula using cycling terms P4(a|...), P5(a|...), and P6(a|...).

What we really want is the likelihood that the segment of sequence x is in coding
frame 3, which we will write P(3 | x), the probability that model 3 applies given that
we have sequence x. Using Bayes formula (see Appendix A) we can derive

(EQ10.3)

where P(3) and P(nc) are the a priori probabilities of the coding frame 3 and
noncoding models, respectively and m is the index of the coding frame. Equivalent
formulae give the likelihood for each of the other models.
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In GeneMark, P(nc)—the a priori probability of the sequence being noncoding—
was assumed to be 1/2, and P(1)–P(6) assumed to all be 1/12. Sliding windows of 96
nucleotides were scored in steps of 12 nucleotides. If P(i | x), where i = 1–6 exceeds
a chosen threshold, the window is predicted to be in coding reading frame i. Note
that GeneMark will only predict one reading frame to be a gene, so gene overlaps
are not allowed. This could be potentially problematic, as bacterial genomes
contain many small overlaps between genes. The final predicted gene boundaries
should be defined by start and stop codons in that reading frame. The start codons
are not always clearly predicted in GeneMark, which just reports the window
containing the 5¢ end and this could have more than one ATG codon.

E. coli genes can be divided into three groups according to their codon usage. Most
genes are assigned to class I. Those in class II are expressed at an exceptionally
high level, and those in class III have compositional characteristics that suggest
they have been acquired by horizontal gene transfer (see Section 7.2). Using class
I genes to provide the parameters for the models resulted in a poor prediction of
the class III genes. Parameterization based on some class III genes improved their
prediction, but lowered performance on the other gene classes. This shows the
importance of selecting a good dataset for parameterization, as well as the
problem of assuming that all genes can be described with the same model, even in
the same organism.
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Figure 10.6
Illustration of the structures of
three different types of Markov
model that output a nucleotide
sequence. (A) shows a
homogeneous fifth-order Markov
model, with the five states i–5 to i–1
generating state i. Each state
corresponds to a nucleotide. (B)
shows three periodic fifth-order
Markov models, each modeling a
different DNA reading frame. Each
model is similar to that shown in
(A), except that the probabilities are
dependent on the position of the
base within the codon. Each state is
labeled with the codon position of
the represented base. For example,
the top model (generating state i at
codon position 1) has the first base
at codon position 2. (C) shows a
hidden semi-Markov model. The
circles in the top row now represent
sequence features such as an exon
or an intergenic region. These have
specific length distributions and the
first step in the output of sequence
is generating their length, in this
instance from a probability
distribution. The lengths are
represented by the double arrows in
the middle row. Then, for each
sequence feature in turn, sequences
of the required length are generated
according to models, which in the
case of exons might be similar to the
model shown in (B). These
sequences are represented by the
bottom row of circles. After
generating a sequence feature the
model moves to the next sequence
feature, the move being represented
by the black arrows at the top of the
diagram. (Adapted from C.B. Burge
and S. Karlin, Finding the genes in
genomic DNA, Curr. Opin. Struct.
Biol. 8:346–354, 1998.)
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GLIMMER uses interpolated Markov models of 
coding potential
The GLIMMER program also uses Markov models to predict genes, but these
models are slightly different in structure from those used in GeneMark and are
called interpolated Markov models. The fifth-order Markov models described above
require a large database of training sequences, because every dicodon must occur
several times in order to obtain accurate estimates of the parameters. Each fifth-
order Markov model in GeneMark has 4096 dicodon probabilities, plus the proba-
bilities of occurrence of the pentamers. In practice, some hexamers will occur
infrequently, while some longer oligomers may be more common, and even occur
sufficiently frequently to permit their use in higher-order models. The GLIMMER
program tries to tailor the Markov model according to the strengths and weak-
nesses present in the training data.

To make the method as automatic and objective as possible, GLIMMER selects its
own training data from the sequence to be annotated. It searches for long ORFs that
do not overlap any other long ORF. For example in the initial reported analysis of
the bacterium Haemophilus influenzae genome the minimum ORF length used
was 500 bases long. The intention is to select those ORFs that have a very high like-
lihood of being real genes. If the sequence is GC-rich, even longer ORFs may be
needed, as there will be a lower probability of stop codons occurring by chance. It
is also possible to intervene in selecting ORFs for the training set, for example to
take account of genes already identified with confidence.

Using this training set, GLIMMER generates parameters for Markov models of
increasing order from zeroth- to eighth-order. At every stage a check is made of the
number of observations of each sub-sequence (pentamers for the fifth-order
model, and so on). If there are at least 400 observations in the training data the
parameterization occurs as given in Equation EQ10.1. If fewer occurrences are
found, the resulting values are weighted according to how they compare with
related values of a lower-order model. Suppose in parameterization of the ith-order
model the sub-sequence xj–ixj–i+1…xj–1 does not occur sufficiently often. The four
probabilities for the next base xj are compared with the values of the i–1th order
model for the sub-sequence xj–i+1xj–i+2…xj–1 using a c2 test. If this test, which
accounts for the number of observations, shows the probabilities to be consistent
with the lower-order model, the parameters of the ith-order model are weighted by
zero. When the c2 test supports a significant difference between the parameters of
the two models, weighting is applied to the ith-order parameters reflecting both the
confidence according to the c2 test and also the number of observations.

The resultant interpolated Markov model can involve a weighted sum of terms from
all model orders. However, if a higher-order term was derived from over 400 obser-
vations, the weighting is such that all lower-order terms are ignored. In that way
preference is rightly given to the higher-order models when they are based on real
data. Rather than scoring the complete sequence with a fixed window, all ORFs
longer than some minimum are scored in all six reading frames as for GeneMark. If
the model for the correct reading frame (in other words, the frame that includes the
start and the stop codon) scores greater than a threshold value, the ORF is predicted
to be a gene, assuming it passes a final test concerning gene overlap.

In GLIMMER the sub-sequences for which probabilities are given of a subsequent
base are referred to as context strings, in that they give the context in which that
base exists. All the Markov models mentioned so far use context strings that imme-
diately precede the following base, but this need not be the case. Later versions of
GLIMMER use what the authors describe as an interpolated context model. In this
case the context string (still from 0 to 8 bases long) may not immediately precede
the following base. The model uses those bases up to eight bases before the
following base that have correlated distributions with it.
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If two ORFs score well but overlap, an attempt is made to see if one ORF can be
discounted on the basis of comparison of scores in the overlap region and ORF size.
Because the overlap may arise from choosing a start codon upstream of the true
start site, making the predicted gene longer than the true gene, GLIMMER tries to
find alternative start codons for the shorter overlapping ORF that remove the
overlap. If no suitable alternative start codon is found, the shorter ORF is rejected
and predicted to be a noncoding sequence. GLIMMER looks carefully at overlaps
between predicted genes, and selects a set of predicted ORFs that can overlap up to
a specified maximum extent.

GLIMMER has proved to be very effective at automatically predicting the genes in
bacterial genomes. It often correctly predicts 95% or more of the genes, with rela-
tively few false positives and false negatives, even though it does not use any extra
signal information such as ribosome-binding sites or homology with known genes.
Many of the errors are due to short genes intentionally disregarded by the program.
(The dicodon statistics of short ORFs cannot be determined with confidence.) The
success of GLIMMER indicates the strong signal given by the base statistics.

ORPHEUS uses homology, codon statistics, and 
ribosome-binding sites
The ORPHEUS program attempts to improve on the methods presented so far by
using information that those programs ignored. One of the key differences is that
ORPHEUS uses database searches to help determine putative genes, and is thus an
extrinsic method. This initial set of genes is used to define the coding statistics for
the organism, in this case working at the level of codons, not dicodons. These statis-
tics are then used to define a larger set of candidate ORFs. From this set, those ORFs
with an unambiguous start codon end are used to define a scoring matrix for the
ribosome-binding site (RBS), which is then used to determine the 5¢ end of those
ORFs where alternative starts are present.

The starting point for ORPHEUS is to determine an initial set of high-confidence
genes by sequence homology to known proteins. Ideally, care should be taken that
the protein database used only contains entries that are very reliable. Many hypo-
thetical proteins from previous genome annotation projects have been entered into
protein databases, and in time some will almost certainly be found to be erroneous.
The aligned regions are extended to the nearest start and stop codons, and this set
of ORFs is used to determine codon statistics.

The frequency f(xixi+1xi+2) of occurrence of each codon xixi+1xi+2 in the ORF set is
measured, as well as the base composition of the whole genome (frequencies qA, qC,
qG, and qT). The codon frequencies are converted to log[f(xixi+1xi+2)]. The average
value of log[f(xixi+1xi+2)] will depend on the composition, and is given by

(EQ10.4) 

where the summation is over all codons in this set of high-confidence ORFs. The
variance s 2 of log[f(xixi+1xi+2)] is defined by

(EQ10.5)

with the summation as before.

With these quantities, measures can be defined and used to predict ORFs in those
regions not already covered by ORFs defined by sequence similarity. The normalized
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coding potential of the sequence segment xm...xm+3n–1, n codon starting at base xm, is
then defined as

(EQ10.6)

where Q(xm...xm+3n–1) is called the coding potential, and is the sum of the n terms
log[f(xixi+1xi+2)], one for each codon in the sequence. If the values log[f(xixi+1xi+2)]
had a Gaussian distribution this formula would represent the number of standard
deviations of the codon frequencies of the region from the mean. This formula also
takes account of sequence length, allowing values for different sequence lengths to
be meaningfully compared.

The value of R is obtained for the ORF reading frame, and also for the sequence in
the alternative reading frames, R(xm–1...xm+3n–2) and R(xm+1...xm+3n). The amount by
which R(xm...xm+3n–1) in the ORF reading frame exceeds the higher of the two alter-
native reading frame values is called the coding quality W(xm...xm+3n–1). If
W(xm...xm+3n–1) exceeds a given threshold (and the sequence is longer than some
minimum, typically 100 codons) that sequence defines a candidate ORF. Note that
if two ORFs have significant overlap, the one with the higher coding potential Q is
chosen for further analysis.

At this stage an attempt is made to extend the candidate ORF in the 5¢ direction.
ATG, GTG, and TTG are all considered to be potential start codons (see Figure 10.4).
Possible extensions are only considered if they do not lead to an overlap of more
than six bases with another ORF. For an extra section to be added so that the ORF
would begin at xstart, the coding quality W (xstart...xstart+98) of a 99-base section would
have to exceed a second threshold value.

Some of the candidate ORFs only have one possible start codon and have upstream
ORFs within 30 bases. This subset of ORFs has relatively reliable 5¢ ends and is now
used to define the RBS weight matrix. This involves alignment of the sequences up
to 20 bases upstream of the start codon. The Shine–Dalgarno sequence (see Section
1.3) will not necessarily occur at the same distance from the start codon in all cases,
and the method of defining the scoring scheme includes both trying to locate the
signal on each sequence and calculating the base preferences at each position. An
iterative method is used to locate the pattern in each sequence and to obtain the
weight matrix.

Once the RBS scoring scheme has been refined, it is used to determine the start
points for those ORFs that have alternative 5¢ ends. If the RBS score does not exceed
a threshold, the next potential start codon is considered. In this way ORFs with no
known homology are defined including a translation start signal when possible.

It was often found that shorter ORFs would have higher coding potential than over-
lapping longer ORFs, leading to the latter being rejected early in the search. To over-
come this problem, initial ORF searches ignore ORFs shorter than, say, 2000 bases.
Once the longer ORFs have been predicted, further runs are made, gradually
lowering the thresholds on the minimum ORF length. At each stage, the regions in
which ORFs have been assigned are excluded from further analysis. In this way
large overlaps between ORFs are avoided.

GeneMark.hmm uses explicit state duration hidden 
Markov models
The original GeneMark method used nucleotide statistics to locate potential ORFs,
but did so in a sequence window, and there was no further analysis to define the
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gene boundaries. In developing an improved method, called GeneMark.hmm, the
Markov models were transformed into a hidden Markov model of gene structure.
Further improvements included the specific use of RBS signals to refine the 5¢ end
of the gene.

The HMM used in this work is different from that presented in Section 6.2, and is
called a semi-Markov model, HMM with duration, or explicit state duration HMM.
As discussed in Chapter 6, the kind of HMM presented there has a particular distribu-
tion of output sequence lengths associated with the number of states in the model
and the transition probabilities between states. Examples of this are shown in Figure
6.10. In GeneMark.hmm, one state in the model will be used to generate many
different genes. These genes will have a variety of lengths, with a particular length
distribution that may not be well represented by the distributions shown in Figure
6.10. Compare this with the situation in profile HMMs, where most (all) sequences
will be expected to have roughly the same profile length; for example, globin domains
do not show much length variation. This length distribution can be imposed on an
HMM with some relatively small modifications to the algorithms given in Section 6.2.

The details will not be given here, but the basic principle is that the length distribu-
tion must be specified such that it can be sampled. On entering such a state in an
HMM, the first task is to determine from this length distribution the duration for
that particular visit, for example, the length of this particular gene. The model then
uses state emission probabilities to emit that number of bases, before a transition
is made to another state of the model (see Figure 10.6C). In GeneMark.hmm, the
emission probabilities are taken from the inhomogeneous Markov models that
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Figure 10.7
Length distribution probability
densities of protein-coding (A) and
noncoding (B) sequences of E. coli.
The actual data are shown by the
histograms. These have been fitted
by simple algebraic distributions (a
Gamma distribution for the 
protein- coding regions, and an
exponential distribution for the
noncoding regions) and illustrate
how easily an experimentally
observed complex length
distribution can be represented. The
lengths are given in nucleotides.
(Adapted from A.V. Lukashin and M.
Borodovsky, GeneMark.hmm: new
solutions for gene finding, N.A.R.
26:1107–1115, 1998.)
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Figure 10.8
The general structure of the HMM
used in GeneMark.hmm, showing
the individual states. Each of the
five main states (shown in blue) has
a specific length distribution,
specified by an algebraic distribution
obtained from data such as those
shown in Figure 10.7. The average
durations are given, showing that
the forward and reverse strand states
have identical distributions. Note
that the order of the states for
reverse strand genes is opposite that
for forward strand genes. This model
does not just predict genes, but also
assigns them as typical or atypical. 
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were previously described. The state durations were taken from a study of the
length distributions of coding and noncoding regions of E. coli and were fitted to
simple theoretical distributions to facilitate their incorporation into the model (see
Figure 10.7). 

The structure of the hidden Markov model used is given in Figure 10.8. Both strands
are represented by their own states, and a distinction is made between typical and
atypical genes. These correspond to the different classes of genes discussed above
from E. coli, so that the atypical genes are those with different coding statistics,
possibly because they are the result of a recent horizontal gene transfer. The model
includes explicit states to represent the start and stop codons. It has a structure that
prevents overlap of genes on the two strands, and in fact the noncoding state has a
minimal duration of one base. The sequence emission path is assigned by using the
Viterbi method, slightly modified from that given previously in Section 6.2 to
account for the explicit duration states.

As small gene overlaps are quite common in bacterial genomes, a further step is
added after this that uses information on the RBS to refine the position of the 5¢
end. In GeneMark.hmm the RBS is defined as a five-position nucleotide-probability
matrix based on an alignment of sites in 325 E. coli genes whose RBS signals have
been annotated in GenBank. This matrix, which has a consensus sequence of
AGGAG, was used to search upstream of any alternative start codons for genes
predicted by the HMM. Those start codons with a sufficiently high-scoring RBS
were accepted as the 5¢ end, which leads to some small gene overlaps.
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Figure 10.9
The HMM structure for the
EcoParse gene model of E.coli.
(A) The HMM structure for an
individual codon (in this case “AAC”)
of EcoParse. The state transitions are
shown by arrows whose thickness is
related to their probability. Note that
there are fewer state transitions than
in the HMM model shown in Figure
6.7. The match states show the
probabilities for emission of the four
bases. Each match state has only
one non-zero emission probability,
shown by the colored bar. (B) The
complete HMM model for EcoParse,
with the codon models and
intergene model shown in
abbreviated form. The intergene
model has the same basic structure
to the codon model, but may be
over ten times the length. Note that
the probabilities of the bases in the
first match state of the start codon
correspond to the data shown in
Figure 10.4. 
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This method still has problems determining the 5¢ ends of genes, and still has prob-
lems finding genes where there is extensive overlap. When tested on 10 bacterial
genomes other than E. coli, more than 75% of genes were exactly predicted, and
almost 95% of genes had at least the 3¢ end correctly predicted. (These percentages
are of genes annotated in the public databases; that is, they are the best available
annotations including the experimental data where known.) In addition, approxi-
mately 10% of additional new genes were predicted. The status of these new genes
could not easily be resolved, and they might ultimately be found to be false posi-
tives, although some did show homology to other database sequences.

EcoParse is an HMM gene model
The methods described above are those that have been found to be most accurate,
but they do not cover the full range of possible techniques. To introduce these tech-
niques, we will look at one more method, which uses a hidden Markov model of a
gene to detect genes in a nucleotide sequence. Unlike the methods already
discussed, it allows for potential errors in the sequence. Due to the relative ease of
use and success of newer methods, especially the ability of some to be easily repa-
rameterized, it is not in common use at present, but it should be possible in prin-
ciple to derive a related method that could compete with the best available. The
model presented was designed for use with E. coli sequences, but could be repara-
meterized for other species. The potential advantage of allowing for sequence errors
has been of little relevance with the accuracy standards achieved in many genome
projects. However, it may be more useful in the future as some groups start investi-
gating more complex systems such as mixed bacterial populations (see Box 10.2). 

The HMM model used is very similar to those discussed in Section 6.2 for sequence
profile alignment, and has match, insert, and delete states. Each of the 61 possible
non-stop codons has its own model, the basic form of which is shown in Figure
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Almost all genome projects to date have involved careful
sequencing of the genome of a specific strain of a specific
species, taking strenuous efforts to avoid contamination
by foreign DNA. This is particularly important because of
the need to break the genome into many small segments,
as current sequencing technology can only work on a
limited length of nucleic acid. In many projects care has
also been taken to know quite accurately, in advance of
performing the actual sequencing step, from which part
of the genome each small segment has been obtained. To
obtain this information requires a lot of extra effort in
splitting up the genome. The rationale behind this
method was that (especially in higher organisms) repeat
sequences could make it impossible to reconstruct the
whole genome correctly from the small sequence
segments. Contamination from other genomes would
only exacerbate the problem.

The success of the shotgun sequencing procedure has
shown that, in practice, a less careful approach is
possible. The main concept behind shotgun sequencing
is that such concerns are unfounded, and that with suit-
able algorithms a set of short sequences can be assem-

bled into a complete genome without the need for any
extra positional information. This is the technique that
was used by Celera in their work on the human genome.

Further work has shown (at least in the case of the small
genomes of bacteria) that the assembly of shotgun
sequences is even more robust, and with care can cope
well with mixed genomes. A powerful demonstration of
this is the investigation of the microbial populations in
the surface waters of the Sargasso Sea by J. Craig Venter
and colleagues. The sample contained a mixture of
about 1800 different genomes at different levels of
abundance. Although some of these genomes could be
reconstructed with high accuracy and coverage (i.e.,
repeat sequencing) of three times or more, this did not
apply to most of the sequence obtained. In this case the
reported genes from the less-well-covered sequence
were predicted on the basis of homology to existing
bacterial database sequences. However, approaches
such as EcoParse that can specifically allow for a low
level of sequencing error (by allowing insertions and
deletions in the codon models) may have advantages in
these circumstances.

Box 10.2 Sequencing many genomes at once
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10.9A. The thickness of the transition arrows is proportional to the transition prob-
abilities, so that insertions and deletions are rare events, but not impossible. In
principle, this allows the model to account for sequencing errors, something not
considered in the methods previously presented. The emission probabilities are
very simple, with just one base having non-zero probability (that is, 1) at each
match state. All the 61 residue-coding codon models begin and end at the same
central silent state (see Figure 10.9B), and their transition probabilities from this
state are related to codon usage in E. coli. The central state is reached from the
noncoding intergene state via the start codon model, and leads eventually to the
stop codon models. The start and stop codon models do not allow for insertions
and deletions, and have emission probabilities related to the frequency of occur-
rence of these alternatives as seen in E. coli. For example, the start codon model
produced the proportions of A, G, and T at first base seen in Figure 10.4. Several
different intergene models were examined. To allow for variation in the intergene
length, there are significant insertion-state probabilities in this part of the model. In
principle, the TATA box and other sequence signals may be represented, as might
more subtle signals not yet identified. The parameters of the model were fitted with
a set of E. coli sequences.

10.4 Features Used in Eukaryotic Gene Detection
The eukaryotic gene-detection methods will be presented in a different way from
those for prokaryotes discussed above. Instead of treating each program separately,
we will focus on particular predictive features in eukaryotic genes (see Flow
Diagram 10.4), and discuss a number of different programs under each heading. The
reason for this is that there are a relatively small number of successful prokaryotic
gene-detection programs that dominate the field and share many characteristics. By
contrast, the eukaryotic gene-detection field is much more diverse, perhaps due in
part to the relative lack of success of any one program to give a complete and accu-
rate analysis (see Chapter 9). We will first discuss the techniques used to detect indi-
vidual gene components before looking at the ways these have been combined to
predict complete genes. Finally, we will look at the ways in which homology to the
sequence databases has been used to aid gene detection and annotation. The
emphasis will be on showing the range of methods that have been used, rather than
giving full details for any one method.

Differences between prokaryotic and eukaryotic genes
Many of the principles that apply to the detection of genes in prokaryotes also
apply to gene finding in eukaryotes. For example, the coding regions of eukaryotic
genomes have distinct base statistics similar to those found in prokaryotes. In addi-
tion, although the signals differ, there are equivalent transcription and translation
start and stop signals. The detection of tRNA molecules is as easy here as for bacte-
rial systems. However, as mentioned above, the considerably larger genome sizes in
eukaryotes require detection systems with far lower rates of false positives.

A crucial difference in gene structure causes eukaryotic gene detection to be far
harder: there are numerous introns present in many genes. As a result the length of
the protein-coding segments (exons) is on average smaller in eukaryotes than in
prokaryotes, resulting in poorer base statistics, and making their detection more
difficult. Furthermore, in contrast to prokaryotes, whose ORFs will always end in a
stop codon, this is not the case for exons, which may end in a splice site at the
exon–intron junction. As will be seen, these splice sites do not have very strong
signals, making their detection problematic.

An additional difference that can also cause difficulties is that the density of genes
in most segments of eukaryotic genomes is significantly less than in prokaryotes. 
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E. coli has on average one gene with a single ORF approximately every 1100 bases.
The average vertebrate gene has six exons spanning about 30 kb, and intergenic
sequences can be very large. For example in human chromosome 6 there are
approximately 1600 genes in over 165 megabases. However, this is an oversimplifi-
cation, as eukaryotic genomes often have regions of different GC content called
isochores, which correspond to regions of higher and lower gene density. The
regions of highest GC content approach the gene density found in bacteria,
whereas those of lowest GC content can have less than a tenth the number of genes
per megabase. Using this knowledge, we can have an idea of where to look for genes
and roughly how many to expect. In addition, some programs use different para-
meterizations for different GC levels.

The large regions of the genomes of higher organisms that do not encode any genes
have been referred to as junk DNA. Much of this junk DNA has repetitive sequences,
and hence the first step in detecting eukaryotic genes is usually to detect these
repeats using a program such as RepeatMasker. This can be coupled with the initial
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The key concept introduced in this
section is that eukaryotic genes
have certain features and signals
that can be used to identify genes in
uninterpreted sequence.
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identification of all RNA genes to eliminate large sections of the genome from consid-
eration as potential protein-coding genes, as functional regions rarely overlap.

Introns, exons, and splice sites
In Figure 10.10 the length distributions are given for vertebrate introns and
different classes of exons. By comparison with the E. coli data of Figure 10.7, exons
are on average considerably shorter than prokaryotic genes. As a consequence,
eukaryotic coding regions tend to be harder to recognize. Furthermore, whereas a
start and a stop codon always delimit prokaryotic coding sequences, most exons
are delimited by splice signals. In fact, exons are not the exact eukaryotic equivalent
of a prokaryotic ORF because they will also include any 5¢ or 3¢ untranslated regions
(UTRs), and it is not uncommon for the initial exon not to contain any coding
sequence. To make matters worse, the splice signals at intron–exon boundaries are
quite variable (see Figure 10.11), making them hard to locate accurately. Because
eukaryotic gene structure is much more complex and variable than that of prokary-
otes, the models used in eukaryotic gene detection must be more complex. As well
as detecting the individual components they must allow for a variable number of
exons in each gene.

To avoid potential confusion, it is worth noting that many people working in the
field of gene detection use the term exon as a general term for a region of coding
sequence. This is strictly speaking incorrect, as the initial and final exons will always
contain some untranslated regions. Moreover, it is quite possible for an initial or

350 

300 

250 

200 

150 

100 

50 

0 0 

10 

20 

30 

40 

50 

60 

70 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 

nu
m

be
r 

of
 in

tr
on

s 

0 

50 

100 

150 

200 

250 

nu
m

be
r 

of
 e

xo
ns

 

nu
m

be
r 

of
 e

xo
ns

 

0 

5 

10 

15 

20 

25 

30 

35 

nu
m

be
r 

of
 e

xo
ns

 

length 
0 200 400 600 800 1000 

length 

0 200 400 600 800 1000 
length 

0 200 400 600 800 1000 
length 

introns 
geometric distribution 

initial exons 
smoothed distribution

terminal exons
smoothed distribution

internal exons 
smoothed distribution

(A) (B) 

(C) (D) 

Figure 10.10
The distribution of lengths of
introns and exons in the human
genome. The number observed is
plotted against the length in
nucleotides for (A) introns, (B) initial
exons, (C) internal exons, and (D)
terminal exons. The intron
distribution has been fitted with an
exponential function, whereas
empirical smoothed distributions
were used to fit the exon data. Note
that these data were analyzed before
the complete human genome
sequence was available, and the
distributions may be different when
applied to the complete genome.
This is especially the case for the
initial and terminal exons, where
there were least data. (Adapted from
C. Burge and S. Karlin, Prediction of
complete gene structures in human
genomic DNA, J. Mol. Biol.
268:78–94, 1997.
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final exon to contain no coding sequence whatsoever. The reason for this lies with
the substantially different way that the translation machinery attaches to the RNA
transcripts in eukaryotes as opposed to prokaryotes. As seen in Figure 10.4, the
prokaryotic RBS is very close to the start codon. In contrast, eukaryotic genes can
have a considerable distance between the transcription and translation start sites
and no discernable ribosome-binding sequences. Just to further complicate
matters, it has been established that translation does not always start at the first
ATG codon of the mRNA.

A particularly difficult problem can arise in eukaryotic genomes when moving from
gene detection to protein prediction, a trivial step in prokaryotes. The splicing of
introns in the RNA is not always identical for a given gene—the phenomenon of
alternative splicing—with exons sometimes being removed altogether from the
mRNA and not translated. Alternative splicing can give rise to the production of two
or more different proteins from the same gene, and these are often known as splice
variants. A well-known example of this is the alternative splicing that leads to the
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Figure 10.11
The sequence conservation of intron splice-site signals, as
shown by sequence logos. (A) The logos for human donor and
acceptor sites. Note that the sequence just upstream of the
acceptor has a preference for C and T bases, as opposed to the
acceptor dinucleotide signal, AG. Also, the position two bases
upstream from the AG dinucleotide shows virtually no base
preference. The equivalent sequence logos for donor (B) and
acceptor (C) sites in Arabidopsis (the plant thale cress) show
much longer sequence conservation on the intron side of the
splice site. Note that these figures were produced before the
complete genome sequences were available. (A, courtesy of
T.D. Schneider. B&C, from S.M. Hebsgaard et al., Splice site
prediction in Arabidopsis thaliana pre-mRNA by combining
local and global sequence information, N.A.R. 24 (17):3439-3452,
1996, by permission of Oxford University Press.)
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production of membrane-bound immunoglobulins in B lymphocytes, compared
with the production of the same immunoglobulins in secreted form (antibodies)
after the B lymphocytes have differentiated into plasma cells. The location of splice
sites in a eukaryotic gene can therefore be hard to interpret in terms of a basic
intron–exon structure, without a detailed knowledge of the different protein variants
that can be produced from the gene. At present the only practical method of deter-
mining alternative splicing variants is to compare the whole sequence with the EST
databases (see Box 9.1), relying on experimental data rather than attempting to
predict this.

These factors have led to a greater emphasis on the use of homology and database
searching to help identify eukaryotic genes. As well as locating or confirming genes
through the use of protein-sequence homology, cDNA and EST databases are
frequently used, the latter being especially useful for confirming the positions of
introns and the existence of splice variants. 

Promoter sequences and binding sites for transcription factors
A further difference between prokaryotic and eukaryotic gene structures is that the
sequence signals in the upstream regions are much more variable in eukaryotes,
both in composition and position. The control of gene expression is more complex
in eukaryotes than prokaryotes, and can be affected by many molecules binding the
DNA in the region of the gene. This leads to many more potential promoter binding
signals spread over a much larger region (possibly several thousand bases) in the
vicinity of the transcription start site.

One feature worth noting is that there is strict control of gene expression, and some
genes are known to be poorly expressed because high levels of expression would be
damaging (for example, genes for growth factors). Such genes sometimes lack the
TATA box that is characteristic of the promoters for many eukaryotic protein-
coding genes (see Figure 1.13). Thus if certain promoter signals such as the TATA
box are missing, this does not necessarily mean there is no gene or the gene is inac-
tive. This can lead to extra problems in prediction and interpretation.

To date, as will be discussed below, these features have not proved particularly
useful in eukaryotic gene detection, although it is not yet clear if this is due to weak
signals or a current lack of knowledge of the actual signals. Despite differences in
the fine details, the same kinds of signal detection methods are found useful for
eukaryotic gene detection as were used for prokaryotes.

10.5 Predicting Eukaryotic Gene Signals
As mentioned above, there are many different sequence signals present in eukary-
otic genomes that can be used to help in gene prediction (see Flow Diagram 10.5).
These signals are more variable than in prokaryotes in that they are often absent (or
as yet undetected) and the promoters and other regulatory systems bind to regions
that can be far removed from the site of transcription. As a result, detection of these
signals is usually more difficult in eukaryotes. Even those signals that are present in
both prokaryotes and eukaryotes have different sequence preferences, and are
often located using different techniques. In this section some of these methods will
be presented to show the great variety of approaches that can be used.

Detection of core promoter binding signals is a key element of
some eukaryotic gene-prediction methods
The absence of ribosome-binding signals in eukaryotic genes means that ideally we
would like to detect the transcription start site (TSS) so as to be sure of the 5¢ end of
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the mRNA. This requires knowledge of the core promoter sites, the sequences that
bind the general transcription-initiation factors and the RNA polymerase, and
methods of finding these sites will be discussed here. In addition, there are
numerous other conserved sites in the extensive promoter regions of eukaryotic
genes that bind specific gene-regulatory proteins and are found in many different
genes. These sites are usually found by similar methods to those presented here.

The control of transcription initiation is highly complex in eukaryotes, and there is
great variation in the sequence signals present. As described in Section 1.3, there are
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three RNA polymerases involved in transcription in eukaryotes, each transcribing a
different class of genes. Most protein-coding genes whose transcription is regulated
are transcribed by RNA polymerase II and have a similar type of core promoter
sequence that includes the TATA element, which binds the general transcription
factor TFIID, and on which the transcriptional complex including RNA polymerase
II is assembled. However, 30% of protein-coding genes do not have the TATA
element. In addition, the location of the TATA element relative to the TSS is quite
variable. The same applies to all the other core promoter sequences, so that it has
not proved possible to generate a model of eukaryotic core promoter signals that
does not miss a significant percentage of known genes. For this reason, many gene-
detection programs do not incorporate promoter predictions, and the study of these
upstream sequence signals is often carried out separately (see Section 9.5).

The first step in generating models of the promoter signals is to collect together
sequences experimentally verified as involved in binding of the transcription-initia-
tion complex to the promoter, and to detect the degree of sequence similarity. In
Chapter 6, methods of sequence pattern detection were presented, and those
discussed below are very similar, many being variants of position-specific scoring
matrices (PSSMs) and logos (see Sections 6.1 and 6.3). Two key sets of techniques will
be presented here: those that aim to identify the precise location of the promoter
signals, and those that only attempt to locate the general region containing the TSS.

A set of models has been designed to locate the site of core
promoter sequence signals
In 1990 Philippe Bucher derived weight matrices to identify four separate RNA
polymerase II promoter elements, namely the TATA box, the cap signal or initiator
(Inr), the CCAAT box and the GC box. Using more than 500 aligned eukaryotic
sequences, the weights of different bases a at position u in a signal sequence were
obtained from the general equation

(EQ10.7)

where nu(a) is the number of occurrences of base a at position u in the alignment,
eu(a) is the expected number of bases a at position u, c is a small number (often 2)
to prevent numerical problems when base a is not observed at this position, and cu

is adjusted to make the greatest wu(a) zero. The value of eu(a) depends on whether
mononucleotides or dinucleotides are used as the reference. In the former case the
values are independent of position u, and reflect the base composition of the
sequences, whereas the latter case pays attention to the observed preferences of
base a to be preceded or followed by particular bases.

The sequences used for this study had to be very carefully curated to ensure the
information was reliable and unbiased. Only sequences whose transcription start
site was experimentally determined and which were thought to use the RNA poly-
merase II were included. These were further pruned to remove those with signifi-
cant sequence similarity in the region upstream of the TSS.

It should be noted that the alignment of these sequences prior to deriving the
weight matrices could not be done using the methods described in Chapters 5 and
6. As the sequences of interest are short and are DNA they will occur by chance with
relatively high probability. Furthermore, as they represent binding sequences, gap
insertion within the patterns is not appropriate. For these reasons, a special tech-
nique was developed that jointly optimized the alignment, the definition of the
pattern, and the weight matrices. A key feature of this method is to produce the best
possible signal for the promoter sequence relative to the background.

w a
n a

e a
c

cu
u

u
u( ) ln

( )

( )
= +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
100

Predicting Eukaryotic Gene Signals

383

BIF Ch10 5th proofsUSE  17/7/07  13:53  Page 383



The weights for the 15-base TATA-box signal are given in Figure 10.12A together
with the frequencies of occurrence of the bases and the cut-off score that must be
exceeded for a sequence to be assigned as a TATA box. In Figure 10.12B the position
distribution of this signal from the TSS is plotted, which indicates it is found
between 20 and 36 bases upstream of the TSS (measured from the second T; posi-
tion 0 in Figure 10.12B). Although the signal sequence (as defined by the weights)
occurs at other positions in some sequences, the background occurrence is low, so
that this TATA sequence is distinctive and a good promoter signal. In Figures 10.12C
and 10.12D the equivalent data are given for the 8-base cap signal. This has a very
narrow distribution about the experimental TSS (1–5 bases downstream), but has a
higher background frequency, no doubt partly on account of being shorter and thus
more likely to occur by chance. Unfortunately, even the low background of the
TATA-box matrix does not prevent false negatives occurring, often at a relatively
high rate of one per kilobase of sequence.

Both the TATA box and cap signal have been found in vertebrate and non-vertebrate
sequences, whereas the CCAAT box and GC box are only found in vertebrates and,
moreover, have a rather high level of background noise, despite being 12 and 14
bases long, respectively, and both having some very highly conserved positions.
Another feature of the CCAAT box and GC box is the wide variation in their distance
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The position-specific nucleotide preferences of the vertebrate
TATA box and cap signal. (A) The observed base frequencies for the
region –3 to +11 of the TATA box, and the weight matrix obtained
from them. (The “0” position is the second T in the sequence.) A
simple representation of the base preferences is shown at the
bottom of each column. The weight matrices are used to score for
the presence of a TATA box. The score, summed for all 15 positions,
must exceed –8.16 for the region to be said to have a TATA box. 
(B) The distribution of TATA boxes in a test dataset identified using
the weight matrix shown in (A). The horizontal axis is the base
number relative to the transcription start site. (C) The observed

base frequencies for the region –2 to +5 of the cap signal, and the
weight matrix obtained from them. The weight matrices are used
to score for the presence of a cap signal. The score, summed for all
eight positions, must exceed –3.75 for the region to be said to have
a cap signal. (D) The distribution of cap signals in a test dataset
identified using the weight matrix shown in (C). The horizontal
axis is the base number relative to the transcription start site, and
shows a clear peak at 0 as would be expected. (Adapted from P.
Bucher, Weight matrix descriptions of four eukaryotic RNA
polymerase II promoter elements derived from 502 unrelated
promoter sequences, J. Mol. Biol. 212:563-578, 1990.)
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from the TSS. This difference can be as much as 150 bases; this means that even after
the signals have been detected, the location of the TSS is still much in doubt.

In GenScan (a gene-detection program based on HMMs, which is discussed more
fully below) the promoter detection component uses Bucher’s TATA-box and cap-
signal models. In an attempt to avoid missing those genes that lack the TATA box,
the model allows for both possibilities. The allowed alternatives are a TATA box and
cap signal with a 14–20-base (random) sequence between them or a 40-base
random sequence (see Figure 10.13). It has been acknowledged that this model is
rather basic, in that if a TATA box is absent, no signals are searched for. Given that it
is just one part of a larger algorithm, only limited resources could be devoted to it,
and a lack of greater understanding of the biological mechanism prevented the
construction of more specific models.

The NNPP (Neural Network for Promoter Prediction) program uses a very similar
model for promoters to that in GenScan, namely a TATA box and Inr (initiator)
signal separated by a variable number of bases. In this case, however, a neural
network is used to identify potential promoter sites (see Figure 10.14). 

The key features of neural nets that are needed to understand their use here will
now be briefly described. The detailed description of neural network architectures
and training techniques will be left until Section 12.4, where they are presented in
their application to secondary structure prediction. The models consist of layers of
units, which usually communicate only with units in other layers, communication
involving passing a value to one or more other units. The value emitted by a unit
depends in some way on all the inputs it receives, for example only emitting a signal
if the sum of all input signals exceeds a threshold. In addition, the connections have
weights associated with them. One of the unit layers (the input layer) emits values
that (in applications based on predicting properties of a sequence) depend on the
small window of sequence. (For examples see Figures 10.14 and 10.15.) Another key
layer is the output layer, which usually has only a few (often just one) units. The
emission from the output layer, usually in the range 0 to 1, is interpreted as the
prediction for the sequence window or central residue/base. There are usually one
or more other layers between these two, called hidden layers, which modulate the
emission from the input layer and participate in transforming it into the output
prediction. Networks are trained with a set of data to determine suitable values for
any weights and thresholds in the model.

This particular neural network of NNPP has one set of hidden units to detect the
TATA box and another set to detect the Inr signal, and uses a time-delay neural
network (TDNN). Each sequence position is represented by four input units, each
representing one base, with a total of 51 bases in the input layer. Each TATA-box
hidden unit has inputs from 15 consecutive bases, and the Inr hidden units also
receive signals from 15 consecutive bases. However, the region of the sequence
scanned by the TATA-box hidden units (at the upstream end of the input layer) is
different from the equivalent region for the Inr hidden units (at the downstream
end of the input layer). The same weighting scheme is applied to all the TATA-box
hidden units and similarly (with another set of weights) for the Inr hidden units. All
the hidden units feed into a single output unit whose signal is used to determine
the prediction. The weights were obtained by training with a set of reliable
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Figure 10.13
The promoter prediction method in
GenScan, showing two alternative
and mutually exclusive paths. The
TATA box and cap signals are
identified using the weight matrices
given in Figure 10.12. The sequence
between them is allowed to be
between 14 and 20 bases long. The
alternative to this is a 40-base region
without any specific sequence
signals identified. This latter model
is chosen with a probability of 0.3, as
opposed to 0.7 for the TATA box and
cap signal pathway.
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sequences that had been carefully annotated by a human curator. One difference
between this technique and the HMM approach of GenScan is that, in general, the
precise location of the TATA box and Inr signal are not readily available, and NNPP
just reports that the two were found within the 51-base window. This method has
been incorporated into the complete gene-prediction package Genie.

Another program that uses a neural network to predict promoters is Grail, which
like GenScan is a complete gene-prediction package. In this case, instead of using a
neural net that scans the sequence, the sequence is scanned with matrices to iden-
tify the four elements identified by Bucher. Within a given sequence window the
number of such elements found, their score, and the distances between certain of
them are all used as inputs to the neural network (see Figure 10.15) together with
the GC content of the window. The neural network then emits the promoter score,
which is used together with predictions of the 5¢ and 3¢ ends of coding regions to
predict the location of promoters.

As well as the core promoters found in many genes, a large number of transcription
factors bind in the upstream region of genes and regulate gene activity. In eukary-
otes these binding sites frequently occur within 500 bases of the TSS, although even
more distant binding sites are not uncommon, as are regulatory sites downstream
of the TSS. A number of databases have been compiled listing the known binding
sites for transcription factors.

The ProScan (PROMOTER SCAN) algorithm tries to use these signals to assist in
locating the promoter site. The principle of the method is to identify regions
containing a number of such signals known to occur upstream of the TSS, in addi-
tion to locating the TATA box using Bucher’s matrix. The locations of putative tran-
scription factor binding sites are identified in a training sequence database that
distinguishes between non-promoter sequence and the two strands of promoter
sequence. This is done for a sequence window (250 bases in the standard imple-
mentation) and is converted into a density (the number of sites per base). A
promoter-recognition profile is calculated as the ratio of the densities of forward
and reverse promoter strands to the non-promoter density, each transcription
factor signal giving a separate component of the profile. (To avoid numerical prob-
lems, the profile score assigned is 50 where no sites occur in the non-promoter
sequences, and where no promoter sequence has a site the density weight of 0.001
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Figure 10.14
The neural network used by NNPP
to locate TATA-box and Inr signals
in a time-delay neural network. The
four layers of squares underneath
the sequence represent the input
layer units and encode the sequence
in a very simple way. Each unit will
have a value of 0 or 1 related to the
base at that position in the
sequence, and the units are colored
according to their values; blue
corresponds to 0 and white to 1.
Each of the units in the two hidden
layers (the TATA and Inr layers)
receives input from a consecutive
set of 15 bases. The sets for each
hidden layer unit are represented by
an oval, and for clarity only a few
representative ones are shown. The
connections between the input layer
units and hidden layer units are
indicated by a line, and again only
some representative lines are shown.
There is a set of weights associated
with these connections, so each
connection can make a distinct
contribution to the value of the
hidden units. All the hidden units
make a contribution to the value of
the single unit of the output layer. If
this output unit value exceeds a
threshold, the 51-base window is
identified as containing a TATA box
and Inr signal, although the precise
locations are not specified. If the
output unit value is less than the
threshold, no sites are identified in
this window. The sequence shown
has a TATA-box signal, as indicated
by the boxed segment, but no Inr
signal. (From M.G. Reese,
Computational prediction of gene
structure and regulation in the
genome of Drosophila melanogaster,
PhD Thesis, University of
Hohenheim, 2000.)
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is assigned.) In this way preferences to be upstream or downstream of the TSS are
quantified. When predicting the promoter site for a query sequence, the same
sequence window size is used, and any transcription factor signals identified are
scored with the profile density. In addition, the 50 bases at the 3¢ end of the window
are tested for a TATA box with the Bucher matrix, scoring 30 if one is found. A
threshold score is used to determine whether the window is predicted to contain a
promoter. For high thresholds, at which only 50–60% of promoters were identified,
the false-positive rate could be as low as one per 15–25 kilobases. A lower threshold
found 80% of the promoters but gave a false positive every 2590 bases; given the
length of eukaryotic genes this means that the majority of the predictions were false.

Predicting promoter regions from general sequence properties
can reduce the numbers of false-positive results
The large number of false-positives that arise when searching eukaryotic genomes
for short sequence signals is simply a reflection of the fact that a short sequence will
occur quite often by chance. Modifying the parameters to reduce the number of
false positives does not necessarily solve this problem, as often this results in fewer
true positives. To get round this difficulty, some techniques attempt to identify just
the general region of the sequence containing the promoter on the basis of its
general sequence properties. In fact, the accurate location of even the general
region containing promoters is useful, as it could be used to separate a genome into
individual genes, and thus assist in the general problem of gene detection.

The PromFind program devised by Gordon Hutchinson is one such program. It is
based on the observed frequencies of hexamers in promoter, coding, and
noncoding sequence regions. A differential measure D1(b1b2b3b4b5b6) comparing
promoter and noncoding regions was calculated using

(EQ10.8)

where fpromoter(b1b2b3b4b5b6) is the observed frequency of hexamer b1b2b3b4b5b6 in
the promoter regions. An equivalent measure D2(b1b2b3b4b5b6) was obtained for
promoter and coding regions. These parameters vary from 0 to 1, with higher values
occurring for hexamers preferentially found in promoters. Some of the hexamers
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Figure 10.15
The neural network used by the
Grail program to predict RNA
polymerase II promoters. A variety
of measures, such as the weight
matrix score for TATA-box signal and
simple measurements such as the
GC content and the distance
between different signals, are used
to assign values to the units in an
input layer of a neural network.
These feed via two hidden layers to
an output layer unit, which predicts
the presence of RNA polymerase II
promoters in the sequence window.
(Adapted from E.C. Uberbacher, Y.
Xu and R.J. Mural, Discovering and
understanding genes in human DNA
Sequence using GRAIL, Methods in
Enzymology 266:259–281, 1996.)
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found with greatest D1(b1b2b3b4b5b6) in the promoter regions corresponded to
known patterns, such as TATAAA, and many contained CpG dinucleotides. To make
a prediction, the D1(b1b2b3b4b5b6) and D2(b1b2b3b4b5b6) values are summed over a
300-base window that is moved 10 bases each time along the sequence. Subject to
the two sums exceeding empirically determined thresholds, the window with the
highest D1(b1b2b3b4b5b6) score is predicted to be a promoter region. This rather
simple algorithm was reasonably successful in identifying promoter regions.

The PromoterInspector program developed by Matthias Scherf and colleagues uses
a related method to PromFind in that specific short sequences are used to classify
a region. Rather than search for hexamers, this method looks for nucleotide
sequences of the general form A-N1-B or A-N1-B-N2-C, where A, B, and C are short
oligonucleotides of specific sequence (length 3–5 bases), and N1 and N2 are short
stretches of any sequence (up to 6 bases). An example of such a sequence would be
ACTNNCCG (where N is any base). As in PromFind, a sequence window must be
used, in this case of 100 bases, and successive windows are four bases apart. If at
least 24 consecutive windows are identified as having promoter characteristics, that
region, which will be at least 192 bases long, is predicted to contain promoter
sequences. In the initial tests the predicted promoter regions averaged 270 bases in
length. This method does not predict the strand, so that the TSS could occur at
either end of the prediction. From the few comparisons available, this method
appears to correctly predict fewer promoter regions, but also makes significantly
fewer false-positive predictions. Results from PromoterInspector are shown in
Section 9.5.

McPromoter, devised by Uwe Ohler and colleagues, predicts a 300-base region to
contain the promoter, with the TSS 50 bases from the 3¢ end. The prediction is based
on an interpolated Markov model similar to that used in GLIMMER; that is, it relies
on distinct coding statistics in the promoter region. In this case the test sequences
were classified into promoter, intron, and coding regions, and interpolated Markov
models were generated for each group. The method was effective at distinguishing
promoter regions from coding sequence, but fared worse in distinguishing
promoters from introns. Despite the attention paid to the problem, the prediction
of many false positives remains.

The final promoter-prediction method we will examine is CorePromoter, which is
based on discriminant functions. In this context, a discriminant function is a numer-
ical combination of measured properties of a sequence region whose value can be
used to distinguish, for example, promoters from introns. In this particular case, the
function involves linear and quadratic terms of the properties. The basic principle of
a quadratic discriminant function is given in Figure 10.16A. The measurements were
based on pentamer frequencies in a 30- or 45-base window relative to those in
surrounding windows. Pentamers were chosen instead of hexamers because they
required less data to achieve accurate statistics. Eleven windows labeled wi

surrounding the TSS were used to define the variables (see Figure 10.16B), with the
score of pentamer b1b2b3b4b5 in window wi defined by

(EQ10.9)

where fi(b1b2b3b4b5) is the frequency of occurrence of b1b2b3b4b5 in the window, and
fav(b1b2b3b4b5) is the average of fi-1(b1b2b3b4b5) and fi+1(b1b2b3b4b5). An initial linear
discriminant model based on windows w4 to w7 gave good signals that peaked at
the TSS, but there were also many spurious signals. The larger model shown was
found to have far fewer false positives and be less susceptible to changes in window
position or size.
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Predicting eukaryotic transcription and translation start sites
Although exons are usually defined by their coding statistics, using techniques not
too dissimilar to those used in prokaryotes to detect coding regions, there is still a
difficulty in defining the 5¢ end of translation. There is no defined ribosome-binding
site in eukaryotic genes, as the ribosome simply attaches to the 5¢ end of the mRNA
and then slides along until it finds a suitable transcription start site. The region
around the ATG start codon is found to affect the efficiency of translation, presum-
ably according to the strength with which it binds the ribosome, and a number of
examples exist where translation starts at the second or third ATG codon from the
5¢ end of the mRNA. GenScan uses a 12-base weight matrix to detect suitable trans-
lation start sites with the ATG in positions 7–9. There are problems in locating the
start codons in some genes because the sequence seems designed to prevent easy
translation. This seems to be the case in genes for growth factors and transcription
factors, for example, whose products must be under tight control.

Predicting the position of the transcription start site requires the identification of
some core promoters, especially the cap (Inr) and TATA-box signals. The cap signal
occurs at the point of transcription initiation. If the TATA box can be located tran-
scription will be expected to start 20 to 36 bases downstream. However, as
mentioned above, not all genes contain these signals and they are also difficult to
detect. As prediction of the gene product does not require the location of the tran-
scription start site, most programs do not attempt a prediction.

Translation and transcription stop signals complete the gene
definition
As in prokaryotes, the eukaryotic translation stop signal is simply one of the three
stop codons, and thus is easily recognized in the coding region. The transcription
stop signal is the polyadenylation signal, with the consensus AATAAA. In GenScan
a standard weight matrix is used to model this. In Grail the matrix extends 6 bases
upstream and 59 bases downstream. Many methods do not attempt to locate the 3¢
end of the mRNA, and focus exclusively on the protein-coding region of the gene.

10.6 Predicting Exons and Introns
As the protein-coding regions of eukaryotic genes are interspersed with noncoding
introns, the relatively simple ORF identification techniques that were employed for
prokaryotic genomes must be radically modified. When the exons are long enough,
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An illustration of the principles of
linear and quadratic discriminant
analysis (LDA and QDA,
respectively) and their application
to locating transcription start sites.
(A) Two properties x1 and x2 are
measured for every member of a set
of samples (sequences in the
present context, but in principle any
object). Each of the samples is in
this case known to belong to one of
two groups. In the present context
the properties may be base
statistics, and the groups may be
those that code for proteins and
those that do not. When the values
of these properties are plotted,
distinguishing the two groups here
by green and red dots, the groups
are found to lie in distinct regions of
the graph. (This will only be the case
for certain properties that are in
some way related to the grouping.)
In fortunate cases a suitable line
[L(x)] or quadratic curve [Q(x)] can
be found that divides the graph into
two regions corresponding to these
sample groups. Here only the
quadratic curve can do this. Once
the curve is known, the group
membership of an unknown sample
can be predicted. The group is
assigned according to which side of
the quadratic curve the x1 and x2
values would be plotted. (B) Part of
the CorePromoter method for
predicting the location of the
transcription start site (TSS)
involves a QDA in the region
surrounding the TSS (located at
position +1). A base statistic
measure is calculated for 13
windows (sequence segments)
labeled w1 to w13, the regions being
shown in the figure. The values
calculated are used with a formula
which is a quadratic discriminant to
predict if there is a TSS within the
240-base segment. (A, adapted from
M.Q. Zhang, Identification of
protein coding regions in the human
genome by quadratic discriminant
analysis, Proc. Natl. Acad. Sci. U.S.A.
94:565_568, 1997.)
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some of the base statistic techniques can still be used, but these need to be
combined with methods to identify splice sites in order to define their limits (see
Flow Diagram 10.6). 

Because the signals for splice sites are not well defined their location has been an
area of considerable research, with many different methods tried and refined. There
is still a need for significant improvements to assist gene prediction. It should be
noted that this apparent lack of clear definition may have a genuine role in
processes such as alternative splicing, which is now being recognized as much
more common than initially realized.

The initial and terminal exons present a further potential difficulty because they
may also contain noncoding segments (the 5¢ and 3¢ UTR regions). Specific
methods have been developed to try to identify these specific types of exon.

Exons can be identified using general sequence properties
All internal introns and exons in a eukaryotic gene are delimited by the splice sites
at which introns are cut out of the RNA transcript and the exon sequences joined
together. These splice sites have distinct sequence signals. There are programs that
predict splice sites without information about introns and exons, and other
programs that predict introns and exons without reference to splice sites (see
Sections 9.3 and 9.4 for some examples and their results). The former methods,
focusing on the splice sites, will be covered in the subsequent section. In this
section we will examine the latter methods, some of which take advantage of the
base statistic properties of the protein-coding regions. It should be noted that the
structure of these genes has led to some alternative definitions of the prediction
accuracy based on the introns and exons instead of looking at the level of individual
nucleotides (see Box 10.3). 

In some cases the prediction of coding and noncoding regions per se closely follows
the techniques already discussed for prokaryotes, namely the use of statistics based
on dicodons, and distinguishing the reading frames in coding regions. Note that the
initial and terminal exons also include the 5¢ and 3¢ UTRs, which will have
noncoding statistics, thus complicating the analysis. A further complication is that
exons tend to be shorter than the average prokaryotic ORF, and can even be less
than 10 bases long. The base statistics methods cannot identify these very short
exons. There seems to be a minimal length for introns that varies according to
species but is around 50 bases.

Of the programs we have touched on already, GenScan identifies eukaryotic coding
regions by dicodon statistics, as in the prokaryotic examples given earlier, but in
GenScan’s case it uses an explicit state duration HMM based on the observed length
distribution of real exons (see Figure 10.10). The length of the potential exon is
generated from this distribution, and its sequence generated with probabilities
based on the dicodon statistics.

Neural networks can also be used to predict coding regions, as in programs such as
Grail and NetPlantGene. In NetPlantGene, which as its name suggests was devel-
oped specifically for use in plants, six separate networks are used, taking the
average of their output as the final predictive result. Four of these networks have
804 input units representing 201 bases (each sequence position being represented
by four units, one for each possible base), connected to 15 units in a single hidden
layer that feed their signals to a single output layer unit. These four networks differ
in their initial weights and hence in their final trained weights. The other two
networks have input layers corresponding to 101 and 251 bases. Each of these six
networks produces an output value between 0 and 1, which is a measure of the like-
lihood that the central base (in the input window sequence) is in a protein-coding
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region. The query sequence is scanned to produce the prediction of which regions
are protein coding. The final prediction is made on the basis of the average of the
six separate values. Prediction values >0.5 are regarded as predicting a coding base,
whilst lower values predict the base to be non coding. An example output for the
NetPlantGene coding prediction is shown in the top section of Figure 10.17. 

One completely different aspect of coding regions in eukaryotes compared to
prokaryotes is that the exons in the transcribed RNA will be spliced together to
produce the final protein-coding sequence. This means that the reading frames of
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the exons must be consistent, which is referred to as being in-frame. This require-
ment must be incorporated into gene-prediction programs. For example, if one
exon ends at codon position 2, the next must start with its first base at codon posi-
tion 3. In practice this means that exons can be distinguished according to which of
the three reading frames they use. This is probably best understood with a practical
example, as in Figures 9.5 and 9.8. This does not need to be accounted for when
initially predicting exons, but must be taken account of when predicting the
complete gene, as is covered later in Section 10.7.

Splice-site prediction
Turning to splice-site prediction, most introns start (i.e., have a 5¢ end) with a GU
dinucleotide in the RNA (GT in the DNA) at what is referred to as the donor splice
site. The 3¢ end of introns (acceptor splice site) is mostly an AG dinucleotide.
Locating occurrences of AG and GT would identify all possible splice sites with
these sequence properties, but in addition there would be about 30 to 100 false
predicted sites for every true one. As with promoters, this problem must be resolved
by trying to use the properties of the surrounding sequence to reduce the false-
negative prediction rate to a manageable level. Figure 10.11A shows sequence logos
for the regions of the donor and acceptor splice sites for human introns, and
Figures 10.11B and 10.11C show equivalent logos for Arabidopsis. These data indi-
cate that there are extensive sequence signals available to help detect splice sites,
and that these can be species specific. It should be noted that the informative sites
are mainly on the intron side of the splice site. The methods presented below ignore
the existence of the rare U12-type introns (see Section 1.3); this is an acceptable
approximation, as far less than 1% of all introns are of this type.
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As discussed in Box 10.1, it is important to be able to
quantify the accuracy of predictions so that rival
programs can be meaningfully compared. The exon
structure present in most eukaryotic genes complicates
this task. For example, it would be useful to know if a
program was partially successful in predicting a gene
because it failed to predict one of the exons but
correctly predicted all the others, as opposed to identi-
fying all the exons but not predicting any of them
exactly. Such information is also of great value when
deriving new methods, as it can highlight specific defi-
ciencies that would merit further attention. In Box 10.1
the accuracy measurements based on individual
nucleotides were presented. Here we will look at the
problem at the exon level. As before, we will present the
analysis of Moises Burset and Roderic Guigo.

At the exon level, determining prediction accuracy
depends on the exact prediction of exon start and end
points (see Figure B10.2). The number of actual (real)
exons in the data is represented by the symbol AE. The
number of predicted exons is represented by the symbol
PE. In the measures presented here, four kinds of exons
are distinguished. Correct exons (total number repre-
sented by CE) are those that are predicted exactly, i.e.,

with the exactly correct splice sites. Missing exons (ME)
are those that occur in reality but have no overlap with
any predicted exons. Wrong exons (WE) are the
converse, namely the predicted exons that have no
overlap with any real exons. Finally, pairs of predicted
and real exons that have an overlap but are not exactly
identical are ignored. (It should be noted that other
measures have been proposed that, for example,
consider the case of predicted exons with only one of
the splice sites correctly located.)

There are two measures each of sensitivity and speci-
ficity used in the field, each of which measures a
different but useful property. The sensitivity measures
used are

and
(BEQ10.6)

The specificity measures used are

and
(BEQ10.7)

Sp
WE
PE2 =Sp

CE
PE1 =

Sn
ME
AE2 =Sn

CE
AE1 =

Box 10.3 Measures of gene prediction accuracy at the exon level
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Splice sites can be predicted by sequence patterns combined
with base statistics
The SplicePredictor method makes predictions on the basis of the sequence around
the splice site and base-composition differences on either side of the splice site. The
concept behind the model is that a variety of sequence factors influence the
splicing efficiency, such that splicing occurs with probability Psplice, and that this
can be represented using a formula of the form

(EQ10.10)

where a, b‚ and g are coefficients fitted using a set of test data, DU/DGC is the differ-
ence in fractional U/GC content between the 50 bases upstream and the 50 bases
downstream of the conserved dinucleotide in the primary RNA transcript, and
Wsignal is a measure of the three upstream and four downstream bases surrounding
the dinucleotide. Wsignal can be represented by a standard weight matrix based on
observed base frequencies at the positions, or the weights of base a at position i can
be fitted with the other parameters. Any site scoring Psplice above a threshold is
predicted to be a splice site. Note that all GU and AG dinucleotides in the sequence
are considered, but only them, so the rare (<1%) splice sites that do not have the
conserved dinucleotide will be missed.

In deriving the final model, some of these terms were initially omitted, allowing an
assessment of their importance, especially in reducing the number of false posi-
tives. If the threshold is set to predict all known splice sites (i.e., give no false nega-
tive results), the Wsignal measure on its own only eliminates half the false positives,
leaving about 15 per true site; adding the base-composition terms (DU and DGC) only
halves that number again. If the threshold is reduced so as to miss 5% of the true
sites (a sensitivity of 95%) then false-positive predictions are reduced to, at best, just
below two per true site. To improve on this, the splice sites had to be classified into
subgroups. For donor sites, those with GGU (about 80%) were distinguished from
the others, which were called HGU (H signifying not-G). For acceptor sites, the two
subgroups were CAG (about 70%) and DAG (D signifying not-C). This resulted in
some improvement, largely in predicting acceptor sites, but false positives still
outnumbered true positives for 95% sensitivity. This method was initially developed
for plants, in which introns tend to be U(T)-rich and exons GC-rich.

The method was further extended to account for the fact that splice sites must
occur as a donor and acceptor pair, and that there may be other nearby sites
predicted with a high score. This requires including in the model some idea of the

ln
P

P
Wsplice
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C sign1−
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Figure 10.17
The NetPlantGene prediction for the
A. thaliana Rha1 gene sequence.
The top plot shows the score for the
coding prediction networks, and
plotted against this the actual intron
and exon locations drawn as a
horizontal line showing the correct
exons as green bars, separated by
blue introns, with the intergene
regions colored magenta. (Base
numbers are given at the bottom of
the figure.) Six of the seven exons are
well predicted. However, the second
exon is poorly predicted, and there is
an additional incorrect prediction
around bases 1250–1350. The two
lower plots show the predictions for
donor and acceptor splice sites. The
changing threshold for splice-site
prediction is shown as the red and
green lines, respectively. The
magenta predictions have been
rejected during further filtering as
mentioned in the text. The cyan
predictions have received
strengthened scores according to the
score modifications mentioned in
the text. The final prediction has 11
of 12 sites correct with five false
positives. Note how the variable
thresholds help correctly predict the
lower-scoring acceptor site at base
1134 rather than the higher-scoring
donor sites at base 1135 and nearby.
There are no suitable splice sites
predicted in the region 1250–1350,
so the overall prediction is
(correctly) for no exon in that
region. (From S.M. Hebsgaard et al.,
Splice site prediction in Arabidopsis
thaliana pre-mRNA by combining
local and global sequence
information, N.A.R. 24
(17):3439–3452, 1996, by permission
of Oxford University Press.)
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size of introns, which in the case of plants was set at 600 bases, estimated at the
time to include over 95% of known plants introns. Subsequently, this method has
been modified to replace the Psplice score given above with a score based on
observed dinucleotide frequencies and a Bayesian statistical model.

GenScan uses a combination of weight matrices and decision
trees to locate splice sites
In GenScan, a more sophisticated variant of weighted matrices is applied to the
prediction of donor splice sites. This scheme, called maximal dependence decom-
position (MDD), attempts to improve on the assumption of independence of all
positions in the signal. As the signals act as a unit, in this case to bind the U1 snRNA
component of the spliceosome, the individual positions are not truly independent,
and compensatory changes can be expected, leading to strong correlation between
positions. Using a test set of donor sites, this correlation was determined using c2

tests, and the position with greatest correlation to other positions was identified.
The test set was then split into two subsets: one consists of those sites with the
consensus base at that position and the other of all other sites. This process was
repeated on the new subsets until either there were insufficient examples of a
subset or no further correlation was found. The end result was a group of donor-site
subsets, each of which is then used to generate a weight matrix, and a decision tree
that can be used to decide which matrix to use for a given sequence (see Figure
10.18). This model is not used in GenScan for the acceptor sites because there was
a lack of correlation in the data.

GeneSplicer predicts splice sites using first-order Markov chains
The program GeneSplicer takes the MDD method and uses it to classify the splice
sites as in GenScan. However, instead of determining a weight matrix for each
subset, a first-order Markov chain is used. This can account for correlation between
each base and the base immediately upstream. The parameters are chosen in a
similar manner to that discussed for the GLIMMER coding-region prediction
method. The donor site is represented by a 16-base window, and the acceptor site
by a 29-base window. The sequences are scored with the difference between the
log-odds score for a true and a false splice-site model, the latter obtained from
sequences known not to have splice sites. In addition to this, simple coding and
noncoding models were constructed as second-order Markov models. Such models
assign probabilities for the following base according to the last two bases, thus
involving a codon (three bases) at each step. These second-order models are a
simpler variant of the fifth-order models described in Section 10.3, but can also
distinguish coding and noncoding regions.

Putting these models together, the score of a donor splice site at sequence position
j is given by

(EQ10.11)

and that of an acceptor splice site by

(EQ10.12)

Ssignal(j,n) is the score obtained with the MDD and first-order Markov models, while
Scode(j) and Snoncode(j) are the scores of the second-order Markov models for coding
and noncoding regions, respectively, starting at base j and of length 80 bases. A

S j S j S j Sacceptor signal noncode( ) ( , ) ( )= + − −29 80 ccode code noncode( ) ( ) ( )j S j S j−( ) + + − +( )80 1 1

S j S j S j Sdonor signal code non( ) ( , ) ( )= + − −16 80 ccode noncode code( ) ( ) ( )j S j S j−( ) + + − +( )80 1 1
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threshold value is used to determine the score required to predict a splice site. This
model often gave false-positive predictions close to true positives but with lower
scores. To remove these spurious predictions, lower-scoring sites within 60 bases of
a predicted splice site were rejected.

NetPlantGene combines neural networks with intron and exon
predictions to predict splice sites
NetPlantGene, which was discussed earlier in this section in the context of coding-
region prediction, also predicts splice sites. It uses neural networks to obtain
scores, but then uses extensive filtering of the resultant sites to reduce the false-
positive predictions. The donor sites are modeled with a set of 10 networks, each
with 23 bases in the input layer (represented by four units each, as in Figure 10.14),
a hidden layer of 10 units, and a single output layer unit. The 10 networks were
separately trained from different starting points, and their outputs (from 0 to 1)
averaged to get the final score. A similar set of 10 networks was used to score
acceptor sites, except that these have a 61-base input window and 15 hidden layer
units. In contrast to the neural nets used for coding-region prediction, in the case
of splice-site prediction the threshold output value used to distinguish prediction
from nonprediction of a splice site is varied during training so that 95% of true sites
are predicted.

To improve on these predictions, it was argued that splice-site predictions should
correlate with coding region predictions, in that the splice sites should be at the
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Figure 10.18
Analysis of the composition of 1254
donor splice sites by the maximal
dependence decomposition method
as used in the GenScan prediction
technique. (A) Summary of the
observed bases at different positions
relative to the splice site. The GU
dinucleotide is at position +1 and
+2, with splicing between –1 and +1.
Note that positions +1 and +2 are
invariable in this dataset. (B) The
classification of the sequences into
subgroups is shown, according to
the maximal dependence
decomposition method. The
subgroups are named according to
their fixed bases; thus the G5G–1A–2

group has G at positions –1 and 5
and A at position –2. H means not-
G, B means not-A, and V means not-
U. The number of sequences that
occur in each group is given in
parentheses after the group name.
The base frequencies at the variable
positions within each subgroup are
shown alongside. Note that some
positions have quite different
compositions in some subgroups,
e.g., positions –2 and +3 in H5 and
G5. The base selected to define the
next two subgroups is always the
general consensus at that position,
shown highlighted. (Reprinted from
J. Mol. Biol., 268, C. Burge and S.
Karlin, Prediction of complete gene
structures in human genomic DNA,
78–94, 1997, with permission from
Elsevier.)
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edges of coding regions. The set of neural networks used to predict coding regions
in NetPlantGene has as output a score for each base of its likelihood of being in a
coding region. The gradient of this coding-region score was calculated using a
crude numerical approximation, and this was used to modify the threshold for
splice-site prediction (see Figure 10.17). The resulting thresholds are lowered at the
boundaries of coding regions as desired.

Further filtering is based on experimental observations. False splice sites have been
found to occur in regions where the coding or noncoding prediction is strong
(output layer prediction value close to 1 or 0, respectively) over a segment of
sequence. Identifying such regions of coding or noncoding prediction, and
removing any predicted splice sites contained in them, successfully reduced the
number of false positives by about 10% in the test set without removing a single true
site. In addition, there are often sites close downstream of the true acceptor site that
are not usually active, but can become active if the true site is disrupted. Therefore,
the model was altered to reject all predicted acceptor sites up to 20 bases down-
stream of another acceptor prediction, removing another 10% of false positives.
Similarly, predicted donor sites are often clustered, and so all other donor site
predictions within 15 bases of a more strongly predicted donor site were rejected.
In all, this reduced the false positives by an impressive 65%, with almost no true
sites being rejected. Further modification of the scores involved recognizing that in
the absence of alternative splicing donor and acceptor sites must alternate along
the gene, and that there is a known distribution of intron and exon lengths. The
score modifications are used to remove predictions that result in exons or introns
that are outside the known length limits.

Other splicing features may yet be exploited for splice-site
prediction
So far little account has been taken of the known length distributions of exons and
introns. Another aspect of the molecular biology of splicing not mentioned so far is
the location of the branch point in the intron, which is a functionally significant
sequence (see Figure 1.14). Despite these omissions, thresholds could be set such
that 57% of all donor sites and 21% of all acceptor sites were predicted with no false
positives at all. At 95% sensitivity levels the number of false positives using
NetPlantGene was still low enough to make this method very useful.

A few programs, GenScan being one example, try to use the sequence signal for the
branch point as an aid to prediction (see Section 1.3 for a summary of the intron
structure and the role of the branch point). However, in general the signal is so weak
that there is insufficient information, which is why many methods ignore it
completely. To illustrate its weakness, a study in Arabidopsis found that the signal
was only seven bases long, with only two positions having more than 1 bit of infor-
mation, one being the conserved adenine base.

Specific methods exist to identify initial and terminal exons
The methods above that combine an exon prediction with splice-site predictions
assume that the entire exon codes for protein. This is only the case for internal
exons, and those at the 5¢ and 3¢ ends of genes will also have an untranslated region.
(There are several cases where the untranslated region extends to some internal
exons as well.) It is clearly important to detect these noncoding exons, but because
of their different characteristics they require alternative methods. The Zhang group
has paid particular attention to this problem, using quadratic discriminant analysis
(see Figure 10.16A) as in their internal exon program MZEF. The program to detect
first exons (FirstEF) uses a combination of decision trees and discriminant func-
tions that examine potential splice donor sites, CpG regions, and promoter regions
largely on the basis of oligonucleotide statistics. The discriminant functions used in
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the terminal exon program JTEF attempt to locate the splice sites, terminal codon,
and the polyadenylation signal.

Exons can be defined by searching databases for homologous
regions
The eukaryotic methods discussed so far have not attempted to use knowledge
from existing sequence databases to assist in gene prediction. When the databases
are reliable, the detection of homology can greatly help to identify genes, and when
mRNA-related sequences are also known these can aid identification of the
exon/intron structure.

Several different approaches can be taken to incorporate homology information
into gene detection. Predicted exons can be searched against the database to iden-
tify related proteins, which can then be used to assist in finding other exons by
homology to those regions of the database entry not in the original exon. In a
similar way, homology to ESTs and cDNAs can be used to confirm exon predictions.
Although, in principle, standard alignment programs can be used, it has been
found advantageous to develop specialized methods that anticipate the large gaps
corresponding to introns, and the dinucleotide splice site signals.

When the ESTs or cDNAs are from the same organism as the genome sequence they
can help identify a gene and its exon structure even when the function of the gene
or protein is not known. EST databases can also be useful in providing evidence of
alternative splicing, which otherwise can be difficult to identify. It may not be
immediately apparent that alternative protein sequences derive from the same
gene, as opposed to two genes related by a duplication event.

One can also search for similar database sequences, although this is usually only
used when trying to identify genes of particular families, rather than attempting to
locate all genes in a new sequence. Thus for example using a representative or repre-
sentative sequences from a particular protein family can identify many (possibly all)
family members present in the genome. Often this homology information is incorpo-
rated into the general gene-detection scheme with an appropriate scoring method.

Many ab initio gene-prediction programs have been modified to take account of
homology to experimental gene sequences. GenScan was modified to allow BLAST
hits to the genome sequence to be used as an extra guide. Because of the proba-
bilistic basis of GenScan (it is an HMM) the BLAST hits have to be converted into a
probability. This is made relatively easy, as the E-values (see Section 4.7 and Section
5.4) give guidance, although it should be noted that the probabilities under discus-
sion here are very different from those mentioned in relation to database searching.
Account is taken of the fact that some of the BLAST hits may be artifacts. The
GenScan probability for a particular gene feature prediction is modified to account
for a BLAST hit or the lack of one and in this way account is taken of known
apparent homologies. The resultant method is called GenomeScan.

10.7 Complete Eukaryotic Gene Models
Once all the separate components of a gene have been predicted it is possible to put
them all together to predict a complete gene structure. A number of programs exist
that can display a variety of predictions of individual components together, so that
a manual interpretation can be made of the gene structure (see Flow Diagram 10.7).
This may be useful in fine-tuning a gene structure when some extra experimental
information becomes available, but as a general technique is not practicable, not
least because it leads to subjective results that may not be reproducible.
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Many programs have been written that predict individual gene components and
then combine these automatically into a gene prediction. Many of the early
programs would only predict a single gene for a query sequence, but newer
programs do not have this limitation. Most programs use one of two general tech-
niques to combine the elements into a predicted gene: hidden Markov models or
dynamic programming (see Sections 6.2 and 5.2, respectively). The details of the
application of these methods vary between programs, but we will discuss the
general features of this approach with reference to two programs: GenScan and

Chapter 10: Gene Detection and Genome Annotation

398

GENE DETECTION AND
GENOME ANNOTATION

non-protein-
coding genes

tRNA others rRNA 

prokaryotes 

sequence 
features 

ORFs 

basic 
statistics 

promoter 
signals 

sequence 
homology 

algorithms 

algorithms 

gene models 

intrinsic 

GeneMark GLIMMER EcoParse ORPHEUS

extrinsic 

predicting 
exon/intron 

structure 

start/stop 
signals and 
promoters 

splice 
sites 

initial & 
terminal 

exons 
exons 

use of 
homology 

sequence 
features 

eukaryotes introns/ 
exons 

basic 
statistics 

promoter & 
other signals 

sequence 
homology 

repeats 

protein-
coding genes

GeneMark.
hmm

promoters 

translation/transcription start signals 

translation/transcription stop signals 

Flow Diagram 10.7
In this section some complete
eukaryotic gene models are
described.

BIF Ch10 5th proofsUSE  17/7/07  13:53  Page 398



GAZE. Note that even programs such as Grail, which base component prediction
largely on neural networks, cannot use neural networks for this stage. Many of these
programs use a model that prevents any gene overlap. Although this is often
thought to be of little importance in eukaryotic genomes, 2% of the Caenorhabditis
elegans genes in WormBase occur in introns of other genes, and are referred to as
nested genes.

GenScan uses an HMM (see Figure 10.19) that considers both the forward and
reverse strands of DNA simultaneously. Note that the gene components on the
reverse strand are located in reverse order when compared to the forward strand.
This complex model is composed of several different submodels that identify each
component. Many of the submodels have been discussed above, such as the MDD
method for donor sites and the explicit state duration HMM for coding regions. A
key feature of the submodels is that they provide probability scores to the HMM
states representing them. This complete-gene model accounts for the requirement
for successive exons to maintain the reading frame, and can also detect several
genes in one input sequence. However, it cannot detect overlapping genes.

The GAZE program uses dynamic programming to combine the different compo-
nent predictions into whole genes. In this view of the problem a gene is seen as a
sequence of features with a defined order, each of which can be assigned a score.
The predicted features in the unknown sequence are aligned to the gene model and
the features that give the highest-scoring gene are reported. The program is
designed to require simply the probabilistic scores of the individual component
predictions, so that it can readily accept output from any prediction methods that
can produce such scores. Prediction scores for these individual components can be
read by GAZE from a file in the standard General Feature Format (GFF) and must
include a score for each prediction. For dynamic programming to work, scores
must be associated with all potential assignments of sequence segments, including
intergene regions. The scores for intergene regions, introns, and exons can be taken
from observed length distributions, and they may be defined within the GAZE
program itself or read in with other predictions from a GFF file.

The GAZE system is, in principle, very flexible in that it can use many different gene
models. These models are defined in a separate file using the markup language
XML, so the gene model can be changed simply by editing this file. GAZE reads this
model file and then uses dynamic programming to determine the best path
through the model, and hence the optimal gene structure for the given sequence. A
model for multiple genes on both strands is given in Figure 10.20. By comparison
with the GenScan model in Figure 10.19, this model shows the splice sites explicitly,
giving it a different appearance from the GenScan model, but they are exactly
equivalent. 

10.8 Beyond the Prediction of Individual Genes
There is much more to annotating a genome than identifying the location of all
protein-coding genes and other sequence features (see Flow Diagram 10.8). At the
simplest level, the annotation should include an analysis of any predicted protein
products, based on a sequence analysis of the kind described in Chapter 4. In addi-
tion, it should include experimental data that can be assigned to particular
sequence features. Further analysis may involve comparison with the genomes of
other organisms. This is frequently done by alignment of the two genomes or
regions of them, and comparing the features present in each. Both of these aspects
of genome annotation are discussed briefly below. Finally, this section looks at how
such annotations require reevaluation as further experimental data are obtained
(possibly on the basis of the predicted genes and gene products).

Beyond the Prediction of Individual Genes
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Functional annotation
Once all the genes have been predicted, there is still a need to determine what func-
tions the encoded proteins might play. The obvious way to start to predict gene
function is by sequence analysis. If the encoded protein has one or more significant
matches against sequence and pattern databases the function and other properties
can be predicted with considerable confidence to be similar to those of the
matches. The majority of gene products can be assigned a function on this basis,
although usually the function is not as specific as is needed for real analysis. For
example, identifying a gene product as a kinase is useful, but unless the substrates
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and expression control are known, the true role of this gene in the organism will
remain relatively undefined. Additionally, all sequenced genomes to date have a
significant proportion (10% and upward) of gene products that do not yield to such
analysis, and in numerous other cases the similarity is to only a part of the protein,
such as a single domain.

The only realistic way of assigning functions is by further experimental work. Thus,
there is often a large effort following sequencing to discover the phenotype on
disrupting an individual gene. The phenotype may be described by gross features
such as overall cell size, but often will be in terms of the different gene or protein
expression as compared with the normal phenotype. Such experiments can also
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Figure 10.19
Simplified representation of the
HMM model structure used in
GenScan. The sequence is scanned
in one direction (the forward or +
strand). From the central intergenic
state a gene on the + strand is
identified starting with the promoter
and moving forward to the poly(A)
signal, whereas a gene on the
reverse (–) strand starts with the
poly(A) signal at the end of the gene
and continues back to the promoter.
No gene overlap is allowed, whether
on the same or both strands. The
phase of the exons must be
maintained, and is indicated by the
subscripts 0, 1, and 2. Exons are
colored according to their phase,
introns being colored according to
the phase of the following exon
(following being defined by the 5¢ to
3¢ direction). E0,1+ is an exon of a
gene on the forward strand that is in
frame 0 (i.e., the previous exon
ended with a complete codon) and
ends with the first base of a codon.
Such an exon must be followed by
one that starts in frame 1, e.g., E1,2

+

or E1,term
+. The situation is similar for

genes on the reverse strand, except
that because the exons are
encountered in reverse order, E0,1

–

must be followed (when scanning
the forward strand) by an exon that
ends with a complete codon, e.g.,
E2,0

– or Einit,0
–. Each object in this

model is itself a model, some with
considerable complexity. The
promoter signal has been described
in Figure 10.13. The exon model
includes splice sites such as the
donor model in Figure 10.18, as well
as the protein-coding regions. The
protein-coding regions use a model
similar to Figure 10.6B. The exon
and intron models use explicit state
duration HMMs to reproduce the
known length variations (see Figure
10.10). The possibility of a single
exon gene is allowed for by the Esingle

model. The introns and intergenic
region are also modeled by
homogeneous fifth-order Markov
models, as in Figure 10.6A. This
model can identify many genes on
both strands. (Adapted from
C. Burge and S. Karlin, Prediction of
complete gene structures in human
genomic DNA, J. Mol. Biol.
268:78–94, 1997.)
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demonstrate linked control with other genes whose function is better understood.
Such methods can yield gene functions at several levels of description. Many of
these experiments involve gene expression arrays and/or proteomic studies, whose
analysis is discussed in Chapters 15 and 16.

One of the important aspects of genome annotation has been the recognition of the
importance of gene ontology (see Section 3.2). In this context, gene ontology is a set
of standardized and accepted terms that encompass the range of possible func-
tions. Wherever possible these terms should be used, as they make it easier to do
further analysis such as search for genes of similar proposed function.

There is more to genomes than just the genes, and a full genome annotation must
cover all the aspects. The location of tRNA molecules has already been discussed,
and the rRNA molecules also need to be located. In addition there are repeat
sequences that can be of interest, and can have functional roles. Beyond this, there
are features that encompass several genes, such as operons and pathogenicity
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Simplified representation of the
HMM model structure used in
GAZE. This is the equivalent model
layout to that shown in Figure 10.19
for GenScan. In this case, the
underlying technique is dynamic
programming, so that at each stage
alternative interpretations of the
next sequence segment must be
scored. The features in rectangles are
scored using weight matrices in the
published version of GAZE, although
other methods could also be
incorporated. The scores of protein-
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lengths with reference to known
length distributions, and are referred
to as length penalties. The protein-
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potential. The exon phase is
maintained in the same way as for
GenScan, and the coding segments
have been colored with the same
scheme. There is an equivalent
structure for the genes on the
reverse strand, as in GenScan, but
these are here only illustrated by the
box in the top right corner. This
model can identify many genes on
both strands. (Adapted from
K.L. Howe, T. Chothia and R. Durbin,
GAZE: a generic framework for the
integration of gene-prediction data
by dynamic programming, Genome
Res. 12:1418–1427, 2002.)
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islands. The latter are large-scale insertions from other species, often with a set of
genes coding for transport machinery and toxins. In addition other genes may show
signs of recent lateral transfer. Information relating genetic changes to inherited
conditions exists for a number of organisms, especially humans and domesticated
animals. Inclusion of such information is extremely important, especially to assist
research in medicine and veterinary science. It is beyond the scope of this book to
cover the methods whereby these and other features can be identified and included
in the genome annotations.

There are two schools of opinion concerning the quality of the information that
should be included in genome annotations. Some groups have taken the view that
only the most reliable information should be included, so as to minimize the
number of incorrect assignments, in an attempt to prevent misleading future
workers. An example of the application of such a careful approach is the Ensembl
human genome annotation project. The alternative approach is to include as much
information as possible, even when there is little if any supporting evidence. Clearly
such data need to be presented very carefully to ensure that the degree of certainty
is given wherever possible. The advantage of such an approach is that for a gene
that has no strong evidence in favor of a specific function, some indication,
however uncertain, might suggest experimental work that could ultimately clarify
the role of the gene or its product.

Comparison of related genomes can help resolve uncertain
predictions
When the genome sequence of a reasonably closely related organism is available,
comparison of the two sequences can be a very powerful tool in determining the
status of uncertain gene predictions. This comparison can help identify potential
incorrect sequence that can be further examined by resequencing the region. It
should be noted that aligning the two genomes is not necessarily trivial, as large-
scale rearrangements are common, but it should be possible to find regions of
synteny where the gene structure is sufficiently similar as to make their common
evolutionary ancestry apparent. An example of this large-scale rearrangement is
shown by the alignment of the X chromosomes of mouse and rat (see Figure 10.21),
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Figure 10.21 
Large-scale sequence alignment of
the mouse and rat X chromosomes.
The time of the last common
ancestor of the mouse and rat is
estimated at 12–24 million years; not
a long time in evolutionary terms,
and yet there have been many large-
scale rearrangements, including
sequence inversions. At least five
events have occurred in each of the
two species since they diverged. In
addition to these events, many more
smaller-scale changes have also
occurred. Hence, alignment of the
two sequences is not as trivial as
might at one time have been hoped.
However, alignment is also quite
straightforward, although the
lengths of the sequences and
specific nature of the problem mean
that specific algorithms have been
developed, as discussed in Section
5.5. (Adapted from R.A. Gibbs et al.,
Rat Genome Sequencing Project
Consortium: Genome sequence of
the Brown Norway rat yields insights
into mammalian evolution, Nature
428:493–521, 2004.)
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which shows that almost all of the sequences are represented in both chromosomes
(the rat chromosome is slightly larger than that of the mouse) but the order and
often direction are changed. 

Comparing syntenic regions can reveal errors in one or other genome annotation
(see Figure 10.22). Note that at present a significant fraction of most genome anno-
tations is not fully verified by experiment, so that care has to be taken with applying
such knowledge to other genomes. Therefore experimental evidence should be
sought whenever possible to confirm any modified predictions. The discussion
below is based on Figure 10.22 and is from a study of the Saccharomyces cerevisiae
genome. Because this genome contains mostly single ORF genes and some genes
with only a few exons, it does not describe the full range of possible situations for
higher eukaryotes with more complex gene structures. However, extension to such
genomes is straightforward.

If a particular ORF is only identified as an expressed gene in the annotation of one
species whilst the surrounding regions are in good agreement (see Figure 10.22A),
the assignment of that ORF as a gene needs to be reassessed. It could be that the ORF
has been overlooked in one species, possibly because a sequencing error led to the
ORF being split into two sequences that were each too short to have been considered
as potential genes. In such a case resequencing the region should clarify if indeed an
error was made, as it is also possible that a mutation has disrupted the gene.

Figures 10.22B and 10.22C show cases of failure to identify an intron at the 5¢ or 3¢ end
of an exon, leading to omitting the previous or succeeding exon. This situation could
arise simply due to the failure of splice-site predictions in the case of genome B.
Errors in sequencing can lead to incorrect identification of ORFs with missing 5¢ or 3¢
ends (see Figures 10.22D and 10.22E). As before, resequencing can resolve the uncer-
tainty. In some circumstances, such errors can lead to the misidentification of a
single long ORF as two shorter ORFs (see Figure 10.22F). For a full explanation of how
both experimental and computer-based methods can be applied to these problems
see Further Reading.

The above discussion is based on work that was largely reliant on human interven-
tion in the examination of identified differences between two annotated genomes.
Even for a 13-megabase genome this is a substantial amount of work. Many of the
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regions of two genomes. Genome A
is taken as the reference, and used
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ideas have been used to construct algorithms to automate much of the work. Many
of these use techniques that are related to ones described above, but now operating
on two sequences simultaneously. The details will not be presented here, but some
references are provided under Further Reading.

Evaluation and reevaluation of gene-detection methods
As yet no organisms (except perhaps viruses) have had experimental confirmation
of every gene and satisfactory confirmation of the lack of expression of all other
ORFs. But more evidence is accumulating all the time, and can be used to reeval-
uate prediction methods and current genome annotations. Much of these data are
from nonsequencing experiments, such as gene-expression analysis. However,
additional information can also be obtained from comparisons with the new
genome sequences of related organisms. We will briefly explore some of the
approaches that have been used to improve on the initial annotations. Attention
usually focuses on the shorter ORFs as these are most likely to be in error; longer
ORFs are very unlikely to occur by chance.

One of the best-studied genomes from this perspective is that of Saccharomyces
cerevisiae. This contains 5000–6000 genes, but the exact number is possibly only
known to within 100 genes. A 2001 reevaluation by Valerie Wood and co-workers
estimated there are 5570 genes in total, compared with the 1996 estimate of 5885
made immediately after the sequencing was completed. However, even this is not a
final answer, and the genome annotation is continually under review, especially as
genome sequences are published for relatively close species.

The initial annotation of Saccharomyces cerevisiae attempted to avoid problems of
assessing short ORFs by restricting attention to ORFs at least 100 codons in length,
of which there are about 7500 in the yeast genome. If the length limit is reduced to
20 codons the number of ORFs to consider rises to more than 41,000. A number of
ORFs, known as orphans (or ORFans), were found to have no known homologs in
the databases, and no function could be assigned to them by searching, for
example, for PROSITE patterns (see Section 4.9). These might be true genes, either
ones whose homologs have yet to be identified, or that have evolved to completely
new functions, or they may be false gene predictions.

In the 2001 reannotation Wood and colleagues paid attention to these genes, to see
if further data could be found to support or contradict the prediction. In some cases
homologs were found in newly sequenced genomes, or experimental evidence was
obtained that the gene was expressed. Care was taken to examine possible overlaps
with other genes, which was taken as generally indicative of the absence of a gene.
Another property used to flag up dubious assignments was the GC content of the
ORF, as if this deviated considerably from the genome average the prediction was
likely to be false. In general, the orphan ORFs were annotated as very hypothetical
(193 genes) or spurious (370 genes). Another aspect of the reevaluation was to look
carefully at alignments of homologs to the sequence, to see if they might suggest
possible frameshifts or sequencing errors that had escaped attention. In total 46
such modifications were discovered, including three new genes.

Summary
In this chapter we have looked at the problem of identifying functional regions in
nucleotide sequences. The RNA molecules can be dealt with in almost identical
ways regardless of the organism under consideration, with the exception that the
larger eukaryotic genomes require a method with a lower false-positive rate to be
useful. However, when we consider locating protein-encoding genes the situation
is very different between eukaryotes and other species.

Summary
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10.1Detection of Functional RNA Molecules
Using Decision Trees
tRNA detection

Fichant GA & Burks C (1991) Identifying potential tRNA
genes in genomic DNA sequences. J. Mol. Biol. 220,
659–671.

Lowe TM & Eddy SR (1997) tRNAscan-SE: a program for
improved detection of transfer RNA genes in genomic
sequences. Nucleic Acids Res. 25, 955–964.

Pavesi A, Conterio F, Bolchi A et al. (1994)
Identification of new eukaryotic tRNA genes in
genomic DNA databases by a multistep weight matrix
analysis of transcriptional control regions. Nucleic
Acids Res. 22, 1247–1256.

Detection of other RNA genes

Eddy SR (2002) Computational genomics of noncoding
RNA genes. Cell 109, 137–140.

10.2Features Useful for Gene Detection in
Prokaryotes
Echols N, Harrison P, Balasubramanian S et al. (2002)
Comprehensive analysis of amino acid and nucleotide
composition in eukaryotic genomes, comparing genes
and pseudogenes. Nucleic Acids Res. 30, 2515–2523.

Schneider TD & Stephens RM (1990) Sequence logos: A
new way to display consensus sequences. Nucleic Acids
Res. 18, 6097–6100.

Identifying protein-coding regions using base statistics

Fickett JW & Tung C (1991) Assessment of protein
coding measures. Nucleic Acids Res. 20, 6441–6450.

In addition, most references in Section 10.3 have useful
material.

10.3Algorithms for Gene Detection in
Prokaryotes
GeneMark, GeneMark.hmm, and further developments

Besemer J, Lomsadze A & Borodovsky M (2001)
GeneMarkS; a self-training method for prediction of
gene starts in microbial genomes. Implications for
finding sequence motifs in regulatory regions. Nucleic
Acids Res. 29, 2607–2618.

Borodovsky M, Rudd KE & Koonin EV (1994) Intrinsic
and extrinsic approaches for detecting genes in a bacte-
rial genome. Nucleic Acids Res. 22, 4756–4767.

Lukashin AV & Borodovsky M (1998) GeneMark.hmm:
new solutions for gene finding. Nucleic Acids Res. 26,
1107–1115.

GLIMMER

Delcher AL, Harmon D, Kasif S et al. (1999) Improved
microbial gene identification with GLIMMER. Nucleic
Acids Res. 27, 4636–4641.

Salzberg SL, Delcher AL, Kassif S & White O (1998)
Microbial gene identification using interpolated
Markov models. Nucleic Acids Res. 26, 544–548.

Further Reading

In both cases, genes have to be identified on the basis of their component parts,
many of which are detectable only by short sequence patterns that have barely any
signal. Thus each component is difficult to detect without making errors that can
carry over to the model of the whole gene. In prokaryotes, whose genes have a
simpler structure, this is less problematic. In eukaryotes, current methods still make
a large number of prediction errors, so that genome annotation is an art, often
requiring considerable specialist knowledge both of the idiosyncrasies of the
programs and of the particular species under study. The availability of related single
gene and whole genome sequences has resulted in a further refinement of the
process.

Further experimental work and reanalysis is gradually improving the accuracy of
genome annotations and helping to identify problems with current automatic
methods. It is only once the annotation has been made that attention can be paid
to the ORFans (sequences with no known homolog) to try to establish if they are
indeed expressed. Meanwhile the issue of alternative splicing still requires further
study to understand the mechanisms of control, and how they might be identified
in the sequence so that they can be predicted. This field is still evolving rapidly, and
will continue to do so for some time to come, as there is still much potential
improvement.
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Salzberg SL, Pertea M, Delcher AL et al. (1999)
Interpolated Markov models for Eukaryotic gene
finding. Genomics 59, 24–31.

ORPHEUS

Frishman D, Mironov A, Mewes H-W & Gelfand M (1998)
Combining diverse evidence for gene recognition in
completely sequenced bacterial genomes. Nucleic Acids
Res. 26, 2941–2947.

EcoParse

Krogh A, Mian IS & Haussler D (1994) A hidden Markov
model that finds genes in E.coli DNA. Nucleic Acids Res.
22, 4768–4778.

Prokaryotic genomes

Ermolaeva MD, White O & Salzberg SL (2001) Prediction
of operons in microbial genomes. Nucleic Acids Res. 29,
1216–1221.

Lio P & Vannucci M (2000) Finding pathogenicity islands
and gene transfer events in genome data. Bioinformatics
16, 932–940.

Markov models

Burge CB & Karlin S (1998) Finding the genes in genomic
DNA. Curr. Opin. Struct. Biol. 8, 346–354.

10.4Features Used in Eukaryotic Gene Detection
Statistics of intron and exon length distributions and
other such generalized gene structure statistics are
reported in several genome sequence papers. 

Preliminary analysis for human genes

Burge C & Karlin S (1997) Prediction of complete gene
structures in human genomic DNA. J. Mol. Biol. 268,
78–94. (Genscan)

Hebsgaard SM, Korning PG, Tolstrup N et al. (1996)
Splice site prediction in Arabidopsis thaliana pre-mRNA
by combining local and global sequence information.
Nucleic Acids Res. 24, 3439–3452.

Stephens RM & Schneider TD (1992) Features of spliceo-
some evolution and function inferred from an analysis
of the information at human splice sites. J. Mol. Biol. 228,
1124–1136.

10.5Predicting Eukaryotic Gene Signals
Initial analysis of core promoter sequences

Bucher P (1990) Weight matrix descriptions of four
eukaryotic RNA polymerase II promoter elements
derived from 502 unrelated promoter sequences. J. Mol.
Biol. 212, 563–578.

FitzGerald PC, Sturgill D, Shyakhtenko A et al. (2006)
Comparative genomics of Drosophila and human core
promoters. Genome Biol. 7, R53.

Penotti FE (1990) Human DNA TATA boxes and tran-
scription initiation sites. A statistical study. J. Mol. Biol.
213, 37–52.

Algorithms of core promoter detection

Burge C & Karlin S (1997) Prediction of complete gene
structures in human genomic DNA. J. Mol. Biol. 268,
78–94. (Genscan)

Matis S, Xu Y, Shah M et al. (1996) Detection of RNA
polymerase II promoters and polyadenylation sites in
human DNA sequence. Comput. Chem. 20, 135–140.
(Grail)

Reese MG (2000) Genome annotation in Drosophila
melanogaster. PhD thesis. University of Hohenheim,
Germany. (NNPP, Genie)

Promoter recognition

Hutchinson G (1996) The prediction of vertebrate
promoter regions using differential hexamer frequency
analysis. Comput. Appl. Biosci. 12, 391–398. (ProFind)

Ohler U, Harbeck S, Niemann H et al. (1999)
Interpolated Markov chains for eukaryotic promoter
recognition. Bioinformatics 15, 362–369. (McPromoter)

Prestridge DS (1995) Predicting Pol II promoter
sequences using transcription factor binding sites. J.
Mol. Biol. 249, 923–932. (PromoterScan, ProScan)

Scherf M, Klingenhoff A, Werner T (2000) Highly specific
localization of promoter regions in large genomic
sequences by PromoterInspector: A novel context
analysis approach. J. Mol. Biol. 297, 599–606.
(PromoterInspector)

Uberbacher EC, Xu Y & Mural RJ (1996) Discovering and
understanding genes in human DNA sequence using
GRAIL. Methods Enzymol. 266, 259–281. (Grail)

Zhang MQ (1998) Identification of human gene core
promoters in silico. Genome Res. 8, 319–326.
(CorePromoter)

10.6Predicting Exons and Introns
Zhang MQ (1997) Identification of protein coding
regions in the human genome by quadratic discrimi-
nant analysis. Proc. Natl Acad. Sci. USA 94, 565–568.

A number of the papers listed above, especially for
Section 10.5, also describe exon and intron prediction
methods.

10.7Complete Eukaryotic Gene Models
Howe KL, Chothia T & Durbin R (2002) GAZE: A generic
framework for the integration of gene-prediction data
by dynamic programming. Genome Res. 12, 1418–1427.

A number of the papers listed in the other sections also
describe complete gene models. 

10.8Beyond the Prediction of Individual Genes
Detailed reexamination of the annotation of a
complete genome

Brachat S, Dietrich FS, Voegeli S et al. (2003)
Reinvestigation of the Saccharomyces cerevisiae genome
annotation by comparison to the genome of a related
fungus: Ashbya gossypii. Genome Biol. 4, R45.

Wood V, Rutherford KM, Ivens A et al. (2001) A re-anno-
tation of the Saccharomyces cerevisiae genome. Comp.
Funct. Genomics 2, 143–154.

Large-scale changes in chromosomes

Gibbs RA, Weinstock GM, Metzker ML et al. (2004)
Genome sequence of the Brown Norway rat yields

Further Reading
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insights into mammalian evolution. Nature 428,
493–521.

In 2005 an international effort examined the accuracy of
the available methods in a program called the ENCODE
Genome Annotation Assessment Project. Many
different methods were used to annotate approximately
1% of the human genome. Amongst these methods are
several that use information obtained from the align-
ment of two or more large genomic segments from
related species. The results from this exercise were
published in Volume 7 Suppl 1 of Genome Biology in
2006.

Box 10.1 Measures of gene prediction accuracy
at the nucleotide level
Burset M & Guigo R (1996) Evaluation of gene structure
prediction programs. Genomics 34, 353–367.

(Further details about ways to evaluate the accuracy of
gene-detection programs.)

Box 10.2 Sequencing many genomes at once
Venter JC, Remington K, Heidelberg JF et al. (2004)
Environmental genome shotgun sequencing of the
Sargasso Sea. Science 304, 66–74.

Box 10.3 Measures of gene prediction accuracy
at the exon level
Burset M & Guigo R (1996) Evaluation of gene structure
prediction programs. Genomics 34, 353–367. (Further
details about ways to evaluate the accuracy of gene-
detection programs.)
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PART 5

SECONDARY STRUCTURES

DNA, RNA, and protein molecules almost always
require a specific three-dimensional structure in order
to perform their function. In particular, proteins fold
into three-dimensional structures that are formed
from small, regular, repeating structures called
secondary structures. The information from a struc-
ture aids in further understanding the function of a
molecule. In addition, such structural information can
be used to improve sequence alignments.

This part of the book describes how to predict the
secondary structures of biological molecules. The first
chapter gives an introduction to available methods
and discusses how to implement them and interpret
the results. It also deals with specialized predictions,
such as prediction of membrane-spanning regions and
the secondary structure of RNA.

The second chapter describes in depth the methods
used for secondary structure predictions and the
underlying principles of these methods, such as neural
network and hidden Markov model techniques.

Chapter 11
Obtaining Secondary

Structure from Sequence 

Chapter 12
Predicting Secondary

Structures 
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OBTAINING SECONDARY
STRUCTURE FROM SEQUENCE 

When you have read Chapter 11, you should be able to:

Predict the location of secondary structure elements from a protein’s 
sequence alone.

Assess the accuracy of prediction programs.

Compare how prediction algorithms perform on proteins of different 
secondary-structure classes.

Compare commonly used prediction approaches and algorithms.

Predict the location of transmembrane regions in membrane proteins.

Predict the existence of helices that can form coiled coils.

A protein’s activity or biochemical function is determined by its three-dimensional
shape, or fold, as described in Chapter 2. The fold of a polypeptide chain brings
together amino acids from different parts of the chain such that chemical groups
are positioned in a configuration that can confer catalytic activity, as in an enzyme’s
active site, or form a binding site for another protein or small molecule. Such
configurations can also increase the protein’s structural integrity.

An important aspect of bioinformatics deals with the question: given a protein
sequence, what is its structure? The only way at present to elucidate the three-
dimensional conformation of a protein is by experimental methods such as X-ray
crystallography or nuclear magnetic resonance (NMR). However, it is not practical
to determine the three-dimensional structure of every protein experimentally.
Genome sequencing projects have, on the other hand, given rise to an explosion in
the number of known protein sequences. Searching the databases for sequence
homologs of known structure and function can provide helpful insights into an
unknown protein’s structure and its biochemical activity. There are, however, many
protein sequences for which no homologs of known structure can be found. In
such circumstances, being able to predict at least some structural features from the
protein sequence is useful in providing clues as to the protein’s overall structure
and function.

11
APPLICATIONS
CHAPTER
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It is generally accepted that the information necessary for a protein to fold into its
native form is contained in its amino acid sequence. In the 1950s Christian
Anfinsen (see Figure 11.1), studying bovine pancreatic ribonuclease (RNase),
showed that the amino acid sequence of the protein determines its three-dimen-
sional structure. This very important observation was published in the Journal of
Biological Chemistry in 1954. Anfinsen unfolded the RNase enzyme and then
observed how the enzyme refolded spontaneously back to its original form under
natural conditions. He and his colleagues received the Nobel Prize for this work on
protein folding in 1972. But the question of why a particular sequence adopts a
specific fold is still far from being solved. A computational method of protein
folding that can be applied to a sequence to predict its tertiary structure accurately
a priori does not yet exist. Nevertheless, it has proved possible to predict secondary
structure elements—a-helices, b-strands, b-turns, and random coil—with some
success using statistical and neural network methods that rely on parameters
derived from analyzing large numbers of sequences with known structures.

In this chapter we will deal firstly with the main secondary structure prediction
methods in use today, and in the later parts of the chapter describe methods to
predict special structural aspects such as the transmembrane regions of a protein.
In the accompanying Chapter 12 the theory underlying the prediction programs
will be described in depth. Approaches to predicting the overall fold of a protein are
discussed in Chapter 13.

Methods have also been developed to identify other biologically important sites on
proteins, such as sites for posttranslational modification, signal sequences, and
sites of interactions with other proteins. Most of these methods can be obtained
through the ExPASy Web server and will not be discussed further here, as they essen-
tially involve the recognition of protein sequence motifs, as described in Sections
4.8–4.10 and Section 6.6, rather than the prediction of structure from sequence.
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Mind Map 11.1
A mind map showing the main
topics covered in this chapter,
which deals with how to predict
structural features from sequence.

Figure 11.1
Photograph of Christian Anfinsen.
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In this chapter we will also deal with the prediction of coiled coils, in which
a-helices from two protein chains wind around each other to give a rod-like struc-
ture. Coiled coils are characteristic of a class of transcription factors—the leucine
zipper transcription factors—and thus prediction of the ability to form a coiled coil
will give clues to the function of an unknown protein.

There have been some attempts to predict from sequence alone the active sites of
proteins and, more recently, protein-interaction sites. These types of prediction are
concerned with the structure–function relationship of a protein and will be dealt
with in Chapter 14. Finally, we will take a brief look at secondary structure predic-
tion on nucleotide sequences, as illustrated by tRNA structure.

11.1 Types of Prediction Methods
Many prediction programs are designed to recognize just three different regular
structural states: a-helices, b-strands, and b-turns (see Figure 11.2). Hence, when
predicting secondary structure, it is common to produce a four-state prediction,
where each residue is predicted as an a-helical, b-strand, b-turn, or random coil
conformation. In this context a coil conformation is one that is not an a-helix,
b-strand, or b-turn and will include unstructured loops and the irregular regions of
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The key concept introduced in this
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Figure 11.2
Diagrams illustrating the most common occurring secondary structures found in
proteins. (A) This illustrates the a-helix with the i to i+4 hydrogen bonding pattern.
(B) This shows a b-sheet consisting of two antiparallel b-strands. The b-strands form
specific hydrogen bonds between them to form the sheet. (C) This shows a b-turn.
In parts A and B the residue side chains are represented as green spheres.
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protein chain that link elements of secondary structure. Other programs use a three-
state prediction where the b-turn is not predicted. Turns can occur between consec-
utive b-strands in a b-sheet, for example. There are some algorithms that even try to
predict different kinds of helical or turn conformations, such as p-helices,
310-helices, and polyproline helices, and type I, II, and other types of turns.

Methods for predicting protein secondary structure can be broadly divided into
the following categories: statistical analyses, also referred to as probabilistic
analyses; knowledge-based analyses; machine-learning methods; and those
mainly based on neural networks. In addition there are consensus methods, which
take an average of a set of different predictions. Most automated methods in use
today use a mixture of these techniques, and all of them incorporate some form of
statistical analysis.

Statistical methods are based on rules that give the probability
that a residue will form part of a particular secondary structure
The probabilities are derived from analyzing structure and sequence data from
large sets of proteins of known structure, and correlating structural and sequence
features to form statistical rules for secondary structure assignment. The early
statistical methods suffered from lack of data because of the small number of exper-
imentally solved three-dimensional structures. This is not such a problem today for
globular proteins using simple statistical models, but remains so in other cases.

For many years, the most widely used method of this type was that of Chou and
Fasman, which was developed in the 1970s. It was based initially on the analysis of
a small set of proteins—only 15 structures in the first set—and simply assigned
individual amino acids as a- or b-formers, indifferent, and a- or b-breakers (see
Figure 11.3). Short segments composed of formers together with an absence of
many breakers were assigned as the core of an a-helix or b-strand. The boundaries
of secondary structure elements were delineated by the presence of strong
breakers. In 1989 the initial dataset was extended to include 64 proteins and subse-
quently further extended to 144 nonhomologous proteins with a total of 33,118
residues from which to obtain new parameters. This last reparameterization
changed the assignment of some of the residues. Statistical analysis of the largest
dataset showed that there is still an uncertainty of more than 10% in the values of
the parameters (see Section 12.2). In the past few years, this method has been
superseded by more accurate statistical methods, such as the GOR method
described later, which make assignments on the basis of stretches of residues, thus
enabling local interactions between residues that will influence secondary struc-
ture to be taken into account. The latest version of GOR incorporates statistical
information from a very much larger dataset than the original GOR method and it
will be shown that a larger dataset can and does improve the accuracy of secondary
structure prediction (see Section 11.4).

Nearest-neighbor methods are statistical methods that
incorporate additional information about protein structure
Knowledge-based methods are optimized statistical methods: in addition to using
statistical propensities of amino acids to form particular structures, they incorpo-
rate knowledge of the physics and chemistry of protein structure, such as the
shapes, sizes, and physicochemical properties of the different amino acid residues.
One such method described later is PREDATOR, which also uses an approach, often
called nearest neighbor, that involves finding short sequences of known structure
from the databases that closely match stretches of the query sequence. Some of
these methods use multiple sequence alignments to take account of the degree of
conservation of residues. Prediction from a multiple alignment of protein
sequences is a good way to improve prediction accuracy as during evolution
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residues with similar physicochemical properties are conserved if they are impor-
tant to the fold or function of the protein.

Machine-learning approaches to secondary structure prediction
mainly make use of neural networks and HMM methods
Machine-learning methods train a neural net or other learning algorithm to acquire
structure–sequence relationships, which can then be applied to predict structure
from a protein sequence. The essential difference from statistical and knowledge-
based approaches is that instead of using the sequence dataset to derive rules or
parameters, a neural network is fed the sequence dataset as input, and during a
learning period the connections between input and output (the parameters) are
adjusted until the output—the structure assignment—is as accurate as possible. The
method is then ready to be used to predict secondary structure assignments from an
amino acid sequence. There is no need for the neural network to correspond to any
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Chou and Fasman Propensities (P).
F stands for strong former, f weak
former, while B and b stand for
strong and weak breaker,
respectively. I (indifferent) indicates
residues that are neither forming
nor breaking helices or strands. We
can see that Pro has the lowest
propensity for forming a helix and a
low one for strands as well.
However, many other residues that
are either weak or indifferent have
been reclassified since the
propensities shown here have been
reparameterized as more data have
become available. Data from
P.Y. Chou and G.D. Fasman,
Prediction of the secondary
structure of proteins from their
amino acid sequence, Adv. Enzymol.
47:45–148, 1978.
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clear physical model of the sequence–structure relationship. It is possible to obtain
successful prediction networks that do not lend themselves to further analysis that
might reveal new underlying concepts. Nevertheless, these methods provide some
of the most accurate predictions currently available.

11.2 Training and Test Databases
The parameters that any method uses to make predictions are derived from a data-
base of proteins for which the structure is known, the training dataset. The
performance and accuracy of the prediction method is then tested on another
independent dataset of structures, the test dataset. The appropriate selection of
training datasets is crucial to achieving the greatest prediction accuracy possible,
while a good test dataset will illustrate the ability of the prediction program.

The general aim is to include a range of different and unrelated sequences and struc-
tures in the dataset. The inclusion of many similar structures in the training set may
unduly bias the prediction algorithm parameters to predict that type of structure
relatively more accurately. In practice, a-helices and random coils are more preva-
lent in proteins than are b-strands and b-sheets, and this imbalance needs to be
avoided when choosing the training dataset. A simple solution is available when
devising methods using neural networks. In these cases training procedures are used
that oversample structures with b-strands to compensate for their relative scarcity.

In addition, no protein in the testing set should be homologous to a protein in a
training set, as this would give an unrealistically high measure of accuracy. A true
estimate of the accuracy of a method can only be obtained by examining the predic-
tion of structures that were not used to derive the parameters of the model.
Prediction methods should only be applied when there is no homologous protein of
known structure for comparison, and so should be tested under these conditions.
Normally, proteins with less than 25–30% sequence identity to those in the training
set are considered likely to be unrelated and thus can be included in the test set.
Even so, many proteins with quite different sequences do have the same fold. To
help avoid these problems, nonredundant structural databases are available (for
example, the Protein Data Bank’s PDB_SELECT) that contain a subset of all known
protein structures below a given threshold of sequence or structural similarity (for
example, the October 2004 set of nonredundant protein in PDB_SELECT contained
2485 chains with less than 25% sequence identity). As of September 2006, there were
some 38,882 experimentally solved protein structures in the PDB as a whole. There
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are around 2500 protein structures that have less than 25% identity. Thus only about
8% of the solved structures are truly independent data.

There are several ways to define protein secondary structures
There is no single best method of exactly defining protein secondary structural
elements from the atomic coordinates. Secondary structure is assigned in experi-
mentally determined protein structures according to parameters such as the
torsional angles (dihedral angles) of the residues (f, y), their hydrogen-bonding
patterns, and the positions of Ca atoms (see Section 2.1). Various automated
methods have been developed that assign secondary structure from the atomic
coordinates according to specific rules, using one or more of these parameters.

The most commonly used of these programs is DSSP, which assigns secondary
structure according to hydrogen-bond patterns. Another, STRIDE, uses both
hydrogen-bond energy and backbone dihedral angles. DEFINE matches the inter-
atomic distances in the protein with those from idealized secondary structures.
However, these programs do not always produce identical results from the same
data, giving slightly different secondary structure assignments (see Figure 11.4).
The differences are almost exclusively at the ends of structural elements. These
differences in defining secondary structure elements can affect the apparent accu-
racy of secondary structure prediction methods. A prediction method should be
trained and subsequently tested using training and testing datasets whose struc-
tural features were defined using the same assignment method.

11.3 Assessing the Accuracy of Prediction Programs
Predicting the secondary structure of a protein is very useful but we have to have an
idea of the accuracy of the prediction from a given program. The measured accu-
racy of a prediction algorithm is used to help us estimate its likely performance
when presented with a sequence of unknown structure. Accuracy can be measured
either in respect of individual residue assignments or in relation to the numbers of
helices and strands that are correctly predicted. The Q3 and Sov measures will be
presented here, and discussed in more detail in Section 12.1.

Q3 measures the accuracy of individual residue assignments
One commonly used measure of accuracy is called Q3. It is applied at the residue
level and is given by calculating the percentage of correctly predicted residues
within a given sequence of known secondary structure. Note that the Q3 measure of
a method’s accuracy is given by the average Q3 over a test dataset not used in
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automatic methods from the same
dataset of protein structures.
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training or parameterization. If the training dataset is used it will suggest the
method is far more accurate than it really is.

The values of Q3 can range between 0 and 1, with 1 indicating a perfect prediction.
The value for a random prediction will depend on the percentages of the different
states present in known protein structures (modified to account for the presence of
homology). If there were equal amounts of helix, strand, and coil, a random predic-
tion would give a value of 0.33 for Q3. As an example in a study by Barry Robson and
colleagues, the value of Q3 for random prediction was calculated to be 0.38 (38%).
Care must be taken in blindly using Q3 values to assess the performance of a predic-
tion method. As shown in Figure 11.5, it is possible for two predictions to give the
same Q3 value despite one being much less useful. 

