
Computational
Methods
in Synthetic
Biology

Mario Andrea Marchisio Editor

Methods in
Molecular Biology 1244

M E T H O D S I N M O L E C U L A R B I O L O G Y

Series Editor
John M. Walker

School of Life Sciences
University of Hertfordshire

Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651

http://www.springer.com/series/7651

.

Computational Methods
in Synthetic Biology

Edited by

Mario Andrea Marchisio

School of Life Science and Technology,
Harbin Institute of Technology, Harbin, China

Editor
Mario Andrea Marchisio
School of Life Science and Technology
Harbin Institute of Technology
Harbin, China

ISSN 1064-3745 ISSN 1940-6029 (electronic)
ISBN 978-1-4939-1877-5 ISBN 978-1-4939-1878-2 (eBook)
DOI 10.1007/978-1-4939-1878-2
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014954440

© Springer Science+Business Media New York 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this
legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Humana Press is a brand of Springer
Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

In every engineering discipline, the construction of a complex artifact is driven by compu-
tational design and simulations. Electronics, for instance, deals with circuits made of
components that obey the laws of electromagnetism. These well-established physical
foundations allow the derivation of models, which predict circuit behavior faithfully, and
permit the development of software for circuit’s computer-aided design (CAD).

Giving precise mathematical pictures of biological systems is a challenging task. They
are often characterized by a high number of interacting species and a non-negligible
intrinsic noise (stochastic effects) that causes the failure of deterministic representations.
However, in order to become an engineering science, Synthetic Biology needs to lie on a
solid theoretical ground.

Ideally, well-characterized basic biological components (Standard Parts) should be
retrieved from shared databases and wired together, into gene circuits, on the computer
screen. Computational analysis and simulations would, then, lead to improvements on
circuit’s structure and consequent performance optimization. Finally, circuit’s schemes
would be sent to a robot for their actual implementation.

Following this path, the book has been organized into four parts. The first one
provides an overview of the computational methods and algorithms for the design of
bio-components, such as DNA Parts, RNA devices, and proteins that act as signal carriers
inside a synthetic network. The second section gives an insight into CAD programs,
languages, and methods for gene circuit in silico implementation, whereas the third section
presents analysis techniques that are adopted to refine circuit layouts. The last section is
devoted to distributed systems—aimed at fostering Part standardization—and DNA
assembly protocols for automatic gene circuit wet-lab realization.

Overall, this book gives a complete coverage of the computational approaches cur-
rently used in Synthetic Biology and can be regarded as a guide to plan in silico the in vivo
or in vitro construction of a variety of synthetic bio-circuits.

Harbin, China Mario Andrea Marchisio

v

.

Contents

Preface. v
Contributors . ix

PART I COMPONENT DESIGN

1 Computational Protein Design Methods for Synthetic Biology. 3
Pablo Carbonell and Jean-Yves Trosset

2 Computer-Aided Design of DNA Origami Structures. 23
Denis Selnihhin and Ebbe Sloth Andersen

3 Computational Design of RNA Parts, Devices, and Transcripts
with Kinetic Folding Algorithms Implemented on Multiprocessor Clusters . . . 45
Tim Thimmaiah, William E. Voje Jr., and James M. Carothers

4 Regulatory RNA Design Through Evolutionary Computation
and Strand Displacement . 63
William Rostain, Thomas E. Landrain, Guillermo Rodrigo,
and Alfonso Jaramillo

PART II CIRCUIT DESIGN

5 Programming Languages for Circuit Design . 81
Michael Pedersen and Boyan Yordanov

6 Kappa Rule-Based Modeling in Synthetic Biology . 105
John Wilson-Kanamori, Vincent Danos, Ty Thomson,
and Ricardo Honorato-Zimmer

7 Modular Design of Synthetic Gene Circuits
with Biological Parts and Pools . 137
Mario Andrea Marchisio

8 Computationally Guided Design of Robust Gene Circuits 167
Najaf A. Shah and Casim A. Sarkar

9 Chemical Master Equation Closure for Computer-Aided
Synthetic Biology. 179
Patrick Smadbeck and Yiannis N. Kaznessis

10 Feedback Loops in Biological Networks. 193
Elisa Franco and Kate E. Galloway

PART III CIRCUIT ANALYSIS AND SIMULATIONS

11 Efficient Analysis Methods in Synthetic Biology . 217
Curtis Madsen, Chris Myers, Nicholas Roehner, Chris Winstead,
and Zhen Zhang

12 Using Computational Modeling and Experimental Synthetic
Perturbations to Probe Biological Circuits. 259
Joshua R. Porter and Eric Batchelor

vii

13 In Silico Control of Biomolecular Processes . 277
Jannis Uhlendorf, Agnès Miermont, Thierry Delaveau,
Gilles Charvin, François Fages, Samuel Bottani, Pascal Hersen,
and Gregory Batt

14 Stochastic Modular Analysis for Gene Circuits: Interplay Among
Retroactivity, Nonlinearity, and Stochasticity. 287
Kyung Hyuk Kim and Herbert M. Sauro

PART IV DISTRIBUTED SYSTEMS AND AUTOMATION

15 Distributed Model Construction with Virtual Parts. 301
Michael T. Cooling and Tommy Yu

16 The Synthetic Biology Open Language . 323
Chris Myers, Kevin Clancy, Goksel Misirli, Ernst Oberortner,
Matthew Pocock, Jacqueline Quinn, Nicholas Roehner,
and Herbert M. Sauro

17 Computational Methods for the Construction, Editing,
and Error Correction of DNA Molecules and Their Libraries 337
Ofir Raz and Tuval Ben Yehezkel

Index . 353

viii Contents

Contributors

EBBE SLOTH ANDERSEN � Department of Molecular Biology and Genetics, Center for DNA
Nanotechnology, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus,
Denmark

ERIC BATCHELOR � Laboratory of Pathology, Center for Cancer Research, National Cancer
Institute, National Institutes of Health, Bethesda, MD, USA

GREGORY BATT � INRIA Paris-Rocquencourt, Le Chesnay, France
SAMUEL BOTTANI � Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and

Université Paris Diderot, Paris, France
PABLO CARBONELL � Institute of Systems and Synthetic Biology (iSSB), CNRS; Université

d’Evry val d’Essonne, Évry, France
JAMES M. CAROTHERS � Department of Chemical Engineering, University of Washington,

Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA,
USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle,
WA, USA; Center for Synthetic Biology, University of Washington, Seattle, WA, USA

GILLES CHARVIN � Institut de Biologie Moléculaire et Cellulaire, Illkirch, France
KEVIN CLANCY � Synthetic Biology Unit, Life Technologies, Carlsbad, CA, USA
MICHAEL T. COOLING � Auckland Bioengineering Institute, University of Auckland,

Auckland, New Zealand
VINCENT DANOS � School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK
THIERRY DELAVEAU � Laboratoire de Génomique des Microorganismes, UMR 7238 CNRS

and Université Pierre et Marie Curie, Paris, France
FRANÇOIS FAGES � INRIA Paris-Rocquencourt, Le Chesnay, France
ELISA FRANCO � Department of Mechanical Engineering, University of California at

Riverside, Riverside, CA, USA
KATE E. GALLOWAY � Department of Stem Cell Biology and Regenerative Medicine, Keck

School of Medicine, University of Southern California, Los Angeles, CA, USA
PASCAL HERSEN � Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and

Université Paris Diderot, Paris, France; The Mechanobiology Institute, National
University of Singapore, Singapore, Singapore

RICARDO HONORATO-ZIMMER � School of Informatics, University of Edinburgh, Edinburgh,
Scotland, UK

ALFONSO JARAMILLO � Institute of Systems and Synthetic Biology (iSSB), CNRS; Université
d’Evry val d’Essonne, Évry, France; School of Life Sciences, University of Warwick,
Coventry, England, UK

YIANNIS N. KAZNESSIS � Department of Chemical Engineering and Materials Science,
University of Minnesota, Minneapolis, MN, USA

KYUNG HYUK KIM � Department of Bioengineering, University of Washington,
Seattle, WA, USA

THOMAS E. LANDRAIN � Institute of Systems and Synthetic Biology (iSSB), CNRS; Université
d’Evry val d’Essonne, Évry, France

CURTIS MADSEN � School of Computing, University of Utah, Salt Lake City, UT, USA
MARIO ANDREA MARCHISIO � School of Life Science and Technology, Harbin Institute of

Technology, Harbin, P.R. China; D-BSSE, ETH Zurich, Basel, Switzerland

ix

AGNÈS MIERMONT � Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and
Université Paris Diderot, Paris, France

GOKSEL MISIRLI � School of Computing Science, Newcastle University, Newcastle upon Tyne,
England, UK

CHRIS MYERS � Department of Electrical and Computer Engineering, University of Utah,
Salt Lake City, UT, USA

ERNST OBERORTNER � Department of Electrical and Computer Engineering, Boston
University, Boston, MA, USA

MICHAEL PEDERSEN � Department of Plant Sciences, Cambridge University, Cambridge,
England, UK; Biological Computation Group, Microsoft Research, Cambridge,
England, UK

MATTHEW POCOCK � School of Computing Science, Newcastle University, Newcastle upon
Tyne, England, UK

JOSHUA R. PORTER � Laboratory of Pathology, Center for Cancer Research, National Cancer
Institute, National Institutes of Health, Bethesda, MD, USA

JACQUELINE QUINN � Bio Nano Programmable Matter, Autodesk Research, San Francisco,
CA, USA

OFIR RAZ � Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot, Israel

GUILLERMO RODRIGO � Institute of Systems and Synthetic Biology (iSSB), CNRS; Université
d’Evry val d’Essonne, Évry, France

NICHOLAS ROEHNER � Department of Bioengineering, University of Utah, Salt Lake City,
UT, USA

WILLIAM ROSTAIN � Institute of Systems and Synthetic Biology (iSSB), CNRS; Université
d’Evry val d’Essonne, Évry, France

CASIM A. SARKAR � Department of Biomedical Engineering, College of Science and
Engineering, University of Minnesota, Minneapolis, MN, USA

HERBERT M. SAURO � Department of Bioengineering, University of Washington, Seattle,
WA, USA

DENIS SELNIHHIN � Department of Molecular Biology and Genetics, Center for DNA
Nanotechnology, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus,
Denmark

NAJAF A. SHAH � Genomics and Computational Biology Graduate Group, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Applied Mathematics
and Modeling, Informatics IT, Merck Research Labs, West Point, PA, USA

PATRICK SMADBECK � Department of Chemical Engineering and Materials Science,
University of Minnesota, Minneapolis, MN, USA

TIM THIMMAIAH � Department of Chemical Engineering, University of Washington, Seattle,
WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA;
Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA,
USA; Center for Synthetic Biology, University of Washington, Seattle, WA, USA

TY THOMSON � Plectix Biosystems, Somerville, MA, USA
JEAN-YVES TROSSET � SUP’Biotech, Villejuif, France
JANNIS UHLENDORF � INRIA Paris-Rocquencourt, Le Chesnay, France; Laboratoire

Matière et Systèmes Complexes, UMR 7057 CNRS and Université Paris Diderot, Paris,
France

x Contributors

WILLIAM E. VOJE JR. � Department of Chemical Engineering, University of Washington,
Seattle, WA, USA; Department of Bioengineering, University of Washington,
Seattle, WA, USA; Molecular Engineering and Sciences Institute, University of
Washington, Seattle, WA, USA; Center for Synthetic Biology, University of Washington,
Seattle, WA, USA

JOHN WILSON-KANAMORI � School of Informatics, University of Edinburgh, Edinburgh,
Scotland, UK

CHRIS WINSTEAD � Department of Electrical and Computer Engineering, Utah State
University, Logan, UT, USA

TUVAL BEN YEHEZKEL � Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel; SynVaccine, Tel-Aviv, Israel

BOYAN YORDANOV � Department of Plant Sciences, Cambridge University, Cambridge,
England, UK; Biological Computation Group, Microsoft Research,
Cambridge, England, UK

TOMMY YU � Auckland Bioengineering Institute, University of Auckland, Auckland, New
Zealand

ZHEN ZHANG � Department of Electrical and Computer Engineering, University of Utah,
Salt Lake City, UT, USA

Contributors xi

Part I

Component Design

Chapter 1

Computational Protein Design Methods
for Synthetic Biology

Pablo Carbonell and Jean-Yves Trosset

Abstract

Computational protein design, a process that searches for mutants with desired improved properties, plays a
central role in the conception of many synthetic biology devices including biosensors, bioproduction, or
regulation circuits. To that end, a rational workflow for computational protein design is described here
consisting of (a) searching in the sequence, structure or chemical spaces for the desired function and
associated protein templates; (b) finding the list of potential hot regions to mutate in the parent proteins;
and (c) performing in silico screening of mutants with predicted improved properties.

Key words Synthetic biology, Protein design, Protein engineering, Biosensor

1 Introduction

Protein engineering is a process that searches for variants (mutants)
of a parent protein showing improved properties. The process
involves finding substitutions through engineering strategies,
such as rational design (mutagenesis) or random selection (directed
evolution), and evaluating the desired properties in the protein
variants through screening and selection [1, 2]. Even though
high-throughput screening in combination with directed evolution
techniques could substantially increase the explored sequence
space, the development of cost-effective procedures for hit identifi-
cation remains still a challenging experimental task for protein
engineering.

In order to increase the rate of success in protein engineering,
computational protein design methods provide in silico protocols
that combine physicochemical knowledge from biological data-
bases with scoring functions from bioinformatics modeling to opti-
mally select candidate solutions. Computational methods involve a
lower level of human intervention, accelerating the discovery
process and overcoming some of the practical limitations of the
experimental screening and selection, such as detectability and

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_1, © Springer Science+Business Media New York 2015

3

stability of proteins. Wet lab engineering techniques such as
directed evolution and high-throughput screening methods are,
thus, complementary to computational protein design methods,
as the latter can provide to the former functional mutant libraries
with high diversity [3]. Therefore, it is not possible to think of a
computational protein design that is fully detached of the protein
engineering process, but rather computational design and experi-
mental protein engineering are parts of an engineering cycle involv-
ing modeling, design, implementation, and validation, which
typically needs to be performed in several rounds before achieving
the desired performance.

In a similar fashion, the engineering approach for the design of
biological systems is followed in the emerging discipline of syn-
thetic biology to create modular parts such as artificial feedback
loops [4], oscillators [5], and toggle switches [6] involving signal-
ing, regulatory, and transcriptional networks. Notably, computa-
tional protein design is used on building these constructs as a
molecular tool to engineer genetic networks [7], playing a central
role in the development of novel approaches providing optimized
solutions in applications of synthetic biology such as in metabolic
engineering [8–10] and biosensors [11, 12]. Many promising
emerging applications involve synthetic protein circuits, often
embedded into synthetic scaffold proteins [13], producing a variety
of novel cellular responses [14, 15]. For such innovative applica-
tions, computational protein design provides valuable methods
amenable to the engineering toolbox of synthetic biology.

1.1 The Computa-

tional Protein Design

Workflow

The strategy presented here for computational protein design is
based on the principle of efficiently coding and reusing any protein
information available about protein regions that are functionally
linked to the desired activity in order to model it. To that end, the
computational protein design workflow can be divided into three
steps:

(a) Similarity search for proteins using either the sequence, the
structure, the interacting partner, the ligand, or the reaction

(b) Finding the list of potential mutants that could improve the
property to be optimized

(c) Combinatorial in silico screen of the mutants to select the
optimal cocktail of mutations

The identification of functional regions or hot spots in the
protein has been extensively studied in the literature (see Note 1)
and several authors have proposed methods that perform appropri-
ately in many cases. We will describe some of them here but others
might as well be used and the reader is invited to check them in the
literature [16–18]. It should be taken into account that no unique
method would always provide the best hints about functional

4 Pablo Carbonell and Jean-Yves Trosset

regions, being the best choice the method that works more
appropriately for each particular case. We provide in this method
paper advice about typical applications and limitations for some of
the most popular methods.

Regarding the third goal, large-scale screening, it is strongly
linked to available computational resources, an issue that has dra-
matically become more affordable with the advent of clustering
computing. Therefore, even though several search reduction stra-
tegies are possible in virtual protein screening such as working with
a reduced list of amino acids, we will assume here that computa-
tional resources are not a major limiting factor and that screening
libraries comprising several hundreds of millions of mutants can be
performed in a significant lower amount of time in comparison with
wet-lab experimental procedures (for instance, in no more than
24 h) (see Note 2).

2 Materials

The following list provides a survey of the main tools that are used
in this chapter at each step of the computational protein design:

1. Databases: Proteins: Uniprot, PROSITE, Pfam, PDB, Gen-
Bank; Metabolic: MetaCyc and KEGG; Enzymatic: databases
such as ENZYME, IntEnz, BRENDA.

2. Protein conservation, homology and function site identifica-
tion: BLAST, CD-HIT, T-Coffee, SWISS modeler, Consurf,
EvolTrace, Concavity, Ghecom, Q-Site Finder.

3. Molecular visualization and structural analysis: Chimera,
PyMol.

4. Statistical package R with machine learning libraries: kernlab,
pls, randomForest, caret.

5. Chemical analysis: Openbabel, Stereo signature molecular
descriptor (see Note 3).

6. FLO-QXP for combinatorial sampling of side chains in pres-
ence of ligands.

7. Enzyme design server: RosettaDesign.

3 Methods

3.1 A Motivating

Example for Protein

Design in Synthetic

Biology

In this chapter we illustrate the various concepts and protocols of
computational protein design using the xanthine phosphoribosyl-
transferase or XPRTase (2.4.2.22). This enzyme catalyzes the trans-
fer of the phosphoribosyl group from 50ribosyl phosphate (XMP or
GMP) into xanthine or guanine, respectively. In our example, the
goal is to increase the selectivity of the enzyme towards XMP.

Protein Design for Synthetic Biology 5

Such example illustrates the use of protein design in a potential
synthetic biology application. Xanthine, one of the chemical enti-
ties catalyzed by XPRTases, belongs to the natural pathway of
caffeine metabolism (Fig. 1) and it has been shown to be able to
modulate theophylline [19], which is the first formed intermediate
in this pathway. Interestingly enough, theophylline-dependent
riboswitches for the conditional control of gene expression have
been demonstrated in yeast and bacteria [20, 21], opening the
possibility of developing biosensor circuits through the regulation
of the presence or absence of theophylline.

As a template for the protein, we take 2FXV from the PDB
database, which corresponds to the crystal structure of the Bacillus
subtilis XPRTase (gene name BSU22070) in complex with GMP.
Our goal, thus, will be to search for mutations in that protein
increasing the affinity towards XMP through sequence and
structure-based methods.

3.2 Similarity Search

for Proteins

The goal here is to obtain information about the mechanisms
related to the function of the target protein based on the existing
data of related proteins. Depending on the type of property we
want to optimize, we can relate the property with the protein
descriptors that are either based on the sequence, the structure,
the ligand, or the reaction in the case of an enzyme.

3.2.1 Sequence-Based

Search

The minimal information of the protein is its sequence. If it does
not inform on the involved mechanism, we can still relate a change
of sequence with an observed change of enzymatic activity, binding
free energy, temperature of folding, etc. Even in the absence of
property data for the protein, amino acids conservation from
sequence alignment can already guide us towards the possible
mutations observed in nature. Comparing substrates of the related
enzymes can also give a hint on the mutation that could optimize
the property for our enzyme. In our example, the sequence align-
ment of xanthine and hypoxanthine phosphoribosyl transferases

Fig. 1 Catabolism of caffeine in fungi takes place by theophylline route and is similar to the pathway operating
in plants. Theophylline, a metabolite that can be used to develop biosensors, is further metabolized into
xanthine, a purine base whose phosphoribosyl group is reversibly transferred from XMP by enzyme EC
2.4.2.22. Modulating the efficiency of that enzyme towards XMP, thus, could be used to tune the biosensor
circuit

6 Pablo Carbonell and Jean-Yves Trosset

informs on the conserved difference of sequence between the two
families. Relating this difference of sequence to the difference of
substrate, xanthine and hypoxanthine, we can infer potential muta-
tions that could favor the enzyme activity towards hypoxanthine-
like substrate. Multi-sequence alignment within proteins of the
same family is therefore a first source of information for selecting
mutant candidates.

For our guided example, enzyme EC 2.4.2.22, we should first
look into its sequence annotations in protein databases. Either a
homology search based on BLAST or a similarity measure based on
motif or pattern content will help us to identify closer sequences. For
instance, ENZYME database fromExPASy provides multiple links to
protein information regarding the sequences for EC2.4.2.22.One of
such sources of information is IntEnz, which provides the link to
annotated sequences in UniProt for EC 2.4.2.22 (300 sequences),
being reduced to 22 clusters under a 50 % filtering of redundancy (a
tool like CD-HIT [22] can conveniently perform such task for a
sequence list). PROSITE, in turn, provides the link to proteins con-
taining the PDOC00096 pattern or signature (purine/pyrimidine
phosphoribosyl transferases), which is common tomultiple substrates
of phosphoribosyltransferases such as adenine, hypoxanthine-
guanine, orotate, amido, or xanthine-guanine (seeNote 4). A multi-
ple alignment can then provide information about residues where
mutations will bring specificity towards each substrate. To illustrate
here this method, we selected two sequences for each substrate from
the list of non-redundant sequences containing the motif (total 259
sequences). After performing the alignment with T-Coffee [23], we
observed two highly conserved regions: ALA42 to ARG80 and
ASP116 to LYS155 (according to 2FXV numbering) followed by
regions that are specific to each substrate. Figure 2 shows part of the
alignment (region ILE139-ARG171) for the second conserved
region followed by a region of high polymorphism. Interestingly,
this region, as we will see in next sections, does not directly interact

Fig. 2 Conservation based on a multiple alignment for phosphoribosyltransferases accepting different
substrates. The figure shows a conserved region and another that is highly variable depending on the
substrate corresponding to sequence region ILE139 to ARG171

Protein Design for Synthetic Biology 7

with the ligand.This fact showshow the sequence-basedconservation
approach can identify potential mutations that are not easily detected
by a rational structure-based approach. More in general, conserved
regions are typically related to some structural role, while regions
showing polymorphism in a way concerted with the type of substrate
might be related to positions determining substrate affinity.

3.2.2 Structure-Based

Search

The second source of information is 3D protein structures. With
the increasing number of protein structures in the Protein Data
Bank (PDB), there is an increasing probability of finding a 3D
protein structure for a given related protein sequence. As structure
is more conserved than sequence, the multi-sequence alignment
deduced from structure superposition is often more precise. Visual
inspection of these polymorphisms around the region of interest
(catalytic site or protein-protein binding interface or in the core of
the protein) could provide valuable clues for possible mutants that
could be further tested with energy-based methods (see section
below). Note that the full 3D superposition of two proteins is
only possible if there is enough structural similarity between the
two proteins. Note also that full structure superposition is based on
the structure similarity of Cα chains (see Note 5).

In our example, we use the 2FXV sequences to do a sequence
search on the Protein Data Bank using BLAST. From the 29 hits,
only nine display enough sequence covering (>50 %) for the overall
structure similarity of the protein to be recognized by a 3D super-
position program such as Chimera [24]. The protein structure
superposition and the corresponding multi-sequence alignment
are shown in Fig. 3.

If the full protein structure superposition could help at prior-
itizing mutants according to their position in structural elements,
for example discriminating buried residues versus those that are
solvent accessible or residues that are in close contact with the
region of interest of the protein, this approach is however limited
to proteins that have the same fold. Further similarity can be
obtained if we focus the search on a specific region of the protein,
e.g., the binding site.

3.2.3 Pharmacophore-

Based Search

More specific functional similarities can be observed through a
smaller scale superposition of a particular region of the protein,
e.g., binding site or protein-protein interface. As structure is more
conserved than sequence, functional residues are even more con-
served in the structural alignment and structural similarity can
therefore be observed on those important residues even for far-
related proteins. These structural or functional protein interfamily
similarities can be highlighted using a chemical pharmacophore
description on the protein residues [25]. Local protein similarity
can be observed even for proteins of different fold.

8 Pablo Carbonell and Jean-Yves Trosset

Using our example, we query XPRTase (2FXV) over the
protein data bank (PDB) using the MedSumo Software from
MEDIT [25]. The hits from MedSumo query were then filtered
to conserve protein with enough 3D similarity (Sumo score > 6.0
and RMSD less than 2.0 Å for distance differences between the
pharmacophore features). The hits are then clustered according to
their pharmacophore similarity and for each cluster a multiple
sequence alignment can be calculated by using the pharmacophore
superposition as constraints.

Figure 4 shows a selected cluster that includes enzymes of the
same Phosphoribosyl transferase pfam family (PF00156) as our
query. The pharmacophores of the query protein that are close to
the ligand are marked in the structure (bottom panel), in the multi-
alignment (top panel) and in the bar code of the query (middle
panel of Fig. 4). This bar code is a color-code pharmacophore
representation that can be used for protein structure alignment.
The larger the number of aligned pharmacophore with the query,
the higher the sumo score is. The nine pharmacophores that are on
the residues PHE99, TYR100, ASP125, PHE126, ALA128,
GLY130, ALA132, ALA133, and LYS156 of the query protein

Fig. 3 3D alignment of XPRTases using Chimera. Top panel: Superposition of nine structures. Bottom panel:
Close-up of the multi-sequence alignment based on the 3D superposition in the similar region of Fig. 1, i.e.,
the region 139I to 171R of 2FXV. The quality of the 3D superposition is higher in the regions of the protein that
are well superimposed

Protein Design for Synthetic Biology 9

2FXVare those that have direct interaction with the guanine part of
GMP. Potential mutants can be deduced from top panel of Fig. 4
for the corresponding highlighted amino acids. The selection of
mutants is focused on a specific part of the protein with a structure-
based rational approach that is closely related to the energy-based
approach described later in the text.

Another advantage of the pharmacophore based protein simi-
larity is that it is not limited to proteins with the same fold. Triads of
catalytic residues having the same position in space could still be
observed for proteins that have very different fold as it is the case for
example between trypsin and subtilisin [26].

3.2.4 Ligand-Based

Search

Finally, related proteins can be searched through similarity of their
interacting partners. In the case of enzymes, those partners corre-
spond to the chemical entities involved in the reaction. By searching
for similar reactants and/or products of two enzymatic reactions it

Fig. 4 3D structural alignment of the pharmacophore of the binding region of a selected cluster of XPRTases
related proteins using Med-Sumo server. Bottom panel: 3D superposition of 2FXV and 1QK4. The residue side
chain pharmacophores highlighted in yellow belong to 2FXV. They are close to the guanine part of the ligand
GMP. Middle panel: The pharmacophores of each protein of the cluster are represented in color code. The
marked triangles in the color code of the query correspond to the marked pharmacophores in the bottom
panel. Top panel: Sequence alignment using the pharmacophore superposition as constraints. Marked
residues correspond to the highlighted pharmacophores of bottom panel. A position residue numbering is
shown at the top of the bottom panel. Number 211 at the left corresponds to an empty position in 2FXV
followed by ILE38 (position 212) and GLY39 (position 213)

10 Pablo Carbonell and Jean-Yves Trosset

is possible not only to capture enzymes with similar catalytic
function but also to capture apparently unrelated proteins
with similar sub-pockets. The similarity of sub-pockets corresponds
to a similarity of fragment of the substrates. Study of amino
acid polymorphisms in these substrate-binding sub-pockets can
inform on possible mutations that could increase or decrease the
interaction a particular part of the substrate (substructure or
fragment).

In the ligand-based search, we mine protein databases for
sequences associated with similar activities through the encoding
of their associated ligands. In the case of an enzyme, we can go
further and encode the entire reaction: substrate and product.
Similarity in the chemical space relates to similar biochemical trans-
formations. In the same way, this principle can be applied in the case
of other type of activities: searching for similar protein-ligand inter-
actions can be done by searching for similar chemical ligand and
searching for similar protein-protein interactions by searching for
proteins with similar peptide 3D or sequence motif.

Ligand or reaction similarity is based on chemical descriptors
such as those used in graph similarity techniques. Many ligand or
reaction similarity measures can be defined [27], although most of
them are based on the Jacquard coefficient J ¼ A \ B/A \ B. In
our example, XPRTases (EC 2.4.2.22) are defined for the reaction
shown in Fig. 1. We could measure, for instance, the similarity
between xanthine, hypoxanthine, and guanine by counting the
number of common fragments divided by the full fragment content
of the substrates (see Note 6). We can also first interrogate the
chemical space in databases in order to determine the reaction
cluster containing similar reactions. Taking reactions fingerprints
in MetaCyc, as defined by their stereo extended connectivity fin-
gerprint (ECFP) of even diameters up to 6 [28] and computing
reaction similarity, we have that from a total of 4,392 reactions, 3
have a similarity higher than 0.5 and 22 reactions show a similarity
higher than 0.25. In KEGG, these values are in turn of 64 and 73
out of 6,747 reactions. These reactions are sorted in the database in
decreasing order, and non-redundant sequences annotated for such
reactions can be then selected as templates. Focusing on our exam-
ple for XPRTases in MetaCyc, a cutoff similarity of 0.13 is needed
in order to include in our positive set a minimum number of 100
sequences, which should be considered a good trade-off between
sequence diversity (provided non-redundancy has been removed)
and proximity to the target reaction.

3.3 Identification

of Potential Mutants

The previous section aims at providing a multi-sequence alignment
of all related proteins wherever the alignment comes from sequence
information alone, 3D structure superposition, or similarity of the
chemical reaction patterns. Selection of residues can be then done
either by inspecting the sequence alignment alone or by

Protein Design for Synthetic Biology 11

introducing some additional information from databases such as
Brenda, PubChem Bioassay, or PPI databases.

Conserved residues in the alignment usually relate to an impor-
tant functional or scaffolding role within the protein. Polymor-
phism over these amino acid positions inform on the possible
variation observed in nature. If a 3D structure of a related sequence
exists for our investigated protein then, it is easy to assign a region
of interest in the protein to the corresponding section of the amino
acid alignment. We can focus our selection on mutants of a partic-
ular region of the protein: binding or catalytic site if property
concerns the enzyme activity, or protein surface if property con-
cerns the protein-protein interactions. On the other hand, some
property like thermostability might not be related to a defined
region of the protein. Single amino acid mutation can indeed
have a large effect on the protein property even if such mutation
is far from the region of interest. Such mutations correspond in
general to charged residues as electrostatic energy can have long-
range effect.

In order to identify potential regions containing candidate
mutants, many bioinformatics tools are available allowing the iden-
tification of functional sites of the protein from sequence or struc-
ture. A selection of some of the most important tools is listed in
Table 1. Some are based on conservation of structures or
sequences. Many others look for pockets or cavities in the protein
through the analysis of structural and geometric properties. For
protein-protein interactions, several tools have been built based on
patterns or profiles through machine learning. In interactions
between proteins and small molecules, methods have been typically
developed based on alignment and structural similarity between
binding sites.

We illustrate in our example for the XPRTase (PDB 2FXV) how
the use of multiple servers can help in order to decide through a
consensus score the site of functional residues that can lead to
candidate mutants. To that end, we computed the scores from
two prediction servers in Table 1 based on residue conservation
(Consurf and EvolutionaryTrace) and the scores of two prediction
servers based on pocket identification (Concavity and Ghecom).
Scores obtained from the prediction servers were normalized into z
scores (seeNote 7) in order to allow the comparison between these
values. We first verified that each group of scores agreed in their
predictions by looking at the correlation between the conservation
scores, which was found of 0.91 and the correlation between the
pocket scores, which was of 0.86. Secondly, correlation between
each group of scores was found weak (r < 0.5), suggesting that the
information provided by each group of predictors is independent of
the other. Therefore, in order to obtain a consensus score that put
at the top of predicted residues the ones that were ranked high for
both types of scores, we computed the average of their z-scores, as

12 Pablo Carbonell and Jean-Yves Trosset

Table 1
Bioinformatics tools to identify functional sites of the protein through several methods such as
conservation, identification of pockets and cavities, protein-protein interaction sites, or ligand-
binding site

Server Method Technique

Consurf Conservation Identification of functional regions in proteins based on
conservation of PDB structures [http://consurf.tau.ac.il]

SCORECONS Score conservation in a multiple sequence alignment [http://www.
ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_
server.pl]

EvolutionaryTrace Ranks amino acids in protein sequence by their relative evolutionary
importance [http://mordred.bioc.cam.ac.uk/~jiye/evoltrace/]

CAVER Pocket finder Searches for tunnels and channels in protein structures [http://
caver.cz/]

fpocket Detection of packets based on Voronoi tessellation [http://fpocket.
sourceforge.net/]

GHECOM Using mathematical morphology [http://strcomp.protein.osaka-u.
ac.jp/ghecom/]

DoGSiteScorer Based on size, shape, and chemical features [http://dogsite.zbh.uni-
hamburg.de/]

PocketDepth Geometry-based identification of functional sites [http://proline.
physics.iisc.ernet.in/pocketdepth/]

SiteHound-web Compute interactions between a chemical probe and a protein
structure [http://scbx.mssm.edu/sitehound/sitehound-web/
Input.html]

SplitPocket Geometric approach [http://pocket.med.wayne.edu/patch/]
ConCavity Combines evolutionary sequence conservation and 3D structure

[http://compbio.cs.princeton.edu/concavity/]
CASTp Searches for pockets and cavities [http://sts-fw.bioengr.uic.edu/

castp/calculation.php]
Q-SiteFinder Binds hydrophobic (CH3) probes to the protein, and finding

clusters of probes with the most favorable binding energy [http://
www.modelling.leeds.ac.uk/qsitefinder/]

Cons-PPISP PPI site Consensus PPI interaction predictor based on a neural network
trained with sequence profiles and solvent accessibilities [http://
pipe.scs.fsu.edu/ppisp.html]

Promate A naive Bayesian method based on protein properties [http://
bioinfo.weizmann.ac.il/promate/promate.html]

SPPIDER A neural-network method that includes predicted solvent
accessibility as input [http://sppider.cchmc.org/]

Meta-PPISP Ameta web server that combines cons-PPISP, Promate, and PINUP
through linear regression [http://pipe.scs.fsu.edu/meta-ppisp.
html]

MED-SuMo Binding site
similarity

Pharmacophore-based superposition from PDB database [http://
medit-pharma.com/index.php?page=med-sumo]

FINDSITE Threading-based binding site prediction in a set of evolutionarily
related proteins [http://cssb.biology.gatech.edu/findsite]

3DLigandSite Homologous structures with bound ligands [http://www.sbg.bio.
ic.ac.uk/~3dligandsite/]

ProBis Detects similar protein-binding sites from a database of protein
structures [http://probis.cmm.ki.si/]

(continued)

Protein Design for Synthetic Biology 13

http://consurf.tau.ac.il/
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl
http://mordred.bioc.cam.ac.uk/~jiye/evoltrace/
http://caver.cz/
http://caver.cz/
http://fpocket.sourceforge.net/
http://fpocket.sourceforge.net/
http://strcomp.protein.osaka-u.ac.jp/ghecom/
http://strcomp.protein.osaka-u.ac.jp/ghecom/
http://dogsite.zbh.uni-hamburg.de/
http://dogsite.zbh.uni-hamburg.de/
http://proline.physics.iisc.ernet.in/pocketdepth/
http://proline.physics.iisc.ernet.in/pocketdepth/
http://scbx.mssm.edu/sitehound/sitehound-web/Input.html
http://scbx.mssm.edu/sitehound/sitehound-web/Input.html
http://pocket.med.wayne.edu/patch/
http://compbio.cs.princeton.edu/concavity/
http://sts-fw.bioengr.uic.edu/castp/calculation.php
http://sts-fw.bioengr.uic.edu/castp/calculation.php
http://www.modelling.leeds.ac.uk/qsitefinder/
http://www.modelling.leeds.ac.uk/qsitefinder/
http://pipe.scs.fsu.edu/ppisp.html
http://pipe.scs.fsu.edu/ppisp.html
http://bioinfo.weizmann.ac.il/promate/promate.html
http://bioinfo.weizmann.ac.il/promate/promate.html
http://sppider.cchmc.org/
http://pipe.scs.fsu.edu/meta-ppisp.html
http://pipe.scs.fsu.edu/meta-ppisp.html
http://medit-pharma.com/index.php?page=med-sumo
http://medit-pharma.com/index.php?page=med-sumo
http://cssb.biology.gatech.edu/findsite
http://www.sbg.bio.ic.ac.uk/~3dligandsite/
http://www.sbg.bio.ic.ac.uk/~3dligandsite/
http://probis.cmm.ki.si/

shown in Table 2. Top residues (THR100, SER98, ALA132,
ASP125, PHE126, LYS101, LYS81, SER60, PHE99, ASN27,
ASP124, GLU58, SER59, ALA128, VAL96) are depicted in
Fig. 5. They are located around the substrate pocket suggesting
that candidate mutants for these residues may modulate substrate
affinity, as desired.

3.4 Combinatorial

Screening of

Candidate Mutants

There are two ways of screening all the possible combinations of
mutants in the functional positions selected in the previous section.
The first one involves machine-learning approach, whereas the
second is based on an energetics evaluation of the mutants.

3.4.1 Machine-Learning

Approach

A machine-learning approach aims at learning the effect of mutants
on the desired protein property using a supervised or unsupervised
strategy. In the first one, external information is used to split a set of
similar protein into “good” and “bad,” those sequences that
improve or not the chosen property. For example, Km on enzyme
reaction can be searched for each sequence in the BRENDA data-
base [29]. Sequences corresponding to low Km will be in the
“Good” set and the others sequence in the “Bad” set. Then, a
naı̈ve Bayesian approach can be carried out by assigning to each
amino acid of the sequence the value of the corresponding Km. A
“Km score” for each position of the alignment can be calculated by
averaging the score for each amino-acid in the alignment column.
Columns with highest score correspond to potential hot spots.

Table 1
(continued)

Server Method Technique

PredictProtein Prediction
suite

Integrates multiple predictors of protein structure and function
[http://www.predictprotein.org/]

WHAT IF Integrates multiple predictors of protein structure and function
[http://swift.cmbi.ru.nl/whatif/]

DYNAMO QQ/MM Library in FORTRAN [http://www.chem.ac.ru/Chemistry/Soft/
DYNAMO.en.html]

QSITE Commercial software from Schrödinger [http://www.schrodinger.
com/productpage/14/19/]

AMBER Works with ROAR and Gaussian [http://nf.nci.org.au/~vvv900/
monash/amber-gaussian/index.html]

CHARMM CHARMM works with MOPAC, GAMESS-US, GAMESS-UK,
CADPAC, DeFT [http://www.charmm.org/documentation/
c33b2/qchem.html]

GROMACS A package for performing molecular dynamics [http://www.
gromacs.org]

14 Pablo Carbonell and Jean-Yves Trosset

http://www.predictprotein.org/
http://swift.cmbi.ru.nl/whatif/
http://www.chem.ac.ru/Chemistry/Soft/DYNAMO.en.html
http://www.chem.ac.ru/Chemistry/Soft/DYNAMO.en.html
http://www.schrodinger.com/productpage/14/19/
http://www.schrodinger.com/productpage/14/19/
http://nf.nci.org.au/~vvv900/monash/amber-gaussian/index.html
http://nf.nci.org.au/~vvv900/monash/amber-gaussian/index.html
http://www.charmm.org/documentation/c33b2/qchem.html
http://www.charmm.org/documentation/c33b2/qchem.html
http://www.gromacs.org/
http://www.gromacs.org/

Fig. 5 Functional site highlighted in the chain A of 2FXV, as defined by the consensus score of Table 2.
Residues appear located around the pocket where the substrate is positioned

Table 2
Top-ranked 15 residues of 2fxv based on a consensus score from Consurf, EvolutionaryTrace,
Concavity, and Ghecom

Rank Residue Sequence Score Consurf EvolTrace Concavity Ghecom

1 100 THR 2.87 0.95 1.24 4.22 5.07

2 98 SER 2.26 0.95 1.24 3.35 3.48

3 132 ALA 2.22 0.94 1.24 3.02 3.69

4 125 ASP 2.09 0.94 1.24 3.69 2.48

5 126 PHE 2.06 0.91 1.24 2.58 3.52

6 101 LYS 2.01 0.93 0.99 3.75 2.37

7 81 LYS 1.96 0.93 1.24 3.41 2.25

8 60 SER 1.92 0.90 1.24 2.90 2.66

9 99 PHE 1.86 0.48 0.94 2.68 3.34

10 27 ASN 1.78 0.89 1.04 2.14 3.05

11 124 ASP 1.76 0.94 1.24 2.97 1.90

12 58 GLU 1.74 0.93 1.24 3.58 1.19

13 59 SER 1.62 0.57 0.85 3.09 1.98

14 128 ALA 1.49 0.94 1.24 1.29 2.47

15 96 VAL 1.25 0.83 0.89 1.94 1.36

Protein Design for Synthetic Biology 15

If polymorphism is observed for those positions, we can consider
these amino acid variants as potential mutant candidates to improve
the protein property. In the unsupervised approach, we do not use
external information. The “bad and “good” sets are created from
different criteria (see Note 8).

Through the application of any of the numerous machine-
learning techniques available, this training set is used in order to
develop a predictive model (seeNote 9). A training set can be either
described by a vector of descriptors or by similarity matrices. In
both cases, similarity information from sequences can be coupled
with similarity of the interacting partner such as a ligand or a
substrate. Multiple machine-learning techniques are available
from open-source projects (see Note 10) and standard procedures
to evaluate performance, such a cross-validation, need to be put
into place in order to validate the model. In order to ensure
convergence of the predictor, it might be necessary to limit the
size of the training set.

In our example, sequences catalyzing reactions included in the
positive set are removed from the database of sequences,
performing for the rest of sequences a Monte-Carlo sampling to
define a negative set. Each time this procedure is performed, a
different negative set is constructed. Therefore, in order to ensure
reproducibility of the data, several instances of the negative set
should be generated, rather than a unique reference negative set.
A kernel-based predictor for XPRTases (EC 2.4.2.22) based on
MetaCyc information was constructed by using a balanced training
set formed by 100 positive and 100 negative sequences and the
kernlab package [30]. The predictor works as a classifier that assigns
the sequence to either the positive or the negative class. The
obtained performance in a tenfold cross-validation was of an accu-
racy of 94 %, an ROC area of 87 %, precision of 94 %, sensitivity of
95 %, and specificity of 93 %, showing the good performance that
often can be achieved by a machine-learning approach, although
such results should always be considered in terms of domain of
applicability, i.e., to the actual extent of the sequence space where
the predictor has been validated (see Note 11).

3.4.2 Energy-Based

Approach

Energy-based methods aim at predicting the effect of mutations
from first physics-based principles from precise quantum mechani-
cal (QM) description to classical molecular mechanics (MM). The
difficulty inherent to the energy-based methods is to have both
accuracy and sampling. The later controls the quality of the statisti-
cal mechanical variables such as (full or partial) free energies. The
hybrid QM/MM (quantum mechanics/molecular mechanics)
approach combines the strength of both QM (accuracy) and MM
(speed) calculations. This approach is mostly used in computational
protein design to calculate the conformation and the barrier
energy of transition state of a ligand inside the binding pocket.

16 Pablo Carbonell and Jean-Yves Trosset

The available codes are listed in Table 1. Conformational sampling
of the protein conformation variable is usually done using MM
force field to reduce computer time. Such force fields are imple-
mented into Monte Carlo (MC) or molecular dynamics proce-
dures. To estimate the influence of a mutant side chain at the
protein binding interface or at a ligand binding site, it is possible
to restrict the number of degrees of freedom to the region of
interest to limit the statistical errors due to insufficient conforma-
tional sampling (see Note 12).

For a given choice of side chains at chosen positions, we search
for the most favorable side chain configuration in terms of energetic
fitness among the allowed interacting positions of the substrate on
the enzyme in order to model the transition state of substrate-
enzyme. The cluster of substrate conformers with the lowest fitness
energy is estimated. Fitness considers internal, solvent and surface
energies. The interface is then computed in order to determine
residues that belong to the catalytic site.

One of the most successful energy-based approaches for
computational protein design is Rosetta [31], a computational
algorithm that has been experimentally validated to stabilize natu-
rally occurring proteins and in the de novo design of protein
structures. In the Rosetta method, protein backbone conformation
is specified as a list of backbone torsion angles, while side chains are
restricted to discrete conformations from a backbone-dependent
rotamer library. Many Rosetta-based computational protocols for
protein design are available. For instance, RosettaDesign is a
Rosetta-derived server that performs Monte Carlo optimization
with simulated annealing to search for amino acids that pack well
on the target structure and satisfy hydrogen bonding potential.
Other protocols using the Rosetta program are available as well,
as for instance a protocol for enzyme design that models the reac-
tion transition state using quantum chemistry methods in order to
define side chain and backbone constrains associated with positions
optimal for catalysts [32].

The structure of chain A of 2FXV was submitted to the
RosettaDesign server without any substrate, and in complex
with GMP and XMP. The former was in the pose determined in
the crystal structure, while the pose of the latter was determined
by docking using CombiDOCK [33]. Best mutations for each
case and their binding energy are given in Table 3. The negative
energy values are relative to wild type. Therefore, negative scores
correspond to stabilized mutants. Best candidates for improving
substrate affinity towards XMP are given for those positions where
the negative increase in energy for mutations improving
XMP affinity are significantly higher than those for GMP, as it is
the case for ASP125THR, SER60THR, ASN27GLU, and
SER59PHE.

Protein Design for Synthetic Biology 17

4 Notes

1. Hot spots are residues in protein interaction interfaces that play
an important role modulating protein activity. Generally, such
hot spots will disrupt the interaction when mutated (negative
hot spots), although they can also have the ability of increasing
it (positive hot spots). Hot spots are both defined in the context
of protein-protein interactions and in enzyme-substrate or
receptor-drug interactions. Effects of positive and negative
cooperativity among hot spots are often observed, i.e., the
simultaneous mutation of two hot spots has a significant higher
(or lower) effect than each one individually.

2. In a virtual screening procedure, computation times are deter-
mined by the scoring function. Therefore, this function needs
to be minimized and sequence-based methods should be pre-
ferred to structure-based. In general, methods at atomic level
involving molecular dynamics should be carefully used. A pos-
sibility is the use of a multi-level screening, at first using coarse

Table 3
Most beneficial mutations for top-scored positions of the 2FXV structure according to RosettaDesign
for the single chain, and for the chain in complex with the GMP and XMP substrates

Rank Residue Seq Score Rosetta Rosetta Rosetta GMP Rosetta GMP Rosetta XMP Rosetta XMP

1 100 T 2.87 S �1.41 S �1.57 R �1.05

2 98 S 2.26 S �2.08 S �2.11 A �1.87

3 132 A 2.22 H �0.53 L �1.70 I �1.72

4 125 D 2.09 E �1.46 S �1.13 T �1.96

5 126 F 2.06 H �1.54 H �0.68 H �1.01

6 101 K 2.01 D �1.66 D �1.66 Y �1.28

7 81 K 1.96 E �1.18 L �1.25 E �1.12

8 60 S 1.92 E �0.72 E �0.85 T �1.37

9 99 F 1.86 T �1.31 T �1.25 T �1.30

10 27 N 1.78 Q �2.09 Q �2.24 E �2.43

11 124 D 1.76 H �1.25 T �1.35 E �1.58

12 58 E 1.74 A 0.32 I 0.92 E 1.13

13 59 S 1.62 S 0.60 S 0.50 F 1.69

14 128 A 1.49 T �0.83 T �0.82 T �0.66

15 96 V 1.25 I �3.19 I �3.08 I �3.29

18 Pablo Carbonell and Jean-Yves Trosset

grain-based methods such as knowledge-based potentials, in
order to identify hot spots, leaving mutagenesis and docking
methods involving molecular dynamics for a second step
involving a smaller number of mutations.

3. Typically, ECFP descriptors consider fragments up to some
given diameter, or distance to the root atom, and several
graph canonicalization operations are performed in order to
guarantee uniqueness of the molecule- or reaction-coding rep-
resentation for proper comparison between fragments.

4. The fact that the activity in the protein appears promiscuously
can be due to several factors, for instance in a multi-domain
protein where each domain might have become specialized in
one type of activity. Therefore, when considering the similarity
of a candidate to the positive set, domain architecture of the
protein should be preferably used rather than protein full
sequence.

5. The advantage of the structural alignment is the often increase
in quality from a multiple sequence alignment for a given
protein structural class. Furthermore, this alignment could
further be used as a template for homology modeling of a
protein with unknown structure. The quality of the 3D super-
position is given by the average of RMSD, root mean square
deviation between all protein pairs in the set. The errors are
usually small in the area corresponding to the function, i.e., the
catalytic residues and to the core of the protein fold. Larger
errors are observed in protein loops.

6. It should be taken into account that similarity matrices can
always be computed between vectors of descriptors in the
same fashion as computing distances between vectors. The
main advantage of using similarity matrices arrives in cases
when the descriptor space is considerable large (larger than
the number of points in the training set). The interpretation
of the results, however, is often harder when working with
similarity matrices.

7. Z scores, i.e., scores that are normalized by subtraction of their
mean values and divided by their standard deviation, allow
scores comparison from different predictors and can serve to
identify extreme values.

8. One of the main difficulties in the machine learning approach is
the selection of the negative set or “bad” set in the training set.
Ideally, a negative set has to contain a diverse-enough list of
instances of pair protein-ligand or substrate. In principle, this
goal can be accomplished by selecting randomly sequences that
are annotated for ligands or substrates that are the most dissim-
ilar to the desired target interacting partner.

Protein Design for Synthetic Biology 19

9. In the same way as here the training set has been formed by
pairs (sequence, reaction), training sets can be formed based on
pairs (protein, ligand), (protein, inhibitor), (target, drug),
(protein, protein), etc.

10. An excellent source for machine-learning computational meth-
ods are the R packages available at the CRAN repository, like
kernlab, randomForest, pls, and caret.

11. Although often kernel-based predictors show a remarkably
high performance, several considerations need to be taken
into account. First, convergence is not always guaranteed in
such type of predictors; that is, if the available sequence infor-
mation is scarce and reactions in the cluster are too different,
the predictor will likely not converge. Secondly, the fact that
sequence information containing diversity is needed to build
the predictor can often lead to a poor performance in terms of
specificity. Even if the predictor is highly specific for the reac-
tion cluster, such reaction cluster can happen to contain many
diverse reactions apart from the target one.

12. Combinatorial sampling of the set of mutants can be optimized
during the conformational sampling as implemented for exam-
ple in CombiDOCK in the QXP/FLO package [33]. However,
most energy-based methods do not sample the type of side
chain and therefore can only be used on a chosen set of mutant
combinations.

Acknowledgements

This work was funded by Genopole®, UniverSud Paris, and Agence
Nationale de la Recherche (ANR Chaire d’excellence). UPFellows
program with the support of the Marie Curie COFUND program.

References

1. Kazlauskas RJ, Bornscheuer UT (2009)
Finding better protein engineering strategies.
Nat Chem Biol 5:526–529

2. Cobb RE, Sun N, Zhao H (2012) Directed
evolution as a powerful synthetic biology tool.
Methods. doi:10.1016/j.ymeth.2012.03.009

3. Hayes RJ, Bentzien J, Ary ML et al (2002)
Combining computational and experimental
screening for rapid optimization of protein
properties. Proc Natl Acad Sci U S A
99:15926–15931

4. Becskei A, Serrano L (2000) Engineering sta-
bility in gene networks by autoregulation.
Nature 405:590–593

5. Elowitz MB, Leibler S (2000) A synthetic
oscillatory network of transcriptional regula-
tors. Nature 403:335–338

6. Gardner TS, Cantor CR, Collins JJ (2000)
Construction of a genetic toggle switch in
Escherichia coli. Nature 403:339–342

7. Van der Sloot AM, Kiel C, Serrano L, Stricher F
(2009) Protein design in biological
networks: from manipulating the input to
modifying the output. Protein Eng Des Sel
22:537–542

8. Chang MC, Keasling JD (2006) Production of
isoprenoid pharmaceuticals by engineered
microbes. Nat Chem Biol 2:674–681

20 Pablo Carbonell and Jean-Yves Trosset

http://dx.doi.org/10.1016/j.ymeth.2012.03.009

9. Carbonell P, Planson AG, Fichera D, Faulon JL
(2011) A retrosynthetic biology approach to
metabolic pathway design for therapeutic pro-
duction. BMC Syst Biol 5:122

10. Gr€unberg R, Serrano L (2010) Strategies for
protein synthetic biology. Nucleic Acids Res
38:2663–2675

11. Looger LL, Dwyer MA, Smith JJ, Hellinga
HW (2003) Computational design of receptor
and sensor proteins with novel functions.
Nature 423:185–190

12. Schmidt M, de Lorenzo V (2012) Synthetic
constructs in/for the environment: managing
the interplay between natural and engineered
Biology. FEBS Lett 586:2199–2206

13. Dueber JE, Wu GC, Malmirchegini GR et al
(2009) Synthetic protein scaffolds provide
modular control over metabolic flux. Nat Bio-
technol 27:753–759

14. Foo JL, Ching CB, Chang MW, Leong SS
(2011) The imminent role of protein engineer-
ing in synthetic biology. Biotechnol Adv.
doi:10.1016/j.biotechadv.2011.09.008

15. Pleiss J (2011) Protein design in metabolic
engineering and synthetic biology. Curr Opin
Biotechnol 22:611–617

16. Lippow SM, Tidor B (2007) Progress in
computational protein design. Curr Opin Bio-
technol 18:305–311

17. Li X, Zhang Z, Song J (2012) Computational
protein design approaches with significant
biological outcomes: progress and challenges.
Comp Struct Biotechnol J. doi:10.5936/csbj.
201209007

18. TiwariM, SinghR, SinghR et al (2012)Compu-
tational approaches for rational designofproteins
with novel functionalities. Comp Struct Biotech-
nol J. doi:10.5936/csbj.201209002

19. Tsai M, Wu JT, Gunawardhana L, Naik H
(2012) The effects of xanthine oxidase inhibi-
tion by febuxostat on the pharmacokinetics of
theophylline. Int J Clin Pharmcol Ther
50:331–337

20. Rudolph MM, Vockenhuber MP, Suess B
(2013) Synthetic riboswitches for the condi-
tional control of gene expression in Streptomy-
ces coelicolor. Microbiology. doi:10.1099/
mic.0.067322-0

21. Michener JK, Smolke CD (2012) High-
throughput enzyme evolution in Saccharomy-
ces cerevisiae using a synthetic RNA switch.
Metab Eng 14:306–316

22. Li W, Godzik A (2006) Cd-hit: a fast program
for clustering and comparing large sets of pro-
tein or nucleotide sequences. Bioinformatics
22:1658–1659

23. Taly JF, Magis C, Bussotti G et al (2011) Using
the T-Coffee package to build multiple
sequence alignments of protein, RNA, DNA
sequences and 3D structures. Nat Protoc
6:1669–1682

24. Pettersen EF, Goddard TD, Huang CC et al
(2004) UCSF Chimera—a visualization system
for exploratory research and analysis. J Comput
Chem 25:1605–1612

25. Doppelt-Azeroual O, Moriaud F, Adcock SA,
Delfaud F (2009) A review of MED-SuMo
applications. Infect Disord Drug Targets
9:344–357

26. Jambon M, Andrieu O, Combet C et al
(2005) The SuMo server: 3D search for
protein functional sites. Bioinformatics
21:3929–3930

27. Maggiora GM, Shanmugasundaram V (2011)
Molecular similarity measures. Methods Mol
Biol 672:39–100

28. Carbonell P, Carlsson L, Faulon JL (2013)
Stereo signature molecular descriptor. J Chem
Inf Model 53:887–897

29. Chang A, Scheer M, Grote A et al (2009)
BRENDA, AMENDA and FRENDA the
enzyme information system: new content and
tools in 2009. Nucleic Acids Res 37:
D588–D592

30. Karatzoglou A, Smola A, Hornik K, Zeileis A
(2004) Kernlab—an S4 package for Kernel
methods in R. J Stat Software 11:1–20

31. Liu Y, Kuhlman B (2006) RosettaDesign
server for protein design. Nucleic Acids Res
34:W235–W238

32. Richter F, Leaver-Fay A, Khare SD et al (2011)
De novo enzyme design using Rosetta3. PLoS
One 6:e19230

33. Zhou JZ (2008) Structure-directed combina-
torial library design. Curr Opin Chem Biol
12:379–385

Protein Design for Synthetic Biology 21

http://dx.doi.org/10.1016/j.biotechadv.2011.09.008
http://dx.doi.org/10.5936/csbj.201209007
http://dx.doi.org/10.5936/csbj.201209007
http://dx.doi.org/10.5936/csbj.201209002
http://dx.doi.org/10.1099/mic.0.067322-0
http://dx.doi.org/10.1099/mic.0.067322-0

Chapter 2

Computer-Aided Design of DNA Origami Structures

Denis Selnihhin and Ebbe Sloth Andersen

Abstract

The DNA origami method enables the creation of complex nanoscale objects that can be used to organize
molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic
biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-
act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA
origami structures is a complicated matter and is most efficiently done using dedicated software packages.
This chapter describes a procedure for designing DNA origami structures using a combination of state-of-
the-art software tools. First, we introduce the basic method for calculating crossover positions between
DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices.
Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from
schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling
can facilitate later experimentation in the laboratory.

Key words DNA, Nanotechnology, Origami, Biosensor, CAD, Software

1 Introduction

The methods for designing DNA nanostructures have been devel-
oping over the last three decades with the objective of creating
well-ordered DNA lattices to organize and control matter at the
nanoscale [1, 2]. When the DNA origami method was introduced
in 2006 it provided many new features that were not previously
achievable such as programmable overall shape, sequence-specific
addressability on a large structure, and high self-assembly yield
[3]. The trick to obtain these features was to fold a long DNA
“scaffold” strand into a desired shape using several smaller DNA
“staple” strands. The scaffold strand was obtained from a natural
source, the M13mp18 bacteriophage single-stranded DNA
genome with a length of 7,249 nucleotides, and the staple strands
were obtained by chemical synthesis—usually about 230 DNA
strands of 32 nucleotides each. The self-assembly was done by
mixing all DNA strands in a standard buffer with high magnesium
concentration followed by heat-annealing of the strands whereby

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_2, © Springer Science+Business Media New York 2015

23

the desired structures form. Shapes with complicated folding
paths of the scaffold strand could be obtained (Fig. 1a) and the
addressability was demonstrated by the addition of “pixels” (pro-
jecting DNA structures) on the surface of the DNA origami sheets
(Fig. 1b). The method was rapidly adopted by other research
groups to produce new shapes [4, 5] and to label the structures
with other materials [6, 7]. An early hint that DNA origamis
could act as mechanical devices in solution was suggested by the
design and demonstration of DNA origamis with flexible regions

Fig. 1 DNA origami structures. (a–d) 2D DNA origami structures: (a) DNA smiley face strand path and
corresponding AFM (atomic force microscopy) image [3]. (b) DNA rectangle with map and corresponding
AFM image [3]. (c, d) DNA dolphin with specific shape recognition and corresponding AFM image [5]. (e–h) 3D
origami structures: (e) DNA box with controllable lid model and cryo-EM reconstruction [8]. (f) Square nut
model and TEM image with scale bar of 20 nm [9]. (g) Twelve-tooth gear model and TEM image [10]. (h) DNA
origami flask model and AFM image with scale bar of 75 nm [11]

24 Denis Selnihhin and Ebbe Sloth Andersen

(Fig. 1c) and post-assembly sequence/shape-recognition between
structures in solution (Fig. 1d). A second development was the
design of three-dimensional (3D) DNA origami structures. The
first approach demonstrated that DNA origami sheets can be
arranged in 3D by geometry-inducing crossovers to form a
DNA origami box with a controllable lid (Fig. 1e) [8]. The second
approach was to stack DNA origami sheets to form solid 3D
shapes (Fig. 1f) [9], which could be further curved and twisted
into more complicated shapes (Fig. 1g) [10]. The curvature and
bending of single-layer DNA origamis could also be controlled by
choosing crossover positions to enforce an overall shape (Fig. 1h)
[11]. Several other design developments have been demonstrated
later, e.g., the DNA origami gridiron [12], DNA origami with
parallel crossovers [13], and single-stranded tiles with single
crossovers that assembles efficiently in the absence of a long
scaffold strand [14, 15].

Several computational tools have been developed to facilitate
the design of DNA nanostructures [16]. The most relevant tools
for designing DNA origami structures are listed in Table 1 and are
often used in conjunction during the design process as illustrated in
Fig. 2. The design process usually starts with an idea for a shape or
device sketched out on paper, where the strand path and size of the
object is roughly calculated (Fig. 2a). The second step is the crea-
tion of a digital blueprint of the strand path of the scaffold strand
and the positions of the staple strands (Fig. 2b). Two software
packages are available for this task: SARSE [5] and Cadnano [17].

Table 1
Software for DNA origami design and analysis

Name Description Link References

caDNAno Blueprint editor and 3D editor for DNA
origami design

http://cadnano.org [17]

CanDo Coarse-grained modeling of strain and
flexibility in DNA origami structures

http://cando-dna-origami.org [21, 27]

NUPACK Thermodynamic analysis of the annealing of
multiple DNA strands

http://nupack.org [33]

OxDNA Coarse-grained modeling thermodynamic
DNA hybridization

http://dna.physics.ox.ac.uk/ [24]

SARSE 2D editor for DNA origami design with
output of atomic models

http://cdna.au.dk/software/ [5]

TIAMAT 3D editor with sequence symmetry
minimization

http://yanlab.asu.edu/
Resources.html

[18]

Uniquimer 3D editor with symmetry and energy
minimization

http://ihome.ust.hk/
~keymix/uniquimer3D/

[19]

DNA Origami Design 25

http://cadnano.org/
http://cando-dna-origami.org/
http://nupack.org/
http://dna.physics.ox.ac.uk/
http://cdna.au.dk/software/
http://yanlab.asu.edu/Resources.html
http://yanlab.asu.edu/Resources.html
http://ihome.ust.hk/~keymix/uniquimer3D/
http://ihome.ust.hk/~keymix/uniquimer3D/

The SARSE software allows automated creation of blueprints based
on shapes specified in bitmap files, detailed editing of the blueprint,
and export of sequences and atomic models. The software only
works for flat DNA origami structures and has not been actively
developed to accommodate new design principles. Cadnano allows

Fig. 2 DNA origami design procedure. Flow chart of the different steps in the design of a DNA origami box
structure. (a) An initial idea is materialized by calculating the possible dimensions of the object given the
length of the scaffold strand to be used. (b) A blueprint is constructed using the SARSE or Cadnano software
packages [5, 17]. (c) 3D modeling is used to evaluate how modules are placed in relation to each other and
used for the design of 3D staple strand connections. (d) Coarse-grained modeling using the CanDo program
[21, 27] can be used to evaluate the strain and flexibility of the structure. (e) Sequences are exported from the
blueprint program and sorted into functional modules that can be used to make different versions of
the designed structure. (f) DNA strands used for strand displacement can be designed in dedicated software.
(g) DNA is ordered, self-assembled, and tested in structural and functional experiments

26 Denis Selnihhin and Ebbe Sloth Andersen

the manual construction of DNA origami blueprints and supports
both square and honeycomb lattices. The software is actively
developed and the json files have become the standard blueprint
file format. 3D modeling software is another important tool for
designing complicated 3D DNA origami structures (Fig. 2c).
Cadnano has been integrated as a plug-in in the 3D modeling
environment Autodesk Maya, which provides a live 3D CAD
experience by linking 2D blueprint to 3D model. Other examples
of dedicated 3D modeling software for construction of DNA
nanostructures are TIAMAT [18] and Uniquimer3D [19], but
general molecular visualization software like UCSF Chimera [20]
can also be used for model building and rendering of models.
When a blueprint is finished the 3D shape can be analyzed using
the CanDo web server (Fig. 2d) that uses the crossover positions
in the DNA origami blueprint to determine the overall shape
using a finite element analysis method [21]. CanDo can both be
used to detect unwanted distortions and to design bend and
twisted shapes on purpose. When a satisfactory design is achieved
the DNA staple strands are exported based on the blueprint and a
choice of scaffold sequence (Fig. 2e). At this stage the DNA
strands are normally sorted into modules that allow functional or
structural elements to be substituted at the pipetting stage. Func-
tional modules like strand displacement systems [22] can be
designed in other software like NUPACK [23] and mechanistic
details can be modeled in coarse-grained modeling software
OxDNA [24]. After ordering of the final DNA sequences, the
DNA origami structure can be self-assembled in the laboratory,
characterized by biophysical techniques, and applied for the
desired purpose (Fig. 2f). As always in design processes the testing
stage can be used as feedback to improve the design if it does not
meet the requirements.

Tutorials for designing DNA origami structures are found
both on the websites of the software and published in the litera-
ture. The original DNA origami papers describe the design prin-
ciples in detail [3, 9–15, 17, 25]. We have earlier provided a
tutorial for the design of 3D DNA origami objects using the
SARSE software [26]. Dietz and colleagues have provided a
detailed step-by-step tutorial to DNA origami design using caD-
NAno and CanDo as well as experimental protocols [27]. In this
chapter we start by describing how crossover positions in DNA
origami structures are calculated and discuss the standard flat,
square and honeycomb lattices. Next, we provide a simple design
example and the step-by-step tutorial for designing the structure
using caDNAno and for 3D modeling and animation using Maya.
We have chosen this example to show how easy it is to make a
functional mechanical device and hope it will provide a stepping
stone for creating more complex and advanced devices.

DNA Origami Design 27

2 Materials

1. Download and install cadnano 2.2.0 from http://cadnano.org.

2. Download and install Autodesk Maya 2012 from http://www.
autodesk.com/education/free-software/maya.

3. Three button mouse.

3 Methods

3.1 Calculating

Crossover Positions

Between DNA Helices

To construct a crossover between two DNA helices we can work
with a simplified 3D DNA model showing only the position of
phosphate (P) atoms along the backbone (Fig. 3). The simplified
model has a minor groove angle of 133.0� and a twist angle of
34.48�/bp, which corresponds to 10.44 bp/turn along the helical
axis for a standard B-form helix [28]. A crossover is made by
aligning two P atoms of the two DNA helices, breaking the
bond on the same side of the P atoms, and rejoining the strands
between the helices (Fig. 3a). The crossover operation results in a
four-way junction that has two possible stacking conformations
and some flexibility at the junction [29]. To fix the two helices
rigidly in relation to each other a second crossover has to be made.
The double crossover can be made in five different ways named
DAE, DAO, DPE, DPON, and DPOW, where D stands for
double crossover, A/P for antiparallel or parallel strand direction
at the crossover, E/O for an even or odd number of half-turns
between the crossovers, and N/W for major/wide or minor/
narrow groove bridging in the parallel odd case [29]. Here we
only describe crossovers between antiparallel strands because these
are the ones used in the standard DNA origami structures
discussed below. To calculate the position of the second crossover
on the same strand (DAE) we use the twist angle of 34.48�/bp (see
Note 1) and find that it has an optimal spacing of 21 bp (Fig. 3b).
Where phosphates meet, a second crossover can be made using the
same operation as described in Fig. 3a. To calculate the position of
the second crossover on the opposite strand (DAO) we use the
minor groove angle of 133.0� and the twist angle of 34.48�/bp
(see Note 1) and find that it has an optimal spacing of 16 bp
(Fig. 3c). As seen on the side views to the right of the models a
DAE has the minor grooves on the same side, while a DAO
molecule has the major and minor grooves on opposite sides at
the crossovers, which leads to different pseudo symmetry axes
[29]. Crossover positions do not always fit perfectly when calcu-
lated along the strand, but can work anyway since the DNA helix
has a significant degree of flexibility and can accommodate subop-
timal conformations.

28 Denis Selnihhin and Ebbe Sloth Andersen

http://cadnano.org/
http://www.autodesk.com/education/free-software/maya
http://www.autodesk.com/education/free-software/maya

3.2 Scaffolded DNA

Origami Crossover

Patterns

In DNA origami structures the anti-parallel type of crossovers is
used to connect multiple helices in several configurations (Fig. 4).
The majority of crossovers in a DNA origami is made by the staple
strands, which are all on the same strand in relation to each other
and thus calculated as in Fig. 3b. The scaffold strand also makes
crossovers as it threads through the structure and these crossovers
are on the opposite strand and calculated as in Fig. 3c. The standard
flat DNA origami structures [3] seeks to make all crossovers in the
plane (Fig. 4a). It has a spacing of 32 bp (3 turns) between

Helix 1 W N

Helix 2

Making a crossovera

b

c

Helix 1 W N W N

Helix 2

Double crossover (anti-parallel even)

Helix 1 W WN N

Helix 2

Double crossover (anti-parallel odd)

J

J1 J2 J1 J2

J1 J2 J1 J2

J J

break
& rejoin

Fig. 3 Formation of crossovers between two DNA helices. (a) Left: Two phosphates are aligned in the plane
between two helices. Right: Strands are broken and rejoined to form the crossover. (b) A double-crossover
molecule with crossovers on the same strand with a spacing of 21 base pairs. (c) A double-crossover molecule
with crossovers on the two complementary strands with a spacing of 16 base pairs. DNA helices are based on
atomic models, but are shown here in a simplified representation, where the phosphates are shown as
spheres, lines are drawn between P and C3 atoms along the backbone, and lines between two C3 atoms
represent base pairs. The two complementary strands are colored with black and red. The 50 end of the
strands is seen as ending with a P sphere. Helical axes are shown and positions of crossovers are indicated by
dashed lines (J ¼ junction). Junctions are also shown in side view on the right as seen along the helical axis
from the left of the models (see eye icon). The major/wide groove is marked with a W. The minor/narrow
groove is marked with a N. The strand direction at the junction is shown as a circle with a dot (30 end) and a
circle with a cross (50 end)

DNA Origami Design 29

crossovers of the same two helices, and a 16 bp (1.5 turn) spacing
when crossing over to a third helix in the plane. Thus, this architec-
ture assumes 32 bp/3 turns ¼ 10.67 bp/turn and a twist of 360�/
10.67 bp ¼ 33.74�/bp. Since the real value is 10.44 bp/turn [28]
the resulting DNA structure will be undertwisted resulting in an
overall distortion of the structure which can be investigated using
the CanDo software (Table 1). The staple strands are often broken
in the middle of the 16 bp region on every other helix which results
in a 8-16-8 bp annealing region pattern. The pattern is repeated
through the whole structure and only interrupted on the edges.
The way the strands are broken in Fig. 4a makes all staple strands
form an “S” shape and the 50 and 30 ends are all positioned on the

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

6

1
6

3
2

5

4

1 3

5

2

6 4

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Flat DNA origami crossover pattern

Square DNA origami crossover pattern

Honeycomb DNA origami crossover pattern

a

b

c

Fig. 4 DNA origami crossover patterns. Left: Numbered helixes shown in side view. Right: Blueprints with
scaffold strand in cyan and staple strands in grey. Crossovers between distant helices are colored with orange
and green. DNA bases are marked as black dots on the strands. The scaffold strand is circular and runs
clockwise through the structure (Color figure online)

30 Denis Selnihhin and Ebbe Sloth Andersen

upper surface of the DNA origami sheet (marked in red in Fig. 4a).
The staple strands can also be broken on alternate helices resulting
in a “Z”-shaped staple strand. In this case the 50 and 30 end points
to the other side of the DNA origami sheet. At last one can make
combinations of S and Z staples to position the ends on both sides
of the sheets. 50 and 30 ends are good for placing chemical mod-
ifications. Square DNA origami is a 3D version of flat DNA origami
where the same helicity and spacing between crossovers are used.
Scaffold strand segments that make up helix 1 and 6 are placed far
apart on the scaffold strand and have to be connected together via
staple strands for the structure to be stable. The first staple strand
(from the left) of helix 1 has a crossover that connects it with helix 6
(orange crossover in Fig. 4b) and with helix 5 (Fig. 4b). This staple
strand has to make 3/4 of a turn (8 base pairs) on helix 6 to be able
to crossover to helix 5 after crossing over from helix 1 (side view in
Fig. 4b). The same is valid for the crossovers connecting helices
2 and 5 (green crossovers in Fig. 4b). Honeycomb DNA origami
uses 10.5 bp/turn, which is very close to the reported value of
10.44 bp/turn [28] (seeNote 2), and allows it to have a spacing of
21 bp between the crossovers of the same strand (Fig. 3b). As seen
in the side view in Fig. 4c the honeycomb arrangement of helices
are linked by local crossovers (grey) and long-range crossovers
between helix 1 and 6 (orange). Annealing regions in honeycomb
lattices are 7 bp.

3.3 Design of a DNA

Origami Device

Here we demonstrate the design process for making a DNA ori-
gami biosensor (Fig. 5). The structure consist of two six-helix
bundles that are connected through a hinge at one end and held
together via complementary oligonucleotides protruding the other
end. Complementary oligonucleotides hold the structure together
in a closed conformation. Donor and acceptor fluorophores are

Open state

Six-helix
bundles

Closed state

Lock
Donor
fluorophore

Acceptor
fluorophore

Hinge Key

Fig. 5 The sketch of DNA origami six-helix bundle sensor. The sensor consists of two six-helix bundles that are
connected in one end by a scaffold strand and held together by an oligo lock in other end. In the closed
conformation there is FRET between donor and acceptor fluorophores that are positioned at the end of the
each bundle. When the structure is in its open conformation the distance between the fluorophores is too large
for FRET to occur

DNA Origami Design 31

placed at the end of each bundle to detect the opening of the device
by Förster resonance energy transfer (FRET). In the closed confor-
mation FRET occurs from donor to acceptor fluorophore resulting
in acceptor fluorescent signal when the donor fluorophore is
excited. One of the locking strands is designed with a toehold for
a “key” strand that can displace the shorter locking strand from lock
helix by the strand displacement mechanism [22]. Upon the addi-
tion of a key the lock helix is opened and the biosensor opens due to
the electrostatic repulsion between the DNA helices. Increased
distance between fluorophores decrease FRET resulting in only
donor fluorescence when it is excited. The key strand acts as a signal
that can be measured by acceptor and donor fluorescence and the
structure can be used as a biosensing platform for the key strand.

3.4 caDNAno Design The DNA origami device described above can be implemented in
different sizes. Here we choose a small size using 1,344 nucleotides
to make an easy design process. The standard DNA origami struc-
tures consist of approximately 14,000 nucleotides.

1. Open the caDNAno program and get familiar with its
interface (Fig. 6).

2. To begin, choose a honeycomb lattice from the main menu and
draw a six helix bundle in the lattice window (Fig. 6a).

3. Click on the arrows just above the helices in the top right
corner (Fig. 6g) to add 84 bp to the helices’ length to 42 bp
that are set by default.

4. Draw the scaffold strand as shown (Fig. 7d) using the “Pencil”
tool from the tool box. Each bundle should be 61 bp long. A 50

end can be connected with 30 end using the “Pencil” tool. The
scaffold strand can be connected only with another part of the
scaffold strand and staple strands only with other staple strands.
There is a more convenient way of drawing the scaffold path
through the helices. Click with the left button of the mouse on
helix “0” in the lattice window, hold the mouse button down
and select all the other helices by moving the mouse clockwise.
Release the button when the last helix is selected. The scaffold
path centered on the “ruler” should appear connected via cross-
overs. Note that the cell array may not contain any drawn
scaffold strands for this function to work properly. Correct
automatic scaffold drawing according to the blueprint in
Fig. 7d. This can be achieved by dragging the crossover ele-
ments using the “Select” tool. Remove any undesired crossovers
by first selecting the crossover and then pressing the “Delete”
key on the keyboard. Place 30 and 50 ends at desirable positions
and use the “Pencil” tool to draw a crossover. The select tool
only selects the elements that are defined in the “Selectable”
menu above the blueprint window (see Notes 3 and 4).

32 Denis Selnihhin and Ebbe Sloth Andersen

5. Click the “Autostaple” button—this will add staple strands
automatically to the designed structure. Added staples are
long strands that bind the scaffold strand in a regular pattern
(see Note 5).

6. Use the “Break” tool from the tool box to cut the strands into
shorter segments of 28–42 bp per strand. In the honeycomb
lattice the staple strand pattern is usually 7-7-14-7-7 bp (or 7-
7-7-14-7 bp etc.) where the number refers to the binding
regions on the helix (see Notes 6 and 7).

7. Shorten the staples at the ends of each helix by two base pairs to
remove the possible strain of the scaffold strand (Fig. 7e). More
than one endpoint can be selected simultaneously by selecting
“Staples” and “Endpoints” from the “Selectable” menu and
hovering the arrow icon over the desired endpoints.

8. Now we will design oligonucleotides that will serve as the lock
mechanism. Choose the two staple strands that will be functio-
nalized with donor and acceptor fluorophores. Helices 0 and 5

Fig. 6 caDNAno interface. (a) Lattice window shows how the helices are arranged in the designed structure.
Honeycomb lattice is shown as an example. Each helix is numbered: the odd and even numbers represent the
directionality of the scaffold/staple strand helices. Scaffold strand’s directionality of the odd helices is opposite
to directionality of the even ones. Alternatively a square lattice can be chosen. (b) Blueprint window shows
how the crossovers between the helices hold the structure together. (c) Selectable menu allows to make the
selection specific for defined elements. (d) Tool box: Select—use it to select elements in blueprint window,
Pencil—allows to draw scaffold and staple strands in the cell arrays, Break—can be used to introduce breaks
in the strands, Insert/Skip—allows to insert or skip a base on a desired strand, Paint—allows to change the
color of the strands, Seq—sets the sequence of the scaffold strand and the staple strand sequence is
generated automatically (e) Each helix is represented by 2xN cell array. The top row represents a scaffold
strand and bottom row a staple strand (vice versa for odd numbered helices). Each cell represents a base of a
DNA strand. (f) Movable ruler, (g) Addition/deletion of bases to the cell array

DNA Origami Design 33

connect the two bundles, determine the hinge axis, and are
chosen for positioning the lock and FRET pair. Color all the
staples with red by selecting the red “STAP” button in “Select-
able” menu shown in Fig. 6c. Use both “Select” and “Paint”
tool from the toolbox to color them all with red. Now color the
lock staples with green and the fluorophore staples with yellow.
Nowmake small changes on the lock and fluorophore staples as

Fig. 7 Blueprint design in caDNAno. (a) Six-helix bundle drawn in lattice window. (b) Crossover markers. (c)
One part of the (d) blueprint of scaffold strand. (e) Addition and cleavage of the staple. (f) Preparation of the
design for Maya animation

34 Denis Selnihhin and Ebbe Sloth Andersen

shown (Fig. 7f). Last thing to do is to break the scaffold strand
at the bending points of helices 0 and 5 (Fig. 7f) (see Note 8).

9. Open Maya and click on the caDNAno plug-in button in the
right upper corner beneath the “Minimize” and “Close” icons.
The screen now consists of three windows: two of them are the
familiar caDNAno windows and the third is the Maya window.

10. Open your caDNAno design file through the caDNAno win-
dow. Essentially, one has the same possibilities in the plug-in as
in caDNAno itself. You can use “Alt + the left mouse” key to
rotate the view around your object in the Maya window.

11. Our lock strands were initially designed too short. Now we can
make them a little bit longer in two ways:

(a) Use the select tool of the caDNAno window and edit the
lock strands in caDNAno.

(b) Select one of the green helices in Maya window by clicking
with the left button of the mouse and drag the blue rhomb
(Fig. 8f, g).

12. Do the same with the green staple strand from the other end of
the object. Extend the possible helix length if needed by
extending cell arrays in the caDNAno blueprint window.

13. The rest of the modeling is done in Maya only (seeNotes 9 and
10) and caDNAno can now be closed to get more workspace.
Click the caDNAno icon in the top right corner to close the
plug-in.

3.5 Maya Modeling The structure that is made in caDNAno depicts only the DNA part
and fluorophores have to be added separately in Maya. The fluor-
ophores are going to be represented as spheres of different color:
donor is colored with green and acceptor with red.

1. The object has lost its color and only a wireframe is visible.
Click the “Smooth shade all” button from the panel tool bar to
bring the colors back (Fig. 8b).

2. Select Create > NURBS Primitive and deselect “interactive
creation” at the bottom of the drop down menu (press “ctrl +
M” on the keyboard if the menu bar is invisible). Now select
Create > NURBS Primitive > Sphere and click on the small
square next to it. In the Sphere option menu change the radius
from 1 to 0.5. Click “create.” A sphere is now positioned at the
center of the grid (the grid is invisible by default, but can be
switched on by selecting Display > Grid). Press “Z” to undo
an operation instead of the more common “Ctrl + Z” combi-
nation. “Shift + Z” will redo the operation.

3. The fluorophore has to be placed on the end of our yellow
staple. This can be done with precision in 3D by viewing
our object from x, y, and z directions in orthogonal view.

DNA Origami Design 35

The “quick layout” buttons allow you to change between
different viewing modes. Choose the “Four view” option
using the “quick layout” buttons just beneath the tool bar
menu (Fig. 8a). The window is now split into four windows
where the object is seen in three orthogonal views plus the
perspective view.

Fig. 8 3D modeling and animation in Maya. (a) Quick layouts buttons are placed beneath the tool bar menu.
(b) Part of the panel tool bar. (c) Editor icons. (d) Rendering shelf. (e) Range slider. (f) Selection of a strand in
Maya is shown as a grey box. (g) The length of the strand can be changed by moving the blue rhomb along
the strand axis. (h) Adding fluorophores in Maya. (i) Grouping the selected elements in orthographic view.
(j) Device in a closed state. (k–m) Animation of the opening of the device

36 Denis Selnihhin and Ebbe Sloth Andersen

4. Select the sphere with the select tool (it can be selected in any of
the windows) and choose the move tool from the tool box on
the left panel. Three arrows appear (red, green, and blue) each
representing the direction that the sphere can be moved along
the x, y, and z axes.

5. Drag the blue arrow with the left button of the mouse to the
left. You can follow the movement of the sphere in all windows
simultaneously. If the sphere disappeared in one of the windows
use “alt + middle mouse button” to move the view in that
window (scrolling the mouse wheel will zoom in/out). If a
bigger view is needed in one of the windows press “space”
while pointing on it with the mouse arrow. Press space again
to return back to the four window view. Place the sphere on the
30 end of the yellow staple on one six-helix bundle (use caD-
NAno to find out which end is 30 and which is 50).

6. Create the second sphere with a radius of 0.75 and place it at
the 30 end of the yellow staple on the other six-helix bundle.
Both spheres are now placed at the right positions and will
represent donor and acceptor fluorophores (Fig. 8h).

7. Click with the right button of the mouse on the sphere and
while still holding the right mouse button choose “Assign a
new Material” and release the button. Choose “Blinn” as a
material and the red color for the big sphere and the green
color for the small one.

The initial state of the object is the closed one. The two
bundles have to be brought together. Each bundle has a scaf-
fold strand, multiple staple strands, and one fluorophore, which
are grouped to treat them as one element in the animation.

8. Go back to the four view display and choose the right bottom
window that shows the structure in side view. Select one of the
halves (the selected area should turn green) and press “ctrl +
G” to group all the selected elements into one group (Fig. 8i).
Select and group the other half.

9. Select the Panels menu and choose Saved Layouts > Persp/
Hypergraph. The view is changed to perspective and the
Hypergraph window is now visible. The Hypergraph window
depicts all the objects found in the workspace in a block form.
When you group your objects they become associated under
the “group” blocks. It is easier to navigate by selecting or
deselecting objects using Hypergraph. Click on the group in
the Hypergraph window which results in selection of the
corresponding group in the workspace window. One can
rename, hide or delete objects using Hypergraph.

10. Choose one of the groups and select the rotate tool from the
tool box. You will see three circles of different color that, as
with the moving tool, refer to the rotation around three axes.

DNA Origami Design 37

Press the “Insert” key on the keyboard. The circles turn into a
point—the pivot point. Use the arrows to move the pivot point
from the middle of the bundle to the hinge axis that is found
between helices 0 and 5. Using the four view window, place the
rotating point on the outer edge of the helices 0 and 5.

11. Open the menu “Channel Box”—one of the Editor Icons
found in the upper corner next to the caDNAno plug-in key
(Fig. 8c). This menu provides you total control over the Move,
Translate and Rotate operations. Depending on which part you
have chosen first, it has to be rotated by either 90� or �90�

around the y-axis. Repeat the operation for the other part.
Our structure is now in the closed state (Fig. 8j). The next

stage is to animate the object to the open state.

12. At the bottom of the window there are two sliders: the time
slider and the range slider. The time slider shows which frame
of the animation is currently shown, while the range slider tells
how many frames there are in the animation and which part of
it we are currently working on.

13. Change both numbers on the left of the range slider to 1 and
on the right to 240 (Fig. 8e). Set the time slider to 1. Select one
of the groups and press “S” on the keyboard—the red mark
now appears on the first slide of the time slider. Select slide 240
on the time slider. Change the rotation around the y axis back
to zero in the Channel Box and press “S” on the keyboard. Go
back to the first frame on the time slider and press the play
button in the lower right corner of Maya. You will see that one
of the six-helix bundles is moving from the closed conforma-
tion to the open. Press stop and do the same for the other
bundle.

14. Addition of fluorophore glow to the animation will make the
function of the biosensor more visual. Go to slide 1 and click
with the right button of the mouse on the red fluorophore.
Choose “Material attributes . . .” from the drop-down menu.
From the Material attributes menu scroll down to the Special
effects function. Set glowing intensity to 1 and click with the
right button of the mouse on it. Choose “Set driven key”
from the drop-down menu. Choose one of the groups in
Hypergraph and click on “Load Driver” in the set driven key
menu. Choose rotate Y for the Driver and click “Key” in “Set
driven Key.” Click on the “Blinn” in the “Driven” and move
the time slider to frame number 100. In the “Attribute editor”
on the right set the glow to 0 and click again “Key” in “Set
driven Key.” The degree of glowing is now dependent on the
bundle rotation around its Y axis. The glow effect is invisible
until the frames are rendered. Do the same for the green
fluorophore where glowing is set to 0 in the first frame and to
1 in the 100th frame.

38 Denis Selnihhin and Ebbe Sloth Andersen

15. The whole animation has to be rendered into a short movie
sequence. Go to frame 1 and press the “Render Current
Frame” button (Fig. 8d). A new window opens with a rendered
frame of the device in the closed state: only the red fluorophore
is glowing (Fig. 8k). Do the same for the frame 50 and 100 and
you should get the frames shown in Fig. 8l, m. In the 100th
frame the distance between fluorophores is too large and only
the green fluorophore is glowing.

16. Choose the angle from which the animation is going to be
viewed—by default the perspective view is rendered. Now we
can render the first 100 frames and put them together in a small
animation. Click the “Render Current Frame” button on a
random frame. Choose Options > Render Settings . . .

(a) Set “Render Using” to “Mental ray” software.

(b) Name file sequence in the “File name prefix.”

(c) Set “Frame/Animation ext” to “name.#.ext.”

(d) Set “Image format” to “JPEG(jpg)”.

(e) “Frame padding” refers to the maximum size of the image
sequence. Set it to 3 (it will run from 000 to 999, in total
1,000 images).

(f) Set the “Start frame” to “1,” “End frame” to “100” and
“By frame” to “1”. These options render each frame from
1 to 100.

(g) Remember to note down the path to the directory where
the rendered images will be saved.

17. Close the Render settings window and the Render window.
Click “Render” on themenu bar and then “Batch render.” One
can follow the rendering process on the command line. It
should take approximately 3–5 min to render 100 frames on a
standard laptop computer. The sequence of 100 frames can be
compiled into an animation. Close Maya. A PC user can use the
already installed Windows Live Movie Maker while QuickTi-
mePro for this purpose.

18. Open Windows Live Movie Maker and simply drag and drop
your image sequence in the program. Go to the edit menu and
change the duration of each frame to 0.05 s. Now save the
movie and play it.

We have now created a 3D model and animation of a DNA
origami device.

Here we have shown how to make a DNA origami blueprint in
caDNAno and how to make a simple animation of a dynamical
structure. The animation cannot be regarded as a simulation of
the device but it makes it possible to get an idea about how the
structure looks in 3D and how the dynamic parts might move in

DNA Origami Design 39

relation to each other. Furthermore, the animation of the idea can
be successfully used when complicated scientific designs should be
presented for the broader public but also for communication
between scientists.

3.6 Suggestions for

Further Work

Next you can start designing more complex shapes based on mod-
els from the literature (see Note 11), start considering how to
functionalize the device by attaching RNA or protein elements
(see Note 12) or order the designed structure, self-assemble, and
characterize it (see Note 13).

4 Notes

1. To get comfortable with the various crossover patterns it is
advised to use a spread sheet to calculate the positions of
phosphates for the DNA helices involved in a crossover com-
plex. Make two columns for each strand of the helix and specify
the strand direction. Set the angle of the first crossover to zero
and use the twist angle to calculate the phosphate position
along the helix. Find the position where the DNA strands
meet again on the same strand or the opposite strand and
mark these positions with a color. Now try extending this to
the multihelix DNA origami crossover patterns and verify that
it fits the crossover spacings shown in Fig. 3.

2. A sketch is always a good start for designing a structure or
drawing the initial idea but it should be also tried out in
caDNAno to see if the structure design is possible. One of the
first things to decide when designing a new structure using the
DNA origami method is what lattice one would like to use.
There are twomain lattices that are widely used: square that was
introduced in original Rothemund paper [3] and the honey-
comb lattices [9]. The square and honeycomb lattices refer to
the arrangement of helices in the structure (Fig. 4). The advan-
tage of the square lattice is its compactness compared to the
honeycomb lattice and can be used in construction of very
dense structures. The angles between the helices in the honey-
comb lattice result in close to integer numbers of bases between
the crossovers that leads to less strained self-assembled struc-
tures. The square lattice spacing does not come so close to the
integer numbers and is therefore more strained (Fig. 4). The
square lattice can be manipulated to be more relaxed by inser-
tion and deletion of bases in the helices to come closer to the
natural DNA helicity of 10.44 bp/turn [10]. Beside these two
lattices one can also use the less usual gridiron lattices [12] or
curved scaffold path [11].

3. caDNAno takes that into account and shows the favorable
crossovers for a selected helix with other helices in the lattice

40 Denis Selnihhin and Ebbe Sloth Andersen

as corners with numbers that show which helices are placed
optimally for the crossover at that position (Fig. 7b). Cross-
overs are easily placed by clicking on these corners (Fig. 7c).

4. The scaffold that is used for DNA origami is usually a circular
scaffold. That means that scaffold path should end where it
starts. Imagine that you are designing a simple rectangular
origami sheet. There are two ways that a scaffold can be
wound through the structure using either raster or mid-seam
design strategies (Fig. 9). The raster design proposed on the
right has fewer crossovers that are only connecting the ends of
each helix and includes a long crossover from helix 1 to 4 that
should contain single stranded part long enough to span the
length between these helices. The mid-seam design has cross-
overs not only placed on the ends of helices but also in between
the helices. The crossovers connecting the scaffold helices
inside the structure are called “the seam.” The seam is another
feature to consider before starting designing a DNA origami
structure. The seam offers a possibility to introduce openings in
the structure like the eyes and mouth of the original DNA
origami smiley face [3]. The disadvantage of the seam is that
it introduces breaks in the scaffold path that has to be linked
with staple strands. A staple strand connecting such a break
loses its long scaffold annealing region due to the break in the
scaffold. The seam can be avoided by cutting the scaffold to
make it linear [3]. The structure can also be designed so that it
does not use or minimizes the use of the seam [30].

5. The average sequence distance between scaffold segments that
are brought together by staple strands interaction is called
contact order and was shown to have a big influence on self-
assembly yield [31]. The maximum contact order that can be
achieved depends on the design: 3D structures require smaller

Fig. 9 Mid-seam and raster design strategies. Two blueprints proposed for rectangular DNA origami design.
Blueprint on the right has fewer crossovers that only connect the ends of each helix with another. Blueprint on
the left has extra crossovers that connect helices along the helix length—these crossovers are called “the
seam”

DNA Origami Design 41

contact order compared to 2D structures [3, 31]. This is espe-
cially important to have in mind when designing a structure, as
introduction of the seam can reduce the contact order up to a
factor of two. Consider our designs of rectangular origami
sheet (Fig. 9). Both designs have the same dimensions of the
structure but different contact order. Most helices are split into
two parts in the mid-seam design that reduces contact order of
these helices by a factor of two.

6. Another important step is the staple strand design. Staple
strand design has been shown to have a great effect on self-
assembly yield and stability of the structure [31, 32]. Designs
where staple strands have only short 7 bp uninterrupted anneal-
ing regions on the scaffold strand do not self-assemble. Designs
where staples have 11 or 12 bp stretches that anneal directly to
the scaffold either do not assemble or assemble in a low yield.
Designs that have the highest yields include the staple strand
design where each staple has an at least 14 bp long uninter-
rupted region of complementarity to the scaffold and where
most of the crossovers are preserved.

7. Addition of each base to a synthetic DNA oligonucleotide
during chemical synthesis has a yield of 99 %. Longer oligos
will result in lower quality. Therefore, staple strand lengths
should be kept between 28 and 42 bp.

8. It is easier to model dynamical parts in Maya when hinge parts
are not continuous—this can be done by introducing a break in
the caDNAno design.

9. caDNAno2 also offers to show the position of the phosphates
on the structure in the Maya window. Choose the menu: Edit
> Modify mode. The black dots on the structure represent
phosphate positions. These can be removed by pressing the
“Modify mode” button once more.

10. Maya is commercial 3D animation software that offers a com-
prehensive creative feature set for 3D computer modeling,
animation and simulation. As a student or educator one can
get a free 3-year license.

11. Examples of DNA origami designs are found in the literature or
on websites. There is currently no repository for such blueprint
files, so one has either to reconstruct them in the program or
ask the authors for their design files.

12. You can add molecular models of any structure from the Pro-
tein Data Bank (PDB) by using the Molecular Maya plug-in:
http://www.molecularmovies.com/toolkit/. You can use the
show phosphates option to find a spot where the protein can be
attached on your structure.

42 Denis Selnihhin and Ebbe Sloth Andersen

http://www.molecularmovies.com/toolkit/

13. In order to get the staple strand sequences for the designed
structure one will need a scaffold strand sequence. Scaffold
strand sequence is then imported into caDNAno using “Seq”
function from the toolbox and clicking onto the scaffold
strand. The scaffold strand may not have more than one
break. The 50 end of the scaffold will be a starting point of
the sequence. One could use blueprint from Fig. 7e to intro-
duce a break. Staple strand sequences will be generated auto-
matically when the scaffold sequence is assigned. The staple
strand sequences can now be exported to Excel readable csv
format using “Export” function in the top menu. Every strand
has a start and end coordinates for 50 and 30 ends respectively.
The coordinates are given in the format xx[nn], where xx is a
helix number and nn is a base number on the helix. One can
easily trace the desired staple strand back to the blueprint using
the coordinates. One can use movable ruler (Fig. 6f) for mark-
ing the right base number along the helix while helix number
can be directly read (Fig. 6e). The sequence output provides
the staple strand length and a specific color code. Color code
can be used for sorting the sequences into separate modules for
easier handling, e.g., lock strands and fluorophore strands.
Staple strand sequence list can than be used for ordering oli-
gonucleotides from a supplier of custom nucleic acids.

Acknowledgement

This work was supported by a Sapere Aude Starting Grant from the
Danish Council for Independent Research (DFF-0602-01772) and
the Centre for DNA Nanotechnology (http://cdna.au.dk/)
funded by the Danish National Research Foundation (DNRF81).

References

1. Seeman NC (1982) Nucleic acid junctions and
lattices. J Theor Biol 99(2):237–247

2. Seeman NC (2010) Nanomaterials based on
DNA. Annu Rev Biochem 79:65–87

3. Rothemund PWK (2006) Folding DNA to
create nanoscale shapes and patterns. Nature
440(7082):297–302

4. Qian L et al (2006) Analogic China map con-
structed by DNA. Chinese Science Bulletin

5. Andersen ES et al (2008) DNA origami design
of dolphin-shaped structures with flexible tails.
ACS Nano 2(6):1213–1218

6. Sharma J et al (2008) Toward reliable gold
nanoparticle patterning on self-assembled
DNA nanoscaffold. J Am Chem Soc 130
(25):7820–7821

7. Ke Y et al (2008) Self-assembled water-soluble
nucleic acid probe tiles for label-free RNA
hybridization assays. Science 319(5860):
180–183

8. Andersen ES et al (2009) Self-assembly of a
nanoscale DNA box with a controllable lid.
Nature 459(7243):73–76

9. Douglas SM et al (2009) Self-assembly of DNA
into nanoscale three-dimensional shapes.
Nature 459(7245):414–418

10. Dietz H, Douglas SM, Shih WM (2009) Fold-
ing DNA into twisted and curved nanoscale
shapes. Science 325(5941):725–730

11. Han D et al (2011) DNA origami with com-
plex curvatures in three-dimensional space. Sci-
ence 332(6027):342–346

DNA Origami Design 43

http://cdna.au.dk/

12. Han D et al (2013) DNA gridiron nanostruc-
tures based on four-arm junctions. Science 339
(6126):1412–1415

13. Han D et al (2013) Unidirectional scaffold-
strand arrangement in DNA origami. Angew
Chem Int Ed Engl 52(34):9031–9034

14. Wei B, Dai M, Yin P (2012) Complex shapes
self-assembled from single-stranded DNA tiles.
Nature 485(7400):623–626

15. Ke Y et al (2012) Three-dimensional structures
self-assembled from DNA bricks. Science 338
(6111):1177–1183

16. Andersen ES (2010) Prediction and design of
DNA and RNA structures. N Biotechnol 27
(3):184–193

17. Douglas SM et al (2009) Rapid prototyping of
3D DNA-origami shapes with caDNAno.
Nucleic Acids Res 37(15):5001–5006

18. Williams S et al (2009) Tiamat: a three-
dimensional editing tool for complex DNA
structures. In: Goel A, Simmel F, Sosı́k P (eds)
DNA computing. Springer, Berlin, pp 90–101

19. Zhu J et al (2009) UNIQUIMER 3D, a soft-
ware system for structural DNA nanotechnol-
ogy design, analysis and evaluation. Nucleic
Acids Res 37(7):2164–2175

20. Pettersen EF et al (2004) UCSF Chimera—a
visualization system for exploratory research and
analysis. J Comput Chem 25(13):1605–1612

21. Kim D-NN et al (2012) Quantitative predic-
tion of 3D solution shape and flexibility of
nucleic acid nanostructures. Nucleic Acids Res
40(7):2862–2868

22. Zhang DY, Seelig G (2011) Dynamic DNA
nanotechnology using strand-displacement
reactions. Nat Chem 3(2):103–113

23. Zadeh JN et al (2011) NUPACK: analysis and
design of nucleic acid systems. J Comput Chem
32(1):170–173

24. Ouldridge TE, Louis AA, Doye JP (2011)
Structural, mechanical, and thermodynamic
properties of a coarse-grained DNA model. J
Chem Phys 134(8):085101

25. Ke Y et al (2009) Multilayer DNA origami
packed on a square lattice. J Am Chem Soc
131(43):15903–15908

26. Andersen E, Nielsen M (2009) DNA origami
design of 3D nanostructures

27. Castro CE et al (2011) A primer to scaffolded
DNA origami. Nat Methods 8(3):221–229

28. Wang JC (1979) Helical repeat of DNA in
solution. Proc Natl Acad Sci U S A 76(1):
200–203

29. Fu TJ, Seeman NC (1993) DNA double-
crossover molecules. Biochemistry 32(13):
3211–3220

30. Douglas S, Bachelet I, Church G (2012) A
logic-gated nanorobot for targeted transport
of molecular payloads. Science 335(6070):
831–834

31. Ke Y, Voigt NV, Fradkov E, Shih WM (2012)
Two design strategies for enhancement of mul-
tilayer–DNA-origami folding: underwinding
for specific intercalator rescue and staple-break
positioning. Chem Sci 3

32. Martin T, Dietz H (2012) Magnesium-free
self-assembly of multi-layer DNA objects. Nat
Commun 3:1103

33. Dirks RM et al (2004) Paradigms for computa-
tional nucleic acid design. Nucleic Acids Res 32
(4):1392–1403

44 Denis Selnihhin and Ebbe Sloth Andersen

Chapter 3

Computational Design of RNA Parts, Devices,
and Transcripts with Kinetic Folding Algorithms
Implemented on Multiprocessor Clusters

Tim Thimmaiah, William E. Voje Jr., and James M. Carothers

Abstract

With progress toward inexpensive, large-scale DNA assembly, the demand for simulation tools that allow
the rapid construction of synthetic biological devices with predictable behaviors continues to increase. By
combining engineered transcript components, such as ribosome binding sites, transcriptional terminators,
ligand-binding aptamers, catalytic ribozymes, and aptamer-controlled ribozymes (aptazymes), gene expres-
sion in bacteria can be fine-tuned, with many corollaries and applications in yeast and mammalian cells. The
successful design of genetic constructs that implement these kinds of RNA-based control mechanisms
requires modeling and analyzing kinetically determined co-transcriptional folding pathways. Transcript
design methods using stochastic kinetic folding simulations to search spacer sequence libraries for motifs
enabling the assembly of RNA component parts into static ribozyme- and dynamic aptazyme-regulated
expression devices with quantitatively predictable functions (rREDs and aREDs, respectively) have been
described (Carothers et al., Science 334:1716–1719, 2011). Here, we provide a detailed practical proce-
dure for computational transcript design by illustrating a high throughput, multiprocessor approach for
evaluating spacer sequences and generating functional rREDs. This chapter is written as a tutorial, complete
with pseudo-code and step-by-step instructions for setting up a computational cluster with an Amazon,
Inc. web server and performing the large numbers of kinefold-based stochastic kinetic co-transcriptional
folding simulations needed to design functional rREDs and aREDs. The method described here should be
broadly applicable for designing and analyzing a variety of synthetic RNA parts, devices and transcripts.

Key words RNA devices, Co-transcriptional RNA folding, RNA secondary structure design,
Ribozyme, Aptazyme, Ribosome-binding site (RBS), Kinefold

1 Introduction

Engineered transcript components, such as ribosome-binding sites
(RBSs), transcriptional terminators, ligand-binding RNA aptamers,
catalytic ribozymes and aptamer-regulated ribozymes (aptazymes),
can be employed to control gene expression in bacteria, yeast, and
mammalian cells [1–4]. Previously, we established a conceptual and
experimental framework for engineering RNA-based genetic con-
trol devices and systems from component parts generated and

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_3, © Springer Science+Business Media New York 2015

45

characterized in vitro, in vivo, and in silico [5]. We formulated a
model-driven process to engineer static, ribozyme-regulated
expression devices (rREDs) and dynamic, metabolite-responsive,
aptazyme-regulated expression devices (aREDs) with quantitatively
predictable functions in E. coli. rREDs and aREDs have immediate
usefulness as biosensors and controllers for engineered metabolic
pathways and could serve as the bases for constructing very large
and complex synthetic biological systems. Crucially, the physical
implementation of functional devices in that work required the
development of a novel method for designing transcripts with
kinetic RNA folding simulations. The purpose of this chapter is to
provide a practical description of that computational transcript
design method.

Briefly, the underlying genetic control mechanism for engi-
neered rREDs and aREDs relies upon ribozyme or aptazyme phos-
phodiester bond cleavage that generates 50-OH-terminated mRNA
(Fig. 1b). 50-OH-terminated RNA is degraded in an RppH-
independent (RppH�) mechanism that is characteristically slower

Fig. 1 Ribozyme- and aptazyme-regulated expression devices (rREDs and aREDs). In this chapter, rREDs are
designed to program static levels of quantitatively predictable genetic expression in E. coli, as in [5]. (a) Static
rRED and dynamic ligand-controlled aRED schematic in SBOL format. (b) Schematic of the underlying rRED
and aRED genetic control mechanism

46 Tim Thimmaiah et al.

than the rate with which the 50 PPP-terminated mRNA is degraded
by RppH-dependent (RppH+) pathways. As a consequence, phos-
phodiester bond cleavage increases mRNA stability, with a
corresponding increase in protein expression that can be modeled
and accurately predicted.

To assemble functional RNA devices from component parts, the
design objective is to identify Spacer sequences (Fig. 1a) that enable
both the ribozyme or aptazyme and the ribosome-binding site (RBS)
to fold into the target secondary structures required for phospho-
diester bond cleavage and efficient translation initiation, respectively
[5]. Minimum free energy (MFE)-derived RNA secondary structure
folding predictions are sufficient for many applications. However, the
relatively short half-life of bacterial transcripts suggests that many
mRNAs will not fold into MFE secondary structures in the context
of the cell [6]. Consistent with that expectation, our prior work has
shown that kinetic co-transcriptional RNA folding pathways must be
evaluated in order to drive the design of rREDs and aREDs with
predictable functions [5].

Sequence libraries flanking the insertion site of the ribozyme
within the 50 UTR of the device are computationally screened to
identify spacers (e.g., Lspc) that enable the ribozyme and the
ribosome-binding site (RBS) to fold into structures needed for
efficient phosphodiester bond cleavage and translation initiation,
respectively (Fig. 2). First, in Step A, the target secondary structure
of the ribozyme (Rbz) or aptazyme (Aptz) part is determined using
a simulated annealing folding simulation (note that the target
secondary structure can also be specified—Fig. 2a). Next, in
Step B the target structure(s) for the RBS in a reference device with
a given set of spacer sequences is determined using stochastic, kinetic,
co-transcriptional folding simulations (Fig. 2b). Finally, in StepC, the
ribozyme or aptazyme sequence is inserted into the reference device
transcript evaluated in the previous step (with a given set of spacer
sequences) and the folding probabilities for the ribozyme and RBS
parts are approximated using co-transcriptional folding simulations
(Fig. 2c). Steps B and C can be iterated, as necessary, by varying the
spacer sequences, until device transcripts are obtained that meet
specific design criteria, as judged by the RBS and ribozyme or apta-
zyme folding probabilities determined in Step C.

We perform kinetic co-transcriptional folding simulations using
the kinefold package created by the Isambert lab [7]. Kinefold is
able to simulate the folds of secondary and pseudo-tertiary struc-
tures on minute timescales. Small numbers of stochastic, kinetic co-
transcriptional folding simulations can be conducted with kinefold
running on an individual computer or web server [7]. However,
searching even small volumes of spacer sequence space requires a
developed strategy for submitting, running, and analyzing very
large numbers (i.e., tens of thousands) of computationally intensive
stochastic RNA folding simulations (Fig. 3).

Computational RNA Transcript Design 47

The following tutorial details the methods required to deploy
and utilize kinefold for high-throughput computational transcript
design on a multiprocessor cluster system. To demonstrate the
flexibility of this approach, we emphasize the incorporation of
scalable, open-source services. Although we focus on the design
of rREDs here, the computational framework that we describe for
multiprocessor co-transcriptional folding simulation and analysis
should be useful for the design of a wide variety of RNA parts,
devices, and transcripts.

2 Materials

2.1 Dependencies The following are the basic dependencies necessary to follow the
tutorial in this chapter (see Note 1).

1. Linux Based Amazon Elastic Compute Cloud (http://aws.ama
zon.com/ec2) (see Note 2).

2. MIT StarCluster (http://star.mit.edu/cluster) (see Note 3).

3. Kinefold Binary (http://kinefold.curie.fr/) (see Note 4).

Fig. 2 Transcript design method. A schematic of the functional rRED and aRED transcript design algorithm
is shown (see text for details)

48 Tim Thimmaiah et al.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://star.mit.edu/cluster/
http://kinefold.curie.fr/

4. BioPerl (http://www.bioperl.org/) (see Note 5).

5. Text::CSV_XS Perl Module (recommended).

2.2 Installation

and Setup

EC2 Cluster integration with MIT Starcluster (see Note 6).

(a) Sign up for an Amazon EC2 Account http://aws.amazon.
com/console/#ec2.

(b) Install StarCluster on local machine (see Note 7).

(c) Adjust StarCluster Configuration.

l Specify Amazon EC2 Account credentials.

vi ~/.starcluster/config

l Replace aws_acces_key_id and aws_secret_
acess_key in [aws info] (see Note 8).

Fig. 3 Application structure and flow. A schematic outlining the computational setup and flow for the transcript
design method described in this chapter

Computational RNA Transcript Design 49

http://www.bioperl.org/
http://aws.amazon.com/console/#ec2
http://aws.amazon.com/console/#ec2

l Create access keys on the local machine to access the cluster
system on EC2 directly:

starclustercreatekeytdkey-o~/.ssh/tdkey.rsa
starcluster help
2
vi ~/.starcluster/config
key_location¼~/.ssh/tdkey.rsa
[key mykey] ->[key tdkey]
Keyname ¼ tdkey

(d) Launch StarCluster on EC2:

starcluster start tdesign
starcluster sshmaster tdesign

(e) Install BioPerl on cluster (see Note 9).

(f) Install Text::CSV_XS (see Note 10).

2.3 Building a

Framework for

Submission

In the following subsections we will provide the framework for high
throughput submissions of samples as well as processing of data. To
accomplish this it will be necessary to write the following scripts:

parser.pl: will be used to process the input file

writer.pl: will be used to create the experimental directories and
create job execution scripts

grepper.pl: will be used to process the output data

2.3.1 Application

Hierarchy

Maintain the following hierarchy on the StarCluster based EC2
cluster:

~ /home
/experiment_name

/kinefold
kinefold_binary_static

input.csv
parser.pl
writer.pl
grepper.pl

2.3.2 Parsing Genbank

Files (parser.pl)

The following pseudocode outlines a function that parses the
input file into a new csv that can be used to set up the experiment
on the cluster (see Note 11):

csv_parse_genbank()
open input file (input.csv) using Text::CSV_XS
for each device create Bio::SeqIO Object

get start & stop bp for part and window contexts
convert DNA sequence objects to RNA sequence
objects
define simulation time (ms) (see Note 12)
convert polymerase rate to ms/nt

50 Tim Thimmaiah et al.

splice original input file to add RNA sequences, DNA
sequences, simulation time
create parsed-input.csv

2.3.3 Setting Up

Directories (writer.pl)

The following pseudocode outlines how to set up simulation direc-
tories and construct the required job scripts for simulation submis-
sion (see Note 13):

kinefold_setup_dir()
open parsed-input.csv
splice out variables
var deviceName
var windowSequence
var simulationType
var kpolRate
var simulationTime
var ntAddTime

for each device
create directory (deviceNumber.deviceName)

create .dat file
write deviceName
write windowSequence (RNA)

create 100 .req files
for each .req file
write random seed (4 digit integer)

add directory reference for kinefold output
files

.p, .e, .rnm, .rnms, .rnml, .rnm2
add constants for .dat file

0 (0 ¼ RNA, 1 ¼ DNA)

6.3460741 (free energy kcal/mol)

10000000
simulationTime (ms)
0 (Pseudoknots 1 ¼ yes, 0 ¼ no)
0 (Entanglements 1 ¼ yes,0 ¼ no)

simType ntAddTime (simType 1 ¼ renaturation 2 ¼
cotrans, ntAddTime ms/nt)

deviceName
deviceName.zip

create jobscript (kjob.sh)

writereferencetoworkingdirectory$WORKINGDIR
write reference to .req file $REQFILE
$WORKINGDIR/kinefold/kinefold_long_static
$REQFILE -noprint

create job execution script (runkine.sh)

write reference to working directory
$WORKINGDIR
write reference to device folder $DEVDIR
for each .req file
qsub $WORKINGDIR/$DEVDIR/kjob.sh

Computational RNA Transcript Design 51

create master job submission script (master.sh)

for eachdevice executejob executionscript
(runkine.sh)

2.3.4 Submitting Jobs

to Cluster

The master job submission script (“master.sh”) will be used to
submit a batch job for each device incorporating 100 folding
simulations to EC2 StarCluster. The master job script executes a
single job file (“runkine.sh”) that loops through each .req file while
passing the job (“kjob.sh”) to the kinefold binary script in the top
directory of your experiment (see Note 14).

2.3.5 Parsing Output

(grepper.pl)

The following pseudocode outlines an algorithm to parse kinefold
output data:

makeWindowStructures()

for each device directory
open each .rnml file
grep out structure
create a single window structure file with 100
structures from 100
simulations

makePartStructures()
varuniquePartStructures ¼ ArrayofNwhereNisthe
number of devices
open parsed-input.csv

splice out part start and part stop

for each device directory
open window structure file
for each line in file

grep out part structure from each window
structure

create concatenated part structure file for
all 100 simulations
filter part structure file > isolate unique
part structures
push count of unique part structures to unique-
PartStructures
Array for device N

The structures from this will be processed by a comparison
function, as outlined below:

foldingComparison()

var foldFrequency ¼ Array of N of K Arrays where N is
the number of devices and K is the number of unique
part structures in reference device N

open parsed-input.csv
splice out device name
splice out respective reference device for
each device

for each reference device for device N

52 Tim Thimmaiah et al.

open the reference devices unique part struc-
ture file
foreachreferencedevicesuniquepartstructure

open the original devices window structure
file
count times unique part structure shows up
in window structure
file of device N
push count of fold frequency to foldFre-
quency Array for unique part structure K in
device Ns reference device

for two reference devices of device N
open the first reference devices unique part
structure file
for each of the first reference devices unique
part structure

open the original devices window structure
file

push window structure of every match with the
unique part structure in a temporary array
open second reference devices unique part
structure file
for each of the second reference devices unique
part structure

count times each unique part structure
shows up in the temporary array
push count of fold frequency to foldFre-
quncy Array for each combination of unique
part structures K in the reference devices
of device N

From the arrays of values created in the subfunctions above,
create an output sheet concatenating all the data created from the
starting input.csv:

makeOutputSheet()
open parsed_input.csv
for each device N

insert total folding frequency
sum of foldFrequency[N]

insert number of unique part structures in
device Ns reference devices

uniquePartStructures[N]
insert folding frequency of each unique part
structure K of device Ns reference device

foldingFrequency[N][K]
concatenate output to parsed_input.csv as a new

file, Kinefold_output.csv

Computational RNA Transcript Design 53

3 Methods

3.1 Experimental

Design

The objective of this experiment is to identify spacer sequences that
enable the correct folding of RNA regulatory devices within syn-
thetic constructs. For the experiment a ribozyme will be introduced
into the 50 UTR of anmRNA. The proximity of the ribozyme to the
ribosome-binding site (RBS) may cause structural changes to the
RBS. Consequently, the secondary structure of both the ribozyme
and the ribosome binding site will be evaluated to determine proper
folding in the context of a simulated, elongating, transcript.

For this tutorial, we will first demonstrate the utility of the
method by considering an already designed synthetic construct
that integrates an S. mansoni hammerhead ribozyme (SMan) and
two RBSs. The main point of this construct is the combination of
the S. mansoni ribozyme and the first RBS, annotated as SD-RBS
(1), required for assembly of a ribozyme-regulated expression
device (rRED) engineered to produce a static level of gene expres-
sion. A second RBS, annotated as SD-RBS, is included here to
investigate RNA part-folding independent of additional transcript
control elements. Reference devices will serve as the positive
controls for which expression levels have been characterized
(See Introduction). The first reference construct, where SD-RBS
(1) and SD-RBS are known to function, will be a model for identi-
fying the RBS target structures. The second reference construct will
be a model for identifying the target ribozyme structure.

Two implementations of kinefold are required to evaluate a
given spacer sequence. The first is used to identify the target
secondary structures of the RBS and ribozyme (Fig. 2b—see Note
15). The second is used to determine the probability that the RBS
and ribozyme will fold in the context of the designed, synthetic
construct (Fig. 2c—see Subheading 3.2.1). For this demonstration,
a small library of spacer sequences will be considered, and only the
30 spacer sequence will be varied (see Note 16). Here, the parts are
treated as having folded correctly if the predicted part structure
matches any member of the ensemble of predicted target
structures.

To probe the space of possible folds for a given transcript
sequence, 100 unique, stochastic, co-transcriptional folding simu-
lations are run with random seeds for each of the expression devices
and spacer sequence permutations. For each sequence x the pre-
dicted folding frequency (approximating a probability) fx is taken as
a fraction of elongating transcripts with RBS and Rbz subsequences
a ¼ xjxj+1 . . . xk folding into the target structure Sa at time t,where j
is the starting base position of the window sequence and k is the
ending position of the window sequence. The RNA polymerase
elongation rate kpol will be set to 25 nt s�1 with minimum helix
energy ¼ �6.346 kcal mol�1. Simulation time for each stochastic

54 Tim Thimmaiah et al.

folding simulation is determined by t1 ¼ [len(a))] / kpol (s), where
a is the length from the 50 end to the RBS or Rbz center + (kpol
� 1 s) as 1 s is the shortest time for a ribosome to interact produc-
tively with an RBS [5].

3.2 Experimental

Method

3.2.1 Determining Target

Structures for RBS and Rbz

a. Input
Table 1 exemplifies the structure of an input file for the first part
of the design experiment to determine RBS and Rbz target
structures for the rRED device (seeNote 17). All of the devices
will undergo co-transcriptional folding simulations excluding
the reference construct for the S. mansoni hammerhead ribo-
zyme. Since this entire sequence is of the ribozyme itself, a
renaturation fold type (snap cooling from 99 to 37 �C, 1 M
NaCl) will be sufficient for identifying the respective reference
structure (see Note 18).

b. Structure Files
After setting up the experiment on the cluster system and
submitting simulation jobs, kinefold generates a collection of
structure files. The .rnml structure files contain the final output
structure in the minimum simulation time, determined by the
length of the input sequence. The grepper script (Subhead-
ing 2.3.5) processes the data into two files for each device. The
first contains the full output structure in the entire window
context for each of the 100 simulations. The second contains
only a subsection of the window structures respective to the
part context and is filtered to include only unique part
structures.

Table 1
Input for determining RBS and Rbz target structures

Genbank
file name

Device
name

Part
start

Part
stop

Window
start

Window
stop

Pol.
elongation
rate (nt/s)

Co-
trans?

Time for
addition of
base (ms)

Ref.
device

110916_
des1.gb

dev1.1 1,623 1,636 1,492 1,641 25 1 (yes) 40 dev2.1

110916_
des1.gb

dev1.2 1,535 1,616 1,492 1,641 25 1 (yes) 40 dev3.1

110916_
des1.gb

dev1.3 2,975 2,988 2,925 3,013 25 1 (yes) 40 dev2.2

110916_
ref1.gb

dev2.1 1,544 1,557 1,492 1,582 25 1 (yes) 40 dev2.1

110916_
ref1.gb

dev2.2 2,896 2,909 2,934 25 1 (yes) 40 dev2.2

110916_
ref2.gb

dev3.1 1 82 1 82 25 0 (no) 40 dev3.1

Computational RNA Transcript Design 55

c. Folding Comparisons
The processed structure files are compared using the subfunc-
tion grepper.pl. Its output provides statistics for how well the
parts in the reference devices fold in the context of a larger
window sequence (Table 2). For example, we can observe that
the RBS from the first reference device (exp2.1) folds into three
unique structures. Out of these three structures, the first is the
dominant structure, which folds with relatively high frequency
(73 %) in the designed construct (dev1.1). The other RBS has a
single structure which folds with 100 % frequency in the
designed construct. The Rbz device also has a single structure
that folds with 73 % frequency in the designed construct (see
Note 19). By definition, the parts within the reference devices
fold at 100 % frequency. The structures identified from the
reference device transcripts are used as target structures for
determining the frequency of part folding in the context of
putative synthetic device transcripts (see Subheading 1).

3.2.2 Spacer Sequence

Library

(a) Input
Any given combination of spacer sequences may not allow
proper folding for a single device, however sparse samplings
of random sequences may identify motifs that allow both RBS
and ribozyme folding. Table 3 shows an example of left spacer
library design (see Note 20). Co-transcriptional simulations
are performed with the same parameters for polymerase elon-
gation rate as in the first stage of the experiment and the
previously determined RBS and ribozyme target structures
(Table 2).

(b) Folding Comparisons
After setting up the experiment on the cluster and submitting
the jobs for stochastic simulations, the methods for parsing

Table 2
Analysis of stochastic folding simulations for determining target RBS and Rbz structures

Device
name Feature

Total
folding
frequency

Number
of unique
structures

Structure 1
frequency
(%)

Structure
2 frequency

Structure 3
frequency

Reference
device

dev1.1 SD-RBS(1) 0.73 3 73 0 % 0 % dev2.1

dev1.2 SMan Rbz 0.73 1 73 – – dev3.1

dev1.3 SD-RBS 1 1 100 – – dev2.2

dev2.1 SD-RBS 1 3 95 1 % 4 % dev2.1

dev2.2 SD-RBS(1) 1 1 100 – – dev2.2

dev3.1 SMan Rbz 1 1 100 – – dev3.1

56 Tim Thimmaiah et al.

Ta
bl
e
3

In
pu
t
fo
r
sp
ac
er

se
qu
en
ce

lib
ra
ry

fo
r
op
ti
m
iz
in
g
fo
ld
in
g
of

ta
rg
et

R
B
S
an
d
R
bz

st
ru
ct
ur
es

D
ev
ic
e

N
am

e
Fe
at
ur
e

Ls
pa
ce
r

R
B
S

pa
rt

S
ta
rt

R
B
S

pa
rt

S
to
p

R
bz

pa
rt

S
ta
rt

R
bz

pa
rt

S
to
p

W
in
do
w

st
ar
t

W
in
do
w

st
op

P
ol
ym

er
as
e

el
on
ga
ti
on

ra
te

(n
t/
s)

C
o-

tr
an
sc
ri
pt
io
na
l

Ti
m
e
fo
r

ad
di
ti
on

of
ba
se

(m
s)

R
ef
.

de
vi
ce

1
R
ef
.

de
vi
ce

2

ex
p
1
.1
.1

R
B
S
,
S
M
an

R
b
z

A
C
T
A
G
T

1
3
1

1
4
4

4
3

1
2
5

1
1
5
0

2
5

1
4
0

d
ev
2
.1

d
ev
3
.1

ex
p
1
.2
.1

R
B
S
,
S
M
an

R
b
z

T
G
A
T
C
A

1
3
1

1
4
4

4
3

1
2
5

1
1
5
0

2
5

1
4
0

d
ev
2
.1

d
ev
3
.1

ex
p
1
.3
.1

R
B
S
,
S
M
an

R
b
z

A
G
G
C
C
T

1
3
1

1
4
4

4
3

1
2
5

1
1
5
0

2
5

1
4
0

d
ev
2
.1

d
ev
3
.1

ex
p
1
.4
.1

R
B
S
,
S
M
an

R
b
z

G
C
T
A
G
C

1
3
1

1
4
4

4
3

1
2
5

1
1
5
0

2
5

1
4
0

d
ev
2
.1

d
ev
3
.1

ex
p
1
.5
.1

R
B
S
,
S
M
an

R
b
z

G
T
C
G
A
C

1
3
1

1
4
4

4
3

1
2
5

1
1
5
0

2
5

1
4
0

d
ev
2
.1

d
ev
3
.1

Computational RNA Transcript Design 57

the folding frequencies (i.e., probabilities) can be re-
implemented from Subheading 3.2.1. Since the reference
devices are from the previous experiment, the same unique
part structure files can be used for the folding comparison
function (see Subheading 2.3.4). The output, shown in Table 4
demonstrates that different part folding probabilities are
obtained for each of the five Lspacer variations.

4 Notes

1. This tutorial will cover how to set up a personal computational
cluster system with resources that are publicly and freely acces-
sible. However, the framework of this tutorial is easily adaptable
to most linux-based computational clusters.

2. The Amazon EC2 is a highly scalable web server that provides
resizable computing capacity on the cloud offering multiple
operating systems. You may use as large of a Linux cluster
instance as your work requires, but this tutorial will employ
the smallest instance available, the t1.micro.instance. If the
cluster does not have Perl pre-installed, it must be added.

3. StarCluster is an open-source cluster computing toolkit devel-
oped specifically for the Amazon Elastic Compute Cloud.
StarCluster allows creation, configuration, and management
of the cluster system on a virtual machine through Amazon
EC2. A cluster environment which allows batch job submission
is required for high throughput processing of stochastic folding
simulations.

4. The kinefold Linux executable binary, developed by the Isam-
bert Lab, is implemented to perform individual co-
transcriptional folding simulations.

Table 4
Observed folding frequencies of RBS and Rbz folding together with varying Lspc arrangements

Device name LSpacer

Part folding frequency
Simultaneous folding
frequency (%)SD-RBS (%) SMan Rbz (%)

exp1.1 ACTAGT 42 41 41

exp1.2 TGATCA 43 43 43

exp1.3 AGGCCT 94 5 5

exp1.4 GCTAGC 11 31 10

exp1.5 GTCGAC 45 44 43

58 Tim Thimmaiah et al.

5. The BioPerl distribution, developed in Perl, is a toolkit for
performing several computational tasks in biology. It is
required to read sequence files, translate sequences, and parse
sequences for simulations.

6. The StarCluster system will automatically set up Amazon Elas-
tic Block Storage (EBS) volumes for the EC2 cluster for persis-
tent storage of data. It is possible to disable this service to avoid
accruing cost. In this case, be sure to enable data sharing across
the network file system (NFS), so that the master and slave
nodes may exchange data. Regardless, it is recommended that
you choose to run your experiment from a directory that is
shared via NFS.

(a) Start cluster installation instructions can be found here
http://star.mit.edu/cluster/docs/latest/installation.html.
It is recommended to install using the distributed version
control and repository client git from a downloaded snapshot
or with the git command utility. (http://git-scm.com/).

(b) Any files such as input files or output files can be moved
back and forth from EC2 cluster using the following
commands:

l starcluster put tdesign /path/to/local/file/or/dir /
remote/path/

l starcluster get tdesign /path/to/remote/file/or/dir
/local/path/

7. This information is found under Account > Security Creden-
tials within the Amazon Web Services Console.

8. In this configuration script, square brackets are references to
the variable described in context.

9. BioPerl is easily installed on the cluster using CPAN:

(a) perl -MCPAN -e shell

(b) cpan > d /bioperl/

(c) cpan > install CJFIELDS/BioPerl-1.6.1.tar.gz

10. This module may be easily installed on the cluster using CPAN:

(a) perl -MCPAN -e shell

(b) cpan > install Text::CSV_XS)

11. BioPerl is only required if Genbank files are used as an input for
sequences.

12. Simulation time for each stochastic folding simulation is deter-
mined by t1 ¼ [len(a))]/kpol (s), where a is the size of the
window sequence, plus any additional time that is desired by
the experimenter. kpol represents the average E. coli polymerase
elongation rate (set to 25 nt/s).

Computational RNA Transcript Design 59

http://star.mit.edu/cluster/docs/latest/installation.html
http://git-scm.com/

13. To simplify the job submission and the output parsing pro-
cesses, directories are created to contain the simulations and
cluster output for each device independently. Each device
directory (e.g., device 1, device 2) will contain 100 .req files
representing 100 folding independent, stochastic, simulations.

14. Make sure that the working directory is located under /home
where all resources are NSF shared across all master and slave
nodes on cluster:

(a) cd /home

(b) bash master.sh

15. The Genbank plasmid files for use in this tutorial can be located
in the JBEI Public Registry (https://public-registry.jbei.org).
Part IDs for the synthetic and two reference constructs are
JPUB_001234, JPUB_001233, and JPUB_001232,
respectively.

16. A rigorous implementation of this method would consider a set
of randomly varied left and right spacer sequences, with further
iterations holding either the left or right spacer constant to
iterate toward the optimal design. There are 4,096 possible
combinations for a six-nucleotide sequence; therefore one
should consider ways to limit the possible design space. For
example, designing around restriction sites that will help for
sub-cloning.

17. We recommend providing inputs as a human readable .csv file.
This enables quick and easy edits to experimental design and
easy organization of input Genbank sequence files, device
nomenclature, and corresponding parameters that kinefold
needs to run the stochastic folding simulations.

18. The kinefold binary can be used to perform two types of
folding simulations, both with fixed parameters of 37 �C with
1 M NaCl and no divalent ions. A “Renaturation Fold” refers
to an RNA folding simulation starting from a completely dena-
tured state, whereas a “Co-transcriptional fold” refers to a
process where RNA folding proceeds simultaneously with tran-
script elongation, with a rate that can be specified by the user.
The current length limitations of folding are 400 bases for both
Renaturation and Co-transcriptional folding [7].

19. The kinefold binary returns several output files in each device
design directory. The “.rnml” files contain the final secondary
structures used to determine the structure of the components
of interest.

20. Because the co-transcriptional folding simulations are stochas-
tic, there will be statistical variation in the computed folding
frequencies and probabilities. Additional runs can be per-
formed to estimate statistical properties of the outputs.

60 Tim Thimmaiah et al.

https://public-registry.jbei.org/

References

1. Win MN, Smolke CD (2009) A modular and
extensible RNA-based gene-regulatory platform
for engineering cellular function. Proc Natl Acad
Sci 106:14283–14288. doi:10.1073/pnas.
0908785106

2. Lou C, Stanton B, Chen Y-J, Munsky B, Voigt
CA (2012) Ribozyme-based insulator parts
buffer synthetic circuits from genetic context.
Nat Biotechnol 30:1137–1142. doi:10.1038/
nbt.2401

3. Khalil AS, Collins JJ (2010) Synthetic biology:
applications come of age. Nat Rev Genet
11:367–379. doi:10.1038/nrg2775

4. Medema MH, van Raaphorst R, Takano E, Brei-
tling R (2012) Computational tools for the syn-
thetic design of biochemical pathways. Nat Rev

Microbiol 10:191–202. doi:10.1038/
nrmicro2717

5. Carothers J, Goler J, Juminaga D, Keasling J
(2011) Model-driven engineering of RNA
devices to quantitatively program gene expres-
sion. Science 334:1716–1719

6. Selinger DW, Saxena RM, Cheung KJ, Church
GM, Rosenow C (2003) Global RNA half-life
analysis in Escherichia coli reveals positional pat-
terns of transcript degradation. Genome Res
13:216–223. doi:10.1101/gr.912603

7. Xayaphoummine A, Bucher T, Isambert H
(2005) Kinefold web server for RNA/DNA
folding path and structure prediction including
pseudoknots and knots. Nucleic Acids Res 33:
W605–W610. doi:10.1093/nar/gki447

Computational RNA Transcript Design 61

http://dx.doi.org/10.1073/pnas.0908785106
http://dx.doi.org/10.1073/pnas.0908785106
http://dx.doi.org/10.1038/nbt.2401
http://dx.doi.org/10.1038/nbt.2401
http://dx.doi.org/10.1038/nrg2775
http://dx.doi.org/10.1038/nrmicro2717
http://dx.doi.org/10.1038/nrmicro2717
http://dx.doi.org/10.1101/gr.912603
http://dx.doi.org/10.1093/nar/gki447

Chapter 4

Regulatory RNA Design Through Evolutionary
Computation and Strand Displacement

William Rostain, Thomas E. Landrain, Guillermo Rodrigo,
and Alfonso Jaramillo

Abstract

The discovery and study of a vast number of regulatory RNAs in all kingdoms of life over the past decades
has allowed the design of new synthetic RNAs that can regulate gene expression in vivo. Riboregulators, in
particular, have been used to activate or repress gene expression. However, to accelerate and scale up the
design process, synthetic biologists require computer-assisted design tools, without which riboregulator
engineering will remain a case-by-case design process requiring expert attention. Recently, the design of
RNA circuits by evolutionary computation and adapting strand displacement techniques from nanotech-
nology has proven to be suited to the automated generation of DNA sequences implementing regulatory
RNA systems in bacteria. Herein, we present our method to carry out such evolutionary design and how to
use it to create various types of riboregulators, allowing the systematic de novo design of genetic control
systems in synthetic biology.

Key words Bacterial riboregulator, Computational design, Energy model, Posttranscriptional regula-
tion, Synthetic biology, Strand displacement

1 Introduction

RNA is a versatile molecule, and its many roles in the cell include
enzyme-like activity and regulation, in addition to its various roles
in translation [1]. Some of RNA’s many mechanisms for modulat-
ing biological processes have been harnessed by synthetic biologists
for creating artificial regulators of gene expression [2, 3]. Examples
in bacteria or yeast involve positive and negative riboregulators
[4–9], ribozyme-based systems [10–13], or CRISPR systems
[14–16]. These regulatory RNAs can control gene expression
through base pairing with a messenger RNA (mRNA) or DNA,
and typically have a defined secondary structure that ensures stabil-
ity and functionality (mainly for interaction).

In this work, we focus on bacterial small RNAs (sRNAs) that
can interact with the 50 untranslated region (50 UTR) of a given

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_4, © Springer Science+Business Media New York 2015

63

mRNA (see Table 1). Using computational tools, from which RNA
secondary structures and base pairing energies and probabilities can
be predicted [17, 18], in combination with in silico evolutionary
design principles [19, 20], various RNA systems can be engineered.
Although synthetic RNAs could be designed by hand, fast and
large-scale engineering of complex RNA circuits for synthetic

Table 1
List of engineered riboregulators of gene expression

System Sequencea Fold changeb References

RR12 >sRNA
ACCCAAATCCAGGAGGTGATTGGTAGTGGTGGTTAA
TGAAAATTAACTTACTACTACCATATATCTCTAGA

>50 UTR
GAATTCTACCATTCACCTCTTGGATTTGGGTATTAAA
GAGGAGAAAGGTACCATG

10–20
(activator)

[4]

RAJ11 >sRNA
GGGAGGGTTGATTGTGTGAGTCTGTCACAGTTCAGC
GGAAACGTTGATGCTGTGACAGATTTATGCGAGGC

>50 UTR
CCTCGCATAATTTCACTTCTTCAATCCTCCCGTTAAA
GAGGAGAAATTATGAATG

10–20
(activator)

[7]

RAJ12 >sRNA
GGGCAGGAAGAAGGGTTCCTTTGAGCGAATCTAGC
GGCACCTCGCTAGGATTTGCTCGAAGGGATTCTGGG

>50 UTR
ACCCAGTATCATTCTCTTCTTCCTGCCCACGCGGAAA
GAGGAGAAAGGTGTAATG

~10
(activator)

[7]

IS10 >sRNA
TCGCACATCTTGTTGTCTGATTATTGATTTTTCGCGA
AACCATTTGATCATATGACAAGATGTGTATCCACCT
TAACTTAATGATTTTTACCAAAATCATTAGGGGATTC
ATCAG

>50 UTR
GCGAAAAATCAATAAGGAGACAACAAGATG

~10
(repressor)

[8]

MicC-like
B1

>sRNA
ATGACGTTCTCACTGCTCGCCATATATTTGTCTTTCT
GTTGGGCCATTGCATTGCCACTGATTTTCCAACATA
TAAAAAGACAAGCCCGAACAGTCGTCCGGGCTTTTT
TTCTCGAG

>50 UTR
AAGGAGGACAAATATATGGCGAGCAGTGAGAACGT
CAT

10–50
(repressor)

[9]

aShine-Dalgarno box and start codon underlined
bApparent fold change by fluorometry at the population level

64 William Rostain et al.

biology cannot be based on this lengthy, case-by-case design strat-
egy. To attain this goal, computer-assisted design will be required
to accelerate the design process [7, 12].

Automated design has been successful for some types of RNAs,
as well as for nucleic acids in general, proteins, and circuits (applica-
tions reviewed in ref. 19), allowing the diffusion of these methods
as general tools for molecular biology. Evolutionary computation
of riboregulation starts with two RNA sequences and iterates alter-
native rounds of mutation and selection of species that show the
desired structural characteristics. This method adapts strand dis-
placement techniques from nanotechnology and it has successfully
been applied to the de novo design of bacterial riboregulators [7].
It has the advantage of being based on physiochemical principles,
assessing all specifications and constraints of the design process in
silico and without manual inspection, and it can be tailored to the
design of simple or complex riboregulation [21].

In the following pages, we detail the strategy used for creating a
piece of software capable of performing the evolutionary computa-
tion of two interacting sRNAs. This involves creating an objective
function used to score RNA sequences and to determine whether
they will show the desired behavior, together with a mutation
operator used to efficiently search the sequence space. We then
explain how to use this method to create positive and negative
riboregulation [2], providing along the way some tips and
resources for the design, implementation, and characterization of
such systems. We expect this approach will be of value for engineer-
ing genetic circuits in vivo and for increasing our ability to design
more sophisticated regulatory systems.

2 Materials

2.1 Software To computationally design regulatory RNA systems, which per-
form a particular logical operation, a combinatorial optimization
algorithm is constructed, in which thermodynamic and structural
parameters are used to evaluate a system at any time during the
optimization (see Fig. 1). To estimate those parameters, the Vien-
naRNA package [22] is used. The different intra- and intermolecu-
lar secondary structures and the corresponding free energies are
thus easily calculated throughout the evolutionary process (see
Subheading 3.1.2). Once the solutions have converged, the
Nupack package [23] is used to carry out a post-analysis of the
designed sequences. This independent software serves as a
subsequent filtering and validation tool (see Subheading 3.1.4).

2.1.1 ViennaRNA

(Version 2.0)

1. Download the ViennaRNA package from http://www.tbi.
univie.ac.at/~ronny/RNA/index.html.

2. Follow the supplied instructions for installation. There is no
need for additional libraries.

RNA Circuit Design 65

http://www.tbi.univie.ac.at/~ronny/RNA/index.html
http://www.tbi.univie.ac.at/~ronny/RNA/index.html

Fig. 1 RNA circuit design pipeline. Automatic evolutionary design uses secondary structure scaffolds as a
starting point to generate random starting RNAs. These are then sequentially mutated and selected to evolve
them towards a solution which satisfies a user-defined behavior

66 William Rostain et al.

3. Use the following functions within the ViennaRNA package:
(1) fold, to predict minimum free energy secondary structures;
(2) cofold, as fold but for two different species; and (3) inver-
se_fold, to get sequences with predefined structures.

2.1.2 Nupack (Version

3.0)

1. Download the Nupack package from http://www.nupack.org/
downloads/source.

2. Follow the supplied instructions for installation. There is no
need for additional libraries.

3. Use the following functions within the Nupack package: (1)
concentrations, to predict the equilibrium concentration of
each species (single or complex) in a dilute solution given initial
concentrations of the single ones, and (2) subopt, to determine
all possible structures of the thermodynamic ensemble within
an energy gap, and to check for structural robustness.

2.2 Necessary

Elements for in Vivo

Implementation

and Expression

2.2.1 Promoters

1. Use well-characterized constitutive or inducible promoters and
choose them accordingly to the genetic background (seeTable 2
for a list of useful promoters; see also Note 1).

2. It is essential that the chosen promoters have a known and
characterized transcription start site (+1 position) to avoid
truncation or alteration of the RNA sequence. Pay special
care when using a promoter truncated to the transcription
start site because the RNA sequence may affect the transcrip-
tion initiation.

2.2.2 Transcription

Terminators

1. Transcription terminators are placed just downstream of the
sRNA and of the coding sequence. Favor short rho-
independent terminators with strong activity (i.e., with high
free energy and long poly(U) tail; see Table 3 for a list of useful
terminators in riboregulation).

Table 2
List of useful promoters for riboregulation

Name Sequencea Regulation References

PLlacO1 AATTGTGAGCGGATAACAATTGACATTGTGAGC
GGATAACAAGATACTGAGCACA

Repressed by LacI [24]

PLtetO1 TCCCTATCAGTGATAGAGATTGACATCCCTATC
AGTGATAGAGATACTGAGCACA

Repressed by TetR [24]

J23119 TTGACAGCTAGCTCAGTCCTAGGTATAATGCT
AGCA

Constitutive [25]

T7-Pro GCGAAATTAATACGACTCACTATAGGG Transcribed by T7
RNAP

[26]

aPosition +1 underlined

RNA Circuit Design 67

http://www.nupack.org/downloads/source
http://www.nupack.org/downloads/source

2. Ideally, the computational design process should take into
account the terminator sequence and structure, especially for
the riboregulator. The terminator sequence can be specified as
a sequence constraint. Alternatively, known toy models of tran-
scription termination [29, 30] could be quantitative and pre-
dictive enough to be incorporated in the objective function.

In addition, the expression of designed circuits in different
genetic backgrounds depends on the characteristics of the engi-
neered system and the functional properties one wants to study. To
this end, several E. coli strains which are particularly suitable for
RNA synthetic biology can be used (see Table 4).

2.2.3 Strains (Cellular

Chassis)

1. The strain MGZ1 [30] is very useful for characterizing circuits.
It constitutively expresses the transcription factors TetR and
LacI (see also Note 2), enabling a control over promoters con-
taining the relevant operators, like PLlacO1 and PLtetO1 [24].

Table 3
List of useful transcription terminators for riboregulation

Name Sequence Strengtha References

T500 CAAAGCCCGCCGAAAGGCGGGCTTTTCTGT 98 % [27]

his-Ter GCCCCCGGAAGATCACCTTCCGGGGGCTTTTTTATT 97 % [28]

B1006 AAAAAAAAACCCCGCCCCTGACAGGGCGGGGTTTTTTTT 98 % [28]

T7-Ter TAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGG
GTTTTTTG

90–95 % [26]

aspA-
Terb

AAATAAAAAAGGCACGTCAGATGACGTGCCTTTTTTCTT 98 % (fwd)
99 % (rev)

[29]

fur-Terb AACGAGAAAAGCCAACCTGCGGGTTGGCTTTTTTATGCA 95 % (fwd)
93 % (rev)

[29]

aCalculated experimentally
bReversible

Table 4
List of useful E. coli strains for studying riboregulation

Strain Genotype References

MGZ1 MG1655, lacIq, PN25:tetR [31]

HL770 MG1655, lacIq, Δhfq [32]

JW2798 BW25113, ΔrppH [33]

BL21(DE3) B, lacIq, lacUV5:T7 RNAP [26]

68 William Rostain et al.

Using IPTG and aTc, the level of expression of both RNA
molecules can be finely tuned (see also Note 3).

2. In order to alter the function of an RNA system, various strains
that are depleted in factors that are known to affect RNA
in vivo can be used. These include (1) RNase-deficient strains
such as HT115 (Δrnc, deleting RNase III) [34] or BL21 Star
(mutated rne, making RNase E less efficient; Invitrogen), (2)
co-factor-deficient strains such as HL770 (Δhfq) [32], or (3)
strains deficient in RNA-processing proteins such as JW2798
(ΔrppH) [33].

2.2.4 Plasmids 1. The RNA components can be together on one single plasmid,
or separated on two different ones for co-transformation (see
also Note 4).

2. Favor high copy number plasmids, with which the response is
easier to detect due to concentration effects (presumably, the
effective dissociation constant between two synthetic RNAs
is high).

3 Methods (Computational Design)

In this section, we first describe the general strategy for implement-
ing an automated design method. We formulate a combinatorial
optimization problem to which we apply an evolutionary algo-
rithm. In our case, this is based on Monte Carlo simulated anneal-
ing [35]. Then, we describe in detail how to use such an approach
to design riboregulators acting, either as repressors or activators, on
target 50 UTRs (see Table 1 for experimentally verified examples).
Finally, we describe ways to create more sophisticated systems.

3.1 General Strategy

of Evolutionary Design

Evolutionary design of synthetic RNA systems uses alternative
rounds of computational assessment of RNA-RNA interaction fol-
lowed by mutation [7]. Figure 1 outlines the general design pipe-
line. After initialization of the process, an objective function is used
to evaluate the structures and free energies of RNAs, and a muta-
tion operator modifies nucleotides or base pairs whilst keeping
structural constraints for each species over the course of the evolu-
tionary process. These rounds of mutation, scoring and selection
are continued for a specified number of iterations or until a satisfac-
tory solution is found. Afterwards, the sequences are output, and
reviewed with an independent piece of software, and assembled for
characterization (see Fig. 2).

3.1.1 Specifications and

Initiation

The desired regulatory behavior is converted into (intra- and inter-
molecular) structure specifications that can be read by a computer,
coded in dot-bracket notation. For examples of specifications that

RNA Circuit Design 69

can be used, see Subheadings 3.2 and 3.3 describing the design of
negative and positive riboregulation, respectively. The definition of
such structural specifications, as well as the sequence constraints, is
a sensitive step, as the whole design process depends on it. The
intramolecular structure specifications could be considered as con-
straints if desired, although this is not necessary, then the optimi-
zation of sequences would be performed over neutral networks in
structure [7]. The free energies of hybridization and activation of
the system and both the intra- and intermolecular structures of the
50 UTR are used to evaluate our objective function.

1. Specify intramolecular structural specifications for each RNA
species. The 50 UTR and the sRNA can be fully constrained.

Fig. 2 (a) Characterization framework for an RNA circuit and (b) Example of an
assembled synthetic RNA device (here, the RAJ11 riboregulator and its 50 UTR
target controlling GFP), within an operon containing controllable promoters
(PLlac and PLtet), terminators and with restriction sites for assembling controls
or changing the reporter

70 William Rostain et al.

Table 5 provides some usable structures, and natural or syn-
thetic riboregulatory devices can inspire others.

2. Specify a conformational pattern for the complex species,
where the ribosome-binding site (RBS) should be the only
region subject to structural specifications, whilst the rest of
the sequence of the 50 UTR and the whole sRNA should have
a large degree of freedom.

3. Specify sequence constraints, by defining nucleotides that are
not allowed to mutate during the evolutionary process. This is
essential in order to ensure that important RNA motifs such as
RBSs or aptamers are not mutated.

4. Optionally, the sequence of one species can be fully con-
strained, and the system can be left to evolve the other RNA
towards the intended regulation (constrained design).

5. Once all sequence and structure constraints are defined, use the
inverse folding routine to find the initial, random sequences
satisfying them.

Table 5
Examples of structure and sequence specifications for designing positive (system RAJ11) and
negative (system RAJ-Na) riboregulation

Sequence Specified structureb and sequence contraintsc References

50 UTR RAJ11

intramolecular

......((((((((.((((((.(((......))).)))))).))))
)))).....
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGGAGANN
NNNNNNATG

[7]

50 UTR RAJ11

intermolecular

??????????????????????????????????............
.........

[7]

sRNA RAJ11

intramolecular

...........((((((((((((((((((((((((((....)))))
).))))))))))))))))))))...
NN
NNNNNNNNN
NNNNNNNNNNNNNNNN

[7]

50 UTR RAJ-N

intramolecular

...........................
NNNNNNNNNNAGGAGANNNNNNNNATG

[21]

50 UTR RAJ-N

intermolecular

??????||||||||||??????????? [21]

sRNA RAJ-N

intramolecular

...(((((((.....))))))). . .(((((((((((((.......))
))))).)))))).((((((((((.....))))))))))..
NNN
NNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

[21]

aWe call here RAJ-N the system between RNAs cR01 and tR31 from ref. [21]
b? indicates unspecified
cSequence constraints are only associated here to intramolecular structures

RNA Circuit Design 71

3.1.2 Selection 1. Build an objective function that can score a given RNA system
taking into account the free energy of each species in the system
as well as their secondary structures. Typically, this function is
constructed with three weighted terms. The first term is the
hybridization energy between the two RNAs. The second term
is the activation energy, based on the exposed nucleotides of
the seed region, which initiate the reaction [7]. The third is a
structural term that accounts for the distance between the
targeted structures and the actual ones (see Subheadings 3.2
and 3.3 for examples).

2. The hybridization energy is the free energy release due to the
RNA-RNA interaction. The energy gap should be as high as
possible to ensure interaction in vivo (it is estimated at
�17 kcal/mol with Nupack for the system RAJ11 [7]).

3. The activation energy is given by the free energy release due to
the interaction between the seed regions (six nucleotides for
the system RAJ11 [7]). These regions must be unpaired in the
single stranded forms so that the interaction can take place (see
also Note 5).