Secondary structure predictions should not be expected to
reach 100% residue accuracy
Although it might at first seem that 100% correct prediction of the secondary struc-
ture of each residue in a sequence is a desirable and attainable goal, this is not the
case. There are two reasons for this, one relating to the difficulty in defining
secondary structures, the second to the variability observed in the structures of
homologous proteins.

The uncertainties in secondary structure definition, discussed earlier in Section
11.2, mean that less than 100% of all residues can be defined with absolute
certainty. Therefore, the maximum Q3 value that can be expected for a prediction
program to attain (when run against a complete database) will be less than 100%.

Homologous proteins do show some variability despite the fact that almost all
secondary structures are preserved in homologous proteins. There are often small
differences in the positions of the ends of regular elements (see Figure 11.6).
Additionally, if a loop is not of functional or structural importance, small secondary
structure elements can be found within it in some homologous proteins.
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VLHQASGNSVILFGSDVTVPGATNAEQAR  amino acid sequence 29 residues long

HHHHHCCCCEEEECCCEEECCCCCHHHHH  actual secondary structure

CHHHCCCCEEEECCCCCEEECCCHHHHHH  prediction 1: Q3 = 22/29 = 76%: useful

HHHHHCCCCHHHHCCCHHHCCCCCHHHHH  prediction 2: Q3 = 22/29 = 76%: terrible

Q3 = 
number of residues correctly predicted

total number of residues 

Figure 11.5
Using the Q3 accuracy measurement
has its problems. A hypothetical
sequence of 29 residues with an
actual secondary structure is used as
an example. Prediction 1 gives a
useful prediction, predicting the
correct number of secondary
structures in the correct regions,
only the ends of the predictions are
incorrect. The Q3 for this prediction
is 76%. Prediction 2 only predicts the
terminal helices correctly; the
strands are predicted as helices. The
Q3 for this prediction is also 76%.
[Note the correct prediction of coil
(loop) regions is also counted.]
Therefore both the terrible and
useful predictions give identical Q3

levels giving no indication of which
prediction is correct. E indicates
strand residues, H denotes helix
residues and C denotes coil.
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Calculations on large datasets of proteins show that, because of this variability,
even an excellent secondary-structure prediction may give a Q3 of only 80%.

The Sov value measures the prediction accuracy for whole
elements
It is more useful to predict the correct number, type, and order of secondary structure
elements than to predict some elements well and miss others completely. For some
distinctive protein folds, the order of secondary structure elements can be a strong
clue to the overall fold and thus to the class and possible function of the protein (see
Box 11.1). The accuracy of this aspect of structure prediction is assessed by a measure
known as the fractional overlap of segments (Sov). This measures the percentage of
correctly predicted secondary structure segments rather than individual residue posi-
tions, and it pays less attention to small errors in the ends of structural elements,
which is a common problem in prediction algorithms. The Q3 provides an overall
impression of the likely accuracy of a prediction, while the Sov value indicates how well
a method performs in predicting the correct type of secondary structure (see Figure
11.7). For a detailed description of both Q3 and Sov calculations see Section 12.1. 

CAFASP/CASP: Unbiased and readily available protein
prediction assessments
In most cases until recently, when a new secondary structure prediction method
was published its accuracy was reported measured against a reference dataset that
often differed from others previously used for the purpose. As a consequence it has
proved difficult to compare the accuracy of new methods against those previously
published. This problem has now been solved with the advent of international
assessment methods that are readily available to the whole community and are
designed to be as bias-free as possible. These are known as CAFASP (Critical
Assessment of Fully Automated Structure Prediction) and CASP (Critical
Assessment of Structure Prediction).

CASP and CAFASP use structural information that has just been determined and is
not yet published. The different sequences are carefully analyzed to determine the
degree of homology to published protein structures, which is used to assess the
likely degree of difficulty. The sequences are provided for predictions of secondary
and tertiary structure, and following publication of the structures the predictions
can then be compared to the experimentally determined structures.
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Figure 11.6
Not all homologous proteins are
assigned identical secondary
structure assignments.
The strand assignments are green
and the helix red. This discrepancy
will affect the training of secondary
structure programs. (Adapted from
R.B. Russell and G.J. Barton, The
limits of protein secondary structure
prediction accuracy from multiple
sequence alignment, J. Mol. Biol.
234:951–957, 1993.) 

Figure 11.7
Sov looks for correct segments.
A Q3 accuracy value will take all
matched residue predictions to the
X-ray structure as correct. Sov looks
for predicted segments of the
correct type. Therefore, the first
strand and helix will have similar
accuracy values; the second strand
will have a reasonable Q3, although
Sov will have a low value because
the prediction is fragmented. The
same applies to the last helix.
Strands are generally denoted by the
letter B (as in Figure 11.6), or E.
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The short answer is yes: they can be useful in classifying
proteins based on secondary structure predictions in
the context of genome analysis, aspects of protein func-
tion predicted based on expert analysis of secondary
structure, and one can use secondary structure predic-
tion to obtain or improve tertiary structure. An example
of successful secondary structure prediction applica-
tions is described in this box. 

Graham P. Davies and colleagues have looked at type I
DNA restriction enzymes for which there was little
structural knowledge. They aligned the R domain of the
EcoKI enzyme and used the PHD methods of secondary

structure prediction (see main text) to produce an align-
ment of the R subunits from various proteins with EcoKI. 

The prediction suggested an alternating a-helix–b-strand
structure throughout the region that contains a
conserved and functional DEAD-box motif. (The DEAD-
box motif is probably involved in ATP hydrolysis.) From
the prediction and alignment the authors predicted
that these specific R domains contain helicase folds 1A
and 2A. Although no structural verification exists yet for
this prediction, a sequence search through the struc-
tural database picks other proteins that contain this
type of fold.

Box 11.1 Are secondary structure predictions useful?

Figure B11.1
Prediction of type I R subunits from
EcoKI, EcoAI, EcoR124I, and
StySBLI. An alignment of amino acid
sequence and predicted secondary
structure of the region of type I R
subunits from EcoKI, EcoAI,
EcoR124I, and StySBLI containing the
DEAD-box motifs, with domains 1A
and 2A of the PcrA helicase. The
motifs are indicated above the
sequences by the numbered bold
black arrows, b-strands are indicated
by light arrows, and a-helices by
black rectangles. (Reprinted from
J. Mol. Biol., 290, G.P. Davies et al., On
the structure and operation of type I
DNA restriction enzymes, 565–579,
1999, with permission from Elsevier.)

Figure B11.2
A crystal structure that contains the
helicase folds 1A and 2A.
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11.4 Statistical and Knowledge-Based Methods
To illustrate the methods, we will use an example set of four small proteins whose
sequence and structure have been determined and which represent the four main
classes of protein tertiary structure (all a, all b, a+b, and a/b) (see Figure 11.8). 
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In this section some of the
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Figure 11.8
Three-dimensional representations
of the proteins used in the example
predictions. (A) Parvalbumin (1B8C)
is a calcium-binding protein with an
all a-helical conformation (helices
are represented by red-colored
cylinders). (B) Translation Initiation
Factor 5A (1BKB) is classified as all
b-sheet (strands are represented by
blue arrows). (C) A serotonin
N-acetyltransferase (1CJW) is an
enzyme that falls into the a+b class
containing both a-helices and
b-strands. (D) A hypothetical protein
YBL036C (1CT5), from baker’s yeast
and classified as an a-helix/b-strand
alternating fold with a TIM a/b-
barrel. (The four-character
identifiers after each protein name
are the Protein Databank PDB entry
names.)
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Figures 11.9 to 11.12 compare the secondary structure predictions for the four
example proteins for all the methods described in this chapter. The secondary-
structure assignments determined by X-ray crystallography are given at the top of
each figure.

Table 11.1 gives the Q3 and Sov values of the predicted secondary structures. As we
shall see, no method achieves its published accuracy value for every protein,
emphasizing the fact that the published values are averages, and that any individual
prediction, even on a method with a high published accuracy, will always have to be
treated with caution.

The GOR method uses an information theory approach
The GOR method is a widely used statistical method named after its authors Jean
Garnier, David Osguthorpe, and Barry Robson. However, the latest version, GOR V,
does not use statistical parameters alone. The statistical-based GOR methods
predicted three conformations: helix (H), extended (b-strand; E), and coil (C), and
when published was reported to have a Q3 value of 64.4% (for GOR IV).

The basis of the GOR method lies in incorporating the effects of local interactions
between amino acid residues by taking successive windows of 17 residues and
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X-ray:

GOR IV:

GOR V:

PredS:

PredM:

Zpred:

PROF:

NNSSP:

PHD:

PSIPRED:

Jnet:

X-ray:
GOR IV:
GOR V:
PredS:
PredM:
Zpred:
PROF:
NNSSP:
PHD:
PSIPRED:
Jnet:

A schematic diagram of the secondary structure prediction by
various programs compared to the observed X-ray structure of
the all aa-fold protein (1B8C). The helices are represented by a
red cylinder, the blue arrow indicates b-strands and a gray stick
illustrates a coil. The prediction algorithms shown are the GOR
algorithm (GOR IV) and the most recent version of the GOR

algorithm with evolutionary information (GOR V), PREDATOR
using a single sequence (PredS), PREDATOR with multiple
sequences (PredM), the Zpred multiple alignment prediction
(Zpred), and the neural network programs PROF (son of DSC),
NNSSP, PHD, PSIPRED, and Jnet.

Figure 11.9

Figure 11.10
Secondary structure prediction for
the bb-fold (1BKB) protein. Some
methods can be seen to suffer from
overprediction of a-helices. However,
only Zpred predicts a small
N-terminal a-helix, which all the
other methods miss, but due to the
rest of the prediction inaccuracy,
Zpred barely reaches 45%. Nearly all
methods suffer from overprediction
of a-helices at the C-terminal end of
the protein. The best method here is
Jnet, which predicts both the
a-helical region and the strands at
the end correctly.

BIF Ch11 5th proofs.qxd  18/7/07  11:36  Page 422



considering the effect of residues from positions j–8 to j+8 on the conformation of
the residue at position j. Thus, for each residue there is a 17-residue profile that
quantifies the contribution each residue makes to the probability of a given struc-
tural state for j (see Figures 11.13 and 11.14).

To determine this profile, GOR uses three types of information: self-information,
directional information, and pair information. Self-information is the information
a residue carries about its own conformation, and is related to the Chou–Fasman
propensities. Directional information is the information about the conformation at
position j carried by a residue at position i π j and is independent of the type of
residue found at j. Pair information takes account of the type of residue at j. Figure
11.13 illustrates the effect that directional information for a proline residue five
residues carboxy-terminal to j has on the probability of j adopting a-helical confor-
mation. Proline is a helix breaker, and a comparison with Figure 11.14 shows that its
presence will lower the probability of j adopting a-helical conformation, even if the
residue at position j is a helix-forming residue.

The original GOR method has been improved over the years, mainly by using larger
training datasets and more detailed statistics, which account not only for amino
acid composition, but also for amino acid pairs and triplets. These improvements
gave rise to four versions of the algorithm, the latest of these being GOR IV. GOR IV
was based on statistics from a database that contained 267 nonhomologous struc-
tures. GOR V in addition includes evolutionary information obtained by using PSI-
BLAST (see Section 6.1) to align the sequences first and use the information from
the alignment to improve the prediction accuracy. (This type of improvement has
been used with the GOR method before and is described below.) The Sov measure
reported for GOR V was 70.7% and the prediction accuracy Q3 was 73.5% compared
to the original value of Q3 of 64.4%.

To illustrate how a single program can develop and improve, Figure 11.15 shows
predictions with the original GOR method, GOR IV, and the latest GOR V. In this
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GOR IV:
GOR V:
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PredM:
Zpred:
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Figure 11.11
A schematic of the secondary
structure prediction for the aa+bb
class of protein (1CJW).

Figure 11.12
A schematic representation of the
secondary structure prediction of
the aa/bb-fold protein (1CT5).
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Method

GOR V

Chou–Fasman

PREDATOR

GOR V

Predator Multiple Seq.

Zpred

PROF 

NNSSP

PHD

PSIPRED

Jnet

all aa (1B8C)

59.0%

46.4%

50.9%

50.0%

55.5%

52.7%

84.3%

79.5%

80.5%

80.4%

76.9%

73.2%

90.7%

91.7%

81.5%

85.0%

87.9%

92.6%

94.4%

92.8%

84.2%

91.5%

all bb (1BKB)

55.1%

53.3%

42.6%

2.2%

55.9%

51.0%

60.3%

59.9%

64.0%

53.5%

44.9%

48.1%

58.1%

57.3%

73.5%

72.9%

73.5%

72.9%

65.4%

61.9%

74.3%

72.2%

aa  + bb (1CJW)

39.2%

34.3%

38.0%

34.7%

49.0%

45.1%

69.9%

62.8%

54.2%

49.7%

60.8%

63.6%

65.1%

63.2%

66.9%

65.6%

75.9%

76.0%

67.8%

66.8%

70.5%

65.8%

aa//bb (1CT5)

67.2%

62.3%

52.4%

41.6%

66.4%

67.8%

73.8%

77.1%

80.1%

81.4%

66.0%

71.3%

77.9%

83.7%

82.0%

81.4%

78.1%

85.0%

82.8%

87.4%

84.4%

91.5%

Q3

Sov

Q3

Sov

Q3

Sov

Q3

Sov

Q3

Sov

Q3

Sov

Q3

Sov

Q3

Sov

Q3

Sov

Q3

Sov

Q3

Sov

The percentage accuracy (Q3) and percentage segment overlap (Sov) are given for each prediction algorithm discussed in the chapter.
The prediction methods in the white area are statistical or medium/long range parameter algorithms without the use of multiple
sequences. The gray area indicates incorporation of multiple sequence data into the prediction algorithms. The blue area shows
methods that in addition to statistical, medium/long-range interactions, and other parameters, are using neural networking
techniques to improve the prediction accuracy.

Table 11.1
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chapter GOR IV is used to illustrate the use of information theory without the addi-
tional information obtained from aligned sequences. GOR IV is substantially better
than the original GOR method. This shows the importance of having a large training
dataset. The evolutionary information from aligned sequences used in GOR V
improves the accuracy of prediction greatly and indicates the importance of
conservation of protein structure and its usefulness in prediction algorithms.

All GOR versions are easy to use and provide results that are easy to interpret (see
Figure 11.16). However, the accuracy is still relatively low (especially with the earlier
versions of GOR methods), and this has driven the search for additional informa-
tion that can be coded into statistical prediction algorithms. With the advent of
more powerful computers, secondary structure prediction evolved. However, most
secondary structure prediction methods use a statistical analysis of known protein
structures for some or all of the parameters they use.

The program Zpred includes multiple alignment of
homologous sequences and residue conservation information
It has been recognized for quite some time that information obtained from aligned
homologous sequences enhances prediction results. This is because generally
during evolution residues are conserved if they are important to the function or fold
of the protein. The effect of this is that secondary structure elements such as
a-helices and b-strands are more conserved than loops unless the loops are
involved in functional tasks. For the same reason insertions or deletions are less
likely to occur in a-helices and b-strands than in loops. The information present in
a multiple sequence alignment can be utilized in two ways to help improve the
prediction accuracy. A secondary structure prediction can be obtained for each
sequence in the alignment. The predictions for each residue in an alignment
column can then be averaged to obtain the prediction at that position.
Alternatively, at each alignment position some type of measure such as a conserva-
tion value can be calculated and used to modify the prediction (see Figure 11.17). 
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Figure 11.13
The effect of an aa-helix breaker
(Pro) at position j+5. The proline,
which substitutes methionine,
diminished the overall additive
propensity of residue j to form a
helix (indicated by the bottom
black arrow).

Figure 11.14
The effect of a non-aa-helix breaker
(Met) at position j+5. The
methionine improves the additive
propensity of residue j to form a
helix (indicated by the bottom
black arrow).
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Zpred is an automated procedure based on the GOR algorithm that gives a 9%
improvement in prediction accuracy over GOR alone when information from
multiple sequences is included. It uses both the average prediction and the conser-
vation value approach (see Figure 11.17). The first step in a Zpred prediction incor-
porates the information from the alignment of the homologous sequences by
averaging the a, b, and coil parameters at each position in the alignment. Insertions
and deletions in the alignment (gaps) are assigned the value 0. As well as taking an
averaged value of the GOR prediction at each aligned residue position, Zpred uses
an encoded Venn diagram representation of amino acid conservation (see Figure
11.18 and Table 11.2) to calculate a conservation value to be assigned to the aver-
aged prediction. This Zvelebil conservation number (Cn) is 1.0 for all aligned
residues being identical; if all the residues aligned are within the same set (for
example positive = KR) but not identical then the conservation value is 0.9. The
conservation value then decreases with decreasing similarity (increasing number of
different properties) of the amino acids. For example, from Table 11.2 if we align Arg
and Leu then there are five differences between these two types of residues. The
conservation value then would be Cn = 0.9 – (0.1¥5) = 0.4. Because gaps are normally
associated with the variable parts of a protein structure and are thus less likely to
occur where there is a conserved structural segment, they are given all the proper-
ties; this has the effect of decreasing the conservation value greatly.

There is an overall increase in prediction accuracy using
multiple sequence information
With the exception of the example of the all-b class protein, the incorporation of infor-
mation obtained from multiple alignment and from the physicochemical properties
of the aligned residues improves the secondary structure prediction in comparison to
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1B8C

1B8C   AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAIIAQDKSGFIEEDELKLFLQNFKADARALTDGETKTFLKAGDSDGDGKIGVDDWTALVKA

GOR I  HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHCTCTTTEEEEEEHHHHHHHC

GOR IV CCCCCCCHHHHHHHHHHHHHHCCCCCHHHHEEECCCCCCHHHHHHHHHHHHHCCCCCHHHHHHHHHHHHHHHHHHHCCCCCEEEEEECCCCCCCCEEECCCEEEEEEC

GOR V  CCCCCCCHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHCCCCCCCCCHHHHHCCCCC

X-RAY   CCBTTBTHHHHHHHHHHTTTTTCCCHHHHHHHHTCTTSCHHHHHHHHHHHHTSTTCEECHHHHTTTGGGTTTTCCCCCHHHHHHHHHHHCSSCSSSEEHHHHHHHHTT

1BKB
1BKB   KWVXSTKYVEAGELKEGSYVVIDGEPCRVVEIEKSKTGKHGSAKARIVAVGVFDGGKRTLSLPVDAQVEVPIIEKFTAQILSVSGDVIQLXDXRDYKTIEVPXKYVEEEAKGRLAPGAEVEVWQILDRYKIIRVKG

GOR I  HHHHEEEHHHHHHHHHHHEEEEECCHHHHHHHHHHHHHHHHHHHHEEEEEEEETTTTEEEEEEEHHHHHEHHHHHHHHHEEEECEEEEEEEHHTTTEEEEEHHHHHHHHHHHHHHHCHHHHHHHHHHHTEEEEEET

GOR IV CCEEEEEEEECCCCCCCEEEEECCCCCEEEEECCCCCCCCCCHHHHEEEEEECCCCCCEEECCCCCCCCCHHHHHCHHHHHCEECEEEEEEEECCEEEEEECHHHHHHHHHHHCCCCCCHHHHHHHCCCCEEEEEC

GOR V  CCCCCCCCCCCCCCCCCCEEEECCCCEEEEEEECCCCCCCCCEEEEEEEEEECCCCCEEEECCCCCCCCHHHHHHHHHEEEECCCCCEEEECCCCHHHHHCCCCCHHHHHHHHHHCCCCEEEEECCCCCCCCCCCC

X-RAY   CCCCCCCEEEGGGTTTTCEEEETTEEEEECEEEEECCSTTSCCEEEEEEEETTTCCEEEEEEETTSEEECCCCEEEEEEECEECSSEEEEEETTTCCEEEEEGGGBTHHHHTTTTTTCEEEEEEETTEEEECEECC

1CJW
1CJW   HTLPANEFRCLTPEDAAGVFEIEREAFISVSGNCPLNLDEVQHFLTLCPELSLGWFVEGRLVAFIIGSLWDEERLTQESLALHRPRGHSAHLHALAVHRSFRQQGKGSVLLWRYLHHVGAQPAVRRAVLMCEDALV

GOR I  ECCCTHHHEEECHHHHHHHHHHHHHHHHETTTTCCCHHHHHHHHEEEEETHHHHHHHHHHHHEEEECCCCHHHHHHHHHHHHHHTTTHHHHHHHHHHHHHHHTTTTCEEEEEHEEECCTCEHHHHHHHHHHHHHHH

GOR IV CCCCCCCCCCCCCCCCCCHHHHHHHEEEEECCCCCCCCCCCCHHHHHCCCCCCCHHHHCCEEEEEECCCHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHCCCCCCEEEEEEEECCCCCHHHHHHHHHCCCCCC

GOR V  CCCCCCCCCCCCCCCHHHHHHHHHHHCCCCCCCCCCCHHHHHHHHCCCCCEEEEEECCCCEEEEEEECCCCCCCCCCCCCCCCCCCCCCCEEEEEEECCCCCCCCCCHHHHHHHHHHHHHHHHHEEEEECCCCHHH

X-RAY   CCCCSSEEECCCGGGHHHHHHHHHHHTHHHHSCCCCCHHHHHHHHHHCGGGEEEEEETTEECEEEEEEEECCCCCCGGGGGCCCTTCCEEEECEEEECTTCCCCCHHHHHHHHHHHHHHTTTTCCEEEEEECGGGH

1CJW   PFYQRFGFHPAGPCAIVVGSLTFTEMHCSL

GOR I  HHEEETTTCTTCTEEEEEEECHHHHHHHHH

GOR IV CCCCCCCCCCCCCCEEEECCEEEEECCEEC

GOR V  HHHHHCCCCCCCCCCCCCCCCCCCCCCCCC

X-RAY   HHHHTTTEEECCCCCCCCCCCCCEEEEEEC

1CT5
1CT5   STGITYDEDRKTQLIAQYESVREVVNAEAKNVHVNENASKILLLVVSKLKPASDIQILYDHGVREFGENYVQELIEKAKLLPDDIKWHFIGGLQTNKCKDLAKVPNLYSVETIDSLKKAKKLNESRAKFQPDCNPI

GOR I  EEEEEEEHHHHHHHEEEEHEHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCHHHHEEEEEECCEEHHCHHHHHHHHHHHHHHHHHHHEEEETTTCTTHEHHHEEEEEEEEEHHHHHHHHHHHHHHHHHTEETTTCTE

GOR IV CCCCCCCCHHHHHHHHHHHHHHHHHHHHCCCEEECCCHHHHHHHHHHCCCCCCCHHHHHHCCCCCCCHHHHHHHHHHHHHCCCCCCEEEEECCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHCCCCCCCCE

GOR V  CCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHCCCCCCEEEEEECCCCCCHHHHHHHHHCCCCCCCCHHHHHHHHHHHCCCCEEEEEECCCCCCHHHHHHHHHCEEEEECHHHHHHHHHHHHHHHHHCCCCCCE

X-RAY   CCCCCCCHHHHHHHHHHHHHHHHHHHHHHHTCCCCCCCCCCEEEEECTTSCHHHHHHHHHHTCCEEEECCHHHHHHHHHHSCTTCEEEECSCCCGGGHHHHHHCTTEEEEEEECSHHHHHHHHHHHHHHCTTSCCE 

1CT5   LCNVQINTSHEDQKSGLNNEAEIFEVIDFFLSEECKYIKLNGLMTIGSWNVSHEDSKENRDFATLVEWKKKIDAKFGTSLKLSMGMSADFREAIRQGTAEVRIGTDIFGARPPKNEARII

GOR I  EEEEEEEEEHHTTTCCCCHHHHHHHHHHHHHHHHHHHHHHHEEEEEETCCCCCCTHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCHEEEEEEEEEEECCCCCHHHHEE

GOR IV ECEECCCCCCCCCCCCCCCHHHHHHHHHHCCCCCCEEEEECEEEEEECCCEECCCCCCCCCHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHCCEEEEECCCCCCCCCCCCCEEEC

GOR V  EEEEEEECCCCCCCCCCCCCHHHHHHHHHHHHHHCCHHHHHEEEECCCCCCCCCHHHHHHHHHHHHHHHHHHHHCCCCHHHHHCCCCCHHHHHHHHCCEEEEEEEEECCCCCCCCCCCCC

X-RAY   EEEEEBCCSSSCCSSSBCCHHHHHHHHHHHHSTTCCSEEEEEEECCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHCCCCEEECCCTTTHHHHHHTTCSEEEESHHHHCCCCCCCCCCCCC

Figure 11.15
The progression from GOR to
GOR V method. The X-ray structure
assignments are compared here to:
the original GOR method, the later
version (GOR IV), and the GOR
method that uses multiple
alignment to incorporate
information from evolution
(GOR V). The predictions improve
with the later versions of GOR. Red
indicates helices, blue indicates
strands.
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methods that use single sequence information. This improvement is especially
evident in relation to the a+b protein fold (see Figure 11.11) The method still suffers
from overprediction of a-helical residues and underprediction of b-strands, as is
evident when the prediction is applied to the all-b fold (see Figure 11.10). In general,
Zpred predicts the location of secondary structure (a-helix or b-strand) correctly, but
has problems differentiating between a- or b-secondary structures.
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AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAII

sequence length: 108 

CCCCCCCHHHHHHHHHHHHHHCCCCCHHHHEEECCCCCCHHHHHHHHHHH
AQDKSGFIEEDELKLFLQNFKADARALTDGETKTFLKAGDSDGDGKIGVD
HHCCCCCHHHHHHHHHHHHHHHHHHHCCCCCEEEEEECCCCCCCCEEECC
DVTALVKA
CEEEEEEC

GOR IV:

alpha helix   (Hh)  : 50 is  46.30%

beta sheet    (Ee)   : 18 is  16.67%

random coil  (Cc)   : 40 is  37.04%

Figure 11.16
A snapshot of the Web-based results
from GOR IV prediction of 1B8C.
First the sequence with a three-state
prediction is shown. This is followed
by the predicted structural content
summary, a schematic and a
probability profile for each
prediction state. The profile
illustrates the strength of the
prediction. In this example there 
are few discrepancies; most of the
helical prediction is way above the
other states, and only around
residues 95–105 could the prediction
be open to interpretation. It is this
region that differs between GOR and
GOR IV. In GOR the segment is
predicted to be helical, while in GOR
IV it is predicted to adopt the b-
structure.

ILLE- ILE- 4

alignment
group

no. of different
residues

conservation
value

alignment
of 6 sequences

0.0

ILLELE ILE 3 0.4

IIILLL IL 2 0.9

IIIIII I 1 1.0

LLEELL LE 2 0.4

EAALLL EAL 3 0.2

LA---- LA- 3 0.1

Figure 11.17
Calculation of the conservation
value in Zpred. The final
conservation value is not only
dependent on the number of
different residues in the alignment
but also on the type of residues. The
conservation value is calculated
based on the Venn diagram of the
physicochemical properties of the
residues (Figure 11.18). The
conservation value can then be used
to modify the prediction of the
residues at an aligned position. The
aligned residues are grouped into
the number of different residues (a
gap is counted as a residue,
illustrated as a dash). Then using
the tabulated Venn diagram as
shown in Table 11.2 a conservation
value is calculated for the group.
The number of times a residue
appears in the group is also taken
into account in later versions of 
the program.
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The nearest-neighbor method: The use of multiple 
nonhomologous sequences
The nearest-neighbor method (sometimes incorrectly referred to as the homolog
method) is a commonly used approach to secondary structure prediction, and is
incorporated into several different programs. It takes the principle that proteins
with similar sequences share the same fold and applies it at the level of short
stretches of sequence. It makes the assumption that even in a set of non-homolo-
gous proteins, short stretches of similar sequence may have the same secondary
structure.

A list of short sequence segments is produced by sliding a window of a given length
(usually 16 residues) along a set of database sequences of known structure. The
secondary structure of the central amino acid in each segment is recorded,
producing a secondary structure dataset. A sliding window of the same size is then
applied to the query sequence, each segment is compared to the dataset segments,
and a given number of best-matching segments are identified. The frequencies of
the known secondary structure of the middle residue in each of these matching
segments are then used to predict the probability of each type of secondary struc-
ture for that residue in the query segment. A final prediction for each residue is
made using either a rule-based approach or a neural network.

PREDATOR is a combined statistical and knowledge-based
program that includes the nearest-neighbor approach
The GOR methods use structure-forming propensities derived from the analysis of
short segments of protein sequence; that is, local interactions. However, the forma-
tion of secondary structure in proteins does not only depend on local interactions.
In particular, b-sheets can be made up of b-strands that are separated by some
distance in the polypeptide chain (see Figure 11.19). The program PREDATOR is a
statistical and knowledge-based program that makes use of specific long-distance
interactions, or sequence information, related to the formation of secondary struc-
tures. It predicts secondary structure by identifying potentially hydrogen-bonded
residues in the amino acid sequence. The b-strands are predicted by delineating
different classes of b-bridges on the basis of the analysis of hydrogen bonding
between particular residues in known structures. The a-helices are recognized on
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Figure 11.18
A Venn diagram representing the
relationship of the 20 naturally
occurring amino acids based on a
selection of physicochemical
properties. The amino acids are
divided into two major sets, the
POLAR and HYDROPHOBIC groups.
The set that includes fully charged
amino acids is divided into the
subset positive, the negative subset
being defined by implication.
Because of its unique backbone
properties proline is separated from
the rest of the amino acids. Css is a
disulphide forming cysteine, Cb is a
free one.
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the basis of the occurrence of residues in hydrogen-bonded pairs in i to i+4 interac-
tions (see Section 2.1 and Figure 11.2).

Secondary structure propensities are also inferred from sequence similarity using the
nearest-neighbor approach. PREDATOR calculates seven independent secondary
structure probabilities for each residue: parallel and antiparallel sheets and helices as
predicted by long-range interactions; sheet, helix, and coil propensities predicted by
the nearest-neighbor method; and turn propensities. These different propensities are
then converted into a final secondary structure prediction.
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Amino Property

acid Hydrophobic Positive Negative Polar Charged Small Tiny Aliphatic Aromatic Proline

Ile Yes Yes

Leu Yes Yes

Val Yes Yes Yes

Cys Yes Yes

Ala Yes Yes Yes

Gly Yes Yes Yes

Met Yes

Phe Yes Yes

Tyr Yes Yes Yes

Trp Yes Yes Yes

His Yes Yes Yes Yes Yes

Lys Yes Yes Yes

Arg Yes Yes Yes

Glu Yes Yes Yes

Gln Yes

Asp Yes Yes Yes

Asn Yes Yes

Ser Yes Yes Yes

Thr Yes Yes Yes

Pro Yes Yes

Gap Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Unk Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

long-range
interaction

short-range 
interaction

Table 11.2 
The physicochemical properties of
the amino acids as used by the
Zpred prediction program are given
in this table. The properties of Leu
and Arg are given in blue and are
discussed in the text. Unk indicates
an unidentified residue type in the
sequence of amino acids, and is
treated the same as a gap.

Figure 11.19
A schematic illustration of long- and
short-range interactions. Hydrogen
bonding between b-strands (green
lines) can include interactions that
are separated by large sections of
sequence, while those within an
a-helix (red coil) are not.
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In addition PREDATOR can use a set of homologous sequences. However, it does
not create a multiple alignment, but uses pairwise alignments to improve the struc-
tural prediction. The results of both single- and pairwise PREDATOR are illustrated
in Figures 11.9 to 11.12. For the single-sequence prediction, the incorporation of
long-range interactions, nearest-neighbor propensities, and turn propensities into
the prediction program gives a marked improvement over GOR IV in the a+b
protein (see Table 11.1). Predictions for the other structural classes are not much
better than GOR IV. When a set of sequences is used, the prediction is much
improved for all classes with respect to GOR IV. With respect to GOR V the results are
similar in the all-a and all-b classes of proteins, but seem to be better in the a/b
class and less accurate for the a+b class. In general, from GOR V, Zpred, and pair-
wise PREDATOR we can see that incorporating information from local or global
sequence homology improves the accuracy of secondary structure predictions.

11.5 Neural Network Methods of Secondary
Structure Prediction
The remaining prediction programs we shall discuss use neural network methods.
Artificial neural network techniques were initially developed to simulate informa-
tion processing and learning in the brain. They are an example of machine-learning
techniques, which are good at discarding redundant information; for example, a
neural network can store common features that apply to many data items, and not
allocate individual parameters to single sequence patterns. The aim of machine-
learning algorithms is to automatically fit a model value to a known value as closely
as possible. In other words, when applied to secondary structure prediction, the
algorithm will learn by iterative changes to its parameters until the predicted struc-
ture is as similar to the observed secondary structure as possible.

Neural networks operate by processing information through so-called layers (see
Figure 11.20). The simplest neural network is a two-layered network called a
perceptron. The first layer is the input layer and the second is the output layer. Each
layer can have many nodes or units. The firing of a node in a neural network is
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In this section some of the
prediction methods that use neural
networks are discussed.
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simulated by assigning the binary values of 1 or 0 to its output. The value of 1 is
produced when the weighted sum of inputs exceeds a predetermined threshold
value. A more complex and more commonly used neural network is one that has
one or more layers between the input and output layers, the so-called hidden
layers (see Figure 11.20). The hidden layer enables joint and conditional actions to
be performed on the information passed to it from the input layer because there is
more than one path to an output node (see Figure 11.20). The number of units in
any layer is at the discretion of the designer and independent of the number in any
other layer in the network. In most of the applications considered here, the input
layer takes as its input a representation of the protein sequence, and the final
output is a representation of the secondary structure prediction.

The input signal for an amino acid is often a group of 20 units in the input layer. All
of these will represent an individual residue type. In most prediction programs the
sequence is sampled by a sliding window, with the central residue being the one
whose secondary structure is predicted. A network that takes as input successive
13-residue windows will have an input layer of 260 (13¥20) units. When only a
single sequence is used as the input, the signals of the input layer units will be 0
except that representing the particular residue, which will have a value of 1. When
using multiple aligned sequences the input layer signals will be related to profiles
based on these alignments (see Section 6.1 for details of these profiles). Alternative
encoding is possible, such as using residue properties or additional units to repre-
sent gaps. 

The output layer usually consists of as many units as there are alternative confor-
mations to predict (usually three). Each of these will produce a signal that will be
in the range 0 to 1, and usually the highest of these is taken as the prediction (see
Figure 11.21). If three output units represent helix, strand, and coil, respectively,
the output (1,0,0) would be a perfect helix prediction, but (0.76, 0.55, 0.37) would
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Figure 11.20
A schematic diagram of a two-
layered (red arrow) and multiple
layered neural network (NN)
representation. The first layer is
always an input layer, followed in a
multiple layered network by one or
more hidden layers and lastly the
output layer.
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Figure 11.21
A simplified representation of a
feed-forward multilayer neural
network configuration as could be
applied to an actual secondary
structural prediction. A number of
nodes are present in the input layer,
which can be fired by certain types
of residues, e.g., the D (Asp). There
are often 20 nodes per residue, with
just one having the value 1 (which
means it is activated). The nodes
that are activated then pass a signal
to the hidden layers, where
conditional and additive calculations
are performed on the information.
Nodes receiving signals above a
certain value, such as the red one,
will fire to the output layer. Similar
calculations are made in the output
layer, which in this case results in the
a node producing the highest signal;
a-helix is the secondary structure
predicted for the central residue of
the window.
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also predict a helix. The confidence of the prediction can be related to how close
the highest value is to 1 and also to the difference between the highest and the
other values.

Parameterization of a neural network requires a dataset whose secondary structure
is known. To train a network, initial weights are assigned, usually by taking random
numbers. The network is used to predict the secondary structures of all the training
sequences. The initial weights are adjusted such that the prediction becomes closer
to the actual secondary structure. The process of prediction and weight adjusting is
repeated until there is good agreement or no further improvement in the predic-
tion. For further details on the parameterization and operation of these neural
networks see Section 12.4.

Assessing the reliability of neural net predictions
The reliability of methods that use neural networks is judged by computing a
secondary structure prediction confidence level (PCL). This is not the same as the
accuracy, Q3, of a prediction method, although, like Q3, it is based on statistical
analyses of prediction accuracy. A neural network predicts the three secondary
structure types (a, b, and coil) using real numbers from the output units that make
up the output layer. A prediction for the given residue is assigned by choosing the
unit with the highest number. However, all the numbers can be used to extract
additional information. The PCL is calculated using these numbers. It is defined as
a function of the difference between the output unit with the highest value (the
winner unit) and the output unit with the next highest value. This difference is used
to define a reliability or confidence index for each residue prediction. Usually the
index is scaled to have a value between 0 (lowest reliability) and 9 (highest). In prac-
tice, the confidence index is a useful indicator of key regions that are expected to be
predicted with a high level of accuracy. A PLC of 5 or above obtained with the Jnet
method described below, for example, will, on average, signify a residue prediction
accuracy of 84%.

Several examples of Web-based neural network secondary
structure prediction programs
In this section we look at programs that use a combination of statistical parameters,
nearest neighbors, and neural network techniques. These programs are illustrated
below using the four protein sequences already described.

The output from one neural net can easily be used as input to another. Prediction
methods such as PHD have a second neural net that takes as its input the secondary
structure signals output by the first neural net (see Figure 11.22). The justification
for this structure is that it permits correlation between the conformations of neigh-
boring residues to be included, which occurs in the second-level network. The PHD
(jury decision neural networks) program uses information from aligned homolo-
gous sequences, local statistical information, and long-range structural parameters
encoded in two neural networks. The first network is a sequence-to-structure
network whose input represents the local alignment, residue conservation, and
additionally long-range sequence information (see Figure 11.22). The long-range
information consists of the residue composition of the whole protein, the protein
length, and the distance of the sliding window to each end of the protein.

The output of this first neural network is the structural state (a, b, or coil) of the
residue at the center of the sliding window. The output of the first network forms
the input to the second neural network, a structure-to-structure network. The
reason for this is that it permits correlation between the conformations of neigh-
boring residues to be incorporated. Finally PHD uses a simple average of the
predictions as the final result.
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Figure 11.22
A diagram illustrating the steps
involved in the PHD secondary
structure prediction program. There
are two neural nets, which take as
part of the input information from
multiple alignments; the output
from the first neural net is then fed
into the second neural net. Finally a
numerical average (jury decision) is
taken over a number of different
level 2 networks to give the final
prediction.
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NNSSP (Neural Net Nearest Neighbor) is a neural network development of a statis-
tical and knowledge-based program, SSP, which, like PREDATOR, used the nearest-
neighbor approach. NNSSP has an advanced scoring system that combines sequence
similarity, local sequence information, and knowledge-based information on b-turns
and the amino- and carboxy-terminal properties of a-helices and b-strands. In addi-
tion, the program uses multiple sequence alignment to further improve accuracy.
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A schematic diagram showing the
steps involved in the prediction
cascade used in the PROF secondary
structure prediction program.
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Figure 11.24
A graphical representation of
PSIPRED dual network prediction.
First a raw profile generated by
PSI-BLAST is taken and scaled to a
0–1 range. A window of 15 elements
is fed to the 1st network, which
performs the initial secondary
structure prediction using various
residue parameters. This initial
prediction is fed into a 2nd neural
network where it is filtered to
produce the final three-state
secondary structure prediction.
(Adapted from D.T. Jones, Protein
secondary structure prediction based
on position-specific scoring matrices,
J. Mol. Biol. 292:195–202, 1999.) 
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PROF: Protein forecasting
PROF is based on cascading different types of prediction or alignment algorithms
within one program using neural networks to choose the final prediction (see
Figure 11.23). The use of many types of prediction rationales, or classifiers, is based
on the theory that all of the evidence relevant to a prediction should be used in
making that prediction. Therefore, a combination of different types of algorithms,
training methods, or training datasets should improve the overall prediction, as
long as the classifiers used are not prone to the same type of errors; that is, the
prediction algorithms used do not all overpredict a certain type of structure. The
PROF program incorporates all the principles embodied in the GOR prediction
methods together with neural networks, multiple sequence alignment information,
the use of PSI-BLAST alignment profile (see Section 6.1), and three additional
attributes of secondary structure.

PSIPRED
This method is similar to the PHD prediction algorithm described above in that it
uses a multiple alignment profile to obtain values for the input layer units of the
first of two successive neural nets. PSIPRED is a three-stage method beginning with
the generation of a multiple alignment and PSI-BLAST profile for the query
sequence, generation of the initial secondary structure, and finally filtering of the
initial prediction. The program uses a two-stage neural net with input taken in a
window of 15 residues and outputs a three-state prediction for the central residue
(helix, strand, and coil) which is used as the input for the second neural net. The
second neural net also uses a 15-residue window and gives the final three-state
prediction of the central residue (see Figure 11.24). The output includes the confi-
dence level of the prediction (see Figure 11.25). 

Jnet: Using several alternative representations of the sequence
alignment
Jnet is made up of four sets of sequence-to-sequence and structure-to-structure
neural networks. Each of the four sequence-to-structure networks receives input
from one of four alternative representations of a set of aligned sequences, using a 17-
residue window and a conservation number for each residue. The output from these
are input into the structure-to-structure networks (see Figure 11.26), using a window
of 19 residues and a conservation number. The output for a given residue from the
set of neural nets, a three-state prediction, is taken as the final prediction if they are
all in agreement. Where there is disagreement between the predictions from the nets
the final prediction is obtained by applying a third neural network (see Figure 11.26).

In general, the programs based on neural networks predicted the secondary struc-
ture more accurately than the other methods, especially in the all-a and a/b
classes (see Figures 11.9 to 11.12 and Table 11.1). However, the examples discussed
here and given in Table 11.1 only deal with one representative of each class of
protein and therefore this is not an assessment of the prediction methods as such,
only a guide for the student. Figure 12.6 shows the range of Q3 and Sov values for
the PSIPRED method applied to a large set of proteins. The variation of values
shows that one example cannot be taken as indicative of the general performance
of any method.
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Figure 11.25
An example of the output for
PSIPRED prediction. In addition to
the three-state prediction given
underneath each residue (AA), a
cartoon representation is provided
as well, where arrows indicate
b-strands and cylinders the
a-helices. A bar-chart representation
(Conf) of the confidence level of
each prediction is also given.
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11.6 Some Secondary Structures Require
Specialized Prediction Methods
The methods described so far in this chapter are designed to predict the common
types of secondary structure of globular protein domains that are not associated
with membranes. However, these are not the only forms of secondary structure that
occur in proteins. For example, alternative helical structures called 310- and
p-helices have been identified in short stretches, and are usually predicted as a-helix
by the prediction programs. Another form, more commonly associated with fibrous
proteins, is the multi-stranded coiled coil formed by several closely interacting
a-helices. Proteins which span membranes do so using a-helices or b-strands, but
the properties of these are very distinct from those studied so far in this chapter.
Finally, single-stranded RNA molecules can also have secondary structure, as
described in Section 1.1. 

In the remaining sections of this chapter we will first survey the secondary structure
prediction methods employed for transmembrane proteins, and then look at
methods designed to study coiled coils and RNA.
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A schematic and simplified
representation of the Jnet neural
network prediction program. Blue
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paired neural networks, each
receiving input from a different
representation of a sequence
alignment. Predictions are
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At those positions where unanimous
agreement does not occur (an
extreme form of jury decision) a
third neural network is used to
determine the final prediction.

nearest 
neighbor 

GOR 
methods 

Zpred 

PREDATOR 

different ways to predict 

neural nets HMMs 

OBTAINING SECONDARY STRUCTURE 
FROM SEQUENCE

statistical 
methods 

mixture of 
the above 

machine 
learning 

training & datasets specialized prediction 

defining structure 

assessing accuracy 

DSSP STRIDE 

Q3 Sov

PSIPRED

PROF 

Jnet 

Flow Diagram 11.6
In the following sections some of
the methods developed for more
specialized secondary structure
prediction are discussed.
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In the vast majority of the few known transmembrane protein structures, the
membrane-spanning portions of the protein chain are in the form of a-helices, and
most prediction methods are designed to find helices. This is not the only type of
transmembrane structure found, however. The water-transporting porins, for
example, are channel proteins composed of a transmembrane b-sheet structure,
curved round to form a cylindrical b-barrel. To date, no other types of secondary
structure have been found in membrane-embedded regions of proteins.

Transmembrane proteins range in topological complexity from those such as the
epidermal growth factor receptor (EGFR), in which the protein chain crosses the
membrane only once, with a single helix, to the G-protein-coupled receptors, in
which the protein chain threads back and forth across the membrane to give seven
transmembrane helices (see Box 11.2).

In the remainder of this section some specific features relevant to predicting
secondary structure and topological arrangement of transmembrane regions will
be explored. 

Transmembrane proteins
Membrane proteins exist simultaneously in different environments; parts of the
protein reside in the aqueous environment on either side of the membrane,
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Epidermal growth factor receptor (EGFR) is one of the
receptor tyrosine kinases (RTKs) that exist as cell surface
transmembrane glycoproteins and constitute the launch
sites for some of the complex signal transduction path-
ways that take place within the cell. Structurally, RTKs
consist of a very variable extracellular ligand-binding
domain, which gives the receptor its specificity, a trans-
membrane spanning component consisting of a single
a-helix, and a cytoplasmic domain, which possesses
tyrosine kinase activity (see Figure B11.3A).

Nearly all RTKs are found in the plasma membrane,
monomeric and inactive until they bind their respec-
tive ligand. Then a succession of molecular events

follows, which leads to full activation. These include
receptor dimerization (the association of two distinct
receptor molecules) and receptor tyrosine trans-
autophosphorylation to give the enzymatically active
form of the protein.

G-protein-coupled receptor is one of a class of integral
membrane proteins belonging to the 7TM superfamily
of transmembrane receptors that possess seven
membrane-spanning elements (see Figure B11.3B).
Other examples are receptors of the olfactory epithe-
lium that bind odorants and receptors of the neuro-
transmitter serotonin in the mammalian brain. Upon
ligand binding, these receptors activate G proteins. 

Box 11.2 Membrane proteins are functionally important 

ligand 
binding 

kinase 

(A) (B) Figure B11.3
(A) Schematic structure of a
receptor tyrosine kinase
including a single aa-helix
spanning the membrane, and 
(B) an example of a
7-transmembrane spanning
molecule.
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whereas other parts are located in the hydrophobic environment of the membrane
interior. In addition, the surface of the membrane is highly ionic. These different
environments impose structural constraints on membrane proteins that are
reflected in their sequence and can be used to distinguish them from cytosolic
proteins. These properties can also be used to predict secondary and other struc-
tural aspects of membrane proteins.

Membrane proteins can be categorized by their degree of interaction with the
membrane, as shown in Figure 11.27. Some are only anchored to one side of the
membrane, either by ionic interactions (see Figure 11.27A) or via a hydrocarbon
chain that has been added posttranslationally (see Figure11.27B). Proteins with this
type of membrane attachment follow, for the most part, the structural rules for
cytosolic proteins and will not be discussed further in this chapter.

The remaining membrane proteins comprise the integral or transmembrane
proteins, in which part of the protein is embedded entirely within the lipid bilayer.
Transmembrane proteins can be either bitopic (see Figure 11.27C) or polytopic
(Figure 11.27D). Bitopic proteins cross the membrane once, having a part of the
protein on each side of the membrane. Polytopic proteins cross the membrane
many times. The general structural elements of transmembrane proteins are
summarized in Table 11.3. 

Quantifying the preference for a membrane environment
As the membrane interior is hydrophobic, it can be expected that the residues that
are located within the membrane are nonpolar and hydrophobic in nature.
Therefore, identifying regions of hydrophobicity in the amino acid sequence should
help in predicting the structure of a transmembrane protein and give some clues to
its general function. Amino acids vary in the hydrophobicity of their side chains.
Hydrophobic scales have been constructed that assign values to the hydropho-
bicity of each amino acid. Many hydrophobic scales have been generated from
solution studies, crystallographic data, or a combination of both. No particular
method is in general better than the others, and all have been used in transmem-
brane helix prediction programs.
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(A) (B) (C) (D)
Figure 11.27
The four main ways in which
proteins may be attached to a
membrane. (A) Attachment by ionic
interactions between the protein
and the cytosolic face of the lipid
bilayer. (B) Attachment via a lipid or
prenyl anchor, which is added to the
protein posttranslationally and is
inserted into the cytosolic leaflet of
the lipid bilayer. Proteins that attach
to membranes in this way have no
specialized structural or sequence
features that can be recognized.
(C,D) Transmembrane proteins have
part of the protein chain embedded
in the lipid bilayer. (C) In bitopic
membrane proteins the protein
chain crosses the membrane once
only. (D) In polytopic membrane
proteins, the protein chain threads
back and forth across the membrane
multiple times. 

• Helices are about 15–30 residues long

• Transmembrane structures are predominantly apolar

• Residues that interact within the core of a multi-helix transmembrane protein
do not have to be hydrophobic as they can form salt-bridges with each other.
Therefore, charged residues can occur in a coordinated fashion where a posi-
tively charged residue in one position is complemented by a negative residue

• Helices are tightly packed and can form a coiled-coil structure

• b-strands within a transmembrane sheet contain a hydrophobic residue every
second position, which faces the lipid, while the inward (into the sheet) facing
residues can be either polar or apolar

• b-strands in transmembrane sheets are often flanked by aromatic residues

Table 11.3 
General structural elements of
transmembrane proteins.
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Solution-based hydrophobicity scales are usually calculated by measuring the free
energy of transfer (DGt) from aqueous solvent to a solvent that mimics the
membrane environment. However, there are a number of problems with such esti-
mations, because some amino acids are insoluble in the membrane-mimicking
solvents. In addition, it is not easy to decide which solvent mimics the membrane
environment the best.

Hydrophobicity scales from crystallographic data are obtained using a computer
program which calculates how hydrophobic a residue is by rolling a water-
mimicking sphere (usually 1.4 Å radius) over a protein surface and identifying
which residues can make van der Waals contacts with the solvent (see Figure
14.19A). To improve the accuracy of the hydrophobicity scales some scientists have
combined both the crystallographic and solution-based methods.

Other hydrophobicity scales can be obtained by, for example, the GES (Goldman,
Engelman, and Steitz) method, which uses the solvent exposure of a particular
residue in a polyalanine helix of 20 residues. Another scale is based on the
frequency that a residue is found in a membrane-spanning segment. Yet another
method uses the free energy of transfer of tri- or pentapeptides where the middle
amino acid is the one that is being examined. 

11.7 Prediction of Transmembrane Protein Structure
Most transmembrane proteins span the membrane in the form of one or more a-
helices, and we shall discuss these first. If more than one helix is present, the helices
usually form a compact bundle. The properties of the lipid bilayer force a number
of structural constraints on the a-helical transmembrane segments. The first is
length. An average membrane thickness is 30 Å, which corresponds to an a-helix of
between 15 and 30 residues.

Transmembrane regions are therefore generally predicted by looking for
hydrophobic regions of specific length in the sequence. A hydrophobicity scale is
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In this section some of the methods
developed for the prediction of
transmembrane proteins are
discussed.
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used to assign values to individual residues and the values are converted into a
hydropathic profile by using a sliding window to average the values over a number
of residues. This identifies hydrophobic stretches effectively. The window is set to a
length that corresponds to the average length of a transmembrane segment, from
15 up to 30 residues in length. A smaller window is used when searching for the
ends of the transmembrane helix. As no one hydrophobicity scale is best, you
should ideally submit the sequence to a number of transmembrane-prediction
programs that use different hydrophobicity profiles. Those segments that are
consistently predicted to be transmembrane by all the programs are most likely to
be correct. Hydropathic profiles are usually sufficient to predict the correct location
of the transmembrane segment in single-pass membrane proteins.

Multi-helix membrane proteins
If a membrane protein has more than one transmembrane segment, it is not only
important to predict which segments will form the transmembrane helix but also to
predict the relative orientation of the helices in the membrane and the side-chain
interactions. Residues that interact within the core of a multi-helix transmembrane
protein do not have to be hydrophobic, as they can form salt bridges with each
other. Therefore, charged residues can occur in a coordinated fashion in the helices,
where a positively charged residue in one helix is complemented by a negative
residue in the interacting helix.

The helices in such structures contain both hydrophobic and charged residues,
forming a structural element that has a different character on each side—an amphi-
pathic helix. The use of hydropathic profiles only will not usually predict these
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Figure 11.28
Transmembrane helices can be
represented by helical wheel
diagrams. (A) The first
transmembrane helix of bovine
rhodopsin, with hydrophobic
residues in blue, hydrophilic in red
and others in gray. The 27 amino
acids in the helix are numbered from
the first one within the membrane.
There are no strongly hydrophilic
charged residues in this helix at all.
The five residues designated as
hydrophilic here have uncharged
polar side chains and are only
weakly hydrophilic. (B) A helical
wheel representation of the same
helix, with the amino acids color-
coded as in (A). With the exception
of a serine near the beginning of the
helix, the hydrophilic and neutral
residues are all on one face of the
helix, thus making the helix
amphipathic. Most of the
hydrophilic residues are clustered in
one part of the chain and are
arranged so that they fall on one side
of the helix. This hydrophilic area is
part of an interface between this
helix and other helices within the
membrane. (C) A helical wheel
representation of a non-
transmembrane helix from a
phosphoinositol kinase. Note the
high proportion of charged, and thus
strongly hydrophilic, residues [for
example, aspartic acid (D), glutamic
acid (E), lysine (K), and arginine (R)].
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structures well. In such cases, a measure of the amphipathic nature of a helix,
known as the hydrophobic moment, is used. The hydrophobic moment is the
hydrophobicity of a peptide measured for different angles of rotation per residue. It
is calculated for all angles of rotation from 0 to 180 degrees. The hydrophobic
moment is an aid in the recognition of an amphipathic helix by identifying when the
residues on one side of the structure are more hydrophobic than on the other. The
hydrophobic moment is sensitive enough to distinguish between transmembrane
helices and amphipathic helices found in globular protein domains. Surface helices
have, in general, high hydrophobic moment while membrane helices (both single-
pass and multi-pass) have low hydrophobic moment and high hydrophobicity, and
hydrophilic helices have low hydrophobic moment and low hydrophobicity.

The hydrophobic moment can be represented visually by a helical wheel. Figures
11.28A and 11.28B illustrate the first transmembrane helix of the protein rhodopsin
and its helical-wheel representation. Rhodopsin is a member of the G-protein-
coupled receptor family, which all have seven transmembrane helices (see Box 11.2
and Figure 11.29). From Figure 11.28B we can see that there are no charged residues
in the helix, and only five polar (weakly hydrophilic) residues. The amphipathicity
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Figure 11.29
The three-dimensional structure of
bovine rhodopsin. (A) A ribbon
diagram of the experimentally
derived structure. The seven
transmembrane helices are colored
red. PDB code 1F88. Green is used to
indicate the locations of proline
residues, which cause distortions in
these helices. (B) A schematic
representation of the topological
arrangement of rhodopsin in the
membrane. Note the cytoplasmic
and extracellular loops connecting
the helices. Rhodopsin is located in
the distal membranes of rod
photoreceptor cells, a specialized
form of endoplasmic reticulum, so
in this case extracellular
corresponds to the lumen of the
discs. (B, from K. Palczewski et al.,
Crystal structure of rhodopsin: a
G protein-coupled receptor, Science
289:739–745, 2000. Reprinted with
permission from AAAS.)
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is immediately apparent, as these hydrophilic residues are mainly on one side of
the helix. The side chains of the hydrophilic residues project outward from the helix
and allow these residues to form electrostatic interactions with polar groups in
amino acids from adjacent helices. The single serine at the hydrophobic side of the
wheel is near the end of the transmembrane helix. Thus, a helical wheel can be used
to examine the amphipathicity of a transmembrane helix and its accuracy of
prediction. Figure 11.28C shows a helical wheel for a non-transmembrane helix
from a cytoplasmic phosphoinositol kinase. The difference in amphipathicity
between a transmembrane and a cytoplasmic helix is quite marked.

Predictions of the orientation of a-helices in the membrane use the positive-
inside rule established by von Heijne and colleagues. This rule states that intracel-
lular loops between transmembrane helices have a higher content of arginines (R)
and lysines (K) than do extracellular loops (see Figure 11.30). The positive-inside
rule reflects the observation that nonmembrane regions inside have more posi-
tively charged residues than the regions outside the cell. This rule also applies to
proteins in internal membranes such as those of the endoplasmic reticulum, in
which intracellular corresponds to the cytosolic side of the membrane and extra-
cellular to the luminal side. This rule was initially described and used in the
TopPred prediction program and has since been incorporated in many more
recent programs.

Additional observations incorporated into various prediction methods include the
finding that the residues that flank each transmembrane region (often this segment
is 15 residues long), sometimes known as helix tails, are related to the orientation of
the protein. If the carboxy-terminal portion of the protein flanking the transmem-
brane segment is more positively charged than the amino-terminal portion, then
the carboxy-terminal portion will be on the cytosolic side.

A selection of prediction programs to predict transmembrane
helices
A number of algorithms designed to predict transmembrane helices from the
amino acid sequence have been developed, and there are various user-friendly
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seq      MNGTEG PNFYVPFSNK TGVVRSPFEA PQYYLAEPWQ FSMLAAYMFL    46
pred     OOOOOO OOOOOOOOOO OOOOOOOooo oooooooooo ooHHHHHHHH 

seq  LIMLGFPINF LTLYVTVQHK KLRTPLNYIL LNLAVADLFM VFGGFTTTLY    96
pred HHHHHHHHHH HHHHHHHiii iiiiiiiiiH HHHHHHHHHH HHHHHHHHHo 

seq  TSLHGYFVFG PTGCNLEGFF ATLGGEIALW SLVVLAIERY VVVCKPMSNF   146
pred oooooooooo oooooooHHH HHHHHHHHHH HHHHHHHiii iiiiiiiiii 

seq  RFGENHAIMG VAFTWVMALA CAAPPLVGWS RYIPEGMQCS CGIDYYTPHE   196
pred iiiiiiiHHH HHHHHHHHHH HHHHHHHooo oooooooooo oooooooooo 

seq  ETNNESFVIY MFVVHFIIPL IVIFFCYGQL VFTVKEAAAQ QQESATTQKA   246
pred oooooooHHH HHHHHHHHHH HHHHHHHiii iiiiiiiiii iiiiiiiiii 

seq  EKEVTRMVII MVIAFLICWL PYAGVAFYIF THQGSDFGPI FMTIPAFFAK   296
pred iiiiiiiHHH HHHHHHHHHH HHHHHHHHHH HooooooooH HHHHHHHHHH 

seq  TSAVYNPVIY IMMNKQFRNC MVTTLCCGKN PLGDDEASTT VSKTETSQVA   346
pred HHHHHHHHHH HHHiiiiiii iiiiiiiiII IIIIIIIIII IIIIIIIIII 

seq  PA  348
pred II

tail inside loop 

out outside loop 
helix helix helix 

(A) 

(B) 

Figure 11.30
The transmembrane helices and the
locations of tails and loops relative
to the membrane as predicted for
bovine rhodopsin by the HMMTOP
program. (A) A schematic showing
the structures and locations
distinguished by the HMMTOP
prediction program. The helices are
located within the membrane; loops
can be either inside or outside the
cell. The loops are divided into
segments immediately flanking each
helix and that are close to the
membrane (called tails here), and
those that are truly outside the
membrane. In addition the amino-
and carboxy-terminal ends of the
protein need to be distinguished. 
(B) The predicted assignments for
bovine rhodopsin as given by the
prediction program HMMTOP.
Predictions are o, outside tail;
O, outside loop; H, membrane helix;
i, inside tail; I, inside loop. This
figure also illustrates the positive-
inside rule established by von Heijne
and colleagues showing that the
intracellular loops between
transmembrane helices have a
higher content of arginines (R) and
lysines (K), colored red, than do the
extracellular loops.
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Web-based tools that will do this and also predict the orientation of the helices in
the membrane. These methods can identify around 90–95% of all transmembrane
segments. The use of hydrophobicity profiles to predict potential transmembrane
regions has been in use for many years, but it was not until about 1992 that von
Heijne designed the first method (TopPred) to predict the complete topology of
transmembrane proteins. TopPred and some other algorithms set a threshold of
hydrophobicity above which a segment is considered a transmembrane helix, but
have the drawback that some helices may be missed because they fall just short of
the threshold.
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 X-RAY  MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML    50
 HMMTOP MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML    
 SOSUI  MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML
 DAS    mngtegpnfy vpfsnktgvv rspfeapqyy laepwqfsML AAYMFLLIML
 TMHMM  MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML
 TMpred MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML
 PHDhtm MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML
 TMAP   MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIML

 X-RAY  GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH   100
 HMMTOP GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH   
 SOSUI  GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH
 DAS    GFPINFLTLY Vtvqhkklrt plnyILLNLA VADLFMVFGG FTTTLytslh
 TMHMM  GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH
 TMpred GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH
 PHDhtm GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH
 TMAP   GFPINFLTLY VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH

 X-RAY  GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE   150
 HMMTOP GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE   
 SOSUI  GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE
 DAS    gyfvfgptgc nlegffatlg geIALWSLVV LAIERYVvvc kpmsnfrfge
 TMHMM  GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE
 TMpred GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE
 PHDhtm GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE
 TMAP   GYFVFGPTGC NLEGFFATLG GEIALWSLVV LAIERYVVVC KPMSNFRFGE
 
 X-RAY  NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN   200
 HMMTOP NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN   
 SOSUI  NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN
 DAS    nhaimGVAFT WVMALACAap PLVGWSRYIP EGMQCSCGID YYTPHEETNN 
 TMHMM  NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN
 TMpred NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN
 PHDhtm NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN
 TMAP   NHAIMGVAFT WVMALACAAP PLVGWSRYIP EGMQCSCGID YYTPHEETNN

 X-RAY  ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV   250
 HMMTOP ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV   
 SOSUI  ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV
 DAS    esfVIYMFVV HFIIPLIVIF FCYGQLVftv keaaaqqqes attqkaekev
 TMHMM  ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV
 TMpred ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV
 PHDhtm ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV
 TMAP   ESFVIYMFVV HFIIPLIVIF FCYGQLVFTV KEAAAQQQES ATTQKAEKEV

 X-RAY  TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV   300
 HMMTOP TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV   
 SOSUI  TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV
 DAS    tRMVIIMVIA FLICWLPYAG VAFYIfthqg sdfgpIFMTI PAFfaktsav 
 TMHMM  TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV
 TMpred TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV
 PHDhtm TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV
 TMAP   TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKTSAV

 X-RAY  YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA  348
 HMMTOP YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA  
 SOSUI  YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA 
 DAS    ynpviyimmn kqfrncmvtt lccgknplgd deasttvskt etsqvapa 
 TMHMM  YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA 
 TMpred YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA 
 PHDhtm YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA
 TMAP   YNPVIYIMMN KQFRNCMVTT LCCGKNPLGD DEASTTVSKT ETSQVAPA

Figure 11.31
Comparison of the prediction of
transmembrane helices in bovine
rhodopsin by different prediction
programs: HMMTOP, SOSUI, DAS,
TMHMM, TMpred, PHDhtm, and
TMAP. The location of
transmembrane helices in the
protein structure as determined by
X-ray crystallography is given in the
top line (X-RAY). The
transmembrane helices are
highlighted in yellow. Loops that are
extracellular are colored in black,
while cytoplasmic loops are given 
in blue. Boxed sequences are those
that were finally predicted as
transmembrane based on the
consensus results of the seven
prediction methods.
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A number of approaches have been designed to improve this shortcoming and
general prediction accuracy, including programs such as MEMSAT, which incorpo-
rates hydrophobicity, separate propensity scales for amino acids at the tail and
head region of the membrane, and model parameters that include the number
of membrane-spanning segments, the topology, the length, and the location to
optimize prediction of the orientation of the transmembrane helices.

The methods available on the Web for predicting transmembrane segments and
any additional information on their topology will be illustrated using the polytopic
membrane protein bovine rhodopsin (see Figure 11.29). The predictions of a
number of commonly used programs are given in Figure 11.31. 

Statistical methods
Like the statistical methods of secondary structure prediction discussed in the
previous sections, the program TMpred predicts membrane-spanning segments
and their orientation using an algorithm that is based on a statistical analysis of a
protein database, in this case a database of known transmembrane protein
sequences (TMbase). The prediction is made by scoring the sequence using a
combination of several scoring matrices derived from analysis of TMbase. The user
can set minimum and maximum lengths for the transmembrane region to be
predicted; the default is a minimum of 17 and a maximum of 33 residues.

The output gives a number of possible transmembrane helices in the sequence and
their predicted topology; in other words whether the helix is going across the
membrane from outside to the inside, or vice versa. It also highlights the topology
with the highest level of significance. This is the prediction that should, generally,
be used.

Knowledge-based prediction
Physicochemical properties of amino acid sequences, such as hydrophobicity and
charge, are used in prediction methods such as SOSUI. This method is based on
certain assumptions; the main one states that a membrane protein must have at
least one very hydrophobic primary transmembrane helix. Further transmembrane
helices can exist in a multispanning membrane protein and their hydrophobicity
can be similar to hydrophobic segments found in soluble proteins. The primary
transmembrane helices are stabilized by a combination of amphiphilic side chains
at the helix ends as well as having a hydrophobic central region. Four physicochem-
ical parameters are used in this method: a hydropathy index, an amphiphilicity
index, an index of amino acid charges, and each sequence length.

The output from SOSUI gives the segments that are predicted to be transmem-
brane helices, the hydropathy profile, helical-wheel diagrams, and a picture of the
membrane topology orientation (see Figure 11.32). Compare the transmembrane
topology diagram output by the program with the one derived from the X-ray
structure (see Figure 11.29). It can be seen that although SOSUI locates the
segment representing the first transmembrane helix in the correct region of
sequence, the fact that the start of the helix is not accurately predicted (it is three
residues too late) affects the folding of the helix and therefore the arrangement of
hydrophobic and nonhydrophobic residues on the helix (compare the helical wheel
for this prediction to that in Figure 11.28 to see that the amphipathic nature in the
prediction is lost). Therefore the prediction of the detailed topology is much more
difficult and less accurate than prediction of the general location of the transmem-
brane segments and the overall topology that tells us which loops are on the cyto-
plasmic side and which are on the extracellular side.
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Evolutionary information from protein families improves 
the prediction
As with prediction of secondary structure the use of evolutionary information gener-
ally improves the prediction. Several membrane helix prediction methods use infor-
mation from the alignment of protein sequences. One such method is TMAP, which
can use as input either a single sequence or, preferably, a multiple alignment of the
query sequence and its homologs. The method uses two sets of propensity values,
one set for the middle hydrophobic part of the putative transmembrane helix and
another for the terminal regions. These propensity values are assigned for each posi-
tion along the alignment and then an average calculated. The average value is
weighted based on the similarity of the sequences to each other. The propensity
values are based on the statistical analysis of residue types found in transmembrane
helices from the Swiss-Prot database that were designated as transmembrane
segments. Multiple alignments improve prediction accuracy. However, for 20–30% of
all proteins, there are still no homologs in current databases. In response to this situ-
ation, the so-called dense alignment surface (DAS) method was developed.
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Prediction results for rhodopsin
obtained by SOSUI. (A) Schematic
of the locations of transmembrane
helices output by the program. (B)
Helical wheels for the predicted first
and second transmembrane helices.
Note the difference in
amphipathicity that results 
from the underprediction of the
beginning of the first helix. 
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The dense alignment surface method (DAS) is used to improve comparisons
between a collection of nonhomologous membrane proteins and the query protein
using a specially derived scoring matrix based on neighborhood selectivity (NS) of
amino acid pairs. The matrix only gives high scores when aligning two transmem-
brane helix segments. Every 10-residue window has a final score that is the average
of the gapless alignment scores with all segments of a set of about 40 membrane
protein sequences. The segment is predicted as transmembrane if the score is
above a certain cut-off.

The results consist of a list of predicted transmembrane helices and a DAS profile
scoring curve where transmembrane helices are those segments that peak above a
DAS profile cut-off (see Figure 11.33). The segments above the lower cut-off were
taken to represent the transmembrane helices. 

Neural nets in transmembrane prediction
PHDhtm is a neural network method that uses evolutionary information to
improve the prediction of transmembrane segments. Patterns of amino acid substi-
tutions between sequences of proteins in the same structural family are highly
correlated with the tertiary structure for that family. PHDhtm uses this evolutionary
information as input to a neural network to predict the transmembrane helices. The
first step in a PHDhtm prediction is to find homologs for the query sequence and
then generate a multiple sequence alignment. The alignment is put into a neural
network in which transmembrane locations are encoded by two codes: one that
designates residues as being in a transmembrane helix, and the other code desig-
nates residues as nonmembrane bound. These preferences are used as input into a
dynamic programming algorithm that searches for the best model to represent the
best transmembrane localization. Finally the positive-inside rule is applied to
predict the topology.

The multiple alignment generated by PHDhtm can also be submitted to the TMAP
server, for example, to make a confirmatory prediction.
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Figure 11.33
A profile of the DAS scoring values.
This shows the regions of the bovine
rhodopsin sequence that are above
and below the DAS cut-off. Those
regions above the cut-off are
predicted to be transmembrane
helices.
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Predicting transmembrane helices with hidden 
Markov models
The hidden Markov model (HMM) is a good technique for prediction of transmem-
brane helices because it can incorporate hydrophobicity, charge bias, helix lengths,
as well as grammatical constraints into one model for which algorithms for param-
eter estimation and prediction already exist. The basic principle of the HMM
approach in transmembrane prediction is to define a set of states; each residue is
predicted to be in one of the states. In the simplest case, three states can be desig-
nated: one for the inside loops, one for the outside loops, and one for the trans-
membrane segments. Each of these states has an associated probability
distribution over the 20 amino acids that describes the variability of each of these
amino acids in the region modeled. The states are connected to each other in a
biologically reasonable manner; for example, the state for the inside loop is
connected to itself because there can be more than one amino acid involved in such
a loop, and also to the transmembrane helix state because after an inside loop
another helix will, usually, begin. Then a state-transition probability is associated
with each transition. The amino acid and transition probabilities are learned by the
HMM method. By defining these states and connecting them in a cycle, an archi-
tectural model can be designed that closely resembles the biological system to be
modeled. The path of a protein sequence through the states with the highest
computed probability should predict the true topology.

The HMM-based program TMHMM designates a number of possible different
HMM states (see Figure 11.34): (1) the core transmembrane helix; (2,3) helical tails
(caps) on either side; (4) loops on the cytoplasmic side; (5) short loops and (6) long
loops outside the cell; and (7) globular-domain-like structures in the middle of each
loop.  The actual prediction of the transmembrane helices is done by finding the
most probable topology as given by the HMM. The program returns a list of trans-
membrane segments, inside and outside loops, and a graphical probability profile
(see Figure 11.35). 

Another similar HMM-based program is HMMTOP (hidden Markov model for
topology prediction). It builds on a very similar HMM architecture, but the method
used for prediction is different. It defines five structural states: (1) the transmem-
brane helix; (2) inside and (3) outside tails of the helix; and (4) inside and (5) outside
loops (see Figure 11.36). There are several prediction options. Firstly, it is possible
to submit either a single query sequence or a query sequence as part of a set of
homologous sequences. It is, in general, better to use a set of homologous
sequences. One can also choose to make a prediction using a standard set of
parameters or one that optimizes the parameters for the query sequence.

If the actual localization of some segments of the query protein is known, then the
localization-of-sequence-part option in HMMTOP allows the user to delineate
these segments. The prediction is then performed using these segments as addi-
tional restrictions. The syntax for defining the topology of a given segment is:
begin_position-end_position-type, where begin_position and end_position are the
sequence numbers, while type is the one-letter code of the location of the structural
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inside the cell membrane outside the cellFigure 11.34
The HMM states used by TMHMM.
The core transmembrane helices;
helical tails (caps) on either side of
the membrane; loops on the inside;
short and long loops outside the cell;
and globular-domain-like structures
in the middle of each loop.
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parts described above. For example 56-76-I generates a prediction where the
sequence segment between positions 56 and 76 will be in the cytosol (inside). The
results returned consist simply of the amino acid sequence with the prediction
given underneath each amino acid (see Figure 11.30B). In general O or o denotes
outside, while I or i gives the inside loop or tail and H codes for the transmembrane.
The TMHMM and HMMTOP predictions are given in Figure 11.31.

Comparing the results: What to choose
In general the methods all give similar predictions on the one protein we have used
as an example (see Box 11.3). Some methods tend to predict longer helices, such as
HMMTOP, TMAP, and, occasionally, SOSUI. TMAP predicts shorter helices at the
amino and carboxy termini of the protein sequence, which leads to a less accurate
prediction of the start of the first and end of the last helix. The DAS method seems
to predict shorter transmembrane segments overall. Most of the methods predicted
the overall topology correctly. Only a selection of programs available is illustrated
here to demonstrate the various methods used in the prediction programs.
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The output of the TMHMM
program for the bovine rhodopsin
sequence. The table lists the residue
number ranges associated with each
predicted segment.
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To obtain the most accurate prediction, one should run a number of prediction
algorithms, as they all use different hydrophobicity profiles and/or algorithms to
predict the amphipathicity, which loops are in and out of the cytosol, the ends of
the helices, and the overall topology. The boxed segments, illustrated on Figure
11.31, show a user’s choice of transmembrane segments based on the predictions
from all seven methods. This is obtained by aligning the results and extrapolating
from the most frequently occurring prediction at each residue to obtain a
consensus. Additionally, it is good to test the helical possibilities using the helical-
wheel representation, looking mainly for patterns of polar residues on one side
rather than interspersed throughout.

What happens if a non-transmembrane protein is submitted
to transmembrane prediction programs
If a sequence does not code for a transmembrane protein, such as the kinase
protein p110a, and it is submitted to the transmembrane prediction programs then
the results one usually obtains are:

• No transmembrane helices are predicted (HMMTOP, TMHMM, and SOSUI,
which predicted the protein correctly to be soluble)

• Only one or very few helices are predicted to be transmembrane

• Predicted helices are usually very short – not long enough to span a membrane

• Helical wheels are quite different; they may be more charged and the distribu-
tion of the polar/charged residues is not as one-sided as for transmembrane
helices (see Figure 11.28)

Prediction of transmembrane structure containing bb-strands
b-barrel structures in a membrane consist of a large antiparallel sheet rolled into a
cylindrical structure. The sequences of the b-strands have a hydrophobic residue at
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Figure 11.36
Five states of membrane-spanning
structure in the HMMTOP program.
The five states are inside loop (I),
inside tail (i), membrane helix (h),
outside tail (o), and 
outside loop (O). Tails (red and pink)
are thought to interact with the
inside or outside parts of the
membrane, while loops (brown and
cyan) do not. Two tails 
between helices can form short
loops, but longer loops are formed 
by tail–loop–tail sequences.
(Adapted from G.E. Tusnady and
I. Simon, Principles governing
amino acid composition of integral
membrane proteins: application to
topology prediction, J. Mol. Biol.
283:489: 506, 1998.)
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Vitamin K epoxide reductase (VKOR) catalyzes the
conversion of vitamin K 2,3-epoxide into vitamin K.
Recently, the gene encoding the catalytic subunit of
VKOR was identified as an integral membrane protein.
These vitamin K-dependent proteins are important as
coagulation factors, and are involved in bone metabo-
lism and signal transduction. In order to understand the
structure–function relationship of these proteins, it is
important to understand the membrane topology.

Jien-Ke Tie and colleagues first used a number of
prediction programs to predict the transmembrane
structure of VKOR and subsequently determined the
topology experimentally. They used seven programs to
predict the topology; PHD, TMHMM, TopPred, TMpred,
DAS, SOSUI, and MEMSAT. Five of the seven programs
predicted three transmembrane helices. PHD predicted
only two and MEMSAT predicted four (see Figure

B11.4A). Five also predict that the C terminus of VKOR is
in the cytoplasm. From these results the authors predict
that VKOR has three transmembrane helices with the C
terminus located in the cytoplasm and the N terminus
inside. The transmembrane predictions were checked
using an in vitro glycosylation assay. These experi-
mental results strongly suggest that VKOR is a type III
membrane protein with the C terminus outside and the
N terminus inside. Other experiments confirmed that
the first helix spans residues 10 to 29, which corre-
sponds with the predictions. More experiments were
performed to test the various predictions. In conclu-
sion, the experiments suggest that there are three trans-
membrane helices, which agree with most of the
prediction programs. The predicted topology both
using prediction programs and experimental data is
illustrated in Figure B11.4B.

Box 11.3 Predicting transmembranes—an example 
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DAS 3 12–27 83–96 102–146
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Figure B11.4
(A) A table showing the
prediction results from
various programs.
(B) A schematic of the
transmembrane prediction
of VKOR.
(A, from J.K. Tie et al.,
Membrane topology
mapping of vitamin K
epoxide reductase by in vitro
translation/cotranslocation.
J. Biol. Chem. 280:
16410–16416, 2005.)
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every second position in the sequence so that the outside of the cylinder will be
nonpolar and the inside polar. In addition, it has been observed that the transmem-
brane b-strands are generally flanked in the sequence by aromatic residues. It is
also unlikely that a single extended strand will exist in the hydrophobic environ-
ment of the bilayer, as the hydrogen-bonding backbone NH and CO groups will be
isolated. Usually, to identify transmembrane b-strands a sided hydrophobicity HS is
calculated using the Eisenberg hydrophobicity scale h and the following equation:

EQ11.1

If the residue at i–2 or i+4 is aromatic, the hydrophobicity value is increased to 1.6,
thus biasing the prediction toward strands with aromatic residues at the ends.

An example of a b-stranded transmembrane protein for which the structure has
been solved is the membrane channel protein porin (see Figure 11.37A) from the
bacterium Rhodopseudomonas blastica (PDB code 1PRN). Equation EQ11.1 was
used to calculate a prediction profile for the transmembrane b-segments (see Figure
11.37B). The results show that generally the b-strands are identified but not very

H i h i h i h i h is ( ) [ ( ) ( ) ( ) ( )]= − + + + + +
1
4

2 2 4
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structure: EISLNGYGRF GLQYYVEDRGV GLEDTIISSR LRINIVGTTE TDQGVTFFGAK 
predicted: EISLNGYGRF GLQYVEDRGV GLEDTIISSR LRINIVGTTE TDQGVTFGAK 
PROFtmb  : EISLNGYGRF GLQYVEDRGV GLEDTIISSR LRINIVGTTE TDQGVTFGAK 

structure: LRMQWWDDGDA FAGTAGNAAQ FWFWTSYNGVTV SVGNVDTAFD SVALTYDSEM 
predicted: LRMQWDDGDA FAGTAGNAAQ FWTSYNGVTV SVGNVDTAFD SVALTYDSEM 
PROFtmb  : LRMQWDDGDA FAGTAGNAAQ FWTSYNGVTV SVGNVDTAFD SVALTYDSEM 

structure: GYEASSFGDA QSSFFAYNSK YDASGALDNYY NGIAVTYSIS GVNLYLSYVD 
predicted: GYEASSFGDA QSSFFAYNSK YDASGALDNY NGIAVTYSIS GVNLYLSYVD 
PROFtmb  : GYEASSFGDA QSSFFAYNSK YDASGALDNY NGIAVTYSIS GVNLYLSYVD 

structure: PDQTVDSSLV TEEFFGIAADWW SNDMISLAAA YYTTDAGGIVD NDIAFFVGAAYY 
predicted: PDQTVDSSLV TEEFGIAADW SNDMISLAAA YTTDAGGIVD NDIAFVGAAY 
PROFtmb  : PDQTVDSSLV TEEFGIAADW SNDMISLAAA YTTDAGGIVD NDIAFVGAAY 

structure: KFNDAGTVGL NWYWYDNGLSTA GDQVTLYGNY AFFGATTVRAY VSDIDRAGAD 
predicted: KFNDAGTVGL NWYDNGLSTA GDQVTLYGNY AFGATTVRAY VSDIDRAGAD 
PROFtmb  : KFNDAGTVGL NWYDNGLSTA GDQVTLYGNY AFGATTVRAY VSDIDRAGAD 

structure: TAYYGIGADYQ FFAEGVKVSGS VQSGFFANETV ADVGVRFDFF 
predicted: TAYGIGADYQ FAEGVKVSGS VQSGFANETV ADVGVRFDF 
PROFtmb  : TAYGIGADYQ FAEGVKVSGS VQSGFANETV ADVGVRFDF

(B)

(A)

Figure 11.37
Prediction of the transmembrane
bb-barrel. (A) The crystallographic
structure of a transmembrane b-
barrel, porin. (B) The amino acid
sequence of porin. Note the
aromatic residues (bold) flanking
the membrane b-strands. The top
line shows the sequence color-
coded with transmembrane strands
(shaded blue) according to the X-ray
structure determination. The lower
lines show the predicted structure
using the Eisenberg hydrophobicity
scale and the Web-based program
PROFtmb.
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accurately. Recently a new method called PROFtmb was developed that predicts
transmembrane b-barrels and is available over the Web. This prediction method is
based on an HMM model using a set of 56 transmembrane b-barrel structures to
obtain the parameters used in the HMM (see Chapter 12 for more details). From
Figure 11.37B we can see that the prediction is much better than the one using
hydrophobicity profiles only.

11.8 Coiled-Coil Structures
Coiled-coil conformation is obtained when two (or more, often three) a-helices
intertwine, forming a superhelical twist (see Figure 11.38). Such coils are found in
both transmembrane helix bundles and intracellular proteins. They form between
helices with particular distributions of hydrophobic residues. Generally, the
sequence of an a-helix that forms a coiled coil will display a periodicity of a
repeated unit of seven amino acids, which is called a heptad pattern. If those posi-
tions are designated by the letters abcdef and g then positions a and d are
hydrophobic and e and g are often charged (see Figure 11.38A). This arrangement
results in a hydrophobic seam of residues a and d, which runs in a shallow helix
along the surface of the a-helix. The repeating seven-residue pattern results in a
twist within the helix, as positions a and d come together to bury their hydrophobic
nature from the surrounding solvent (Figure 11.38B). When the helical components
are juxtaposed, they twist around each other to form a tight supercoil, as a result of
the hydrophobic interaction of a and d residues. Algorithms that predict coiled-coil
regions are based on these preferences. When positions a and d are repeating
leucines, the structure is called a leucine zipper. In the leucine zipper families of
transcription factors, leucine zipper dimerization domains occur alongside DNA-
binding domains.

Coiled coils are usually strong structures and occur in the keratins (which form
intermediate filaments in cells), in the motor protein myosin II (which is a dimer
held together by a coiled-coil tail), in fibrin (which is important in blood clotting)
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Figure 11.38
Coiled-coil geometry. As there are
3.6 residues to each turn of the
a-helix, the a and d residues form a
hydrophobic seam (blue letters and
red dots), which, as each heptad is
slightly under two turns, slowly
twists around the helix. The coiled
coil is formed by component helices
coming together to bury their
hydrophobic seams. As the
hydrophobic seams twist around
each helix, so the helices also twist
to coil around each other, burying
the hydrophobic seams and forming
a supercoil.
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and as triple helices in the extracellular matrix protein collagen. Programs that
predict coiled-coil structure in proteins and are available on the Web will be illus-
trated with the sequence from the structure of the effector domain of the protein
kinase PKN/PRK1. This coiled-coil domain binds to the G protein Rho (see Figures
11.39 and 11.40). 

The COILS prediction program
COILS compares the query sequence to a database of known parallel two-stranded
coiled coils and derives a similarity score. By comparing this score to the distribu-
tion of scores in globular and coiled-coil proteins, the program calculates the prob-
ability that the query sequence will be in a coiled-coil conformation.

The program allows the user to choose whether to weight the a and d positions of
the coiled-coil. This allows the user to assign the same weight to the two
hydrophobic positions as to the five hydrophilic positions within the heptad repeat.
Assignment of the same weights permits the identification of false positives. In
general it is recommended to run a weighted and an unweighted prediction and
compare the outputs. A drop of more than 20–30% in the probability when an
unweighted prediction is run indicates a false-positive prediction due to a highly
charged protein sequence.

The COILS output is a trace of coiled-coil prediction probability (see Figure 11.41A).
The trace for the effector domain sequence using the unweighted prediction is

Chapter 11: Obtaining Secondary Structure from Sequence 

452

nearest 
neighbor 

GOR 
methods 

Zpred 

PREDATOR 

different ways to predict 

neural nets HMMs 

OBTAINING SECONDARY STRUCTURE 
FROM SEQUENCE

statistical 
methods 

mixture of 
the above 

machine 
learning 

training & datasets specialized prediction 

transmembrane 

a-helix b-strand

defining structure 

assessing accuracy 
coiled coil 

DSSP STRIDE 

Q3 Sov

PSIPRED

PROF 

Jnet 

COILS 

PAIRCOIL 

MULTICOIL 

                        d   a  d    a  d    a  d   a   d
WSLLEQLGLA GADLAAPGVQ QQLELERERL RREIRKELKL KEGAENLRRA TTDLGRS

a   d   a   d   a  d   a   d   a
LGP VELLLRGSSR RLDLLHQQLQ ELHAHV

a1 a2

a3

Flow Diagram 11.8
In this section some of the methods
developed for the prediction of
coiled coils are discussed.

Figure 11.39
Sequence of the PKN1 coiled-coil
domain. The secondary structural
elements (a1–a3) of the PKN
domain are indicated at the top. 
The a–d heptad repeats of helices a2
and a3 are displayed above the
sequence in the coiled-coil domain. 
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shown for window lengths of 14, 21, and 28 residues. The program clearly predicts
a two-helix coiled coil when a 14- or a 21-residue window is used (the weighted
prediction is not much different in this case). The 28-residue window, however, fails
to predict a second region. In Figure 11.41B we can see why. The crystal structure
has identified two helices: helix A is 38 residues long and will therefore be identified
using all the window lengths; helix B, however, is only 25 residues long and will
therefore fail to be identified when a window of 28 residues is used. The trace in
Figure 11.39A gives only an approximate location of the helices; however, one can
investigate the probabilities in detail by looking at the numerical data (see Figure
11.41C) that are also provided by the program. The higher the score the more prob-
able it is that the residue is predicted as part of a coiled-coil helix. Exploring the
numerical format predicts that helix A runs from residue 19 to 49 and helix B spans
residues 62 to 82.

PAIRCOIL and MULTICOIL are an extension of the COILS
algorithm
A newer program than COILS is the PAIRCOIL program, which predicts the location
of coiled-coil regions using pairwise residue correlations obtained from a two-
stranded coiled-coil database. As described previously, in COILS coiled coils have
been mainly identified by the occurrence of hydrophobic residues spaced every
four residues apart. In PAIRCOIL this is extended to include pairwise residue corre-
lations in known coiled coils. Each sequence in the coiled-coil database was used to
tabulate the frequency of occurrence of each pair of amino acids at each pair of
positions in a heptad repeat. These frequency values in the coiled-coil database are
used to estimate the probability that a given residue pair exists in a given pair of
heptad-repeat positions in a coiled coil. The probabilities are then used to compute
a score for each residue, which corresponds to the likelihood that this residue is in
a coiled coil. The MULTICOIL program is based on the same algorithm but has been
modified to locate dimeric and trimeric coiled coils.

Zipping the leucine zipper: A specialized coiled coil
The leucine zipper is a special type of coiled coil in which leucines are the repeating
hydrophobic residues (see Figure 11.42A). This domain occurs mostly in regulatory
proteins and thus in many oncogenic proteins. The 2ZIP method is a Web server
prediction program designed especially to look for leucine zipper repeats. The 2ZIP
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coiled coil: PRK1

RhoA Figure 11.40
The ribbon diagram of the X-ray
structure of the coiled-coil domain
PRK1 bound to RhoA protein.
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program combines standard coiled-coil prediction techniques as described above
with a search for the characteristic leucine repeat.

The output is a text formatted prediction shown in Figure 11.42B. If the query
sequence does not contain a leucine zipper the program will nevertheless predict
other coiled-coil regions and leucine repeats that do not correspond to a leucine
zipper.
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X-ray     WSLLEQLGLAGADLAAPGVQQQLELERERLRREIRKELKLKEGAENLRRA 
COILS     WSLLEQLGLAGADLAAPGVQQQLELERERLRREIRKELKLKEGAENLRRA

X-ray     TTDLGRSLGPVELLLRGSSRRLDLLHQQLQELHAHV 
COILS     TTDLGRSLGPVELLLRGSSRRLDLLHQQLQELHAHV 

# Residue     Window=14      Window=21      Window=28
   10 A        d  0.004       b  0.004       b  0.014
   11 G        e  0.004       c  0.005       c  0.014
   12 A        f  0.004       d  0.019       d  0.014
   13 D        g  0.004       e  0.019       e  0.014
   14 L        a  0.004       f  0.019       f  0.014
   15 A        g  0.005       c  0.041       c  0.042
   16 A        a  0.009       d  0.071       d  0.042
   17 P        b  0.023       e  0.071       e  0.042
   18 G        c  0.375       f  0.749       f  0.983
   19 V        d  0.831       g  0.964       g  0.999
   20 Q        a  0.994       a  0.982       a  1.000
   21 Q        b  1.000       b  0.998       b  1.000
   22 Q        c  1.000       c  0.999       c  1.000
   23 L        d  1.000       d  0.999       d  1.000
   24 E        e  1.000       e  0.999       e  1.000
   25 L        f  1.000       f  0.999       f  1.000
   26 E        g  1.000       g  0.999       g  1.000
   27 R        a  1.000       a  0.999       a  1.000
   28 E        b  1.000       b  0.999       b  1.000
   29 R        c  1.000       c  0.999       c  1.000
   30 L        d  1.000       d  0.999       d  1.000
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Figure 11.41
Output from the COILS program for
predicting coiled-coil regions as
applied to the effector domain of
the protein kinase PKN/PRK1.
(A) The prediction trace for the
probability of coiled-coil regions
using sliding windows of 14 (green),
21 (blue), and 28 (red) residues. The
14- and 21-residue windows give
two regions predicted to be able to
form coiled-coil structure; the
28-residue window, however, gives
only one. (B) The sequence of the
protein and the secondary structure
as obtained from the X-ray structure
(top line) and the prediction
(bottom line). The reason for the
failure of the 28-residue window 
can now be seen; the second helix is
only 25 residues long. (C) The first
part of the tabulated result given by
COILS. In (B) and (C) helical
segments are color-coded in pink.
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11.9 RNA Secondary Structure Prediction
Proteins are not the only biological macromolecules that form highly complex
three-dimensional structures. RNAs (tRNA, mRNA, and rRNA) are long chains of
nucleotides that fold into various secondary structures as a result of intrastrand base
pairing and base stacking (see Section 1.1). As is the case for proteins, the three-
dimensional structure of an RNA molecule affects its biological function. Messenger
RNAs (mRNA) carry information as well as being involved in translational control.
Other RNAs seem to play an important role in the regulatory function of the cell.
RNA is also able to catalyze cellular processes. Secondary structure is important for
some of these functions and can shed light on the structure–function relationships
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Leucine zipper prediction. (A) The
crystal structure of GCN4 leucine
zipper, with the heptad repeat
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representation. (B) The results of the
prediction from the program 2ZIP.

Flow Diagram 11.9
In this section some of the methods
developed for the prediction of RNA
secondary structure are discussed.
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of RNA, and also aid in the automated identification of genes for particular RNAs in
genomic DNA (see Section 10.1).

In RNA, most base pairing occurs by classical Watson–Crick pairing between cyto-
sine and guanine by means of three hydrogen bonds and between uracil and adenine
via two hydrogen bonds. In addition, a single hydrogen bond can be formed between
guanine and uracil. Intrastrand base pairing gives rise to a variety of secondary struc-
tures. The most frequent are double helix (which will form when two RNA strands are
perfectly base-paired for more than a few nucleotides), stem loop, internal loop,
hairpin loop, bulge, multibranched loop (see Figure 11.43), and pseudoknots. Single-
stranded DNA can also form these types of secondary structure.

Generally, the likelihood of forming a particular RNA secondary structure can be
expressed as the amount of free energy released or used up by forming the base
pairs. The greater the free energy the more work is needed to form a specific config-
uration and, therefore, the less likely it is that such a structure will be formed. As
described in Appendices B and C the calculation of molecular free energies is diffi-
cult, and in practice usually requires significant assumptions. One of the key
assumptions made that is relevant to RNA structure prediction is that base-pair
energies can be considered in isolation from the rest of the structure. In reality the
energy of a base pair is modified by other base pairs in the vicinity. In practice this
interaction is ignored, and the free energies of base pairs are simply added together.

Thus, the total free energy of a particular secondary structure can be determined by
adding up the component base-pair energies. The more negative (that is, the lower)
the total free energy of a structure, the more likely this structure is to be formed.
Identifying a total base-pair configuration with the lowest free energy is the aim of
many RNA structure prediction methods. These types of prediction method use
empirical energy parameters to compute a free energy (Appendix B).

Several approaches are often combined to predict secondary structure in RNA. One
is to investigate a set of homologous nucleotide sequences. If no homologous
sequences are available then a set of constraints and rules has to be followed to
help calculate the energy of folding. Some or all of the following basic rules have
been used in various programs for the prediction of RNA secondary structure. First,
the secondary structure is considered as a collection of base pairs that construct
the structure. If i and j, respectively, represent a base (see Figure 11.44) at a specific
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Figure 11.43
Types of secondary structure
present in RNA molecules.
Nucleotides are represented by blue
circles, with the hydrogen bonding
shown as a single red line joining
two circles. The structures formed
include double helix, internal loops,
hairpin loops, bulges, and
multibranched loops.
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position in the RNA sequence, then a secondary structure is a set of ordered pairs
i.j where the rule that 1 ≤ i < j ≤ n holds true and the following rules apply (see
Figure 11.44). 

• i and j are more than four nucleotides apart in the sequence

If there are two base pairs (i.j and i¢.j¢) then:

• i.j and i¢.j¢, base pair i.j comes before i¢.j¢

or

• the structural element formed by i.j has a base pair in it formed by i¢.j¢

The last requirement prevents pseudoknots from forming. These can occur with
two base pairs and possible crossovers. The rule that disallows pseudoknots has
been incorporated because some programs that calculate minimum-energy struc-
tures cannot cope with this type of fold. However, pseudoknots do occur and are
quite important structural elements in RNA and there are a number of current
programs that do allow for the prediction of pseudoknots, such as GeneBee
described below.

Most prediction algorithms calculate some form of folding energy. The most basic
method would be to construct numbers of different possible structures, assign an
energy value for each base pair, sum them up for each structure, and then choose
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the structure with the lowest energy. However, this is not satisfactory and more
complicated energy calculations, which incorporate rules based on observation of
known RNA structures, are usually used.

The current Web-based RNA prediction servers mostly use energy parameters to
calculate a possible structure. All provide a picture of the secondary structure with
possible base-pairings and various free-energy estimates. The sequence of yeast
initiator tRNA has been submitted to three different Web servers: FOLD, RNAfold,
and GeneBee. The predicted results for MFOLD (see Figure 11.45A), GeneBee (see
Figure 11.45B) and RNAfold (see Figure 11.45C) were compared to the generic tRNA
structure (Figure 10.2). All three correctly predicted the anticodon and T-Y-C loops.
However, GeneBee also predicted the aminoacyl arm and the D loop in the correct
positions. A further set of RNA prediction methods has been proposed based on
context-free grammars, which are too complex to discuss here. See Further
Reading.

Summary
Protein secondary structure prediction is a fast and relatively easy method of
obtaining preliminary structural information about a protein, and may be the only
source of information if no homolog is available with an experimentally determined
structure. Prediction methods can be roughly subdivided into statistical, knowl-
edge-based, neural network, and consensus methods. This subdivision illustrates
how the methods have developed over time and how new structural information
has been incorporated in combination with improvements in computer technology.
In this chapter we have discussed methods that include residue statistics with the
addition of information from surrounding residues (GOR methods), incorporation
of long-range interaction parameters and nearest-neighbor information
(PREDATOR), use of information from aligned sequences (Zpred, GOR V), and
neural network/HMM technology applied to a variety of secondary structure
parameters and information (NNSSP, PHD, PROF, PSIPRED, and Jnet). A large
improvement in Q3 accuracy came with the use of multiple alignments in prediction
methods. The more advanced methods perform considerably better than methods
based on statistical information only. However, all prediction methods fare better
with proteins containing all or high a-helical content than those with b-strands. The
discrepancy between the all a- and all b- structures has been explained by the fact
that the formation of an a-helical fold depends on short-range (local) amino acid
interactions while a b-containing fold depends on long-range interactions, which
are more difficult to predict.

There is no single best prediction method, and it is therefore best to use a number
of different methods, especially those that use multiple sequence information.
PSIPRED and the methods found on the NNSSP prediction server form good
starting points for secondary structure prediction. Common sense should be
applied to prediction results, along with any experimental knowledge about the
protein. If a certain fold is suspected or inferred from the function of the protein,
that knowledge can be used to choose the prediction closest to the suspected struc-
ture. Secondary structure methods can only provide a putative structural arrange-
ment, often to about 75% accuracy, but predictions should be considered as a
stepping stone to further experimental or theoretical work.

Also in this chapter we have dealt with the prediction of specialized protein
secondary structures found in transmembrane regions of integral membrane
proteins and in coiled-coil folds. For such structures, the general secondary struc-
ture prediction algorithms are not sufficient. Because of the constraints imposed
by the hydrophobic interior of the lipid bilayer, transmembrane regions of proteins
are either in the form of hydrophobic a-helices or form an intramembrane
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b-barrel. No other type of transmembrane secondary structure has been found. At
present, only transmembrane helical regions can be predicted with any reliability.
Submitting the protein rhodopsin, which has seven transmembrane helices, to
various commonly used prediction programs available over the Web shows that the
best result is obtained by running a number of programs and choosing a consensus
prediction. The differences in predictions between different programs are due to
the fact that they use different ways of calculating the hydrophobicity of a
sequence—its hydropathic profile—and also use different rules and methods to
calculate helical state and conformation. There is at present no best way of calcu-
lating the hydropathic profile.

Coiled coils and leucine zippers are formed when two a-helices with particular
properties twist around each other. Prediction of sequences that will be able to form
coiled coils depends on the recognition of repeating patterns of hydrophobic
residues. RNA molecules form secondary structure through base-pairing and the
prediction of RNA structure from sequence was also briefly discussed in this chapter.
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PREDICTING SECONDARY
STRUCTURES

When you have read Chapter 12, you should be able to:

Describe the assignment of protein secondary structure.

Outline the special measures of prediction accuracy.

Describe the structural preferences of residues and their modification by 
local sequence.

Show how to improve prediction by using information from homologous
sequences.

Explain nearest-neighbor prediction based on local sequence similarity.

State the basic concepts of neural network architecture and training.

Show how neural networks are applied to secondary structure prediction.

Show how HMM methods are applied to transmembrane protein prediction.

Show how support vector machines predict secondary structure.

Discuss the prediction of other features such as nonfolded regions 
and functional sites.

A full understanding of the function of a protein, including the basis for any catalysis,
substrate specificity, and any regulation of its action requires knowledge of the
protein’s three-dimensional structure. This is why so much effort has been invested
in the experimental determination of protein structures. Despite these efforts the
structure is known for only a very small proportion of protein sequences. Using
sequence analysis as described in Chapters 4, 5, and 6, many sequences for which
no experimental structure is available can be aligned with ones of known structure.
In this way, structures can be proposed based on homology, a process described in
detail in Chapter 13. However, there are still many sequences that lack a homolog
of known structure. These are the sequences for which secondary structure predic-
tion can be especially useful. Chapter 11 is a practical guide to applications in this
area. In this chapter we will present the principles behind the many different
methods of protein secondary structure prediction.

The protein fold of globular proteins is described in terms of the packing together
of the secondary structural elements described in Section 2.1. Analysis of protein
structures reveals regularities, for example a-helices often pack against each other
at a limited set of distinct orientations, and the packing of successive secondary
structures in protein folds shows a preferred handedness. Evidence has emerged for
the existence of a limited set of protein folds, which suggests that if the secondary
structural elements of a sequence are known, prediction of the three-dimensional
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structure might be feasible. (The use of energy calculations to determine protein
folds ab initio—discussed in Box 13.1—while making progress, is as yet not a possi-
bility except possibly for the smallest of domains.) This use of secondary structures
as a step toward protein fold prediction remains a key motivation for the develop-
ment of secondary structure prediction.

As more structures are determined and other features identified, further prediction
methods are being developed. Some of these features are functional, such as sites
of phosphorylation. The importance of membrane proteins has been recognized,
both in terms of their roles in living systems and in medicine, and predictive
methods for transmembrane helices and complete chain topologies have been
developed. Another structural feature, initially not anticipated but subsequently
recognized as important, is that certain regions of the peptide chain can take up
alternative conformations under certain conditions, which can be related to the
protein function or regulation, but can also be associated with disease states as in
the case of prions. In this chapter we will survey the techniques that have been
employed to predict these structural features.

Chapter 12: Predicting Secondary Structures

462

predicting secondary 
structures 

methods for 
prediction 

classification 
methods 

residue 
properties 

applications 

scales 

data necessary for 
structure prediction 

structural 
assignment 

structure 
database 

accuracy 
measures 

N-score & 
C-score 

manual 

PALSSE 

DSSP 

PDB 

TMbase

PDB_SELECT 

conservation 

hydrophobicity 

propensity 
local sequence 

single residue 

Sov 

Q3 

Matthews C

multiple 
regression 

discriminant 

SVM 

SOM 

number of units 

connection weights 

balanced dataset 

back propagation 
learning 

interstate 
choice nearest 

neighbor local 

global 

trans-
membrane

barrel

ne
ur

al
 n

et
w

or
ks

 

trans- 
membrane 

helix 

alignment 

smoothing 

window 

hidden 
Markov 

models 

PRED-
TMBB

PROFtmb

TMHMM

HMMTOP

training 

architecture 

input 

bio-basis 

structure to 
structure 

sequence to 
structure 

specific to 
residue 

networks 
perceptron 

double 

BRNN 

Mind Map 12.1
There are many different types of
programs used in predicting the
structural features from primary
sequence. This mind map shows the
main programs and necessary data
used in prediction applications.

BIF Ch12ts 5th proofs.qxd  17/7/07  14:20  Page 462



Before presenting any prediction methods it is necessary to define the secondary
structural elements. In Section 2.1 they were presented with perfect geometrical
regularity, but in globular proteins they are often distorted, and the boundaries
between these regular structures and other regions are not easily identified. Several
schemes will be described for secondary structure assignment, as will be the conse-
quences of the considerable level of disagreement between them. Following this,
the calculation of prediction accuracy will be presented, and will be shown to be
definable in several ways.

The next section of this chapter will describe early prediction methods for
secondary structures and transmembrane helices. These are based on identifying
the structural preferences (propensities) of individual residue types and their
modulation by other residues nearby on the chain. It has been found that signifi-
cant improvements in prediction accuracy are made when account is also taken of
homologous sequences. An alternative to this approach is to identify similar short
sequence segments in proteins of known structure and to predict the same struc-
ture in the query sequence, known as the nearest-neighbor approach.

One of the most successful techniques applied to the secondary structure predic-
tion problem is the use of neural networks. The key aspects of this technique are
presented, followed by details of some of the networks in common use. The tech-
nique has also been applied to other problems such as b-turns and unfolded
regions. Following this, the application of hidden Markov models (HMMs) is
presented, which has proved particularly successful at predicting the secondary
structures and topologies of membrane proteins. The final part of the chapter looks
at other more general techniques of data classification, which can be used in this
area to distinguish between sequence segments with and without certain structural
properties. Such methods have been used for secondary structure prediction, but
also for predicting unfolded regions, phosphorylation sites, and other features. 

12.1 Defining Secondary Structure and 
Prediction Accuracy
Most biochemistry textbooks give simple definitions of a-helices and b-strands
based on the presence of hydrogen-bonding patterns such as between residue
pairs (i, i+4). In these presentations the structures are usually shown as perfectly
regular, with linear strands and helices following a straight axis. However, these
secondary structures are usually found to be distorted in globular proteins, both in
terms of their axis and the hydrogen-bonding patterns. b-strands in particular are
almost always curved, and inserted residues that do not participate in b-sheet
interactions (b-bulges) are relatively common. In addition, the divergence from
regularity often increases toward the ends of these structures. As a result the iden-
tification of all residues that are part of secondary structures in globular protein
folds is not trivial. This secondary structure assignment is often regarded as best
performed by visual inspection, but this introduces an element of subjectivity and
nonreproducibility. To circumvent this requires automated secondary structure
identification. 

In principle, secondary structures can be defined on the basis of the residue torsion
angles, hydrogen-bonding patterns, overall curvature of the polypeptide backbone,
energetically favorable interactions, or any combination of these. Based on the
original idealized structure definitions, a definition utilizing hydrogen bonding
might appear at first to be the most productive approach. However, as already
mentioned, the observed distortions can lead to nonidealized bonding patterns.
The situation is further aggravated by the lack of a clear-cut definition of hydrogen-
bonding interactions. Hydrogen bonds are usually defined in terms of a set of
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distance and angle constraints, which should include all interactions that have a
moderately attractive energy, but in distorted structures they can often occur with
geometries outside these constraints, as a consequence of which some potential
weak hydrogen bonds may be missed. In this section we will describe some of the
approaches used to automate secondary structure definition, and also compare
some of the resulting assignments.

The difficulty in defining secondary structures for globular protein folds has conse-
quences when measuring the success of prediction methods. Furthermore, it is
often more important to predict the correct number and approximate location of
helices and strands than to identify exactly which residues are involved. This is
especially the case when trying to identify folds. Some special measures of predic-
tion accuracy have been developed that place more emphasis on the helices and
strands than the residues and these are presented at the end of this section.

The definitions used for automatic protein secondary structure
assignment do not give identical results
The original definitions of regular structures in globular protein folds strongly
emphasized the hydrogen-bonding patterns involving the main chain groups.
These patterns can be identified by defining a hydrogen bond in terms of the geom-
etry of the atoms involved, possibly through calculating the energy of interaction.
Typical definitions assign a hydrogen bond only if the atomic coordinates have the
O and N atoms within a specified distance range (for example ≤3.5 Å) and if, in addi-
tion, the angle between the C=O and N-H bonds falls within a specified range (for
example ≤60∞). When the definition involves calculating energies, any interaction
more favorable than a given cut-off value is designated as a hydrogen bond.

The residues of ideal geometry a-helices have a main chain group hydrogen
bonded to another main chain group four residues distant; this is often referred to
as an (i, i+4) interaction. The C=O group of residue i bonds to the N-H group of
residue i+4. Residues at the start (N-terminal end) of helices only have these bonds
from their C=O group while those residues toward the C-terminal end only have
these bonds from their N-H group. Residues in the middle of long a-helices have
both interactions. The less common 310 and p-helices have (i, i+3) and (i, i+5) inter-
actions, respectively. Any helix will have a run of consecutive residues with these
interactions. Structure assignment methods that use hydrogen-bonding patterns
have a minimum number of such consecutive residues (often two), which defines
the shortest possible helix they can assign. One of the most commonly used
secondary structure assignment methods, DSSP (Define Secondary Structure of
Proteins), proposed by Wolfgang Kabsch and Christian Sander in 1983, takes the
approach just described to assign helices. However, if hydrogen bonds are identified
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for residue pairs (i–1, i+3) and (i, i+4) these are taken to define a minimal (that is
shortest possible) 4-residue a-helix composed of the residues i to i+3. The minimal
310 and p-helices (three and five residues, respectively) are defined by DSSP in a
similar manner. When an isolated pair of residues is found they define a turn, with
the classic b-turn involving one (i, i+2) hydrogen bond.

The identification of b-strands from hydrogen-bonding information proceeds in a
similar way to that described for helices, except that now the pair of individual
residues is replaced by a pair of sequence segments. These two segments can occur
at any separation within the sequence, as b-sheets are often formed by interaction
between sequentially remote b-strands. A specific pair of hydrogen bonds is sought
between the two segments, there being four different pairings that define parallel
and antiparallel strands (see Figure 12.1). In DSSP, pairs of suitably hydrogen-
bonded segments are called bridges, and each bridge forms an entity called a
ladder together with any consecutive bridges of the same type. The ladders are pairs
of b-strands that interact. In a final phase, DSSP joins ladders that share residues
(i.e., b-strands) into b-sheets.

The details described above for DSSP do not allow for significant deviation from the
idealized structures. To allow for irregularities such as b-bulges the rules were
modified, but they still require more regular structure at the edges of the helix or
strand. Despite this potential shortcoming DSSP has remained a popular choice for
defining secondary structures, partly perhaps because of the wide availability of the
program, but also because for a long time there has not been a program that
seemed to offer significantly better assignments. It reports seven different struc-
tural states with an eighth state (coil) assigned to any residue that is not assigned
one of these (see Table 12.1). Typically these states are combined to reduce them to
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H1

H2

H3

H4

H5

H6

(A) (B) Figure 12.1
The types of hydrogen-bonding
patterns used by some methods
such as DSSP to identify bb-sheets.
(A) Part of an antiparallel b-sheet,
showing only nonhydrogen atoms,
with hydrogen bonds drawn as
dashed magenta lines and labeled
H1, H2, and H3. DSSP looks for
tripeptides linked together either by
H1 and H2, or by H2 and H3, as
indicative of antiparallel b-strands.
(B) Part of a parallel b-sheet, with
hydrogen bonds labeled H4, H5, and
H6. DSSP looks for tripeptides linked
together either by H4 and H5, or by
H5 and H6, as indicative of parallel
b-strands.

Structural state Description

B b-bridge

C not B, E, G, H, I, S or T (i.e., coil)

E b-strand

G 310-helix

H a-helix

I p-helix

S bend

T b-turn

Table 12.1 
The eight structural states
reported by the DSSP
method, with their
descriptions.
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the three states normally predicted: helix (H), strand (E), and coil (C). There are
several ways of making this reduction, the most common being to assign any DSSP
G or H state residue to state H; any DSSP B or E state residue to state E; and all other
DSSP state residues to state C. An alternative is to assign any DSSP G, H, or I state
to state H, thereby including all identified 310, a-, and p-helix residues. It is also
possible to make more complex reassignments, for example removing very short
helices and strands by defining the residues of any two-residue strand or four-
residue a-helix as coil state C.

As was mentioned in the introduction to this section, there are many ways in which
secondary structures can be identified without using hydrogen bonding, mostly
involving analysis of the geometry defined by the Ca atoms. Two commonly used
measurements based on the coordinates of the Ca atoms are the distances between
residue pairs such as (i, i+3) and the torsion angles defined by four successive Ca
atoms. Many such measures have the potential to discriminate between a-helices
and b-strands (see Figure 12.2). Individual helices and strands are built up from
consecutive residues in a similar manner to that described above for hydrogen
bond methods. The hydrogen bonding between b-strands is often replaced by
requirements of close approach of the Ca atoms of the two strands. A number of
detailed protocols have been proposed, most involving several steps to try to over-
come the difficulties of the distortions from ideal geometry. The most recent of
these are PALSSE (Predictive Assignment of Linear Secondary Structure Elements)
by Nick Grishin and co-workers, and b-Spider by Marc Parisien and Francois Major.

Numerous secondary structure assignment methods assign approximately 50–60%
of all residues in globular protein structures as belonging to an a-helix and b-strand
(see Figure 11.4). (This relates to a subset of known structures designed to remove
the known bias in the current structure databases due to the presence of many
homologs for some protein families.) The different methods are in better agreement
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Figure 12.2
Two geometrical parameters used
in the PALSSE method to
distinguish aa-helices and bb-strands.
(A) The distance between Ca atoms
of residues i and i+3 shows distinct
ranges for the two structural states.
The distributions are shown for
pairs of residues (i, i+3) that have
been assigned as in an a-helix
(green) or b-strand (red). (B) The
torsion angle for the Ca atoms of the
four residues i to i+3 also shows
distinct ranges. Note that in these
graphs the structural states of the
residues were defined using the
DSSP method. The DSSP method is
relatively cautious in assignment
and these measures may not be as
discriminating if other assignments
are used. (From I. Majumdar, S. Sri
Krishna and N.V. Grishia, PALSSE: 
a program to delineate linear
secondary structural elements from
protein structures, BMC
Bioinformatics 6:202, 2005.)
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on the fraction of a-helical residues, often close to 30%, and less consistent in the
b-strand content. It is noticeable in a number of cases that some methods such as
DSSP fail to identify all the b-strands (see Figure 12.3). This may indicate that these
methods have been designed to err on the side of caution rather than overassign
secondary structural elements. Recently methods have appeared that assign signif-
icantly more residues as a-helix and b-strand; for example PALSSE assigns almost
80% of all residues as belonging to a secondary structure element. This can lead to
identifying the full set of secondary structural elements (see Figure 12.3) but at the
risk of including some spurious elements. From the perspective of fold identifica-
tion this might be preferable to missing elements, but the methods have not yet
been properly assessed.