4. The degree of exposition or blockage of the RBS within the
secondary structure of the 50 UTR (i.e., whether the Shine-
Dalgarno box and surrounding nucleotides are paired or not)
serves as the variable that accounts for function (such as protein
translation).

3.1.3 Mutation Operator 1. The mutation operator takes both sequences as input, the
riboregulator and 50 UTR, and randomly mutates one of
them. Nucleotides that are specified to be fixed (e.g., RBS)
are not mutated. The mutation operator can make two types of
mutation: single-point mutations, or directed mutations.

2. For a single-point mutation, it chooses a nucleotide randomly.
If this nucleotide is structurally unconstrained or unpaired at
the intramolecular level, this operator simply mutates it to
another one. If this nucleotide is constrained and paired intra-
molecularly, it mutates the base pair in order to keep secondary
structure (see also Note 6).

3. Directed mutations are used to accelerate the search. The
operator picks a set of consecutive nucleotides in one sequence
(usually between 2 and 4 bases long), and introduces its reverse
complement randomly in other sequence. As before, the oper-
ator assesses the structural constraints. From 50 to 90 % of
mutations can be directed.

4. The mutation operator refuses any mutation that creates a
sequence of four or more identical nucleotides in a row.

72 William Rostain et al.

3.1.4 Post-analysis In our settings, not all computational jobs converged to good
solutions, and screening with a cutoff value of the objective func-
tion was required. In addition, false positives may be generated
because the process is completely unsupervised. A post-analysis of
good solutions (according to ViennaRNA and for the objective
function defined) should therefore be performed, using the
Nupack software and criteria that were not specified originally.

1. Analyze the base pair probabilities of key regions (typically the
RBS) for the intra- and intermolecular folding states using the
partition function. During the evolutionary design, the algo-
rithm only considers the minimal free energy structure for
simplicity and for reducing computation time, although in
fact there is an ensemble of structures [17]. If the percentage
of structures in the ensemble satisfying the structural specifica-
tions is lower than 90 %, the system should be rejected.

2. Check the behavior of the system at equilibrium with Nupack
for defined concentrations of 1 μM for each single species. If
the complex species does not represent at least 95 % of total at
the equilibrium, the system should be rejected.

3. If it is not included in the design process, the terminator should
be added to the final sequence of the sRNA before post-analysis
(see also Note 7).

4. If the evolutionary process selects for structures that are only
partially constrained, favor designs that have similar interaction
patterns to those of known natural regulatory RNAs.

3.2 Negative

Riboregulation

Negative riboregulators have the ability to reduce protein expres-
sion of a target gene by either acting on its transcription rate
(CRISPRi) [15], the mRNA stability (sRNA-induced degrada-
tion), or its translation rate. In this last case, the sRNA interacts
with the 50 UTR to block the RBS (and sometimes the start codon),
by direct intermolecular interaction or by inducing a conforma-
tional change that results in intramolecular trapping, hiding it from
the ribosome (see Fig. 3a) [21]. Table 5 shows structural specifica-
tions to design negative riboregulators.

1. The single stranded structure of the 50 UTR must have an
unpaired RBS.

2. Within the complex, the RBS must be paired (inter- or
intramolecularly).

3. The predicted hybridization energy should be lower than
�20 kcal/mol.

4. Favor intramolecular trapping of the RBS to avoid unwanted
cross-interaction.

RNA Circuit Design 73

3.3 Positive

Riboregulation

Positive riboregulators have the ability to increase protein expres-
sion of a target gene by acting on its transcription rate (with a fusion
between the omega subunit of the RNA polymerase and a Cas9
nuclease) [16], or its translation rate. In this last case, the RBS in
the target 50 UTR (single stranded form) is cis-repressed, whilst the
interaction with the sRNA causes a conformational change that
releases the RBS and allows translation (see Fig. 3b). Table 5
shows structural specifications to design positive riboregulators.

1. The single-stranded structure of the 50 UTRmust have a paired
RBS.

2. Within the complex, the RBS must be unpaired.

3. The predicted hybridization energy should be lower than
�15 kcal/mol.

4. Favor intermolecular interactions between different regions of
the sRNA molecule.

3.4 A Generic

Methodology for the

Design of Logic RNA

Devices

In addition to its use for designing positive and negative riboregu-
lators, the described methodology can be applied to optimize
further structure-based regulatory specifications. This enables the
design of RNA systems based on a larger diversity of mechanisms.
Some strategies are described here.

Fig. 3 Mechanisms of: (a) Negative riboregulators, where the default state is ON. The binding of sRNA blocks
the RBS and represses translation; and of (b) Positive riboregulators, where the default state is OFF, due to the
RBS being hidden by the 50UTR secondary of the mRNA. The binding of sRNA unfolds this structure, exposing
the RBS and allowing translation. In both cases, the binding of the sRNA goes through a transition phase, when
the toeholds—exposed regions of the RNAs—interact, followed by a full hybridization between the comple-
mentary regions. The length of the toeholds fixes the activation energy—ΔGtoehold—which determines the
speed of the reaction, whereas the stability of the complex—ΔGhybridization—determines the equilibrium of
the reaction

74 William Rostain et al.

3.4.1 Three-Input Logic

Systems

The de novo design of RNA systems based on more than two RNA
species can be challenging due to the exponential increase of the
size of the search space. However, by either running the program
on high-performance computers or by constraining the sequence
space, convergence can be achieved. Indeed, in our recent work
[21], we presented different examples of interaction mechanisms
between two sRNAs and one 50 UTR.

3.4.2 Pseudo-3D

Modeling

One current limitation of automated RNA design can be the num-
ber of false positives produced, that is, sequences that behave as
desired computationally but that do not work at the experimental
level. Certainly, this is due to the lack of a comprehensive intermo-
lecular interaction model (see also Note 8). It is expected that the
incorporation of more structural and functional parameters into the
objective function would increase the proportion of good designs.
Although full 3D modeling would require too much computing
task to be efficiently implemented in an evolutionary algorithm, a
library of RNA 3D motifs and noncanonical base pairing, not
restricted to the Watson-Crick model, could be used [36, 37].

3.4.3 Integration of

Aptamer and Ribozyme

Sequences

The possibility of creating modular and signal-processing RNA
circuits with various kinds of inputs is of great interest. Aptamers
are powerful examples of sensing modules that can be combined
with actuator modules. They are hard to design de novo using
energy models, as their function is mainly derived from their 3D
structure. However, they can be exploited to design aptamer-based
riboregulators, as shown in recent experiments with the theophyl-
line aptamer [5, 38]. In addition, it is also possible to incorporate
ribozymes or aptazymes as functional elements that can be rear-
ranged in different RNA contexts [12]. This opens up the way for
computer-assisted engineering of pathways that have RNA mole-
cules as an input and as an output.

3.4.4 Integration with

CRISPR Systems

In bacteria, engineered sRNAs based on the CRISPR-Cas system
[14–16] have recently received a lot of attention, and have been
harnessed for chromosome engineering [39] as well as regulation at
the transcriptional [15, 16] and translational level [14]. Since an sRNA
guides the Cas9 nuclease, this opens up the possibility for interaction
with designed riboregulators. Indeed, we could design riboregulators
to target the Cas9 recognition hairpin or the seed region of the
guide RNA, leading to combinatorial RNA-mediated effects.

4 Notes

1. Recombination between homologous regions of promoters is a
particularly frequent problem, and care must be taken when
selecting promoters to avoid repetitions, symmetrical operators
and other sequences prone to recombination [40].

RNA Circuit Design 75

2. Other strains that have the Z1 cassette integrated onto the
genome are also available, such as DH5αZ1. However, in our
experience, the MGZ1 cells are larger than DH5αZ1 cells,
making them more suitable for microfluidics characterization.
DH5αZ1 cells are also known to have a relatively low growth
rate, which is why we suggest favoring the MGZ1 strain.

3. Bacterial growth rate must be taken into account for the analy-
sis of the characterization data of the riboregulatory systems
[41]. Translation rate, and not only protein expression, should
be reported. This will avoid eventual artifacts produced by toxic
inducers (such as aTc or theophylline), as protein expression is
inversely proportional to growth rate, unless it has a degrada-
tion tag.

4. Riboregulators tend to work slightly better when both compo-
nents are present on the same plasmid rather then when they
are spread out on two different ones. This is presumably due to
intracellular RNA diffusion and unexpected degradation.

5. The seed region is critical for a proper RNA-RNA interaction,
as it is responsible for the initiation of the interaction. Muta-
tions in this region can completely disrupt the regulatory
behavior. On the other hand, this fact can be exploited to
design orthogonal systems easily [6, 8].

6. The enforcement of a given structure for the two single species
constrains the sequence space of possible solutions [7, 21]. By
leaving those structures unconstrained, we could perform addi-
tions and/or deletions (not only replacements) of nucleotides
during the optimization, and could potentially speed up the
search of a solution.

7. In the case of the mRNA, the terminator and 50 UTR are
separated and isolated by the coding sequence and are unlikely
to interact. For the sRNA, however, the terminator often
represents a very significant proportion of the molecule (e.g.,
with the sequences provided in Table 3, the terminator would
represent 20–40 % of the final RNA). It is therefore essential to
account for this, using preferentially short and stable ones.

8. Computational models do not account for RNA chaperones
(e.g., Hfq) [42], nor for cofactors such as Mg2+ or Zn2+, which
might have an impact on the designs. Moreover, the kinetics of
RNA folding, binding, and turnover will have significant
impact on the performance of designed RNA circuits [6, 12],
and not only the thermodynamic properties.

76 William Rostain et al.

Acknowledgements

Work supported by the FP7-ICT-043338 (BACTOCOM) grant
(to A.J.). We thank Anna Młynarczyk for critical reading of the
manuscript. W.R. is supported by a DGA graduate fellowship, T.E.
L by an AXA research fund Ph.D. fellowship, and G.R. by an
EMBO long-term fellowship co-funded by Marie Curie actions
(ALTF-1177-2011).

References

1. Waters LS, Storz G (2009) Regulatory RNAs
in bacteria. Cell 136:615–628

2. Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA
synthetic biology. Nat Biotechnol 24:545–554

3. Liang JC, Bloom RJ, Smolke CD (2011) Engi-
neering biological systems with synthetic RNA
molecules. Mol Cell 43:915–926

4. Isaacs FJ, Dwyer DJ, Ding C, Pervouchine
DD, Cantor CR, Collins JJ (2004) Engineered
riboregulators enable post-transcriptional con-
trol of gene expression. Nat Biotechnol
22:841–847

5. Bayer TS, Smolke CD (2005) Programmable
ligand-controlled riboregulators of eukaryotic
gene expression. Nat Biotechnol 23:337–343

6. Lucks JB, Qi L, Mutalik VK, Wang D, Arkin
AP (2011) Versatile RNA-sensing transcrip-
tional regulators for engineering genetic net-
works. Proc Natl Acad Sci U S A
108:8617–8622

7. Rodrigo G, Landrain TE, Jaramillo A (2012)
De novo automated design of small RNA cir-
cuits for engineering synthetic riboregulation
in living cells. Proc Natl Acad Sci U S A
109:15271–15276

8. Mutalik VK, Qi L, Guimaraes JC, Lucks JB,
Arkin AP (2012) Rationally designed families
of orthogonal RNA regulators of translation.
Nat Chem Biol 8:447–454

9. Na D, Yoo SM, Chung H, Park H, Park JH,
Lee SY (2013) Metabolic engineering of
Escherichia coli using synthetic small regu-
latory RNAs. Nat Biotechnol 31:170–174

10. Win MN, Smolke CD (2007) A modular and
extensible RNA-based gene-regulatory plat-
form for engineering cellular function. Proc
Natl Acad Sci U S A 104:14283–14288

11. Wieland M, Hartig JS (2008) An improved
aptazyme design and in vivo screening enable
riboswitching in bacteria. Angew Chem Int Ed
47:2604–2607

12. Carothers JM, Goler JA, Juminaga D, Keasling
JD (2011) Model-driven engineering of RNA

devices to quantitatively program gene expres-
sion. Science 334:1716–1719

13. Klauser B, Hartig JS (2013) An engineered
small RNA-mediated genetic switch based on
a ribozyme expression platform. Nucleic Acids
Res 41:5542–5552

14. Qi L, Haurwitz RE, ShaoW, Doudna JA, Arkin
AP (2012) RNA processing enables predictable
programming of gene expression. Nat Biotech-
nol 30:1002–1006

15. Qi LS, Larson MH, Gilbert LA, Doudna JA,
Weissman JS, Arkin AP, Lim WA (2013)
Repurposing CRISPR as an RNA-guided plat-
form for sequence-specific control of gene
expression. Cell 152:1173–1183

16. Bikard D, Jiang W, Samai P, Hochschild A,
Zhang F, Marraffini LA (2013) Programmable
repression and activation of bacterial gene
expression using an engineered CRISPR-Cas
system. Nucleic Acids Res. doi:10.1093/nar/
gkt520

17. McCaskill JM (1990) The equilibrium parti-
tion function and base pair binding probabil-
ities for RNA secondary structure. Biopolymers
29:1109–1119

18. Mathews DH, Sabina J, Zuker M, Turner DH
(1999) Expanded sequence dependence of
thermodynamic parameters improves predic-
tion of RNA secondary structure. J Mol Biol
288:911–940

19. Rodrigo G, Carrera J, Landrain TE, Jaramillo A
(2012) Perspectives on the automatic design of
regulatory systems for synthetic biology. FEBS
Lett 586:2037–2042

20. Foster JA (2001) Evolutionary computation.
Nat Rev Genet 2:428–436

21. Rodrigo G, Landrain TE, Majer E, Daròs JA,
Jaramillo A (2013) Full design automation of
multi-state RNA devices to program gene
expression using energy-based optimization.
PLoS Comput Biol 9:e1003172

22. Hofacker IL, Fontana W, Stadler PF, Bonhoef-
fer LS, Tacker M, Schuster P (1994) Fast

RNA Circuit Design 77

http://dx.doi.org/10.1093/nar/gkt520
http://dx.doi.org/10.1093/nar/gkt520

folding and comparison of RNA secondary
structures. Monatsh Chem 125:167–188

23. Dirks RM, Bois JS, Schaeffer JM, Winfree E,
Pierce NA (2007) Thermodynamic analysis of
interacting nucleic acid strands. SIAM Rev
49:65–88

24. Lutz R, Bujard H (1997) Independent and
tight regulation of transcriptional units in
Escherichia coli via the LacR/O, the TetR/O
and AraC/I1-I2 regulatory elements. Nucleic
Acids Res 25:1203–1210

25. Registry of Standard Biological Parts, MIT.
http://parts.igem.org

26. Studier FW, Rosenberg AH, Dunn JJ, Duben-
dorff JW (1990) Use of T7 RNA polymerase to
direct expression of cloned genes. Methods
Enzymol 185:60–89

27. Larson MH, Greenleaf WJ, Landick R, Block
SM (2008) Applied force reveals mechanistic
and energetic details of transcription termina-
tion. Cell 132:971–982

28. Cambray G, Guimaraes JC, Mutalik VK, Lam
C, Mai QA, Thimmaiah T, Carothers JM,
Arkin AP, Endy D (2013) Measurement and
modeling of intrinsic transcription terminators.
Nucleic Acids Res 41:5139–5148

29. Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy
K, Peterson T, Voigt CA (2013) Characteriza-
tion of 582 natural and synthetic terminators
and quantification of their design constraints.
Nat Methods 10:659–664

30. D’Aubenton Carafa Y, Brody E, Thermes C
(1990) Prediction of rho-independent Escher-
ichia coli transcription terminators. A statistical
analysis of their RNA stem-loop structures. J
Mol Biol 216:835–858

31. Dunlop MJ, Cox RS 3rd, Levine JH, Murray
RM, Elowitz MB (2008) Regulatory activity
revealed by dynamic correlations in gene
expression noise. Nat Genet 40:1493–1498

32. Hussein R, Lim HN (2011) Disruption of
small RNA signaling caused by competition

for Hfq. Proc Natl Acad Sci U S A
108:1110–1115

33. Baba T, Ara T, HasegawaM, Takai Y, Okumura
Y, Baba M, Datsenko KA, Tomita M, Wanner
BL, Mori H (2006) Construction of Escheri-
chia coli K-12 in-frame, single-gene knockout
mutants: the Keio collection. Mol Syst Biol
2:2006.0008

34. Takiff HE, Chen SM, Court DL (1989)
Genetic analysis of the rnc operon of Escher-
ichia coli. J Bacteriol 171:2581–2590

35. Kirkpatrick S, Gelatt CD, Vecchi MP (1983)
Optimization by simulated annealing. Science
220:671–680

36. Leontis NB, Stombaugh J, Westhof E (2002)
The non-Watson-Crick base pairs and their
associated isostericity matrices. Nucleic Acids
Res 30:3497–3531

37. Das R, Karanicolas J, Baker D (2010) Atomic
accuracy in predicting and designing nonca-
nonical RNA structure. Nat Methods
7:291–294

38. Qi L, Lucks JB, Liu CC, Mutalik VK, Arkin AP
(2012) Engineering naturally occurring trans-
acting non-coding RNAs to sense molecular
signals. Nucleic Acids Res 40:5775–5786

39. Jiang W, Bikard D, Cox D, Zhang F, Marraffini
LA (2013) RNA-guided editing of bacterial
genomes using CRISPR-Cas systems. Nat Bio-
technol 31:233–239

40. Romero D,Martı́nez-Salazar J, Ortiz E, Rodrı́-
guez C, Valencia-Morales E (1999) Repeated
sequences in bacterial chromosomes and plas-
mids: a glimpse from sequenced genomes. Res
Microbiol 150:735–743

41. Klumpp S, Zhang Z, Hwa T (2009) Growth
rate-dependent global effects on gene expres-
sion in bacteria. Cell 139:1366–1375

42. Vogel J, Luisi BF (2011) Hfq and its constella-
tion of RNA. Nat Rev Microbiol 9:578–589

78 William Rostain et al.

http://parts.igem.org/

Part II

Circuit Design

Chapter 5

Programming Languages for Circuit Design

Michael Pedersen and Boyan Yordanov

Abstract

This chapter provides an overview of a programming language for Genetic Engineering of Cells (GEC).
A GEC program specifies a genetic circuit at a high level of abstraction through constraints on otherwise
unspecified DNA parts. The GEC compiler then selects parts which satisfy the constraints from a given parts
database. GEC further provides more conventional programming language constructs for abstraction, e.g.,
through modularity. The GEC language and compiler is available through a Web tool which also provides
functionality, e.g., for simulation of designed circuits.

Key words Programming languages, Genetic circuits, Design, Simulation, Constraint solving

1 Introduction

Computer science has a long history of designing formal languages.
Some of these are programming languages: a program describes
computation at a high level of abstraction and can be compiled to
binary machine code for execution on a computer. Others are
modeling languages: a model captures information about an object
of interest, such as a communication protocol, and can typically be
executed on a computer in order to study emerging behavior.

Over the past decade a number of general purpose modeling
languages, such as the Pi calculus [1] and PEPA [2], have been
applied in the biological setting, and others such as Kappa [3] and
BioPEPA [4] have been developed specifically for applications in
biology. Some have also been applied in synthetic biology. For
example the Kappa language, as described in Chapter 6, can natu-
rally capture the notions of DNA parts (such as promoters and
protein coding regions) and their composition into devices.

But the notion of a programming language also has a natural
place in synthetic biology. Here, the machine of interest is the cell,
and the machine code is DNA. Rather than describing DNA explic-
itly, a programming language for synthetic biology should seek to

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_5, © Springer Science+Business Media New York 2015

81

http://dx.doi.org/10.1007/978-1-4939-1878-2_6

describe DNA at a suitably high level of abstraction in programs
which can then be compiled down to DNA.

This chapter is concerned with one such language called GEC:
Genetic Engineering of Cells [5]. A GEC program describes
a desired system in terms of constraints, e.g., on relationships
between otherwise unspecified parts, and a GEC compiler then
selects parts which satisfy the constraints. The parts are selected
from a given database which captures relevant logical and quantita-
tive properties of parts. GEC also provides other programming
language features such as modularity which facilitate the descrip-
tion of large systems in terms of their components.

Compilation of a GEC program typically results in multiple
possible DNA targets, or solutions. The GEC compiler can generate
a set of chemical reactions for each solution which can be simulated
or otherwise analyzed. The solutions that exhibit the desired behav-
ior can then be synthesized and put to work in living cells.
Although there is no guarantee that a solution which produces
the desired simulation results will function correctly inside a living
cell, simulation is an effective way to rapidly detect design errors
prior to the costly process of building a physical device in the lab.

In this chapter we first describe the Visual GEC tool [6] for
editing, compilation and simulation of GEC programs. We then
proceed with an informal overview of the GEC language itself based
on small examples, and we provide a syntax definition for the GEC
language. We end with a discussion of related and on-going work.

2 The Visual GEC Tool

The Visual GEC tool [6] is implemented as a Silverlight application
which runs directly within a browser and is available online.1 The
following description of the tool is based on the autumn 2013
release. The main screen of the tool is divided into two sections: a
design section towards the left, and an output section towards the
right.

2.1 The Design

Section

The design section of Visual GEC contains three tabs: one for
editing a parts database, one for editing a GEC program, and one
for editing the reactions associated with a given solution to a GEC
program.

2.1.1 The Database Tab The GEC compiler relies on a given database of parts with asso-
ciated logical and quantitative information. The Database tab con-
tains a sample parts database which can be used as a basis for
experimenting with sample models; a screenshot is shown in
Fig. 1. The database can be modified or expanded, and any changes

1http://lepton.research.microsoft.com/webgec.

82 Michael Pedersen and Boyan Yordanov

http://lepton.research.microsoft.com/webdna

can be saved to and loaded from a file through the “Save” and
“Load” buttons, respectively.

Note that the screenshot in fact shows two databases, one for
parts (at the top) and one for reactions (at the bottom). In both
cases, a new row can be added by pressing the “Add” button, and
an existing, selected row can be deleted by pressing the “Delete”
button.

The parts database has the following columns:

l Enabled. This indicates whether a part is enabled. If it is not, it
will be ignored by the compiler. This can be useful for experi-
menting with and debugging a model.

l ID. This identifies the part in the database and must be unique.
In the sample database, most of the IDs refer to those of the
MIT Registry of Standard Biological Parts.2

l Type. This indicates whether a part is a promoter (“prom”), a
ribosome binding site (“rbs”), a protein coding region (“pcr”)
or a terminator (“ter”). These are the four types currently
supported by GEC.

Fig. 1 A screenshot of the Design section Database tab

2 Available at www.partsregistry.org.

Programming Languages for Circuit Design 83

http://www.partsregistry.org/

l Properties. Properties constitute a high-level characterisation of
a part. They are used both for resolving constrains in a GEC
model, and for constructing the reactions to be used for
simulation.

– Terminators currently have no properties.

– Ribosome binding sites have a property of the form “rate
(0.1)” which represents a rate of translation of the mRNA,
arising from upstream parts, to proteins, arising from down-
stream parts.

– Protein coding regions have a property of the form “codes
(tetR, 0.1)” where the first component is the protein coded
by the part (here tetR), and the second component is the
degradation rate of this protein.

– Promoters can have several properties. The constitutive prop-
erty of the form “con(0.0001)” represents the constitutive
rate of transcription from the promoter. The negative prop-
erty of the form “neg(tetR, 1.0, 0.5, 0.00005)” states that
the promoter is negatively regulated by the given transcrip-
tion factor, here tetR. The remaining real-numbered com-
ponents represent the rate of promoter-transcription factor
binding, the rate of unbinding, and the rate of transcription
in the bound state, respectively. There is a corresponding
positive property of the form “pos(toluene-xylR, 0.001,
0.001, 1.0)”; in this case, the transcription factor is a
complex.

l Comments. This can be used to specify additional relevant
information for a part.

l Genbank. This optionally contains Genbank-formatted
sequence information and annotations. The Genbank data
can be entered by double-clicking the database cell: a small
editor then appears. In cases where a part is available from the
MIT Registry of Standard Biological Parts and is given the
same ID as in the Registry, the Genbank data can be imported
automatically by pressing an “Import” button at the bottom of
the editing field. Genbank data is not currently used by the
GEC tool, but future releases may provide functionality for
sending solutions and associated sequence information to auto-
mated assembly tools.

The reactions generated by the GEC compiler for a given
solution explicitly model transcription at the level of transcription
factor binding, based on the quantitative information specified in
part properties. If, on the other hand, a promoter is characterized at
a different level of abstraction, e.g., based on a Hill function, a
custom functional rate can be specified as a promoter property on
the form “frate(E)” where E is an algebraic expression over protein
names. The “frate” property can be combined in a GEC program

84 Michael Pedersen and Boyan Yordanov

with non-quantitative versions of the “pos” and “neg” properties,
i.e. of the form “neg(tetR)” and “pos(toluene-xylR)”. These are
then used only for constraint satisfaction, and not for generating
reactions for simulation.

The reactions database is included as a proof of concept, and is
intended to represent a comprehensive knowledge base of possible
reactions. These can be used to further constrain the selection of
parts by the compiler, e.g., by requiring that the proteins expressed
by two protein coding regions can dimerise, or be transported in
and out of a cell. The reactions database is, however, not necessary
and can be ignored for practical purposes: reactions which are
needed for simulation can be included directly in a model in the
GEC editor as we demonstrate later.

The reactions database has “Enabled” and “Comments”
columns similar to the parts database. It also has a “Reactions”
column which describes the actual reactions, of the form:
“enzyme ~ s1 + . . . + si -> p1 + . . . + pj”. The enzymatic part
can optionally be omitted. Transport reactions for representing
transport in and out of a cell take the form “s -> c[s]” and “c[s]
-> s”, respectively, where “s” is a species and “c” denotes some
compartment; the choice of compartment name is insignificant in
the context of the database. Note that with the current release of
the GEC tool, all numbers in the databases must be written with a
decimal point (e.g., “1.0” instead of “1”).

2.1.2 The GEC Tab The GEC tab provides functionality for editing and compiling GEC
programs; a screenshot is shown in Fig. 2. The top section of the
tab contains a code editor. The editor has a row of buttons with
standard editing functionality, e.g., for saving and opening GEC
files. Hovering the mouse over a button shows a description of its
functionality. Directly below the editor are numbers showing the
line and column numbers of the curser, and a slider for changing
the font size as needed. The “Simulation-only reactions” box indi-
cates that any reactions in a model should be used for simulation
only, and should not be considered as constraints of the model to
be matched against the reactions database.

Visual GEC comes bundled with a number of sample GEC
programs which can be selected from the drop-down box labeled
“Examples”. The Basic example shown in the screenshot, for
instance, is a simple model of a negative feedback loop. The first
line of this example is a “//”-prefixed single-line comment. Multi-
line comments are also possible: these are opened with “(*” and
closed with “*)”.

The second line of the Basic example, starting with “directive”,
has no bearing on the model itself, but rather specifies simulation
parameters. Out of several available directives, the following two
are most commonly used:

Programming Languages for Circuit Design 85

l Sample directives are of the form “directive sample 10000.0
1000” as shown in the screenshot. This specifies that a simula-
tion should run for 10000.0 time units (the first number) and
that 1000 data points should be collected for plotting
(the second number). Increasing the number of data points in
the same period of simulation time produces more fine-grained
results but the display may be less responsive. Similarly, if the
number of data points stays constant but the simulation time is
extended (or shortened), the resulting plot will be less (or
more) detailed.

l Plot directives are of the form “directive plot A; B; C”. This
specifies which species to plot during simulation; see for exam-
ple the bundled Repressilator model for an example. Take care
to spell the species names correctly. If for example compart-
ments are included in the model, the correct compartment
should also be used in the plot directive, and must be applied
per-species in the cases of complexes; for example, write “direc-
tive plot c[A]-c[B]” rather than “directive plot c[A-B]”.

Line 3 of the Basic example shown in the screenshot constitutes
the central part of the model, representing expression of a protein,

Fig. 2 A screenshot of the Design section GEC tab

86 Michael Pedersen and Boyan Yordanov

Y, in a negative feedback loop. We explain the GEC language itself
in more detail in the next section. For now, the point to note is that
the model contains unspecified parts with certain properties of
the kind described previously in the database subsection. A prop-
erty may contain variables (here Y), and there may be implicit
constraints on these variables (here that the same Y is expressed
by the protein coding region and represses the promoter).

A model can be solved by pressing the “Solve” button. If there
are any errors, a message box appears with an indication of the
cause. Otherwise, the number of possible solutions is displayed
below the editor, with a drop-down box allowing individual solu-
tions to be selected. Note that there may be no solutions if there
are no appropriate parts in the database satisfying the constraints
of the model.

Selecting a solution populates the “Species assignment” and
“Parts implementation” boxes. The species assignment box
shows which species have been assigned to variables. For instance,
[(“Y”, “araC”)] indicates that araC has been assigned to the vari-
able Y for a given solution in the Basic example. The parts imple-
mentation box shows which concrete parts have been chosen for
a given solution. For instance, [[r0080; b0034; c0080; b0015]]
indicates that r0080 is the chosen promoter; that b0034 is the
chosen ribosome binding site; that c0080 is the chosen protein
coding region; and that b0015 is the chosen terminator in the case
of the Basic example. The parts are selected from the database, and
the part names are their database IDs.

2.1.3 The LBS Tab When a solution is chosen in the GEC tab, a corresponding
reaction model is generated for simulation. This model is given in
a language called LBS: a Language for Biochemical Systems [7],
and the model appears automatically under the LBS tab; a screen-
shot is shown in Fig. 3. In many cases the LBS model can be used
as-is, without any modification, but it is made available for editing
for cases where further customization or model reduction is
needed.

The LBS editor itself is similar to that for GEC, and so are the
directives (e.g., “plot” and “sample”). These directives are copied
directly from the GECmodel, but with species variables substituted
for their corresponding values in any given solution. The LBS
model generally begins with a rate definition which is used for all
generated mRNA degradation reactions (“rate RMRNADeg
¼ 0.001”). The reason is that mRNA in the general case can be
polycistronic, so mRNA degradation rates cannot easily be included
directly in the parts database. If different mRNA degradation rates
are needed for individual reactions, these can be entered manually
in the LBS model. The global default rate can also be specified
directly in the GECmodel, where it takes the slightly different form
“rateDef RMRNADeg 0.001”.

Programming Languages for Circuit Design 87

The LBS model generally contains a number of reactions sepa-
rated by the “|” symbol. Rates are generally assumed to be mass-
action and are enclosed by curly brackets (“{”, “}”) after a reaction
arrow. If however a promoter with a custom functional rate is
included, the functional rate is enclosed by square brackets (“[”,
“]”) in the LBS reactions. If the GEC model contains compart-
ments, so will the corresponding LBS model.

Below the LBS editor is a checkbox labeled “Infer species
definitions”. This instructs the LBS compiler to allow species to
be used without first being declared. As the LBS output from a
GEC solution does not declare species, the “Infer species defini-
tions” box is checked by default when LBS is used in conjunction
with GEC.

Pressing the “Compile” button will result in any changes in the
LBS model taking effect in the output section. The “Simulate”
button is simply a shortcut to starting simulation in the Output
section of the tool discussed below. Note that any unsaved changes
made to the LBS model will disappear when selecting another
solution under the GEC tab.

2.2 The Output

Section

The right hand side of Visual GEC contains a number of tabs
related to the reaction output of a GEC solution; a screenshot is
shown in Fig. 4. They fall into one of two categories, namely
compilation and simulation, each of which is described in turn
below. Note that there are additional tabs containing experimental
functionality which we do not discuss here.

Fig. 3 A screenshot of the Design section LBS tab

88 Michael Pedersen and Boyan Yordanov

2.2.1 Compilation The compilation tab contains the following sub-tabs which all
represent the result of compilation in a particular format:

l Reactions and text. These sub-tabs present a flat view of model
reactions; the first in a graphical format and the second in a
textual format.

l Model. This sub-tab shows an editable view of the model,
including both reactions and species together with initial
conditions.

l Graph. This sub-tab shows the reaction network as a graph with
two kinds of nodes: rounded rectangles represent species, and
square boxes represent reactions.

l Export. This sub-tab contains model exports in a number of
formats. These include established formats such as SBML,
Matlab, and PRISM, as well as formats for specialized spatial
modeling tools such as Chaste [8] and CellModeller [9].

2.2.2 Simulation The simulation tab provides controls for starting, stopping, and
stepping through simulations. It also provides controls for para-
meters such as simulation duration and the number of data points,
which by default are populated from directives specified in GEC
programs. Several simulation methods, including deterministic and
stochastic, are available through a drop down menu. Several views
of simulation results are also available, including the following:

l Chart. This sub-tab shows simulation data as a plot of species
concentrations or populations over time.

Fig. 4 A screenshot of the Design section Compilation tab

Programming Languages for Circuit Design 89

l Table. This sub-tab shows simulation data in a tabular form,
with each row starting with a sample time and subsequent cells
containing species concentrations or populations.

3 The GEC Language

Having introduced the Visual GEC tool we now give a brief and
informal introduction to the GEC language itself through
examples.

3.1 Part Types On the most basic level, a model can simply be a sequence of part
IDs together with their types. The followingmodel is an example of
a transcription unit which expresses the protein tetR and which
happens to be a negative feedback loop. The corresponding graph-
ical representation is shown in Fig. 5.

The symbol “:” is used to write the type of a part, and the
symbol “;” is the sequential composition operator used to put parts
together in sequence. Writing this simple model requires the mod-
eler to know that the protein coding region part c0040 codes for
the protein tetR and that the promoter part r0040 is negatively
regulated by this same protein, two facts which we can confirm by
inspecting the parts database from Fig. 1. In this example the GEC
compiler has an easy job: it just produces a single list with the given
part IDs, while ignoring the part types (see Fig. 6).

3.2 Part Variables

and Properties

We can increase the abstraction level of the model by using variables
and properties for expressing that any parts will do, as long as the
protein coding region codes for the protein tetR and the promoter
is negatively regulated by tetR (see Fig. 7).

As discussed for entries in the parts database, the angle brackets
<> delimit one or more properties. Upper-case names such as X1

Fig. 5 Model as a sequence of part IDs and types. (a) Part list. (b) Graphical
scheme

Fig. 6 Part IDs for the tetR mediated negative feedback loop

90 Michael Pedersen and Boyan Yordanov

represent variables (undetermined part names or species). Compil-
ing this model produces exactly the same result as before, only this
time the compiler does the work of finding the specific parts
required based on the information stored in the parts database.

The compiler may in general produce several results. For exam-
ple, we can replace the fixed species name tetR with an upper-case
variable, thus resulting in a program expressing any transcription
unit behaving as a negative feedback device as shown in Fig. 8.

Based on the parts database shown in Fig. 1, the compiler now
produces four solutions, one of them being the tetR device from
above. Selecting one of these solutions populates the “Species
assignment” section (see Fig. 9).

When variables are used only once, as is the case for X1, X2, X3,
and X4 above, their names are of no significance and we will use the

Fig. 7 Use of variables and properties to describe part functions. (a) Syntax.
(b) Schematic

Fig. 8 Abstract representation of a negative feedback loop. (a) Syntax. (b) Circuit
scheme

Programming Languages for Circuit Design 91

wild card, _, instead. When there is no risk of ambiguity, we may
omit the wild card altogether and write the above program more
concisely as in Fig. 10.

3.3 Parameterized

Modules

Parameterised modules can be used to add a further level of abstrac-
tion to a model. For example, a module which acts as a negative
gate and thus generalizes the above example can be written as in
Fig. 11, where “i” denotes input and “o” denotes output:

Using this module, the repressilator circuit [10], in which three
genes repress each other, can be written concisely as in Fig. 12.

In general, the “module” keyword is followed by the name of
the module, a list of formal parameters, and the body of the module

Fig. 9 Solutions for a negative feedback loop

Fig. 10 Negative feedback loop with wild cards. (a) Formal and (b) graphical
representation

Fig. 11 Parameterized representation of a negative feedback loop

92 Michael Pedersen and Boyan Yordanov

enclosed in brackets; a module can be invoked simply by writing its
name followed by a list of actual parameters in parentheses.

The repressilator model yields 24 solutions based on the sample
database in Fig. 1. The first solution is shown in Fig. 13.

3.4 Compartments

and Reactions

Compartments can be used to represent the location of devices in
cases where a multi-cellular system is being designed. For example,
the contrived model in Fig. 14 can be thought of as a multi-cellular
repressilator, with each gene located in different cells c1, c2, and c3.

Because the genes are in different cells and do not follow each
other on the same piece of DNA, the parallel composition operator
“||” is used rather than the sequential composition operator “;”
previously used. As a result, the parts implementations for solutions
to this program no longer consists of a single list of parts, but
instead of three lists, reflecting the fact that the respective DNA
strands are physically disjoint (see Fig. 15).

Reactions, which may include compartments, can be used to
impose additional constraints on parts. For example, we might
impose the additional constraints that the protein A can move in

Fig. 12 Concise representation for the repressilator. (a) GEC syntax. (b)
Schematic

Fig. 13 A possible repressilator solution in terms of part components

Programming Languages for Circuit Design 93

and out of the first cell and, arbitrarily, that proteins B and C can
dimerise under the catalysis of A (see Fig. 16).

The constraints are composed using the constraint composition
operator, “|”. For this particular example, there are no solutions
based on the database in Fig. 1. If, however, the reactions are not
intended as constraints to be resolved against the reactions data-
base, they can be used purely for simulation by appending a star (*)
to the reaction arrows. If this is done for the above model, compi-
lation yields the same solutions as for the simple repressilator
model, but the additional reactions now appear in the resulting
LBS model. If all reactions in a model are intended to be used for
simulation only, the “Simulation-only” box under the GEC editor
can be checked in which the starred version of reaction arrows is not
needed.

3.5 Quantitative

Constraints

Additional quantitative constraints can be imposed on a model. For
example, the instruction in Fig. 17 specifies any ribosome binding
site for which the rate of translation is greater than 0.05.

Rate variables in modules should typically be used in conjunc-
tion with the new variable operator to ensure that different

Fig. 14 Multicellular repressilator in GEC syntax

Fig. 16 Reactions in GEC syntax

Fig. 15 Part list for a multicellular repressilator

94 Michael Pedersen and Boyan Yordanov

instances of a module can have different numbers assigned to the
variable, subject to the quantitative constraints. For example, a
constraint on the translation rate in the repressilator module
could be written as in Fig. 18.

3.6 The Syntax of

GEC

This section defines the concrete syntax of the GEC language in
terms of a context-free grammar. The grammar relies on the fol-
lowing lexical conventions, where we write “digit” for a single
character in the range 0–9, and “alphanumeric” for any character
in the range A–Z or a–z.

l Name: the first character of a name must be a lower-case
alphanumeric. This is followed by a possibly empty sequence
of characters which may be alphanumeric or digits.

l Variable: the first character of a variable must be an upper-case
alphanumeric. This is followed by a possibly empty sequence of
characters which may be alphanumeric or digits.

l Comma-separated lists (possibly empty) are written with an
underline.

l Integer: a non-empty sequence of digits.

l Float: a floating point number following standard notational
conventions, e.g., 3.141 or 5e-3.

Single-line comments are prefixed with “//”. Multi-line com-
ments are opened with (* and closed with *), and may be nested.

The GEC language is then defined in terms of the grammar in
Table 1, where terminal symbols are written in teletype font and
non-terminals are in bold. Note that functional rates associated with
promoter properties are only used in the database, so do not feature
in the language grammar.

Fig. 18 A possible constraint on the translation rate in the repressilator

Fig. 17 Quantitative constraints in GEC syntax

Programming Languages for Circuit Design 95

Table 1
The syntax of the GEC language defined through a context free grammar

Non-terminal Definition Description

DGEC ::¼ Directive GEC A GEC program with directives

Directive ::¼ directive sample Float End time for simulation

| directive sample Float Integer With data points

| directive plot Plots Species to plot

Plots ::¼ PlotSpec One species to plot

| PlotSpec; Plots Or more

PlotSpec ::¼ LName Atomic located name

| LName - PlotSpec Complex located name

LName ::¼ Name Simple species name

| Name [Name] In location/compartment

GEC ::¼ APart Abstract part

| GEC; GEC Sequential composition

| GEC || GEC Parallel composition

| Name [GEC] Compartment

| GEC | Constraint Constraint composition

| new Variable . GEC New variable

| module Name(FrmPar){GEC}; GEC Module definition

| Name(ActPar) Module invocation

APart ::¼ AName : PartType<Property> Abstract part

| PartType<Property> Without name

| AName : PartType Without properties

| PartType Without name & properties

PartType ::¼ prom Promoter type

| rbs Ribosome binding site type

| pcr Protein coding region type

| ter Terminator type

Property ::¼ pos(ASpec) Positive regulation

| pos(ASpec, AFloat, AFloat, AFloat) With rates

| neg(ASpec) Negative regulation

| neg(ASpec, AFloat, AFloat, AFloat) With rates

| con(AFloat) Constitutive expression

(continued)

96 Michael Pedersen and Boyan Yordanov

Table 1
(continued)

Non-terminal Definition Description

| rate(AFloat) Translation rate

AFloat ::¼ Float Concrete abstract float

| Variable Variable abstract float

| _ Wild card

AName ::¼ Name Concrete abstract name

| Variable Variable abstract name

| _ Wild card

ASpec ::¼ AName Atomic abstract species

| AName - ASpec Complex abstract species

Constraints ::¼ Reaction Reaction constraint

| Transport Transport constraint

| NumCons Numerical constraint

| Constraint | Constraints Constraint composition

Reaction ::¼ ASpec~Sum Arrow Sum Enzymatic reaction

| Sum Arrow Sum Standard reaction

Sum ::¼ Empty sum

| ASpec+Sum Composite sum

Arrow ::¼ -> Simple arrow

| *-> Simulation-only

| ->{AFloat} Arrow with rate

| *->{AFloat} Simulation-only

Transport ::¼ ASpec Arrow Name [ASpec] Transport into compartment

| Name [ASpec] Arrow ASpec Transport out of compartment

NumCons ::¼ ASpec>ASpec Greater than constraint

FrmPar ::¼ Name Formal parameter

ActPar ::¼ AName Actual name parameter

| Float Actual float parameter

Programming Languages for Circuit Design 97

4 Discussion

4.1 Related Work A number of dedicated tools for computer assisted genetic engi-
neering have emerged in recent years. We refer to, e.g., [11] for an
overview. In the following we outline four tools which, like GEC,
are based on programming languages. They all allow for simulation
of designs, but otherwise embody different design choices and
priorities.

GenoCad [12] is a Web-based tool for the design of genetic
circuits from standard parts in a structured, top-down manner. The
tool ensures that the designed circuits are syntactically valid, e.g.,
that a promoter is followed immediately by a ribosome binding site
and not terminator. Syntactic validity is formally defined by means
of a context-free grammar where terminal symbols are given by
parts, analogous to how English words form the basic components
in the English grammar. An extension to the framework [13]
furthermore allows for reactions to be deduced from designs and
for subsequent simulation. Although the approach inherently
allows for abstraction away from specific parts, there is no tool
support for exploring combinatorial instantiations of such
abstractions.

Antimony [14] is a language for describing biochemical systems
in a modular fashion. It includes a range of language features for
capturing general properties of biochemical processes, for example
reactions and events, and models can be translated to SBML. It also
includes dedicated support for synthetic biology through con-
structs for representing and composing DNA strands, but it does
not support higher-level abstractions away from specific parts.

Eugene [15] is a dedicated language for design of genetic
circuits. Eugene allows for abstraction away from specific parts in
a similar fashion to GEC, but uses more verbose language con-
structs to specify combinatorial compositions of parts and con-
straints on these. It additionally provides a range of features
similar to those of general purpose programming languages, for
example explicit control flow with while loops, explicit access to
data structures such as arrays, and statements for printing strings to
a console. In this sense Eugene can be considered more of an
imperative language in contrast to GEC which is more declarative.
Eugine also provides support for automated assembly through
integration with the Clotho [16] framework.

Finally, TASBE (Toolchain to Accelerate Synthetic Biology Engi-
neering) [17] in an end-to-end tool for designing circuits starting
from programs in Proto, a language for capturing general spatial
processes which has been adapted to the synthetic biology domain.
Like GEC and Eugene, programs can abstract away from the level
of specific parts and the tool automatically selects relevant parts.
Like Eugene, TASBE also goes a step further in its support for
automated assembly.

98 Michael Pedersen and Boyan Yordanov

4.2 Limitations The computational design framework implemented within Visual
GEC is inspired by the notion of programming languages, as well as
by abstraction and standardization conventions adopted recently in
the field of synthetic biology. It relies on several assumptions such
as the modularity of genetic parts and the availability of quantitative
information describing their properties, in order to provide a con-
venient, high-level programming language. In the following, we
discuss these assumptions before highlighting some on-going
developments and extensions of GEC.

Modularity. The abstraction of DNA sequences as parts is an
appealing and pervasive concept in synthetic biology. However,
this notion often relies on the implicit assumption that the various
genetic components used for the construction of circuits are mod-
ular and can be combined in different ways while their properties
are preserved. In the context of GEC, such modularity is assumed
for all parts collected in the parts database and the devices con-
structed from them. Therefore, the quantitative properties asso-
ciated with parts remain unchanged, regardless of the context in
which they are used. For example, the constitutive expression rate
from a given promoter is the same, even when different proteins are
expressed from it. This modularity assumption enables the con-
struction of mathematical models for arbitrary GEC solutions
directly from the quantitative properties provided within the parts
database.

In practice, modularity of components and devices is not
always observed in experimental implementations. Several
approaches have been developed to overcome various context
effects, thus facilitating the modular design and construction of
systems. In [18], the concept of retroactivity was introduced to
capture the effects of interconnections on the input-output
characteristics of components. Drawing inspiration from strategies
used in electrical circuit design to surmount similar modularity
issues, a feedback insulation mechanism was proposed in [18] to
enable the design of modular genetic circuits. More recently, design
strategies on the level of DNA sequences were proposed in [19] to
ensure the reliable and predictable performance of various combi-
nations of genetic elements. More specifically, it was demonstrated
that using appropriately engineered expression cassette architec-
tures to control transcription and translation initiation results in
more reliable expression from various component combinations.
Besides the application of engineering strategies to ensure the
modularity of parts and devices, a better understanding of the
mechanisms that break modularity allows the construction of
more detailed computational models that include the effects of
context and can guide design efforts even when context-sensitive
components are used.

Programming Languages for Circuit Design 99

Part characterisation. To construct computational models that
allow various gene circuit design solutions to be studied further
through simulation and analysis, the GEC compiler relies on the
quantitative information associated with the parts in the supplied
database. Such quantitative measurements are not always available
in practice and current part and device repositories do not require
such information to be contributed.

Even so, powerful techniques have been developed for the
in vivo characterisation of parts and devices, where experimental
measurements are used to obtain quantitative information,
enabling the computational procedures integrated within GEC.
Most prominently, the use of fluorescent reporter proteins has
emerged as a convenient characterisation strategy in the field,
allowing the high-throughput measurements of population-
averaged signals (e.g., using fluorescence microplate readers), sig-
nal distributions across a population (e.g., using flow cytometry)
and even single-cell measurements (e.g., using fluorescent
microscopy).

The use of fluorescent reporter proteins provides a convenient
characterisation tool but the obtained measurements are often
affected by experimental conditions. To overcome such effects
and attenuate experimental variability, the use of relative measure-
ment was proposed in [20] for the characterisation of promoter
activity. Recently, this strategy was extended and generalized in
[21], leading to an alternative characterisation framework. There,
spectrally distinct reporter proteins were used to enable the simul-
taneous measurement of multiple fluorescent signals, allowing the
direct ratiometric characterisation of parts and devices.

While the characterisation data for genetic components is cur-
rently sparse, as high-throughput experimental procedures are
developed and more part datasheets are produced, the quantitative
information required within the GEC database for the construction
of models is becoming more readily available.

Part selection and parameter tuning. As part of the design method-
ology implemented within GEC, a number of genetic circuit solu-
tions are proposed for a given program based on the availability of
parts. Additional model simulations and analysis procedures are
then applied to study these designs and identify the ones that
implement some required properties. With certain computational
analysis approaches, alternative model parameters corresponding to
physical quantities such as expression or degradation rates are pro-
posed in order to “tune” a given (flawed) circuit for some specific
behavior. Such a strategy was used, for example, in [22] to design
and tune genetic circuits that give rise to certain desired population
dynamics in bacterial colonies.

The tuning of circuits provides an orthogonal and complemen-
tary methodology to the selection of a design from the set proposed
automatically by GEC. Intuitively, parameter tuning allows the

100 Michael Pedersen and Boyan Yordanov

exploration of a design space that goes beyond the set of all possible
circuits realizable given the available parts. It also offers insights
about design robustness and the specific parameter ranges where
some behavior is observed. However, to implement a tuned circuit,
novel parts with modified characteristics are often required, which
has promoted the construction of libraries of related parts that
share most properties but differ with respect to the one that is
being tuned. Once such libraries are constructed, integrating
them within the GEC database allows additional designs to be
achieved through part selection rather than parameter tuning,
with the guarantee that the parts required for their implementation
are already available.

4.3 On-Going

Developments

To address some of the limitations outlined in the previous section,
extend the functionality, and improve the usability of the GEC
programming language and the Visual GEC tool, a number of
developments are currently on-going. In the following, we briefly
describe several directions of current and future work.

Characterisation methods. As experimental measurements charac-
terizing the properties of genetic parts and devices become more
readily available, computational methods capable of integrating
such quantitative information into reliable mathematical models
become necessary. To provide such functionality, we are currently
implementing novel data processing capabilities within GEC [23]
to support characterisation studies using the ratiometric experi-
mental procedures developed in [21]. In addition to exploiting
the strategies integrated within this characterisation method to
attenuate experimental variability, our computational procedure
relies on Bayesian parameter inference, which allows parameter
uncertainty to be captured and propagated within the models.

Due to experimental limitations (e.g., measuring only a small
number of fluorescent signals which represent the concentrations
of certain reporter proteins), characterisation procedures such as
the one from [21] often do not provide enough information to
infer all the parameters needed for detailed mechanistic models of,
e.g., binding between promoters and transcription factors. This is
the motivation for allowing promoter properties with functional
rates in the parts database.

Database development. In the current GEC implementation, only
minimal information is included within the parts database, as
required in order to represent parts and devices while retaining
information about their corresponding DNA sequences and to
construct mathematical models for arbitrary GEC solutions. As
more experimental data characterizing different genetic compo-
nents (possibly in different contexts such as hosts and environmen-
tal conditions) becomes available, the database can expand to
include andmake use of such information. Additional developments

Programming Languages for Circuit Design 101

targeting the integration of the database with other resources and
repositories, and facilitating the sharing of components and char-
acterisation data within the community, are also possible.

Abstractions. The GEC programming language allows the structure
(e.g., the order of parts on a plasmid) and logical properties (e.g.,
positive and negative regulations) of designs to be specified at an
abstract level, while additional quantitative constraints on the rele-
vant parameters are also supported. However, for certain applica-
tions, it is often convenient to describe designs even more abstractly
by focusing on required system properties and behavior, rather than
on specifying and constraining the possible implementations. In
other fields, similar formal synthesis methods have been developed
with the goal of automatically proposing correct-by-construction
designs from a set of functional requirements, additional con-
straints and available components. While these problems are inher-
ently difficult, significant progress has been achieved recently in the
context of engineering computer software and hardware systems.

In recent work, the problem of composing (previously con-
structed) devices with characterized dynamical properties into
larger scale systems was considered [24]. There, a library of devices
was used as a starting point, mirroring the library of parts within
GEC. In addition, a number of assembly constraints (e.g., prevent-
ing chemical cross-talk) as well as specifications of required dynamic
behavior were considered as part of the design process. In that
context, an automatically identified “solution” corresponds to a
particular arrangement of devices within a system, similarly to the
composition of parts within a device, as defined by a GEC solution.
However, an abstract dynamical model capturing only the logical
interactions between components was studied in [24] and addi-
tional research on the methods level is needed to target more
detailed models, such as the ones constructed by GEC. Further
work is also needed on the language level to reflect such abstrac-
tions in GEC programs.

Constraint solving. As the number of components available within
parts databases increases, identifying valid solutions for a given
GEC program becomes challenging. Indeed, it was recently
demonstrated that such “parts matching” problems are computa-
tionally hard [25]. In addition, once higher-level properties speci-
fying required system behavior and capturing various assembly
constraints are considered, powerful new methods are needed to
tackle these challenging problems.

Recently, the significant progress in the development of con-
straint solving methods has offered potential strategies for addres-
sing these issues. In particular, Satisfiability Modulo Theories
(SMT) and the available solvers targeting SMT problems provide
one promising direction for the formalization and scalable imple-
mentation of methods extending the GEC compiler. SMT can be

102 Michael Pedersen and Boyan Yordanov

seen as a form of constraint satisfaction that extends the classical
Boolean satisfiability (SAT) problem (the search for variable assign-
ments leading to the satisfaction of a given Boolean formula),
allowing richer theories including real numbers, integers, bit-
vectors and various data structures. Among a number of available
SMT solvers, Z3 [26] has emerged as a robust and powerful com-
petitor in the field, which motivated its use as part of the methods
developed in [24]. An SMT-based framework provides a conve-
nient formalization of the parts matching problem and has the
capacity to capture higher level properties and constraints. The
integration of these methods within GEC is currently on-going.

References

1. Regev A, Silverman W, Shapiro E (2001) Repre-
sentation and simulation of biochemical processes
using the pi-calculus process algebra. In: Pacific
symposium on biocomputing. pp 459–470. doi:
10.1142/9789814447362_0045

2. Hillston J (1996) A compositional approach to
performance modelling. Cambridge University
Press, New York

3. Danos V, Feret J, Fontana W et al (2007) Rule-
based modelling of cellular signalling. In:
CONCUR, volume 4703 of LNCS. Springer,
pp 17–41. doi: 10.1007/978-3-540-74407-
8_3

4. Ciocchetta F, Hillston J (2009) Bio-PEPA: a
framework for the modelling and analysis of
biological systems. Theor Comput Sci 410
(33–34):3065–3084. doi:10.1016/j.tcs.2009.
02.037

5. Pedersen M, Phillips A (2009) Towards pro-
gramming languages for genetic engineering of
living cells. J R Soc Interface. ISSN 1742-
5662. doi: 10.1098/rsif.2008.0516.focus

6. Pedersen M, Lakin M, Polo M et al (2013)
GEC tool. http://research.microsoft.com/gec

7. Pedersen M, Plotkin G (2010) A language for
biochemical systems: design and formal specifi-
cation. In: Trans Comput Syst Biol, volume
5945. Springer, pp 77–145. doi:10.1007/
978-3-642-11712-1_3

8. Mirams GR, Arthurs CJ, Bernabeu MO et al
(2013) Chaste: an open source C++ library for
computational physiology and biology. PLoS
Comput Biol 9(3):e1002970. doi:10.1371/
journal. pcbi.1002970

9. Rudge TJ, Steiner PJ, Phillips A et al (2012)
Computational modeling of synthetic micro-
bial biofilms. ACS Syn Biol. doi:10.1021/
sb300031n

10. ElowitzMB, Leibler S (2000) A synthetic oscil-
latory network of transcriptional regulators.
Nature 403(6767):335–338

11. Clancy K, Voigt C (2010) Programming cells:
towards an automated ‘Genetic Compiler’.
Curr Opin Biotechnol 21:572–581. doi:10.
1016/j.copbio.2010.07.005

12. Cai Y, Hartnett B, Gustafsson C et al (2007)
A syntactic model to design and verify synthetic
genetic constructs derived from standard
biological parts. Bioinformatics 23
(20):2760–2767. doi:10.1093/bioinformat
ics/btm446

13. Cai Y, LuxMW, Adam L et al (2009) Modeling
structure function relationships in synthetic
DNA sequences using attribute grammars.
PLoS Comput Biol 5(10):e1000529. doi:10.
1371/journal.pcbi.1000529

14. Smith LP, Bergmann FT, Chandran D et al
(2009) Antimony: a modular model definition
language. Bioinformatics 25(18):2452–2454.
doi:10.1093/bioinformatics/btp401

15. Bilitchenko L, Liu A, Cheung S et al (2011)
Eugene—a domain specific language for speci-
fying and constraining synthetic biological
parts, devices, and systems. PLoS One 6(4).
doi: 10.1371/journal.pone.0018882

16. Densmore D, Van Devender A, Johnson M
et al (2009) A platform-based design environ-
ment for synthetic biological systems. In: The
5th Richard Tapia celebration of diversity in
computing conference: intellect, initiatives,
insight, and innovations, TAPIA’09. ACM, pp
24–29. doi: 10.1145/1565799.1565806

17. Beal J, Weiss R, Densmore D et al (2012) An
end-to-end workflow for engineering of
biological networks from high-level specifica-
tions. ACS Syn Biol. doi:10.1021/sb300030d

18. Vecchio DD, Ninfa AJ, Sontag ED (2008)
Modular cell biology: retroactivity and insula-
tion. Mol Syst Biol 4. doi:10.1038/
msb4100204

19. Mutalik VK, Guimaraes JC, Cambray G et al
(2013) Precise and reliable gene expression

Programming Languages for Circuit Design 103

http://dx.doi.org/10.1142/9789814447362_0045
http://dx.doi.org/10.1007/978-3-540-74407-8_3
http://dx.doi.org/10.1007/978-3-540-74407-8_3
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1098/rsif.2008.0516.focus
http://research.microsoft.com/gec
http://dx.doi.org/10.1007/978-3-642-11712-1_3
http://dx.doi.org/10.1007/978-3-642-11712-1_3
http://dx.doi.org/10.1371/journal.%20pcbi.1002970
http://dx.doi.org/10.1371/journal.%20pcbi.1002970
http://dx.doi.org/10.1021/sb300031n
http://dx.doi.org/10.1021/sb300031n
http://dx.doi.org/10.1016/j.copbio.2010.07.005
http://dx.doi.org/10.1016/j.copbio.2010.07.005
http://dx.doi.org/10.1093/bioinformatics/btm446
http://dx.doi.org/10.1093/bioinformatics/btm446
http://dx.doi.org/10.1371/journal.pcbi.1000529
http://dx.doi.org/10.1371/journal.pcbi.1000529
http://dx.doi.org/10.1093/bioinformatics/btp401
http://dx.doi.org/10.1371/journal.pone.0018882
http://dx.doi.org/10.1145/1565799.1565806
http://dx.doi.org/10.1021/sb300030d
http://dx.doi.org/10.1038/msb4100204
http://dx.doi.org/10.1038/msb4100204

via standard transcription and translation initi-
ation elements. Nat Methods 10(4):354–360,
http://dx.doi.org/10.1038/nmeth.2404

20. Kelly JR, Rubin AJ, Davis JH et al (2009)
Measuring the activity of BioBrick promoters
using an in vivo reference standard. J Biol Eng
3:4. doi:10.1186/1754-1611-3-4

21. Brown JR (2011) A design framework for self-
organised Turing patterns in microbial popula-
tions. Phd dissertation,University ofCambridge

22. Dalchau N, Smith MJ, Martin S et al (2012)
Towards the rational design of synthetic cells
with prescribed population dynamics. J R Soc
Interface 9(76):2883–2898. doi:10.1098/rsif.
2012.0280

23. Yordanov B, Dalchau N, Grant P et al (2013)
Automated ratiometric characterization using

GEC. In: 2013 international workshop on
biodesign automation (IWBDA’13), July
2013

24. Yordanov B, Wintersteigern CM, Hamadi Y
et al (2013) SMT-based analysis of biological
computation. In: NASA formal methods sym-
posium 2013. Springer. doi:10.1007/978-3-
642-38088-4_6

25. Bhatia Y, Bhatia S, Adler A et al (2012) Auto-
mated selection of synthetic biology parts for
genetic regulatory networks. ACS Syn Biol 1
(8):332–344. doi:10.1021/sb300032y

26. de Moura LM, Bjørner N (2008) Z3: an effi-
cient SMT solver. In: TACAS, volume 4963 of
LNCS. Springer, pp 337–340. doi:10.1007/
978-3-540-78800-3_24

104 Michael Pedersen and Boyan Yordanov

http://dx.doi.org/10.1186/1754-1611-3-4
http://dx.doi.org/10.1098/rsif.2012.0280
http://dx.doi.org/10.1098/rsif.2012.0280
http://dx.doi.org/10.1007/978-3-642-38088-4_6
http://dx.doi.org/10.1007/978-3-642-38088-4_6
http://dx.doi.org/10.1021/sb300032y
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24

Chapter 6

Kappa Rule-Based Modeling in Synthetic Biology

John Wilson-Kanamori, Vincent Danos, Ty Thomson,
and Ricardo Honorato-Zimmer

Abstract

Rule-based modeling, an alternative to traditional reaction-based modeling, allows us to intuitively specify
biological interactions while abstracting from the underlying combinatorial complexity. One such rule-
based modeling formalism is Kappa, which we introduce to readers in this chapter. We discuss the
application of Kappa to three modeling scenarios in synthetic biology: a unidirectional switch based on
nitrosylase induction in Saccharomyces cerevisiae, the repressilator in Escherichia coli formed from BioBrick
parts, and a light-mediated extension to said repressilator developed by the University of Edinburgh team
during iGEM 2010. The second and third scenarios in particular form a case-based introduction to the
Kappa BioBrick Framework, allowing us to systematically address the modeling of devices and circuits based
on BioBrick parts in Kappa. Through the use of these examples, we highlight the ease with which Kappa can
model biological interactions both at the genetic and the protein–protein interaction level, resulting in
detailed stochastic models accounting naturally for transcriptional and translational resource usage. We also
hope to impart the intuitively modular nature of the modeling processes involved, supported by the
introduction of visual representations of Kappa models. Concluding, we explore future endeavors aimed
at making modeling of synthetic biology more user-friendly and accessible, taking advantage of the
strengths of rule-based modeling in Kappa.

Key words Rule-based modeling, Kappa, Synthetic biology, Switch, Repressilator, BioBrick parts,
Modularity

1 Introduction

Rule-based modeling languages, including Kappa [1] and the
BioNetGen Language [2], have been the focus of attention in
developing biological models that are concise, comprehensible,
and easily extensible [3]. Such languages represent biological enti-
ties such as proteins, functional units of DNA, and mRNAs as
agents. Agents are named sets of sites that can be used to hold
state or bind and interact with other agents. Interactions are repre-
sented by rules in the form of precondition and effect, governed by
an associated rate constant that determines how frequently the
interaction occurs. Rules differ from reactions in that participating

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_6, © Springer Science+Business Media New York 2015

105

agents need not be fully specified in the precondition—for example,
phosphorylation at a particular site may occur independently from
whether its neighboring site is bound or not—which means that a
single rule may encompass any number of individual reactions. In
this way, rule-based approaches alleviate the combinatorial explo-
sion that results from molecular entities existing under multiple
different conditions (for example, states of phosphorylation). The
combination of different independent rule sets implicitly generates
different overall systems, thus allowing modular development of
subsystems and their composition into a conjoined whole.

The goal of this chapter is to provide an introduction to
modeling in synthetic biology using the aforementioned Kappa
rule-based modeling language. We do so by revisiting two of the
best-known devices in synthetic biology, the toggle switch and the
repressilator, in a series of case studies designed to gradually intro-
duce the reader to the techniques involved. These techniques
include the visual representations of protein interactions, and the
Kappa BioBrick Framework for modeling BioBrick parts. We delib-
erately introduce these concepts and models in a nonspecialist
manner, in the hopes of reaching out to as wide an audience as
possible.

Although we adopt Kappa as our language of choice, the
differences between it and the BioNetGen Language are minimal
both in syntax and in implementation. However, one benefit of
Kappa over BioNetGen is that Kappa tools utilize formal methods,
such as causal summaries and reachability analysis, to aid informa-
tion discovery in and debugging of large models.

Let us begin by introducing the key elements of Kappa in
further detail.

An agent in Kappa is simply an entity with a name and a number
of labeled sites. A site may hold internal state, typically used to
denote a post-translational modification such as the agent’s phos-
phorylation status. State may also be used to denote the agent’s
location in a model that takes into account different reaction com-
partments such as the cytosol and nucleus.

Agent interactions are described via rules. Rules often corre-
spond to elementary mechanistic interactions such as the binding
or unbinding of two agents, modification of the state of a site, or
the creation or deletion of an agent. Complex rules can also
describe combinations thereof.

As an introductory example, let us consider a basic kinase-
phosphatase model. One has three agents (Fig. 1): a Kinase, a
Target with two sites “x” and “y” that may be independently
phosphorylated, and a Phosphatase. A phosphorylation event may
be simply described by three elementary actions (binding, modifi-
cation, and unbinding) and their corresponding rules (Fig. 2). In
the corresponding textual notation (also shown in Figs. 1 and 2),
internal states are represented as “~u” (unphosphorylated) and

106 John Wilson-Kanamori et al.

“~p” (phosphorylated), and bindings as “!” with shared indices
across agents indicating the two endpoints of a link. The left hand
side of the rule describes the precondition that must be satisfied for
the rule to apply. The right hand side describes its effect.

Note that not all sites of an agent need be present in a rule’s
precondition: the rules shown in Fig. 2 never mention the Target’s
“y” site. Likewise, even if a site is mentioned its internal state may
be left unspecified: binding a Kinase to its Target does not take into
account the fact that the Target may already be phosphorylated at
that site. These are both examples of the “don’t care, don’t write”
philosophy, where only the minimal information describing
the triggering of a rule need be represented in the left hand side.

Fig. 1 The agents involved in the basic kinase-phosphatase model: a Kinase with a single binding site “a,”
a Phosphatase also with a single binding site “a,” and a Target with two binding sites “x” and “y” that may
also switch state between phosphorylated (“~p”) and unphosphorylated (“~u”). We show the textual code
corresponding to each agent visualization at bottom right

a

c

b

Fig. 2 The three rules describing a phosphorylation in the kinase-phosphatase model. (A) The Kinase binds its
Target at one of the two sites (in this case “x”); (B) the Kinase phosphorylates the site at which it is bound;
(C) the Kinase dissociates (unbinds) from its target. Note the possibility that rule C might fire before rule B, thus
not every binding event between a Kinase and a Target will result in a phosphorylation

Kappa in Synthetic Biology 107

This is what allows Kappa to alleviate the combinatorial explosion
inherent in biological models.

The action of the Phosphatase, which works to counteract
the Kinase, may be described using similar rules. The only differ-
ence between the two would then lie in the modification rule
(Fig. 2b), where the state of the Target changes from “~p” to
“~u” rather than vice versa. Of course, this description would be
a choice made by the modeler, and it would be entirely possible
to model the Phosphatase (and the Kinase) differently but with a
similar mechanistic effect. For example, we could design a “smart”
Phosphatase that only binds when a Target is already phosphory-
lated, or we could ensure that it never unbinds without depho-
sphorylating by combining the two effects into a single rule.

Every rule is associated with a rate constant, which controls the
probability of the rule “firing” during the simulation. At any given
time in the simulation, the rule may apply to the mixture (the pool
of interacting agents, including their binding configuration and
internal state) multiple times according to how often the precondi-
tion holds. Each possible application has the same rate, hence the
number of applications is multiplied by the rate of the rule to
determine the rule’s propensity (flux) at that point in time. The
likelihood that the rule will fire next is proportional to this flux. Any
obtained trajectory, of course, is but one realization of a stochastic
process that may differ when repeated. Manipulating the rate con-
stants will influence these trajectories.

Perturbations form an integrated extension to the base Kappa
language allowing the modeler to specify the effect of external
influences on the model. For example, one may add and delete
agents from the mixture conditioned on simulation time or other
conditions pertaining to the state of the system.

Given a set of agents and rules as defined above, as well as
appropriate initial conditions, one can then track user-defined
observables in a stochastic simulation. The kinase-phosphatase
example of a whole Kappa model that may be used for such a
simulation is shown in Fig. 3. The stochastic trajectories are
obtained by using a rule-based variant of Gillespie’s method [4]
to simulate a continuous time Markov chain.

As well as this agent-centric view of system dynamics, auto-
mated tools exist to track causality and precedence in a model in a
contrasting rule-centric view, for example to answer the question of
what succession of events results in a fully phosphorylated Target.
The idea behind such stories is to retain only the events in the causal
lineage that contribute a net progression towards an event of inter-
est (i.e., by removing causal loops).

A useful overall view of the rule set is the contact graph (Fig. 4),
akin to a protein–protein interaction map. The contact graph is a
graph whose nodes are the agents with their interfacing set of sites,
and whose edges represent possible bindings between sites.

108 John Wilson-Kanamori et al.

Possible changes in state are indicated by a color code upon the site
in question.

The basic contact graph does not provide causal information,
only possibilities, but we may extend it (Fig. 5) by mapping to it the
model rules categorized depending on their effect: binding and
unbinding, creation, destruction, modification, and transport

Fig. 3 The textual representation of the kinase-phosphatase model in Kappa. Agent definitions (Fig. 1) are
followed by the rules of the model (Fig. 2) and the initial population. Simulation observables are not included,
but are defined in a similar manner

Fig. 4 A contact graph for a simple kinase-phosphatase model. The three agents
in the model are represented as nodes along with their sites, and each site is
connected to the other sites it can bind to. If a site may be modified by this
interaction, it is so indicated by a color. Although simple enough, the associated
rule set (three agents, 12 rules) already generates 38 non-isomorphic complexes
(of which 36 contain the Target in various stages of binding and phosphorylation)
(Color figure online)

Kappa in Synthetic Biology 109

between different model compartments. Each edge in this visual
formalism corresponds to one or more rules. In turn, each annota-
tion on an edge describes the precondition (if any) and rate to
one of these rules, such that said rule may be reconstructed wholly
from the annotation. For example, two agents may bind with each
other in two different rules dependent on their phosphorylation
state; in the visualization, this would be represented as a single edge
between the two agents but annotated twice, once for each rule
and attached rate. Reversing this process thus allows us to recover
the entirety of the model from the visualization, minus simulation-
specific observables. This extended visualization is less useful when
the model involves complex rules combining two or more of the
above effects, however, and is currently defined manually (with
plans for partial automation) in .graphml format (using the yED
tool) from the underlying Kappa file.

To summarize the above: a Kappa model is a collection of
agents (sets of sites that may hold state) and their rate-controlled
interactions in the form of rules, which may be visualized concisely
in the form of a contact graph. Given a set of initial conditions and
observables, one may then execute this model to generate a sto-
chastic simulation that tracks agent and mixture evolution over
time, modeling external influences via perturbations and observing
the causal properties of this evolution via stories.

A variety of tools exist for modeling in Kappa. Foremost
amongst these is KaSim [5], which may be used to simulate and
analyze a Kappa model defined directly in textual form (as displayed
in Fig. 3). Under development for many years, the features embod-
ied in KaSim are well-developed and user-tested. A recent alterna-
tive is LMS-Kappa [6], an embedded domain-specific language
written in Scala: users may write Kappa models using a Java-
compatible object-oriented functional programming language

Fig. 5 An extension of the basic contact graph mapping the 12 rules (and their rates) of the model to the agents
and their sites. States are shown explicitly, and the preconditions for their modification annotate the double-
headed arrow between them. Agent interactions are annotated with the rate of binding (positive, in red) and
unbinding (negative, in blue); as these are very basic binding and unbinding rules, no further annotations are
needed. The entirety of this visualization may be used to reconstruct the textual model as shown in Fig. 3

110 John Wilson-Kanamori et al.

with Java-like syntax to generate the rules. LMS-Kappa also eases
the process of supplementing the core language with modular
extensions (e.g., geometric constraints on the assembly of com-
plexes) and makes the creation of Kappa models more accessible
and more flexible from a programmer’s perspective. Another recent
effort is LBS-Kappa [7], which attempts to capture the modularity
inherent in common biological models to achieve concise represen-
tations, as an implementation of the Language for Biochemical
Systems introduced in Chapter 5 of this book.

With our introduction to Kappa now complete, we move on to
some practical applications of the modeling language to synthetic
biology. We highlight the manner in which models in Kappa may
capture biological interactions at both the genetic and the protein–
protein interaction levels through a series of case studies:

l A unidirectional switch based on nitrosylase induction in Sac-
charomyces cerevisiae, building on the kinase-phosphatase
model introduced in this section.

l The repressilator in Escherichia coli formed from BioBrick parts,
introducing the Kappa BioBrick Framework.

l A light-mediated extension to said repressilator developed by
the University of Edinburgh team during iGEM 2010, to dem-
onstrate how to build on the Kappa BioBrick Framework to
create a model combining both protein and genetic
interactions.

All models, including the introductory model described in this
section, are available at RuleBase (http://rulebase.org), an online
repository for rule-based models; the models from this chapter are
located at http://rulebase.org/users/884. Prospective modelers will
also find other examples of biologically interesting models there.

2 Modeling a Synthetic Switch

We begin exploring the role of the Kappa modeling language in
synthetic biology by applying it to a real-life example of a synthetic
switch. The design of this example flows naturally from the kinase-
phosphatase model described in Subheading 1, and follows the idea
of controlling devices based on Goldbeter-Koshland kinetics [8]
known to possess ultrasensitive toggle-like properties in specific
parameter ranges. Concretely, we use inducible promoters to con-
trol the two “arms” of the Goldbeter-Koshland loop, represented
previously by Kinase and Phosphatase and in the example to follow
as TRXh5 and GSNO.

The constitutively expressed NPR1 transcription cofactor is an
integral coordinator [9] of the multi-layered cellular defence system
in Arabidopsis (Fig. 6). In resting cells, it is subject to S-nitrosyla-
tion at a known amino acid (Cys156) by the GSNO protein acting

Kappa in Synthetic Biology 111

http://dx.doi.org/10.1007/978-1-4939-1878-2_5
http://rulebase.org/
http://rulebase.org/users/884

to promote the assembly of the NPR1 oligomer. Modification to
the intracellular redox environment by invasive pathogens, and the
subsequent action of the enzymes TRXh5 and NTRA, releases the
NPR1 monomer instead. Monomeric NPR1 interacts with
the TGA subclass of transcription factors essential for activating
immune defence genes, thus stimulating the cell’s genetic response
to pathogen invasion.

Investigating this plant immune cascade allows us to identify
system function influencing the outcome of defence signaling.
In particular, much of the processes surrounding NPR1 function

Fig. 6 Under resting conditions, the S-nitrosylation of NPR1 by GSNO promotes formation of the NPR1
oligomer. Pathogen recognition causes ambient changes to cellular redox potential, which promotes monomer
release. Nucleic monomeric NPR1 interacts and forms a complex with transcription factors at target promoters
to activate them

112 John Wilson-Kanamori et al.

are not fully understood. Work by John Moore at the University of
Edinburgh [10] approaches this problem by creating a synthetic
protein circuit based on a theoretical interpretation of plant immu-
nity, using a S. cerevisiae yeast chassis engineered to be amenable to
redox manipulation.

By designing a synthetic circuit (Fig. 7) with selectively induc-
ible inputs in the form of TRXh5 and the GSNO reductase
GSNOR, we specifically promote the reduction of NPR1 to its
monomeric form. This creates a unidirectional “on” switch with
the standard luciferase reporter gene as the circuit output. It is not a
true toggle switch as described by Gardner et al. [11], since there is
no inducible mechanism for directly turning the circuit “off” again,

Fig. 7 A schematic of the unidirectional synthetic protein switch. The labels on the promoters indicate
inducible by an outside chemical compound (+/�), constitutively expressed (+++), and activated as pathway
output (+) respectively. Although the system itself is natural (albeit transcribed from Arabidopsis to yeast), the
inducible promoters and the reporter are synthetic. Note the structural similarities to the basic kinase-
phosphatase model—a target (NPR1) that switching between conformations (oligomeric to monomeric) under
the influence of TRXh5 (forwards) and GSNO (backwards). (1) Under resting conditions, GSNO promotes
oligomer formation of constitutively expressed NPR1. (2) Selectively activating GSNOR increases the rate at
which GSNO is metabolized, thereby reducing S-nitrosylation of NPR1 and indirectly limiting oligomer
formation. (3) Activation of TRXh5 (together with NTRA) de-nitrosylates the NPR1 oligomer and promotes
monomer release. (4) Monomeric NPR1 interacts with constitutively expressed TGA3, readying it for activity as
a transcription factor. (5) This then activates the expression of a LUC reporter gene

Kappa in Synthetic Biology 113

but rather a gradual return to the preinduction state as the induc-
ible inputs filter out of the system.

We then develop a Kappa model to provide a mathematical
representation of the system and to facilitate further investigation
via model perturbations to supplement experimental analysis. This
model is visualized in Fig. 8. The model visualizations described in
Subheading 1 are extended further here to incorporate compart-
ment information in a rudimentary fashion (again, modeled as a
location site holding state either “~cytosol” or “~nucleus”). The
compartments are supplemented with the initial populations of the
agents present.

We begin our modeling case study by assuming the constitutive
expression of NPR1, GSNO, and TGA3 proteins. Initially in the
cytosolic compartment, the C156 site of the NPR1 agent favors its
S-nitrosylated “~s” state due to the action of GSNO. GSNO and
NPR1 can bind if NPR1 is de-nitrosylated (its “C156” site is in its
“~u” state) and GSNO is active (its “x” site is in its “~a” state);
once bound, another rule allows NPR1 to S-nitrosylate by switch-
ing state from “~u” to “~s” on its “C156” site. This ensures that
NPR1 retains its oligomeric form, represented by four NPR1

Fig. 8 Visualizing the Kappa model of the synthetic immune pathway. GSNO, NPR1, and TGA3 are assumed to
be constitutively expressed at rest, with GSNO promoting formation of the NPR1 oligomer. In addition to the
visualization concepts described previously, we introduce the notion of compartments and transport between
them (indicated by the dashed arrows), creation and degradation of agents (indicated by source and sink
nodes) and the perturbation language (indicated by the bracketed annotations on the edges leading from the
source nodes). At simulation time T ¼ 100, GSNOR and TRXh5 are inserted into the system via perturbation,
de-nitrosylating NPR1 and promoting its monomeric form instead. As described in the text, monomeric NPR1
then translocates to the nucleus, combining with TGA3 to activate the expression of the reporter gene. The
transcribed mRNA is transported back to the cytosol, producing LUC output

114 John Wilson-Kanamori et al.

agents forming a tetrameric ring. In turn, this prevents NPR1 from
leaving the cytosol (since our transport rules state that nucleic
transport of NPR1 can only occur when it is de-nitrosylated and
its “S1” and “S2” sites are unbound, i.e., it is in monomeric form)
and activating the downstream reporter in the nuclear compart-
ment. These rules are fully visualized in Fig. 8.

The implementation illustrates an important adage: the infor-
mation contained in the model is directly related to what is known
of the system and the desired level of abstraction. For example, we
make the choice in this example to model the NPR1 oligomer as a
tetrameric ring of four separate agents rather than simply a state
(oligomer vs. monomer) of the individual agent. This choice has
further consequences on system dynamics, as we shall see shortly.

TRXh5 and GSNOR agents do not exist in the initial popula-
tion of the cytosol, but are introduced from simulation time 100 via
a model perturbation substituting for the expression of the relevant
synthetic construct (the perturbation is represented in parentheses
on the creation edge in Fig. 8). This influx is turned off again at
simulation time 300, by which time enough TRXh5 and GSNOR
are introduced to toggle the system switch. TRXh5 directly de-
nitrosylates NPR1, switching the state of the “C156” site to “~u,”
whilst GSNOR inactivates GSNO and prevents it from acting on
NPR1 to reverse this change; the second effect takes place over a
slightly longer timescale than the first. Cumulatively, the two pro-
teins stimulate the release of the monomeric form of NPR1, which
we choose to model as the oligomeric NPR1 breaking up into its
constituent parts once all four NPR1 agents are de-nitrosylated.
The system thus behaves explosively as a large number of NPR1
monomers are released in a short time; in contrast, if we had chosen
to model the conformation of NPR1 as a state as described previ-
ously, then we would have seen a more gradual change. Again,
although mathematical models are often helpful in describing hith-
erto unknown behavior, the system can only behave according to
the assumptions we make when we model it.

Monomeric NPR1 is free to transport to the nucleic compart-
ment, where it interacts with the TGA3 transcription factor to
activate the reporter gene. The mRNA thus produced is trans-
ported back to the cytosol, where in the final stage of the model
cascade it is translated into the LUC reporter protein—the output
of the synthetic circuit.

Switching off TRXh5 and GSNOR induction causes the system
to return slowly to its preinduction state as the two protein popula-
tions are filtered out by constitutive degradation. NPR1 returns to
its oligomeric form, spurred by the S-nitrosylating action of reacti-
vated GSNO, and the reporter gene is turned off. Hence we have a
unidirectional switch structure controllable by the induction
described previously.

Kappa in Synthetic Biology 115

In vivo studies of the synthetic circuit have determined that it
takes 2 h for GSNOR/TRXh5 to appear once induced, 4–5 h for
the threshold level of de-nitrosylated NPR1 to be reached, 90 min
for the cytosolic oligomer to convert to a nucleic monomer, and a
further 2–3 h for LUC protein creation. Unfortunately these
abstract observations are insufficient in themselves to fully specify
the kinetic rates that determine model dynamics. Hence, as a first
step we simply guess at these rate constants in the actual model,
although simultaneously we maintain the initial protein popula-
tions as faithful to observed biology as possible.

As a result, at this stage simulations of the model (Fig. 9)
display highly qualitative dynamics that are useful for tracking
causality but not for reproducing the in vivo temporal behaviors
described above. Given more careful characterisation and analysis,
our model is poised to make pertinent observations regarding the
sensitivity of the NPR1 oligomer–monomer switch to the concen-
trations of TRXh5 and GSNO in the system, as well as the respon-
siveness (how long it takes to complete stimulation response) and
strength (the proportion of oligomeric NPR1 converted to mono-
meric form) of the switch. For the time being, it serves as an
example of how we may model simple synthetic circuits, and in
particular the protein interactions that may compose such circuits,
in Kappa.

Now that we have demonstrated how to proceed from toy
examples (kinase-phosphatase) to full-fledged biological models,
our next question is how to tackle structured synthetic biology
based on BioBrick parts.

Fig. 9 Stochastic simulation of the NPR1 oligomer-to-monomer switch modeled in Kappa. Plot demonstrating
that nuclear-localized monomeric NPR1 and subsequent reporter gene expression is dependent on induction
of GSNOR and TRXh5. GSNOR and TRXh5 are switched on at simulation time T ¼ 100 and off at T ¼ 300.
Units (time and quantity) are arbitrary

116 John Wilson-Kanamori et al.

3 The Kappa BioBrick Framework

3.1 Introducing the

Kappa BioBrick

Framework

Modular methodologies for modeling structured synthetic
biological systems, based on the BioBrick standard [12] and for-
malized by systems of ordinary differential equations, were first
explored by Marchisio and Stelling in 2008 [13]. Other tools
such as TinkerCell [14] facilitate modelers looking to incorporate
important principles such as stochasticity and analysis paradigms
including parameter scanning into the modeling of BioBrick parts.
We introduce in this section such a methodology, designed to assist
the modeling in Kappa of circuits based on BioBrick parts.

The Kappa BioBrick Framework, originally laid down by the
third author in 2009, differs from the above by incorporating the
advantages of rule-based modeling with the description of dynamic
BioBrick parts. Given a specification of a device constructed from
BioBrick parts, it provides rules describing how these gene con-
structs are processed by the transcription and translation machinery
of the cell (RNA polymerases and ribosomes). Such a framework
allows the modular formalization of individual functional units
within the system and their composition into more complicated
devices and systems. It also meshes well with incremental strategies
for modeling synthetic biological systems. Finally, the structure of
the Kappa BioBrick Framework corresponds with efforts to stan-
dardize the characterisation of BioBrick parts, utilizing measures
such as Polymerases Per Second (PoPS, the rate of transcription
defined as the number of times that an RNA polymerase molecule
passes a specific point on DNA per second) or Ribosomal Initia-
tions Per Second (RiPS, the level of translation as the number of
ribosome molecules that pass a point on mRNA each second).

Our approach is similar to later work by Marchisio et al. [15]
regarding the use of the BioNetGen language in a framework for
the design of complex eukaryotic gene circuits (see Chapter 7).
Unlike this, the Kappa BioBrick Framework does not specifically
cater for synthetic biology based on mRNA regulation using small
RNAs, or eukaryotic issues such as compartmentalisation or RNA
interference, although these may of course be added by the mod-
eler. An additional difference is that Marchisio et al. utilize the
Model Definition Language to provide an interface between mod-
ules; the Kappa BioBrick Framework relies instead on the inherent
compositionality of the rules in Kappa.

We provide further details of a preliminary implementation of
the Kappa BioBrick Framework in the conclusion of this chapter.
For now, we begin describing the Kappa BioBrick Framework by
considering the four functional categories of BioBrick parts: pro-
moters, coding sequences, ribosome binding sites (RBS), and
terminators.

Kappa in Synthetic Biology 117

http://dx.doi.org/10.1007/978-1-4939-1878-2_7

A BioBrick part in the framework consists of one or more DNA
agents connected in a chain and tagged with a unique identifier, for
example adopted from the Registry of Standard Biological Parts
(http://partsregistry.org/). Each BioBrick part also has an RNA
representation defined in a similar manner. Given a set of BioBrick
parts, the framework will automatically generate these DNA and
RNA agents, along with RNA polymerases (RNAP) and Ribosomes
involved in transcription and translation, and placeholder Tran-
scription Factor and Protein agents to be manually refined by the
user (Fig. 10). Organizing the agents in this manner allows us to
represent the transcriptional and translational interactions modu-
larly, without placing any limitations on protein behavior (which
may vary a great deal more) beyond activity as a transcription factor.

The framework also generates a concise and complete set of
rules (with associated kinetic rates) necessary to describe the activity
of these BioBrick parts in an idealized space-homogeneous chassis.
Once the rules for a virtual part have been established, it can be
composed with other virtual parts in a modular manner analogous
to the use of actual BioBrick parts in synthetic biology. The para-
graphs that follow may be thought of as a recipe with which to
create a set of Kappa rules for a certain part.

The crux of the framework lies in three basic rule templates:
“docking,” “sliding,” and “falloff,” shown in Fig. 11. Every rule

Fig. 10 The agents involved in the Kappa BioBrick Framework. At bottom, a chain of DNA agents (linked by
their upstream and downstream sites) representing the BioBrick parts; each part would have a unique
identifier contained as a state to the “type” site. mRNA is also represented as such a chain, transcribed
from the DNA by RNAP and subject to translation by Ribosomes. The TFactor and Protein agents are
placeholders automatically generated by the framework, and must be manually refined into the corresponding
protein

118 John Wilson-Kanamori et al.

http://partsregistry.org/

generated by the framework, bar the universal RNA degradation
rule, is instantiated from one of these templates. At the transcrip-
tional level:

l The “docking” rule template (Fig. 11a) defines the mechanism
of transcription factor and RNA polymerase binding to Bio-
Brick promoter parts. The regulatory effect of transcription
factors on BioBrick promoters are simply refinements of these
“docking” rules (Fig. 12).

a

b

c

Fig. 11 Instances of the trinity of rules in the Kappa BioBrick Framework: “docking,” “sliding,” “falloff.”
(A) The “docking” rule illustrates “transcription factor binding” rule for a promoter from Table 1: the binding of
a transcription factor to the correct binding region on the promoter BioBrick part, given that there is no RNAP
present (note that the binding region on the downstream DNA agent is free). (B) The “sliding” rule illustrates a
“translation” rule for a protein coding sequence: an RNAP agent moving along the DNA chain and transcribing
the appropriate RNA as it does so. (C) The “falloff” rule illustrates both universal RNAP falloff and the falloff for
a terminator: the dissociation of RNAP from an unspecified DNA part (the terminator falloff rule would have a
higher rate constant than the universal rule), and the simultaneous release of the constructed RNA chain (there
may be any number of RNA agents upstream of the one shown)

Kappa in Synthetic Biology 119

l All BioBrick DNA agents require associated rules that describe
the transcription of the part fromDNA to RNA caused by RNA
polymerase; these are the “sliding” rules (Fig. 11b).

l “Falloff” rules (Fig. 11c) deal with the detachment of RNA
polymerase and transcription factors from the chain of DNA
agents representing BioBrick parts. Although this may in the-
ory happen on any BioBrick part, BioBrick terminators have a
higher falloff rate due to their function in preventing further
transcription downstream.

Similarly at the translational level, ribosomes may “dock” at
ribosome binding sites, may “slide” across protein coding
sequences to translate the appropriate protein, and may “falloff”
from the RNA chain. The framework also describes the potential
degradation of RNA agents at a uniform rate, unlike DNA agents
which are assumed to be immutable barring user-defined rules.

The rate constants associated with these framework rules cor-
respond to values that would ideally be known to a rich database
of synthetic BioBrick parts. For example, the effective rates of

a

b

Fig. 12 Adapting the “docking” rules to model transcription factor regulation upon promoter activity. (a) The
binding of RNAP to a promoter whose regulatory site is free, governed by a rate constant rateX. (b) The binding
of RNAP to a promoter whose regulatory site is bound to a generic transcription factor, similarly governed
by a rate constant rateY. The transcription factor is an activator in rateX is negligible and rateY is significant;
conversely, if rateX is significant but rateY negligible, then the transcription factor is a repressor. By
manipulating the exact values of rateX and rateY we are able to define leaky promoters or promoters of
varying strengths. Finally, we can represent promoters with multiple regulatory binding sites, for example
cooperative regulation, simply by elongating the promoter part (increasing the number of DNA agents involved)
and specifying the effect of multiple transcription factors upon RNAP attraction

120 John Wilson-Kanamori et al.

“sliding” rules would correlate with measurements of PoPS for
transcriptional activity and RiPS for translational activity. “Dock-
ing” rules would relate to such measures as promoter and RBS
strength: transcription factor affinity, RNAP attraction as a function
of transcription factor binding, and ribosome affinity. The kinetic
rate for “falloff” rules is determined by such factors as RNAP error
rate and terminator efficiency.

It must be clearly stated that the above rules do not take into
account the actions of the proteins after they are synthesized or any
pathways that they may be involved in, bar their possible effect as a
transcription factor. Such considerations (for example, protein deg-
radation or kinase activity) are up to the individual modeler to
incorporate separately in addition to rules generated by the frame-
work. An example of such an effort is provided in Subheading 4 to
follow. Of course, at this point the advantages of modeling in Kappa
that we have already explored in Subheading 2 apply.

The rules of the Kappa BioBrick Framework may thus be
categorized along three dimensions: the BioBrick part they are
associated with, whether they are involved at the transcriptional
or translational level of cellular machinery, and which of the three
templates they are based on (Table 1). To illustrate them further,
we now present a model of the hallowed Elowitz repressilator
created from BioBrick parts [16].

Table 1
The rules generated by the Kappa BioBrick Framework at both transcriptional and translational levels

Transcription Translation

Promoter Transcription factor binding (*)
Transcription factor unbinding (*)
RNA polymerase binding (*)
Transcription initiation
Transcription readthrough

Ribosome binding site Transcription Ribosome binding

Protein coding sequence Transcription Translation initiation
Translation (*)

Terminator Transcription termination
Transcription readthrough

Other RNA polymerase falloff Ribosome falloff
RNA degradation

“Docking” rules are denoted in bold, “sliding” rules in bold italics, and “falloff” rules in italics. The promoter rules marked

with an asterisk must be manually refined according to promoter structure (repressor or activator, number of transcription
factor binding sites). The similarly marked protein coding sequence translation rule requires user input of the specific

protein agent created

Kappa in Synthetic Biology 121

3.2 The

Repressilator in the

Kappa BioBrick

Framework

The repressilator combines three simple synthetic genes connected
in a loop (Fig. 13), such that the product of each gene represses the
next gene in the loop and is in turn repressed by the product of the
previous gene. The output is oscillatory as the repression of one
protein by the second allows the third to build up to repress the
second, which in turn allows the first to accumulate to repress the
third, and so forth (Fig. 14).

Fig. 13 The Elowitz repressilator constructed from BioBrick parts, with each repressor inhibiting production of
the next repressor in the loop through the action of the appropriate promoter. Each part may be represented as
a modular component (a set of agents and associated rules) in the Kappa BioBrick Framework, and the
composition of a number of these parts creates a full circuit as shown. The central representation hides the
RBS and terminator components of the BioBrick device, since we reuse the same parts throughout the model

Fig. 14 Simulation results for the Elowitz repressilator modeled using the Kappa BioBrick Framework. The
system stutters to begin with due to the initial conditions of the model favoring none of the three repressors,
but as soon as one begins to assert dominance the system falls into its familiar oscillating pattern

122 John Wilson-Kanamori et al.

Our model consists of seven types of agents (DNA, RNA,
Ribosome, RNAP, and the three repressor proteins involved) and
61 rules. The agents and rules are composed as described previously
for eight BioBrick parts: three protein coding sequences (LacI,
TetR, and λ-CI), their corresponding promoters, and one each of
a terminator and an RBS. Each promoter is designed to be cooper-
atively bound by up to two of its associated transcription factors (in
this case a repressor), and thus is modeled as a concatenation of four
DNA agents (two dedicated to repressor binding, one for RNAP
binding, and a linker or spacer separating the promoter from any
preceding part). Every other BioBrick part is modeled as a single
DNA agent. The terminator and RBS are reused across all three
devices.

In the paragraphs to follow, we describe the rules of the model
according to the BioBrick parts they are associated to. Readers may
find Table 1 useful in keeping track of the parts and their associated
rules.

The first three rules of the model are RNAP and ribosome
“falloff” rules that apply to all DNA agents (BioBrick parts), and
an equally universal RNA degradation rule.

Each promoter requires up to 2n (2n�1) + 2n + 2 rules, where
n is the number of transcription factor binding sites, (2n�1) repre-
sents the number of occupancy contexts in which a binding or
unbinding can occur, and 2n is the number of transcription factor
binding configurations that the RNAP may depend on:

l Up to n (2n�1) rules to describe the possibly cooperative bind-
ing of the transcription factor(s).

l Up to n (2n�1) rules more to describe unbinding.

l Up to 2n rules to describe the binding of the RNAP.

l A singleton rule describing initiation of the transcription
process.

l A further singleton rule to deal with transcription readthrough
by transporting any RNAP that arrives at the linker to the
RNAP binding site (thus allowing the action of further rules).

In this model, n ¼ 2 for all promoters, hence each promoter
requires 14 rules to describe its behavior. All of the transcription
factor binding and unbinding rules are combinatorial in the num-
ber of binding sites, in this case two, since (for example) the
binding of a transcription factor at one site is conditional on
whether or not the other site is already bound. Similarly, we
model four rules to describe the binding of RNAP: one for when
no transcription factors are bound, one each for when either of the
sites are bound, and one for when both sites are bound. The eight
rules describing the binding of various agents to the part are all
variations on the “docking” base rule, the four rules describing

Kappa in Synthetic Biology 123

unbinding are variants on the “falloff” base rule, and both
transcription initiation and transcription walkthrough are based
on the “sliding” base rule.

Of course, if the combinatorics of the promoter are known not
to not fully affect its activity, for example the rate of RNAP binding,
enumerating all occupancy contexts is possibly an overly detailed
solution. Currently it is unclear how one might benefit from the
potential regularities in promoter structure by saving on the cost of
describing them.

The protein coding sequences each require three rules, all
based on the “sliding” template:

l A rule for its transcription.

l A rule for initiating translation.

l A rule for the actual translation of the protein.

As may be surmised from the rule descriptions, only the first
rule is active at the transcriptional level; the other two operate at the
translational level.

The RBS is described via two rules:

l A transcription rule (“sliding”).

l A ribosome binding rule (“docking”).

Transcription of the RBS DNA agent creates an equivalent
RNA agent, upon which the ribosome binding rule may then fire
as the first step of the translation process.

The terminator also requires two rules:

l A “falloff” rule with enhanced rate to represent its efficiency at
terminating transcription.

l Transcription readthrough (“sliding”) if its terminator function
fails.

The first of these terminator rules trumps the generic RNAP
“falloff” rule, thus making the terminator much more efficient at
removing RNA polymerase from the DNA chain than any acciden-
tal falloff.

The proteins created in the model act as transcription factors as
described in the promoter rules, but have no other activity beyond
three rules describing their degradation. These final three rules are
the only rules in the model not specified by the Kappa BioBrick
Framework, but are required to produce the oscillations character-
istic of the repressilator.

The initial conditions of the model contain one of each of the
BioBrick devices shown in Fig. 13, as well as a population of RNA
polymerase and ribosomes. By identifying the LacI, TetR, and λ-CI
proteins as the observables of interest, simulation of the agents and
rules described above generates a time course similar to that shown
in Fig. 14.

124 John Wilson-Kanamori et al.

Note, of course, that the framework as described above is not
the only way to model BioBrick parts in Kappa; other, less modular
formalisms may be of equal use to the modeler. Furthermore, by no
means does it completely capture every interaction necessary in fine
detail. As an example, RNA degradation process makes no distinc-
tion between exo- and endonucleases; it simply destroys RNA with
free binding and downstream sites, which is roughly equivalent to
half the activity of an exonuclease. A simple modification to the base
framework would be to differentiate between the two. As another
example, the transcription factors in the framework associate spe-
cifically with their binding site upon the promoter, whereas in
reality they search for their appropriate binding sites by “sliding”
along the DNA chain; a possible extension of the framework would
be to take this action into account. A further extension might be to
make use of the linker portion of the promoter and the promoter’s
transcription readthrough rule to represent the length of noncod-
ing region between BioBrick devices. We might even refine the
RNA agent to model the ability for multiple Ribosomes to
exist on a single mRNA, thus fully distinguishing between PoPS
and RiPS.

Current levels of implementation allow the skeleton of the
framework—the unrefined “docking,” “sliding,” and “falloff”
rules described above—to be automatically generated via LMS-
Kappa. Given a suitably detailed source, such as an ideally
populated Registry of Standard Biological Parts, one can imagine
automating the modeling of such aspects as promoter structure
(repressor or activator, number of transcription factor binding
sites and their cooperativity if any) and rate information (transcrip-
tion factor affinity, RBS and terminator efficiency, PoPS, and RiPS).
However, we envisage that the modeler will always need to provide
detailed protein interactions outside the scope of the framework so
as to maintain the flexibility required of them.

These protein interactions are the subject of the next section,
where we build upon the repressilator just described.

4 Extending the Repressilator: Light-Mediated Synchronization

The Kappa BioBrick Framework also provides a basis for modeling
component devices that combine into a larger and more complex
system. Individual modules may be developed and verified inde-
pendently, simplifying the process of breaking down the overall
effort into manageable units amenable to repeated cycles of refine-
ment and extension. This is accomplished in a similar manner to the
modularity of the individual BioBrick parts—individual devices,
consisting of a set of agents, rules, and associated variables, are
simply concatenated together into a single larger model. When
composing in this manner, care must be taken that a specific

Kappa in Synthetic Biology 125

biological entity (an agent and its sites) is depicted in the same way
across different modules to ensure that it is shared as intended.

In addition, depending on the level of granularity desired, fur-
ther rules may be used to describe the protein interactions necessary
for the model (for example the activity of a signaling pathway linking
a translation product to a transcription factor). These may be safely
added independently of the Kappa BioBrick Framework and thought
of as a modular component themselves. We proceed to elaborate on
these points in the paragraphs to follow.

One of the weaknesses of the Elowitz repressilator is that
without external regulation the system oscillations are extremely
imprecise and do not last over time, so that the oscillations of
multiple cells each running their own version of the repressilator
rapidly desynchronise or die off. To address this problem, the 2010
Edinburgh iGEM team designed a light-mediated communication
system based on the Elowitz repressilator (Fig. 15), involving
the establishment of three independent channels of communication

Fig. 15 Modeling light emitting and light sensing pathways coupled to an Elowitz repressilator. At the center
the oscillating repressilator regulates the emission of light in the system. The light sensing pathways then
provide input to this central regulator via a second promoter coupled to the same coding sequence, reinforcing
or adjusting responses to synchronize the system. The central repressilator and the light emitting pathways
are genetic components, built solely around the Kappa BioBrick Framework, but the light sensing pathways
are protein interaction components that must need be manually specified by the modeler (see Fig. 16).
(Reprinted from [17] with permission from Elsevier)

126 John Wilson-Kanamori et al.

in different spectral wavelengths [17]. The goal of the project
was to develop a multicellular system capable of self-reinforcing
collective synchronization, with the eventual aim of enabling bac-
terial populations to interact with each other as well as with purely
electronic systems via light.

As a first step to achieving the above, each gene product in the
repressilator loop is used to repress the production of light of a
particular wavelength. In other words, each wavelength is associated
with the lack of an associated repressor (red light with lack of LacI,
blue light with lack of TetR, and green light with lack of λ-CI).

In the meantime, the light sensing pathways (Fig. 16) provide
input to the core repressilator to reinforce the oscillatory response.
The model assumes that they are constitutively expressed, unlike
the proteins generated by the core repressilator. For each of the
three repressilator proteins, a second promoter is coupled from the
light sensing pathway to the original promoter, such that inhibition
from either repressor is sufficient to inhibit its production; this
assumption is based on combinatorial promoter characterisation
in Cox et al. [18]. The activated green and blue sensors explicitly
inhibit LacI and λ-CI respectively, while the activated red sensor
ceases promotion of TetR, hence inhibiting it implicitly.

If the effect of the light emitting pathways is to “broadcast” the
current state of the host’s repressilator to its neighbors, the pro-
posed effect of the light sensing pathways is to “adjust” its state to
match those of its neighbors instead. When activated, ideally the

Fig. 16 Visualization of the light sensing pathways in the light-mediated repressilator. The red and green
sensors are both two-component regulatory systems that induce changes in conformation when subjected to
light of the appropriate wavelength. The green sensor is usually “off,” but when subjected to green light
activates CcaS, which binds to and phosphorylates PhoB, which then acts as a transcriptional repressor.
In contrast, the red sensor is usually “on” and activating a downstream promoter; when red light is sensed,
Cph8 is inactivated, which stops binding to OmpR and thus encourages its dephosphorylation, which in turn
prevents it from acting as a transcriptional activator. In summary, incoming green light activates a repressor,
as opposed to incoming red light which deactivates an activator instead; both thus have a symmetrical
inhibitory effect on their coupled protein in the core repressilator. The blue light sensor is an allosteric hybrid
protein with a simple single-component mechanism: activation via blue light switches LovTAP to its “light”
configuration, whereupon it is free to act as an inhibitor upon the core repressilator

Kappa in Synthetic Biology 127

sensors either reinforce the current state of the repressilator in the
host (because it is already synchronized with its neighbors) or
modify it to bring it closer to the desired behavior. This communi-
cation occurs at a much faster rate than the transcriptional interac-
tions of the core repressilator, but it is unclear at this stage (when
approaching this system guided only by intuition) whether or not
this synchronization will actually occur if implemented in vivo.

Modeling the light sensors and emitters in conjunction with
the core repressilator, and analysis of the proposed system as a
whole, is thus crucial to understanding it. This model of light
communication is composed from seven components (the core
repressilator, along with emitters and sensors for the three wave-
lengths), each of which we may consider a functional model in its
own right. Each of these could then be validated individually before
being combined into a single host, and then tested in both com-
municating and noncommunicating colonies.

The first iteration of development adopts the core Elowitz
repressilator component (Fig. 17a) described previously in Sub-
heading 3. We then add the light emitting components (Fig. 17b)
to the model, producing oscillating light outputs linked to the
oscillations of the core repressilator shown in Fig. 13. Biologically,
these components were all synthetically created to purpose in the
iGEM project: green light emissions based on the standard firefly
(Photinus pyralis) luciferase enzyme which then underwent site-
directed mutagenesis to create red light, while blue light emissions
were developed from a bacterial luciferase from Xenorhabdus lumi-
nescens. Both the central repressilator and the light emitting com-
ponents are formed solely from the BioBrick parts—the proteins
produced and involved have no function other than as a transcrip-
tion factor, and thus there is no necessity to manually model
protein–protein interactions.

The next development iterations focus on the light sensing
pathways. Similar to the light emission pathways, these were bio-
logically engineered to purpose: the red light sensor was based on a
bacterial phytochrome, the blue light sensor on a plant phototro-
pin, and a novel fusion protein was designed as a green light sensor.
Unlike the core repressilator and light emitting components, the
proteins involved in the light sensing pathways are assumed to be
constitutively expressed in the cell. Thus they are modeled purely
on the protein interaction level without any use of the Kappa
BioBrick Framework. By not allowing the produced transcription
factors to bind to the repressilator (Fig. 17c), the response of the
individual light-sensing pathways may be tested via perturbation
analysis. Only when satisfied with their performance need this
restriction be lifted (Fig. 17d), resulting in the complete model of
the synthetic circuit.

Usually throughout the development of a model, rules must be
refined and their accompanying kinetic parameters tuned to

128 John Wilson-Kanamori et al.

maintain the desired behavior (in this example, oscillations). Due to
constraints on time and equipment, these rate parameters may be
originally derived from in silico trial-and-error analysis rather than
in vivo experimentation. The current version of KaSim also allows
for the declaration of global variables that can be used to control
the rates of multiple rules, thus affording another layer of modu-
larity in the development of the model since rules with similar
function (for example, readthrough transcription) may be con-
trolled with fewer parameters. The latest version of the light-
mediated repressilator model provided to the reader on RuleBase
(http://rulebase.org) makes use of this capability.

Up to this point we have simply tied the BioBrick parts com-
prising the repressilator to the protein interactions of three simple
signaling pathways. The intracellular model may now be extended
further to simulate the behavior of an idealized virtual colony of

Fig. 17 Iterative development of the light communication system, from core repressilator to complete network,
showing the modular nature of the system. (a) Core repressilator. (b) Light emission pathways. (c) Light
sensing pathways. (d) The complete network. (Adapted from [17] with permission from Elsevier)

Kappa in Synthetic Biology 129

http://rulebase.org/

bacteria communicating with each other using the light produced
within each cell. This may be done by utilizing the simplifying
assumption that the bacteria are nonmotile and closely packed in a
two-dimensional hexagonal biofilm. Additional rules to the model
represent the communication of light between neighboring cells,
each responsible for maintaining its own repressilator. A snapshot
of a sample simulation is shown in Fig. 18, with isolated noncom-
municating cells shown on the left and communicating cells on
the right.

The light levels in each cell are recorded at each sample point
during the simulation, along with the colony mean light levels and
the standard deviation of the individual cell light levels from these
colony means. Accurate average behavior is recorded by measuring
results (Fig. 19) over sufficiently long simulations. These results
show that a communicating colony has less time-averaged deviation
in light levels between cells, and therefore increased synchronization.

So far in this chapter, we have explored a number of Kappa
models in synthetic biology, from those based on protein–protein
interactions to the purely genetic. We have attempted to highlight
both the inherent strengths of adopting a rule-based approach to
modeling, and themanner in which the Kappa BioBrick Framework
structures the modeling of BioBrick parts whilst leaving room for
extension and refinement. To conclude from here, we take a look at
the future of rule-based modeling in Kappa, paying particular
attention to the following questions: what is missing from the
methods described above, and how we may fully exploit our
advantages.

Fig. 18 A sample simulation snapshot of the multicellular light-mediated repres-
silator model. Isolated cells (noncommunicating) are shown on the left, each
running a separate repressilator and broadcasting a clearly defined output
wavelength independently of its neighbors. The communicating cells on the
right show the effect of light-mediated synchronization on the overall state of
each cell: their output wavelengths are muddier but more closely correlated

130 John Wilson-Kanamori et al.

5 Looking to the Future

A fundamental challenge to synthetic biology is the engineering of
biological parts with behavior that is well-defined in relation to
other parts. This not only requires controlled and precise measure-
ment protocols, but also a modeling language for the formalization
of these interactions. The Kappa rule-based biological modeling
language provides a means to this end—a set of rules describing the
ways in which biological entities interact with other entities present
in the system at a tunable level of detail.

The rule-based approach embodied by languages such as
Kappa has a number of advantages over its alternatives, not least
in the fact that it greatly reduces the combinatorial complexity
of the system description in comparison to more traditional

Fig. 19 Comparison of mean cell light levels in 4 � 4 colonies of cells, both isolated (top) and communicating
(bottom) between cells in the virtual colony. Shaded areas on the graphs show standard deviation of cell light
levels from colony mean. Communicating colony shows reduced time-averaged standard deviation (R:9.46,
G:11.76, B:13.49) compared to the isolated colony (R:25.71, G:36.35, B:39.44), and hence increased
coherence in cell activity levels. Units (time and quantity) are arbitrary. (Adapted from [17] with permission
from Elsevier)

Kappa in Synthetic Biology 131

reaction-based models. Modular rules describe the functionality of
individual BioBrick parts in an easy-to-understand manner, thus
aiding comprehension of the underlying biology, and can be easily
reused both in different contexts within a model and across multi-
ple different models. The associated Kappa BioBrick Framework is
well-suited to working with individual parts and this can only
improve in the future with the development of dedicated support
tools and databases. The modularity of the approach also makes it
easy to apply an iterative development methodology to the prob-
lem, easing the process of building, analyzing, and understanding
the model.

On the other hand, not all models can be constructed auto-
matically from genetic components in the form of BioBrick parts,
and the modeler input necessary to fill in this knowledge gap is
non-trivial and may daunt a newcomer to the language. Further-
more, the framework itself is neither as readable nor as cleanly
modular as we may wish. To address the second of these we turn
to a pair of extensions to the Kappa language (their application in
this manner first proposed by Elaine Murphy): meta-Kappa [19]
and Colored Kappa.

Meta-Kappa introduces agent hierarchies in which children
may inherit sites from their parents and may add new sites or
replicate existing ones as well. Rules may be written with both
parents and children, but all agents must be concretely specified
(at the bottom level of the hierarchy) in the initial conditions of the
model. The use of meta-Kappa is especially useful in concisely
representing promoters with multiple binding sites for transcrip-
tion factors.

Colored Kappa improves the modularity of rules reliant on the
BioBrick part number (for example, the transcription rule depicted
in Fig. 10) by allowing rules to contain variables, and rates of such a
rule to be a function of said variables. Without Colored Kappa,
we are forced to write a transcription rule for every BioBrick part
in the system; with Colored Kappa, we can simply write a single rule
conditioned on the BioBrick part number as a variable.

Both meta-Kappa and Colored Kappa have value in simplifying
the manual user input to the Kappa BioBrick Framework. However,
neither of them have yet been integrated with the framework, and it
would be useful to accomplish this in the future.

Another extension to Kappa of value to the framework is
Thermodynamic Kappa [20]. Thermodynamic Kappa helps us
better express the relationship between forward and backward
kinetic rates (i.e., the equilibrium constant), such as that given by
the different affinities between the transcription and translation
machinery with various portions of the DNA and RNA. These
affinities realize the difference in potential energies between the
various configurations. In Thermodynamic Kappa we can state
these directly using energy patterns, that is, a list of connected
agents with their associated energies. In the repressilator model

132 John Wilson-Kanamori et al.

this could be used to express the differences in the “docking,”
“sliding,” and “falloff” equilibrium constants for the various
DNA–RNAP or RNA–Ribosome complexes. For instance, by
declaring that the energy for RNAP bound to a DNA terminator
sequence is higher than that of RNAP bound to any other DNA
part, we may implicitly state that RNAP dissociates from DNA
more readily when sitting on top of a terminator. In the same
way, cooperativity among transcription factors when binding to
DNA can be described by a lower energy for the configuration in
which two transcription factors are bound to DNA than when one
of them is bound without the other.

An implementation of Thermodynamic Kappa based on the
Metropolis algorithm [21] is available in LMS-Kappa. Further
work is in progress to implement meta-Kappa and other extensions
of Kappa not mentioned in this chapter on top of the LMS-Kappa
core. Most importantly for the subject of this chapter, a preliminary
implementation of the Kappa BioBrick Framework is also available
as an extension in the standard distribution of LMS-Kappa
(https://github.com/sstucki/lms-kappa). The extensibility of
LMS-Kappa will eventually allow all of these language extensions
to be adopted by the modeler according to the needs of the model,
thus greatly contributing to even more flexible methodologies for
modeling synthetic biology in Kappa.

What else can we think of for the future of Kappa modeling in
synthetic biology? One possible step forward could be to extend the
prokaryotic Kappa BioBrick Framework for eukaryotic purposes,
allowing the strengths of Kappa to come into play for fields such as
RNA-focused synthetic biology. We have already discussed in Sub-
heading 3 the refinement of elements of the existing framework to
better reflect known biology (for example the better models of
RNA degradation) or to take better advantage of the benefits of
Kappa in alleviating combinatorial complexity (for example in mod-
eling the search process that occurs when transcription factors
search for a suitable promoter binding site).

Finally, an exciting new domain of application is the concept of
whole-cell modeling as exemplified by Karr et al. [22]. Whole-cell
models combine multiple modeling approaches, such as ordinary
differential equations and flux balance analysis, to integrate all of a
cell’s molecular components and their interactions in a single
computational object. As applied to synthetic biology, we might
begin by proposing a virtual chassis, which would allow us to test in
silico how proposed BioBrick devices (modeled for example using
the Kappa BioBrick Framework) affect the physiology of the host.
A grander vision would then be to have a selection of not only
different chassis (for example, yeast, E. coli, Bacillus subtilis, and so
forth), but also different versions of chassis components (for exam-
ple, signaling pathways) that would allow potential modelers to
customize their model via plug and play.

Kappa in Synthetic Biology 133

https://github.com/sstucki/lms-kappa

Another application of the whole-cell modeling paradigm
would be to test the Kappa BioBrick Framework’s ability to account
for resources (RNA polymerases and ribosomes) shared with other
processes extant within the host. As stated throughout this chapter,
Kappa allows for the refined modeling of transcriptional and trans-
lational activity, for instance facilitated search by transcription fac-
tors and multiple ribosomes upon mRNA. In a whole-cell model
similar to that implemented by Karr et al., we might on the one
hand use other modeling techniques such as flux balance analysis
for metabolism, and delegate the interactions of DNA and RNA to
a high resolution Kappa model. This would allow us to apply the
best modeling techniques to their most appropriate usage, and tie
them all together in a coherent whole.

To conclude this chapter, we would like to reiterate the con-
cepts we have covered thus far. We have introduced the rule-based
modeling language Kappa via a series of four examples: the first
kinase-phosphatase model to acquaint readers with the basic Kappa
language and visualizations thereof; the second to repeat this in a
synthetic biological example of a unidirectional “on” switch to
make concepts more concrete; the third to introduce the Kappa
BioBrick Framework via the repressilator; and the fourth to extend
this repressilator with protein-based light-mediated communica-
tion. We have also briefly introduced recent developments in the
Kappa language, such as LMS-Kappa, aimed at implementing and
extending the usability of the Kappa BioBrick Framework.

Of course, we should warn the reader that part of the excite-
ment of synthetic biology is that it is a field in flux; therefore the
methodology which we propose should itself be thought of as an
open-ended process, more as a series of guidelines, than a closed
standard. On the other hand, we hope that throughout this chapter
we have convinced the reader that Kappa and the Kappa BioBrick
Framework can be of help to a modeler with a computational
background in understanding synthetic biology, thus providing
fresh insight into this nascent and exciting discipline.

References

1. Danos V, Laneve C (2004) Formal molecular
biology. Theor Comput Sci 325:69–110

2. BlinovML, Faeder JR, Goldstein B et al (2004)
BioNetGen: software for rule-based modeling
of signal transduction based on the interactions
of molecular domains. Bioinformatics
20:3289–3291

3. Bachman JA, Sorger P (2011) New approaches
to modeling complex biochemistry. Nat Meth-
ods 8:130

4. Gillespie DT (1977) Exact stochastic simula-
tion of coupled chemical reactions. J Phys
Chem 81:2340–2361

5. Feret J, Krivine J (2013) KaSim3 reference man-
ual. https://github.com/jkrivine/KaSim/blob/
master/man/KaSim_manual.pdf?raw¼true.
Accessed 26 June 2013

6. Danos V, Honorato-Zimmer R, Stucki S
(2013) KaSpace: a language for the combina-
torial assembly of biological complexes. The
First Annual Winter q-bio Meeting

7. Pedersen M, Phillips A, Plotkin G (2013) A
high-level language for rule-based modelling.
http://mdpedersen.azurewebsites.net/papers/
lbs-kappa.pdf. Accessed 15 September 2014

8. Goldbeter A, Koshland DE (1981) An ampli-
fied sensitivity arising from covalent

134 John Wilson-Kanamori et al.

https://github.com/jkrivine/KaSim/blob/master/man/KaSim_manual.pdf?raw=true
https://github.com/jkrivine/KaSim/blob/master/man/KaSim_manual.pdf?raw=true
https://github.com/jkrivine/KaSim/blob/master/man/KaSim_manual.pdf?raw=true
http://mdpedersen.azurewebsites.net/papers/lbs-kappa.pdf
http://mdpedersen.azurewebsites.net/papers/lbs-kappa.pdf

modification in biological systems. Proc Natl
Acad Sci U S A 78:6840–6844

9. Wang D, Amornsiripanitch N, Dong X (2006)
A genomic approach to identify regulatory
nodes in the transcriptional network of sys-
temic acquired resistance in plants. PLoS
Pathog 2:e123

10. Moore JW (2012) Foundation technologies in
synthetic biology: tools for use in understand-
ing plant immunity. PhD thesis, University of
Edinburgh

11. Gardner TS, Cantor CR, Collins JJ (2000)
Construction of a genetic toggle switch in
Escherichia coli. Nature 403:339–342

12. Shetty RP, Endy D, Knight TF Jr (2008) Engi-
neering BioBrick vectors from BioBrick parts. J
Biol Eng 2:1–12

13. MarchisioMA, Stelling J (2008) Computational
design of synthetic gene circuits with composa-
ble parts. Bioinformatics 24(17):1903–1910

14. Chandran D, Bergmann FT, Sauro HM (2009)
TinkerCell: modular CAD tool for synthetic
biology. J Biol Eng 3:19

15. Marchisio MA, Colaiacovo M, Whitehead E
et al (2013) Modular, rule-based modeling

for the design of eukaryotic synthetic gene cir-
cuits. BMC Syst Biol 7:42

16. ElowitzMB, Leibler S (2000) A synthetic oscil-
latory network of transcriptional regulators.
Nature 403:335–338

17. Stewart D, Wilson-Kanamori JR (2011) Mod-
ular modelling in synthetic biology: light-based
communication in E. coli. Electron Notes
Theor Comput Sci 277:77–87

18. Cox RS, Surette MG, Elowitz MB (2007) Pro-
gramming gene expression with combinatorial
promoters. Mol Syst Biol 3

19. Danos V, Feret J, Fontana W et al (2009) Rule-
based modelling and model perturbation. Lect
Notes Comput Sci 5750:116–137

20. Danos V, Harmer R, Honorato-Zimmer R
(2013) Thermodynamic graph-rewriting. Lect
Notes Comput Sci 8052:380–394

21. MetropolisN, RosenbluthAW, RosenbluthMN
et al (1953) Equation of state calculations by fast
computing machines. J Chem Phys 21:1087

22. Karr JR, Sanghvi JC, Macklin DN et al
(2012) A whole-cell computational model
predicts phenotype from genotype. Cell
150:389–401

Kappa in Synthetic Biology 135

Chapter 7

Modular Design of Synthetic Gene Circuits
with Biological Parts and Pools

Mario Andrea Marchisio

Abstract

Synthetic gene circuits can be designed in an electronic fashion by displaying their basic components—
Standard Biological Parts and Pools of molecules—on the computer screen and connecting them with
hypothetical wires. This procedure, achieved by our add-on for the software ProMoT, was successfully
applied to bacterial circuits. Recently, we have extended this design-methodology to eukaryotic cells. Here,
highly complex components such as promoters and Pools of mRNA contain hundreds of species and
reactions whose calculation demands a rule-based modeling approach. We showed how to build such
complex modules via the joint employment of the software BioNetGen (rule-based modeling) and ProMoT
(modularization). In this chapter, we illustrate how to utilize our computational tool for synthetic biology
with the in silico implementation of a simple eukaryotic gene circuit that performs the logic AND
operation.

Key words Standard Biological Parts, Pools of signal carriers, Genetic modules, Rule-based
modeling, Circuit design

1 Introduction

The construction of biological circuits requires a set of basic
components and the definition of a shared input/output. The latter
is what permits components’ composition into more complex
devices and, eventually, circuits. Circuit’s elements should be well
characterized. This implies the knowledge of their transfer function
that permits the calculation of the output that corresponds to any
given input. When all the basic components are associated with a
predictive mathematical description, the model of an entire circuit
arises from the composition of the models of each of its units.

According to these ideas, which come from electrical engi-
neering, Drew Endy [1] suggested considering the Standard

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_7, © Springer Science+Business Media New York 2015

137

Biological Parts as fundamental genetic components for bacterial
circuits. They represent DNA traits with a well-defined function in
transcription or translation. At the MIT Registry they are divided
into categories such as promoters, ribosome binding sites (RBS),
coding regions (both for proteins and small RNAs), and termina-
tors. Beside them, the fluxes of RNA polymerases (PoPS,
Polymerase Per Second) and ribosomes (RiPS, Ribosome Per
Second) were indicated as shared input/output representing a
biological counterpart of the electrical current. Since RNA
polymerases and ribosomes handle an exchange of information
among circuit components they were referred to as common signal
carriers.

Computational design and simulations of synthetic gene cir-
cuits require that each single Standard Biological Part is described
by a model that represents the interactions that take place inside the
Part itself. Furthermore, each Part needs to be composable, i.e., it
has to be associated with an interface that handles the computation
and the exchange of fluxes of signal carriers with the rest of the
circuit. Therefore, Parts have to be independentmodules. Different
Parts have diverse complexity that should be reflected properly by a
model description. Promoters, for instance, can be regulated by
several transcription factor proteins. They bind the DNA indepen-
dently or cooperatively and either recruit RNA polymerase or com-
pete with it. Regulatory proteins can bind many operators.
Therefore, a promoter model might require a high number of
species and reactions colliding with the problem of the combinato-
rial explosion.

We have recently proposed a way to model Standard Biological
Parts such that they are independent composable modules asso-
ciated with an exhaustive description of the species and the reac-
tions they involve [2]. This demands the use of two software tools:
ProMoT (Process Modeling Tool, available at http://www.mpi-
magdeburg.mpg.de/projects/promot) [3] and BioNetGen
(www.bionetgen.org) [4]. ProMoT allows—through the Model
Definition Language, MDL [5]—the representation of complex
systems as a network of modules that communicate via the
exchange of fluxes; BioNetGen permits the computation of the
species and reactions present in a biological system by means of a
rule-based modeling approach. ProMoT, furthermore, provides a
user with a graphical interface where gene circuits can be designed
in a drag and drop manner, as in electronics, making this task easy
and intuitive.

In this chapter we describe in detail how to use our ProMoT
add-on for synthetic biology. Concepts and technicalities are
explained by illustrating how to design a simple eukaryotic gene
circuit that mimics the Boolean AND function.

138 Mario Andrea Marchisio

http://www.mpi-magdeburg.mpg.de/projects/promot
http://www.mpi-magdeburg.mpg.de/projects/promot
http://www.bionetgen.org/

2 Methods

2.1 A New Method

for Circuits’ Modeling

with Parts and Pools

Though made of Standard Biological Parts, synthetic gene
circuits are often represented by models that neglect this intrinsic
and entire transcription units are frequently considered as basic
modules instead. If they lead to protein production, they are asso-
ciated with two ordinary differential equations, one for the mRNA
and the other for the protein dynamics. Transcription and transla-
tion regulation are described, for instance, by Hill functions that
lump complex interactions into two different parameters only: the
Hill coefficient, which quantifies the regulatory factors’ coopera-
tivity, and the Hill constant, which corresponds to the concentra-
tion of the regulatory factors necessary either to decrease
(repression) or to enhance (activation) the mRNA or protein pro-
duction of one half of their maximum value. If, on the one hand,
this modeling approach has the advantage of limiting the number
of kinetics parameters, on the other hand it does not provide a
detailed description of the interactions that take place at DNA and
mRNA level. Moreover, the dynamics of molecules such as RNA
polymerases and ribosomes is not even considered explicitly.

Starting from the ideas of Drew Endy, we proposed a new way
of designing and modeling synthetic gene circuits [6]. In our
framework, Standard Biological Parts are basic, independent mod-
ules. Each Part is described by both a model based on full mass-
action kinetics and an interface that handles the exchange of fluxes
of common signal carriers with other circuit components. More-
over, we decided to consider another three molecules as common
signal carriers: transcription factors, small RNAs, and chemicals
because of the role they play in regulating both transcription and
translation. In a circuit scheme, signal carriers are associated with
new entities, the Pools (their icons—together with all the other
symbols used throughout this chapter—are shown in Fig. 1).
Pools represent the place where free molecules of signal carriers
are stored. These molecules determine the circuit performance and
are biological potentials. Therefore, Pools can be considered as bio-
batteries. Moreover, Pools of transcription factors and small RNAs
are interfaces between transcription units, whereas Pools of chemi-
cals are interfaces between the cell and the surrounding environ-
ment (see Fig. 2). Pools can also have a different function when they
are used as containers for some specific (e.g., enzymatic) reactions
[7]. In this case, they are independent of any signal carrier.

2.2 Parts and Pools

Within the ProMoT/

BioNetGen Framework

ProMoT permits the handling of biological Parts and Pools as
independent modules of genetic networks. Parts and Pools are
described into separate MDL files. They are organized in three
sections: modules, terminals, and links. Following the notation in
[8], modules for bio-circuit components are: storage-intras,

Modular Design with Parts and Pools 139

adapter-fluxes, and reactions. Storage-intras represent species;
adapter-fluxes are entities that handle the exchange of information
between circuit’s components (namely, fluxes and species concen-
trations); reactions are modules for the biochemical interactions
among species. Terminals constitute the interface of Parts and
Pools. In a circuit scheme, terminals are wired to each other to
establish communication between modules. Inside each compo-
nent, they are connected to adapter-fluxes. Links, finally, are the
internal wires for each Part and Pool, i.e., the connections between
storage-intras, adapter-fluxes, and reactions.

Within this framework, it is straightforward to model Parts and
Pools with full mass-action kinetics. Moreover, adapter-fluxes per-
mit the calculation and the exchange of signal carrier’s fluxes as
requested by our modeling method.

Parts such as promoters and the bacterial RBS together with
the mRNA Pool for eukaryotic cells can contain many species and
reactions depending both on the number of regulatory factors
acting on them and on their DNA/mRNA binding sites. In this

Fig. 1 Symbols. Standard Biological Parts are represented by the SBOL [17]
icons, whereas Boolean gates are symbolized as in electronics. Pools’ pictures
come from our previous publications [2, 6]. Molecules not present in figure (e.g.,
the dicer enzyme and the RISC complex) are not associated with a symbol, in a
circuit scheme, but just with their name. ProMoT symbols contain input/output
terminals

140 Mario Andrea Marchisio

Fig. 2 Signal carriers’ fluxes and Pools. Pools’ role in a gene circuit scheme is illustrated via a simple
eukaryotic one-step cascade. Each transcription unit is made of three Parts (enclosed in a black rectangle)
through which RNA polymerases flow. Both units are connected to the RNA polymerase Pool with which they
exchange a PoPS flux and from which they are constantly updated (during a simulation) about the concentra-
tion of available molecules of RNA polymerases (pol free). The first transcription unit encodes for a repressor
that acts on the promoter of the second transcription unit and regulates the production of a reporter protein.
The connection point between the two units is the nuclear Pool where repressor molecules are stored after
being transcribed into the corresponding mRNA Pool in the cytoplasm. FaPS (Factor Per Second) is the general
name for a flux of transcription factors. Here we have a FaPS flux from the cytoplasm to the nucleus and
another one exchanged between the repressor Pool and the promoter of the second transcription unit.
Repressors are inactivated by an external signal, a chemical, whose molecules (Sfree) are present in a Pool,
placed outside the cell, which makes a connection between the circuit and the environment. Chemicals
interact with both free and bound-to-DNA repressors. Therefore, chemicals’ Pool exchanges a SiPS (Signal Per
Second) flux with both the repressor Pool and the second transcription unit’s promoter. In the cytoplasm, the
ribosome Pool plays the same role as the RNA polymerase Pool in the nucleus. It is connected to the two
mRNA Pools (the repressor and the reporter one) with which it exchanges a RiPS flux and to which it
communicates the concentration of available ribosomes (rfree). The Pools of the spliceosome and the reporter
proteins (the former placed in the nucleus, the latter in the cytoplasm) complete the circuit design. Though
they are not considered as signal carriers, they communicate with the connected Parts and Pools via fluxes
and concentration values as well. This kind of information exchange is symbolized, in this figure, either via a
straight or a dashed line. Black arrows represent transcription; black lines ending with a circle, translation.
The red line ending with an orthogonal bar stands for transcription repression, whereas the green arrows
mean transcription activation

Modular Design with Parts and Pools 141

case, a proper computation of species and reactions is achieved via
the software BioNetGen that implements a rule-based modeling
approach. Biological systems are described in a very abstract way by
specifying: (1) the kind of molecules they contain and all the states
these molecules can assume (molecule type); (2) the species present
at the beginning of the computation and their corresponding con-
centrations (seed species); (3) the rules that govern species interac-
tions together with the associated kinetics parameter values. From
this input, BioNetGen derives a full description of the species and
interactions that make up the system.

ProMoT and BioNetGen have complementary features. Pro-
MoT permits a clear definition of interacting biological modules,
BioNetGen provides an exhaustive computation of species and
biochemical reactions. We merged these two characteristics in
order to generate complete models of highly complex genetic
Parts and Pools. Our software requires an input file where a Part’s
(Pool’s) structure and kinetic parameter values are indicated. For
instance, the input file of a promoter contains the number of
operators which are present along the promoter sequence, if they
bind repressor or activator proteins, the interaction between the
regulatory factors (cooperative or not), the effect of chemicals on
these proteins. This information is then converted into a BNGL
(BioNetGen Language) file that serves as an input for a call to
BioNetGen. It returns a Part (Pool) description in terms of species
and reactions. However, fluxes of signal carriers are missing and the
module still lacks an interface. Therefore, the output file of BioNet-
Gen is parsed and translated by our software into an MDL file that
finally encodes a complete model for Parts (Pools). This file can be
loaded into ProMoT and the corresponding module can be used as
a component inside a genetic circuit.

2.3 Parts and Pools

Generation

Our ProMoT add-on for Synthetic Biology is a collection of Perl
and Python scripts. Each script generates either a single Part (Pool)
or one Part and one Pool if they are strictly connected to each other
(such as the eukaryotic coding region and the corresponding
mRNA Pool). Parts and Pools are encoded into MDL files. Pro-
moters, RBSs, and the eukaryotic mRNA Pool are accompanied by
a further MDL file that contains a specification for the reactions
they host. Parts and Pools models are built according to the con-
tent of their input files. In the following we explain how to fill in
each Part and Pool input file properly.

2.3.1 Promoter

(promoter.inp)

Promoter name: a string that specifies the name of the MDL file
encoding for the promoter model. This string, joint to “_REAC-
TIONS_LIB”, also gives the name to the MDL file that contains
the promoter reactions.

142 Mario Andrea Marchisio

Repressors’ number: an integer greater than or equal to zero.

Operators per repressor: each repressor acting on the promoter can
bind either a single or a group of operators. Accepted values are
integers greater than or equal to one. They are separated by com-
mas (e.g., 1, 2, 2). If the repressors’ number is equal to zero, this
entry is automatically set to zero as well.

Repressors: names of the repressors that bind the promoter. Eachname
is made of the repressor kind (“Ra”: active repressor or “Ri”: inactive
repressor) followed by an integer to unequivocally identify both the
repressor and the group of operators it binds to. Repressors’ names
are separated by commas. Furthermore, repressors are enumerated in
a crescent order (e.g., Ra1, Ri2, Ra3). This allows the assigning of
higher numbers to the operators that are more distant from the TSS
(Transcription Start Site). In synthetic promoters, indeed, repressor
operators are placed between the TSS and the TATA box.

Chemicals binding repressors: two kinds of chemicals are allowed:
inducers (“I”), and corepressors (“C”). Following the notation in
[9], inducers bind and deactivate active repressors (I + Ra), whereas
corepressors bind and activate inactive repressors (C + Ri). Since
active repressors do not need to interact with chemicals to bind the
DNA, they can be associated also with “N” that stands for no signal.
Each chemical type (“I”, “C”, and “N”) is accompanied by an
integer that indicates the repressor with which the signal interacts
(e.g., N1, C2, I3). Chemicals’ names are separated by commas.

Activators’ number: an integer greater than or equal to zero, as in
the repressors’ case.

Operators per activator: one or more operators are associated
with each activator. These integer values are separated by commas
(e.g., 2, 2).

Activators: activators are of two kinds: active (“Aa”) and inactive
(“Ai”). The former are able to bind the DNA in their original
configuration, the latter require a structural modification caused
by the action of a chemical. The name of an activator contains the
activator’s kind and integer—like in the repressor case (e.g., Ai1,
Aa2). Activators’ operators are placed upstream of the TATA box.
Analogously to repressors, activators should be numbered in
ascending order: the higher the integer, the further from the
TATA box the activator binds.

Chemicals binding activators: the same three possibilities as in the
repressors’ case: “I”, “C”, and “N”. Inducers bind inactive activa-
tors (I + Ai), whereas corepressors target active activators
(C + Aa). Active activators can be associated with no signal (“N”)
as well (see Note 1). Chemicals require the specification of the
activator they bind (integer label—e.g., I1, N2).

Modular Design with Parts and Pools 143

Repressors’ cooperativity: a list of integers separated by commas (e.g.,
2, 3). Each integer represents a repressor whose molecules bind
cooperatively to their group of operators. Inside a group of repres-
sor operators, we assume that the closest to the TSS is the strongest
one, i.e., it has the highest affinity towards the corresponding
repressor. All the other operators have a lower affinity that, how-
ever, increases when the adjacent operator (on the right, i.e., with a
smaller integer label) is occupied by a repressor protein. Only
homo-cooperativity is taken into account, i.e., repressors do not
cooperate if they bind different operator groups. When no repres-
sor shows any cooperativity, one should simply write “no”.

Activators’ cooperativity: a list of integers separated by commas, as
in the repressor case. However, in a group of activator operators,
the most distant from the TATA box is the one to which the highest
affinity is assigned. Moreover, in presence of cooperativity, the
rightmost operator within a group must be occupied in order to
recruit RNA polymerase on the DNA. If no activator binds coop-
eratively, “no” has to be written.

P_free: promoter concentration (see Note 2).

Alpha-repressors: binding rate constant between a repressor and the
corresponding operators. The value is unique in absence of coop-
erativity, otherwise three values have to be specified: (1) the binding
rate constant with the strongest operator; (2) the binding rate
constant with the all the other (weak) operators without coopera-
tive effects; (3) the binding rate constant with the weak operators in
presence of cooperative effects. These three values are enclosed in
round brackets and separated by semicolons. Values that refer to
different repressors are separated by commas (e.g., 1e9, (1e9; 1e6;
1e7), (1e8; 1e5; 1e8)).

Beta-repressors: repressors’ unbinding rate from their operators.
It follows the same rules as alpha-repressors (e.g., 10, (0.1; 10; 2),
(1, 10, 1.5)—see Note 3).

Alpha-activators, beta-activators: see alpha-repressors and beta-
repressors.

K_d-repressors: repressors’ decay rate. One value has to be specified
for each repressor acting on the promoter. Different values are
separated by commas.

K_d-activators: decay rates for promoters’ activators.

Gamma-repressors: rate constant associated with the binding of an
inducer to a repressor bound to an operator. This reaction is
irreversible. A single value has to be specified for each repressor.
If an active repressor is not under the action of inducers, its
corresponding gamma has to be set to zero.

144 Mario Andrea Marchisio

Gamma-activators: binding rate constant of corepressors to the
corresponding activators when the latter are bound to promoter
operators. Active activators that are not associated with any chemi-
cal demand gamma to be equal to zero.

K1: binding rate constant between RNA polymerase and its pro-
moter binding site.

K_1: RNA polymerase’s unbinding rate from the promoter.

K2: transcription initiation rate. It represents the promoter strength.

K2_lk: transcription leakage rate.

Compartments: “y” (yes) for eukaryotic cells, “n” (no) for bacterial
cells.

Local directory: path to the directory where the Parts and Pools
scripts are stored.

BioNetGen directory: path to the directory where the BioNetGen
executable files are stored.

See Fig. 3 for a representation of a synthetic promoter.

Fig. 3 Synthetic promoters. This synthetic promoter is regulated by three repressors and two activators. One
repressor (Ri2) and one activator (Ai1) are inactive (dashed lines) in their ground conformation. Therefore, they
need to be bound by a chemical to get access to the DNA. In particular, Ri2 needs a corepressor (CR2—but a
software user has to write C2 only in the input file) to switch off transcription and Ai1 requires an inducer (IA1—
see above) to recruit RNA polymerase (RNAp) on the DNA. Both repressors and activators are numbered in
crescent order with respect to their distance from the TSS and the TATA box, respectively. RNA polymerase site
(blue spot) is placed between the repressors’ and activators’ operators (red and green spots, respectively). Ri2,
Ra3, Ai1, and Aa2 bind groups of two operators. Operators belonging to the same group are supposed to be
equivalent unless the corresponding transcription factor proteins bind to them cooperatively. Here, Ra3 and Aa2
show a cooperative behavior. An orange triangle indicates the operator that has the stronger affinity towards the
respective transcription factor. Operators’ names specify which repressor/activator they bind and their position
within a group. For instance: OR32 is the label for the second operator inside the group of operators that bind
repressor number 3 (Ra3 in our case). The meaning of the different lines/arrows is explained in Fig. 2

Modular Design with Parts and Pools 145

2.3.2 Coding Region

and Mature mRNA Pool

(EU_coding.inp)

Gene name: coding region’s name. This name is given to the MDL
file that contains the model for the coding region. A separate file
(“m_mRNA_gene name.mdl”) is assigned to the Pool of mature
mRNA transcribed from this Part. The library file encoding for the
reactions that take place into the mRNA Pool is called “gene
name_REACTIONS_LIB.mdl”.

Riboswitches’ number: an integer value greater than or equal to zero
that specifies how many riboswitches are placed on the 50-UTR
(UnTranslated Region) of the mRNA’s coding region.

Riboswitches’ kind: five different types of riboswitches are taken into
account:S(singleaptamer);TON(Tandemaptamers,hOmo-effectors,
No cooperativity); TEN (Tandem aptamers, hEtero-effectors,
No cooperativity); TOC (Tandem aptamers, hOmo-effectors, Coop-
erativity); TEC (Tandem aptamers, hEtero-effectors, Cooperativity—
see Note 4). Strings for the kind of riboswitches are separated by
commas (e.g., tec, toc).

Effectors per riboswitch: as with every chemical in our model,
effectors can be of two different kinds: inducers (“I”) if they
activate translation, and corepressors (“C”) when, on the con-
trary, they repress translation. Single-aptamer riboswitches are
controlled by a unique effector; tandem riboswiches are bound
by two different chemicals (hetero-effectors) or a single one
(homo-effectors). Each effector is specified by its kind followed
by an integer label (see Note 5); two different effectors binding
the same tandem riboswitches should be enclosed between
round brackets and separated by a semicolon. Effectors binding
different riboswitches are separated by commas (e.g., (I1; I2),
C3).

siRNAs’ number: an integer value greater than or equal to zero to
define how many small interfering RNAs bind the mRNA at the 30-
UTR (repressing, in this way, translation).

K_fd: fast degradation decay rate; mRNA decays at this rate when
bound to the complex RISC-siRNA.

Sites per siRNA: each siRNA can bind more than a single site along
the mRNA 30-UTR. Integer values corresponding to different
siRNAs should be separated by commas (e.g., 2, 1).

Polymerase leakage: “y” (yes) if the promoter connected to the
coding region contains operators, “n” (no) if this promoter is
constitutive.

Gene length: to be expressed as base-pair number. It is used
to calculate both RNA polymerase and ribosome elongation
rate.

146 Mario Andrea Marchisio

K1r: ribosomes’ binding rate constant to the mRNA.

K1_r: ribosomes’ unbinding rate from the mRNA.

K2r: translation initiation rate.

Theta riboswitch: binding rate constant between the effectors and
the corresponding aptamers. One value is required for single
aptamer riboswitches (S) and tandem riboswitches homo-
effectors without cooperativity (TON); two values for tandem
riboswitches hetero-effectors without cooperativity (TEN—one
rate constant for each effector) and for tandem riboswitches
homo-effectors with cooperativity (TOC—the first value is the
binding rate without cooperativity effects; the second, bigger
one, refers to the cooperative binding. The two aptamers are
equivalent, i.e., they have the same affinity towards their common
effector); three values for tandem riboswitches hetero-effectors
with cooperativity (TEC—the first value is the binding rate con-
stant to aptamer number 1—the strongest one; the second value is
the binding rate constant to aptamer number 2—the weakest
one—when number 1 is free; the third value is the binding rate
constant to aptamer number 2 when number 1 is bound by the
corresponding effector, i.e., with cooperativity effects. The second
value should be lower than the third one). Whenever more than a
single value is required, different rate constants are enclosed in
round brackets and separated by semicolons (e.g., (1e9; 1e6; 1e8),
(1e5; 1e7)).

Csi riboswitch: effectors’ unbinding rate from riboswitches’ apta-
mers. It follows the same rules as for theta riboswitch (e.g., (0.1;
10; 1), (100; 10)).

Theta siRNA: binding rate constant between small interfering
RNAs and the mRNA. A unique value per siRNA is required.
Values are separated by commas (e.g., 1e6, 1e5).

Csi siRNA: siRNAs’ unbinding rate from the mRNA. Also in this
case, a single value is required for every siRNA (e.g., 0.1, 0.01).

K2r_lk: translation leakage rate.

K1y: binding rate constant between the spliceosome (Y) and the
immature mRNA.

K_1y: spliceosome unbinding rate from the immature mRNA.

K2y: splicing rate.

Km: mRNA maturation rate. It lumps all the mRNA maturation
processes in the nucleus and the mature mRNA transport in the
cytoplasm.

Modular Design with Parts and Pools 147

Zeta_r: protein synthesis rate. It represents the rate at which
ribosomes leave the mRNA releasing a new protein.

K_tr: protein nuclear import rate.

K_dp: protein decay rate (see Note 6).

Local directory: path to the directory that contains the scripts for
Parts and Pools.

BioNetGen directory: path to the directory that contains the Bio-
NetGen executable files.

Product_name: name of the protein encoded by the coding region
(see Note 7).

Promoter name (link): name of the promoter connected to the
coding region (see Note 8).

In Fig. 4, a scheme for the mature mRNA corresponding to a
synthetic eukaryotic coding region Part is provided (see Note 9).

Fig. 4 Synthetic eukaryotic mature mRNA. The mRNA here represented hosts
two tandem riboswitches on the 50-UTR and two groups of siRNA binding sites
(red spots) on the 30-UTR. Aptamers can lie in two states: on, if they allow
ribosome binding (i.e., translation), and off, otherwise. Riboswitch 1 (R1, kind:
TEC) is “off” in its ground state and gets activated by two inducers (I1 and I2)
that bind cooperatively. Aptamer 1 has stronger affinity towards its effector as
indicated by the orange triangle. Riboswitch 2 (R2, kind: TOC) is, in contrast,
always “on” unless at least one of its aptamers is bound by the corepressor C3.
Since siRNAs can only repress translation, via RNA interference, this gene
(purple arrow) is synthesized only when both I1 and I2 are present and C3
together with siRNA1 and siRNA2 are absent. The blue spot represents the site
where ribosomes bind. As for the various arrows and lines, their meaning is
explained in Fig. 2

148 Mario Andrea Marchisio

2.3.3 siRNA Coding

Region and Pool (sirna.inp)

siRNA name: a string that identifies the two MDL files associated
with an siRNA. One contains the model for the siRNA coding Part,
the other for the corresponding cytoplasmic Pool. The former is
named “siRNA name_coding.mdl”, the latter: “siRNA name_-
pool.mdl”.

Polymerase leakage: this entry has to be set to “y” (yes) if the
promoter connected to the siRNA Part contains operators, other-
wise it should be “n” (no).

siRNA length: specified as base pairs number, it is used to calculate
RNA polymerase elongation rate.

K1d: binding rate constant between the dicer enzyme and the
siRNA (see Note 10).

K_1d: dicer enzyme unbinding rate from the siRNA.

K2d: splicing rate.

Km: siRNA maturation time.

K1risc: binding rate constant of the RISC complex to the siRNA.

K_1risc: RISC complex unbinding rate from the siRNA.

Promoter name (link): name of the promoter connected to the
siRNA Part (see Note 8).

2.3.4 Terminator

(EU_terminator.inp)

Terminator name: a string for the name of the MDL file containing
the terminator model.

mRNA k_d: mRNA decay rate. This value is passed to a mature
mRNA Pool or to an siRNA Pool (see Note 11).

Zeta: RNA polymerase unbinding rate from the DNA.

2.3.5 Chemicals’ Pool

(sigpool.inp)

Signal name: a string that appears in the name of the Pool of
chemicals (or environmental signals): “signal name_pool.mdl”.

Connected to an input source: if this entry is set to “y” (yes),
chemicals are produced into a Part or a Pool present in the gene
circuit. Otherwise, chemicals are supposed to be generated into
their Pool with a rate constant k_s.

Sig_free: initial concentration of chemicals’ molecules.

K_s: chemicals’ generation rate constant in (M/s).

K_d: chemicals’ decay rate.

Compartments: “y” (yes) for eukaryotic cells, “n” (no) for bacterial
cells.

Modular Design with Parts and Pools 149

2.3.6 Transcription

Factor’s Pool (tfpool.inp)

Tf name: a string to which the suffix “_pool” is added to form the
name for the MDL file that encodes the model for a transcription
factor Pool.

Type: two kinds of transcription factors are allowed: monomers
(“m”) and dimers (“d”).

Tf state: in its native configuration a transcription factor can be
either active (“a”) or inactive (“i”).

Signals: “y” (yes) if the transcription factor interacts with chemicals,
“n” (no) otherwise (see Note 12).

Tf free: initial concentration of transcription factors.

K_d: transcription factor decay rate (see Note 13).

Delta: dimerization rate constant.

Epsilon: dimer separation rate (into monomers).

Lambda: binding rate constant between chemicals and transcrip-
tion factors.

Mu: chemicals’ unbinding rate from the transcription factors.

Compartments: “y” (yes) for eukaryotic cells, “n” (no) for bacterial
cells (see Note 14).

2.3.7 Other Pools

(EU_pools.inp)

Pool kind: to be chosen among: “polymerase”, “ribosome”, “spli-
ceosome”, “dicer”, and “risc”.

Free molecule concentration: initial concentration of the chosen
molecules. This parameter is set to a default value by writing “d”
(see Note 15).

2.3.8 Sum Pools

(EU_sum.inp)

Pool kind: to be chosen among: “polymerase”, “ribosome”, “spli-
ceosome”, “dicer”, “risc”, and “reporter”.

Reporter name: string corresponding to the name of the reporter
protein (see Note 7). This entry is ignored if “Pool kind” is differ-
ent from “reporter”.

A sum pool is a special type of pool. It serves only to reduce the
terminals’ number of a device when it is made of several parts. For
instance: if a bio-device contains many promoters, they can be all
connected to an “RNA polymerase Sum Pool” placed inside the
device. In this way, the device itself will have a single terminal
connected to the circuit’s RNA polymerase pool.