Figure 12.4 shows the distribution of lengths of a-helices and b-strands in
nonmembrane globular proteins as given by the DSSP assignment modified to have
a minimum of five and three residues, respectively. The data were taken from a
bias-free subset of structures, and show that most b-strands are rather short, few
exceeding 10 residues in length. In contrast a-helices are on average about 10
residues long, and occasionally exceed 20 residues. Although the different assign-
ment methods mostly identify the same secondary structures, they often do not
agree on the initial and final residues for each helix and strand. (For this compara-
tive discussion we will not include the recent methods that assign about 80% of the
sequence to secondary structures, since as shown in Figure 12.3 they clearly iden-
tify additional elements.) For a-helices this translates into only 70–90% of the
helical residues being consistently so assigned. In the case of b-strands, their
shorter length results in only 50–60% of strand residues being consistently
assigned. There has been a general perception that b-strands are hard to identify, as
is illustrated by the example shown in Figure 12.3.
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(A) (B) (C)

Figure 12.3
Alternative bb-strand assignment for
the bb-barrel in E. coli pyruvate
formate-lyase (PDB entry 1H16).
Assignments have been made using
(A) DSSP, (B) PALSSE, and (C)
b-Spider. The protein is shown in
two orthogonal orientations. DSSP
misses two b-strands of the barrel,
one of which (colored green) is
identified by PALSSE, and both of
which are assigned by b-Spider. Note
that the lengths of equivalent
b-strands vary considerably
according to the method used.
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The lack of consistent assignments is one of the reasons why prediction methods
should not be expected to achieve 100% accuracy, and indeed would suggest that any
such method would be unduly biased to a particular assignment method. Another
reason for lowering our expectations of prediction accuracy is the observation that
while folds are strongly conserved over long periods of evolution the precise locations
of the secondary structural elements have been found to shift slightly (see Figure
11.6). However, it is possible that in many cases these shifts are more indicative of the
difficulty of structural assignment than true changes in the fold. Revisiting this topic
with a less cautious method such as PALSSE might result in different conclusions. In
particular, since the average PALSSE b-strand length is probably greater in this
method than for DSSP, whose length distribution is shown in Figure 12.4, the propor-
tion of consistently assigned residues will probably be increased when comparing
similarly high percentage assigning methods. However, this will require retraining of
the prediction programs based on the assignments from these newer methods.

Secondary structures in membrane proteins are also distorted and therefore
subject to the same difficulties in assignment as have already been discussed. The
same assignment methods have been applied to them, and Figure 12.5 shows the
length distribution for transmembrane helices as assigned using DSSP. Note that
they are usually much longer than the a-helices found in soluble globular proteins,
which makes their prediction easier. 
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The distribution of lengths of
aa-helices (green) and bb-strands
(red) in soluble globular proteins, as
determined from experimental
structures. The secondary structure
definitions used were those of DSSP,
but taking the minimum length of
an a-helix to be five residues, and of
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et al., Bayesian segmentation of
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Figure 12.5
The distribution of transmembrane
helix lengths as found using the
DSSP definition. These data are for
a nonredundant structure dataset
containing 268 helices. The average
length is 25.3 residues with a
standard deviation of 5.9 residues.
Note the existence of a small
number of shorter helices, which
cannot span the membrane. These
half-TM often occur in pairs, when
they are often found to be
full-length helices with a localized
distortion to nonhelical structure.
(Adapted from J.M. Cuthbertson,
D.A. Doyle and M.S.P. Sansom,
Transmembrane helix prediction: a
comparative evaluation and
analysis, Protein Eng. Des. Sel.
18:295–308, 2005.)
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There are several different measures of the accuracy of
secondary structure prediction
It is necessary to assess the accuracy of a set of predictions to determine the most
accurate method available and also to identify successful improvements when
developing and fitting parameters for new methods. Alternative measures have
been proposed, some of which look at the level of individual residues while others
focus on complete helices and strands. (This situation is analogous to that for
exon/intron prediction discussed in Box 10.3.) In general the measures are only
meaningful if they refer to the prediction of a large number of nonhomologous
structures because the methods are intended to be widely applicable.

The most commonly used residue measure is Q3, which is described in Section 11.3,
and is defined as the fraction of all the residues that are correctly predicted, consid-
ering all possible states including nonprediction states such as coil, and is often
quoted as a percentage varying from 0% to 100%. A completely random prediction
of a dataset of structures with equal amounts of three possible states would give a
Q3 value of 33%. Note that the Q3 measure can be used with any number of possible
states; in the case of transmembrane helix predictions there are often only two
predicted states but Q3 is still an appropriate measure. As a consequence of the lack
of consistent secondary structure assignment mentioned previously, assuming the
prediction method is not biased toward a particular assignment method Q3 values
much above about 80% cannot be expected when calculated for a large set of struc-
tures. Individual structures will have a greater range of values. The variation in Q3

obtained for a range of proteins in a test database using the PSIPRED method is
given in Figure 12.6A. This clearly shows the range of accuracy achieved, so that the
reported value of 76% for the average Q3 of the method does not guarantee a predic-
tion of this quality for all sequences. In this case the standard deviation of the Q3

values is 7.8%. Often only the average Q3 for the whole test dataset is quoted as the
accuracy of the method. When the reference secondary structures have been
assigned using a cautious method, such as DSSP, almost half the residues can be in
the coil state. In this case, overprediction of coil will give a noticeably larger Q3 than
overprediction of helix or strand. Hence attention must be paid to the properties of
the set of proteins used to determine the average Q3. The measure is not without
problems, as illustrated in Figure 11.5.

Another measure frequently used, often referred to as the Matthews correlation coef-
ficient C (also written MCC), is defined for each predicted state, for example helix, as

(EQ12.1) 

C
TP.TN FN.FP

TP
helix =

−

+( ) +( ) +( ) +FP TP FN TN FP TN FNN( )
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Figure 12.6
The accuracy of the PSIPRED
secondary structure prediction on a
dataset of 187 proteins, as given by
the Q3 and Sov measures. (A) The
distribution of the Q3 values for
individual proteins, which has a
mean of 76.0% and a standard
deviation of 7.8%. (B) The
distribution of the Sov values for
individual proteins, which has a
mean of 73.5% and a standard
deviation of 12.7%. (Adapted from
D.T. Jones, Protein secondary
structure prediction based on
position-specific scoring matrices,
J. Mol. Biol. 292:195–202, 1999.)
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where TP is the number of true positive residues, i.e., the number of residues
correctly predicted as helical, as opposed to the number of residues incorrectly
predicted to be helical, which is FP, the number of false positives. TN (true nega-
tive) and FN (false negative) are the equivalents for nonhelical residues. The four
terms in the square root are thus the total number of residues predicted as helical,
the number of actual helical residues, the number of actual nonhelical residues,
and the total number of residues predicted as nonhelical, respectively. This gives a
more balanced weighting of the prediction outcomes, and has values in the range
–1 to 1, with the latter being a perfect prediction. A completely random prediction
would give a Chelix value of 0, with a value of –1 corresponding to the exact predic-
tion of all helical residues as nonhelical and vice versa.

It would be much more beneficial to predict the correct number, type, and order of
secondary structure elements than to predict some elements well and miss others
completely. This is because it would give us a better opportunity to determine the
protein fold and hence overall structure. The Q3 and C measures do not address this.
Burkhard Rost and colleagues proposed a measure based on the fractional overlap
of segments (Sov). This is sensitive to the amount of overlap between predicted and
observed structures, but is designed to try to allow for the observed variation in
element boundaries which was discussed above. Like Q3, Sov is defined on a
percentage scale and treats both the observed and predicted structures equally.

If all observed segments of helices, strands, and coil are labeled sobs and all predicted
segments of these states spred, then So is the set of all overlapping pairs of sobs and spred

where the segments are the same state. (Note that if, for example, several predicted
helices overlap with one observed one, each overlap will result in a pair in So and
each of these will contain the observed helix.) The set Sn is defined to include any
segments sobs that are not overlapped by a predicted segment of the same state, and
therefore do not appear in the set So. The length in residues of any segment sobs is
given by len(sobs). For any segment pair in So of a given state, the length of the actual
overlap is called minov(sobs,spred) and the total extent for which at least one residue
is that state is called maxov(sobs,spred).

Given these definitions the segment overlap measure is defined as 

(EQ12.2)

The terms in the summation represent the fraction of the full extent of the segment
pair that the observed and predicted states agree, augmented by a factor d(sobs,spred)
to allow for some variation in segment boundaries as observed in protein struc-
tures. d(sobs,spred) is defined as
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Observed

Prediction 1

Prediction 2

Prediction 3

Prediction 4

Prediction 5

Sov

12.5

63.2

40.6

52.3

80.6

Q3

58.3

58.3

83.3

75.0

66.7

CHHHHHHHHHHC

CHCHCHCHCHCC

CCCHHHHHCCCC

CHHHCHHHCHHC

CHHCCHHHHHCC

CCCHHHHHHCCC

Table 12.2 
A comparison of two prediction
accuracy measures, Q3 and Sov. Five
possible predictions of a single
observed helix are shown. Predictions
1 and 2 have the same number of
helical residues, and yet 
1 is completely unrealistic. Although
Sov registers this, Q3 does not.
Predictions 2, 3, 4, and 5 demonstrate
that Sov gives higher scores when
only one helix is predicted even if
fewer individual residues are
correctly predicted to be helical,
contrary to the behavior of Q3.
(Adapted from A. Zemla et al., A
modified definition of Sov, a
segment-based measure for 
protein secondary structure
prediction assessment, Proteins
34:220–223, 1999.)
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(EQ12.3)

where int[x] means the integer truncation of x, i.e., int[3.9] = 3. The summation
terms are also weighted by the observed segment length. NSov is the sum of the
number of observed residues (i.e., in sobs) in all overlap pairs in So (including dupli-
cations if present) plus the number of residues in the segments of Sn.

Table 12.2 shows some example pairs of observed and predicted a-helices
together with their Sov and Q3 scores, showing that only predictions which have
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Figure 12.7
A proposed measure of the accuracy
of transmembrane helix prediction
based on the location of the helix
ends. (A) Definition of the accuracy
measure in terms of the incorrect
location of the helix start and end.
The score is the sum of the absolute
values of the N-score and C-score.
(B) Application of the measure to
TMHMM2 predictions. The N-score
is plotted, indicating that there is a
tendency to mispredict the start of
the helix as several residues toward
the C terminal relative to its correct
position. (Adapted from
J.M. Cuthbertson, D.A. Doyle and
M.S.P. Sansom, Transmembrane
helix prediction: a comparative
evaluation and analysis, Protein Eng.
Des. Sel. 18:295–308, 2005.)

known structure

prediction

5 4 3 2 1 0 -1 -2 -3 -4 -5 -5 -4 -3 -2 -1 0 1 2 3 4 5

N C

N-score = +2

N-score

C-score = -4

score = |N-score| + |C-score| = 6

(A)

(B)

0

10

20

30

40

50

60

70

80

90

 -20  -18  -16  -14  -12  -10  -8  -6  -4  -2  0  2  4  6  8  10  12  14  16  18

nu
m

be
r 

ob
se

rv
ed

BIF Ch12ts 5th proofs.qxd  17/7/07  14:20  Page 471



the right number of helices in approximately the right locations have a high Sov
score, whereas the Q3 measure is much more forgiving of such errors. Figure 12.6B
shows the range of Sov values obtained with the PSIPRED method. Comparing
these with the Q3 equivalents shows that there are more Sov scores below 60%,
although in this case the average value of 73.5% is only slightly lower than the Q3

average.

In the field of transmembrane helix prediction the Q3 measure is often used, but
there are also some specific measures at the level of the helices rather than the
residues, in some ways analogous to Sov. The number of correctly predicted helices
is sometimes defined, usually as any predicted helix that has an overlap with an
observed helix of a minimum number of residues. The number of residues required
is often quite small relative to the size of transmembrane helices (see Figure 12.5)
with values of 3 and 5 common. A recent study used the errors in residue numbers
of predictions of the helix termini (see Figure 12.7) to examine the accuracy of
methods. Figure 12.7B reveals that the prediction method used (TMHMM2) has a
tendency to miss the first turn or so of the helix. 

12.2 Secondary Structure Prediction Based on
Residue Propensities
As soon as a few protein structures had been determined to a resolution that
permitted the location of individual residues and identification of the secondary
structural elements, it became clear that there were some correlations between
these two aspects. For example, glycine residues were often found in the tight turns
now referred to as b-turns; proline residues were clearly disfavored in a-helices but
frequently found in b-turns. These compositional preferences were subsequently
quantified as residue propensities, and can be assigned for any identifiable struc-
tural features as will be shown below. 

The residue propensities immediately suggest a possible way to predict structural
elements based on the local compositional biases, a concept first formulated into
a practical method by Peter Chou and Gerald Fasman in 1974 to predict a-helices
and b-strands. The principle has since been applied to many other structural
states, including those associated with membrane protein secondary structure. A
logical extension of residue propensities is to propose that they are modified by
the local sequence, an idea initially applied in 1978 in the GOR method that gave
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Flow Diagram 12.2
The key concept introduced in this
section is that amino acids have
structural preferences, which can
be combined in various ways to
design a secondary structure
prediction method.
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significantly more accurate predictions than the Chou–Fasman method and will
be described in detail. This was related to the observation that sufficiently long
identical sequence segments had only been observed in a single conformation.
However, exceptions to this have now been found and some effort has been spent
to quantify the degree to which local sequence alone determines the secondary
structure. As these methods were being developed and refined there was a great
increase in the number of known sequences and structures, and in particular it
was found that use could be made of the sequences of known and putative
homologs to make further significant improvements in prediction accuracy.

Many of the methods discussed in this section are rarely used at present, as more
complex techniques described later in this chapter are thought to be more accu-
rate. However, many of these other methods have features that are closely related to
those presented here, so that it is instructive to compare them. In addition it is by
no means certain that further work on propensities will not result in new methods
of higher accuracy, for example the update in 2002 of the GOR method to use
homologous sequence data as described later in this section.

Each structural state has an amino acid preference which can
be assigned as a residue propensity
The calculation of amino acid preferences for a given structural state is
dependent on being able to unambiguously define the structural state for each
residue in a protein structure. The problem of structural assignment has already
been discussed at length in Section 12.1, so we will restrict mention of it here to
the observation that any set of propensities is reliant to some degree on the
choice of assignment method. However, of more critical concern is the set of
protein structures used to derive the propensities, because it is important that
they have minimal compositional and structural biases that might contaminate
the propensities we are trying to measure. Ideally the set of structures will span
the range of known protein folds so as to reproduce the fold composition of the
protein universe while also avoiding any structures that are close homologs.
There are still protein folds for which no experimental structure has yet been
determined, leading to an unavoidable structural bias, but action can be taken to
reduce the bias present in the set of known structures. One attempt to derive
such datasets, called PDB_SELECT, uses sequence similarity as the basis for
selecting the subset of structures. In this case all structures to be included in the
unbiased subset are required to have a sequence identity less than a threshold
value (typically 25%) for any aligned sub-sequences longer than 80 residues. The
strong bias in known structures is shown by the observation that the fraction of
them included in the subset is 1–4% depending on the chosen threshold.
However, the resulting database subset is not bias-free, with for example many
immunoglobulin fold domains. Another approach to this problem is to use the
fold libraries as guides to the redundancy problem. For a brief presentation on
these libraries see Section 14.1. For further insight into this problem see Further
Reading.

Given a dataset of protein structures with assigned structural states, the derivation
of residue propensities is relatively straightforward because there are now sufficient
experimental structures to obtain values within the accuracy that is likely to be
required. Possible exceptions to this might occur if many alternative structural
states are assigned, or for rare states such as p-helices, and especially when
studying membrane proteins. If there is a problem of insufficient data the tech-
niques described in Section 6.1 can be applied in an attempt to minimize the
effects. The following derivation will assume there are sufficient data available.

Firstly the fraction of all the dataset residues that is of type a is calculated, written
pa as in Chapters 5 and 6. Then, the same residue type a fraction is calculated but
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for the subset of all residues that are of structural type s, written ps,a. The propensity
of residues of type a to occur in proteins in structural type s is then given by

(EQ12.4)

These parameters were first calculated for a-helices and b-strands by Peter Chou
and Gerald Fasman in 1974, at which time there were insufficient data (less than
2500 residues) to accurately determine the values. As well as obtaining numerical
values for the propensities, each residue type was classified as a strong or weak
helix former or breaker or indifferent and the equivalents for strands (see Figure
11.3). The propensities were recalculated several times as more data became avail-
able, in 1998 using a dataset of over 33,000 residues (see Figure 12.8). There are
some notable differences between the 1974 and 1998 values, such as Pa,Arg and
Pb,Met, which might be due to the lack of data or that the 1974 data showed strong
biases; two of the 15 proteins analyzed were hemoglobin and myoglobin, which
have a common fold.

By 2004 the protein structure datasets were large enough to derive residue propen-
sities at different positions within a-helices. The motivation for this was to try to
improve the prediction of the ends of a-helices. Even after removing any proteins
with >25% sequence residue identity there were over 8000 a-helices for analysis.
The propensities were calculated using Equation EQ12.4, for example dividing the
fraction of helices that start with a glycine residue by the fraction of glycine residues
in the complete database. Many residue types show a clear periodic variation in
propensity. Figure 12.9 gives the position-dependent helix propensities at the
N-terminal end of helices for the aromatic residues and an averaged ln(propensity)

P
p

ps a
s a

a
,

,=
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Figure 12.8
The Chou–Fasman aa-helix and
bb-strand propensities, as calculated
in 1998 using data on over 33,000
residues. The residues had
previously been classified by Chou
and Fasman in 1974 on the basis of
their propensities as strong formers,
formers, indifferent, breakers, and
strong breakers of the secondary
structure, colored dark green, light
green, yellow, light red, and dark 
red, respectively. The colored lines
indicate the 1974 values of the
division between these classes.
Although the two sets of values 
are strongly correlated there are
many variations in the detail, 
such as Pb,Asp.
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for all hydrophobic residues, showing a clear period of 3.6 residues. This variation is
thought to have its origins in the many a-helices that have one surface buried in the
protein core and the other exposed to the solvent.

Residue propensities were derived for b-turns, and the Chou–Fasman predictions
usually included them as well as the helices and strands. The four different positions
were distinguished, usually labeled i to i+3, with proline the most common residue
found at position i+1 and glycine the most common at i+2 and i+3. One of the most
accurate determinations of these residue propensities was by Gail Hutchinson and
Janet Thornton in 1994 based on almost 4000 b-turns (see Table 12.3). Further work
by Patrick Fuchs and Alain Alix has defined propensities for different types of
b-turns, and includes values for residues at positions flanking the turn.

Early methods for predicting transmembrane helices did not use transmembrane
helix residue propensities, but preferred residue hydrophobicity scales. Since the
interior of membranes is very hydrophobic it was expected that transmembrane
helices would have stretches of hydrophobic residues, and furthermore that
hydrophobic residues would prefer to be in the membrane than in the aqueous
environment. The hydrophobicity scales that developed were usually based on
physical chemistry experiments such as the partition between water and octanol.
Many such scales have been proposed, from which two relatively popular ones (KD
and GES) are given in Table 12.4. An additional scale is given that was obtained by
optimizing the scale for prediction purposes. This last scale does not therefore have
a direct experimental basis, but has proved significantly more accurate for trans-
membrane helix prediction.

The lack of experimental membrane protein structures hindered the derivation of
transmembrane helix propensities for many years. Despite this there was consid-
erable experimental evidence for the location of some transmembrane helices,
data that were collected in annotated sequence databases. This information was
used in 1994 to derive propensities for the prediction program MEMSAT. Because
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Figure 12.9
The variation of Chou–Fasman-type
aa-helix propensity with distance
from the N-terminal end of the
aa-helix. The N-cap is the residue
immediately before the first residue
of the a-helix, and is assigned the
residue number 0. (A) The position-
specific propensities for aromatic
residues (identified by their one-
letter code) to be located in the first
15 residues of an a-helix. A clear
periodicity can be seen. (B) The
periodicities averaged over all
hydrophobic residues show a
preference for hydrophobic residues
to occur on the same side of the
helix as the first residue. In this case
ln(propensity) has been plotted,
which shows the periodicity more
clearly. (Reprinted from J. Mol. Biol.,
337, D.E. Engel and W.F. DeGrado,
Amino acid propensities are
position-dependent throughout the
length of a-helices, 1195–1205, 2004,
with permission from Elsevier.)
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of concern about the accuracy of the data, a distinction was made between
proteins with a single transmembrane helix and those with more, and the data
shown here will relate to the former only. Using the sequences of the 285 single
transmembrane helix proteins propensities were derived, but rather than using the
definition of Equation EQ12.4 above, the logarithm of the ratio was taken to obtain
the log-likelihood ratio:

(EQ12.5)

(Note the similarity to the substitution matrix formula of Equation EQ5.2.) Five
different structural states were distinguished: three transmembrane helical
(inside, middle, and outside) and two non-transmembrane helical (inside and
outside). The values for these are shown in Figure 12.10. As might be expected the
“helix middle” values correlate quite well with the amino acit hydrophobicity
scales of Table 12.4. 

All the measures shown here can be regarded as properties of the different amino
acids. Many of these quantitative amino acid properties have been collected into a
database called AAindex. This has several hundred indices, including over 30
hydrophobicity scales.

The simplest prediction methods are based on the average
residue propensity over a sequence window
If a strong compositional preference exists for a structural state, and that state
extends over several consecutive residues, then most regions which fold to that
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Residue

Ala

Arg

Asn

Asp

Cys

Gln

Glu

Gly

His

Ile

Leu

Lys

Met

Phe

Pro

Ser

Thr

Trp

Tyr

Val

i+2

0.66

0.75

2.14

1.86

0.98

0.93

0.92

2.14

1.16

0.42

0.47

0.94

0.41

0.96

0.63

1.06

0.94

0.76

0.83

0.54

i+3

0.89

0.93

1.06

0.99

1.20

1.01

0.89

1.64

0.93

0.68

0.78

1.10

0.68

0.95

0.96

1.03

1.20

0.79

1.07

0.84

i

0.81

0.69

1.54

1.56

1.42

0.89

0.87

1.09

1.25

0.66

0.73

0.80

0.70

0.98

1.48

1.29

1.08

0.62

1.04

0.72

i+1

0.96

0.93

1.02

1.24

0.73

0.94

1.35

1.04

0.95

0.61

0.67

1.22

0.48

0.66

2.45

1.23

0.79

0.65

0.75

0.70

Table 12.3
bb-turn propensities. Data from
Hutchinson & Thornton (1994).
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state will be expected to have residues that have preferential propensities.
Therefore if a stretch is found containing residues that have suitably high propen-
sities, that state could be predicted to occur in that region. Any stretch of a speci-
fied length that had an average propensity exceeding a chosen threshold could be
predicted as being in that state. Even residues with very unfavorable propensities
are likely to occur occasionally, so careful choice of the precise number of residues
over which to average and the threshold required for prediction are required to
obtain accurate predictions.

The number of residues over which to average is called the window, and the length
depends on the structure being predicted. The window must be short enough to
enable detection of the shortest structures, but if it is too short it could lead to many
spurious assignments. b-strands are usually shorter than a-helices (see Figure 12.4)
and thus require shorter windows. For example, in the Chou–Fasman method
b-strands are initially identified using windows of four or five residues, whereas
a-helices are initially identified from six-residue windows. Transmembrane helix
predictions generally use even larger windows, often of 15–20 residues.

The simplest prediction methods of this kind are those using hydrophobicity
scales for transmembrane helix prediction. All windows with average hydropho-
bicity exceeding the threshold are assigned as transmembrane helices. When
windows overlap, they are combined into a single helix prediction. The example
shown in Figure 12.11 illustrates a moderately successful prediction of one trans-
membrane helix, with the peak in average hydrophobicity not exactly centered on
the correct location.

The Chou–Fasman method for predicting a-helices, b-strands, and b-turns is
much more complicated. In part this is because they used different window sizes
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Residue

Ile

Val

Leu

Phe

Cys

Met

Ala

Gly

Thr

Ser

Trp

Tyr

Pro

His

Glu

Gln

Asp

Asn

Lys

Arg

Zviling

9.9

13.4

14.5

4.6

3.8

7.0

4.3

0.1

–11.4

–0.3

–4.2

–3.4

–35.3

–19.2

–49.4

–29.6

–40.7

–52.5

–44.8

–64.5

KD

4.5

4.2

3.8

2.8

2.5

1.9

1.8

–0.4

–0.7

–0.8

–0.9

–1.3

–1.6

–3.2

–3.5

–3.5

–3.5

–3.5

–3.9

–4.5

GES

3.1

2.6

2.8

3.7

2.0

3.4

1.6

1.0

1.2

0.6

1.2

–0.7

–0.2

–3.0

–8.2

–4.1

–9.2

–4.8

–8.8

–12.3

Table 12.4 
Three representative amino acid
hydrophobicity scales. KD is the
Kyte–Doolittle scale; GES is reported
by Engelman, Steitz, and Goldman,
and the Zviling scale is one of three
alternatives reported by Zviling,
Leonov, and Arkin. Although there is
a significant correlation between the
scales, there are some differences
such as each scale having a different
residue as the most hydrophobic.
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and thresholds to initially identify and then to extend a-helices and b-strands.
However, the method also has to choose between alternatives. In the transmem-
brane helix example the only alternatives were the presence or absence of the
helix, whereas the Chou–Fasman method has to adjudicate between possible
predictions of a-helix and b-strand for the same window. When looking to initially
identify a helix or strand, the choice made depends on which state has the larger
average propensity. However, the rules in regions where structures are extended
are quite complex. The Chou–Fasman method uses a different technique for b-turn
prediction. The structure extends over four residues, each position having a
different propensity, as was shown for a different set of propensities in Table 12.3.
To predict a b-turn at a given position the propensities for the residues at the four
different positions are multiplied together, and a b-turn is predicted if the product
exceeds a threshold.

The COILS method of predicting coiled coils uses a similar principle, taking the
geometric mean of the propensity over the window. Because coiled coils have a
repeating heptad the propensities are separately defined for each heptad position,
and the window size used is 14, 21, or 28 residues. All possible heptad positions are
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Figure 12.10
Transmembrane propensities for
the different amino acids,
calculated as log-likelihoods. Five
different structural states
(environments) are distinguished:
the loops (peptide segments) not
associated with the transmembrane
helix are divided into the inside
(cytoplasmic) and outside; the
transmembrane helix is
differentiated into the inside,
middle, and outside. Note the
different scales of the two plots.
(Data from D.T Jones, W.R. Taylor
and J.M. Thornton, A model
recognition approach to the
prediction of all-helical membrane
protein structure and topology,
Biochemistry 33:3038–3049, 1994.) 
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explored for each residue, choosing the highest scoring as the prediction, and then
converting this into a probability. Regions that form a coiled coil usually have prob-
abilities close to 1.

The MEMSAT program for transmembrane helix prediction uses the five propensi-
ties shown in Figure 12.10. As was the case for the Chou–Fasman method, the predic-
tion is given by the structural assignment that maximizes the sum of the residue
propensities. In order to determine this assignment a dynamic programming
method (as described in Section 5.2) was used to identify the optimal prediction.

Although these methods were usually the first to be applied and were sufficiently
successful to encourage further efforts, in general they were not sufficiently accu-
rate and were soon superseded by more complex methods, such as will be
described later in this chapter.

Residue propensities are modulated by nearby sequence
Although secondary structure prediction has been moderately successful when
using residue propensities as described above, it is thought likely that the folded
structural state of a residue is strongly influenced by the nearby sequence. The
reasoning for this is that if an entire peptide chain always folds up to the same
structure, presumably shorter segments will also always adopt the same structure.
For very short segments this clearly does not hold; certainly at the limit of indi-
vidual residues they occur in many possible structural states. By quantifying this
local modulation of the residue propensities new prediction methods have been
proposed that are significantly more accurate than those based on individual
residue preferences.

Before describing the prediction methods themselves, we will look at what is known
of these local sequence effects. It is difficult to clearly define when a sequence has
folded into two different structures, but a potential solution is to specify that no
residue should have the same state assigned in both structures. Although this is
perhaps an unduly severe definition, Rita Casadio and colleagues used it with DSSP
assignments in 2000 to identify just one eight-residue and 16 seven-residue
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Figure 12.11
An example of a transmembrane
prediction using the average of a
hydrophobicity scale over a
window. The KD (Kyte–Doolittle)
hydrophobicity scale has been used
with a window length of 15 residues.
The protein in this example is
human glycophorin A, which has a
transmembrane helix located at
residues 92–114, shown in light red.
This is approximately the location of
the only peak in hydrophobicity for
this sequence, except for a peak at
the N terminal, which corresponds
to a nonpolar signal peptide shown
in green.
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segments from a large set of protein structures that had been found to take up
significantly different structures. Subsequently a nine-residue sequence has been
found that has different structures (a-helix and b-strand) in two proteins (see
Figure 12.12). These results suggest that the influence of the nearby sequence domi-
nates local structure, and that a method which accounts for the effects of five or
more residues to either side of a central residue has the potential to give a highly
accurate prediction.

Other studies have shown that there certainly is information about the structural
state in the local sequence, although they have also given a clear indication that
nonlocal or long-range effects are also important. Gavin Crooks and Steven Brenner
analyzed the information present in neighboring residues and concluded that
residues up to four positions distant may have an influence. However, they also
found that the use of this local information did not achieve prediction accuracies
close to 100%, suggesting that some nonlocal effects must also be involved. Daisuke
Kihara analyzed the correlation between the accuracy of secondary structure
predictions and the degree of spatial contact with sequentially more remote
residues. The data suggest that residues with fewer nonlocal spatial contacts are on
average predicted more accurately.

Taking all of these studies together, there is significant information about
secondary structure present in the local sequence, but there is additional nonlocal
information too. The definition of residue propensity presented above can be
readily extended to quantify the local effects. An example of such residue propensi-
ties is shown in Figure 12.9. The GOR series of methods, which contain such local
information, are based on an information theory derived by Barry Robson in 1974,
which is presented below. The only way such methods might include nonlocal
effects would be by increasing the size of the window by a considerable factor.

The central concept of the GOR methods is that the protein sequence contains the
information that is translated into the protein conformation. The jth residue of the
sequence x is written xj. The structural state of the jth residue is written as Sj. Thus
the xj are one of 20 types, and the Sj one of three or four, depending on the partic-
ular GOR version, as some versions predict b-turn residues as well as b-strand, a-
helix, and coil. The probability of the jth residue being in structural state s is written
P(Sj = s). P(Sj  = ṡ x̂ ) is the probability of the jth residue being in structural state s
given that the sequence contains residue(s) x̂. Here  x̂ refers to a specific part of the
protein sequence, e.g., xj; xjxj+1; xj–8…xj+8. These two probabilities will only be iden-
tical if the residues in x̂ have no influence at all on the structural state Sj.
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(A) (B)
Figure 12.12
An example of a short peptide
sequence found to occur in two
very different conformations. The
nine-residue sequence KGVVPQLVK
occurs in two proteins, (A) mouse
importin a (PDB entry 1IAL) and 
(B) E. coli pyruvate kinase (PDB
entry 1PKY), but with completely
different structures. The identical
sequence segments are shown in
red, within a short region of local
structure. After the first two residues
the structures are clearly completely
different.
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The Fano definition of the mutual information that sequence x̂ contains about the
structural state of the jth residue being s is given by

(EQ12.6)

(see Appendix A). If x̂ has no influence on Sj, then the two terms in the logarithm
are identical and I(Sj  = s   ; x̂ ) is 0; if x̂ favors/disfavors Sj being s, then I(Sj  = s   ; x̂ ) is
positive/negative.

If sequence x̂ can be split into two parts x̂1 and x̂2, e.g., xi and xi–1xi+1, then we can
define two quantities. The information that x̂1 and x̂2 contain together about the
conformation Sj being s is written

(EQ12.7)

The information that x̂2 alone carries about Sj given that x̂1 also occurs is written

(EQ12.8)

These three terms of Equations EQ12.6 to EQ12.8 are related by the following equa-
tion, as is easily confirmed by substitution:

(EQ12.9)

Consider the mutually exclusive events of the jth residue either being in conforma-
tional state s or not in this state, which will be written s̄̄̄̄ . Expressions can be written
for I(Sj = (s : s̄̄̄̄ ); x̂ ), the preference (in information content) of x̂ for s over s̄̄̄̄ . 

(EQ12.10)

Note that because s and s̄̄̄̄ are mutually exclusive 
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A similar expression to Equation EQ12.9 holds for the terms for preference of s over
s̄̄̄̄ when x̂ is split into two components x̂1 and  x̂2:

(EQ12.14)

Figure 12.13 shows a representation of the information that a tripeptide sequence
xj–1xjxj+1 carries about residue xj being in state Sj. Terms such as I(Sj = (s : s̄̄̄¯); xj ) and
I(Sj = (s : s̄̄̄ )̄; xj+1) are represented by the circles labeled xj or xj+1, respectively. The
yellow area of the circle labeled xj–1 that is outside the circle labeled xj represents the
term I(Sj = (s : s̄̄̄ )̄; xj–1̇ xj ). This is because, as explained above, that term is the infor-
mation about Sj contained in xi–1 given that xi has already been accounted for.
Similarly, the green area of the circle labeled xj+1 outside the circles labeled xj and
xj–1 represents the term I(Sj = (s : s̄̄̄ )̄; xj+1̇ xj –1xj ). The identification of these terms in
the figure allows us to readily see that

(EQ12.15)

which could also have been derived by repeated application of Equation EQ12.14.
There are as many alternative forms of this equation as there are orders in which
the residue terms can be chosen. This concept can readily be extended to include
the effects of more residues, although a graphical representation is not easy.

The first term on the right-hand side of Equation EQ12.15 refers to a single residue
in the sequence. As written, the term refers to the mutual information of the residue
about its own structural state, but in the alternative forms of the equation it may
relate to the conformation of a residue some distance away. The second and third
terms involve two and three residues, respectively. Since there are 20 different
residues, there will be 400 of the second and 8000 of the third terms. The more
residues whose effects are considered, the more complex the terms involved. It is
not feasible to obtain so many parameters from the limited data available, and
therefore approximations are required. Referring to Figure 12.13, if we assume that
there are no overlaps we obtain the expression:

(EQ12.16)

Alternatively we could assume that all the circles only overlap with that of the
residue whose structural state is being considered, xj, to obtain:

(EQ12.17)

Three types of terms can be distinguished: self-information, directional informa-
tion, and pair information. The information a residue carries about its own struc-
tural state—I(Sj = (s : s̄̄̄̄ ); xj )—is called self-information. The information about the
structural state at the jth position carried by residue xi (where i π j)—I(Sj = (s : s̄̄̄̄ ); xi)—
is called directional information, and is independent of the type of residue found at
j. In contrast to this, the term  I(Sj = (s : s̄̄̄̄ ); xi | xj) takes account of the type of residue
at the jth position, and is referred to as pair information. This is the information
carried by xi about the structural state at the jth position given that the residue at
that position is of type xj.

In the GOR methods eight residues are considered to either side of the central
residue aj. The two approximations above now become:

I( ( ) ) I( ( ) ) I(S s:s ; x x x S s:s ; x Sj j j j j j= = = +− +1 1 jj j j j j js:s ; x x S s:s ; x x= + =− +( ) ) I( ( ) )1 1

I( ( ) ) I( ( ) )S s:s ; x x x S s:s ; xj j j j j j= = =− + −1 1 1 ++ = + = +I( ( ) ) I( ( ) )S s:s ; x S s:s ; xj j j j 1

I( ( ) ) I( ( ) ) I(S s:s ; x x x S s:s ; x Sj j j j j j j
= = = + =− +1 1 (( ) ) I( ( ) )s:s ;x x S s:s ; x x xj j j j j j− + −+ =1 1 1

I( ( ) ˆ ˆ ) I( ( ) ˆ ) I(S s:s ; , S s:s ; Sj j j= = = + =x x x1 2 1 (( ) ˆ ˆ )s:s ; x x2 1
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Figure 12.13
Diagram illustrating the
information three residues xj–1, xj,
and xj+1 hold about the structural
state of one of them, xj . The
information about the structural
state present in each of three
consecutive residues xj-1 to xj+1 is
shown as overlapping circles. The
orange-shaded area represents the
term I(Sj = (s : s̄̄̄̄ ); xj ); the yellow-
shaded area represents the term 
I(Sj = (s : s̄̄̄̄ ); xj–1˙xj); the green-
shaded area represents the term
I(Sj = (s : s̄̄̄̄ ); xj+1˙xj–1 xj). This is an
illustration of Equation EQ12.15.

xj xj-1

xj+1
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(EQ12.18)

and

(EQ12.19)

In Equation EQ12.19 the summation limits of m have been simplified to include the
term for m = j because it is zero anyway. The GOR I and GOR II methods use Equation
EQ12.18, whereas GOR III uses Equation EQ12.19. Note that only the first term in
Equation EQ12.19 is common to both expressions. GOR IV and GOR V use another
approximation where each term involves two residues, but unlike in Equation
EQ12.19 the terms involve all possible pairs of residues in the region j±8 residues.

To calculate these quantities for given residue types and structural states we return
to the probability formulae given earlier, and use a suitable structure database to
derive the values. P(Sj  = s ) is simply the fraction of residues of the database in struc-
tural state s, written ps. To obtain values for terms such as P(Sj  = s˙ xj ) we use 

(EQ12.20)

where the first equality comes from Equation EQA.4 of Appendix A. Note that this
particular term is the Chou–Fasman propensity (see Equation EQ12.4). For example,
the self-information terms can be calculated from Equations EQ12.13 and EQ12.20 as

(EQ12.21)

Terms such as P(Sj  = s˙ xj +m) involve the fraction of residue pairs m residues apart
(with residue types specified) in which the structural state of xj is s. To parameterize
GOR IV a database containing over 63,000 residues was employed.

Depending on the version of GOR, using an approximation—Equation EQ12.18,
EQ12.19, or another—at the jth position, the term I(Sj = (s : s̄̄̄̄ ); xj–8... xj+8) or 
P(Sj = (s ; xj–8 ... xj+8) / P(Sj = ( s̄̄̄̄ ; xj–8 ... xj+8) is calculated for all the possible structural
states s for all sequence positions. At a given sequence position the structural state
with the largest value is taken as the predicted state (see Figure 12.14). In early
versions these values could be modified by addition of constants, in an attempt to
introduce experimental estimation of the overall structural state composition for
the protein of interest, an option now discontinued. Unlike the other versions, GOR
V also includes information from homologous sequences, an aspect that will be
discussed in the following section.

The GOR method only considers the structural state of one residue at a time.
However, it is clear that structural states are correlated as, because of the very nature
of the structures involved, helical and strand residues occur in stretches. The theory
presented above has been extended to consider a consecutive pair of structural
states simultaneously. Each possible pair of structural states must be separately
parameterized, resulting for three states in a nine-fold increase in parameters,
which places very heavy demands on the dataset size for parameterization. A
further complication is that it is no longer possible to simply calculate a value for
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each state at each residue position. To overcome this problem a dynamic program-
ming technique is used to optimize the prediction. When implemented with nine-
residue windows the method seems to be an improvement on GOR IV according to
the average Q3 measure. For more detail of this method see Further Reading.

Choosing the largest structural state value at each sequence position can lead to
secondary structures just a single residue long. Usually the prediction is modified
by a filter (prediction filtering), which imposes a minimal length for the helices
and strands, typically four and two, respectively. This is a common last stage in
many prediction methods that lack any other constraint that prevents short
secondary structures.

Predictions can be significantly improved by including
information from homologous sequences
The accuracy of the GOR method described above increased with each successive
version, reaching an average Q3 of 64% for GOR IV. The lack of structural data is a
severe limit on further development based on using approximations to calculate
terms such as I(Sj = (s : s̄̄̄̄ ) ; xj–8 ... xj+8). An alternative approach that leads to signifi-
cant improvement in prediction accuracy is to include information from related
sequences. Instead of just using the sequence of the protein whose secondary
structure prediction is wanted, a multiple alignment is constructed following a
search for similar sequences, and the multiple alignment information is used to
predict the secondary structure. The first such method, called Zpred, was published
in 1987 and was a modification of GOR II. Details of the way that Zpred uses
multiple sequences are presented in Section 11.4.

The key observation that justifies this approach is that the protein fold is more
highly conserved than the sequence, so that segments of a multiple alignment are
expected to correspond to equivalent secondary structural elements. As has been
noted (see Figure 11.6), the correspondence is not exact, but it is clearly good
enough to be useful. By comparison to the same prediction method based on a
single sequence the increase in the average Q3 can be as much as 9%.
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Figure 12.14
The GOR III prediction for residues
228–358 of IgG binding protein G
from Streptococcus. (This region of
sequence has been chosen because
experimental structures are
available.) The three state
propensities are plotted in the
figure, and the prediction (the
largest propensity at each residue
position) is shown in the lower bar,
colored blue for a-helix and red for
b-strand. Above is the bar showing
the structures found experimentally.
Note the two correctly predicted
a-helices are located at much
stronger prediction signals than the
incorrect ones. At several places
secondary structures are predicted
that are only one residue long,
especially a stretch “HCHCH” about
position 345. These would normally
be removed from the final
prediction by a filter. The
experimental structure shown is as
defined in the two PDB entries for
Streptococcus IgG binding protein
G, with database ids 1PGA and
1PGX.
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The GOR V and Zpred methods use the same method to incorporate the informa-
tion from homologous sequences in the prediction. A secondary structure predic-
tion is obtained for each separate homologous sequence. These are then combined
using the sequence alignment to identify equivalent residues. The structural state
prediction score is averaged over all the sequences at each position of the query
sequence. The final prediction at each position is the structural state with the
highest average score. This could be subsequently modified by a filter to remove
short strands and helices.

An alternative method is possible, which takes the prediction for each sequence to
its conclusion of specifying the state of each residue, even applying the filter to
each sequence prediction. At this point, using the alignment to identify equivalent
positions in the sequences, the most frequently predicted structural state at each
position can be taken as the final prediction. This method uses the concept of the
so-called jury or majority voting technique. A further application of the filter could
be made to this averaged prediction.

Other ways of introducing information from homologous sequences have been
used in nearest-neighbor methods (see Section 12.3) and neural networks (see
Section 12.4).

12.3 The Nearest-Neighbor Methods are Based on
Sequence Segment Similarity
The secondary structure prediction methods described so far involve analyzing
known structures to determine individual residue or residue pair structural prefer-
ences and prescribing a technique for combining these into a prediction. In
contrast nearest-neighbor methods directly apply the raw data of the observed
structure for a given segment of sequence. If the structural state of a given residue
was completely determined by a surrounding sequence segment that was suffi-
ciently short for all possible segment sequences to be present in the structure data-
base, prediction would be a trivial process. It would suffice to locate the relevant
sequence in the database, which would then determine the structural state of the
central residue of the segment. 

The main practical problem with this approach is the lack of structural information
on all possible segment sequences so that similar sequences need to be examined.
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Flow Diagram 12.3
The key concept introduced in this
section is that similarity of short
sequence segments can be used as a
predictive tool if at least one of the
segments is of known structure.
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Hence the description of these methods will dwell at length on measures of
sequence similarity. Furthermore, usually the prediction is based on an average of
structures from a number of these similar segments, so the methods of averaging
are also discussed.

An additional difficulty, which affects all secondary structure prediction methods
based on local sequence, is that nonlocal effects do influence protein structure, so
that the size of segment that it is necessary to employ is difficult to define. In the
previous section it was noted that examples exist of seven-, eight-, and nine-residue
segments that have alternative structures (see Figure 12.12). However, the problem
is more serious than these observations might suggest, as a number of proteins are
known to have alternative folds with some regions having significantly different
conformations under different conditions. This situation is believed to apply to only
a small minority of proteins. The amyloidogenic proteins are a medically important
class of such proteins, and an approach to the prediction of their behavior will be
presented below. Other examples may have normal physiological functional impor-
tance, such as the hemagglutinin example shown in Figure 12.15, in which a pH-
dependent structural change is necessary for the influenza virus to invade the host
cell. All the current secondary structure prediction methods only propose a single
structure and clearly cannot reproduce these features. The difficulty is most
apparent in a discussion of nearest-neighbor methods because they use the
segment structures directly, and so will have either the alternative conformations in
their database or just one. Note that all the databases described in this chapter,
which are careful selections of known structures, intentionally remove the struc-
tures of proteins whose sequences are closely similar, and so are unlikely to include
these alternative folds. It is perhaps not coincidental that the nearest-neighbor
technique has been used to try to predict amyloidogenic sequence segments, which
might have alternative folds, details of which will be presented later in this section.

Note that the sequence similarity used by the nearest-neighbor methods is over only
short regions of perhaps 19 residues, but often fewer, so that there is no expectation
or requirement that the two sequences are true homologs. This is in contrast to the
use of sequence alignments in other secondary structure prediction methods.

Before describing the more technical details of nearest-neighbor methods we will
outline the basic procedure (see Figure 12.16). For each segment of the sequence
(often referred to as the window) the best gapless alignments are sought from a
database of protein sequences whose structures are known. This often involves a
scoring scheme developed specifically for the task, as will be presented below. A set
of the highest-scoring alignments (often 50 or more) are used to predict the struc-
tural state of the central residue of the window. The prediction may involve taking
the most commonly found states of the aligned residue, but may also involve
weighting by the score.
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(A) (B)Figure 12.15
Two alternative conformations for
the same sequence segment from
influenza virus hemagglutinin. The
environment of the protein is the
same except for a change of pH,
which leads to a switch in
conformation that is part of the
mechanism for fusing the viral
membrane to that of its host,
allowing the virus to invade the host
cell. The two structures are taken
from PDB entry 3HMG (A) and PDB
entry 1HTM (B). They show the
identical stretch of sequence, and
the regions are colored similarly to
help identify equivalent parts in the
two conformations.
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Short segments of similar sequence are found to have similar
structure
The existence of similar protein folds for homologous proteins is well established in
the structural databases. Exceptions to this such as presented by amyloidogenic
proteins are rare enough to be remarked on even when without clear physiological
or medical importance. However, the identification of substructures with general
sequence characteristics has only occurred relatively recently.

A number of attempts have been made to create a database of structural segments
with correlated sequences, of which just one will be described here to give a feel for
the results. The I-sites library of David Baker and co-workers contains approxi-
mately 250 identified short segments (3 to 19 residues in length) that show clear
correlation of structure and sequence for all occurrences within a dataset of nonre-
dundant protein structures. An example entry is shown in Figure 12.17 for an
a-helix that ends with a proline residue. As well as displaying the structural simi-
larity of the segments in this entry, the figure also shows the sequence similarity
and its relation to the structure. The I-sites entries are not completely independent,
and there are many relationships between entries. For example an a-helix in a given
structure might have a segment of the helix matching one entry, while the segments
covering the N and C termini of the helix may match other entries, such that the
entries overlap. In addition, the identified entries do not fully cover the range of
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hhhhcccccccchhhhh

17-residue window
centered on F261

nearest
neighbor score

1 304 4RHV1 202

2 238 5HVPA 5

3 234 6CTS 178

50 44 4PFK 296

structure residue

236 287

Figure 12.16
Secondary structure prediction of
Phe261 of chymosin B using the
NNSSP nearest-neighbor method
with a 17-residue window and 50
nearest neighbors. The three-state
secondary structure is shown
beneath each sequence segment,
with h, e, and c meaning a-helix,
b-strand, and coil, respectively. The
N-terminal residue number is given
for each neighbor. The scoring
scheme takes account of the residue
environment as well as a standard
alignment scoring scheme. Note that
all three structural states occur at
the central window residue in this
example. The final prediction for
Phe261 will depend on a weighted
average of the 50 different central
residue states, and in this case is
b-strand.

(A) (B) (C)

Figure 12.17
An entry from the I-sites sequence-
structure motif database—the
proline-containing aa-helix C-cap.
(A) The average f (red) and y (green)
dihedral angles of each of the 17
residues of the entry and color-
coded matrix of the log-odds scores
for each residue type at each
position, showing for example the
strong preference for proline at
position 15. Dark blue indicates least
favored amino acids, and red most
favored at that particular position in
the motif. (B) Thirty members of the
set are shown superposed, with the
backbone atoms drawn black and
the side chains in green. (C) A
representation of the key structural
features of the entry, shown using
residues 24–31 from PDB entry 2CTC
(corresponding to positions 9–16 in
part A), the a-helix shown as a broad
gray ribbon ending at the proline.
Highly conserved polar residues are
shown in green and nonpolar
residues in purple. The dotted line
shows a conserved hydrogen bond.
(Reprinted from J. Mol. Biol., 281,
C. Bystroff and D. Baker, Prediction
of local structure in proteins using a
library of sequence-structure motifs,
565–577, 1998, with permission 
from Elsevier.)
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structure and sequence encountered. Only about one third of all the database
residues were classified into one of the approximately 80 entries with the strongest
sequence–structure correlations.

The I-sites database and the chameleon sequence results mentioned earlier show
that although there is a definite relationship between sequence and structure it is
difficult to define this relationship for short segments. The addition of more protein
structures has, if anything, made the situation more complex, as there are now
many cases of nonhomologous sequences folding to the same protein domain. As
a consequence there are many cases of similar structure resulting from apparently
unrelated sequences, possibly obscuring the sequence–structure correlation.
Despite this, as will now be discussed, an approach to secondary structure predic-
tion based on such correlations has been quite successful.

Several sequence similarity measures have been used to
identify nearest-neighbor segments
The nearest-neighbor methods mostly use gapless alignments, so that the genera-
tion of all possible alignments is simple and feasible. The key difficulty is to define
the nearest-neighbor sequences by a quantitative measure. Despite the availability
of many substitution-scoring matrices used in sequence alignment (see Sections
4.3 and 5.1), most of these secondary structure prediction methods frequently
derived their own scoring schemes. In this section we will briefly survey some of the
measures used, the alternative ways in which the structure database search was
restricted, and the choice of nearest neighbors to use in the prediction step. Note
that this is not an exhaustive list, but is illustrative of the range of methods used.

The SIMPA96 scoring method is one of the few to use standard scoring matrices, in
this case BLOSUM-62. All segments whose alignment scores exceeded a cut-off
value are included in the prediction. A window of 15 residues is used, with a score
cut-off value of 13. In this method the entire set of known protein structures is
searched, and the original work in 1996 reported that on average around 3000
segments contributed to each residue prediction.

Tau-Mu Yi and Eric Lander restricted their method to use only the 50 highest-
scoring 19-residue segments to produce the prediction for the central residue. The
scoring system they used to identify the nearest neighbors was an equally weighted
sum of the Gonnet substitution matrix score (derived for normal sequence align-
ment problems) and a score made up of propensities in the log-likelihood form of
Equation EQ12.5. The propensities referred to 15 different states—five environ-
mental states for each of the three structural states (helix, strand, and coil), defined
using the known structure in terms of the solvent accessible fraction of the residue
side chain surface and the fraction of the side chain surface that is contacted by
polar atoms or solvent molecules. The rationale behind this scheme was that
methods based on such environmental classifications had proved useful in
predicting protein folds by alignment of nonhomologous proteins.

The NNSSP method uses a modified version of this scoring scheme with 12 struc-
tural states by distinguishing between the N- and C-caps and internal sections of
helices and strands, as well as the regions just to the N- and C-terminal sides of these
structures, b-turns, and coil. In addition NNSSP uses six different environmental
states, making 72 different residue states in all. However, the major difference is that
the set of protein structures to be searched for nearest neighbors is strictly limited.
Two methods were proposed to choose which proteins to include in the search. One
is a measure of the difference in amino acid composition, defined as

(EQ12.22)
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where the terms in the summation refer to the frequencies of occurrence of residue
type a in the query and database sequences, respectively. The other measure is
based on the Chou–Fasman propensities, and is given by

(EQ12.23)

where the summation is over the structural states s (just helix, strand, and coil), and
the query and database sequences have Nquery and Ndatabase residues, and their jth
residues are written xj and yj, respectively. This measure reflects the average differ-
ence in propensity over the sequence for each structural state. Only those database
structures that were among the closest 90 to the query sequence according to both
measures (i.e., the smallest 90 values of each measure) were included in the search
for nearest-neighbor segments. There is evidence for a correlation between amino
acid composition and protein structural class, which might explain why this selec-
tion procedure was found to marginally improve the accuracy of the secondary
structure prediction.

Steven Salzberg and Scott Cost proposed an alternative distance measure also
based on the idea of Chou–Fasman propensities. For a pair of residue types a and b
they suggested a distance measure

(EQ12.24)

where the structural states are labeled s as previously, and the sum is over the sign-
less propensity differences. Note that smaller values of dab indicate more similar
residues. The distance between two sequence segments is given by adding the dab

terms for all aligned positions, but it is also multiplied by a weight for the database
segment. This weight is based on previous effectiveness of the segment in correct
predictions, and is defined as the ratio of the number of successful predictions with
the segment to the total number of predictions made with the segment. The
segment scores are therefore smallest for the nearest neighbors.

All the methods mentioned above use a fixed-length sequence window although, as
is mentioned below, in some cases several different window lengths are used in
separate predictions that are then averaged to produce the final prediction. In the
SSPAL method the nearest neighbors are of variable length, and are high-scoring
gapped local alignments. Only 90 protein structures were searched for nearest
neighbors, selected using Equation EQ12.23. The 50 highest-scoring noninter-
secting local alignments (as can be obtained using the techniques described in
Section 5.2 and illustrated in Figure 5.17) are identified for each structure. The
scoring scheme used is very similar to that of NNSSP. All query sequence positions
will hopefully be aligned in a number of these local alignments, and to predict any
residue only the 50 highest-scoring alignments are used (see Figure 12.18). The
potential advantage of this method is that long alignments are likely to be highly
significant indicators of a similar protein fold, and might easily be missed by
restricting the alignments to short windows.

It is possible to include information from homologous sequences in nearest-
neighbor methods, and as for other methods this resulted in improved prediction
accuracy. However, the way this information has been applied here is significantly
different from the use in other secondary structure methods. All other such methods
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use homologous sequences of the query sequence whose secondary structure is to
be predicted. NNSSP and SSPAL use the HSSP database of homologous sequences to
known protein structures to augment the database of potential nearest neighbors.
Each of the aligned sequences in the HSSP entry for the database structure is scored
for the segment, and the average score is used instead of the score for the structure
itself. A similar procedure is used in SIMPA96 but the average over the aligned
sequences involves a sequence weight, using the scheme described in Figure 6.1.

A weighted average of the nearest-neighbor segment structures
is used to make the prediction
The simplest way to obtain a prediction based on nearest neighbors is to use only
the single nearest neighbor, assigning its structure to the equivalent segment of the
query protein. This is done by Salzberg and Cost, who use this closest segment to
predict the structural state of just the central residue of the query sequence window.
This results in no conflicting residue state predictions.

Most published methods only predict the structural state of this central residue of
each window. As a result the prediction for each sequence window is independent
of other windows. This is not the case for SSPAL (see Figure 12.18). Therefore even
when a set of nearest-neighbor segments is considered for a given window it is only
necessary to define the method for deciding between the predictions of the
different segments. One method is to simply count up the number of occurrences
of each structural state for the central residue of each nearest-neighbor segment,
and to predict the most commonly found state as that of the query sequence
residue. This weights all neighbors equally, despite the availability of a measure to
distinguish between them—the measure already used to determine the nearest
neighbors. NNSSP and SSPAL, in common with some other methods, use the simi-
larity measure to weight the predictions.

There is a potential problem in simply selecting the most frequent structural state
for the prediction, in that the states are not present in the database in equal frequen-
cies, for example usually having more a-helical than b-strand states. This bias can
cause errors in the prediction. In SIMPA96 the fractions of a-helix, b-strand, and coil
are multiplied by 0.84, 1.11, and 0.79, respectively, before choosing the highest value
to make the prediction. In developing NNSSP it was found that this balanced
prediction improved the b-strand prediction, but at the cost of overall accuracy as
measured by Q3. The difference between the highest and next-highest values can be
used to construct a measure of the confidence of the prediction.
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Figure 12.18
Secondary structure prediction of
Phe261 of chymosin B using the
SSPAL nearest-neighbor method
with 50 nearest neighbors. The 50
nearest neighbors for each position
will be those highest-scoring
nonintersecting local alignments
that include that position, taken
from the large set of such
alignments (up to 50 for each of 90
database structures). The N-
terminal residue number is given for
each neighbor. The three-state
secondary structure is shown
beneath each sequence segment,
with h, e, and c meaning a-helix,
b-strand, and coil, respectively. The
scoring scheme takes account of the
residue environment as well as a
standard alignment scoring scheme.
The final prediction for Phe261 will
depend on a weighted average of the
50 different central residue states,
and in this case is b-strand. This
prediction is dominated by the
highest-scoring local alignment
score, which is so much higher than
the others that it dominates the
prediction. (Adapted from
A.A. Salamov and V.V. Solovyev,
Protein secondary structure
prediction using local alignments,
J. Mol. Biol. 268:31–36, 1997.)
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Some methods make several predictions using different window sizes and simi-
larity measures, and then combine the different predictions into a final one. NNSSP
combines the predictions by simple majority, and also applies a filter to remove
helices and strands shorter than three and two residues, respectively. Yi and Lander
use a neural network to achieve the final prediction. In both cases this technique
succeeds in improving the average Q3 by about 1%.

Leszek Rychlewski and Adam Godzik developed a method that uses all the nearest-
neighbor sequence to predict all the query sequence segment states. This uses the
30 nearest 16-residue neighbors for prediction, but because all segment residues
are predicted, each residue of the query sequence is predicted from 480 neighbor
segments (16 sets of 30). Each neighbor prediction is weighted by its alignment
score, which was used initially for neighbor detection. The accuracy of the predic-
tion was found to be only slightly lower at the edges of the segments than at the
center, suggesting that most other methods may be ignoring useful information by
restricting the prediction to the central residue. However, the average Q3 prediction
accuracy of approximately 72% is similar to that of SIMPA96 and NNSSP. The
highest reported accuracy of the methods discussed is 73.5% for SSPAL when
including homologous sequence information.

A nearest-neighbor method has been developed to predict
regions with a high potential to misfold
An interesting application of the nearest-neighbor method has been reported,
which shows promise in detecting sequence segments that can misfold. Such
proteins are of medical importance, as a number of diseases such as Alzheimer’s
seem to be a consequence of such misfolded proteins. It is thought that the
misfolding region always misfolds to a b-strand-rich region. The HbP method is of
interest not just because of its novel application but also because of the modifica-
tions applied to the nearest-neighbor technique.

Long-range contacts with the sequence segment clearly have an influence on the
folded conformation, as is evident from the failure of any sequence window-based
prediction method yet proposed to be capable of perfect predictions for a database
of proteins. A simple measure of the long-range contacts is given by identifying all
nonhydrogen atom interresidue contacts of ≤4 Å where the two residues involved
are separated by at least four residues in the sequence. All such interactions can be
summed for each residue to obtain the TC (tertiary contact) measure.

The HbP method looks for seven-residue segments that have different conforma-
tional preferences for different degrees of long-range interaction as measured by the
TC values. The segment size is intentionally short to give a significant opportunity
to identify nearest neighbors that have different structural states for the central
residue. The method depends on finding such structural variation in the neighbors
to identify potential misfolding regions. The nearest neighbors were restricted to be
seven-residue segments in the structure database that have the same central
residue as the query segment. These are scored using the PAM30 substitution
scoring matrix, and the top 30 selected, provided their score exceeds 15.

The large variation in the size of amino acid side chains and differences in
hydrophobicity cause different residue types to have distinct ranges of TC, with the
average over a large protein structure database varying from about 6 to 25. The TC
values of the central five residues of each neighbor were analyzed, and the neigh-
bors classified into those with low, intermediate, or high TC values (see Figure
12.19). The fractions were determined of the low-TC neighbors with a central
residue in a-helical state, P(a|low)NN, and of the high-TC neighbors with a central
residue in b-strand state, P(b|high)NN. Instead of assuming these values to apply to
the query sequence, extensive analysis of the test data identified clear correlations
between these values and the number of nearest neighbors assigned as low TC and
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high TC, respectively. The correlation curves were used to obtain more accurate
values for P(a|low)query and P(b|high)query. Sequence segments were predicted to
have a significant potential to misfold into b-strand-rich structures if they did not
fold as b-strands in the native state and also had high values of these two calculated
values. An example prediction is shown for the hIAPP4–34 sequence associated with
amyloid fibril formation in type II diabetes (see Figure 12.20). 

12.4 Neural Networks Have Been Employed
Successfully for Secondary Structure Prediction
We will now look at the application of neural networks in this area, most of which are
of the feed-forward type. As will be discussed in detail below, such networks consist
of layers of units with communication between units in consecutive layers. All the
methods discussed so far in this chapter rely on some form of carefully designed
model and statistical analysis of the existing protein structure data to obtain the
prediction. The neural network technique appears to lack this element of design and
to use a brute force method to achieve the results. Some care is needed to design the
network structure, although in most cases this only seems to correlate closely with
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Figure 12.19
The HbbP method for predicting
amyloidogenic regions. This is
based on the nearest-neighbor
concept, in which neighbors are
classified according to the amount
of tertiary contact (TC). The
a-helical preference of the low-TC
neighbors and b-strand propensity
of the high-TC neighbors are used to
make the prediction. The final
prediction is based on correlations
observed between the number of
neighbors and proportion in the
a-helical or b-strand state and the
known structure in test cases.
(Adapted from S. Yoon and
W.J. Welsh, Detecting hidden
sequence propensity for amyloid
fibril formation, Protein Sci.
13:2149–2160, 2004.)
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the form of the input and output layer units. However, the form of communication
between units seems to lack any element of intentional design. For this reason the
application of neural networks can appear to not require careful thought. The
studies presented in this section show this to be a misconception, although a certain
degree of success can be achieved for minimal effort.

The neural network approach is potentially very powerful because a three-layer feed-
forward network can in principle represent a vast range of possible functional forms.
The term functional form is meant here in a very general sense, as the relationship
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Figure 12.20
The HbbP prediction method applied
to the hIAPP4–34 sequence
associated with amyloid fibril
formation in type II diabetes. The
predictions of P(a|low) and
P(b|high) are shown below the
sequence, with more intense color
indicating a stronger prediction. The
line below gives the PHD secondary
structure prediction, with a yellow
a-helix and a green b-strand. The
method predicts the central small
segment to be amyloidogenic, as
both P(a|low) and P(b|high) are
high. There is evidence that the six
boxed residues are actively involved
in the fibril formation, verifying the
prediction. (Adapted from S. Yoon
and W.J. Welsh, Detecting hidden
sequence propensity for amyloid
fibril formation, Protein Sci.
13:2149–2160, 2004.)

Flow Diagram 12.4
The key concept introduced in this
section is that neural networks can
be designed and parameterized to
successfully predict protein
secondary structure.
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between some input data and the output. We cannot write down an exact equation
relating protein sequence to secondary structure, but the neural networks consid-
ered here are certainly capable of representing forms much more complex than for
example those of Equations EQ12.18 and EQ12.19. Furthermore, the networks can be
parameterized by giving test sequences and their correct secondary structure
without any other information. The ability of the network to represent the link
between sequence and structure is not limited by our ability to express the link in
theoretical terms. Unfortunately it is difficult if not impossible to extract theoretical
insights from the successful neural networks we will discuss below. Therefore, while
their use has resulted in progress being made in accurately predicting secondary
structure it has not led to a better understanding of the underlying relationships.

In this section, we will begin by describing the details of layered feed-forward
neural networks in general terms, both of their structure and how they can be
parameterized. Following this the network structures frequently used for protein
secondary structure prediction will be described, including a survey of the ways of
representing the sequence in the input layer. The final part of this section will look
at some more complicated examples of the application of neural networks in this
area, especially the use of other network structures.

Layered feed-forward neural networks can transform a
sequence into a structural prediction
The basic structural element of a neural network is the unit or node. Units commu-
nicate with other units, receiving signals and sending out signals based on those
received. We will start by examining layered feed-forward networks, as they are the
most commonly used and the easiest to understand. In this case all the units are
arranged in layers, and there are restricted communications between units, in that
there is a clear direction to the units’ signals. Starting from the units in the input
layer, communication is from these units to those in the next layer, until the output
layer is reached (see Figure 11.20). In most of the networks we will consider in detail
all units in one layer communicate with all units in the next; these are often referred
to as fully connected networks. The consequences of some of these connections
being absent are trivial for the discussion that follows. The input data (in this case
the protein sequence) are encoded into the input layer units such that the informa-
tion is transmitted on by their signals to the next layer. The output of the output
layer units is the result (in this case the secondary structure prediction).

The simplest layered feed-forward neural networks have just two layers—the input
and output layers—and are usually called perceptrons. Their simplicity makes their
potential application more limited, but it also makes it easier to interpret their
features, as will be seen later. Any additional layers are called hidden layers and
although several could be used, in most cases there is just one, resulting in a total
of three layers. Each layer has a specific number of units, usually not related to the
number in any other layer. The number in the input layer is determined by the
nature of the input data. For example, if protein sequence is to be represented using
one unit for each residue type, for a 13-residue window this will require 260 (13 ¥
20) units. The output layer typically contains one unit for each possible secondary
structure state in the prediction. The number of units in any hidden layers is usually
determined by trial and error to produce the best results.

The signals emitted by a unit have values in a range, here taken as 0 to 1, and are a
response to the signals they receive. In the case of the input layer, the input data can
be regarded as the signal. The details of how this is done for protein sequences will
be presented later. Figure 12.21 shows the communications of a single unit in a
hidden layer, the vth unit of layer l. This layer has Nl units, each of which receives
signals from all the Nl–1 units of the preceding layer (labeled l–1). The uth unit of
this previous layer sends a signal su

(l–1) to every unit of layer l, the signal to the vth
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unit being modified by a weight wuv
(l). Thus, the total input signal of the vth unit of

layer l is given by

(EQ12.25)

Each non-input-layer unit also has a bias (sometimes called a threshold) which
shifts the total input; the bias of the vth unit of layer l is bv

(l). In addition each non-
input-layer unit has a response function (also called a transfer function) which
converts the bias-shifted input signal into the output signal. There is no require-
ment for all units in a network to use the same function, but it is unusual for units
in the same layer to use different functions. In the following discussion we assume
all units have the same response function, which is therefore simply written f. The
general equation relating the input and output signals is therefore

(EQ12.26)

For the type of application considered here (classifying a residue as having one of a
set of structural states) f is usually a step function (see Figure 12.22). This signal is
then sent to every unit in the layer l+1, but the signal is modified for each unit of
this layer by multiplying by the weight wvz

(l+1) for the zth unit.

The layers are processed in order from input to output. The output unit signals,
here usually in the range 0 to 1, are interpreted to obtain the result. In the case of
secondary structure prediction, usually each different possible state is associated
with a single unit in the output layer, and the signal strength of that unit is taken as
the measure of support for that state. A three-state prediction network of this type
will have three output layer units, which might produce signals 0.74, 0.34, 0.47 for
the a-helix, b-strand, and coil units, respectively. The prediction of this type of
network is the state whose unit emits the highest signal, sometimes referred to as
the winner takes all strategy, in this case giving a prediction of a-helix. Note that if
the output layer units have response functions of the kind shown in Figure 12.22,
the signals are not constrained to sum to any particular value and cannot be inter-
preted as probabilities. It is possible to ensure the output layer signals sum to 1 by
using the normalized exponential response function (also called softmax) 

(EQ12.27)
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Figure 12.21
A unit in a middle layer ll of a
layered feed-forward neural
network, showing the connections
to other units and the signals and
parameters involved.
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where the sum is over all output layer units z. In this case the output values can be
interpreted as probabilities. The networks described here use a sequence window
as input and interpret the output as the predicted state of the central residue.

The parameters of neural networks, namely the weights and biases of the units,
need to be specified before use in prediction. This is in addition to deciding on the
architecture, how many units to have in each layer, and the response function(s).
The values of parameters are usually determined by a process of training the
network using a set of data for which the correct output signals are known. In the
current context, this requires a dataset of protein sequences and the associated
secondary structure states of each residue. The training process is described in
detail in Box 12.1. 

One of the most important aspects of neural networks is the way the input data are
encoded within the network. In this section we will look at representing a single
sequence, leaving the discussion of multiple sequences for the following section.
There is a simple way to represent a single protein sequence, although as will be
discussed below it is not necessarily the best. The input layer units represent a
window of sequence. At each sequence position any of the residue types could
occur, so by having 20 input layer units for each residue position, the residue type
can be encoded in a straightforward way. Usually the unit corresponding to the
residue present at that position will have an output signal of 1, and the other 19
units will have signals of 0. These signals will be modified by the unit weights before
being transmitted to the next layer. This design is often referred to as orthogonal
encoding. Most networks also have another unit, often called the spacer unit, at
each position to account for the absence of a residue, which will occur at the N or
C terminus, although this can also be encoded by all 20 units having an output of 0.
While this representation contains all the sequence information, it requires a large
number of input layer units and often results in a network with many parameters to
fit. Several of the secondary structure prediction networks discussed below have
over 10,000 parameters, most associated with the input layer. An example of a
neural network for nucleotide sequence analysis that uses orthogonal encoding is
illustrated in Figure 10.14.

One of the first applications of neural networks to protein secondary structure
prediction was due to Ning Qian and Terrence Sejnowski. They made a detailed
study of the use of perceptrons and fully connected networks with one hidden layer,
all using the orthogonal encoding for the residues. (They tried other encoding
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Neural networks contain many parameters, such as the
biases bv and weights wuv, in some cases over 10,000
parameters in total. These are fitted using a training
dataset composed of sequences with known secondary
structures in a procedure called supervised learning.
This involves using the network to predict secondary
structures for the training dataset and learning a good
parameter set by step-by-step improvements based on
the prediction errors. Two aspects of the training of
neural networks will be explored. Firstly, the details of
the scheme to update parameters will be described.
Secondly, the importance of having a balanced training
dataset will be discussed, which involves careful consid-
eration of the secondary structure content and
sequence redundancy of the training data.

The method commonly used to iteratively modify the
parameters to improve the prediction accuracy is called
the back-propagation method. The essence of this
method is to use the network to predict sequences of
known secondary structure, from which the errors E in
the output can be calculated. More precisely, a sequence
window W is taken from the training database, and the
secondary structure of the central residue predicted and
compared with the known state. If we can calculate the
influence of the weights on this error, i.e., all the terms

EÔ w uv
(l), these can be used to derive new weights that

should result in a reduced error. This is a standard func-
tion optimization problem (minimizing E) using first
derivatives, dealt with in Appendix C, and discussion
here will be restricted to aspects particular to training
neural networks. The steepest descent method would
use the form

(BEQ12.1)

where h is a constant, here called the learning rate, and
Dwuv

(l) is the correction to be applied to wuv
(l) . However, it

is more common (because faster convergence is usually
achieved) to use a form related to conjugate gradients

(BEQ12.2)

where e is a constant called the momentum term, and
the labels (t–1) and (t) refer to two consecutive estima-
tions of the weights. Typical values of h and e used in
training secondary structure prediction networks are
0.0001–0.05 and 0.2–0.9, respectively. Note that similar
schemes can also be derived for other parameters such
as the unit biases, but these will not be given here.

To derive specific formulae for the derivatives EÔ w uv
(l)

we first note that the error E must be a function of the
output signals sv

(l), which in turn are functions of the
input signals Iv

(l), which are functions of the weights
wuv

(l). By application of the chain rule

(BEQ12.3)

Equation EQ12.25 yields

(BEQ12.4)

Note that this involves the signals from the previous
layer in the network. From Equation EQ12.26 the
middle term on the right-hand side of Equation
BEQ12.3 can be written ƒ¢v[Iv

(l)], where the prime symbol
indicates the first derivative of the function f. This is
usually easily calculated, in the specific case of the
logistic response function (see Figure 12.22) being

(BEQ12.5)

Note that when calculating the bias error gradients
EÔ bv

(l), the partial derivatives sv
(l)Ô bv

(l) are needed
and are identical to sv

(l)Ô Iv
(l). Leaving the response

function unspecified, Equation BEQ12.3 becomes

(BEQ12.6)

The terms EÔ sv
(l) have not yet been defined. Because

the signals sv
(l) are sent to all units of the next network

layer (except in the case of the signals of the output
layer units), the error E in the final network output will
have components from all these units. All these compo-
nents must be added together, so that the  EÔ sv

(l) can
be expressed in terms of the equivalent values for the
units of the layer next-nearest to the output layer using
the chain rule as for Equation BEQ12.3:

(BEQ12.7)

Using Equation EQ12.25, the last right-hand side term
is, w vz

(l+1) which on substitution gives
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(BEQ12.8)

The values EÔ sv
(l) are easily defined for the output

layer, which then allows the terms for the other layer
units to be calculated by back propagation of this
formula, hence the name of the technique.

There is a choice of definition for the network predic-
tion error E, which leads to different forms of the terms

EÔ sv
(l) of the output layer units. A simple and

commonly used definition of E is the sum of squared
deviations from the correct values, which for the predic-
tion of the structural state of the central residue of a
particular sequence window W is given by

(BEQ12.9)

where cv,W is the desired output of the output layer unit
v—0 or 1 according to whether that unit corresponds to
the actual structural state of the central residue of
window W. There are occasions when it can be argued
that the relative entropy (see Equation EQA.9) between
the signals and desired output is a more appropriate
measure. Using each window W to generate updated
parameters does not lead to stable optimization, and
often a batch of several hundred windows is used,
summing the errors.

To train a network, initial weights are assigned, usually by
taking random numbers in a range such as ±0.2. The
training data are predicted using the network, updating
the parameters for each batch. Because the predictions
for consecutive residues in a protein sequence are highly

correlated it is usual practice to randomly select the order
of windows for training. This training cycle is repeated,
predicting the training data many times, until the error is
sufficiently small or cannot be further reduced.

Considerable care is required in selecting the training
data, beyond the usual issue of ensuring there is
minimal homology between any of the proteins
involved. The dataset will contain uneven proportions
of the structural states, for example 47% coil, 32% helix,
and only 21% strand. If these data are used in these
proportions it will bias the network, as the training
would be twice as sensitive to coil as compared to strand
errors. To circumvent this, balanced training involves
selection of equal numbers of examples of the different
structural states. A sample of the data also needs to be
kept for testing the trained network, in order to obtain a
realistic assessment of the prediction accuracy.

The final training issue we will examine involves over-
training the network. Particularly when the network
contains a large number of parameters, there is a
tendency for the network to be trained beyond repro-
ducing general features, and to start reproducing the
particular features of the training data (see Figure
B12.1). The characteristic sign of this is that the predic-
tion accuracy as measured using the test data decreases
despite the accuracy of the training dataset prediction
having increased. There are two ways to respond to this.
The system can be frequently monitored, and the opti-
mally performing network used as the working version.
Alternatively, training can be stopped as soon as the test
data performance decreases. Neither of these is entirely
satisfactory, as they suggest the true accuracy will be
less than that measured on the test data. The optimal
solution is to remodel the network to use fewer param-
eters, which should reduce the ability to overfit the data.
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Figure B12.1
An illustration of overtraining a network. As the network is trained it
is tested to assess the current accuracy. The training time is measured
in epochs, an epoch being the presentation of the complete training
dataset. Thus by the end of the graph, the data have all been
presented 100 times to the network. The accuracy measured on the
training data continues to increase, meaning that the parameters are
still not fully optimized to fit the training data. However, the accuracy
measured on the test data (a set that is completely independent of the
training data) reached a maximum after approximately 20 epochs, and
subsequently the performance worsened. This is due to the network
learning specific features of the training dataset as opposed to general
features. (Adapted from S.K. Riis and A. Krogh, Improving prediction
of protein secondary structure using structured neural networks and
multiple sequence alignments, J. Comput. Biol. 3:163–183, 1996.)

BIF Ch12ts 5th proofs.qxd  17/7/07  14:20  Page 498



methods but could not obtain any accuracy gains with them.) One network they
trained used a 13-residue window, represented as a 273-unit input layer of 13¥21
units), all of which were connected directly to three output layer units. In principle
this network could reproduce the early GOR method as described by Equation
EQ12.18. The resulting network achieved an average Q3 of 62.5%, and the input
layer units had weights to the a-helix output layer unit as shown in Figure 12.23.
The simplicity of the network allows a straightforward interpretation of these
weights in terms of the residue a-helix preferences. The residues are ordered in
Figure 12.23 according to their weight in the central position of the window
(marked 0). A comparison with Figure 12.8 shows that this order correlates very
strongly with the order given by the Chou–Fasman a-helix propensities, yet this has
arisen purely through training the network.

When the network included a hidden layer there was only a very marginal improve-
ment in the average Q3, but the training of the network was more efficient. The most
accurate network had 40 hidden layer units. Recognizing that the network had no
way of correlating the secondary structure of neighboring residues, an attempt was
made to correct for this omission by using the output from the network as input to
a further network. The general structure of this network architecture is shown in
Figure 12.24. It has been used in several studies with modifications, including
PSIPRED and several versions of PHD. The first network is often called a sequence-
to-structure network, and the second a structure-to-structure network, the
names deriving from the meaning of the input and output. Using this cascaded
network architecture, Qian and Sejnowski obtained a system that gave an average
Q3 of 64.3%.

Many of the modifications to the basic scheme of Figure 12.24 involve extra input
data and extra output layer units for the sequence-to-structure network. In the
1996 version of PHDsec, apart from the units for a 13-residue sequence window,
the input layer of both networks has a further 32 units, 20 of which describe the
residue composition of the sequence, 4 of which give approximate information
about the sequence length, and 8 of which give an indication of how close the
particular window is to the N and C termini. The last 12 of these are simple 0/1
signals; for example only one of the four units reporting sequence length will have
a non-zero signal (with a value 1) indicating whether the length is ≤60, ≤120, ≤240,
or >240 residues. Thomas Petersen and colleagues used a similar scheme for the
sequence-to-structure network input layer, and also modified the output layer of
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The weights applied to signals
arriving at the aa-helix output layer
units from the input layer units in
the neural network of Qian and
Sejnowski. The areas of the circles
are proportional to the values of the
weights, with red circles for negative
weights and black circles for positive
weights. There is a general
agreement in terms of residue
preferences with the residue
propensities described in Section
12.2, although there are differences
with data such as used by the GOR
method. This form of weight
representation is called a Hinton
diagram.
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the same network. As well as trying architectures with three output layer units as in
Figure 12.24, they also tried networks with nine output layer units corresponding
to the prediction of the central residue of the window and the two residues imme-
diately adjacent. They called this output expansion, and, when used, all nine
signals were passed as input to the structure-to-structure network. In another
common modification of the model shown in Figure 12.24, a spacer unit is added
to the input to the structure-to-structure network, which usually results in four
units per window position.

Ideally the representation of the sequence in the input layer will only contain
information on those features which strongly correlate with the secondary struc-
ture. For example, in a network trying to predict just a-helices, having a single unit
at each window position with as output signal the value of the Chou–Fasman
helical propensity, might be an effective and efficient representation. The drastic
reduction in input layer units and thus parameters should make it easier to train
the network. However, such an approach risks imposing our misconceptions and
simplifications on a system that in theory can improve on them. It is possible to
achieve a similar effect while still allowing the network to identify the encoding.
Søren Riis and Anders Krogh proposed a network in which each set of 20 input
units representing one window position is represented in a first hidden layer by
three units (see Figure 12.25). All 20 input units send signals to all three hidden
units, involving a total of 63 parameters—60 weights and 3 biases. Since the inten-
tion is for the three hidden units to provide an encoding of the amino acids, this
structure is repeated at all window positions, with the same values used in all cases
for the 63 parameters. This technique of using the same weights for equivalent
parts of a network is called weight sharing. The first hidden layer will contain 39
units for a 13-residue window, and these send signals to units in a second hidden
layer, which then signals the output layer (see Figure 12.26). At the expense of this
extra layer requiring just 63 parameters, the 260 units of an orthogonal encoded
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Schematic representation of the
double neural network architecture
frequently used in protein
secondary structure prediction. The
network architecture details are
taken from the work of Qian and
Sejnowski. The large colored
triangles indicate schematically all
the connections (these are fully
connected networks), and the black
boxes immediately beneath them
represent units in a network layer,
with the numbers of units given in
each box. A single 13-residue
window (residues xj–6 to xj+6) is
shown for the sequence-to-structure
network, resulting in the initial a, b,
and coil structure prediction for the
central residue (xj) represented by
the black arrow. All the
communications between units
associated with this network are
drawn in green. The intermediate
predictions for seven positions j–3 to
j+3 are the input to the structure-to-
structure network, which produces
the final prediction for residue xj. 
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network have been replaced by just 39 units. As a consequence the total number of
parameters has been reduced by a factor of 20 or more.

Riis and Krogh applied these networks to the protein secondary structure problem
in a novel manner. Separate networks were used to predict the three states—
a-helix, b-strand, and coil—and, for each, several alternative networks were used
with slight differences such as different numbers of units in the hidden layer or
different training. In the a-helix networks a 3-residue pattern of connections was
used rather than full connectivity (see Figure 12.26), attempting to mimic some-
thing of the structural regularity of helices. These predictions were combined in a
similar manner to the structure-to-structure network in Figure 12.24 to obtain the
final prediction with an average Q3 accuracy in excess of 66%.

There are alternative ways to average over the predictions of several networks. For
example in PHDsec where the output layer of the structure-to-structure network
has three units for helix, strand, and coil states, the arithmetic mean of the partic-
ular structure state signals of all networks is calculated. This is referred to as jury
decision, and the final prediction of the residue structural state is taken as the state
with the highest average. An alternative method suggested by Thomas Petersen and
colleagues, and called balloting probabilities, uses the difference between the two
highest signals from the units of the output layer of the structure-to-structure
network as a measure of the prediction confidence. Only a subset of the separate
network predictions is used to make the final prediction, chosen as those networks

Neural Networks Have Been Employed Successfully for Secondary Structure Prediction

501

A C D E F G H I K L M N P Q R S T V W Y input 
layer 

first hidden layer 
with adaptive 
encoding 

orthogonal residue representation
of one window position

Figure 12.25
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employed by Riis and Krogh to
implement adaptive encoding. The
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Figure 12.26
Example of a Riis and Krogh
adaptive encoding neural network
architecture for aa-helix prediction.
The repeated red, blue, and black
triangles represent the adaptive
encoding as shown in detail in
Figure 12.25. The communication
from the first hidden layer to the
second has a repeat pattern
intended to mimic the helical
structure, and has been colored for
clarity. However, the weights are all
independent, and do not relate in
any way to the colors.
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with the highest average prediction confidence over the query sequence. The final
prediction is a weighted average of the output signals for this subset of networks,
weighted by the average confidence for the network over the sequence.

Inclusion of information on homologous sequences improves
neural network accuracy
All the neural network methods mentioned above have been described as applied
to the problem of prediction from a single protein sequence. As has been explained
previously in relation to other prediction techniques, including information from
homologous sequences can produce significant improvements in prediction accu-
racy. The same has proved to be the case for neural networks, and many of the
networks presented above have been modified to incorporate knowledge of homol-
ogous sequences. As was the case for GOR V and Zpred, the information used
involves sequences related to the query sequence. These sequences must be
provided to the neural network as a multiple alignment including the query
sequence.

Before exploring how this information is used in the prediction it is necessary to
briefly consider how it is obtained. Secondary structure prediction can only be
improved by homologous sequences if they are correctly identified and also
correctly aligned, or else they are likely to reduce the accuracy instead. If the predic-
tion program is to be truly automated, it needs to begin by identifying the sequences
homologous to a query sequence. This involves the methods described in detail in
Chapters 4, 5, and 6. Care must be taken not to erroneously include unrelated
sequences while still trying to include all homologous sequences, as there will not
be any manual intervention before the prediction when such problems could be
identified. Most methods currently use PSI-BLAST (see Section 6.1) and try to avoid
the problems just mentioned by restricting the search to three iterations, having
strict E-value thresholds, and by masking low complexity sequence segments (see
Box 5.2). Some researchers have proposed masking all predicted coiled coils and
transmembrane helix segments or even removing from the sequence search data-
base any entries with such regions.

There are two fundamentally different ways of including sequence homology infor-
mation in a prediction. Each homologous sequence can be used separately to
obtain a secondary structure prediction, followed by averaging these single-
sequence predictions on the basis of the alignment to produce the final prediction.
This is the method used by GOR V and Zpred, and presented in Section 12.2, but has
also been applied to neural networks by Riis and Krogh as discussed below.
However, most neural network prediction methods use the alternative technique,
in which the information present in all sequences is used to modify the input to the
neural network, resulting in a single prediction for the entire alignment.

Riis and Krogh used each homologous sequence independently to predict a
secondary structure, arguing that any other way of using the aligned sequences as
input to the neural network would lose information on the correlations between
nearby residues in the sequence. These correlations are precisely the information
used as the basis of the GOR methods (see Section 12.2). Once the predictions have
been made for all the sequences, they are averaged using the sequence alignment.
Each sequence is assigned a weight, based in part on a measure of the entropy of the
alignment. Two forms of prediction average are possible. The individual structure
state signals can be weighted and then averaged, taking the largest resulting value at
each position as the predicted state. Alternatively, and used by Riis and Krogh, the
individual sequence predictions can be resolved to states at each position, and then
the weighted average of the states at each position can be used to determine the
alignment-based prediction. A final step in their method was to apply a filter, in this
case a 15-residue window three-layer neural network that took account of the
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degree of conservation at each position and the presence of indels. This method
produced a Q3 improvement of 5% over the single sequence prediction, and an
average Q3 accuracy of 71.3%.

Almost all other neural network secondary structure prediction methods include
homologous sequence information by using the multiple alignment to modify the
signals in the input layer. When the input layer uses orthogonal encoding for the
residues this has the advantage that all the information can be input using the same
network architecture as for single sequence work. In the 1996 version of the PHDsec
prediction method each sequence position is represented in the neural network by
24 units. The residues at each alignment position are represented by their frequen-
cies, which directly replace the 0/1 representation of the single sequence. There are
an additional four other units—three directly related to the multiple sequence
alignment and one spacer unit as described previously. One unit has a signal that
corresponds to the number of gaps (deletions) in the alignment at that position.
Another unit’s signal corresponds to the number of insertions at that position, since
only the alignment positions in which the query sequence is present are explicitly
modeled in the network. A further unit signal is related to the residue conservation
observed in the alignment at that position. The PHDsec method achieved an
average Q3 accuracy above 72%.

The PSIPRED method of David Jones uses a PSSM created using PSI-BLAST as the
source of information on homologous sequences, as shown in Figure 11.24. Since
the PSSM contains residue alignment scores rather than frequencies (see Section
6.1) there are both positive and negative values, and these need to be converted to
be suitable signals for the input layer units. The PSIPRED method uses a scaled
logistic function for this (see Figure 12.22), where terms e-X are replaced by terms
e mX with m a constant. The average Q3 accuracy for this method exceeded 75%. The
PSI-BLAST PSSM is currently acknowledged as the optimal way to introduce
homologous sequence data into the prediction, although there are variations in the
fine details of implementation.

More complex neural nets have been applied to predict
secondary and other structural features
A number of studies have used neural networks to predict b-turns, with some even
trying to predict which class of b-turn. The BTPRED method for predicting an
unclassified b-turn uses a feed-forward network with a single hidden layer, very
similar in architecture to the sequence-to-structure networks mentioned above.
However, the input layer (representing a nine-residue window) uses 23 units per
residue—20 for the sequence using orthogonal encoding (homologous sequences
are not used in this method) and three that are from the output of PHDsec for the
central residue. PHDsec produces reliability indices, which are a scaled measure of
the difference between the highest and next highest output signals, in the range 0–9
in PHDsec, but converted to the 0–1 range here. The problem of balanced training
sets was explored in some detail during the training of this network.

The Betaturns method has separate networks to predict the different classes of
b-turn. This method can use PSI-BLAST PSSM data as input, and uses a two
network system similar in general structure to Figure 12.24. This method also
includes the secondary structure prediction, this time from PSIPRED, and this time
that information is included in the second network together with a single output
unit signal from the first network. Thus each residue position is represented in the
input to the second network by four units.

An iterative architecture known as a cascade-correlation neural network is used in
the DESTRUCT method for helix, strand, and coil prediction. This method also
predicts the y torsion angle of each residue, which is known to discriminate quite
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well between residues in helices and strands (see Figure 12.27). Using a 15-residue
window and a PSI-BLAST PSSM, two separate networks with one hidden layer were
used to obtain preliminary predictions of the three structural states and the y angle
of the central residue. These initial values were then used in an iterative network
(see Figure 12.28) to make the final predictions. Three iterations were found to give
the most accurate results, improving the average Q3 by 5% from the initial predic-
tion. The network was trained using a technique involving second derivatives (see
Appendix C) and incorporated a method for adding hidden layer units in a
controlled way to improve performance. This method is reported to have an
average Q3 prediction accuracy in the region of 80%.

Another network architecture that has been found useful for secondary structure
prediction is the bidirectional recurrent neural network (BRNN), as implemented in
SSpro. This network design (see Figure 12.29) has been used for normal three-state
predictions, and also to predict all eight DSSP structural states (see Table 12.1). Only
a brief overview can be presented here, and the original papers must be read for
further details. The prediction for the central residue of a window does not only
depend on the sequence of that window, but also on two hidden layers, one (F)
derived using the sequence N terminal and the other (B) derived using the
sequence C terminal of the window. These two hidden layers (called the forward
and backward contexts) are derived by iteration along the sequence, one position
at a time from the ends, and have as index the sequence position of the residue
whose structure prediction they directly influence. The structural prediction of
residue xi is determined by signals from the output layer units that have direct
connection with the units of contexts Fi and Bi and also from the hidden layer,
which receives the window input Ii. Fi is obtained iteratively, starting at F0, with Fi

being the direct result of context Fi–1 and Ii. Bi is also iteratively determined, in this
case starting at the C terminal, with Bi being the direct result of context Bi+1 and Ii.
This method has an average Q3 accuracy of approximately 78%.

12.5 Hidden Markov Models Have Been Applied to
Structure Prediction
The prediction of protein secondary structure can also be achieved using hidden
Markov models (HMMs). The basic concepts behind HMMs were presented in
Section 6.2 in the context of sequence profiles, but examples of the use of such
models were also given for gene annotation work. (See Figures 10.9 and 10.19.) We

Chapter 12: Predicting Secondary Structures

504

-1
80

 
18

0 
-1

60
 

16
0 

-1
40

 
14

0 
-1

20
 

12
0 

-1
00

 
10

0 
-8

0 80
 

-6
0 60

 
-4

0 40
 

-2
0 20

 0 

y angle (degrees)

0 

2000 

4000 

6000 

8000 

10,000

12,000

14,000

fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

coil
strand
helix

Figure 12.27
The correlation of secondary
structure with yy angle. Almost all
a-helical residues have a y angle 
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all b-strand residues have a y angle
of 100–180∞. (Compare with
Figure 12.2.)
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shall present some HMMs that have been designed to predict a number of different
specific structures. In this subject area, they are most commonly used in the predic-
tion of secondary structural elements of membrane proteins, although their use in
globular proteins will also be described. The models used for membrane protein
work are notable for the explicit representation of the protein architecture in the
structure of the model itself. 
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Figure 12.28
The architecture of the neural
network used in the DESTRUCT
method. On the left side are the two
networks that produce (upper
network) the initial secondary
structure and (lower network) the y
predictions. These both have as
input only the sequence information
from the PSSM, in a 15-residue
window. The right side of the figure
shows the iterative network
architecture, which consists of two
independent networks. The upper
one predicts y from the PSSM and
three-state secondary structure
prediction. The lower one predicts
the three-state secondary structure
from the PSSM and y prediction.
The networks are run iteratively to
convergence. (Adapted from Fig. 1 of
Wood & Hirst, 2005.)

Figure 12.29
The bidirectional recurrent neural
network (BRNN) used in the SSpro
prediction method of Pollastri et al.,
2002. The working of this complex
neural network is briefly described
in the main text. The left part of the
network is called the forward context
(F), and the right part the backward
context (B). The output layer (Oi) has
three units, corresponding to
predicting a-helix, b-strand, or coil
for residue i. The hidden layers are
all colored blue. (From P. Baldi et al.,
Exploiting the past and the future in
protein secondary structure
prediction, Bioinformatics
15:937–946, 1999, by permission of
Oxford University Press.)
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HMM methods have been found especially effective for
transmembrane proteins
Membrane proteins typically have several membrane-spanning segments (either
helices or strands) connected by segments that lie outside the membrane in the
extracellular (outside) or cytoplasmic (inside) space. The segments outside the
membrane are commonly referred to by the prediction methods as loops, which
may be short loops like the segments called loops in globular proteins, but may also
be larger segments, even multidomain globular folds. The HMM prediction
methods for membrane proteins use models that explicitly include these different
segments, and in addition distinguish between the central part of transmembrane
helices and the end regions, usually called caps.

Gábor Tusnády and István Simon constructed the HMMTOP model (see Figure
12.30) of membrane proteins with transmembrane helices. This model has three
key components that model the helix, tail segments at either end of the helix, and
loop regions (see Figure 11.36). In addition a distinction is made between extracel-
lular and cytoplasmic segments. All possible transitions between states are shown
in Figure 12.30. For the helix and tail segments this structure enforces the observed
length distribution. The length distribution for the loop segments will be similar to
that shown in Figure 6.10 for the HMM model of Figure 6.9. The HMM parameters
were estimated using known structures in an equivalent way to that discussed in
Section 6.2 for fitting profile HMMs with aligned sequences. The probabilities for
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emitting residues were obtained from the observed residue frequencies in the
different states, modified by pseudocounts. Homologous sequences can be
included in the method by multiplying together the prediction probabilities for
each sequence.

The TMHMM prediction model has a very similar architecture to HMMTOP, differing
mainly in the treatment of loops (see Figure 11.34). The tail states of HMMTOP are
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The architecture of the HMMTOP
model for transmembrane helix
prediction. The transmembrane
helices have a length of 17–25
residues corresponding to Hmin and
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indicate the reported structural
states, so that a segment from an
inside loop to an outside loop might
be written “IIIiihhhhhhhhhhhhhhhh
hhhoooooOOOO.”
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incorporated in the loop model of TMHMM, but the five residues at the ends of the
transmembrane helices (called caps) are explicitly modeled. The helix model of
TMHMM has a length of 5–25 residues excluding these caps. The cytoplasmic and
short extracellular loops in the model have specific states and transitions that allow
for a length of 0–20 residues, with a single globular state like the loop state on
HMMTOP. In addition there is a long extracellular loop model up to 100 residues in
length designed to represent entire globular domains. This has 10 loop states leading
to a three-state globular domain model, followed by another 10 loop states.

It was noted that the signal peptide, whose function is to initiate the insertion of the
membrane protein into the membrane, has similarities to the transmembrane helix
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The PROFtmb HMM model for transmembrane bb-barrel
prediction. (A) The architecture of the PROFtmb HMM model.
Two b-strands are explicitly represented, an “up” and a “down”
strand, each of which has alternating distinct hydrophobic and
hydrophilic environments. Three alternative cytoplasmic loops
can be modeled—four- and five-residue b-turns and larger
loops, all shown on the left side of the model. The extracellular
model does not include the b-turn models. To allow for different
b-strand lengths, the blue transitions to and from the b-turn and

loop models can have come from or go directly to any state in
the blue box. Similarly, the outside loop connects directly with
any state in the red box. (B) A schematic of the R. blastica porin
structure showing, for part of the molecule, how the residues
have been assigned structural states. Note that the b-strands are
significantly shorter than the maximum length of the model. 
(A and B, from H.R. Bigelow et al., Predicting transmembrane
beta-barrels in proteomes, Nucleic Acids Res. 32:2566–2577, 2004,
by permission of Oxford University Press.)

Figure 12.31
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segments. The signal peptide often includes a hydrophobic stretch of residues (See
Figure 12.11), although usually only 7–15 residues in length, shorter than most
transmembrane helices. Despite the difference in length, this can often lead to
incorrect prediction of these segments as transmembrane helices. The Phobius
method tries to circumvent this problem by including a model for the signal
peptide, and is an augmented version of TMHMM. The model includes the
membrane segment as well as the N-terminal region and the cleavage site. Phobius
has been found to be more accurate than both HMMTOP and TMHMM even when
they are combined with a separate signal peptide prediction method.

A number of models have appeared in recent years for single-chain b-barrel
membrane proteins. These barrels have an even number of b-strands of 6–22
residues with an average length of 12 residues. Figure 12.31 shows the architecture
of the PROFtmb HMM model, which in common with other proposed models
includes two b-strands, one in each direction across the membrane, as well as loop
and b-turn models for the nonmembrane segments. All the different regions of the
model can have variable lengths, in an attempt to model the observed length
distributions. The PRED-TMBB architecture is similar to this, but does not have
the b-turn models, instead having explicit N- and C-terminal models on the cyto-
plasmic side.

Nonmembrane protein secondary structures can also be
successfully predicted with HMMs
Hidden Markov models have also been applied to the prediction of globular protein
secondary structures. YASPIN is one of the most accurate three-state prediction
methods, and uses a combination of neural networks and an HMM called a hidden
neural network (HNN). A 15-residue sequence window is used with 20 input layer
units per residue representing the PSSM and an additional spacer unit. These feed
signals to a hidden layer of 15 units that in turn send signals to the output layer of
seven units. The seven output states from the neural network are a-helix (H),
b-strand (E), coil (C), the beginning and end of a-helix (labeled Hb and He, respec-
tively), and the beginning and end of b-strand (labeled Eb and Ee, respectively). The
four beginning and end states are each a single residue in length. The HMM is used
as a filter of the neural network output, converting this seven-state signal into a
three-state prediction. The HMM architecture is shown in Figure 12.32. The
shortest possible helices and strands in this model are three residues long, which
could be problematic as some strands are shorter than this.
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The architecture of the hidden
neural network of YASPIN. The
initial neural network has a seven-
state output, namely a-helix (H),
b-strand (E), coil (C), and the single
residue at the beginning and end of
a helix or strand (Hb, He, Eb, and Ee,
respectively). The architecture
allows consecutive stretches of
residues to be in the H, E, or C states
only. The output from the model
contains only three states—H, E,
and C—with the Hb and He
elements emitting state H, and the
Eb and Ee elements emitting state E.
(Adapted from from Lin et al., 2005.)
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An HMM method has also been used for coiled-coil prediction in the program
MARCOIL. The architecture of this HMM is shown in Figure 12.33, although for
clarity not all transitions are shown. Coiled coils have heptad repeats, with each of
the seven positions having characteristic residue preferences. However, the struc-
ture can begin and end at any of the seven positions. The HMM explicitly models
the first and last four residues of the coiled coil in the eight groups of heptad states
labeled 1–4 and 6–9. The central part of the coiled coil is modeled with the heptad
group 5, which is the only group that has transitions between heptad states in the
same group. All possible transitions occur between the heptad states of consecutive
groups, but they have low probabilities except for those that cycle through the
heptad states as in standard coiled coil. Only these standard transitions have been
drawn in the figure. One potential benefit of this model is that it does not use a
sequence window. Other coiled-coil prediction methods have often used a
28-residue window to reduce false-positive predictions, which limits the sensitivity
to detect short coiled coils. This model can in principle predict coiled coils of nine
residues or more. The probabilities for the transitions from group 5 states to group
6 states will determine the length distribution of predicted coiled coils. The transi-
tion probabilities of the model were predefined, and only the emission probabili-
ties fitted to data from known structures. Despite not being fully optimized,
MARCOIL has comparative accuracy with rival coiled-coil prediction methods.

12.6 General Data Classification Techniques can
Predict Structural Features
The protein secondary structure prediction problem is essentially one of classifica-
tion of each residue as belonging to one of a limited set of states. Therefore it is not
surprising that some of the standard classification methods have been found
useful, of which the example of neural networks has already been encountered. In
this section we will survey some of these applications to give an impression of the
variety of methods available. Some of the methods are described in more detail in
Chapter 16 where the problem of classification is covered more thoroughly as
applied to the problem of gene expression analysis.
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Figure 12.33
The HMM architecture of MARCOIL
coiled-coil predictor. States in
groups 1–4 represent the positions
of the four residues of the first
helical turn of the coiled coil, and
those in groups 6–9 the positions of
the four residues of the last helical
turn of the coiled coil. In each of
these groups there are seven color-
coded heptad states. Note that only
the transitions corresponding to the
standard progression of heptad
states are shown, but in addition all
heptad states have transitions of
smaller probability to the other six
heptad states of the next group. The
states of the group labeled “5”
represent the central segment of the
coiled coil, whose standard
progression is represented by the
blue transitions. The state labeled
“0” corresponds to all the residues
not in the coiled coil, and has a
transition back to itself.
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Support vector machines have been successfully used for
protein structure prediction
Support vector machines (SVMs) are a classification tool that when given data
input in the form of a vector produces an output that predicts to which of a limited
set of classes the data belongs. We will focus here on the specific aspects of this
method as applied to protein secondary structure prediction. Further details of the
technique are provided in Section 16.5. The most common application of SVMs is
as binary classifiers, in which role they distinguish between two alternative classes.
When dealing with three-state prediction (helix, strand, coil) these can be of the
form one-versus-one, for example distinguishing between helix and coil states, or
alternatively of the one-versus-rest form, which might distinguish helix from not-
helix.

Before describing how these binary SVMs can be combined to give a three-state
prediction, the method of representing the input will be discussed. A sequence
window is used as input, often a 15-residue segment. This is similar to the window
sizes used in previously discussed techniques, and clearly these methods are
analyzing equivalent information. Each residue position is represented by 20
values, often with an additional value equivalent to the spacer unit of neural
networks. Thus a 15-residue window is represented by a 315-value vector. When
using a single sequence as input, the 20 values representing a residue are filled with
the same 0/1 system of neural network orthogonal encoding. Aligned sequences are
usually represented using a scaled version of the PSSM from PSI-BLAST, although
early work used the residue frequencies, which may have been a factor in the lower
accuracy achieved.

In marked contrast to neural networks, these methods have few explicit parameters
to fit, usually leading to fewer problems when determining their optimal values.
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The key concept introduced in this
section is that some general data
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usefully applied to predict protein
secondary structure.
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One of the key parameterization decisions relates to the kernel function (see
Further Reading). In almost all cases of secondary structure prediction a radial
kernel function has been used. The issue of using balanced training datasets is as
important as ever. During training the support vectors are determined, which in
this area are reported to be numerous, possibly leading to significant computa-
tional requirements. SVMs use supervised training like neural networks, in which
the correct answers are provided.

A set of binary SVMs can be combined to give a three-state output in a number of
ways using a technique called a directed acyclic graph (DAG), which is a form of
decision tree, as shown in Figure 12.34. Each SVM shown is separately and inde-
pendently used to classify the window, and the results are used in combination with
the decisions to arrive at the final state prediction. This is not the only way of using
binary SVMs for this problem, as the final prediction can also be based on direct
comparison of the outputs of a set of three SVMs as shown in Figure 12.35. Usually
the output from these architectures needs to have a filter applied, similar to neural
networks, as consecutive residue predictions are not correlated. This can be done
by application of a further SVM, or by using other filter methods as was done for
neural networks. The accuracy of the best of these models was found to be compa-
rable with the best alternative methods described previously. The SVM method-
ology has also been applied successfully in other areas such as b-turn prediction.

Discriminants, SOMs, and other methods have also been used
The DSC method uses linear discriminant functions (see Figure 10.16) to predict
protein secondary structure. Firstly for each residue a three-state prediction is
obtained (reparameterized GOR-type prediction with Equation EQ12.18) using a
17-residue window. Further residue properties are obtained, including the distance
from the N or C terminus, hydrophobicity measures, and measures of residue
conservation, insertions, and deletions in an alignment of homologous sequences.
A total of 10 such measures is obtained for each residue, converted into distances
from the property mean in units of standard deviations (an equivalent of the
z-score in the statistics of normal distributions). A further 10 measures are obtained
by smoothing these values using nearby residues, giving 20 measures for each
residue. Three linear discriminants were defined, one for each of the helix, strand,
and coil states, each being a linear combination of the 20 measures. The initial
residue prediction is made by taking the state whose discriminant function returns
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the largest value. The prediction is refined by adding seven further measures that
relate to the whole protein, the fractional composition for certain polar residues,
and the initially predicted helical and strand content. These 27 measures are then
used with a second set of three linear discriminants to improve the prediction. In
the last step the final prediction is obtained by applying a rule-based filter. The
average Q3 accuracy of the method is 72%.

Linear discriminants have also been found useful in predicting unfolded segments
in proteins. Initial work had indicated a simple function based on the mean
hydrophobicity (using the Kyte–Doolittle scale) and the mean net charge would
distinguish folded and unfolded proteins. The FoldIndex method uses a 51-residue
window to make such predictions, with apparently comparable accuracy to alter-
native methods.

Another technique of data classification that is becoming popular is the Kohonen
self-organizing map (SOM), details of which will be given in Section 16.3. This is a
form of neural network, but with architecture very distinct from those discussed
previously in this chapter. The output layer consists of a set of units, usually in a
grid, only one of which will generate a signal for a given input. During training, the
weights of the SOM adjust such that (if successful) the different classes of data give
output unit signals in distinct regions. The GPI-SOM method uses this technique to
identify glycosylphosphatidylinositol (GPI) anchor attachment signals in a
sequence. The output layer is a grid of 40¥40 units (see Figure 12.36) that accurately
identifies these signals. The method required more computationally efficient
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A map of the output layer of the
GPI-SOM for predicting GPI anchor
attachment signals in a sequence.
It consists of 40¥40 units. Those
colored green indicate the
prediction of presence of a GPI
anchor attachment signal. The blue
squares indicate the absence of such
a signal and the red squares are no
prediction. The stars represent
squares that produce the prediction
for Saccharomyces cerevisiae
proteins. (From N. Fankhauser and
P. Mäser, Identification of GPI
anchor attachment signals by a
Kohonen self-organizing map,
Bioinformatics 21:1846–1852, 2005,
by permission of Oxford
University Press.)
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sequence representations than those previously discussed in this chapter, which
probably explains the relatively recent application of this method to these problems.

The final classification method whose use in structure prediction will be described
is multiple linear regression. The PSIMLR method uses PSI-BLAST PSSMs scaled
using a logistic function and a 17-residue window. The prediction is based on a two-
stage application of multiple linear regression. Each of the three structural states has
a linear equation associated with it that includes the PSSM of the window region and
terms representing the interaction of all pairs of residues in the window. The first
regression application predicts the structural state and solvent-accessibility for each
residue. These values are then added to the original terms and a second regression
applied to obtain the final prediction. This method is reported to have an average
accuracy comparable to that of the best neural network methods.

Summary
The prediction of protein secondary structure has been accomplished with varying
degrees of success using a wide range of techniques. Despite the availability of an
increasing set of experimental structures the predictions are still of great use. Hence
methods are still being improved, and the latest techniques are exploited to try to
improve the prediction accuracy. The last 10 years have seen improvements, but the
limits to the possible accuracy have yet to be achieved. These limits are set by diffi-
culties in unambiguously assigning secondary structures due to distortions from
the ideal geometries.

The methods whose basis can be most clearly understood involve the statistical
analysis of residue preferences and their modification by their surroundings. The
local sequence up to 8–10 residues distant clearly holds the key information, but
longer-range effects that are much harder to model also have an influence. When
direct analysis as employed in the GOR and nearest-neighbor methods failed to
achieve perfect results, attention moved to techniques commonly employed in data
classification. Neural networks have the potential to attain greater accuracy,
although their success was also due to improved ways of including information
from homologous sequences.

The prediction of secondary structures in membrane proteins started more
recently because it was necessary to wait until the structural information became
available that is required to parameterize the models. The thickness of the
membrane leads to larger average a-helix and b-strand lengths than in nonmem-
brane-associated globular protein folds, which makes the identification of the
structures a little easier. However, the methods became more ambitious in trying to
predict topology as well as locate structures. The HMM methods prove especially
effective for this problem, and considerable success has been achieved.

There are many other structural and functional features that can be predicted, such
as amyloidogenic regions, coiled coils, and various functional signals. These have
also been tackled with a variety of methods and varying degrees of success. Any
protein property that can be localized to a sequence segment and has some form of
signal within the sequence can, in principle, be predicted using the techniques
discussed in this chapter.
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PART 6

TERTIARY STRUCTURES

The folded form of the protein is the active and func-
tioning biological unit, and often provides information
about the function and binding of a specific protein.
There are experimental techniques, such as X-ray crys-
tallography and nuclear magnetic resonance methods,
for obtaining three-dimensional structures of mole-
cules. However, it is not currently possible to obtain
the three-dimensional structure of all biological mole-
cules using these techniques. Therefore computational
methods have been developed to predict the three-
dimensional structure of biological molecules, espe-
cially proteins.

The first chapter introduces some of the concepts
necessary to understand the methods available for
predicting the structure of proteins. The rest of this
chapter is then devoted to a detailed description of
how to model a three-dimensional protein structure
based on a homologous protein with an experimental
structure available. The second chapter deals with the
computational methods for obtaining and analyzing
further information from the tertiary structure of
proteins: how to use it to verify or predict a protein’s
function, how to find binding sites, and how to dock
small molecules to a protein.

Chapter 13
Modeling Protein

Structure 

Chapter 14
Analyzing

Structure–Function
Relationships 
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MODELING PROTEIN STRUCTURE

When you have read Chapter 13, you should be able to:

Summarize how to determine a protein’s three-dimensional structure.

Show how potential energy functions are used to describe protein 
conformational energies.

Show how statistical potential functions are used in protein structure prediction.

Describe the difficulty of modeling protein 3-D conformation ab initio.

Predict protein fold using threading.

Discuss the sequence and structure requirements for successful homology modeling.

State the principles of homology modeling and the stages in making a model.

Explain automated homology modeling.

Model the structure of the phosphatidylinositol kinase subunit p110a.

The three-dimensional structure—or tertiary structure—of a protein can be used
much more effectively than sequence alone to understand the protein’s function,
mechanism of action, and its structure–function relations. For example, residues
that are far away in the linear amino acid sequence can be very close together in the
actual folded protein. Knowledge of the three-dimensional structure is also essen-
tial for the rational design of site-directed mutations and drugs, and can explain
experimental observations such as binding specificities or antigenic properties. 

There are two experimental methods for obtaining three-dimensional structures:
X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. At
their best, these methods provide detailed and accurate structural information. In
general, X-ray crystallography is more accurate and can deal with larger structures,
but can only provide a static snapshot of the molecule. NMR, on the other hand,
although it can be less accurate, gives coordinates for structures over time, thus
providing the additional information of the protein’s internal motion. Both these
techniques are laborious, however, and require expensive equipment and elaborate
technical procedures. In addition, many proteins fail to crystallize, a prerequisite
for X-ray crystallography, or are insufficiently soluble for NMR studies.

Because of the cost and time involved in determining protein structures experi-
mentally, reliable methods of predicting a protein’s three-dimensional structure
from its protein sequence would be a great help now that vast amounts of sequence
data are available for many different organisms. A protein’s three-dimensional
structure is determined by its amino acid sequence, but how a particular sequence
folds into a given structure is not yet completely understood.

13
APPLICATIONS
CHAPTER
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Both homology modeling and threading make use of principles derived from what
is known about the natural folding of proteins to a stable structure. Out of all
possible structures, a protein adopts as its stable native structure or native state
the one that involves the lowest free energy. The entropic part of the free energy is
difficult to calculate, but it has been found that useful results can be obtained even
when the entropy is ignored. In this case, the native state is predicted to be that of
lowest enthalpy. This is referred to as the minimum potential energy; potential
energy is the enthalpic energy stored in the system in the form of the energy in
covalent bonds and noncovalent interactions, for example. Therefore, in theory, it
should be possible to compute the folding of a protein sequence into its native
structure using a potential energy function or force field that is derived from the
interactions between all atoms in the protein and between the protein and the
solvent.