To illustrate how to design a eukaryotic synthetic gene circuit with
Parts and Pools, we consider a four-gate biological Boolean net-
work (see Fig. 5). The scheme of this circuit is generated by our tool
for digital gene circuit automatic design [10, 11] and performs a
logic AND operation (see Note 16) on its two input chemicals: an

150 Mario Andrea Marchisio

2.4 Circuit Design:

A Small Gene Network

Mimicking the AND

Boolean Function via

Transcription

and Translation

Regulation

inducer (A) and a corepressor (B). Among the Boolean devices we
find YES_A, which couples the signal A to an active repressor
(Ra_A) and YES_B, which associates the other input, B, with a
small interfering RNA (siRNA_B). This operation requires an
intermediate step since chemicals do not interact directly with
siRNAs. Therefore, siRNA_B transcription is controlled by the
inactive repressor Ri_B (expressed by NOT_B) that is activated by
corepressor B. Circuit design is completed by the AND gate where
the reporter protein expression (circuit’s output) is regulates by
Ra_A, on the transcription side, and by siRNA_B, on the transla-
tion side. A prevents Ra_A from binding the DNA and B represses
siRNA_B transcription after binding and activating Ri_B. There-
fore, the AND gate can produce a reporter protein only in the
presence of the two input chemicals, as required.

Eight different Parts (three promoters, three coding regions for
proteins, one coding region for siRNAs, and one terminator) are
necessary to assemble the four bio-gates. Besides this, this circuit
requires two chemicals’ Pools (representing the inputs), two repres-
sors’ Pools, one reporter Pool (for the output), three mRNA Pools,
one siRNA Pool, and the “shared” RNA polymerase, ribosome,
spliceosome, dicer enzyme, and RISC complex Pools.

The circuit design can be organized in the following steps: (1)
Parts’ generation and composition into Boolean gates; (2) Pools’
generation and nucleus design; (3) cytoplasm design; (4) nucleus

Fig. 5 A gene network carrying out the AND Boolean function. In the circuit
scheme we omitted, for the sake of simplicity, the Pools of common signal
carriers such as RNA polymerases and ribosomes together with the Pools of dicer
enzyme, the spliceosome, and the RISC complex. Since the two input chemicals
acts on transcription factors, their Pools are placed into the cell nucleus

Modular Design with Parts and Pools 151

and cytoplasm linking. We suppose that this circuit is hosted in
mammalian cells. The choice of parameter values is based on our
reference work [2].

2.4.1 YES_A and NOT_B

Gate Design

These two gates have an almost identical design since they differ
only for the kind of repressor they produce. Each gate is made of
three Parts: a constitutive promoter, a coding region, and a
terminator.

The constitutive promoter (p_const) interacts with the sole
RNA polymerase and therefore requires the specification of only
few parameters into the “promoter.inp” file (see Note 17).
After running the script “promoter_rules_BNGL.py”, four files
are generated:

“p_const.mdl” that contains the promoter’s model; “p_const_
REACTION_LIB.mdl”, where an abstract description of the pro-
moter’s reactions is present; “p_const.bngl” that encodes rules for a
call to BioNetGen; “p_const.net”, i.e., the BioNetGen output
file with the list of species and reactions present inside the
promoter Part.

The coding region for both repressor proteins (named gene_a
and gene_b) is a gene whose mRNA is not regulated by any siRNA or
riboswitch (see Note 18). The script “EU_coding_and_matmR-
NA_BNGL.py” produces five new files. “Gene_a.mdl” (“gene_b.
mdl”) describes the coding region Part, whereas “m_mrna_gene_a.
mdl” (“m_mrna_gene_b.mdl”) encodes the model for the Pool of
the mature mRNA corresponding to gene_a (gene_b). This Pool will
be placed in the cell cytoplasm; “m_mrna_gene_a.bngl” (“m_mrna_-
gene_b.bngl”) and “m_mrna_gene_a.net” (“m_mrna_gene_b.net”)
are the BioNetGet input and output file, respectively. Finally, the
reactions associated with the mRNA Pool find an MDL representa-
tion into “m_mrna_gene_a_REACTIONS_LIB.mdl” (“m_mrna_-
gene_b_REACTIONS_LIB.mdl”).

The last part necessary to design YES_A andNOT_B gate is the
terminator (see Note 19). “EU_terminator.py” generates a single
MDL file: “term.mdl”.

With all the necessary MDL files, the two Boolean gates can be
designed in a drag and drop way within the ProMoT Graphical
User Interface. First, one has to load, via the ProMoT Browser, the
file “NEW_LIB.mdl” (see Note 20). This file contains a call to the
ProMoT libraries necessary to handle Parts’ and Pools’ models
based on storage-intras, reactions, and adapter-fluxes. Further-
more, it adds to these libraries some biochemical reactions. After
that, it is the turn of the file “p_const_REACTIONS_LIB.mdl”
and, finally, one can load the MDL files associated with the three
Parts. At this point, a new module called, for instance, tu_yes_a and
associated with the whole YES_A gate (seeNote 21) can be created
(seeNote 22). To open the ProMoT canvas (the Visual Editor) it is
necessary to double click on tu_yes_a. The canvas is organized into

152 Mario Andrea Marchisio

two panels. On the left one, one can place the Part’s icons (seeNote
23), whereas the right one serves to design the circuit scheme. The
area for circuit design can be enlarged after selecting Set Module
Size. . . from the Edit menu of the Visual Editor. Parts are then
dragged from the left panel to the right one and dropped here.
Afterwards, corresponding Parts’ terminals have to be connected to
each other. There are three types of Parts’ terminals that handle
fluxes and concentration of signal carriers (or other molecules): in
and exc (full blue circles) and out (empty blue circles). Some Parts
have also in and out terminals to send or receive parameter values
(green circles). An out terminal of a Part is connected to an in
terminal of another Part or to an exc (or, in some cases, an in)
terminal of a Pool. In general, exc terminals are connected to each
other. Inside the module tu_yes_a, the promoter terminal out_pol
should be connected to the coding region terminal in_pol; the
coding region out_pol and in_k_d to the terminator in_pol and
out_k_d, respectively (see Note 24). As their name suggests, out/
in_pol handle the exchange of PoPS, whereas out/in_k_d allow the
terminator to pass to the coding region the value of the mRNA
decay rate. Terminals cannot remain without any link. Therefore,
the unconnected terminals of the three Parts become gate terminals
and will find a connection into the whole circuit with terminals
belonging to other gates or Pools. Promoter p_const, for instance,
has a “free” exc_pol terminal that later will be connected to a
terminal (with the same name) on the RNA polymerase Pool.
Keeping pressed the CTRL button, one should click on the
p_const icon on the canvas to open a new menu window. By select-
ing Connect Terminals and, then, Propagate ‘exc_pol’ a gate termi-
nal (called exc_pol as well) appears on the left side of the canvas. This
operation should be repeated on each Part to convert every uncon-
nected terminal into a gate one (see Note 25). Finally, the gate
design is saved by choosing Save from the Model menu on the
Visual Editor (see Fig. 6). An MDL file with the gate model is
created after highlighting tu_yes_a on the ProMoT Browser and
selecting Save selected Classes from the File menu. We name the
new file as “tu_yes_a.mdl” (see Note 26). As for NOT_B: the only
difference is that its coding region is called gene_b—and the new
module will be named tu_not_b.

2.4.2 YES_B Gate Design YES_B (tu_yes_b as a ProMoT module) is made of a promoter
regulated by the repressor Ri_b (once bound and activated by the
corepressor input B), a coding region for small interfering RNAs,
and a terminator. Differently from the constitutive promoter
p_const described above, a YES_B promoter needs to host operators
in order to be regulated by transcription factor proteins. Let us
suppose that three operators are present along the p_ri sequence
and that the repressors bind them without cooperativity (see Note
27). This promoter structure and regulation determines the

Modular Design with Parts and Pools 153

presence of 14 species (5 are adapter-fluxes in the MDL code) and
46 reactions, whereas a constitutive promoter contains only 4
species and 3 reactions.

The script “siRNA.py” generates both the Part (“sirna_b_cod-
ing.mdl”) and the corresponding cytoplasmic Pool file (“sirna_b_
pool.mdl”) related to the siRNA coding region (see Note 28). As
for the terminator, one can reuse the “term.mdl” model generated
for the above two gates.

The gate design proceeds as illustrated above. One has first to
load the promoter’s reaction file (“p_ri_REACTIONS_LIB.mdl”),
then the promoter file (“p_ri.mdl”), the “sirna_b_coding.mdl” file,
and the “term.mdl” file (if not loaded previously). After creating
the new module tu_yes_b, the three Parts are connected as
explained above for tu_yes_a and tu_not_b. Notice, however, that
p_ri has three extra terminals (see Note 29), each of them becom-
ing a gate terminal. Overall, tu_yes_b gate has eight terminals.

2.4.3 AND Gate Design The most complex gate of our illustrative circuit is the one that
mimics the AND Boolean behavior. The input A (inducer) acts on
the gate promoter by inactivating the repressor Ra_A; the input B,
in contrast, regulates the production of the reporter protein by
repressing (via Ri_B’s activation) the transcription of siRNA_B
that binds the AND gate mRNA. Let us suppose that the AND
gate promoter, p_ra, contains two operators to which Ra_A

Fig. 6 A transcription unit with ProMoT. This is how the YES_A gate appears on the ProMoT Visual Editor. Parts’
icons are displayed on the left panel, whereas the gate is drawn on the canvas. Device terminals are enclosed
in squares and connected to the corresponding Part terminals

154 Mario Andrea Marchisio

proteins bind cooperatively (for a total of 11 species and 22
reactions—see Note 30). AND gate’s coding region, gene_and, is
transcribed into an mRNA where translation is regulated via RNA
interference. Symmetrically toRa_A, we assign two binding sites to
siRNA_B as well (see Note 31). This implies the presence of 22
reactions and 12 species into gene_and mRNA Pool (against the 9
reactions and 7 species inside gene_a and gene_b mRNA Pools).
AND gate design requires the procedure followed for the previous
three gates. This transcription unit (tu_and module) has overall
nine terminals. It exchanges both active and inactive repressors
with Ra_A Pool via the terminals exc_ra1 and exc_ri1, respectively.
Indeed,Ra_A enters the promoter and can be there inactivated, by
an inducer, when it is bound to the DNA. Inactivated repressors go
back to their Pool where they can dissociate from the inducers and
get active again (this reaction is excluded from the promoter
model).

2.4.4 Chemicals’,

Transcription Factors’,

and Reporter’s Pools

For the sake of simplicity, we assume that chemicals act on their
repressor targets only inside the nucleus. Therefore, we place
both A and B input signal Pools in this cellular compartment
(see Note 32). Pools’ models are created by the script “sigpool_g.
pl” (files: “a_pool.mdl” and “b_pool.mdl”). Only one terminal
(exc_sig) is present on each Pool (see Note 33).

We assume that both circuit’s repressors, Ra_A and Ri_B,
dimerize. Their Pools (files: “ra_a_pool.mdl” and “ri_b_pool.
ml”) are generated by the script “tfpool_g.pl” (see Note 34).
Each Pool has four terminals: exc_tf_a and exc_tf_i, which are
connected to the promoter where the repressor acts; exc_sg, which
puts the repressor Pool in communication with the corresponding
input signal Pool; in_ra_a (or in_ri_b), which is connected to the
mRNA Pool where the transcription factor is synthesized.

Finally, the reporter protein Pool file (“rep_pool.mdl”) is pro-
duced by the script “reporter_pool.py” whose input file is very
similar to the one for the transcription factors (see Note 35). This
Pool contains a unique terminal, in_rep, connected to the mRNA
Pool where the fluorescent protein translation is carried out. Since
fluorescence is, in general, not localized in the nucleus, we place the
reporter protein Pool in the cell cytoplasm.

2.4.5 Other Pools MDL files for Pools of molecules such as RNA polymerases (“pol_-
pool.mdl”), ribosomes (“rib_pool.mdl”), the splicesome (“y_pool.
mdl”), the dicer enzyme (“dicer_pool.mdl”), and the RISC com-
plex (“risc_pool.mdl”) are written by a single script called
“EU_pools.py”. The input file “EU_pools.inp” requires the speci-
fication of the molecule type and initial concentration only. Each
Pool has a single terminal of exc type (seeNote 33). RNA polymer-
ase, spliceosome and dicer enzyme Pool are in the nucleus, whereas
ribosome and RISC complex Pool find place in the cytoplasm.

Modular Design with Parts and Pools 155

Now we have all the circuit components: gene Parts assembled
into Boolean gates and Pools. We can move on and design, sepa-
rately, the nucleus and the cytoplasm. Finally, we will connect them
to close our synthetic gene circuit.

2.4.6 Compartments’

Design

To design the portion of the circuit located in the cell nucleus, one
has to load, in order, the following MDL files on the ProMoT
Browser: the REACTIONS_LIB files associated with the three pro-
moters; the eight MDL files containing the model for the twelve
Parts (p_const is used twice, term four times); the four gates’ files;
the seven MDL files encoding for the nuclear Pools (A, B, Ra_A,
Ri_B, RNA polymerase, dicer enzyme, and spliceosome—see Note
36). First, it is necessary to create a module for the nucleus. We will
call it nucleus_and. By double clicking on nucleus_and one opens,
as usual, the Visual Editor. After modifying the “module size”, one
has to drag to and drop on the canvas the four Boolean gates and
the seven Pools that make the circuit’s nucleus. Then, they have to
be connected to each other.

Gates are not connected to one another directly. They are
linked to Pools only: RNA polymerase Pool, since this signal carrier
is the responsible for gate transcription; spliceosome or dicer
enzyme Pools, depending on the RNA sequence transcribed from
the gate; mature mRNA and siRNA Pools that contain their final
RNA products and are placed into the cytoplasm; transcription
factor and chemical Pools whose content exerts transcriptional
control on the promoters’ gates.

Each gate is connected to the RNA polymerase Pool by linking
both gate’s terminals exc_pol and out_pol to the only terminal
present on pol_pool (it is called exc_pol as well—see Note 37).

tu_yes_a, tu_not_b, and tu_and are connected to the spliceo-
some Pool (see Note 38). This connection requires linking gates’
and spliceosome Pool’s terminals called exc_y. tu_yes_b produces
siRNAs, therefore it has to be connected to the dicer enzyme
Pool. The link goes from the gate terminal exc_d to exc_dicer on
the Pool. tu_yes_b promoter is regulated by Ri_B upon activation
by the corepressor B. Therefore, tu_yes_b terminal exc_ra1 is
linked to exc_tf_a on Ri_B Pool, whereas the gate terminal
exc_c1r is connected to exc_sig on signal B Pool (see Note 39).
Furthermore, B and Ri_B Pools should be put in communication
by linking the terminals exc_sig (on b_pool) and exc_sg (on ri_b_
pool). Gate AND is controlled by Ra_A repressor. The inducer A
can enter the gate too and inactivate Ra_A molecules bound to
the p_ra promoter. Hence, tu_and and ra_a_pool have a double
connection to handle the flux of both active and inactive repres-
sors. This requires a link between the terminals exc_ra1 (AND
gate) and exc_tf_a (Ra_A Pool) as well as a wire between exc_ri1
(AND gate) and exc_tf_i (Ra_A Pool). A Pool has to be
connected to both Ra_A Pool (link between exc_sig and exc_sg

156 Mario Andrea Marchisio

as seen above) and the AND gate (wire from exc_sig again and
exc_i1r on tu_and).

All the remaining gates’ and Pools’ unconnected terminals
become compartment terminals and will find their counterpart on
the cytoplasm module. Both tu_yes_a and tu_not_b provide two
nuclear terminals: out_m_mrna_gene_a (out_m_mrna_gene_b)
and out_k_d_gene_a (out_k_d_gene_b). The former handles the
fluxes of mature mRNA to the cytoplasm, the latter permits the
communication of the mRNA decay rate, determined by the gate
terminator, to the cytoplasmic mature mRNA Pool. Together with
two analogous terminals, theAND gate shows a third unconnected
one: out_pol_lk_p_ra. This terminal will be connected to the
reporter protein’s mature mRNA Pool passing to it a flux of PoPS
due to the promoter p_ra leakage (see Note 40). tu_yes_b has an
unconnected terminal due to promoter leakage as well (out_pol_lk_-
p_ri), together with other two that handle information about siR-
NA_B (out_sirna_b and out_k_d_sirna_b). They will be connected
to the siRNA_B Pool in the cytoplasm. Each repressor Pool has a
free terminal too: in_ra_a and in_ri_b. They gets a FaPS flux
(Factor Per Second) from their corresponding mature mRNA
Pools in the cytoplasm.

After propagating all the unconnected gates’ and Pools’ term-
inals, the nucleus design is complete and nucleus_and module can
be saved into a separate MDL file.

Cytoplasm design requires the MDL files of seven Pools: three
mature mRNA Pools (associated with gene_a, gene_b, and gen-
e_and transcription), the siRNA_B Pool, the RISC complex one,
the reporter protein one, and the ribosomes one. Before the
mRNAs and the siRNA_B Pools, one has to load the
corresponding REACTIONS_LIB files. After instancing a new
module on the ProMoT Browser (cytoplasm_and), the seven
Pools can be displayed, as usual, on the Visual Editor. The ribo-
somes Pool is connected to each mature mRNA Pool via a wire
between the respective exc_rib terminals; the RISC complex Pool
is joined to the siRNA_B via a link between the two exc_risc
terminals; siRNA_B Pool and the Pool of mature mRNA encod-
ing for the reporter protein (m_mrna_gene_and) are bridged by a
wire between their terminals: exc_sirna_b and exc_s1, respectively
(see Note 41); finally, m_mrna_gene_and needs a connection to
rep_pool to send it a flux of fluorescent proteins. This is achieved
with a link between out_rep (on the mRNA Pool) and in_rep (on
the reporter Pool). All the other Pools’ terminals are propagated
to cytoplasmic terminals. m_mrna_gene_a and m_mrna_gene_b
have three unconnected terminals: one receives a flux of mature
mRNA from the corresponding gate in nucleus (in_m_mrna_
gene_a/b); another receives—from the gate’s coding regions—
the mRNA decay rate (in_k_d_gene_a/b); the last one, finally,
sends a FaPS flux to the associated repressor Pool in the nucleus

Modular Design with Parts and Pools 157

(out_ra_a/out_ri_b). Three analogous terminals are also present
on m_mrna_gene_and, together with a fourth unconnected one,
in_pol_lk_p_ra, that get a PoPS leakage flux from the AND gate
(see Note 40). Finally, siRNA_B Pool has three free terminals as
well: in_sirna_b, in_k_d_sirna_b, and in_pol_lk_p_ri. Also in this
case, each terminal gets information from the nucleus: the first
one, a flux of siRNAs; the second one, the siRNA decay rate; the
last one, a PoPS leakage flux. With the propagation of all these
unconnected terminals to compartmental terminals, the cyto-
plasm design is over and the new module can be saved into a
new file named “cytoplasm_and.mdl”.

2.4.7 Closing the Circuit:

Compartment Connection

Both nucleus_and and cytoplasm_and have been designed as Pro-
MoT modules. They have to be converted into another kind of
object, called compartments, in order to specify their volumes. This
task is carried out by the python script “compartment_parser.py”.
It takes three inputs: the name of the MDL file associated with the
module to be converted, a value for the compartment volume, and
the type of compartment. They are specified into the input file
“Compartment.inp” (see Note 42). By running “compartment_-
parser.py” on nucleus_and and cytoplasm_and, some newMDL files
are written (see Note 43). The most significant ones are named
“ALL_nucleus_and.mdl” and “ALL_cytoplasm_and.mdl”. Their
content is a complete description of the compartments since they
embrace all the compartment’s components: devices with genetic
Parts, Pools, and the corresponding biochemical reactions.

The final step to close our synthetic circuit is the connection of
the two compartments into a new ProMoT object that belongs to
the sbml-model class. This can be achieved via the script “link_com-
partment.py”. This script reads its three input values from the file
“Link_compartment.inp” (see Note 44). A unique file, called
“ALL_cell_and.mdl”, is created (see Note 45): it contains an
instance of the new sbml-model object cell_and together with a
description of all its components (taken from “ALL_nucleus_and.
mdl” and “ALL_cytoplasm_and.mdl”). “ALL_cell_and.mdl“ can
be loaded on the ProMoT Browser directly, i.e., without any other
MDL file having been previously loaded. Cell_and is under the
sbml-model folder (which is, in turn, under module). It can be
visualized on the Visual Editor just by double clicking on it, as
usual. Here, it appears as two connected compartments. By double
clicking on each of them, one can see their components (gates and
Pools). By double clicking on nuclear Boolean gates, one can have a
look at their Parts. By further double clicking on Parts and Pool,
one can have a visual representation of the species, reactions, and
fluxes involved in them. Finally, by double clicking on storage-intra
(species) and reactions, one can change concentrations or parame-
ter values (see Note 46).

158 Mario Andrea Marchisio

Since the circuit design is concluded, one can now export
cell_and to a format suitable for simulations such as Matlab (Math-
works, Nantucket/MA) and SBML [12] (see Note 47). In Fig. 7,
results from deterministic simulations on our illustrative digital
circuit are shown.

3 Notes

1. Chemicals’ kinds refer to the action of these small molecules
directly on transcription rather than on the transcription factor
proteins they bind. Inducers allow transcription by either inhi-
biting a repressor or turning on an activator; corepressors
switch off transcription by either activating a repressor or turn-
ing off an activator.

2. “Free” refers to the initial promoter state where all the opera-
tors are free and RNA polymerase is not present on its binding
site.

3. To properly represent cooperativity, the first value of alpha
(“alpha_strong”) should be greater than the second (“alpha_-
weak”). Moreover, “alpha_weak” should be lower than the
third value (“alpha_cooperativity”). As for beta: “beta_strong“
should be lower than “beta_weak” that, in turn, should be

Fig. 7 AND gate simulations. Deterministic simulations of our circuit that mimics AND Boolean behavior
are performed with COPASI [18]. First, the system reaches a steady state in absence of chemicals
(48-h simulation). Then, signals’ concentrations are changed (switched to 0.01 M) according to the four
truth table entries (on the x axis). The circuit reaches a second steady state after 96 h of simulation. Reporter
protein concentration is taken as a circuit output and the data in figure are normalized to the highest output
(logic 1) occurred when both A and B input chemicals are present (“11” on the circuit truth table—see the
insert)

Modular Design with Parts and Pools 159

greater than “beta_cooperativity”. These values are checked by
the software and a warning message is printed if these rules are
not respected. In this way, partial cooperativity can also be
simulated as in the Repressilator model [13].

4. Effectors are chemicals that bind riboswitches’ structures called
aptamers and change their structure so that ribosome binding
can be either obstructed or facilitated.

5. Two effectors cannot have the same integer label. This label has
nothing to do with the riboswitch the effectors bind; it serves
only to unequivocally identify each effector.

6. In principle, this rate should be the same specified into the
corresponding protein pool.

7. This entry is necessary for the script “link_compartment.py”
that generates the links between nucleus and cytoplasm (see
Subheading 2.4.7).

8. Also this entry is required to run the script “link_compartment.
py” (see Note 7).

9. The bacterial RBS has an input file (“rbs.inp”) similar to the
one for the eukaryotic coding part. However, bacterial small
RNAs can both activate and inhibit translation and, therefore,
are of two kinds: locks and keys, following the notation in [14].

10. In the siRNA model, the dicer enzyme plays the same role as
the spliceosome in the mRNA model.

11. In our bacterial Part models, terminators do not determine the
mRNA decay rate. Moreover, bacterial terminators require a
further parameter, the readthrough rate (eta), since RNA poly-
merase might not detach the DNA at the terminator and pass
directly to the adjacent transcription unit. Notice, however,
that if you use promoters and RBSs coming from the rule-
based modeling approach (presented in this chapter) to build
bacterial circuits, you have to set the value of eta to zero in
every terminator (and, as a consequence, to ‘n’—no—every
readthrough flux).

12. Inactive transcription factors have to be bound by chemicals in
order to act on the DNA.

13. One can use the same decay rate for both free transcription
factors (inside their nuclear Pool and into the mature mRNA
Pool where they are produced) and transcription factors that
are bound to the DNA into a promoter.

14. The reporter protein pool input file (reporter_pool.inp) has
the same entries as the transcription factor pool input file
except for “signals” and the parameters “lambda” and “mu”.
Since reporter proteins represent, normally, the circuit output,
they are not supposed to interact with any chemicals—used as
circuit inputs.

160 Mario Andrea Marchisio

15. Default values are: RNA polymerase, 1.3e�7; ribosomes,
5.0e�8; spliceosome, 1.3e�7; dicer enzyme, 1.3e�7; RISC
complex, 5.0e�8. All these values are in M. Throughout the
Notes units are never specified. Rates are always expressed in
s(�1), whereas rate constants are generally in M(�1) s(�1).

16. A two-input AND gate gives 1 when both inputs are equal to 1,
otherwise the gate’s output is 0. In synthetic gene digital
circuits, 0 and 1 correspond to low (or even null) and high
molecules concentrations, respectively.

17. Promoter name: p_const—repressors’ number: 0—activators’
number: 0—p_free: 4.4e�12—k1: 1e5—k_1: 1—k2: 0.5—
compartment: y. Moreover, the local directory and the BioNet-
Gen directory have to be set properly. All the other parameters
are ignored.

18. In the input file “EU_coding.inp” one has to set: gene name:
gene_a (gene_b)—riboswitches’ number: 0—siRNAs’ num-
ber: 0—polymerase leakage: n—gene length: 1,500—k1r:
1e6—k_1r: 0.01—k2r: 0.02—k1y: 1.5e3—k_1y: 0.0017—
k2y: 0.033—km: 5.5e�4—zeta_r: 0.5—k_tr: 0.0083—k_dp:
2.8e�5—product name: Ra_A (Ri_B). Once again, both the
local and BioNetGen directories have to be set properly.

19. The “EU_terminator.inp” entry can be set as follows: termina-
tor name: term—mRNA k_d: 3.8e�5—zeta: 31.25.

20. Choose Open from the File menu and then Model. . .. Alterna-
tively, one can use the shortcut CTRL + O.

21. It is recommendable to use transcription units as basic devices for
circuit design. In order to use our script “compartment_parser.
py” to generate the MDL file for the nucleus, the name of every
transcription unit module should start with the prefix “tu_”.

22. Open the folder structural-modeling-entity, click on module
and select Add subclass. . . from the Edit menu.

23. Click on the Part’s name on the ProMoT Browser: the Part’s icon
will appear on the screen. Drag it to and drop it on the left panel
of the Visual Editor. Keeping the CTRL button pressed, click on
the icon and select Default Class from the menu window that
pops up. In this way, the icon will be present on theVisual Editor
when you start the design of a new transcription unit.

24. Click on a terminal, a white cross appears. Drag it to the
corresponding terminal on a different icon and release the
mouse button: a wire between the two terminals is created.

25. When this is achieved, no Part appears enclosed in a red frame.

26. To associate tu_yes_a with the YES gate icon, open the
“tu_yes_a.mdl” file with a text editor and add a new line :icon
“yes.png” just under :super-classes (“module”). After saving the
change, reload the file into ProMoT.

Modular Design with Parts and Pools 161

27. In the “promoter.inp” file one should write: promoter
name: p_ri—repressors’ number: 1—operators per repressor:
3—repressors: Ri1—chemicals binding repressors: C1—
activator number: 0—repressor cooperativity: no—p_free:
4.4e-12—alpha-repressors: 1e9—beta-repressors: 10—k_d-
repressors: 2.8e�5—gamma-repressors: 1e6—k1: 1e5—k_1:
1—k2: 0.5—k2_lk: 5.0e�5—compartment: y. Both local and
BioNetGen directory have to be set properly.

28. The “siRNA.inp” input file entries should be set as follows:
siRNA name: sirna_b—polymerase leakage: y—siRNA length:
20—k1d: 1.5e3—k_1d: 0.0017—k2d: 0.033—km: 5.5e�4—
k1risc: 3.0e7—k_1risc: 0.017—promoter name (link): p_ri.

29. One terminal (out_pol_lk_p_ri) is due to the leakage of RNA
polymerase. As a gate terminal, it will be connected to the
siRNA_B Pool in the cytoplasm since RNA polymerase leakage
has the effect to increase the amount of siRNA_B directly.
Another terminal, exc_Ra1, will be connected to the Ri_B
Pool. Here, repressors Ri_B get activated by corepressors B
and, only then, can leave the Pool and interact with the DNA.
Do not confuse Ri_B Pool with Ra_A one. As explained
above, inside a promoter Part transcription factors are named
according to their type (Ra, Ri) to which a label (an integer) is
added. These names have nothing to do with the names the
same transcription factors have into their Pools. The third extra
terminal, exc_c1r, will be connected to the signal B Pool.

30. p_ra requires the following “promoter.inp” configuration: pro-
moter name: p_ra—repressors’ number: 1—operators per
repressor: 2—repressors: Ra1—chemicals binding repressors:
I1—activator number: 0—repressor cooperativity: 1—p_free:
4.4e-12—alpha-repressors: (1e9;1e7;1e9)—beta-repressors:
(9;224;9)—k_d-repressors: 2.8e�5—gamma-repressors:
1e6—k1: 1e5—k_1: 1—k2: 0.5—k2_lk: 5.0e�5—
compartment: y. Finally, both local and BioNetGen directory
have to be set properly.

31. The coding region input file entries should be set as follows:
gene name: gene_and—riboswitches number: 0—siRNA num-
ber: 1—k_fd: 2e�3—sites per siRNA: 2—polymerase leakage:
y—gene length: 1,500—k1r: 1e6—k_1r: 0.01—k2r: 0.02—
theta siRNA: 1e7—csi siRNA: 0.01—k2r_lk: 1.0 e�5—k1y:
1.5e3—k_1y: 0.0017—k2y: 0.033—km: 5.5 e-4—zeta_r:
0.5—k_tr: 0.0083—k_dp: 2.8e�5—product name: rep—
promoter name (link): p_ra. Moreover, the specification of
both local and BioNetGen directories is needed.

32. The file “sigpool.inp” should be filled in the following way:
signal name: a (b)—connected to an input source: n—sig_free:
0 (0.01)—k_s: 0—k_d: 0—compartment: y. In the circuit

162 Mario Andrea Marchisio

simulations, we let the system reach the steady state in absence
of chemicals and then chemical’s concentration is changed to
0.01 M. For simplicity, we assume that chemicals are not
degraded.

33. There is no limit to the number of terminals to which a single
terminal can be connected. For instance, an exc terminal
belonging to a signals’ Pool is connected to as many terminals
as there are Parts and Pools that host interactions with these
chemicals.

34. Into the file “tfpool.inp” one should set: tf_name: Ra_a
(Ri_b)—type: d—tf state: a (i)—signals: y—tf free: 0—k_d:
2.8e�5—delta: 1e9—epsilon: 10—lambda: 1e6—mu:
1e�3—compartment: y.

35. Here we assume that reporter proteins do not form dimers.
Hence, the “reporter_pool.inp” file should be filled in as fol-
lows: reporter name: rep—type: m—initial concentration: 0—
k_d: 2.8e�5—compartment: y. Values for delta and epsilon are
ignored.

36. If one wants to build a circuit in different steps, in order to
avoid loading each time too many MDL files, one can save his
under-construction circuit into a single MDL file containing all
its components. To do that, one has first to highlight, on the
ProMot Browser, all the Parts and Pools he wants to save and
then choose Save selected classes from the Filemenu. We suggest
saving each Part and Pool into a separate MDL file in any case,
this might be helpful for future circuit modifications.

37. Multiple-terminal connections are handled by ProMoT by cre-
ating a new entity, called node, that is represented by an empty,
blue circle.

38. All the steps that lead to mRNA maturation take place inside
the coding region Part (gene_a, gene_b, and gene_and) of each
gate.

39. Similar to what is pointed out in Note 29, there is no corre-
spondence between the repressor and chemical name in their
Pools and in the Part on which they act. Chemical B is called,
for instance, c1r into tu_yes_b since it acts on repressor (r)
number 1.

40. This PoPS flux is fictitious: it serves only to increase the amount
of mature mRNA into its corresponding Pool and does not
represent a real current of RNA polymerases.

41. s1 means siRNA number 1.

42. By writing “dn” or “dc” as volume into “Compartment.inp” a
default value will be assigned to the nuclear or cytoplasmic
volume. The former is set to 3.74e-13l [15], the latter to
9.7e-13l [16]. The input file should be specified with the

Modular Design with Parts and Pools 163

MDL extension (“nucleus_and.mdl” and “cytoplasm_and.
mdl” in our case). As for the compartment type: ‘n’ (nucleus)
and ‘c’ (cytoplasm) are the accepted characters.

43. Every transcription unit is rewritten into a newMDL file where
each Part contains the required specification of the nuclear
volume. Therefore, we have four new MDL files: “volume_-
tu_yes_a.mdl”, “volume_tu_yes_b.mdl”, “volume_tu_not_b.
mdl”, and “volume_tu_and.mdl”. Moreover, two other new
MDL files contain the description of the compartment class
objects. They are called: “compartment_nucleus_and.mdl”
and “compartment_cytoplasm_and.mdl”

44. “Link_compartment.inp” entries require to be set as follows:
Nucleus name: nucleus_and—Cytoplasm name:
cytoplasm_and—SBML model name: cell_and.

45. Two other new MDL are written into the working directory.
One is “cell.mdl”, where the whole cell is a usual ProMoT
module. This file represents the input for another python
script, named “SBML_parser.py”, which is invoked by “link_-
compartment.py” directly. “SBML_parser.py” converts cel-
l_and module into a ProMoT sbml-model and produces the
file “sbml_model_cell_and.mdl”.

46. For instance, in order to change the transcription initiation rate
of the promoter p_ra into the AND gate one should double
click, in the order, on nucleus_and, tu_and, and p_ra. To
visualize p_ra content better, it is necessary to change the
Part layout (click on Layout and choose, for instance, Radial
Layout). The transcription initiation rate is the parameter that
corresponds to the reaction named k2_13 (every kinetic param-
eter is followed by an integer to avoid ambiguities in the reac-
tions’ names). By double clicking on k2_13 reaction’s icon, a
new window is opened. It is named Details for ‘k2_13’. The
panel Slot Variables is organized into folders. Folder k2_13
contains three subfolders (one for each terminal: a,b, and c)
and three variables. K1 variable represents the kinetic parame-
ter associated with the reaction and its current value should be
0.5 s�1 (seeNote 30). After double clicking on it, one can type
a new value. To make this modification permanent, one has to
click on Save And Close on the bottom of this window.

47. Highlight cell_and on the ProMoT Browser, then choose Export
from the Filemenu and finally select eitherOutput to Matlab. . .
or Export to SBML. . .. Before the export operation, it is advis-
able to check that no error is present in the circuit scheme.
Open cell_and in the Visual Editor and choose Check For
Consistency from the Tools menu. If everything is correct, you
will have in the circuit’s model as many variables as the equa-
tions’ number.

164 Mario Andrea Marchisio

Acknowledgment

This work was partially supported by the EU FP7 project ST-
FLOW (contract 289326).

References

1. Endy D (2005) Foundations for engineering
biology. Nature 438:449–453

2. Marchisio MA, Colaiacovo M, Whitehead E,
Stelling J (2013) Modular, rule-based model-
ing for the design of eukaryotic synthetic gene
circuits. BMC Syst Biol 7:42

3. Mirschel S, Steinmetz K, Rempel M, Ginkel M,
Gilles ED (2009) PROMOT: modular model-
ing for systems biology. Bioinformatics
25:687–689

4. Faeder JR, Blinov ML, Hlavacek WS (2009)
Rule-based modeling of biochemical systems
with BioNetGen. Methods Mol Biol
500:113–167

5. Ginkel M, Kremling A, Nutsch T, Rehner R,
Gilles ED (2003) Modular modeling of cellular
systems with ProMoT/Diva. Bioinformatics
19:1169–1176

6. Marchisio MA, Stelling J (2008) Computa-
tional design of synthetic gene circuits with
composable parts. Bioinformatics
24:1903–1910

7. Marchisio MA, Stelling J (2009) Synthetic
gene network computational design, In Proc.
IEEE Int Symp Circuits Syst ISCAS
2009:309–312

8. Saez-Rodriguez J, Kremling A, Gilles ED
(2005) Dissecting the puzzle of life: modular-
ization of signal transduction networks. Com-
put Chem Eng 29:619–629

9. Lewin B (2000) Genes VII. Oxford University
Press, New York

10. Marchisio MA, Stelling J (2013) Simplified
computational design of synthetic gene digital

circuits. In: Kulkarni V, Raman K, Stan G (eds)
System theoretic and computational perspec-
tives in systems and synthetic biology. Springer,
New York

11. Marchisio MA, Stelling J (2011) Automatic
design of digital synthetic gene circuits. PLoS
Comput Biol 7:e1001083

12. Hucka M et al (2003) The systems biology
markup language (SBML): a medium for rep-
resentation and exchange of biochemical net-
work models. Bioinformatics 19:524–531

13. ElowitzMB, Leibler S (2000) A synthetic oscil-
latory network of transcriptional regulators.
Nature 403:335–338

14. Massé E, Escorcia FE, Gottesman S (2003)
Coupled degradation of a small regulatory
RNA and its mRNA targets in Escherichia
coli. Genes Dev 17:2374–2383

15. Maul GG, Deaven L (1977) Quantitative
determination of nuclear pore complexes in
cycling cells with differing DNA content. J
Cell Biol 73:748–760

16. Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura
T, Kuroda S, Nishida E, Matsuda M (2006)
Dynamics of the Ras/ERK MAPK cascade as
monitored by fluorescent probes. J Biol Chem
281:8917–8926

17. Galdzicki M, Rodriguez C, Chandran D, Sauro
HM, Gennari JH (2011) Standard biological
parts knowledgebase. PLoS One 6:e17005

18. Hoops S, Sahle S, Gauges R, Lee C, Pahle J,
Simus N, Singhal M, Xu L, Mendes P, Kummer
U (2006) COPASI—a COmplex PAthway
SImulator. Bioinformatics 22:3067–3074

Modular Design with Parts and Pools 165

Chapter 8

Computationally Guided Design of Robust Gene Circuits

Najaf A. Shah and Casim A. Sarkar

Abstract

The inability to rationally design and construct circuits that robustly enable complex behaviors is perhaps
the most fundamental challenge in synthetic biology. While systems modeling can aid this process and help
reduce the space of design strategies, the unavailability and dynamic variability of kinetic parameters limits
the utility of such models. Here, we present a general approach that employs an exhaustive enumeration of
network architectures to suggest topologies that robustly enable a desired behavior.

Key words Synthetic circuit design, Systems modeling, Network topology, Topology search

1 Introduction

The difficulty in engineering circuits that are both complex
enough to yield desired dynamic behaviors and sufficiently reliable
to be deployed in medical and industrial applications is perhaps the
most significant hindrance to progress in synthetic biology.
Despite progress in the identification, creation, and characteriza-
tion of a large number of new parts as well as advances in genetic
manipulation techniques over the past decade, the circuit
design–implement–test cycle remains largely unchanged in that
most functioning synthetic circuits are constructed not via rational
and streamlined application of engineering principles, but through
a laborious process that involves assembling ad hoc combinations of
parts and iterating until the desired behavior is obtained [1, 2].

Systems modeling and simulation can greatly aid the circuit
construction process by elucidating specific architectures for
robustly implementing the desired functionality, especially in
instances involving nonlinear or emergent behavior. However, the
canonical approach to modeling rarely leads to designs that yield
the desired functionality without extensive optimization. This lack
of predictivity is primarily due to the fact that models assume values
for kinetic parameters (e.g., the dissociation rate constant for a
transcription factor or the turnover number for a kinase) which

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_8, © Springer Science+Business Media New York 2015

167

are often incorrect; more importantly, these effective parameter
values are modulated by intrinsic and extrinsic perturbations (e.g.,
temperature and growth rate), and are hence under constant flux.

Here, we describe a simple and general approach to designing
synthetic circuits that yields network architectures that are paramet-
rically robust in that the architectures exhibit the desired behavior
over a large subspace of parameter values. The basic method
involves exhaustively enumerating all three-component network
topologies, translating each topology into a systems model, simu-
lating each model under a large number of random, biologically
reasonable parameter sets, and finally scoring the performance of
each topology in yielding the desired behavior. This approach was
introduced by Ma et al. [3] to study networks enabling adaptation,
and has since been extended and applied to study networks
enabling switch-like behavior [4].

2 Topology Search Procedure

Although this method can be adapted to study network architec-
tures robustly enabling any well-defined behavior, we describe here
the various steps in the context of a specific behavior, ultrasensitivity
to an external stimulus. This systems-level property enables cells to
establish a stimulus threshold such that a small increase in stimulus
concentration at this threshold leads to a dramatic increase in the
output of the system.Mathematically, an ultrasensitive response in a
stimulus-activated system is one in which the output (e.g., the
phosphorylation of a signaling protein) shifts from 10 % to 90 %
of the maximum response, with less than an 81-fold increase in
stimulus concentration [5].

2.1 Exhaustively

Enumerate Minimal

Networks

To keep the analysis tractable, we recommend studying minimal
networks of three components. A three-component network can be
sufficiently complex to yield a variety of dynamic behaviors, and the
entire space of three-component networks is amenable to simula-
tion and further analysis. Due to the combinatorial nature of the
topology space, increasing the number of components to four or
five would lead to a dramatically enlarged set of networks that may
be impractical to exhaustively simulate (and experimentally imple-
ment); moreover, the incremental benefit is likely to be insignificant
for many behaviors.

1. Start with three abstract network components, labeled A, B,
and C. A is considered the input component, C is considered
the output component, and B is an additional regulatory
component.

2. Allow each component to interact with every other component
and itself. In a network of three components, there can be a

168 Najaf A. Shah and Casim A. Sarkar

maximum of nine unique interactions such that each interac-
tion involves an actor component (the node from which the
connection originates) and a target component (the node at
which the connection terminates). Furthermore, each interac-
tion can be positive, negative, or non-existent. The biological
meaning of these interactions depends on the specific type of
actor component involved (see step 5 below). For instance, an
enzyme B could activateC, inactivateC, or have no effect onC.
There are nine possible interaction connections, and three
different types of interactions, yielding a universe of
39 ¼ 19,683 unique network topologies.

This step can be implemented as follows. Allocate a matrix,
M, with nine elements, one for each of the possible
interactions:

MA!A MA!B MA!C

MB!A MB!B MB!C

MC!A MC!B MC!C

0
@

1
A

Each element inM can take on one of three values: 0 (indicating
the absence of that particular interaction), 1 (indicating a posi-
tive interaction), and 2 (indicating a negative interaction).
Hence, enumerating all such possible matrices yields all possi-
ble network topologies.

3. As an optional step, remove network topologies in which there
are no direct or indirect interaction routes by which the input
component A can impact the output component C, since in
these cases the output component is independent of the input
component.

Specifically, filter out all matrices from the previous step in
which MA!B and MA!C are both 0 (i.e., topologies lacking an
interaction in which A acts on B or C)

4. Each component can exist in one of two states: an active form,
which can exert an action, and an inactive form, which cannot.
Both active and inactive components can exist as monomers or
be bound to another component. For clarity, here we denote
the active form of a component by appending an asterisk; for
instance, active B is written as B*.

5. Identify each component as being either an enzyme or tran-
scription factor. From a modeling view, most components of
synthetic circuits can be identified as either of the following.

(a) Enzyme: a component which binds to a target component
and catalyzes its interconversion. For example, if B is an
enzyme and there is a negative link from B to C, B* can
inactivate C* by supporting its conversion into C. Alterna-
tively, if there is a positive link from B to C, B* can activate
C by supporting its conversion into C*. Thus, an enzyme

Robust Synthetic Circuit Design 169

does not change the total concentration of its target; rather,
it alters the fraction of this concentration that is in the active
state.

(b) Transcription factor: a component which synthesizes the
inactive form of its target. For instance, if B is a transcrip-
tion factor and there is a positive link from B to C, B* can
upregulate the synthesis of the inactive form of C. Alterna-
tively, if there is a negative link from B to C, B* down-
regulates the synthesis of C. Thus, a transcription factor
modulates the total concentration of its target; it does
not directly act on target molecules to change their
activity state.

Allocate a three-element vector, I, specifying the iden-
tities of the components. For example, the following vector
specifies that A and B are enzymes, and C is a transcription
factor:

I ¼ E;E;T½ �
As is the case biologically, the identity of a component within a
network has a very significant impact on the spectrum of behaviors
observed over the entire space of networks. For instance, in our
study of ultrasensitivity, we found that networks of two enzymes
and one transcription factor (with enzymes A, B and transcription
factor C) were as a group significantly more robust than networks
of three transcription factors (with transcription factors A, B, C).
Through post-hoc analysis, we discovered that this enhanced
robustness was due in large part to zero-order ultrasensitivity,
which is an enzyme-specific phenomenon. Given that the optimal
combination of component identities may vary for different appli-
cations, we recommend repeating the exhaustive topology search
with different combinations of identities of the three components.

2.2 Build a Systems

Model for Each

Network Topology

The previous step yields a large set of topologies, where each of the
three components (A, B, and C) is identified as an enzyme or a
transcription factor. In the current step, convert network topolo-
gies into a set of ordinary differential equations (ODEs) by apply-
ing the following general procedure for each network topology.

1. A network has three components, each of which can exist in an
active and an inactive form, yielding six distinct species.

2. Network components are subject to basal synthesis, degrada-
tion, activation, and inactivation processes. Hence, irrespective
of the topology, each network model consists of a system of
ODEs with at least the following terms:

170 Najaf A. Shah and Casim A. Sarkar

dA

dt
¼ bsyn;A � kdeg;AA � kP ;AP

A

A þKP ;A
þ kQ ;AQ

A�

A� þKQ ;A
þ � � �

dA�

dt
¼ �kdeg;AA

� þ kP ;AP
A

A þKP ;A
� kQ ;AQ

A�

A� þKQ ;A
þ � � �

dB

dt
¼ bsyn;B � kdeg;BB � kP ;BP

B

B þKP ;B
þ kQ ;BQ

B�

B� þKQ ;B
þ � � �

dB�

dt
¼ �kdeg;BB

� þ kP ;BP
B

B þKP
� kQ ;BQ

B�

B� þKQ ;B
þ � � �

dC

dt
¼ bsyn;C � kdeg;CC � kP ;CP

C

C þKP ;C
þ kQ ;CQ

C�

C� þKQ ;C
þ � � �

dC�

dt
¼ �kdeg;CC

� þ kP ;CP
C

C þKP ;C
� kQ ;CQ

C�

C� þKQ ;C
þ � � �

Here, bsyn is a basal synthesis parameter, kdeg is a degradation
parameter, kP and kQ are background activation and inactiva-
tion terms, and P and Q are background activation and inacti-
vation enzymes.

3. The ellipses in the above set of equations refer to topology-
specific interactions between network components, which are
modeled using mass-action kinetics. Although use of the
Michaelis–Menten approximation would yield simpler models,
the underlying assumptions of this approximation can be vio-
lated by the broad variations in parameter values and network
topologies that are required in this approach. Indeed, a com-
parison ofMichaelis–Menten andmass-action kinetic models in
identifying robustly ultrasensitive networks resulted in qualita-
tively different results (Shah and Sarkar, unpublished results).

In a mass-action modeling context, an enzyme binds to its
target, forming an intermediate complex that can subsequently
either dissociate or yield the interconverted target alongwith the
unchanged enzyme. Hence, the systems model must also
account for these intermediate complexes. Since there are six
species, and each species can complex with every species (includ-
ing itself) in the universe of network topologies, this yields a total
ofn(n + 1)/2 ¼ 6 � 7/2 ¼ 21 additional binary complex spe-
cies. For a given network, only a small subset of these complex
species will be relevant; however, explicit accounting of all
21 + 6 ¼ 27 species simplifies model implementation in code.

Each interaction between components falls into one of the
following categories:

(a) Activation by an enzyme: in this case, the active version of an
enzyme component (e.g., B*) complexes with the inactive
version of its target component (e.g.,C). This complex (W)
can either dissociate, releasing the two original species
(B* + C), or yield the original active version of the enzyme
along with the newly active version of the target component
(B* + C*).

Robust Synthetic Circuit Design 171

B� þ C�!k0;B�C W
W�!k1;B�C B� þ C

W�!k2;B�C B� þ C�

dC

dt
¼ �k0;B�CB

�C þ k1;B�CW þ � � �
dW

dt
¼ k0;B�CB

�C � k1;B�CW � k2;B�CW þ � � �
dC�

dt
¼ k2;B�CW þ � � �

dB�

dt
¼ �k0;B�CB

�C þ k1;B�CW þ k2;B�CW þ � � �

(b) Inactivation by an enzyme: in this case, the active version of
an enzyme component (e.g., B*) complexes with the active
version of its target component (e.g., C*). This complex
(W) can either dissociate, releasing the two original species
(B* + C*), or yield the original active version of the
enzyme along with the inactive version of the target com-
ponent (B* + C).

B� þ C��!k0;B�C�
W

W�!k1;B�C�
B� þ C�

W�!k2;B�C�
B� þ C

dC�

dt
¼ �k0;B�C�B�C� þ k1;B�C�W þ � � �

dW

dt
¼ k0;B�C�B�C� � k1;B�C�W � k2;B�C�W þ � � �

dC

dt
¼ k2;B�C�W þ � � �

dB�

dt
¼ �k0;B�C�B�C� þ k1;B�C�W þ k2;B�C�W þ � � �

(c) Augmented synthesis by a transcription factor: in this case,
the active version of the transcription factor component
(e.g., B*) upregulates the inactive version of its target spe-
cies (e.g., C).

dC

dt
¼ vBC

B�ð ÞnH

B�ð ÞnH þ K syn;BC

� �nH
þ � � �

172 Najaf A. Shah and Casim A. Sarkar

Ksyn,BC is the concentration of B* at which the rate of
synthesis of its target species C is half-maximal. The syn-
thesis Hill coefficient, nH, should be treated as a constant
parameter and, in the default scenario, should be set to a
value of 1. However, if there is evidence from parts char-
acterization data or if it is known that the effective synthe-
sis interaction is nonlinear with respect to the
transcription factor concentration, nH can be set to a
higher value. Repeating the entire analysis under different
constant values of nH can also be informative.

(d) Repressed synthesis by a transcription factor: in this case, the
active version of the transcription factor component (e.g.,
A*) inhibits all non-basal synthesis of its target component
(e.g., synthesis of C by B*).

dC

dt
¼ vBC

B�ð ÞnH

B�ð ÞnH þ K syn;BC 1þA�ð Þ� �nH
þ � � �

4. If the target behavior of interest involves input from an external
stimulus, it can be accommodated by adding a few more terms
to the model. For example, the following reactions describe
how to model A as a receptor that is activated upon binding of
a ligand stimulus, S.

dA

dt
¼ �k0;SASA þ k1;SAA

� þ � � �
dA�

dt
¼ k0;SASA � k1;SAA

� þ � � �

As an example, the network topology depicted in Fig. 1
includes enzymatic activation (of C by A), enzymatic inactiva-
tion (of B by A and of C by B), transcriptional upregulation (of
C by itself), transcriptional repression (of A by C), and activa-
tion of a receptor (A) by an external stimulus.

Fig. 1 Example network topology. In this topology, A and B are enzymes and C is
a transcription factor. A enzymatically activates C and inactivates B. B
enzymatically inactivates C. C transcriptionally upregulates itself and represses
A. A receives the input Stimulus in the form of a ligand, and the output, C, drives
the response of the system [4]

Robust Synthetic Circuit Design 173

2.3 Sample Sets

of Parameter Values

To prepare the systems models built in the previous step for simu-
lation, apply parameter sets to each network model. The following
approach is based on Latin hypercube sampling [6].

1. Define the sampling depth,D, or the number of different param-
eter sets thatwill be applied to each network topology. SeeNote 1
in Section 3 for a discussion on how to choose a value for D.

2. Group all possible parameters by type (e.g., complex dissocia-
tion rates), and for each parameter group, define a range of
biologically reasonable values over which the parameters in that
group will be sampled.

3. Divide the range for each parameter to yield a sequence of D
values, spaced equally on a logarithmic scale.

4. Assemble all parameter values into a matrix such that each
column represents a different parameter (and hence the matrix
has D rows).

5. For each column in the matrix, separately permute the rows,
leaving the rest of the matrix intact.

2.4 Implement

and Simulate Network

Models

Due to the size of the search space, it would be impractical to
enumerate all networks and build models for each individually;
instead, these steps should be done programmatically. We recom-
mend the following general strategies.

1. Network enumeration can be practically implemented as fol-
lows. A three-component network topology can be represented
by a 3 � 3 interaction matrix,M. The entry atM(i,j) represents
the interaction by i on j. Each entry can take on one of three
unique values (representing activating, inactivating, or non-
existent interactions). Enumerating all possible matrices yields
19,683 unique matrices, or network topologies.

2. Model building can be implemented using a single function
that is organized as follows. This function takes as input:

(a) An interaction matrix, M, specifying the network topology
(see Subheading 2.1, step 2)

(b) A vector, I, specifying the identities of the components (see
Subheading 2.1, step 5)

(c) A vector of parameter values, specifying the kinetic constants
of the various interactions (i.e., a single row from the per-
muted parameter value matrix discussed in Subheading 2.3)

(d) A vector of instantaneous species concentrations

The general algorithm implemented by the function is as follows:

(a) Initialize a new vector to hold the instantaneous rates for
each species.

(b) Update the rate vector with basal synthesis, degradation,
and background activation/inactivation terms.

174 Najaf A. Shah and Casim A. Sarkar

(c) Iterate through all positions in the interaction matrix and,
for interactions that exist, evaluate the relevant terms and
update the rate vector accordingly.

Hence, to simulate a single network topology under given
parameter values, this function can simply be passed to a numerical
solver, along with the interaction map, parameter values, and the
initial concentrations of species. The solver will repeatedly call the
function to get instantaneous rates, and the model building proce-
dures will be opaque to the solver.

The following pseudocode outlines an approach for imple-
menting the algorithm discussed above.

Robust Synthetic Circuit Design 175

2.5 Evaluate

Network Robustness

In this step, use the results to score each network individually for
robustness in generating the behavior of interest. A simple way to
arrive at a score for each network is to compute the proportion of
simulations (from D) that yielded the behavior of interest. As an
example, for a study of ultrasensitivity, one could track the number
of stimulus–response curves that are monotonically increasing with
respect to stimulus, steep (nH > 3), and exhibit a meaningful con-
trast between the high and low points (C*hi > (C* + C)/2).

If the behavior of interest involves an external stimulus or
input, each of the D simulations for a single network would need
to be repeated under a range of stimulus concentrations.

2.6 Rank Network

Topologies

In this step, rank the network topologies by robustness score. Given
the goal of using this analysis to infer general strategies for imple-
menting synthetic circuits, the focus should not be on individual
high-ranking topologies, but on general patterns. In this regard,
visualizing the top 50–100 network topologies in a single heatmap
(Fig. 2) can be very informative.

Fig. 2 Network topologies ranked by robustness in generating ultrasensitivity. Only network topologies ranking
in the 100 most robust networks were included. Networks with additional, non-contributing interactions were
filtered. EEE, EET, ETT, and TTT represent different compositional classes as described in the text. Within each
of the four blocks (corresponding to the EEE, EET, ETT, and TTT compositional classes), each row denotes a
network topology: green rectangles denote positive interactions (activation or synthesis upregulation), while
red rectangles denote negative interactions (inactivation or synthesis suppression). For instance, the first
row in the EEE block denotes a network in which enzyme A activates enzyme B, which in turn activates
enzyme C [4]

176 Najaf A. Shah and Casim A. Sarkar

After visualizing the top-ranked networks, we recommend
performing an additional pruning step to filter networks with
excessive interactions. This can be accomplished by comparing
each network in the set of most robust networks to every other
network in the set. If a network X is both a proper subnetwork of
another network Y (if the interaction matrix for X, MX, can be
derived from MY by setting one or more elements within MY to
zero, then X is a proper subnetwork of Y) and has the higher
robustness score of the two, then the larger network can be elimi-
nated from the list. This procedure removes network interactions
that do not contribute to overall robustness.

2.7 Cluster Network

Topologies

To help uncover less intuitive families of network topologies
enabling the behavior of interest, filter the list of all network
topologies to keep only those achieving above-threshold robust-
ness scores. Each network topology in this list can be interpreted as
a nine-dimensional vector, as described above. Define the similarity
between two network topologies as the number of interactions in
common minus the number of interactions that are different.
Compute similarity for all pairs of networks in the list to yield a
similarity matrix, which can subsequently be passed to a hierarchical
clustering algorithm [7] to create visualizations in which more
general topology families can be identified.

3 Notes

1. Parameter sampling
The sampling depth,D, should be selected based on the behav-
ior of interest. For switch-like behavior, we found D ¼ 1,000
to be adequate; however, for other behaviors such as oscilla-
tions, D might have to be significantly higher to derive mean-
ingful results from the analysis. We recommend starting with
D ¼ 1,000, running all simulations for the analysis, and then
performing checks to assess whether the depth is adequate.
One simple and informative check involves repeating the entire
analysis for a small subset of interesting networks 100 times,
and then assessing the distribution of robustness scores for each
network for convergence.

Although it is impossible to select unbiased parameter
ranges that are truly representative of the biological parts and
system of interest, the above procedure provides a solution that
is applicable in a variety of contexts. Of course, the range for a
particular parameter can be further constrained, or a nonuni-
form sampling approach can be used if reliable experimental
data is available.

Robust Synthetic Circuit Design 177

References

1. Kwok R (2010) Five hard truths for synthetic
biology. Nature 463:288–290

2. Purnick PEM, Weiss R (2009) The second wave
of synthetic biology: from modules to systems.
Nat Rev Mol Cell Biol 10:410–422

3. Ma W, Trusina A, El-Samad H et al (2009)
Defining network topologies that can achieve
biochemical adaptation. Cell 138:760–773

4. Shah NA, Sarkar CA (2011) Robust network
topologies for generating switch-like cellular
responses. PLOS Comput Biol 7:e1002085

5. Goldbeter A, Koshland DE (1981) An amplified
sensitivity arising from covalent modification in
biological systems. Proc Natl Acad Sci U S A
78:6840–6844

6. Iman RL, Davenport JM, Zeigler DK (1980)
Latin Hypercube Sampling (Program User’s
Guide). Technical Report SAND79-1473, San-
dia National Laboratories, Albuquerque, NM

7. Hastie T, Tibshirani R, Friedman J (2013)
The elements of statistical learning. Springer,
New York

178 Najaf A. Shah and Casim A. Sarkar

Chapter 9

Chemical Master Equation Closure for Computer-Aided
Synthetic Biology

Patrick Smadbeck and Yiannis N. Kaznessis

Abstract

With inexpensive DNA synthesis technologies, we can now construct biological systems by quickly piecing
together DNA sequences. Synthetic biology is the promising discipline that focuses on the construction of
these new biological systems. Synthetic biology is an engineering discipline, and as such, it can benefit from
mathematical modeling. This chapter focuses on mathematical models of biological systems. These models
take the form of chemical reaction networks. The importance of stochasticity is discussed and methods to
simulate stochastic reaction networks are reviewed. A closure scheme solution is also presented for the
master equation of chemical reaction networks. The master equation is a complete model of randomly
evolving molecular populations. Because of its ambitious character, the master equation remained unsolved
for all but the simplest of molecular interaction networks for over 70 years. With the first complete solution
of chemical master equations, a wide range of experimental observations of biomolecular interactions may
be mathematically conceptualized. We anticipate that models based on the closure scheme described herein
may assist in rationally designing synthetic biological systems.

Key words Synthetic biology, Computer-aided design, Multiscale models, Chemical master equation,
Closure schemes

1 Introduction

Numerous synthetic gene circuits have been created in the past
decade, including bistable switches, oscillators, inducible activators,
and logic gates [1–6]. Applications abound from biofuel synthesis
to antibiotic technologies [7–10]. Designing synthetic gene
regulatory networks now takes advantage of an ever-expanding
toolbox of molecular components and of developed technologies
for inexpensively manipulating DNA sequences. Although recently
developed designs of regulatable gene networks are ingenious,
there are still numerous limitations in rationally engineering
synthetic biological systems. This is especially true if targeted
phenotypes are nonlinear, such as the ones observed in bistable or
oscillatory gene networks.

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_9, © Springer Science+Business Media New York 2015

179

Multiscale mathematical tools have been developed in an
attempt to rationalize synthetic biology [11–18].Multiscale models
that expand on traditional mathematics developed by scientists and
engineers are necessary to model kinetic and thermodynamic pro-
cesses. Biological phenotypes can be reduced to networks of biomo-
lecular interactions, with the time and length scales of these often
spanning several orders of magnitude. Although the principles of
thermodynamics, kinetics and transport phenomena apply to
biological systems, these systems differ from traditional, industrial-
scale chemical systems in an important, fundamental way: they are
occasionally far from the thermodynamic limit. This theoretical
limit is attained when the number of molecules of molecular species
in the system increases toward infinity. However, the fact that
biomolecular systems can be very far from the thermodynamic
limit, with reactants/products numbering only very small numbers
of molecules in the system, hinders the use of continuous-
deterministic models. Indeed, using ordinary differential equations
for simulating the reaction kinetics of these systems can be distinctly
false, especially if experimentally observed nonlinearities are to be
captured by the models. The need arises then for stochastic models
that account for inherent, thermal noise, which is manifest as phe-
notypic distributions at the population growth/interaction levels.

This assessment is not new. The importance of modeling form-
alisms appropriate for systems away from the thermodynamic limit
was recognized more than 50 years ago by McQuarrie, Moyal, and
Oppenheim [19–23], among others. These physical chemists
developed the chemical master equation (CME) that follows the
time changes of the probability the state is at any point in the
available state space.

Without the ability to solve the CME, scientists turned to
approximations. In 1976, Daniel Gillespie developed a computer
algorithm that could sample the master probability distribution
with numerical simulations of networks of reactions [24, 25].
Although Gillespie’s methods were not widely recognized for
almost 20 years, his algorithms found fertile ground for develop-
ment in efforts to model biological systems. Nowadays, a commu-
nity of scientists and engineers is continually working to improve
the computational efficiency and accuracy of algorithms that simu-
late chemical reacting systems [26–35].

In the following section, we introduce the chemical master
equation and discuss the challenges faced when developing solu-
tions. We then summarize algorithms based on Gillespie’s stochas-
tic simulation algorithm (SSA). We return to the master equation
and present the recently developed zero-information closure
scheme. Finally we present a simple example of a bistable reaction
networks and the solution of the master equation. We conclude by
speculating on the impact a closure scheme may have on computer-
aided synthetic biology.

180 Patrick Smadbeck and Yiannis N. Kaznessis

2 Methods for Multiscale Models of Biomolecular Systems

2.1 Chemical Master

Equation

The chemical master equation (CME) is the mathematical founda-
tion for modeling stochastic chemical reactions [19–23]. The com-
mon form is equivalent to themore general Chapman–Kolmogorov
equation as applied to Markov processes. In particular, it will be a
Markov chain with a discrete set of possible states, or “state space”,
occurring in continuous time. Here, states refer to numbers of
molecules present in the system. In general, for time t, this will be
a vectorX(t) ¼ [X1. . .XN], whereXi is number of molecules of the
i-th chemical species with i ¼ 1,. . .,N.

Transitions between states of the Markov chain occur when a
chemical reaction occurs. Reactions in biological systems may
include covalent reactions, bindings, conformational changes, tran-
scriptional elongation events, etc.

The general form of the CME is:

@P X ; tð Þ
@t

¼
X
X 0

T X
���X 0

� �
P X 0; tð Þ � T X 0

���X
� �

P X ; tð Þ
h i

(1)

Where P X ; tÞð is the probability of being in state X at time t, and

T X
���X 0Þ

�
is the transition probability of going from state X 0 to

state X per unit time. The CME describes the dynamics of stochas-
tic systems exactly, but has been until recently, for all but the
simplest systems, mathematically intractable [19].

The reason analytical solutions to the chemical master equation
remained elusive becomes clear when the master equation is recast
in equivalent terms of probability moments—the probability distri-
bution average, the variance, and so on:

@μ

@t
¼ AμþA0μ0 (2)

where μ is the vector of moments up to orderM andA is the matrix
describing the linear portion of the moment equations. On the
right, μ0 is the vector of higher-order moments, and the
corresponding matrix A0. Generating the matrices in Eq. 2 can be
performed either analytically [36, 37] or numerically [38]. For
linear systems with only zeroth or first-order reactions, A0 is
empty. For other systems, A0 is not empty and the set of ODEs
becomes infinite, and thus intractable.

Consequently, the Gillespie stochastic simulation algorithm
(SSA) and the Chemical Langevin Equation (CLE) formalism
were developed to approximate the dynamic solution to the CME.

2.2 Stochastic-

Discrete and

Stochastic-Continuous

Algorithms

The SSA utilizes Monte Carlo sampling to circumvent the mathe-
matical difficulties inherent to stochastic simulation. Gillespie
proved that, with an assumption of a well-mixed volume, chemical
reactions can be defined as exponentially distributed random

Analysis and Design of Gene Networks 181

events. For example, given a reaction j with propensity αj Xð Þ,
which is analogous to the reaction macroscopic rate and that
depends on the current state X , the time to the next reaction is
determined using a uniform random number (URN) as:

τj ¼ � lnURN

αj Xð Þ (3)

Using this characterization, individual trajectories through
time can be generated for any arbitrary chemical reaction network.
The exact probability distribution can be rebuilt from an ensemble
of individual trajectories. This method was extended and made
efficient by Gibson and Bruck [26] and is best described as a
stochastic-discrete-space algorithm.

In principle, the SSA produces exact distributions at the limit of
infinite simulated trajectories and thus can be made arbitrarily
accurate. The primary drawback is that producing sufficient num-
bers of trajectories can be computationally taxing. For systems in
which many reactions occur in short periods of time the computa-
tional load is substantial.

The common situation in which the Gillespie algorithm
becomes prohibitively expensive is when the state space can be
accurately described as a continuum. In such cases the number of
reactions occurring in a short period of time can become effectively
infinite. The chemical Langevin equation is then an alternative to
the SSA that maintains accuracy but avoids the computational costs
of a discrete-space algorithm. A Langevin equation is a stochastic
differential equation (SDE) that adds a random variable to a deter-
ministic system to produce fluctuations. For stochastic chemical
systems the CLE is commonly written as:

dX ¼
X
j

αj Xð Þvjdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αj Xð Þ

q
vjdwj

h i
(4)

where αj Xð Þ is the propensity for reaction j as a function of the state
X , vj is the stoichiometric vector for reaction j, and dWj is a Wiener

process, a continuous-time stochastic process, also called Brownian
motion. The CLE is a stochastic-continuous-space algorithm.

The CLE is a good approximation of the CME when the state
space is roughly continuous. The primary drawback is accuracy.
When the continuous state space approximation does not hold,
accuracy is not guaranteed.

2.3 Hybrid

Algorithms

The drawbacks of SSA algorithms are especially important when
considering biological systems. First, many biological models can
be described as stiff in that there are multiple time scales involved.
For biological systems, using the SSA can be time consuming, but
using the CLE can be inaccurate. Second, in biological systems
many reactions change in the course of a simulation. In particular,

182 Patrick Smadbeck and Yiannis N. Kaznessis

consider an oscillatory system in which components will alternate
from nearly zero to a large number and back relatively quickly.
Thus, any solution must be able to handle the determination of
fast and slow reaction sets dynamically. The key to fast and accurate
biological simulation is in selectively utilizing the appropriate
algorithms.

Algorithms that utilize both the SSA and CLE are called hybrid
stochastic algorithms. The reaction set is split into two regimes, fast
reactions and slow reactions, and continuous-space stochastic algo-
rithms are utilized, when possible, for the fast reactions. For stiff
systems a hybrid algorithm must be able to handle disparate time
scales efficiently and to dynamically characterize reactions as slow
and fast. The Hybrid Stochastic Simulator for Supercomputers
(Hy3S) is such an algorithm, designed specifically for biological
model simulation on supercomputers [13].

The first aspect of Hy3S to be discussed is dynamic partitioning
of a reaction network into a set of fast reactions and slow reactions,
such that different algorithms can be applied to each set. Initially all
reactions are defined as slow reactions and redefined as fast if two
conditions hold. First, a reaction is fast if many reaction events
occur in a small increment of time. This condition is defined by
the parameter λ and mathematically defined as:

αj Xð ÞΔt � λ � 1 (5)

Second, for fast reactions the effect of the reaction on the
reactants and products must be sufficiently small. This condition
is described by a parameter ε, and mathematically defined as:

XiðtÞ > ε � vi;j
�� �� (6)

where i is a reactant or product of reaction j. The common values for
λ and ε are 10 molecules/s and 100 molecules, respectively [13].

The reactions classified as fast are then simulated using the
Chemical Langevin Equation, while the slow reactions utilize the
SSA. Stochastic differential equations like the CLE can be
integrated using different algorithms depending on the desired
accuracy. In the case of Hy3S two methods in particular are used,
the Euler–Maruyama method and the Milstein method [13].

In order to maintain accuracy in both regimes a method for
determining when a slow reaction, and which slow reaction, occurs
is necessary. In the Hy3S suite this is done by tracking zero-crossing
events for each slow reaction. The variable tracked is denoted by Rj

where j is one of the slow reactions in a system. The governing
equation is then:

dRj

��
t

dt
¼ αj Xð Þ��

t
(7)

Analysis and Design of Gene Networks 183

with an initial condition of Rj|to ¼ ln URNj. Zero-crossing events
occur when Rj > 0 at the end of a time step.

Numerousmethods have been developed for reducing run times
for complex stochastic system, such as quasi-steady state approxima-
tions [29], and dynamic integration stepping techniques [30].

In all, there are eight hybrid algorithms in the Hy3S suite
depending on which integration method is used (Euler–Maruyama
or Milstein), the time-step (Fixed or adaptive), and whether the
algorithm is parallelized (serial or MPI). Along with these algo-
rithms, a standard SSA (serial andMPI) is includedmaking the total
number of algorithms ten.

2.4 Zero-Information

Closure of the Master

Chemical Equation

Recently, we have presented a zero information (ZI) closure
scheme for the chemical master equation of reaction networks
that may include nonlinear reaction kinetics. This section explains
the theoretical underpinnings of the zero-information moment
closure method. The section starts with an outline of ZI-closure
and then provides the algorithm for determining the maximum
entropy distribution. It concludes with a Schlögl model example
to clarify the calculation of several important equations [39, 40].
This section expands upon a previously described ODE solving
scheme and steady-state determination method [39].

A closure scheme is used to determine the key relationship
between higher and lower-order moments necessary to solve the
moment equations in Eq. 2:

μ0 ¼ F μ
� �

(8)

In most closure schemes F ðμÞ is an analytical expression related
to a well-known characteristic equation. In the case of ZI-closure
the closure scheme refers to the maximum-entropy distribution or
most-likely distribution.

For a single component system with a probability distribution
p(x), the information entropy is defined as:

H ¼ �
X1
x¼0

pðxÞ ln pðxÞ (9)

For an unconstrained system the resulting maximum-entropy dis-
tribution is simply uniform. However, values of the lower-order
moments, μ, act as constraints on the system. The result is best
solved using a Lagrange multiplier method (here assuming a simple
component with M known lower order moments):

184 Patrick Smadbeck and Yiannis N. Kaznessis

Λ ¼ H � λ0g0 � λ1g1 � � � � � λMgM

g0 ¼
X1
X¼0

pðxÞ � 1

g1 ¼
X1
x¼0

xpðxÞ � xh i

..

.

gM ¼
X1
x¼0

xMpðxÞ � xM
� �

(10)

Taking Eq. 10, the maximum is found by differentiating by p(x)
and setting the result to zero:

@Λ
@pðxÞ ¼ � ln pðxÞ � 1� λ0 � λ1x � � � � � λMxM ¼ 0 (11)

or, trivially:

pH ðxÞ ¼ exp �1� λ0 � λ1x � � � � � λMxM
� 	

(12)

An analytical expression for the maximum entropy distribution
is determined with the same number of parameters as the number
of known lower-order moments.

With Eq. 9 it should be obvious how Eq. 2 is satisfied. Using
the lower-order moments, μ, the maximum entropy distribution is
found by determining the Lagrange parameters, λ. The maximum-
entropy moments, denoted with a subscript H, can be determined
from Eq. 9. Take, for example, the determination of hxmiH in a
single component system:

xmh iH ¼
X1
x¼0

xmpH ðxÞ (13)

Again, this method is extended to multi-component systems.
Zero-information closure uses maximum-entropy moments as
approximations for higher-order moments in simulation:

μ0 ¼ μ0
H

(14)

Note that the order of closure,M, used throughout the section
is applied without drawing any conclusions about accuracy. At
present the order of closure is chosen in a trial-and-error fashion.
In the future, error analysis may be used to determine the optimal
closure order using ZI-Closure.

The method used within this study for the determination of the
Lagrange parameters, λ, given a set of known lower-order
moments, μ, is a simple Newton–Raphson optimization scheme,
although more sophisticated algorithms may be explored.

Analysis and Design of Gene Networks 185

2.5 ZI-Closure

Example

To conclude this section, results for zero-information closure will
be presented along with an example of a novel analytical method
now available for network analysis. The Schlögl model was chosen
for two main reasons. First, it may exhibit two main peaks in its
probability distribution (bimodality). It can thus require up to 12
probability distribution moments to accurately reproduce the
underlying distribution, and demonstrates some of the necessary
versatility of the ZI-closure scheme. Second, the network charac-
teristics are very sensitive to the chosen kinetic parameters, and it is
thus ideal for demonstrating some of the novel stochastic analytical
methods available using moment closure. See Table 1 for the net-
work description.

As a dual peaked distribution, the Schlögl model requires up to
12 lower-order moments in order to reproduce its complex func-
tion, which is impossible with analytical closure schemes. Figure 1
demonstrates how accuracy improves as the closure-order is
increased. Several maximum entropy optimizations are executed
using an increasing closure order (from second to tenth-order
closure).

With moment closure it is now possible to obtain steady-states
quickly using appropriate closure schemes. In particular, by setting
the left side of Eq. 2 to zero, a steady-state distribution is immedi-
ately available. Figure 2 shows an example of the profile obtained by
solving for steady-states across a range of key values. The parameter
range (k4 from 2 to 5 s�1) was chosen such that the left and right
sides of the graph have a single peaked distribution, whereas the
blue shaded region in the middle is where the steady-state distribu-
tion has two peaks. This is explicitly shown in Fig. 3 as well, where
three example parameter values show how the Schlögl model flows
from normally distributed to bimodal and back again.

These examples show two important features of ZI-Closure.
First, there are 300 steady-state values obtained using ZI-Closure
in Fig. 2. While this number of simulations would be impractical for
SSA simulations (indeed, hundreds of hours of simulation time

Table 1
Schlögl model network description

Model Schlögl

Reactions 2X þA !k1 3X

3X !k2 2X þA

B !k3 X

X !k4 B

Degrees of freedom X

Initial condition X0 ¼ 25

186 Patrick Smadbeck and Yiannis N. Kaznessis

Fig. 1 Maximum entropy demonstration. The parameters are k1 ¼ 0.15
(molec.�1 s�1), k2 ¼ 0.0015 (molec.�2 s�1), k3 ¼ 20 molec.-s�1, and k4
¼ 3.5 s�1. The stochastic simulation algorithm results are an exact reproduction
of the chemical master equation solution (blue, solid line). As more moments are
added to the maximum entropy optimization program (from 2 to 10 moments), the
optimization results becomemore representative of the exact solution distribution

Fig. 2 Schlögl sensitivity analysis. The parameters are k1 ¼ 0.15 molec.�1 s�1,
k2 ¼ 0.0015 molec.�2 s�1, and k3 ¼ 20 molec.-s�1. The range for k4 was
chosen such that at low values (left side) the distribution has a single peak, for
middle range values (blue region) the distribution has two peaks, and at high
values (right side) it returns to a single peaked distribution

were used to obtain the 31 SSA points for comparison), it takes a
matter of minutes with ZI-closure scheme. With ZI-closure,
steady-state optimization can be almost immediate for some small
systems. Second, the line itself is, for all practical purposes, a sensi-
tivity analysis for parameter k4 for the Schlögl system. Sensitivity
analysis is an important tool in chemical reaction design because it
can identify the parameters that most influence a specific behavior
in a system. In this case it is clear that in the bimodal region the
distribution mean is very sensitive to the value of k4. This type of
analysis could have otherwise taken hours of computation time
with a direct SSA simulation.

The Schlögl model is a particularly interesting network to
investigate because the underlying distribution can take on a
range of functions, from a simple normal distribution to a complex
bimodal distribution that takes a dozen moments to describe.
ZI-Closure can obtain steady-state distributions immediately, and
subsequently certain analytical techniques can be performed. A
sensitivity analysis for k4 shows that the steady-state optimization
can be obtained quickly relative to the SSA, and also that the
identification of important network parameters can be determined
immediately. This is just the start of what we think is possible using

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x (molecules)

P
ro

ba
bi

lit
y

Fig. 3 Schlögl distribution. The parameters are k1 ¼ 0.15 molec.�1 s�1,
k2 ¼ 0.0015 molec.�2 s�1, and k3 ¼ 20 molec.-s�1. Three k4 values were
chosen: k4 ¼ 2 s�1 (red), k4 ¼ 3.5 s�1 (green), and k4 ¼ 5 s�1 (blue). The
distribution goes from a single peak to two peaks and back. The SSA results
are represented as squares, while the ZI-Closure results (12th order closure) are
lines, demonstrating the versatility of the method

188 Patrick Smadbeck and Yiannis N. Kaznessis

moment closure techniques. The vast toolbox of deterministic
analytical techniques, like eigenvalue and nonlinear analysis, may
also become available for stochastic systems by applying ZI-closure
to small chemical reaction networks.

3 Conclusions: Future Directions

In order to make stochastic modeling more accessible, we have
developed the Synthetic Biology Software Suite (SynBioSS), a soft-
ware suite that automates the steps for building models of and
conducting numerical simulations for synthetic biological systems
[41–43]. There are three components in SynBioSS:Designer,Wiki,
and Simulator.

With SynBioSS Designer, gene network models are created
automatically after the user enters molecular components and
their relationships. Every reaction in the model has a corresponding
kinetic rate that describes the rate of association of its reactant
molecules and the formation or destruction of any covalent bonds
or stable non-covalent interactions. SynBioSS Wiki has been specif-
ically created to store and recall just this sort of kinetic data.
Simulating gene regulatory networks is feasible with the third
component of SynBioSS, the Desktop Simulator. SynBioSS DS
can be downloaded as an installation executable for Windows. At
the heart of SynBioSS DS has been Hy3S.

We are planning to implement the ZI-closure scheme within
SynBioSS. We anticipate that an augmented SynBioSS will aid
scientists in modeling gene regulatory networks in a way fit for
analysis and design. In particular, the calculation of steady states
with ZI-closure affords a parameter sensitivity analysis and stability
analysis for stochastic reaction networks. Modeling ranges of
kinetic and thermodynamic parameters may rationalize the design
of complex, nonlinear networks of reactions. This in turn may assist
in identifying components and interactions for synthetic biological
systems.

Admittedly, the field of computational synthetic biology is still
nascent. A long distance separates theory from practical implemen-
tation, but with advances in modeling techniques, from Gillespie’s
SSA, to hybrid simulation algorithms, to CME closure schemes,
this distance is shortened.

Acknowledgements

This work was supported by a grant from the National Institutes of
Health (American Recovery and Reinvestment Act grant
GM086865) and a grant from the National Science Foundation
(CBET-0644792) with computational support from the

Analysis and Design of Gene Networks 189

Minnesota Supercomputing Institute (MSI). Support from the
University of Minnesota Digital Technology Center and the Uni-
versity of Minnesota Biotechnology Institute is also acknowledged.

References

1. Elowitz MB, Leibler S (2000) A synthetic
oscillatory network of transcriptional regula-
tors. Nature 403:335–338

2. Gardner TS, Cantor CR, Collins JJ (2000)
Construction of a genetic toggle switch in
Escherichia coli. Nature 403:339–342

3. Andrianantoandro E, Basu S, Karig DK, Weiss
R (2006) Synthetic biology: new engineering
rules for an emerging discipline. Mol Syst Biol
2:2006.0028

4. Volzing K, Borrero J, Sadowsky MJ, Kaznessis
YN (2013) Antimicrobial peptides targeting
gram-negative pathogens, produced and deliv-
ered by lactic acid bacteria. ACS Synth Biol 2
(11):643–650, PubMed PMID: 23808914

5. Ramalingam K, Maynard J, Kaznessis YN
(2009) Forward engineering of synthetic bio-
logical AND gates. Biochem Eng J 47:38–47

6. Alon U (2003) Biological networks: the tin-
kerer as an engineer. Science 301:1866–1867

7. Endy D (2005) Foundations for engineering
biology. Nature 438:449–453

8. Volzing K, Biliouris K, Kaznessis YN (2011)
proTeOn and proTeOff, new protein devices
that inducibly activate bacterial gene expres-
sion. ACS Chem Biol 6(10):1107–1116

9. Kaern M, Blake WJ, Collins JJ (2003) The
engineering of gene regulatory networks.
Annu Rev Biomed Eng 5:179–206

10. Keasling J (2005) The promise of synthetic
biology. Bridge Natl Acad Eng 35:18–21

11. Salis H, Kaznessis YK (2005) Accurate hybrid
stochastic simulation of a system of coupled
chemical or biochemical reactions. J Chem
Phys 122:1–13

12. Haseltine EL, Rawlings JB (2002) Approxi-
mate simulation of coupled fast and slow reac-
tions for stochastic chemical kinetics. J Chem
Phys 117:6959–6969

13. Salis H, Kaznessis YN (2005) Numerical simu-
lation of stochastic gene circuits. Comp Chem
Eng 29:577–588

14. Cao Y, Li H, Petzold L (2004) Efficient formu-
lation of the stochastic simulation algorithm
for chemically reacting systems. J Chem Phys
121:4059–4067

15. Chatterjee A, Mayawala K, Edwards JS, Vla-
chos DG (2005) Time accelerated monte
carlo simulations of biological networks using

the binomial {tau}-leap method. Bioinformat-
ics 21:2136–2137

16. Tian T, Burrage K (2004) Binomial leap meth-
ods for simulating stochastic chemical kinetics.
J Chem Phys 121:10356–10364

17. W E, Liu D, Vanden-Eijnden E (2005) Nested
stochastic simulation algorithm for chemical
kinetic systems with disparate rates. J Chem
Phys 123:194107

18. Munsky B, Khammash M (2006) The finite
state projection algorithm for the solution of
the chemical master equation. J Chem Phys
124:044104

19. McQuarrie DA (1967) Stochastic approach to
chemical kinetics. J Appl Prob 4:413–478

20. Moyal JE (1949) Stochastic processes and sta-
tistical physics. J Roy Stat Soc Ser B 11:
150–210

21. Oppenheim I, Shuler KE (1965) Master equa-
tions and Markov processes. Phys Rev 138:
1007–1011

22. Oppenheim I, Shuler KE, Weiss GH (1967)
Stochastic theory of multistate relaxation pro-
cesses. Adv Mol Relax Process 1:13–68

23. Oppenheim I, Shuler KE, Weiss GH (1977)
Stochastic processes in chemical physics:
the master equation. The MIT Press, Cam-
bridge, MA

24. Gillespie DT (1976) A general method for
numerically simulating the stochastic time evo-
lution of coupled chemical reactions. J Comput
Phys 22:403–434

25. Gillespie DT (1977) Exact stochastic simula-
tion of coupled chemical reactions. J Phys
Chem 81:2340–2361

26. Gibson MA, Bruck J (2000) Efficient exact
stochastic simulation of chemical systems with
many species and many channels. J Phys Chem
104:1876–1889

27. Cao Y, Gillespie DT, Petzold LR (2005)
Avoiding negative populations in explicit Pois-
son tau-leaping. J Chem Phys 123:054104

28. Chatterjee A, Vlachos DG (2006) Temporal
acceleration of spatially distributed kinetic
monte Carlo simulations. J Comput Phys
211:596–615

29. Salis H, Kaznessis YN (2005) An equation-free
probabilistic steady state approximation:
dynamic application to the stochastic

190 Patrick Smadbeck and Yiannis N. Kaznessis

simulation of biochemical reaction networks. J
Chem Phys 123:214106

30. Sotiropoulos V, Kaznessis YN (2008) An adap-
tive time step scheme for a system of SDEs with
multiple multiplicative noise. Chemical Lange-
vin equation, a proof of concept. J Chem Phys
128:014103

31. Kaznessis Y (2006)Multi-scale models for gene
network engineering. Chem Eng Sci 61:
940–953

32. Kaznessis Y (2007) Models for synthetic biol-
ogy. BMC Syst Biol 1:47

33. Harris LA, Clancy PA (2006) A “partitioned
leaping” approach for multiscale modeling of
chemical reaction dynamics. J Chem Phys 125:
144107

34. Tuttle L, Salis H, Tomshine J, Kaznessis YN
(2005) Model-driven design principles of gene
networks: the oscillator. Biophys J 89:
3873–3883

35. Tomshine J, Kaznessis YN (2006) Optimiza-
tion of a stochastically simulated gene network
model via simulated annealing. Biophys J
91:3196–3205

36. Gillespie CS (2009) Moment closure approxi-
mations for mass-action models. IET Syst Biol
3:52–58

37. Sotiropoulos V, Kaznessis YN (2011) Analyti-
cal derivation of moment equations in stochas-
tic chemical kinetics. Chem Eng Sci 66:
268–277

38. Smadbeck P, Kaznessis YN (2012) Efficient
moment matrix generation for arbitrary
chemical networks. Chem Eng Sci 84:612–618

39. Smadbeck P, Kaznessis YN (2013) A closure
scheme for chemical master equations. Proc
Natl Acad Sci U S A 110(35):14261–14265

40. Schlögl F (1972) Chemical reaction models for
non-equilibrium phase transition. Z Phys
253:147–161

41. Salis H, Sotiropoulos V, Kaznessis YN (2006)
Multiscale Hy3S: hybrid stochastic simulations
for supercomputers. BMC Bioinform 7(93):
2006

42. Hill A, Tomshine J, Wedding E, Sotiropoulos
V, Kaznessis YK (2008) SynBioSS: the syn-
thetic biology modeling suite. Bioinformatics
24:2551–2553

43. Weeding E, Houle J, Kaznessis YN (2010)
SynBioSS designer: a web-based tool for the
automated generation of kinetic models for
synthetic biological constructs. Brief Bioinform
11(4):394–402

Analysis and Design of Gene Networks 191

Chapter 10

Feedback Loops in Biological Networks

Elisa Franco and Kate E. Galloway

Abstract

We introduce fundamental concepts for the design of dynamics and feedback in molecular networks
modeled with ordinary differential equations. We use several examples, focusing in particular on the
mitogen-activated protein kinase (MAPK) pathway, to illustrate the concept that feedback loops are
fundamental in determining the overall dynamic behavior of a system. Often, these loops have a structural
function and unequivocally define the system behavior. We conclude with numerical simulations high-
lighting the potential for bistability and oscillations of the MAPK pathway re-engineered through synthetic
promoters and RNA transducers to include positive and negative feedback loops.

Key words Feedback, Bistability, Oscillations, MAPK pathway, Synthetic biology

1 Introduction

Cells sense their environment and make decisions through coordi-
nated molecular events. The dynamic interactions among nucleic
acids, enzymes, and small molecules define such molecular events
and specify their possible outcomes. For example, a set of reactions
among a set of enzymes and genes may trigger transient, sustained,
or periodic responses in other enzymes, depending on external
stimuli [1]. Feedback among molecular components plays a crucial
role in defining such complex behaviors, and synthetic feedback
loops are routinely designed to redirect cellular responses and
fate [2].

Mathematical models capturing the behavior of a molecular
system are useful to support and guide experiments [3]. Feedback
loops may result in counterintuitive behaviors in a system, thus a
combination of numerical and theoretical analysis of a validated
model can yield important insights, for example helping to identify
the key species and parameters. Models can often be simplified to
focus on such key reactions, and it may be possible to achieve valid
conclusions on the behavior of the system without having to resort
to extensive numerical simulations [4].

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_10, © Springer Science+Business Media New York 2015

193

In this chapter, we focus on classical methods from dynamical
systems and control theory that can be used on ordinary differential
equation (ODE) models of molecular networks. We begin by
briefly introducing ODE models through the mitogen-activated
protein kinase (MAPK) pathway, for which a hierarchy of models
of different complexity is available in the literature [4–6]. ODE
models for molecular networks always include nonlinear terms: we
introduce the concept of linearization, through which one can
systematically explore the behavior of a system in a neighborhood
of its stationary points. We illustrate this simple method with several
examples, in particular the MAPK pathway.

In Subheading 4.1 we highlight the concept that feedback
loops can unequivocally determine the possible dynamic responses
of a system. Some of the first and best known mathematical con-
jectures in this area were formulated by R. Thomas [7], and focus
on the presence of positive or negative feedback loops in the
linearized model of a system (loops in the Jacobian graph): a
negative feedback loop is a necessary condition for stable periodic
behavior, while a positive loop is a necessary condition for multi-
stationarity (see [8] for a very thorough survey). These conjectures
were proved in [9] and [10], with several further extensions and
refinements [11–14]. While Thomas’ conjectures are only neces-
sary, they have been helpful in guiding the design of numerous
synthetic molecular circuits [15–24]. We conclude with numerical
simulations exploring the potential for bistability and oscillations of
the MAPK pathway in yeast, re-engineered to include artificial
positive and negative feedback through synthetic promoters and
RNA gates [25].

2 Dynamic Models for Molecular Systems

Deterministic ODEs are commonly adopted in conventional engi-
neering fields: ODEs are easily derived directly from the laws of
physics, thermodynamics, and electromagnetism, and are a
good description of macroscopic systems where stochastic effects
are negligible. Molecular systems operating at high copy numbers
have been successfully modeled using ODEs; for gene networks,
alternative descriptions include stochastic equations or boolean
models [3]. The MAPK pathway is a well-known signal transduc-
tion network which has been successfully modeled using ODEs: we
will use it as our example system throughout this chapter.

One can identify two main approaches to the derivation of
ODE models for biochemical systems. The first is a mechanistic
approach, whereby the modeler tries to identify all possible chemi-
cal reactions that contribute to the process behavior; this approach
is particularly fruitful in well-characterized systems (for example,
understood model pathways or in vitro networks), but the resulting

194 Elisa Franco and Kate E. Galloway

models may be extremely complex and require heavy numerical
treatment. The famous Huang–Ferrell model of the MAPK path-
way [5] is one of the best examples of this approach. A list of ten
reactions is used to model the three-stage, double phosphorylation
pathway, and build 18 ODEs with 30 parameters using the
mass action kinetics formalism. To illustrate this process, we con-
sider solely the activation stage of the cascade, where MAPKKK,
which we denote as m3K for brevity, is activated (m�

3K) and inacti-
vated, respectively, by two “input” enzymes u1 and u2. These
reactions are:

m3K þ u1 Ð
f1

r1
m3K � u1 *

k1
m�

3K þ u1;

m�
3K þ u2 Ð

f2

r2
m�

3K � u2 *
k2

m3K þ u2:

The corresponding ODEs associated with these isolated reactions
for M3K activation/inactivation are:

d m3K

dt
¼ �f1m3K u1 þ r1m3K � u1 þ k2m

�
3K � u2;

d m3K � u1

dt
¼ þf1m3K u1 � ðr1 þ k1Þm3K � u1;

d m�
3K

dt
¼ �f2m

�
3K u2 þ r2m

�
3K � u2 þ k1m3K � u1;

d m�
3K � u2

dt
¼ þf2m

�
3K u1 � ðr2 þ k2Þm�

3K � u1:

However, when considered in the context of the entire pathway,
M �

3K binds and phosphorylatesM2K: thus, the ODEs describing the
dynamics of M �

3K include additional second order terms. This
example highlights the rapidly growing size and complexity of
detailed models built using mass action kinetics. Nevertheless, it
must be noted that the mass action formalism allows to derive
ODEs systematically once reactions are specified, and many free
software tools are available to automatically perform this opera-
tion [26, 27].

The second approach is phenomenological and driven by
sensible approximations that describe qualitatively the observed
dynamics; this approach generally yields models more amenable
to analytical treatment, which however may not capture faithfully
the system’s dynamics and ignore several sources of uncertainty.
Using a combination of mathematical analysis and numerical
simulations supported by experimental data, the Huang–Ferrell
model can be collapsed into a simpler, gray-box model where
several intermediate reactions are captured by cooperative Hill
functions. For instance, the dynamics of a kinase species x being
doubly phosphorylated by its input u (where the input is

Feedback Loops in Biological Networks 195

the upstream kinase), yielding active kinases xp and xp p, can be
written as [28]:

dx

dt
¼ �uk1

x

K1 þ x
þ V2

xp
K2 þ xp

;

dxp
dt

¼ uk1
x

K1 þ x
� V2

xp
K2 þ xp

� uk3
xp

K3 þ xp
þ V4

xpp
K4 þ xpp

;

dxpp
dt

¼ uk3
xp

K3 þ xp
� V4

xpp
K4 þ xpp

;

where Vi are the maximal enzyme rates, ki are the catalytic rate
constants, and Ki are the Michaelis constants [28]. The readers
familiar with Michaelis–Menten enzyme kinetics will immediately
recognize that the functional terms in the equations above come
from a simple assumption of timescale separation between the
binding/unbinding dynamics of an enzyme to its substrate, and
the catalytic step of the reaction. By solving numerically the equa-
tions above for plausible reaction parameters we find that, as a
function of a constant input concentration u, the doubly phos-
phorylated kinase xpp at the end of the cascade exhibits a switch-
like response. If matching steady-state behavior is the objective of
the model, one could further collapse the equations above into a
first order system that relates the input u with the output of the
cascade m ¼ xpp:

dm

dt
¼ αun

Kn
M þ un

�m;

where now m indicates the concentration of doubly phosphory-
lated kinase, and parameters α, K, and n are chosen to capture to
the observed input/output relationship.

Based on this simplified model for the double phosphorylation
process of each kinase, one can assemble a naive phenomenological
model for the entire cascade:

dm3

dt
¼ α3

un3

Kn3

M3 þ un3
�m3

dm2

dt
¼ α2

mn2

3

Kn2

M2 þmn2

3

�m2

dm1

dt
¼ α1

mn1

2

Kn1

M1 þmn1

2

�m1:

(1)

Later we will use this simplified model to illustrate control and
dynamical systems theory methods to analyze its behavior. A
more accurate, yet simple, model of the pathway is proposed
in [29], including double phosphorylation steps for each kinase.

196 Elisa Franco and Kate E. Galloway

3 Analysis of Dynamic Behaviors

We can write the ODE model of a generic molecular process as:

dx

dt
¼ f ðx;uÞ;

xð0Þ ¼ x0;
(2)

where x is a vector in Rn whose components are the variables of
interest in the model. In a system of molecules, these components
are concentrations. Vector x describes the behavior in time of the
system, and it is also called the state vector. Vector u in Rm repre-
sents external inputs to the system, for example concentrations of
inducers or activating enzyme species. Function f(x, u) captures the
interactions among the chosen dynamic variables and the inputs.
Finally, the problem includes a specification of initial conditions (or
initial state) in the vector x0.

Mostmodels ofbiomolecular phenomena arenonlinear: thus, it is
difficult (with few exceptions) to derive analytical predictions of their
dynamics. The most general way to handle nonlinear systems is to
analyze their dynamics in a neighborhood of their equilibriumpoints.

3.1 Linearization Linearization analysis consists in approximating the behavior of a
nonlinear system in a neighborhood of its equilibrium points using
its linearized dynamics; a brief introduction to this technique is
provided in this chapter, and the reader should refer to [30, 31]
for more details.

The equilibrium points of the general dynamical system (Eq. 2)
for a given value of external inputs u are defined as the states x such
that f ðx;uÞ ¼ 0. In other words, if the system’s state is precisely x,
all future states will remain equal to x.

As a simple illustrative example, consider the differential
equation:

dx

dt
¼ ux � x2 (3)

If we set _x ¼ 0, we find the condition x(u � x) ¼ 0, which is
satisfied for x ¼ 0; x ¼ u. Once the system’s equilibrium has been
found, we can write a Taylor series approximation for the system’s
dynamics near each equilibrium, stopping at the first order:

dx

dt
¼ f ðx;uÞ � f ðx;uÞ

zfflfflffl}|fflfflffl{¼0

þ @f ðx;uÞ
@x

����
x¼x;u¼u

ðx � xÞ

þ @f ðx;uÞ
@u

����
x¼x;u¼u

ðu � uÞ

� Jxðx � xÞ þ Juðu � uÞ;

Feedback Loops in Biological Networks 197

where Jx and Ju are constant scalars or matrices that capture the
differential behavior of the system near the equilibrium.
This procedure is the first step of linearization. Now with a change
of variable, defining ξ ¼ ðx � xÞ and ω ¼ u � u we can rewrite the
system as:

dξ

dt
¼ Jxξþ Juω;

which is a linear dynamical system describing the near equilibrium
dynamics of the original nonlinear system.

Going back to the illustrative example at Eq. 3, where

f ðx;uÞ ¼ ux � x2 we find that Jx ¼ u � 2x, and Ju ¼ x. Therefore,
the approximated system’s dynamics near each equilibrium point are:

x ¼ 0) dξ

dt
¼ uξ; x ¼ u) dξ

dt
¼ �uðξ� ωÞ;

where ξ and ω are values of the state and the input near the
equilibrium.

For models defined by several states and differential equations,
linearization yields a linear system described by two matrices:

Jx ¼

@f1
@x1

@f1
@x2

. . .
@f1
@xn

@f2
@x1

@f2
@x2

. . .
@f2
@xn

..

. ..
. . .

. ..
.

@fn
@x1

@fn
@x2

. . .
@fn
@xn

2
66666666664

3
77777777775
jx¼x;u¼u

; Ju ¼

@f1
@u1

@f1
@u2

. . .
@f1
@um

@f2
@u1

@f2
@u2

. . .
@f2
@um

..

. ..
. . .

. ..
.

@fn
@u1

@fn
@u2

. . .
@fn
@um

2
66666666664

3
77777777775
jx¼x;u¼u

:

Matrix Jx is known as the system’s Jacobian matrix. If the system of
ODEs hasn equations (states), the Jacobian is always ann� nmatrix;
Ju is an n � mmatrix, wherem is the number of external inputs.

Once the system has been linearized, we can investigate its local
behavior with standard linear analysis methods. In particular, by
finding the eigenvalues of the Jacobian we can immediately estab-
lish if the equilibrium is stable or unstable. Eigenvalues λ and
eigenvectors v of a matrix A are defined by the following
relationship:

Av ¼ λv:

If A is viewed as a linear map, eigenvectors represent special direc-
tions in the domain of A which remain unaltered in the codomain,
except for scalar transformations. The eigenvalues of a matrix A are
the roots λ of the polynomial equation:

det A � λIdð Þ ¼ 0;

where I d is the identity matrix of appropriate dimension. It is
well known [31, 32] that the fundamental solution of a matrix
ODE system _x ¼ Ax þ Bu is determined by the matrix exponential

198 Elisa Franco and Kate E. Galloway

Φ ¼ eAt. (The natural response of the system, when u ¼ 0, is

xðtÞ ¼ eAtx0). In most practical cases, a real or complex matrix A
is similar to a diagonal matrix Δ whose elements on the diagonal are
the eigenvalues of A: A ¼ P Δ P�1, where P is a matrix of eigen-
vectors associated with the eigenvalues of A. This means that we
can rewrite the fundamental solution matrix Φ ¼ eAt ¼ PeΔtP�1

(the matrix exponential of a diagonal matrix is simply a diagonal
matrix whose elements are the corresponding exponentials). Thus,
the behavior of a linear system is given by linear combinations of
exponential functions, whose convergent or divergent behavior
exclusively depends on the sign of the eigenvalues. By determining
the eigenvalues, and most importantly their sign, we can classify the
system as stable, when all eigenvalues have a negative sign; when at
most one zero eigenvalue is present, the system is classified as
marginally stable; when at least one eigenvalue is positive, the
system is unstable.

Finding the eigenvalues of Jx at each equilibrium allows us to
build an approximate map of how the system behaves. Returning to
our simple scalar example at Eq. 3:

x ¼ 0) Jx ¼ u; x ¼ u) Jx ¼ �u

Therefore, for nonzero u, the system always has one stable and one
unstable equilibrium.

3.1.1 Linearization

Example: The MAPK

Cascade

We can carry out a linearization analysis of the MAPK cascade
model (Eq. 1), choosing αi ¼ 1 and KMi ¼ 1 for i ¼ 1, 2, 3, and
n3 ¼ 1, n2 ¼ n1 ¼ 2:

dm3

dt
¼ u

1þ u
�m3

dm2

dt
¼ m2

3

1þm2
3

�m2

dm1

dt
¼ m2

2

1þm2
2

�m1:

First, we find the equilibria by setting each derivative to zero. It is
very easy to find that there is a single equilibrium where

m3 ¼ u=ð1þ uÞ, m2 ¼ m3
2=ð1þm3

2Þ, and m1 ¼ m2
2=ð1þm2

2Þ.
The Jacobian of the system is:

Jx ¼
�1 0 0
α �1 0
0 β �1

2
4

3
5; (4)

where α ¼ 2m3

ð1þm3
2Þ2 and β ¼ 2m2

ð1þm2
2Þ2 . The eigenvalues can be read

directly on the diagonal of Jx, because it is a lower triangular matrix.
We find λ1 ¼ λ2 ¼ λ3 ¼ �1. Therefore, this system is stable near its
single equilibrium point. Given the structure of the Jacobian and of

Feedback Loops in Biological Networks 199

the ODEs, the equilibrium is stable regardless of the choice of
parameters made. Therefore, this simplified model of the cascade
suggests that its stable dynamic behavior is robust with respect to
uncertainty in the parameters. We will later see that if the cascade
includes additional interactions among the kinases, which generate
feedback loops, we will not be able to reach the same conclusion.

3.1.2 Phase Portraits Phase portraits are extremely useful graphical representations, in
particular for models of low dimensions. The solution trajectories
are parameterized over time, and plotted contrasting different
components [31]. These graphs can be quickly traced qualitatively,
and numerous numerical routines are available for quantitative
plots (see, for example, MATLAB’s pplane function).

For illustrative purposes, one typically considers second order
linear systems, such as:

dx

dt
dy

dt

2
664

3
775 ¼ A

x

y

" #
:

The system’s phase portrait simply consists in a plot where x(t) is
graphed versus y(t) on a plane. This plot can be quickly sketched by
identifying the eigenvalues and eigenvectors of matrix A. The real
part of the eigenvalues determines whether trajectories converge
toward the origin as an equilibrium point (negative real part, equi-
librium is stable) or diverge (positive real part, equilibrium is unsta-
ble); real eigenvectors define invariant subspaces on which the
behavior of the trajectory is uniquely determined by the associated
eigenvalue. Figure 1 shows typical examples of two-dimensional
phase portraits, such as sinks (a), sources (b), and hyperbolic
points (c). When eigenvalues are complex conjugates, trajectories
spiral in or out of the origin depending on the sign of the real part
(Fig. 1d,e); if the real part is zero, the system is classified as a center,
i.e. a system whose trajectories oscillate without damping (Fig. 1f).

The only equilibrium of the MAPK pathway model considered
in Subheading 3.1.1 is a sink (Fig. 1a), because all the eigenvalues
of the Jacobian are real and have negative real part.

3.2 Bifurcations If one or more parameters of the system vary, the number of equili-
bria and their local stability properties may change. In a biological
network binding rates may vary as a function of environmental
stimuli and result in dramatically different dynamic responses: for
instance, there is evidence that MAPK pathway response can exhibit
a variety of responses depending on the input hormones [33], which
affect binding affinities of its components. The pathway is known to
exhibit a multistationary (multiple equilibria either stable or unsta-
ble) or oscillatory responses [34]. The variation of one or more

200 Elisa Franco and Kate E. Galloway

parameters followed by a change in dynamics is generally termed a
bifurcation phenomenon. Classical examples are the saddle-node
and the Hopf bifurcation [31]. Subheading 4.1 provides examples
of bifurcations in a biological network with different types of
feedback.

4 Feedback in Synthetic Biological Networks

Gene networks rely on feedback to regulate expression of proteins,
reduce noise, and guarantee desired dynamic behaviors [35–38].
The target behavior of engineered networks depends as critically on
the use of feedback: in this section we provide several examples of
networks where the design of positive or negative feedback allows
to achieve dramatically different behaviors. We begin with a general
two-gene model which has been used to describe a variety of simple
synthetic and natural networks; we show that in some cases the
feedback topology is the key player in determining the dynamic
outcomes of the system [7, 39]. Then, we highlight the effects of
synthetic feedback loops on a model for the MAPK signaling
pathway in yeast, which has recently been engineered to re-route
mating behaviors [25].

x

y

x

y

x

y

x

y

x

y

x

y
a b c

d fe

Fig. 1 Two-dimensional phase portraits. (a) Sink (all eigenvalues have negative real part). (b) Source (all
eigenvalues have positive real part). (c) Hyperbolic point (one eigenvalue has positive real part, one eigenvalue
has negative real part; eigenvectors coincide with the axes). (d) Stable spiral sink (eigenvalues are complex
conjugate and have negative real part). (e) Unstable spiral sink (eigenvalues are complex conjugate and have
positive real part). (f) Center (eigenvalues are pure imaginary, the system is marginally stable)

Feedback Loops in Biological Networks 201

4.1 Feedback Loops

Reshape the Dynamic

Behavior of a System

We consider a standard model for transcription and translation of
two genes, where proteins reciprocally modulate their expression
forming a feedback loop. Similar models are commonly encoun-
tered in the literature (see, for instance, [19, 22]). For illustrative
purposes, we use a nondimensional model (see Note 1):

_r1 ¼ γ1 þH1ðp2Þ � r1; _p1 ¼ β1r1 � p1; (5a)

_r2 ¼ γ2 þH2ðp1Þ � r2; _p2 ¼ β2r2 � p2; (5b)

where, for i ¼ 1, 2, ri are RNA species concentrations; pi are pro-
tein concentrations; Hi(�) are Hill functions, and all Greek letters
denote reaction rates that are positive scalars.

Depending on the regulatory action and feedback created by
the protein transcription factors, and thus depending on the type of
Hill function, the network presents a different number of equilibria
and different possible dynamic behaviors. For example, suppose

H1ðp2Þ ¼ α1
pn
2

1þpn
2
and H2ðp1Þ ¼ α2

pn1
1þpn

1
: this is a two-gene positive

feedback loop, which is often encountered in developmental net-
works [40, 41]. The Jacobian of the system is:

J ¼

�1 0 0 @H1

@p2

β1 �1 0 0

0 @H2

@p1
�1 0

0 0 β2 �1

2
66664

3
77775; (6)

where @Hi=@pj ¼ αi
npn�1

j

ð1þpn
j
Þ2 ; ði; jÞ 2 fð1;2Þ; ð2; 1Þg. Note that the

Jacobian entries, evaluated at a positive equilibrium, are sign defi-
nite, i.e. they do not change sign for arbitrary choices of the
(positive) parameters αi, βi, and n.

The Jacobian sign pattern is thus a “structural” property of this
system, and it can be associated with a graph: nodes correspond to
the concentrations of biochemical species and are interconnected
by positive (+1) or negative (�1) arcs according to the
corresponding Jacobian entries, as shown in Fig. 2a. Thus, the
positive or negative sign of the loops generated does not depend
on the specific choice of the parameters.

We can derive expressions for the equilibria of the system,
which are given by the intersections of the two equilibrium condi-
tions (Fig. 2a, top row):

p1 ¼ β1 γ1 þ α1
pn2

1þ pn2

� �
; p2 ¼ β2 γ2 þ α2

pn1
1þ pn1

� �
:

For n ¼ 1 there is an intersection with p1 and p2 positive. For
n > 1, the system may admit multiple, typically three, positive
equilibria. For an assigned value of n, we consider one equilibrium
and we evaluate its stability properties by finding the eigenvalues of
the Jacobian, which are the roots of its characteristic polynomial

202 Elisa Franco and Kate E. Galloway

ðs þ 1Þ4 �K ¼ 0; where K ¼ β1β2
@H1

@p2

@H2

@p1
> 0: (7)

Note that K explicitly depends on parameters n, αi, and βi and on
the equilibria for p1 and p2 (which are in turn a function of all the
parameters of the ODEs). The roots of Eq. 7 are:

s ¼ �1þ q; �1� q; �1þ iq; �1� iq; where q ¼ K
1
4:

If K > 1, there is only one root having positive real part, and it is
real. If K < 1, all of the roots have negative real part. Thus, the
system can only admit real exponential instability, i.e. instability
arising due to a real eigenvalue changing sign from negative to
positive. Figure 2a, top row, shows equilibrium conditions and
example trajectories in the p1 � p2 plane of the phase space for
different values of n (stable equilibria are represented as green
circles, unstable equilibria as red circles). The last column in
Fig. 2 shows the evolution of the number and stability properties

0 2 4

1

2

3

4

p 2

0 2 4

1

2

3

4

p 2

0 2 4

1

2

3

4

p 2

1 2 3 4
0

1

2

3

4

p 2

1 2 3 4
0

1

2

3

4

p 2

1 2 3 4
0

1

2

3

4

p 2

1 2 3 4
0

1

2

3

4

p 2

1 2 3 4
0

1

2

3

4

p 2

1 2 3 4
0

1

2

3

4

p 2

a

+
-

-
+

+

r1

p1

r2

p2

+
+

+
+

+

r1

p1

r2

p2

-
-

+
r1

p1

r2

p2

b

c

+

+

p1 p1 p1

1 2 3 4 5 6 7 8
0

1

2

3

4

n

p2

1 2 3 4 5 6 7 8
0

1

2

3

4

n

p2

1 2 3 4 5 6 7 8
0

1

2

3

4

n

p2

n=1 n=3 n=6 Bifurcation diagrams

Fig. 2 Feedback loops in two-gene systems. (a) Two-gene system with double positive feedback loop (positive
cycle). Pointed arrowheads indicate positive Jacobian interconnection entries, while hammer-arrowheads
indicate negative interconnections. (b) Two-gene system with double negative feedback loop, resulting in an
overall positive cycle. (c) Two-gene feedback interconnection with positive and negative regulation, resulting
in an overall negative cycle. In all simulations (nullclines in blue, sample trajectories in gray) the nondimen-
sional parameters are chosen as γ1 ¼ γ2 ¼ 0:2, α1 ¼ α2 ¼ 3, β1 ¼ β2 ¼ 1 and n is varied. The right
column shows the corresponding value of p2 equilibria for varying n, and their different pattern of transition to
instability (green dots are stable, red dots are unstable equilibria)

Feedback Loops in Biological Networks 203

of equilibria for p2 as n varies (note that other parameters could
have picked to study the presence of bifurcations).

IfH1 ¼ α1 1
1þpn

2
,H2 ¼ α2 1

1þpn
1
, network (Eq. 5) specifies a two-

gene double negative feedback loop, depicted in Fig. 2b, left. This
circuit is also known as toggle switch, an example of which is the
famous synthetic biological circuit by Gardner [15]; a natural
example of a toggle switch is the Cdc2-Wee1 network considered,
for instance, in [4]. We can repeat the same analysis performed for
the two-gene double positive feedback loop, and get similar results
in terms of admissible transitions to instability, which can be only
real exponential, regardless of the considered equilibrium
(Fig. 2b).

We now compare the previous two examples to the case when

Hill functions have opposite regulatory roles, i.e. H1 ¼ α1
pn
2

1þpn
2
an

H2 ¼ α2 1
1þpn

1
: the network can behave as a two-gene oscillator [22].

First, we observe that the Jacobian is still a sign definite matrix.
However, the “interconnection” terms @H1=@p2 and @H2=@p1, the
derivatives of the Hill functions, now have opposite signs, due to
the different slopes of such functions, and thus generate an
overall negative feedback loop (Fig. 2c). The equilibrium condi-
tions are now

p1 ¼ β1 γ1 þ α1
pn2

1þ pn2

� �
; p2 ¼ β2 γ2 þ α2

1

1þ pn1

� �
;

and admit a single intersection regardless of the value of αi, βi, and n
(Fig. 2c, central panels show the equilibrium conditions for
increasing values of n). The characteristic polynomial is

ðs þ 1Þ4 �K ¼ 0; where K ¼ β1β2
@H1

@p2

@H2

@p1
< 0: (8)

Since now K < 0, all of the roots of Eq. 8 are complex:

s ¼ �1þ qð Þ þ iq; �1� qð Þ � iq; �1� qð Þ þ iq; �1þ qð Þ � iq;

where q ¼ ð�KÞ14ffiffiffi
2

p :

As a consequence, only oscillatory unstable dynamics can arise,
rather than real exponential. Precisely, unstable oscillations do
arise when K < �4. As we can see by studying the original nonlin-
ear system, for any given value of n there is only one equilibrium,
whose stability properties can change, again, depending on the
values of αi and βi.

To summarize, the analysis of this simple two-gene system has
shown that, without a precise knowledge of the functions H1 and
H2, we can reach very strong conclusions regarding the possible
dynamic behaviors of the system. These conclusions are consistent
with Thomas’ conjectures [7], and do not depend on specific

204 Elisa Franco and Kate E. Galloway

functions or parameter choices. Rather, they depend on the pres-
ence of positive or negative feedback interconnection among com-
ponents, thus on the presence of a positive or a negative cycle in the
Jacobian associated with the system. In particular, this example
clearly highlights that there is a relationship between Jacobian
cycles and admissible transitions to instability. A qualitatively similar
study was carried out and validated by building synthetic bacterial
circuits in [16]; analysis relied on the S-systems formalism [42].

4.2 Synthetic

Feedback in the MAPK

Pathway

The dynamic profile of gene expression coordinates spatio-
temporal processes in organisms. At the single-cell level, dynamics
of signaling components can dictate the dynamics of gene expres-
sion and control cellular entry into divergent cell fates. The MAPK
pathway in PC-12 cells provides a classic example of signaling
dynamics regulating cellular fate. In PC-12 cells, unique extracellu-
lar cues alter the MAPK network topology by inducing positive or
negative feedback loops leading to differential temporal profiles of
MAPK activation. Each temporal profile maps to a distinct and
divergent cellular behavior [33]. Synthetic switching of these topol-
ogies alters the dynamic profile and routes cells to the alternative
fate, suggesting that control of network topology and thus signal-
ing dynamics controls cellular fates (e.g., differentiation, division,
and apoptosis). Given the importance of cellular fate in fields such
as stem cell biology and cancer biology, synthetic circuits that can
control dynamic signaling and thus cell fate may provide useful
research tools as well as potential therapies.

Synthetic reshaping of dynamic signaling profiles in a MAPK
pathway has allowed the construction of pulse generators, accel-
erators, delays, ultrasensitive responses, and bistable switches [43,
44]. Construction of positive feedback loops that induce bistability
in a MAPK pathway was shown to be dependent on feedback
strength [44]. Additionally, components within the MAPK path-
way can be tuned to allow for the existence of bistability [45].

The yeast pheromone-responsive pathway is a canonical MAPK
pathway with a three-tiered MAPK cascade. Due to the genetic
tractability of yeast relative to mammalian systems, the pheromone-
responsive pathway, also called the mating pathway, has been
extensively analyzed experimentally and modeled computationally.
Signaling in the mating pathway is initiated by pheromone alpha-
factor (α), binding to a transmembrane receptor which initiates G-
protein signaling and a phosphorylation cascade from Ste4 to the
canonical scaffold-bound three-tiered MAPK cascade. As the out-
put of the cascade, the phosphorylatedMAPK Fus3 translocates the
nucleus, activating transcription factors and transcription at
mating-responsive genes including the F u s1 locus. The phospha-
tase Msg5 antagonizes (inhibits) signaling by dephosphorylating
Fus3. Activation of mating genes induces cell-cycle arrest, polarized

Feedback Loops in Biological Networks 205

cell growth, and fusion of haploid cells to form diploids with
opposite mating-type cells.

To synthetically rewire the topology of the mating pathway,
positive and negative feedback loops were constructed around the
native pathway in [25]. To construct feedback loops (Fig. 3), a
pathway-responsive promoter was cloned from the Fus1 locus
into plasmids. Ste4 overexpression was shown to initiate pathway
activation, positively regulating pathway activity. Thus, a positive
feedback loop was constructed by placing Ste4 under the regulation
of the Fus1 promoter. Conversely, overexpression of Msg5 attenu-
ated signaling, negatively regulating pathway activation. Pairing
Msg5 with the Fus1 promoter constructed a negative feedback
loop. Pairing positive and negative feedback constructs with
RNA-based transducers of varying activity generated constructs
with a range of feedback strengths. Experimentally, the strength
of positive feedback was shown to dictate the pathway sensitivity to
activation. Similarly, the strength of negative feedback correlated
with the degree of pathway attenuation.

To mathematically capture insights into the synthetically wired
system, a phenomenogical model of the MAPK pathway with syn-
thetic feedback was also constructed [25]:

dSte4

dt
¼ βSte4 � δSte4Ste4þ kpf

Fus1
npf

K
npf
M ;Fus1;pf

þFus1
npf

; (9)

dFus3

dt
¼ βFus3 � δFus3Fus3þ kα

αn

Kn
M ;α þ αn

þ kSte4
Ste4m

Km
M ;Ste4 þ Ste4m

� kMsg5Fus3
Msg5q

K
q
M ;Msg5 þMsg5q

;

(10)

dFus1

dt
¼ βFus1 � δFus1Fus1þ kFus3

Fus3p

Kp
M ;Fus3 þ Fus3p

; (11)

-

Ste4

Fus3

Fus1

Msg5

+
α

+
+

+ +

-
+

Fig. 3 Scheme of the engineered MAPK pathway in Eqs. 9–12. This scheme can
also be seen as a graph representing the sign-definite Jacobian. Orange arrows
indicate the synthetic feedback loops

206 Elisa Franco and Kate E. Galloway

dMsg5

dt
¼ βMsg5 � δMsg5Msg5þ knf

Fus1
nnf

K
nnf
M ;Fus1;nf

þFus1
nnf

: (12)

Terms corresponding to the engineered positive and negative
feedback loops are highlighted inside boxes. It is an easy exercise to
compute the system’s Jacobian matrix; this matrix is sign definite,
meaning that the sign of each entry does not depend on the para-
meters chosen. Because of sign definiteness, the scheme in Fig. 3
can be also used as a “graph” representation of the Jacobian matrix
similar to those obtained in Fig. 2.

In the rest of this section we consider the cases where the
system is added exclusively one feedback loop, positive in the first
case (activation of Ste4 by Fus1), negative in the second (activation
of Msg5 by Fus1). With numerical simulations we will highlight the
potential for bistability of the system with positive feedback, and of
oscillations in the system with negative feedback. Unless otherwise
noted, we use the same parameters used in [25], which were fitted
to experimental data (see Fig. 6).

4.2.1 A Synthetic Positive

Feedback Loop Can Yield

Bistability

If we add exclusively a positive feedback loop to the system, Msg5
can be seen as an input (possibly constant or slowly varying) to the
main pathway (a scheme is in Fig. 4a). In the following, we indicate
the Msg5 input as u. We also assume that the inducer α is absent.
Thus, our equations reduce to:

dSte4

dt
¼ βSte4 � δSte4Ste4þ kpf

Fus1
npf

K
npf
M ;Fus1;pf

þFus1
npf

; (13)

dFus3

dt
¼ βFus3 � δFus3Fus3þ kSte4

Ste4m

Km
M ;Ste4 þ Ste4m

� kuFus3
uq

K
q
M ;u þ uq

;

(14)

dFus1

dt
¼ βFus1 � δFus1Fus1þ kFus3

Fus3p

K
p
M ;Fus3 þ Fus3p

; (15)

where again we highlight with a box the term introducing positive
feedback in the network. In the absence of α factor, the network
output self-activates to a high value due to the presence of feed-
back. This behavior is showed in the numerical simulations in
Fig. 4: increasing values of rate kpf results in stronger self-activation
of the pathway.

To explore the potential for bistability, as done in the previous
section we can find equilibrium conditions for Ste4 and Fus1:

Ste4 ¼ 1

δSte4
βSte4kpf

Fus1
npf

K
npf

M ;Fus1;pf þ Fus1
npf

()
(16)

Feedback Loops in Biological Networks 207

Fus3 ¼ 1

δFus3 þ ku
uq

K
q
M ;u

þuq

βFus3 þ kSte4
Ste4

m

Km
M ;Ste4 þ Ste4

m

()
(17)

Fus1 ¼ 1

δFus1
βFus1 þ kFus3

Fus3
p

Kp
M ;Fus3 þ Fus3

p

()
: (18)

These equilibrium conditions depend on several parameters,
each affecting the number and stability properties of the
admissible equilibria. We focus our attention on the engineered
reactions creating the positive feedback loop. We find that parame-
ter KM, Fus1, pf is particularly important to achieve bistability; this
parameter represents the half-max activation value of Ste4 by Fus1.
The corresponding Hill coefficient is equal to 3, making the half-
max value act as an activation threshold for Ste4. Equilibrium
conditions Eqs. 16 and 18 are plotted in Fig. 4 for different values
of KM, Fus1, pf (kpf ¼ 2). For the chosen parameter set, bistability is
achieved only within a range of values of KM, Fus1, pf.

Positive feedback
pathway

+ -

Ste4

Fus3

Fus1

Msg5

+
α

+

+ +

α = 0

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

F
us

1

Time (min)

k
pf

=0

k
pf

=0.4

k
pf

=0.8

k
pf

=1.2

k
pf

=1.6

k
pf

=2

a b

c

0 0.5 1
0

0.5

1

Fus1

S
te

4

0 0.5 1
0

0.5

1

Fus1

S
te

4

0 0.5 1
0

0.5

1

Fus1

S
te

4

KM,Fus1,pf = 0.55 KM,Fus1,pf = 1KM,Fus1,pf = 0.1

Fig. 4 Positive feedback pathway analysis. (a) Scheme of the network with positive feedback.
(b) Concentration of Fus1 as a function of time, for different values of kpf. (c) Equilibrium conditions (blue),
their intersections (green, stable points; red, unstable points), and sample trajectories (gray) in the plane
Fus1-Ste4. Bistability can be achieved when KM, Fus1, pf has values around 0. 5–0. 7

208 Elisa Franco and Kate E. Galloway

4.2.2 A Synthetic

Negative Feedback Loop

Has the Potential to Yield

Oscillations

We now numerically simulate the pathway in the presence of an
engineered negative feedback loop only. In this case, Ste4 can be
considered an external input, which we now call w. We assume that
α factor is present. The ODEs are:

dFus3

dt
¼ βFus3 � δFus3Fus3þ kα

αn

Kn
M ;α þ αn

þ kw
wm

Km
M ;w þ wm

� kMsg5Fus3
Msg5q

Kq
M ;Msg5 þMsg5q

;

(19)

dFus1

dt
¼ βFus1 � δFus1Fus1þ kFus3

Fus3p

K
p
M ;Fus3 þ Fus3p

; (20)

dMsg5

dt
¼ βMsg5 � δMsg5Msg5þ knf

Fus1
nnf

K
nnf
M ;Fus1;nf

þFus1
nnf

: (21)

The box highlights the negative feedback term; Fig. 5a shows
the topology of this pathway, which corresponds to the sign pattern

Negative feedback
pathway

-

Ste4

Fus3

Fus1

Msg5

α

++

+ +

-

a
b

c

α = 100, nnf = 6

0 0.5 1
0

0.5

1

Fus1

M
sg

5

0 0.5 1
0

0.5

1

Fus1

M
sg

5

0 0.5 1
0

0.5

1

Fus1

M
sg

5

knf = 1.5, nnf = 1 knf = 5, nnf = 1 knf = 5, nnf = 10

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (min)

F
us

1 knf = 0
knf = 1
knf = 2
knf = 3
knf = 4
knf = 5

Fig. 5 Negative feedback pathway analysis. (a) Scheme of the network with engineered negative feedback. (b)
Concentration of Fus3 as a function of time, for different values of knf. (c) Equilibrium conditions (blue), their
intersections (green, stable points; red, unstable points), and sample trajectories (gray) in the plane Fus1-
Msg5. Local oscillations can be achieved for high values of knf and nnf. (Color figure online)

Feedback Loops in Biological Networks 209

of the Jacobian matrix. Equilibrium conditions can be derived as
done for the positive feedback pathway at Eqs. 16–18. To explore
the potential for oscillations in the presence of negative feedback,
we focus again on the parameters of the engineered reaction
controlling Msg5 as a function of the output Fus1. Equilibrium
conditions always intersect at one individual point, as shown
in Fig. 5c. We find that for increasing values of both the rate
knf and the Hill coefficient nnf, the single equilibrium becomes
unstable, with complex conjugate eigenvalues which correspond
to local oscillations. The behavior in time of the output Fus1 is
shown in Fig. 5b for a range of values of knf, and high nnf ¼ 6. For
the chosen parameter set, our numerical analysis reveals that an
extremely high value of knf and nnf (experimentally not
achievable) has the potential to yield oscillations, however their
amplitude is limited and their frequency is very high. This means
that experimentally it would be difficult to achieve oscillations in
this particular synthetic pathway. More systematic exploration of
the system’s parameter space may reveal the existence of operating
conditions that can yield more realistic oscillations.

5 Conclusions

In this chapter we have provided a general overview of the role of
feedback in molecular networks. We have introduced simple yet
powerful methods commonly used in dynamical systems and con-
trol theory to identify the behavior of a nonlinear dynamical system
around its equilibria. Feedback loops dramatically affect the possi-
ble dynamic outcomes of a system: we showed that in some cases
such outcomes may be determined exclusively by the type of feed-
back (positive or negative) present in the network, regardless of the
parameters. We address the reader to [39] for further analysis on
this topic. In some cases, parameters responsible for a bifurcation
can be easily identified and tuned to achieve the desired behavior.
These ideas have been largely exploited in the design of synthetic
gene networks in the last decade [15, 16, 19, 20].

Throughout the chapter, we also used the MAPK pathway as an
example of a system that can be successfully modeled with ODEs [5,
6, 25, 29] and lends itself well to the linearization analysis we pre-
sented.We focused on a recently engineeredMAPKpathway in yeast,
where positive and negative feedback loops were engineered using
inducible promoters and RNA transducers [25]. Through numerical
simulations,we showed that positive feedback can yield bistability and
negative feedback can yield oscillations. We leave it as an exercise to
the reader to verify the exclusive potential for bistability or oscillations
in the two engineered versions of the network [39], following the
steps outlined in Subheading 4.1 (Fig. 6).

210 Elisa Franco and Kate E. Galloway

Fig. 6 Parameters for the MAPK pathway model with upper (UB) and lower (LB) bounds for fitting

Feedback Loops in Biological Networks 211

6 Notes

1. We will carry out the nondimensionalization procedure for the
toggle switch network, leaving the derivation for the other
cases to the reader. We follow nondimensionalization steps
similar to those proposed in [19] and [22, 24]. Consider the
(dimensional) model:

τ _R1 ¼ c1 þ a1
1

Kn
M1 þ Pn

2

�R1; _P1 ¼ kpR1 � kdP1; (22a)

τ _R2 ¼ c2 þ a2
1

Kn
M2 þ Pn

1

�R2; _P2 ¼ kpR2 � kdP2: (22b)

Here ci is the “leak” transcription of RNA. For simplicity, we
assume that the translation and degradation rates for the pro-
teins are the same. Constant τ is the mRNA half-life in the
system. ConstantsKMi represent the number of proteins neces-
sary to half-maximally repress Ri. Finally, assume the transla-
tion efficiency of each RNA species is given by �pi, which
corresponds to the average number of proteins produced by a
single RNA molecule.

We define the nondimensional variables: ri ¼ Ri=�pi,
pi ¼ Pi=KMj , (i, j) ∈ {(1, 2), (2, 1)}. We rescale time as
~t ¼ t=τ, and also define the nondimensional parameters:

γi ¼
ci
�pi
; αi ¼ ai

�pi Kn
Mi

; βi ¼
kp �pi

kd KMj
; T ¼ 1

τkd
:

The resulting nondimensional equations are:

_r1 ¼ γ1 þ α1
1

1þ pn2
� r1; T _p1 ¼ β1r1 � p1; (23a)

_r2 ¼ γ2 þ α2
1

1þ pn1
� r2; T _p2 ¼ β2r2 � p2; (23b)

Finally, if we assume T � 1, we get a system in the same form as
Eq. 5.

References

1. Tyson JJ, Chen KC, Novak B (2003) Sniffers,
buzzers, toggles and blinkers: dynamics of reg-
ulatory and signaling pathways in the cell. Curr
Opin Cell Biol 15(2):221–231

2. Hasty J, McMillen D, Collins JJ (2002) Engi-
neered gene circuits. Nature 420:224–230

3. De Jong H (2002) Modeling and simulation of
genetic regulatory systems: a literature review. J
Comput Biol 9:67–103

4. Angeli D, Sontag E (2003) Monotone control
systems. IEEE Trans Autom Control 48
(10):1684–1698

5. Huang C-YF, Ferrell JE (1996) Ultrasensitivity
in the mitogen-activated protein kinase cascade.
Proc Natl Acad Sci U S A 93:10078–10083

6. Asthagiri AR, Lauffenburger DA (2001) A
computational study of feedback effects on sig-
nal dynamics in a mitogen-activated protein

212 Elisa Franco and Kate E. Galloway

kinase (MAPK) pathway model. Biotechnol
Prog 17:227–239

7. Thomas R (1981) On the relation between the
logical structure of systems and their ability to
generatemultiple steady states or sustainedoscil-
lations. In: Dora J, Demongeot J, Lacolle B
(eds) Numerical methods in the study of critical
phenomena. Springer series in synergetics, vol 9.
Springer, Berlin/Heidelberg, pp 180–193

8. Domijan M, Pécou E (2011) The interaction
graph structure of mass-action reaction net-
works. J Math Biol 51(8):1–28

9. Gouze J-L (1998) Positive and negative cir-
cuits in dynamical systems. J Biol Syst 6:11–15

10. Snoussi E (1998) Necessary conditions for
multistationarity and stable periodicity. J Biol
Syst 6:3–9

11. Banaji M, Craciun G (2009) Graph-theoretic
approaches to injectivity and multiple equilibria
in systems of interacting elements. Commun
Math Sci 7(4):867–900

12. KaufmanM, Soule C, Thomas R (2007) A new
necessary condition on interaction graphs for
multistationarity. J Theor Biol 248
(4):675–685

13. Richard A, Comet J-P (2011) Stable periodic-
ity and negative circuits in differential systems.
J Math Biol 63(3):593–600

14. Soulé C (2004) Graphic requirements for mul-
tistationarity. ComPlexUs 1(3):123–133

15. Gardner TS, Cantor CR, Collins JJ (2000)
Construction of a genetic toggle switch in
Escherichia coli. Nature 403:339–342

16. Atkinson MR, Savageau M, Myers J, Ninfa A
(2003) Development of genetic circuitry exhi-
biting toggle switch or oscillatory behavior in
Escherichia coli. Cell 113:597–607

17. Kim J, White KS, Winfree E (2006) Construc-
tion of an in vitro bistable circuit from synthetic
transcriptional switches. Mol Syst Biol 68

18. Padirac A, Fujii T, Rondelez Y (2012) Bottom-
up construction of in vitro switchable mem-
ories. Proc Natl Acad Sci 109(47):
E3212–E3220

19. ElowitzMB, Leibler S (2000) A synthetic oscil-
latory network of transcriptional regulators.
Nature 403:335–338

20. Stricker J, Cookson S, Bennett MR, Mather
WH, Tsimring LS, Hasty J (2008) A fast,
robust and tunable synthetic gene oscillator.
Nature 456:516–519

21. Tigges M, Marquez-Lago TT, Stelling J, Fus-
senegger M (2009) A tunable synthetic mam-
malian oscillator. Nature 457:309–312

22. Kim J, Winfree E (2011) Synthetic in vitro
transcriptional oscillators. Mol Syst Biol 7:465

23. Montagne K, Plasson R, Sakai Y, Fujii T, Ron-
delez Y (2011) Programming an in vitro DNA
oscillator using a molecular networking strat-
egy. Mol Syst Biol 7

24. Franco E, Friedrichs E, Kim J, Jungmann R,
Murray R, Winfree E, Simmel FC (2011)
Timing molecular motion and production
with a synthetic transcriptional clock. Proc.
Natl Acad Sci 108(40):E784–E793

25. Galloway KE, Franco E, Smolke CD (2013)
Dynamically reshaping signaling networks to
program cell fate via genetic controllers. Sci-
ence 341(6152):1235005

26. Tomita M, Hashimoto K, Takahashi K, Shi-
mizu TS, Matsuzaki Y, Miyoshi F, Saito K,
Tanida S, Yugi K, Venter JC, et al. (1999) E-
CELL: software environment for whole-cell
simulation. Bioinformatics 15(1):72–84

27. Hoops S, Sahle S, Gauges R, Lee C, Pahle J,
Simus N, Singhal M, Xu L, Mendes P, Kummer
U (2006) COPASIÑa complex pathway simu-
lator. Bioinformatics 22(24):3067–3074

28. Kholodenko BN (2000) Negative feedback
and ultrasensitivity can bring about oscillations
in the mitogen-activated protein kinase cas-
cades. Eur J Biochem 267(6):1583–1588

29. Angeli D, Ferrell JE, Sontag ED (2004) Detec-
tion of multistability, bifurcations, and hystere-
sis in a large class of biological positive-
feedback systems. Proc Natl Acad Sci U S A
101(7):1822–1827

30. Khalil HK (2002) Nonlinear systems. Pearson
Higher Education, Harlow

31. Perko L, (1991) Differential equations and
dynamical systems. Springer, New York

32. Å strom KJ, Murray RM (2009) Feedback sys-
tems: an introduction for scientists and engi-
neers. Princeton University Press, Princeton

33. Santos SDM, Verveer PJ, Bastiaens PIH
(2007) Growth factor-inducedMAPK network
topology shapes Erk response determining PC-
12 cell fate. Nat Cell Biol 9:324–330

34. Qiao L, Nachbar RB, Kevrekidis IG, Shvarts-
man SY (2007) Bistability and oscillations in
the Huang-Ferrell model of MAPK signaling.
PLoS Comput Biol 3(9):e184

35. Becskei A, Serrano L (2000) Engineering sta-
bility in gene networks by autoregulation.
Nature 405(6786):590–593

36. Austin D, AllenM,McCollum J, Dar R, Wilgus
J., Sayler G, Samatova N, Cox C, Simpson M
(2006) Gene network shaping of inherent
noise spectra. Nature 439(7076):608–611

37. Nevozhay D, Adams RM, Murphy KF, Josić K,
Balázsi G (2009) Negative autoregulation lin-
earizes the dose–response and suppresses the

Feedback Loops in Biological Networks 213

heterogeneity of gene expression. Proc Natl
Acad Sci 106(13):5123–5128

38. Rosenfeld N, Elowitz MB, Alon U (2002)
Negative autoregulation speeds the response
times of transcription networks. J Mol Biol
323:785–793

39. Blanchini F, Franco E, Giordano G (2013) A
structural classification of candidate oscillators
and multistationary systems. bioRxiv
doi:10.1101/000562

40. Alon U (2006) An introduction to systems
biology: design principles of biological circuits.
Chapman & Hall/CRC, Boca Raton

41. Davidson EH, Rast JP, Oliveri P, Ransick A,
Calestani C, et al. (2002) A genomic regulatory

network for development. Science 295
(5560):1669–1678

42. SavageauMA,Voit EO (1987)Recasting nonlin-
ear differential equations as s-systems: a canonical
nonlinear form. Math Biosci 87:83–115

43. Bashor CJ, Helman NC, Yan S, Lim WA
(2008) Using engineered scaffold interactions
to reshape MAP kinase pathway signaling
dynamics. Science 319(5869):1539–1543

44. Ingolia NT, Murray AW (2007) Positive-
feedback loops as a flexible biological module.
Curr Biol 17:668–677

45. O’Shaughnessy EC, Palani S, Collins JJ, Sarkar
CA (2011) Tunable signal processing in syn-
thetic MAP kinase cascade. Cell 144:119–131

214 Elisa Franco and Kate E. Galloway

Part III

Circuit Analysis and Simulations

Chapter 11

Efficient Analysis Methods in Synthetic Biology

Curtis Madsen, Chris Myers, Nicholas Roehner,
Chris Winstead, and Zhen Zhang

Abstract

This chapter describes new analysis and verification techniques for synthetic genetic circuits. In particular, it
applies stochastic model checking techniques to models of genetic circuits in order to ensure that they behave
correctly and are as robust as possible for a variety of different inputs and parameter settings. In addition to
stochastic model checking, this chapter proposes new variants to the incremental stochastic simulation
algorithm (iSSA) that are capable of presenting a researcher with a simulation trace of the typical behavior of
the system. Before the development of this algorithm, discerning this information was extremely error-
prone as it involved performing many simulations and attempting to wade through the massive amounts of
data. This algorithm greatly aids researchers in designing genetic circuits as it efficiently shows the
researcher the most likely behavior of the circuit. Both the iSSA and stochastic model checking can be
used in concert to give a researcher the likelihood that the system exhibits its most typical behavior, as well
as, non-typical behaviors. This methodology is applied to several genetic circuits leading to new under-
standing of the effects of various parameters on the behavior of these circuits.

Key words Design space exploration, Synthetic genetic circuits, Stochastic model checking, Stochas-
tic simulation, Synthetic biology

1 Introduction

Recently, researchers have been interested in not only understanding
howbiological systemswork but also designing new ones. In order to
accomplish this goal, researchers have combined ideas from systems
biology and genetic engineering with the engineering principles of
standards, abstraction, and automated construction to create the field
of synthetic biology [2, 8]. Some applications of this field include
enabling designed biological systems to consume toxic waste [6],
hunt and kill tumor cells [1], and produce drugs [28] and bio-
fuels [3]. To realize these goals, researchers are actively working on
better ways to model and analyze synthetic genetic circuits, networks
of genes that influence each other’s expression via the production and
binding of transcription factor proteins. When designing and analyz-
ing genetic circuits, researchers are often interested in building

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_11, © Springer Science+Business Media New York 2015

217

circuits that exhibit a particular behavior. Usually determining a
circuit’s behavior involves simulating a model to produce some time
series data and analyzing this data todiscernwhether or not the circuit
behaves appropriately. This method becomes less attractive as circuits
grow in complexity because it ends up becoming very time-
consuming to generate a sufficient amount of runs for analysis. In
addition, trying to select representative runs out of a large data set is
tedious and error-prone, which motivates methods of automating
this analysis. These problems have led to the need for design space
exploration techniques that allow synthetic biologists to easily explore
the effect of varying parameters in their systems and efficiently con-
sider alternative designs of their systems.

This chapter presents a new approach to design space explora-
tion which leverages a combination of stochastic simulation and
model checking. In particular, this chapter describes an incremental
stochastic simulation algorithm (iSSA) that is a variant of Gillespie’s
stochastic simulation algorithm (SSA) [13] which can aid research-
ers in determining a system’s typical behavior. To determine the
likelihood of this typical behavior, this chapter describes a method
to analyze genetic circuits using stochastic model checking which
applies Markov chain analysis to obtain the desired results. An
example work flow of using these methods in concert to analyze a
genetic circuit is shown in Fig. 1. Here, a genetic circuit is both
simulated using the iSSA and abstracted using logical abstraction.
Next, a property representing the typical behavior of the system is
determined from the iSSA results and sent to the stochastic model
checker along with the resulting continuous-time Markov chain
(CTMC) from logical abstraction. Finally, the output of this work
flow is the probability that the circuit exhibits its typical behavior.

Fig. 1 An example work flow of using iSSA, logical abstraction, and stochastic
model checking to determine the likelihood of a system exhibiting its typical
behavior

218 Curtis Madsen et al.

2 Genetic Toggle Switch

All living organisms are composed of one or more cells, and each of
these cells carries out specialized functions in order to keep the
organism alive. There are networks within the cell called genetic
circuits which help regulate the amount of proteins that are synthe-
sized from the cell’s genes. This regulation can be used to signal
when the cell should divide, when the cell should take in nutrients
from the environment, when the cell should change to a defensive
state, and when the cell should die, among other behaviors. Under-
standing these circuits can give synthetic biologists greater insight
into why cells behave as they do and can in turn lead to better
engineered synthetic genetic circuits. One of the first synthetic
genetic circuits constructed is the genetic toggle switch described
in [10] and shown in Fig. 2. This circuit has two stable states: either
LacI is high andTetR is low (theOFF state) or LacI is low andTetR is
high (theON state). To switch from one stable state to the other, the
values of IPTG and aTc can be altered. In 2000, Gardner et al.
successfully designed and constructed this circuit and inserted it
into Escherichia coli bacteria where they were able to observe this
switch-like behavior. In Fig. 2, LacI represses production of TetR
and green fluorescent protein (GFP) by binding to the Ptrc�2 pro-
moter, while TetR represses production of LacI by binding to the
PLtetO�1 promoter. GFP is a reporter protein that causes the cell to
glow, thereby indicating whether the toggle is in the ON or OFF
state. The other molecules in the diagram, IPTG and aTc, are chemi-
cal inducers. IPTG inhibits LacI’s ability to act as a repressor by
binding with it to form a complex C1. Similarly, aTc inhibits TetR’s
ability to act as a repressor by binding with it to form a complex C2.
This chapter uses this genetic circuit as a running example.

Fig. 2 The genetic toggle switch circuit where LacI and TetR repress each other
(denoted by the a arrows). In this circuit, LacI can be sequestered by IPTG, TetR
can be sequestered by aTc, and GFP is the reporter protein causing the cell to
glow indicating whether the toggle is in the ON or OFF state

Efficient Analysis Methods in Synthetic Biology 219

3 Classical Chemical Kinetics

A genetic circuit can be converted into a chemical reaction network
composed of species and reactions that can be analyzed using classi-
cal chemical kinetics (CCK). CCK are well-known methods which
assume that the network reacts continuously in a well-stirred
medium and that there is a large amount of molecules in the system.
In CCK, the rate of each reaction is considered to be the speed at
which it alters the amount of the species that participate in it per
unit time. To compute these rates, CCK converts the network into
a set of ordinary differential equations (ODEs) using the law of
mass action. The law of mass action states that the rate of each
chemical reaction can be computed by multiplying the reaction’s
rate constant by the product of the concentrations (i.e., the amount
of molecules divided by the compartment volume) of its reactant
species. An ODE model can be analyzed using some well-known
techniques [27]. These techniques typically involve linearizing the
system by evaluating the rate of change of each of the species’
concentrations using the initial concentration of each species. The
system is then evolved by selecting a small time step and computing
a new concentration for each species at the end of the time step.
This process is then repeated by computing new rates with the new
concentration values and a new time step. Since it is often the case
that the ODE rate equations are dependent on the concentration of
many species, the results of ODE analysis may be erroneous if the
time step is too large. However, if the time step is too small, then
the analysis takes an extremely long time as many unnecessary steps
are taken to evolve the system. To address this problem, there have
been improvements that try to adapt the time step selection so that
it is able to make progress in evolving the system but is never so
large that the ODE rates for each species change too dramatically.

4 Stochastic Chemical Kinetics

As stated previously, CCK assumes that the system behaves contin-
uously and deterministically. When the amounts of each species are
very large, this assumption is reasonable as changes in the popula-
tion size of each species are relatively small and can be viewed as
continuous changes. In addition, small fluctuations of species
counts in a system where the population sizes are large can be safely
disregarded as they do not affect the system significantly. Therefore,
the dynamics of the system can also be viewed as a deterministic
process. In genetic circuits, the species counts are typically very
small and each reaction occurs sporadically. Since these circuits
violate the assumptions of CCK, the true behavior of the system
is not able to be captured when analyzing it using CCK.

220 Curtis Madsen et al.

Thus, researchers have turned to stochastic chemical kinetics (SCK)
for analyzing genetic circuits. SCK assumes that a chemical reaction
network behaves as a discrete-stochastic process. It achieves this
assumption by treating the network as a well-stirred system with a
discrete number of molecules. SCK can then simulate the time
evolution of the system by stochastically firing reactions to change
the amounts of each species in the system.

SCK keeps track of species’ amounts instead of species’ con-
centrations. Indeed, the system state in SCK is simply the popula-
tion of each species in the system, denoted~x ¼ ðx1; . . . ; xN Þ where
N is the number of species in the system. Changes in the system
state occur through the firing of reactions. When a reaction rj fires,
it applies a state change vector, ~vj ¼ ðv1j ; . . . ; vNj Þ, to the system
state where each vi j is the amount of change reaction rj causes to
species si’s population. The new system state is then defined by
~x þ~vj . When simulating a genetic circuit using SCK, all that mat-

ters are the current molecule counts as they are the only values that
can change and affect the propensity functions aj ð~xÞ for each reac-
tion rj in the system. Each aj ð~xÞ is the probability that, given ~x,
reaction rj occurs within the next infinitesimal time interval that is
so small that at most one reaction event can occur. Therefore, each
transition of the system only depends on the current state of the
system and does not depend on the history of the system. This fact
means that the circuit can be treated as a temporally homogeneous
jump Markov process [14].

The Markov process described by SCK can be defined as the
probability, Pð~x; t þ dt j~xinit; tinitÞ, that the system state is~x at time
t + dt given that it was ~xinit at time tinit. In order to compute this
probability, all the possible states that are only one step away from
the system being in state ~x are considered. The probability of
moving from each of these states to state ~x (i.e., each reaction
propensity) is multiplied by the probability that the system reached
state~x �~vj at time t and these values are summed together. Addi-
tionally, the probability that the system is already in state~x and no
reactions occur is added to this probability to give the final Markov
process probability. Formally, this probability is defined as:

Pð~x; t þ dt j~xinit; tinitÞ ¼Pð~x; t j~xinit; tinitÞ 1�
XM
j¼1

aj ð~xÞdt
" #

þ
XM
j¼1

½Pð~x �~vj ; t j~xinit; tinitÞaj ð~x �~vj Þdt �

(1)

where M is the number of reactions in the system. Taking the limit
as dt goes to 0 gives the chemical master equation (CME—see
Chapter 9 as well):

Efficient Analysis Methods in Synthetic Biology 221

http://dx.doi.org/10.1007/978-1-4939-1878-2_9

@Pð~x; t j~xinit; tinitÞ
@t

¼
XM
j¼1

½Pð~x �~vj ; t � dt j~xinit; tinitÞaj ð~x �~vj Þ

� Pð~x; t j~xinit; tinitÞaj ð~xÞ�
(2)

which defines the time evolution of the state probabilities for the
genetic circuit. Solving the CME is typically infeasible for most
genetic circuits due to the fact that Eq. 2 is a set of coupled
ODEs for each system state and most realistic systems have state
spaces that are infinite.

The behavior defined by the CME can be determined using the
SSA, an algorithm that generates a time course simulation trajec-
tory for the CME [12, 13]. The main advantage of the SSA over
other stochastic simulation approaches is that it steps over time
steps where no reactions occur. Algorithm 1 presents a version of
the SSA known as the direct method. This algorithm begins by
initializing the simulation time to tinit and the current state vector
which holds counts for each molecule to ~xinit (line 1). The algo-
rithm then enters a loop (lines 2–11) where the state vector is
updated and time is advanced until time reaches the time limit T.
During each iteration of this loop, the propensity function of each
reaction is computed and summed (lines 2–4), two random num-
bers are drawn (line 5), the time of the next reaction and the next
reaction are determined using these random numbers and the
propensity functions (lines 6–7), and the state vector and time are
updated and recorded (lines 8–9). Since the development of
the SSA, there have been many variations and improvements to
the algorithm. Among these are the first-reaction method [12], the
next-reaction method [11], the SSA-CR method [29], tau-leap-
ing [15], ssSSA [5], and wSSA [18].