The ab initio approach involves predicting the structure from first principles using
thermodynamic and physicochemical theory. In this approach all possible confor-
mations of a protein sequence should be evaluated to identify the minimum energy
structures. In practice only a subset of conformations is sampled, but the sampling
is designed to efficiently identify the low-energy conformations so that all impor-
tant conformations are examined. This approach can currently predict only small
single-domain proteins with sufficient accuracy to be useful for further work.
Moreover, this is often not an option due to a lack of available computing power.
However, these limitations may recede in the near future. Ab initio prediction is
briefly described in Box 13.1 

The most commonly used and best-developed methods for tertiary structure
prediction are of two main types. The first is called homology modeling (also
known as comparative or knowledge-based modeling), and relies on modeling the
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structure of the unknown protein with respect to the known structure of a homolo-
gous protein. We shall cover this method in detail in this chapter. The second
approach, known generally as threading or fold recognition, does not need a
homologous protein structure; instead, it attempts to model the sequence onto all
known protein folds to see which one it fits best. Once a possible fold has been

Modeling Protein Structure
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This chapter describes the prediction of protein structures based on
knowledge of the structures of their homologs or known folds. In prin-
ciple if an accurate force field is available to calculate the energy of any
conformation, the structure can be predicted completely independently.
This is the ab initio approach, and requires identification of the confor-
mation of the global energy minimum without having any prior fold
information to bias the search.

The complete set of conformations available to a protein is vast, and the
potential energy surface will have numerous local minima. This problem
is therefore a challenge in terms of the computer resources required, and
the most efficient conformational search methods must be employed.
Molecular dynamics and simulated annealing are effective for confor-
mational sampling, but still very computationally demanding.
Alternative methods based on Monte Carlo methods (see Appendix C)
have been found to provide the best combination of search efficiency
and computational speed. Often the geometry of the protein is simpli-
fied and the solvent is not explicitly represented, as these approxima-
tions can significantly speed up the calculations as compared to all-atom
protein models including solvent molecules. Some dramatic simplifica-
tions have been tried, including the representation of a residue or side
chain by just one atom. Even then, success has been very limited, and
currently only single-domain proteins have yielded useful results.

Some research groups have successfully predicted the structures of a
few single-domain proteins ab initio. One such technique involves two
key stages. At first only backbone torsion angles can vary, with all bond
lengths and angles fixed at idealized geometries and side chains repre-
sented by single atoms. Thousands of conformational searches are
performed using homologous sequences and Monte Carlo methods,
which are designed to explore all the folds that are likely to be favored
by the query sequence. The query sequence is then threaded (see
Section 13.2) onto approximately 500 models representing the range of
folds created. At this point all atoms are represented including
hydrogen atoms, and a force field is used that models solvent effects.
Following further Monte Carlo calculations, the prediction is made as
the model with the lowest energy. The results of two such calculations,
each taking many days, are shown in Figure B13.1. 

Intermediate methods between homology modeling and ab initio
methods have also been proposed, such as the ROSETTA/HMMSTR
method. In this technique the query sequence is searched against the
I-sites database (see Figure 12.17) to propose small folding motifs.
These are then refined using molecular mechanics calculations to
obtain the final model.

Box 13.1 Ab initio methods of tertiary structure prediction are too computationally
intensive to be used routinely

Figure B13.1
Typical plots of the energy of predicted
protein structures and RMSD (Root Mean
Square Deviation) in Ångstroms from the
correct structure of two single-domain
proteins. The black dots represent many
independent ab initio prediction runs. The
blue dots show the results of structural
energy refinement starting from the correct
structure. The lowest-energy ab initio run
is indicated by the red arrow. In (A) this is
within 1 Å RMSD of the correct structure; 
a successful prediction. In (B) the lowest-
energy prediction is unsuccessful at
approximately 11 Å RMSD. The proteins
studied were E.coli RecA (A) and human
Fyn tyrosine kinase SH3 domain (B). (From
P. Bradley et al., Toward high-resolution de
novo structure prediction for small
proteins, Science 309:1868–1871, 2005.
Reprinted with permission from AAAS.)

(A)

(B)
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identified, a more realistic structural model for the query protein can be obtained
by the techniques of homology modeling.

Following a brief look at how the energy of a protein conformation is calculated (see
Section 13.1), we will discuss how threading methods can be used to predict the fold
in the absence of structural homologs (see Section 13.2). In the remainder of the
chapter the homology modeling process will be described in detail, starting with a
description of the principles underlying homology modeling (see Section 13.3), the
stages in a homology modeling process (see Section 13.4), and some of the indi-
vidual programs available, including the automated packages (see Section 13.5). The
last section of the chapter (see Section 13.6) is a worked example, modeling the
phosphatidylinositol kinase p110a subunit on the structure of the related protein
p110g.

13.1 Potential Energy Functions and Force Fields
When modeling a protein structure, whether ab initio or in relation to another
protein fold, the aim is to obtain a structure of lowest possible energy that satisfies
the known stereochemical constraints on protein structures, such as allowable
values for backbone torsion angles f and y (see Section 2.1), and appropriate
packing of side chains. To explore the possibilities and assess whether a given
conformation is energetically favorable, the geometry of a protein conformation, in
terms of its atomic coordinates, is related to its potential energy by means of a
collection of equations known as potential energy functions. These represent all the
components that contribute to the overall potential energy of the protein. The
combination of all these energy functions for a given conformation is called the
force field. 

Two types of force field can be distinguished: those that calculate the potential
energy of a given conformational state that might include other molecules such as
solvent, and those that calculate an energy which includes statistically averaged
environmental effects. In this section we will briefly discuss both of these.

Once a force field has been specified the energy of any conformation can be
defined, and any energetically unfavorable regions identified, as can any strongly
favorable interactions. This can be useful in assessing proposed structures and
complexes. There are a number of techniques that can be used to predict native
conformations on the basis of identifying energy minima. They are described
below, emphasizing their relative strengths and weaknesses, as the details of the
algorithms are given in Appendix C. These methods are often collectively referred
to as molecular mechanics.
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The conformation of a protein can be visualized in terms of a
potential energy surface
The potential energy (enthalpy) of a molecule depends on the atomic coordinates
and the particular atom types, and can be defined for any conformation. In the case
of small molecules the conformation can be defined by just a few variables, often
the three coordinates of each atom. In the case of larger molecules such as a
protein, there are often hundreds or thousands of variables needed to define the
conformation. It is possible to draw a surface that represents the variation of the
potential energy as the conformation varies: the potential energy surface. An
example of this is the Ramachandran plot (see Figure 2.8). Although this is usually
shown with allowed and disallowed areas, these correspond to relatively lower and
higher potential energy, respectively.

According to thermodynamic theory, molecular systems will mostly be found in
those conformations that have the lowest free energy. This free energy includes the
contribution of entropy as well as the potential energy. The free energy surface of
such systems can be shown graphically in a figurative way (see Figure 13.1). The
surface is very complicated, reminiscent of a landscape in which the valleys and
peaks represent the location of energy minima and maxima, respectively. The
frequently occurring conformations will be those that lie at the bottom of the
deepest valleys—the point or points of the global free energy minimum. Diagrams
such as this are often referred to as a folding funnel in the case of protein systems,
when the conformations corresponding to points on the surface far from the global
energy minimum correspond to the protein in an unfolded state. Even when
looking at a simple cross-section of the surface, such as Figure 13.1B, it is clear that
locating the global minimum is not trivial. This point will be further discussed later
in this section, and also in Appendix C, where some techniques will be described for
locating minima.

It is very difficult to calculate the entropic component of the free energy, especially
for solvated systems, because it requires averaging the energy over very many states
of the system. However, in many cases it has been found that this component can
be assumed constant, and thus ignored while still obtaining useful results. There
are problems such as modeling protein folding where this assumption cannot be
made, but when modeling protein structure, the focus of this chapter, the approxi-
mation appears to provide adequate results. Under this assumption only the poten-
tial energy is calculated, which is done using simple terms as will now be described.

Conformational energies can be described by simple
mathematical functions
A molecular geometry can be defined in two distinct ways: external coordinates,
that is the values of x,y,z for each atom, and internal coordinates that are based on
simple chemical concepts such as bond length, bond angle, and torsion angles (see
Section 2.1). The conformation is the geometry as well as the atom types and often
a definition of the covalent structure, by which we mean which atoms are bonded
to each other, and the bond order (single, double, partially double, etc.). The poten-
tial energy of the molecule depends exclusively on the conformation. Thus, all the
components that define the conformation can be viewed as parameters that are
used to define the potential energy.

For the calculations of interest here, which do not involve modeling chemical reac-
tivity, the potential energy can be usefully separated into two components: that due
to the covalent bonding structure, and that—often referred to as nonbonding—
which is due to other interactions between atoms that are separated by at least two
covalent bonds. Hydrogen bonding is often represented by explicit terms, in which
case they are grouped with the other bonding terms. The nonbonding component
is usually restricted in protein modeling to the terms representing the electrostatic

Potential Energy Functions and Force Fields

525

(A)

(B)

Figure 13.1
A rugged energy landscape with
energy barriers, showing multiple
energy minima. The coordinate
system is centered on the global
minimum. (A) The horizontal plane
represents arbitrary conformational
coordinates and the vertical axis 
is the energy of the system. 
(B) A cross-section of this energy
landscape. (Courtesy of K. Dill and
L. Schweitzer.)
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interaction between atomic charges and the terms for the dispersion and repulsion
interactions (see Appendix B for further details). These are of necessity between
every pair of atoms in the system and thus use the external coordinate system.

In contrast, the covalent interactions are modeled in potential energy calculations
of proteins by using the internal coordinate system. This is very efficient, there
being approximately as many bond length terms as numbers of atoms, and often
fewer bond angle and torsion angle terms. (If external coordinates were being used
there would be a term to account for every atom interacting with every other atom,
resulting in many more terms.) Theories have been developed, for example using a
harmonic approximation, which lead to simple mathematical forms that describe
the variation of energy of chemical entities such as bond lengths (see Appendix B
for further details). Experimental evidence from the spectroscopy of small mol-
ecules suggests that to a fair approximation these terms relating to individual
internal coordinates contribute independently to the molecular energy. As a conse-
quence the bonding component of the potential energy of a molecule is often
expressed as a sum of many simple terms, each representing a particular bond
length, bond angle, or torsion angle. The spectroscopic results also suggest how
greater accuracy could be achieved, by adding cross-terms to the sum, these being
simple products of the individual terms.

The collection of algebraic terms and parameters in both the bonding and
nonbonding components is usually referred to as a force field. Usually all atoms are
defined as belonging to a limited set of atomic types—often 20–30—which makes
parameterization easier. These will typically distinguish between atoms that are the
same element but in different valence states. All bond length terms between two
atoms of given types will have identical parameters. A variety of different force
fields are available, including some specifically designed for use with proteins, such
as the programs CHARMM and AMBER. Typically the set of parameters is refined
over time, usually maintaining the same set of algebraic terms and atom types.

Because the goal of the calculations discussed here is to determine the conforma-
tion with the lowest potential energy, it is not necessary to obtain the absolute value
of the energy. All we need to know is the difference in energy between alternative
conformations. The force field terms do just this, so that for example bond length
terms give the energy relative to that of an assumed ideal bond length, which is
another parameter of the force field.

Because these force fields are not calculating absolute energy values, may use
different terms, and differ in parameterization, the same force field must be used
for all calculations in a study, as the values produced by different force fields will
usually not be directly comparable. In general, force fields can only be compared by
comparing their predictions.

Similar force fields can be used to represent conformational
energies in the presence of averaged environments
The potential functions described above represent the enthalpic energy of a molec-
ular conformation with all of the atoms of the system explicitly represented. Thus,
if the system contains only a protein molecule and no solvent molecules, the energy
calculated will be that of the protein in vacuo. To calculate solvated energy would
require explicit representation of the solvent molecules. It is possible to derive
potential functions—pseudo-energy functions—that do not have this require-
ment, and represent the missing atoms by energy terms that reproduce a statistical
average of their effect.

In protein structure prediction there are two different cases where pseudo-energy
functions are useful, representing either the solvent or local protein environment.
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An explicit representation of the solvent will usually require several thousand water
molecules as well as some ions, and additionally suffers from the need to average
over the vast range of possible solvent configurations. Often in structure prediction
the solvent is either ignored or the force field terms are modified to give better agree-
ment with solvated structures without using an explicit representation. This usually
requires modifying the nonbonding terms, which otherwise can lead to the protein
structure being too compact. Note that these potentials are not suitable for an
in-depth study of solvation or of any conformations that involve specific solvent
interactions, unless these particular solvent molecules are explicitly represented.

The pseudo-energy functions that represent statistically averaged local protein
structure are used in threading methods, whose detailed presentation will be found
in Section 13.2. They embody such information as the propensity of particular
amino acids, or a short sequence of amino acids, to be found in particular
secondary structures, the likelihood that particular residues will form hydrophobic
interactions with each other, and so on. They are all derived from statistical analysis
of databases of protein structure. The application of these potentials is almost
completely limited to threading, as their energies are not accurate enough for
detailed analysis of interactions.

Potential energy functions can be used to assess a 
modeled structure
When using potential functions that do not include statistically averaged effects,
the individual energy terms can be used to analyze any given structure. For
example, if a bond length strongly deviates from ideality (as defined in the force
field parameters), it will have a strongly unfavorable energy. Looking for such force
field terms will identify any regions of the structure that are unlikely to be realistic.
(There are cases in enzyme catalysis of unfavorable ligand conformations stabilized
by the enzyme binding site, but in general the local geometry as represented by
bond lengths, bond angles, and torsion angles is very close to ideal in protein struc-
tures.) There are programs, for example PROCHECK or MolProbity, which search
structures to identify energetically unfavorable regions based on stereochemical
geometry validation. Their application is discussed in more detail in Section 13.4.

A detailed analysis of the energy terms for a given conformation may also reveal
particular interactions to be highly stabilizing or destabilizing, giving insight into
the molecular function. While this is especially the case for a protein–ligand
complex, the key forces stabilizing a protein fold can also be revealed. The applica-
tion of this sort of analysis will be discussed more in Chapter 14.

Energy minimization can be used to refine a modeled
structure and identify local energy minima
As will be discussed in Section 13.4, even when a structure is modeled using a
template from a homologous protein, parts of the protein backbone, especially the
loops, will be different. There may also be stereochemical clashes in the positions
of some side chains, where different residues occupy the same position in target
protein and template protein. To help solve these problems molecular mechanics
techniques are used that will now be described. These methods, using a force field
to calculate energies, are able to remove unfavorable interactions and thus improve
the molecular geometry. In addition, they can explore available conformations to
locate those at energy minima.

The simplest molecular mechanics method for exploring the potential energy
surface is energy minimization. This procedure is made up of many steps, during
each of which the conformation is modified to give a new conformation of lower
energy. The series of conformations produced will gradually descend the nearest
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energy well until it reaches the bottom (see Figure 13.2A). Once at the local energy
minimum the process is stopped, reporting the conformation at the minimum as
the predicted optimal conformation. It is of particular use in homology modeling as
it allows side chains in the protein core to be relaxed so they can pack together
without overlapping. Often, the initial modeling produces a protein core in which
some of the side chains overlap. Energy minimization can relieve this bad geometry,
usually without making substantial changes in the other regions of the structure.

Energy minimization is the fastest of the molecular mechanics minimization
procedures, but at the cost of only locating the local energy minimum, namely the
bottom of the well that contains the initial conformation. As can be seen from
Figure 13.1, protein potential surfaces have many separate wells, of which most (if
not all but one) will have an energy at the well bottom that is not the lowest
possible. It is the global energy minimum that is required to produce the correct
prediction. One way of trying to increase the chances of locating the global energy
minimum with energy minimization is to make many runs—perhaps several
hundred or thousands—each starting from a slightly different conformation, and
then to keep the lowest energy conformation(s) from all these runs.

There are several alternative methods of achieving energy minimization. All of
them need an estimate of the energy gradient at the current conformation, being
the change in energy for a small change in each of the coordinates defining the
conformation. This can be understood in Figure 13.1 as the slope of the surface. The
changes applied to produce the new conformation are related to the gradient (see
Appendix C for further details). The simplest energy minimization scheme in
common use is the steepest descent method. This involves estimating the energy
gradient at the current conformation, and changing the coordinates to move
directly down this gradient. The amount of change is varied proportional to the
magnitude of the gradient, on the basis that near the minimum the gradients will
be small. A more sophisticated scheme, the conjugate gradient method, uses the
directions of two successive gradients to try to make a more intelligent guess at the
location of the minimum. Other techniques such as the Newton–Raphson method
require the gradient of the gradient—the second derivatives—and are therefore
much more costly in computer time, but do perform much better than the other
two methods in the vicinity of a minimum.

At any minimum the energy gradient is zero by definition, and the current value of
the gradient can be used as a measure of how close the conformation is likely to be
to that at the minimum. Usually the process is continued until the gradient of the
current conformation is less than a specified threshold, typically around 0.01 kcal
mol Å–1. If the gradient in any cycle is less than this value, the calculation is said to
have achieved convergence and is terminated. Sometimes convergence is not
reached, and often a limit is set for the number of steps (also called cycles) allowed.

Molecular dynamics and simulated annealing are used to find
global energy minima
In the real world, proteins are not rigid structures as might be wrongly deduced
from the common representations of protein folds. They have considerable flexi-
bility, and due to thermal energy the atoms are vibrating about the mean positions
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(A) (B)
Figure 13.2
An illustration of the movement of
the system over the energy surface
during the application of
optimization methods. (A) The path
on the potential energy surface
taken during energy minimization,
leading to the nearest energy
minimum, in this case a local
minimum. The path is drawn here
on a single slice of the energy
surface, but in practice will not be
limited in this way. (B) The path on
the potential energy surface taken
during molecular dynamics or a
simulated annealing run. This is
more likely to lead to the global
energy minimum. 
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that are listed as the atomic coordinates. The technique of molecular dynamics
involves solving the equations that predict the motion of the atoms in the molecule
over time (see Appendix C for further details). Thus at any point in time, the atoms
in the system have defined positions and velocities, and an estimate of the acceler-
ation of each atom is needed to determine its position a short instant of time later.
Usually the time step used is 1 femtosecond (10–15 second) and the calculation is
frequently run for several tens of thousands of steps. Such a calculation requires a
considerable computational effort, requiring large computer systems and many
hours for each calculation.

Molecular dynamics calculations are very useful in homology modeling because
the technique is able to cross small energy barriers that separate adjacent wells in
the potential surface. In this way a molecular dynamics run can escape local
minima and have a greater chance than energy minimization of finding the global
energy minimum well (see Figure 13.2B).

The parameter in molecular dynamics that determines the vibrational energy of the
system is the temperature, as this is related to the kinetic energy that the molecules
have. In standard molecular dynamics runs, this temperature (often 300 K) is spec-
ified at the start and kept constant. In the technique known as simulated annealing
the temperature is varied during the run. At first a very high temperature such as
1000 K is used, which gives the system sufficient vibrational energy to easily cross
high energy barriers. In this way many more potential surface wells can be sampled,
increasing the chance of entering the global energy minimum well. As the run
progresses the temperature is lowered, so that gradually the system is trapped in a
well, hopefully leading to the identification of the global minimum energy. In the
case of simulated annealing only the last part of the run is sampled, as that is when
the global minimum conformation might be found. If the computational resources
are available several runs from different starting points are used to increase the
chance of finding the global minimum.

13.2 Obtaining a Structure by Threading
Often no homologous protein with an experimentally solved structure can be found
to match the target sequence. Therefore structure prediction methods that do not
depend on homology have to be used. Ab initio methods are very computer inten-
sive (see Box 13.1) and rarely applied. From analysis of many experimentally solved
structures it has been proposed that there are only a limited number of different
ways a protein can fold, possibly less than 2000. If this is true, some sequences with
no detectable homology will have the same protein shape. This hypothesis has
been confirmed, as several such examples have already been observed experimen-
tally. Therefore many currently used structure prediction procedures depend on
fitting the target sequence to known protein folds and selecting the one that seems
the most energetically and stereochemically favorable. 

As we saw in Chapter 11, the same secondary structure elements can be formed by
many different sequences, and this is also true for tertiary structure. Numerous
examples are known of proteins with no detectable sequence similarity, but which
have strikingly similar tertiary structures. For example there are similar elongated
folds in the very distantly related tumor and nerve growth factors or the SH3-like
folds in sequentially unrelated proteins (see Figure 13.3). There are also many
supersecondary structures—distinctive combinations of secondary structure
elements—such as b-barrels, jelly-roll motifs, and Greek key motifs (see Chapter 2)
that are found in many different proteins.

Because fold recognition techniques do not depend primarily on sequence
comparison, a structural relationship between proteins may be recognized even if
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the sequence similarity is very low or nonexistent. This conservation of structure
can be due both to common ancestry and to the fact that physical constraints limit
the number of folds that proteins can adopt. Therefore, the same fold can occur in
a wide variety of different proteins.

The method of protein fold recognition or threading attempts to find folds that are
compatible with the sequence of the target protein (see Figure 13.4). It can be visu-
alized as pulling a string of amino acids through the fold and for each possible set
of aligned positions examining the compatibility of each amino acid with that
specific fold. The target sequence is aligned to each protein structure in a library of
folds and the compatibility of the sequence for that structure is calculated. This
procedure is repeated for all the folds in a library. If a template structure is found to
have a significantly high score, it is assumed that the target sequence folds in much
the same way as that structure. This can be contrasted with a related technique
commonly known as inverse protein folding, which involves searching a database
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Flow Diagram 13.2
The key concept introduced in this
section is that the technique of
threading can be used to predict
protein structures because it
identifies the most appropriate
representative protein fold from a
library of folds.

1BIA: ..FINRPVKLIIGDKEIFG-ISRGID-KQGALLLEQDGIIKPWMGGEISLRSAEK---------
1SHG:   MDETGKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVEVNDRQGFVPAAYVKKLD

(A)

(C)

(B)

1BIA 1SHG

Figure 13.3
The ribbon representation of the
structures of an SH3 domain. (A)
dihydrofolate reductase (1BIA) and
(B) a kinase (1SHG). The sequence
identity of these two domains is only
14.5%. Normal sequence alignment
programs would not identify these
structures as having a similar fold.
(C) A sequence alignment based on
the structural superposition.
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of protein sequences with a known protein structure to predict which sequences
are most likely to adopt that fold (see Figure 13.4). 

The prediction of protein folds in the absence of known
structural homologs
There are many proteins in the PDB that have been shown to have a similar fold,
including many homologs. It is unnecessary to use all these structures to predict the
fold of a target sequence. Therefore, libraries of unique folds have been developed,
some of which will be described in this section. Producing these libraries requires a
method for structure comparison. There are many such methods, but we will not
describe their algorithms here as they are not directly relevant to the threading
problem (see Further Reading). The evaluation of the compatibility of the target
sequence and a protein fold requires a scoring scheme. The schemes used are related
to some described in previous chapters, but are sufficiently distinct that we will
discuss some of their general aspects. The target sequence can be aligned with a
protein fold in many ways, and the threading method must determine the best for
each of the library folds. The algorithms used to obtain the optimal threading align-
ment are related to those for sequence alignment, but some differences will be
presented. There are several ways in which different methods make their final predic-
tion of a fold for the target sequence, not just based on the optimal alignment scores.
At the end of this section some of the ways of selecting the final prediction will be
discussed.

Libraries or databases of nonredundant protein folds are used
in threading
Currently there are around 35,000 protein structures in the PDB/RCSB/MSD data-
base. If we had to look at all these structures to predict the target this would be very
time consuming. However, many of these structures are of the same protein 
with different bound ligands or point mutations, or of proteins with similar folds.
Therefore libraries that contain only unique folds have been developed. Using these
libraries radically reduces the number of structures that have to be explored.
Currently, only 700–1500 structures are needed to represent those experimentally
determined.

There are several nonredundant fold libraries; CATH and SCOP are described here
as representative examples. These differ in how they classify protein folds, and also
in how individual structure folds are identified. CATH classifies protein folds at four
levels: Class (C), Architecture (A), Topology (T), and Homologous superfamily (H)
(see Figure 14.6). The level of interest in this section is the topology, which is effec-
tively a description of a fold. In the topology level the structures are classified into
fold families according to their overall shape and the connectivity of the secondary
structures using a structure comparison algorithm. In mid-2005 there were approx-
imately 900 different topology entries in CATH. The SCOP (Structural Classification
Of Protein) library classifies protein structures into three main levels: folds, super-
families, and families. The fold level is equivalent to the CATH topology level, and by
2005 there were more than 1000 different fold entries in the SCOP library. Figure 13.5
shows that the number of newly identified folds is decreasing or at least leveling off.
This suggests that the libraries might be approaching completeness, at least for
describing nonmembrane protein globular folds.

Two distinct types of scoring schemes have been used in
threading methods
Evaluation of the compatibility of the target sequence aligned with a protein fold
requires a quantitative measure of the structural environment. Many different
measures have been proposed, but they mostly fall into two classes. One class is a
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Figure 13.4
Diagrammatic representation of the
threading procedure. First,
segments of sequence are
structurally aligned (threaded) on to
a fold and a score/energy is
obtained for each alignment. A
dynamic programming technique is
used to find the alignment that has
the best score/energy. This is done
for each fold in the fold library, and
the results are ranked. The folds
giving the best-scoring results are
then selected for use in modeling
the query sequence.
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modification of the amino acid substitution score matrices discussed in Section 5.1.
These take account of the likelihood of a substitution given the nature of the envi-
ronment. The second class explicitly includes details of the structure in the vicinity
of each residue, involving inter-atomic distances or numbers of residues within a
specified distance.

The substitution matrices used for threading differ in one major respect from those
used for sequence alignments. In this case the two aligned residues are not equiva-
lent, in that one is at a particular location in the structural fold, while the other is in
the target sequence and in an unknown structural location. Because of this the
substitution matrices used are asymmetric, as substitution of an alanine in the fold
with a lysine from the target sequence is not equivalent to substituting a lysine in
the fold with an alanine. In the first case, the fold may not have sufficient space or
polar environment to accommodate the lysine. In the second case, the substitution
may cause a cavity and a hydrophobic residue in a polar environment.

The FUGUE method described by Tom Blundell and colleagues uses 64 distinct
scoring matrices, each defining a specific environment for the residue in the fold.
The environment is defined by three properties: four classes of main chain confor-
mation, two classes of solvent accessibility, and eight classes of hydrogen bonding
distinguishing between bonding involving side chain, main chain NH, and main
chain CO groups. These three properties are independent of each other and result
in the 64 defined environments. The substitution matrices were defined from a
structural database in an analogous way to that used to define the BLOSUM
matrices (see Section 5.1). The LOOPP method of Ron Elber and colleagues also
uses environment-dependent substitution matrices but these are derived differ-
ently from those of FUGUE.

Knowledge of the location of secondary structure elements in the template
sequence can be used to define variable gap penalties. A distinction can be made
between insertion and deletion with respect to the known fold. Insertions and dele-
tions in the middle of secondary structure elements are given high penalties
whereas those outside secondary structure elements are given very low penalties.

The second class of scoring scheme involves functions that all depend, to some
degree, explicitly on inter-residue distances in the protein fold. GenTHREADER and
LOOPP include terms that define the potential of mean force. These terms assign an
energy that depends on the distance between specified atoms. The backbone N and
O atoms and the side chain Cb of each residue are used in these terms, distinguishing
in addition interactions involving residues of short-(<11 residues), medium-, and
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Figure 13.5
A histogram of the number of new
protein folds identified by SCOP
each year. The data were obtained
from the RCSB Web site. The red
bars signify the cumulative number
of folds, the blue bars signify the
number of new folds identified in
that year.
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long-range (>22 residues) sequence separation. The number of observed specific
atom pairs (Cb Æ Cb for example) at a given distance is converted to an energy (see
Figure 13.6). 

GenTHREADER in addition uses a solvation potential for each residue which
depends on the number of Cb atoms located within 10 Å of its Cb atom. The number
of Cb atoms has been found to correlate well with the residue solvent accessibility.
Many other scoring functions have been derived involving the number of atoms
within a specified distance. One of the most common is the pairwise contact poten-
tial (PCP), which is similar to the potential of mean force. Another is the contact
capacity potential (CCP), which is intended to represent the hydrophobic contribu-
tion to the free energy of folding. These last two terms involve the fraction of pairs
of residue types in contact relative to the total of such pairs. The potentials are
defined as the logarithm of a ratio, in a similar way to the propensities described by
Equation EQ12.5. Many variations of these types of potentials have been used in
programs such as LIBRA and 123D+.

3D-PSSM uses a combination of the two classes of scoring schemes described
above. Instead of using substitution matrices it uses PSSMs (see Section 6.1) to
account for environmental effects along the sequence. PSI-BLAST is used to
generate a profile for each fold in the library. Where the library contains identical
folds for nonhomologous sequences, separate profiles are generated for each of
these folds. The final profile is generated by combining positions at equivalent loca-
tions in the different folds using structure superposition to determine the equiva-
lences (see Figure 13.7). In addition to this profile a solvation potential similar to
that of GenTHREADER is used.

Dynamic programming methods can identify optimal
alignments of target sequences and structural folds
The algorithms used by threading methods to obtain the optimal alignment of the
target sequence with each of a library of folds are closely related to the dynamic
programming techniques described in Section 5.2. However, particularly when
potentials of mean force are used in the scoring scheme, significant modifications
of the basic sequence alignment methods are required.

Some programs, like 3D-PSSM, only involve scoring terms that relate to one
sequence position. These techniques can use the standard dynamic programming
methods described in Section 5.2 to determine the optimal alignment of the target
sequence to the template structure. Because the two sequences are often of very
different lengths the end gaps are not penalized at all. This is often called
global–local dynamic programming. In the case of 3D-PSSM, profiles are
constructed for both the fold and the target sequence. The target sequence is
matched to the fold profile and the template sequence is aligned to the target
profile. The highest-scoring alignments from these are retained.
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Figure 13.6
An example of energy terms derived
from observed protein structures,
as used in threading programs such
as LOOPP. The plots show the
interaction energy for a specific pair
of amino acids as a function of
distance (in Ångstroms). (A) shows
the interaction energy for
interacting Val-Leu residue pairs,
and (B) the energy for interacting
Phe-Trp residue pairs.
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Methods that have scoring terms dependent on several sequence positions cannot
use the standard dynamic programming methods. GenTHREADER for example
uses double dynamic programming, a technique proposed by Willie Taylor and
colleagues. Other methods use dynamic programming schemes involving iteration
to obtain the optimum alignment.

Several methods are available to assess the confidence to be
put on the fold prediction
The highest-scoring alignment can be used to immediately propose the fold of the
target sequence. As was the case for sequence alignment it is necessary to evaluate
the significance of the score obtained and to use this to estimate the confidence of
the prediction. In addition some schemes use more complex methods to determine
the final fold prediction, in some cases involving neural networks.

The significance of the score obtained is usually determined by comparison with
the scores obtained using a set of randomized sequences. This is often known as the
shuffle test. The analysis is less rigorous than that used for sequence database
searching (see Sections 4.7 and 5.4), being usually based on assuming a normal
distribution of scores.

An alternative test is the Sippl test, named after Manfred Sippl, one of the origina-
tors of the threading technique. This method evaluates the accuracy of the
threading prediction for a target sequence of length N by generating a set of wrong
structures with the same sequence. To generate these incorrect structures the
sequence is fitted without gaps onto a database of folds that are of length N. If the
folds are larger, they are cut into N-length structural segments and threaded with
the target sequence. A score is calculated for all these N-length segments, and these
values are used to obtain a mean score and standard deviation assuming a normal
distribution. The score of the predicted fold is calculated relative to this distribu-
tion. If the prediction is correct it should have the best score.

In GenTHREADER the alignment score is just one of six properties or parameters,
which are fed into a feed-forward neural network that evaluates whether the target
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Figure 13.7
A flow diagram illustrating the steps
involved in generating the fold
3D-Profiles used in the 3D-PSSM
algorithm. Each sequence X0 in the
fold library is aligned using PSI-
BLAST with its homologs X1, X2, etc.
The SCOP database is used to
identify other structural homologs Y0

and Z0, which are also aligned with
their homologs using PSI-BLAST. In
this way PSSMs are created for the
different sequence families that are
associated with the same protein
fold as X0. These are combined with
data on secondary structures and
solvent accessibility to produce a
3D-Profile of the fold. An equivalent
profile is constructed for the 
query sequence, also based on
homologous sequences and (in 
this case predicted) secondary
structures. Dynamic programming
methods are used to align the query
profile with the 3D-Profile of each
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sequence has that fold (see Figure 13.8). The output layer of this network has two
units, with signals between 0 and 1, one signaling the fold is a possible candidate
and the other that it is unsuitable. If the signal from the former is greater than 0.34
the confidence of the prediction is described as MEDIUM, if greater than 0.79 it is
described as HIGH, and if 1.0 is described as CERTAIN.

The C2-like domain from the Dictyostelia: A practical example
of threading
The C2-like domain will be used as an example to illustrate the strengths and weak-
nesses of the most commonly used threading algorithms. The C2 domain is an all-
b phospholipid-binding domain distinct from the catalytic domain of PI3 kinases.
It occurs in many different proteins and in some cases is known to mediate interac-
tions with cell membranes. A C2 domain-like protein from the Dictyostelia was
chosen as an example. No significant homology is found by using BLAST on the
PDB sequences.

Several Web-based programs are used below with the C2 domain-like protein to
illustrate general aspects of these types of predictions. To run the prediction
programs, in the default modes, all that is needed is a target sequence. The results
are returned in various formats: some as text e-mails, while others also give a link
to HTML formatted results, along with figures and various scores. To simplify the
correct identification many programs, in addition to a numerical score, give a
verbal descriptor of the confidence of the prediction, such as HIGH in GenThreader
or CERTAIN in FUGUE. Two programs, PHYRE and LOOPP, provide a finished
model, making model building unnecessary if one is happy with the alignment.
LOOPP uses MODELLER (described in later sections in this chapter) to model its
threading results (see Figure 13.9)

The threading programs PHYRE, FUGUE, and 123D+ all identified the C2 domain
of cytosolic phospholipase A. Figure 13.9B shows the alignments from each method
between this template and the target sequence. Although there are small variations
in the alignments, the predictions of the b-strands are the same. The prediction of
the one helix present in the structure is different between PHYRE and the other two
programs. This difference in prediction leads to the helix being lost in the PHYRE
calculation (see Figure 13.9A). All the strands have been predicted, although in the
diagrams in Figure 13.9A some strands have not been drawn due to the cartoon
illustration using different secondary structure assignments (see Figure 12.3).
GenTHREADER predicts the top fold to be a C2 domain from phosholipase E. The
b-strands are similarly predicted, although there are more small insertions
throughout the alignment. The same residues are predicted as b-strands as in
FUGUE, PHYRE, and 123D+. LOOPP identifies as the top-scoring hit a C2 domain
from Rabphilin-a. A large insertion and a deletion are present within the LOOPP
prediction. This causes quite a different structural folding, although the b-core is
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Figure 13.8
The architecture of the neural
network used in the GenThreader
algorithm. Instead of using only the
energy scores to predict the fold,
they are combined with the initial
sequence alignment score and the
lengths of query and target
sequences, as well as the number of
aligned residues to improve the fold
prediction. The neural network used
is a standard feed-forward model as
described in Section 12.4, with six
hidden layer units and two output
units. The prediction is based on the
higher-scoring output unit.
(Adapted from D.T. Jones,
GenTHREADER: an efficient and
reliable protein fold recognition
method for genomic sequences,
J. Mol. Biol. 287:797–815, 1999.)
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conserved and obviously C2-like. In addition, a couple of different regions are
predicted as b-strands with respect to the other methods. As we can see from Figure
13.9A all the core structures are similarly predicted, but there are large variations in
the loop regions.

One method failed to identify the target sequence as a C2 domain fold. LIBRA
predicts the sequence to be caspase-8, an a/b Rossmann fold. Figure 13.10 illus-
trates the fold, the prediction, and alignment. It is very different from the C2-like
domain. 

Even though there was no significant sequence homology—the percentage iden-
tity ranges from 10% to 16%—between the target protein and the sequences in
the structural database, in general the fold prediction was successful. The C2 fold
was identified more than once. Therefore this fold would be used with a high
degree of confidence even had we not known that our target was a C2 domain.
Once the fold is identified, it is useful to use all the alignments provided by the
threading programs to correctly align the target protein. If more than one
threading program aligns regions similarly, these should be used as the core (or
conserved) regions. The rest of the sequences should be aligned on the basis of
these core regions. Once a relatively accurate alignment is obtained, homology
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Figure 13.9
Prediction results from different
threading programs. (A) A ribbon
representation of the modeled
predicted fold by different threading
programs compared to the fold that
the programs have used as a
template, which is the C2 domain
from phospholipase. (B) The
structural alignment given by each
program with the template. Strands
are colored in blue, helices in red,
and gaps in the alignment are
highlighted in yellow.
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modeling as described below can be carried out to generate a three-dimensional
representation of the threaded sequence.

To use threading methods to their full potential the following should be taken into
account. If the target protein is suspected to consist of multiple domains—for
example, if the amino acid sequence is very long—then the protein should be
divided into putative single domains. In some cases domains can be distinguished
by sequence features or experimental knowledge.

The same sequence will often give different results with different threading
programs, so run the sequence through as many as possible. If a fold appears in the
top 10 or 20 hits in different programs then it is more likely to be the correct answer.

If sequences homologous to your target are available, perform a threading study in
them as well. Different homologous sequences can also give different results from
each other. So, if the same family of folds is given for a homologous sequence, and
is also found by different methods, then it is very likely to be the correct fold. Even
if different folds are returned by different programs or homologous sequences, it is
often possible to choose a most likely fold by consensus.

Use whatever knowledge is available about the protein, such as its function, and
evaluate the protein folds that have been found by threading in the light of that
knowledge. If there is a functional similarity it again increases the likelihood that
the protein has been correctly identified.

Before modeling the predicted fold, check the alignment given by the program. If
possible edit the alignment to improve the areas of insertions and deletions with
respect to the core structure. Human insight and knowledge are powerful tools.

13.3 Principles of Homology Modeling
In the absence of an experimental structure for a protein, model-building on the
basis of a known three-dimensional structure of a homologous protein is, at
present, the most reliable method of obtaining structural information. This
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Templ  -DKVYQMKSK-PRGYCLIINNHNFAKAREKVPKLHSIRDRNGTHLDAG-ALTTTFEELHFE--IKPHDDCT-VEQIYEILKIYQLMDHSNMDCFICCILSHGDKGIIYGTDGQEAPIYELTSQFTGLKCPSLAGKPKVFFIQACQGDNYQ

Target MGKENQPKQEFKFGLYQGIVYE-AQDLNGKADPFVQVRAIKTDGTYSKVLFKSTVKKATLNPAWNEYDKIKVKDYVNDLLVELYDEDLVKNDFIGRQIISM---GRVR----SGI-FDEVVKFED--DKNNVKGTVRIKIERN-------

(A) (B)

Figure 13.10
Similar ribbon diagram as in Figure
13.9 for the prediction from LIBRA,
which did not identify a C2 domain
as the fold. The predicted fold (B) is
an a/b Rossman fold from caspase
as shown in (A).
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homology modeling approach is also referred to as comparative modeling or
knowledge-based modeling. It depends on the fact that the structures of homolo-
gous proteins are better conserved during evolution than the amino acid
sequences. Not only will most proteins with very similar sequences have almost
identical backbone structures, but even proteins with quite dissimilar sequences
can have similar conformations. 

The first homology models were built as early as the 1960s using wire and plastic
models of bonds and atoms (see Figure 13.11). The first published homology model
structure, in 1969, was of the small globular protein a-lactalbumin, which was
modeled on the basis of the structure of hen egg white lysozyme as the template
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Flow Diagram 13.3
This section describes some of the
basic principles of homology
modeling.

Figure 13.11
A photograph of a wire model of
sperm whale myoglobin built by
John Cowdery Kendrew and
colleagues. This structure is based
on low-resolution X-ray data. It
shows the complexity of a protein
structure and illustrates how time
consuming it was to build such a
precise representation. (With thanks
to Birkbeck College, London, UK, for
permission to take this picture.)
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protein; the sequence identity between these two proteins is 39%. In modeling
terminology, a-lactalbumin is known as the target protein. The structure of
lysozyme was modified by hand to accommodate those amino acids of a-lactal-
bumin that did not match those in lysozyme. In addition the two proteins
contained an identical pattern of cysteines, suggesting a similar arrangement of
disulfide bonds. When the structure of a-lactalbumin was later solved by X-ray
crystallography, the model turned out to be essentially correct apart from the
carboxy-terminal end, which is different in structure to that of lysozyme. Figure
13.12 shows the X-ray structure of a-lactalbumin superposed on that of lysozyme.
The disulfide bonds are highlighted in yellow in the structures and do indeed have
the same binding pattern.

Closely related target and template sequences give 
better models
Model building by homology is a multistep process (see Figure 13.13). At almost all
stages, whether using automated or manual modeling, rational choices are made
on the basis of prior experimental knowledge. The number of choices available and
the accuracy of the model depend strongly on the sequence similarity between the
protein to be modeled—the target structure—and the protein or proteins that are
used as the template.

Not surprisingly, the more closely related the target and template sequences are,
the more accurate the model and the easier the model-building procedure. If the
template and target have greater than 90% sequence identity, then the backbone of
the model may be as good as a crystallographic structure. When the sequence
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HEWL:  -KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINSRWWCNDGRTP 
LactB:  AEQLTKCEVFRELK— DLKGYGGVSLPEWVCTTFHTSGYDTQAIVQNND-STEYGLFQINNKIWCKDDQNP 
 
HEWL: GSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKGTDVQAWIRGCR 
LactB: HSSNICNISCDKFLDDDLTDDIMCVKKIL-DKVGINYWLAHKALCSE-KLDQWL--CE 

(A)

(B)

Figure 13.12
Superposition of the Caa trace of
lysozyme and aa-lactalbumin.
(A) The X-ray structure of lysozyme
(green) superposed on that of
a-lactalbumin (blue). The disulfide
bonds are highlighted in yellow and
do indeed have the same binding
pattern as predicted by their
sequence separation and therefore
as modeled. (B) The alignment of
lysozyme and a-lactalbumin;
residues that are identical in both
sequences are highlighted in red and
the cysteines are in white. 
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identity falls below 25%, large errors are often made and, in general, modeling is
not advisable unless there are additional experimental data that can help in deter-
mining the three-dimensional structure.

Significant sequence identity depends on the length of the
sequence
Studies of the relation between the sequence similarity and three-dimensional
structure for the cores of globular proteins have indicated that the cut-off point for
successful modeling is around 25% sequence identity (see Figure 13.14). However,
percentage identity is dependent on the length of the alignment, and so homology
thresholds for structurally reliable alignments are calculated as a function of align-
ment length. From Figure 13.15 it can be seen that only proteins more than 100
amino acids long can be modeled with any degree of accuracy at the 25% identity
level. For smaller proteins (60–100 amino acids) the percentage identity has to be
over 30%. Peptides smaller than 30 amino acids should be modeled with caution,
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Figure 13.13
A flow diagram showing the steps
involved in modeling a target
protein based on a template
structure, as well as the possible
steps to take when no template
structure is identified.
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even at 100% identity, even though at 45% identity some similarity to the structure
of the aligned partner can be assumed. The one exception is when the peptide to be
modeled is a ligand in a protein, as the binding site and environment will add addi-
tional constraints to the putative structure.

Homology modeling has been automated to deal with the
numbers of sequences that can now be modeled
Homology modeling is becoming an important stage in interpreting genomic data
and assigning possible functions to genes. A structural model is such a great aid to
understanding biological function that it has led to efforts to ensure that all gene
products should have either an experimentally solved structure or a modeled struc-
ture. To model so many proteins the tasks of producing accurate sequence align-
ments and building three-dimensional models from the alignments have been fully
automated. In yeast, all the open reading frames (ORFs) with a relatively high degree
of identity to template proteins of known structure have been modeled by homology
using the program MODELLER. Automated homology modeling for proteins of lower
sequence similarity is still not advisable without close analysis of the final model.

Model building is based on a number of assumptions
Two main assumptions are made in homology modeling. First, it is assumed that
the polypeptide backbone of regions conserved between template and target have
identical spatial coordinates. Although this assumption is adequate for modeling, it
is not strictly true; conserved regions will have similar, but usually not identical,
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Figure 13.14
A plot showing the results for
comparative modeling from the
CASP1 (Critical Assessment of
techniques for protein Structure
Prediction) (blue squares) and
CASP2 (yellow circles) modeling
experiments. The results of ab initio
and fold-recognition modeling for
low-sequence-identity targets are
also shown by red circles. As the
sequence identity increases, the
RMSD between the experimental
structure and predicted structure
decreases. In the ab initio
predictions, no model is 
below 6 Å RMSD. (Adapted from
A.C.R. Martin, M.W. MacArthur and
J.M. Thornton, Assessment of
comparative modelling in CASP2,
Protein Struct. Funct. Genet. Suppl.
1:14–28, 1997.)
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coordinates. It is further assumed that insertions and deletions in the sequence
alignment, especially if extensive, will fall mainly in loop regions, which consist of
relatively unstructured random coil. The loops are the most likely regions to differ
in conformation between target and template and are allowed to be more flexible
in the model than the conserved core. It is not uncommon for even close homologs
to have additional secondary structure elements inserted in loop regions.

13.4 Steps in Homology Modeling
The process of modeling a protein three-dimensional structure is composed of a
number of separate steps, which are shown in Figure 13.13 and described below.
For simplicity, we will work through the case where a single homolog is used as the
template. For modeling a protein semi-manually according to the steps outlined
below one can use programs such as Swiss-PdbViewer, or MolIDE, which are freely
available but have to be downloaded to a local machine.

Before embarking on the modeling process, a few general decisions have to be
made. When there is more than one homolog with a solved structure, the main
decision that a modeler has to take is whether to base the model on just the
template that is most similar to the target in sequence, to use a template that is an
average structure based on all the templates, or to use different fragments from
each structure to make up a template, as described later.

Each of these options has advantages and disadvantages. Models built on a
template based on a single structure may give the most accurate results if the target
and template are closely related in sequence. The advantage of using only one
structure rather than the average of several is that distortion due to different struc-
tural conformations will not be incorporated into the model. Some structures that
are similar in sequence (around 45–50% identity) show as much as 1.5–1.8 Å root
mean square deviation (RMSD) in the relative positions of the atoms.

By its very nature an average template is not true to any one of the structures. On
the other hand, this can make it a more appropriate choice, as the model is that of
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Figure 13.15
A graph showing the dependence of
a structurally reliable alignment on
both sequence identity and
alignment length. An alignment
falling to the right of the red line will
imply similarity in three-
dimensional structure, whereas one
falling to the left and below the red
line will provide little or no
information. The white line at
around 20% sequence identity is the
threshold below which alignments,
whatever the length, should not be
used for homology modeling. This
easily visualized length–homology
correlation gives the modeler a
convenient slide rule to assess
whether a given alignment will
provide a reliable model. (Adapted
from C. Sander and R. Schneider,
Database of homology-derived
protein structures and the structural
meaning of sequence alignment,
Proteins 9:56–68, 1991.)
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an unknown protein and an average may give the closest representation. The struc-
tural model based on separate fragments from a set of homologous structures has
the disadvantage of needing to join the fragments together, and the joins are the
parts of a model where most of the errors arise. When more than one homologous
structure is available, probably the most logical approach is to base the target-
conserved regions on one homolog and the loops (insertions and deletions) on
fragments from the other homologs in the set, as far as possible.

Structural homologs to the target protein are found in the PDB
The first step is to find structural homologs to the target protein. Most experimen-
tally solved structures have been placed in the Protein Data Bank (PDB). A database
with the sequences of the PDB structures is searched with the target sequence for
homologs using one of the sequence-search programs such as BLAST or FASTA, as
described in Sections 4.6 and 4.7. The protein with the highest similarity score and
the highest sequence identity over the largest stretch of amino acids is chosen as
the template. Where the functional family of the target protein is known, the ideal
template protein would be one belonging to the same family.

If no structural homolog is found there are four possibilities open to the modeler:
give up; perform an ab initio prediction (see Box 13.1); try a threading method to
find a possible template; or search for short regions of homology, especially those
that contain functional residues (see Section 4.10). If the last option is successful,
you can at least make an incomplete model to obtain at least some, if only partial,
structural information. But if neither this nor the threading option is successful, the
modeling exercise must be put on hold to await publication of the target structure
or that of a homolog.

Accurate alignment of target and template sequences is
essential for successful modeling
Once a suitable template protein has been identified, the target and template
sequences must be aligned. This alignment is the most crucial step in the modeling
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process of homology modeling are
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process. Consider the model of a protein as the three-dimensional representation
of the sequence alignment. If the alignment is wrong, then the three-dimensional
structure will be wrong as well. Even a one-residue misalignment can lead to incor-
rect analysis. Take the case illustrated in Figure 13.16, where a mismatched residue
has caused a one-residue misalignment of an arginine downstream of where the
mismatch occurred. In the template structure (see Figure 13.16A) the valine is
oriented towards the hydrophobic core, whereas the arginine of the target sequence
model should point toward the outside of the protein. Because of the structure of
the homolog in this region, the incorrect alignment results in the arginine side
chain being modeled as entering the mainly hydrophobic core of the structure
where it cannot be accommodated.

Regions that are difficult to align should be visually reinspected when the model of
the protein core has been created as described in the next step. The modeled core
should conform to general structural rules, such as that most charged residues
should be on the surface of the protein unless they can be accommodated by other
charges in the structure or there is a functional reason for a charged residue to be
buried. If the core does not conform, then it will be necessary to realign the
sequences and remodel the core.

In general an alignment can be improved in the following ways. Insertions and
deletions should not fall in the middle of secondary structure elements as far as
possible. If available, multiple homologous sequences should be used to make the
alignment, even if only one structure will be used as the template. And any other
information known about the protein should be used, such as what type of residues
constitutes the active site and should be matched to the template.

The structurally conserved regions of a protein are 
modeled first
The structurally conserved regions—the core—are modeled first. Modeling the core
is simply achieved by transferring the x, y, and z coordinates of every matched atom
within an aligned residue from the template to the target molecule. The backbone
atoms are then joined together to form peptide bonds at the correct angles. It is
usually possible to copy only some of the side-chain coordinates, as many side
chains in the target will not be identical to those in the template. Regions with
insertions and deletions are left for later. In most computer programs and graphical
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template GNTFLIRVLETSQNSRQFEDDGREPDF

target GN--SVMRKQSSNQKN-FD--GREPEF

(A) (B)

Figure 13.16
The effect alignment can have on a
modeled structure. The top part of
the figure shows a hypothetical
alignment between a target
sequence and its homologous
template. The top line indicates
structural features associated with
the template sequence; the zigzag
line indicates a b-strand and the
cylinder an a-helix. The first pair of
spectacles in the alignment marks a
misalignment at a single position.
The positively charged arginine
highlighted in red in the target
sequence is matched to a
hydrophobic valine (also in red)
instead of to the arginine one
residue to its left. This misalignment
has occurred as a result of two gaps
that have been inserted amino-
terminal to the arginine. The panels
show (A) the template structure and
(B) the target model as modeled
using the above alignment. As can
be seen in (A), the original valine (in
red) points into the hydrophobic
core of the protein, and when an
arginine is modeled at the same
coordinates it will also point into the
core (B). But now there is a buried
charged residue within the core,
which is energetically unfavorable,
and the larger side chain of the
arginine also clashes with many
other side chains. The second pair of
spectacles indicates the effect of a
deletion in the middle of a
secondary structure element—an
a helix. The last pair of spectacles
shows the correct alignment of
functionally important residues.
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packages the modeling of backbone and side chains occurs simultaneously, but for
clarity we will deal with the backbone first and will describe the procedure and
theory behind the modeling of side chains later. Figure 13.17 shows a Ca wire repre-
sentation of the modeled structure of a kinase catalytic domain in blue and the
template kinase structure in red. Note that at this point the insertions and deletions
have not been modeled, so that the core structure is a set of discontinuous chains.

The modeled core is checked for misfits before proceeding to
the next stage
It is important to check the core for misfits now, as this is the last chance to test the
correctness of the model before the time-consuming processes of loop building
and energy minimization. Once the core of the structure has been built, the back-
bone conformation should be inspected for regions of insertions or deletions, and
regions that were difficult to align. Regions where the alignment requires insertions
should not be facing into the structure, nor be part of or disrupt secondary struc-
ture elements (see Figure 13.17). In regions that were difficult to align, one should
examine whether moving the insertion by one or two residues would position it in
a more favorable conformation.

Sequence realignment and remodeling may improve 
the structure
If some insertions will disrupt the core or secondary structures, or if a particular
region would seem to benefit from a slightly different alignment, then it is neces-
sary to step back and realign the target to the template, remodel the core, and check
it again. At this point it is advisable to save all the core structures that have been
built. These can then be superposed on each other and the best core model chosen,
using the criteria described above. On the other hand, if a particular region does not
improve after a couple of tries and it does not seem to interfere with any of the
known functional areas, use any of the core structures and continue with the
modeling.

Insertions and deletions are usually modeled as loops
Once a good alignment has been obtained, the other major procedure in model
building is modeling the loops. These are the regions that usually contain insertions
or deletions and are the most variable in sequence. Because of their variability in
both sequence and length, loops are generally the most difficult regions to model.
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Figure 13.17
Inspection of the modeled 
SCR (Structurally Conserved
Region) shows where the insertions
and deletions that were
incorporated into the alignment are
located in the target conformation
with respect to the template.
(A) This shows the target structure
superposed on the template
structure. (B) This shows only the
target model with the end of the
core regions where an insertion has
to be modeled. The modeled core
region should be carefully analyzed
to see if any insertions (or deletions)
will cause structural disruption.
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However, loops are often involved in ligand recognition, ligand binding, and even
in the active sites of proteins, for example, the active-site loop in protein kinases.
Therefore, it is important to model loops as accurately as possible. To add to the
problem, loops are often the most mobile part of a protein structure and may not
even have coordinates in the crystallographic structure.

If the target protein contains an insertion in a loop sequence relative to the
template structure, there will be no template coordinates from which to model the
insertion. The easiest way round this problem is if there are other structural
homologs with the same insertion. It is then possible to model the missing part
using their coordinates. However, an insertion is often unique to the target protein.
In this case, the most widely used method for modeling loops, in both manual and
automatic procedures, is to search for fragments of the same length in a database
of high-resolution structures.

The fragments are then incorporated, or annealed, to the core structure, as shown
in Figure 13.18. Both ends of the core structure to which the loop has to be modeled
are taken as the anchor points. The anchor points can range from one to many
residues, although the standard length is two residues at either end. A search is
made for a fragment the length of the loop plus the anchor points. The additional
residues at the end of the fragment are then fitted onto the anchor points and the
RMSD of their Ca atoms calculated. Loops that have the lowest RMSD are selected
for further evaluation (see Figure 13.19). If, for example, an insertion of five residues
has to be modeled, the fragment database is searched for a fragment of five residues
describing the loop and two-residue anchors at each end, making a nine-residue
fragment. The fragment that gives the lowest RMSD, interferes least with the core
structure, and has the closest sequence similarity with the target is chosen and
annealed to the structure. This process is repeated for all insertions.

Short deletions can be dealt with by local energy minimization, which brings the
loop boundaries together. Large deletions are extremely difficult to deal with.
Basically a large chunk of the structure has been deleted, and unless the structural
boundaries flanking the deleted region are close together they cannot be joined.
This may imply that the overall structure is incorrect.

Some programs, such as COMPOSER (described later in the chapter), try to model
loops using only homologous structures. This approach is based on an analysis that
found that loops from homologous structures provide a more accurate model than
those from non-homologs. To model loops, COMPOSER searches all homologous
structures for loops that are similar in sequence, and uses them even if they differ
by one or two amino acids. The one or two residues left to model are then obtained
by the fragment search method described above.
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Target:     VLVATY     HDFVLI ...
Template:   VLIISYFGNSGREFVIL ...

Figure 13.18
A schematic illustration showing
the database search method for
building a loop. A hypothetical
alignment between a target
sequence and its homologous
template with a five-residue
insertion in the target is shown.
First, two two-residue anchor
regions are identified on each end 
of the regular core structure (boxed
in red). Then a database search of
high-resolution fragments is
performed for a fragment nine
residues long: five for the insertion
and four for the anchor points. Once
a fragment is found that does not
interfere with the core structure it 
is selected to be pasted into the
structure giving a modeled loop
region.
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Nonidentical amino acid side chains are modeled mainly by
using rotamer libraries
The amino acid side chains confer the distinct characteristics of a protein, in both
structure and function. To be able to build the side chains in a model, however, it is
necessary to have some understanding of the conformations they can adopt.

A study of the atomic coordinates of side-chain atoms of conserved residues in
proteins with similar three-dimensional structure has found that in more than 90%
of cases the side chains have the same conformations in the two proteins.
Therefore, in the simplest case where the aligned residues between the template
and target structure are identical, all the atomic coordinates of the template struc-
ture can be transferred to the target structure directly, as shown in Figure 13.20A. 

To predict the side-chain conformation when the aligned residues are not iden-
tical, rotamer libraries are used. Exhaustive analysis of conformations of side
chains within proteins of known structure, and calculation of the energies of side-
chain packing, have shown that most side chains are limited to a relatively small
number of the many possible dihedral angle (c1,c2) energy minima (see Figure
13.21). For example, although leucine has nine allowed c1,c2 conformers (side
chain conformations), just two account for 88% of leucine side chains found in
proteins. Some side chains exhibit rotamer preference (one of a set of conformers
arising from restricted rotation about one single bond) that depends on the main-
chain secondary structure. Tryptophan, for example, has 75% of its c1 values near
180∞ in a-helices, while 62% of the c1 values are near –60∞ in b-sheets. Martin
Karplus and colleagues have shown that the side-chain conformation also
depends on the main-chain conformation; in other words, whether the main
chain is in a b-strand, a-helix, turn, or coil conformation. Subsequently, back-
bone-dependent rotamer libraries have been compiled that, in conjunction with
energy calculations, enable modeling packages to model nonidentical side chains
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Figure 13.19
A real example of building loops
from a database search. Ten loops
have been selected on the basis of
lowest RMSD for further evaluation
depending on their conformation
(core-disruptive potential) and
sequence homology. The user then
chooses one of the ten to paste into
the modeled structure.
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(see Figure 13.20C). Various side-chain modeling algorithms have been developed,
which use different versions of rotamer libraries and different energy functions.
Which method is used in practice will often depend on what is available in the
program used for the modeling.

Energy minimization is used to relieve structural errors
Once a model consisting of the core and loop region has been constructed, energy
minimization is applied to the modeled loops. These areas often have bad geom-
etries as a result of splicing together structures from two different proteins. Local
energy minimization of these regions, allowing only the atoms involved in the
loops, the joins, and short extensions either side of the joins to move, will improve
the conformation of the loop–core hinge regions. Some programs also allow for the
movement of atoms in close proximity to the selected loop. Fifty to 100 steps of the
steepest descent method described earlier are usually sufficient to produce reason-
able geometries at this stage.

Global energy minimization is performed to alleviate bad bond angles and to
improve local geometries and atomic interactions. Usually it is good practice to
initially start with 50 to 100 steps of steepest descent minimization, after which one
can switch to the conjugate gradient (or similar) method until convergence is
achieved.

Molecular dynamics can be used to explore possible
conformations for mobile loops
Simple molecular dynamics can be performed to investigate possible conforma-
tions of large insertions or mobile loops. Molecular dynamics calculation cannot be
done with the widely used free graphical package Swiss-Pdb Viewer, which is
described later, but commercial packages such as Quanta and Insight II do provide
this option. Many different calculations can be performed, and there are a variety
of physical models to choose from, but details of these procedures are beyond the
scope of this book.
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Figure 13.20
Various methods employed by most
programs to build side chains.
(A) When the side chains at a given
position are identical, the
conformation of the target side
chain can be taken directly from the
template. (B) When the side chains
are similar but not identical, most of
the target side chain can be built
from the template. (C) When the
side chains are quite different, the
conformation of the target side
chain has to be deduced from a
library of rotamer structures and an
assessment of the energetics.
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Models need to be checked for accuracy
It is important to verify the accuracy of the model, and to estimate the likelihood
and magnitude of potential errors. To estimate errors in a model, the structural
parameters of the model are compared with those derived from crystallographically
solved structures.

Many researchers have looked for energetic criteria that could distinguish incor-
rectly folded structures from correct ones. The researchers deliberately misfolded a
protein sequence into a totally different conformation from its native one. For
example, the sequence of a protein that has an all-a-helical structure could be
made to form an all-b structure, and vice versa. Then the energy of the incorrect
hypothetical fold was calculated to see if the energy terms could distinguish
between the correctly and incorrectly folded proteins. Unfortunately, these energy
criteria were not sensitive enough, and other ways of distinguishing correct from
incorrect folds have had to be found. In addition a segment of a protein could be
locally stressed even though the global energy of the whole native protein is at its
minimum. This often occurs in the loops. The correct conformation of a loop may
have high local interaction energy.

A variety of statistical criteria derived from empirical observations of known struc-
tures provide a standard against which a model can be measured. Parameters
investigated and used as standards include torsion angles, bond angles and bond
lengths, the distributions of polar and hydrophobic residues, and inter-residue
contacts. There are several programs that can calculate such structural factors,
which then can be compared against the norm; that is, the statistical average.

The program PROCHECK assesses the stereochemical quality of a given structure.
It looks at how normal the geometry of the residues in a given protein structure is,
as compared with stereochemical parameters derived from well-refined, high-
resolution structures. Unusual regions highlighted by PROCHECK are not neces-
sarily errors, but may be unusual features for which there is a reasonable
explanation, such as distortions due to ligand binding in the protein’s active site.
Nevertheless, they indicate areas that should be checked carefully. It is good practice
to run programs like PROCHECK on both the model and the template(s) upon which
the model is based. Errors highlighted by PROCHECK may have been transferred
from the template and therefore do not necessarily indicate a bad model. Programs
like PROCHECK require a coordinate file and often the estimated resolution of the
structure. When the coordinate file comes from a theoretical model, the resolution
used should be that of the template structure plus a value that allows for the fact that
it is a model (0.5–1.0 Å depending on the homology between the template and
target). The output of PROCHECK is a set of PostScript files with graphs that describe
the f, y torsion angles in a Ramachandran plot (see Chapter 2), individual residue
Ramachandran plots, chi-squared plots, main-chain parameters (see Figure 13.22),
side-chain parameters, residue properties, the distribution of main-chain and side-
chain bond length, root mean square distances from residue-type planarity, and
plots illustrating distorted geometry. A similar Web-based program that checks the
stereochemical validity of a structure is MolProbity. This program analyzes all atom
contacts as well as steric variables.

The WHAT_CHECK program (part of the WHAT IF suite) compares the local contact
patterns with the average contact patterns for similar residue–residue contacts
found in the database. It provides an output that highlights amino acids that have
unusual bond angles, bond lengths, hydrogen-bond donors that are not solvent
accessible and do not form hydrogen bonds within the protein, residues that have
nonbonded overlap of van der Waals radii with other residues in the structure
(bumps), improper chirality, nonplanar groups in amino acids where planar groups
are expected, proline puckering, residue-packing quality, and an analysis of torsion
angles. Although the outputs from all these checks are long lists rather than pretty
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plots as obtained with PROCHECK, it is good practice to run the model coordinates
through more than one program and then compare the outputs. Table 13.1 gives
programs for assessing tertiary structure prediction. 

ANOLEA uses a knowledge-based approach to verifying how lifelike models are.
Basically it contains information about the preferred spatial relationships between
residue types in real protein structures. These are used statistically to assess the
similarity of the spatial distribution of residues in the model to that observed in real
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Figure 13.22
An example output of the main-
chain parameters for an SH2
domain model from PROCHECK.
Parameter values that fall within the
blue band are within expected
measures for a structure at that
particular resolution; values below
or above the blue band signify better
or worse than expected, depending
on the parameter value. The black
square indicates where the
predicted structure’s parameters fall.
The nearer to the blue central line
the better.
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proteins. An atomic mean force potential (AMFP) score using nonlocal interactions
(see Figure 13.23) is calculated. Sequence separation as well as distance is used to
differentiate between local and nonlocal interactions. In general, all the short-range
interaction energies between atoms are calculated and expressed in the form of
total energies or energy scores. High energies denote incorrectly folded protein or
protein segments. The output ANOLEA gives is a list of residues with high energies
and a color-coded sequence.

There is one more check to be performed: seeing is believing. Look at the structure.
If it does not look right then there may, indeed, be something wrong.

How far can homology models be trusted?
Incorrect sequence alignment is the main source of serious errors in homology
modeling. Therefore if you trust your alignment, your model will be quite accurate,
at least within the conserved regions. Even partial models are valuable for suggesting
functional mechanisms that can be tested experimentally. For ligand or drug design,
more accurate models are often necessary, and such models have already been used
successfully in ligand design experiments. For example, analyses of the sequence of
the HIV virus led to the discovery that the virus contains an aspartic protease (HIV-
PR). Inactivation of HIV-PR produced immature, noninfectious viral particles.
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Program Description

ANOLEA Atomic Non-Local Environment Assessment 

BVSPS Biotech Validation Suite for Protein Structures

EVA EValuation of Automatic protein structure prediction

PROCHECK Verification of the stereochemical quality of a predicted structure

MolProbity Verification of the stereochemical quality

WHAT IF Protein structure analysis program

Table 13.1 
A list of programs for checking the
correctness of modeled structures.

V13 

V13 

M80 

M80 

I86 F134 

F134 

A182 

A182 

I86

(A)

(B)

Figure 13.23
Nonlocal environment of an atom.
(A) Representation of a protein
sequence. Met80 Ce (red ball in B) is
the atom for which the nonlocal
interaction energies are evaluated.
The light blue area in the sequence
represents the amino acid residues
that are considered as local for
Met80 (11 residues around M80 in
the sequence) and therefore are not
considered in the calculation. V13,
F134, and A182 are examples of
nonlocal interacting amino acid
residues for Met80. (B) A schematic
representation of part of the
protein chain illustrated in (A). The
circle represents a sphere of 7 Å
radius centered on Ce of Met80. All
the atoms inside this sphere that
belong to Met80 and the atoms of
the local residue Ile86 are shown as
white circles and are not considered
in the calculation. All atoms of
nonlocal amino acids that are
located within the sphere—Val13,
Phe134, and Ala182—are shown as
blue circles. These atoms are
included in the nonlocal interaction
energy calculation. (Adapted from F.
Melo and E. Feytmans, Assessing
protein structures with a non-local
atomic interaction energy, J. Mol.
Biol. 277:1141–1152, 1998.)
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Therefore HIV-PR has been identified as one of the prime targets for structure-
assisted drug design (see Chapter 14). But initially there was no experimental struc-
ture of the HIV-PR. The structure of HIV-1 PR was modeled using the known
structures of eukaryotic aspartic proteases and later Rous sarcoma virus protease as
templates. These models could be used as starting points for drug discovery. When
the experimental crystal structures of HIV-PR became available they confirmed that
the models were essentially correct and that the active site of HIV-PR closely resem-
bles the active site of the aspartic proteases (see Figure 13.24). The correctness of a
model can only really be judged when compared with an experimental structure.

13.5 Automated Homology Modeling
All the main steps outlined in Section 13.4 hold true to some extent for both manual
and automatic modeling. Automated model building by homology has revolution-
ized modeling, turning it into an almost routine technique for obtaining at least
some insight into the three-dimensional structure of a new protein. Even manual
modeling is now done within a graphics software package where most of the time-
consuming and difficult parts of model building, such as the transfer of coordinates
from homologous structures, building side chains, or searching for the fragments to
build loops, are performed by subroutines with little manual input.

Fully automatic model-building programs, such as Swiss-Model and MODELLER,
have the advantages of objectivity, rapidity, and, in the case of Swiss-Model,
simplicity. However, user intervention is often required and although most
modeling packages allow changes in the default alignment and cut-off values, the
process becomes immediately more complicated for the user than the totally auto-
matic process. In addition, modeling with a black-box technique does not allow the
user to gain insight and understanding of either the target structure or the
modeling steps involved. When problems do arise one is often unable to identify
the region or step where modeling has gone wrong and it is therefore more difficult
to rectify the situation than when modeling manually.

Some commonly used modeling packages and programs will be briefly described
below. Some of these programs are free but have to be installed on a local machine,
for example Swiss-Pdb Viewer and MolIDE. Some can be run remotely, such as
Swiss-Model, but do not allow much user interaction. Others cost a small amount,
such as the complete WHAT IF modeling package, and others are expensive and
versatile commercial packages, such as Quanta or Insight II from Accelrys, MOE
from the Chemical Design Group, or SYBYL from Tripos.
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HIV-PR experimental structure with
the catalytic site residues shown

The active site of
eukaryotic aspartic protease

(A) (B)Figure 13.24
(A) The experimental structure of
the protease from HIV with the
catalytic site residues shown as
ball-and-stick, and (B) the catalytic
residues of a eukaryotic aspartic
protease. Both structures have the
same loop and residue arrangement
within the catalytic region.
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The program MODELLER models by satisfying protein
structure constraints
MODELLER creates a theoretical target structure on the basis of a known template
structure using the idea of satisfying constraints. First, these spatial constraints in
the form of atom–atom distances and dihedral angles are extracted from the
template structure(s) and used in the target. These are combined with general rules
of protein structure such as bond length and angle preferences. The alignment is
used to determine equivalent residues between the target and the template. Finally,
the model for the target is optimized until a model that best satisfies the spatial
constraints is obtained (see Figure 13.25). Although MODELLER is usually used for
homology modeling of protein three-dimensional structure, because the program
deduces structure by satisfaction of spatial constraints the program can also be
used in experimental structure determination by NMR. Generally, the output of
MODELLER is a tertiary structure of a protein that satisfies a set of constraints as
well as possible.

COMPOSER uses fragment-based modeling to automatically
generate a model
Another way of obtaining a model structure is by the assembly of rigid fragments of
structure from a set of proteins with similar sequences to that of the target protein.
This is the method used by the program COMPOSER. As an initial step COMPOSER
searches a database of tertiary structure to find sequences homologous to the target
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MODELING PROTEIN STRUCTURE
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This section illustrates some of the
methods available for automated
protein structure modeling.
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protein and performs an alignment. A structural alignment is performed by initially
specifying at least three topologically equivalent residues found in all the homo-
logs. The structures are aligned or superposed using these equivalent residues and
used to find other topologically equivalent residues to realign the structure and
improve the fit. This is repeated until no more topologically equivalent residues are
found. These residues then define the structurally conserved regions (SCRs) and an
average framework is defined from these SCRs.

The contribution of each structural template to this average framework is calcu-
lated and a weighted value assigned to each. The highest-weighted fragment is then
used as the structure for the corresponding conserved target sequence. The
weighting of each template fragment will usually also take into account the
percentage sequence identity between target and template, with the most similar
sequence being given the highest weighting. The SCRs of the model are then
constructed by fitting fragments of homologs to the templates and mutating them
to the sequence of the target protein. Finally, the loops are modeled as described in
Section 13.4. Side chains in COMPOSER are built in a similar manner as described
above using energy calculation in addition to specific rules developed for
COMPOSER (1200 rules), which define the probabilities of their orientation in the
equivalent position in a homolog and depend on whether they are in an a-helix or
a b-sheet. The final model can be improved by energy minimization, dynamics, or
constraint-based modeling.

Automated methods available on the Web for 
comparative modeling
A number of homology modeling servers are now available via the Web: Swiss-
Model, 3Djigsaw, CPHmodels, ESyPred3D, Geno3D, and SDSC1. Swiss-Model, one
of the first, is an automated knowledge-based protein modeling package. Swiss-
Model first uses BLASTP2 to search the ExNRL-3D sequence database (derived
from the PDB) to identify similar sequences to the target that also have structural
coordinates. The search is refined by the program SIM, which selects templates
with sequence identities greater than 25% and that are longer than 20 residues.
Swiss-Model then generates models using the ProModII package. This includes
procedures that superpose the related three-dimensional structures. It also gener-
ates a multiple alignment with the target sequence, creates a framework for the new
sequence, builds loops, completes and corrects the main chain, corrects and builds
side chains, verifies the modeled structure, checks the packing, and refines the
structure by energy minimization and molecular dynamics.

The program Geno3D uses spatial constraints, such as distances and dihedral
angles, to build the model once a structure with similar sequence has been found.
When structural homologs have been identified the user chooses which ones are to
be used as templates or template. Then for each template, Geno3D first performs a
secondary structure prediction, and calculates the percentage agreements in
secondary structure between the templates and the target sequence. Thus even if
the sequence homology is low, but the secondary structure agreement is good, a
model will be derived.

CPHmodels and ESyPred3D are neural network-based modeling servers.
ESyPred3D uses neural networks to obtain an alignment and then uses MODELLER
to actually build the three-dimensional structure. 

Assessment of structure prediction
The Critical Assessment of Structure Prediction (CASP) and the Critical Assessment
of Fully Automated Structure Prediction (CAFASP) (see also Section 11.3) are two
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Figure 13.25
A simplified schematic figure of the
steps involved in the automated
modeling program, MODELLER.
First the target is aligned to
template(s), then constraints are
extracted from the template(s) and
used in the target. After that
equivalent atoms between target
and template are identified using
the alignment, and the target is
optimized until a model that best
satisfies all the constraints is found.
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Antibodies are the soluble proteins of the immune
system that bind to pathogens and their toxic products,
preventing their harmful action and labeling them as
material to be destroyed by the body. The molecules
bound by antibodies are called antigens, and any given
antibody molecule is specific for a unique molecular
structure or epitope, which the antibody binds via its
so-called antigen-binding site. Each antibody recog-
nizes just one epitope, but collectively antibodies recog-
nize a vast range of chemical structures, including
protein surface structures, carbohydrates, lipids, and
even small artificial molecules. The repertoire of
possible antigen-binding sites that can be produced in
the body runs into billions.

To understand how antibodies bind their antigens with
such specificity, and how different amino acid
sequences in the variable region of the antibody mol-
ecule (see Figure B13.2) produce binding sites of such a
vast range of affinities and specificities, one would like
to compare many different structures of antigen-
binding sites and their epitopes. The structures of only
a few hundred antibodies have been solved by X-ray
crystallography and there are even fewer structures of
antibody–antigen complexes. There are, however, many
more antibody sequences in the databases, and
homology modeling can be a useful tool in extending
the number of structures of antigen-binding sites.
Being able to model the structures of antigen-binding
sites can help in guiding the synthesis of novel antibody
variable regions for potential therapeutics and labora-
tory reagents.

Antibody, or immunoglobulin, molecules are roughly
Y-shaped and consist of four protein chains linked by
disulfide bonds (see Figure B13.3). Each antibody mol-
ecule has two identical antigen-binding sites, which are
located at the ends of the arms of the Y and which are
the parts that vary from antibody to antibody. The rest
of the molecule is almost identical, in both sequence
and structure, in all antibodies of a given class (for
example, IgG).

An antibody molecule consists of four chains of two
different types: two identical heavy chains, and two
identical, smaller, light chains. Each chain is composed
of a series of discrete domains of around 110 amino
acids with a characteristic structure known as the
immunoglobulin fold. The amino-terminal domains of
both heavy and light chains vary in length and in amino
acid sequence between antibodies and are therefore
referred to as the variable domains (VH and VL, respec-
tively). They form the ends of the Y and contain the
antigen-binding sites. The remaining domains are the
constant (C) domains.

The antigen-recognition site of an antibody consists of
loops, also referred to as CDRs (complementarity-
determining regions). There are six loops in the VL and
VH regions that make up the CDRs: three are from the
heavy chain (H1 to H3) and three from the light chain
(L1 to L3). Although these loop sequences vary consid-
erably between antibodies there is some structural
similarity, which has been exploited to classify the CDRs
into families. The members of a family have similar

Box 13.2 Antibody modeling

light chain

heavy chain constant region

variable region

disulfide
bonds

antigen-binding
sites

Figure B13.2
The structure of an
immunoglobulin, illustrating
the roughly Y-shaped
conformation of the
molecules.
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open competitions, which attempt to provide a measure of the progress of structure
prediction. This is done by trying to measure, in a quantitative way, the prediction
success of a set of predefined and solved but not yet released structures. An inde-
pendent group or individual obtains protein targets for use in CASP and/or CAFASP
some time in advance of their public availability. The targets are either NMR or X-ray
protein structures comprising one or more domains either determined and not
published or expected to be determined in time for review. The sequence of these
targets is given to the groups competing in CASP or CAFASP. The individual groups
then make a set of predictions of the three-dimensional structure based on the
protein sequence and submit the results for independent and comparative review
by human assessors for CASP results, or to automated evaluation programs for the
CAFASP results. Once a year there is a meeting held in Asilomar, USA, to discuss and
compare the results. This type of annual assessment helps to identify the areas that
need more development as well as the progress made in three-dimensional struc-
ture prediction by ab initio methods, homology modeling, or threading. Such peri-
odic assessments not only identify the better prediction and modeling techniques
but also highlight the problems that still need to be addressed. In addition it high-
lights the best criteria to use for assessing structure predictions generally.

In general it has been shown that, when all types of targets are taken into account,
currently no single prediction approach is absolutely accurate. However, homology
modeling with a high-resolution structural template gives by far the best results, of
sufficient quality that they can be used in further theoretical and experimental
analysis. When no structural homolog is available, the ab initio and to a lesser
extent the threading method are the only options.
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packing constraints, and rules based on
these constraints have been formulated
for model-building packages that are
specific for antibodies. One CDR (H3)
does not conform to these rules, however,
and yet is critical for binding antigen.
Seven structural classes of the CDR-H3
loop have been defined, but still some H3
CDR are 13 amino acids or more in length
and do not fit into this classification. The
CDR classifications are part of the
commercial antibody-modeling program
AbM, but a Web-based antibody modeling
server, called WAM, based on the AbM
package is available.

Box 13.2 Antibody modeling (continued)

Figure B13.3
Representation of an immunoglobulin
showing secondary structures.
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13.6 Homology Modeling of PI3 Kinase p110aa
Phosphoinositide 3-kinases (PI3Ks) are a group of signal transduction enzymes that
add phosphate groups to lipids in cell membranes. These lipids then initiate further
protein-mediated signal transduction cascades that lead to alterations in cell
behavior such as the initiation or inhibition of cell division. The misregulation of
such pathways is one of the causes of some types of cancer. PI3 kinases share short
conserved amino acid motifs in the catalytic domain with other kinases, such as
protein kinases, but in other regions the PI3 kinases vary greatly in sequence from
the protein kinases. The human PI3 kinase p110a subunit is of particular interest as
it is involved in signaling pathways that are associated with many diseases,
including cancer. Some early models of the human PI3 kinase p110a catalytic
domain were published but the sequence identity with protein kinases of known
structure was so low that the models could not be analyzed with confidence. The
structure of the related pig PI3 kinase p110g (PDB code 1E8X) has now been solved
(see Figure 13.26). All PI3 kinases are multidomain proteins (see Figure 13.26), but
here we will describe just the modeling of the catalytic domain of p110a using the
p110g catalytic domain as template.

Swiss-Pdb Viewer can be used for manual or semi-manual
modeling
First search the PDB sequence database to find out if the sequence of the catalytic
domain of p110a has a structural homolog. This can be done from one of the data-
base search Web pages, such as BLAST at the European Bioinformatics Institute
(EBI) or NCBI. The search finds 10 structures but three are human p110g homologs
and seven are pig p110g homologs. The sequences are saved and aligned with the
target sequence (p110a) using an alignment program such as ClustalW. This align-
ment is then saved.

To model the structure we shall first use the package Swiss-Pdb Viewer, and subse-
quently MolIDE. Both packages can be obtained free of charge for most computer
platforms. The Swiss-Pdb Viewer program is suitable for small-scale semi-manual
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Figure 13.26
A ribbon representation of the
p110g structure. The structure is
color-coded according to the
domains of the protein. In blue is
the catalytic domain with a bound
molecule of ATP (represented by a
space-filling model). The catalytic
domain is the one used in the
modeling examples.
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modeling although it does not have the power and scope of commercial packages.
Figure 13.27 shows the use of Swiss-Pdb Viewer in modeling p110a on the p110g
structure. 

Alignment, core modeling, and side-chain modeling are
carried out all in one
The spatial coordinates file of the template structure (p110g) is opened in Swiss-
Pdb Viewer. As this is a multidomain protein, it is advisable to edit the coordinate
file to contain only the coordinates for the catalytic domain before modeling. It is
always easier to work with just the domain that one is interested in. Loading the
p110a target sequence is done using the command “Load Raw Sequence to Model.”
The sequence alignment with p110g is done using the commands “Fit Raw
Sequences,” and “Magic Fit.” The alignment should be checked after the first “Fit
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Figure 13.27
A snapshot of the Swiss-Pdb Viewer
modeling interface. The main
screen shows the modeled and
template structure. To the right of
the main screen is a control panel
that allows easy selection of a
number of viewing options.

Figure 13.28
The Caa representation of the core
model of the p110aa catalytic
domain (blue). The loops have not
been modeled in yet. The ends of a
large insertion in p110a with respect
to p110g are indicated by ends
colored in red and also indicated by
an arrow.
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Raw Sequences” step. As you change the alignment you will see the structure
change as well. This also generates coordinates for matched backbone and side-
chain atoms. Save the modeled p110a coordinates. At this stage you have the core
structure of the p110a with gaps where insertions are to be included, as illustrated
in Figure 13.28 using the Ca backbone only. 

The loops are modeled from a database of possible structures
The loops have still to be built—in this case amounting to four stretches (three
insertions and one deletion). At this point the model and alignment should be
checked carefully to ensure that the insertions and deletions have been placed
correctly. There is one large insertion (15 residues long). This insertion, which is in
the target with respect to the template, is due to the fact that that particular loop in
the p110g structure is too disordered to be fitted into the crystallographic electron
density. Therefore the loop does exist in p110g but there are no structural data for it.
Selecting “Build Loop” from the build menu, anchor residues can be designated at
either end of the loop searches through a list of possible loop candidates. The file of
candidates must be downloaded separately from the Swiss-Model Web page. A
dialog box appears with possible loops. Choose the most suitable one based on the
count of the clashes (displayed at the top of the window), energy information
(shown after the “FF” text), and a mean force potential value (PP) computed from a
mean-force potential (see Figure 13.29). A second way of modeling a loop is
possible by choosing “Scan loop database”; a list of loops is provided with slightly
different parameters. This procedure is repeated until all loops have been modeled. 

Energy minimization and quality inspection can be carried out
within Swiss-Pdb Viewer
Once all the insertions have been modeled and the file saved, proceed to “Energy
Minimize.” In Swiss-Pdb Viewer a global energy minimization is performed once all
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Figure 13.29
Building a loop in Swiss-Pdb
Viewer. Once insertions are
identified, the “Scan Loop Database”
option provides a list of possible
loops. The chosen loop for p110a is
highlighted in red in the list. In the
top window the loop fragment is
aligned with the sequence of p110a
and a number of parameters are also
provided, such as energy, number of
clashes, and number of bad dihedral
angles. The chosen loop is fitted into
the model automatically. One can
scroll down all the loops to find the
best one. Once chosen, another loop
can be built. After all the loops have
been built it is necessary to subject
the model to energy minimization.
The blue arrows indicate the loop
that is being used as an example.
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the loops have been built. After minimization, some side chains may be listed as
energetically unfavorable. Use the tool “Fix Selected Side Chains” to improve these
automatically, and then minimize again.

Swiss-Pdb Viewer can be used to inspect the quality of the model. The first step is
to view the Ramachandran plot (see Section 2.1) with all selected residues and see
how many, and which, residues fall outside the allowed regions. In the p110a
model, six amino acids fall in the disallowed areas (see Figure 13.30A). All of these
are in loop regions, and while this situation is not ideal, there is no simple way of
improving the loop models and therefore they are often ignored. Check for amino
acids that cause clashes with other side-chain and backbone atoms. It is also
possible to check the potential energy of each residue, although this tool should be
used with caution. Expand the alignment window, and a curve depicting how each
residue likes its surroundings will be displayed (see Figure 13.30B). If a residue is
probably correct, its energy will be below zero, whereas an probably incorrect
residue will have an energy above the zero axis. In any case, the modeled coordi-
nates should be saved and sent to the various packages, like PROCHECK, to obtain
as much information about its correctness as possible.

MolIDE is a downloadable semi-automatic modeling package
MolIDE is a new graphical front-end that makes the generation of models using a
degree of manual control much easier than with programs like Swiss-Model. The
graphical front-end provides a reasonably user-friendly way of interacting with the
various packages it uses to generate a model and integrates several useful bits of
functionality. The process of modeling with MolIDE is based on the steps outlined
above: find a template, align the sequence to the template, build an initial model,
build the loops, then refine the model. MolIDE simply uses particular programs,
such as PSI-BLAST, to achieve each step, or relies on user input.

In order to identify a suitable template, MolIDE uses PSI-BLAST in a two-stage
process. First it iteratively scans a sequence database and generates a profile for the
query sequence. Then it uses this profile to scan a sequence database derived from
the PDB. This generates a list of structures that may be similar enough to the target
to use for building a model. The PSIPRED secondary structure prediction method
(see Chapters 11 and 12) is then used to predict the secondary structure of the
target. This information is subsequently used in generating an alignment between
the template and the target, along with the PSI-BLAST alignment.

All these steps are performed with the minimum input from the user. The starting
point is to open the target sequence in the MolIDE interface, and initially run
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(A) (B)

Figure 13.30
(A) The Ramachandran plot of
p110aa. Six residues are in the
disallowed region of the plot; all of
these are in loop segments. (B)
Graph of structure potential energy
against the sequence. One region
well above 0 is colored red; this
region is probably not correct. Again
this set of residues are to be found
within a loop.
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PSI-BLAST followed by PSIPRED. All output files can be read into MolIDE and
investigated. Once these two programs have been run, the user opens the gener-
ated “PDB Hits Alignment File” and selects a target from the list of possible targets.
The program then displays the model, along with the alignment between the
template and the target (see Figure 13.31). 

The side chains are then generated using the program SCWRL3—a program for
predicting side-chain conformations given a backbone model and sequence. At this
point the SCR has been modeled but the insertions and deletions still need to be
dealt with. Via the MolIDE interface the user can edit the alignment and set posi-
tions for which loops are to be generated. Each loop is generated one at a time for
the model using a program called Loopy. Modeled parts of the structure within the
region thus selected are permitted to move, improving the realism of the loop. If too
much of the structure is permitted to move, however, it will almost certainly
generate errors.

Automated modeling on the Web illustrated with p110aa kinase
Although Swiss-Model was the first program that could be used as a fully auto-
mated method for generating a model via a Web page, MolIDE can generate a
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Figure 13.31
The MolIDE interface between the
programs used in modeling and the
user.
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model with hardly any user input as well. Other automatic modeling approaches
are 3Djigsaw, CPHmodels, ESyPred3D, and Geno3D.

The easiest and least interactive way of modeling p110a is to choose “First
Approach Mode” in the Swiss-Model Web site. Paste in the target sequence, enter
your e-mail address, and wait.

While we are waiting let us look at some of the options that can be defined. First, the
BLAST limit, which restricts the likelihood of matching the p110a sequence to an
unrelated sequence. It is related to the significance measures discussed in Sections
4.7 and 5.4. If the first search with the default limit setting of 0.00001 does not find
anything, try increasing the BLAST limit, although you risk modeling on the wrong
protein fold. However, if the protein structures related to your target sequence are
already known, as is p110g in this case, the code for this structure can be specified
using the “Provide One Or More Of Your Own Templates” option and the program
will build the structure using that particular template.

The results from Swiss-Model are returned in a number of separate e-mails. The
first informs the modeler that a hit with the p110g structure has been found and
that the sequence identity is 47.8%. Another e-mail has the results file as an attach-
ment, and contains the alignment and the coordinates for both the template(s) and
the target. To view the results from Swiss-Model you need Swiss-Pdb Viewer
installed on your own computer. Additional result files include the output from the
structural analysis program WHAT IF.

Open Swiss-Pdb Viewer and load in the results file. Figure 13.32 shows the Ca coor-
dinates of the model (in green) superposed on the template structure (in red). It can
be seen that even the large insertion within the model has been built. However,
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GQLFHIDFGHFLDHKKKKFGYKRERVPFVLTQDFLIVI

GNLFHIDFGH---------------VPFVLTPDFLFVM
|.||||||||               ||||||.|||:|:

Figure 13.32
The Caa coordinates of the model 
(in green) superposed on the
template structure (in red). The
large loop, which is part of the
substrate-binding loop, has been
modeled automatically by Swiss-
Model. However, even in the X-ray
coordinates, this loop is not defined
because of its mobile nature.
Therefore, models of large loops
should be considered with great
caution.
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such large insertions should be regarded with caution, as in this case the loop in
p110g is so flexible that it is not visible in the electron-density map. Within the
Swiss-Pdb Viewer it is possible to realign the sequences and inspect the quality of
the target. If changes are made, it is possible to resubmit the alignment for further
modeling through the Web pages.

All the other prediction programs (3Djigsaw, CPHmodels, ESyPred3D, and Geno3D)
generate a model for p110a. Some allow for some interactive setting of parameters,
others even for changes in alignment. In the most automatic mode all the user
needs to do is paste in the sequence and press the “Submit” button. Geno3D not
only returns the coordinates for the model but also all the PROCHECK files,
enabling the user to check the model.

Modeling a functionally related but sequentially dissimilar
protein: mTOR
All the automatic prediction programs modeled the structure of p110a based on the
template(s) p110g. However, when we try and model the low-level homologous
protein mTOR (~15% identity) using all the above described automated programs,
Geno3D and Swiss-Model do not find a satisfying template for the sequence using
the default settings. Table 13.2 shows which programs returned a model for mTOR.
The RMSD values indicate how similar the models are to p110g and to each other.
This shows that models generated by different methods can differ significantly and
the models should be investigated further with the checking programs.

Using MolIDE it is possible to generate a model accurate enough that it is being
used in drug-related ligand docking. Even though many of the steps in MolIDE are
automatic, importantly it identifies p110g proteins as homologous. It is then
possible using this interface, and the capability to modify the alignment and choose
where the insertions/deletions will be put, to create a reliable model. Therefore,
unless one has a template that has high sequence identity with the target, the
model must be built using at least partially manual steps.
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p110aa Swiss-Model ESyPred3D Geno3D CPHmodels

p110gg 2.96 2.94 3.69 1.64

Swiss-Model 1.49 2.23 1.66

ESyPred3D 2.71 2.81

Geno3D 3.18

mTOR Swiss-Model ESyPred Geno3D CPHmodels

p110gg X 4.54 X 4.76

Swiss-Model X X X

ESyPred3D X 7.33

Geno3D X

(B)

(A)

Table 13.2 
(A) The RMSD backbone values
between the p110gg (template)
structure and the various automatic
models of p110aa. Also RMSD values
are reported between all the models.
There are differences between the
structures (shown by the RMSD
value; the higher the value the more
difference between the structures).
These differences occur mainly in 
the loop regions of the model. The
non-loop region shows ~1.4 Å RMSD
values. This means that there are
slight differences in the models
nonetheless. It is important to check
the automatically generated models
carefully before using them for
further studies. (B) As above but
using mTOR as the target. Because
mTOR is a low-homology model, the
differences between the template
structure and the models are larger. X
denotes that no model could be
generated by this method using
default settings.
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Generating a multidomain three-dimensional structure 
from sequence
Multidomain proteins can be predicted with some success by docking individual
domains onto a known structure of the whole complex. The complete p110g protein
has a modular organization, where a phospholipid-binding C2 domain, the kinase
catalytic domain, and a binding domain for the intracellular signaling protein Ras
are arranged round a helical spine. Earlier predictions on the p110a sequence
predicted the catalytic domain and the C2 domain. With the availability of the
p110g structure, all the domains can be modeled and assembled to form the
complete multidomain complex.

Summary
To properly understand the structure–function relationship of the increasing number
of protein sequences in the databases requires determining the structures of the
proteins they encode. Experimental structure determination by X-ray crystallography
and NMR is still too slow and expensive to keep up with the rate of sequence
generation, and various methods of predicting a protein’s structure from its
sequence alone are needed. Ab initio methods that aim to derive a protein’s struc-
ture from its sequence by first principles are still, in most cases, both unreliable (as
the principles underlying protein folding are not yet fully understood), and imprac-
tical (as they require vast computer resources). However, methods that predict the
tertiary fold of an amino acid sequence on the basis of fold recognition—commonly
known as threading methods—are available and relatively easy to use and have
been described in this chapter in some detail.

Homology modeling avoids the problems of ab initio protein structure prediction
and threading by using the structure of a known homologous protein as the template.
It is at present the most reliable way of determining a protein’s likely tertiary structure
when only its amino acid sequence is known. The technique requires at least one
other protein (the template) that is homologous with the query protein (the target)
and which has an experimentally solved structure, either by X-ray crystallography or
NMR. The first and most important step in modeling is to make an accurate align-
ment between the target and template sequences. Accurate alignment is aided if
multiple homologous sequences are available, and the success of homology
modeling increases the more closely related the target and template sequences are.

Conserved regions of the alignment are modeled first, by simply transferring the
atomic coordinates of the template backbone. After the conserved regions of the
backbone have been built, side chains in the core are modeled. After the conserved
parts of the protein have been built, the variable regions are modeled, paying
particular attention to the fact that any insertions or deletions in the target
sequence relative to the template are most likely to fall in loop regions. They are
often built by searching specialized databases of short structural fragments, and
fitting the best fragments into the modeled structure.

Models can be improved by energy minimization techniques that can relieve
unfavorable inter-atomic interactions. Energy minimization procedures use well-
established thermodynamic and physicochemical principles to find the best
conformation with the least energy.

Homology modeling can be carried out manually or semi-manually using interac-
tive graphics programs such as Swiss-Pdb Viewer or MolIDE and proceeding step-
by-step, or by using fully automated Web-based packages in which all that is
required is to enter the target sequence. The use of various packages has been illus-
trated by modeling PI3 kinase p110a on the template structure of PI3 kinase p110g.
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Homology modeling is going to become more important as the numerous genome
sequencing projects are completed and more and more representative structures
are experimentally solved to use as templates. Large-scale automated or semi-auto-
mated modeling is becoming a routine way of obtaining initial information on the
structures of most of the proteins now being discovered.

Once a good model has been obtained, it can be investigated just like a real struc-
ture; mutations can be incorporated to explore structure–function relationships
and the structure can be used to suggest further experimental projects, which in
turn can be analyzed using the modeled structure. If the model is really accurate, it
can be used to investigate ligand docking, ligand–protein interactions, and the
design of potential drugs.
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ANALYZING STRUCTURE–
FUNCTION RELATIONSHIPS

When you have read Chapter 14, you should be able to:

Compare the conservation of structure in proteins of divergent sequence.

Use fold libraries to classify structure.

Determine the domain structure of a protein.

Interpret functional information returned by structural comparisons.

Discuss how structural comparisons can give clues to function.

Describe the different types of structural comparison methods.

Search the databases for structural and functional information, using the protein
Cbl as an example.

Locate and analyze binding sites.

In the previous chapters we have learned how to predict and model the structure of
a protein. The structure itself can reveal a great amount of information about the
function of the molecule. However, in many cases the understanding of the
protein’s function is significantly enhanced by a detailed comparison with other
proteins whose structure and structure–function relationship are well character-
ized. In this chapter we will see how knowledge of protein structure and of evolu-
tionary relationships can provide answers to biological questions concerning the
structure–function relationship of a protein. 

A protein’s activity or function is determined by its three-dimensional fold in the
sense that the residues needed for a specific activity are brought together in the
right geometry. Once the three-dimensional structure is known, one can start to
explore whether the sequence and structure together give any information about
the protein’s mechanism of action or its biochemical and biological functions.
Knowing the fold structure can lead to a better understanding of the function, for
example by highlighting which residues are actually involved in substrate binding
or other interactions. Once a structure has been determined, structurally similar
homologs can often be found that cannot be picked up by sequence comparison.
Active sites can be defined, and in some cases the biochemical function of the
protein, even clues about its function in the cell, can be deduced.

When a function is identified by sequence searches alone, for example if a cDNA
search with BLAST picks up hits that are homologous to kinase-related sequences,
it can be postulated that the target sequence will also have a kinase-like function

14
APPLICATIONS
CHAPTER

567

BIF Ch14 5th proofs.qxd  17/7/07  14:39  Page 567



and this can be verified experimentally. However, structural information can
provide more detailed information about the function of the protein and can aid in
identification of binding motifs or catalytic centers. This is an important reason for
modeling the structure using one of the methods described in Chapter 13 when no
experimental structure is available. In this chapter we will look at how we can
analyze the structure of a protein to obtain more information about its function
and biological role.

14.1 Functional Conservation
The function of a protein depends primarily on its structure. As more structures
become available due to the development of X-ray and NMR techniques, the rela-
tionship between function and structure can be better understood. In addition,
there is an increase in sequence data due to the completion of large-scale genomic
sequencing programs. Many of these proteins will not have their structure solved
experimentally or undergo detailed experimental analysis in the near future.
However, initiatives have been set up specifically to determine the protein structures
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Mind Map 14.1 
Once we have a tertiary structure,
various analyses can be carried out.
This mind map shows the general
analytical topics covered in this
chapter.

Flow Diagram 14.1
The key concepts introduced in this
section are that although similar
protein structure is suggestive of
similar function, it is not always the
case, and vice versa.
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of particular genomes, often referred to as Structural Genomics. Despite this, there
still will be many proteins for which structures are currently unavailable; therefore
their functional elucidation will depend on the analysis of their sequence and
structural information. 

As will be described, in many cases proteins that share a structural fold have a similar
function. Libraries have been constructed based on known protein structures and
sequences that can greatly assist in predicting protein function in the absence of
experimental data. However, a cautious approach is advisable, as there are numerous
examples of proteins with different functions yet the same fold, and vice versa.

Functional regions are usually structurally conserved
In the previous chapters we discussed sequence and structural homologs. However
there is another class of homologs—the functional homolog. Functional homologs
catalyze very similar reactions, have the same fold, the same catalytic mechanism,
and have ligand-binding sites at the same locations. There are many cases where a
protein shares no or little sequence homology and yet is a functional homolog. This
means that comparisons of structures will often highlight functionally important
regions and motifs that cannot be deduced from sequence alone.

Functional Conservation
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Rabbit :    1 KELSDIAHRIVA-PGKGILAADESTGSIAKRLQSIGTENTEENRRFYRQLLLTADDRVNPCIGGVILFHE
              111111111111 1111111111111111111111          111111111 1111  111111111
Archaea:    1 NLTEKFLRIFARRGKSIILAYDHGIEHGPADFMDNPDS-------ADPEYILRLARDAG--FDGVVFQRG
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Archaea:  114 -------GSGFEWKMFEELARIKRDAVKFDLPLVVWSYPRGGKVVNE-TAPEIVAYAARIALELGA----

Rabbit :  210 YLEGTLLKPNMVTPGHACTQKYSHEEIAMATVTALRRTVPPAVTGVTFLSGGQS--EEEASINLNAINKC
                  111111111             1111111111 11111  1111111111  11111111111111
Archaea:  172 ----DAMKIKYTG-------------DPKTFSWAVK-VAGKV--PVLMSGGPKTKTEEDFLKQVEGVLEA

Rabbit :  278 PLLKPWALTFSYGRALQASALKAWGGKKENLKAAQEEYVKRALANSLACQ
                   111111111111111                11111111111111
Archaea:  222 -----GALGIAVGRNVWQRR----------------DALKFARALAELVY

Sequence id = 19.7%

(C)

(A) (B)

archaea rabbit

Figure 14.1
Comparison of the archaeal and
rabbit FBPA domains. (A) The Ca
representation and superposition of
the archaeal and rabbit FBPA IA fold.
(B) A secondary structure schematic
of the two FBPA IA structures with
helices as red cylinders and strand as
blue arrows. The left is the archaeal
structure while the fold on the right
is from a rabbit. (C) The structural
alignment of the two FBPA IA folds,
with helices colored in red and
strands in blue, showing the
matching of secondary structure
elements, even when there is hardly
any sequence homology. Regions
containing the number 1 in between
the aligned sequence denote those
residues that are structurally aligned.
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An example of this can be found in the fructose-1,6-bisphosphate aldolases (FBPAs).
The cleavage and formation of FBP (fructose 1,6-bisphosphate) from GAP (glycer-
aldehyde 3-phosphate) and DHAP (dihydroxyacetone phosphate) by FBPA is an
important step in glycolysis. Two different classes of FBPA have been identified,
which share no significant sequence identity: Class I FBPA and Class II FBPA. Class
I is found mainly in eukaryotes and Class II in bacteria. The activities of both types
of FBPA have been detected in archaea but no genes with sequence homology to
either class have been detected in fully sequenced archaeal genomes. However,
using biochemical, cloning, and recombinant expression methods a gene was found
to code for an archaeal FBPA protein similar in catalysis to the Class I type. This
protein was called FBPA IA, and is also a member of a divergent family of archaeal
proteins with overall sequence identity between archaeal members as low as 20%.

Recently the crystal structure was determined of a FBPA IA from the hyperther-
mophilic crenarchaeote Thermoproteus tenax (Tt-FBPA, PDB code 1OJX). The FBPA
IA monomer adopts a parallel ab-barrel fold (see Figure 14.1) similar to those found
in the Class I and II FBPA proteins. With the crystal structure of the FBPA IA from T.
tenax solved, it can be seen that all three FBPA sequence families adopt the TIM
barrel fold (see Figure 14.2). 

However, it must be borne in mind that although proteins with similar structural
folds are often functionally related, this is not necessarily the case. There are quite a
number of proteins that share a similar topology but have no functional relationship.
Proteins within the same fold type can also have secondary structures and turn
regions that are different, occurring as insertions within the fold or as entire extra
domains (see Figure 14.3). Having the same fold does not necessarily mean that the
proteins have a common evolutionary origin. The structural similarities between
proteins that share a common fold may arise from the fact that proteins pack into a
finite number of favored arrangements. The TIM barrel also provides an example of
this. In a recent CATH survey there were about 900 structures that were classified as
TIM barrel. Although, most of these function as metabolic enzymes they catalyze
quite different reactions and are involved in different pathways (see Figure 14.4).
Even though they catalyze diverse reactions, their active site is always found at the
C-terminal end of the barrel, which suggests that these proteins did diverge from a
common ancestral TIM barrel. In addition, these enzymes often have extra domains
that precede, interrupt, or follow the barrel, indicating domain shuffling during
protein evolution. Therefore if a protein is identified as having a TIM-barrel fold, one
cannot predict its function unless there is also considerable sequence homology.

Similarity of biochemical function then, is most likely if proteins have both
sequence and structural similarity, strongly indicating descent from a common
ancestor. This is the case for proteins from different species, where sequence has
diverged somewhat as a result of speciation but structure and function have been
retained. Similarly, proteins that have arisen relatively recently from gene duplica-
tion within a genome, such as the mammalian a- and b-globins, are also likely to
retain the same function.

Similar biochemical function can be found in proteins with
different folds
In contrast to proteins such as the FBPAs, there are instances where proteins with
the same biochemical function have quite different overall structures. Examples of
this are found among the serine proteases and the pyridoxal phosphate-dependent
aminotransferases. In these cases, however, the enzymatic mechanism is similar
and the active sites have converged on similar arrangements.

Another example of a function that can be carried out by two different protein
domains is recognition and binding of phosphorylated tyrosine residues. Binding of
one protein to another via a phosphotyrosine residue on its surface is an important
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Figure 14.2
The FBPAs have a classical TIM
barrel fold. The TIM barrel from
triosephosphate isomerase (TIM)
fold is illustrated here with a
secondary structure schematic. The
fold contains a parallel b-sheet
barrel (b–a–b units). It is classed as
an a/b protein.
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general mechanism by which activated receptors and other signal transduction
proteins can be regulated or recruit the next protein partner in a signaling pathway.
Two quite different protein domains can bind phosphotyrosines: these are the Src-
homology 2 domain family (SH2) and the phosphotyrosine-binding domain family
(PTB) (see Figures 14.5A and 14.5B, respectively). There is, however, a subtle differ-
ence between the activities in these two domains. SH2 domains are selective for
phosphotyrosines flanked by a particular amino acid sequence on the carboxy-
terminal side, whereas the specificity of PTB domains is based on the sequence
immediately on the amino-terminal side of the phosphotyrosine. There is no
discernible sequence or structural homology between these two domains, although
their function is similar. On the other hand, the PTB domain has been found to have
structural homology to the pleckstrin homology (PH) domains (see Figure 14.5C),
which are known to bind phospholipids. Biochemical experiments have confirmed
the ability of the PTB domain to bind phospholipids as well.

Fold libraries identify structurally similar proteins regardless 
of function
In Chapter 13 fold libraries were introduced as an aid in predicting the tertiary
structure of a protein. Fold libraries also contain a large amount of information
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Figure 14.3
Two immunoglobulin-like
beta-sandwich folds. The
immunoglobulin fold is found in
many proteins. In this figure the fold
from the PKD domain of the human
polycystein-1 protein (1B4R), which
is involved in polycystic kidney
disease, and the histone deposition
protein (1ROC) are shown. 
(A) This illustrates a schematic
diagram of the fold where arrows
indicate b-strands and cylinders a-
helices. Those b-strands that form
part of the immunoglobulin fold in
both proteins are colored red. Both
proteins have the same fold and fall
into the same fold family. However,
1ROC has two large insertions
between the fold-forming structures
(in green). (B) A Ca-cartoon
representation of the above, and 
(C) the two structures superposed. 
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about protein function and the structure–function relationship, and therefore can
be very useful for identifying the potential function of the structure. The most
common fold libraries are CATH, SCOP, and FSSP.

Generally, all the fold libraries classify the proteins according to criteria that are
based on the structural arrangement of the protein and on their sequence
homology. The SCOP database was created by expert manual curation of protein
structures and is supported by automated methods. It aims to provide a detailed
and comprehensive description of the structural and evolutionary relationships
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The different types of function of TIM illustrated in a
functional wheel diagram. (A) The wheel shows the distribution
of TIM functions, as given by the type of reaction, as a set of pie
charts. The colored slices represent different enzymatic
functions while the white slice shows that a fraction of TIMs
have nonenzyme functions as well. (B) This shows the pie chart

representation of the biological/pathway function of the various
TIM proteins. (Based on N. Nagano, C.A. Orengo and
J.M. Thornton, One fold with many functions: the evolutionary
relationships between TIM barrel families based on their
sequences, structures, and functions, J. Mol. Biol. 321:741–765,
2002, with permission from Elsevier.)

Figure 14.4

Figure 14.5
Different types of
phosphopeptide-binding proteins.
(A) The Src homology domain (SH2),
(B) the phosphotyrosine-binding
(PTB) domain, and (C) the pleckstrin
homology (PH) domain. The different
folds all bind a phosphotyrosine
peptide, drawn in dark blue.
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between all proteins whose structure is known. The proteins are classified by family,
superfamily, and fold. Proteins classified as families are undoubtedly evolutionarily
related. In SCOP this usually means that the pairwise residue identities between
proteins are 30% or higher, but there are exceptions. In some cases, where similar
functions and structures provide definitive evidence of common evolutionary
descent, the proteins are assigned to the same family despite the absence of high
sequence identity. An example of such a family provided by the SCOP Web site, are
the globins; these proteins form a family although some members have sequence
identities as low as 15%. Proteins that fall into the superfamily class are described
as having a probable common evolutionary origin. These have low sequence iden-
tities, but similar structural and functional features. Classification into the fold class
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Figure 14.6
Illustration of the classification of
protein folds according to CATH. C
stands for Class, A represents
Architecture, and T signifies Topology. 
H represents Homologous superfamily.
The Class classification is divided into
four folds: proteins that contain mainly
a-helices (a), those that have a mixture
of a and b, (a–b), those that are mainly
b-strand (b), and structures that have
very little or no regular secondary
structure (low SS). If the a–b class is
taken as example, the representatives
can be divided into different shapes in
the Architecture (A) class, such as the
TIM barrel, the sandwich, the roll, and
more. The A level can be further divided
according to the Topology (T level) of the
fold. The structures at this level have
similar shape and connectivity. So for
example, the sandwich is found both in
the flavodoxin family and b-lactamase
family. The flavodoxin belongs to the
hydrolases at the level of homologous
superfamilies.
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means that there is major structural similarity between the proteins. In other words
they have the same major secondary structures in the same arrangement and with
the same topological connections.

The CATH database is a hierarchical classification of NMR and crystal structures
solved to resolution better than 3.0 Å. CATH divides the proteins into four major
levels: Class, Architecture, Topology (fold family), and Homologous superfamily
(hence the name CATH). Proteins are classified into the same class according to the
secondary structure composition and packing (see Figure 14.6–C). Class is usually
assigned automatically. The proteins are classified into three main classes: mainly-
a, mainly-b, and a–b. The a–b class describes both alternating a/b structures and
a + b structures. A fourth class has now been recognized—a class containing
protein domains that have low secondary structure content. Proteins in the same
architecture (see Figure 14.6–A) have a similar overall shape of the domain structure
that is not dependent on the connectivity between the secondary structures.
Structures that are grouped into topological families (see Figure 14.6–T) have
similar overall shape and connectivity of their secondary structures. This is equiva-
lent to the SCOP fold families. Proteins within this level probably share a common
ancestor and can therefore be described as homologous. Similarities are identified
both by sequence comparisons and by structure comparison.

Proteins are classified into four levels in FSSP. The top level of the fold classification
is based on secondary structure composition and supersecondary structural
motifs, recognizing five distinct types. The next level of classification is fold type;
the third level of the classification deduces evolutionary relationships based on
structural similarities in addition to functional or sequence similarities. The last
level of the classification is a representative subset of the Protein Data Bank
extracted using a 25% sequence identity threshold. All-against-all structure
comparison was carried out within the set of representatives. Homologs are only
shown aligned to their representative. Alignments available from FSSP may be very
useful for further analysis. Other fold libraries constructed in similar ways include
3DEE and Dali, which contain structural domain definitions for all proteins with an
experimentally solved structure.

14.2 Structure Comparison Methods
There are several alternative approaches to comparing two protein structures, each
of which will be discussed in this section. Before comparing protein structures it is
often useful to identify the domains and to analyze each independently. This can be
done either by visual inspection or using automated methods. 

The simplest structure alignment method treats the structures as rigid, and tries to
identify the largest group of equivalent pairs of atoms that can be superposed
within a specified degree of accuracy (see CE and VAST). An alternative method is
based on identifying equivalent rigid segments without regard for their sequential
order along the peptide chain (see DALI). The final approach to structural compar-
ison recognizes that protein folds are not rigid, often having regions that can act as
hinges separating two relatively rigid regions. Typically, but not exclusively, these
are interdomain segments, making the comparison of multidomain proteins more
accurate. Such methods can superpose two structures by identifying several equiv-
alent rigid regions (see FATCAT).

Finding domains in proteins aids structure comparison
The identification of protein domains can be done by visual inspection. However
this is time consuming, subjective, and needs expert knowledge. It would be much
more efficient to have an automated computer program that can divide protein
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structures into domains, and can minimize the errors that can arise by visual
analysis. There are several automatic methods to identify domains from the atomic
coordinates; for example, PDP, the Protein Domain Parser server, or the program
DIAL, which identifies domains based on clustering of distances between
secondary structure elements. Both programs need the protein coordinates to be
uploaded to the server. The PDP returns a list of domains while DIAL returns a list
and a color-coded coordinate file.

The human protein Cbl (PDB code 2CBL) will be used as an example to illustrate
the resources available for domain identification, searching the databases for
similar structures, and how such structure comparisons can be used to find infor-
mation on the possible function of a protein domain. Cbl and its homologs in other
species are intracellular signaling proteins that have, among a number of other
cellular functions, a role in inhibiting the antigen-receptor signaling pathway in
T lymphocytes. The Cbl gene is also a known proto-oncogene: a truncated and
oncogenic version of Cbl (v-Cbl) is carried by a mouse tumor virus. Thus its mech-
anism of action in the cell is of considerable interest. The first three-dimensional
structure of the conserved amino-terminal region of Cbl was published in 1999, and
since then a combination of structure and sequence comparisons and experi-
mental biochemistry and cell biology has revealed much about its activity.

When the structure was solved it revealed the presence of an unusual SH2-like
domain in the amino-terminal region of Cbl, which had not been detected by
sequence analysis. When the Cbl structure was used to guide the alignment of the
Cbl sequence with other SH2-domain sequences, important functional motifs
typical of SH2 domains could be identified in the Cbl sequence. This explained the
protein’s known ability to bind to phosphorylated tyrosines in intracellular signaling
proteins such as the ZAP-70 protein tyrosine kinase from T cells. Another domain of
the Cbl structure—the RING-finger domain—identified Cbl as a probable E3 ubiq-
uitin ligase, following experimental work that associated RING-finger domains of
this type with ubiquitin ligase activity. This activity was subsequently confirmed
experimentally, and Cbl is now generally considered primarily as an E3 ubiquitin
ligase that targets receptor tyrosine kinases and other proteins for degradation.

The structure of the Cbl amino-terminal region shows that it consists of three
domains: a mainly a-up–down bundle, a mainly a-orthogonal bundle, and an a–b
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In this section a number of
methods for comparing protein
structures are described.
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sandwich (see Figure 14.7A). It is the third domain that we will use as an example to
illustrate the identification of the SH2 domain. So that each domain can be identi-
fied and analyzed separately, the coordinate file of 2CBL was submitted to the DIAL
domain identification program. DIAL identified three domains, but it divided the
a-up–down bundle and assigned a part of it to domain 3 (see Figure 14.7B). In this
instance, it may make it harder for the fold-recognition programs to identify
domain 3 as a SH2-like domain. Visual inspection of the predicted domain organi-
zation suggests that the third domain, identified as one large domain, should be
split as shown by the arrow in Figure 14.7B into two domains. Even though this does
not give the correct number of domains, it would enable the correct analysis of the
SH2-like domain. The PDP server also identified three domains: domain 1 correctly
from residues 47 to 175; domain 2 terminated a few residues early as did the predic-
tion for domain 3.

Once the number of domains in a protein has been identified and their start and
stop positions delineated, each domain can be submitted separately to the
programs described below to identify its class or fold.

Structural comparisons can reveal conserved functional
elements not discernible from a sequence comparison
In order to determine the presence of the SH2 domain in Cbl the following steps
can be taken. Firstly, the Cbl sequence is analyzed with the sequence databases to
identify similar sequences (see Sections 4.6 and 4.7). Previously we have used DIAL
to identify the domains of Cbl. To simplify the sequence search we will take only the
region we have identified to include the SH2-like domain: residues 250 to 350. No
sequence homologs other than Cbl proteins from other species are found (see
Figure 14.8). Thus the sequence alone cannot give us any clues to the function of
this region. The next step is to turn to the solved structure of the Cbl conserved
amino-terminal region, and use the structural coordinates of the region of interest
to look for similar structures.

The CE method builds up a structural alignment from pairs of
aligned protein segments
The CE (Combinatorial Extension) algorithm compares two structures by splitting
them up into smaller segments usually eight residues in length. The method aligns
pairs of segments, one from each protein, with respect to their structural similarity
based on local geometry. Pairs of aligned segments that represent possible contin-
uous alignment paths are extended or discarded until a single optimal alignment
has been reached.
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(A)  X-ray definition (B)  DIAL prediction

a-orthogonal
bundle

SH2 domain
a-b sandwich

up–down
a bundle

Figure 14.7
Alternative definitions of the Cbl
domains. (A) The three domains of
Cbl as defined in the PDB X-ray
structure file. The first domain (red)
is mainly an a-up–down bundle.
The second domain (green) is
mainly a-orthogonal bundle, and
the third domain (blue) is the a–b
sandwich with structural similarity
to an SH2 domain. (B) This shows
the predicted domain architecture
by DIAL. Part of the first domain is
predicted as the last. The red arrow
in (B) shows where the third domain
could be split into two domains
based on further visual inspection.
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In the example discussed here, the PDB coordinates of the SH2-like domain of Cbl
have been submitted for a structural comparison against the whole database. A list
of 153 protein chains that have been structurally aligned was returned by the
program. Of these, 135 are SH2-like domains. The results returned give the RMSD
(root mean square deviation) between the chain-pairs as well as a z-statistic.
Chains with the lowest RMSD and highest z-scores should be chosen; in practice
proteins with a z-score of 3.5 or better are usually found to have a similar fold. In
addition, one should look at the length of the structure that has been matched; the
more residues matched the better. Figure 14.9A shows the top results for the Cbl
search on the CE Web site. The top hit is to the SH2 domain of SHP2 (also called
Syp). This protein consists of three domains, and only the first domain has an SH2-
like fold, which was the fold picked by the CE method. Figure 14.9B shows the fit of
the Cbl domain 3 and the SH2 of SHP2 superposed on each other. If our example
consisted only of domain 3, a hit on a multidomain protein would provide us with
additional information. The regions of the SH2-like domain that are in contact with
the other domains cannot be involved in the binding of its ligand peptide.

The Vector Alignment Search Tool (VAST) aligns secondary
structural elements
The VAST (Vector Alignment Search Tool) algorithm computes units of structural
similarity between pairs of secondary structures that are of a similar type and have
similar orientation and connectivity. The method uses an algorithm based on graph
theory to identify the equivalent pairs of secondary structural elements in the two
structures, and an optimization technique to refine the alignment. Precomputed
structural alignments made by VAST are stored in the Entrez 3D database.

Given a user-specified set of 3D coordinates VAST can be used as a tool to search for
folds that are structural homologs. The VAST structural alignment picked the
STAT-1 SH2 domain as the most significant match after Cbl itself (see Figure 14.10).
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Figure 14.8
A BLAST search through the
Swiss-Prot database with the
Cbl-SH2 domain sequence. No
SH2-like proteins are found. Only
hits with Cbl homologs give
significant E-values. This particular
result will change as the database is
updated.
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Analysis of the structural alignment shows that there is a conserved pattern of
residues around the essential arginine residue (R294 in Cbl) that makes the main
interactions with the target phosphotyrosine (see Figure 14.10A). However, submit-
ting the Cbl sequence for pattern searches (see Section 4.9) does not pick up the
SH2 similarity (except to itself). In this case it is only the availability of structural
coordinates and structural similarity that enables the identification of an SH2-like
domain in Cbl.

DALI identifies structure superposition without maintaining
segment order
The DALI algorithm uses the atomic coordinates of two proteins to calculate and
compare residue–residue (Ca–Ca) distance matrices for each protein. Many
possible alignments are obtained at the same time, leading to the definition of
optimal and sub-optimal alignments. The method allows insertion of gaps of any
length between rigid segments. An unusual feature of this method is that it permits
the reversal of chain direction and the aligned segments to be combined in orders
other than those given by the sequence.

The DALI precomputed structural neighbors of any protein already in the PDB are
available in the FSSP database, which is accessible through the DALI Web page.
DALI results of a structural search between the user’s coordinates and the structural
database are returned as a list of top-scoring hits and structural alignments. The

Chapter 14: Analyzing Structure–Function Relationships

578

(A)

(B)

1

2

3

Figure 14.9
Results from the structural search
by the program CE with the Cbl
SH2- like domain. (A) The output
from the CE program, listed
according to z-score. All results
shown identify an SH2-containing
protein. The top hit is with a
tyrosine phosphatase (SHP2). (B)
SHP2 consists of three domains,
shown here. The Cbl SH2-like
domain (green) has been
superposed on the SHP2 SH2
domain (number 3).
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top-scoring hit for the Cbl structure (apart from itself) was the structure of the SH2
domain of Grb10. The RMSD between the 81 aligned residues was 2.0 Å with only
9% identity between the two sequences. Figure 14.11 shows the structure of Cbl and
Grb10 next to each other in the same orientation. 

FATCAT introduces rotations between rigid segments
The structural alignment program FATCAT first identifies equivalent rigid segments, at
least eight residues in length, in both structures. It then uses a dynamic programming
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Cbl_A   YMAFLTYDEVKARLQKFihKPGSYIFRLSCTRl-GQWAIGYVTAD-----GNILQTIphn 
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SH2_A   kkelsavtFPDIIRNYkvmaaenipeNPLKYLYPNIDKDH 

(A) 

(B) 

(A) (B)

Figure 14.10
The results from the structural
alignment algorithm VAST. 
(A) A sequence alignment between
Cbl and the STAT-1 SH2 domain.
The structurally aligned regions are
given in blue with sequence
conserved residues illustrated in red.
The residues in black lower case are
not included in the structural
alignment. (B) The Ca backbone
superposition of the two SH2
domains color coded as in (A) with
gray regions representing those that
are not structurally aligned.

Figure 14.11
Results from a DALI search. The
top-scoring fold with (A) Cbl was the
Grb10 SH2 domain (B). Shown here
are the secondary structure ribbon
representations of both in the same
orientation. The structural similarity
is noticeable.
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algorithm (see Chapter 5) to combine the segments, if necessary using rotations,
called twists, about hinges. The algorithm optimizes a function of the RMSD between
equivalent atoms, insertions, and deletions in the alignment, and any twists that
were introduced.

When the Cbl structure is submitted to FATCAT, Grb10 SH2 domain is once more
the top hit (apart from Cbl itself). The first 19 hits are all SH2-like folds and none
include any twists, meaning that the structures were treated as rigid. The 20th hit
has an HPr-like fold and only 1% sequence identity with Cbl but no twists were
introduced. The 21st hit is the first hit where a twist is introduced to structurally
align Cbl with an OB-like fold. To align the OB-like fold with Cbl, a twist was intro-
duced near a helix, which flips a b-sheet around (see Figure 14.12). 

In the case of Cbl, the programs all returned similar results, with an SH2-like
domain as the top hit or hits. It is always desirable to confirm the results by using a
number of different algorithms. One should submit the target structure to more
than one program and, if there is any disagreement, take the majority result.

14.3 Finding Binding Sites
Proteins do not act in isolation. To carry out their functions they must form transi-
tory or stable complexes with other molecules; these may be other proteins, small-
molecule substrates or regulators, DNA, RNA, or membrane lipids, depending on
the protein. Often proteins contain specialized domains that bind to specific mole-
cules important to their function. For example, many intracellular signaling
proteins consist of multiple protein-interaction domains through which the
protein is located at the right intracellular site and through which it interacts with
the appropriate target. Gene regulatory proteins bind to DNA through a variety of
specialized DNA-binding domains with distinctive structures, while also binding
regulatory proteins or small molecules via other domains. 

The protein p53 is a transcription factor present at low levels in the cell nucleus in
an inactive state. Its levels increase rapidly in response to DNA damage, hypoxia,
and nucleotide deprivation, triggering a cascade of molecular events through
extended regulatory associations with certain genes. These interactions delay the
cell cycle, giving time for the cellular DNA repair mechanisms to operate, or when
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Figure 14.12
The program FATCAT allows the
insertion of twists around
structural elements as is illustrated
here. In the 21st hit—which is an OB
fold—a twist was introduced around
a helix, which flips strands B1 and
B2 such that they now will align with
the Cbl fold. The figure here shows
the original OB fold (red) and the OB
fold with the twist (yellow/green).
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the DNA is severely impaired to initiate apoptosis, the programmed cell death. p53
is mutated in more than 50% of invasive tumors and is therefore an important target
in cancer research. There are an estimated 88 direct protein interactions and 87
transcriptional associations (indirect links) to p53 (see Figure 14.13). All these inter-
actions cannot occur at once and they cannot all bind to the same binding site. p53
is a multidomain protein with different binding partners to different domains (see
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In this section some of the methods
available for identifying binding
sites on proteins are described.

Figure 14.13
An interaction diagram of p53 with
its many direct-binding partners.
Each line connects to different
proteins for which there is
experimental evidence that the 
two interact. The central red area
denotes p53; yellow ovals are the
proteins that associate with p53. 
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Figure 14.14). The binding of different units is illustrated in Figure 14.15 where an
RNA polymerase II structure (gray) binds to DNA as well as other RNA polymerase
subunits at the same time. Determining the types of interactions a protein can make
at any one time is therefore a vital part of analyzing the structure–function relation-
ships and increasing our understanding of the overall function of the protein.

There are two main types of binding sites. The first type occurs at protein–protein
or protein–DNA interfaces, usually large areas on the surface of the protein struc-
ture. The second type forms ligand pockets or clefts. These binding pockets can
penetrate quite deep within the protein structure, although they are usually acces-
sible from the surface via a channel. In addition many proteins bind metal ions.
Metal ions are important in biological processes as they can mediate an interaction
between protein and ligand and they can also act as a nucleophilic catalyst or in an
electron transfer role.

Highly conserved, strongly charged, or hydrophobic surface
areas may indicate interaction sites
Fold library searches can indicate on the basis of similarity to homologous proteins
where putative interaction sites in a protein are located. However, there are many
other methods that have the potential to identify interaction sites. If we have a
protein for which the type of substrate or binding partner is known, exploration of
the protein surface can identify putative interaction sites. A multiple alignment of
related proteins can be constructed, based either on sequence or structure. When
this is superposed onto the structural coordinates of the query protein it can be used
to identify shared features of the surface residues. Any small clusters of residues that
are conserved throughout the alignment are highlighted on the three-dimensional
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Figure 14.14
A schematic representation of the
various regions of the p53 protein
and some of the proteins that bind
to the specific regions. It is unlikely
that many of these proteins could
bind simultaneously to the same
region.

DNA

Figure 14.15
The binding architecture of the RNA
polymerase II subunit. Other RNA
polymerases that bind to this
protein are each shown as a Ca-trace
in different colors. Each part of the
surface on RNA polymerase II that
interacts with the other polymerases
is color-coded accordingly. For
example, the red-colored surface of
RNA polymerase II interacts with the
red Ca-trace. A strand of DNA is just
visible in red. This illustrates the
complexity of binding in some
proteins.
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representation of the protein; this often shows that conserved residue clusters that
are spread out in the sequence come together in the folded structure. If such
conserved patches occur on the surface of a protein they may represent one or more
interaction sites. In some cases, the type of interaction can be deduced from the
character of the surface patch. For example, if it contains many charged residues,
especially of the same charge (positive or negative), it can be deduced that the inter-
action will be mainly through electrostatic attraction. On the other hand, a
conserved hydrophobic patch, which will be unusual on the surface of a typical
globular protein, points to an interaction based on hydrophobic forces. For
example, the crystal structure of survivin (1XOX), a mammalian cell-cycle regulatory
protein that inhibits apoptosis, has revealed an extensive hydrophobic interface for
dimerization along one of the surfaces of the survivin monomer, a basic patch that
acts as a sulfate- or phosphate-binding module, and a solvent-accessible
acidic/hydrophobic patch in the carboxy-terminal region that is involved in
protein–protein interaction with the Smac/Diablo peptide (see Figure 14.16). 

To analyze surface properties an interactive structure display program is needed
(see Section 2.2). Given a suitable program, the structure can be colored according
to the physicochemical properties of the residues or their degree of conservation.
Patches of conserved or hydrophobic or polar residues should be further investi-
gated as possible binding sites. As binding sites for substrates are part of the active
site, similar techniques can be applied to find enzyme active sites. A number of
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Figure 14.16
The interaction regions of survivin.
(A) A monomer of survivin
represented as a surface colored
according to charge, where red
regions are negative and blue regions
are positive (basic). Survivin forms a
dimer—the hydrophobic (white)
dimer interface is indicated by an
arrow. (B) The peptide interface
situated on the opposite side of the
molecule from the interface shown
in (A), is negatively charged. (C) The
survivin–peptide complex with the
peptide colored yellow/green.
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programs are available on the Web to analyze surface properties and predict
regions of proteins that may bind other proteins or contain ligand-binding sites. A
few are illustrated below.

Searching for protein–protein interactions using surface
properties
An analysis of 57 unique protein structure surfaces that were known to be involved
in heteromeric temporary protein–protein interactions showed that mainly
b-sheets or long loops are involved in the interaction interface but no a-helices.
Additionally, aromatic residues were preferred, with clusters of either hydrophobic
or aromatic residues at the interface. These findings were incorporated into an
automatic interface-prediction program called ProMate. p53 (PDB code 1YCS) was
submitted to ProMate for identification of interaction sites. One site was identified
as a potential protein–protein interaction region (see Figure 14.17A). A crystal
structure exists of p53 in complex with ASPP2, one of the proteins known to interact
with p53. Figure 14.17B shows that ASPP2 binds to the site identified by ProMate.
This site in addition is known to interact with DNA. 

Another similar program is called PPI-PRED, and is based on analysis of the prop-
erties of protein interaction interfaces identified in a set of 180 protein and 56
protein–DNA complexes. When p53 was analyzed using PPI-PRED two major sites
were identified (see Figure 14.18). One is the ASPP2/DNA-binding site. The other
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(A) (B)Figure 14.17
Protein–protein interaction sites of
the DNA-binding domain of p53 as
predicted with the program
ProMate. (A) One region is predicted
as a binding site (in red). The crystal
structure of the p53–ASPP2 complex
is available. (B) We can see that
ASPP2 (in green) binds to the
predicted patch (which is also
known to bind the DNA).

Figure 14.18
Protein–protein interaction sites of
the DNA-binding domain of p53 as
predicted with the program
PPI-PRED. This predicts more
binding sites than ProMate (three
sites); these are color-coded
according to probability of being a
binding site, with red the most
probable. One of the sites is the
ASPP2/DNA-binding site. The actual
binding partner (of any) of this
second site is presently unknown.
As this is only the DNA-binding
domain of the p53, the second
region can be occupied by one of
the other p53 domains. However,
there are no structures available for
the whole protein.
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may well be involved in binding another protein or is involved in the probable
trimerization structure. 

Surface calculations highlight clefts or holes in a protein that
may serve as binding sites
Most computational methods search for binding sites by analyzing the surface of a
protein to locate pockets. First, a surface, usually the solvent-accessible surface
areas of the protein, is calculated (see Figure 14.19) and then the surface is explored
for clefts and cavities that may accommodate a ligand. Usually, the largest pocket is
taken as the binding site. A number of programs are available for free download,
such as SURFNET. However, two programs to locate putative binding sites—
Pocket-Finder and Q-SiteFinder—are available via a Web interface.

Pocket-Finder is based on the LigSite algorithm. The Pocket-Finder program
defines potential binding sites based solely on the geometry of the receptor. The
method is based on the observation that if a line passes through a cavity or cleft a
section of the line will lie within the protein, followed by a section in the cavity or
cleft, followed by another section within the protein. Such a pattern will indicate
the possible presence of a cavity in the region of the central line segment. For each
of a grid of points within the protein, seven directions are examined to see if they
have this pattern. A count is made of the number of these directions whose patterns
identify it as in a pocket. The grid point is predicted to be in a cavity if it achieves a
count of seven, with smaller non-zero numbers suggesting a location within a
pocket at correspondingly shallower depth. The pockets are defined by all those
connected grid points that have counts exceeding a threshold value.

The Q-SiteFinder method also uses a grid of points, but in contrast to Pocket-Finder
identifies putative binding pockets by locating regions that would have favorable
interaction energy with a probe that represents part of a general ligand. The inter-
action of the probe with the protein is defined by the nonbonding terms (see
Appendix B) of a methyl group. At each grid point the interaction energy is calcu-
lated of the probe at that position with the protein. Only those grid points whose
interaction energy is more attractive than a defined threshold are kept. Finally,
potential binding pockets are defined by combining the grid points that remain if
they are within a specified distance.

Submitting the enzyme dihydrofolate reductase (DHFR) without its inhibitor or
cofactor NADPH to Pocket-Finder identifies as the top site most of the site where the
NADPH and inhibitor bind, as does Q-SiteFinder (see Figure 14.20). Q-SiteFinder
predicts a lower volume (smaller) pocket as compared to other programs including
Pocket-Finder (see Figures 14.20D and 14.20E). Often, when applied to large proteins
the algorithms that depend only on analysis of the surface calculate binding sites
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probe (1.4–1.7 Å)

contact surface 

(A) (B) Figure 14.19
Calculation of solvent-accessible
surface. The surface of a molecule
can be defined to be the part of the
molecule that is accessible to
solvent. (A) One method to calculate
the surface is to have the solvent
molecule (water) represented by a
sphere that has a radius of 1.4 Å to
1.7 Å. This is called the probe sphere
(the orange ball). The
solvent-accessible surface is defined
as the trace of the probe sphere
center as it rolls over the molecule
(outer red dashed line). The contact
surface is that part of the molecular
surface that can be touched by the
edge of the probe sphere (inner red
dashed line). There are variations of
how a surface can be calculated. (B)
Illustration of the solvent-accessible
a surface of Clostridium beijerinckii
flavodoxin protein using a sphere
probe of 1.4 Å. The ligand flavin
mononucleotide (FMN) bound to
the protein is also shown.
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that are too large. The smaller volume binding site predictions using Q-SiteFinder
were found to be more similar to the ligand they contain and independent of the size
of the protein. Both programs also identify the residues that are part of the binding
site. These can be used in the programs described below to dock the ligand.

Looking at residue conservation can identify binding sites
Amino acids that are important functionally and also for binding tend to be
conserved across species during evolution. This observation has been used to predict
binding and functional residues and is referred to as the evolutionary trace method.
A number of methods have been proposed that calculate conservation scores for
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Figure 14.20
Ligand binding-site programs find
probable cavities where ligands can
bind. The results from Q-SiteFinder
and Pocket-Finder are shown. 
(A) The crystal structure of
dihydrofolate reductase with its
inhibitor and cofactor NADPH. (B)
The best site found by Q-SiteFinder
and (C) with the NADPH and
cofactor shown. (D) The best site
found by Pocket-Finder and (E) with
the NADPH and cofactor shown. The
sites are quite well defined.
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each residue based on the sequence alignment of a family of proteins. These types of
scoring often depend on the evolutionary relationship between the protein under
study and its homologous proteins using substitution matrices (see Section 5.1). For
example the ConSurf program takes the sequence of the submitted protein and
performs a PSI-BLAST search (see Section 6.1) through the Swiss-Prot database. After
it has extracted the sequences found from the search it does a multiple alignment
using ClustalW (see Section 6.4). Based on this alignment a phylogenetic tree (see
Chapters 7 and 8) is constructed. Subsequently it calculates position-specific conser-
vation scores and divides these into a nine-color gradient for visualization. Current
research is exploring the promise of combining the two methods of surface searching
(for example SURFNET) and conservation analysis (such as ConSurf) to give more
specific and accurate binding sites.

The p53 protein was submitted to the ConSurf program, which calculated evolu-
tionary scores that were then used to color the residues of the structure (see Figure
14.21). The highly conserved residues within the p53 family fall mainly into the
ASPP2/DNA-binding region as described above. An evolutionary trace method
from Accelrys was also applied to analyze the DHFR residues (see Further Reading).
In this study the residues that are involved in cofactor and folate binding were
successfully identified using this approach.

14.4 Docking Methods and Programs
Once an active site or a probable binding site has been identified, the binding of
small-molecule ligands such as enzyme substrates, inhibitors, and cofactors can be
modeled. If the type of ligand is known or suspected, then the next step is to either
model in the ligand itself or to find a potential ligand structure from a database of
small molecules and fit it into the binding site. In addition there are programs that
enable the user to design ligands specific for a particular binding site. Analyzing the
interactions between ligand and protein leads to a better understanding of how
ligand binding might affect the protein’s structure and function. Strong binding is
generally determined by the shape and chemical properties of both the binding site
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Figure 14.21
Identification of binding sites using
ConSurf. The p53 was submitted to
the ConSurf server to visualize areas
conserved during evolution which
are therefore possible interaction
sites. The dark purple colors indicate
conserved regions. The
ASPP2/DNA-binding site is within
the conserved region.
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and substrate and by the orientation of the ligand. In addition, analysis of the
docked ligand and the interacting residues can suggest ways in which a ligand
might be modified to make it into a useful therapeutic drug (see Box 14.1).
Molecular modeling of this sort is now used as a high-throughput way of rapidly
investigating the binding of potential small-molecule drugs to the target protein
and identifying those that are worth following up further. There is insufficient space
in this book to give many details of the techniques of molecular modeling that are
applied to the problem of ligand binding. Some details of the energy terms and
methods that can be used are given in Appendices B and C. For further details, see
the references in those appendices.

Simple docking procedures can be used when the structure of
a homologous protein bound to a ligand analog is known
The procedure known as docking attempts to model the structure of the
protein–ligand complex. The simplest strategy is manual docking, which can be
performed with many computer graphics programs. For useful results, this almost
always requires that ligand-binding information is available for a homologous struc-
ture. As homologous proteins generally preserve the same fold to bind the same
molecules, comparison between homologous proteins may reveal structural conser-
vation within the binding pocket.

Simple superposition, or structural alignment, of the target structure and the
homolog bound to its ligand enables the same or an analogous ligand to be docked
to the target structure. Once the two protein structures are superposed, a potential
ligand can be fitted by reference to the template ligand bound to the homologous
protein. The structure can then be submitted to some form of energy minimization
procedure or molecular dynamics analysis (as described in Appendix C) to test and
improve the fit. However, this type of docking is subjective and frequently the ligand
binds in a different orientation than that found in the homolog.

Specialized docking programs will automatically dock a ligand
to a structure
In traditional drug discovery, thousands of compounds have to be screened in vitro
to find a tiny handful of potential drug leads that can be taken on to the next stage.
This is both time consuming and costly. It was therefore of considerable commercial
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In this section some of the
processes available for predicting
the binding mode of other
molecules to a protein structure are
described.
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Drugs are ligands that bind to a specific protein and
either increase its activity (an agonist) or decrease/inhibit
the protein’s activity (an antagonist). Those ligands that
decrease or prevent a protein’s activity are called
inhibitors. The ligands often bind in a reversible manner,
competing with the natural ligand (competitive binding),
but they can also bind irreversibly. There are many
aspects in addition to binding to their target that deter-
mine whether a ligand might make a suitable drug, such
as how soluble the molecule is, how stable, and especially
how selective. Most compounds bind to molecules other
than just the protein that is the desired target; in other
words, they are not very selective and give rise to unfore-
seen and sometimes potentially dangerous side effects.

Most drugs have been discovered by chance or by
experimental as well as computer-based (virtual) large-
scale screening methods. In virtual screening methods,
potential target compounds (also known as leads) from
a database of small molecules are automatically docked
into the target protein and the resultant complex is
assigned a score. The best-scoring compounds are then
selected for rational drug design or in vitro and in vivo
testing. The small-molecule databases used in such
work often contain several thousand to millions of
different compounds, permitting a very broad range of
ligand chemistry to be explored.

In rational drug design the structure of the target protein
and its natural ligand is used to identify or design other
putative ligands. The potential drugs can be designed de
novo or by modification of lead compounds found
through large-scale screening methods.

The first drug to be designed in such a fashion was
Relenza®, which is used to treat flu. This drug was
developed by selecting molecules that were likely to
bind to the conserved regions of the enzyme
neuraminidase (see Figure B14.1A). Neuraminidase is
an enzyme produced by the flu virus to release newly
formed virus from infected cells. Hence an inhibitor of
this enzyme would stop new viruses from being
released into the body. A similar structure-based design
approach was used for the design of inhibitors of the
parainfluenza virus hemagglutinin-neuraminidase.

Other examples of the practical application of these
techniques include drugs developed to treat HIV, such
as ritonavir (see Figure B14.1B) and indinavir, where
rational drug-design methods were used to find ligands
that inhibit viral proteases involved in the correct
assembly of viral proteins. Viagra was initially devel-
oped using these techniques to try to treat hypertension
by inhibiting phosphodiesterase, which was expected to
lead to increasing vasodilation. Of course all potential
drugs, however found or designed, have to undergo
stringent initial and clinical trials before being released
on the market. Testing Viagra as a treatment for hyper-
tension and related effects in patients with severe
angina proved to be disappointing. However, further
trials carried out at the same time with high doses of the
drug revealed side effects that included frequent erec-
tions in the male participants. This led to the research
team testing the drug as a possible treatment for impo-
tence, which proved to be much more successful.

Box 14.1 Rational Drug Design

(A) (B)

Figure B14.1
Two modeled protein–ligand
complexes. (A) The ribbon
representation of neuraminidase with
Relenza® shown as a space-filling model
docked into the pocket. (B) A
space-filling representation of the HIV
protease pocket with potential drug
ligands (in stick representation).
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importance to develop automated programs for identifying ligands for a given target
protein in silico.

Potential in silico ligands are either extracted from chemical and structural data-
bases of small molecules or generated by de novo design to fit the binding site. The
task of identifying candidate ligands is not simple, as either the enzyme or
substrate, or both, can change conformation during binding. Mathematical models
that describe such molecular interactions with any accuracy are highly computer
intensive and so the problem is usually simplified (see Appendix B). In the early
docking programs both the ligand and protein were static rigid bodies. In reality
this is far from true as both the ligand and protein are flexible. Most techniques now
employ at least partial ligand flexibility.

In more sophisticated docking methods, known generally as conformational flexible
docking, the ligand, at least, is not constrained to be rigid and conformational
degrees of freedom have to be taken into account. Monte Carlo methods in
conjunction with simulated annealing (see Appendix C) can be used to search all
possible conformations of the ligand. At each step of the Monte Carlo procedure the
conformation of the ligand is changed by rotations around a bond or by translating
or rotating the entire molecule. The energy of the ligand in the binding pocket is
calculated and the movement is either accepted or discarded. Some procedures
remember the conformational space already sampled, thereby preventing the same
conformation from being calculated again. The most advanced programs do not
constrain the protein binding pocket and allow partial or free movement of specific
residue atoms, side chains, or bonds.

Scoring functions are used to identify the most likely 
docked ligand
The automated docking methods generate a large number of possible ligands and
protein–ligand structures, and give each structure a score. The score is used to
analyze how well the ligands bind to the protein and therefore to select the most
suitable binding partners. Therefore docking programs contain a search algorithm
and a scoring function.

The scoring function is usually made up of a number of descriptors, including some
form of interaction energy between the protein and ligand. The scoring of the
docked ligands is very important in identifying which docked ligand to select.
However, a rigorous scoring function is very computer intensive and therefore
simplifications are made to nearly all scoring methods. There are basically two
types of scoring functions. The first type is generally based on binding energies
between the ligand and the protein, using a collection of terms called the force field
(see Appendix B). The other scoring type uses approximations of binding energies
based on statistical analysis of structurally determined protein–ligand complexes
and is called knowledge-based scoring. Programs can use a combination of these
to select the most probable docked ligand.

The DOCK program is a semirigid-body method that analyzes
shape and chemical complementarity of ligand and binding site
One of the most basic characteristics of binding complexes is that the ligand and
the binding site are complementary in shape. One docking program that uses this
criterion is DOCK, which also takes into account potential chemical interactions.
DOCK explores the ways in which the ligand and the protein can fit together. It
generates many possible orientations and conformations of a putative ligand
within a user-selected region of the protein structure. The orientations are scored
using several schemes designed to measure steric and/or chemical complemen-
tarity of the protein–ligand complex. The scores are then used to choose the most
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likely candidate from a search through a set of ligands or to select the best binding
orientation of a single ligand.

DOCK first uses atomic coordinates to generate a solvent-accessible surface area of
the target protein. Only the surface of the designated binding site needs to be
generated. Spheres defined by the shape of cavities in the protein surface are then
generated and placed into the binding site. An energy grid for the target protein is
calculated. Each grid point has a score and charge associated with it. The positions
of the center of the spheres act as the potential location sites for the ligand atoms.
The ligand atoms are then matched with the sphere centres to determine possible
ligand orientations, and many orientations are generated for each ligand. Finally,
the orientations for each ligand are scored on the basis of shape, electrostatic
potential, and force-field potential (see Appendix B). The top-scoring orientation
for each ligand is saved and used to compare all ligands investigated.

Fragment docking identifies potential substrates by predicting
types of atoms and functional groups in the binding area
Some docking approaches first identify favorable sites for different types of interac-
tions within the binding site and then search for ligands with functional groups that
match these interaction sites.

The GRIN and GRID programs identify those regions within a binding site that have
a high affinity for certain types of physicochemical probes; these include single
atoms and functional chemical groups, such as methyl or carboxyl groups, with
different charge or hydrophobicity. A three-dimensional contour map of the energy
surface of the site is obtained, from which the regions most favorable for binding
the different probes can be determined. GRID has been used successfully to design
inhibitors of the influenza virus based on its crystal structure which eventually led
to GlaxoSmith Kline’s anti-flu drug Relenza® (see Box 14.1).

The LUDI method uses a library of small fragments to analyze how well these frag-
ments fit the active site of a specific protein. It fits the fragments in such a way that
hydrogen bonds can be formed with the protein and that hydrophobic pockets are
matched to hydrophobic groups. Subsequently, the fragments are joined to form a
complete single molecule, which can be the putative inhibitor or give clues to the
chemist how to design a good inhibitor.

The program X-SITE is also based on the small-fragment principle but the X-SITE
fragment data are derived from high-resolution protein structures in the PDB. The
data used by X-SITE are based on an analysis of the contact preferences of different
atomic types with three-atom fragments of each of the 20 residue side chains found
in proteins. A three-dimensional distribution of preferred location of specific
atomic types around the three-atom fragments is obtained (see Figure 14.22). This
information is then used to predict the most favorable location of particular atoms
in a specified region. These atom-type locations can then be used to either predict
the orientation of a known ligand or to design a novel ligand for a desired pocket.

GOLD is a flexible docking program, which utilizes a 
genetic algorithm
More accurate and faster docking techniques are being developed to speed up the
search for putative lead compounds for drug discovery. Some methods make use of
genetic algorithms (GA algorithms). A genetic algorithm, in general, uses the prin-
ciples of evolution to find an optimal solution for a computational problem and is
described in more detail in Section 6.5. The GOLD (Genetic Optimization for
Ligand Docking) docking method uses a genetic algorithm to find the best docked
ligands as well as full ligand flexibility and partial protein flexibility.

Docking Methods and Programs

591

BIF Ch14 5th proofs.qxd  17/7/07  14:40  Page 591



As an example, the inhibitor of dihydrofolate reductase was docked using the GOLD
program into the pocket identified by Q-SiteFinder (see Section 14.3). The results
are shown in Figure 14.23. Seven out of the ten saved orientations of the docked
inhibitor fit quite well on the inhibitor from the structural studies. Three are fitted
into the pocket where NADPH would bind.

There are many other methods for docking a ligand and optimizing its docked
structure. Many new methods are still being developed; however, many of these
share the same basic techniques with added novel extensions. In general, the
methods either allow for the de novo design of a ligand within a specified pocket, as
in X-SITE, or a structurally known/predicted ligand is docked as an entity into the
pocket, as in GOLD. The docking methods first perform a search of possible binding
modes followed by optimization and then need a scoring system to rank each
conformation. Many of the methods available are described in a review by Richard
Taylor and colleagues (see Further Reading).

The water molecules in binding sites should also be
considered
Proteins in vivo do not exist in a vacuum; most are located in an aqueous environ-
ment. Water molecules surround the protein surface forming hydrogen bonds with
polar atoms of side chains and the main chain. Water molecules are also found in
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Figure 14.22
An example of a three-dimensional
distribution around an ND2 atom of
the side chain of Asn used in
X-SITE. The red clouds show the
distribution of oxygen atoms that
are in the vicinity of the ND2 atom.
(Data obtained from Laskowski RA,
Thornton JM, Humblet C & Singh J.
X-SITE: use of empirically derived
atomic packing preferences to
identify favourable interaction
regions in the binding sites of
proteins. J.Mol. Biol. 259:175–201.)

Figure 14.23
Results from the program GOLD
when fitting NADPH into
dihydrofolate reductase. (A) The
docked NADPH (thin lines) fits very
well on the structurally determined
ligand (ball-and-stick
representation). (B) The fitted ligand
in the pocket as determined by
Q-SiteFinder.
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binding sites and at many biomolecular interfaces. Sometimes the water is replaced
by chemical groups of the ligand upon binding, but this is not always the case.
Protein-bound water molecules have been shown to be important in substrate
recognition in a number of protein structures, contributing to ligand binding and
catalysis. They can, for example, be a bridge between a ligand atom and an atom in
the binding site. In the well-studied complex of DNA with the bacterial repressor
protein for the tryptophan operon, the base-specific binding of the Trp repressor to
DNA occurs through a number of water-mediated hydrogen bonds between the
bases and the protein.

Bound water molecules often contribute to the structural stability of a
ligand–protein complex by forming hydrogen-bond networks and by lining grooves
on solvent-exposed protein surfaces. Water can also allow promiscuity of binding
partners. This is the case for the major histocompatibility complex (MHC) proteins
of the immune system, which are central to immune responses and also determine
tissue type. There are hundreds of different variants of MHC proteins in the human
population and each can bind a number of different peptide ligands; to accommo-
date this variety, water molecules bridge the gaps between the atoms of the binding
site and the peptide.

When docking ligands into binding sites, water molecules should not be forgotten,
therefore, but water has tended to be ignored in the past. One useful tool is the
program CONSOLV, which predicts the conservation of water molecules upon ligand
binding. The algorithm is used to identify those water molecules in the binding site of
the ligand-free protein structure that are likely to be conserved when a ligand binds.

Summary
In this chapter we have seen that the protein fold can give a very good indication of
the possible function of a protein. This close connection between three-dimen-
sional structure and function is often referred to as the structure–function relation-
ship. However, the relationship is often rather complex, so that cases are known of
similar structures with different functions, and vice versa. Despite this, with care,
much useful information can be obtained.

To be able to analyze the structure–function relationships it is necessary to be able
to compare protein structures. Therefore Section 14.2 described a variety of structure
comparison methods that can be applied. The results of such comparisons can be
used to gain insight into aspects of protein function such as which family they might
belong to (for example proteinases), whether the catalytic residues are structurally
conserved, and how the binding pockets have been modified to accommodate their
specific ligands. For example, if our target protein belongs to a class of proteinases
that has a known catalytic triad we can examine the protein to see if a similar triad
occurs in a suitable orientation. This is more powerful than a purely sequence-based
analysis, as ultimately it is the spatial orientation that is vital for function. Structural
comparisons of this type can also identify particular protein-interaction domains
that carry binding sites that cannot be distinguished from the sequence alone.

Once the function has been deduced, it is highly desirable to locate the ligand-
binding sites that affect the protein’s function and, through that, can have a cascade
of consequences. For example, the inhibition of abl tyrosine kinase by a drug called
Gleevec® (Novartis) is used to combat cancers such as leukemia and has recently
been found to have an effect on rheumatoid arthritis. Once binding sites have been
identified, modeling how ligands dock into them can lead to an analysis of how
small changes to the ligands will affect the binding, which can be used to propose
new potential drugs and cures.

Summary
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PART 7

CELLS AND ORGANISMS

Looking at how a whole cell or organism works and
responds to outside stimuli is important in biomedical
science in order to understand how cells, organs, and
organisms function and what happens when things go
wrong and disease sets in. Elegant experimental tech-
niques have been developed to measure the expression
of each gene (or protein) in a specific sample. However,
these experiments generate large amounts of data and
new computational methods have been developed to
help with the analysis. The first two chapters in this
part deal with the methods and the underlying princi-
ples of the most commonly used techniques for
analyzing expression data. The first chapter has intro-
ductory and application material, while the second
chapter contains detailed and mathematical explana-
tions of the techniques and statistical analysis.

Knowing the component parts of the system and the
expression levels is useful, but does not give us the
whole picture. Ideally, it would be helpful to know what
effect each of the parts has on the others. We need a
dynamic representation of a system that can be
manipulated. The methods and principles behind this
type of study are introduced in the last chapter: the
study of systems biology.

Chapter 15
Proteome and Gene
Expression Analysis 

Chapter 16
Clustering Methods 

and Statistics 

Chapter 17
Systems Biology 
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PROTEOME AND GENE
EXPRESSION ANALYSIS

When you have read Chapter 15, you should be able to:

Explain gene expression analysis.

Describe the clustering of large-scale data.

Identify groups of co-expressed genes.

Explain protein expression analysis.

Summarize the identification of proteins in expression experiments.

Explain how experiments can identify differences in expression.

Many techniques have become available recently that produce vast amounts of
quantitative biological data. These techniques include, amongst others, RNA inter-
ference (RNAi), various gene expression techniques, and protein expression
analysis. We will only use the common gene expression (microchips, microarrays)
and protein expression (two-dimensional gels) methods as examples to look at the
various ways one can analyze high-throughput data. In this chapter we will deal
with the analysis of the large amount of data generated by these types of experi-
ments. We will focus on the types of conclusion that can be reached and how they
appear in the different analytical methods. The next chapter will describe in more
detail the bases of these techniques. 

The vast amount of data coming from the genome sequencing programs will be of
limited use unless it can be linked to ways of measuring when, and at what level, all
these genes are expressed. Measuring the expression of selected genes for partic-
ular purposes has been a key methodology in cell biology and developmental
biology for years, but techniques have been developed more recently that enable
the simultaneous measurement of the expression of thousands of genes, providing
a snapshot of the total gene expression in a cell or tissue at a given moment.
Comparison of gene expression patterns under different conditions—for example
healthy and diseased tissue—should shed light on the function of different genes
and how their expression varies in particular diseases. There are hopes that identi-
fication of specific gene expression patterns can be linked to disease diagnosis,
prognosis, and treatment.

15
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Gene expression begins when genes are transcribed into messenger RNAs
(mRNAs), which are then translated to produce proteins (see Section 1.2). Total
gene expression in cultured cells or a tissue sample can be detected in two main
ways. One is the detection and quantification of total messenger RNA—the tran-
scriptome—by DNA microarray technology. The other detects the total protein
composition of the sample—the proteome—by separating the protein products of
the genes by two-dimensional gel electrophoresis or chromatography, followed
by identification of their constituent peptides by mass spectrometry. In both these
cases a single experiment produces enormous amounts of raw data, and new tech-
niques had to be devised for data collection, storage, and analysis. The transcrip-
tome and proteome, unlike the genome, are changeable in response to conditions,
and depend on the state of development, the environment, and the type of tissue.

The success of large-scale functional genomics also depends on robust and efficient
systems for both tracking and managing material and information flow. The data
must be stored in a database and in addition it is necessary to have some type of
Laboratory Information Management System (LIMS) that can track all samples and
what happens to them from the moment they are submitted for analysis.

Monitoring the simultaneous expression of multiple genes provides information that
cannot be obtained by monitoring the expression of one or a few genes at a time. By
revealing which genes are expressed together, or co-expressed, for example, these
techniques can identify genes that may be functionally related, such as the various
members of a multiprotein complex or a metabolic or signaling pathway. This infor-
mation can be used to help assign possible functions to unidentified genes with the
same expression patterns. Co-expression can also help indicate which genes are
under the control of the same regulatory system. An additional power of microarrays
is that the mRNAs in two different samples can be compared in a single experiment.

Measuring mRNA, however, does not tell us the whole story of gene expression. To
obtain a functional protein, mRNAs have to be translated, and the protein products
often undergo a variety of permanent or temporary posttranslational modifications
that influence their function. The simultaneous measurement and analysis of large
numbers of different proteins is the province of proteomics, and some of the appli-
cations are listed in Table 15.1. There are many more proteins than there are genes
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A mind map representation of how
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from microarrays or protein
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in a genome: many transcripts can be spliced in various ways to give different
mRNAs, and thus different protein products, from the same gene, and proteins can
be modified after translation to give yet more variety (see Chapter 1).

Many hitherto unknown proteins and their isoforms are being identified by
genomic and proteomic techniques and thousands more may yet be discovered.
Large numbers of enormous datasets are being generated and the databases
containing proteome information are growing in size and in the sophistication and
complexity of the information they contain.

15.1 Analysis of Large-scale Gene Expression
High-throughput, whole-genome DNA microarrays have become a very useful tool
in biological research. However, the interpretation of the large amount of data
produced by a microarray experiment or a series of experiments can be time
consuming. It is also difficult because different methods can yield alternative conclu-
sions. The aim of these experiments is usually to extract some biological or functional
meaning from the lists of genes, either by identifying critical genes that might be
responsible for a biological effect, or by finding patterns within the genes that point
to an underlying biological process and annotating each one of the genes. 
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• The measurement of protein composition and protein levels and their
comparison in different types of tissue, such as normal and cancerous

• The analysis of differential protein expression in different cell types

• Analysis of changes in protein expression over time or after stimulation

• The analysis of changes in protein expression induced by drugs and other ligands

• The identification of the absence or presence of proteins in different cells

• Detection of posttranslational modifications of proteins such as glycosylation
and phosphorylation

• The mapping of protein expression in tissues

• The identification of unknown proteins and their annotation

Table 15.1 
Applications of proteomics.

PROTEOME AND GENE
EXPRESSION ANALYSIS

measuring gene 
expression 

large datasets 

analysis statistical 
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Flow Diagram 15.1
In this section common
experimental aspects of gene
expression and of the analysis of
the resulting data are described.
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The expression of large numbers of different genes can be
measured simultaneously by DNA microarrays
DNA microarrays and chips are composed of short fragments of DNA attached to a
surface or synthesized directly on the surface, such as a glass microscope slide, in a
predetermined arrangement, so that the sequence of the DNA fragment at any
position is known. In the most basic form of a microarray experiment, the mRNAs
in the sample to be tested are labeled with fluorescent tags and mixed with the
array. RNAs in the sample that are complementary to fragments on the array will
base-pair or hybridize with the fragments. Unbound sample is washed away, and
the microarray is scanned with a fluorescence imager. RNAs that have bound their
complementary array fragment are detected as fluorescent spots at specific posi-
tions, which give their identities, while the intensity of the fluorescence measures
the level of the RNAs in the original sample. In practice, the sample mRNA is first
converted to cDNA by reverse transcription, and is also labeled in this reaction, or
the RNA is amplified by in vitro transcription and then labeled, and this labeled
RNA is hybridized to the array. For small-scale DNA arrays where high sensitivity is
required, sample RNA can also be directly labeled with a radioactive tag without
amplification.

A DNA array can contain from tens or hundreds to hundreds of thousands of
different sequences, depending on the purpose for which it is to be used. The DNA
fragments that make up the array will either be cDNAs reverse transcribed from
cellular mRNA, separated, and spotted onto the surface by contact printing or ink-
jet technology, or will be oligonucleotides that have been synthesized in situ on the
surface, as in the well-known Affymetrix GeneChip® arrays. The surface to which
the DNA molecules are attached may be a glass slide (used in cDNA microarray),
often with a chemical coating to which the fragments can be covalently attached, or
a silica wafer (used in production of the Affymetrix GeneChip® arrays). The arrayed
DNA fragments are usually referred to as the probes or the probeset and the sample
RNAs (or cDNAs) as the targets. Microarray technology is not only used to study
gene expression: with an appropriate probeset derived from genomic DNA, and
genomic DNA as the sample, they are being used, for example, to characterize the
single-nucleotide polymorphisms in human and animal populations. In this
chapter we will limit our discussion to gene expression microarrays.

Gene expression microarrays are mainly used to detect
differences in gene expression in different conditions
Most gene expression microarray experiments are intended not simply to detect the
genes being expressed at a given time, but to detect differences in gene expression
under different conditions; for example, in healthy versus diseased tissue, in one
tissue compared to another, at several different developmental stages, or after treat-
ment with a drug or other agent. In one common method of using spotted cDNA
microarrays to compare gene expression in two different conditions, two samples
(for example, treated and untreated or reference) are labeled with two different fluo-
rescent dyes (see Figure 15.1). The cDNA from one sample is labeled with Cy5 (a dye
that is observed as a red color) and the cDNA from the other sample with Cy3 (a dye
that is seen as green). The two fluorescently labeled samples are then mixed
together and allowed to hybridize competitively to the probes on the array.

If we assume that the transcription level of a specific gene is estimated accurately
in the amount of its mRNA in the sample, then the transcription level of a gene is
proportional to the intensity of the fluorophore signal left on the complementary
probe. The intensity of the signal from each spot is captured by a laser scanner
using different wavelengths for each fluorophore and converted to an electronic
image. In commercial software the images are overlaid and pseudo-colored, with
red for Cy5 and green for Cy3, for visual comparison. The microarray image can
thus be analyzed to extract the ratio of one labeled target to the same target labeled
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with a different fluorophore. If a target spot is red then the Cy5-labeled sample is
expressing more of that gene than the Cy3-labeled sample and the strength of color
will reflect the extent of the difference (see Figure 15.2). The reverse is true for a
green spot. If the spot is yellow then the amount of expression is equivalent in both
samples. The pixel intensity of each spot is taken and subtracted from the back-
ground of the image before saving it for further data analysis. Because the spots are
set out in a specific microarray grid the identities of the genes in the spots are
known and can therefore easily be identified. Clustering the data into clusters of
gene sets or sample sets with distinct and similar gene-expression patterns is the
next step in analyzing these types of data.

There are two basic approaches in microarray technology: a one-color technique,
where a single sample is hybridized to each microarray after it has been labeled
with a single fluorophore; and the two-color procedure, where two samples are
labeled with different fluorophores and hybridized together on a single microarray,
as described above. Both approaches have advantages and disadvantages. When
using the two-color approach, the hybridization of both samples to the same
microarray makes a direct comparison possible. This leads to a reduction of the
data variability, therefore improving the accuracy when analyzing differential
expression between sample pairs. The main advantage of the one-color approach is
simplicity in experimental design. Hybridization of a single sample on a single
microarray enables comparisons across many microarrays. Data variability arising
from using this technique can be reduced by performing replicate runs.

However, biological variation and technical difficulties in probe binding and the
measurement of fluorescence intensities make the process of distinguishing
signals from noise in the microarray data problematic. It is therefore important to
run replicate experiments and to perform statistical analysis (see Chapter 16) to
estimate significance of differential expression in the microarray data prior to
detailed cluster analysis. Programs that enable the user to remove sources of error
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SCAN 

cDNA from sample A labeled with Cy5, + cDNA
from sample B labeled with Cy3, gives rise to
different colors on chip

relative proportion of each cDNA determined 
from level of fluorescent signal from each dye 

probe (cDNA or
oligonucleotides)

Figure 15.1
The principle of a two-color DNA
microarray experiment. The
microarray itself consists of a glass
slide or other solid substrate
carrying a regular array of spots of
cDNAs or oligonucleotides of known
sequence (the probes) in
predetermined positions. In a
typical experiment to detect
differences in gene expression in
two different conditions, the total
cellular mRNA from the two samples
(A and B) is converted to cDNA and
one sample is labeled with the
fluorescent dye Cy3 and the other
with Cy5, which fluoresces at a
different wavelength. For example,
Cy3 can be represented by the green
spot while Cy5 is represented by a
red spot. Cy3- and Cy5-labeled
cDNA is mixed and hybridized to
the microarray. After washing away
unbound cDNA, the microarray is
scanned with a laser scanner to
detect the probes that have become
fluorescently labeled. The resulting
image of fluorescent spots is
analyzed by specialized software
that calculates the relative
proportions of A and B cDNA in the
bound cDNA at each spot. These
data are then further analyzed to
determine, for example, which genes
are expressed more strongly in
sample A and which in sample B.

A typical raw image of a scanned
microarry. This is the type of image
obtained in an experiment like that
described in Figure 15.1. The red spots
represent Cy5-labeled cDNAs (sample A)
and the green spots Cy3-labeled cDNAs

(sample B). A red spot means that the gene
corresponding to the probe at that position
is overexpressed in sample A while a green
spot indicates overexpression in sample B. 
A yellow spot indicates that the gene is
expressed at the same level in both samples.

Figure 15.2
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include BioConductor and various software packages listed on the Stanford
Microarray Database pages.

Serial analysis of gene expression (SAGE) is also used to study
global patterns of gene expression
One alternative to microarrays for investigating patterns of gene expression is a
technique known as serial analysis of gene expression (SAGE). It has both an exper-
imental and a bioinformatics component. It is based on the following observations:
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Figure 15.3
An outline of the SAGE method for
comparing levels of gene
expression. (A) Short sequence tags
(10–14 bp) are obtained from a
unique position within each
transcript. The sequence tags are
isolated and are linked together to
produce long DNA molecules that
can be cloned and sequenced. (B)
Once sequenced, the abundance of
each tag can be calculated, and this
value is converted to a value that
gives the expression level of the
corresponding transcript. For
example, there is less of transcript A
(green bar) in the diseased state
than in the normal state, while
transcript H is more abundant (red
bar) in the diseased than in the
normal state. (C) The tags are then
used to search the appropriate
genome to identify the
corresponding genes.
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first, that a short sequence (a tag) contains enough information to uniquely identify
a gene (provided that the tag is obtained from a unique position within each gene);
second, that the sequence tags from the total cellular RNA (converted into cDNA)
can be linked together to form long DNA molecules, called concatemers. This DNA
sequence is read and counted. The total number of times a particular tag is observed
in the concatemers approximates the expression level of the corresponding gene
(see Figure 15.3). The data produced by SAGE include a list of the tags with their
corresponding counts, providing a digital output of cellular gene expression that can
easily be analyzed further. The SAGE analysis programs SAGEmap and xProfiler are
available on the NCBI website and allow the user to specify which organ is to be
investigated. Libraries consisting of gene lists organized by the various types of
tissues or cell lines are provided for further choice. The expression associated with
these gene lists can be divided into two groups and compared with each other. The
output from SAGE provides the SAGE tag, the UniGene ID (Identification number),
the gene description, and color- and letter-coded differences in expression levels.

Digital differential display uses bioinformatics and statistics to
detect differential gene expression in different tissues
Another alternative to microarrays for looking at differential gene expression in
some circumstances is purely computational. Digital differential display (DDD) is a
method for comparing EST-based expression profiles in different tissues or condi-
tions from various libraries or between pools of EST libraries. An EST library
contains short sequences cloned from the total cellular mRNA (converted to cDNA)
of a particular tissue or particular condition. The theory is that genes expressed at
a high level will be represented by more ESTs than those expressed at a lower level.
Genes whose expression levels differ significantly from one set of EST libraries to
the next are identified using a statistical test.

The NCBI’s UniGene database forms the core of the DDD method. In UniGene, all
the human EST sequences in the databases have been put into distinct clusters,
where each cluster represents a single gene. The DDD methods then compare the
number of sequences from each EST library assigned to a particular UniGene
cluster, and identifies those differences between the clusters that are likely to be
biologically significant. The user can select EST libraries from a list on the DDD Web
page and may combine selected libraries into specific pools. Figure 15.4 shows a
DDD analysis of two selected pools. Each of the three columns on the left repre-
sents a particular pool, and the rows represent UniGene clusters. On the right is the
gene description, which gives the name of the cluster, and the UniGene ID number
for that cluster. Clicking on this ID provides a summary report for that cluster.
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Figure 15.4
The results returned by the DDD
program. The results are from 
a DDD calculation on two 
pools of normal prostate ESTs
(A, represented by the column on
the left and B, represented by the
column on the right) and a pool of
tumor prostate ESTs (C). Each row
gives you the number of sequences
in each pool that mapped to the
UniGene cluster represented by the
gene named on the far right together
with its UniGene ID (in blue). The
value above each circle is the
fraction of sequences within that
pool that mapped to the cluster
shown, and the size and shade of the
circle is a visual reflection of that
value. Beneath each circle, the
relationship between the expression
levels for that gene in different pools
is summarized. For example, for the
spot in the second row, pool A
contains a greater number of
sequences than pools B or C 
(A > B, A > C) for the paired
immunoglobulin-like receptor beta.
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Figure 15.4 shows an example output from DDD run on two pools of ESTs from
normal prostate tissue and a pool of ESTs from prostate tumors. Of the four clusters
displayed here, only the gene for ADP-ribosylation factor 4 shows a significantly
greater representation in the cancer pool compared to both normal tissues. The
other clusters show that there are, in fact, significant differences in gene expression
between the two normal pools. This selection of a number of similar pools to
compare is good practice in order to avoid false-positive results, both in the digital
world and the real world of gene (or protein) expression.

Facilitating the integration of data from different places and
experiments
In general it is difficult to compare and integrate data from different laboratories
and experiments. Therefore a group of scientists have set up a consortium (the
MGED society) to standardize the output and annotation of microarray data, which
will facilitate sharing the data and creating a consolidated database. The set of stan-
dardization rules is called MIAME, which stands for Minimum Information About
a Microarray Experiment. This includes information that is essential for someone
else to interpret the results of the experiment and even to reproduce the experi-
ment. The journal Nature and other Nature research journals will in general only
accept articles dealing with microarray data that comply with MIAME. The public
repositories ArrayExpress at the EBI and GEO at NCBI have been set up to store and
distribute MIAME-compliant microarray data. In addition a MicroArray Quality
Control (MAQC) project is under way to assess the quality of DNA microarray data.
This project has recently concluded that with careful experimental design, data
transformation, and analysis, microarray data can be compared between different
formats and laboratories.

The simplest method of analyzing gene expression microarray
data is hierarchical cluster analysis
The main aim of gene expression analysis is the identification of common patterns
of gene expression; for example, which genes are being co-expressed, and which
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Figure 15.5
Hierarchical clustering. A
dendrogram with a color-coded map
of hierarchical clustering performed
both on the samples and the genes.
Each column of the data
corresponds to a different sample,
and each row to a different gene.
The red indicates upregulation of
genes while blue indicates
downregulation of genes. A subset of
genes selected for closer
investigation is shown on the right.
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genes have been downregulated or upregulated in one sample compared to the
other. Hierarchical clustering is the most widely used method for analyzing
patterns of gene expression in microarray data.

The results of a hierarchical cluster analysis of gene expression microarray data are
typically displayed as a dendrogram with a color-coded grid. The grid of colored
squares contains rows that represent a gene for which expression was detected in
one or other of the samples, and the columns represent the different samples or
conditions (see Figure 15.5). The precise shade of each square represents the fold
increase or decrease of the expression level of the gene in that sample in relation to
some reference level, often the median level of expression of the gene over all the
samples. Typically, higher expression is shown by red, lower expression by green or
blue, and expression similar to the reference as black. In the display, it is easy to see
how the rows of genes are arranged into distinct blocks composed of genes with
similar expression patterns in the same tissue. In the experiment depicted in
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Figure 15.6
Clustering of the eye parts.
Hierarchical clustering of the
experiment described by Diehn and
colleagues where the various parts of
the eye were investigated to identify
specific gene signatures. All the parts
of the eye cluster together and the
differences between, for example,
genes in the cornea with respect to
the lens are obvious. (Data from
J.J. Diehn et al., Differential gene
expression in anatomical
compartments of the human eye.
Genome Biol. 6:R74, 2005.)
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Figures 15.5 and 15.6, the aim was to detect sets of genes whose expression provides
a unique signature for each eye compartment—lens, retina, cornea, and so on—
with the eventual aim of using these signatures to identify candidate genes for
genetic diseases that affect the eye. In this example, it is clear that the pattern of
gene expression in the cornea, say, is very different from that in the lens. 

We have already seen how hierarchical cluster analysis can be used to build phylo-
genetic trees in Section 8.2. The UPGMA method (see Figure 8.3) is especially close
to those described below. In microarray or any other type of expression studies,
either genes/proteins or samples, or both can similarly be arranged into a tree
structure where the branch lengths represent the degree of similarity between the
clusters. The dendrogram in Figures 15.5 and 15.6 shows the results of clustering
the samples according to their gene expression patterns.

Other more sophisticated clustering methods have been applied to the analysis of
gene-expression data, of which k-means clustering and techniques such as self-
organizing maps (SOMs) and self-organizing tree algorithms (SOTA) are just a few.

Techniques based on self-organizing maps can be used for
analyzing microarray data
SOMs are a form of unsupervised neural network that consist of a fixed number of
nodes, often in a two-dimensional grid, each node representing a gene cluster.
Unlike the networks described in Section 12.4 they do not consist of layers. During
the training step the data are added to the map one by one, and used to adjust the
positions of the nodes (see Figure 15.7). After all the expression data have been
processed the resulting map identifies which genes are associated with which node,
defining the gene clusters. The clustering is according to the pattern of expression
that can be visualized in the map. A disadvantage of the basic SOM technique (as
well as the k-means method) is that the number of clusters to accommodate the
data has to be chosen beforehand. The advantage of SOM techniques over hierar-
chical clustering techniques is that SOMs clearly define distinct gene clusters,
unlike hierarchical clustering. The SOM and k-means techniques are described in
more detail in Section 16.3.

One freely available SOM package for analyzing gene expression microarray data,
called GeneCluster2, can be downloaded from the developers’ Web site along with
data to illustrate and try out the method. Other free SOM packages are also avail-
able such as the JAVA-based program Cladist. Figure 15.8 illustrates the SOM clus-
tering technique applied to microarray data from macrophages stimulated by
lipopolysaccharide (LPS), which acts in the cell like a Toll-like receptor agonist.
Macrophages are white blood cells that are involved in mounting a defense in
animals against foreign bodies. The Toll-like receptor is a membrane-bound
protein that recognizes pathogens and starts the cell’s response to activate the
immune system. In this study the expression levels of various genes were measured
at different time points after stimulation with LPS. This type of clustering illustrates
the patterns of gene expression over either time (as in this case) or different types
of stimulations. A 3 ¥ 3 grid is used in Figure 15.8A (giving a maximum of nine clus-
ters) and a 2 ¥ 2 grid in Figure 15.8B (giving a maximum of four clusters). The
number of genes comprising the cluster is given for each. For example, Node 0 in
Figure 15.8A has 13 genes. Clicking on a particular cluster gives the list of the genes
and their descriptions. These can be sent for further analysis to a protein–protein
interaction map program as described below.

The structure of patterns of gene expression can be explored by varying the geom-
etry of the SOM; that is, organizing it around grids with different numbers of nodes,
such as 3 ¥ 3 versus 6 ¥ 4. The appropriate number of preset clusters to use will vary
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Figure 15.7
The principles of a self-organizing
map (SOM). A random initial
arrangement in two-dimensional
space of a predetermined number of
nodes (potential clusters) is made,
in this case a rectangular 3 ¥ 2 grid,
with the nodes represented by the
blue circles. Data points (red dots)
are successively placed on the map
and each time the nodes are allowed
to move in the direction of the data
points based on similarity. This
procedure is repeated many times
until each node describes a cluster
of data points.
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with different experiments. In this case, the nine-cluster-nodes SOM has too many
nodes as some of the patterns are repeated; for example, nodes 1, 2, 4, and 5 all
show a very similar expression pattern. The 2 ¥ 2 geometry gives four distinct clus-
ters of gene expression patterns. As nodes are added, distinctive and tight clusters
emerge. No new nodes should be added when an increase in the grid size does not
produce any significant new patterns. To analyze the clusters further, it is necessary
to look at the individual gene elements assigned to a particular cluster.

Problems are often encountered, however, when using simple hierarchical clus-
tering methods to analyze data. One of these problems is that it is difficult to decide
when a group of genes forms a cluster significantly distinct from all other genes in
the tree. The technique does not provide any guidance on the length a branch has
to be in order to separate significantly different clusters. This is in contrast to the
SOTA method.
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(A)

(B)

node 0 members 13

node 3 members 17

node 6 members 11

node 0 members 37 node 1 members 14

node 2 members 41 node 3 members 36

node 7  members 8 node 8  members 20

node 4 members 15 node 5 members 13

node 1 members 23 node 2 members 8 Figure 15.8
An example output from a SOM
module of the program Cladist. This
uses the SOM method to cluster the
expression patterns of different
genes. (A) In this experiment there
were five samples corresponding to
five different time points after
stimulation of macrophages with
lipopolysaccharide. The clusters are
derived from the data using a 3 ¥ 3
grid (see text), which sets the
number of clusters to nine. Each box
defines a cluster and contains the
mean expression profile (across the
samples) of a set of genes in red with
the range of actual expression
profiles of each gene in the cluster in
gray. The clusters are numbered
node 0, node 1, and so on. Each
cluster also shows the number of
genes it includes: node 0 has 13
genes, for example. (B) When a
smaller grid (2 ¥ 2) is used, the genes
are forced into fewer clusters, which
may either lead to indistinct clusters
or combine similar clusters into one.
The text window gives the names
and accession numbers of all the
genes in a selected cluster (node 3).
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Self-organizing tree algorithms (SOTAs) cluster from the top
down by successive subdivision of clusters
A clustering method that uses both hierarchical and neural network techniques is
the self-organizing tree algorithm (SOTA). It clusters from the top down (that is,
starting with all the data in a single cluster) by successive subdivision of clusters,
in contrast to the bottom-up clustering of simple hierarchical clustering. The
highest hierarchical levels are resolved first and then the details of the lower level
are examined.

In the SOM method the number of clusters is predetermined, which makes SOMs a
somewhat subjective exercise. In addition, the lack of a tree structure prevents the
detection of higher-order relationships; that is, the relationship between SOM clus-
ters is less clear. The SOTA method combines the advantages of both hierarchical
clustering and SOMs. A series of nodes are initially arranged in a binary tree and are
then adapted to the characteristics of the dataset. The output nodes—the clusters—
are allowed to grow until either the level of variability in all the branches is below a
given threshold, or until a specified number of clusters is reached. Figure 15.9
shows an example of a SOTA output where 800 genes have been divided into 13
clusters. For each cluster the average gene expression profile is shown. 

Clustered gene expression data can be used as a tool for
further research
Clustered data on gene expression patterns obtained from either gene expression
microarrays or genome bioinformatics can be used as a predictive tool to identify
new transcription factors or other cell-regulatory proteins. Regulatory elements are
identified using both gene expression patterns and the clustering of genes
according to function, based on functional annotations obtained experimentally or
from sequence homology. The clustered genes (or proteins) can be analyzed with
respect to protein–protein interaction data to see if the genes can form a function-
ally related pathway. For example, Figure 15.10 illustrates how a cluster identified
by SOM clustering (node 0, see list in Figure 15.8B) has been subjected to the
pSTIING database to obtain an interaction map. We can see that many of the genes
submitted (in red) are connected either directly or through another interaction
partner. Therefore it is likely these genes are part of a specific functional pathway.
Some of the genes form individual clusters. They may be connected via a gene
product (protein) that has not been identified as significantly changed, or may not
be on the actual chip. The map can be extended to see if other connections can be
found (see Figure 15.10B). In such ways a more complete pathway or interaction
map can be generated. These interaction maps also form the starting point for
system biology modeling, as will be described in Chapter 17.

A vast collection of data from many gene expression and protein expression exper-
iments is now freely available on the Web and can be mined for biological reanalysis
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Figure 15.9
An example of a SOTA output. In
this example, the expression profiles
of 800 genes have been reduced to
13 clusters. The average expression
profile for each cluster is plotted
alongside. Unlike SOMs, the
relationship between the clusters
can be visualized in a hierarchical
tree representation.
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or used as reference data for the development of new bioinformatics tools. For
example, the L2L tool is a repository of microarray data that users can search with
their own up- or downregulated gene list to see if anyone else has got a similar gene
expression pattern.

There are now a number of databases both for microarray experiments, such as the
whole genome of the yeast S. cerevisiae, or general experiments. The data reposito-
ries can be searched with different criteria, such as using ORF name or gene name.
Figure 15.11 shows an example result of a search using the ORF name YDL037c. It
returns the results of all experiments that include this gene on a chip. Other promi-
nent repositories are the Stanford Genomic Resources, or ArrayExpress at EBI.
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(B) 

group a

group ai2 i1 

Figure 15.10
An example of protein networks
from clustering. Once a cluster of
interesting genes (or proteins) has
been obtained the members of that
cluster can be submitted to a
protein–protein (gene–gene)
interaction map finder, such as
pSTIING. (A) This shows the genes
submitted from the node 0 cluster
from Figure 15.8B (red circles).
Those genes that interact either
directly (solid line) or by
transcriptional activation (dotted
line) are considered to be
functionally associated and may 
be part of a specific pathway.
Sometimes, the genes will interact
but through further intermediary
units, and the map has to be
extended. (B) This illustrates how
two unconnected groups can be
connected by including further
interactions. Group a now joins the
rest of the network via an
intermediary i1 which connects
group a and the rest of the network
through other proteins (i2).
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15.2 Analysis of Large-scale Protein Expression
The proteome refers to all the proteins that make up an organism or, on a smaller
scale, the total number of proteins found in a particular cell type at a specific point
in time and under specific conditions. An organism will have different protein
expression in various parts of its body. The protein expression will also differ between
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measuring protein 
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Figure 15.11
Output from the yeast yMGV
database of gene-expression
microarray data. (A) These data can
be searched using an ORF name or
gene name and the search will
return a graphical representation of
their expression within each
experiment. (B) Clicking on any of
the boxes will give a more detailed
view of the expression profile of that
gene in a particular experiment.
Clicking on the title of each
experiment will provide further
details about the study itself.

Flow Diagram 15.2
This section describes some
experimental aspects of protein
expression and of the analysis of
the resulting data, showing the
overlap between gene and protein
expression.
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the separate stages of an organism’s life cycle and under different environmental
conditions. To understand how an organism or a cell functions both under normal
and abnormal (such as disease) conditions it is important to know how protein
expression is affected. 

Using 2D gels and other techniques many proteins and their isoforms have been
identified and thousands more remain to be discovered. Numerous sets of data
have been created and more and more databases containing proteome information
are being populated. Such datasets need to be integrated for proper data mining
and analysis, and for comparison to data such as metabolic and signaling pathways
and protein interactions.

Two-dimensional gel electrophoresis is a method for
separating the individual proteins in a cell
Proteomics experiments that aim to characterize the proteome of a cell type or
tissue at a particular point in time commonly use the technique of 2D gel elec-
trophoresis, either on its own or followed by mass spectrometry (MS) of the sepa-
rated proteins in order to identify them. Two-dimensional gel electrophoresis
separates proteins in two dimensions according to two independent properties. In
the first step, isoelectric focusing (IEF) of the protein mixture separates proteins on
the basis of their isoelectric points (or pI/pH). Electrophoresis [in the presence of
the detergent sodium dodecyl sulfate (SDS)] of the separated proteins in a direction
along the gel at right angles to the IEF then resolves each spot into its constituent
proteins on the basis of their molecular weights (see Figure 15.12). A 2D gel thus
provides a kind of map (with pH on one axis and molecular weight on the other) on
which, in theory, any given protein will always occur as a spot at the same location,
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first dimension electrophoresis separation(A)

(B) second dimension separation

Figure 15.12
Schematic of a 2D gel run. The
proteins are (A) first separated
according to their pI, where the
proteins migrate due to an electric
current being applied to the sample
in a tubular gel. The acidic proteins
will migrate as shown. (B) Then the
tubular gel is loaded onto another
gel and the proteins are separated
according to their molecular weight
in the second dimension.
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whatever the sample being analyzed. Once the gel has been run and the proteins
separated, it is stained and scanned into an image-analysis program to detect and
identify the spots.

The problem with this technique is that on even the best gel only about 3000 spots
are visible. There are many more different proteins than that in a cell: some esti-
mates are as high as 100,000. The limitations of 2D gels are due to a number of
factors, one being that the gel is not large enough to separate proteins that have
very similar molecular weights or pH range. In addition, membrane proteins often
become insoluble during the first-dimension run and low-abundance proteins are
often not detectable.

Measuring the expression levels shown in 2D gels
Once 2D gels have been run they have to be scanned to obtain images that can be
analyzed on a computer. A number of processes have to be performed on
the images before the results can be studied. This is usually done by a combined 2D
gel spot-detection and image-analysis program. There are quite a number of
commercial programs available; in the examples in this chapter the program
Melanie was used as well as the freely available viewing program Flicker.

The first step is detection of spots. This is especially important if dyes invisible to
the eye have been used to stain the separated proteins. There are many algorithms
for detecting protein spots, and all have variable success rates. Such algorithms
work by detecting the edges of spots, or by detecting the center of the spot and
working outward until a lighter edge is reached. The problems with most spot-
detection algorithms are false detection of stained areas that are not protein spots
(such as dust particles, and so on), and an inability to resolve spots that lie close
together on a set of similar gels (see Figure 15.13). 

To enable a quantitative comparison of the expression levels of the same protein on
a number of different gels, it is necessary to convert the pixel intensity of the spot to
some meaningful value, such as the protein volume. This is done by quantification
algorithms. Quantification is based on the measurement of spot intensity (pixel
intensity inside the detected shape). This intensity is then used to estimate the
amount of protein, as judged, for example, by the area of the spot. For example,
Melanie calculates the area of a spot as equal to the number of pixels ¥ pixel area.
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(A)

(B)

Figure 15.13
Problems encountered in spot
detection on 2D gels. (A) A
mismatch between two gels because
a pair of spots on one gel (left) have
been correctly detected as two spots
(indicated by the black bracket)
while on a second gel (right) the
same spots have been detected as a
single continuous feature. (B) Dust
particles and a smudge in the gel
(right panel, ringed areas) can be
mistakenly identified as protein
spots (left panel, ringed areas).

BIF Ch15 5th proofs.qxd  18/7/07  11:38  Page 614



Protein spots can be detected using different methods, such as silver staining, fluo-
rescence, or radioactivity, and the different methods will give different intensity
readings. Thus two gels using different staining methods are difficult to compare. To
some extent, such problems can be circumvented by measuring relative values,
such as volume ratios (spot volume divided by total spot volumes) or relative
optical density.

If protein spots on two or more gels are to be compared, the gels have to be
matched so that the corresponding spots can be identified. One of the main appli-
cations of 2D gels is to compare protein expression in different samples by
comparing the relative intensities of the corresponding spots on the gels run from
each sample. This requires correct matching, or registration, of the corresponding
spots. Matching is one of the most important tasks of a gel image-analysis program,
and one of the most difficult. Different programs match the spots in different ways:
some align the gels first, and use a set of easily identifiable spots as landmarks to
match the rest. Melanie first aligns the gel images, and as the images are often not
exactly identical in size or shape, as a result of distortion of the gel, the program has
to warp the images to fit. Spots in all four corners of one gel are first selected as
landmarks and the corresponding spots are identified on the gels to be aligned.
Melanie then uses these fixed points to align the gels by least-squares minimization
and image transformation.

Once the gels are aligned the spots can be matched. Melanie uses the approach of
associating each spot on the gel—called a center spot—with a surrounding cluster
of spots within a fixed radius of the center spot. The radius chosen depends on the
size of the image, the number of spots in the image, and a minimum number of
spots that have to be in the cluster. Matching then compares these clusters.
Mismatching of spots occurs to varying degrees, depending on the complexity of
the sample being analyzed.

Differences in protein expression levels between different
samples can be detected by 2D gels
The aim of the 2D gel experiments is to calculate different expression levels of
proteins in different samples. One way of avoiding the problem of matching
different gels as described above uses a strategy similar to that of the two-color
microarrays described earlier. Two different dyes are used to tag proteins in two
different samples and the two samples are run on the same gel (see Figure 15.14).
The gels are then analyzed using spot-detection and image-analysis instruments
and software with the capacity to deconvolute the signals from the differently
tagged proteins within each spot. This technique circumvents the problem of
mismatching, but only two or three samples can be run on one gel.

Probably the simplest way to initially analyze the differences between spot volumes
in two gels or two groups of gels is a scatterplot (see Figure 15.15). This plots the
paired values and places a regression line through the plotted points. The linear
dependence of one set of data to the other set of matched data estimates the rela-
tionship between the values and the regression line—the best-fitting straight line
through the paired values—gives the linear dependence. A correlation coefficient
gives the goodness-of-fit of the line. So when looking for pairs of spots that differ,
one looks for spots that lie away from the regression line and whose correlation
coefficient tends to zero.

Clustering methods are used to identify protein spots with
similar expression patterns
As with gene expression data, clustering is a useful method of grouping similar gels
or spots together and extracting protein expression patterns that can indicate
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biological differences or similarities between samples. Many of the clustering
methods used for microarray data can be applied to 2D gel data. Figure 15.16
shows an unrooted hierarchical clustering tree constructed from 2D gel data from
Swiss 3T3 cells that were stimulated with different growth factors at different
times. Protein synthesis after the various stimulation regimes, or with no stimula-
tion, was measured and compared using 2D gels and then analyzed by hierarchical
clustering. In this instance, the gels clearly fall into two groups (see Figure 15.16).
One group clusters on the same main branch as the unstimulated sample,
suggesting that these treatments had little effect on protein expression. The other
branch clusters together those samples that were stimulated for a longer time and
those that were stimulated by more than one growth factor and platelet-derived
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Figure 15.14
The use of two different fluorescent
labels to study differential protein
expression by 2D gel analysis. The
proteins in one sample are tagged
with Cy5 and in a second sample
with Cy3. The samples are then
mixed and run on a 2D gel system,
which separates proteins according
to their molecular weight and pI.
The image is then scanned using
different wavelengths. One
wavelength detects Cy3-labeled
proteins while the other detects
Cy5-labeled proteins. The images
are then analyzed in a computer
analysis program; when the images
are matched and placed on top of
each other, those spots that changed
are highlighted.
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growth factor (PDGF). Further investigation showed that the treatments repre-
sented by the second group of gels had, indeed, a more pronounced effect on
protein synthesis than the treatments in the other group.

The program ChiClust first defines a value between spot volumes above which
spots are designated as similar. Spots are then selected in one biologically relevant
group of gels, for example gels run from samples of a particular cancer, which are
similar. This defines the similarity pattern for that group of gels. These protein
features found to be similarly expressed in the subset of gels are then used to group,
or cluster, the remaining spots in additional gels. The results can be displayed as a
simple relational tree. In this tree, similar gels are connected by short branches
(edges), while the longer edges join less-similar gels (see Figure 15.17A). The results
of such a clustering can indicate families of gels that would not be picked out if
using all spots, as any relevant information would be lost due to the variability of
the data. Such a subset of spots can be submitted to other types of clustering such
as a SOM for expression-pattern analysis (see Figure 15.17C), and to programs that
visualize patterns of spot expression.
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Figure 15.15
Scatterplot of protein expression
data from cells treated with different
combinations of growth factors.
Cells were treated with epidermal
growth factor (EGF), insulin growth
factor (IGF), platelet-derived growth
factor (PDGF), and combinations of
these. Protein content and levels in
each cell sample were estimated after
protein separation on 2D gels.
Outlying points represent those spots
for which expression levels are very
different between the two gels. This
scatterplot tells us that, overall, the
expression of most proteins is similar
between the two samples, as the
correlation coefficient is near to 1.

Figure 15.16
A tree obtained by clustering of
protein expression data obtained
under different conditions of cell
stimulation. The data are clearly
divided into two groups. One group
(outlined in red) clusters along with
the unstimulated sample. The other
branch (blue) clusters together those
samples that were stimulated for a
longer time and those that were
stimulated by more than one growth
factor and PDGF (these two
subclusters are outlined in light
blue). For definitions of growth
factors, see Figure 15.15.
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Principal component analysis (PCA) is an alternative to
clustering for analyzing microarray and 2D gel data
The purpose of most analysis of expression data, whether for genes or proteins, is to
recognize classes or groups (of genes, proteins, or samples) that can provide some
biologically significant information. Such groups consist of a set of objects described
by a number of properties. In protein expression data, an object could be a spot, and
a property could be the level of expression of that spot under a particular condition;
that is, in a particular gel. These properties contain the signals that are used as the
basis for defining the classes, but often none of the properties has a strong signal. A
PCA combines this set of properties into an alternative set in such a way that most
of the signal is present in just a few of them. The data are then plotted using just the
two or three new combined properties with the strongest signals, in two (or three)
dimensions. (PCA is described in detail in Section 16.1.) This reduction to fewer
properties often makes it possible for class membership to be determined by visual
inspection. Figure 15.18 shows a two-dimensional PCA representation of a subset of
data from the growth-factor-induced cell line mentioned earlier. Two groups are
apparent: one clusters at the top of the y-axis, and the other near the value 1 on the
x-axis. This grouping can be reproduced by subjecting the PCA output to the other
clustering methods (see Figure 15.18). Similarly PCA can be used to analyze DNA
microarray data (see Figure 16.7) and any other quantitative data.

The changes in a set of protein spots can be tracked over a
number of different samples
Given the steady stream of technical improvements that have increased the infor-
mation that can be obtained from a 2D gel, user-friendly tools to identify features
that are interesting for identification by MS are essential. Most available programs
calculate the changes in a set of spots between two gels; however, analysis of
changes in protein expression is facilitated if this can be calculated between more
than two gels. This is important if one wishes to track changes in protein expres-
sion over a set of defined parameters such as drug-induced activation or simply
time. A set of programs that will do this are ChiClust and ChiMap, which use the
parameters of spot volume and percentage volume to track changes in the expres-
sion of proteins detected by a particular spot in a set of gels. The programs calcu-
late percentage differentials across a set of matched spots in many gels with respect
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Figure 15.17
A subset of spots picked out can be
reclustered and reanalyzed.
Reclustering of a similar group such
as the group with two growth factors
and PDGF at 12h stimulation (A),
using the individual protein
expressions can pick out more
detailed expression patterns as
shown in (B). (C) These can then be
plotted to show the actual
expression profile. The expression
patterns are similar to those
obtained by SOM or SOTA
techniques.
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to a reference gel. The differentials are given both as numbers and in a graphical
format (see Figure 15.19). The graphical format allows easy identification of spots
that have either increased expression (red boxes) or decreased expression (blue
boxes) with respect to the reference gel. The output can be sorted according to the
average increase or decrease in protein expression and the standard deviation.
Spots above or below a chosen cut-off can be selected for further analysis by MS.
Differential expression can be simply calculated by measuring the difference
between the intensity of one spot with respect to another matched spot, using

Analysis of Large-scale Protein Expression

619

no stimulation
no stimulation

IGF 6h

EGF 6h

EGF 18h
IFG 18h

PDGF 6h

PDGF 18h

IGF 6h

EGF 6h

EGF 18h

IFG 18h

PDGF 6h

PDGF 18h

(A) (B)

–0.5

–0.5

0.5

0.5

0–1

–1

1

1

(A)

(B)

(C)

Figure 15.19
An example output from the
program ChiMap. ChiMap
calculates the differential protein
expression between a reference gel
and any number of other matched
gels. The differential expression is
given in percentages. A 50% increase
or decrease is equivalent to a two-
fold change. Colors that are blue
(light to dark blue) indicate a
decrease in protein expression with
respect to the reference gel, while
colors in the red spectrum indicate
an increase in expression. Green
colors show no significant
difference. White spaces with a high
negative number indicate that no
equivalent spot was found in that
gel. The results can be sorted
according to the average increase or
decrease (B and C, respectively) and
the standard deviation is also given.

Figure 15.18
The output obtained from a principal component
analysis (PCA). (A) Division into two groups is
immediately apparent. This division is also reflected
in the hierarchical tree (B). Again, samples (gels)
stimulated for only a short time cluster close to the
unstimulated sample, while the treatments over a
longer period generally make a separate cluster.
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distance measures such as the Euclidean distance or the Pearson correlation coef-
ficient distance function (see Section 16.2).

Databases and online tools are available to aid the
interpretation of 2D gel data
Many sites maintain databases of the data from 2D gel experiments and their
protein annotations to aid interpretation of future experiments (see Chapter 3 on
databases and the Garland Science Web site). There are also a number of sites that
offer online tools for 2D gel analysis, such as 2D gel viewing and comparison soft-
ware, pI and molecular weight calculation programs, and sequence searches.

The ExPASy (Expert Protein Analysis System) proteomics server maintained by the
Swiss Institute for Bioinformatics (SIB) is a good starting point for exploring the
wealth of data obtained by 2D gel analyses. In addition, the site provides a free gel-
viewing program that can be downloaded to the user’s machine (Melanie-Viewer).
It maintains an annotated 2D polyacrylamide gel electrophoresis database (SWISS-
2D-PAGE) which provides 2D gel images showing the location of annotated
proteins. As well as the exhaustive 2D gel database, ExPASy has a myriad of tools
accessible over the Web that aid in the analysis of 2D gel data.

Flicker is a JAVA-based downloadable method for comparing images from different
Internet sources as well as the user’s own gels. Flicker is an image viewer that will
read any two images from a gel database such as the SWISS-2D-PAGE and display
them. The program then compares the gels by alternately displaying, in the same
window, the two images being compared as well as showing them side by side (see
Figure 15.20). The images are aligned by aligning similar morphologic features. The
program also provides for limited gel analysis, such as quantification.

Chapter 15: Proteome and Gene Expression Analysis
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Figure 15.20
Illustration of Flicker. An example
of two gels being compared in the
Flicker program.

BIF Ch15 5th proofs.qxd  18/7/07  11:38  Page 620



Protein microarrays allow the simultaneous detection of the
presence or activity of large numbers of different proteins
Protein microarrays on glass slides can measure the presence or function of thou-
sands of proteins simultaneously and are the protein counterparts to DNA microar-
rays. To make a protein array or a protein chip, purified proteins are spotted onto
chemically derivatized glass slides, to which they attach covalently. Once attached,
the proteins retain their ability to interact specifically with other proteins, or even
with small molecules, as if they were in solution. In protein-chip technology known
proteins, such as antibodies against a particular range of proteins or the substrates
for an enzyme family, are spotted on the slide and probed with the sample, which
may contain many proteins, both known and unknown.

The array is designed so that specific binding, or the action of an enzyme on its
substrate, can be detected. The interactions may be used to quantify protein abun-
dance and analyze protein modifications in cells or tissues. For example, protein
microarrays have been used to identify substrates for a set of known protein kinases.
In this case, the substrates were spotted onto three slides, each slide was incubated
with a different kinase, and phosphorylation of the substrate was monitored. Only
the specific substrates for each enzyme were phosphorylated by the specific kinase.
Similarly, small molecule arrays are being developed, which will help in drug
discovery, and additionally whole cell arrays are also being developed, these will
enable the study of cellular pathways and the effect drugs have on these pathways.

Mass spectrometry can be used to identify the proteins
separated and purified by 2D gel electrophoresis or other means
Having separated the proteins in a sample into spots on a gel, we want to know the
identity of the protein in each spot, or at least the spots that change between
samples. The current method for determining protein identity on a large scale is
MS. Proteins are usually identified by ion trap or time-of-flight (TOF) mass spec-
trometers, and common methods of ionizing the sample to be injected into the
mass spectrometer include electrospray ionization (ESI) or matrix-assisted laser
desorption/ionization (MALDI), giving rise to acronyms for the techniques such as
MALDI-TOF, ESI ion trap, or Q-TOF (quantitative TOF). Another common tech-
nique is the more sensitive tandem MS (MS/MS) where the ion fragments analyzed
in a first round of MS are reanalyzed by a second round of fragmentation. For all
types of MS, a small sample of a protein (say a spot from a gel) is digested with a
proteolytic enzyme such as trypsin to give a mixture of peptide fragments. These
fragments are then analyzed by MS. Figure 15.21 illustrates schematically the steps
involved in processing a protein spot from a gel through MS to identification. 

A mass spectrometer fragments each peptide into ions, measures the mass–charge
ratio of each ion fragment, and produces a spectrum from which the mass of the
peptide can be calculated. To identify the protein, the peptide mass fingerprint
obtained from each protein spot is then searched against a database of protein
sequences that have been theoretically digested by various enzymes and the
resulting peptide masses calculated. The particular peptide mass fingerprint
obtained by MS is matched against the peptide mass spectra predicted from indi-
vidual proteins in the database. A good match means that the corresponding
peptide is present in the protein under investigation. A protein is usually identified
when a number of its component peptides match a number of theoretical peptides
for a single database entry. A problem arises with the search algorithms because the
protein masses in the databases are calculated for the protein as translated from its
genomic sequence. But many proteins are posttranslationally modified, which
means that their masses will be different from those in the database and they will
be difficult to identify. A number of programs that attempt to deal with this problem
have been written.

Analysis of Large-scale Protein Expression

621

BIF Ch15 5th proofs.qxd  18/7/07  11:38  Page 621



One of these algorithms takes into account the mass differences between the peaks
of the spectra being compared. If the peptides differ only due to a mutation or a
small modification then the masses in the spectra will also differ by a constant
number. The program identifies unexpected mass differences and uses the mass
difference to determine the type of modification. Another method has focused on
the alignment of the spectra to be matched. It uses conventional sequence align-
ment methods and applies them to the alignment of spectra. The peaks of the two
spectra to be aligned are represented as elements in a two-dimensional matrix and
the alignment algorithm searches for the most appropriate path through the matrix
using the dynamic programming method (see Section 5.2). In this way, mismatches
caused by mutations or other modifications are allowed for.

Protein-identification programs for mass spectrometry are
freely available on the Web
A number of MS search programs such as ProteinProspector and MASCOT are
freely available through a Web site. They allow the user to search and fit a set of
mass peaks, and search for peptides whose masses are identical or similar. The
experimental mass values are compared with calculated peptide masses or frag-
ment ion mass values obtained by applying theoretical digestions to the sequences
in a sequence database. By using an appropriate scoring algorithm, the closest
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Figure 15.21
Generalized steps in mass
spectrometry analysis of a 2D gel.
First the spots of interest are cut out
of the gel and digested and treated
so that the mass spectrometer can
analyze it to create a mass spectrum
for each spot it is given. The data
from MS are submitted for a search
through specialized databases,
which match fragment masses to
those calculated for proteins. In this
example the fragment masses
matched, with high scores and high
percentage of masses (73 and 65%
matched), to bovine apolipoprotein
precursor twice. The next hit in the
results is a low-scoring match, with
only 17% of the masses in the list
matching.
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match or matches can be identified. If the unknown protein is present in the
sequence database, then the aim is to identify that particular entry. If the sequence
database does not contain the unknown protein, then the aim is to match those
sequences that have the closest homology; these are often the same or similar
proteins but from different species.

MASCOT is a powerful online search engine that uses the MS data to identify
proteins from primary sequence databases. The program integrates a number of
known methods of searching into one algorithm to search the sequence database
with a peptide mass fingerprint, which provides a very specific signature. A search
using a fingerprint is often all that is needed to identify the protein in a database,
although when the protein sequence is not in the database identification may not
be possible. The other method used by MASCOT is the sequence query, which
combines one or more peptide molecular masses with sequence, composition, and
fragment ion data. The sequence information is obtained by a partial interpretation
of a tandem mass spectrometry (MS/MS) spectrum. Analysis of such a spectrum
can often provide three to four residues of sequence data. The last method is similar
to the first one but uses MS/MS ions and contains mass and intensity pairs. This
search mode is often used to analyze a liquid chromatography/MS/MS run
containing data from multiple peptides. Obtaining matches with MS/MS data to a
number of peptides from a single protein increases the confidence level for the
identification. The same search methods are available with the ProteinProspector
package of searching programs.

Mass spectrometry can be used to measure protein
concentration
Liquid chromatography is now often used instead of 2D gel electrophoresis to sepa-
rate proteins in preparation for MS. The mass spectrometer can be used to measure
relative protein concentrations and with the use of liquid chromatography it will be
possible to digest, separate, and measure protein concentration without the use of
2D gels. This technique uses isotopically labeled proteins from samples obtained
under one particular condition and then mixes these proteins with a differentially
labeled sample obtained under a different condition. The quantity of each protein
can thus be measured relative to a reference state, and quantitative changes in
protein expression can be detected. The same type of database searching and mass
spectra fitting will have to take place as with MS intended for protein identification.

Summary
This chapter presents an introduction to the fast-changing methods for measuring
the expression of large numbers of genes or proteins simultaneously. DNA
microarrays are at present the main method used for measuring simultaneous
gene expression, and capture a snapshot of the transcriptome of a cell or tissue at a
particular time or in a particular condition. A common use of microarrays is to
compare the gene expression profiles of different tissues or conditions, including
different types of tumors, with a view to developing better methods of diagnosis
and treatment regimes. Such experiments produce a vast amount of data and
specialized analysis methods have been developed both to convert the raw data
into a measurement of gene or protein expression levels and to then analyze the
differences in expression for their biological significance. The methods used for the
analysis of microarray or protein expression results include hierarchical clustering,
self-organizing maps, and principal component analysis. Other methods for meas-
uring simultaneous gene expression and differences in expression between
different samples include serial analysis of gene expression (SAGE) and the compu-
tational method known as digital differential display (DDD), which detects differ-
ences in gene representation between different EST libraries.

Summary

623

BIF Ch15 5th proofs.qxd  18/7/07  11:38  Page 623



The set of proteins expressed by a particular cell or tissue (the proteome) can be
detected by separation techniques such as 2D gel electrophoresis and liquid chro-
matography. In the case of 2D gel electrophoresis, the separated proteins can some-
times be identified simply from their position on the gel. Protein identification on
a large scale is, however, now usually carried out by the powerful technique of mass
spectrometry. The purified proteins are digested into peptides before submitting
the protein to mass spectrometry. The spectra produced are compared with
specialized databases of protein spectral information, from which the protein can
be identified.
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CLUSTERING METHODS 
AND STATISTICS

When you have read Chapter 16, you should be able to:

Prepare expression level data for analysis.

State the various ways of quantifying the difference between measurements.

Identify similar expression level variation through cluster analysis.

Describe the alternative clustering schemes produced by different methods of
cluster analysis.

Assess the value of clusters.

Identify significant differences in expression levels using statistical methods.

Use special techniques to control the rate of false positives when applying many
statistical tests to a data set.

Classify samples on the basis of a set of expression levels.

In Chapter 15 we discussed experiments for measuring protein and gene expres-
sion levels and introduced methods of analysis. In this chapter we look in more
detail at the methods for analyzing these types of data and the principles behind
them. Many of the analytical techniques rely on the assumption that the data show
variation according to an idealized statistical distribution, usually the normal
distribution. The data often show deviations from this assumption, and so we will
first examine techniques available to normalize and transform the raw data so as
to make them better approximate an idealized distribution. We then explore three
key approaches to analyzing the data: cluster analysis is used to determine similar
expression patterns and similar sample conditions; statistical tests are applied to
determine the true significance of observed similarities and differences in the data;
and finally, it is possible to define functions that can be used to classify an
unknown sample. 

This field is developing very rapidly, both in terms of the experimental methods and
the techniques of analysis. It is beyond the scope of this book to give a comprehen-
sive survey of the area, so emphasis is placed on general principles with some
examples of the kinds of analytical methods available. One area in particular that
will not be covered and yet can have a profound influence on the outcome is the
careful design of experiments to reduce systematic errors and make data correc-
tion easier. More detailed information on the analytical techniques can be found in
the references listed under Further Reading.

16
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16.1 Expression Data Require Preparation Prior 
to Analysis
Experiments that measure expression levels result in a value for each of the set of
genes or proteins in the experiment. In most cases these data will be analyzed to
identify changes in the expression level of individual genes or proteins when
compared at two or more states of the system. (The system here typically refers to
the organism, tissue, or cell in which the expression occurs.) Two main quantitative
analyses are performed: identifying significant changes in expression levels, and
identifying groups of genes or proteins whose expression levels vary in similar ways
when the system state is altered. As will be explained below, the directly measured
expression levels are not appropriate for these analyses without prior modification.
In this section we will look at some techniques of normalization and transforma-
tion that are used to prepare the data for analysis. Different stages will be consid-
ered here as shown in the scheme of Figure 16.1, but it should be noted that
alternative methods may use a different scheme. 

The aim of these manipulations is to remove errors and make the data have a distri-
bution sufficiently close to a normal (Gaussian) distribution that parametric statis-
tical tests can be used in the analysis with confidence. Normal distributions are
symmetrical about the central mean value and have a characteristic decay of the
distribution away from the mean. There are only two parameters to define—the
mean and the variance—and sufficiently large subsets of data from the same distri-
bution should have similar values for these parameters. These are the features that
will be used to judge the suitability of the data for further analysis.

It should be noted that the methods described here relate most closely to the Cy5/Cy3
label gene expression experiments. Other methods such as Affymetrix arrays use
different normalization procedures, but the general principles remain the same.
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Many of the methods described in
the previous chapter use statistics
and mathematical analysis. This
chapter describes these methods in
detail and the mind map here is to
help the reader remember all the
steps needed for a careful analysis of
expression data.
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There are many different kinds of experiments that measure protein and gene
expression. In most cases the level of expression of an individual gene or protein is
obtained by measuring the intensity of a particular spot. Due to the heterogeneity
of this type of experiment the spot value must be modified to account for the back-
ground intensity. Correcting for background intensity may involve measuring
values near each spot, or the average intensity of the unexpressed genes.
Sometimes, after the value has been subtracted from spot intensities, it may result
in negative values. The data for such spots are occasionally discarded, but often
retained, assigned a minimal positive value, and marked as absent or unobserved.
It is not unusual in these kinds of experiments for this to affect a significant fraction
of the spot intensities. This is because only a small proportion of all genes are
expressed at a given time and under given conditions. It can also be due to some of
the products having short half-lives. This treatment allows for future reanalysis of
these spots. The observed absence of gene expression is often as significant a result
as identifying high expression, so that such data are of great value.

Data normalization is designed to remove systematic
experimental errors
Normalization methods are mainly based on knowledge of the particular experi-
mental methodology and potential sources of systematic error (such as using
different quantities of different samples). Their application often involves simple
manipulations such as taking averages, yet can achieve very good results. Many of
the techniques, such as removing the background level, correct the mean but do
not pay much attention to the variance. It has often been observed in general
experimental work that the variance tends to increase as the signal increases. This
is a random error (nonsystematic) associated with the general process of measure-
ment. This effect can be seen in microarray data, and several normalization
methods have been proposed that correct for this deviation from a normal distribu-
tion. Note that systematic errors can in the best of cases be completely removed
from the data, whereas it is only possible to approximate the form of random error,
and not to remove it entirely.

David Rocke and colleagues have proposed a model with two sources of random
error. One source is an additive error e, which is assumed to be normally distrib-
uted, with a mean of zero and standard deviation se. (An additive error is simply
one that is added as a separate term to the true value to obtain the measured value.)
The second source they propose is a multiplicative error term eh that is proportional
to the level of expression, with mean zero and standard deviation sh. If the actual
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Figure 16.1
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section for preparing data for
further analysis.
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described that might be necessary
to prepare expression data for
analysis.
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level of expression is written c, then according to this model the measured level of
expression can be written

(EQ16.1)

The measured intensity I is linearly proportional to X, and can be written

(EQ16.2)

where b1 and b2 are constants and the additive error term e has been adjusted to
account for the multiplier b2. This model can be used to derive a method of normal-
izing the data to obtain a constant standard deviation over the range of intensities
(see Further Reading for details).

Expression levels are often analyzed as ratios and are usually
transformed by taking logarithms
Figure 16.2 shows the frequency of occurrence of intensity values in a gene expres-
sion experiment. They do not follow a normal distribution and therefore need
further modification before statistical analysis. In fact almost all experiments that
measure gene and protein expression levels do not require the determination of the
absolute values, such as 10 transcriptions of the gene per cell, or 150 protein mol-
ecules per cell. Instead the quantity of interest is usually the level of expression of a
particular protein or gene relative to the level of the same protein or gene when the
system is in a reference condition. In addition, the use of such a ratio has two bene-
fits. Firstly, it removes any potential errors that would occur if different proteins or
genes had differing abilities to produce a signal under the experimental conditions,
for example due to different abilities to bind a dye. Secondly, there is always a large
range of different absolute levels of expression across a library of genomic products,
but the sensitivity of the system tends to be related to proportionate changes in
expression such as double the reference level. Hence taking ratios will help to deter-
mine whether a change in expression should be recognized as significant.

I e= + +β β χ εη
1 2

X e= +χ εη

Chapter 16: Clustering Methods and Statistics

628

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0 2000 4000 6000 8000 10,000

frequency 

spot intensity 

Figure 16.2
Plot of (in blue) the frequency of
intensity measurements, compared
with (in red) an approximately
equivalent normal distribution.
There are far more high intensity
measurements than would be
expected if sampling from a normal
distribution. (The data are a small
sample from Courcelle et al.,
Comparative gene expression profiles
following UV exposure in wild-type
and SOS-deficient Escherichia coli,
Genetics 158:41–64, 2001.
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Although expression level ratios have clear advantages over the absolute values,
they are still not ideal quantities in further analysis. In most experiments both
increases and decreases in expression levels may be important features of a biolog-
ical response. However, the expression level ratio does not treat both of these situ-
ations equally. Increases in the expression level relative to the reference state are
shown by values greater than 1, and can be very large. In contrast, decreases in
expression level give values in the small range of 0 to 1. This situation is shown in
Figure 16.3A, which also shows a typical situation for expression data, in that most
of the genes or proteins do not show a change in expression level with respect to the
reference state, i.e., have ratio values very close to 1. In this figure the ratios of the
measured intensities that are proportional to the expression level are plotted
against the square root of the product of the two intensities. This form of plot shows
how the distribution of ratios varies with the level of expression. At all levels of
expression the range of ratio values is noticeably skewed, with several points above
2, but none of course below 0, which would require negative intensities.

A simple solution to this is provided by taking logarithms of the ratios, typically to
base 2. This is because logarithms have the property log(X) = –log(1/X), so that for
example log2(2) = 1 and log2(1/2) = –1, and the ranges are the same for both
increases and decreases in expression levels. A ratio of 1 (no change) becomes 0 on
taking logarithms. Figure 16.3B shows the same data as before after taking loga-
rithms. The data are now centered about the value 0, and are much more equally
distributed about that value. Note that taking logarithms of the measured expres-
sion intensity ratios is problematic if negative numbers are encountered, although
usually any such data will not be included in later analysis.
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Taking logarithms of the expression level ratios clearly makes the data behave
better in that increases and decreases in expression are treated equally, and the data
appear to be closer to the normal distribution. Figure 16.4 shows the frequency
distributions of values for the ratios before and after taking logarithms, in both
cases compared with similar normal distributions. The tails of these ratio distribu-
tions are much larger than in the normal distribution, which is to be expected as the
tails will include those genes that have been up- or downregulated. However, close
inspection of the tails reveals that the distribution of the ratios after taking loga-
rithms is much more symmetrical.

Figure 16.3B also illustrates that the experimental data show deviations from the
ideal distribution in that the extreme points are not evenly distributed, but show a
dependence on the overall level of expression. There are no changes in expression
level greater than two-fold amongst those genes or proteins that show very low
levels of expression (on the left of the graph), whereas there are many at higher
levels of expression. Also, at the highest expression levels (on the right of the graph)
far fewer of the ratios are close to 0. These are signs of a correlation between the
standard deviation and the level of expression. As mentioned previously, methods
have been proposed to correct for this.

Sometimes further normalization is useful after the data
transformation
The log ratio data plotted in Figure 16.3B appear to be well behaved as regards the
average value over different ranges of level of expression (log2 ), in that the
center of the distribution is always close to 0. In Figure 16.5A another example is
shown in which this is not the case, and furthermore the data are not simply shifted
from 0, but show a pronounced curvature. (If there was just a simple shift these data
could still have a normal distribution.) One of the most common methods for
correcting such data features is lowess normalization. This name is an abbrevia-
tion of LOcally WEighted Scatterplot Smoothing, and is a type of regression
analysis. The technique is also written as loess and called locally weighted regres-
sion. The most basic form of regression analysis simply determines the best single
line to represent all the data. The lowess method applies this approach to small
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Figure 16.4
Comparison of ratios and log ratios
of expression data with normal
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(A) plot of the distribution of ratios,
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data are centered about 1 and 0,
respectively, and compared with (in
red) approximately equivalent
normal distributions. The log ratio
distribution is much more
symmetrical in the tails. The data
are as in Figure 16.2.
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regions of data, usually using either linear or quadratic fitting. This local regression
analysis defines the mean values, which can then be used to shift the local data to
the desired mean, in this case 0. The result of applying this technique to the data of
Figure 16.5A is shown in Figure 16.5B. 

There are equivalent procedures that can be applied on a local basis to correct for
any dependence of the variance on expression levels. These usually take the form
of simple scaling of local points following a lowess normalization. Following the
application of all these manipulations the data should now have a distribution
close enough to a normal distribution that parametric statistical tests can be
applied with confidence.

Principal component analysis is a method for combining the
properties of an object
The different properties measured in an expression experiment may not be truly
independent of each other. A simple instance is the measurement in two samples
of the relative expression levels of a set of genes that are co-expressed. Another
example of data dependency that is hard to avoid occurs when using tissue samples
from many different individuals. Such samples are inherently heterogeneous, and
this heterogeneity can cause random variation or unexpected dependencies.
Principal component analysis (PCA) is a method that can identify these depend-
encies and simplify the data to minimize their effect. PCA is a technique that can
also be used to identify patterns in numerical data. The method transforms the
measurements into new variables—components—that are truly independent of
each other. Each of the new variables is a linear combination of the actual measure-
ments. In addition to this, the technique determines the fraction of the variation
present in the data that comes from each new variable. New variables that vary
most in a dataset and thus hold most of the variation of the experiment are the prin-
cipal components.

PCA is often used to reduce the data to only two or three principal components
holding most of the data variation and to discard the others, which will be more
uniform across the data; of course, if the other components describe important
variation in the data, that will now be missed. This small number of principal
components can be used to plot out samples, and can be used in sample classifica-
tion (see Figure 16.6). 

The calculation of PCA is essentially the diagonalization of a matrix, X, that contains
the expression data. If an experiment consists of N genes or proteins and M different
samples (or conditions), X will be an N ¥ M matrix (see Figure 16.7). A row of this
matrix corresponds to a different gene or protein and a column represents a specific
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Figure 16.5
A demonstration of the effect of
lowess normalization on expression
data. (A) Plot of log2 (R/G) against
log10(RG), where R and G refer to
Cy5/Cy3 measurements as
described in Section 15.2. Note the
different form of the abscissa
compared with Figure 16.3B. This
plot form is often referred to as an
R–I plot. In this example there is a
clear deviation of the mean log ratio
value from 0, and also a distinct
curvature can be seen. (B) The same
data after applying a lowess
normalization. (Reprinted by
permission from Macmillan
Publishers Ltd: Nature Genetics
32:496–501, J. Quackenbush,
Microarray data normalization and
transformation, 2002.)
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sample. Then for genes, a matrix element Xi,A is the expression ratio for gene i under
condition A with respect to the same gene measured under a different condition. For
proteins, this would be the expression value for protein i under condition A with
respect to the same protein measured under a different condition.

In the calculation, the matrix X will be re-expressed as a product of three new
matrices: the first of these is a matrix, U, that is also N ¥ M; the second, ee, is a square
matrix of dimensions M ¥ M (assuming that M < N); and the third matrix, V T, is of
dimensions M ¥ M (see Figure 16.7).

(EQ16.3)X = U Vε T
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Figure 16.6
An idealized PCA result in which
the groups of data fall into well-
separated sets. Following PCA the
coordinates for each data point in
the first two principal components
(Prin1 and Prin2) have been plotted.
The two sets of data are shown in
blue and red, colored according to
their known group membership, and
they appear in two clearly separated
groups in this plot. In less-favorable
cases the two clusters might not
have been so distinct, or the data
may have remained as a single
group.

Illustration of the main equation used in PCA. The data used
come from 14 cDNA arrays (samples) of 5981 genes that were
used to measure genome-wide mRNA levels in a synchronized
culture of S. saccharomyces at intervals over a complete cell cycle
(the times in minutes are listed at the top of the plot), with the
purpose of identifying genes linked to the cell cycle. The
reference mRNA was taken from an unsynchronized culture. The

normalized data is shown on the left side in the matrix X. Refer
to the main text for a description of the three components on
the right-hand side of the equation. (From O. Alter et al.,
Singular value decomposition for genome-wide expression data
processing and modeling, Proc. Natl Acad. Sci. USA 97
(18):10101–10106, copyright (2000) National Academy of
Sciences, USA.)

Figure 16.7
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The outcome of the calculation is two sets of M components—one set for the genes
(sometimes referred to as eigengenes by analogy to the eigenvectors of matrix
mathematics) or eigenproteins, and one set for the samples (called eigensamples or
eigenarrays). For simplicity in the rest of this section we will refer to gene expres-
sion only. The expression level of every gene in an eigensample is given in matrix U,
and the expression level of every eigengene in each sample is given in matrix VT.
The Ath eigengene is only expressed in the Ath eigensample, with the eigenexpres-
sion level eA (analogous to an eigenvalue).

Each eigenvector defines a principal component. The expression data can then be
plotted for each gene/protein i along the axis defined by the pth principal compo-
nent. Figure 16.8 shows a plot of data with two principal components. Figure 16.6
showed an idealized PCA result where the data fell into two well-separated sets.
Figure 16.8 shows PCA on protein expression data from a series of 2D gels (samples)
representing different conditions, where, although the sets are not as well defined,
the PCA does separate the gels into two groups. In this case the samples have not
been classified, so it remains to be seen if there is any useful correlation between
the grouping and the samples. This situation could arise when the experiment is of
a diagnostic nature, attempting to identify the sample condition rather than
exploring the features of the condition.

16.2 Cluster Analysis Requires Distances to be
Defined Between all Data Points
All clustering techniques identify clusters according to a distance between each
pair of data points and therefore need a definition of this distance measure. As will
be discussed later in the chapter, cluster analysis can be performed not only to
identify genes whose expression levels change in similar ways, but also to identify
samples that have similar expression patterns. These samples could for example be
different organisms or different conditions, or a combination of the two. The
distance must be defined as a number, and therefore each gene or sample in the
experiment requires a set of quantitative parameters. 

Cluster Analysis Requires Distances to be Defined Between all Data Points
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Prin2 

Prin3 

Figure 16.8
A real example of PCA. In this case,
using the second and third
principal components (Prin2 and
Prin3), the 12 samples appear to
separate into two groups, with the
five samples plotted at top right
seeming separate from the others.
The data are not color-coded
because this is for now the only
evidence for this grouping. Further
study of the samples might produce
backup evidence for the groupings.
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The parameters of the genes which are used to define distances are almost invariably
the log ratios of expression described above. The normal definition of a distance
between two gene expressions involves the log ratios of the two genes measured for
every sample in the experiment. The sample parameters may well measure a more
diverse set of properties. For example in many experiments measurements are taken
at a set of time intervals after a particular stimulus was applied, so that time would
be a sample parameter. Samples can have many parameters, as in the case of a study
of changes in human gene expression following infection. Each (human) sample
might be described in terms of a set of measurements whose aim is to define the
stage and/or severity of the infection, such as body temperature, white blood cell
count, or the time since onset of symptoms. In addition, other measures such as age
or weight may be included. Any parameters that are not quantitative need to be suit-
ably transformed; for example gender is not suitable, but assigning arbitrary values
of –1 for males and +1 for females will resolve the difficulty.

The distance to be calculated is usually one of two alternatives. In most cases the
variation in expression level of two genes or proteins is compared for each of the
different samples/states in the experiment. An example of this is the comparison of
patterns of expression level at different stages of cell division. The other common
distance measured compares two samples or states, by comparing the expression
levels of every gene or protein.

Having a set of quantitative parameters enables distances to be calculated, but
there are several alternative distance measures. In this section we will look at some
of the measures used, and discuss their advantages and disadvantages.

Euclidean distance is the measure used in everyday life
If two points A and B in three-dimensional space have coordinates (xA,yA,zA) and
(xB,yB,zB) then the distance between them is usually defined as

(EQ16.4)

This formula is an example of the Euclidean definition of distance. Looking now at
expression data, as discussed above there may be more than three different param-
eters, which are the coordinates in the example just given. Suppose there are N
different parameters (genes or protein expression levels) measured for each of the

d x x y y z zAB A B A B A B= −( ) + −( ) + −( )2 2 2
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M samples so that the Ath sample has a value Xi,A for the ith gene. The Euclidean
distance, between the Ath and Bth samples is defined as

(EQ16.5)

with the sum over all genes or proteins. Note that the distance between genes or
proteins can be defined by simply identifying them with A and B and the samples
(now M of them rather than N) with i in the above equation. The key feature of this
definition is that all parameters are treated in an identical way without any modifi-
cation. This is not necessarily appropriate in the case of expression measurements.
The distance measure in this case should ideally be proportional to the physiolog-
ical relevance of the difference in expression, a concept that is not clearly defined
and also is usually not known prior to completion of the analysis, as it is normally
closely related to the intended outcome of the experiment. There is almost certainly
a complex variation in sensitivity in the system, not just depending on the gene or
protein, but probably also on the existing level of expression relative to a normal
resting state and on the current state of the system. Why should doubling the
expression of a kinase and of a cytochrome contribute equivalently to the distance?
Assuming the sensitivity is proportional to the difference in expression ratios is
convenient from the point of view of calculation, but may not be realistic. In addi-
tion, the distance will be different if log ratios are used as opposed to ratios (and one
distance will not simply be the logarithm of the other), and it is not clear which
value should be preferred.

This situation becomes perhaps even more acute when considering sample
distances, in which case the different coordinates may represent entirely different
properties. For example, if measuring weight in kilograms and temperature in
kelvin, should a 1 kg difference in weight really contribute the same amount to the
distance as a 1 K temperature difference?

The Euclidean distance measure is very commonly used because it is easy to eval-
uate, and obtaining a measure based on the true system response is generally
totally unrealistic. However, the underlying problems could potentially result in
significantly distorted conclusions from cluster analysis, which as will be seen must
always be treated with a degree of scepticism until they are seen to correlate well
with other experimental knowledge.

The Pearson correlation coefficient measures distance in terms
of the shape of the expression response
One of the problems with the Euclidean measure, as mentioned above, is that
quantitative changes in expression ratios are treated equally for all genes. Genes
whose transcription is coordinated will not necessarily produce such equivalent
responses, and it may be more useful to give greater emphasis to the observation
that two genes have correlated expression changes. In other words, two such genes’
expression levels may not increase to the same degree, but their correlation is still
an important and useful observation.