5 Reaction-Based Abstractions

Even with all of the improvements to the SSA, analysis of genetic
circuits using SCK can still be very computationally intensive. One
way to alleviate this problem is to try to reduce the model to a
smaller, less complex model that still preserves the behavior of the
original model. This reduction can be done by applying abstrac-
tions to the model before it is analyzed.Reaction-based abstractions
attempt to reduce the number of species and reactions in the
model [17]. These abstractions typically improve simulation time
as they attempt to eliminate time scale separation in the model.
Namely, they try to remove fast reactions that slow down the
simulation because they fire often preventing the simulation from
making significant progress.

222 Curtis Madsen et al.

There are many reaction-based abstractions [17]. One example
abstraction is operator site reduction which is used to remove fast
reversible reactions in genetic circuit models that represent the
binding of RNAP, activators, and repressors to promoter operator
sites. This abstraction begins by first determining the species that
represent the operator sites of the network (i.e., the promoters).

It then finds how many different binding configurations that the
operator site can be in and computes a quasi-steady-state approxi-
mation value for each of these bindings. This approximation is
essentially the values of the species counts that form each binding
multiplied by an equilibrium constant for the reaction (the forward
rate constant over the reverse rate constant). The sum of these
values and 1 become the denominator of the new reaction rates
for the reduced reactions. For each binding reaction that leads to
production of another species, the reduced reaction rate is the
product of the rate of the original production reaction, the total
species count of the operator, and the quasi-steady-state approxi-
mation value for the binding over the summation described above.
The function rate(p), shown in Eq. 3, can be derived which returns
the rate of production initiated from promoter p.

Efficient Analysis Methods in Synthetic Biology 223

rateðpÞ ¼

npkopKoRNAP

1þKoRNAPþ
P

sr2RepðpÞ
ðKr sr Þnc if ActðpÞ ¼ 0

npkbpKoRNAPþ
P

sa2ActðpÞ
npkapKoaRNAPðKasaÞnc

1þKoRNAPþ
P

sr2RepðpÞ
ðKrsr Þncþ

P
sa2ActðpÞ

KoaRNAPðKasaÞnc otherwise

8>>><
>>>:

(3)

In this equation, np is the number of proteins produced per
transcript, ko is the open-complex production rate, kb is the basal
production rate, ka is the activated production rate,Ko is the RNAP
binding equilibrium constant, Koa is the activated RNAP binding
equilibrium constant, Kr is the repressor binding equilibrium con-
stant,Ka is the activator binding equilibrium constant, and nc is the
degree of cooperativity. Note that Act(p) returns the activating
species, sa, for promoter p, and Rep(p) returns the repressing spe-
cies, sr, for promoter p.

If there are complex formation reactions between species and
chemical inducers such as that between LacI and IPTG, complex
formation and sequestering abstractions can be applied to the
model. These abstractions are related as they both deal with com-
plex formation reactions. The complex formation abstraction uses a
steady state approximation to remove complexes from the original
model. This abstraction replaces the value of a complex, ci, in a rate
function with the expression Kcsisj , where si and sj are species that
bind to form ci and Kc is the complex formation equilibrium
constant. For instance, applying this abstraction to complex C1 in
the genetic toggle switch would replace each instance of it with
Kc|LacI||IPTG|. The sequestering abstraction, on the other hand,
uses the quasi-steady-state approximation in addition to the law of
mass conservation and replaces the value of a species, si, in a rate

function with the expression
sitotal

1þKcsj
, where sitotal is the variable for

the total amount of the species (free and in complex) and sj is the
variable for the other species that binds with si to form the complex.
This rate shows that as the amount of sj increases, the effective
amount of si decreases. In the genetic toggle switch, everywhere

TetR appears in a rate equation, it is replaced by jTetR j
1þKc jaTcj

when

using this abstraction.
Applying the operator site reduction and sequestering abstrac-

tions to the genetic toggle switch reaction network shown in
Fig. 3a, the model is reduced from 14 species and 13 reactions to
5 species and 5 reactions. This resulting reaction graph is shown in
Fig. 3b.

224 Curtis Madsen et al.

Fig. 3 Reaction graph for the genetic toggle switch (a) before and (b) after reaction-based abstraction.
Reaction rate equations are shown in the boxes representing each reaction. The edges between species and
reactions are labeled r if the species is a reactant in the reaction, p if the species is a product of the reaction,
and m if the species is a modifier in the reaction

6 Incremental Stochastic Simulation Algorithm

Typically, whenever a researcher wants to determine the behavior of
a genetic regulatory circuit, he or she analyzes it using either ODE
or SSA simulation. For example, simulation results for the genetic
toggle switch are expected to select either the ON or the OFF state
when the circuit is initially set to a state where all the signals are low.
Figure 4 shows the individual SSA simulation runs that capture this
expected behavior. In contrast, Fig. 5 shows an ODE simulation of
the toggle switch where the circuit neither switches ON or OFF but

a

b

Fig. 4 Individual SSA results for the genetic toggle switch initialized to a state where aTc, IPTG, LacI, TetR, and
GFP are low. (a) Plot showing two individual SSA runs for the LacI species. (b) Plot showing two individual SSA
runs for the TetR species

226 Curtis Madsen et al.

instead stabilizes at an intermediate state. Similarly, the plot of the
average of 100 SSA simulations shows the toggle switch going to a
false intermediate state. This plot also shows that the average of 100
runs suffers from the smoothing effect and fails to capture the noisy
fluctuations observed in the original circuit.

The goal of the iSSA, on the other hand, is to produce time
series data that represents typical behavior of a chemical reaction
network. The main idea behind the iSSA is to perform stochastic
simulation runs in small time increments [20, 33]. At the end of
each time increment, statistics are computed over all of the simula-
tion runs. These statistics are then used in the next time increment
to constrain and select a new starting state for each run.

The iSSA algorithm, presented in Algorithm 2, is essentially a
wrapper around Gillespie’s SSA that continually starts and stops
several simulation runs at the beginning and end of each time
increment. The iSSA takes as parameters a maximum number of
simulation runs (maxRuns), a simulation time limit (timeLimit),
a desired number of “typical” paths to follow (paths), an initial
state-vector and system time h~xinit; tiniti, and a collection of
reactions Rl ∈ 1. . . m. The iSSA begins by initializing the record
table where ending states are stored (X) to the initial state and
system time (line 1). At the start of each kth increment, the run
number, i, is reset to 1 (line 2). Next, a starting state is selected
using the select function along with the starting time for each
run in the increment (start) (line 3). In addition to computing
the starting state for the increment, the ending time for the incre-
ment, limit, is computed using the findLimit function (line 4).
At this point, the iSSA executes a step of Gillespie’s SSA where it

Fig. 5 ODE results and the mean x tð Þ of 100 SSA runs for the genetic toggle switch initialized to a state where
aTc, IPTG, LacI, TetR, and GFP are low

Efficient Analysis Methods in Synthetic Biology 227

selects a random time and reaction event and computes a new state
(lines 5–12). The newly computed simulation time is compared
against limit to determine if the algorithm needs to compute
another step of the SSA (line 13). If this limit has not been reached,
then the algorithm recomputes limit and another SSA step is
performed (line 14). Otherwise, the algorithm records the current
time and state for the current run by calling the record function
(line 15). If the maximum number of runs has not been reached, a
new simulation run is started from the original state chosen by the
select function (lines 16–18). Once all the runs have been com-
pleted for the time increment, the algorithm determines if it has
reached the end of the simulation time or if it needs to compute
another time increment (lines 19–21). Finally, the iSSA returns
several sequences of states equal to the paths variable chosen by
the select function that represents that many “typical” simulation
traces of the model.

Previously published variants of iSSA are susceptible to being
skewed by outlier results, are highly dependent on the time incre-
ment returned by findLimit, and are incapable of producing
results for more than one “typical” path [20, 33]. To combat
these problems, the iSSA variant presented here utilizes a clustering
algorithm to follow multiple “typical” paths for a circuit, uses an
adaptive time step, and selects the median states from the previous
increment’s clusters as the starting states in the next increment.
In order to accomplish these goals, the record function
simply records the ending state for each run in a state table. The
findLimit function is defined to be doubly adaptive as in Algo-
rithm 3. The general idea of this function is to continually update
the remaining time in the time increment based on changes in the
slowest reaction’s propensity and how much progress has been
made in the increment so far. In this algorithm, the amount of
progress made towards the current limit is computed by subtracting
the current time, t, from the starting time, start, and by multi-
plying this value by the smallest propensity from the previous time
increment, prev_amin (line 1). Then, the remaining amount of
desired events is computed by finding the difference between the
desired number of events, #events, and the previously computed
progress, progress (line 2). Next, the current smallest propensity
value is stored into the prev_amin variable for future computations
(line 3), and the new time limit is returned by dividing the remain-
ing progress, remaining, by the current smallest propensity value
and adding this difference to the starting time (line 4). It should be

228 Curtis Madsen et al.

noted in this algorithm that when t equals start, progress
equals zero and the algorithm returns a limit that tries to capture
the desired number of the slowest event. By continually updating
the time increment in this manner, this method is able to adjust to
drastic changes in reaction propensities and capture approximately
#events of the slowest reaction event.

The select function uses the k-means clustering algorithm on
the data from the previous increment found in the record table [22].
This clustering creates paths clusters the first time the function is
called for an increment, and this result is cached so that it can be
drawn from in subsequent calls to select. The select function
proportionally returns an ending state that has the smallest Euclid-
ean distance from one of the medians of each cluster based on how
many ending states are in each cluster. The iSSA defined in this way
is capable of returning multiple paths by stitching the starting
points of each increment with the selected ending point that has
the highest proportion of runs that ended in its cluster.

Efficient Analysis Methods in Synthetic Biology 229

Figure 6 illustrates how the iSSA is able to utilize the k-means
clustering algorithm and an adaptive time step to select two rep-
resentative median states in each time increment. The gray circles
represent the clusters and the thick black lines represent the
selected paths. An example of using the iSSA method to simulate
the genetic toggle switch is shown in Fig. 7 in which the toggle
switch starts in a state where both inputs are low and both LacI
and TetR are low. The circuit has two “typical” behaviors in this
case. It can either switch to the ON state or the OFF state. The
iSSA captures both of these cases showing that it is capable of
tracking multiple paths.

Fig. 6 Illustration showing how the iSSA performs simulations. At the end of each time increment, the ending
states are clustered (clusters are shown by gray circles) and a state from each cluster is selected as a starting
state for the next time increment. The algorithm then starts a number of runs from each representative state
equal to the number of runs that ended in that representative state’s cluster. The algorithm is using an
adaptive time increment and selecting the median state from each cluster

230 Curtis Madsen et al.

7 Stochastic Model Checking

When designing and analyzing genetic circuits, researchers are
often interested in the probability that the system reaches a given
state or satisfies a specific condition within a certain amount of
time. Usually, this process involves simulating the system to pro-
duce some time series data and analyzing this data to discern the
state probabilities. However, as the complexity of models of genetic
circuits grow, the amount of simulation data needed to determine

a

b

Fig. 7 iSSA simulation results for the genetic toggle switch. (a) Plot showing two paths for the LacI species. (b)
Plot showing two paths for the TetR species. In this simulation, the toggle switch starts out in a state with both
inputs low as well as LacI and TetR being low. This initial condition leads to the circuit selecting to switch to
the ON or the OFF state. As seen in the plots, the iSSA is able to capture both of these cases

Efficient Analysis Methods in Synthetic Biology 231

these probabilities within a certain confidence interval becomes
prohibitively expensive to compute. To address this problem,
researchers can use stochastic model checking techniques employ-
ing Markov chain analysis methods to find the state space of the
system directly and compute the probability of being in each state at
a given time. However, due to genetic circuits having infinite state
spaces, this goal is accomplished by logically abstracting a genetic
circuit into a finite-state CTMC. This CTMC can then be analyzed
using Markov chain analysis to determine the likelihood that the
circuit satisfies a given property. This methodology is used to
determine the likelihood of certain behaviors in a genetic circuit.
When compared to stochastic simulation-based analysis of the same
circuit, the results agree with the reported probabilities but obtain a
substantial speedup over these approaches.

7.1 Translation of a

Genetic Circuit into a

CTMC

The critical step in preparing a genetic circuit for stochastic model
checking is the conversion of the circuit into a CTMC. This con-
version process begins by finding the state space of the genetic
circuit. First, a sparse matrix where each entry, pi,j, represents the
rate of moving from state i to state j is constructed. Next, a state is
created with an encoding of the initial values of the species in the
model. The conversion then performs a depth first search by chang-
ing one species encoding at a time to a higher or lower encoding if
they exist in a predetermined level set L. Each valid change found
this way is pushed onto a stack. The algorithm then pops an
encoding off the stack and checks to see if a transition rate for
moving from the current state to the new state exists in the matrix.
If it does, the algorithm stops exploring this path and pops the next
change off the stack to explore further. Otherwise, the transition
rate is calculated and is added to the matrix. Figure 8 shows a
graphical representation of the state space for the genetic toggle
switch with thresholds selected at 0, 30, and 60 for both LacI and
TetR yielding nine states labeled S0 through S8. State S0, the state
where LacI is at its highest level of 60 and TetR is at its lowest level
of 0, is the initial state.

Once the entire state space of the genetic circuit is found, the
transition rates between the states are computed and inserted into
the sparse matrix. These rates are determined using the reaction
rates from the genetic circuit after the reaction-based abstractions
described in Section 5 have been applied to the model. These rates
are computed using the formulas in Eqs. 4 and 5:

productionðs ; l ; l 0Þ ¼

P
p2ProðsÞ

np � rateðpÞ

ðl 0½s � � l ½s �Þ
(4)

degradationðs ; l ; l 0Þ ¼ kdl ½s �
ðl ½s � � l 0½s �Þ (5)

232 Curtis Madsen et al.

In these equations, s is the species value that is changed by the
transition rate equation, l is the current state array, l 0 is the next
state array, and Pro(s) returns the set of promoters that initiate
transcription of genes that lead to the production of species s.
When the state transition increases the level of species s from l[s]
to l 0[s], then the production formula is used, and when the state
transition decreases the level of s from l[s] to l 0[s], then the degra-
dation formula is used. The rate for production is computed by
determining the rate of production for each promoter p which
produces species s using the rate(p) function defined in Eq. 3. To
obtain a numerical value from this equation, the species variables in
the rate(p) equation are replaced by indexing into the l state array to
get their current values. This rate is then multiplied by np, the
number of proteins produced per transcript, to convert this rate
into the rate for a single protein production. The rate of degrada-
tion is computed as kdl[s] where kd is the degradation rate parame-
ter and l[s] is the starting level for species s before degradation.
In both cases, these rates must be normalized by the difference in
the level before and after the state change. This normalization is
necessary because the rates are for the production or degradation
of a single molecule of s while the state change only occurs after
l 0[s] � l[s] molecules are produced or l[s] � l 0[s] molecules are
degraded. The conversion process coupled with the corresponding
rate functions have been carefully constructed such that the CTMC
generated gives a reasonable approximation of the behavior of the
genetic circuit. This translation procedure allows the user to effi-
ciently trade-off between accuracy and analysis time by adjusting
the number of thresholds.

S2
<60,60>

Prob = 0.0002

S1
<60,30>

Prob = 0.00850.015

S3
<30,60>

Prob = 0.0085

0.015

0.000366 S0
<60,0>

Prob = 0.43970.0075

S4
<30,30>

Prob = 0.0208

0.015

0.000366

S5
<30,0>

Prob = 0.0404

0.015 0.165829

0.001454

S6
<0,0>

Prob = 0.0018

0.0075

0.001454

0.0075

0.001454

S7
<0,30>

Prob = 0.0404

0.0075

0.000366

0.015

S8
<0,60>

Prob = 0.4397

0.0075 0.165829

0.165829

0.001454

0.0075

0.165829

0.000366

0.015

<LacI,TetR>

Fig. 8 The CTMC annotated with probabilities after applying steady state Markov chain analysis

Efficient Analysis Methods in Synthetic Biology 233

7.2 Specifying a

Property

CTMC properties can be specified using continuous stochastic logic
(CSL) [4, 21]. The grammar for CSL properties used by the
stochastic model checking algorithm presented in this chapter is
given as follows:

Prop ::¼ U ðT;Ψ;ΨÞjF ðT;ΨÞjGðT;ΨÞjStðΨÞ
Ψ ::¼ truejΨ ^Ψj:Ψjϕ � ϕjϕ > ϕjϕ ¼ ϕ

ϕ ::¼ vijcijϕþ ϕjϕ� ϕjϕ�ϕjϕ=ϕjProp
T ::¼ truejT ^ Tj:Tjt � cijt > cijt ¼ ci

where vi is a variable, ci is a constant, and t stands for time in the
system.

Table 1 defines the symbols used in the CSL grammar. As
described in this table, Ψ represents a state formula that must be
true in a given state and can be composed of other state formulae
combined using logical connectives or comparisons between
numerical expressions, ϕ. The formula U ðT ;Ψ1;Ψ2Þ represents
the probability that an execution of the system satisfies the until
formula Ψ1U

TΨ2 which means that Ψ1 must remain true until Ψ2

becomes true within the time frame that the time bound expres-
sion, T, evaluates to true. The eventually operator, F , is essentially
used as a shorthand for describing an until property where the left-
hand side of the formula is true. For example, the eventually
formula F ðT;ΨÞ would simply require that Ψ becomes true before
T evaluates to false. The globally true formulaGðT;ΨÞ requires that
Ψ remains true during the time that T evaluates to true. This
formula builds off of the eventually operator by requiring that :Ψ
does not eventually become true while T evaluates to true and
returns one minus the resulting probability. The formula StðΨÞ
represents the probability that once the system reaches its steady
state, it is in a state whereΨ is satisfied. It should be noted that Prop
is a symbol in ϕ’s grammar rule which allows for CSL properties to

Table 1
CSL grammar symbols

Symbol Description

Prop CSL property that, when checked, produces the probability that a state formula is true
in the steady state or within a given time bound expression.

Ψ State formula that can be the logical conjunction of other state formulae or a comparison
of numerical expressions.

ϕ Numerical expression that can be a variable, a constant, a CSL property, or an arithmetic
operator applied to other numerical expressions.

T Time bound expression that can be the logical conjunction of other time bound expressions
or a comparison of the time variable to a constant.

234 Curtis Madsen et al.

be nested within other CSL properties. As a shorthand,Ψ and Tcan
also contain false, _ , < , and � which are easily derived.

7.3 Stochastic Model

Checking

After the CTMC is constructed and a CSL property has been
specified, a stochastic model checker can check each state to deter-
mine the likelihood of the CSL property. There are two types
of stochastic model checking used to compute the likelihood
that a property is true: statistical and numerical-based techni-
ques [21, 34]. Statistical techniques involve simulating a system a
large number of times and terminating whenever a property is
shown to be true or false. When all of the simulations are complete,
statistics are calculated on how many simulations satisfied the prop-
erty in the time allotted versus the number of simulations that failed
to do so. One downside of using statistical techniques is that the
more rare an event is, the more simulations that need to be run in
order to observe it, and performing these simulations may cause the
time that it takes to compute a likelihood to become prohibitively
expensive. Numerical methods, on the other hand, attempt to
determine these likelihoods in a more direct method. They employ
Markov chain analysis to compute the probability of a CSL property
being satisfied. These methods are often more efficient than statis-
tical techniques; however, they require that the state space be
computable. Both statistical and numerical methods have been
utilized by many tools such as the probabilistic model checker
PRISM [16].

Algorithm 4 determines the probability within an error bound,
ε, of a given CSL property, Φ, on a genetic circuit model, M.
Additionally, this algorithm requires a set of levels, L, that includes
an ordered list of threshold levels, Ls, for each species s ∈ S in the
model. Each level, ls,i represents a critical threshold in the amount of
the species s. It is assumed that ls,0 is always 0, and ls ;i�1 < ls ;i for all
i > 0. The first step of the algorithm converts the model into a
CTMC, C, using logical abstraction discussed earlier in this section
and property pruning described at the end of this section (line 1).
Next, the algorithm parses the CSL property and walks its expres-
sion tree looking for any nodes that represent nested properties
(line 2). If any nested properties are found, the algorithm loops
over each state inC (line 3) and altersM by setting its initial state to
the Markov chain state, s (line 4). The algorithm then recursively
calls itself for each altered model,M0, using the nested property,Φ0,
as the new CSL property to be checked (line 5). The probability of
each recursive call, p, is stored as a variable of each s where it can be
referenced when determining if the state satisfiesΦ (line 6). Once all
of the nested properties are dealt with, the algorithm determines the
amount of time necessary for the analysis, t, which is essentially the
maximum value that time can take while still allowing for the time
bound expression to evaluate to true in the transient property or
infinity,1, in the case of a steady state property (line 7). Finally, the

Efficient Analysis Methods in Synthetic Biology 235

algorithm checks whether transient or steady state analysis should be
performed and calls the appropriate analysis method (lines 8–11).
When checking transient properties, the model checker determines
if the encoding either does not satisfy the left-hand side of an until
formula or satisfies the right-hand side of the formula since all
transient properties can be written as until formulae. If either of
these checks holds, the state is marked as absorbing and all transi-
tions out of the state are pruned from the CTMC before analysis.
The transient analysis method utilizes the well-known method of
uniformizationwhile the steady state analysis method uses the power
iteration method [31].

An example of using the steady state analysis method to analyze
the genetic toggle switch is presented in Fig. 8. In this example, the
user is interested in the probability of the system being in a state where
LacI is 0 in the long run which is represented by the CSL property, St
(LacI ¼ 0). Summing over the states that satisfy this property, states
S6, S7, and S8, results in a probability of about 48.2%. Figure 9 shows
the CTMC in Fig. 8 annotated with probabilities after applying tran-
sient Markov chain analysis to determine the probability of the CSL
property F(t � 100, LacI ¼ 0). Note that states S6, S7, and S8 are
marked as absorbing states, since they satisfy the property. The sum of
the probability of reaching these states represents the probability of
satisfying the property, which is about 5.9%.

S2
<60,60>

Prob = 0.0001

S1
<60,30>

Prob = 0.01300.015

S3
<30,60>

Prob = 0.0006

0.015

0.000366 S0
<60,0>

Prob = 0.84160.0075

S4
<30,30>

Prob = 0.0125

0.015

0.000366

S5
<30,0>

Prob = 0.0731

0.015 0.165829

0.001454

S6
<0,0>

Prob = 0.0540

0.0075

0.001454

0.0075

0.001454

S7
<0,30>

Prob = 0.0049

0.0075

0.000366

0.015

S8
<0,60>

Prob = 0.0002

0.0075

<LacI,TetR>

Fig. 9 The CTMC annotated with probabilities after applying transient Markov chain analysis with the CSL
property, F(t � 100, LacI ¼ 0)

236 Curtis Madsen et al.

8 Case Studies

The iSSA and stochastic model checking techniques are useful
methods on their own for determining the validity of models of
genetic circuits; however, when these methods are used in concert,
they can be used to effectively perform design space exploration of
genetic circuits. This section presents several examples where using
the iSSA and stochastic model checking allows for better design
choices when constructing genetic circuits. Among the genetic
circuits analyzed are two genetic oscillators (the repressilator and
the dual-feedback genetic oscillator) and three state holding gates
(the genetic toggle switch, three implementations of a genetic
Muller C-element, and a quorum trigger).

8.1 Repressilator The repressilator model shown in Fig. 10 is comprised of the
species CI, LacI, and TetR that are connected in a loop [7]. This
circuit is a ring oscillator where each species represses the next one
forming the loop. When one of the species (e.g., LacI) is produced,
it represses the next species in the chain (e.g., TetR). This repres-
sion allows the species downstream of that species to start being
produced (e.g., CI) which in turn leads to the repression of the first
species. This cycle continues causing this circuit to oscillate. When
iSSA is used as in Fig. 11, the time increments change to try and
capture 25 of the slowest reaction events in each increment which
leads to stable oscillatory results.

After using the iSSA to verify that the repressilator oscillates,
stochastic model checking can be used to determine the probability
that the circuit oscillates. Figure 12 presents the results of applying
steady state analysis to the repressilator using 9 levels evenly
spaced between 0 and 80 for CI, LacI, and TetR and the CSL
property, St((CI � 30∧F(t � limit, CI < 30) � 0.95)∨(CI
< 30∧F(t � limit, CI � 30) � 0.95)), which determines the like-
lihood that the value of the CI species is low and goes high or is
high and goes low within a predetermined amount of time. These
results show that as the time limit is extended, the likelihood of the
circuit oscillating increases until for 800 s, it is almost certain to

Efficient Analysis Methods in Synthetic Biology 237

oscillate. In addition to the probability increasing as the time limit
increases, the run-time also increases because it takes longer to
perform analysis of nested properties with larger time bounds.
The run-time for a time limit of 200 s is 3 min, for 400 s is 5 min
and 40 s, for 600 s is 8 min and 25 s, and for 800 s is 11 min. This
type of analysis can give a designer an idea of how reliable a circuit
like the repressilator is as compared to other oscillator circuits so
that the best circuit can be selected for a given task.

8.2 Dual-Feedback

Genetic Oscillator

The dual-feedback genetic oscillator model shown in Fig. 13 is
composed of two identical promoters, P1 and P2, which are acti-
vated by AraC and repressed by LacI [32]. LacI is produced when

Fig. 11 iSSA results for the repressilator. This method adapts the time increment in order to try and capture 25
of the slowest reaction events in each increment which allows it to obtain stable results as expected

TetR

tetRlacIcIPLtet01 PR

CI LaCI

PLlac01

Fig. 10 Model for repressilator. In this circuit, CI represses the production of LacI, LacI represses the
production of TetR, and TetR represses the production of CI. This model is expected to produce oscillatory
behavior of the CI, LacI, and TetR species

238 Curtis Madsen et al.

transcription is initiated at promoter P1 and the lacI gene is tran-
scribed. Similarly, AraC is produced when transcription is initiated
at promoter P2 and the araC gene is transcribed. AraC builds up in
the system causing LacI to build up. LacI is then able to repress
promoters P1 and P2 which causes both AraC and LacI concentra-
tions to drop leading to AraC building up again causing the circuit
to oscillate. The iSSA results for this system are shown in Fig. 14
and clearly indicate the oscillatory behavior of this system.

LacI AraC

P1 P2

lacI araC

Fig. 13 Model for the dual-feedback genetic oscillator. In this model, LacI
represses itself and AraC through promoters P1 and P2. Conversely, AraC acti-
vates itself and LacI through the same promoters. This model is expected to
produce oscillatory behavior of the LacI and AraC species

Fig. 12 Stochastic model checking results for the repressilator. This plot presents the results of checking a
property on the repressilator that represents states of the circuit switching from low to high or high to low
within a specified amount of time. The probabilities represent the likelihood that the circuit oscillates

Efficient Analysis Methods in Synthetic Biology 239

Similar to the repressilator, the dual-feedback genetic oscillator
can be analyzed using stochastic model checking to determine the
probability that it oscillates within a certain time bound. Figure 15
presents the results of applying steady state analysis to this model
using 8 levels evenly spaced between 0 and 120 for AraC and LacI

Fig. 14 iSSA simulation results for the dual-feedback genetic oscillator. This plot shows the results of applying
the iSSA using 100 simulation runs and 25 slow reaction events per time increment

Fig. 15 Stochastic model checking results for the dual-feedback genetic oscillator. This plot presents the
results of checking a property on the dual-feedback genetic oscillator that represents states of the circuit
switching from low to high or high to low within a specified amount of time. The probabilities represent the
likelihood that the circuit oscillates

240 Curtis Madsen et al.

and the CSL property, St((AraC � 60∧F(t � limit, AraC < 60)
� 0.95)∨(AraC < 60∧F(t � limit, AraC � 60) � 0.95)), which
captures the probability that AraC is low and goes high or is high
and goes low within a predetermined amount of time. Like the
repressilator, these results show that as the time limit is extended,
the likelihood of the circuit oscillating increases. The run-time for a
time limit of 1,000 s is 40 s, for 2,000 s is 1 min and 25 s, for
3,000 s is 1 min and 55 s, and for 4,000 s is 2 min and 40 s.
These results show that the dual-feedback genetic oscillator has a
much longer period than the repressilator. A designer could use this
information to select the appropriate genetic oscillator basedonhow
fast the oscillations need to be for a particular application.

8.3 Genetic Toggle

Switch

For our running example, the genetic toggle switch, the desired
behavior is that when it starts in the OFF state, it should change to
the ON state when IPTG is provided. It should remain in this state
even after IPTG is removed. However, it should change to the OFF
state after aTc is added, and it should remain in that OFF state even
after it is later removed. Results using the iSSA to simulate the
genetic toggle switch are shown in Fig. 16. In this figure, the iSSA
accurately predicts that the circuit typically behaves exactly as
desired.

Due to stochasticity and noise, a state holding gate like the
toggle switch can fail. A useful experiment for this circuit is to
determine the probability that it changes state erroneously within a
cell cycle (2,100 s) which occurs if some spurious production of the

Fig. 16 iSSA simulation results for the genetic toggle switch. This plot shows results of applying the iSSA using
100 simulation runs and 25 slow reaction events per time increment. The circuit is supposed to switch ON at
5,000 s and OFF at 15,000 s due to varying inputs

Efficient Analysis Methods in Synthetic Biology 241

low signal inhibits the high signal enough to allow it to degrade away
and switch state. For this experiment, the toggle switch is initialized
to a starting state where LacI is set to a high state of 60molecules and
TetR is set to a low state of 0 molecules. In order to test whether or
not it changes state, the CSL property, F(t � 2100, LacI < 20
∧TetR > 40), is checked. This property makes states absorbing in
which LacI has dropped below 20 (the low state) and TetR has risen
above 40 (the high state). For this analysis, 9 levels are selected for
LacI uniformly distributed between 0 and 80, and 11 levels are
selected for TetR uniformly distributed between 0 and 50, which
produces a CTMC with 99 states. Figure 17 shows a comparison of
results found using simulation bothwith andwithout reaction-based
abstraction [19] and applying transient Markov chain analysis to the
toggle switch. This figure shows that the transient Markov chain
analysis tracks the simulation results fairly closely and ends up with a
final probability of 1.35% which is quite close to the 1.2% found by
simulation of the full model. However, the transient Markov chain
analysis method greatly outperforms the simulation-based
approaches as it takes under 1 s to obtain results while the simulation
with abstraction takes about 3 min and 15 s to perform 32,000 runs
and the simulation without abstraction takes about 43 min for the
same number of runs.

The next analysis determines the response time of the circuit
when switching from the OFF state to the ON state, and these
results are presented in Fig. 18. This analysis uses the same CSL

Fig. 17 Time course plot showing the probability of the genetic toggle switch changing state erroneously. This
plot compares the results of performing 32,000 simulation runs both with and without reaction-based
abstraction with Markov chain analysis. The CSL property used in this case is F(t � 2100, LacI < 20
∧TetR > 40)

242 Curtis Madsen et al.

property but a slightly different initial condition. As before, LacI is
set to 60 and TetR is set to 0, but IPTG is set to 100 representing
that it has just been added to set the toggle switch to the high state.
For this experiment, 14 levels for LacI are selected uniformly
distributed between 0 and 130, since individual simulation results
show it reaching a much higher value than in the last experiment.
For TetR, only 5 levels are used uniformly selected between 0 to 60
because less resolution is required to catch its change from a low to
high state. This level selection results in a CTMC of 70 states.
Again, transient Markov chain analysis tracks the simulation results
fairly closely ending up with a final probability of 98.7% while the
simulation of the full model results in 98.9%. Also like the previous
example, the transient Markov chain analysis method outperforms
the simulation-based approaches as it takes about a half a second to
obtain results while 32,000 simulation runs of the reaction-based
abstracted model takes about 1 min and the full model takes about
3 hours and 12 min. It should be noted that the reason that the full
model takes so much longer to simulate than the abstracted model
is that in the presence of IPTG, the full model simulation spends an
exorbitant amount of time firing binding and unbinding reactions
of LacI and IPTG.

With this analysis method, the design space can be efficiently
explored. For example, a genetic designer may consider the effect
of parameter variation on robustness and performance. One impor-
tant parameter for the genetic toggle switch is the degradation rate,

Fig. 18 Time course plot showing the probability of the genetic toggle switch changing state correctly in
response to an input change. Like Fig. 17, this plot compares the results of using simulation both with and
without reaction-based abstraction and analysis of the CTMC using Markov chain analysis with the same CSL
property, F(t � 2100, LacI < 20 ∧TetR > 40), but with a different initial value of IPTG

Efficient Analysis Methods in Synthetic Biology 243

kd, and the results of varying this parameter are shown in Fig. 19.
These results indicate that tuning the degradation rate has a signifi-
cant effect. If it is too high, the circuit is less robust, but if it is too
low, the circuit responds too slowly.

8.4 Genetic Muller

C-Element

The next circuit analyzed is a genetic Muller C-element [25, 26].
C-elements are commonly used by asynchronous designers to coor-
dinate parallel processes. To achieve this task a C-element maintains
its output until both inputs agree (i.e., they both go to a high state

a

b

Fig. 19 Results showing the effect of varying the degradation rate, kd, for the genetic toggle switch. (a) Plot
depicting the probability of the genetic toggle switch changing state erroneously within 2,100 s for different
values of kd. (b) Plot depicting the probability of the genetic toggle switch changing state correctly within
2,100 s in response to input change for different values of kd

244 Curtis Madsen et al.

or both go to a low state). When either of these situations occur,
the output of the C-element changes to match the inputs. With
mixed inputs, on the other hand, the C-element produces an
output that is the same as the last time the inputs agreed. Our
analysis considers three implementations of this circuit with their
logic diagrams shown in Fig. 20. For each of these circuits, the
inputs are IPTG and aTc and the output is GFP similar to the
genetic toggle switch example. The first implementation shown in
Fig. 20a has a majority gate design where the two inputs to the
circuit and a feedback signal from the circuit’s output are fed
through three NAND gates in varying combinations. The outputs
from these NAND gates are then compared with each other and the
signal that has the majority of the votes is selected as the new
output. The next implementation shown in Fig. 20b has a speed-
independent design. The idea behind this circuit is that no matter
how fast or slow the gates change, the circuit behaves correctly. The
final implementation shown in Fig. 20c uses the genetic toggle
switch described earlier with some additional logic. This circuit
takes an inverted NAND gate signal of the two inputs as the set
part of the circuit and an inverted NAND gate signal of the inverted
inputs as the reset part of the circuit.

These circuits have slightly different state holding properties
when compared to the genetic toggle switch. Instead of switching
when one input is applied or taken away, these circuits only switch
when both inputs are applied; however, they maintain whatever
state they are in until both of the inputs are simultaneously ON
or OFF. Figures 21, 22, and 23 present iSSA simulations of the
majority gate, speed-independent, and toggle switch implementa-
tions, respectively. In each of these analyses, IPTG is added to the
circuit at 5,000 s. Each circuit does not switch from OFF to ON,
however, until aTc is also added at time 10,000 s. When IPTG is
removed at 15,000 s, the circuits maintain state until aTc is
removed at 20,000 s. These results show that the iSSA clearly
captures these state changes.

Since stochastic noise is present in these circuits as it is in the
genetic toggle switch, these circuits are analyzed to find their failure
and response rates. Instead of analyzing these circuits against a
property that only checks the amount of GFP, dual-rail properties
are analyzed because they provide a better measure of the circuit
changing state. Figure 24a shows a comparison of the failure rate
analysis when each circuit is set in its high mixed state meaning that
one input is high, one input is low, the output is high, and the
internal species are set appropriately. For this analysis, the CSL
property, F(t � 2100, GFP < 20 ∧E > 40), is used to analyze
the majority gate implementation with 16 evenly spaced levels for
GFP between 0 and 150, 16 evenly spaced levels for E between
0 and 45, 6 evenly spaced levels for D between 0 and 250, and 5
evenly spaced levels for X, Y, and Z between 0 and 120. The CSL

Efficient Analysis Methods in Synthetic Biology 245

property for the speed-independent implementation is F(t � 2100,
S3 < 20 ∧S2 > 80), and the levels used are 11 evenly spaced
levels for S2 between 0 and 100, 11 evenly spaced levels for S3
between 0 and 150, 6 evenly spaced levels for S1 between 0 and

Fig. 20 Logic diagrams for the genetic Muller C-element. Each of these diagrams is made up of a collection of
NAND gates, AND gates, OR gates, inverter gates, and set-reset flip-flops wired together in different
configurations. AND gates are D-shaped gates and produce a high signal if both inputs are high and a low
signal otherwise. NAND gates are also D-shaped gates, but they additionally have a dot at the end of them and
produce the inverse of an AND gate (a low signal if both inputs are high and a high signal otherwise). OR gates
are arrow-shaped gates that produce a high signal if either or both inputs are high and a low signal if both
inputs are low. Inverter gates are triangle-shaped gates with dots at the end and invert a signal (high signals
are changed to low signals and vice versa). Set-reset flip-flops are rectangular-shaped boxes that take a set
signal (S) and a reset signal (R) and produce an output signal (Q). When S is high, Q is set to high, and when R
is high, Q is set to low. (a) Majority gate design. (b) Speed-independent design. (c) Toggle switch design

246 Curtis Madsen et al.

250, 4 evenly spaced levels for S4 and GFP between 0 and 120, and
4 evenly spaced levels for X, Y, and Z between 0 and 90. Finally, the
CSL property for the toggle switch implementation is
F ðt � 2100;Y < 40 ^ Z > 80Þ, and the levels used are 16 evenly
spaced levels for Y between 0 and 225, 16 evenly spaced levels for Z
between 0 and 90, 6 evenly spaced levels for F between 0 and 250, 5

Fig. 21 Plot depicting iSSA simulation results for the majority gate genetic C-element using 100 simulation
runs and 25 slow reaction events per time increment

Fig. 22 Plot depicting iSSA simulation results for the speed-independent genetic C-element using 100
simulation runs and 25 slow reaction events per time increment

Efficient Analysis Methods in Synthetic Biology 247

evenly spaced levels for GFP between 0 and 120, and 5 evenly
spaced levels for D, E, and X between 0 and 80.

Run-times for these analyses are 13 min and 15 s for the
majority gate, 20 min and 15 s for the speed-independent, and
21 min and 45 s for the toggle switch. This increase in run-time
over the genetic toggle switch is due to the fact that each of these
models contains substantially more species. In addition, most of the
species in the C-element models have more levels defined for them
resulting in larger CTMCs. For instance, compared to the genetic
toggle switch’s 70 to 99 states, the majority gate implementation
has nearly 200,000 states, the speed-independent implementation
has about 750,000 states, and the toggle switch implementation
has nearly 1,000,000 states. From the plot in Fig. 24a, it can be
discerned that the toggle switch implementation is the most likely
to maintain its state with mixed inputs, followed by the speed-
independent implementation, and finally the majority gate
implementation.

In order to determine the response time of the C-element
circuits, the same initial condition, levels, and properties for each
circuit are used with the exception that both inputs are set low
indicating that the circuit’s output should change from high to low.
The results of this analysis are shown in Fig. 24b where it can be
seen that the toggle switch implementation again outperforms the
speed-independent and majority gate circuits. These analyses have
similar run-times to the failure rate experiment with the majority
gate taking 11 min and 15 s, the speed-independent taking
20 min, and the toggle switch taking 22 min.

Fig. 23 Plot depicting iSSA simulation results for the toggle switch genetic C-element using 100 simulation
runs and 25 slow reaction events per time increment

248 Curtis Madsen et al.

After determining that the genetic toggle switch Muller C-
element is the most robust (perhaps a surprising conclusion to
some), we can now perform various parameter variation experi-
ments to determine the best parameter choices for the application.
Figure 25 gives an example of varying the degradation rate of this
circuit similar to the experiments performed on the genetic toggle
switch in Fig. 19. These results show comparable behavior to that
of the genetic toggle switch indicating that there is a trade-off

a

b

Fig. 24 Results showing the probability of the C-elements changing state for varying inputs. (a) Time course
plot showing the probability of the C-element implementations losing state with mixed inputs. (b) Time course
plot showing the probability of the C-element implementations changing state correctly in response to both
inputs changing state. These plots compare the results of using Markov chain analysis on the majority gate
implementation, the speed-independent implementation, and the toggle switch implementation

Efficient Analysis Methods in Synthetic Biology 249

between robustness and responsiveness when varying this
parameter.

8.5 Quorum Trigger The final circuit analyzed is the quorum trigger shown in Fig. 26.
This circuit is designed to be placed in many cells in a population
where it is supposed to allow cells to switch into an ON state in the
presence of a signal in the environment. It works by allowing the
production of LuxR to be activated by an environmental signal
which can then bind with a hormone synthesized by LuxI known

a

b

Fig. 25 Results showing the effect of varying the degradation rate, kd, for the toggle switch implementation of
the genetic Muller C-element. (a) Plot depicting the probability of the toggle switch implementation of the
genetic Muller C-element changing state erroneously for different values of kd. (b) Plot depicting the
probability of the toggle switch implementation of the genetic Muller C-element changing state correctly in
response to an input change for different values of kd

250 Curtis Madsen et al.

as 3OC6HSL to form a complex. This complex then continues to
activate LuxR and LuxI production leading to the cell locking into
the ON state. In order to reinforce the switching in all the cells in
the quorum, this circuit contains a method to communicate to
other cells through the 3OC6HSL signal which can diffuse
through the cellular membrane and into the medium to be taken
up by other cells and affect their quorum trigger circuits.

Figures 27, 28, and 29 present the results of applying the iSSA
to the quorum trigger while varying the basal rate of production. In
Fig. 27, this rate is set to 0 and the iSSA predicts that the circuit
does not switch ONwhen this is the case. When the rate is increased
to 0.0001 as in Fig. 28, the iSSA shows that the circuit only
switches when the environmental signal is set to a high value.
However, the iSSA always predicts that the circuit switches ON
when the basal rate is too high as shown in Fig. 29.

Stochastic model checking analysis of the quorum trigger cir-
cuit is able to confirm the predictions made by the iSSA and give
some insight into the likelihood of the circuit switching ON for
various values of kb. Figure 30 shows that the probability that the
circuit switches when the value of kb is 0 meaning that without
leakage in production, the circuit cannot switch. Figure 31, on the
other hand, shows that the circuit switches ON after 10,000 s with
a probability of about 8 % for a low environmental signal and with a
probability of about 70 % for a high environmental signal. This
difference is desirable as there should be a marked difference in how
the circuit responds in the presence of the environmental signal.
Confirming the iSSA analysis, having a basal rate that is 0.01 causes
the circuit to switch ON with 100 % probability regardless of the

Fig. 26 The quorum trigger circuit. In this genetic circuit, the production of LuxR is activated by a signal in the
environment of the circuit. In addition to this activation interaction, LuxI and LuxR production is activated by a
complex which is formed when LuxR binds with 3OC6HSL, a hormone synthesized by LuxI that diffuses
through a cell’s membrane and into the medium the cell is in. This circuit basically works by detecting the
presence of the environmental signal and switching to an ON state where it then communicates with other
cells through the 3OC6HSL signal to let them know that they should also switch ON

Efficient Analysis Methods in Synthetic Biology 251

value of the environmental signal as is seen in Fig. 32. The stochas-
tic model checking results are obtained with run-times of 2 s when
kb is 0, 20 s when kb is 0.0001, and 20 s when kb is 0.01. These
analyses show that a designer of this circuit would need to carefully
tune the basal rate of production to be a value somewhere in the
neighborhood of 0.0001 in order to ensure that the circuit does
not switch ON too early but also does switch ON in a medium
where the environmental signal is present.

Fig. 27 iSSA simulation results for the quorum trigger when the basal rate of production, kb, is set to 0. This
plot shows that the circuit is unable to switch ON without some leakage in production

Fig. 28 iSSA simulation results for the quorum trigger when the basal rate of production, kb, is set to 0.0001.
This plot shows that the circuit only switches ON when the environmental signal is high for a low basal rate

252 Curtis Madsen et al.

9 Conclusions and Future Work

Synthetic biology has the potential to allow researchers and scien-
tists to design biological systems to solve a variety of problems.
However, in order to design these systems, efficient methods to
perform design space exploration through analysis and verification

Fig. 30 Stochastic model checking results for the quorum trigger when the basal rate of production, kb, is set
to 0. These results confirm that the quorum trigger is unable to switch ON when the basal rate is 0

Fig. 29 iSSA simulation results for the quorum trigger when the basal rate of production, kb, is set to 0.01. This
plot shows that the circuit always switches ON due to the basal rate being too high

Efficient Analysis Methods in Synthetic Biology 253

of computational models are necessary. This chapter proposes one
such methodology that can greatly aid synthetic biologists in the
design process. The work described in this chapter has been
integrated into the tool iBioSim [23, 24, 30]. This tool is freely
available at http://www.async.ece.utah.edu/iBioSim/.

Fig. 32 Stochastic model checking results for the quorum trigger when the basal rate of production, kb, is set
to 0.01. These results confirm that the quorum trigger always switches ON if the basal rate is too high

Fig. 31 Stochastic model checking results for the quorum trigger when the basal rate of production, kb, is set
to 0.0001. These results confirm that the quorum trigger is only able to switch ON when the environmental
signal is high for a medium value of the basal rate

254 Curtis Madsen et al.

http://www.async.ece.utah.edu/iBioSim/

The iSSA delivers information about a genetic circuit that can
often be hidden when using other simulation methods. By
performing simulations in small time increments, it is capable of
capturing important stochastic events that lead to the circuit exhi-
biting its “typical” behavior. Stochastic model checking translates
the infinite state space of a genetic circuit into aCTMC.This CTMC
can be analyzed along with a CSL property using stochastic model
checking via steady state or transient Markov chain analysis. When
utilized together, these methods can be used to simulate a genetic
circuit with the iSSA, to generate a CSL property that captures the
observed “typical” behavior or a rare behavior, and then to apply
stochastic model checking to the circuit yielding the likelihood of
observing typical and rare behaviors. If the desired behavior is not
observedwith a large enough probability, then the designer can alter
elements of the circuit or parameters in the system to refine the
genetic circuit. This chapter has applied the design space exploration
methodology to several examples of genetic oscillators and state
holding gates allowing different design and parameter choices to
be efficiently analyzed and considered for each model.

Despite the utility of the proposed design space exploration
methodology, there are still many ways that it can be improved.
Currently, in order to select good levels, a user performs a small
number of simulation runs to determine a range of values of inter-
est. Automating the level selection process may prove to be fruitful
as it is very difficult for a user to know where the levels should be
placed. Additionally, the proposed methodology requires a user to
analyze the resulting trace produced by the iSSA by hand in order
to generate a property that captures the circuits typical behavior. A
big improvement to this methodology would be the development
of a process that could automatically analyze a trace and produce a
CSL property that represents the behavior of the trace. Models of
genetic circuits often allow for timed events where a species value
can be changed at a predetermined time in simulation. Another
improvement could be to extend the CTMC that is generated from
the conversion process to include decision transitions for these
environment changes using a Markov decision process (MDP) [9].
The efficiency of the stochastic model checking is also greatly
impacted by the size of the model’s state space. One way to deal
with this problem is to apply partial order reduction to the CTMC
to try to eliminate uninteresting intermediate states in the state
graph. Finally, this chapter primarily focuses on stochastic analysis
of synthetic genetic circuits; however, other systems that could lend
themselves to this type of analysis include signal transduction path-
ways and metabolic networks.

Efficient Analysis Methods in Synthetic Biology 255

Acknowledgments

The authors would like to thank Eduardo Monzon and Abiezer
Tejeda for their work on improvements to the iSSA in its early
stages of development.

This material is based upon work supported by the National
Science Foundation under Grant Numbers 0331270, CCF-
07377655, CCF-0916042, and CCF-1218095. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References

1. Anderson JC, Clarke EJ, Arkin AP (2006)
Environmentally controlled invasion of cancer
cells by engineering bacteria. J Mol Biol
355:619–627

2. Arkin A (2008) Setting the standard in syn-
thetic biology. Nature Biotech 26:771–774

3. Atsumi S, Liao JC (2008)Metabolic engineering
for advanced biofuels production from Escheri-
chia coli. CurrOpin Biotechnol 19(5):414–419.
Tissue, cell and pathway engineering

4. Aziz A, Sanwal K, Singhal V, Brayton R (2000)
Model-checking continuous-time Markov
chains. ACM Trans Comput Logic 1:162–170

5. Cao Y, Gillespie DT, Petzold LR (2005) The
slow-scale stochastic simulation algorithm.
J Chem Phys 122:1

6. Cases I, de Lorenzo V (2005) Genetically
modified organisms for the environment:
stories of success and failure and what we have
learned from them. Int Microbiol 8:213–222

7. Elowitz M, Leibler S (2000) A synthetic oscil-
latory network of transcriptional regulators.
Nature 403(6767):335–338

8. Endy D (2005) Foundations for engineering
biology. Nature 438:449–453

9. Feinberg E, Shwartz A (eds) (2002) Hand-
book of Markov decision processes - methods
and applications. Kluwer International Series,
Boston

10. Gardner TS, Cantor CR, Collins JJ (2000)
Construction of a genetic toggle switch in
Escherichia coli. Nature 403:339–342

11. Gibson M, Bruck J (2000) Efficient exact sto-
chastic simulation of chemical systems with
many species and many channels. J Phys
Chem A 104:1876–1889

12. Gillespie DT (1976) A general method for
numerically simulating the stochastic time evo-
lution of coupled chemical reactions. J Comput
Phys 22(4):403–434

13. Gillespie DT (1977) Exact stochastic simula-
tion of coupled chemical reactions. J Phys
Chem 81(25):2340–2361

14. Gillespie DT (1992) Markov Processes: an
introduction for physical scientists. Academic
Press, New York

15. Gillespie DT, Petzold LR (2003) Tau leaping.
J Chem Phys 119:8229–8234

16. Hinton A, Kwiatkowska M, Norman G, Parker
D (2006) PRISM: a tool for automatic verifica-
tion of probabilistic systems. In: Hermanns H,
Palsberg J (eds) Proceedings of 12th interna-
tional conference on tools and algorithms for
the construction and analysis of systems
(TACAS’06). Lecture notes in computer sci-
ence, vol 3920. Springer, Berlin, pp 441–444

17. Kuwahara H (2007) Model abstraction and
temporal behavior analysis of genetic regulatory
networks. PhD thesis, University of Utah

18. Kuwahara H, Mura I (2008) An efficient and
exact stochastic simulation method to analyze
rare events in biochemical systems. J Chem
Phys 129:16

19. Kuwahara H, Myers C, Barker N, Samoilov M,
Arkin A (2006) Automated abstraction meth-
odology for genetic regulatory networks. Trans
Comput Syst Biol VI 4220:150–175

20. Kuwahara H, Madsen C, Mura I, Myers C,
Tejada A, Winstead C (2010) Efficient stochas-
tic simulation to analyze targeted properties of
biological systems. In: Myers C (ed) Stochastic
control. Sciyo, pp 505–532 http://www.
intechopen.com

21. Kwiatkowska M, Norman G, Parker D (2007)
Stochastic model checking. In: Bernardo M,
Hillston J (eds) Formal methods for the design
of computer, communication and software
systems: performance evaluation (SFM’07).
Lecture notes in computer science
(tutorial volume), vol 4486. Springer,Berlin,
pp 220–270

256 Curtis Madsen et al.

http://www.intechopen.com
http://www.intechopen.com

22. MacQueen JB (1967) Some methods for
classification and analysis of multivariate obser-
vations. In: Proceedings of 5-th Berkeley sym-
posium on mathematical statistics and
probability, Berkeley, vol 1, pp 281–297

23. Madsen C, Myers CJ, Patterson T, Roehner N,
Stevens JT, Winstead C (2012) Design and test
of genetic circuits using iBioSim. IEEE Des
Test Comput 29(3):32–39

24. Myers CJ, Barker N, Jones K, Kuwahara H,
Madsen C, Nguyen N-PD (2009) iBioSim: a
tool for the analysis and design of genetic cir-
cuits. Bioinformatics 25(21):2848–2849

25. NguyenN (2008)Design and analysis of genetic
circuits. Master’s thesis, University of Utah

26. Nguyen N, Kuwahara H, Myers C, Keener J
(March 2007) The design of a genetic muller
c-element. In: The 13th IEEE international
symposium on asynchronous circuits and
systems

27. Press WH, Flannery BP, Teukolsky SA, Vetter-
ling WT (1992) Numerical recipes in C: the art
of scientific computing, 2nd edn. Cambridge
University Press, Cambridge

28. Ro D-K, Paradise EM, Ouellet M, Fisher KJ,
Newman KL, Ndungu JM, Ho KA, Eachus
RA, Ham TS, Kirby J, Chang MCY, Withers

ST, Shiba Y, Sarpong R, Keasling JD (2006)
Production of the antimalarial drug precursor
artemisinic acid in engineered yeast.
Nature 440:940–943

29. Slepoy A, Thompson AP, Plimpton SJ (2008)
A constant-time kinetic monte carlo algorithm
for simulation of large biochemical reaction
networks. J Chem Phys 128(20):205101

30. Stevens JT, Myers CJ (2012) Dynamic model-
ing of cellular populations within iBioSim. ACS
Synth Biol 2(5):223–229

31. Stewart WJ (1994) Introduction to the numer-
ical solution of Markov chains. Princeton Uni-
versity Press, Princeton

32. Stricker J, Cookson S, Bennett M, Mather W,
Tsimring L, Hasty J (2008) A fast, robust and
tunable synthetic gene oscillator. Nature
456:516–519

33. Winstead C, Madsen C, Myers CJ (2010) iSSA:
an incremental stochastic simulation algorithm
for genetic circuits. In: International sympo-
sium on circuits and systems (ISCAS). IEEE,
pp 553–556. Paris, France

34. Younes H, Kwiatkowska M, Norman G, Parker
D (2006) Numerical vs. statistical probabilistic
model checking. Int J Softw Tools Technol
Transf 8:216–228

Efficient Analysis Methods in Synthetic Biology 257

Chapter 12

Using Computational Modeling and Experimental Synthetic
Perturbations to Probe Biological Circuits

Joshua R. Porter and Eric Batchelor

Abstract

This chapter describes approaches for using computational modeling of synthetic biology perturbations to
analyze endogenous biological circuits, with a particular focus on signaling and metabolic pathways. We
describe a bottom-up approach in which ordinary differential equations are constructed to model the core
interactions of a pathway of interest. We then discuss methods for modeling synthetic perturbations that
can be used to investigate properties of the natural circuit. Keeping in mind the importance of the interplay
between modeling and experimentation, we next describe experimental methods for constructing synthetic
perturbations to test the computational predictions. Finally, we present a case study of the p53 tumor-
suppressor pathway, illustrating the process of modeling the core network, designing informative synthetic
perturbations in silico, and testing the predictions in vivo.

Key words Synthetic biology, Dynamical systems, Computational modeling, Experimental design,
Signal transduction, Metabolism

1 Introduction

Synthetic biology provides a powerful approach for generating
novel biological devices that operate on a molecular scale. These
devices have most often been developed using genetically tractable
microorganisms as a chassis into which biological parts orthogonal
to the host organism can be engineered. Most synthetic biology
efforts thus far have been focused on one of two broad tasks:
creating small-scale devices that perform a desired computation or
function, or engineering the metabolism of a microorganism for
the synthesis of useful compounds. Predictive computational mod-
els have been instrumental in designing synthetic circuits that
achieve these goals.

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_12, © Springer Science+Business Media New York 2015

259

Based on the principle “What I cannot create, I do not under-
stand” (Richard Feynman), synthetic biologists seek to design and
experimentally implement circuits that produce a desired, pre-
dicted behavior. This, in turn, helps one understand how natural
biological circuits generate such behaviors mechanistically. Several
proof-of-principle devices have been constructed to perform sim-
ple tasks, including generating oscillatory outputs [1] and
performing logic computations [2]. Quantitative modeling has
aided the construction of even the simplest circuits during both
initial circuit design and circuit refinement. For example, model-
ing the repressilator [1] indicated that the individual protein
components of the circuit needed to be rapidly degraded. Accord-
ingly, the addition of protein degradation tags was necessary to
implement the circuit successfully in vivo. Subsequent, more
detailed modeling has led to further improvement of minimal
transcriptional oscillators [3, 4].

Metabolic pathways are complex even in the simplest organ-
isms; therefore, manipulation of such pathways for novel purposes
can lead to non-intuitive, unanticipated results. Quantitative mod-
els of metabolic pathways are required not only to identify the best
avenues for pathway manipulation but also to interpret the large
amounts of data generated by metabolic studies. Computational
approaches, including flux balance analysis, have proven invaluable
for a wide range of such applications, from identifying a naturally
occurring secondary metabolite and increasing its production [5]
to improving methods for synthesizing heterologous compounds
such as anti-malarial drugs [6].

In addition to providing methods for constructing new
biological devices and engineering novel metabolites, synthetic
biology provides a means of analyzing complex naturally occurring
cellular networks. By making directed synthetic perturbations, one
can probe the structure and function of endogenous signaling and
metabolic pathways. At the simplest level, such perturbations might
involve genetic knockouts, transcript knockdowns by RNA inter-
ference, overexpression of pathway components, or temperature-
sensitive mutations of proteins. Such perturbations have been
widely used by biologists for decades. More complex perturbations
can enable a more accurate probing of natural circuit function,
allowing one to plug in new network connections, bypass or elimi-
nate existing connections, or tune interactions between circuit
parts. Such approaches include mutation of transcription factor
binding sequences at target promoters, construction of hybrid
allosteric switches in proteins, or introduction of novel multicom-
ponent network feedbacks.

In this chapter, we describe general methods for using syn-
thetic approaches to probe the function of endogenous signaling
and metabolic networks, focusing on the role of computational
modeling in this process. We detail procedures for defining the

260 Joshua R. Porter and Eric Batchelor

natural cellular circuit of interest, constructing a computational
model of the natural circuit, identifying possible perturbations to
generate a desired novel output or probe regulatory connections,
and designing experiments to test in vivo the perturbations
designed in silico.

2 Methods

2.1 Modeling the

Natural Circuit

Before one can reengineer a natural biological system, one must
have sufficient quantitative understanding of how the natural sys-
tem works. The best way to express and assess this quantitative
understanding is to recreate the system in silico with a mathematical
model.

Here we take a “bottom-up” modeling approach, which
involves experimentally examining individual parts of a system and
their interactions as modules, then combining the tractable mod-
ules to construct a larger, more complete model. This approach
contrasts with “top-down” modeling techniques, in which mea-
surements of many biological quantities under different perturba-
tions of the system are used to infer the underlying system structure
(see ref. 7 for one review). Top-down modeling techniques assume
by default that the measurements provided are sufficient to identify
what matters in the structure of a system. By contrast, the bottom-
up approach does not assume this, and it has been our experience
that the process of bottom-up modeling identifies which important
details are still unknown, enabling a more systematic and compre-
hensive analysis of the key components of a system. For this reason,
we believe that bottom-up modeling is better for building the sort
of model required to re-engineer a biological system, as such sys-
tems frequently contain redundancies that are not apparent during
normal system operation but may make a difference when the
system is synthetically modified.

Within bottom-up modeling, we will also restrict our discus-
sion to systems in which all chemical species involved are present in
large numbers (on the order of 102–103 or greater) and can be
assumed to be well mixed within their containing compartment(s)
[8]. Such systems can reasonably be modeled using ordinary differ-
ential equations (ODEs), which are relatively simple to construct
and solve. Systems with some chemical species present in very small
numbers are best described using stochastic models; systems in
which diffusion through space is a concern can be modeled using
partial differential equations. These more complex types of models
are useful but beyond the scope of this discussion.

The first step in modeling a biological system from the bottom
up is to identify the relevant known parts of the system of interest.
We define a part as a distinct biochemical species located in a

Synthetic Perturbations to Probe Biological Circuits 261

particular reaction compartment. We then identify the processes in
the system that change the concentration of the individual parts.

Table 1 lists common processes that are important in signal
transduction and metabolic pathways. The most fundamental pro-
cesses of interest are two parts binding to form a complex and the
complex unbinding to form its constituent parts. Binding and
unbinding processes can be combined in complex ways to form
higher-level processes such as production, degradation, and
enzyme catalysis. Other important processes include passive trans-
port, the diffusion of parts down a concentration gradient between
compartments, and the dilution of parts due to the exponential
growth of their containing compartments. As a general rule, the
less detail one understands about a process, the higher level an
abstraction one uses to model it.

Once parts and processes have been identified, this information
can be organized by combining it into a diagram using the conven-
tional notation of symbols connected by arrows, as shown in
Table 1. A simple diagram can be a powerful tool for understanding
a biological system beyond the reductionist perspective of consid-
ering one part at a time, while at the same time it provides a non-
mathematical description of a system that is accessible to a nontech-
nical audience.

Table 1
Processes of interest in a biological system and their representations in a mathematical model

Process Diagram Rate

Binding X + Y ! XY kb[X][Y]

Unbinding XY ! X + Y ku[XY]

Production (constant) ! X kpX

Degradation X ! Ø (nothing) kdX[X]

Catalysis

S!
E
#
P

kcat E½ � S½ �
KM þ S½ �

Catalysis with competitive inhibition

S ����!
E

I a#
P

kcat E½ � S½ �
KM 1þ I½ �

KI

� �
þ S½ �

Catalysis with noncompetitive inhibition

S ����!
E

I a#
P

kcat E½ � S½ �
KM þ S½ �ð Þ 1þ I½ �

KI

� �
Passive transport XA ↔ XB kT([XB] � [XA])

Dilution due to exponential growth kdil[X], kdil ¼ lnð2Þ
td

where td
is doubling time

262 Joshua R. Porter and Eric Batchelor

When parts and processes have been identified and organized,
the next step is to translate this information into a set of differential
equations. In general, for every part in the system, this will yield

one differential equation of the form d part½ �
dt ¼

X
process rates,

where [part] is the concentration of the part and the right side of
the equation is a summation of terms for the rate of each process
acting on that part. Table 1 shows these rate terms for each of the
common processes listed.

In general, the system of study will be of sufficient complexity
that the set of differential equations describing it will not have an
analytical solution. Instead, a numerical solution must be obtained.
Several numerical computing packages, including MATLAB and
Mathematica, can readily solve such systems of differential equa-
tions. Using the ODE solvers in these packages simply requires
writing the differential equations in the appropriate coding format
and specifying initial conditions for the concentration of each part.
Several other software packages, including little b [9], BioNetGen
[10], Kappa [11] (see Chapter 6), Simmune [12], and PySB [13],
have been written specifically for the analysis of biochemical net-
works. These packages help to automate and organize the process
of model-building, which is increasingly useful as more complex
systems are considered. In general, the various solvers can be used
to explore both steady-state and dynamical behavior of biological
circuits in silico.

Biochemical systems are often stiff, meaning that they are
composed of processes that operate on different time scales. In
particular, binding and unbinding processes are generally much
faster than production, degradation, catalysis, transport, etc. Stiff
systems require special techniques to solve computationally in an
efficient manner. One convenient solution is to perform a separa-
tion of time scales, in which one considers the faster processes to be
at steady state. This simplification can reduce both the number of
equations in the model and the number of parameters required, as a
single dissociation constant can replace two rate constants
for binding and unbinding. As a result, a numerical solution can
be computed faster, and in some cases an analytical solution can be
determined.

Finding realistic parameter values is often one of the most
challenging aspects of model building. The best choice for a param-
eter is the one connected as closely as possible with the simplest,
best understood physical reality. Ideally, this would be obtained
from a direct biochemical measurement. However, biochemical
parameters are often not available in the literature and cannot
always be directly measured by the researchers performing the
modeling. In such cases, one must choose parameters such that

Synthetic Perturbations to Probe Biological Circuits 263

http://dx.doi.org/10.1007/978-1-4939-1878-2_6

the solution of the equations matches experimental observations.
This is one reason why a bottom-up approach to model construc-
tion is often more feasible than a top-down approach, which is by
nature dependent on a greater number of unknown parameters. As
more biochemical details become known, the model can be refined
with additional complexity as needed.

One can assess the quality of a model by how well its solution
matches experimental observations. It is important to remember
that models are not “right” or “wrong” so much as they are more
or less useful—any model is a deliberately simplified representation
of reality. The chances that a model will be useful can be improved
by testing it against different experimental observations, ideally
including some observations that were not used to determine
parameters.

2.2 Probing Possible

Synthetic Changes In

Silico

Having constructed a computational model of the natural circuit of
interest, one can use the model to make testable predictions about
circuit performance. Confirming these predictions experimentally
validates one’s understanding of the circuit. When designing a
synthetic circuit for a specific engineering task, a model is useful
for identifying necessary connections and parameter operating
regimes that give rise to a desired functional output. Similarly,
when studying a natural circuit, one can use the model to identify
the parts or parameter values necessary for a desired biological
outcome. How dependent is the yield of a metabolite on the
degradation rate of a metabolic intermediate? If there were a nega-
tive feedback on the production of phosphatase A, would signaling
through kinase B be attenuated at a later point? Such questions can
readily be explored in silico and experimentally tested in vivo with
synthetic perturbations.

We can consider synthetic perturbations as falling into the
following broad categories:

Synthesis Perturbations: The synthesis rates of individual parts are
modified, or novel methods for increasing the (real or effective)
concentration of parts are generated.

Degradation Perturbations: The degradation rates of parts are
modified, or new methods for decreasing the (real or effective)
concentration of parts are generated.

Interaction Perturbations: The interactions between natural parts
are modified.

Novel Regulatory Connections: New processes (possibly involving
additional synthetic parts) connecting existing parts are gener-
ated. These new processes can be broadly classified as positive
feedback, negative feedback, coherent feedforward, or incoherent
feedforward based onwhich parts influencewhich other parts and
whether that influence is activating or repressing (Fig. 1) [14].

264 Joshua R. Porter and Eric Batchelor

Once a change to the system is conceived, it can be tested in the
model by altering parameters or adding and removing rate terms as
described earlier and simulating the new model.

During the process ofmodel exploration, it is important to keep
in mind which types of synthetic manipulations are experimentally
feasible; otherwise, the model predictions will remain untestable
hypotheses and little will be learned about the natural biological
circuit. It is also important to keep synthetic perturbations as simple
as possible. While a Rube Goldberg machine may look exciting on
paper, it rarely yields informative results in the laboratory.

2.3 Implementing

Changes In Vivo

Having developed a quantitative model of the biological circuit of
interest and identified possible perturbations that will yield insight
into the function of the circuit, one can perturb the actual circuit
using a variety of experimental techniques. Several synthetic biol-
ogy tools are readily available to modify a biological circuit at the
level of individual genes, mRNAs, or proteins, and these perturba-
tions can be combined to generate multi-component regulatory
loops and modules. Here we briefly mention a few such tools for
perturbing signaling or metabolic pathways.

The introduction of synthetic perturbations often depends on
precise manipulation of a model organism’s genome. Several meth-
ods are available for deleting or inserting DNA sequences. Random
insertion of genetic material using electroporation, lipid-based
transfection, or viral-mediated infection procedures is relatively
easy. Directed genome manipulations can present more of a chal-
lenge, and the difficulty tends to scale with the complexity of the
model organism being studied. Regardless of the target, the basic
techniques are similar. The most widely used methods for directed
editing are the phage recombinase systems, including lambda Red,
FLP-FRT, and Cre/lox recombination [15, 16]. Recent advances
in the use of engineered nucleases, such as TALENs and zinc-finger
nucleases [17], offer other powerful methods for genome editing in
a variety of organisms.

Positive
feedback

Coherent
feedforward

Negative
feedback

A

B

Incoherent
feedforward

A

B

A

B

A

B

A

B

A

B

Fig. 1 Basic network structures. A ! B means “A activates B”; A a B means “A inhibits B.” Each ! or a
symbol represents at least one process, and possibly additional parts, by which part A influences part B or vice
versa

Synthetic Perturbations to Probe Biological Circuits 265

It is often desirable to control the synthesis rates of biological
parts when testing model predictions. This control can be per-
formed in vivo by altering expression of natural or synthetic parts
through the use of regulatable promoters. Several different induc-
ible or repressible expression systems are available from prokaryotic
or eukaryotic origins. The well-characterized lac- and ara-induc-
ible systems from bacteria are regulated by the presence of sugars
and sugar analogs such as isopropyl β-D-1-thiogalactopyranoside
(IPTG) [18]. The GAL1 and CUP1 promoters, which are induced
in response to galactose and copper, respectively, are examples of
systems effective in yeast [19]. In mammalian cells, one of the most
widely used systems is the tetracycline-responsive system [20]. This
system is a particularly effective tool in that versions for induction in
either the presence or the absence of tetracycline/doxycycline
have been developed, and they can be used in a variety of
organisms. These are but a few of the promoters available, and
they all provide powerful synthetic methods for regulating both
the level and the timing of gene expression.

For changing the degradation rates of endogenous mRNAs,
one can use RNA interference (RNAi) technologies. Originally
developed in C. elegans [21] and now widely used in mammalian
cell culture, RNAi can be used for transient knockdown of target
mRNAs in a variety of systems. For example, transfection of small
interferingRNAs (siRNAs) intomammalian cells enables the knock-
down of endogenous mRNAs for up to several days. Long-term
and regulatable knockdown of mRNAs can be achieved by engi-
neering small hairpin RNAs (shRNAs), expressed from either con-
stitutive or inducible promoters, directly into the model system’s
genome.

The degradation rate of proteins can also be modified syntheti-
cally. The addition of degradation tags such as PEST sequences
[22] can shorten protein lifetimes. One notable way to regulate
protein degradation more tightly is to use the ssrA proteasomal
machinery from E. coli in an orthogonal organism [23]. By altering
the concentration of the degradation machinery via an inducible
promoter, this system enables tunable regulation of degradation
rates for specific proteins within a network of interest.

Beyond direct control of protein degradation, it is possible to
synthetically alter the effective concentration of a protein. In par-
ticular, changing protein localization can be a means of changing
protein concentration in a subcellular compartment of interest. For
example, mutating nuclear localization sequences or nuclear exclu-
sion signals can alter protein transport into or out of the nucleus.
This synthetic manipulation may be particularly useful for eukary-
otic transcription factors, as their gene regulatory activity depends
on their nuclear localization.

The next major class of synthetic perturbations one can
consider is altering the interactions between endogenous cellular

266 Joshua R. Porter and Eric Batchelor

parts. Many mechanisms exist for making such alterations. For
example, manipulating organelle localization tags and membrane
tethers allows additional regulation of protein interactions by alter-
ing the effective protein concentration. Such changes can also be
effected by using modified scaffold proteins or direct synthetic
linkage of protein domains to increase the probability of interac-
tions occurring. For example, Bashor et al. [24] used a scaffold
modification approach to dissect the function of the yeast
mating MAPK pathway in S. cerevisiae. Linking proteins or protein
domains is also an effective way to generate novel allosteric switches
for a variety of purposes.

Recent developments in optogenetics also hold great promise
as tools for synthetic manipulation of biological circuits. Optoge-
netics was originally developed as a method to control nerve cell
activation noninvasively using light-activated ion channels [25].
Recently, additional photoreceptor domains, such as the LOV
domain from A. sativa, have been engineered to control signaling
molecules, providing precise temporal and spatial control of protein
activation. For example, Wu et al. [26] fused the LOV domain to
forms of the GTPase Rac1, creating a hybrid protein that could
modulate cell motility in a reversible and repeatable manner.

Ultimately, synthetic manipulations at the genetic, mRNA, and
protein levels can be combined to engineer large-scale, multicom-
ponent network connections. For example, new feedback and feed-
forward motifs can be wired into natural signaling circuits to
control the magnitude or duration of a signal. The possibilities
for generating such manipulations experimentally are limitless,
although they depend on the natural circuit one is interested in
modifying. For illustrative purposes, we will describe an example of
such rewirings in the following case study.

3 Case Study: The p53 Signaling Pathway

The p53 signaling pathway in human cells has been extensively
studied, as it plays a critical role in preventing tumor formation.
p53 is a transcription factor that is activated by different forms of
cell stress and regulates the expression of over a hundred genes,
impacting several different processes including DNA repair,
apoptosis, cell cycle arrest, and senescence [27]. One gene upregu-
lated by p53 codes for the E3 ubiquitin ligase Mdm2, which tags
p53 for degradation, thereby forming a negative feedback loop
(Fig. 2a). When cells are γ-irradiated to generate DNA double-
strand breaks (DSBs), the concentration of p53 and Mdm2 in the
nucleus changes in a series of oscillatory pulses characterized by
fixed amplitude and timing [28].

Toettcher et al. [29] sought to modify the p53 pathway to
alter the expression dynamics of p53 and Mdm2. The goal of

Synthetic Perturbations to Probe Biological Circuits 267

these modifications was to better understand the mechanisms
generating the dynamics and to gain insight into their functional
consequences. Since treating cells with γ-radiation triggers a
complex response involving a larger network of components,
they first sought a way to activate p53 that would bypass this
complexity. This bypass took the form of a cell line in which p53
fused to CFP was expressed from the zinc-inducible rat metal-
lothionein promoter. Using this synthetic system enabled
direct manipulation of p53 transcription independent of the
endogenous p53 promoter. Treating the cells with different con-
centrations of zinc chloride (ZnCl2) maintained the oscillatory
dynamics of p53 and Mdm2 expression, although the oscillations
were damped, in contrast to the undamped oscillations observed
in the response to γ-radiation. In this way, Toettcher et al. were
able to use a synthetic bypass of the full natural DSB response,
effectively narrowing the scope of the biological system they
needed to consider.