A frequently used measure of the correlation between two series of numbers is the
Pearson correlation coefficient (rAB). Consider as before the distance between two
samples A and B. The definition of rAB for two sets of expression levels XA = {X1,A,
X2,A,…, XN,A} and  XB = {X1,B, X2,B,…, XN,B} is given by:

(EQ16.6)
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where is the average of the values XA, and sA is the standard deviation of these
values; similarly for . Note that each of the terms in brackets refers to just one
sample and is the deviation of the particular value from the mean value in units of
standard deviations, a mathematical form that will be seen again in the context of
statistical tests (see Section 16.4). For a typical expression experiment the sets XA

and XB will be the expression log ratios of two genes or proteins for a series of
different samples. The values given by this formula range from –1 for a completely
negative correlation between XA and XB, through 0 for no correlation to +1 for a
perfect correlation.

The Pearson correlation coefficient measures distance in terms of the shape of the
pattern, and not its absolute value, and it will therefore identify two protein features
as similar if their expression pattern across samples is similar, even if their absolute
expression values are different. This is not always an advantage, because we would
probably want to assign greater significance when both genes are highly expressed
than when they are both poorly expressed. Figure 16.9 shows the effect of using
different distance calculations to analyze an experiment comparing protein expres-
sion patterns in healthy people and cancer patients. Using alternative distance
measures does not always result in such differences in dendrograms, but when it
does the conclusions can be significantly different. 

The Mahalanobis distance takes account of the variation and
correlation of expression responses
When discussing the Euclidean distance measure a potentially serious problem was
mentioned in that the different variables are treated equally even though some vari-
ables may show much greater absolute variation than others. One way to overcome
this problem is to scale each variable by a measure of its variability such as the vari-
ance for the ith gene or protein. This is sometimes called the normalized
Euclidean distance, and is defined by

(EQ16.7)

Note that these terms are not simply squares of the Pearson correlation coefficient
terms, as they involve both samples A and B, and the variance is of the expression
level of a particular gene or protein. Again, an equivalent definition can be written
for the distance between genes or proteins, in which case the summation is over the
different samples/conditions for two particular genes or proteins.
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Figure 16.9
An example showing that
alternative distance measures can
affect the conclusions of an
analysis. Six samples are analyzed
from an experiment in which 2D gel
electrophoresis was used to
compare protein expression
patterns in healthy individuals and
in patients with breast cancer. The
samples are labeled normal 1 to
normal 3 and cancer A to cancer C.
In this case all the protein
expression levels are used to define
the distance between pairs of
samples and the distances are then
used to define a dendrogram as
described in Section 16.3. In (A) the
Euclidean distance (Equation
EQ16.5) is used, whereas in (B) the
Pearson correlation coefficient
(Equation EQ16.6) is used. Two key
differences can be seen in these
dendrograms. Firstly, in the
dendrogram of (A) sample cancer A
branches off before samples cancer
B and cancer C whereas in (B)
sample cancer C branches off first.
The other major difference is that
the normal samples branch at larger
distance than the cancer samples in
(A) but the reverse is true in (B).
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If there is correlation between the expression of different genes or proteins, as might
be expected due to frequent sharing of promoters and the existence of pathways, an
alternative distance definition has been proposed. This is the Mahalanobis
distance, which takes such correlations into account. This has a similar form to
Equation EQ16.7 but also involves terms of the form (Xi,A–Xi,B)(Xj,A–Xj,B)/covi,j where
covi,j is the covariance of measurements of genes or proteins i and j.

16.3 Clustering Methods Identify Similar and
Distinct Expression Patterns
In its simplest form, clustering can be defined as the task of classifying N objects
into k groups (clusters) in such a way that the objects within a group are similar to
each other but the groups are different from each other. The set of clusters and their
membership is called a partition. The number of possible partitions is extremely
large, and there are several methods that can be used to propose relevant and useful
partitions. In this case a partition is considered relevant and useful if it identifies a
relatively small number of clusters that have meaning in the context of the experi-
ment, usually assessed by whether the constituent objects share important charac-
teristics. Such characteristics might be the pattern of variation of expression level or
the medical diagnosis of the patients from whom the samples were taken.
Whichever clustering method is used, a distance measure must be defined as
described in the previous section. 

Before describing the clustering methods that are the topic of this section it is
useful to look at the relationship between the main types of data classification
methods (see Figure 16.10). All the classification methods described in this chapter
involve assigning every object to a single group, given the general term exclusive
classification. Examples of such classification are grouping animals according to
age or height, since at a given time an animal can only have one age or height. There
are situations where although there are several groups into which an object can be
classified it might belong to more than one group. Examples of this situation are all

Clustering Methods Identify Similar and Distinct Expression Patterns

637

CLUSTERING METHODS
AND STATISTICS

distance 
definitions 

Pearson Euclidean 

ratios 

fixed 
number 

of clusters 

variable 
number 

of clusters 

PCA logarithms 

data 
preparation 

background 
correction 

normalization 

hierarchical k-means SOM SOTA GA 

one-way two- 
way 

testing 
validity of 

clusters 

transformation 

Mahalanobis 

clustering 

Flow Diagram 16.3
In this section the variety of
methods that can be used to cluster
expression data into clusters of
similar expression are described.

BIF Ch16 5th proofs.qxd  17/7/07  16:40  Page 637



the diseases carried by an individual or the drugs being administered to a patient.
This is referred to as overlapping classification, but no methods described here fall
into this category.

Exclusive classifications can be further divided into intrinsic and extrinsic classifi-
cations, which correspond to supervised and unsupervised learning, respectively.
In the extrinsic case, objects are classified according to already known criteria, such
as smokers or nonsmokers or gender, and the resulting groups further analyzed to
try to identify discriminating features that can be used to predict the classification
in unknown cases. One form of supervised learning was described in Section 12.4
in the case of training a neural network to predict protein secondary structures.
Such methods are described further in Section 16.5. In this section we are solely
concerned with intrinsic classification, commonly referred to as clustering.

Clustering can be divided into two main types. In hierarchical clustering a large set
of alternative partitions are produced with a range from 1 to N of different numbers
of clusters. There is a clear relationship between all defined partitions and clusters,
best expressed by a dendrogram. Partitional classification results in a single parti-
tion, although alternatives can be obtained by rerunning the methods with
different parameters. We will describe examples of both of these methods below.

It is generally not clear at the outset how many different clusters will be appropriate
for the data and some methods are more capable than others of determining an
appropriate number of classes into which to put the objects. Therefore the choice
of which algorithm to use is nontrivial, as it can have a profound effect on the inter-
pretation of the results. Clusters of genes or proteins that have a similar pattern of
expression can be said to be co-expressed. In addition, the patterns can fall into, or
be similar to, an idealized set of predefined responses. Figure 16.11 shows eight
characteristic patterns that are often encountered in time-series and dosage-regu-
lated studies where proteins (or genes) are up- and downregulated in a specific
pattern. In the analysis of such experiments some clusters would be expected
whose members all exhibit one of these typical patterns. The difficulty of assessing
the partitions obtained and whether they are a good representation of the data will
be briefly discussed at the end of this section.
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Hierarchical clustering produces a related set of alternative
partitions of the data
The hierarchical clustering methods produce a large number of alternative parti-
tions for the data. At least two of these are trivial, namely the partitions where all the
data are in one cluster and that where each of the N objects is in a cluster by itself.
The other partitions have an intermediate number of clusters. There is a relation-
ship defined between all the partitions allowing them to be represented as a single
structure (see Figure 16.12). We will refer to this as a dendrogram to distinguish it
from phylogenetic trees. The larger clusters (in terms of the number of members)
are always formed by merging entire smaller clusters found in other partitions. In
this way potentially important subgroups can be identified. A visual inspection of
the dendrogram may allow the data to be split into several different groups.
However, unless this split is based on additional knowledge (for example, which
samples are normal and which are cancerous) it will be purely subjective.

In order to perform hierarchical clustering it is necessary to define the proximity of
objects and clusters to each other. An initial proximity matrix for the whole dataset
is calculated using an appropriate measure, often one of those described in the
previous section. In addition the method for obtaining proximities involving clus-
ters with several objects must be defined. As will be seen below, there are several
options available, but the key steps in the method are the same in all cases.

The method starts with all N objects in separate clusters (the disjoint partition). The
pair of clusters at the minimum proximity (least dissimilar) is selected. These two
clusters are merged into a new cluster, defining a new partition with N–1 clusters. The
parts of the proximity matrix that relate to the two merged clusters are replaced by
the new cluster, whose proximity to all other clusters must be calculated. This proce-
dure is repeated until all clusters are joined into a single cluster (the conjoint parti-
tion). The UPGMA method discussed in Section 8.2 in relation to phylogenetic tree
construction is of this form (for example see Figure 8.3), and in fact UPGMA is a stan-
dard hierarchical clustering method applied in general data classification problems.
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Figure 16.11
Examples of the kinds of patterns
that might occur in gene expression
experiments when the samples are
related to each other by time,
amount of stimulation, or dosage.
The horizontal axis of these graphs
is time, dosage, or whatever other
quantitative variation was involved
in the particular experiment. The
patterns are shown in
complementary pairs. In (A) the
expression pattern shows no up- or
downregulation; in other words, no
effect of whatever stimulation or
time. The two lines show consistent
high or low expression. In (B) there
is a sudden and rapid effect of either
the upregulation or downregulation.
In (C) the effect is a more gradual
increase in either time or dosage,
while in (D) the effect on expression
is only transient and either lasts for
a short time or increasing dosages
negate the initial effect.
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There are several commonly used ways of defining the proximity of clusters, of
which we will describe four. Although the choice does not affect the operation of
the method as described above, it can lead to different dendrograms, as shown in
Figure 16.13. Single linkage clustering (see Figure 16.13A) uses the minimum
distance between two objects in the cluster. For two clusters Y and Z with member
objects labeled A and B, respectively, their proximity is defined as

(EQ16.8)

while, in contrast, complete linkage clustering (see Figure 16.13B) defines the
proximity as the maximum of the distances between all possible pairs of objects in
each cluster:

(EQ16.9)

In both of these formulae dAB is the distance measure between data points A and B
as described in the previous section, for example the Euclidean distance. The
maximum or minimum is defined as over all objects A and B in the two clusters.
Another very common definition for cluster distances is the (average) centroid
method (see Figure 16.13C), where the distances or similarities are calculated
between the centroids of the clusters:

(EQ16.10)

where Ŷ is the centroid of cluster Y defined as the mean position of the MY objects
A within it and Ẑ is the equivalent centroid of the other cluster Z. The ith compo-
nent of the centroid of Y is defined as

(EQ16.11)

The centroid method described here is called UPGMC, meaning unweighted pair
group method using centroids. A fourth alternative not illustrated here is UPGMA,
in which the distance between clusters is defined as the average of the distances
between each object in one cluster and each object in the other. The different defi-
nitions of cluster proximity can produce different classifications for the same data,
even if the same distance measure is used. No one method seems to give consis-
tently better results than the others.

Because hierarchical clustering provides a series of alternative partitions, further
analysis is necessary after the clustering to decide which of them are useful. It may
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partitions

partition 1

partition 2
partition 3

partition 4

partition 5

partition 6

clusters

{(x1),(x2),(x3),(x4),(x5),(x6)}

{(x1,x2),(x3),(x4),(x5),(x6)}
{(x1,x2,x3),(x4),(x5),(x6)}

{(x1,x2,x3),(x4),(x5,x6)}

{(x1,x2,x3),(x4,x5,x6)}

{(x1,x2,x3,x4,x5,x6)}

disjoint

conjoint

x6 x5 x4 x3 x2 x1Figure 16.12
The interpretation of a dendrogram
resulting from a hierarchical cluster
analysis. Six objects x1 to x6 have
been clustered. Each level of the
dendrogram defines a different
partition, with a clear relationship
between the partitions defined on
neighboring levels. At the top of the
dendrogram (partition 1) the
clustering is disjoint, meaning that
each object is in its own cluster. At
the bottom of the dendrogram
(partition 6) the clustering is
conjoint, meaning that all objects
are in a single cluster. Neither of
these partitions is informative, but
the other four are potentially useful.
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be that there are some clusters that seem more distinct than others, being present
in several partitions. The choice of partition(s) to use in experimental interpreta-
tion is almost always subjective, but can be governed by extra information not
available during the clustering process. For example the vast majority of a set of
genes in a cluster may share a function, suggesting that the cluster has some
biological meaning.

k-means clustering groups data into several clusters but does
not determine a relationship between clusters
The clustering methods described in this section use a fixed number of clusters. In
this section we will discuss a commonly used partitional clustering method. One
run of the k-means clustering method produces a single partition of the data into k
clusters. Although there are ways of changing the value of k during a run, as will be
discussed below, in general the number of clusters k is specified at the outset. The
choice of k may be entirely subjective; for example, one could analyze a particular
gene expression experiment using five clusters, but other techniques may suggest
that the data require more clusters for adequate classification.
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Figure 16.13
The distance between any two
clusters can be defined in several
different ways, resulting in
different results for hierarchical
clustering. The left side shows two
clusters of different colors, with the
centroids of the clusters drawn as
crosses, and in green lines the
alternative distances defined
between the two clusters. (A) Single
linkage clustering uses the
minimum distance between two
objects (see Equation EQ16.8). 
(B) Complete linkage clustering
uses the maximum of the distances
between pairs of objects (see
Equation EQ16.9). (C) The centroid
method finds the distance between
the centroids of the clusters (see
Equation EQ16.10). On the right
side the effect on the dendrogram is
shown, using as an example five
measured expression levels: 
case 1 = 2.0, case 2 = 2.2, 
case 3 = 5.5, case 4 = 7.0, and 
case 5 = 7.4. The corresponding
dendrograms are shown next to the
three different cluster distance
definitions. In this case all
dendrograms have the same
topology, but the clusters merge at
different cluster distance values in
each case. When typical expression
datasets are used, these alternative
distance definitions can produce
different dendrogram topologies,
and can potentially result in
different conclusions being drawn
from the data.
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The algorithm initially generates k data points, which are the centroids of the 
k clusters. These data points are either generated randomly, or a randomly selected
sample can be taken from the data. Subsequently, the algorithm proceeds to assign
each data point to the nearest cluster centroid based on the proximity measure in
use. After all data points have been assigned to a cluster centroid, the algorithm
recalculates the centroids of the now redefined clusters by finding the mean of the
cluster members as in Equation EQ16.11. This procedure is repeated until the
membership of all clusters is stable. A simple example of the application of this
method is given in Figure 16.14. 

A different initial location of the cluster centroids can result in a different final
partition, so that it is advisable to use several different starting points, generating
several partitions. However, in spite of its apparent simplicity the method can be
surprisingly robust, as shown by Figure 16.14. Despite an apparently poor initial
configuration, in this example the method rapidly finds a good partition.
Unfortunately, in most real cases this cannot be relied on and many alternative
starting points should be tried. As a result there may be several alternative results to
consider from k-means clustering. It is also common practice to run these classifi-
cation methods several times with different parameters, including different values
of k. However, in contrast to hierarchical methods, in this case alternative partitions
and the clusters in them have no relationship to each other.

Although it may not be apparent from this description, k-means clustering is an
optimization with an error function that is related to the sum of the squared
distances from the cluster centroids. This squared error can be used as a crude
measure of the degree to which the clusters represent the data. By calculating
several partitions with different numbers of clusters and then plotting the squared
error against the number of clusters k, often there is a value of kopt beyond which
the error decreases little, if at all. In such cases there is reason to select the partition
with kopt clusters as the most appropriate one.

It is possible to modify the k-means method to allow it to vary the number of clus-
ters automatically. Once the set of k clusters has been identified, the data can be
examined to identify any data points that are relatively distant from all the centroids.
In such cases, an extra cluster centroid can be added at that data point. Methods
have also been proposed to identify and ignore outliers, but in the case of expression
data analysis such outliers may be of great interest and are best left in the analysis.

As for hierarchical clustering, once the partitions have been obtained they must be
examined to see if they make sense in the light of other information. In addition it
is advisable to check that the set of data in a cluster really do have features in
common, as it is possible that more clusters are needed to obtain partitions with
clearly distinct patterns of expression. Manual inspection of the clusters is neces-
sary to identify the general characteristics of each of them. In Box 16.1 the same
dataset is analyzed using three different clustering methods for comparison: hier-
archical and k-means clustering as described above, and the SOM method, which
will now be presented. 
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(A) (B) (C)

Figure 16.14
A simple example of k-means
clustering applied to data that
occur in two distinct clusters. In this
example the method is run with two
clusters, i.e., k = 2. Three stages are
shown. In each case the locations of
the k-means cluster centroids are
shown by colored circles with a
black dot, and the data are colored
according to their assignment to a
cluster based on these centroid
positions. Thus the average of the
data points of a given color gives the
location of the centroids of the same
color in the next diagram. (A) Two
k-means cluster centroids are
initially randomly located (without
reference to any of the actual data),
and happen to both occur in the
same data cluster. The data are then
assigned to clusters according to
which centroid is the nearest. One
data cluster is entirely assigned to
the red k-means cluster, which is
only marginally nearer than the
yellow one. (B) After one cycle the
k-means cluster centroids are
already situated such that the data
clusters are correctly partitioned. 
(C) In the final step the k-means
cluster centroids are located at the
centroids of the actual data clusters.
The number of steps required to
achieve this correct clustering
depends on several factors,
including the cluster separation
relative to the radius of the clusters.
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Streptomyces coelicolor is often used to study the
genetic control of antibiotic production. It
produces quite a range of chemically diverse
antibiotics, which include the red-pigmented
tripyrrole undecylprodigiosin (Red), lipopeptide
calcium-dependent antibiotic (CDA), and the
deep blue pigmented polyketide actinorhodin
(Act). Stanley Cohen and colleagues used DNA
microarray analysis to study the antibiotic
biosynthetic pathway. They collected samples at
nine time points during the growth cycle for
analysis using microarray experiments. The first
six times were during rapid growth, but points 7,
8, and 9 were during the stationary phase. In
addition the start of synthesis of different antibi-
otics was also monitored. The cluster analysis of
these data illustrates hierarchical, SOM, and k-
means clustering and allows some comparisons
to be made. Using DNA microarrays the authors
showed, among other things, that the antibiotic
pathway genes are coordinately regulated at the
level of transcription during S. coelicolor growth.

Figure B16.1 shows on the left side a section of the map obtained by hierarchical clustering, using Pearson correla-
tion and the average method to define inter-cluster distances. The red dendrogram on top of the map clusters the
samples according to the time points, while the dendrogram on the side shows the clustering according to genes.
We can see that the dendrogram divides the time points into three main groups. These correlate to some extent to
the growth phase and antibiotic production. A small cluster of genes is selected (highlighted red on the side dendro-
gram) where the expression increases at time point 7 and then decreases again. The data for this small cluster are
shown at higher magnification on the top right of the figure, and include the gene identities. The lower right part of
Figure B16.1 shows a cluster produced by a SOM analysis of these data, containing 14 members, which includes all
the nine genes found by the hierarchical cluster. Figure B16.2 shows on the left side a k-means clustering of genes

resulting from analysis of these data, with the
clusters identified by the vertical colored bar. A
similar group of genes with increased expression
at time point 7 is found, indicated by the pale
magenta line on the left side of the cluster. This
group contains 12 members including all 9 found
in the hierarchical clustering case, and 10 that
are also found in this SOM cluster. This example
shows that there are cases where all three
methods can reveal essentially the same result,
but also illustrates the different ways in which
the results are presented. The results obtained
with these methods are frequently sufficiently
different that it is hard to find regions that can
easily be compared.

Box 16.1 An example of cluster analysis showing a comparison of the hierarchical, 
k-means, and SOM methods

genes

time points: 1      2     3      4      5     6     7     8     9

stages of growth of Streptomyces coelicolor

1 2 3 4 5 6 7 8 9

LEUD
LEUC
SCD17.13
SC7H2.11C
SC6G10.34C
SC6A5.23
SCF55.09C
SC8E4A.04C
SC9B1.08

samples

genes

time points: 1      2     3      4      5     6     7     8     9

stages of growth of Streptomyces coelicolor

1 2 3 4 5 6 7 8 9
LEUD
LEUC
SCD17.13
SC6G10.34C
SC4A9.05
SC6A5.23
SC15.08C
SC6A9.17
SCF55.09C
SC8E4A.04C
SC7H2.11C
SC9B1.08

samples

Figure B16.1
A dendrogram and a map showing the clustering of genes with an
expression profile of a few selected genes.

Figure B16.2
A map obtained with the k-means method and an
expression profile of the same set of genes as in
Figure B16.1.
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Self-organizing maps (SOMs) use neural network methods to
cluster data into a predetermined number of clusters
Many researchers have investigated the possibility of using neural networks as an
alternative way of clustering large datasets. The self-organizing map (SOM) (or
Kohonen network, named after its inventor) is one such method, briefly intro-
duced in Section 15.1. Unlike the neural networks described in Section 12.4 for
secondary structure prediction, a SOM uses unsupervised learning. This means
that the parameters of the network are determined by the data with no extra infor-
mation supplied. (Recall that in the case of supervised learning by the back-propa-
gation method the parameters were adjusted according to the output signal errors,
requiring a dataset whose true secondary structure was known.)

The structure of the SOM is different from the neural networks described in other
sections of this book, all of which involved lines of units that were called layers. A
SOM typically has a grid-like topology between units (here called nodes) which
have a two-dimensional connectivity (for example, a 2 ¥ 3 grid of nodes as in Figure
16.15). Despite the apparent geometrical simplicity, each node represents a cluster
of data points, and is defined within the same variable-space as the data. The vari-
able-space is the coordinate system defined by the variables of the expression data,
as summarized in Section 16.2.

During the training of the SOM to the data, the individual nodes move toward
nearby data points, and simultaneously nodes that are closely connected on the
grid also move. This is in contrast to k-means clustering, where a data point only
affects a single cluster during any step. The effect of each data point is considered
separately, cycling through all the data for many iterations. Once training is
complete the members of a cluster are defined as those data points for which a
particular node is the nearest. Hence this procedure produces as many clusters as
there are SOM nodes. Adjacent nodes on the SOM grid tend to have associated with
them data clusters with closely related patterns (see Figure 16.15), as they will be in
a close-by region of the variable-space.

The jth expression data is written Xj, and contains many components, of which the
Ath is written Xj,A, and corresponds to the expression level of the jth gene/protein in
the Ath sample/condition. The initial location of the nth SOM node is written Sn(0)
and is defined by a set of coordinates, one corresponding to each sample/condi-
tion. The position of the same node during iteration itn is written Sn(itn). During
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3

45

6

Figure 16.15
A diagrammatic representation of a
self-organizing map (SOM). The
initial geometry of the nodes in a 3 ¥
2 rectangular grid is given by solid
lines connecting the nodes (yellow
circles). The nodes migrate as they
adapt to fit the data during
successive iterations of the SOM
training algorithm (arrows and
orange circles). Individual data
points are represented by black dots
and the six clusters associated with
the nodes in their final positions by
large gray circles. Average patterns
are shown for each of the nodes.
Nodes such as 3 and 4, which are
geometrically close, contain
patterns that are similar. Adapted
from Figure 1 of Tamayo et al., 1999. 

Sn(itn+1)

(Xj –Sn(itn))
Xj 

Sn(itn)  (itn)hn,near j(itn)
of the total vector
t

Figure 16.16
A geometrical illustration of the
formula for modifying the location
of SOM nodes. (Equation EQ16.12.)
During the itnth training iteration,
SOM node Sn(itn) is close enough to
data point Xj for its location to be
modified. The difference between
the location of the node and data
point is shown as a blue vector. The
node is only moved a fraction t(itn)
hn,near j(itn) along this vector, a
fraction which decreases with
iteration number as well as with
distance of the node Sn(itn) from
Snear j(itn), the nearest node to Xj.
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the training procedure the nearest node Snear j is identified for each data Xj, usually
in terms of Euclidean distance. A neighborhood function hn,near j(itn) defines a coef-
ficient for each node Sn, which is used to modify the effect that Xj has on altering its
position. This function has the value 1 for node Snear j and decays to 0 for nodes at a
distance away from Snear j, and is often a Gaussian. As well as the node separation,
hn,near j(itn) depends on the iteration number itn such that as itn increases its range
decreases, so that by the end of the training period only node Snear j moves in
response to Xj.

For each data Xj during iteration itn all the SOM nodes are moved toward Xj

according to the formula:

(EQ16.12)

where the learning rate t decreases with iteration number itn. This formula can be
illustrated geometrically (see Figure 16.16) and shows that SOM nodes are moved
toward nearby data points. The closest node Snear j is moved the most, whereas other
nodes are moved by smaller amounts according to their distance from Snear j and the
number of iterations already completed. 

Often two phases of the training are distinguished. The first of these is when the
major changes in node location occur, and self-organizing is very apparent. During
this phase larger values of t are used (often 0.1 at the beginning, decreasing to 0.01)
and the neighborhood function extends over most of the SOM. The second stage
involves smaller changes, and ideally should reach convergence. Although t may
stay at 0.01, the neighborhood function will at first extend over only a few nearest
nodes, and ultimately not extend beyond Snear j.

S itn S itn itn h itn X Sn n n near j j n( ) ( ) ( ) ( ) (,+ = + −1 τ iitn)( )
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2.22

-4.71

node 0 members = 60
4.96

-2.21

node 1 members = 16
5.69

-1.22

node 2 members = 47

2.69

-4.2

node 3 members = 85
5.63

-0.74

node 4 members = 26
5.84

-1.03

node 5 members = 71

5.68

-3.04

node 6 members = 53
4.86

-2.61

node 7 members = 48
4.38

-2.29

node 8 members = 20

Figure 16.17
An example of the results from a
SOM analysis. The SOM used is
arranged as a 3 ¥ 3 grid, labeled
nodes 0 to 8. For each node the
expression level patterns are shown
in gray for all members of the node,
with the average for the node shown
in red. There is a considerable
variation in the number of members
of each node and the variability of
the patterns in each node.
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The properties of the data points associated with each SOM node can be investi-
gated to identify their general characteristics and the variation present. An example
is shown in Figure 16.17, which shows the data classified into nine clusters of a 3 ¥ 3
SOM. If too few nodes were used, some or all the clusters will have a large variation
in properties, indicating that another SOM should be trained with more nodes. The
data associated with nodes 0 and 3 of Figure 16.17 show considerable variation that
might be indicative of a need for more nodes. Eventually in ideal circumstances all
the clusters should have well-defined characteristics, such as shown in node 5, indi-
cating that the classification is complete. In this way the SOM methods can identify
the required number of nodes for a particular dataset.

Evolutionary clustering algorithms use selection,
recombination, and mutation to find the best possible solution
to a problem
Genetic algorithms use the principle of evolution to find a solution to a problem,
and we have already seen one in operation in multiple sequence alignment (the
SAGA algorithm in Section 6.5). The process mimics the factors found in biolog-
ical evolution, such as natural selection, recombination, and mutation. Genetic
algorithm methods use the concept of a population (a set of individuals) where
each individual represents a possible solution to a problem. With each generation
of the algorithm, the population is changed by selecting fit individuals, modifying
and/or reproducing these, and then combining them with others to create a new
population for the next generation (see Figure 16.18). The fitness measure gives an
indication of the fitness of an individual; when clustering protein or gene expres-
sion data a fitness measure is an assessment of the quality of the clustering. Over
time, the population gets fitter as solutions of better quality emerge. There are a
number of ways in which genetic algorithms can be used in cluster analysis. We
will briefly describe some aspects of one technique that analyzes N objects into k
clusters.

The greedy permutation encoding method is fully defined by an ordered list of N
objects such as (x1 x2 … xN). The first k of these objects is used as the initial
members of the k clusters. Each subsequent object is taken in order and added to
the cluster that gives the optimal clustering. In these methods optimal clustering is
often defined as the sum of the squares of the distances of each object from the
cluster centroid, which results in objects being added to the cluster with the nearest
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initial population

selection

crossover

mutationvariation

evaluation

rejection

with rank-based probability

2-point crossover

changes at specific points only

evaluate fitness

Figure 16.18
The procedure used in the
evolutionary clustering method.
The initial population is subjected to
numerous cycles of modification to
obtain the next generation,
assessment of fitness, and further
modification. Two types of
modification of the existing
clustering are available: crossover
and mutation. These both involve
modifications that have a random
element, such as randomly choosing
the clusters to change. Following
modification, assessments must be
made to determine whether the new
clustering is an improvement on the
previous one, so that changes that
do not improve the fit to the data are
rejected. Eventually the cycle will
end, either because the desired level
of fitness has been achieved, or
more often because the required
large number of cycles has been
completed.
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centroid. In this way the clustering is fully defined by the object order. The set of
individuals that comprise a generation will have different object orders, and the
new generation will be formed by modifying the object order of some or all of the
existing individuals.

This modification process will be illustrated here by the order-based crossover
operator, which creates two new individuals based on two existing ones. This oper-
ator uses two parents to produce two offspring by taking a sub-sequence of objects
from one parent and adding missing objects while preserving the relative order in
the other parent. In the following example the sub-sequence is defined as between
the ˙ symbols. Given the two parents:

P1 = (1 2 3 | 4 5 6 7 | 8 9)

P2 = (4 5 2 | 1 8 7 6 | 9 3) (EQ16.13)

this crossover operator produces offspring as follows. First the sub-sequences of
each parent are copied into offspring:

O1 = (x x x | 4 5 6 7 | x x)

O2 = (x x x | 1 8 7 6 | x x) (EQ16.14)

Then, starting from the second “̇ ” of one parent (P2), the objects from the other
parent are copied in the same order, omitting symbols already present. When the
end of the string is reached, the transfer of objects continues from the first string
position in the parent (P2). The sequence of the objects in the second parent (from
the second “̇ ”) is:

9 – 3 – 4 – 5 – 2 – 1 – 8 – 7 – 6

Objects that are already in the first offspring (4, 5, 6, and 7) are removed to leave the
following objects:

9 – 3 – 2 – 1 – 8

The objects are transferred in this order into the first offspring (starting from the
second ˙ and then continuing from the start):

O1 = (2 1 8 | 4 5 6 7 | 9 3) (EQ16.15)

In a similar fashion the second offspring is born: 

O2 = (3 4 5 | 1 8 7 6 | 9 2) (EQ16.16)

These define new clusterings, which can be evaluated by the measures as already
described. Because this crossover operator preserves some of the object ordering,
the clustering defined by the offspring should in most cases show relatively small
changes from the parent clusterings. Other methods of modifying individuals to
obtain the next generation can also be used, including small-scale changes equiv-
alent to point mutations. Usually a random selection is made of which alternative
method to use on any particular individual, using all possible methods during
each cycle.

Each new generation is assessed for their fitness, and the methods by which
successive generations are created are designed to tend to increase the fitness of
the individuals. After a specific number of generations, or when the measured
fitness exceeds a threshold, the process is stopped and the population used to
obtain a clustering.
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The self-organizing tree algorithm (SOTA) determines the
number of clusters required
All the clustering methods described above suffer from the limitation that the user
has to arbitrarily fix the number of clusters at the start, leading to rather subjective
data analysis. Methods such as k-means clustering and SOM permit the number of
clusters to be chosen, so that to some extent the dependence of the results on this
choice can be examined. The final decision on cluster number in these cases will,
however, be less objective than the following method, which circumvents this
problem by varying the number of clusters in a controlled manner.

The self-organizing tree algorithm (SOTA) is a combination of a Kohonen network
(SOM) similar to that described previously, which allows network nodes to move
(adapt) in response to the data, and a technique to selectively increase the number
of nodes. This technique works equally well on gene and protein expression data.
Each gene is represented by a vector of expression measurements and each network
node is represented by an equivalent vector. The distance between the jth gene
expression vector Xj and the nth network node Sn is defined by one of the measures
discussed previously, and will be written |Xj – Sn|. The SOTA network differs in its
organization from that used in SOM, in that it is hierarchical with each internal node
being the ancestor of two daughter nodes (see Figure 16.19). A second significant
difference is that only a limited set of nodes can adapt to the expression data during
a stage in training the network. The external nodes are called cells, and only cells
and their direct ancestors can be modified in the further training of the network.

The initial SOTA network consists of three nodes whose vectors are initialized to the
average of all the data. One of these nodes is the ancestor of the other two sister
nodes. These two descendants are external nodes and are called cells. During SOTA
training the cells (external nodes) of the network are treated differently from the
internal nodes. The algorithm consists of a repeating series of alternating steps,
firstly moving the network nodes toward the data, and secondly creating new nodes.

Firstly, the cells are adapted in a similar manner to that applied to a SOM, in that all
expression vectors are associated with the nearest cell, and that cell is then moved
toward the data. The complete set of expression vectors is presented several times,
each set being referred to as an epoch. In the itrth epoch the closest cell (winning
cell) at current position Sn(itr) is moved nearer to the expression vector Xj according
to the formula

(EQ16.17)
S itr S itr X S itrn n j n( ) ( ) ( )+ = + −1 τ
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SOTA
nodes

expression
data

Figure 16.19
A schematic illustration of the SOTA
method. Initially three nodes are
defined whose vectors are the
average of all the data. These nodes
are then adapted using the data. The
gene data become associated with
their nearest cell. The results are the
ancestral node with the red
expression pattern and the two
daughter nodes with brown
expression patterns. As these are
adapted, the two daughter nodes are
the cells presented with data (shown
on the bottom of the figure as yellow
boxes), but all three nodes are
adapted according to Equation
EQ16.17, shown by the double
arrows between them. After this
initial adaptation, the right daughter
cell has the greatest pattern
variation (resource Rn, Equation
EQ16.18) and so two daughter nodes
(blue expression patterns) are added
to it. The diagram shows the current
adaptation phase, when data are
presented to the three cells (external
nodes) as shown by the yellow
arrows. According to the rules, when
the leftmost cell is adapted, its
mother and sister nodes are not
moved because the sister node is
not a cell. The gray color of the
double arrows indicates these
interactions are not currently active.
However, the blue pattern sister cells
and their mother node do adapt
together, as shown by the black
double arrows. Adapted from Figure
1 of Herrero et al., 2001.
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where t is a small constant, typically 0.01. If the sister cell of Sn is also an external
node (see Figure 16.19), both it and the direct ancestor node are moved closer to Xj,
but smaller values of t are used so that the effect is less than for cell Xj. Typical
values of t for the sister and ancestor nodes are 0.001 and 0.005, respectively. If the
sister cell of Sn is an internal node only Sn is adapted.

During this procedure convergence is monitored as a function of the average
distance of associated expression vectors from each cell Sn. This is referred to as the
resource Rn, defined by

(EQ16.18)

where the summation is over all expression vectors associated with cell Sn, and ||Sn||
is the number of genes associated with this cell. This value is an indication of the
heterogeneity of the expression vectors associated with the cell. The sum of the
resource for all the cells in the network is calculated after each epoch, and is used
with predefined thresholds to determine when the network has converged.

Once the network has converged it is examined to identify a suitable location for
new nodes. The decision is based on the resource of each cell and a predefined
threshold value. If any cell has a resource that exceeds the threshold, two new
daughter cells will be generated from the cell with the highest resource. Once the
daughter cells have been created the adaptation step is rerun, followed by reassess-
ment of all cell resources. The result of applying SOTA to a gene expression dataset
is a hierarchical dendrogram of clusters, with each cluster having a limited degree
of heterogeneity as defined by the resource threshold. The vectors Sn define the
averages of the expression vectors associated with them. If the resource threshold
chosen is zero, the network will continue to evolve until every cell contains just one
expression profile, at which point the resource will be zero for all cells.

Biclustering identifies a subset of similar expression level
patterns occurring in a subset of the samples
There are many occasions when it is informative to cluster the samples together with
the gene or protein expression patterns. One example of this arises in studies of
tissue samples obtained from patients with a specific medical condition, where the
samples are classified according to a medical diagnosis on the basis of clinical symp-
toms and tests. There is usually considerable heterogeneity within groups of patients
(in age, habits, smoking or nonsmoking, living conditions, other disease conditions,
and so on), which affects the sample and may potentially mislead analysis.
Clustering the samples can confirm classifications (see Section 16.5); that is, different
sample types will, hopefully, form separate clusters. It is often beneficial to do this
before studying the expression level features, but even more so to combine the two
cluster analyses. The technique of jointly defining clusters that involve a subset of
similar expression level patterns and a subset of the samples is called biclustering.

In most systems only a relatively small set of all the genes or proteins in a system will
have significantly different levels of expression under different conditions. If this set
can be identified, they should provide a clear signal that can distinguish the condi-
tions, as well as being informative about the key molecular processes and responses
involved. The components that do not show significant variation will only serve to
mask the signal with random noise. A major benefit of two-way clustering is to iden-
tify the genes or proteins that are highly correlated with specific sample conditions.

In recent years a large number of methods have been proposed for biclustering
expression data. It is beyond the scope of this book to describe any of them in
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detail. (See Further Reading for details.) The methods can be divided into two major
groups: those that perform the complete analysis of both dimensions (samples and
expression) in a unified algorithm, and those that use combinations of separate
cluster analysis in each direction. In all cases the resulting partition consists of
blocks of expression levels of a subset of genes or proteins as measured in a subset
of the samples. Ideally these techniques should include clustering methods that
automatically determine an appropriate number of clusters.

We will illustrate biclustering in the case of a method using cycles of combining
SOM clustering in each dimension (see Figure 16.20). In the first cycle the expres-
sion levels and samples are clustered independently as described previously, to
produce two separate sets of clusters for the complete sets of expression levels and
samples (see Figure 16.20A). These clusters are then used to divide up the data for
further analysis. For each pair of clusters—one expression level cluster and one
sample cluster—the data relating to just the intersection of the two clusters is rean-
alyzed in the second cycle to obtain subclusters of expression levels and of samples
(see Figure 16.20B). This procedure can be repeated further, as much as is found
useful. This analysis can lead to new insights into the data that could be missed by
the simpler clustering methods described previously.

The validity of clusters is determined by independent methods
All the clustering methods described are exploratory data analysis tools and are
mainly used as a means of inspecting the data to extract insights. All clustering
results should be assessed to evaluate how well the clusters produced fit the data. It
should be noted that clustering algorithms will report clusters even when the data
are not truly clustered. Therefore the results need to be treated with some caution.
In most cases the assessment of clusters relies on the ability to find the most mean-
ingful clustering based on other knowledge. Meaningful clusters will commonly
contain proteins or genes that act together in some biologically significant process,
such as the same regulatory pathway. Therefore, once the proteins or genes that

Chapter 16: Clustering Methods and Statistics

650

benign tumor

cancer

normal

genes

samples(A)

(B)

Figure 16.20
An example of biclustering using a
separate SOM in each dimension.
The example is for gene expression
data that come from samples that
have been identified as coming from
normal tissue, cancerous tissue, or a
benign tumor. (A) The first cycle of
clustering results in three clusters
for the samples, correlating with the
known sample conditions as given
by the color key. Four gene clusters
are defined. The SOM clusters are
shown by the colored bars alongside
the grid of color-coded expression
values. The yellow rectangle
highlights the combined gene and
sample cluster whose further
analysis is shown in (B). (B) The
further clustering of this rectangle 
of data shows three sample
subclusters, and two gene
subclusters. These steps could 
be continued if desired to define
further subclusters.
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cluster together have been identified, they then have to be characterized further to
establish whether the clustering has any biological meaning. A common approach
is to use gene ontology (GO) terms to assess whether a cluster of genes or proteins
has known shared functionality. For further information about GO see Section 3.3.

Some quantitative measures have been proposed that can be used to test the rela-
tive merits of one clustering solution over another. One example is the total resource
in SOTA, equivalents of which are readily defined for other clustering methods.
However, these measures usually only give a clear preference in the simplest of
circumstances. For example, if the data form clusters that are cleanly separated
from each other the average distance of data from their cluster center will be signif-
icantly less than the distances between cluster centers. In general for real data such
assessment is not straightforward. For further details of some proposed methods to
assess the validity of clusters and the results of biclustering see Further Reading.

16.4 Statistical Analysis can Quantify the
Significance of Observed Differential Expression
It is often important to identify those genes or proteins that are expressed at
different levels in different samples. However, all the measured expression levels can
be expected to show differences, even if only on account of measurement errors. We
need to identify the genes or proteins whose expression level is really different in the
experimental samples. Another analysis that is frequently required compares two
samples to determine if they are significantly different. This involves comparing the
expression levels of a large number of genes or proteins for the two samples. The
methods for determining which measured expression level differences are real and
significant and for comparing samples are the subject of this section. 

The data we have are measurements of the same property (expression of a partic-
ular gene or protein) under different conditions or in different samples. We want to
know whether the measurements for a given gene/protein/condition/sample are
truly different. The result of such an analysis will be a list of genes or proteins that
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Flow Diagram 16.4
This section describes some of the
statistical tests which can be
applied to expression data to
determine if the differences in
expression levels are significant.
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are identified as differentially expressed under the various conditions of the exper-
iment. This list is just the starting point for further analysis, which may be compu-
tational or experimental. We want the most accurate list possible, so as to neither
miss important expression changes due to false negatives nor to waste time on
false positives.

The simplest technique for determining differential expression is to look at the ratios
of expression in different samples. A gene or protein can be considered to be differ-
entially expressed in different samples when the ratio exceeds a given threshold. The
threshold is often set at 2 (indicating a two-fold increase or decrease in expression).
If the threshold applied is large enough (say 10) then we can be more confident in
this assignment, but many differentially expressed genes will be missed. However, if
a lower threshold is applied more differential expression will be identified, but there
will be a greater probability of false-positive assignments where the measured
expression difference has a large contribution from random fluctuations.

We need to use statistical tests if true differences in expression are to be identified
more effectively. The benefit of using such tests is that they provide a quantitative
measure of the significance of the difference. The repeated measurements of a
particular expression level are assumed to be random selections from a statistical
distribution, so that the mean and variance of the measurements can be taken as
estimates of those of the distribution. If in different samples or under different
conditions the two expression levels are actually the same, the individual measure-
ments will be random samples from the same distribution. The statistical tests we
will describe estimate the probability that the two sets of expression level measure-
ments come from the same distribution, so that there is no differential expression.
If this probability is small enough, such as 0.01, this can be interpreted as evidence
of significant differential expression, with the measurements being samples of two
different distributions.

We need to determine whether the two mean values of expression level measured
for the same gene or protein in different samples are really different. It is more likely
that there is differential expression the less that the two distributions overlap, which
will clearly depend not only on the difference in the means but also to some degree
on the variances (see Figure 16.21). In fact the area of overlap is proportional to the
difference in the measured means expressed in units of the standard deviation
(square root of the variance) of the assumed distribution (see Figure 16.22). The
tests described here involve several different forms of this quantity, often called the
test statistic. Under the particular assumptions of a test (usually the type of statis-
tical distribution from which the measurements are made and whether all vari-
ances are the same or not) this test statistic has a known distribution itself. The
significance of the difference in mean measurements is assessed by calculating the
area of the two tails of the distribution of the test statistic, as shown in Figure 16.23.
This area is the probability that the two mean measurements are really different, as
opposed to their difference being simply due to random effects. A smaller value of
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Figure 16.21
The importance of variance in
detecting significant differences.
A two-fold change in average
expression level is only a significant
difference if the distribution
variances are sufficiently small. The
significance is related to the area of
overlap of the two distributions. In
all three examples the two
distributions have the same mean
values ( = 1.0, = 2.0). (A) Two
distributions of measurements A
and B are clearly different (variance 
s2 = 0.04). (B) When the variance is
larger the overlap increases (s2 =
0.16). (C) Even if one measurement
has a small variance, if the other has
a large variance the overlap makes
the difference in distributions less
significant than in part (A).

X BX A
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Figure 16.22
The overlap of two distributions is
proportional to the difference in
means expressed in units of 
the standard deviations. (A) Two
distributions with means        = 1.0, 

= 1.5, and variance s2 = 0.04. 
(B) Two distributions with means 

= 1.0,         = 2.0, and variance 
s2 = 0.16. In both cases

, and the same
proportion of overlap occurs.

X X sA B−( ) = −2 5.

this area indicates a more significant measured difference. The area is compared to
a preassigned value, typically 0.05, which equates to a 5% significance level, in order
to define which tests indicate differential expression.

A distinction is made between testing whether the mean measurements are
different, which is called a two-tailed test, and specifying that one mean measure-
ment is, say, lower than the other, which is a one-tailed test and involves just one
of the areas shown in Figure 16.23. All the applications described below use the
two-tailed test, as we are interested in any differences, whether increases or
decreases in expression level. The further the calculated test statistic is from zero,
the more likely it is that the two mean measurements are statistically significantly
different. A significance level is set to define the false-positive rate that can be toler-
ated. Here a false positive refers to an incorrect deduction that the two mean meas-
urements are different when they are not, which is also called a type I error. The
false-positive rate, often called a, is typically set at 5%, which means that in 5 out of
100 such tests a statistically significant difference between the means is reported
even if there is none.

If the expression data have been converted to log ratios and procedures such as
lowess have been used to make the data have an approximately normal distribution
as described in Section 16.1, the standard z-test can be applied to determine signif-
icant expression differences. In this case the z-test calculates the probability that a
gene has the same expression level in state A as in state B, based on the observed
log-ratio. The test assumes that the log ratios are normally distributed, and the
distribution mean is taken to be 0. The variance s2 is calculated over a set of genes
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Calculating the probability of a real
measured difference in means.
A test statistic, in this case with the
value –2.5, is plotted against the
distribution of the test statistic itself.
The area under the complete curve
is exactly 1. The probability that
there is no real difference in the
means is given by the area of the two
distribution tails defined by the
positive and negative values of the
measured test statistic. This is
known as a two-tailed test.
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within a range of similar expression level to that of the gene being tested (see Figure
16.5B). To apply the z-test a z-statistic is calculated for each gene, defined as

(EQ16.19)

where the denominator is the average log ratio for the gene and n is the number of
repeated measurements made. Using the properties of normal distributions we can
calculate (often looking up in a table) the fraction of measurements expected
through random variation to exceed in magnitude this value z. If this fraction is less
than a predefined threshold a then the measurement is taken to indicate a signifi-
cant difference, meaning that the expression levels of the gene in states A and B
show a real difference. 

This test relies on the log ratio data being normally distributed with a mean value
of 0. In general this cannot be assumed, and it is better to use the tests described
below, as they are likely to be more accurate in identifying differential expression.

t-tests can be used to estimate the significance of the
difference between two expression levels
A small number of independent measurements will have been made of the expres-
sion level of each gene or protein in each sample. An estimate of the actual value of
the expression is given by the mean of these measurements. The degree of uncer-
tainty in this value can be quantified by the variance in the measurements. The stan-
dard statistical test used to compare two such average measurements and estimate
the possibility that they are not really different is the t-test. Note that there is an
implicit assumption that the measurements are samples from a normal distribution.

There are several different versions of the t-test, depending on whether a single set
of measurements is being compared to a known value, whether two sets are being
compared with each other, and whether the variances of the two sets are different.
The problems under consideration here all involve comparing two sets of measure-
ments. To perform the test a value called the t-statistic must be computed. This is
then compared with the theoretical distribution of this statistic (Student’s t-distri-
bution) in combination with another parameter called the degrees of freedom (df)
to estimate the probability that the two measurements are in fact different. A
threshold value of this probability is used to assess whether the difference is statis-
tically significant.

When there are n measurements in each set, and both sets have the same variance
s2, the t-statistic is defined by

(EQ16.20)

where x̄̄A and x̄̄B are the means for the two sets of measurements. The numerator is
simply the difference in the means, while the denominator is the standard error of
this difference. Note that since log(A/B) = logA – logB it is simple to apply these tests
when using log ratio data instead of expression levels. This t-statistic can be
compared with the z-statistic for log-ratio data (see Equation EQ16.19). The key
difference is that in the z-test one measurement is being compared to the known
mean of the expression distribution whereas in this t-test two measurements are
being compared with each other.

It is generally recognized that in expression experiments the variances of the meas-
urements cannot be assumed to be the same. When the experimental design has

t =
x x
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the same number n of measurements for each expression level the t-statistic is
modified to

(EQ16.21)

In the case where the number of measurements differs, with nA and nB in the two
sets, the t-statistic is defined by

(EQ16.22)

In all these cases the number of degrees of freedom (df) is given by

(EQ16.23)

which in the case of equal numbers of measurements becomes 2(n – 1). An alterna-
tive form of the test for unequal variances has been given, sometimes called Welsh’s
t-test, in which the t-statistic takes the form

(EQ16.24)

which requires an alternative definition of the degrees of freedom that can result in
non-integer values:

(EQ16.25)

Comparing Equations EQ16.22 and EQ16.24, the former has as denominator the
correct standard error for the difference in means, but the latter still has a Student’s
t-distribution although requiring the modified value for df to assess significance.

The following example shows how the t-test is applied to experimental data. In this
case there are eight gels in two groups of four: one group is the control (Ci) and the
other the treated samples (Ti). The measured spot volume for the same protein
feature in each gel is given in Table 16.1. To see whether this protein feature changes
significantly between the groups we have to analyze the data as shown in the table.
The resulting t-statistic given by Equation EQ16.21 is 

(EQ16.26)

The value of –2.625 is compared with a t-test table, using df = 6 and a = 0.05. The
table gives a critical value of 2.447 for this level of significance. As our calculated
value is greater than this, it is significant according to the 5% level.
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Nonparametric tests are used to avoid making assumptions
about the data sampling
The statistical tests described above rely on the assumption that the measured
expression levels are samples taken from a normal distribution. In many expression
experiments the small numbers of measurements and large background errors
prevent this assumption being properly tested, so that the validity of the tests is
highly questionable. Another situation often encountered is the study of expression
levels in two sets of patients distinguished by being either healthy or with a particular
medical condition. (A common alternative situation involves the two sets of patients
receiving and not receiving a given treatment.) The number of patients available is
likely to be relatively small, and also to have additional unknown genetic and health
variations. It would be unrealistic to assume a normal distribution for the expression
of any particular gene or protein in such a set of patients. However, they might show
differential expression of interest, and need tests that can cope with such data.

There are tests that do not rely on these assumptions about the data sampling. They
are given the general name of nonparametric tests because they do not rely on
assuming a distribution defined by parameters such as means and variances. Two
classes of these tests can be distinguished: those that attempt to use the data to
numerically reconstruct distributions, and those that use more general properties
such as ranking.

Some nonparametric methods have been developed specifically with expression
experiments in mind. In the parametric tests described earlier a test statistic is
calculated and compared with the expected distribution of this statistic under the
assumption that there is no difference in expression level. This distribution is often
called the null distribution as it corresponds to the null hypothesis of the test,
namely that the two measurements are the same. Several methods have been
proposed that use the expression measurements to estimate the null distribution or
related quantities. For this, techniques are used such as resampling the measure-
ments (the significance analysis of microarrays, or SAM, method) and using
Bayesian analysis (in this case nonparametric, unlike the method described in Box
16.2). For details of these methods see references in Further Reading.

The standard nonparametric statistical test that is the equivalent of the t-test for
parametric data is the rank-sum test. There are several variations of this test, which
is also known as the Mann–Whitney U or Wilcoxon test. We will consider its appli-
cation to detect differential expression of a gene whose expression level has been
measured in nA healthy patients and nB patients with a particular disease. The total
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Sample C1 C2 C3 C4 T1 T2 T3 T4

Expression level 0.0766 0.0644 0.0602 0.1035 0.1138 0.0981 0.0971 0.1058

Rank 6 7 8 3 1 4 5 2

t-test statistics
s1 =  0.019499 s2 = 0.007775

Rank-sum 
statistics R1 = 24 R2 = 12

x Ci1 ! = 0.076175 x Ti2 ! = 0.1037

Analysis of protein gel data using the t-test and the rank-sum test. The data for analysis come from eight gels. One group of four are
the controls (Ci) and the other group are the treated samples (Ti). The data are the measured spot volume for the same protein
feature in each gel.

Table 16.1
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number of measurements is n = nA + nB. These measurements are assigned ranks
from 1 for the highest measured expression level to n for the lowest. The sum of the
ranks is calculated for each set of patients, RA and RB. If the expression level of the
gene is the same in both patient sets these two rank sums would be expected to be
equal within sampling errors. The test compares a measure of their difference
(often written as U) with a table of expected values to obtain a probability of the
gene being differentially expressed. (The appropriate version of the test to use
depends on the number of measurements available, details of which can be found
in standard works of statistics.) Once a significance level a has been chosen it can
be used to identify differential expression. Applying the rank-sum test to the data of
Table 16.1, no significant difference is found even at the 10% significance level, in
contrast to the 5% significance result with the parametric t-test. This illustrates that
nonparametric tests are less powerful, and therefore parametric tests should be
used whenever possible.

Multiple testing of differential expression requires special
techniques to control error rates
The tests described above are intended for the analysis of individual measure-
ments. In the case of expression experiments often many hundreds or even thou-
sands of genes or proteins are involved. If each is tested as described above, at a 5%
significance level (a = 0.05) we can expect 50 false-positive results (incorrect assign-
ment of expression levels as significantly different in the two states) for every 1000
tests. This level of error can be expected to cause serious problems in analysis of the
experiment. A variety of modifications have been proposed to the basic t-test
method to try to improve on this situation, and these will now be described.
However, it is useful to start by defining some of the terms used to describe different
kinds of errors and the rates at which they occur.

Consider an experiment involving the measurement of expression levels for N
different genes or proteins in each of two samples. A specified level of significance
a is assumed to apply. Suppose that N0 of these genes or proteins do not differ
significantly in their levels of expression in the two samples, but that when statis-
tical tests are performed R of them are declared to have differential expression
levels. A summary of the tests is shown in Table 16.2. Of the values shown in the
table only N and R are known. Note that the different methods described below may
have different appropriate values of a. 
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In much of the discussion in this section it has been
assumed that there are sufficient replicates to deter-
mine the values of the standard deviations of indi-
vidual expression level measurements with sufficient
accuracy. This is usually not the case, often due to a
combination of expense and lack of material. Several
methods have been proposed to obtain improved esti-
mates of the standard deviations. As has been
mentioned in several other contexts, Bayesian tech-
niques are very useful for coping with such a lack of
data and are explained in more detail in Appendix A. In
this case, one can use priors based on a normal distri-
bution with different parameters for each gene or
protein under different conditions. The calculations of

standard deviations are modified to a form such as

(BEQ16.1)

where s is the estimated standard deviation, s0 is the
standard deviation in the prior, n is the number of repli-
cates in the experiment, and s is the standard deviation
from the experimental data alone. u0 is a parameter that
represents confidence in s, and should be larger for
small n, to increase the weight of the prior in such cases.
s0 is often taken as the average of s for several (or even
all) genes.
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Box 16.2 Bayesian techniques can be used to deal with a lack of replicates
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There are a number of different definitions of rates of false-positive errors (type I
errors). The per-family error rate (PFER) is defined as the expected number of false
positives in all the tests, written E(V). (The term family is used in this context for the
complete set of N tests.) The per-comparison error rate (PCER) is defined as
E(V)/N, the fraction of all tests that were false positives. If there is concern to try to
avoid even a single false-positive result, the family-wise error rate (FWER) can be
used, defined as P(V ≥ 1), the probability of at least one false positive in all the tests.
Finally, the false discovery rate (FDR) is defined as E(V)/R, the fraction of all the
tests which result in a declaration of significant differential expression that are in
fact false positives, given that some results were deemed significant (R > 0). If no
results were found significant (R = 0) then the FDR is defined as 0.

The first modification we will describe that tries to control error rates in multiple
testing is the Bonferroni correction. If there are N t-tests to perform, the signifi-
cance level a used for a single test is divided by N so that the chance of a false-posi-
tive result remains at, say, 5%. Thus, the condition that must be satisfied by a
probability p given by one of the N t-tests is

(EQ16.27)

If this condition is satisfied, the test has detected significant differential expression.
This controls the FWER to be a or less. This approach is very cautious, and has the
effect of severely reducing the chance of identifying significantly different measure-
ments, because the difference in their mean values must now be very much larger
for their difference to be deemed significant.

In fact the FWER can be controlled to be a or less in a slightly modified method that
increases the chances of detecting true positives. Each of the N tests produces a
calculated probability of there being no differential expression. The step-down
Holm method requires this calculated probability for each of the N tests to be
ordered from the smallest to the largest probability, written pi for the ith ordered
test. Starting with the smallest p1, all pi are compared in turn to see if

(EQ16.28)

Note that if this condition is satisfied the test does not detect significant differential
expression. Once the smallest pi has been identified for which this condition is true,
all smaller pi (from p1 to pi-1) are declared to indicate significant differential expres-
sion, and all other tests are not significant differential expression. Note that the first
comparison is equivalent to the Bonferroni correction, but thereafter the required
condition for pi is less harsh. In statistical terminology this method has greater
power than the Bonferroni correction.

p
N i 1i > − +( )

α

p
N

≤ α
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Actually not significantly
differentially expressed

Actually significantly
differentially expressed

Declared significantly
differentially expressed

V
(i.e., false positives)

S
(i.e., true positives)

R

Total

N0

N – N0

N

Declared not significantly
differentially expressed

U
(i.e., true negatives)

T
(i.e., false negatives)

N - R

Table 16.2 
A summary of the N tests
performed to determine
differential expression levels, of
which N0 are not differentially
expressed but the tests result in R
being declared significantly
differentially expressed. A level of
significance is assumed to have
been defined.
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An alternative but similar method for controlling the FWER has been proposed
called the step-up Hochberg method. In this case, the same ordering of pi is used,
defining the index i, but this time they are compared in the order from the largest to
the smallest. Starting with this largest value pN, all pi are compared in turn to see if

(EQ16.29)

Once the largest pi has been identified for which this condition is true, that and all
smaller pi (from p1 to pi) are declared to indicate significant differential expression,
and all other tests are not significant differential expression.

In the case of expression experiments it is better to accept a few false positives than
to miss many true positives, so that controlling the FWER as described above is
often too cautious an approach. Yoav Benjamini and Yosef Hochberg have argued
that it is more appropriate to be concerned with the FDR than the FWER. As in the
step-up Hochberg method the tests proceed from pN to p1, and all pi are compared
in turn to see if

(EQ16.30)

Once the largest pi has been identified for which this condition is true, that and all
smaller pi (from p1 to pi) are declared to indicate significant differential expression,
and all other tests are not significant differential expression. This method controls
the FDR to be a or less. If a is set at the value 0.05, this means that 5 of every set of
100 identified cases of significant differential expression would be expected to be
false positives. Further progress in defining improved methods of significance
detection based on measures related to the FDR has been reported by John Storey
and co-workers, as referenced in Further Reading.

Many other statistical methods have been applied to the problem of distinguishing
significant changes of expression. These have included different parametric tests,
for example, analysis of variance (ANOVA), as well as analysis of covariance
(ANCOVA). More complicated Bayesian models have been proposed that can deter-
mine the optimal number of expression classes, which is akin to automatically
determining the number of clusters in methods such as SOTA. These techniques are
beyond the scope of this book and the reader is referred to Further Reading for
pointers into the vast literature on this topic.

16.5 Gene and Protein Expression Data Can be
Used to Classify Samples
In the previous section techniques are described that help identify significant
differences in expression levels in different samples. The results of such analyses
can be applied in two distinct ways. The set of genes or proteins that are differen-
tially expressed may shed light on the physiological response or differences in
symptoms between the samples, leading to a better understanding of the biological
processes involved. Alternatively the set of differentially expressed genes or
proteins can be used to determine a method for automatically distinguishing
between sample classes on the basis of expression levels, of particular interest in
the field of medical diagnostics. It is important to appreciate that there is a clear
difference between genes or proteins with significantly different expression levels
and those genes or proteins that can discriminate between sample types (see
Figure 16.24). 

p
i
Ni ≤ α

p
N i 1i ≤ − +( )

α

Gene and Protein Expression Data Can be Used to Classify Samples

659

BIF Ch16 5th proofs.qxd  17/7/07  16:41  Page 659



As an example application, the samples may have been taken from a set of patients
with one of a limited number of medical conditions, and could be used to derive a
method to classify samples taken from patients with unknown conditions. A partic-
ularly useful potential application can arise when patients show different responses
to treatments despite having identical symptoms. Expression analysis could poten-
tially identify signals that can then be used to indicate appropriate treatments.
These signals can be used to design a sample classifier, which is an algebraic
method of using expression levels to predict the nature of an unknown sample. It is
often possible to obtain a slightly more accurate classifier by increasing the number
of parameters involved. However, an optimal classifier will be accurate while only
requiring a small number of measurements of the sample.

It should be noted that a potential problem with such classifiers is that they will
predict the unknown sample to belong to one of the classes of sample used in
deriving the classifier. Thus, for example, if the classifier was constructed using data
from samples taken from patients who all have one of two different tumor types,
unknown samples will always be predicted to have come from a patient with one of
these tumors, even if the patient had no tumor. Care must be taken to include
control samples wherever possible to minimize this potential problem.

Many alternative methods have been proposed that can
classify samples
We will now explore some of the ways in which classifiers can be derived. There are
many techniques available, of which only two will be described. It should be noted
that some of the methods described earlier in this chapter, such as PCA and biclus-
tering, can also be useful in sample classification. Another method that can be used
that has previously been described is the nearest-neighbor or k-nearest-neighbor
method, which was described in the context of the prediction of amyloidogenic
sequences in Section 12.3. In the nearest-neighbor method the expression levels of
the unknown sample are compared with those of known samples to identify that
sample which is most similar according to a given distance measure. The unknown
sample is then assigned to the same group as this nearest-neighbor sample. The
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Flow Diagram 16.5
In this section are described some
of the range of methods that can be
used to classify a sample into one of
a limited number of categories on
the basis of expression data.
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k-nearest-neighbor method simply extends this to average the prediction over the k
most similar samples.

Another method that has sometimes been employed to classify samples is based on
decision trees, which were described in Section 10.1 and Figure 10.3 in the context
of identifying tRNA genes. A series of tests is applied, usually in a specified order. In
this case the tests relate to measured expression levels compared for two genes or
proteins in the same sample. The genes selected are ones found to show clear
expression differences in the different classes of sample, for example one gene
being expressed at a higher level than the other in one sample class, and vice versa.
Sometimes the result of one test determines which of several alternative tests is
subsequently applied. At some point in the decision tree the sample is classified
according to the last test result. Cases have been reported of successful classifiers
involving only between 2 and 20 genes.

A commonly used classification method is discriminant analysis, which was
briefly described in application to genome sequence analysis in Figure 10.16. The
key concept of this method is that a transformation of the data is found which has
a clear separation between the different sample groups. A simple measure of this
separation can be defined as the ratio of the sum of squared distances between
groups divided by the sum of squared distances within groups. The optimal trans-
formation will maximize this ratio, and has been shown to be given by an algebraic
manipulation involving covariance matrices of the groups. The end result is a
formula—usually a linear or quadratic combination of the original data—whose
value for the unknown sample indicates the appropriate sample group prediction.
The real situation can be more complex than Figure 10.16 might suggest, as in
reality multiple dimensions will be involved, but the algebraic form is still relatively
simple. The line separating the two groups is called a separating hyperplane.

Support vector machines are another form of supervised
learning algorithm that can produce classifiers
As was presented in Section 12.6 in the context of secondary structure prediction,
support vector machines (SVMs) are capable of classifying data into one of two
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Figure 16.24
The distinction between significant
differential expression and
discriminatory genes. The
expression levels of the two genes 1
and 2 have been measured for a
number of different samples that
have been classified into three
distinct subtypes. Both genes show
differential expression for the three
subtypes, and these differences
could be statistically significant if
sufficient different sample
measurements were available. 
(A large number of measurements
would alter the t-statistic of
Equation EQ16.20.) However, the
large degree of overlap between
gene 2 expression levels for the
different subtypes makes this gene a
poor discriminant of the subtypes,
unlike gene 1. This is because the
unknown sample will give only a
single measurement, so that
overlapping distributions are likely
to give unclear predictions.
(Adapted from D. Hwang et al.,
Determination of minimum sample
size and discriminatory expression
patterns in microarray data,
Bioinformatics 18:1184–1193, 2002.)
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alternative classes. These can be combined so as to classify into more classes (see
Figures 12.34 and 12.35), but generalizations exist that allow multiclass classifica-
tion within a single SVM. Support vector machines are trained using a dataset that
contains examples of the alternative classes, and can then be subsequently run
with unclassified data to predict the class.

During training, the SVM algorithm identifies the separating hyperplane that has
the greatest margin between the classes (see Figure 16.25). This involves an opti-
mization, which turns out to be relatively tractable. The example shown has
complete discrimination between the two classes, but SVM methods exist that allow
for a controlled degree of classification errors, in which case some data will appear
on the wrong side of the separating hyperplane. The hyperplanes do not need to be
linear, and can be of complex form, improving the chances of accurate classifica-
tion. For details of the algorithms see references in Further Reading. The training
can be done using only those genes or proteins that have been identified as signifi-
cant, but it can also use all the data. The formulae often involve coefficients that can
be interpreted as weighting each gene or protein, and these can be used to select
some data as having suitably small weights that they can be removed and a new
SVM trained. In this way data that might have no real signal and merely contribute
to the noise level can be removed to improve the performance of the classifier.

An example of the use of SVMs is shown in Figure 16.26, which also illustrates how
the classification works in practice. In this example the samples come from patients
with one of 14 different tumors. An SVM was trained for each tumor type to classify
the sample as either having or not having that tumor. These are named classifier 1
to 14 according to the tumor type. When an unknown sample is presented, the
distance from each classifier’s separating hyperplane and the side on which it falls
can be used to determine the predicted class and the strength of that prediction. In
the example shown, the test sample gives a coherent set of classifier results indi-
cating the sample is from a patient with breast cancer.

Summary
Large-scale DNA microarrays or 2D gel electrophoresis followed by mass spectrom-
etry are used to determine the simultaneous expression levels of large numbers of
genes or proteins, respectively. These techniques can be used to detect genes or
proteins with similar expression patterns across different samples and thus to track
changes in gene expression at different times, or in different conditions, such as
healthy and diseased tissue. There are a number of problems associated with this
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margin

Figure 16.25
The key concept behind the support
vector machine. In this simplified
example all the data (represented by
the circles) fall into two classes
represented by their color, and the
two classes are separable by a linear
separating hyperplane shown as the
solid black line. Two parallel
hyperplanes shown as dashed lines
indicate the closest that any of the
data points approach the separating
hyperplane. These closest data
points are called the support
vectors, and are indicated by double
circles. The SVM method determines
the separating hyperplane that
maximizes the distance between
these two hyperplanes, called the
margin.
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type of experiment, which mainly have their origins in statistical properties of the
data, such as sources of error and variance. To some extent these difficulties can be
overcome by suitable normalization and transformation of the data.

To analyze the transformed data further, they are then usually organized into clus-
ters, or groups, of similar data. The hierarchical clustering method produces a
single cluster within which the data (for example, the expression pattern of indi-
vidual genes or proteins) are organized into a dendrogram that indicates their rela-
tive similarities to each other. Other clustering methods can be divided into
different types depending on whether or not they are able to determine the appro-
priate number of clusters for the dataset, and whether or not they indicate the rela-
tionships between different clusters. From a theoretical viewpoint, it may be
preferable to allow the method to determine the number of clusters, but in practice
this is probably of minor benefit. In general, the data should be analyzed by using
more than one clustering method and any conclusions drawn should, where
possible, be supported by several independent analyses.

Summary
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The application of SVM classifiers to classify an unknown
sample into one of 14 human tumors. The SVMs were fitted to
data from all 14 tumors, color-coded as in the top key. The
classification of a test sample is shown. All of these SVM
classifiers are of the one-versus-all (OVA) type that distinguish
between X and not-X where X is one of the types of human
tumor. Classifier 1, which predicts the likelihood that the sample
comes from a patient with breast adenocarcinoma, gives a
strong signal that it does. The other 13 classifiers give negative
results, as shown by the bottom graph. In this case the result is a
high confidence prediction that the test sample came from a

patient with breast adenocarcinoma. The tumors are BR, breast
adenocarcinoma; PR, prostate adenocarcinoma; LU, lung
adenocarcinoma; CO, colorectal adenocarcinoma; 
LY, lymphoma; BL, bladder transitional cell carcinoma; 
ML, melanoma; UT, uterine adenocarcinoma; LE, leukemia; 
RE, renal cell carcinoma; PA, pancreatic adenocarcinoma; 
OV, ovarian adenocarcinoma; ME, pleural mesothelioma; 
CNS, central nervous system. (Adapted from S. Ramaswamy
et al., Multiclass cancer diagnosis using tumor gene expression
signatures, Proc. Natl Acad. Sci. USA 98:15149–15154, 2001.)
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To study differential expression between a set of proteins or genes, statistical
methods should be used to assess the significance of the measured difference.
These methods can range from simple tests (such as expression ratios exceeding a
threshold) to the widely used t-test, to complicated techniques that use Bayesian
models. All these tests would be expected to identify the most extreme differential
expression. More sophisticated analysis is required, however, to find all differential
expressions without also identifying a large number of false positives.

One of the key applications of this area is in classifying unknown samples on the
basis of the expression levels. This is likely to have a major impact on medical diag-
nosis in the near future, especially as the experimental methods become more
routine and cost-effective.
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SYSTEMS BIOLOGY

When you have read Chapter 17, you should be able to:

Recount the origins of systems biology.

Summarize the uses of system biology.

Summarize the many types of system biological analyses.

Show how networks are starting points in many system biology studies.

Show how networks have to be extended with more information.

Discuss why systems need to be both robust and fragile for control.

Expalin why modularity is important in robustness.

Explain why more redundant systems tend to be more adaptable.

Over the past few years, systems biology has become a popular and much-talked-
about concept. Unlike the rest of bioinformatics, however, its origins began in the
first half of the  twentieth century. As far back as 1934, the Austrian biologist Ludwig
von Bertalanffy applied general systems theory to biology as well as to other fields,
formulating his Organismic System Theory. He stated that it was old-fashioned
science that attempted to explain phenomena by reducing them to interplay of
individually investigable units but that contemporary science recognized the
importance of the whole. He defined wholeness by characteristics such as the
organization of dynamic interactions, which is manifested in the difference in the
behavior of the individual parts when isolated or when they are combined together.
In other words, systems cannot be fully understood by analysis of their components
in isolation. This definition of systems biology is still valid.

To fully understand the functioning of cellular processes, whole cells, organs, and
even organisms, it is not enough to simply assign functions to individual genes,
proteins, and other cellular components. We need to analyze the organization and
control of the system in an integrated way by looking at the dynamic networks of
genes and proteins, and their interactions with each other. These interacting path-
ways are complex dynamic systems, and often behave in a nonlinear and adaptive
way. Nonlinearity means, for example, that doubling a stimulus (the input) does
not necessarily double the response, and may even cause a qualitatively different
response. Adaptive systems can modify themselves to respond in a more appro-
priate way in the light of previous stimuli. The general goal of theoretical systems
biology is to develop computer models that predict the properties of the large,
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adaptive, interconnected networks that are found in living things. This type of
modeling will allow us to investigate, for example, how extracellular signals are
processed to produce functional cellular responses. Similar modeling can also be
used to investigate larger-scale multicellular systems such as the development and
physiology of whole organs or even whole organisms.

In systems biology, mathematical descriptions of the processes under study are
used along with knowledge from engineering and physics and the power of modern
computers. These techniques are used to obtain a detailed description of the parts
(the components) and their interactions, and then to reassemble them into an
interconnected whole. In other words, mathematical models are applied to biolog-
ical processes to identify rules about molecular or cellular associations or depend-
encies. These are called causal dependencies. Genomics and proteomics have
provided large datasets that can be used to describe the parts of a biological process
at the gene and protein level. Models of cardiac cells and the heart, genomic regu-
latory networks, developmental genetic networks, and metabolic pathways are just
a few of the biological systems that are currently being modeled using the tech-
niques of systems biology.

International projects are under way to model all the molecular processes in a
single cell, one such being the E-Cell Project. This aims to develop programs that
will allow researchers to simulate the functioning of a complete cell starting from its
molecular components. Another project is under way at the Pacific Northwest
National Laboratory (PNNL) where several groups are collaborating, some focusing
on the study of thousands of proteins and other cellular components, while the
bioinformaticists work with the groups to integrate the data to enable the under-
standing of gene and protein networks that are part of cell signaling, cellular meta-
bolic pathways, or intercellular communication. There are many other institutions
bringing together various groups of scientists with computational methodologies
to study complex biological questions.

In this chapter we will give a general overview of systems biology, what it can
provide, and why it is important. It is based on complex mathematical modeling,
using advanced techniques that are outside the scope of this book. Those who wish
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part of computational research.
This mind map shows some of the
topics introduced in this chapter
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to know more should look at the Further Reading at the end of the chapter. Here we
will discuss some examples of biological processes currently being modeled to
illustrate the scope of the field.

17.1 What is a System?
There are good reasons for the systems biology approach. First, biological systems
tend to be so complex that it is difficult, without modeling, to know how they
behave and to understand the actions of their control mechanisms. Second, such
systems can have higher-order properties that are their main biological function,
but are not apparent from the properties of the separate components; for example
we cannot understand a book from just looking at the collection of words in a
random way. 

The higher-order properties and functions that arise from the interaction of the
parts of a system are called emergent properties. For example, the human brain,
capable of thought, depends on practically all the cells in the brain and their inter-
connections. But a single brain cell is incapable of the property of thought; there-
fore thought is an emergent property of all the cells in the brain. However, as a part
of a whole made up of many interconnecting cells, a single cell is an important
component of a complex system.

A system is more than the sum of its parts
Although very useful information can be obtained from the analysis of individual
parts of a complex system, the ultimate aim is to understand how all the parts act
together in real time and how the functioning of the system is controlled (see Figure
17.1). This in turn will shed light on how each individual component contributes to
the whole system. Any working system, whether a cell or a car engine, is not just a
static assembly of its parts. It has a specific structure (the way the parts relate to
each other) and dynamics (the ways in which it changes over time). A description
of a fully functional system must take into account the spatial organization of
elements, their interactions, and their response to external stimuli, including those
processes that control and stabilize the system.

Let us examine an underground railway system like the London Underground or
the New York subway. Our hypothetical subway consists of components (the
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In this section the concept of a
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stations) linked by interactions (the rail tracks) (see Figure 17.2). These define the
structure of an interconnecting network but we need far more information to
understand the way the railway works. We need to know what type of signals travel
along the interactions (the passengers), what the signal carriers are (the trains),
how fast they travel, and what controls their movement and prevents two trains
being on the same track at the same time. In addition, it is important to know how
perturbations will affect them, for example what effect a faulty power supply or a
workers’ strike will have on the functioning of the subway system. Different
networks can also interact with each other; for example a city subway will interact
with the overground railway system and the bus system. External influences can
have a highly significant influence on the network. For example, people’s working
hours will determine the periods of high and low activity. The system must be
studied at a quantitative level, because we need to know if there are sufficient trains
for all passengers, and so on.

A biological system is a living network
Biological networks—for example a network of intracellular signaling pathways or
a set of interconnecting metabolic pathways—have many similarities with the
transport systems just mentioned. They are assemblies of components, in this case
the individual proteins and small molecules in the pathways, which are connected
by interactions along which signals pass and have an effect on the function of the
whole network. These networks too have inbuilt controls that activate or terminate
particular signals. The biological system can also be perturbed by outside interfer-
ence, ranging from the food we eat to therapeutic drugs. Therefore, to properly
understand the function and the effect of individual proteins or genes and the
consequence of their interactions and products we need to study the whole system
in which these proteins (or genes) play a part. Once we have a quantitative mathe-
matical model that can be manipulated, and understand the normal functioning of
the system, we can see what the effects of various perturbations are in silico. This
type of study is useful, for example, in the pharmaceutical industry to study the
potential effects of new drugs, for identifying feedback mechanisms (controls) that
might offset the effects of the drugs, and for predicting side effects.

Building simple networks of molecular interactions is the first stage in modeling a
complex entity such as a cell. Biological systems consist of hierarchies—subsystems
that can be studied at different levels—such as the molecular pathway, the
organelle, the individual cell, and so on. Networks of interacting proteins are the
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Figure 17.1
A schematic of the reductionist
approach and the integrative
approach to research that is part of
systems biology.
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starting point in understanding cellular mechanisms. To make a dynamic model of
such a network, we first need to build the basic network structure. Various data-
bases exist that can be useful in creating an initial structure.

Databases are useful starting points in constructing a network
To construct a network you need several different types of information. A number of
Web sites make available information about all or most of the interacting proteins in
a particular pathway, for example the Kyoto Encyclopedia of Genes and Genomes
(KEGG). The gene catalog in KEGG organizes the genes into functional hierarchies
according to the classification of their protein products into biochemical pathways.
KEGG includes information about the functional and/or structural protein type,
RNA, and other small molecule ligands. For example Figure 17.3 shows the pathways
of glycolysis. EcoCyc is an example of a similar catalog for a particular species, in this
case the bacterium E. coli. It describes both the genome and the biochemical
machinery of E. coli. Figure 17.4 shows the glycolytic pathway of E. coli as defined in
EcoCyc with the same compounds highlighted in red as those given in Figure 17.3.
Other Web sites provide interactive protein-interaction diagrams; one example is the
Biomolecular Interaction Network Database (BIND) (see Figure 17.5). pSTIING
(Protein, Signaling, Transcriptional Interactions & Inflammation Networks Gateway)
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Figure 17.2
A fabricated transport system of
Research City. The lines represent
an underground railway system, the
dotted thin lines are rail tracks. The
circles represent main stations with
links to the trains, the small lines are
substations. Main train stations are
illustrated by a train. The line of
people shows the bus station and
there is one airport to the south of
our Research City.
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is another publicly available database, which includes protein–protein, protein–lipid,
protein–small molecule, and ligand–receptor interactions. In addition it also incorpo-
rates transcriptional regulatory associations with protein interaction information
(see Figure 17.6) and allows for the integration of protein interaction information
with experimental results, such as microarray data.  Table 17.1 gives a selection of
some of the commonly used databases in constructing pathways. 

To construct a model more information is needed than 
a network
A network structure can be defined using these databases. However, to obtain a
dynamic network for modeling, whether using kinetic or statistical data (such as
whether a gene is on or off), the information from the databases has to be
augmented by other information from published experimental work. To complete
the network definition the interactions between components must be defined. To
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a-D-glucose-6P

glyceraldehyde-3P

b-D-fructose-1,6P2

glycerone-P

pyruvate

Figure 17.3
The components and interactions
in the glycolytic pathway as
obtained from the KEGG database.
The components are the protein
enzyme numbers (boxed), the
products, and the type of reaction
performed by the enzymes. The
arrows indicate the direction of the
reaction. Note that labels in round
boxes (e.g. glycerolipid metabolism)
represent other pathways.
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Figure 17.4
EcoCyc is a database that has data
on the E. coli genome and its
biochemical system. The figure
illustrates one of the views (least
detailed) of the glycolysis pathway.
The names of the most important
molecules involved are given as well
as the black arrows indicating the
direction of the reaction, while the
green and blue arrows show control
aspects in the pathway. The red
arrows show the interaction with
other pathways.

Figure 17.5
BIND is a database of components
and interactions, where each
interaction includes information on
cellular location, experimental
conditions, conserved sequence,
molecular location of interaction,
and so on. In this figure the
interaction summary is shown
between proteins MYO5 and GPM1,
which make part of the glycolytic
pathway. The interaction can be
visualized and expanded to include
other interactions with MYO5 and
interactions between any other
protein present, such as GPM1 and
its interaction partners (e.g., MYO3).
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do this, you need to know which components interact with each other, and also
must have quantitative information about the kinetics of the interaction, such as
whether a reaction occurs rapidly or slowly and the starting concentrations of
components. These kinetic parameters are hard to obtain, as their experimental
determination is not yet commonplace, and sometimes they must be estimated
from a related system that has been better characterized. Thus the construction of
dynamic kinetic models relies on the in-depth knowledge of all enzymatic rate
equations and their parameter values. The parameter values also depend on factors
such as tissue type or physiological (and experimental) conditions. Therefore to
obtain an accurate model all parameter values should be obtained using the same
conditions and the same tissue type. An additional problem is that many enzyme
kinetic rates are obtained from in vitro studies, and it is not certain if these rate
functions will have the same values in vivo. Finally, the external signals that influ-
ence the network must be defined and independent knowledge of the actual
responses to some of these are useful to check that the model reproduces reality.

There are three possible approaches to constructing a model
There are a number of different ways that a mathematical model of a dynamic
network can be constructed. The three main approaches are the bottom-up, top-
down, and middle-out methods (see Figure 17.7). The bottom-up approach
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macrophage + LPS (1 hour)

Figure 17.6
pSTIING is a database that holds
more than protein–protein
interactions, shown by solid lines.
It also has information about which
proteins/genes have transcriptional
influence on other proteins/genes.
This is shown by dashed lines.
Experimental results can also be
mapped onto the interaction
diagram in pSTIING. In this figure
the genes/proteins are colored
according to gene expression results,
where red indicates more than six
times upregulation, dark orange
more than four times, and light
orange more than two times
upregulated products. Green
indicates downregulated products
with respect to a control set of genes.
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Web link Name

http://pstiing.icr.ac.uk pSTIING

http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/ GeneNet

http://string.embl.de/ STRING

http://www.ebi.ac.uk/intact/index.jsp IntAct

http://mint.bio.uniroma2.it/mint/ MINT

http://www.bind.ca/Action BIND

http://dip.doe-mbi.ucla.edu/ DIP

http://www.hprd.org/ HPRD

http://mips.gsf.de/proj/ppi/ MIPS / MPPI

http://www.biocyc.org/ BioCyc

http://metacyc.org/ MetaCyc

http://www.pantherdb.org/ PANTHER

http://www.genome.jp/kegg/ KEGG

http://biozon.org/ Biozon

http://www.biocarta.com/genes/index.asp BioCarta

http://www.genmapp.org/ GenMAPP

http://stke.sciencemag.org/ STKE

http://www.signaling-gateway.org/ AfCS

http://www.grt.kyushu-u.ac.jp/spad/ SPAD

http://biodata.mshri.on.ca/osprey/servlet/Index Osprey

http://www.cytoscape.org/ Cytoscape

http://strc.herts.ac.uk/bio/maria/NetBuilder/index.html NetBuilder

http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.htm Pajek

http://visant.bu.edu/ VisANT

http://sbw.kgi.edu/software/jdesigner.htm Jdesigner/SBW

http://projects.villa-bosch.de/bcb/software/software/Ulla/SimWiz/ SimWiz

http://pavesy.mpimp-golm.mpg.de/PaVESy.htm PaVESy

http://www.genomicobject.net/member3/index.html Genomic Object Net

http://www.celldesigner.org/ CellDesigner

http://www.ncbs.res.in/~bhalla/kkit/index.html Genesis/Kinetikit

http://www.e-cell.org/ E-Cell

http://page.mi.fu-berlin.de/~trieglaf/PNK2e/index.html PNK 2e

http://www.bii.a-star.edu.sg/research/sbg/cellware/index.asp Cellware

http://www.biouml.org BioUML

http://www.nrcam.uchc.edu Virtual Cell

http://icb.med.cornell.edu/services/sp-prod/sigpath/mainMenu.action SigPath

http://www.cellml.org/ CellML

http://sbml.org/index.psp SBML

http://www.ebi.ac.uk/biomodels/ BioModels

http://jjj.biochem.sun.ac.za/index.html JWS

http://jigcell.biol.vt.edu/index.html JigCell

http://www.biospice.org Bio-SPICE

http://www.mcell.psc.edu MCell

http://sbw.kgi.edu/software/jarnac.htm Jarnac

https://biodynamics.indiana.edu/CellModeling/AboutCellX.html CellX

http://sbml.org/software/sbmltoolbox/ SBMLToolbox

http://sbml.org/software/mathsbml/index.html MathSBML

http://wishart.biology.ualberta.ca/SimCell/ SimCell 

Table 17.1 
A small selection of Web-based
tools and databases for systems
biology. 
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constructs networks and aims to predict their behavior starting with a collection of
experimental data. All the information available about all the components in the
system is gathered together first and is then combined to form a complete picture.
For example, a study modeling the behavior of an engineered OROlac E. coli
promoter under different conditions was carried out using a bottom-up approach.
This promoter (see Figure 17.8) is repressed by LacI and activated by the protein
CI. A green fluorescent protein (GFP) gene was placed under the control of the
OROlac promoter to enable the measurement of activation and repression. A math-
ematical model was used to look at the behavior of this modular system. Figure
17.8 shows an example prediction from this study, which shows that this approach
can be used as a predictive tool to provide insights into gene regulation. In the
graph the red line represents experimental results, while the blue line shows the
predicted behavior of the promoter. It is obvious that in this case the mathemat-
ical modeling accurately predicts the real behavior of the system.

The top-down approach starts from observed behavior and then fills in the compo-
nents and interactions required to generate these observations by iterative experi-
mental results and simulation. This increases and fine-tunes the mechanistic detail
of the model. Many models start with the top-down approach, such as
protein–protein interactions, enzymatic pathways, and signaling pathways. The
architecture of such networks is an important feature. The architecture—the way
the interacting nodes connect—will formulate how a network may behave. The
same nodes in a network can be connected in different ways. For example, the
nodes can interact by only connecting to their nearest nodes (see Figure 17.9A), by
connecting to any other node randomly selected (see Figure 17.9B), or where some
nodes have many connections, while others have few, often called a scale-free
network (see Figure 17.9C). The scale-free network is of considerable interest, as it
seems that proteins in a network that have many connections may act as important
hubs central to the activity of the network.

An example of the top-down model is the mathematical modeling of tumor inva-
sion in cancer (see Figure 17.10). The observed behavior—tumor invasion—has
been subjected to quantitative simulation with a model including dependence on
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Figure 17.7
A schematic showing the
relationship between the top-down,
bottom-up, and middle-out
approaches to modeling a system.

Figure 17.8
The engineered OROlac promoter of
E. coli. (A) The promoter can be
observed because it controls the
expression of gfp, which is detected
by fluorescence. The proteins CI 
and LacI bind to the promoter. 
(B) This shows curves of
experimentally detected cell counts
in red and cell counts from
mathematical 
modeling in blue. (Adapted from
N.J. Guido et al., A bottom-up
approach to gene regulation, Nature
439:856–860, 2006.)
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the extracellular matrix (ECM) composition, metalloproteinases (MMP) that can
digest the ECM, and the tumor cells. The small tumor at the start of the simulation
grows symmetrically, which leads to further invasion. This type of simulation
mimics metastatic behavior.

The middle-out approach is a more flexible method of investigation than the above
methods. The data used to construct these mathematical models are collected from
both molecular experiments and system-level observations. This model can start at
any point for which data are available, as long as it is supported by a hypothesis. It
can then expand either up or down in terms of both resolution and coverage. With
the currently available biological data and techniques of experimental investiga-
tion, the middle-out approach is the one most often used.

The virtual heart project (see Further Reading) is an excellent example of this
approach. Mathematical models of how heart muscle functions to keep the heart
beating are now extremely sophisticated and include models of all the main types
of cardiac muscle cells. This model is a compilation of a large number of mathemat-
ical equations that describe the protein, cells, and various tissues of the heart. The
model can, for example, represent the variations in expression levels of large
numbers of genes within a particular part of the heart, for example the atrium, and
the consequences of their perturbation on heart function. These gene variations are
important in interpreting electrocardiograms and have been helpful in under-
standing the various types of heart diseases. Figure 17.11 shows a model of
mechanically induced sustained arrhythmia in a part of the heart. This type of
modeling helps the understanding of, for example, pacemaker activity. 
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(A) (B) (C) Figure 17.9
The various architectures that
networks can adopt. (A) Only 
close-by nodes connect, (B) the
connections are random, and 
(C) certain nodes adopt more
connections than others. 

Figure 17.10
Computer simulation of the way a
tumor can spread based on
simulation of the extracellular
matrix. At first the tumor is small
and forms a neat circle. As time goes
on the cells begin to proliferate and
some cells die (brown). Further on
some cells become aggressive (blue).
From day 85 the tumor consists of
dead and aggressive cells leading to
more rapid invasion. (Reprinted
from Clinica Chimica Acta, 357,
V. Quaranta et al., Mathematical
modeling of cancer: the future of
prognosis and treatment, 173–179,
2005, with permission from Elsevier.)
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Kinetic models are not the only way in systems biology
The rest of the discussion in this chapter applies mainly to kinetic models but they
are not the only way of analyzing large-scale networks. Data-driven constraints-
based models (topological models) have also been successfully applied. As all
biological processes are dependent on physicochemical constraints (such as
osmotic pressure, thermodynamics, and so forth) topological modeling is based on
applying these physicochemical constraints on the function of computer-based
recreated genome-scale networks to deduce their possible functions. The topolog-
ical approach is especially useful when there are not enough kinetic data to enable
the construction of a kinetic model. The methods used to analyze topological
models include Flux Balance Analysis (FBA) and Extreme Pathways. The former
uses a linear approach to optimizing the modeling parameters while the latter
looks at all possible distributions. It is not possible to describe in detail these
methods here and the interested reader should refer to Further Reading. The FBA
topological approach has been successful for example in modeling the cellular
metabolism of E. coli.

One other aspect of models that one should keep in mind is that there are meta-
bolic models that are mainly based on steady-state kinetics, while signaling
network models are time-dependent.
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Figure 17.11
A mathematical model of
mechanically induced sustained
arrhythmia in a cube
representation of the ventricular
wall of the heart. The model is of the
transmembrane potentials, where
blue is –100 mV and red shows
potentials of 60 mV. (Reprinted from
Prog. Biophys. Mol. Biol., 87,
A. Garny et al., Dimensionality in
cardiac modeling, 47–66, 2005, with
permission from Elsevier.)
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17.2 Structure of the Model
In this part of the chapter we will discuss the definition of a system structure and
some of the typical substructures that are found within biological systems. After a
brief discussion of the components and parameters that are the building blocks of
the structure, we will discuss some very simple molecular systems in detail. System
structure is delineated in terms of components and the interactions between them.

As we saw above, the first step in modeling a system is the description of its structure
in terms of the constituent components and their interactions. The components can
be proteins, genes, metabolites, or other molecules, or larger-scale objects such as
cell membranes, whole cells, or even whole organs or organisms. The interactions
can be the regulatory interactions of genes with each other, the formation of protein
complexes, the relationship between enzymes and their substrates, or any other
interrelationship between components (see for example Figure 17.3).

The system interactions are defined in terms of parameters. These describe factors
such as the concentrations of the components and the reaction rates of individual
steps in the system (see Figure 17.12). Some of these parameters will be treated as
constants, such as those describing reaction rates, whereas others can vary in
value during the system’s lifetime (for example, temperature, or concentrations of
components). In some cases, a parameter such as a reaction rate will be constant
within a particular species but vary across species. Special attention may be paid
to parameters that represent properties of the system that are under external
control, such as temperature, concentration of particular chemical species, or
activation levels of particular genes or gene products. Such parameters (some-
times called state variables) are often varied during the study to explore how the
system responds.

Dependence of the function of the system on state variables such as temperature
may be explicitly defined using specific terms. For example the standard theory of
chemical reactions includes the dependence of reaction rate on the system temper-
ature. Incorporating this into the model will thus include temperature effects for
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In this section some types of system
model are described in more detail.
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Figure 17.12
The interaction of molecule B on
molecule C, which has a parameter
m, while k is the parameter that is
associated with modifying the
interaction of molecules B and C.
Rate of production of C µ k[B] and k
can be either negative or positive. If
k is negative then A is inhibitory; if k
is positive then A is stimulatory.
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each reaction. However, temperature effects for other components of the system
will have a specific formula to model them.

In addition, the system structure may consist of aspects such as the physical struc-
ture of the cell and other components. For example if some of the components of a
system are associated with the cell membrane this should be taken into account.

Control circuits are an essential part of any biological system
Most real biological systems make a particular response (the output) to a particular
stimulus (the input). This response is strictly controlled to give optimal function. In
order to exert control there must be the possibility of some type of interaction
between later components and those earlier in the pathway. This will not neces-
sarily be a direct interaction and may involve a separate group of components that
are not in the direct line of the pathway. The existence of regulation implies that
circuits will be an essential part of the system structure.

There are two major control mechanisms in biological systems: feedforward and
feedback (see Figure 17.13). In feedforward control a set of reactions is triggered by
a specific action or input. Feedback control is more sophisticated and more
precise; it detects the difference between the desired output and the actual output
of a system and compensates for the difference. There are two types of feedback
control: positive (stimulatory) and negative (inhibitory). Systems can use both
feedforward and feedback control in the same pathway (see Figure 17.13). An
example of a more complex system is given in Figure 17.14. Note that this complex
pathway is built up of a number of smaller closed circuits, for example the p53
module that is activated by DNA damage or cellular stress.

The interactions in networks can be represented as simple
differential equations
All the interactions between components in a model need to be represented math-
ematically. These will define the relationships between the components and state
variables. The nonmolecular structural components of systems may be modeled
using finite element analysis techniques borrowed from engineering (see Further
Reading). The molecular components of the models are also represented by differ-
ential equations as will now be described.
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Figure 17.13
A very simplified diagram of heat
shock response in E. coli. Upon heat
shock a rapid translational
modulation facilitates the
production of s32 by acting on rpoH
mRNA, which encodes s32. Then s32

RNAP holoenzyme (Es32) is formed,
which activates hsp proteins (in blue
box). These repair the misfolded
proteins. This process is a
feedforward control and is
illustrated by the blue arrows in the
diagram. Concurrently a second
mechanism (green arrows) is in
action, which is dependent upon the
detection of the misfolded proteins.
dnaK and dnaJ detect misfolded
proteins and release their bound s32.
The free s32 then activates
transcription of the hsps. This
mechanism is an example of
feedback control because the level of
misfolded proteins is monitored and
that level controls the activity of s32.
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The epidermal growth factor receptor (EGFR) pathway (see Figure 17.15A) will be
used as an example of a system with molecular components. Networks of metabolic
and signaling pathways control many biological processes and their disruption is
associated with many diseases. Studying the dynamics of these networks can
provide new insights into their workings, give clues to their involvement in diseases
such as cancer and heart disease, and help in the search for new treatments.

The main interactions in both metabolic and signaling pathways are between
different proteins and between proteins and small molecules (such as metabolites)
(see Figure 17.15A and B). The equations for a single interaction are taken from
basic reaction theory as applied in chemistry and biochemistry. Suppose two
components A and B interact to produce components C and D, with forward rate
constant k1 and reverse rate constant k–1, that is: 

(EQ17.1)

The rate of accumulation of component C with time t is given by the first derivative

(EQ17.2)

where [A],[B], and so on, represent component concentrations. The first term corre-
sponds to the forward reaction, and the second to the reverse reaction. Similarly, we
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Figure 17.14
The apoptopic pathway represented
as a circuit board. This type of
diagram will help in understanding
the quantitative way in which all the
components interact within a cell to
start apoptosis (cell death) or not.
Eventually when most of the
components and their variables are
known, mathematical modeling will
be able to predict how the pathway
will respond to various extracellular
and intracellular perturbations.
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can obtain

(EQ17.3)

and equivalent expressions for [B] and [D]. Given the initial concentrations of the
four components and values for k1 and k–1, we can calculate the variation in compo-
nent concentrations with time.

If component C is subsequently involved in another interaction, for example disso-
ciation into two constituent subunits:

(EQ17.4)

we can obtain from this

(EQ17.5)

The two interactions are independent of each other, so that we can sum Equations
EQ17.2 and EQ17.5 to obtain the variation in [C] over time as

(EQ17.6)

d C

dt
k A B k E F k C

⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ − ⎡⎣ ⎤− −1 2 1 ⎦⎦ ⎡⎣ ⎤⎦ − ⎡⎣ ⎤⎦D k C2

d C

dt
k C k E F

⎡⎣ ⎤⎦ = − ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦−2 2

C E F
k

k

2

2−

⎯ →⎯← ⎯⎯ +

d A

dt
k A B k C D

⎡⎣ ⎤⎦ = − ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦−1 1
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V4RP[t]

K4 + RP[t]

v13 = k13f RP[t] Shc[t] – k13b RSh[t]

V4 =

(A) (C)

(D)

(B)

Figure 17.15
The EGFR pathway is very
important in carcinogenesis.
Phosphorylation of tyrosine residues
on EGFR leads to the activation of
many downstream proteins and
enzymes. This in turn starts a signal
transmission through a number of
interacting cascades. To predict the
signaling dynamics, testable
computational models are of utmost
importance. (A) The first
mechanistic model of the EGFR
network was published in 1999 and
explained some of the dynamics of
signaling responses in liver cells
stimulated with EGF. The
components of the pathway are
named, while the associated
reactions and equations are given by
circled numbers. (B) This shows
equations 4 and 13 of the pathway.
(C) and (D) The graphs show some
of the simulation results, where
some components decrease as they
are used up and others increase. The
figure and graphs were generated
with the program JWSAPPLET at
http://www.jjj.bio.vu.nl
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This procedure can be applied even to systems with a very large number of compo-
nents and interactions. This set of ordinary differential equations (ODEs) defines
the system. Figure 17.15B shows a representative example of two such equations,
which describe the system in Figure 17.15A. All the equations must be solved
together to determine the system properties. The example in Figure 17.15 is part of
a larger and more complete network that has been modeled recently and is shown
in Figure 17.16.

These conceptually simple equations can be used to represent even highly complex
molecular systems, such as the interactions of transmembrane transporter proteins
with their cargoes. They also form the basis of modeling higher-level cellular func-
tions such as secretion and electrical activity, and multicellular functions, such as
the cardiac conducting pathways (see Box 17.1).

17.3 Robustness of Biological Systems
A feature of any biological system, whether an individual cell or a developing
embryo, is its robustness. In simple terms, robustness is the property that allows a
system to maintain certain functions despite variability in components or in the
environment. The robustness of biological systems is the reason that embryonic
development, brain function, and life in general usually continue in the face of the
inevitable internal variations in concentrations of components and rates of intra-
cellular reactions, as well as external influences such as variations in nutrients and
changes in temperature. 

Robustness of Biological Systems
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Figure 17.16
Structure of the EGF receptor-
induced mitogen-activated protein
(MAP) kinase system. The blue
numbers identify the different
components (94 in total). The green
numbers represent reaction rates
(125 in total). (Reprinted by
permission from Macmillan
Publishers Ltd: Nature Biotechnology
20:370–375, B. Schoeberl et al.,
Computational modeling of the
dynamics of the MAP kinase cascade
activated by surface and internalized
EGF receptors, 2002.)
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Robustness is a distinct feature of complexity in biology
Understanding robustness and the mechanisms that underlie it is particularly
important, because it provides in-depth understanding of how a system maintains
its functional properties against disturbance. Systems biology should help us to
understand how cells and organisms respond both to changes in their environment
(such as a lack of nutrients, exposure to chemical agents, temperature changes, and
so on) and to internal sources of malfunction (such as DNA damage, genetic defects
in metabolic pathways, and so on). It is crucial to understand the intrinsic functions
of the system if we are eventually to find cures for many diseases. Robustness is not
always a desirable characteristic, especially when we are trying to disrupt or kill a
cell; a robust cancer cell is not a good thing for the patient. As in engineered
systems, robustness and stability can by achieved in biological systems by some
distinct elements.

Some cellular life, such as the bacterium Mycoplasma (an obligate intracellular
parasite of mammalian cells), gets by with only a few hundred genes. These organ-
isms can live under specific environmental conditions but are very sensitive to any
fluctuations, and are therefore not very robust. Even slightly more complex life
forms have many more genes. For example, E. coli has some 4000 genes of which
only about 300 are classified as essential (by the relatively crude test of whether they
are essential for survival in standard laboratory conditions). The additional genes
are thought to contribute to the backup functions and complex regulatory networks
that confer the robustness E. coli requires to accommodate the various stresses it
will encounter. In contrast to Mycoplasma, E. coli copes with the fluctuating envi-
ronment in its normal habitat, the mammalian gut.

It is argued that robustness comes hand in hand with the complexity of a system as
well as its opposite fragility. The relationship between the complexity and the
fragility of life is well illustrated by the ways in which some living organisms have
adapted to use molecular oxygen (O2) as the electron acceptor in their energy-
generating systems. Oxygen is potentially toxic to life as it is readily converted into
highly active free radicals and compounds that can react with and damage biolog-
ical molecules. Organisms that use O2 as an electron acceptor have evolved
complex feedback control mechanisms to ensure that their cells receive sufficient
O2 to live but that its concentration does not reach toxic levels. A complex set of
networks provides the required robustness by maintaining almost invariant O2

levels in the body, even if external concentrations vary. However, the dependence
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Flow Diagram 17.3
In this section a number of
principal properties of system
models are described, especially
robustness.
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on such complex regulatory systems makes any failure of these systems lethal. Thus
fragility is introduced because of the complexity of the regulatory system.

Modularity plays an important part in robustness
Modules are individual components or subsystems of the whole system, maintain
at least partial identity when isolated or rearranged, but also derive additional
properties from the rest of the system. An example of a module in a molecular
system is the Krebs cycle or tricarboxylic acid (TCA) cycle (see Figure 17.17) in the
cellular respiratory pathway, which can be summarized in the form of a single reac-
tion step: 

C6H12O6 + 10 NAD+ + 4ADP 6CO2 + 10NADH + 10H+

+ 4Pi + 2FAD + 2H2O + 4ATP + 2FADH2

The interactions of modules with other components of the system can be complex,
as the individual parts of the module can all potentially make interactions with
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To model multicellular systems accurately we need to be
able to represent more than the simple biochemical or
binding interactions described above. Multicellular
systems, such as the heart, are composed of mechanical
and electrophysiological interactions that occur on a
variety of timescales and spatial scales, involving both
intermolecular and intercellular interactions. To model
the working heart, for example, at least two levels of data
simulation are required: data from the cellular level and
data at the organ level. At the cellular level, data on
components such as the transported ions are used to
model the behavior of cardiac muscle, while at the organ
level, data such as the fiber structure of the muscles are
used to build detailed three-dimensional anatomical
models. The two levels are then linked to produce a
useful predictive model of the heart and its action.

Cellular-level modeling has, for example, been used to
explain the behavior of a pacemaker, and to improve
understanding of what an electrocardiogram (the
recording of the electrical activity of the heart) is telling
us. In turn, this has shed light on some heart diseases
such as the arrhythmias, where the electrical activity of
the heart becomes uncontrolled, leading to a highly
irregular heartbeat that can, in the most severe cases,
prove fatal (see Figure 17.11).

Linking the two levels—cells and organ—enables
researchers to model the spread of electrical excitation
through the heart, which has allowed the accurate recon-
struction of some dangerous arrhythmias in terms of the
underlying molecular and cellular events and processes.
Figure B17.1 shows images of a modeled heart. 

Box 17.1 Cellular modeling of the heart

(A) (B)

Figure B17.1
Modeling of the heart at the
organ level. (A) The patterns
of the flow of the fluid
(blood) in a ventricular
model. (B) How heart muscle
fibers align where the 
muscle fibers are shown with
arrows in the volume of the
heart mesh. (Courtesy of
Andrew Pullan.)

⎯→⎯

BIF Ch17 5th proofs.qxd  18/7/07  16:08  Page 685



components in the rest of the system. The TCA cycle, for example, not only gener-
ates energy-rich products that are used in the next respiratory module, but in the
process also generates metabolites that are used by other modules to synthesize
amino acids, fatty acids, and other small molecules (see Figure 17.18). 

In systems biology, interactions between different modules are sometimes referred
to as protocols. There are advantages to having the interactions between modules
as simple as possible. Modifications within modules may have little or no effect on
the overall system properties as long as the inter-module protocols are maintained.
The simpler the protocols, the easier it is to maintain them. In this way, modularity
plays an important part in the robustness.

The LEGO® system of toy building bricks has been used to illustrate the concept of
modularity and simple protocols and the flexibility they confer on a system (see
Further Reading). The LEGO® bricks are the basic modules, which interact with
each other via a reversible snap-connection protocol (reversibility is often impor-
tant in biological systems too; many interactions between components are theoret-
ically reversible). Many different shapes and sizes of LEGO®-brick modules exist,
all of which interact by the same protocol. This allows many varied architectures to
be built. Individual parts can be reused in new combinations, lost or damaged parts
are easily replaced, and new modules are constantly being designed. The system
can therefore evolve.

But despite creating a robust system, the snap-connection protocol has an inherent
fragility. Small amounts of damage to the snap interfaces can cause the entire
construction to break apart, whereas large amounts of damage at noninteraction faces
will not cause any loss of robustness. If we compare the snap-connection protocol to
something more robust, say a protocol that glues components together, we would
indeed find that bricks glued to each other are better able to withstand trauma
(throwing the toy across the room, for example) but the parts cannot be reused to
make a new toy, and the possibility of evolution is decreased, if not eliminated.

For the LEGO® system to be made more versatile it can be made mobile by snap-
protocol-compatible axles and wheels. Increased complexity comes with motoriza-
tion, which requires new protocols for motor and battery interconnection and
gearing. All these protocols can be combined to make a complex motorized module
that can be incorporated into the system (see Figure 17.19), where its complexity is
largely hidden from the user. Added complexity, especially in the control systems,
also adds greater fragility, however. 

Biological systems too are complex systems based on protocols and regulatory
feedback loops that give the system robustness and enable it to evolve. In a large
multicellular organism the death of one or even many cells will not kill the
organism, but some types of malfunction in the control systems of a single cell can
lead to fatal diseases such as cancer, thus illustrating the inherent fragility of this
complex system. In the biological world, common protocols include gene regula-
tion, covalent modifications to proteins (such as phosphorylation), the generation
of action potentials (which are used as the single protocol by neurons to convey a
vast number of different messages), and so on. Some associated modules would be
the control of the expression of a gene, composed of amongst other things tran-
scriptional repressor and activator proteins.

Redundancy in the system can provide robustness
Most living systems have a high degree of redundancy built in, and this contributes
to their robustness. Redundancy means that a function can be accomplished by
several different pathways. This means that if one component is damaged, the
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THE GLYCOLYSIS PATHWAY 
 

pyruvate 

connecting supermodel 

pyruvate

THE TRICARBOXYLIC ACID PATHWAY

Figure 17.17
A diagram of the three modules that
make up the complete TCA cycle
model. The supermodel imports
both the glycolysis pathway and the
TCA cycle modules, and it allows the
exchange of the variable pyruvate.
(From CellML, www.cellml.org)

BIF Ch17 5th proofs.qxd  18/7/07  16:08  Page 686



Robustness of Biological Systems

687

glucose glucose-1-phosphate UDP-glucose glycogen

glucose-6-phosphate

fructose-6-phosphate fructose-2,6-bisphosphate

fructose-1,6-phosphate

ATP

ATP

ADP

ATPADP

ADP

Pi

Pi

H2O

ATP ADP

Pi H2O

H2O

H2O

H2O

H2O

UTP UDPPPi

Pi

2Pi

dihydroxyacetone-phosphateglyceraldehyde-3-phosphate

glycerol-3-phosphate glycerol

NADH + H

NADH + H

NADH + H NAD

NAD

NAD
NAD

NAD + Pi

1,3-bisphosphoglycerate

ATP

ADP

ATP

ADP

3-phosphoglycerate

2-phosphoglycerate

phosphoenolpyruvate

pyruvate

oxaloacetate

lactate

GLYCOLYSIS

THE TCA CYCLE

ATP + CO2

GTP +
CoA-SH

GDP + CO2

ADP + Pi

GDP + Pi

GTP

citrate

isocitrate

2-oxoglutarate

glutamatesuccinyl-CoAsuccinate

fumarate

malate

acetyl coenzyme A

CoA-SH + H + NAD

CoA-SH + H

NADH + H + CO2

NADH + CO2

NADH + H

NADH
+ CO2

CoA-SH
+ NAD

NAD
+ H2O

NADH +
NH4 + H

FAD

FADH2

Figure 17.18
As in Figure 17.17 but in
detail, showing where the two
modules are connected
through pyruvate.
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function can still be carried out by pathways not involving this component. The
importance of this in biological systems became apparent when knockout experi-
ments were made involving specifically removing the activity of individual genes in
mice. For a surprisingly large number of apparently important genes, the loss of the
gene had quite minor effects. Redundancy is often achieved by having duplicated
genes with the same or similar functions, for example. In addition, there is redun-
dancy at the circuit level, such as multiple metabolic or transduction pathways that
can complement each other functionally under different conditions.

Such redundancy can be seen in our underground railway map (see Figure 17.2)
where there are different ways of getting to some stations. In the central region
there are enough interconnections of different lines to allow most journeys to be
undertaken even if one line is closed. A biological example can be seen in the heat
shock responses in E. coli shown in Figure 17.13, which are partly independent and
have some redundancy.

Living systems can switch from one state to another by means
of bistable switches
Biological systems undergo irreversible transitions despite being composed of
apparently reversible reactions. A familiar example is the cell-division cycle, which
is irreversible in all organisms. It can be stopped but it can never go backward. Such
transitions can be created relatively simply by switches that can exist in two stable
states (see Figure 17.20). In certain strictly controlled conditions, the system will
make an all-or-none transition to the other state. In the eukaryotic cell cycle, for
example, a cell will continue to grow in the so-called G1 phase until certain key
proteins have accumulated to the required level. When this concentration is
reached, the cell then switches irreversibly to the cell-division phases of the cycle.
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(A)

(B)

Figure 17.19
(A) The building block used by the
LEGO® system. (B) The complex
system that can be built using the
LEGO® components and protocols. 

BIF Ch17 5th proofs.qxd  18/7/07  16:08  Page 688



It replicates its DNA and then undergoes mitosis (nuclear division and chromo-
some segregation) and finally divides to give two daughter cells. Once the transition
from growth mode to cell-division mode has been made, the cell cannot go back,
nor can it skip a stage. The cell cycle may be stopped at these later stages if internal
or external conditions become unfavorable, but if the block cannot be overcome
the cell usually dies. What it definitely cannot do is return to the G1 phase without
completing DNA replication and mitosis. The cell cycle is just one example of how
a system can have higher-level emergent properties that could not be predicted just
by looking at the properties of its isolated components.

17.4 Storing and Running System Models
To model any biological system requires quantitative data as well as modeling and
simulation tools. Simulation of how networks behave is one of the main aspects of
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Figure 17.20
An illustration of two bistable
circuits as adapted from Ferrell.
(A) The first circuit shows a double-
negative feedback loop where
protein 1 (P1) inhibits protein 2 (P2),
and vice versa (inhibition is
illustrated by —|). A steady state
could exist with one of the proteins
switched off but not both. (B) A
positive feedback loop where P1
activates P2, and P2 activates P1.
Therefore in a stable state both P1
and P2 can be off or similarly both
can be on. A stable state cannot exist
with either P1 or P2 on and the other
off. (Adapted from J.E. Ferrell Jr, 
Self-perpetuating states in signal
transduction: positive feedback,
double-negative feedback and
bistability, Curr. Opin. Chem. Biol.
6:140–148, 2002.)
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Flow Diagram 17.4
This section describes some of the
practical aspects of storing and
running system models.
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systems biology. Accurate simulation models are necessary to understand the
dynamics of biological systems as well as for the design process. 

The molecular systems described in Section 17.2 (see Figures 17.15A and 17.16) are
fully defined by a set of differential equations, values of rate constants, and starting
conditions. The starting conditions will be the initial concentrations of each
component and the initial values of some state variables such as temperature. We
need to calculate the variation of these concentrations with time, possibly
including the variation with time of some other variables, such as those that repre-
sent time-dependent external stimuli. The techniques required are standard in
numerical analysis and the systems often involve thousands of equations and vari-
ables. Example results for the EGFR pathway are shown in Figures 17.15C and
17.15D which illustrate the variation of concentration of components with time.

An important property of the system to characterize is the robustness, which can be
examined by calculating the steady state of the system. The steady state is defined as
that in which concentrations do not change with time. In this case the left-hand side
of the set of equations such as Equation EQ17.6 are all set to 0. Solving the equations
under these conditions defines the steady state. This enables the sensitivity (robust-
ness) of the system to be examined for individual components.
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DefaultModel Simple 
    var S1, ES, P, E;    
 
    E + S1 -> ES; k1*E*S1 - k2*ES; 
    ES -> E + P; k3*ES; 
 
end; 
 
println "Model exhibiting two conserved cycles", nl; 
println "E + S1 -> ES"; 
println "ES -> E + P"; 
 
k1 = 130.0; 
k2 = 1.0; 
k3 = 1.0; 
 
E = 0.9; ES = 0.0; 
S1 = 12.4241;  P = 0; 
 
m = sim.eval (0, 100, 100, [<Time>, <E>, <S1>, <ES>, <P>]); 
graph (m); 
 

time

co
nc

en
tr

at
io

n

Figure 17.21
A simple simulation of enzyme
kinetics is submitted to the Jarnac
program:

The code to calculate the graph is
depicted in the boxed area. 

E S ES E Pk k+ ⎯ →⎯ ⎯ →⎯ +1 1 3⎯→⎯
k2
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Specialized programs make simulating systems easier
General-purpose simulators, such as GEPASI or Jarnac for example, predict the
behavior of metabolic pathways by constructing differential equations from user-
defined chemical reactions, which are then solved using numerical integration.
Jarnac runs on a text-based language that can be used to describe a pathway model
(see Figure 17.21). GEPASI simulates the steady-state and time-course behavior of
reactions. Both programs need information on the structure of the pathway, the
kinetics of each reaction, and initial concentrations of the chemical members
involved. GEPASI builds the differential equations, which control the behavior of the
system, and solves them (see Figure 17.22), while Jarnac is in addition an actual
language that is used for modeling integrated cellular systems including multicellular
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Figure 17.22
An example of system simulation
using GEPASI. The same enzyme
reactions are simulated as in Figure
17.21. The graph shows the variation
of concentration with time of E (red
line), S1 (green line), ES (yellow
line), and P (blue line). In this
program the components, initial
volumes, equations, and other
details are input through a set of
windows (shown below the graph).
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systems, creating a very powerful environment for system modeling. Figure 17.21
and Figure 17.22 illustrate the same simple simulation showing how the different
methods can be used to obtain the same result.

There are also other tools that provide more than one simulation technique. For
example, GEPASI has been superseded by COPASI, which employs differential
equations and stochastic methods. In addition, programs are available to facilitate
mechanistic organ modeling. For example, CMISS (Continuum Mechanics, Image
analysis, Signal processing and System Identification) is a mathematical modeling
environment developed to aid modeling of a variety of complex bioengineering
problems; similarly EMAP, which is an Electrocardiac Mapping system tool.

Standardized systems  descriptions aid their storage and reuse
To obtain an accurate definition and comparison of systems, a standard way of
describing models and their data is required. Such a description should contain
sufficient additional information so that the model can be reproduced or used for
further analysis. The development of well-structured controlled vocabularies, the
adoption of standardized data exchange formats, and the use of model representa-
tion languages have made flexible data integration and model exchange possible.

There are two main descriptor (markup) languages available. The Systems Biology
Markup Language (SBML) is a machine-readable language for describing qualita-
tive and quantitative models of biological networks. The main aim of SBML is to
enable the exchange of models between different programs. SBML is widely
adopted with almost 100 software systems and databases based on it. The other
widely used language is Cell Markup Language (CellML). This is mainly used for
describing and exchanging models of cellular and subcellular processes. CellML
describes the structure and underlying mathematics of cellular models.

MIRIAM (Minimum Information Requested In the Annotation of biochemical
Models) is a standard for curating quantitative models of biological systems. To
pass the MIRIAM rule a model must be encoded in a standard markup language,
and values must be given for all initial conditions and parameters. In addition there
is a strict set of rules for the model annotation that specifies the documentation of
the model. For example, a PubMed identifier for the complete description of the
model must be provided. Several databases have been designed for storing and
making available quantitative models. CellML Model Repository uses the CellML
format and is currently the largest repository with 188 models representing several
types of cellular processes including models of electrophysiology, metabolism,
signal transduction, and mechanics. Other model databases use the SBMLformat,
for example the BioModels Database and SigPath. The latter also provides an inter-
active interface for the user to build their own pathway model using their own
components, reactions, and quantitative data. Some model repositories like JWS
Online Cellular System Modeling also provide tools for simulation, while others like
CellML Model Repository enable the user to visualize the model.

Summary
Biological systems are composed of a large number of components that have many
interactions. They are too complex to understand fully on the basis of a visual
inspection of the list of interactions, and can have properties that are only revealed
by simulating the entire system. This is particularly true because biological systems
have evolved to carefully control their cell environments despite the external
conditions, and must also be robust to survive the harsh environments in which
they often find themselves.

Chapter 17: Systems Biology

692

BIF Ch17 5th proofs.qxd  18/7/07  16:08  Page 692



We have seen how systems can be modeled not only at the molecular level, but also
at the cellular or organism level. Although the latter are still relatively rare, recent
genomic experiments have greatly eased the problem of defining molecular
systems, at least to the point of listing interactions. As a result they have become
more commonly studied by these methods. This has focused more attention on the
experimental determination of the parameters required to simulate the models.
The numerical techniques themselves are often borrowed from other scientific
fields, which has the advantage that they are well established and practical issues
are well understood.

Quantitative models will have an increasingly important role in the future and
provide new insights into diseases and how to treat them. For example systems
biology is starting to be used in synthetic biology, where the aim is to redesign the
cell and its constituent parts to provide novel abilities. Systems biology can be used
to study first the existing system and then the redesigned system. Systems biology
is not restricted to the purely biological field; for example, systems biology is being
used for research in helping the environment by focusing on biological energy
systems such as bio-based fuels and bioenergy.
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APPENDIX A: 
PROBABILITY, INFORMATION,
AND BAYESIAN ANALYSIS

In this appendix we will explore at a basic level some of the aspects of probability
theory and Bayesian analysis which are required in order to understand some of the
techniques described in this book. Only minimal details are given, and the reader is
recommended to explore the Further Reading references.

Probability Theory, Entropy, and Information
The results given below are required to understand some of the presentation of
sequence logos in Section 6.1 and aid appreciation of several other methods
described. In addition, the notation is used in Bayesian analysis as presented in the
following section.

Mutually exclusive events
Suppose that there are n alternative events of which just one can occur, often
referred to as mutually exclusive events. If each of the possible events is labeled xi

and has probability that is written P(xi), then

(EQA.1)

where the summation is over all n possible events. This situation arises, for
example, when considering the amino acid that occurs at a particular position in a
protein sequence, when the possible events are the 20 amino acids.

The uncertainty about which of the events will occur depends on the probabilities
P(xi). If one of the possible events has a probability of 1 (i.e., is certain to occur) all
the others will have zero probability, and the outcome will always be known.
Alternatively, all the possible events might have an equal probability of 1/n, in
which case the outcome would be very uncertain. A measure of the uncertainty has
been proposed, often called the Shannon entropy, defined by

(EQA.2)

where X refers to the set of all possible events. If P(xi) is zero, the term P(xi) log2 P(xi)
is also taken to be zero. Hence when one event is certain H(X) is zero, indicating that
there is no uncertainty in the outcome. When all events are equal, the uncertainty
takes its maximum value Hmax(X) of log2n. The uncertainty as defined in Equation
EQA.2 is measured in units of bits, as the logarithm base used is 2, but alternative
definitions using other logarithm bases are equally valid. The maximum uncer-
tainty Hmax(X) of a position in a sequence is 2 bits for nucleotide and approximately
4.32 bits for protein sequences. Note that the word entropy, although commonly

H P log PX  ( ) = − ( ) ( )S x x
i i

i
2

P x
i

i
( ) =S 1

695

End matter 6th proofs.qxd  19/7/07  12:17  Page 695



used in this context, is not to be confused with the same term used in discussions
of thermodynamics and free energy.

Information can be seen as a loss of uncertainty, so that at a given sequence posi-
tion the amount of information can be equated to the difference between Hmax(X)
and H(X). The sequence logos described in Section 6.1 and illustrated in Figures 6.5
and 10.4 are plots of {Hmax(X) – H(X)} at each sequence position. (As mentioned in
Chapter 6 the formula is modified to account for a lack of data.) 

Occurrence of two events
We will now consider the probabilities of two events that are not mutually exclusive.
In what follows we will write the probability of event X occurring as P(X), and the
probability of event Y occurring as P(Y). These are also called marginal probabili-
ties, being the probability of one event occurring regardless of the other event.

If the events X and Y are independent of each other the joint probability of both
occurring, written P(X,Y), is given by the product P(X)P(Y). However, the events X
and Y might not be independent of each other. The probability of event Y occurring,
given that event X has already occurred, is written P(Y | X), and is the conditional
probability of Y given X. Similarly, the probability of event X occurring given that
event Y has already occurred is written P(X |Y). If the two events are independent,
then P(Y | X) = P(Y) and P(X | Y) = P(X). Otherwise, the marginal probability of event
X can be written

(EQA.3)

The joint probability P(X,Y) that events X and Y both happen is given by

(EQA.4)

if X occurs first, or

(EQA.5)

if Y occurs first. These two products are equal, giving

(EQA.6)

from which

(EQA.7)

Occurrence of two random variables
Suppose that the events X and Y each have a distribution of outcomes x and y,
respectively. In the context of this book, either or both of these could correspond to
many different things, for example a protein sequence, the secondary structural
assignments of a protein sequence, or an expression level. In some cases the distri-
bution will be a finite set of mutually exclusive alternatives such as the 20 amino
acids, but in other cases the distribution will be a random sampling of a continuous
statistical distribution.
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A quantity called the mutual information, I(X,Y), can be defined which is a measure
of the degree of independence of distributions X and Y. This is defined as

(EQA.8)

When X and Y are independent, P(x,y) = P(x)P(y), the log term becomes 0, and the
mutual information is 0. This term represents the reduction in the uncertainty of
one variable once the other has been observed, and is zero or positive. If the term
P(x,y) is substituted by either side of Equation EQA.6, the log term simplifies to the
equivalent side of Equation EQA.7. This log term is identical to that employed in
deriving the GOR protein secondary structure prediction method (see Equation
EQ12.6) which is referred to by the same term. Furthermore, application of
Equation EQA.7 to this form of the log term shows that I(X,Y) is identical to I(Y,X).

Another term, the relative entropy or Kullback–Leibler distance, is a measure of the
distance between the two distributions X and Y. When the outcomes from the two
distributions can be paired as xi with yi, it is defined as

(EQA.9)

This measure is also zero or positive, but H(X,Y) is not the same as H(Y,X). This term
arises in log-odds substitution scoring matrices, where it is the expected score for a
matrix (see Equation EQ5.12 and Figure 5.7).

Bayesian Analysis
There are many occasions in bioinformatics where a set of data has to be fitted to a
model that has uncertain parameters. Additionally, in many cases there are insuffi-
cient data available to fit the large number of model parameters. The technique of
Bayesian analysis is frequently used to solve these problems, and a brief explana-
tion of the technique is presented here. This area is complex and of increasing
importance. References are provided which will guide the reader to a fuller under-
standing of the technique and its applications.

Bayes’ theorem
Consider a situation in which there are a number of systems or models which differ
slightly in their properties in a way that can be defined by the value of a parameter
y in each system. There will be a distribution of values of y as found in the set of
systems, such that the probability of randomly selecting a system with a particular
value Y can be written P(Y). Usually there will be a hypothesis about the distribu-
tion y. These systems produce observed data X which depend in some way on the
value of the parameter y. Typically, we want to use the observed data to deduce the
value Y for the system. (Or in more complex instances we want to obtain the distri-
bution y.)

We can regard the occurrence of the system with parameter value Y and of the data
X as two separate events. It will be useful to calculate the term P(Y|X) which is the
probability of the parameter y having the value Y given that the system produced
observed data X. Equation EQA.4 can be applied here, and rearranged into the form
usually called Bayes’ theorem:
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(EQA.10)

The term P(Y|X) is called the posterior probability of the hypothesis that the system
has parameter Y, which is to be compared with the prior probability P(Y). The
description prior is used as this is the probability before any data have been
observed from the system. In contrast the observed data are involved in calculating
the posterior probability. The term P(X|Y), the probability of obtaining the data X
given that the system parameter has value Y, is called the likelihood of the hypoth-
esis that the system has parameter Y.

Usually, the prior probability is assigned as a standard probability distribution
according to the model used for the system. There are many instances where there
is a lack of knowledge of the true distribution, but so long as there are enough data
the equation can be quite robust, so that even a uniform probability distribution
can on occasion be used for the prior. However, sometimes specific prior distribu-
tions are to be preferred which depend on the form of the probability distribution
for the likelihood (distribution of the data given the model). Because the prior and
likelihood are multiplied together to obtain the posterior distributions certain
combinations of distributions will result in the posterior distribution being a stan-
dard form. Those combinations of distributions which result in the posterior distri-
bution having the same form as the prior are called conjugate priors. In this case
the prior distribution has the same form as the observed data, so that the prior has
the appearance of extra data. In this way, the conjugate prior links to the simple
pseudocount ideas described in Section 6.1 for dealing with a lack of data.

Three examples of such conjugate distributions are the normal (or Gaussian) distri-
bution which is conjugate to itself; the binomial and beta distributions and the
multinomial and Dirichlet distributions. Thus if the likelihood distribution is multi-
nomial, as occurs with the random sequence models discussed in Section 6.1, it is
sensible to use a Dirichlet prior. Objections have been raised to the Bayesian
approach because the prior distribution contains the assumptions (i.e., bias) about
the model, which may well be incorrect. It is important to be aware that the conclu-
sions from the analysis can depend on the prior used.

Inference of parameter values
Frequently, the theory described above is used to estimate the value of model
parameters by inference from the data and prior distribution. The standard method
of statistical inference uses the largest value (i.e., mode) of the likelihood to predict
the value of the model parameter Y, a method known as maximum likelihood or
ML. However, the likelihood obtained is a statistical distribution, and it can also be
used in other ways to estimate parameters. For example the mean likelihood could
be used or the value averaged over the distribution. A comparative discussion of
these methods is beyond the scope of this book.
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Further Reading
This appendix only shows how some of the basic concepts used in this book are
connected, and does not do full justice to the field. There are a number of textbooks
which will repay close study, but unfortunately they all proceed rapidly to an
advanced level. For presentations of Bayesian theory see for example:

Gelman AR, Carlin JB, Stern HS & Rubin DB (2004) Bayesian Data Analysis, 2nd ed.
Boca Raton, FL: Chapman & Hall/CRC Press.

There are also useful introductions to aspects of Bayesian and statistical analysis
within the books:

Durbin R, Eddy S, Krogh A & Mitchison G (1998) Biological Sequence Analysis.
Cambridge, UK: Cambridge University Press.

Baldi P & Brunak S (2001) Bioinformatics: The Machine Learning Approach 2nd ed.
Cambridge, MA: MIT Press.

Finally, there are some useful articles on Bayesian methods:

Eddy SR & MacKay DJC (1996) Is the Pope the Pope? Nature 382, 490.

Liu JS & Logvinenko T (2003) Bayesian methods in biological sequence analysis.
In Handbook of Statistical Genetics, 2nd ed, chap. 3 (DJ Balding, M Bishop,
C Cannings eds), pp 66–93. Chichester, UK: John Wiley & Sons.

Eddy SR (2004) What is Bayesian statistics? Nat. Biotechnol. 22, 1177–1178.
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In this appendix we will look at the form of some of the algebraic functions that are
used to represent the energetics of molecular systems, in particular proteins. In
principle, quantum mechanics calculations of molecular orbitals will provide the
most accurate energies of molecular systems. However, these are too computation-
ally demanding to be practical for the problems described in this book. Therefore
there is a need to use relatively simple functions that approximate the exact molec-
ular energies.

Quantum mechanics calculations obtain the energy of formation of a molecule
from its constituent parts (usually the bare nuclei and free electrons). However, in
the context of the topics in this book we are not interested in the energy of forma-
tion. Instead we are interested in the relative energy, which is the difference in
energy of two states of the system. These two states might be two alternative
conformations of the same molecule or a bound complex of several molecules and
the same molecules at infinite separation. The latter two states are used to deter-
mine the interaction energy between the molecules. The focus on energy differ-
ences rather than absolute energies means that the zero can be arbitrarily assigned
at any point on the energy scale. This is very important for the development of
simple energy functions. For example, instead of having to know with accuracy the
energy of formation of a covalent bond, the energy of formation of the bond with
ideal geometry can be defined as the energy zero. It only remains to define the
energy of distorting the bond from ideal geometry, which as will be described below
can be done with simple yet quite accurate formulae.

A further consequence of only requiring relative system energies is that any inter-
actions which remain constant for all the system states of interest can be ignored.
A typical example of interactions assumed constant is the average solvent interac-
tion with the system. Care is required when making this assumption, as there are
many cases where it does not hold, but it is often used to justify omitting the solvent
energetics from calculations. If the solvent interactions can be ignored, or at least
greatly simplified, it can very significantly reduce computational requirements.
This is because molecules interact over relatively long ranges—at least to 8 Å sepa-
ration, albeit very weakly at that distance—so that many hundreds if not thousands
of water molecules are required for an accurate model of the aqueous environment.
There are several active areas of research, for example the modeling of molecular
function, where solvent must be explicitly and accurately represented, but calcula-
tions in the areas of modeling described in this book generally ignore or greatly
approximate the solvent energetics. For this reason we will only describe the few
terms of relevance here, and those interested in learning about accurate solvent
representation and calculation should consult the references in Further Reading.

Two distinct approaches have been used to derive molecular energy functions. In the
first approach an attempt is made to reproduce in detail the bonding and
nonbonding interaction energies of the molecular conformation(s) of interest. The
alternative approach tries to represent the averaged energetics as seen in a collection
of systems. The first approach mostly results in terms with algebraic forms that
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have a basis in the detailed physics of specific interactions, and the collection of
these terms used to represent the system is often referred to as a force field. The
second approach, most commonly used in threading, tends to produce a more
empirical algebraic form that is obtained by fitting to observed data. We will
describe the terms obtained by each approach in turn.

Force Fields for Calculating Intra- and
Intermolecular Interaction Energies
In this section we will discuss in detail some functions that have been proposed to
represent specific inter-atomic interactions. This approach to molecular modeling
was pioneered in studies of small molecules, especially of their vibrational spec-
troscopy, and subsequently the applications were extended to include macromole-
cules. Even for small molecules their conformational and interaction energetics can
have a complicated form, but it was noticed that this could often be separated into
simpler terms that when added together described the whole system well. Initially
these were intramolecular energy functions, and all related to the covalent bonding
structure of individual molecules, often referred to as bonding terms. For example,
terms were proposed to model bond length stretching and bond angle bending. As
this research area developed further terms were added that described interactions
which did not involve covalent bonds, often called nonbonding terms.

All of these terms have certain features in common. Insights from molecular spec-
troscopy suggest that individual chemical groups have quasi-independent ener-
getics. (These chemical groups are frequently very small, such as -OH, -CH3, or
-CO2H.) This means that the total molecular energy can be divided into a number
of terms, each relating to one of these groups. Because the energetics of the
different chemical groups within a molecule are not totally independent of each
other, for greater accuracy we should also include energy terms involving two or
more groups, but often in the protein work described here this is not done. The
bonding terms used tend to each involve two, three, or four atoms, but are limited
to atoms bonded to each other. The nonbonding terms used involve only two
atoms, although often there is a term for every pair of atoms in the system, which
for proteins can be a large number. The complete force field for a protein may be
composed of several thousand force field terms, but each of them will be relatively
simple and only involve a small number of atoms.

One of the features of this approach is that the total system energy is represented by
a large set of terms that are added together, often referred to as an additive force
field. To a large extent this is intuitive, as for example the hydrogen bonding energy
in a system will to a fair degree of accuracy be the sum of the energies of the indi-
vidual hydrogen bonds of the system. However, this is an approximation, as in
many cases there is an element of cooperativity, meaning for example that the
energy of a hydrogen bond is influenced by the presence of others around it. The
only way to accurately represent this is to use a nonadditive force field, but this
usually results in much longer calculations. As the effect of cooperativity is often
10% or less of the total energy frequently only the additive terms are used.

Force fields have been parameterized several times and for many different types of
molecules. Commonly used force fields for protein calculations are CHARMM and
AMBER, details of which will be found in the references of Further Reading. In all
cases the force fields are defined not just by the formulae used but also by the sets
of parameters, which are usually updated on a regular basis.

In what follows we will discuss the major terms used in protein energy calculations
of the kind described in this book, but will not present their theoretical background.
Readers interested in understanding the origin of these terms and gaining a better
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appreciation of their strengths and weaknesses should explore the references given
in Further Reading.

Bonding terms
Intramolecular energies can usefully be separated into small independent compo-
nents that correspond to elements of the molecular geometry such as variations in
bond length, bond angle, and torsion angle. As mentioned above, if the molecular
energy is required to very high accuracy, cross-terms need to be included such as
terms involving the lengths of the two covalent bonds associated with a particular
bond angle, but usually the individual components are sufficient for the applica-
tions covered in this book. Some workers classify force fields according to the pres-
ence of these cross-terms. Force fields without such cross-terms are called Class I,
and those that include them are referred to as Class II.

There are several simple expressions that can represent the energetics of bond
length variation. To some extent the choice of form to use depends on the processes
that need to be modeled. When the bond length l is close to its reference value l0 the
bond energy El can be represented by the form

(EQB.1)

where kl is a force constant. The force constant determines the range of length vari-
ation, and is a parameter often obtained from vibrational spectroscopy. This is
known as the harmonic approximation and the energy minimum is zero at the
reference bond length and positive for deviations (see Figure B.1). Different types of
bonds will have different values for the parameters kl and l0. A given force field will
define the bond types as well as provide these parameters.
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Figure B.1
Two alternative terms used to
represent the variation of energy
with bond length. The Morse
potential can model bond
dissociation as well as equilibrium
dynamics. The harmonic
approximation is much easier to
use, but has limited accuracy. The
example shown represents
molecular oxygen (O2) and has
parameters De = 493.50 kJ mol–1, 
l0 = 1.21 Å, and kl = 1176.8 N m–1. 
The exponential coefficient a of
Equation EQB.2 is given by . 
(A) The two functions have the same
energy minimum and are very
similar in this local region. (B) There
is considerable difference between
the functions far from the optimal
bond length.
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Usually for the applications of interest here, Equation EQB.1 provides sufficient
accuracy. However, large distortions will not be represented well by the harmonic
approximation. These can be represented by adding more terms of the form (l – l0)n

to the expression, which will increase the region of the energy well that is accurately
reproduced. However, it is important to note that Equation EQB.1 will not allow
bond dissociation to be modeled. The Morse potential gives a more accurate repre-
sentation for large distortions and bond breaking, and has the form

(EQB.2)

where De and a are parameters that are supplied in the force field. (De is in fact the
energy minimum of this term.) As can be seen from Figure B.1 these two functions
have very different forms away from the energy minimum.

Bond angles are usually represented by the harmonic approximation, now using a
reference bond angle q0. The bond angle energy Eb is given by

(EQB.3)

with parameters kb and q0 being defined for different types of bond angle in a given
force field.

The term torsion angle is used outside molecular mechanics to refer almost exclu-
sively to the angle defined by four bonded atoms, as shown in Figure 2.6A. The
general form for a torsion angle potential Ew is given as

(EQB.4)

for a torsion angle w, where there may be three terms in the sum (N = 2) each with
its own Vn and a defined for each type of torsion angle. An example of such a term
is shown in Figure B.2.  In molecular mechanics, however, it is often useful to define
pseudo-torsion angles (also called improper torsion angles) using four atoms that
are not bonded. An example of such use is for a planar ring, where these terms are
often used to keep the ring planar.
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An example of a torsion angle
potential. This term describes the
energetics of the torsion angle
N-Cd-Cg-Od in hydroxyproline, and
uses the formula 0.625{1+cos3w}
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A new set of molecular mechanics
parameters for hydroxyproline and
its use in molecular dynamics
simulations of collagen-like
peptides, J. Comput. Chem.
26:1612–1616, 2005.)
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The cross-terms mentioned above will be combinations of these terms, usually
formed by simply multiplying terms together. However, some of the parameters
may well be unrelated to those of the simpler terms. Several different cross-terms
are thought useful, including ones combining two similar terms, e.g., bond
stretching terms for two bonds with a common atom. In general the combinations
are only made using terms that share atoms, so that the set of these extra terms is
relatively limited and does not greatly increase the size of the calculation.

Nonbonding terms
The bonding terms presented above must be augmented by extra nonbonding
terms when dealing with more than one molecule or a molecule which has two
regions that can approach each other in space, i.e., interact but not by covalent
bonds. Unlike the bonding terms, these must be represented by terms between
every pair of atoms in the system. For an N atom system, there will in general be
approximately N bonds, bond angles, and torsion angles but approximately N2

nonbonding terms. These therefore tend to dominate calculations in terms of
computational resources. However, beyond 8–10 Å the magnitude of the interaction
is very small, so that in most cases the interactions between atoms more distant
than this are ignored. For large systems such as proteins this can have a consider-
able impact on the size of calculations.

The electrostatic interactions form one of the major components of the
nonbonding terms. There are many ways of representing the charge distribution of
a molecule, but here we will only present the most commonly used: atomic charges.
Each atom has a charge assigned to it, usually but not necessarily in the range –1 to
+1. Usually every atom has a non-zero charge, even if only very small. In protein
force fields the backbone is usually represented identically in all residues, and all
instances of a given residue have the same atomic charges. The charges on atoms
in a residue add up to –1, 0, or +1 according to the ionization state of the residue.

The formula used to calculate the electrostatic energy Eq is given by

(EQB.5)

where rij is the distance between atoms i and j with charges qi and qj, respectively,
and e is the dielectric constant of the medium. The dielectric constant is a measure
of the shielding ability of the medium between the charges, which depends on the
polarizability of the medium. The value used for proteins is often 1, 2, or 4; polar
solvents have a much larger dielectric constant. The disparity between e in the
protein and solvent is usually ignored except for specific calculations of the electro-
static potential and of group pK values, when special techniques based on the
Poisson–Boltzmann equation are used. For further details the reader should
consult Further Reading.

More accurate representations of the charge distribution in proteins have been
proposed, in particular using multipoles (mostly dipoles and quadrupoles) usually
not on each atom but centered on groups such as carboxylates. This has the benefit
of requiring fewer interaction sites, but at the cost of more complex functional
forms. Others have investigated introducing atomic or group polarizabilities to
improve the representation. In these circumstances the dielectric constant is set at
1. Calculating the dipoles induced by the local field is computationally intensive, so
very few have attempted such calculations. In all the methods discussed in this
book only atomic charges would be used, leaving the more advanced representa-
tions for simulations of protein function. For further details the reader should
consult Further Reading.
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The other nonbonding terms required are often referred to as van der Waals terms.
They also occur between every pair of atoms in the system, and consist of two
components: one repulsive (i.e., positive energy) and the other attractive (i.e., nega-
tive energy). The repulsion modeled is that between the two highly charged nuclei,
and occurs at very close distances. The attractive energy is due to an effect called
dispersion that in its most simple form can be explained as due to instantaneous
polarizing of the electrons of each atom by the other. This force, which for ground
state atoms is always attractive, is more long-range than the repulsion, and the
strongest component varies as r–6.

There are a few common variants, depending on the representation of the repulsive
component. The most commonly used are the Lennard–Jones terms that are
written as either

(EQB.6)

or

(EQB.7)

where Aij and Bij are constants that depend on the type of the atoms involved, e is
the value of the energy minimum, and rij is the atom separation for this minimum.
(Yet more forms exist involving the distance s at which the energy is zero.) The
power 12 actually has as much to do with computational convenience as theory.
An example of the Lennard–Jones potential is shown in Figure B.3. Some force
fields use other powers such as 9 for the repulsive component. An alternative form
that has more theoretical justification involves an exponential function for the
repulsion.

More complex forms have been used to represent van der Waals forces, including
extra terms for higher order dispersion forces and terms relating to the dispersive
energies of more than two atoms, but none of these are used in calculations on
macromolecules as yet.
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Figure B.3
An example of a Lennard–Jones
potential. The parameters are for two
approaching hydrogen atoms, and
use parameters e = 0.084 kJ mol–1 and
r̄̄ ij = 2.0 Å (see Equation EQB.7).
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Potentials used in Threading
The force fields described above can provide reasonably accurate molecular ener-
gies, but because they involve all (or most) atoms in the system the calculation can
be very demanding. Moreover, the terms used calculate the enthalpic component
of the system free energy directly, but not the entropic component. The calculation
of the entropic component using these energy terms is extremely demanding and
rarely done. This might be an acceptable approach when studying proteins in their
native folded state, but when trying to predict a protein fold the entropic contribu-
tion cannot be ignored.

Prediction of the protein fold adopted by a sequence using threading algorithms as
described in Section 13.2 requires a more computationally efficient energy function
to make the method practical. This increased efficiency has only been achieved with
an accompanying reduction in the accuracy of the function, by using radially aver-
aged functions as described below. In addition similarly crude expressions are often
used to estimate the entropic contributions. All the functions used are derived from
observed protein structures, usually by analysis of a carefully curated database of
structures selected to have minimal sequence similarity to try to prevent any bias.

Potentials of mean force
Manfred Sippl proposed treating the observed protein structures as a representa-
tive set of equilibrium states, such that the interactions between any two types of
residue would occur in proportion to their Boltzmann distributions. According to
statistical thermodynamics the frequency of occurrence of a state j of energy Ej is
proportional to the quantity

(EQB.8)

where k is Boltzmann’s constant, and T is the absolute temperature of the system.
This quantity is called a Boltzmann factor. The constant of proportionality is called
the partition function Z and is given by the sum of all these factors for all possible
states of the system, i.e.,

(EQB.9)

In the case of a continuous set of states, the summation is replaced by an integral.

The states considered are defined by the separation distance, originally of the Ca
atoms of a pair of specified amino acid residues. To reduce the number of states a
state is defined as having a Ca distance within a given range, resulting in about 20
states for each pair of residue types. From the previous equations the fraction of
observed interactions of state r can be written

(EQB.10)

where the state r refers to two specific residues whose Ca distance is in a defined
range around r, the energy of this state being E(r). This equation can be rearranged as
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from which in principle we can obtain the energies by observing the frequencies of
occurrence of the states.

These functions were determined for pairs of residues that are separated by a spec-
ified number k of other residues in the protein sequence. The residue types were
distinguished, and functions DE ab

k
(r) were examined, defined as the distance-

dependent difference between the energy of pairs of residue types a and b and the
average energy for all residue types. This has the form

(EQB.12)

Calculating partition functions is very difficult, but an argument can be made for
ignoring the last term in Equation EQB.12 in the case of threading problems. Firstly,
note that this term does not depend on the separation of the residues, i.e., is confor-
mation-independent, and is therefore a constant for a given a, b, and k. Secondly,
for a given sequence the same residue pairs occur at a given separation, so the same
set of terms always appears regardless of the particular protein fold then under
consideration. Thus, these terms will add to the same constant value for a given
sequence for all folds onto which it is threaded.

There is a lack of available data to determine these functions. To overcome this, the
observed frequency of specific residue pairs in a given separation range r is modi-
fied by an application of the pseudocount method discussed in Section 6.1.

Typically such threading potentials are obtained for pairs of atoms other than Ca, often
the backbone N and O atoms and the side chain Cb, although usually only for a limited
set of the possible atom pairs. In some implementations the position of a Cb atom is
constructed for glycine residues. The THREADER program, for example, uses seven
pairs, namely Cb to Cb, Cb to N, Cb to O, N to Cb, N to O, O to Cb, and O to N. (The first
atom of the pair refers to the residue nearer the N-terminal.) In addition, often func-
tions are obtained using data for a range of sequence separations k, THREADER using
three ranges: short-range (k ≤ 10), medium-range (11 ≤ k ≤ 30), and long-range (k > 30).
This can significantly reduce the problem of a lack of data, although at the expense of
losing some of the fine detail. Sample potentials are shown in Figure 13.6.

Potential terms relating to solvent effects
Protein structures are clearly strongly affected by the effects of solvation and
hydrophobicity that are largely entropy-driven. Many workers include specific
energy terms for these, often in addition to the potentials of mean force discussed
above. We will describe two such terms here, one explicitly using the surface area
accessible to the solvent, the other based on the number of residue contacts.

If a residue prefers to be in the protein interior it is likely to have a larger average
number of residue contacts than a residue that prefers to be on the protein surface.
Typically residues are defined to be in contact when their Cb atoms are within a spec-
ified distance such as 7 Å. Usually all contacting residues are counted regardless of
type. The energy can be assigned by observing the proportion of residues found to
have a particular number of such contacts. One such example, called a contact
capacity potential, is calculated from a structure database according to the formula

(EQB.13)
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where fi is the fraction of residues of type i, fi,n is the fraction of those residues that
make n contacts with any other residue, and Nn is the fraction of all residues of any
type which have exactly n contacts. Further detail can be obtained by distin-
guishing between contacting residues close in sequence (i.e., local) and those sepa-
rated by many other residues, as well as by the secondary structure of the type i
residue. The potentials obtained by only including contacts between residues sepa-
rated by at least five other residues are called long-range contact capacity poten-
tials. In general, the hydrophobic residues will have lower energies for greater
contacts, and conversely for the polar residues (see Figure B.4). When attention is
paid to the types of residues involved in the contact, a modified form of the poten-
tial can be defined called the pairwise contact potential. These have also been
employed in threading calculations.

Further Reading
Molecular force fields are described in:

Field MJ (1999) A Practical Introduction to the Simulation of Molecular Systems.
Cambridge, UK: Cambridge University Press.

Leach AR (2001) Molecular Modelling, 2nd ed. Upper Saddle River, NJ: Prentice Hall.

The force field parameters shown in Figure B.2 were taken from:

Park S, Radmer RJ, Klein TE & Pande VS (2005) A new set of molecular mechanics
parameters for hydroxyproline and its use in molecular dynamics simulations of
collagen-like peptides. J. Comput. Chem. 26, 1612–1616.

Threading potential references:

Alexandrov NN, Nussinov R & Zimmer RN (1996) Fast protein fold recognition via
sequence to structure alignment and contact capacity potentials. In Biocomputing:
Proceedings of the 1996 Pacific Symposium (L Hunter L and T Klein eds) pp 53–72,
Singapore: World Scientific Publishing Co.

Sippl MJ (1993) Boltzmann’s principle, knowledge-based mean fields and protein
folding. An approach to the computational determination of protein structures.
J. Comput. Aided Mol. Des. 7, 473–501.
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Figure B.4
Examples of long-range contact
capacity potentials. The residues will
prefer to have numbers of long-
range contacts which have low
potentials. Thus lysine residues will
prefer to have 0 or 1 contacts, i.e.,
not be in the protein core, as would
be expected due to their very
hydrophilic nature. Conversely,
cysteine residues prefer to be within
the core. Phenylalanine residues are
often found in the core, but also on
the protein surface, as reflected in
the potential. (Values taken from
N.N. Alexandrov et al.,
Biocomputing: Proceedings of the
1996 Pacific Symposium (L. Hunter
and T. Klein, eds), Singapore: World
Scientific Publishing Co., 1996.)
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There are numerous occasions in bioinformatics when one wants to find the
maximum or minimum of a function. Examples of such functions include the
alignment score in sequence alignment (see Chapters 5 and 6), the likelihood of
occurrence of a tree in the maximum-likelihood method of generating phylogenetic
trees (see Chapter 8), and various energy-related functions used in comparative
modeling and threading (see Chapter 13 and Appendix B). These problems have
many common features that can usefully be considered together, which is the
purpose of this appendix. It should be noted that optimization is also often required
during the development of new techniques to obtain the best parameterization.

One other optimization method has been described in this book: the genetic algo-
rithm method. This has been described and discussed in the context of multiple
alignments in Section 6.5 and for data clustering in Section 16.3. It will not be
discussed further in this appendix, except to say that it is closest to the Monte Carlo
methods, in that random changes are made during each step, only some of which
are accepted according to certain criteria.

The functions of interest are often very complex, involving many variables. The
numerical optimization of a general function is not a trivial matter except for very
simple functions that only involve a few variables. (Algebraic solutions are only
feasible in the most trivial of cases.) A general function can have (very) many local
minima and local maxima in the function space defined by the variables (see Figure
C.1). Usually only one or a small subset of these will be the global extremum. We will
discuss the methods used to determine a local optimum separately from those used
for global optimization.

APPENDIX C: 
FUNCTION OPTIMIZATION

Figure C.1
An example of a complex
function showing many local
optima. This is a section through
a multidimensional space,
colored according to the function
value, with the global optimum
in this section being red. The
function shown is not related to
any systems described in this
book, but illustrates well the
complexity that can occur. The
real global optimum may well
not be in this section, but
somewhere else in the
multidimensional space.

709

End matter 6th proofs.qxd  19/7/07  12:17  Page 709



In the first section we will examine the techniques used to locate points in the func-
tion space where the function is locally optimal. These methods can be divided into
those that require calculation of the function gradient and those that do not. The
latter include the dynamic programming method of sequence alignment described
in Chapter 5. Whereas we can usually be confident of identifying a local optimum,
locating the global optimum is much more difficult, and usually cannot be guaran-
teed. In the second section we will present the common techniques used in the field
of molecular mechanics for determining global optima.

The methods will only be presented here in their most basic form. There are many
modifications that have been proposed which can result in substantially more
useful performance. For details of these, as well as practical advice on function
optimization, refer to the references in Further Reading.

Full Search Methods
One way to identify the global extrema of functions, in principle at least, is to calcu-
late the value of the function at all points on the function surface, saving the highest
and/or lowest found. While this is clearly not practical for functions such as atomic
coordinates with continuous variables, it can be achieved in limited cases for func-
tions with discrete variables, such as sequence alignment scores. The focus of this
appendix is on methods for finding the extrema of functions with continuous vari-
ables, but since some of these full search methods have been presented in the book,
we will briefly mention them here for completeness.

Dynamic programming and branch-and-bound
The technique of dynamic programming, as used in pairwise sequence alignment
and described in Section 5.2, is an optimization method that efficiently considers
all the possible alignments, and is therefore a full search method. The score of a
pairwise alignment can be obtained by summing the scores for separate segments
of the alignment. Using this property, once a nonoptimal alignment segment has
been identified no alignments need be considered which contain this nonoptimal
segment. In this way the dynamic programming method reduces the number of
alignments to consider to a level where a full search is practical.

Similarly, the branch-and-bound method of phylogenetic tree reconstruction,
presented in Chapter 8, can effectively make a full search of the tree space to iden-
tify the optimal tree. As was shown to be the case for pairwise sequence alignments,
the score of a tree can often be separated into additive parts, allowing the method
to safely ignore those trees with nonoptimal topology. These methods will not be
discussed further here, and the reader should see Chapters 7 and 8 for more details.

Local Optimization
There are many different ways to find a local optimum, all involving moving in
discrete steps over the surface of the function toward the nearest optimum. They
differ in their computational requirements and the number of steps required for
convergence to a solution. Some methods are regarded as more robust, in that they
can successfully locate the optimum when starting at a greater distance from the
solution, often referred to as having a larger radius of convergence. Unfortunately
the success of these methods can be quite unpredictable for complex functions.

The approach to the optimum can be monitored at each step by observing the value
of the function and function gradient at that point. Although the gradient is exactly
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zero at the optimum, in practice one must normally accept a small nonzero value
as indicative of convergence, often with an additional stipulation that no compo-
nent of the gradient should exceed a given threshold. For problems involving
macromolecular structures this is because of the precision used in the calculations,
and the properties of most molecular energy functions. Usually the variable values
that define the optimum are obtained to high accuracy even allowing this small
residual gradient.

In the discussions that follow we will present each method as a function minimiza-
tion problem. This is for convenience only, but any maximization problem can be
simply restated as a minimization problem by using f̂ = –f.

The downhill simplex method
The downhill simplex method involves a structure called the simplex, defined for a
function of n variables by n+1 distinct points in the function space, the straight
lines connecting all pairs of points, and the faces which are thus defined. For a two-
variable function this is a triangle; for a three-variable function, it is a tetrahedron;
etc. The first simplex defined will probably be at a random location in the function
space, but the method defines steps by which it is moved to the location of the func-
tion optimum.

Given a simplex, the value of the function is calculated at all the points and those that
have the highest, second highest, and lowest values are identified. The highest-valued
and lowest-valued points are labeled Xh and Xl , respectively. A new simplex is derived
from this one by one of three processes illustrated in Figure C.2. The highest-valued
point (Xh) is replaced by another point (Xnew) along a vector defined from Xh to the
centroid (X0) of the other points. (The centroid is defined as the point with variable
values given by the arithmetic average of those of the other points.) Initially Xr is
located by reflection (i.e., Xh – X0 = X0 – Xnew) (see Figure C.2B). If the value of the func-
tion at Xnew is less than that at Xl it is possible that the minimum lies further along this
direction, and an expansion is tried (i.e., ke{Xh – X0} = X0 – Xnew with ke > 1) (Figure
C.2C) to see if this reduces the value further. If the value of the function at Xnew is
greater than the second-highest value point, it is possible that the minimum lies
within the existing simplex, and a contraction is tried (i.e., kc{Xh – X0} = Xnew – X0 with
0 < kc < 1) (Figure C.2D). The values of ke and kc are usually fixed at the start of the
calculation. If this contraction does not improve the value at Xnew, the simplex is
contracted from all points towards the lowest, Xl (Figure C.2E). The whole procedure
is repeated many times, terminating when all the points have sufficiently similar
values or when the simplex remains stationary within some defined tolerance.

To start the scheme, a set of n+1 distinct points must be chosen. Usually this is done
by randomly choosing one point in the function space and then defining each of the
other n points as being a distance l along one of the n variable axes. The value chosen
for l (possibly different for each variable) will define the initial size of the simplex,
and should reflect initial ideas about the scale of the features in the function space.

This scheme is inefficient when compared to the methods described below, in that
many steps are usually required to identify the function optimum, but has the
advantage of being easy to apply and moderately robust. In particular it has the
advantage of not requiring calculation of gradients, but at the cost of a loss in effi-
ciency, in that it requires many separate calculations of the function value at
specific points, as well as many steps.

The steepest descent method
This technique is based on the concept that to find the local minimum we simply
move down the gradient of the function space from the current position. The next
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position is located along this gradient direction at the minimum along the line.
Each iteration produces a new position as a better estimate of the minimum.

Suppose we have a function f(X) where X is the set of n variables x1 to xn, which in
the case of protein energy minimization could number several thousand. If the jth
estimate of the coordinates of the local minimum is labeled Xj, then the value of the
function at this point is f(Xj). The gradient of the function at this point is given by

(EQC.1)

where the notation indicates that the gradients are to be calculated using the values
of the variables at Xj. This gradient defines a vector that points in the direction of
fastest increasing values of the function.
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Figure C.2
Illustration of the possible steps
used in the downhill simplex
method. (A) The initial simplex at
the start of the step, in which the
highest and lowest function value
points, Xh and Xl , respectively, have
been identified. The new position
Xnew can be defined using (B) the
reflection step; (C) the reflection and
expansion step; or (D) the
contraction step. (E) Alternatively,
the multiple contraction step
generates the next simplex. (From
WH Press et al., Numerical Recipes
in C: The Art of Scientific
Computing, 2nd ed. Cambridge:
Cambridge University Press, 1992.)
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For function minimization we want to move in the opposite direction from this
gradient, and to search along this direction for the point at which the function is a
minimum. The vector of this search direction S is given simply as

(EQC.2)

If the minimum occurs at lS along this search vector from Xj, l being a number
determined by searching along the line for the minimum, then the coordinates of
the new estimate of the local minimum are given by

(EQC.3)

The function and gradient are calculated at this new point, and if the gradient is not
sufficiently small, the whole procedure is repeated to obtain a succession of points,
each closer to the minimum. The process is stopped when the gradient is below a
predetermined threshold value, when the current point is taken to be the location
of the minimum.

For the potential functions described in Appendix B one can readily write the
analytical form of the gradient, so that the gradient can be calculated with relative
ease. However, obtaining the minimum along the search line is more difficult. One
approximate method calculates the function at two other points along the line,
making three in all. A quadratic form can then be fitted to this and used to estimate
the minimum. The value of the function at this estimated minimum can then be
used together with the next two lowest-value points in a further quadratic estima-
tion. In fact robust methods of estimating the minimum along the search direction
are quite complicated and beyond the scope of this book. See references in Further
Reading for details. Often in practice the step size along the search line is restricted
to a maximum value so as to remain within the same region of coordinate space.

An example of steepest descents minimization is given in Figure C.3 for a cubic
function of two variables. In this example the minimum well extends horizontally,
and many steps are required to walk down the valley to the actual minimum. 
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Figure C.3
Practical example of the steepest
descent and conjugate gradient
methods compared. The steepest
descent path is shown by the red
lines, each straight section
representing one step. The
conjugate gradients path is shown
by the white lines. The first step is
the same in both methods.
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The conjugate gradient method
One of the features of the steepest descents method is that alternate search vectors
are orthogonal, leading to a zig-zag path that can be very inefficient at locating the
minimum, and taking many iterations to converge. The conjugate gradient method
attempts to resolve this by a modification to the definition of the search vectors.

The search vector is now usually given by the Fletcher–Reeves formula

(EQC.4)

where the subscripts here relate to iterations j+1 and j, not individual variables.
Alternative but related formulae have been proposed, details of which can be found
in the references of Further Reading. The first search vector S1 cannot be obtained
with this formula without assuming S0 to be zero, which makes the first step iden-
tical to that of the steepest descent method. There is a need to locate the minimum
along each search direction, a problem solved in the same way as for the steepest
descent method.

If the calculations were made exactly, this method would converge to the minimum
for an n-dimensional problem in at most n steps. However, effects such as rounding
errors in computer-based calculations make this method less efficient than that,
and may even prevent convergence. Also, when working with large macromolecular
structure systems n could be several tens of thousands, making a calculation of this
many steps impractical. Thus, usually the system is regarded as converged when
the gradient and all its components are below predetermined thresholds. In most
cases this method produces a search path that locates the minimum in fewer steps
than the steepest descent method, as shown in Figure C.3.

Methods using second derivatives
Both steepest descent and conjugate gradient methods only require calculation of
the first derivative of the function. By using the second derivatives as well, mini-
mization methods have been proposed that are more stable, as the first derivative
methods can encounter problems when there are large differences in the magni-
tudes of different components of the gradient. However, the cost of this improve-
ment is that these methods involve considerably more computational resources.

There are many variants on second derivative methods, but they are all based in
some way on the formula

(EQC.5)

where the subscripts refer to steps j and j+1, and Hj is the matrix of second deriva-
tives (called the Hessian) defined by

(EQC.6)

Note that this formula does not involve determining the position of the minimum
along a line.
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The calculation of the Hessian itself can be time consuming, and the calculation of
the inverse of this matrix, especially in the case of a protein force field, can be a
considerable undertaking. Most optimization methods used in practice apply tech-
niques that approximate this inverse Hessian. The details of practical second deriv-
ative methods are beyond the scope of this book (see Further Reading). They have
the advantage of being more robust.

Thermodynamic Simulation and Global
Optimization
Probably all the functions of interest in this book have several local minima and/or
maxima of which often only one is the global minimum or maximum. In the
majority of cases we want to locate the global extremum. As in the previous section,
for convenience we will assume that it is the minima that are of interest.

The function space can be divided up into regions, each of which is identified with
a particular local minimum. For a simple one-dimensional function this is illus-
trated in Figure C.4, which has three such regions associated with the minima A, B,
and C. At least one path exists for every point in a region connecting it with the local
minimum such that as one travels toward this minimum the value of the function
never increases. The lines that define the boundaries of the regions join local
maxima via the tops of ridges. 

The local optimization methods described in the previous section identify in a
series of steps one path to the local minimum, as they do not allow the function
value to increase at any stage. Note that some practical applications of these
methods have modifications which may occasionally result in such increases. Thus,
starting at point P1 in Figure C.4 we will arrive at A, whereas starting at P2 we will
arrive at B. To find the global minimum A from P2 we need to go uphill over the local
maximum before dropping into the well of A.

One way in which these local optimization methods can be modified to locate the
global optimum is to run them from many random starting points. Hopefully one
of these points will lie in the region of the global optimum, which will be easily
identified from its function value. For problems involving few variables this might
be a reliable way of identifying the global optimum, but the problems we are inter-
ested in will almost always be too complex for such a scheme to be very effective.

The essence of the solution has already been hinted at; the method must allow for
steps that go uphill. All the methods discussed below permit such moves, but do so
in a restricted way. The application of Monte Carlo and molecular dynamics
methods to molecular and atomic systems was originally proposed for thermody-
namic simulation in which the properties of a system are calculated for particular
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Figure C.4
Diagram illustrating a
one-dimensional minima problem.
For the function shown, of the three
minima A, B, and C, A is the global
minimum. The minimum found by
an optimization method depends on
the starting point and topology of
the surface. If an optimization
method is started at point P1, it will
reach A. However, if it starts at P2,
just to the right of the maximum
(barrier) between A and B, the
calculation will find minimum B.
This assumes that the methods
always move to lower function
values, which is the case in most
normal circumstances.
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values of thermodynamic state functions such as temperature. However, this does
not preclude their use in other situations, and the modifications of simulated
annealing can convert both methods to perform global minimization.

Monte Carlo and genetic algorithms
Starting at a given point in coordinate space, we would like to know in which direc-
tion to move, and how far, in order to approach the minimum. As we saw above,
some of the local optimization methods use the function gradient to define the
appropriate direction and line searches to determine the step size. The steepest
descent and conjugate gradient methods uniquely define the direction. The Monte
Carlo method and genetic algorithms take a different approach, allowing moves in
different directions, and specifying a probability for each of them. Note that the
standard Monte Carlo simulation method does not locate minima, but instead
samples states in their vicinity according to a well-defined probability distribution.

We will examine the Monte Carlo method first, which is mostly used with energy
functions. It is based on the same concepts from statistical thermodynamics that
were discussed in Appendix B for potentials of mean force, namely the probability
of occurrence of states of the system. A state 1 is defined by the positions of all the
atoms in the system, and can be assigned energy E1 by using a suitable force field.
When the system is in equilibrium, the relative probability of a given state 1 occur-
ring is given by the Boltzmann weighting E–E1/kT where k is Boltzmann’s constant,
and T the absolute temperature.

The exact probability of state 1 is given by dividing this by the partition function Z (see
Equation EQB.9). It is impractical to calculate Z, but the Monte Carlo method neatly
sidesteps this problem by looking at the ratio of probabilities for two states. If we
consider a second state 2 with energy E2, the ratio of probabilities is given by the term

(EQC.7)

Thus starting from a state 1 we can readily determine if a new state 2 is more likely
to occur at equilibrium. If DE21 is negative (i.e., state 2 has the lower energy) the
above term has a value greater than one (i.e., state 2 is more likely) and the move to
state 2 is accepted. If state 2 has a higher energy than state 1 (i.e., the move is uphill
on the energy surface) the above term has a value between 0 and 1. Instead of just
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Figure C.5
Illustration of the Monte Carlo
acceptance/rejection criteria.
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rejecting this move as unfavorable, we now select a random number from a uniform
distribution in the interval 0 to 1. If this number happens to be less than the above
ratio term the move is accepted, otherwise it is rejected (see Figure C.5).

By choosing moves in this way, the Monte Carlo method will (under suitable condi-
tions) locate the region of the global energy minimum, which will be the state with
the highest probability at equilibrium. The suitable conditions required are that the
moves are of an appropriate magnitude to allow efficient coverage of the available
states (discussed further below) and that all the low energy states are accessible
from each other without crossing unduly high barriers. Systems that obey the latter
condition are known as ergodic systems. In theory nonergodic systems can be
treated by starting a Monte Carlo procedure in each separate region of low-energy
states, but in practice we rarely know the number and location of these regions.

In the Monte Carlo method, the direction of movement from the current state, and
the distance to move are chosen randomly. In atomic systems, an atom or whole
molecule is chosen at random. The distance moved and/or rotation about an axis is
also chosen at random within specified limits. Usually a new state is defined by the
move of a single atom, although this is not a requirement. The limits of movement
are usually adjusted to obtain a 50% acceptance rate for new states, as this is thought
optimal for exploring the state space efficiently. Often many hundreds or thousands
of moves per atom are required to locate the well of the energy minimum.

This minimum is determined by monitoring the energy of the system and seeing
when it levels off, at which point it is assumed that the system has found the
minimum. (By running the method for much longer it is quite possible that this will
prove to be a local minimum, and another set of lower states will be found. As with
all these methods, there is no real proof that the global optimum has been found.)

Monte Carlo methods are usually used in molecular simulations of energetic and
structural properties, not to locate minima, but to measure properties that are
usually averages over states. Statistical thermodynamics tells us that molecular
systems at non-zero temperatures have many low-energy states that contribute to
these properties, and the Monte Carlo method gives them their correct relative
weights. In calculating such properties if a proposed move is rejected the property
value of the current state is counted again, before attempting another move.

Genetic algorithms, whilst not having such close links with thermodynamics as
the Monte Carlo method, have many features in common. In this case the target
function to be optimized may be quite unrelated to energy (for example the
sequence alignment scores, as in the SAGA method, described in Section 6.5).
Several alternative moves are available, some of which may be uphill as measured
by the target function, but again all will be weighted and all will have some proba-
bility of being accepted.

The key difference between the two methods is that whereas the Monte Carlo
method involves a succession of individual system states, genetic algorithms
involve a succession of generations of states, where each generation may contain
one hundred or more states. The origin of genetic algorithms is by analogy to real
genetics, in that two (or more) states in one generation are often combined in some
way to generate the members of the next generation. Some particularly favorable
states are usually passed through to the next generation unchanged. Random
combinations of random members of the preceding generation generate the
remaining new states.

The methods of combination are usually highly specific for the problem in hand, as
demonstrated for sequence alignment by the crossover operator used in the SAGA
method (see Figure 6.22). Similarly, there are many ways of selecting the new gener-
ation such as to allow unfavorable moves, and these are also usually designed for
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the particular problem. Many generations are usually required, and the process is
monitored for improvements in the target function. In the final generation, the
state with optimal target function is taken as the result, but again one cannot be
absolutely certain that the true optimum has been located.

Molecular dynamics
If a molecular system is in a state which is not an energy minimum it will be subject
to forces that are related to the energy gradients. These forces will result in atomic
motions, leading to a trajectory through various states of the system. Any given
state is defined by the positions and velocities of the component atoms, in contrast
to the states in a Monte Carlo simulation, which do not include velocities. In a
molecular dynamics simulation a trajectory is calculated step by step, using a very
short time increment to ensure accuracy.

A thermodynamic state is defined by more than just the atomic coordinates and
velocities. Some other state properties must also be given that are constants
throughout the simulation. In most Monte Carlo simulations these fixed properties
are the number of atoms or molecules (N), the volume of the system (V), and the
temperature (T), called the canonical or NVT ensemble. In the simplest form of
molecular dynamics the constants are microcanonical or NVE ensembles, E being
the total energy of the system, which is the sum of the potential and kinetic energy.
The potential energy is given by the sum of the force field terms, and is the function
whose surface was drawn in Figure C.4. This is the function we wish in general to
optimize, and which defines the global minimum. The kinetic energy is propor-
tional to the square of the velocities of the system, with a basic formula ©mv2 for a
single object of mass m and velocity v.

According to classical mechanics, a system can only change in total energy if it
interacts with some external force. In the absence of external interactions the total
energy must remain constant, but the relative amounts of potential and kinetic
energy can change. In principle a trajectory can cross suitably low energy barriers
by converting kinetic energy into potential energy. As the trajectory approaches the
barrier top the velocities decrease proportionately, and then increase again on
descending the other side.

Note that such an NVE system is fully determined, so that it is similar to the
gradient methods of optimization; there is only one way for a trajectory to go. In
this sense it is very different from the Monte Carlo method. In fact the NVE simu-
lation is rarely used as all systems of interest have some interaction with the
outside world.

For most molecular dynamics simulations of interest we want to specify the
temperature rather than the total energy (NVT). The temperature is in fact defined
from the kinetic energy, and this equates to simulating with a constant kinetic
energy. This can be done in a number of ways whose common feature is to add an
external heat bath which can exchange energy with the system. The methods differ
in how often the kinetic energy is adjusted, and whether all parts of the system are
equally affected or not. Note that if kinetic energy is kept approximately constant,
and if the system is at a sufficiently low temperature, it will not be able to explore
areas of high potential energy, keeping the system in the vicinity of minima.

Each step involves calculating new positions, velocities, and accelerations using
simple algebraic formulae. These formulae are only accurate over very short time
periods, and typically a step size of one femtosecond (10–15 s) is used, so that many
thousands of steps are involved in a simulation. There are many other details that
need to be addressed in order to have a full understanding of the practicalities of
these calculations. The issues of ergodic systems and calculating properties are
similar here to those mentioned for Monte Carlo methods. Here ergodicity means
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that the trajectory would ultimately pass through all the possible states below a
certain energy cut-off. For further details the reader is referred to the references
given in Further Reading.

Simulated annealing
Neither Monte Carlo or molecular dynamics are designed for function optimiza-
tion, being intended for calculating properties averaged over states. However, in
both cases the temperature of the system determines the size of the energy barriers
that can potentially be crossed. If the temperature is very low, both methods cannot
stray far from the energy minimum they find.

Simulated annealing methods exist for both Monte Carlo and constant temperature
molecular dynamics, and are simple modifications of these methods that transform
them into global optimizers. At the beginning of the simulation the system is given
a very high temperature (perhaps 1000 K). This allows the system to jump over
reasonably high energy barriers. The system temperature is gradually lowered, ulti-
mately causing the system to be confined to a single energy well. As these methods
will spend more time in lower energy states, there is a good chance that the lowest
energy state will be found. There is no absolute guarantee of this, however, and
preferably the run would be repeated a few times from different starting points to
see if a lower minimum could be found. The rate of temperature drop and the
starting temperature are variables that can have a strong influence on the success,
but can vary according to the system.

Summary
Knowledge of the techniques of function optimization is crucial to many aspects of
bioinformatics. The emphasis in this appendix has been on the key concepts
behind the methods, rather than their detailed algorithms.

It is relatively easy to perform local optimization, and far harder to find global
optima. There are cases where a local optimum will often suffice, but this is inade-
quate for many problems. The techniques can be divided into those involving
explicit (first or second) gradient calculation and those relying on function evalua-
tions alone. The first of these tend to be more powerful at the expense of requiring
substantially more computer resources. However, the techniques for global opti-
mization and simulation require orders of magnitude more computer time than
any local optimization method

The importance of the subject has resulted in many good specialist texts dealing in
great detail with both the theoretical and practical aspects. For this reason the treat-
ment given here is rather brief. All of the techniques mentioned are prone to failure,
sometimes in ways that are not immediately apparent. Any readers intending to
write their own codes are strongly urged to consult the references listed below. A
similar warning applies to those considering performing thermodynamic simula-
tions, which have received only the briefest treatment here.

Further Reading
Good references for many aspects of molecular force fields and thermodynamic
simulation techniques are:

Allen MP & Tildesley DJ (1987) Computer Simulation of Liquids. Oxford: Oxford
University Press.
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Field MJ (1999) A Practical Introduction to the Simulation of Molecular Systems.
Cambridge: Cambridge University Press.

Leach AR (2001) Molecular Modelling, 2nd ed. Harlow: Prentice Hall.

The general optimization techniques are well covered including practical aspects
by:

Rao SS (1984) Optimization Theory and Applications, 2nd ed. New Delhi: Wiley
Eastern Ltd.

Press WH, Teukolsky SA, Vetterling WT & Flannery BP (1992) Numerical Recipes in
C: The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge University
Press.

The downhill simplex method was first presented in:

Nelder JA & Mead R (1965) A simplex method for function minimization. Comp. J. 7,
308–313.

An excellent presentation of the steepest descent and conjugate gradient methods
is given in:

Shewchuk JR (1994) An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. Available at: 
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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Symbol Definition Chapter 
number

a residue type 5,10

a Gamma distribution parameter; Gamma correction (EQ8.4, EQ8.13) 8

a index array used in chaining 5

A accepted point mutation matrix; PAM/MDM matrix theory (Figure 5.1C) 5

[A] Concentration of species A (EQ17.1) 17

Aa,b element of the accepted point mutation matrix A for residue types a and b; 
PAM/MDM matrix theory (EQ5.4) 5

A(x,y) pairwise alignment of sequences x and y extracted from a multiple alignment; 
COFFEE scoring function (EQ6.38) 6

|A(x,y)| the number of alignment positions in A(x,y) that contain at least one residue from either 
of sequences x and y; COFFEE scoring function (EQ6.38) 6

AC approximate correlation coefficient for gene prediction (BEQ10.4) 10

ACP average conditional probability (BEQ10.4, BEQ10.5) 10

AE actual exons; exon level gene prediction accuracy (BEQ10.6) 10

b residue type 5

b index array used in chaining 5

b column vector of branch lengths; least-squares method (EQ8.36) 8

B Beta function used in Dirichlet mixture density component PSSMs (EQ6.17, EQ6.18) 6

B back part of BRNN which uses information from the C-terminal part of the sequence (Figure 12.29) 12

b1b2b3b4b5 a specific nucleotide pentamer; GeneMark and CorePromoter methods (EQ10.1, EQ10.9) 10

b1b2b3b4b5b6 a specific nucleotide hexamer; PromFind method (EQ10.8) 10

721

These symbols are in addition to the standard one-letter and three-letter codes for
amino acids and nucleic acids. The following list gives each symbol used in this
book, its definition, the significant occurrences in equations (EQ) and figures in this
book, as well as the chapter(s) where it is mentioned.

Notation concepts
• Sequences will be called x, y and will have residues xi, with indices i, j

• Alignments will have columns/positions u, v

• Residues will be of types a, b and compositions will be pa

• Scoring matrices will be sa,b and gaps g giving total alignment scores S

• Expectation values will be written E(x) , probability P(x), information content
I(x) and relative entropy H

LIST OF SYMBOLS
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bi length of branch i of phylogenetic tree (EQ8.17, EQ8.18, Figure 8.4) 8

bij length of phylogenetic tree branch connecting nodes i and j; neighbor-joining method 
(EQ8.19, EQ8.21) 8

bu(xi) total probability of all possible HMM paths starting at state u having emitted all residues of 
sequence x up to xi and emitting the remainder of the sequence during progression to the 
HMM final state; backward algorithm (EQ6.33) 6

c number of occurrences of a component (nucleotide or amino acid) in a sequence; SEG method 
(BEQ5.3, BEQ5.6, BEQ5.7) 5

C percentage identity threshold used to cluster aligned sequences; BLOSUM matrix derivation 
(Figure 5.4, Figure 5.7) 5

ci numerical representation of a k-tuple in hashing (EQ5.28) 5

Cn Zvelebil conservation number 11

Chelix Matthews correlation coefficient measure of the accuracy of prediction of helix secondary 
structure (EQ12.1) 12

cu adjustment constant in deriving weight matrices (EQ10.7) 10

nCr number of combinations of r distinct objects chosen from amongst n distinct objects (EQ6.21) 6

CE correct exons; exon level gene prediction accuracy (BEQ10.6, BEQ10.7) 10

covi,j covariance of the expression measurements for genes/proteins i and j; Mahalanobis distance 16

d index of antidiagonal in the dynamic programming matrix; X-drop method (Figure 5.18) 5

d evolutionary distance measured in terms of the average number of mutations that have occurred 
per sequence site 8

d column vector of data distances; least-squares method (EQ8.39) 8

D gapless pairwise local alignment (diagonal); DIALIGN method 6

D number of positions in an alignment of two sequences with two different residues aligned (EQ8.1) 8

D probability of a branch of length 3at between nodes with different bases; 
maximum-likelihood method (EQ8.55) 8

dJC Jukes–Cantor corrected evolutionary distance; Jukes–Cantor model (EQ8.9) 8

dJC+G Jukes–Cantor + Gamma corrected evolutionary distance; JC+G model (EQ8.13) 8

dJCprot Jukes–Cantor-type protein model corrected evolutionary distance; Jukes–Cantor-type 
protein model (EQ8.14) 8

dK2P Kimura-2-parameter corrected evolutionary distance; K2P model (EQ8.11) 8

dN proportion of nonsynonymous mutations (BEQ7.2) 7

dP Poisson correction to the evolutionary distance measure d (EQ8.3) 8

dS proportion of synonymous mutations (BEQ7.1) 7

dsum sum of all the intersequence evolutionary distances; neighbor-joining method (EQ8.26) 8

dG Gamma correction to the evolutionary distance measure d (EQ8.4) 8

D1(b1b2b3b4b5b6) differential hexamer measure comparing promoter and noncoding regions; PromFind 
method (EQ10.8) 10

D2(b1b2b3b4b5b6) differential hexamer measure comparing promoter and coding regions; PromFind method (EQ10.8) 10

dAB Euclidean distance (EQ16.4, EQ16.5) or normalized Euclidean distance (EQ16.7) between samples 
A and B 16
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dij distance between two samples i and j (EQ16.8–EQ16.10) 16

dij evolutionary distance between sequences i and j 8

dXY evolutionary distance between clusters X and Y; UPGMA method (EQ8.15) 8

dj – i the (j – i)th diagonal in the dynamic programming matrix; FASTA method (Figure 5.21) 5

DCF difference in amino acid composition between query and database sequences using Chou–Fasman 
propensities; NNSSP method (EQ12.23) 12

Dcomp difference in amino acid composition between query and database sequences; NNSSP method 
(EQ12.22) 12

Du delete state of the uth alignment position of a profile HMM (Figures 6.6–6.8) 6

df degrees of freedom; t-test (EQ16.23, EQ16.25) 16

E linear gap parameter (EQ5.13, EB5.1) and gap extension penalty (GEP) (EQ5.14, EQ5.15, EQ5.22,  
EQ5.24, EQ5.25, EQ6.8, Figure 6.16) 5,6

E probability of a branch of length 3at between nodes with identical bases; 
maximum-likelihood method (EQ8.54) 8

E error in the output of a neural network, using in training (BEQ12.1–BEQ12.3, BEQ12.6–BEQ12.9) 12

E expected number of false-positive results in a series of tests 16

E(sa,b) expected score for aligning residue types a and b when using substitution matrix s (EQ5.3) 5

eu(a) probability of emission of residue a when in the state u of an HMM (EQ6.25–EQ6.27) 6

eu(a) expected number of occurrences of base a at position u in an alignment of a signal sequence 
(EQ10.7) 10

ea,b estimated probability of residues of type a and b aligning by chance; BLOSUM matrix derivation 
(EQ5.11) 5

f response to transfer function of a neural network (Figure 12.26, EQ12.27) 12

F forward part of BRNN which uses information from the N-terminal part of the sequence (Figure 12.29) 12

f¢ first derivative of the response function f (BEQ12.6, Figure B12.8) 12

fa normalized total exposure of residue type a (approximately the compositional frequency); 
PAM/MDM matrix theory (EQ5.6, EQ5.7) 5

fav(b1b2b3b4b5) average of the frequency of occurrence of pentamer b1b2b3b4b5 in the windows wi;1 and wi+1; 
CorePromoter method (EQ10.9) 10

fi(b1b2b3b4b5) frequency of occurrence of pentamer b1b2b3b4b5 in the window wi; CorePromoter method (EQ10.9) 10

fnon-coding(b1b2b3b4b5b6) observed frequency of hexamer b1b2b3b4b5b6 in the noncoding region; PromFind method (EQ10.8) 10

fpromoter(b1b2b3b4b5b6) observed frequency of hexamer b1b2b3b4b5b6 in the promoter region; PromFind method (EQ10.8) 10

F(i) the set of alternative bases at an internal node i; parsimony method (Figure 8.14) 8

fa,b weighted frequency of occurrence of aligned residue types a and b ; BLOSUM matrix 
derivation (EQ5.8, EQ5.9) 5

fu,b fraction of the residues in PSSM alignment column u that are of type b (EQ6.1) 6

f ¢u,b modified form of fu,b used in deriving the PSSM scores mc,a (EQ6.3) 6

f ¢¢u,b sequence-weighted form of fu,b (EQ6.9) 6

f A
u,a fraction of the residues in intermediate alignment A column u that are of type a (EQ6.39, EQ6.40) 6

fu(xi) total probability of all possible HMM paths ending at state u having emitted all residues of 
sequence x up to xi; forward algorithm (EQ6.31) 6
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Fu(xi) total log-odds score of all possible HMM paths ending at state u having emitted all residues 
of sequence x up to xi; forward algorithm (EQ6.32) 6

f(xixi+1xi+2) frequency of occurrence of each codon xixi+1xi+2 in the ORF set; ORPHEUS method 
(EQ10.4, EQ10.5) 10

FN number of false-negative residue predictions (of gene prediction EQ10.1, EQ10.5) 
(of secondary structure, EQ12.1) 10,12

FP number of false-positive residue predictions (of gene prediction EQ10.2, EQ10.3, EQ10.5) 
(of secondary structure, EQ12.1) 10,12

g gap penalty used in scoring a sequence alignment (EQ5.16, EQ5.17) 5

g(ngap) gap penalty for a gap of length ngap used in sequence alignment score (EQ5.13–EQ5.15, 
EQ5.18–EQ5.23, EQ5.27, EQ5.29) 5

g ¢u position-specific multiplier of the gap penalty for alignment column u in a profile (EQ6.8) 6

gu,a estimated appropriate number of pseudocounts to apply for residue type a in alignment 
column u of a PSSM (EQ6.14, EQ6.15) 6

G gap state in HMM alignment; HHsearch method (Figure 6.12) 6

H relative entropy (EQ5.12, Figure 5.7) 5

h(i) value of the Eisenberg hydrophobicity scale for residue i 11

Hu entropy associated with the residue distribution at column u of a multiple alignment; 
sequence logo (EQ6.19, EQ6.20) 6

H(i) the set of secondary alternative bases at an internal node i; parsimony method (Figure 8.14) 8

hn,near j(itn) neighborhood function for node Sn given that node Snear j is the nearest node to data Xj; 
SOM method (Figure 16.16, EQ16.12) 16

iL lower limit of antidiagonal; X-drop method (Figure 5.18) 5

iU upper limit of antidiagonal; X-drop method (Figure 5.18) 5

I gap-opening penalty (GOP) (EQ5.14, EQ5.15, EQ5.24, EQ5.25, EQ6.8) 5,6

I measured intensity corresponding to the expression level of a gene/protein in expression 
measurement analysis (EQ16.2) 16

I(S j = s | x̂ ) Fano mutual information which sequence x̂ contains about the structural state of the jth residue 
being s (EQ12.6, EQ12.9, EQ12.10) 12

I(S j = ( s : s̄̄ ) ; x̂ ) the preference (in information content) of x̂ for s over s̄̄ (EQ12.10, EQ12.13–EQ12.19, EQ12.21) 12

Iu insert state between the Mu and Mu+1 match states of a profile HMM (Figures 6.6–6.8) 6

Iu
(l) total input signal of the uth unit of neural network layer l; (EQ12.25–EQ12.27, BEQ12.3–1BEQ2.8) 12

Ic information content at column c of a multiple alignment; logo (EQ6.20) 6

ISEG a measure of the information required per sequence position to specify a particular sequence, 
given the composition; SEG method (BEQ5.5) 5

I ¢SEG an approximation to the information measure ISEG used in the first pass; SEG method (BEQ5.6) 5

int[x] truncation of the value of x to an integer (EQ12.2, EQ12.3) 12

K a constant involved in assessing alignment score significance that depends on the scoring 
matrix used and the sequence composition (EQ5.30, EQ5.34) 5

k length of a short sequence called a word, k-tuple, or k-mer; FASTA and BLAST methods 4,5,6

k number of clusters; k-means clustering method 16
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ki forward reaction rate constant for reaction i (EQ17.1) 17

k–i reverse reaction rate constant for reaction i (EQ17.1) 17

kopt most appropriate number of clusters; k-means clustering method 16

l length of the gap between k-tuples on the same diagonal; FASTA method (EQ5.29) 5

l length of diagonal D; DIALIGN method 6

len(sobs) length in residues of any segment of secondary structure sobs; Sov measure (EQ12.2, EQ12.3) 12

L length of a sequence 2,5

L length of sequence in discussion of sequence complexity; SEG method  (BEQ5.2–BEQ5.7) 5

L length of sequence emitted by a profile HMM (EQ6.21, EQ6.22) 6

L length of an alignment of two sequences, excluding positions with gaps (EQ8.1) 8

L total likelihood of a tree topology given the sequence data; maximum-likelihood method (EQ8.53) 8

Laln length of a sequence alignment 5 

Li likelihood of the observed bases at alignment position i given a phylogenetic tree topology T (EQ8.52) 8

Lx length of sequence x; MEME method 6

m length of a sequence aligned with another sequence or entire database of length n (EQ5.30, EQ5.34) 5

m power of difference between data and patristic distances; least-squares method (EQ8.34) 8

ma relative mutability of residue type a; PAM/MDM matrix derivation (EQ5.4–EQ5.6) 5

mu,a PSSM score for residue type a (row a) in alignment column u (EQ6.2, EQ6.3, E6.4, EQ6.7) 6

mA
u,b the score for aligning a residue type b with column u of intermediate alignment A (EQ6.37, 

E6.39, E6.40) 6

m̄̄ A
u,b mean over all residue types b of mA

u,b in column u of intermediate alignment A; LAMA method (EQ6.37) 6

mu,v number of transitions observed in the training data between HMM states u and v (EQ6.24) 6

M mutation probability matrix; PAM/MDM matrix derivation 5

M number of samples/conditions whose gene/protein expression levels have been measured; 
PCA method (EQ16.3) 16

Mu match state of the uth alignment position of a profile HMM (Figures 6.6–6.8) 6

MY number of objects in cluster Y; clustering methods (EQ16.11) 16

Mins maximum allowed difference between the number of insertions in two aligned sequences; 
calculation restricted to band of matrix 5

Ma,b element of the mutation probability matrix M for residue types a and b; 
PAM/MDM matrix derivation (EQ5.4–EQ5.7) 5

ME missing exons; exon level gene prediction accuracy (BEQ10.6) 10

MM aligned match states in HMM alignment; HHsearch method (Figure 6.12) 6

maxov(sobs,spred) total extent in residues of an overlapping pair of secondary structure segments from the set So

for which at least one residue is that state; Sov measure (EQ12.2, EQ12.3) 12

minov(sobs,spred) length of actually overlapping residues of an overlapping pair of secondary structure segments 
from the set So; Sov measure (EQ12.2, EQ12.3) 12

N number of match states in HMM (EQ6.22) 6

N total number of sequences in data used to reconstruct phylogenetic tree 8
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N number of genes/proteins whose expression level has been measured; PCA method 
and distance definitions (EQ16.3, EQ16.5–EQ16.7) 16

N number of objects to be clustered; k-means clustering method 16

N number of t-tests performed (EQ16.26–EQ16.29) 16

N¢ number of different residue types observed in a PSSM alignment column, including gaps; 
PSI–BLAST 6

NX number of sequences in cluster X; UPGMA method (EQ8.15) 8

Ndatabase number of residues in the database sequences; NNSSP method (EQ12.23) 12

Nexp expected number of appearances of a pattern in the N sequences; MEME method 6

Nquery number of residues in the query sequence; NNSSP method (EQ12.23) 12

Ntype number of different components in a sequence (20 for proteins, 4 for DNA) 5

Nseq number of sequences in a multiple alignment/PSSM or pattern search (EQ6.1, EQ6.3, EQ6.10,  
EQ6.11, EQ6.16–EQ6.18, EQ6.38, EQ6.41) 6

NSov number of observed residues in all overlap pairs of set So plus the number of residues in the set Sn; 
Sov measure (EQ12.2) 12

Nl number of units in feed-forward neural network layer l (EQ12.25) 12

n length of a sequence or the total summed length of all sequences in a database that is being 
compared with a query sequence of length m (EQ5.30, EQ5.34, EQ6.11) 2,5

n number of mutations at a given site in a sequence; Poisson correction 8

n number of codons used to define the normalized coding potential R(xm...xm+3n;1); 
ORPHEUS method (EQ10.6) 10

n number of repeat measurements of xA (BEQ16.1, EQ16.19–EQ16.21) 16

n index of the SOTA network node Sn (EQ16.17, EQ16.18) 16

nA number of repeat measurements of xA (EQ16.22–EQ16.25) 16

nA number of sequences in intermediate alignment A (EQ6.40) 6

ngap length of a gap in an alignment gap penalty score (EQ5.13–EQ5.15, EQ5.18-23, EQ5.27, EQ6.8) 5,6

na number of times the ath component occurs in a sequence; SEG method (BEQ5.2, BEQ5.4–BEQ5.7) 5

ni(k) the number of occurrences of base k in the F(j) of daughter nodes j of internal node i; 
parsimony method (Figure 8.14) 8

nident(R(x,y), A(x,y)) the number of identical alignment columns in pairwise alignments R(x,y) and A(x,y); 
COFFEE scoring function (EQ6.38) 6

Ænl the vector of all nl,b occurrences of residue type b in PSSM alignment column l (EQ6.16–EQ6.18) 6

nb1b2b3b4b5a
the number of times the pentamer b1b2b3b4b5 followed by nucleotide a occurs in the training data; 
GeneMark method (EQ10.1) 10

nu(a) number of occurrences of base a at position u in an alignment of a signal sequence (EQ10.7) 10

nu,a number of residues in PSSM alignment column u that are of type a (EQ6.1, EQ6.10, EQ6.11, EQ6.16–6.18) 6

nu,a number of emissions from HMM state u of residue type a observed in the training data (EQ6.25, E6.27) 6

nu,a number of times residue type a is found at position u in the pattern located in the other 
(Nseq; 1) sequences; GIBBS method (EQ6.41) 6

O1 offspring 1 from a generation of clustering; greedy permutation encoding method (EQ16.14, EQ16.15) 16

P fraction of aligned sites whose two bases are related by a transition mutation; K2P model (EQ8.11) 8
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PSEG probability of occurrence of a sequence based on its complexity; SEG method (BEQ5.7) 5

Psplice splicing efficiency; SplicePredictor method (EQ10.10) 10

P(x) probability of observing the entire sequence x from an HMM (EQ6.34–EQ6.36) 6

P(a|low)NN fractions of the low-TC nearest neighbors with a central residue in the a-helical state; NN method 
(Figure 12.19) 12

Pnc(x1x2x3x4x5) the probability of finding the pentamer x1x2x3x4x5 of sequence x in a noncoding region; 
GeneMark method 10

P(a|b1b2b3b4b5) the probability of the sixth base of a dicodon being a given that the previous five bases in 
the sequence were b1b2b3b4b5; GeneMark method (EQ10.1) 10

P1(a|x1x2x3x4x5) P(a|b1b2b3b4b5) for coding reading frame 1 with a immediately following sequence x pentamer 
x1x2x3x4x5; GeneMark method (EQ10.2) 10

Pnc(i|x1x2x3x4x5) P(i|x1x2x3x4x5) for a noncoding region of sequence; GeneMark method 10

P(nc) the a priori probability of the noncoding model; GeneMark method (EQ10.3) 10

P(3) the a priori probability of the coding frame 3 model; GeneMark method (EQ10.3) 10

P(3 | x) the probability that model 3 applies given that we have sequence x; GeneMark method (EQ10.3) 10

P(x | 3) the probability of obtaining sequence x given that model 3 applies; GeneMark method (EQ10.3) 10  

P(Si = s) probability of the secondary structural state of the ith residue being s (EQ12.6, EQ12.7, EQ12.10, 
EQ12.11, EQ12.13) 12  

P(Sj =s | x̂ ) probability of the secondary structural state of the ith residue being s given that the sequence 
contains residues  x̂ (EQ12.6, EQ12.8, EQ12.10, EQ12.12, EQ12.13, EQ12.20) 12

P1 parent 1 of a generation of clustering; greedy permutation encoding method (EQ16.13) 16

Ps,a propensity of residues of type a to occur in proteins in structural type s (EQ12.4, E12.23, E12.24) 12

P¢s,a log-likelihood form of the propensity of residues of type a to occur in proteins in structural 
type s (EQ12.5) 12

p p-distance, the proportion of alignment positions with different residues aligned (EQ8.1) 8

p modified significance level used in multiple testing with the Bonferroni correction (EQ16.26) 16

pa proportion of amino acid type a in a sequence/database (also known as background residue 
frequencies) (EQ5.1–EQ5.3, EQ5.10, EQ5.12, EQ5.38, EQ6.4–EQ6.7, E6.11–EQ6.14, EQ6.28–EQ6.32) 
(EQ12.4, E12.5, E12.20, E12.21) 5,6,12

pa background residue frequency of residue type a when not in the pattern; GIBBS method (EQ6.41) 6

p(t) fraction of different sites between two related sequences after a time t; Jukes–Cantor model (EQ8.6) 8

pa
database frequency of occurrence of residue type a in the database sequence; NNSSP method (EQ12.22) 12

pa
query frequency of occurrence of residue type a in the query sequence; NNSSP method (EQ12.22) 12

pi modified significance level for use in multiple testing for the ith test (EQ16.27–EQ16.29) 16

pN proportion of nonsynonymous mutations observed in a sequence alignment (BEQ7.2) 7

PS proportion of synonymous mutations observed in a sequence alignment (BEQ7.1) 7

ps,a proportion of residues in database that are in secondary structure state s and are amino 
acid type a (EQ12.4, E12.5, E12.20, E12.21) 12

Pyi
probability of getting observed pattern starting at yi in the y th sequence by chance given the ra; 
GIBBS method 6

Pk,m probability of obtaining the pattern starting at position m in sequence k given the qi,j; MEME method 6
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PE predicted exons; exon level gene prediction accuracy (BEQ10.7) 10

Q fraction of aligned sites whose two bases are related by a transversion mutation; K2P model 
(EQ8.11) 8

Q3 measure of the accuracy of secondary structure prediction 11,12

Qyi
probability of getting observed pattern starting at yi in the y th sequence given the qu,a; 
GIBBS method 6

Q(xm...xm+3n;1) coding potential of an n codon region of sequence starting at base xm; ORPHEUS method (EQ10.6) 10

q(t) fraction of identical sites between two related sequences after a time t; Jukes–Cantor model 
(EQ8.6, EQ8.8) 8

qa base composition of the whole genome for nucleotide type a; ORPHEUS method (EQ10.4, E10.5) 10

qi,j probability in nonrandom model of two residues of types i and j being aligned (EQ5.1, EQ5.2, 
EQ5.8, EQ5.10–EQ5.12) 5

qu,a probability of residue of type a being at position u in the pattern; GIBBS method (EQ6.41) 6

qu,a probability of residues of type a occurring in a PSSM at alignment column u (EQ6.4–EQ6.7,  
EQ6.10–EQ6.16, EQ6.14, EQ6.15) 6

q¢u,a unnormalized set of qu,a for residue type a in PSSM alignment column u as derived using 
Dirichlet mixture density components (EQ6.17) 6

R number of differential expression tests which identify differential expression 16

R transition–transversion ratio 7,8

r uniform mutation rate per sequence site per time unit; distance corrections 8

rc number of components which occur c times in a given sequence; SEG method (BEQ5.3, 
BEQ5.4, BEQ5.7) 5

rAB Pearson correlation coefficient between two samples A and B (EQ16.6) 16

RA rank of measurements relating to condition/sample A; rank-sum test 16

Rn resource of nth SOTA node Sn; SOTA method (EQ16.18) 16

R(xm...xm+3n;1) normalized coding potential of an n codon region of sequence starting at base xm; 
ORPHEUS method (EQ10.6) 10

rAu , Bv
Pearson correlation coefficient for two multiple alignment columns u of alignment A and v
of alignment B; LAMA method (EQ6.37) 6

R1,j jth element of the row vector used in the space-saving dynamic programming method (BEQ5.1) 5

R(x,y) pairwise alignment of sequences x and y in a reference alignment library; COFFEE scoring 
function (EQ6.38) 6

s score for aligning identical k-tuples; FASTA method (EQ5.29) 5

s residue secondary structure state (EQ12.4–EQ12.21, EQ12.23, EQ12.24) 12

s2 variance of a set of data (BEQ16.1, EQ16.19, EQ16.20) 16

s̄̄ not residue secondary structure state s (EQ12.10–EQ12.19, EQ12.21) 12

s substitution score matrix (Figure 5.3, Figure 5.5, Figure 5.6) 5

S overall score of a pairwise sequence alignment (EQ5.2, EQ5.32–EQ5.34) 4,5

S score of a multiple sequence alignment; COFFEE scoring function (EQ6.38) 6

S sum of the branch lengths of a phylogenetic tree; neighbor-joining method 8

S function based on tree structure whose optimal value indicates the optimal phylogenetic tree 8
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S dynamic programming matrix of optimal scores of subalignments 5

Sg minimum HSP score to avoid hit being discarded; BLAST method 5

Si the secondary structural state of the ith residue of the sequence (EQ12.6–EQ12.21) 12

Si(b1b2b3b4b5) score of pentamer b1b2b3b4b5 in the window wi; CorePromoter method (EQ10.9) 10

S(i) the score at an internal node i; parsimony method (Figure 8.14, EQ8.48) 8

Sm current optimal value of S; branch-and-bound method 8

Sn the set of all segments sobs that are not overlapped by a predicted segment of the same state; 
Sov measure 12

ÔÔSnÔÔ number of genes associated with the nth SOTA node; SOTA method (EQ16.18) 16

Snear j the nearest SOM node to the set of expression ratios for gene/protein j; SOM method (EQ16.12) 16

Sn(itn) location of the nth SOM/SOTA node in iteration itn; SOM/SOTA method (Figure 16.16, EQ16.12, 
EQ16.17) 16

So the set of all overlapping pairs of sobs and spred where the segments are the same state; 
Sov measure (EQ12.2) 12

Sacceptor(j) score of an acceptor splice site at sequence position j; GeneSplicer (EQ10.12) 10

Scode(j) scores for a coding region starting at base j; GeneSplicer (EQ10.11, E10.12) 10

Sdonor(j) score of a donor splice site at sequence position j; GeneSplicer (EQ10.11) 10

Snoncode(j) scores for a noncoding region starting at base j; GeneSplicer (EQ10.11, E10.12) 10

Sa(i) minimal cost at the ancestral node when the base i is assigned to it; weighted parsimony (EQ8.49) 8

Sd1(i) minimal cost at daughter node d1 when the base i is assigned to it; weighted parsimony (EQ8.49) 8

S12 sum of the branch lengths of the phylogenetic tree of Figure 8.7B (EQ8.20, EQ8.27) 8

sA standard deviation of the values Xi,A for all i (EQ16.6, EQ16.21–EQ16.25) 16

si standard deviation of the values Xi,A for all A (EQ16.7) 16

sj – i score of the dj – ith diagonal; FASTA method (EQ5.29) 5

sobs the set of observed segments of secondary structure; Sov measure (EQ12.2, EQ12.3) 12

spred the set of predicted segments of secondary structure; Sov measure (EQ12.2, EQ12.3) 12

SAu, Bv
score for aligning column u from intermediate alignment A and column v from intermediate 
alignment B (EQ6.40) 6

s(ai,bj) element of the substitution score matrix s for residue types ai and bj (EQ5.16–EQ5.18, EQ5.26, 
EQ5.27, EQB5.1) 5

sa,b element of the substitution score matrix s for residue types a and b (EQ5.2, EQ5.3, EQ5.7, EQ5.11, 
EQ5.12, EQ5.31, EQ6.2, EQ6.3, EQ6.5, EQ6.6, EQ6.13) 5,6

Si,j element of the dynamic programming matrix of optimal scores of subalignments (Figures 5.16–5.27) 5

Sn sensitivity of gene prediction—the fraction of the bases in real genes—that are correctly 
predicted to be in genes (BEQ10.1) 10

Sov a measure of the accuracy of secondary structure prediction at the structural segment level 
(EQ12.2) 11,12

Sp specificity of gene prediction; the fraction of those bases which are predicted to be in genes 
that actually are (BEQ10.2) 10

T current best score; X-drop method 5
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T threshold minimum value of k-mer score; BLAST method 5

T tree topology; maximum-likelihood method (EQ8.51) 8

t probability of transition between HMM states (EQ6.22, Figure 6.9) 6

t evolutionary time period; Poisson correction 8

t time since ancestral sequence diverged into two related sequences; Jukes–Cantor model (EQ8.6, EQ8.8) 8

t test statistic of t-tests (EQ16.20–EQ16.22, EQ16.24) 16

T tree topology matrix; least-squares method (EQ8.36, EQ8.37) 8

TN number of distinct fully resolved unrooted tree topologies with N leaves (EQ8.33) 8

t(u,v) transition probability from state u to state v in HMM (EQ6.23, EQ6.24, EQ6.28–EQ6.35) 6

TN number of true-negative residue predictions (of gene prediction BEQ10.3, BEQ10.5) 
(of secondary structure, EQ12.1) 10,12

TP number of true-positive residue predictions (of gene prediction BEQ10.1–BEQ10.3, BEQ10.5)  
(of secondary structure EQ12.1) 10,12

u position in an alignment (EQ5.1, EQ5.2) 5

u state in HMM (EQ6.23, EQ6.24, EQ6.28–EQ6.35) 6

U score at the maximum of the extreme value distribution of ungapped local alignment scores 
(EQ5.30, EQ5.32, EQ5.33) 5

U matrix; principal component analysis (EQ16.3, Figure 16.7) 16

Ui sum of the evolutionary distances from sequence i to all others; neighbor-joining method 
(EQ8.24, EQ8.28) 8

V matrix; principal components analysis (EQ16.3, Figure 16.7) 16

v0 measure of confidence in the accuracy of the standard deviation of the data s (BEQ16.1) 16

vu(xi) probability of most probable HMM path ending at state u having emitted all residues 
of sequence x up to xi; Viterbi algorithm (EQ6.28, E6.29) 6

Vu(xi) log-odds score of most probable HMM path ending at state u having emitted all residues 
of sequence x up to xi; Viterbi algorithm (EQ6.30) 6

Vi,j element of the matrix used for efficient affine gap sequence alignment (EQ5.19–EQ5.24, EQ5.26) 5

w weight matrix; least-squares method (EQ8.38, EQ8.40) 8

wi sequence window in CorePromoter method 10

wyi
probability used for selecting new start position yi of the pattern in the sequence y; GIBBS method 6

wu(a) weight matrix term for base a at position u in a signal sequence (EQ10.7) 10

wu
(l) bias of the uth unit of neural network layer l (EQ12.25) 12

w¢xi
Nexp ¥ probability of pattern starting at position xi in sequence x; MEME method 6

wR(x,y) weight assigned to pairwise sequence alignment R(x,y) in a reference library; COFFEE scoring
function (EQ6.38) 6

wx
u weight assigned to sequence x at alignment column u in a PSSM (EQ6.9) 6

wij weights applied to distances measured between sequences i and j; least-squares method (EQ8.34) 8

wij weights applied to mutations; parsimony method (Figure 8.49) 8

wuv
(l) weight applied to the signal arriving at the vth unit of neural network layer l from the uth unit 

of the previous layer (BEQ12.1–BEQ12.4, BEQ12.6, BEQ12.8) 12
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W length of sequence pattern searched for; GIBBS method 6

Wsignal measure of the three upstream and four downstream bases surrounding the splice site; 
SplicePredictor method (EQ10.10) 10

Wi,j element of the matrix used for efficient affine gap sequence alignment (EQ5.25, EQ5.26) 5

WE wrong exons; exon level gene prediction accuracy (BEQ10.7) 10

x score of an ungapped local alignment (EQ5.32–EQ5.34) 5

x a sequence 6,10

x̂ region of sequence x (EQ12.6, EQ12.10, EQ12.12, EQ12.13) 12

x̂1 part of the regionof x̂ sequence x (EQ12.7–EQ12.9, EQ12.14) 12

X arbitrary constant added or multiplying an alignment score 5

X maximum allowed drop in score below current optimal value along a diagonal; X-drop method 5

X measured expression level of a gene/protein in expression measurement analysis (EQ16.1) 16

X matrix of measured expression level ratios of a gene/protein in different samples/conditions 
(EQ16.3, Figure 16.7) 16

xA measurement of expression of gene in condition/sample A (EQ16.19 ) 16

x̄̄A mean of the set of n measurements xA (EQ16.20–EQ16.22, EQ16.24) 16

xi the residue at the ith position in sequence x 5,6,10,12

xi the ith object of N; greedy permutation encoding method 16

xs residue indicating the start of the pattern in sequence x; GIBBS method 6

xu
A residue in the uth column of the xth sequence of intermediate alignment A (EQ6.40) 6

XA set of expression ratios for all genes/proteins i in sample/condition A with respect to 
a control condition (EQ16.6) 16

XA average of the values Xi,A over all i; Pearson correlation coefficient (EQ16.6) 16

Xg maximum allowed score drop below current optimal value during gapped hit extension; 
BLAST method 5

Xj set of expression ratios for gene/protein j in all samples/conditions A with respect to 
a control condition; SOM/SOTA method (EQ16.17, EQ16.18, Figure 16.12) 16

Xu maximum allowed score drop below current optimal value during ungapped hit extension; 
BLAST method 5

Xi,A expression ratio for gene i under condition A with respect to a control condition, 
an element of matrix X (EQ16.5–EQ16.7, EQ16.11) 16

y a sequence 6

yi the residue at the ith position in sequence y of an alignment 5

Ŷ centroid of cluster Y with components Ŷ ; clustering (EQ16.11) 16

z test statistic for the z-test (EQ16.19) 16

a weighting parameter for the observed data when including pseudocounts (EQ6.12, EQ6.15) 6

a rate of nucleotide substitution per unit time; Jukes–Cantor model (EQ8.5, EQ8.8) 8

a rate of nucleotide transition substitutions per unit time; K2P model (EQ8.10) 8

a false-positive rate, also called significance level (EQ16.26–EQ16.29) 16

b rate of nucleotide transversion substitutions per unit time; K2P model (EQ8.10) 8
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b scaling parameter for total number of pseudocounts in an alignment column of a PSSM 
(EQ6.11, EQ6.12, EQ6.15) 6

b weighting of pseudocounts; GIBBS method (EQ6.41) 6

b1 constant in expression measurement analysis (EQ16.2) 16

b2 constant in expression measurement analysis (EQ16.2) 16

bi sum of all bi,a for all residue types a in Dirichlet mixture density component i (EQ6.16–EQ6.18, 
Figure 6.2) 6

b
Æ

i the vector formed with all the bi for all Dirichlet mixture density components i (EQ6.16–EQ6.18) 6

bi,a amino acid composition for residue type a in Dirichlet mixture density component i
(EQ6.16–EQ6.18, Figure 6.2) 6

G Gamma functions used to define Beta functions B used in Dirichlet mixture density component 
PSSMs (EQ6.18) 6  

D column vector of patristic distances; least-squares method (EQ8.36) 8

DGt free energy of transfer of residue from hydrophilic to hydrophobic environment 11

DGC difference in fractional GC content between the 50 bases upstream and the 50 bases downstream 
of the splice site; SplicePredictor method (EQ10.10) 10

DU difference in fractional U content between the 50 bases upstream and the 50 bases downstream 
of the splice site; SplicePredictor method (EQ10.10) 10

d(sobs,spred) term which accounts for flexibility in the definition of secondary structure segment boundaries; 
Sov measure (EQ12.2, EQ12.3) 12

dab difference in amino acid composition between query and database sequences using 
Chou–Fasman propensities; NNSSP method (EQ12.24) 12

dij modified distances between sequences; neighbor-joining method (EQ8.28) 8

dYZ proximity of clusters Y and Z; clustering methods (EQ16.8–EQ16.10) 16

dx
u,b has value 1 if sequence x has residue type b at alignment column u of a PSSM, 

and value 0 otherwise (EQ6.9) 6

Dij patristic distance between sequences i and j; those calculated directly from a phylogenetic tree; 
least-squares method (Figure 8.5, EQ8.35) 8

Dwuv
(l) correction applied to wuv

(l) during the training of a neural network (BEQ12.1, BEQ12.2) 12

e momentum term in training a neural network (BEQ12.2) 12

e additive random error term in expression measurement analysis (EQ16.1, EQ16.2) 16

ee square matrix; principal component analysis (EQ16.3, Figure 16.7) 16

l parameter of the extreme-value distribution of ungapped local alignment scores 
(EQ5.30–EQ5.34, EQ6.6, EQ6.7, EQ6.13) 5,6

l index of a layer of a feed-forward neural network (EQ12.25, EQ12.26, BEQ12.1–BEQ12.8) 12

L constant used in the PAM/MDM matrix derivation (EQ5.4–EQ5.6) 5,6

m average value of log[f(xixi+1xi+2)]; ORPHEUS method (EQ10.5, EQ10.6) 10

pa fraction of nucleotide type a in sequence data; HKY85 model (EQ8.12) 8

ra probability of residue of type a when not in the pattern; GIBBS method in the whole dataset; 
GIBBS method 6

s estimated standard deviation of data (BEQ16.1) 16
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s0 standard deviation of prior distribution (BEQ16.1) 16

se standard deviation of additive random error term e in expression measurement 
analysis (EQ16.1) 16

sh standard deviation of additive random error term h in expression measurement analysis (EQ16.1) 16

s2 variance of log[f(xixi+1xi+2)]; ORPHEUS method (EQ10.5, EQ10.6) 10

sv
(l–1) signal sent from the vth unit of the l–1 layer to all units of the l layer (EQ12.25, EQ12.26, 

BEQ12.3–BEQ12.9) 12

h learning rate for neural network parameters (BEQ12.1, BEQ12.2) 12

h multiplicative random error term in expression measurement analysis (EQ16.1, EQ16.2) 16

q the parameters of the Dirichlet mixture density components (EQ6.16) 6

f protein chain torsion angle (Figure 2.6C) 2

y protein chain torsion angle (Figure 2.6C) 2

t learning rate for SOM/SOTA nodes; SOM/SOTA method (EQ16.17, Figure 16.12) 16

w dipeptide bond torsion angle (Figure 2.6B) 2

c actual expression level of a gene/protein in expression measurement analysis (EQ16.1, EQ16.2) 16

W(xm...xm+3n;1) coding quality of an n codon region of sequence starting at base xm; ORPHEUS method 10
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3¢¢ end The end of a nucleotide sequence according to
convention.

5¢¢ end The beginning of a nucleotide sequence according to
convention.

aa-helix One of the regular (secondary) structures found in
proteins. The structure forms a helix, with one turn of the
helix formed by 3.6 residues. The helical structure is
stabilized by backbone hydrogen bonds between the
carbonyl oxygen of residue i and the backbone -NH of
residue i+4.

ab initio approach Computational prediction of protein
structure based entirely on energy calculations without
using templates of generic protein folds.

accepted mutations Mutations of the genomic nucleotide
sequence that are preserved and passed on to subse-
quent generations.

acceptor splice sites The 3¢ intron side and the 5¢ side of an
exon where the spliceosome binds. Generally this is the
beginning of an exon. See also donor splice sites.

activators DNA-binding proteins that increase the rate of
transcription initiation.

adaptive systems Systems that modify themselves in
response to a stimulus in a beneficial way to the system.

additive tree A tree where the evolutionary distance between
any two nodes is equal to the sum of the branch lengths
that connect them.

affine gap penalty The affine gap penalizes insertions or
deletions using a length-independent and a length-
dependent term. The normal gap penalty assigns a fixed
gap penalty for each gap. The affine gap penalty
promotes gap extension rather than the introduction of
new gaps.

Akaike information criterion (AIC)  A measure of the good-
ness of fit to an estimated statistical model, based on
entropy.

alternative splicing Occurs in pre-mRNA and is a post-
translational process. Pre-mRNA contains introns as well
as exons. The removal of certain bits of pre-mRNA is
called RNA splicing. During this process different exons
can be kept or removed to give different products that
can have different functional implications. This is called
alternative splicing.

amino acid(s) (residue)  A molecule containing one or more
amino groups (-NH2) and one or more carboxyl groups
(-COOH). There are 20 standard amino acids found in

proteins. The different amino acids have the same main
chain and different side chains.

amino acid sequence The order of amino acid residues along
a protein chain, defined as starting at the N-terminal and
proceeding to the C-terminal..

amino terminus (or N terminus)  The N-terminal end of a
polypeptide chain. The start of the protein chain, usually
on the left side when the sequence is written out.

amphipathic helix A helix that has both a hydrophilic and a
hydrophobic side. This type of helix will lie close to or
form part of the protein’s surface. Due to the periodicity
of 3.6 residues per helical turn, a residue pattern having
hydrophobic residues at positions i, i+4, i+7, and so on
with hydrophilic residues in between.

analogous enzymes Enzymes that are similar in function but
are not evolutionarily related.

ancestral state The property (which could simply be the
base at a specific sequence site) that is postulated to have
occurred in the common ancestor of a group of organ-
isms or proteins.

anchor points One or more residues in the conserved region
of the protein that is being modeled, which are used as
anchors when searching for insertions.

annotation In the context of database entries and genome
sequences this term is used to refer to additional infor-
mation, often based on the comparison of the key data
with other similar data, or the results of applying predic-
tion methods to the key data.

annotation (sequence or genome)  Additional information
about the sequence or genome, such as may have been
obtained from experiment or by similarity analysis.

anticoding strand See noncoding strand.

anticodon The three nucleotides in a tRNA molecule that
bind (by base pairs) to a codon (formed by three
nucleotides) in an mRNA molecule, enabling the mRNA
to code for the specific amino acids via the tRNA.

antigen An object that causes the production of an antibody.

antigen-binding site The parts of an antibody that bind to
antigens, usually specific for certain antigens.

antisense strand See noncoding strand.

bb-strand One of the commonly occurring regular structures
in a protein. The backbone of a b-strand is almost fully
extended (in contrast to the a-helix structure in which
the backbone is coiled to form a helical structure).
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bb-turn A regular protein secondary structure found between
b-strands or a-helices.

backbone Amino acids connect together to form the protein
chain. The atoms that compose the uninterrupted chain
are referred to as the backbone atoms. Each amino acid
contributes its -N-CaC(O)- atoms to the backbone.

back-propagation method A technique for determining
suitable parameters of a feed-forward neural network by
analysis of the origin of the output errors obtained
during training.

backward algorithm A method for obtaining the total log-
odds score for all possible hidden Markov model paths
that emit a particular sequence. Also used in
Baum–Welch expectation maximization.

balanced training When methods are parameterized by
training against a selected set of data, this term refers to
using a set that is not biased; so, for example, the
balanced training of a globular cytoplasmic protein
secondary structure prediction method would involve a
set of data whose secondary structure content mirrors
that found in globular cytoplasmic proteins.

balloting probabilities (neural network)  A method of esti-
mating the confidence of the prediction based on the
difference between the two highest output signals.

base One of the building blocks of nucleic acids. DNA
contains four bases: adenine, thymine, cytosine, and
guanine. In RNA, thymine is replaced by uracil.

base sequence The order of bases present in a long chain
linear polymer of DNA or RNA.

Baum–Welch expectation maximization A method used to
estimate the parameters of a hidden Markov model using
data from unaligned sequences.

Bayesian information criterion (BIC)  A method, based on
Bayesian statistics, for comparing models of evolution
to see which is the most appropriate for a given dataset.

Bayesian methods A group of methods of statistical infer-
ence based on the Bayesian approach in which observed
data are combined with prior information or supposition
about the system, resulting in the posterior probability
distribution.

biased mutation pressure The tendency observed in some
DNA sequences, due to a variety of evolutionary factors,
to accept point mutations preferentially for certain
bases, revealed as a substitution rate bias when
comparing homologous sequences.

biclustering Simultaneous clustering of data on the basis
of two separate characteristics, for example in gene
expression data clustering by both gene and sample
conditions.

bifurcating A topological property of phylogenetic trees:
which results from each ancestor producing two
offspring, so that each internal node has three branches,
one connecting to the ancestor of the node and the other
two to the two offspring.

BLOSUM matrix An amino acid substitution matrix for
protein sequence analysis whose derivation and proper-
ties are described in Section 5.1.

Bonferroni correction This is a correction applied to the
significance level used when simultaneously carrying out
multiple statistical tests, in an overzealous attempt to
reduce the number of false positives, usually resulting in
many false negatives.

bootstrap analysis A method of estimating the support
present in the sequence data for the topological features
of a phylogenetic tree, in which many randomized selec-
tions of the data are examined to determine their
support for each split.

bootstrap interior branch test A technique that is used to
obtain an estimate of the uncertainty in the branch
lengths of a phylogenetic tree obtained from a set of
data.

branch Within a phylogenetic tree each branch connects two
nodes, which represent a descendant and its immediate
ancestor.

branch-and-bound A computer method to find the best
solution to a problem by keeping the best solution found
at any particular time. At any point where different ways
to obtain a solution can be sampled the best one is kept
and the others not explored.

branch swapping The general term for a group of methods
that are used to explore alternative phylogenetic tree
topologies by exchanging regions of a tree.

Caa  models/chain Representation of protein structure by
linking the Ca atoms of the backbone. This gives a simple
but good overview of the folds of the proteins.

C-terminal The end of a protein chain which has a free
carboxylate group.

carboxy terminus (or C terminus)  The C-terminal end of an
amino acid chain. Usually, when writing out a peptide
sequence the C-terminal end is located on the right.

cDNA Complementary DNA, which is the DNA that comes
from the mRNA template.

chaining A method to obtain more data from available data
by rules that construct inferences.

chloroplasts Organelles, found generally in plants, which are
involved in photosynthesis.

chromatography A method to separate and analyze complex
mixtures of components, such as proteins.

cis conformation The conformation of a molecule in which
two specified chemical groups are on the same side of a
reference line, which may be a covalent bond. There are
frequently one or more alternative conformations, often
energetically favored. See trans conformation.

clade A term used in cladistics that refers to the group of all
descendants that originate from a single common
ancestor. Examples are the major animal groups of
reptiles, mammals, etc.
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cladogram A form of phylogenetic tree that represents the
evolutionary relationships present in the data in a purely
qualitative manner.

cluster analysis The process by which observed data are
organized, or clustered, into meaningful groups, on the
basis of common properties.

clustering method A method that builds up a tree by
starting from a small number of sequences (or any other
objects) then adds another sequence (or object) at each
consecutive step.

coding The process of encoding the amino acids from the
nucleotide codons.

coding strand The DNA strand that has the same nucleotide
sequence as the transcribed mRNA (apart from T being U).
Also known as a sense strand.

codons A codon is formed by three nucleotides. There are 64
codons that code for the amino acids.

codon-pair See dicodon.

co-expressed Genes transcribed at the same time and under
similar conditions.

comparative, homology, or knowledge-based modeling The
prediction of a three-dimensional protein structure
based on the sequence alignment to a protein with an
experimentally solved three-dimensional structure.

complementary Used in the context of two strands of
nucleic acid when their base sequence is such that a full
set of Watson–Crick base pairs can be formed and the
two strands can interact to form the standard DNA
double-helical structure.

complete linkage clustering Opposite to single linkage clus-
tering. The distance between groups is calculated as the
distance between the most outlying pair of objects in the
groups.

condensation reaction The formation of a single product
from two or more reactants with the accompanying
formation of water.

condensed tree A phylogenetic tree whose branch structure
illustrates the degree of support present in a set of trees
obtained by bootstrap analysis of a set of data, in that
branches with relatively less support are removed.

confidence index A numerical measure of the degree of
confidence that can be placed in a prediction, often at
the level of individual bases or amino acids.

conformation A three-dimensional arrangement of atoms
forming a particular molecule.

conformational flexible docking A method of docking two
molecules where at least one molecule can change its
conformation. Usually, in protein–ligand docking it is the
smaller ligand that can be flexible.

conformers Corresponding structures that differ only in the
values of their torsion angles.

conjugate gradient method An iterative method used in

energy minimization for finding the nearest local
minimum of a function, based on first derivatives.

consensus features Features, especially but not exclusively
of a sequence, that are conserved fully or with high
frequency.

consensus sequence A sequence deduced from a sequence
alignment that highlights the conserved nucleotides or
amino acids.

consensus tree A phylogenetic tree whose branch structure
illustrates the degree of support present in a set of alter-
native trees obtained from the data, in that branches
with relatively less support are removed.

convergent evolution Independent evolution of similar char-
acteristics in organisms that do not have to be closely
related. For example, wings in the different animals that
fly, ranging from insects to bats. Structures resulting from
convergent evolution are termed analogous. 

core promoter A promoter is a region of DNA sequence that
allows for the start of gene transcription. A core promoter is
the minimal part of the promoter needed for transcription.

data A collection of measurements, observations, variables,
and other such components.

data classification Grouping of data according to a partic-
ular descriptor.

data warehouse A special type of database allowing for easy
access from a wide community.

decision tree A method for deciding between several alter-
native final outcomes in which the overall decision is
separated into a number of linked simpler tests. Each of
these tests will have a limited set of mutually exclusive
possible results, some of which may lead directly to final
outcomes, while others will lead to further tests. The
connections between the set of tests can have the
appearance of a tree, leading to the name used for this
general technique. For any given data there will be a
single path leading from the initial test through the deci-
sion tree to the final outcome.

degenerate Used in the context of the genetic code to
describe the existence of alternative codons that are used
to represent many of the amino acids, so that a given
protein sequence can be represented by many different
DNA sequences.

degrees of freedom A measure of the number of freely
varying parameters that a system has.

denatured The state of a protein after breaking of non-cova-
lent interactions by chemical or physical intervention.

dendrogram A tree-like diagram showing the relationship
between groups of components.

deoxyribonucleic acid (DNA)  Long polymer molecules
made up from a large number of deoxyribonucleotides.
DNA usually exists as a double-stranded molecule held
together by base-pairing between the nucleotides on
opposing strands.

deoxyribonucleotides The nucleotide building blocks of DNA.
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deterministic finite-state automaton This is a model of a
system involving a limited set of states and a limited set of
transitions between states. At any instant the system will
exist in one of the set of states, and may then subse-
quently move to another state connected to the first by
one of the transitions. The transition used will be selected
in a nonrandom way that is related to the system data.

diagonals (dynamic programming pairwise sequence
alignment)  Two sequence segments that are aligned
without gaps are represented during traceback of a pair-
wise sequence alignment dynamic programming matrix
along a diagonal.

dichotomous See bifurcating.

dicodon A six-nucleotide segment of a sequence used in gene
detection methods, which could represent two sequential
translated codons, but may not be in the coding frame
and may even be in a noncoding sequence region.

dihedral angle In proteins, dihedral angles refer to the back-
bone and side-chain atoms. There are three backbone
dihedral angles: f, (Ci–1-Ni-Ca,i-Ci), y (Ni-Ca,i-Ci-Ni+1), and
w (Ca,i-Ci-Ni+1-Ca,i+1). The f and y dihedral angles estab-
lish the secondary structure of the protein chain. Also
called the torsion angle.

directed acyclic graph (DAG)  A form of decision tree in that
cyclic topology is not allowed, so that any test is encoun-
tered at most once.

directional information The information about the protein
secondary structure at residue j carried by a residue at
another position, usually defined as independent of the
type of residue found at j.

Dirichlet distribution density A statistical distribution that
is the conjugate prior of the multinomial distribution,
and is therefore useful in representing missing data in
models of biological sequences.

Dirichlet mixture A linear combination of Dirichlet distribu-
tion densities sometimes used in obtaining parameters
of profile HMMs when the models include different
amino acid preferences at different sequence positions.

discriminant analysis A technique for classifying an obser-
vation into one of a set of predefined classes.

distance A measure or score of difference. (See evolutionary
distance for a specific example related to sequence data.)

distance correction A term used to describe any of the modi-
fied formulae used to correct the p-distance to a more
accurate estimate of the evolutionary distance between
two aligned sequences.

distributed database A database controlled by a central
database management system but the storage place can
be distributed between multiple computers located in
the same location, or dispersed over a network of
connected computers.

divergent evolution The process by which a single ancestor
or ancestral gene is modified over time into two or more
descendants that have an increasing degree of dissimi-

larity as the time since they diverged increases. Also
called adaptive evolution.

divide-and-conquer method A specific method that can be
used in sequence alignment algorithms. The problem to be
solved is split into smaller, independently solvable entities.
The solutions are then combined to give the overall result.

DNA microarray technology A set of known oligonu-
cleotides complementary to protein-coding sequences is
attached to a solid surface and used to probe different
samples for the presence of these sequences. This tech-
nique enables the measurement of gene expression
under different conditions or in different tissues. Also
referred to as DNA chip or gene array technology.

DNA repeats DNA sequences that occur multiple times
throughout the genome. Some repeats occur more often
than others. Their function is often poorly understood,
although some are implicated in various diseases.

DNA replication The process of synthesizing a duplicate
genomic DNA molecule from an existing one; in cellular
life forms this must occur prior to cell division.

docking The computational method of identifying suitable
structural complexes in which two or more molecules,
often a ligand and a protein, are bound together.

domain In the three-dimensional structure of globular
proteins this term refers to a part of the structure that
appears to form a relatively self-contained unit. It often
(but not always) consists of a contiguous segment of
peptide chain, in which case the domain may be able to
exist in a stable structure independent of other parts of
the protein.

domain In the context of the tree of life or classification of
life, see superkingdom.

donor splice sites Sites in the nucleotide sequence that mark
the boundary between exons and introns. 5¢ splice
sites—those at the 5¢ end of the intron—are called donor
sites. See also acceptor splice sites.

dot-plot A method for comparing two sequences, repre-
sented along the sides of a two-dimensional matrix, in
which the values of the matrix elements are related to the
similarity score of the two residues. Often only identical
residues give a non-zero score, which is represented by a
dot, so that stretches of identical sequence appear in the
plot as diagonal lines of dots.

downstream sequences This term refers to anything after
the 3¢ or C-terminal end of a particular sequence, often
relating to specific sequence signals that have some
functional connection to the particular sequence. See
also upstream sequences.

dynamic programming algorithms A set of algorithms effec-
tive for certain general optimization problems. In bioinfor-
matics, the technique is almost exclusively used to calculate
the best (highest scoring) alignment between protein or
nucleotide sequences using a two-dimensional matrix.

E-value See expectation value.

edge See branch.
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emergent properties Functions and properties, usually at
the level of the complete system, that result from the
interaction of parts of the system.

emission  In the context of hidden Markov models this is the
output which results from some of the states. In a protein
profile HMM these emissions produce a protein sequence.

end state The non-emitting state in a hidden Markov model,
which must be the final state visited by all valid paths and
terminates the path.

energy gradient The first derivative of the energy with
respect to system coordinates.

energy minimization Method for locating the coordinates at
which the system is in an energy well.

epitope The part of a molecule or system that is recognized
by an antibody.

Euclidean distance The distance between two points in
Euclidean space, defined by the square root of the sum of
squared differences for each of the system coordinates.

eukarya See eukaryotes.

eukaryotes Single-cell or multi-cell organisms with cells that
have a membrane-bound and distinct nucleus. The word
means “true kernel.”

evolutionary distance An estimate of the amount of evolu-
tion that has occurred since the last common ancestor of
two species or sequences, for the latter often measured
in units of numbers of mutations per sequence site or,
less often, in units of time.

exclusive classification A classification of data into groups
that are nonoverlapping, so that each item of the data
belongs to just one classification group.

exon A segment of the gene sequence that once transcribed
remains part of the mRNA molecule that is ultimately
translated into protein. See also intron.

expectation value A statistical measure for estimating the
significance of alignments between a pair of sequences
when one sequence (the query sequence) has been
submitted for a homology search against a sequence
database. The smaller the E-value, the better the chance
that the sequence that matched the query sequence is
truly related.

expected score See expectation value.

expressed The adjective applied to a gene or protein indicating
that it has been transcribed or synthesized, respectively.

expressed sequence tag (EST)  A fragment of a gene around
300 nucleotides long that has been sequenced from a
cDNA.

eXtensible Markup Language (XML)  A general and extremely
flexible format for structured data or documents.

external nodes or leaves These occur at the end of a branch
in a phylogenetic tree, and usually correspond to an
organism or nucleotide/protein sequence that is in the
observed data.

extrinsic classification A classification of data in which each
item of data is labeled with the group it belongs to, and
this information is used to teach the system to distinguish
between the groups. See also intrinsic classification.

extrinsic methods A term applied to describe a gene detec-
tion method which includes information based on other
known sequences than just the sequence under analysis,
typically using sequence similarity. See intrinsic
methods.

false discovery rate (FDR)  The fraction of predictions in a set
of multiple pairwise tests that are false positives, given
that some of the tests indicate significant effects.

false negative A prediction that an object does not have a
particular property or does not belong to a particular
group when in fact it does.

false negative (sequence analysis)  Missed homologous
sequences in a database search because the match
criteria are set too high or the homologous sequence is
very distantly related.

false positive A prediction that an object has a particular
property or belongs to a particular group when in fact it
does not.

false positive (sequence analysis)  Sequences that have been
reported as similar to the query sequence during a data-
base search but in fact are unrelated.

family-wise error rate (FWER)  The probability of one or
more false positives in a set of multiple pairwise tests (or
a family of tests).

feedback control A mechanism to maintain equilibrium in a
system. A signal is sent back to a system component to
control the output of the system. For example, if the
amount of an enzyme increases to high levels, a signal
will be sent back to stop the production of this enzyme at
the genetic level.

feedforward control A mechanism to maintain equilibrium
in a system by reacting to the changes of the system in a
predefined manner.

Felsenstein zone In a phylogenetic tree reconstruction,
when there are some long branches, certain reconstruc-
tion methods are susceptible to supporting an incorrect
topology in which these long branches occur next to
each other. The region of tree space where this occurs is
called the Felsenstein zone.

field (databases)  One unit of data that is part of a database
record.

finite-state automata (FSA)  In the context of this book, a
model system that accepts input and responds to it by
moving in a deterministic way from the current state to
another state chosen from a limited set of alternatives.

fold See protein fold.

fold recognition method Methods that predict the three-
dimensional structure of a protein from its amino acid
sequence by selecting the best matching fold from a set
of unique folds.
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force field A set of algebraic terms that represent the
enthalpic energy of a molecular system as a function of
atomic coordinates.

forward algorithm A method for obtaining the total log-
odds score for all possible hidden Markov model paths
that emit a particular sequence. Also used in
Baum–Welch expectation maximization.

fractional alignment difference The uncorrected distance
measured from a sequence alignment as the fraction of
sites that have a difference in base or residue.

frameshift A change in the reading frame of mRNA, often a
consequence of the insertion or deletion of a single
nucleotide, resulting in a change to the protein product
downstream from the mutation.

free energy The total energy of a system that can be
converted to work.

free insertion modules (FIMs)  A special component of
hidden Markov models used by the SAM package, which
allows the sequences that flank the region that aligns to
the profile to be modeled without affecting the score.

fully resolved tree Refers to a phylogenetic tree in which
every internal node is linked to three other nodes: one
ancestor and two descendants in the case of ultrametric
trees. See also partially resolved tree.

gamma distance An evolutionary distance between two
sequences, which includes a correction for the variation
of mutation rate at different sequence sites.

gamma distribution A standard probability distribution
based on the gamma function, used in some models of
evolution to model the variation of mutation rate at
different sequence sites.

gap Position in one sequence of a sequence alignment where
no residue is shown, and where with respect to the other
sequence(s) the alignment proposes that there has either
been a deletion or an insertion in another sequence.

gap extension penalty A penalty when adding gaps to an
existing gap, so that more than one residues are not
aligned or are aligned to gaps.

gap opening penalty Penalty for starting a gap in a sequence
during alignment.

gap penalty A numerical penalty (a score) for introducing a
gap between the residues of one sequence with respect
to the second sequence in order to align similar residues.

gene A region of a DNA (or RNA in some viruses) that codes
for one or more molecular products.

gene duplication The process when a gene is duplicated and
inserted into another part of the genomic DNA. This
need not necessarily involve only a single gene, and can
occur at all scales up to complete genome duplication.

gene expression The production of a gene’s molecular prod-
ucts such as mRNA and encoded proteins.

gene loss During evolution some genes may lose their func-
tion and be lost from genomes by deletion of the gene or

by mutations that prevent transcription.

general time-reversible model (known as GTR or REV)  A
model that is used in modeling nucleotide sequence
evolution and allows for different rates for every type of
base substitution and a specific base composition.

general transcription initiation factors Auxiliary factors
(proteins) that are involved in the transcriptional initia-
tion process along with RNA polymerase.

generation (genetic algorithms)  In a method using a genetic
algorithm, this is a set of objects that represents possible
solutions to a problem, for example multiple alignments,
and which is used together with a set of rules to obtain a
subsequent generation in such a way that the new gener-
ation hopefully contains better solutions to the problem.

genetic algorithms Computational methods that attempt to
solve a problem by a random process that involves simu-
lating the processes of evolution and survival of the
fittest.

genetic code The relationship between the three-nucleotide
codon and the corresponding amino acid or stop signal,
resulting from the interaction of tRNA with the mRNA in
a ribosome during protein synthesis. This code allows us
to readily translate a protein-coding nucleotide
sequence into the corresponding protein sequence.

genetic distance (sequences)  A measure of dissimilarity
between sequences arising from evolution.

genome The total hereditary blueprint of an organism
encoded in its DNA (or RNA in some viruses).

genomic imprinting The process by which the gene activity
of the parents can be transferred to the offspring, espe-
cially by the pattern of methylation of genomic DNA.

global alignment Sequence alignment spanning all the
nucleotides or amino acids in the sequences that have
been submitted for alignment. See local alignment.

greedy permutation encoding method This is a clustering
method in which the first k data in an ordered list
initialize the k clusters, and clusters are further refined by
the ordered addition of subsequent data.

guide tree Guide trees are used in some multiple sequence
alignment methods to determine the order of adding
sequences to construct the multiple alignment. The
guide tree is obtained from the distances between
sequences calculated from pairwise alignments.

harmonic approximation A standard method of approxi-
mating the energetic cost of the displacement of a system
from an optimum situation. The energy is assumed to be
proportional to the square of the displacement.

hashing Producing values (hashes) for accessing data. The
hash is a number generated from a string of text, and in
many cases enables faster analysis of the string.

hidden layer (neural network)  In neural networks hidden
layers are additional layers between the input and output
layers. The user does not see the signals of these hidden
layers, but they transform the input layer signal and feed
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into the output layer, having a significant effect on the
network output.

hidden Markov model (HMM)  Probabilistic methods that
can be used to analyze biological sequences and other
sequential data, shown in this book applied to problems
such as profile alignment and secondary structure
prediction.

hidden neural network (HNN)  A model that is a combina-
tion of features of a neural network and a hidden Markov
model.

hierarchical clustering A classification technique in which a
series of data partitions are defined, classifying data into
successively smaller and more similar groups. See parti-
tional classification.

hierarchical likelihood ratio test (hLRT)  A method, based
on likelihoods, for comparing models of evolution to see
which is the most appropriate for a given dataset.

high-scoring segment pair (HSP)  A term used in BLAST
sequence database searching to describe a short gapless
segment of a pairwise sequence alignment that scores
sufficiently highly to be identified as a potential nucleus
of a significant alignment of two sequences.

homologous (homology)  Protein or DNA sequences are said
to be homologous if they have been derived from a
common ancestor. Homology implies an evolutionary
relationship and is distinct from similarity.

homology modeling See comparative modeling.

homoplasy Observed similarity that is not due to common
ancestry, as opposed to the case of homology.

horizontal gene transfer (HGT)  The transfer of a gene (prob-
ably as part of a larger segment of the genome) from one
species to another.

hybridize The formation of base pairs between two comple-
mentary regions of DNAs, used in many experimental
techniques such as gene expression arrays to identify
identical or extremely similar segments of nucleic acids.

hybridization The formation of base pairs between two
complementary regions of DNAs, used in many experi-
mental techniques such as gene expression arrays to iden-
tify identical or extremely similar segments of nucleic acids.

hydropathic profile A graph representing the hydropathic
character of a protein sequence, often used in identifying
possible transmembrane structures.

hydrophilic By contrast to the term hydrophobic this refers
to polar or charged amino acids that like to be
surrounded by other polar or water atoms.

hydrophobic In a molecular context, hydrophobic molecules
tend not to occur in aqueous environments, preferring
nonpolar environments. In particular, certain amino acids
prefer to be surrounded by other hydrophobic residues
rather than water or other polar groups. See hydrophilic.

hydrophobic moment A vector quantity for each amino acid
based on hydrophobic scales.

hydrophobic scales Numerical scales that classify the
hydrophobicity of amino acids.

identity (sequence alignment)  In a sequence alignment this
refers to when two aligned residues are identical.

indels An acronym representing insertions and deletions in
one sequence or structure with respect to another
sequence or structure.

indexing techniques A set of methods that generate an index
of the locations of certain features within a data
sequence. In many instances using such an index results
in significantly faster analysis of the data.

informative sites In the parsimony method of phylogenetic
tree reconstruction, this refers to alignment positions
where the combination of observed bases will show a
preference amongst the alternative tree topologies under
consideration. Such alignment positions are used to
identify the tree topology supported by the data.

input (neural network)  In neural network methods the
data/information that is given to the input layer units.

input layer (neural network)  The first layer of units in a
neural network, which takes input from the data and
sends output signals to subsequent layers for further
processing.

integral proteins Also known as integral membrane
proteins. These are proteins that are largely embedded in
a membrane.

intermediate alignment An alignment of a subset of all the
sequences, which is created during the process of
constructing a multiple alignment using progressive
methods.

intermediate sequences Protein sequences that link two
related but evolutionarily very diverged sequences
together. If two homologous sequences are so diverged that
direct comparison does not show their homology, an inter-
mediate sequence that is homologous to both can be used
to detect the homology between the first two sequences.

internal node In a phylogenetic tree an internal node has
more than one branch, and corresponds to an ancestor
of one or more leaves.

intrinsic classification A classification of data that depends
only on the data itself, i.e., is unsupervised as compared
with extrinsic classification, in which the data have
group labels.

intrinsic methods A term applied to describe a gene detec-
tion method that only includes information based on the
sequence under analysis. See extrinsic methods.

intron A segment of the gene sequence that, following tran-
scription into mRNA, is spliced out before the final
mRNA molecule is translated into protein. See also exon.

invariable sites In phylogenetic tree methods applied to
sequence data, this refers to those alignment positions
which have identical bases/residues in all sequences. In
multiple alignments these are often referred to as fully
conserved sites.
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isochores A large (>300 kb) DNA segment in a genome that
is homogeneous in base composition. For example,
regions of DNA that are rich in A and T bases.

iterated sequence search (ISS)  Searching the sequence data-
base for homologs using regular expressions from
usually an initial alignment and then using these to
search for more distantly related sequences.

iterative alignment Stepwise alignment of multiple
sequences, usually in the first instance the most homolo-
gous sequences are aligned first, followed by the alignment
of the next most homologous sequence to the preceding
two, and so on until all of the sequences are aligned.

jury decision When combining the results of several predic-
tion methods this refers to taking the majority prediction
from a set of independent predictions, by analogy to the
way jury voting works in a court of law. In the case of the
PHDsec method, however, this refers to assigning as the
prediction the state with the highest average signal over
several networks.

k-means clustering A method of grouping data where the
user specifies the number of clusters (k) into which the
data should be grouped.

k-tuple A word (short sequence segment) that is used to
make a hashing in the program FASTA. k refers to the
number of amino acids/nucleotides in the word.

key A method of indexing database data. A primary key is
one that will refer uniquely to each record in a table of a
database.

knowledge-based scoring Scoring based on knowledge-
based potentials, which are derived from statistical
analysis of molecular structures. 

Kohonen network A neural network method for unsuper-
vised object clustering. It uses a self-organizing network
of artificial neurons made up of an array of weights
corresponding to the inputs.

lateral gene transfer (LGT)  See horizontal gene transfer.

learning rate (neural networks)  A parameter that is used to
control the modification of neural network parameters
during training, affecting the speed and efficiency of the
training.

least-squares method (phylogenetic trees)  A technique
which constructs a tree by minimizing the sum of
squares of the differences between the evolutionary
distances as measured on the tree and as determined
directly from the alignments.

leucine zipper A protein helical motif consisting of a set of
consecutive leucines repeated every seven amino acids.

linear gap penalty A score applied in sequence alignment
problems to account for insertions and deletions. The
score is directly proportional to the length of the align-
ment gap.

links Pointers in a database entry to relevant entries in the
same or other databases. These may simply be the iden-
tifiers of the database entries or may be hyperlinks that
can retrieve the material in one click.

local alignment An alignment of the most similar regions of
a nucleotide or amino acid sequence ignoring other
segments of the sequences. See global alignment.

log-odds ratio The logarithm of the ratio of calculated likeli-
hoods of two alternatives, often alternative hypotheses,
on the basis of observed data. Used as a measure of the
relative preference of one alternative to the other.

logo A visual representation of a set of aligned sequences
that indicates the positional preferences as given by
information theory.

long-branch attraction See Felsenstein zone.

loop a-helices and b-strands are connected to each other by
structural elements called loops. These are also referred
to as coils, but loops often have some definite structure
while coil regions are unstructured.

low-complexity regions Low-complexity regions are
sequence segments that have a relatively simple struc-
ture, often composed of only a few different types of base
or amino acid. They are often removed from protein
sequences before a database search as they can result in
misleading hits.

lowess normalization A method often used to smooth the
data and remove intensity-dependent variation in data
from a two fluorescent dye gene expression experiment.

machine-learning methods A general term describing
computation techniques that include methods for deter-
mining optimal parameterization.

Mahalanobis distance A definition of distance between two
sets of measurements that takes account of the statistical
distributions of the measurements.

main chain See backbone.

majority-rule consensus trees A form of consensus tree in
which all branches are shown that are supported by a
majority (i.e., >50%) of the trees.

Markov chain The series of discrete steps in a Markov model
as the system changes its state.

Markov chain Monte Carlo (MCMC)  A numerical technique
often used to calculate complex integrals, in which the
function is sampled at random points, with each usually
being a small move from the previous point. The points
are obtained using a Markov process, and form a Markov
chain.

Markov model A Markov model is a probabilistic model of a
system in which it can occur in many (possibly an infinite
number of) states, and at each step can move to another
state according to probabilities that only depend on a
limited number of previous moves. In the simplest
Markov models (first order) the probability of the transi-
tions only depends on the immediately previous state.

mass spectrometry An experimental technique that can be
used to identify molecules based on their mass and charge.

Matthews correlation coefficient A number between –1 and
+1 that measures the degree of correlation between two
sets of data.
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maximum likelihood (ML)  The name for a set of procedures
used to generate phylogenetic trees, but also a general
statistical procedure for determining the best value of a
parameter as that with the greatest probability of
resulting in the observed data.

maximum parsimony A technique for phylogenetic tree
reconstruction based on determining the tree that
requires the least number of substitutions to explain the
sequence data.

maximal segment pair (MSP)  A term used in the BLAST
sequence alignment algorithm to describe a short
gapless alignment of two sequences that has a high score,
and may be used as the starting point of a complete
alignment.

messenger RNA (mRNA)  The RNA that is produced by tran-
scription of a gene and which will be translated into a
protein.

microarray A solid surface array of known DNA probes (or
other molecular probes) that is used to identify DNA in
samples or to measure their expression.

midnight zone The level of protein sequence identity where
sequence comparison fails to detect structural similarity.

minimum evolution The concept that in the absence of any
other evidence it is preferable to choose the model that
requires the least number of evolutionary events (such as
mutations).

minimum evolution method A method of phylogenetic tree
reconstruction that is based on the principle of
minimum evolution.

mitochondria Eukaryotic organelles involved in energy
production, which contain their own genomic DNA.

model surgery A term used to describe modifying the struc-
ture of a hidden Markov model on the basis of prelimi-
nary results, to improve its accuracy when used for a
particular set of data. A typical model change involves
altering the number of sets of match, delete, and insert
states for a profile HMM.

modules A term used in systems biology. Modules are
components of subsystems of a whole system, which
retain some identity when isolated.

molecular clock A measure of time for nucleotide substitu-
tions per year.

molecular configuration The connectivity between the
constituent atoms of a molecule, defined by the covalent
bonds of the molecule.

molecular dynamics A method of simulating the motion of
molecular systems, which involves repeatedly solving the
equations that approximate the motion of the atoms in
the system over a very short time period.

molecular mechanics A general term used to describe the
set of techniques that use energy calculations of molec-
ular systems to estimate their properties.

monophyletic Entities that share a common ancestor,
whether it be a sequence or an organism.

Monte Carlo method (molecular mechanics)  A method in
which the current system conformation is slightly modi-
fied in a random way to produce a new conformation,
which may be accepted or rejected according to the
difference in energy of the old and new conformations.
Often, the system properties are obtained by suitable
averaging over the conformations.

motifs A structurally or a sequentially conserved element in a
protein, which can correlate with a particular function.

multifurcating tree A phylogenetic tree with one or more
internal nodes having more than three branches.

multiple alignment An alignment of more than two
nucleotide or amino acid sequences.

mutation A change in the genomic nucleotide sequence.

mutation probability matrix A scoring matrix used in align-
ments based on the probability of a nucleotide/amino
acids mutating in a given period of time.

n-terminus The end of a protein chain which has a free
amino group.

native structure or native state The natural, usually low
energy, structure of a protein.

nearest-neighbor interchange (NNI) method A phylogenetic
tree reconstruction search method for generating a new
tree topology from an existing one.

nearest-neighbor methods A classification algorithm based
on assigning a known character of a nearby example to
the item with unknown characters. When used in
secondary structure prediction this means that the struc-
ture of residue i is assigned according to the structural
state of the closest homolog with known structure.

negative selection  A term used in the theory of evolution to
describe the situation when a mutation occurs that has a
deleterious effect for the organism, reducing its repro-
ductive success, ultimately resulting in the mutation
disappearing from the population.

neighbor-joining (NJ)  A method for reconstructing phyloge-
netic trees in a stepwise fashion based on identifying
neighboring sequences and on the principle of minimal
evolution.

nested genes Genes that are situated in the introns of other
genes.

neural network method A machine-learning method that
was inspired by the structure of neurons in the brain, and
consists of nodes (neurons) which receive signals,
process them, and transmit signals.

Newick or New Hampshire format A specific representation
of phylogenetic trees that can be read by a computer.

Newton–Raphson method A minimization method that uses
both first and second derivatives of the energy function.

node (neural network) See unit.

noncoding RNA (ncRNA) genes RNA that does not code for
a protein.
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noncoding strand  This is the complementary strand to the
coding DNA strand, and in transcription is used as the
template in synthesizing the mRNA. Also known as the
antisense strand or anticoding strand. 

nonlinearity A property of a system in which its response does
not simply depend on the sum of all input stimuli, but may
be qualitatively different in different stimulus ranges.

nonredundant database A database that has no duplicate
entries.

nonsynonymous change or mutation A substitution or
other mutation of protein-coding nucleotide sequence
that alters the amino acid sequence of the resulting
protein.

nucleotide The chemical building block of DNA or RNA.

nucleotide sequence The order of a linear polymer of
nucleotides in a molecule of DNA or RNA.

null distribution The distribution of values of the test
statistic expected if the null hypothesis is true.

null model  In the context of profile HMMs with log-odds
scoring this is the alternative model to the protein
sequence family, and represents sequences which are
not related to the profile. The choice of null model has a
major impact on the performance of the profile HMM. 

object-oriented database A database where the information
is represented as objects used in object-oriented
programming.

odds ratio The ratio of odds of an event occurring in one
model with respect to the odds of the same event occur-
ring in another model, giving an easily interpretable
measure of the preference for different models.

one-tailed test A statistical test that is explicitly concerned
with determining if the test statistic is significantly
greater or significantly less than the null hypothesis. See
two-tailed test.

ontologies A set of field-specific descriptors enabling the
sharing of same concepts and definitions for specific
terms. One of the most common ontologies is the gene
ontology, which provides a controlled vocabulary for
genes.

open reading frames (ORFs)  A sequence segment that
consists solely of a set of codons encoding for a protein.

operational taxonomic units (OTU)  One of the taxa (organ-
isms, sequence, and so on) whose data are used to recon-
struct a phylogenetic tree.

operon A segment of a genome which consists of several
consecutive genes whose expression is controlled as a
single unit. These are transcribed into a single mRNA
molecule that codes for several proteins. 

optimal alignment The optimal alignment of two sequences
is the highest-scoring alignment out of many possible
alignments sampled by the alignment program. The
score is calculated using one of the scoring systems
based on mutation matrices and gap penalties.

ordinary differential equations (ODEs)  A set of equations
involving one independent variable and derivatives (but
not partial derivatives) with respect to it.

orthogonal encoding A structure of certain neural networks
that take sequence information as their input signal.
Each unit in the input layer corresponds to exactly one
type of base or amino acid at a certain position in the
sequence window. In this method every window posi-
tion must be represented by at least as many units as
there could be different types of base/residue in the
sequence.

orthologous sequences (orthologs)  Similar sequences or
genes in different species that arose through speciation
and mutation and not from gene duplication.

outgroup A small set of sequences or other data is known to
be relatively evolutionarily distant from the main data.
When the complete set of data is used to reconstruct a
phylogenetic tree, the root will be known to lie on the
internal branch connecting the outgroup to the rest of
the tree.

output A term in systems biology for a particular response of
a system after a defined simulation of the system.

output expansion (neural network)  A structure used in some
secondary structure prediction neural networks where
the output from the sequence-to-structure network
corresponds to more than just the central residue of the
window. This output subsequently becomes the input to
the structure-to-structure network.

output layer In neural networks the layer of the network that
gives the output.

overall alignment score A measure of accuracy for the whole
alignment.

overlapping classification In contrast to many forms of clas-
sification, in overlapping classifications an object can
belong to more than one group at the same time, so that
the defined groups are not distinct.

p-distance A measure of the dissimilarity of two aligned
sequences which is the fraction of aligned residues which
differ between the sequences.

paired-site tests A statistical test in which each value in one
set of data is to be compared with a specific value in the
other set. Such tests are applicable when the pairs of
measurements are correlated in some way, such as
because they were taken simultaneously.

pair information Used in some protein secondary structure
prediction methods such as GOR, this refers to the
secondary structural preferences for a given amino acid
type that arise as a consequence of a specific amino acid
type occurring at a particular sequential separation. 

pairwise alignment An alignment between two nucleotide
or protein sequences.

PAM matrix An amino acid substitution matrix for protein
sequence analysis whose derivation and properties are
described in Section 5.1.
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paralogous genes A set of genes in the same genome, which
has similar sequence (and has arisen usually by gene
duplication) but different function due to mutation and
sequence changes after duplication.

paralogs Related genes (or proteins) in the same genome.
The related genes have arisen by gene duplication.
Usually the gene duplication event is followed by inde-
pendent mutations and sequence changes in the dupli-
cated genes, resulting in a set of paralogous genes.

parameters (systems biology)  In systems biology a term to
describe variables associated with systems interactions
such as the concentration and reaction rates of indi-
vidual components.

partially resolved tree Refers to a phylogenetic tree in which
one or more internal nodes are linked to four or more
other nodes. See also fully resolved tree.

partition (classification)  A term used to describe the defini-
tion of a set of groups and group membership, which is
obtained from a classification of data.

partitional classification An intrinsic classification method
in which a single set of exclusive groups is defined and
the data are assigned to individual groups. See hierar-
chical clustering. 

path  In the context of hidden Markov models the path is the
ordered series of model states from the start to the end
state and any emissions from these states. In a protein
profile HMM these emissions produce a protein sequence.

patristic distance A distance that is the sum of branch lengths
of a path between a pair of species or sequences (taxa).

Pearson correlation coefficient A measure of the linear
dependency between two variables.

percentage/percent identity The percentage of residues that
are identical between aligned sequences.

percent similarity The percent of residues that have similar
physiological properties between aligned sequences.

perceptron The most simple form of a neural network,
consisting of only an input and an output layer with no
hidden layers.

per-comparison error rate (PCER)  The fraction of false posi-
tives in a set of multiple pairwise tests.

per-family error rate (PFER)  The expected number of false
positives in a set of multiple pairwise tests given a
threshold level of significance.

phosphatidylinositol-OH-3 kinases (PI3 kinases)  A family
of enzymes that phosphorylate the 3 position hydroxyl
group on the inositol ring of a phosphatidylinositol. They
are associated with many diseases.

phosphorylation A chemical reaction that results in the
addition of a phosphate to a molecule.

phylogenetic tree A diagram that represents the evolu-
tionary relationships of sequences and/or species.

phylogenomics An area of research that combines phyloge-
netic tree analyses for a large number of sequences from

a set of related genomes in order to gain an under-
standing of evolutionary relationships that might not be
apparent from individual trees.

plasmids A self-replicating circular DNA molecule separate
from the bacterial genome. It is not essential for cell
survival under normal conditions.

Poisson corrected distance An evolutionary distance
measure between two sequences, which takes account of
multiple substitutions at the same sequence site.

polyadenylation A posttranslational modification of a
nucleotide sequence that leads to the addition of a
number of adenosine nucleotides to the 3¢ end of mRNA.

polytomous See multifurcating tree.

positive selection  A term used in the theory of evolution to
describe the situation when a mutation occurs that has a
beneficial effect for the organism that improves its repro-
ductive success, ultimately resulting in the mutation
being preserved in the population

position-specific scoring matrix (PSSM)  A scoring scheme
for sequence alignment, which uses specific scores at
individual positions along the sequence. Typically used
for aligning protein sequences to a representation of a
family of domains. See Section 6.1 for details.

positive-inside rule An observation used in the prediction of
transmembrane helices. The rule states that there are more
positive charges in the cytoplasmic part of the protein than
the extracytoplasmic segments. This aids the prediction and
localization of the N and C termini of the membrane protein.

post-order traversal In phylogenetic tree reconstruction by
parsimony a technique whereby all nodes of the tree are
processed by initially processing all subtrees recursively
and then processing the root of the tree.

potential energy (molecular mechanics)  The energy as calcu-
lated by a force field that is associated with the conforma-
tion of the system, and does not include the kinetic
energy associated with atomic movement or entropy.

potential energy function See force field.

potential energy surface A surface representation of poten-
tial energy of a system.

prediction confidence level (PCL)  A measure of confidence
in a prediction.

prediction filtering The stage after a prediction has been
made for each residue or base in which the predictions
are modified, typically to impose minimal lengths for
certain features. For example, when predicting a-helices
often a minimal length of four residues is imposed.

primary structure See amino acid sequence.

principal components analysis (PCA)  A mathematical tech-
nique that in some situations, such as the analysis of gene
expression experiments, can be used to identify major
features of variation in the data.

prior distribution A term used in Bayesian analysis, it describes
an assumed probability distribution for the system.

Glossary

744

End matter 6th proofs.qxd  19/7/07  12:17  Page 744



profile  See position-specific scoring matrix (PSSM).

profile HMM A hidden Markov model that represents the
common features of a set of (usually protein) sequences
and is used to align further sequences.

progressive alignment A multiple alignment approach in
which the sequences are initially clustered and then added
one by one in decreasing similarity to the alignment.

prokaryotes Organisms with cells that do not have a
membrane-bound distinct nucleus.

promoter A sequence motif close to the start site of tran-
scription (TSS) and therefore the place where initiation
of transcription starts.

protein backbone See backbone.

protein families Protein families are a group of proteins that
are recognized as having the same ancestral protein and
which have retained similarities in their sequences and
functions through divergent evolution.

protein fold The fold refers to the topology a three-dimen-
sional domain of a protein sequence adopts as it folds.

protein fold recognition See threading.

protein kinases Enzymes that phosphorylate proteins.

proteome The complete set of proteins in a cell, tissue, or
organism.

protocols (systems biology)  The interactions between sepa-
rate modules.

pseudocounts A term for nonexistent data, which are added
to real data in an attempt to overcome problems due to a
lack of real data. Such data are added at a risk, as they can
unduly bias the results unless great care is taken.

pseudo-energy functions Functions that are derived based
on statistical analysis of proteins, but do not correspond
with individual energy terms in the way that force field
terms do.

pseudogene A genomic DNA sequence that looks like a gene
sequence coding for a functional protein but contains
sequence changes that prevent transcription or translation.

purifying selection  see negative selection.

Q3 A measure of prediction accuracy used in secondary
structure prediction, which for the example of a-helices
is the fraction of correctly predicted residues out of all
actual a-helical residues.

quaternary conformation The structural arrangement of
two or more interacting macromolecules.

random error Error arising from random effects, as opposed
to systematic error.

rank-sum test See the Mann–Whitney U test.

reading frames A nucleotide sequence is read in sets of three
nucleotides (codons) to produce specific amino acids.
The reading frame specifies the sequence in which the
codons will be read. Different reading frames will give
different amino acid products.

reconciled trees A form of phylogenetic trees that represents
the differences between gene family trees and the
phylogeny of the species that the genes are taken from.

record A term used in databases, where a record corresponds
to a row.

redundancy In systems biology, the presence of more than
one mechanism that can take over a function if one
mechanism fails.

redundant A term used in the context of databases to refer to
a database having more than one identical item, such as
the same sequence present in two or more records.

regulatory element Elements that regulate transcription,
and include promoters, response elements, enhancers,
and silencers.

relational database A database where the data and relations
between these are organized in tables forming a data-
base.

relative entropy (H)  In information theory, this is a measure
of the distance between two probability distributions.

relative mutability Is the number of times each amino acid
has changed divided by the number of occurrences and
the number of times it has been subjected to mutation.

reliability See confidence index.

repressors Proteins that bind to particular sites on the DNA
to prevent specific gene transcription.

response function (neural network)  The algebraic function
that is used by a node in a neural network to convert the
received signals into an output signal.

ribonucleic acid (RNA)  One of the two major forms of
nucleic acid molecules, the other being DNA. The main
difference between a DNA and an RNA is the sugar
moiety of the nucleic acids; in DNA it is the deoxyribose
and in RNA it is a ribose.

ribonucleotides The nucleotide building blocks of RNA,
which consist of a base (purine or pyrimidine) linked to a
ribose sugar.

ribosomal RNA (rRNA)  Specialized RNAs that are core
molecules of the ribosome.

RNA capping The addition of a 5¢ cap structure to the
growing RNA transcript.

RNA secondary structure The RNA molecule does not exist
as a linear peptide but folds into a structural unit called
the secondary structure.

RNA splicing The removal of introns from nascent translated
RNA to produce the mature mRNA.

Robinson-Foulds difference  see symmetric difference.

robustness A system-level phenomenon. Robustness indi-
cates adaptability of a system to change.

root or last common ancestor (phylogenetic trees)  The most
recent common ancestor of all the species (taxa) that
comprise the tree.
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rooted tree A phylogenetic tree in which the last common
ancestor is identified and the direction of time is defined
for all branches.

root mean square deviation (RMSD)  Defined as the square
root of the sum of squared deviations of the observed
values from the mean value, divided by the number of
observations.

rotamer Short for rotational isomer. It describes a single
protein side-chain conformation as a set of values, one
for each dihedral-angle degree of freedom.

sample classifier A method that classifies data into groups, and
is used to identify the group to which an unknown sample
belongs. A practical application of this might be to identify
whether a sample comes from a cancerous patient.

Sankoff algorithm One of several dynamic programming
algorithms proposed by David Sankoff, of which two are
described in this book: one for predicting RNA structures
and another for phylogenetic tree reconstruction using
parsimony.

scatterplot A diagram that can show graphically associations
between two variables.

score A measure obtained in different ways by different
methods, and which is intended to correlate in some way
with the predictive value, confidence, and/or signifi-
cance. There are many different types of scores.

scoring schemes/matrices (sequence alignment)  A table of
values representing the scores to be applied when
aligning two nucleotides or amino acid residues. These
scores are used to calculate alignment scores in
sequence comparison methods.

secondary structure Secondary structure refers to the local
conformation of a protein. Secondary structures can be
regular or irregular. The regular conformations are
formed by hydrogen bonds between main-chain atoms,
the most common ones being the a-helix and the
b-strand.

self-information In the context of the GOR protein
secondary structure prediction method, this is the infor-
mation a residue carries about its own structural state.

self-organizing maps (SOMs)  Unsupervised machine-learning
methods designed to learn the association between groups
of inputs. Often used in clustering techniques.

self-organizing tree algorithm (SOTA)  A classification
method that monitors the divergence of the data in each
partition group, and subdivides any group whose degree
of divergence exceeds a specified threshold. One of the
few classification methods that can automatically deter-
mine an appropriate number of groups to use based on
the data.

semiglobal alignment An optimally scoring alignment of two
sequences that involves the complete length of one
sequence but only part of the other. The unaligned end(s)
of the other sequence are not included in the score.

semi-Markov model, HMM with duration, or explicit state
duration HMM A hidden Markov model in which the

duration of the system in a particular state (or model
section) is determined by a separate method. This is typi-
cally used to overcome the length dependence that is built
in to certain HMMs, in order to give models that produce
suitable distributions of exon lengths, for example.

sense strand The DNA strand that has the same nucleotide
sequence as the transcribed mRNA (apart from T being U).

sensitivity (As applied to predictive methods.) This is the
fraction of real positives that are predicted to be positives.

separating hyperplane A term that relates to support vector
machines, and describes the boundary between two
distinct classification groups of data once the data have
been transformed.

sequence-to-structure network The initial section of some
secondary structure prediction neural networks, which
takes the protein sequence as the input and produces an
output that is fed as input to a structure-to-structure
network, which produces the final prediction.

serial analysis of gene expression (SAGE)  An experimental
method for the measurement of cellular transcipts.

Shine–Dalgarno sequence The sequence upstream of a
prokaryotic gene where a ribosome binds.

shuffle test A test that estimates the accuracy of matches in
fold recognition (threading) techniques. In this method
the score for a match is compared to that of a randomly
shuffled sequence.

silent states A term used in hidden Markov models to
describe those states that do not emit a residue.

similarity (sequence alignment)  A measure of sequence rela-
tionship from an alignment. Similarity is measured based
on matched positions of identical or related amino acids.

simple sequences See low-complexity regions. Regions in
protein sequences that contain a string of simple amino
acid composition with overrepresentation of a few
residues.

simulated annealing A technique in molecular mechanics
that is designed to improve the chance of detecting the
global energy minimum by initially using high tempera-
tures, such as 1000 K, to generate new conformations
and then reducing the temperature to trap the system in
a minimum.

single linkage clustering A measure of the distance between
clusters, which is defined as the shortest distance
between items in a group.

singleton sites (phylogenetic trees)  A term used in the parsi-
mony method to describe an alignment position at
which only one sequence has a different base/residue
from all the others. Such positions cannot distinguish
between alternative tree topologies, but will have an
effect on the estimation of branch lengths.

singular value decomposition (SVD)  A method based on
matrix algebra, which can be used to transform data to
identify independent components that can be sepa-
rately analyzed.
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Sippl test A test to assess the accuracy of potentials used in
threading algorithms. The Sippl test, named after
Manfred Sippl, calculates a score by aligning the target
sequence to all the possible folds in a database without
insertion of gaps, including the fold of the target
sequence itself. The scores for all the alignments are eval-
uated and the native score is expressed in terms of stan-
dard deviations.

softmax (neural networks)  A function that is sometimes
applied to the signals from the output layer of a neural
network to make them sum to 1, enabling interpretation
of the signals as probabilities.

Sov A measure for assessment of secondary structure predic-
tion methods. This measure uses secondary structure
segments rather than individual residues as in Q3.

spacer unit In neural network prediction programs, a spacer
unit in the input layer is used to represent the absence of
a residue (i.e., a gap) at that position in a sequence.

speciation duplication inference (SDI)  A method of deter-
mining the root of a phylogenetic tree based on the iden-
tification of gene duplication and speciation events.

speciation event A term used for the point at which the popu-
lation of an existing species divides into two separate
groups that subsequently diverge into separate species.

species tree A phylogenetic tree representing the evolu-
tionary relationship between species.

specificity (As applied to predictive methods.) Usually this is
the fraction of real negatives that are predicted to be
negatives. However, in the case of some gene prediction
methods this measure has been redefined as the fraction
of all correct predictions that are true positives.

splice variants Alternative mature mRNA resulting from
different combinations of exons, which result from
cutting out different sets of introns, sometimes also
cutting out some exons.

split A division of a phylogenetic tree into two parts (subtrees)
by cutting one of the tree branches. There will be as many
different splits of a given tree as there are branches.

star decomposition A method of reconstructing phylogenetic
trees, which begins with a single internal node connected
to all leaves, and by successive steps removes pairs of
leaves or a leaf and internal node to create another internal
node, until the tree consists only of bifurcated nodes.

star tree (phylogenetic tree)  A tree in which all the taxa are
connected to a single central internal node, such as is
sometimes the starting point for tree reconstruction
methods such as neighbor-joining.

start state The non-emitting state in a hidden Markov
model, which must be the initial state visited by all valid
paths and begins the path.

state (hidden Markov model)  A component of a hidden
Markov model, which in sequence models might corre-
spond to aligning two residues at a particular alignment
position (a match state). States are connected by a set of
transitions and may have a set of possible emissions.

state variables Parameters in a system biology simulation
that are under external control, such as temperature.

steepest descent method A technique of function minimiza-
tion in which the function gradient is calculated and used
to identify the direction to move over the function surface.

step-down Holm A method for modifying the significance
level used in a set of statistical tests, which aims to
reduce the incidence of false positives.

step-up Hochberg A method for modifying the significance
level used in a set of statistical tests, which aims to
reduce the incidence of false positives.

stepwise addition A technique of generating a phylogenetic
tree by adding the data one at a time to generate progres-
sively larger trees with increasing numbers of external
nodes until all the data are present.

steric hindrance Repulsive interactions between atoms of
the same molecule caused by the two atoms being too
close together.

strict consensus tree A form of consensus tree in which
branches are only shown which are supported by all of
the trees. 

Structured Query Language (SQL)  A relational database
management computer language.

structure-to-structure network The final section of some
secondary structure prediction neural networks, which
takes the output of the sequence-to-structure network
as the input and produces the final secondary structure
prediction. (In some methods this output is further
processed to a final reported prediction.)

suboptimal alignment An alignment that has a score that is
very near to the optimal alignment. In implementations
allowing overlap with the optimal alignment this will indi-
cate regions of the alignment that have several possible
alignments. Implementations that prevent overlap with
the optimal or other suboptimal alignments will identify
alternative regions of the sequences that are similar.

substitution groups A set of residues that are found to often
be substituted for each other in an alignment. Such
groups are used in some sequence pattern identification
methods.

substitution matrix A matrix containing the information on
the frequency of mutation of one residue to another.
Widely used substitution matrices are the PAM and the
BLOSUM matrices obtained by statistical analysis of
observed mutations.

subtree A part of a phylogenetic tree obtained by cutting one
of the branches. See split.

subtree pruning and regrafting (SPR)  A heuristic search
algorithm used in reconstruction of phylogenetic trees. It
works by breaking off part of the tree and connecting it to
another part of the tree.  If it finds a better tree, then this
new tree is used as a starting tree for further cycles of SPR.

suffix The final section of a sequence or data string,
including the end.
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suffix tree A representation of a sequence (or in general any
data string) which can be used to efficiently search for
substrings.

sum-of-pairs (or SP)  A specific scoring scheme for multiple
alignments, which assigns a score to each possible
aligned pair and then adds all the scores together.

superfamily Frequently occurring domain structures found
in unrelated proteins. The best example of this is the TIM
domain.

superkingdom (or domain)  A major classification division of
life, such as the Archaea, Bacteria, and Eukaryota.

supervised learning A type of parameterization of predic-
tion or classification techniques in which a training
dataset is used. The error in the output can then be
determined and used to modify the parameters to reduce
the error.

support vector machine (SVM)  A machine-learning method
that is used to classify data into one of a few alternative
classes, often just two.

symmetric difference A measure of the topological differ-
ence between two trees, defined as the number of splits
present in only one of the two trees.

synonymous mutation A substitution or other mutation of
protein-coding nucleotide sequence that does not alter
the amino acid sequence of the resulting protein.

syntenic region A region of a genome which contains a series
of genes in a similar order to that found in a region of the
genome of a different species, implying that those
regions have a common evolutionary ancestry. (Note
that other definitions are in use in other fields.) 

systematic error Error that results from the experimental
method and relates to all measurements made, such as
due to an instrument being incorrectly calibrated.

t-test A statistical test based on an assumption that measure-
ments are samples of a normal distribution, which is
used to determine if the means of two populations are
statistically different.

taxa (phylogenetic trees)  The group of organisms whose data
are being analyzed and whose evolutionary history is
being reconstructed.

target protein A term used for the protein of unknown struc-
ture that will be modeled based on a homologous protein
of known structure, referred to as the template.

TATA box The TATA box is a short nucleotide sequence that
binds the TATA-binding protein (TBP), which is an
important general transcription factor that is required to
initiate transcription.

template protein The term used for the homologous protein
of known structure that is used in protein structure
modeling as the template for the protein of unknown
structure (the target).

terminator signal A nucleotide sequence signal that causes
the termination of transcription.

tertiary structure The three-dimensional structure of a protein.

test dataset A dataset that is not used as a training dataset to
parameterize a predictive algorithm, but is used to
measure the performance accuracy.

threading (fold recognition)  A protein structure modeling
procedure that involves substituting the side chains of
the query protein at positions along a backbone struc-
ture of each of a set of representative protein folds. Each
structure so generated is scored, the highest-scoring
alignment and fold being predicted to be a good starting
model of the query sequence structure.

torsion angle Also known as the dihedral angle is the angle
between the A-B bonds and the C-D bonds of four atoms
connected in the order A-B-C-D or between two planes
defined as A-B-C and B-C-D. In protein structures
torsion angles are defined to be in the range of –180∞ to
+180∞. The most commonly referred to torsion angles are
those along the backbone between the peptide bonds,
written y and f.

topological families A group of proteins whose three-
dimensional structures have related topologies of
secondary structural elements.

traceback The second part of a dynamic programming
algorithm. In this step the best alignment is determined
by following the traceback arrows from the matrix
element that defines the end of the alignment. The trace-
back arrows indicate which of the three alternative
matrix elements were used in determining the scores in
each matrix element.

training dataset A dataset that is used to parameterize a
predictive algorithm, and for which the predicted prop-
erty is known.

trans conformation Molecular conformation where two
atomic groups are on the opposite sides of a reference
line, which may be a covalent bond, but in other cases
may correspond to a more complex rigid structure. See
cis conformation.

transcription Transcription is the process of producing an
RNA molecule from genomic DNA.

transcription start site (TSS)  The location where transcrip-
tion starts at the 5¢ end of a gene sequence.

transcriptome The total set of transcripts produced by a
specific genome.

transfer function See response function.

transfer RNA (tRNA)  An RNA molecule involved in the
synthesis of peptide chains that is the key component
which embodies the genetic code, in that it binds to an
RNA codon at one end and to the related amino acid at the
other.

transition (1) A nucleotide mutation in which a purine is
substituted by a purine, or a pyrimidine is substituted by a
pyrimidine. See also transversion.

transition (2)  In the context of hidden Markov models a
transition refers to the directed connection between two
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states. There may be several transitions from a given state
with defined probabilities for each transition.

transition/transversion ratio The ratio of the number of
transitions to the number of transversions, either as
observed in a sequence alignment or as proposed in a
model of evolution.

translation The process of decoding the mRNA codons and
using these to synthesize a protein, catalyzed by the
ribosome.

transmembrane proteins See integral proteins.

transposons Segments of DNA sequence that are able to
move from one site in a genome to another site within
the same genome.

transversion A nucleotide mutation in which a purine is substi-
tuted by a pyrimidine, or vice versa. See also transition.

tree bisection and reconnection (TBR)  An algorithm to search
through the space of possible tree topologies in that a
phylogenetic tree is separated into two parts which are
then reconnected at all possible branches. Each new tree is
scored to identify those that are an improved fit to the data. 

tree topology That part of the definition of the structure of a
tree that is only concerned with which nodes are
connected and ignores the branch lengths.

twilight zone When the percentage identity in a protein
sequence alignment falls below about 25%, unless the
sequences are very long the alignment cannot be taken
as clear evidence that the sequences are related. This
region is often referred to as the twilight zone.

two-dimensional gel electrophoresis An experimental
method that is used to separate proteins in two dimen-
sions according to their molecular weight and charge.

two-tailed test A statistical test that is concerned with deter-
mining if the test statistic is significantly different from
the null hypothesis. See one-tailed test.

type I error See false positive.

ultrametric tree This is a rooted additive phylogenetic tree
where the terminal nodes are all equally distant from the
root, implying a constant rate of mutation.

unit (neural network)  A component of a neural network,
which receives input signals from one or more sources,
and uses the input to generate an output signal that is sent
to one or more units or is an output signal of the network.

unrooted tree A phylogenetic tree in which the last common
ancestor has not been identified, so that the direction of
time is uncertain along the branches.

unweighted parsimony A method of reconstructing phylo-
genetic trees in which the score used for alternative trees
is the number of mutations that must be proposed to
generate the data from the tree.

UPGMA An abbreviation for unweighted pair group method
using arithmetic averaging, this is a common method of
clustering used in both phylogenetic tree reconstruction
and as a general data classification technique.

upstream sequences This term refers to anything before the
5¢ or N-terminal end of a particular sequence, often
relating to specific sequence signals that have some
functional connection to the particular sequence. See
also downstream sequences.

URL An abbreviation for uniform resource locator, a tech-
nical term used in the World Wide Web, which gives the
location of a specific page, or other resources.

variable region Structurally or sequentially variable segment,
based on a comparison of homologous proteins.

virus An organism that can only reproduce within the cell of
a host and is the cause of many diseases.

Viterbi algorithm A method for obtaining the most probable
path (that with the highest score) for a hidden Markov
model that emits a particular sequence.

Watson–Crick base pair The structure that occurs in the
standard double-helical DNA structure, in which two
bases—either cytosine and guanine, or thymine and
adenine—interact via hydrogen bonds and are coplanar.
In the case of RNA, adenine pairs with uracil.

weight sharing (neural networks)  A technique used in neural
networks to reduce the number of parameters by using
the same weight parameter for a group of units.

window A sliding segment of a sequence that is analyzed in
a single stage by various programs. Sometimes this is in
an attempt to include the modifying effects of sequen-
tially close residues on properties of the central residue.
It may also be used to determine average properties
across the window.

winner takes all (neural networks)  The method by which the
final prediction of a neural network with several output
layer units is determined to correspond to that unit
which has the largest signal.

wobble base-pairing The ability of a single tRNA to bind to
more than one codon due to different ways the third base
in an anticodon can form hydrogen bonds.

X-drop method A technique in dynamic programming
sequence alignment, which results in faster calculations
by not calculating matrix elements beyond any that have
a score X less than the current best score.

xenologous Xenologous applies to homologous genes
obtained by horizontal transfer of genetic material
between different species.

z-statistic A test statistic that measures the deviation of an
observation from the expected normal distribution
mean in units of the number of standard deviations of
the distribution. Also known as a z-score.

z-test A statistical test based on an assumption of measure-
ments being samples from a normal distribution, which
calculates the z-statistic and uses it to assess the signifi-
cance of the deviation of a measurement from the
expected distribution.

Zvelebil conservation number (Cn)  A score that measures
sequence conservation in an alignment based on physic-
ochemical properties of the amino acids.
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2ZIP method,  453–4, 455F
310-helices,  435

defining, for prediction algorithms,  
464–5

3D-Coffee,  203
3DEE library,  574
3Djigsaw,  563
3D-PSSM,  533, 534F
3¢ end,  6, 12T, 17–18
3-patterns,  217
5¢ end,  6, 12T, 14, 19
–10 motif,  16
16S RNA sequences,  249

evolutionary model selection,  254F, 
255, 256T

phylogenetic analysis,  249, 251, 
255–8, 257F, 258F

–35 motif,  16
123D+ program,  535–6, 536F
a/b-fold proteins,  421F, 423F, 573F, 

574
a-helices,  33–5, 413F

amino acid preferences,  37
Chou–Fasman propensities,  474–5, 

474F, 475F
coiled coil formation,  451, 451F
defining, for prediction algorithms,  

464–5, 466–7
hydrogen bonding,  34, 35F
length distributions,  467, 468F
prediction,  413–14, 428–9, 429F

see also secondary structure 
prediction

based on residue propensities,  
477–8

neural network methods,  501, 
501F

transmembrane proteins,  438, 
439–48

sequence–structure correlations,  
487–8, 487F

transmembrane proteins see trans-
membrane helices

turns, hairpins and loops 
connecting,  36–7

a-lactalbumin,  538–9, 539F
bab repeat,  40B
b-barrels, transmembrane see

transmembrane b-barrels
b-bulges,  463, 465
b-lactamase family,  573F
b-meander,  40B
b-sheets,  34–6, 36F

defining, for prediction algorithms,
465, 465F

transmembrane proteins,  436
types,  35–6

b-Spider,  466, 467F
b-strands,  34–6, 36F, 413F

amino acid preferences,  37
Chou–Fasman propensities,  474–5, 

474F
defining, for prediction algorithms,  

465–6, 466–7
distortions,  463
length distributions,  467, 468F
prediction,  413–14, 428–9, 429F

see also secondary structure 
prediction

based on residue propensities,  
477–8

transmembrane proteins,  
448–51, 450F

variability,  467, 467F
turns, hairpins and loops 

connecting,  36–7
b-turns,  36, 37F, 413F

Chou–Fasman propensities,  475, 
476T

defining, prediction algorithms,  465
prediction,  413–14, 478, 503

p-helices,  435
defining, for prediction algorithms,  

464–5
f angles see under torsion angles
y angles see under torsion angles

A
A (accepted point mutation matrix),  

120
AACC,  214–15, 214F
AAINDEX,  84
AAindex,  476
AAT program,  331T, 332T, 335, 336
ab initio approach, modeling protein 

structure,  522, 523B
accepted mutations,  84
accepted point mutation matrix (A),

120
acceptor splice sites,  18F, 380F, 392
acetolactate synthase (ALS) family,  

259B, 262
activators,  16–17
adaptive systems,  667–8
additive trees,  228–9, 229F, 230
adenosine (A),  6, 6F
affine gap penalty,  127, 128, 133–4, 139
Affymetrix GeneChip® arrays,  602
Akaike information criterion (AIC),  

253–5
ALDH10 gene,  324–5

annotation,  351–2
exon prediction

accuracy,  345, 345–6
different programs,  331–2, 331T, 

333–4, 334F, 335, 336
experimental results compared,  

327, 328F
using related organisms,  336–7

gene structure,  327B
interspecies comparisons,  353, 

353F, 354F
pathway approach to identifying,  

348, 349–50F
promoter prediction,  341, 341T
start codon,  327, 330F

alignment, sequence see sequence 
alignment

Alix, Alain,  475
all a-fold proteins,  421F, 422F, 573F, 574
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Note: Entries which are simply page numbers refer to the main text. Other entries have the following abbreviations
immediately afer the page number: B, box; F, figure; FD, flow diagram; MM, mind map; T, table. 
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all b-fold proteins,  421F, 422F, 573F, 
574

alternative splicing,  19, 380–1
Alu elements,  337B
Alzheimer’s disease,  491
AMAS program,  93
AMBER program,  526, 701
amino acid(s) (residues),  11, 27–33

chemical structure,  28F
conservation, to identify binding 

sites,  586–7, 587F
conservation values (Zpred),  426, 

427F, 428F, 429T
hydrophobicity scales,  437–8, 450, 

475, 477T
peptide bonds,  29–33, 31F
physicochemical properties,  28–9, 

28T, 30F
amino acid propensities,  37, 472–85, 

472FD
see also Chou–Fasman propensities
averaged over sequence windows,  

476–9
derivation and calculations,  473–6
nearby sequence effects,  479–84, 

480F
amino acid sequences,  13, 25, 29

see also protein sequences
evolutionary conservation,  38
short segments with structural 

correlations,  487–8, 487F
amino acid side chains,  28F

modeling,  547–8, 548F, 558–9, 561
physicochemical properties,  28–9, 

30F
torsion angles (c1, c2, etc),  547, 

548F
amino (N) terminus,  29
amphipathic helix,  439–41
amyloidogenic proteins,  486, 487, 

491–2, 492F, 493F
analogous enzymes,  244, 244F
analysis of covariance (ANCOVA),  659
analysis of variance (ANOVA),  659
ancestral states,  226
anchor points,  546, 546F
Anfinsen, Christian,  412, 412F
annotation,  357

automated,  64–5
database,  53
data errors or omissions,  64
gene,  348–52
genome see genome annotation
manual,  65

ANOLEA program,  550–1, 551T
antibiotic synthesis,  643B
antibodies,  381, 555B

modeling,  555–6B
anticoding strand,  11
anticodons,  13–14, 14F

antigen-binding site,  555–6B
antigens,  555B
antisense strand,  11
apoptotic pathway,  681F
approximate correlation coefficient 

(AC),  366B
Arabidopsis thaliana, 328, 330B

gene duplications,  241B
Rha1 gene prediction,  393F
splice sites,  380F, 396
vs rice,  335B

Archaea,  21, 21F
horizontal gene transfer,  246F, 247
sequenced genomes,  324T

architecture
database,  45
network,  676, 677F

Argos, Patrick,  171
ArrayExpress,  58, 606, 611
ArrayExpress Data Warehouse,  58
arrhythmia, cardiac, modeling,  677, 

678F
ATG start codons see start codons
atomic charges,  704
atomic mean force potential (AMFP),  

551
AUG codon,  13, 19, 367
AU (approximately unbiased) method,  

309
average conditional probability (ACP),  

366B

B
backbone (protein),  29, 32

models,  39, 39F
back-propagation method,  497B
backward algorithm,  190–1
bacteria,  21, 21F

see also Escherichia coli; prokaryotes
16S RNA,  249
horizontal gene transfer,  246F, 247
sequenced genomes,  324T

balanced training,  498B
Baldi, Pierre,  191
BAliBase,  92, 93F
balloting probabilities,  501
Barton, Geoff,  206
base-pairing,  7–9, 8F

RNA,  456
wobble,  14

bases,  5–7, 6F
base sequences see nucleotide 

sequences
Baum–Welch expectation 

maximization algorithm,  191–3
Bayesian information criterion (BIC),  

254–5
Bayesian methods,  697–8

dealing with lack of replicates,  657B

phylogenetic tree reconstruction,  
250, 251T, 253, 306–7

Bayes’ theorem,  697–8
Benjamini, Yoav,  659
Berkeley Drosophila Genome Project 

(BDGP),  340, 341T
Betaturns method,  503
biased mutation pressure,  239
biclustering,  649–50, 650F
bidirectional recurrent neural network 

(BRNN),  504, 505F
Bifidobacterium longum, 348, 350F
bifurcating (branching) pattern,  226–7
binding sites, protein see protein 

binding sites
biochemical pathways see metabolic 

pathways
BioEdit program,  260
bioinformatics,  3

protein structure and,  37–9, 38FD
BioModels Database,  692
Biomolecular Interaction Network 

(BIND),  58, 671, 673F
bistable switches,  688–9, 689F
BLAST program,  95–6

algorithmic approximations,  141
comparing nucleotide with protein 

sequences,  150–3
Conserved Domain Database (CDD)

search,  99F, 100
dealing with low-complexity 

regions,  101–2
E-values,  98–100, 99F, 156
gapped method,  147–50, 178T
GenScan modification using,  397
restriction of matrix coverage,  140
suffix trees,  141–3
use of finite-state automata,  

147–50, 147F, 148F
versions available,  95–7
whole genome alignments,  157–9

blastx program,  96, 97, 150, 343
BLAT program,  158
BLOCKS database,  58

Dirichlet mixture from,  174–5, 
174F

searching,  105–7, 106F
substitution matrices from,  122

BLOSUM matrices,  83F, 84
alignment scoring,  82
derivation,  122–5, 123F, 124F
selection,  84, 85
summary score measures,  125F, 126

Blundell, Tom,  532
Boltzmann factor,  706
bond angle energy,  703
bond energy,  702
bonding terms,  525–6, 701, 702–4, 

702F
Bonferroni correction,  658
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bootstrap analysis,  310B
assessing tree topology,  309–10
comparing tree topologies,  233–4, 

233F
comparing two or more trees,  311
parametric,  310B
practical example,  258, 259F

bootstrap interior branch test,  310
bottom-up approach, modeling 

biological systems,  674–6, 676F
bovine spongiform encephalopathy 

(BSE),  37B, 101B
branch-and-bound method,  288, 710
branches,  226, 227F
branch length calculations,  293–7, 

295F, 296F
assessing reliability,  309–10
parsimony methods,  299–300

branch swapping techniques,  289–91, 
290F

BRCA2,  78, 79F
Brenner, Steven,  480
Brudno, Michael,  209
Bryant, David,  296, 296F
BTPRED method,  503
Bucher weight matrix method,  383–4, 

384F
Burset, Moises,  365–6B, 392B
BVSPS program,  551T

C
C2-like domain, Dictyostelia,  535–7, 

536F, 537F
Ca atoms,  28, 28F, 29, 417

analysis of geometry, for prediction 
algorithms,  466, 466F

torsion angles see under torsion 
angles

Ca models,  39, 39F
Caenorhabditis elegans, 399
CAFASP (Critical Assessment of Fully 

Automated Structure Prediction), 
419, 554–6

cAMP PK see cyclic AMP-dependent 
protein kinase

canonical ensemble,  718
Cantor, Charles,  271
capping, RNA,  18
cap signal (initiator signal, Inr),  389

Bucher weight matrix,  383, 384, 
384F

GenScan prediction method,  385, 
385F

NNPP prediction method,  385–6, 
386F

carboxy (C) terminus,  29
Casadio, Rita,  479–80
cascade-correlation neural network,  

503–4

CASP (Critical Asssessment of 
Structure Prediction),  419, 554–6

CATH database,  531, 574
causal dependencies,  668
Cbl protein,  575–80, 576F
CCAAT box, detection algorithms,  383, 

384–5
CDK10 gene,  324–5

DNA sequence,  326–7B
exon prediction,  329F, 330–1, 332T, 

336–7
translation of predicted exons,  344F

cDNA (complementary DNA)
exon prediction using,  397
gene-prediction programs using,  

334, 335
microarrays,  602
sequence databases,  56

Celera,  376B
cell-division cycle,  688–9
Cell Markup Language (CellML),  692
CellML Model Repository,  692
cellular modeling

heart,  685T
international projects,  668
programs,  691–2, 691F

CE (Combinatorial Extension) method,
576–7, 578F

central dogma,  10–14, 10F, 10FD
centroid,  711
centroid method, hierarchical 

clustering,  640, 641F
chaining,  144–6
chameleon sequences,  37B, 488
CHAOS algorithm,  209
CHARMM program,  526, 701
ChiClust program,  617, 618–19
ChiMap program,  618–20, 619F
chloroplasts,  22, 292B
Chou, Peter,  472
Chou–Fasman propensities,  414, 415F, 

472, 474–6
applied to GOR,  483
calculated values,  474F, 476T
measures of accuracy,  424T
nearest-neighbor methods,  489
periodic variation,  474–5, 475F
transmembrane helices,  475–6, 

478F
window sizes,  477–8

chromatography,  600, 623
chromosomes,  10, 21–2

rearrangements,  248
Churchill, Gary,  275
chymosin B,  486, 487F, 490F
chymotrypsin,  243–4, 244F
CINEMA program,  93
cis conformation,  32, 33F
clades,  256
Cladist program,  608–9, 609F

cladogram,  228, 229F
ClustalW,  90, 91–2

progressive alignment method,  205
scoring scheme,  201–2, 201F, 202F
vs other alignment methods,  92, 

93F
cluster analysis,  625–64, 626MM

data preparation,  626–33, 627F, 
627FD

defining distances,  633–7, 634FD, 
636F

evaluating validity of clusters,  
650–1

hierarchical see hierarchical 
clustering

hydrophobic (HCA),  110–11, 110F
sequence alignment,  90–1, 90F, 126

clustering methods
see also specific methods
comparison between,  643B
gene expression microarray data,  

606–11, 611F
identifying expression patterns,  

637–51, 637FD
phylogenetic tree construction,  

276–9, 277FD
protein expression data,  615–17, 

617F, 618F
Clusters of Orthologous Groups (COG) 

database,  103, 243, 245B
CMISS modeling tool,  692
COACH method,  195, 203
coding,  11, 12–13
coding strand,  11–12
codon-pairs see dicodons
codons,  13

see also start codons; stop codons
frequency of occurrence,  367, 367F
genetic code,  12T
mutation rates at different,  238–9, 

238F
statistics, use by ORPHEUS,  372–3

co-expressed genes or proteins,  600, 
638

COFFEE scoring system,  200, 203, 
204F

COG (Clusters of Orthologous Groups) 
database,  103, 243, 245B

Cohen, Stanley,  643B
coiled coils,  413, 435

geometry,  451, 451F
prediction,  451–4, 452FD, 478–9, 

510, 510F
COILS program,  452–3, 454F, 478–9
collagen,  452
common evolutionary ancestor, 

measuring likelihood,  117–19
comparative modeling see homology 

modeling
COMPASS method,  195
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complementary DNA see cDNA
complementary DNA strands,  7–8
complete linkage clustering,  640, 

641F
complexity

see also low-complexity regions
biological systems,  684–5
compositional,  151–2B

COMPOSER program,  546, 553–4
compositional complexity,  151–2B
concatamers,  605
condensation reaction,  29, 31F
condensed trees,  233–4, 233F
conditioned reconstruction,  292B
confidence index,  432
conformation,  27, 41

see also quaternary conformation
energies,  524–9, 524FD
side chains,  547–8

conformational flexible docking,  
590

conformers,  547
conjugate gradient method,  528, 713F, 

714
conjugate prior,  698
consensus features,  234
consensus method, pattern or motif 

creation,  105
consensus sequences,  16
consensus trees,  234–5, 234F, 291
Conserved Domain Database (CDD) 

search,  99F, 100
CONSOLV program,  593
ConSurf program,  587, 587F
contact capacity potential (CCP),  533, 

707–8, 708F
context strings,  371
control circuits, biological systems,  

680, 680F
convergent evolution,  74–5, 75B, 

243–4, 244F
cooperativity,  701
COPASI modeling tool,  692
Corbin, Kendall,  270
CorePromoter program,  340, 341T, 

388, 389F
core promoters,  17, 319

see also promoter prediction
detection of binding signals,  339, 

381–9
models designed to locate,  383–7

Cost, Scott,  489, 491
covalent bonds,  32B, 33B

energetics,  525–6, 701, 702–4
CPHmodels,  554, 563
creatine kinase,  42F, 43
Creutzfeldt–Jakob disease (CJD),  101, 

101B
variant (vCJD),  101B

Crick, Francis,  7
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dicodons
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hidden Markov models (HMMs),  166, 

179, 179FD
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duration,  374–6
EcoParse gene model,  375F, 376–7
exon prediction,  328, 332
GAZE gene model,  402F
GeneMark.hmm algorithm,  374–6, 

374F
genome annotation,  359
GenScan gene model,  399, 401F
multiple sequence alignments,  200, 

203–4
profile see profile hidden Markov 

models
secondary structure prediction,  

504–10, 506FD
transmembrane protein prediction, 

446–7, 446F, 451
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180–1
hidden neural networks (HNN),  509
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606–8, 606F, 607F
protein expression data,  616–17, 
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hierarchical likelihood ratio test 
(hLRT),  253, 254F, 255
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Hinton diagram,  499F
histone deposition protein,  571F
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drug design,  589B
protease (HIV-PR),  551–2, 552F

HKY85 model,  253T, 254F, 256T, 273
HMM see hidden Markov models
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HMMTOP program,  441F, 446–7, 448F, 

506–7, 507F
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homolog methods see nearest-

neighbor methods
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genomes,  245, 246F

evolution,  239–42, 242F
homologous proteins,  38

see also protein families
alignment,  38, 74
secondary structure prediction,  

416, 418–19, 419F
homologous sequences

see also sequence alignment
cut-off points for identifying,  81
identifying,  74–6
inserting gaps,  85–7
scoring alignments,  76–81
searching databases see searching 

sequence databases
secondary structure prediction 

using,  425–6, 484–5, 489–90, 
502–3

homology
exon prediction based on,  397
functional,  569–70, 569F, 570F
gene prediction based on,  320F, 

321B, 322, 372–3
homology modeling (3D protein 

structure),  522–3, 537–64, 538FD
assumptions,  541–2
automated,  541, 552–6, 553FD, 

561–3
checking for accuracy,  549–51, 550F, 

551T, 560, 560F
energy minimization,  548, 559–60
history,  538–9, 538F
loops,  545–6, 546F, 547F, 559, 559F
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molecular dynamics,  548
mTOR protein,  563, 563T
multidomain proteins,  564
PI3 kinase p110a,  557–63
principles,  537–42
sequence length cut-offs,  540–1, 

542F
sequence similarity thresholds,  

539–40, 541F
steps,  540F, 542–52, 543FD
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(SCRs),  544–5, 545F, 554
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Web-based servers,  554, 561–3

homoplasy,  244

Index

759

End matter 6th proofs.qxd  19/7/07  12:17  Page 759



horizontal gene transfer (HGT),  246–7,
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HSSP database,  490
HTML (hypertext markup language),  

50–1
human immunodeficiency virus see

HIV
Hutchinson, Gail,  475
Hutchinson, Gordon,  387
hybridization,  9, 602
hydrogen bonds

DNA,  7, 8
energetics,  525–6, 701
peptide bonds,  29, 32, 32B
protein folds,  42
RNA,  456
secondary protein structure,  34, 35, 

35F, 36F
defining, for prediction 

algorithms,  464–5, 465F
nonidealized patterns,  463–4

hydropathic (hydrophobicity) profiles, 
439, 442

hydrophilic amino acid residues,  29, 
30F

transmembrane proteins,  439F, 
440–1

hydrophilic regions, folded proteins,  
41

hydrophobic amino acid residues,  29, 
30F

hydrophobic cluster analysis (HCA),  
110–11, 110F

hydrophobicity scales,  437–9, 450, 475, 
477T

hydrophobic moment,  440
hydrophobic regions

folded proteins,  41, 42
indicating binding sites,  583
transmembrane proteins,  437–41, 

439F
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50–1
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hypothetical proteins,  65, 348

conserved,  348

I
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percent/percentage see
percent/percentage identity

visual assessment,  77–8, 77F, 79F
immunoglobulin folds,  571F
immunoglobulins,  381, 555–6B
importin a,  480F
imprinting, genomic,  7

indels,  85, 117
see also deletions; insertions

indexing techniques,  141–6
see also hashing; suffix trees
whole genome sequences,  157–9

influenza virus
hemagglutinin,  34, 486, 486F
rational drug design,  589B, 591

information
directional,  423, 482
mutual,  697
pair,  423, 482
Shannon entropy and,  696

information theory approach, 
secondary structure prediction,  
422–5, 480–4

informative sites,  298
ingroups,  230
inhomogeneous Markov chain (IMC) 

models,  328, 368–70
initiator (Inr) see cap signal
input,  431, 494
input layer,  430, 494
insertions
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alignment,  85–7

alignment scoring schemes,  117, 
126–7

homology modeling,  542, 545–6, 
545F

threading and,  532, 537
integral membrane proteins see

transmembrane proteins
integrative approach,  670F
intermediate alignment,  198, 204–5, 

205F
intermediate sequences,  97
internal nodes,  226, 227F
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interpolated Markov models,  371–2, 

388
intrinsic classification,  638
intrinsic gene detection methods,  361, 

368FD
intron prediction,  319, 323, 379–81

approaches used,  324–5
theoretical basis,  389–97, 391FD

introns,  18–19, 18F
see also splice sites
AT–AC or U12,  19, 392
branch point,  18–19, 396
length distributions,  379, 379F

invariable sites,  298
inverse protein folding,  530–1
inversion, sequence,  158F
I-sites library,  487–8, 487F
isochores,  275, 378
isoelectric focusing (IEF),  613
iterated sequence search (ISS),  168
iterative alignment,  198, 206, 206F

J
Jarnac,  690F, 691–2
JC model see Jukes–Cantor model
Jnet program,  424T, 434, 435F
Jones, David,  276, 503
JTEF program,  397
JTT matrix,  276
Jukes, Thomas,  271
Jukes–Cantor (JC) model,  253T, 271–2

evaluation using maximum 
likelihood,  302, 303–4

example distance corrections,  252F
examples of constructed trees,  256, 

258F, 261F, 262
Gamma distribution applied to 

(JC+G),  273
more complex models based on,  

272–3
synonymous/nonsynonymous 

mutations,  241B
testing for suitability,  253, 254F, 

256T
junk DNA,  22B, 336, 378–9
jury decision neural networks,  432, 

501
jury voting technique,  485
JWS Online Cellular System Modeling,  

692

K
Kabat database,  103
Kabsch, Wolfgang,  464–5
Katoh, Kazutaka,  206
KD hydrophobicity scale,  475, 477T, 

479F
Kendrew, John Cowdery,  538F
keratins,  451
keys,  49, 49F
Kihara, Daisuke,  480
Kimura-two-parameter (K2P or K80) 

model,  253, 253T, 272–3
practical application,  261F, 262
transition/transversion ratio 

calculation,  274–5B
Kimura-three-parameter (K3P or K81) 

model,  253, 253T
kinetic energy,  718
kinetic models,  678, 690F
kinetic parameters, biological 

networks,  674
k-means clustering,  608, 641–2, 642F

vs other clustering methods,  643B
k-mers,  141, 147, 199–200
k-nearest-neighbor method, sample 

classification,  660–1
knockout mice,  688
knowledge-based methods

modeling 3D protein structure see
homology modeling
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secondary structure prediction,  
414–15, 421–30

transmembrane protein prediction,  
443

knowledge-based scoring,  590
KOG database,  243, 245B
Kohonen networks see self-organizing 

maps
Krebs cycle see tricarboxylic acid cycle
Krogh, Anders,  500, 501F, 502–3
k-tuples,  95, 141, 143–4, 147

whole genome sequences,  158–9
Kullback–Leibler distance see relative 

entropy
kuru,  101, 101B
Kyoto Encyclopedia of Genes and 

Genomes (KEGG),  348, 671, 
672F

Kyte–Doolittle (KD) hydrophobicity 
scale,  475, 477T, 479F

L
L2L tool,  611
Laboratory Information Management 

System (LIMS),  600
LAGAN method,  352F, 353
Lake, James,  292B
LAMA program,  106

alignment of PSSMs,  193–5, 194F
Lander, Eric,  488, 491
lariat RNA,  18–19, 18F
last common ancestor,  227, 227F
last universal common ancestor,  293
lateral gene transfer (LGT) see

horizontal gene transfer
layers, neural networks,  430–1, 431F, 

494–5
learning

supervised,  497B, 638
unsupervised,  638, 644

learning rate,  497B
least-squares method,  250

Bryant and Waddell version,  296, 
296F

evaluating tree topologies,  294–6, 
295F, 297

leaves,  226, 227F
LEGO® system,  686, 688F
length distributions

a-helices and b-strands,  467, 468F
prokaryotic coding/noncoding 

regions,  374–5, 374F
vertebrate introns and exons,  379, 

379F
Lennard–Jones terms,  705, 705F
leucine zipper,  413, 451

prediction,  453–4, 455F
Levitt, Michael,  195
LIBRA,  536, 537F

library extension, COFFEE scoring 
scheme,  203, 204F

ligands
docking procedures,  587–93, 588FD
drug design methods,  588, 589B
identifying candidate,  590

likelihood ratio test, hierarchical 
(hLRT),  253, 254F, 255

linear discriminant analysis (LDA)
promoter prediction,  340, 388, 389F
secondary structure prediction,  

512–13
linear gap penalties,  126–7

global alignments,  131F, 132–3
local alignments,  137
suboptimal alignments,  137F, 139

links (in databases),  52, 53
lipopolysaccharide (LPS),  608, 609F, 

674F
liquid chromatography,  623
local alignments,  88–9, 89F

dynamic programming algorithm,  
135–9, 136F

gapped, score statistics,  153, 156
multiple alignment using,  92–3, 93F
optimal,  135–7, 136F
profile hidden Markov model,  

183–4, 184F
suboptimal,  137–9, 137F
ungapped, score statistics,  153, 

155–6
log-likelihoods

amino acid propensities,  476, 478F
evolutionary models,  254F, 256T
multiple alignments,  192, 216

log-odds ratio,  118–19, 169–70
log-odds scores,  188–90
logos,  177

aligned HMMs,  196, 196F
patterns,  213
PSSMs,  106F, 177–8, 178F

log ratios
defining distances between,  634–7
expression data,  629–30, 630F
t-test,  654
z-test,  653–4

long-branch attraction see Felsenstein 
zone

LOOPP program,  532–3, 533F, 535–6, 
536F

loops,  36–7
amino acid residue preferences,  

202
homology modeling and,  542, 

545–6, 546F, 547F, 559, 559F
transmembrane proteins, 

prediction,  506, 508
Loopy program,  561
low-complexity regions,  100–2, 151–2B

see also repeat sequences

Lowe, Todd,  362
lowess normalization,  630–1, 631F
LUDI program,  591
lysozyme,  538–9, 539F

M
M (mutation probability matrix),  120, 

121–2
machine-learning methods,  430

see also neural network methods
secondary structure prediction,  

414, 415–16
Macromolecular Structure Database 

(MSD),  52, 60, 64
macrophages,  608, 609F, 674F
MAFFT method,  199–200, 206
Mahalanobis distance,  636–7
main chain see backbone
Major, Francois,  466
major histocompatibility complex 

(MHC) proteins,  593
majority-rule consensus trees,  234F, 

235
majority voting technique,  485
Mann–Whitney U test,  656–7
MAO (multiple alignment ontology),  

54F, 55
MARCOIL,  510, 510F
Markov chain Monte Carlo (MCMC),  

307
Markov chains,  368–9

first order, splice site prediction,  
394–5

Markov models,  179
see also hidden Markov models; 

inhomogeneous Markov chain 
models

fifth order,  368–70, 370F
interpolated,  371–2, 388
splice site prediction,  394–5
used by GeneMark,  369, 370F

MASCOT program,  622–3
mass spectrometry (MS),  600, 621–3

protein identification,  621–3, 
622F

protein quantitation,  623
MAST program,  106
mathematical modeling of biological 

systems,  689–92, 689FD
approaches,  674–7, 676F
model databases,  692
model structure,  679–83, 679FD
specialized programs,  690F, 691–2, 

691F
standardized languages,  692

Matthews correlation coefficient,  
469–70

maximal dependence decomposition 
(MDD),  394, 395F

Index

761

End matter 6th proofs.qxd  19/7/07  12:17  Page 761



maximal segment pair (MSP),  141, 149
maximum likelihood (ML),  250, 251T, 

286
evaluating tree topologies,  302–5, 

302F, 303F, 304F
hidden Markov model 

parameterization,  191
inference of parameter values,  698
measure of optimality,  287
practical application,  255–6, 257F, 

262, 263F
testing for suitability,  253

maximum parsimony,  250, 251T, 286
branch-and-bound technique,  288
long-branch attraction problem,  

309, 309F
measure of optimality,  287
unweighted,  297–300, 299F
weighted,  300–2, 300F, 301F

McClintock, Barbara,  337B
McPromoter program,  388
mean(s),  626, 652

comparison between two,  652–5
MEGA3 program,  250, 260
Melanie program,  614–15, 620
membrane proteins,  436–7, 462

see also transmembrane proteins
interactions with membrane,  437, 

437F
secondary structure prediction,  468

MEME program,  105–7, 107F, 215–17
MEMSAT program,  443, 475–6, 479
messenger RNA (mRNA),  11

analysis of transcribed see gene 
expression analysis

capping,  18
genetic code,  12–13, 12T
polyadenylation,  18
reading frames,  13, 13F
secondary structure,  455
splicing see RNA splicing
synthesis see transcription
translation see translation

metabolic models,  678
metabolic pathways

databases as sources,  671, 672F, 
673F

modeling interactions,  681–3, 682F
modularity,  685, 686F, 687F
simulation programs,  690F, 691–2, 

691F
methylation,  6–7
MFOLD program,  457F, 458
MIAME (Minimum Information About 

a Microarray Experiment),  64, 
606

Michener, Charles,  278
microarray databases,  58, 60F

applications,  610–11, 612F
data standards,  64, 606

Microarray Gene Expression Data 
(MGED),  54–5, 606

MicroArray Quality Control (MAQC) 
project,  606

microarrays,  602
DNA see DNA microarrays
protein,  621

middle-out approach, modeling 
biological systems,  677, 678F

midnight zone,  81
minimum evolution,  250, 282

methods,  250, 251T, 297
MIRIAM standard,  692
mitochondria,  22, 292B, 367
modeling biological systems see

mathematical modeling of 
biological systems

modeling (tertiary) protein structure,  
521–65, 522MM

ab initio approach,  522, 523B
assessment of predicted structure,  

554–6
comparative, homology or 

knowledge-based see homology 
modeling

potential energy functions and force
fields,  524–9, 524FD

ROSETTA/HMMSTR method,  523B
threading (fold recognition) see

threading
MODELLER program,  535, 541, 552, 

553, 554F
model surgery,  182
ModelTest,  255
modularity, biological systems,  685–6
modules,  680, 681F, 685–6, 686F
Molecular Biology Database 

Collection,  55, 56F
molecular clock,  229–30, 278

hypothesis,  250
molecular configuration,  33B
molecular dynamics,  528–9

function optimization,  718–19
homology modeling,  548

molecular energy functions,  700–8
see also bonding terms; nonbonding 

terms
force fields for intra- and 

intermolecular interactions,  
701–5

potentials used in threading,  706–8
molecular evolution,  235–48, 235FD
Molecular INTeraction database 

(MINT),  58
molecular mechanics,  524–9
molecular modeling, ligand binding,  

588, 589B
molecular models,  39, 39F
MolIDE,  542, 557–8, 560–1, 561F
MolProbity program,  527, 549, 551T

monophyletic (groups),  231, 255–6, 
258

Monte Carlo methods
see also Markov chain Monte Carlo
docking,  590
function optimization,  716–18, 

716F
modeling protein structure,  523B

Morse potential,  702F, 703
MOTIF program,  217
motifs,  103–9, 412

see also patterns
automated generation,  105–7, 106F, 

107F
creating databases,  104–5
searching for,  103–4, 107–8

MrAIC script,  255
mRNA see messenger RNA
mTOR protein,  563, 563T
MULTICOIL program,  453
multidomain proteins,  41

3D structural modeling,  537, 564
sequence alignment,  88, 88F

multifurcating trees,  227, 233, 233F
Multi-LAGAN method,  353
multiple alignment,  89–93

applications,  90
construction methods,  90–1, 

196–211
discovering patterns,  213–15
divide-and-conquer method,  91, 

91F
by gradual sequence addition,  

196–206, 197FD
manual refinement,  93
methods not using pairwise 

alignment,  207–11, 207FD
phylogenetic tree reconstruction 

using,  250–1, 255, 260
secondary structure prediction 

using,  425–7, 427F
from series of local alignments,  

92–3, 93F
theory,  165–7, 166MM
transmembrane protein prediction 

using,  444, 445
value for sequences of low 

similarity,  91–2, 92F
vs pairwise alignments,  90, 166–7

multiple alignment ontology (MAO),  
54F, 55

multiple linear regression,  514
MUMmer method,  159
MUSCLE method,  199–200, 206
mutation data matrices (MDMs), 

Dayhoff see PAM matrices
mutation probability matrix (M), 120, 

121–2
mutation rates

codon position and,  238–9, 238F
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estimating and predicting,  236, 
237F

type of base substitution and,  
236–8, 238F

mutations,  22–3
accepted,  84
masking sequence similarities,  72, 

73–4
selective pressures on,  240–1B
synonymous/nonsynonymous,  238, 

240–1B, 245
transition and transversion,  237–8, 

238F
mutual information,  697
Mycoplasma, 684
myoglobin, sperm whale,  538F
myosin II,  451
MZEF program,  328

comparative results,  331–2, 331T, 
332T

scores used,  331T

N
N-acetylneuraminate lyase gene,  247F
National Center for Biotechnology 

Information (NCBI),  52, 55
dbEST,  56, 321B
GEO,  606
Protein Database,  56–8
SAGE analysis programs,  605
UniGene database,  103, 605–6, 605F

native structure or state (of proteins),  
522

NCBI see National Center for 
Biotechnology Information

nearest-neighbor interchange (NNI) 
method,  289–90, 289B

nearest-neighbor methods,  414–15, 
428–30, 485–92, 485FD

misfolding proteins,  491–2, 492F, 
493F

outline,  486, 487F
sample classification,  660–1
similarity measures used,  488–90, 

490F
weighting of predictions,  490–1

Needleman, S.B.,  87, 128
Needleman–Wunsch algorithm,  87, 

128
database search programs using,  95
discarding intermediate 

calculations,  138B
extension to multiple alignments,  

199
illustration of original,  135, 135F
more efficient variations,  129–35, 

129F, 130F
negative selection,  240–1B
Nei, Masatoshi,  240B, 282

neighbor-joining (NJ) method,  250, 
251T, 252–3

generating single trees,  282–5, 282F, 
284F

multiple alignment,  199, 200
practical application,  261F, 262
variants,  285

Nei–Gojobori method,  240–1B
Neisseria meningitidis, 348, 350F
nested genes,  399
NetPhos server,  110
NetPlantGene program,  390–1, 393F, 

395–6
networks

see also neural networks; systems, 
biological

architectures,  676, 677F
biological,  670–1
information for constructing,  671–4
kinetic models,  678
mathematical modeling 

approaches,  674–7
mathematical representation of 

interactions,  680–3
scale-free,  676

neural network methods
exon prediction,  334–5, 390–1
genome annotation,  359
promoter prediction,  340, 385–6, 

386F, 387F
secondary structure prediction,  

415–16, 430–4, 430FD
assessing reliability,  432
Qian and Sejnowski studies,  

496–9, 499F, 500F
Riis and Krogh methods,  500–1, 

501F, 502–3
theoretical basis,  492–504, 

493FD
transmembrane proteins,  445
using homologous sequences,  

502–3
Web-based programs using,  

432–4
splice site prediction,  395–6

neural networks,  430–2
GenTHREADER,  534–5, 535F
Kohonen see self-organizing maps
layered feed-forward,  494–502, 

495F
more complex,  503–4, 504F, 505F
multilayer,  431, 431F
training process,  496, 497–8B
two-layered,  430–1, 431F

neuraminidase,  589B
Nevill-Manning, Craig,  213
Newick or New Hampshire format,  

231–2
Newton–Raphson method,  528
NMR see nuclear magnetic resonance

NNPP program,  340, 341T, 385–6, 
386F

NNSSP program,  424T, 433, 488–9, 
490, 491

nodes
neural networks see units, neural 

network
phylogenetic trees,  226, 227F
self-organizing maps,  608, 608F, 

644, 644F
self-organizing tree algorithms,  648,

648F
nonbonding terms,  525–6, 701, 704–5
noncoding DNA see junk DNA
noncoding RNA (ncRNA) genes, 

detection,  319–21, 361–3
noncoding strand,  11
nonlinearity,  667
nonparametric tests,  656–7
nonrandom model, sequence 

alignment,  117–19
nonredundant database,  63
nonsynonymous mutations,  239, 

240–1B, 245
normal distributions,  626, 628F, 698

statistical tests,  653–5
normalization

data,  627–31, 628F, 630F
lowess,  630–1, 631F

Notredame, Cedric,  209
N terminus,  29
nuclear magnetic resonance (NMR),  

411, 521
nucleic acid sequences see nucleotide 

sequences
Nucleic Acids Research (NAR),  55, 56F
nucleic acid world,  3–23, 4MM

see also DNA; RNA
nucleotides,  5–6, 6F
nucleotide sequences,  5, 6

see also DNA sequences; RNA 
sequences

base composition variations,  
275–6

comparison with protein 
sequences,  150–3

databases,  55–6, 57F, 58
derivation of scoring matrices,  

124F, 125
detection of homology,  75–6
evolutionary changes,  236–9
evolutionary models,  271–2
large-scale rearrangements see

rearrangements, large-scale
low-complexity regions,  151B
scoring of alignment,  76–7, 80–1
searching with,  97–103

null distribution,  656
null model,  189–90
NVT ensemble,  718
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O
object-oriented databases,  48, 51
odds ratio,  118
Ohler, Uwe,  388
oligomeric proteins,  42–3
one-tailed test,  653
Online Mendelian Inheritance in Man 

(OMIM) Web site,  352
ontologies,  54–5, 54F, 64

gene see gene ontology
open reading frames (ORFs),  13, 318, 

367
compared to eukaryotic genes,  

377–8
hypothetical proteins,  348
identifying,  318–19, 359–60

practical aspects,  322–3
theoretical basis,  364, 371, 372–3

minimum and maximum sizes,  328, 
405

orphan (ORFans),  405
potential,  364

operational taxonomic units (OTUs),  
225

operons,  19–20, 19F, 319, 341
optimal alignments,  76, 128

extreme-value distribution,  155, 
155F

global,  128, 129–35, 129F, 130F, 131F
local,  135–7, 136F
score significance,  153–6, 154FD

optimization, function,  709–19, 709F
full search methods,  710
global,  715–19, 715F
local,  710–15

ordinary differential equations (ODEs),
683

ORFs see open reading frames
Organismic System Theory,  667
orphan ORFs (ORFans),  405
ORPHEUS program,  323, 372–3
orthogonal encoding,  496
orthologous genes,  239, 242F

chicken, human and puffer fish 
genomes,  245, 246F

to construct species trees,  239–47
identifying,  243, 245B
large-scale rearrangements and,  

248
orthologous sequences (orthologs),  

223
Osguthorpe, David,  422
outgroups,  229F, 230, 258, 291–2
output,  680
output expansion,  500
output layer,  430, 494
overall alignment score,  80
overlapping classification,  638
overlapping genes,  12, 12F, 360
overtraining, neural networks,  498B

OWL database,  109
oxygen, molecular (O2),  684–5

P
p53 protein,  580–2, 581F, 582F

identifying interaction sites,  584–5, 
584F, 587, 587F

module, apoptotic pathway,  680, 
681F

Pacific Northwest National Laboratory 
(PNNL),  668

PAIRCOIL program,  453
paired-site tests,  311
pair information,  423, 482
pairwise alignment,  89, 115–61, 

116MM
alignment score significance,  153–6
complete genome sequences,  

156–9
discarding intermediate 

calculations,  138B
dynamic programming algorithms,  

127–41, 128FD
indexing techniques and 

algorithmic approximations,  
141–53, 142FD

inserting gaps,  86, 86F
multiple alignments based on,  

196–206, 197FD
secondary structure prediction 

method using,  430
substitution matrices and scoring,  

117–27, 117FD
vs multiple alignment,  90, 166–7

pairwise contact potential (PCP),  533
PALSSE method,  466, 466F, 467, 467F, 

468
PAM matrices,  82–4, 83F

derivation,  119–22, 119F
evolutionary model incorporation,  

276
PET91 version of PAM250,  121F, 

122
selection,  84, 85
summary score measures,  125F, 

126
vs percentage identity,  120F, 121

paralogous genes (paralogs),  239–42, 
242F

identifying,  243, 245B
parameters

Bayesian inference,  698
system,  678, 679, 679F

Parisien, Marc,  466
parsimony methods see unweighted 

parsimony
partially resolved tree,  227
partitional classification,  638
partition function,  706, 707, 716

partitions
see also splits
clustering methods,  637, 638
hierarchical clustering,  639–41
k-means clustering,  641–2
phylogenetic trees,  231

parvalbumin (1B8C),  421F, 422F
path,  179
pathogenicity islands,  342, 402–3
pathways, metabolic see metabolic 

pathways
patristic distances,  294
PatternHunter program,  159
patterns,  103–11, 104FD, 151B

see also motifs
automated generation,  105–7, 106F, 

107F
creating databases,  104–5
discovery,  165, 166MM, 211–18, 

212FD
protein function and,  109–11
searching for,  103–4, 107–9, 108F, 

109F
Pavesi, Angelo,  362–3
PDB see Protein Data Bank
PDB_SELECT,  416–17, 473
p-distance,  236, 237F, 268–9

effects of correction,  252F
Gamma correction,  269F, 270, 270F
phylogenetic tree reconstruction,  

251–2
Poisson correction,  269F, 270

Pearson, William,  144
Pearson correlation coefficient,  194, 

635–6, 636F
peptide bonds,  29–33, 31F

trans and cis conformations,  32, 
33F

percent/percentage identity,  76–7
BLOSUM matrices and,  84
homology modeling and,  540–1, 

541F, 542F
limitations,  79–81
minimum acceptable,  81
PAM matrices,  120F, 121

percent similarity,  80–1
perceptrons,  430–1, 494
per-comparison error rate (PCER),  658
per-family error rate (PFER),  658
periodicity,  151B
PET91 matrix,  121F, 122
Petersen, Thomas,  499–500, 501
Pfam database,  109
phages, sequenced genomes,  324T
PHAT matrix,  84
PHDhtm program,  442F, 445
PHD program,  424T, 432, 432F
PHDsec program,  499, 501–2, 503
PHI-BLAST program,  108
Phobius method,  509
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phosphatidylinositol 3-OH kinase (PI3 
kinase) p110a subunit,  557

alignment,  86, 86F
homology modeling,  557–64, 563T
local and global alignment,  89, 89F
multiple alignment,  91–2, 92F
protein family profile,  109
searching sequence databases,  99F, 

100, 101F
phosphatidylinositol 3-OH kinase (PI3 

kinase) p110g subunit,  557, 557F, 
563, 563T, 564

phosphatidylinositol 3-OH kinases 
(PI3 kinases),  87B, 557

multidomain nature,  88, 88F
patterns and motifs,  106–9, 106F, 

107F, 109F
phosphatidylinositol-4-OH kinases 

(PI4-kinases),  87B, 88F
patterns and motifs,  106, 107–8

phosphoinositol kinase,  439F, 441
phospholipid kinases,  87B
phosphopeptide-binding proteins,  

570–1, 572F
phosphorylation sites, predicting,  110
phosphotyrosine-binding (PTB) 

domain,  571, 572F
phylogenetic tree reconstruction,  

248–64
assessing tree feature reliability,  

307–10, 308FD
choice of method,  249–51, 251T
clustering methods,  276–85, 277FD
data choice,  249
evaluating topologies,  293–307, 

294FD
evolutionary model choice,  251–5
multiple alignment as starting 

point,  255, 260
multiple topologies,  286–93, 287FD
practical examples,  255–8, 257F, 

258F
single trees,  276–86, 277FD
starting trees for further 

exploration,  285–6
theoretical basis,  267–311, 268MM

phylogenetic trees,  223–4
see also guide tree
additive,  228–9, 229F, 230
comparing two or more alternative, 

310–11
condensed,  233–4, 233F
consensus,  234–5, 234F, 291
fully resolved,  227
gene see gene trees
measuring difference between two,  

289B
multifurcating (polytomous),  227, 

233, 233F
partially resolved,  227

reconciled,  243, 244F
rooted see rooted trees
scoring multiple alignments,  200–1,

200F
species see species trees
strict consensus,  234–5, 234F
structure and interpretation,  

225–35, 226FD
substitution matrix derivation from,  

82–3, 119F, 120
topologies see tree topologies
ultrameric,  229–30, 229F
unrooted see unrooted trees

phylogenomics,  262
PHYML program,  251, 255
PHYRE program,  535–6, 536F
PI3 kinase see phosphatidylinositol 

3-OH kinase
PISSLRE see CDK10 gene
PKN/PRK1 protein kinase,  452, 452F, 

453F, 454F
plasmids,  21
platelet-derived growth factor (PDGF),  

616–17, 617F
pleckstrin homology (PH) domain,  

571, 572F
Pocket-Finder program,  585–6, 586F
point accepted mutations matrices see

PAM matrices
Poisson corrected distance,  269F, 

270
polyadenylation,  18

signal detection,  389
polycystein-1-protein,  571F
polypeptide chain,  29, 31–2

conformational flexibility,  32, 32F
polytomous (multifurcating) trees,  

227, 233, 233F
porins,  35, 436

secondary structure prediction,  
450–1, 450F

position-specific scoring matrices 
(PSSMs),  96, 166, 168–78

see also profiles
aligning,  193–5, 194F
construction,  168–71
overcoming lack of data,  171–5, 

176F
representation as logos,  177–8, 

178F
secondary structure prediction 

using,  503, 504, 505F, 514
sequence weighting schemes,  171, 

171F
using PSI-BLAST,  176–7, 177F

positive-inside rule,  441
positive selection,  240–1B
posterior probability,  698
post-order traversal,  298–9, 298F, 

300–1

potential energy,  522, 524, 525
see also force fields
calculations,  525–6
functions,  522, 524–9, 706–8
surface,  525

potentials of mean force,  532–3, 706–7
PPI-PRED program,  584–5, 584F
PRATT program,  108, 109F, 217–18
Predator Multiple Seq.,  424T
PREDATOR program,  414, 424T, 

428–30
prediction confidence level (PCL),  432
prediction filtering,  484
PRED-TMBB method,  509
Pribnow box,  339, 340
primary structure,  26–7, 27F, 29–33
principal component analysis (PCA)

application,  618, 619F
principle,  631–3, 632F, 633F

PRINTS database,  109
prion proteins (PrP),  101B

chameleon sequences,  37B
hydrophobic cluster analysis,  110F, 

111
low-complexity regions,  101–2, 

102F
prior distribution,  172
prior probabilities,  307, 698
probabilistic approaches

alignment scoring,  117–19
pattern discovery,  215–17
secondary structure prediction,  414

probability
conditional,  696
marginal,  696
posterior,  698
prior,  307, 698
statistical tests,  652–3, 653F

probability theory,  695–7
ProbCons method,  200, 203–4, 206
PROCHECK program,  527, 549, 550F, 

551T
Prodom database,  58
profile hidden Markov models 

(HMMs),  109, 179–93, 374
aligning,  195–6, 195F, 196F
basic structure,  180–5, 181F, 183F, 

184F
parameterization

using aligned sequences,  185–7
using unaligned sequences,  

191–3
path lengths,  185, 185F, 186F
scoring sequences against,  187–91

profiles,  96, 165–96, 166MM
see also position-specific scoring 

matrices
aligning,  193–6, 193FD
defining,  167–78, 167FD
representation as logos,  177–8, 178F
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PROF program,  424T, 433F, 434
prof-sim method,  195
PROFtmb program,  450F, 451, 508F, 

509
progressive alignment,  198, 204–6, 

205F
prokaryotes,  21, 21F

see also bacteria
16S RNA,  249
control of translation,  19–20
gene detection,  359–60

algorithms,  368–77, 368FD
homology searching,  322
practical aspects,  322–3, 322FD, 

323F
sequence features used,  364–8, 

364FD
vs methods used in eukaryotes,  

377–9
gene structure,  318–19
genomes,  324T
promoter prediction,  339–40, 

341–2
regulation of transcription,  15–17, 

16F
tRNA gene detection,  361–2, 362F, 

363F
ProMate,  584, 584F
PromFind program,  387–8
Promoter 2.0 algorithm,  340, 341T
PromoterInspector program,  341, 

341T, 388
promoter prediction,  338–42, 381–9

eukaryotes see under eukaryotes
indefinite nature of results,  341, 

341T
online methods,  340–1
prokaryotes,  339–40, 341–2

Promoter Recognition Profile,  341
promoters,  15–16, 319

core (basal) see core promoters
eukaryotic,  17, 17F, 381

ProScan program,  341, 341T, 386–7
PROSITE database,  105, 107–8, 108F, 

109
protease, HIV (HIV-PR),  551–2, 552F
protein(s),  4–5

concentration measurement,  623
conformation see conformation
denatured,  42
function see function
hypothetical,  65, 348
identification of purified,  621–3, 

622F
interactions between atoms,  32B
localization signals,  111, 111B
phylogenetic trees,  226, 230
stability of folded,  41–2
synthesis see translation

protein backbone see backbone

protein binding sites
docking procedures,  587–93, 588FD
finding,  580–7, 581FD

highlighting clefts or holes,  
585–6, 585F, 586F

residue conservation for,  586–7, 
587F

surface properties for,  584–5, 
585F

useful features for,  582–4
types,  582
water molecules,  592–3

Protein Data Bank (PDB),  60, 62F, 
102–3, 531

finding target protein homologs,  
543, 557

PDB_SELECT,  416–17, 473
Protein Domain Parser (PDP),  575, 576
protein expression

2D gel electrophoresis see two-
dimensional gel electrophoresis

analysis,  612–23, 612FD
cluster analysis,  615–17, 617F, 

618F
data preparation for,  626–33, 

627F, 627FD
differential,  615, 616F, 617F
methods,  614–20
online tools,  620
principle component analysis,  

618, 619F
statistics,  652–9
tracking changes over different 

samples,  618–20, 619F
clustering methods and statistics,  

625–64, 626MM
databases,  58, 620
identification of purified proteins,  

621–3, 622F
quantitation,  623
sample classification,  659–62, 

660FD
protein families,  259B

phylogenetic tree reconstruction,  
259–63, 261F, 263F

profiles of,  109
protein fold libraries,  573
topological,  573F, 574

protein folding,  40–1, 41F, 412
alternative,  486, 491–2, 492F, 493F
inverse,  530–1

protein fold recognition see threading
protein folds,  40, 41, 411

classification,  573–4, 573F
libraries,  531, 532F, 571–4
prediction in absence of known 

homologs,  531
recognition see threading
structurally different, with similar 

functions,  570–1, 572F

structurally similar
with different functions,  570, 

571F, 572F
unrelated molecules,  529, 530F

protein interaction(s),  580–2
databases,  58–9
interactive Web sites,  671–2, 673F, 

674F
maps,  610, 611F
sites see protein binding sites

protein kinases,  86, 87B
cAMP-dependent see cyclic 

AMP-dependent protein kinase
catalytic subunit (PRKD),  107–8, 

107F
microarrays,  621
PKN/PRK1,  452, 452F, 453F, 454F

protein microarrays,  621
ProteinProspector program,  622–3
protein–protein interactions

see also protein interaction(s)
analysis using clustered data,  610, 

611F
searching for,  584–5, 584F

protein sequence databases,  56–8, 59F
nomenclature for amino acid 

uncertainty,  63
protein sequences

see also amino acid sequences
comparison with nucleotide 

sequences,  150–3
constructing predicted,  343–6, 345
detection of homology,  75–6
evolutionary models,  276
low-complexity regions,  100–2, 

151B
multiple alignments,  92
obtaining secondary structure from 

see secondary structure 
prediction

phylogenetic tree reconstruction,  
249

scoring of alignment,  76–7, 79–80
searching for motifs or patterns,  

103–4
searching with,  97–103
substitution matrices,  82–5, 117–25

protein structure,  25–43, 26FD, 26MM
classification,  421F, 573–4, 573F
comparison methods,  574–80, 

575FD
implications for bioinformatics,  

37–9, 38FD
low secondary structure content 

(low SS),  573F, 574
modeling see modeling protein 

structure
molecular representations,  39, 39F
native,  522
primary see primary structure
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quaternary see quaternary 
conformation

secondary see secondary structure
supersecondary,  40B, 529
tertiary see tertiary protein structure
three-dimensional see tertiary 

protein structure
visualization and computer 

manipulation,  38–9, 39F
protein subunits,  27, 42–3
Proteobacteria,  249, 255–8, 257F, 258F
proteome,  600, 612

see also protein expression
analysis,  612–23, 612FD

proteomics,  600–1
applications,  601T
role in systems biology,  668

protocols,  686
ProtScale,  110
prrp program,  206
pseudocounts,  172–3, 176F
pseudo-energy functions,  526–7
pseudogenes,  22B, 73, 73B, 242
pseudoknots,  457
pseudo-torsion angles,  703
PSI-BLAST program,  96–7, 108

comparative effectiveness,  177, 
178T

homology modeling,  560–1
PSSM construction,  176–7, 177F
secondary structure prediction,  

433F, 502, 503, 504
PSIMLR method,  514
PSIPRED program,  433F, 434, 434F, 503

accuracy,  424T, 469, 469F, 472, 503
homology modeling,  560–1

PSORT programs,  111
PSSMs see position-specific scoring 

matrices
pSTIING,  58–9, 671–2

analysis of clustered genes,  610, 
611F

protein interaction networks,  61F, 
674F

purifying (negative) selection,  240B
purines,  6, 6F
pyridoxal phosphate-dependent 

aminotransferases,  570
pyrimidines,  6, 6F
pyruvate formate-lyase,  467F
pyruvate kinase,  480F

Q
Q3,  417–19, 418F, 469

compared to Sov,  470T, 471–2
different methods compared,  422, 

424T
GOR method,  422, 423, 484
nearest-neighbor methods,  491

neural network methods,  499, 501, 
503, 504

range of values,  469, 469F
Qian, Ning,  496–9, 499F
Q-SiteFinder,  585–6, 586F
quadratic discriminant analysis (QDA),

340, 388, 389F, 396
quality match scores,  200, 203–4
quantum mechanics,  700
quartet-puzzling method,  251T, 305–6,

306F
quaternary conformation,  27, 27F, 

42–3, 42F, 43F

R
Ramachandran plots,  33, 34F, 525

PI3 kinase p110a model,  560, 560F
random error,  627–8
random model, sequence alignment,  

117–19
rank-sum test,  656–7
reaction rates,  679–80
reading frames,  13, 13F

see also open reading frames
exon prediction and,  325–7, 328F, 

329F, 391–2
rearrangements, large-scale,  248

examples,  158F
identifying,  156–7, 158F, 159
rat and mouse X chromosomes,  

403–4, 403F
receptor tyrosine kinases (RTKs),  436B
Reciprocal Net database,  52
reconciled trees,  243, 244F
RECON program,  347
records, database,  46–7
reductionist approach,  670F
redundancy, biological systems,  686–8
redundant data,  63
regulatory elements,  15
relational databases,  48, 49–50, 49F
relative entropy,  697

substitution matrices,  125F, 126
relative mutability,  120
Relenza®,  589B, 591
reliability (confidence index),  432
RELL method,  311
repeated elements,  337B
RepeatMasker program,  347, 378–9
repeat sequences

see also DNA repeats; 
low-complexity regions

annotation,  347
dot-plots for identifying,  77–8, 79F
exclusion from analysis,  319–21, 

360, 378–9
SEG for identifying,  151–2B

repressors,  16–17
resolution,  64

response function,  495, 496F
restriction enzymes, type I,  420B
retrotransposons,  337B
REV+G model,  254F, 255–6, 256T
REV (GTR) model,  253T, 255, 262
R factor,  64
Rhodopseudomonas blastica, 450
rhodopsin,  440–1, 440F

helical wheel representation,  439F, 
441

secondary structure prediction,  
441F, 442F, 443, 447F

ribonuclease (RNase),  412
ribonucleic acid see RNA
ribonucleotides,  6
ribose,  5–6
Ribosomal Database Project (RDP) 

database,  255
ribosomal RNA (rRNA),  13

see also 16S RNA sequences
sequences, identifying,  361
small ribosomal subunit,  249

ribosome-binding sites (RBS),  366F, 
380

absence in eukaryotes,  380, 389
GeneMark.hmm,  375
ORPHEUS scoring scheme,  372–3

ribosomes,  13–14, 14F
rice genome,  335B
Riis, Søren,  500–1, 501F, 502–3
RING-finger domains,  575
ring of life,  292B
ritonavir,  589B
Rivera, Maria,  292B
RMSD see root mean square deviation
RNA,  4

central dogma concept,  10, 10F, 
10FD

functions,  13
noncoding, detection,  319–21, 

361–3, 361FD
structure,  5, 5FD, 6F, 9–10, 9F
transcription see transcription

RNA capping,  18
RNAfold,  457F, 458
RNA polymerase II,  17

promoters, detection,  383–7, 387F
subunit,  582, 582F

RNA polymerases,  11
bacterial,  15–17, 339
eukaryotic,  17–18, 383

RNA secondary structure,  9, 435, 
455–6

prediction,  455–8, 455FD, 456F
types,  456, 456F

RNA sequences
databases,  56
searching with,  97

RNA splicing,  18–19, 18F
alternative,  19, 380–1
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Robinson–Foulds difference see
symmetric difference

Robson, Barry,  422, 480
robustness

biological systems,  683–9, 684FD
characterization,  690
as feature of complexity,  684–5

Rocke, David,  627–8
roll,  573F
root,  227, 227F
rooted trees,  227, 227F

construction,  291–3
root mean square deviation (RMSD),  

542
domain identification,  577
modeling of loops,  546, 547F
practical application,  563, 563T

ROSETTA/HMMSTR method,  523B
Rost, Burkhard,  470
rotamer libraries,  547–8
rRNA see ribosomal RNA
Rychlewski, Leszek,  491

S
Saccharomyces cerevisiae, 324, 404, 

405
cDNA array data analysis,  632F
gene expression microarray 

database,  611, 612F
SAGA multiple alignment method,  

209–11, 210F, 211F
SAGE (serial analysis of gene 

expression),  604–5, 604F
SAGEmap,  605
Saitou, Naruya,  282
Salzberg, Steven,  489, 491
SAM (significance analysis of 

microarray method),  656
sample classification,  659–62, 660FD

see also data classification
biclustering,  649–50, 650F
methods available,  660–1
principal component analysis,  

631–3, 632F, 633F
support vector machines,  661–2, 

662F, 663F
sample classifier,  660
SAM program,  182, 184
Sander, Christian,  464–5
sandwich,  573F
Sanger, Frederick,  45
Sanger Institute,  55
Sankoff algorithm,  300–2, 301F
SATCHMO program,  200, 203
scatterplots, protein expression data,  

615, 617F
Scherf, Matthias,  388
Schneider, Thomas,  178
SCOP database,  531, 532F, 572–4

scores (alignment),  76, 117
derivation,  117–19
expected,  119, 126
overall,  80
statistical significance,  153–6, 

154FD
scoring schemes/matrices,  75, 76–81

see also position-specific scoring 
matrices; substitution matrices

constructing multiple alignments,  
200–4

selection of appropriate,  126
theoretical basis,  117–27, 117FD
threading,  531–3

scrapie,  101B
SCWRL3,  561
searching sequence databases,  

93–111, 94FD
assessing quality of match,  97–100, 

99F
database selection,  102–3
dealing with low-complexity 

regions,  100–2
exon prediction,  397
patterns and protein function,  

109–11
programs,  94–7
protein sequence motifs or 

patterns,  103–7
using motifs and patterns,  107–9

secondary RNA structure see RNA 
secondary structure

secondary structure,  27, 27F, 33–6
see also a-helices; b-strands
alternative conformations,  486, 

486F
common types,  413–14, 413F
databases,  60–1
defining, for prediction algorithms,  

463–8
length distributions,  467, 468, 468F
local sequence effects,  479–84, 

480F
sequence correlations,  487–8, 487F

secondary structure prediction,  37, 
411–59, 412MM

assessing accuracy,  417–19, 418FD, 
469–72

based on residue propensities,  
472–85, 472FD

coiled coils,  451–4, 452FD
defining secondary structure,  

463–8, 464FD
expected accuracy,  468
general data classification 

techniques,  510–14, 511FD
hidden Markov models,  504–10, 

506FD
methods of defining structures,  

417, 417F

nearest-neighbor methods see
nearest-neighbor methods

neural network methods see under
neural network methods

specialized methods,  435–58, 
435FD

statistical and knowledge-based 
methods,  421–30, 421FD

success application,  420B
theoretical basis,  461–514, 462MM
training and test databases,  416–17, 

416FD
transmembrane proteins,  438–51, 

438FD
types of methods available,  413–16, 

413FD
second derivative methods, function 

optimization,  714–15
SEG program,  151–2B
Sejnowski, Terrence,  496–9, 499F
selective pressures,  240–1B
self-information,  423, 482
self-organizing maps (SOMs),  644–6, 

644F, 645F
basic principle,  608, 608F
biclustering,  650, 650F
gene expression microarray data,  

608–9, 609F, 610
secondary structure prediction,  

513–14, 513F
vs other clustering methods,  643B

self-organizing tree algorithms (SOTA), 
648–9, 648F

evaluating validity of clusters,  651
gene expression microarray data,  

610, 610F
semiglobal alignment,  132F, 133
semi-Markov model,  374
sense strand,  11–12
sensitivity (Sn)

exon prediction,  343, 392B
gene prediction at nucleotide level,  

365–6B
separating hyperplane,  661, 662, 662F
sequence alignment,  71–112, 72MM

see also global alignments; local 
alignments

applications,  72
detection of homology,  74–6
genome sequences see genome 

sequence alignments
homology modeling,  543–4, 544F, 

558–9
inserting gaps,  85–7
multiple see multiple alignment
optimal see optimal alignments
pairwise see pairwise alignment
principles,  72–6, 73FD
progressive,  198, 204–6, 205F
scores see scores (alignment)
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scoring see scoring 
schemes/matrices

searching databases see searching 
sequence databases

suboptimal,  76
substitution matrices,  81–5
types,  87–93, 88FD

sequence analysis,  71, 72MM
evolutionary conservation and,  38

sequence databases,  55–8
automated data analysis,  64–5
gene prediction using,  334–6
nonredundancy,  62–3
searching see searching sequence 

databases
selecting,  102–3

sequence length
compositional complexity and,  

151B
homology modeling and,  540–1, 

542F
substitution matrix choice and,  85

sequence motifs see motifs
sequence ontology project (SOP),  55
Sequences Annotated by Structure 

(SAS),  103
sequence similarity see similarity, 

sequence
sequence–structure correlations,  

487–8, 487F
sequence-to-structure networks,  432, 

499–500, 500F
serial analysis of gene expression 

(SAGE),  604–5, 604F
serine proteases,  570
serotonin N-acetyltransferase,  421F

secondary structure prediction,  
423F

SH2 domains,  78B, 571, 572F
Cbl protein,  575, 576F
dot-plot assessment,  77F, 78
identification,  576–80
searching sequence databases,  

98–100
sequence alignments,  92, 93F

SH3 domains,  529, 530F
Shannon entropy,  695–6
Shigella flexneri, 262
Shine–Dalgarno sequence,  19, 373
shotgun genome sequencing 

procedure,  376B
SH test,  311
shuffle test,  534
Sibbald, Peter,  171
side chains, amino acid see amino acid 

side chains
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