Having established a simplified experimental system with
which to study the core process of interest (Fig. 2a), Toettcher
et al. next constructed a computational model to explore addi-
tional possible synthetic perturbations. The parts of the simplified
system, in addition to p53 and Mdm2, included ZnCl2, which
promotes p53 production, and Nutlin3A, a small molecule that
inhibits the interaction between Mdm2 and p53. Four key pro-
cesses connected these four biochemical parts. First, p53 is pro-
duced at a constant rate plus an additional zinc-dependent rate.
Second, Mdm2 catalyzes the ubiquitination of p53, tagging it for
subsequent degradation; this catalysis is competitively inhibited by
Nutlin3A. Third, p53 promotes the transcription of the mdm2

p53 Mdm2

Nutlin3AZnCI2

p53
(P)

ZnCl2
(Z)

degradation

Mdm2
(M)

transcription/
translation

pr
om

ot
es

transcription/
translation

pr
om

ot
es

w
ith

 d
el

ay

degradation

Nutlin3A
(N)

inhibits

pr
om

ot
es

promotes

a b

Fig. 2 Diagrams of the p53 signaling pathway. (a) A general depiction of the interactions between p53 andMdm2
and how those interactions are modulated by external chemical signals, adapted from Toettcher et al. [29].
(b) A more detailed diagram, showing specific parts and processes, is often more useful for building a model

268 Joshua R. Porter and Eric Batchelor

gene, leading to an increased Mdm2 protein concentration with a
delay due to protein translation, folding, and nuclear localization.
Fourth, Mdm2 catalyzes its own ubiquitination, leading to its own
degradation. Figure 2b graphically summarizes these parts and
processes.

The next step was to translate this information about parts and
processes into a set of differential equations:

Quantities described by these equations are defined in
Table 2. Notably, the equations for p53 and Mdm2 protein
incorporate the stochastic processes ξp(t) and ξm(t) to model
noise in production of the p53 and Mdm2 proteins, respectively.
To avoid using a stiff delay to model the time-delayed production
of Mdm2, Toettcher et al. used a “boxcar” procedure of four
separate equations representing intermediates in the processing
and translation of mdm2 mRNA (represented by the equations
for [Mi], i ¼ 1–4) [29].

Toettcher et al. next found values for the model parameters.
They first measured the relationship between zinc concentration
and p53 transcription using a cell line in which production of CFP
was driven by the same zinc-inducible promoter as that driving
p53-CFP in this system. To obtain values for Kz and pz, they fit a
Hill function with n ¼ 3 to the relationship between zinc and CFP
fluorescence. For the remaining parameters, they used an optimi-
zation method to obtain parameter values that minimized the
difference between simulated and experimental measurements of
p53 andMdm2 first pulse amplitude, p53 pulse frequency, and p53
pulse damping rate at five different concentrations of zinc. They
further validated the optimal parameters by simulating the model

p53 protein:

d P½ �
dt ¼ ξpðtÞ|ffl{zffl}

noise

αp þ pz Z½ �3
K3

z þ Z½ �3|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ZnCl2-dependent production

0
BBBB@

1
CCCCA� δp M½ � P½ �

Kp 1þ N½ �ð Þ þ P½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mdm2-mediated degradation

mdm2 mRNA:

d M 0½ �
dt ¼ γm0 αm0 þ βm0

P½ �2
K2

m0 þ P½ �2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p53-upregulated transcription

� M 0½ �|ffl{zffl}
degradation

0
BBBB@

1
CCCCA

mdm2 mRNA ! protein delays: d Mi½ �
dt ¼ γm0 Mi�1½ � � Mi½ �ð Þ; i ¼ 1 . . .4

Mdm2 protein: d M½ �
dt ¼ ξmðtÞ M 4½ �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

noisy production

� δm M½ �
Km þ M½ �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

autocatalytic degradation

� γm M½ �|fflfflffl{zfflfflffl}
constant degradation

Synthetic Perturbations to Probe Biological Circuits 269

with noise and verifying that these simulations were consistent with
experimental measurements.

Having constructed the base model, Toettcher et al. then
sought to identify methods by which they could perturb various
characteristics of p53 oscillations. They first simulated the addition
of a synthetic positive (NPF, Fig. 3a) or negative (2NF, Fig. 3b)
feedback loop to the core p53-Mdm2 network. Based on their
knowledge of possible experimental perturbations, they modeled
these synthetic loops as transcriptional targets of p53 that could
increase or decrease p53 expression. To do this, they added equa-
tions describing concentrations of mRNA ([F0]) and protein ([F])

Table 2
Symbols and parameters used in the base model of p53 signaling

Symbol Description

[P] Concentration of p53 protein

[M0] Concentration of mdm2 mRNA

[Mi], i ¼ 1 . . . 4 Concentrations of intermediates in Mdm2
protein production

[M] Concentration of Mdm2 protein

[Z] Concentration of ZnCl2

[N] Concentration of Nutlin3A

Parameter Description

ξp(t) Noise in p53 protein production

αp p53 protein production rate

pz ZnCl2-mediated p53 production rate

Kz Saturation of ZnCl2-mediated p53 production

δp Mdm2-mediated p53 degradation rate

Kp Saturation of Mdm2-mediated p53 degradation

γm0 Mdm2 production delay

αm0 Basal transcription rate of mdm2 mRNA

βm0 p53-mediated transcription rate of mdm2 mRNA

Km0 Saturation of p53-mediated Mdm2 production

ξm(t) Noise in Mdm2 protein production

δm Mdm2-mediated Mdm2 degradation rate

Km Saturation of Mdm2-mediated Mdm2 degradation

γm Mdm2 degradation rate

270 Joshua R. Porter and Eric Batchelor

of a putative positive or negative feedback mediator (PFM or
NFM), as well as equations modeling the delays between mRNA
and protein ([Fi], i ¼ 1 . . . 4) (Fig. 3c, d). Moreover, since p53
production was now part of a feedback loop, they made the model
of p53 appropriately more complex, adding differential equations
describing concentrations of p53 mRNA ([P0]) and modeling
the delays between mRNA and protein ([Pi], i ¼ 1 . . . 4). The
constant-rate degradation of Mdm2 was removed from the model,
as the optimal value for γm in the old model was found to be 0,
and the noise terms were removed as well to consider only the
deterministic system. The new set of equations was nearly identical
for the NPF and 2NF models, with the only difference being
whether the PFM/NFM ([F]) activates or represses production of
p53 mRNA.

a

c

p53
(P)

ZnCl2
(Z)

degradation

Mdm2
(M)

transcription/
translation

pr
om

ot
es

transcription/
translation

pr
om

ot
es

w
ith

 d
el

ay

degradation

Nutlin3A
(N)

inhibits

pr
om

ot
es

promotes

pr
om

ot
es

w
ith

 d
el

ay

PFM
(F)

transcription/
translation

pr
om

ot
es

w
ith

 d
el

ay

degradation

ZnCl2

p53 Mdm2

Nutlin3A

PFM

Negative and Positive Feedbacks (NPF) Two Negative Feedbacks (2NF)

b

d

ZnCl2

p53 Mdm2

Nutlin3A

NFM

p53
(P)

ZnCl2
(Z)

degradation

Mdm2
(M)

transcription/
translation

pr
om

ot
es

transcription/
translation

pr
om

ot
es

w
ith

 d
el

ay

degradation

Nutlin3A
(N)

inhibits

pr
om

ot
es

promotes

in
hi

bi
ts

w
ith

 d
el

ay

NFM
(F)

transcription/
translation

pr
om

ot
es

w
ith

 d
el

ay

degradation

Fig. 3 Diagrams of two p53 signaling pathways with feedback loops added to the original pathway. (a) The
NPF model contains an extra positive feedback loop: p53 promotes PFM (positive feedback mediator)
production, which in turn promotes p53 production. Adapted from ref. 29. (b) The 2NF model contains an
extra negative feedback loop: p53 promotes NFM (negative feedback mediator) production, which in turn
inhibits p53 production. Adapted from ref. 29. (c) The detailed diagram of the NPF model includes one
extra part (PFM) and three extra processes: p53-upregulated PFM production, PFM degradation, and
PFM-upregulated p53 production. (d) The detailed diagram of the 2NF model is similar to that of the NPF
model except that NFM inhibits rather than promotes p53 production

Synthetic Perturbations to Probe Biological Circuits 271

All quantities described by these equations are defined in
Table 3. In this modified model, Toettcher et al. kept the original
model parameters governing the interactions between p53 and
Mdm2, as this aspect of the model did not change. Using a range
of feedback strengths and delay times, they simulated the model to
probe the effects of the new feedbacks on p53 dynamics. They
found that the additional feedback loops affected oscillation

p53 mRNA:

d P0½ �
dt ¼

γp0 αp0 þ βp0
Z½ �3

K3
z þ Z½ �3

 !
F½ �2

K2
f þ F½ �2

 !
|ffl{zffl}
ZnCl2-activated; feedback-activated transcription

� P0½ �|{z}
degradation

0
BBBB@

1
CCCCANPF model

γp0 αp0 þ βp0
Z½ �3

K3
z þ Z½ �3

 !
K2

f

K2
f þ F½ �2

 !
|ffl{zffl}
ZnCl2-activated; feedback-repressed transcription

� P0½ �|{z}
degradation

0
BBBB@

1
CCCCA2NF model

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

p53 mRNA !
protein delays:

d Pi½ �
dt ¼ γp0 Pi�1½ � � Pi½ �ð Þ; i ¼ 1 . . .4

p53 protein: d P½ �
dt ¼ αp P4½ �|fflfflffl{zfflfflffl}

production

� δp M½ � P½ �
Kp 1þ N½ �ð Þ þ P½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mdm2-mediated degradation

mdm2 mRNA:

d M 0½ �
dt ¼ γm0 αm0 þ βm0

P½ �2
K2

m0 þ P½ �2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p53-upregulated transcription

� M 0½ �|ffl{zffl}
degradation

0
BBBB@

1
CCCCA

Mdm2 mRNA !
protein delays:

d Mi½ �
dt ¼ γm0 Mi�1½ � � Mi½ �ð Þ; i ¼ 1 . . .4

Mdm2 protein: d M½ �
dt ¼ M 4½ �|ffl{zffl}

production

� δm M½ �
Km þ M½ �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

autocatalytic degradation

Synthetic positive/
negative feedback
mediator mRNA: d F 0½ �

dt ¼ γf 0 αf 0 þ βf 0
P½ �2

K2
f0 þ P½ �2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p53-upregulated transcription

� F 0½ �|{z}
degradation

0
BBBB@

1
CCCCA

Synthetic positive/
negative feedback
mediator mRNA !
protein delays:

d F i½ �
dt ¼ γf 0 F i�1½ � � F i½ �ð Þ

Synthetic positive/
negative feedback
mediator protein:

d F½ �
dt ¼ F 4½ �|{z}

production

� γf F½ �|ffl{zffl}
degradation

272 Joshua R. Porter and Eric Batchelor

Table 3
Symbols and parameters used in the modified model of p53 signaling

Symbol Description

[P0] Concentration of p53 mRNA

[Pi], i ¼ 1 . . . 4. Concentrations of intermediates in p53 protein
production

[P] Concentration of p53 protein

[M0] Concentration of mdm2 mRNA

[Mi], i ¼ 1 . . . 4 Concentrations of intermediates in Mdm2 protein
production

[M] Concentration of Mdm2 protein

[F0] Concentration of mRNA for synthetic positive/negative
feedback mediator

[Fi], i ¼ 1 . . . 4 Concentrations of intermediates in production of
synthetic positive/negative feedback mediator

[F] Concentration of synthetic positive/negative feedback
mediator protein

[Z] Concentration of ZnCl2

[N] Concentration of Nutlin3A

Parameter Description

γp0 p53 production delay

αp0 Basal transcription rate of p53 mRNA

βp0 Feedback-mediated transcription rate of p53 mRNA

Kz Saturation of ZnCl2-mediated p53 transcription

Kf Saturation of feedback-mediated p53 transcription

γp0 p53 production delay

αp p53 protein production rate

δp Mdm2-mediated p53 degradation rate

Kp Saturation of Mdm2-mediated p53 degradation

γm0 Mdm2 production delay

αm0 Basal transcription rate of mdm2 mRNA

βm0 p53-mediated transcription rate of mdm2 mRNA

Km0 Saturation of p53-mediated mdm2 transcription

δm Mdm2-mediated Mdm2 degradation rate

Km Saturation of Mdm2-mediated Mdm2 degradation

(continued)

Synthetic Perturbations to Probe Biological Circuits 273

amplitude and damping rate but not frequency. Further simulations
revealed that changes to p53 pulse frequency could be obtained by
modulating the concentration of Nutlin3A.

Toettcher et al. next established experimental systems to validate
the predictions from the model of the synthetic-natural circuits. To
generate a synthetic positive feedback loop, they constructed a cell
line in whichMTF1, the zinc-responsive transcription factor that acts
directly on the zinc-inducible promoter, was expressed from a p53-
responsive promoter (NPF, Fig. 3a). Thus, p53 upregulated MTF1
production, which in turn upregulated p53 production via the zinc-
inducible promoter, forming the requisite synthetic positive feedback
loop (Fig. 3c). In a separate design, to generate a synthetic negative
feedback in addition to the core network, they used MTF1-KRAB, a
dominant-negative form ofMTF1, expressed from a p53-dependent
promoter (2NF, Fig. 3b). In this cell line, p53 upregulated MTF1-
KRAB production, and MTF1-KRAB repressed p53 production by
competing with endogenous MTF1, forming a new negative feed-
back loop (Fig. 3d). Stimulation of these cells with ZnCl2 confirmed
that the damping rates of the oscillations, but not the frequency, were
altered by the new feedback loops, as predicted by the computational
model [29]. Additional experiments showed that perturbing the base
experimental system with Nutlin3A altered oscillation frequency as
predicted by the model [29].

4 Conclusions

While much attention in synthetic biology research has focused on
engineering new biological devices, in this chapter we have
described a method for using synthetic biology approaches to
address questions in basic research. It is important to remember

Table 3
(continued)

Symbol Description

γf0 Production delay for synthetic positive/negative
feedback mediator

αf0 Basal transcription rate of mRNA for synthetic positive/
negative feedback mediator

βf0 p53-mediated transcription rate of mRNA for synthetic
positive/negative feedback mediator

Kf0 Saturation of p53-mediated transcription of synthetic
positive/negative feedback mediator

γf Degradation rate of synthetic positive/negative feedback
mediator

274 Joshua R. Porter and Eric Batchelor

that the combined computational and experimental approach
described here is iterative—experimental observations are used to
build a quantitative model, which is used to generate new hypoth-
eses to test experimentally, etc. It is hoped that through each
iteration, one can better understand the network structure and
the function of the natural biological circuit. For modeling and
manipulating such circuits, the computational methods and experi-
mental tools described here are by no means a complete catalog of
the synthetic biology toolbox. However, they are broadly applica-
ble for tackling a variety of problems in signal transduction and
metabolic research, as illustrated in the p53 case study. As new
methods and tools are developed, they can readily be applied to
the general framework described here.

Acknowledgment

This work was supported by the Intramural Research Program of
the Center for Cancer Research, National Cancer Institute,
National Institutes of Health.

References

1. Elowitz MB, Leibler S (2000) A synthetic
oscillatory network of transcriptional regula-
tors. Nature 403(6767):335–338. doi:10.
1038/35002125

2. BenensonY (2012)Biomolecular computing sys-
tems: principles, progress and potential. Nat Rev
Genet 13(7):455–468. doi:10.1038/nrg3197

3. Atkinson MR, Savageau MA, Myers JT, Ninfa
AJ (2003) Development of genetic circuitry
exhibiting toggle switch or oscillatory behavior
in Escherichia coli. Cell 113(5):597–607.
doi:10.1016/S0092-8674(03)00346-5

4. Stricker J, Cookson S, Bennett MR, Mather
WH, Tsimring LS, Hasty J (2008) A fast,
robust and tunable synthetic gene oscillator.
Nature 456(7221):516–519. doi:10.1038/
nature07389

5. Nguyen QT, Merlo ME, Medema MH, Janke-
vics A, Breitling R, Takano E (2012) Metabo-
lomics methods for the synthetic biology of
secondary metabolism. FEBS Lett 586
(15):2177–2183. doi:10.1016/j.febslet.2012.
02.008

6. Keasling JD (2012) Synthetic biology and the
development of tools for metabolic engineer-
ing. Metab Eng 14(3):189–195. doi:10.1016/
j.ymben.2012.01.004

7. Lee WP, Tzou WS (2009) Computational
methods for discovering gene networks from

expression data. Brief Bioinform 10
(4):408–423. doi:10.1093/bib/bbp028

8. Chen WW, Niepel M, Sorger PK (2010) Clas-
sic and contemporary approaches to modeling
biochemical reactions. Genes Dev 24
(17):1861–1875. doi:10.1101/gad.1945410

9. Mallavarapu A, Thomson M, Ullian B, Guna-
wardena J (2009) Programming with models:
modularity and abstraction provide powerful
capabilities for systems biology. J R Soc Inter-
face 6(32):257–270. doi:10.1098/rsif.2008.
0205

10. Hlavacek WS, Faeder JR, Blinov ML, Posner
RG, Hucka M, Fontana W (2006) Rules for
modeling signal-transduction systems. Sci
STKE 2006 (344):re6. doi:10.1126/stke.
3442006re6

11. Danos V, Feret J, Fontana W, Harmer R, Kri-
vine J (2008) Rule-based modeling, symme-
tries, refinements. In: Formal methods in
systems biology, vol 5054, Lecture notes in
bioinformatics 2008. Springer, Berlin, pp
103–122

12. Meier-Schellersheim M, Xu X, Angermann B,
Kunkel EJ, Jin T, Germain RN (2006) Key role
of local regulation in chemosensing revealed by
a new molecular interaction-based modeling
method. PLoS Comput Biol 2(7):e82. doi:10.
1371/journal.pcbi.0020082

Synthetic Perturbations to Probe Biological Circuits 275

http://dx.doi.org/10.1038/35002125
http://dx.doi.org/10.1038/35002125
http://dx.doi.org/10.1038/nrg3197
http://dx.doi.org/10.1016/S0092-8674(03)00346-5
http://dx.doi.org/10.1038/nature07389
http://dx.doi.org/10.1038/nature07389
http://dx.doi.org/10.1016/j.febslet.2012.02.008
http://dx.doi.org/10.1016/j.febslet.2012.02.008
http://dx.doi.org/10.1016/j.ymben.2012.01.004
http://dx.doi.org/10.1016/j.ymben.2012.01.004
http://dx.doi.org/10.1093/bib/bbp028
http://dx.doi.org/10.1101/gad.1945410
http://dx.doi.org/10.1098/rsif.2008.0205
http://dx.doi.org/10.1098/rsif.2008.0205
http://dx.doi.org/10.1126/stke.3442006re6
http://dx.doi.org/10.1126/stke.3442006re6
http://dx.doi.org/10.1371/journal.pcbi.0020082
http://dx.doi.org/10.1371/journal.pcbi.0020082

13. Lopez CF, Muhlich JL, Bachman JA, Sorger
PK (2013) Programming biological models in
Python using PySB. Mol Syst Biol 9:646.
doi:10.1038/msb.2013.1

14. Alon U (2007) Network motifs: theory and
experimental approaches. Nat Rev Genet 8
(6):450–461. doi:10.1038/nrg2102

15. Murphy KC (2012) Phage recombinases and
their applications. Adv Virus Res 83:367–414.
doi:10.1016/B978-0-12-394438-2.00008-6

16. Turan S, Zehe C, Kuehle J, Qiao J, Bode J
(2012) Recombinase-mediated cassette
exchange (RMCE)—a rapidly-expanding tool-
box for targeted genomic modifications. Gene
515(1):1–27. doi:10.1016/j.gene.2012.11.
016

17. Gaj T, Gersbach CA, Barbas CF 3rd (2013)
ZFN, TALEN, and CRISPR/Cas-based meth-
ods for genome engineering. Trends Biotech-
nol 31(7):397–405. doi:10.1016/j.tibtech.
2013.04.004

18. Terpe K (2006) Overview of bacterial expres-
sion systems for heterologous protein produc-
tion: from molecular and biochemical
fundamentals to commercial systems. Appl
Microbiol Biotechnol 72(2):211–222. doi:10.
1007/s00253-006-0465-8

19. Maya D, Quintero MJ, de la Cruz Munoz-
Centeno M, Chavez S (2008) Systems for
applied gene control in Saccharomyces cerevi-
siae. Biotechnol Lett 30(6):979–987. doi:10.
1007/s10529-008-9647-z

20. Gossen M, Bujard H (1992) Tight control of
gene expression in mammalian cells by
tetracycline-responsive promoters. Proc Natl
Acad Sci U S A 89(12):5547–5551

21. Fire A, Xu S, Montgomery MK, Kostas SA,
Driver SE, Mello CC (1998) Potent and spe-
cific genetic interference by double-stranded

RNA in Caenorhabditis elegans. Nature 391
(6669):806–811. doi:10.1038/35888

22. Rogers S, Wells R, Rechsteiner M (1986)
Amino acid sequences common to rapidly
degraded proteins: the PEST hypothesis. Sci-
ence 234(4774):364–368

23. Grilly C, Stricker J, Pang WL, Bennett MR,
Hasty J (2007) A synthetic gene network for
tuning protein degradation in Saccharomyces
cerevisiae. Mol Syst Biol 3:127. doi:10.1038/
msb4100168

24. Bashor CJ, Helman NC, Yan S, Lim WA
(2008) Using engineered scaffold interactions
to reshape MAP kinase pathway signaling
dynamics. Science 319(5869):1539–1543.
doi:10.1126/science.1151153

25. Szobota S, McKenzie C, Janovjak H (2013)
Optical control of ligand-gated ion channels.
Methods Mol Biol 998:417–435. doi:10.
1007/978-1-62703-351-0_32

26. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlicht-
ing I, Kuhlman B, Hahn KM (2009) A geneti-
cally encoded photoactivatable Rac controls
the motility of living cells. Nature 461
(7260):104–108. doi:10.1038/nature08241

27. Riley T, Sontag E, Chen P, Levine A (2008)
Transcriptional control of human p53-
regulated genes. Nat Rev Mol Cell Biol 9
(5):402–412

28. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S,
Milo R, Sigal A, Dekel E, Yarnitzky T, Liron
Y, Polak P, Lahav G, Alon U (2006) Oscilla-
tions and variability in the p53 system.Mol Syst
Biol 2(2006):0033

29. Toettcher JE, Mock C, Batchelor E, Loewer A,
Lahav G (2010) A synthetic-natural hybrid
oscillator in human cells. Proc Natl Acad Sci
U S A 107(39):17047–17052. doi:10.1073/
pnas.1005615107

276 Joshua R. Porter and Eric Batchelor

http://dx.doi.org/10.1038/msb.2013.1
http://dx.doi.org/10.1038/nrg2102
http://dx.doi.org/10.1016/B978-0-12-394438-2.00008-6
http://dx.doi.org/10.1016/j.gene.2012.11.016
http://dx.doi.org/10.1016/j.gene.2012.11.016
http://dx.doi.org/10.1016/j.tibtech.2013.04.004
http://dx.doi.org/10.1016/j.tibtech.2013.04.004
http://dx.doi.org/10.1007/s00253-006-0465-8
http://dx.doi.org/10.1007/s00253-006-0465-8
http://dx.doi.org/10.1007/s10529-008-9647-z
http://dx.doi.org/10.1007/s10529-008-9647-z
http://dx.doi.org/10.1038/35888
http://dx.doi.org/10.1038/msb4100168
http://dx.doi.org/10.1038/msb4100168
http://dx.doi.org/10.1126/science.1151153
http://dx.doi.org/10.1007/978-1-62703-351-0_32
http://dx.doi.org/10.1007/978-1-62703-351-0_32
http://dx.doi.org/10.1038/nature08241
http://dx.doi.org/10.1073/pnas.1005615107
http://dx.doi.org/10.1073/pnas.1005615107

Chapter 13

In Silico Control of Biomolecular Processes

Jannis Uhlendorf, Agnès Miermont, Thierry Delaveau, Gilles Charvin,
François Fages, Samuel Bottani, Pascal Hersen, and Gregory Batt

Abstract

By implementing an external feedback loop one can tightly control the expression of a gene over many cell
generations with quantitative accuracy. Controlling precisely the level of a protein of interest will be useful
to probe quantitatively the dynamical properties of cellular processes and to drive complex, synthetically-
engineered networks. In this chapter we describe a platform for real-time closed-loop control of gene
expression in yeast that integrates microscopy for monitoring gene expression at the cell level, microfluidics
to manipulate the cells environment, and original software for automated imaging, quantification, and
model predictive control. By using an endogenous osmo-stress responsive promoter and playing with the
osmolarity of the cells environment, we demonstrate that long-term control can indeed be achieved for
both time-constant and time-varying target profiles, at the population level, and even at the single-cell level.

Key words Model predictive control, Gene expression, High-osmolarity glycerol (HOG) pathway,
Computational biology, Quantitative systems and synthetic biology

1 Introduction

Understanding the information processing abilities of biological
systems is a central problem for systems and synthetic biology
[1–6]. The properties of a living system are often inferred from
the observation of its response to perturbations. Currently it is not
possible to control protein levels in a precise and time-varying
manner, even though this would be instrumental in our under-
standing of gene regulatory networks. To deal with this problem,
we present a novel experimental strategy to gain quantitative, real-
time control on gene expression in vivo. We see the problem of
manipulating gene expression to obtain given temporal profiles of
protein levels as a model-based control problem.More precisely, we
investigate the effectiveness of computerized closed-loop control
strategies to control gene expression in vivo. In model based
closed-loop control, a model of the system is used to constantly
update the control strategy based on real-time observations.

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_13, © Springer Science+Business Media New York 2015

277

We propose an experimental platform that implements such an in
silico closed-loop in the budding yeast Saccharomyces cerevisiae. We
show that gene expression can be controlled by repeatedly stimu-
lating a native endogenous promoter over many cell generations for
both time-constant and time-varying target profiles and at both the
population and the single-cell levels.

2 Results

2.1 The Controlled

System

We based our approach on the well-known response of yeast to an
osmotic shock, which is mediated by the HOG (high osmolarity
glycerol) signaling cascade. Its activation leads to the phosphoryla-
tion of the protein Hog1 (Fig. 1) which orchestrates cell adaptation
through glycerol accumulation. Phosphorylated Hog1 promotes
glycerol production by activating gene expression in the nucleus as
well as by stimulating glycerol producing enzymes in the cytoplasm.
Once adapted, the cells do not sense the hyperosmotic environ-
ment anymore, the HOG cascade is turned off and the transcrip-
tional response stops [7–9]. In control terms, yeast cells implement
several, short-term (non-transcriptional) and long-term (transcrip-
tional) negative feedback loops (see Chapter 10) which ensure their
perfect adaptation to the osmotic stress [10]. Because of these
adaptation mechanisms, it is a priori challenging to control gene
expression induced by osmotic stress. It is thus an excellent system
to demonstrate that one can robustly control protein levels even in
the presence of internal negative feedback loops. Several genes are

Fig. 1 Natural and engineered cell response to hyperosmotic shocks [14]. A hyperosmotic stress triggers the
activation and nuclear translocation of Hog1. Short-term adaptation is mainly implemented by cytoplasmic
activation of the glycerol-producing enzyme Gpd1 and closure of the aqua-glyceroporin channel Fps1. Long-
term adaptation occurs primarily through the production of Gpd1. For our application, the expression of the
protein of interest, yECitrine, is controlled by the osmo-responsive promoter pSTL1

278 Jannis Uhlendorf et al.

http://dx.doi.org/10.1007/978-1-4939-1878-2_10

up-regulated in response to a hyper osmotic stress. This includes
the nonessential gene STL1 which codes for a glycerol proton
symporter gene [12]. We decided to use its native promoter to
drive the expression of yECitrine, a fluorescent reporter. Applying
an osmotic stress transiently activated the HOG cascade and yECi-
trine levels reached modest values. Importantly, when short but
repeated stresses were applied, pSTL1 could be repeatedly activated
and much higher levels could be reached [14].

2.2 The Experimental

Platform

To observe the cells and control their environment, we designed a
versatile platform made of standard microscopy and microfluidic
parts. The microfluidic device contained several 3.1 μm high cham-
bers which were connected by both ends to large channels through
which liquid media could be perfused (Fig. 2). Since the typical
diameter of a S. cerevisiae cell is 4–5 μm, the cells were trapped in
the chamber as a monolayer and their motion was limited to slow
lateral displacement due to cell growth. This design allowed for
long-term cell tracking (>15 h) and for relatively rapid media
exchanges (~2 min). The HOG pathway was activated by switching
between normal and sorbitol enriched (1 M) media.

Fig. 2 A platform for real-time control of gene expression in yeast [14]. (Left) Yeast cells grew as a monolayer
in a microfluidic device which was used to rapidly change the cells’ osmotic environment (valve, blue frame)
and to image their response. Segmentation and cell tracking were done using a Hough transform (orange
frame). The measured yECitrine fluorescence, either of a single cell or of the mean of all cells, was then sent to
a state estimator connected to an MPC controller. A model (center, black frame) of pSTL1 induction was used
to find the best possible series of osmotic pulses to apply in the future so that the predicted yECitrine level
follows a target profile. (Right) At the present time point (orange disk), the system state is estimated (green)
and the MPC searches for the best input (pulse duration, number of pulses) whose predicted effect (blue and
black curves) minimizes its distance to the target profile (red dashed line) for the next 2 h. Here, the osmotic
series of pulses that corresponds to the blue curve (#4) was selected and sent to the μfluidic command.
This control loop is iterated every 6 min unless a stress is applied. Solid lines and their envelopes are the
experimental means and standard deviations of the cells fluorescence

In Silico Control of Biomolecular Processes 279

2.3 Model of pSTL1

Induction

To decide what osmotic stress to apply at a given time, we used an
elementary model of pSTL1 induction. Many models have been
proposed for the hyperosmotic stress response in yeast [10, 15–19].
We used a generic model of gene expression written as a two-
variable delay differential equation system where the first variable
denotes the recent osmotic stress felt by the cell and the second the
protein fluorescence level (Fig. 2). Since our goal was to demon-
strate robust control despite the presence of un-modeled feedback
loops, the adaptation mechanisms described above were purpose-
fully neglected. The choice of this model was also motivated by the
trade-off between its ability to quantitatively predict the system’s
behavior (favors complexity) and the ease of solving state estima-
tion problems (favors simplicity). Despite its simplicity, we found a
fair agreement between model predictions and calibration data
corresponding to fluorescence profiles obtained by applying either
isolated or repeated osmotic shocks of various durations [14].

2.4 Closing the Loop The fluorescence intensity either of a single cell, arbitrarily chosen at
the start of the experiment, or averaged over the cell population, was
sent to a state estimator (extended Kalman filter), connected to a
model predictive controller (MPC) [14]. MPC is an efficient frame-
work well adapted to constrained control problems. Schematically,
given a model of the system and desired temporal profiles for sys-
tem’s outputs, MPC aims at finding inputs so as to minimize the
deviation between the outputs of themodel and the desired outputs.
The control strategy is applied for a (short) period of time. Then the
new state of the system is observed and this information is used to
compute the control strategy to be applied during the next time
interval. This receding horizon strategy yields an effective feedback
control. In practice, every 6 min, given the current estimate of the
system state, past osmotic shocks, and ourmodel of gene expression,
the controller searched for the optimal number of osmotic pulses to
apply within the next 2 h and their optimal start times and durations
(Fig. 2). If a shock had to be applied within the next 6 min, then it
was applied. Otherwise, the same computation was reiterated 6 min
later based on new observations. We dealt with short term cell
adaptation by imposing a maximal stress duration of 8 min and a
20-min relaxation period between consecutive shocks. Under such
conditions cells stay responsive to osmotic stress at all times.

2.5 Closed-Loop

Population Control

Experiments

First, we demonstrate that one can maintain the average fluores-
cence level of a cell population at a given constant value (set-point
experiment) and force it to follow a time-varying profile (tracking
experiment). Both types of experiments lasted at least 15 h, starting
with a few cells and ending with 100–300 cells in the field of view.
The control objective was to minimize the mean square deviations
(MSD) between the mean fluorescence of the population of cells
and the target profile. We succeeded in maintaining the average

280 Jannis Uhlendorf et al.

fluorescence level at a given constant value, or in forcing it to follow
time-varying profiles (Fig. 3) [14]. Admissible time-varying target
profiles were obviously constrained by the intrinsic timescales of the
system such as the maximal protein production and degradation
rates. The effective control range spans an order of magnitude: set-
point control can achieved between 200 and 2,000 fluorescence
units [14]. Quantitative limitations of our experimental platform
can originate from the model, the state estimator, the control
algorithm and the intrinsic biological variability of gene expression.
In silico analysis showed that applying the proposed control strategy
to the (estimated state of the) system resulted in control
performances that were significantly better than those obtained
experimentally [14]. Therefore the control algorithm performed
well, and future improvements should focus on system modeling
and state estimation to better represent the experimental state of
the system.

Fig. 3 Real-time control of gene expression [14]. (a) Control at the population level. Representative set-point
control experiments and tracking control experiments are shown. Shock starting times and durations (see
color code) were computed in real time. The measured mean cell fluorescence is shown as solid blue lines.
The envelopes indicate standard deviation of the fluorescence distribution across the yeast population. (b)
Control at the single cell level. The yECitrine fluorescence of the controlled cells are shown as orange lines.
Note that the population follows the target profile but with less accuracy than the controlled single cell

In Silico Control of Biomolecular Processes 281

2.6 Closed-Loop

Single-Cell Control

Experiments

In a second set of experiments, we focused on the real-time control
of gene expression at the single-cell level. We tracked one single cell
over at least 15 h and used its fluorescence to feed the MPC
controller. As shown in Fig. 3, we obtained results whose quality
is out of reach of any conventional gene induction system, both for
constant and for time-varying target profiles. Because of intrinsic
noise in gene expression, single cell control was a priori more
challenging than population control. And indeed, when compared
with the mean fluorescence levels in population control experi-
ments, the fluorescence levels of controlled cells in single-cell con-
trol experiments showed larger fluctuations around the target
values. However, at the cell level, the mean square deviations of
controlled cells obtained in single-cell control experiments were
significantly smaller than that of a cell in population control experi-
ments [14]. This shows that real-time control effectively improves
control quality and counteracts the effects of noise in gene expres-
sion when performed at the single-cell level.

3 Discussion

3.1 Summary We demonstrated that gene expression can be controlled in real-
time with quantitative accuracy at both the population level and the
single-cell level by interconnecting conventional microscopy,
microfluidics, and computational tools. Importantly, we provided
evidence that real-time control can dynamically limit the effects of
biological noise when applied at the single-cell level. The fact that
good control results can be obtained in a closed-loop setting with a
relatively coarse model of an endogenous promoter suggests that
extensive modeling will not be required to transpose our approach
to other endo- and exogenous induction.

3.2 Related Works The actual use of in silico feedback loops to control intracellular
processes has been proposed only recently. In 2011, we showed
that the signaling activity in live yeast cells can be controlled by an
in silico feedback loop [20]. Using a proportional-integral (PI)
controller we controlled the output of a signal transduction path-
way by modulating the osmotic environment of cells in real time.
A similar framework has been proposed by Menolascina et al. to
control a large synthetic gene network [21]. More recently,
Toettcher et al. used elaborate microscopy techniques and optoge-
netics to control in real time and at the single-cell level the localiza-
tion and activity of a signal transduction protein (PI3K) in
eukaryotic cells [22]. Interestingly, they were able to buffer external
stimuli by clamping PIP3 for short time scales. With this approach,
the authors were able to reduce cell-to-cell variability of the
cells output by applying different inputs to each cell (Fig. 4a).
The most closely-related work is that of Milias-Argeitis et al. [23].

282 Jannis Uhlendorf et al.

Using optogenetic techniques, they managed to control the expres-
sion of a yeast gene to a constant target value over several hours
(Fig. 4b). In particular they are able to control the system to a fixed
set point after they have sent a random series of pulses. Their
approach is based on a chemostat culture and is therefore promising
for many biotechnological applications such as the production of
biofuels or small-molecule drugs, even if scaling up laboratory
experiments to industry scale has proven difficult. However,
because it does not allow for single-cell tracking and single-cell
control, it is less adapted to probe biological processes in single-
cell quantitative biology applications. These works have been
reviewed in more depth by Chen et al. [24].

3.3 Perspectives Connecting living cells to computers is a promising field of research
both for applied and fundamental research. Bymaintaining a system
around specific operating points or by driving it out of its standard

Fig. 4 Other real-time control platforms (a) Optogenetics control of localization and activity of PI3K in
mammalian cells [22]. The amount of PI3K products, PIP3, was assayed by measuring PHAkt-cerulean
recruitment to the plasma membrane. Gray line indicates the addition of a PI3K inhibitor at 400 s.
(b) Optogenetics control of gene expression in chemostat using Venus as reporter protein in yeast [23].
Set-point control was achieved irrespectively of the initial state of the cell population

In Silico Control of Biomolecular Processes 283

operating regions, real-time control approaches offer unprece-
dented opportunities to investigate how gene networks process
dynamical information at the cell level. We also anticipate that
such platforms will be used to complement and help the develop-
ment of synthetic biology via the creation of hybrid systems
resulting from the interconnection of in vivo and in silico comput-
ing devices.

Acknowledgments

We acknowledge the support of the Agence Nationale de la
Recherche (under the references DiSiP-ANR-07-JCJC-0001 and
ICEBERG-ANR-10-BINF-06-01), of the Région Ile de France
(C’Nano-ModEnv), of the Action d’Envergure ColAge from
INRIA/INSERM (Institut Nationale de la Santé et de la Recherche
Médicale), of the MechanoBiology Institute, and of the Laboratoire
International Associé CAFS (Cell Adhesion France-Singapour).

References

1. Bhalla US, Ram PT, Iyengar R (2002) MAP
kinase phosphatase as a locus of flexibility in a
mitogen-activated protein kinase signaling net-
work. Science 297:1018–23

2. Hooshangi S, Thiberge S, Weiss R (2005)
Ultrasensitivity and noise propagation in a syn-
thetic transcriptional cascade. Proc Natl Acad
Sci U S A 102:3581–6

3. Cai L, Dalal CK, Elowitz MB (2008)
Frequency-modulated nuclear localization
bursts coordinate gene regulation. Nature
455:485–90

4. Celani A, Vergassola M (2010) Bacterial strate-
gies for chemotaxis response. Proc Natl Acad
Sci U S A 107:1391–6

5. Baumgartner BL, Bennett MR, Ferry M et al
(2011) Antagonistic gene transcripts regulate
adaptation to new growth environments. Proc
Natl Acad Sci U S A 108:21087–92

6. O’Shaughnessy EC, Palani S, Collins JJ et al
(2011) Tunable signal processing in synthetic
MAP kinase cascades. Cell 144:119–31

7. de Nadal E, Alepuz PM, Posas F (2002) Deal-
ing with osmostress through MAP kinase acti-
vation. EMBO Rep 3:735–40

8. Hohmann S (2002) Osmotic stress signaling
and osmoadaptation in yeasts. Microbiol Mol
Biol Rev 66:300–372

9. Miermont A, Uhlendorf J, McClean M et al
(2011) The dynamical systems properties of
the HOG signaling cascade. J Signal Transduct
2011:930940

10. Muzzey D, Gómez-Uribe C, Mettetal JT et al
(2009) A systems-level analysis of perfect

adaptation in yeast osmoregulation. Cell 138:
160–71

11. Yi TM, Huang Y, Simon MI et al (2000)
Robust perfect adaptation in bacterial chemo-
taxis through integral feedback control. Proc
Natl Acad Sci U S A 97:4649–53

12. Van Voorst F, Neves L, Oliveira R et al (2005)
A member of the sugar transporter family,
Stl1p is the glycerol/H + symporter in Saccha-
romyces cerevisiae. Mol Biol Cell 16:
2068–2076

13. O’Rourke SM, Herskowitz I (2004) Unique
and redundant roles for HOG MAPK pathway
components as revealed by whole-genome
expression analysis. Mol Biol Cell 15:532–542

14. Uhlendorf J, Miermont A, Delaveau T et al
(2012) Long-term model predictive control
of gene expression at the population and
single-cell levels. Proc Natl Acad Sci U S A
35:14271–14276

15. Klipp E, Nordlander B, Kr€uger R et al (2005)
Integrative model of the response of
yeast to osmotic shock. Nat Biotechnol 23:
975–82

16. Hao N, Behar M, Parnell SC et al (2007) A
systems-biology analysis of feedback inhibition
in the Sho1 osmotic-stress-response pathway.
Curr Biol 17:659–67

17. Mettetal JT, Muzzey D, Gómez-Uribe C et al
(2008) The frequency dependence of osmo-
adaptation in Saccharomyces cerevisiae. Science
319:482–4

18. Zi Z, Liebermeister W, Klipp E (2010) A quan-
titative study of the Hog1 MAPK response to

284 Jannis Uhlendorf et al.

fluctuating osmotic stress in Saccharomyces cer-
evisiae. PLoS One 5:e9522

19. Zechner C, Ruess J, Krenn P et al (2012)
Moment-based inference predicts bimodality
in transient gene expression. Proc Natl Acad
Sci U S A 109:8340–8345

20. Uhlendorf J, Bottani S, Fages F, et al (2011)
Towards real-time control of gene expression:
controlling the hog signaling cascade. Pac
Symp Biocomput 338–349

21. Menolascina F, di Bernardo M, di Bernardo D
(2011) Analysis, design and implementation of
a novel scheme for in-vivo control of synthetic

gene regulatory networks. Automatica 47:
1265–1270

22. Toettcher JE, Gong D, Lim WA et al (2011)
Light-based feedback for controlling intracellu-
lar signaling dynamics. NatMethods 8:837–839

23. Milias-Argeitis A, Summers S, Stewart-
Ornstein J et al (2011) In silico feedback for
in vivo regulation of a gene expression circuit.
Nat Biotechnol 29:1114–1116

24. Chen S, Harrigan P, Heineike B et al (2013)
Building robust functionality in synthetic cir-
cuits using engineered feedback regulation.
Curr Opin Biotechnol 24:790–6

In Silico Control of Biomolecular Processes 285

Chapter 14

Stochastic Modular Analysis for Gene Circuits: Interplay
Among Retroactivity, Nonlinearity, and Stochasticity

Kyung Hyuk Kim and Herbert M. Sauro

Abstract

This chapter introduces a computational analysis method for analyzing gene circuit dynamics in terms of
modules while taking into account stochasticity, system nonlinearity, and retroactivity.

(1) Analog electrical circuit representation for gene circuits: A connection between two gene circuit
components is often mediated by a transcription factor (TF) and the connection signal is described
by the TF concentration. The TF is sequestered to its specific binding site (promoter region) and
regulates downstream transcription. This sequestration has been known to affect the dynamics of the
TF by increasing its response time. The downstream effect—retroactivity—has been shown to be
explicitly described in an electrical circuit representation, as an input capacitance increase. We provide
a brief review on this topic.

(2) Modular description of noise propagation: Gene circuit signals are noisy due to the random nature of
biological reactions. The noisy fluctuations in TF concentrations affect downstream regulation. Thus,
noise can propagate throughout the connected system components. This can cause different circuit
components to behave in a statistically dependent manner, hampering a modular analysis. Here, we
show that the modular analysis is still possible at the linear noise approximation level.

(3) Noise effect on module input–output response: We investigate how to deal with a module input–output
response and its noise dependency. Noise-induced phenotypes are described as an interplay between
system nonlinearity and signal noise.

Lastly, we provide the comprehensive approach incorporating the above three analysis methods, which
we call “stochastic modular analysis.” This method can provide an analysis framework for gene circuit
dynamics when the nontrivial effects of retroactivity, stochasticity, and nonlinearity need to be taken into
account.

Key words Stochastic process, Modularity, Synthetic biology, Noise propagation, Fan-out,
Retroactivity

1 Introduction

Modularity is an important concept for engineering a composite
system from a priori characterized components [1]. This
concept enables efficient composition with predictability and

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_14, © Springer Science+Business Media New York 2015

287

module-interchangeability. In a real engineered system a connection
between two components can cause interference, resulting in the loss
ofmodularity. Tominimize such interference, interfaces are designed
to isolate any interfering effects. Synthetic biology is no exception.
Connections between two biological components are mediated by
transcription factors (TFs), which “bind” and “unbind” from their
DNA specific binding sites. Thus, a circuit signal is “used” to establish
a connection. In addition, gene circuits are significantly noisy due to
the fact that TFs are often found in low copy numbers within single
cells. Thus circuit signals—intracellular TF concentrations—can fluc-
tuate in time significantly. The signal fluctuations—here we call
“noise”—can propagate to the downstream gene-circuit compo-
nents, making the signals in upstream and downstream statistically
dependent, i.e., correlated.

In this chapter, we will provide a “modular” analysis method
for gene circuits. First, we provide a brief review on our previous
work on a gene circuit representation in terms of electrical circuit
components, where component interference is represented explic-
itly by an increase in an input capacitance. Second, we describe
noise propagation in a modular fashion. Third, the effect of noise
on module properties is explained as an interplay between nonline-
arity and stochasticity in the module. Lastly, these three different
topics will be considered as a whole, to provide a modular frame-
work for gene circuit dynamics that incorporate the effect of retro-
activity, stochasticity, and system nonlinearity. This theoretical
framework will provide a step toward understanding noise-induced
phenotypes in terms of modular responses and will help exploit
noise to enhance circuit performance.

2 Alternative Gene Circuit Representation in Terms
of Electrical Circuit Components

This section represents gene circuits in terms of analog electrical
circuit components: resistors and capacitors. To start with, we
describe a circuit interface as a set of biological reactions that
involve TFs that bind and unbind from their specific promoter
sites to regulate downstream transcription processes. The TFs can
be multimers and can self-regulate. Thus, the circuit interface can
include a set of reactions of multimerization, TF binding and
unbinding, transcription, and translation, as well as feedback reac-
tions. For all these various types of interfaces, it was shown that the
gene circuit reaction models can be mathematically mapped to
analog electrical circuits [2] under the assumption that the binding
and unbinding reactions are fast enough to be in equilibrium and
bound TFs degrade much more slowly than the free TFs.

288 Kyung Hyuk Kim and Herbert M. Sauro

The effect of the downstream regulation by TFs has been
experimentally shown to exist in protein signaling networks
[3, 4] and gene regulatory networks [5–7]. Regulation can
change the response speed of the regulating proteins as well as
their concentration levels. These effects can be understood in
terms of biological reactions. With respect to the speed of
response, experimental verification in gene regulatory networks
is still underway. The effect can be intuitively understood as
follows: When bound TFs degrade more slowly than free TFs,
perhaps because of the limited access of proteases, the degradation
of the “total” TFs becomes slower. However, we have to note that
if the bound TFs degrade with the same rate as the free form, the
response speed will not change but the levels of the free TFs are
just scaled down by the same factor for all transient time. This
effect on the response speed was originally termed “retroactivity”
[8] and the degree of tolerance “fan-out” [2].

The electrical circuit representation presented in [2] is more
informative than the reaction model since the retroactive effect is
explicitly shown in the former representation while the latter does
not. Let us briefly review the work in [2]. We consider a protein
synthesis and degradation process. Synthesis and degradation can
be represented as a resistor–capacitor (RC) circuit and when the
protein is allowed to regulate the downstream promoter sites, the
RC circuit can be modified by adding an extra capacitor to
the existing one in parallel as shown in Fig. 1. This parallel con-
nection of the extra capacitor increases the total capacitance (that
is the sum of the two capacitances), leading to a longer time to
charge both the capacitors. Therefore, the response time
increases. For a complex gene regulatory network the same
mapping to the electrical circuit representation can be performed
by adding an extra capacitor for each TF regulation. Thus, the
retroactive effect in gene circuits can be systematically taken into
account.

As an example, we can consider the repressilator, the first
synthetic genetic oscillator. It is composed of three genes, tetR,
lacI, and cI, which sequentially inhibit one another, making a
negative feedback loop. This delayed negative feedback leads to
oscillation in gene expression. Since there are three regulation
reactions, three interfaces exist. For each interface, we need to
add a capacitor in parallel with the existing one. Here we note
that the additional capacitance is dependent on the voltage—TF
concentration—applied and thus that the dependency of retroac-
tivity on the TF concentration is taken care of. Thus, the electrical
circuit representation of gene circuits can be illustrated as in Fig. 1.

In summary, when a gene circuit module makes a connection to
another, the input capacitance of the downstream module will be
increased depending on the concentration of TFs and the
number of TF binding sites in the downstream module as shown

Stochastic Modular Analysis 289

in Figs. 1 and 2. Further analysis shows that the dependence on the
number of TF binding sites (PT in Fig. 2) turns out to be linear,
which will be discussed in the next section.

3 Gene Circuit Fan-Out

For the case when retroactivity is significant, how can we quantify the
degree of the retroactivity and furthermore provide certain limits in
the downstream load to cap the retroactive effect? Electrical circuit
components cannot tolerate unlimited connections. This is because
with a finite amount of output current it is impossible to drive all the
connected components. A similar phenomenon can occur in gene
circuits. Thus, it is important to know how many downstream com-
ponents can be connected, a number we call fan-out [2].

For example, consider an upstream module that is an oscillator,
which needs to produce oscillatory signals faster than a certain
frequency due to a biological limitation or desired design require-
ment. This maximum operating frequency will limit the number of
the connections from the oscillator to downstream circuits because

Fig. 1 Analog electrical circuit representation: (a) The repressilator is the first synthetic genetic oscillator. (b) It
can be represented in terms of analog electrical circuit components such as resistors, capacitors, and inverted
output voltage amplifiers. Here the inverted amplifiers represent the inhibitory genetic regulation of TetR, cI,
and LacI, by inverting, scaling, and shifting the input voltages. Retroactivity can be explicitly described as an
additional capacitor that depends on voltage applied. (c) Each gene expression and its regulation can be
represented as an electrical circuit block or module, and retroactivity as an input capacitance increase of the
module

290 Kyung Hyuk Kim and Herbert M. Sauro

as the number of the downstream interactions increase, the response
time of the regulating protein increases due to retroactivity.

How can we measure the fan-out? Obviously the measurement
requires the trend information on the response time vs. number of
connections. If we have to repeat experiments for many different
numbers of downstream connections, the characterization would
be very tedious and perhaps even impractical. However, it was
shown that the response time of the TFs show a certain linear
relationship to the number of the downstream TF connections.
This linearity was shown to be universal if each individual down-
stream promoter acts as an independent sequestrator of the TFs.
Such linearity can be established for a wide range of circuit interface
such as multimer TFs, feedback, multiple kinds of promoters, and
multiple operator sites as shown in Fig. 2. Thus, fan-out can be
characterized very efficiently due to the linearity.

What kinds of experiments need to be performed to measure
fan-out? Two kinds, one at the population level using micro-plate
readers and the other at the single cell level using fluorescence
microscopy. The population level experiments can be performed,
for example, by varying the strength of the downstream

Fig. 2 Gene circuit representation in a wide range of circuit interfaces. Top Dimer transcription factors self-
regulate their transcription processes, while regulating the downstream promoters as well. This interface can
be transformed to an RC-circuit. Here the additional capacitance C1PT represents the input capacitance of the
downstream circuit. Note that this capacitance is proportional to the number of the downstream promoters, PT.
Middle Dimer transcription factors regulate multiple operators (O1 and O2). Bottom Transcription factors
regulate two types of plasmids having different copy numbers, PT1 and PT2. In all the above cases and even the
combinations of these, the additional capacitors are proportional to the number of the downstream promoters
(PT, PT1, PT2). This linearity can provide efficient characterization of gene circuit fan-out

Stochastic Modular Analysis 291

connections of the TFs either by adding small molecules that
interact with the TFs or by changing the number of promoter
sites that are specific to the TFs [5–7]. Single-cell level experiments
can be performed by tagging TFs with fluorescent markers to
directly monitor the fluctuations of the TF concentrations and by
measuring the fluctuation speed (more precisely correlation time).
For discussion on experimental characterization of response speed
by using gene expression noise, refer to [9], and for more theoreti-
cal discussion, refer to [2, 10, 11].

4 Modular Description of Signal Noise

As briefly discussed in the previous section, gene circuits are noisy.
Even within an isogenic cell population, each individual cell can
show significantly different protein concentration levels. This is
because transcription and translation events occur as a series of
random bursts and the cells undergo division, differentiation, and
apoptosis at random and even extra-cellular environments can show
significant fluctuations. Due to the random nature of cellular
dynamics and environmental effects, gene expression systems are
often described as “stochastic” processes.

One important property of noisy systems is that noise passing
through one system component can propagate to another and can
lead to nontrivial “interference” between the components. Some-
times, this interference can be significant enough that the system
properties are drastically changed, resulting in “noise-induced
phenotypes.”

As a first step to understand noise-induced phenotypes, we
decompose the noise propagation in a modular way so that the
phenotypes can be understood in terms of each module component
effect. For this task, we propose the following modular analysis (see
Subheading 5). This approach is based on a very simple fact that
when noise is sufficiently small, the noise dominantly sees the linear
components of nonlinear systems. In this case, a sinusoidal wave
input (with a certain frequency ω) will propagate to an output with
an identical-frequency sinusoidal wave without exciting other-
frequency signals (because noise components can see only the
“linear” system). This fact implies that in the frequency domain
the output signal noise can be fully described by the input signal
noise. Therefore, a modular description of noise propagation can
be performed at the “linear noise approximation.”

We will take the Langevin approach with the linear noise
approximation [12, 13]. We will formulate the input–output noise
response of a module by investigating self-correlation of each indi-
vidual input and output noise signal [14, 15]. More precisely, the
self-correlation can be mathematically described by an autocorrela-
tion function that quantifies similarity between the values of

292 Kyung Hyuk Kim and Herbert M. Sauro

signal pairs with a certain time lag. It turns out that the input
autocorrelation function is sufficient to describe the output auto-
correlation function if the module itself is fully characterized a
priori.

5 Modular Description of Noise Propagation

To describe how internal and external (input) noise propagate
through networks, we will investigate the properties of the auto-
correlation functions of the noise. In particular, it can be shown
that if the input noise autocorrelation function is known, the
output noise autocorrelation function can be fully described by
the input noise autocorrelation function for the stationary state of
the internal dynamics, which are described by linear Langevin
equations [16]. Furthermore, by taking the Fourier transforms of
the autocorrelation functions, it can be shown the input–output
noise response can be described by a transfer-like matrix equation.
This analysis leads to modular analysis of complex stochastic
networks.

The input signals of a module are denoted as X , its output as
Y , and internal variables of the module as Z . Internal dynamics is
presumed to be described by

dZ

dt
¼ J � Z þ ξþX ; (1)

where ξ is a Gaussian white noise vector satisfying

hξtξTt 0 i ¼ Dδðt � t 0Þ with D diffusion coefficient matrix and J is
the Jacobian matrix. We assume that the correlation between the
input noise and the internal noise (ξ) is negligible. We introduce an
autocorrelation function to quantify the similarity between signal
pairs separated by a time lag τ:

GZ ðτÞ ¼ lim
t0!1 hZ t0Z

T
t0þτi: (2)

Previous research [14, 15, 17, 18] has been focused on the proper-
ties of the diagonal terms of the above matrix. This is why the
general structure of input–output noise relationship has been
absent. The solution of Eq. 1 is obtained as

Z t ¼ exp½J t �
Z t

0

ds exp½�J s � � ðξs þX sÞ: (3)

The autocorrelation matrix, expressed in terms of the correlation
matrix of ξ and X by substituting Eq. 3 to Eq. 2,

can be simplified after Fourier transformations as:

~GZ ðωÞ ¼
�
J þ iωI

��1 � �D=ð2πÞ þ ~GX ðωÞ
� � �J T � iωI

��1
;

Stochastic Modular Analysis 293

using hðξs þX sÞ � ðξs 0 þX s 0 ÞT i ¼ Dδðs � s 0Þ þGX ðs � s 0Þ.
~GðωÞ is the Fourier transform of GðtÞ. Finally, the output noise
autocorrelation function can be expressed, by using a projection
matrix P mapping the state space fZg onto the output subspace
fY g, as

~GY ðωÞ ¼ P � ~GZ ðωÞ ¼ P � �J þ iωI
��1 �

D

2π
þ ~GX ðωÞ

!
� �J T � iωI

��1
:

(4)

Equation 4 is important because it shows that the output autocor-
relation function can be fully described by the input autocorrelation
function and that there is a simple matrix relationship through the
transfer-like function. Equation 4 also succinctly shows how output
noise is affected by internal noise (D) and input noise (~GX ðωÞ).
This allows a systematic approach for noise propagation in complex
gene and signaling networks using the modularity concept.

To take into account the effect of retroactivity in this modular
analysis, we can consider an additional capacitance that corresponds
to the effect of downstream loads and analyze the noise propaga-
tion with the input capacitance taken into account as illustrated in
Fig. 1.

In this analysis method, we can understand the input–output
noise response of a module for different cases such as (a) non-
stochastic input and stochastic internal noise (~GX ðωÞ ¼ 0); (b)
stochastic input and non-stochastic internal noise (D ¼ 0 and
~GX ðωÞ 6¼ 0); (c) both internal and external noise (D 6¼ 0 and
~GX ðωÞ 6¼ 0).

This approach can also be used to devise noise (de-)amplifiers
and filters by taking into account different network topology and
kinetics, for which the information can be found in the matrices D
and J . If the matrices are suitably chosen, noise (de-)amplifiers and
filters can be designed.

6 Noise Effect on Nonlinear Responses

In the previous section, noise propagation was described in a mod-
ular fashion with the approximation that the first and second
moments of a signal noise are sufficient to describe the system
behaviors. Under the same level of approximation, we will describe
the effect of noise on a module input–output transfer curve. First,
consider a linear system with an input (i) and an output (o), satisfy-
ing the following relationship:

o ¼ c i;

294 Kyung Hyuk Kim and Herbert M. Sauro

with c a proportionality constant. The mean values of i and o satisfy
the same relationship:

hoi ¼ chii:
However, when a system is nonlinear, the same relationship

does not hold typically, simply because of Jensen’s inequality: In the
convex function f(x), the function of the mean of the two x values,
f ð½x1 þ x2�=2Þ, is always smaller than the mean value of the two
functional values of x1 and x2, ½f ðx1Þ þ f ðx2Þ�=2, because this is
located on the secant line (see Fig. 3). In more general term, the
expectation of a convex function of a random variable is always
greater than the function of the expectation. Jensen’s inequality
explains that a sigmoidal response curve can be less sigmoidal (as
shown in Fig. 3b) and in certain cases, can be more sigmoidal,
resulting in ultrasensitivity [19, 20]. This has been shown that the
interplay between system nonlinearity and stochasticity can cause
nontrivial noise-induced phenotypes such as noise-induced bist-
ability and noise-induced linearized response [20].

More mathematically, the expectation value of f(x) can be
approximated as

�
f ðxÞ� ’ f

�hxi�þ f 00ðxÞ
2

VarianceðxÞ: (5)

This gives a simple explanation of Jensen’s inequality by showing
the sign dependence of f 00(x). The second term in Eq. 5 describes
the interplay between nonlinearity and stochasticity: The double
derivative f 00(x) corresponds to the former and the variance to the
latter. The variance and mean values of x can be estimated with a
moment closure approximation by neglecting the third and higher
moments of x (refer to Appendix in [20]). This approximation is
called the mass fluctuation kinetics in mass reaction systems [21].

a b

Fig. 3 Interplay between system nonlinearity and stochasticity

Stochastic Modular Analysis 295

7 Stochastic Modular Analysis

We combine the modular noise propagation analysis provided in
Subheading 5 to the mass fluctuation kinetics to consider the cases
in the stronger noise regime where noise-induced phenotypes can
appear. Mass fluctuation kinetics can describe the system behavior
with more accuracy than linear noise approximation approaches by
taking into account an interplay between system nonlinearity and
stochasticity exactly as in Eq. 5. The variance (more in general,
covariance) term in Eq. 5 can be described in terms of the input
signal values in the modular noise propagation analysis, ~GxðωÞ, as
follows:

VarianceðxÞ ¼
Z

~GxðωÞ dω :

This shows that it is possible to combine the modular noise propa-
gation analysis with the mass fluctuation kinetics (see Fig. 4).
Therefore, network-level dynamics can be described in terms of
modules.

To take into account the effect of retroactivity, an additional
input capacitance can be added per a module input that corre-
sponds to the effect of the input to its connected output. Then,
the noise propagation can be described in terms of modules as
shown in Fig. 4.

lacItetR cI

Input of the cI module
= Mean, autocorrelation (PSD)

of TetR concentration levels

Output of the cI module
= Mean, autocorrelation (PSD)

of cI concentration levels

“cI Module”

Retroactivity

i/o response described by
Mass Fluctuation Kinetics

Modular Analysis for Noise propagation

lacItetR

Fig. 4 Stochastic modular analysis: As a simple genetic circuit example, the repressilator is represented in
terms of analog circuits. The noisy signals are analyzed in terms of modules by considering its first and second
moments: mean and autocorrelation, or equivalently power spectral density (PSD). A module input–output (i/o)
response is analyzed by using mass fluctuation kinetics by considering the system nonlinearity and stochas-
ticity. The retroactivity is explicitly described by an additional parallel capacitance connection

296 Kyung Hyuk Kim and Herbert M. Sauro

Therefore, it is possible to combine the three different analyses
that were discussed in the previous sections: (1) analog circuit
representation for the explicit description of retroactivity; (2) mod-
ular description of noise propagation; (3) the effect of system
nonlinearity and stochasticity. This combined global analysis, we
name stochastic modular analysis, will provide an analysis frame-
work that takes into account retroactivity, stochasticity, system non-
linearity, and modularity, all together in a system-wide level.

References

1. Baldwin CY, Clark KB (2000) Design rules: the
power of modularity. MIT Press, Cambridge

2. Kim KH, Sauro HM (2010) Fan-out in gene
regulatory networks. J Biol Eng 4:16

3. Jiang P, Ventura AC, Sontag ED, Merajver SD,
Ninfa AJ, Del Vecchio D (2011) Load-induced
modulation of signal transduction networks.
Sci Signal 4(194):ra67

4. Ventura AC, Jiang P, Van Wassenhove L, Del
Vecchio D, Merajver SD, Ninfa AJ (2010) Sig-
naling properties of a covalent modification
cycle are altered by a downstream target. Proc
Natl Acad Sci USA 107:10032–10037

5. BuchlerNE,Cross FR (2009)Protein sequestra-
tion generates a flexible ultrasensitive response in
a genetic network. Mol Syst Biol 5:272

6. Jayanthi S, Nilgiriwala KS, Del Vecchio D
(2013) Retroactivity controls the temporal
dynamics of gene transcription. ACS Synth Biol

7. Daniel R, Rubens JR, Sarpeshkar R, Lu TK
(2013) Synthetic analog computation in living
cells. Nature 497(7451):619–623

8. Del Vecchio D, Ninfa AJ, Sontag ED (2008)
Modular cell biology: retroactivity and insula-
tion. Mol Syst Biol 4:161

9. Weinberger LS, Dar RD, Simpson ML (2008)
Transient-mediated fate determination in a
transcriptional circuit of HIV. Nat Genet 40
(4):466–470

10. Kim KH, Sauro HM (2011) Measuring retro-
activity from noise in gene regulatory net-
works. Biophys J 100(5):1167–1177

11. Kim KH, Sauro HM (2012) Measuring the
degree of modularity in gene regulatory net-
works from the relaxation of finite perturba-
tions. In: 2012 I.E. 51st IEEE conference on
decision and control (CDC), pp 5330–5335

12. Elf J, Ehrenberg M (2003) Fast evaluation of
fluctuations in biochemical networks with the
linear noise approximation. Genome Res 13
(11):2475–2484

13. Paulsson J (2004) Summing up the noise in
gene networks. Nature 427(6973):415–418

14. Tănase-Nicola S, Warren PB, ten Wolde PR
(2006) Signal detection, modularity, and the
correlation between extrinsic and intrinsic
noise in biochemical networks. Phys Rev Lett
97(6):68102

15. Warren PB, Tanase-Nicola S, ten Wolde PR
(2006) Exact results for noise power spectra
in linear biochemical reaction networks. J
Chem Phys 125(14):144904

16. Kwakernaak H, Sivan R (1972) Linear optimal
control systems. Wiley-Interscience, New York

17. Simpson ML, Cox CD, Sayler GS (2003) Fre-
quency domain analysis of noise in autoregu-
lated gene circuits. Proc Natl Acad Sci USA
100(8):4551

18. Austin DW, AllenMS,McCollum JM, Dar RD,
Wilgus JR, Sayler GS, Samatova NF, Cox CD,
Simpson ML (2006) Gene network shaping of
inherent noise spectra. Nature 439:608–611

19. Paulsson J, Berg OG, Ehrenberg M (2000)
Stochastic focusing: fluctuation-enhanced sen-
sitivity of intracellular regulation. Proc Natl
Acad Sci USA 97(13):7148–7153

20. Kim KH, Qian H, Sauro HM (2013) Nonlin-
ear biochemical signal processing via noise
propagation. arXiv:1309.2588 [q-bio.QM]

21. Gómez-Uribe CA, Verghese GC (2007) Mass
fluctuation kinetics: capturing stochastic effects
in systems of chemical reactions through cou-
pled mean-variance computations. J Chem
Phys 126(2):24109

Stochastic Modular Analysis 297

Part IV

Distributed Systems and Automation

Chapter 15

Distributed Model Construction with Virtual Parts

Michael T. Cooling and Tommy Yu

Abstract

Here three models for a simple genetic device are constructed using modular mathematical models. The
models are stored in an online system (the Physiome Model Repository) with distributed source and access
control, demonstrating a collaborative method for creating mathematical models from reusable
components.

Key words Mathematical modeling, Model, CellML, Distributed, Repository, Virtual parts,
Collaborative

1 Introduction

An important goal in synthetic biology modeling is to develop a set
of reusable, composable modular models that can be combined and
re-combined to form models of genetic circuits. Considered indi-
vidually, these models would quantify the behavior of biological
components (as in ref. 1, for example), being abstractions of char-
acterized biological parts suitable for use in computer-aided design
of biology (“BioCAD”). While the highly successful Parts Registry
[2] aims to describe and characterize the biological details of syn-
thetic biology parts, we describe here the construction and use of
modular mathematical models designed to augment the Parts Reg-
istry by providing virtual parts [3]. These Virtual Parts could be
used to construct robust models of the genetic circuits and predict
their behavior before construction of the circuits themselves, sti-
mulating iterative design-and-test cycles reducing expensive or
time-consuming laboratory work.

Virtual Parts are constructed in the model exchange protocol
CellML [4], which is inherently modular [5] and has a strong track
record in representing systems biology models (e.g., refs. [6, 7]),
and multiscale models [8]. CellML is a declarative, XML-based

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_15, © Springer Science+Business Media New York 2015

301

modeling protocol that can be used to represent sets of ODEs,
expressed as mathematical equations and accompanying variables.
The equations are expressed in MathML (http://www.w3.org/
Math/) expressions, which represent equations as a hierarchy of
subexpressions in prefix form, encoded in XML. CellML also
demands the explicit definition of units for all variables and con-
stants, and thereby allows dimensional consistency checking of
expressed equations. CellML allows the mathematics and asso-
ciated variables to be partitioned into components, which can be
considered as submodels of the original model. Variables in differ-
ent components can be set as equivalent to one another, through a
CellML connection. In this way, information can be shared
between components. One might consider a component having
inputs of some variables, containing an equation that calculates
another variable from the “inputs”, which is then made available
to other components as the current component’s output. The most
recent version of CellML, version 1.1, includes the ability to spread
a model across multiple CellML model documents, where an in-
memory copy of a component (or unit definition) in one model can
be made available in another model. This is known as “importing”,
and provides a way to share or replicate (the same component can
be imported multiple times, each being considered a separate
instance by the CellML solver) mathematical forms, units, and/or
parameter values between models. A hierarchy of components can
be defined, including those that are imported from other CellML
models, and encapsulation of component variables can be set, as
well as interfaces defined as to which variables in which components
can have connections between them. In this way, submodel com-
plexity can be hidden from higher levels of the larger model, which
can aid model composition. While the CellML code will be
described in sufficient detail in order to complete the processes
described here, readers new to CellML and interested in learning
to use the protocol more generally are invited to peruse the “Get-
ting Started” material on the CellML web site at http://www.
cellml.org.

CellML models using Virtual Parts are organized into a hierar-
chy of at least three levels. At the top of the hierarchy is the
“Systems Model”. This is the model of the biological system that
one is interested in. It can be considered an aggregation (usually via
CellML imports) of submodels that each describe one biological
entity or process—the Virtual Parts or second level. Virtual Parts
import their mathematical form from the third level, which are
given the name “Templates” as they provide a mathematical Tem-
plate for a set of Virtual Parts, each having the same mathematical
form. A Template once imported is made more specific in the
Virtual Part by ascribing particular parameter values to the mathe-
matics. For example, a Template may contain the mathematical
form for an activatable promoter, which includes several (unset)

302 Michael T. Cooling and Tommy Yu

http://www.w3.org/Math/
http://www.w3.org/Math/
http://www.cellml.org/
http://www.cellml.org/

parameters. Virtual Parts that represent specific promoters import
the aforementioned Template, but also contain parameter values
specific to the particular promoter that they represent. The Systems
Model may also directly contain other components that are used to
perform helpful mathematical operations, such as aggregation
of fluxes of species into net fluxes, or conversion between two
variables that are of the same dimensions but different units.

The Systems Model may also import Templates directly, with-
out an intervening Virtual Part. This happens where a mathematical
form is reused, but does not have any accompanying parameteriza-
tion. The most common example of this is in modeling biological
molecular species, where a simple ODE for the species is computed
on the basis of a single variable, such as net flux. Initial conditions
for the variable are held in some other component (see Note 1).
The other common use for the direct importing facility is in incor-
porating a variable to represent time, which in CellML is a special
variable with no initial condition.

The Virtual Parts and Templates are stored in the Physiome
Model Repository [9] (PMR) which allows multiple model authors
from around the world to collaborate on their models securely in
“Workspaces”. The Workspaces are versioned, with changes by
model developers tracked, through PMR’s use of the Mercurial
distributed version control system [10, 11]. Workspaces are only
available to user logins to whom the owner of the Workspace gives
access, but models can be exposed to the public through the form-
ing of an “Exposure” which, as the name implies, exposes nomi-
nated contents (a particular changeset) of a Workspace to the online
public, often with a presentation page describing the details of what
is being exposed. The Repository can be found at http://models.
cellml.org.

We will begin by describing how to again access to the PMR
and how to use it to build a model of an example biological system,
shown in Fig. 1.

Several Virtual Parts for this system already exist in PMR; the
model can largely be constructed from Virtual Parts from the
“Bugbuster” model held in PMR (see the latest Exposure of the
Bugbuster workspace, which in turn can be found here http://
models.cellml.org/workspace/bugbuster). The ribosome binding
site (RBS) can be modeled using the same Template model as the
Bugbuster RBS, but we shall assume that the RBS used here has
different kinetics, so that we can create new Virtual Part using that
Template. We will describe how the complete Systems Model is
formed from the Virtual Parts (including that derived from the new
promoter Template), building the model iteratively “backwards”
from GFP—beginning with a simpler GFP-only model, then mod-
ifying this to include details of the genetic Device. You will then be
shown how to substitute a new, more powerful RBS Virtual Part,
which you will construct. We will also detail how to make the model

Distributed Model Construction 303

http://models.cellml.org/
http://models.cellml.org/
http://models.cellml.org/workspace/bugbuster
http://models.cellml.org/workspace/bugbuster

Workspace available to collaborators from around the world, and
finally how to publically “expose” the completed model of the
system to the general public, online.

2 Materials

It is assumed that you have a computer (a Windows 7 PC is assumed
here, but other platforms such as Linux or MacOS are equally
viable) with a functional internet connection. Most of the opera-
tions can be performed with an internet browser and your favorite
text editor; however in order to upload code to PMR you will have
to install a Mercurial client. You may also find it useful to try one of
the CellML modeling environments available (see Note 2).

2.1 Install Mercurial (if it is not already present on your system).

1. In your browser, navigate to the “downloads” part of the
Mercurial web site. At the time of writing, this can be found
at http://mercurial.selenic.com/downloads/.

2. Select the appropriate download for your computer system,
and install it (see Note 3). A wide range of installers for differ-
ent platforms, and source code distributions exist. If you are a
Windows user, you may also like to download and install the
Tortoise user interface (see Note 4), although in this chapter
the existence of Tortoise will not be assumed.

Fig. 1 A simple biological system is depicted on the left, consisting of a constitutively active device that
produces GFP (green fluorescent protein). The device consists of a promoter, a ribosome binding site, and a
coding sequence or gene for GFP, followed by two stop codons (stop codons are not modeled explicitly). RNA
transcribed from the gene can be translated into the GFP species, or degraded by intracellular processes. GFP
is assumed to have some known half-life before also being degraded

304 Michael T. Cooling and Tommy Yu

http://mercurial.selenic.com/downloads/

3. In order to make commits to repositories, it is necessary to
signal to Mercurial what your name and email address is, for
tracking purposes. In Windows 7, this is done by saving the
following as Mercurial.ini under %USERPROFILE% (usu-
ally “C:\Users\<username>”):

[ui]
username ¼ Your Name<yourname@youremail.com>

3 Methods

3.1 Obtain Access

to PMR

1. Navigate your internet browser to the CellML model reposi-
tory (http://models.cellml.org).

2. Click on “Register” in the top right corner of the web page.
You can also follow a link at the bottom of the page under
“New user?”

3. Fill in the Full Name, User Name, and E-mail address and
input the “Captcha” words, then click the Register button.

4. PMR will now send you a confirmation email to the email
address that you specified. When you receive this email, click
on the link provided.

5. You will be taken to a password setting web page. Please set
your password for your PMR login on that page.

6. You can then Log in by clicking “Log in” (next to the “Regis-
ter” link that you clicked on in step 2 above), and log in with
your username and password.

7. You can then follow the link to the main page of PMR, and you
will now be logged in as your new user (see Note 5).

3.2 Create a New

Workspace

1. From the button bar at the top left, select “My Workspaces”.

2. A list of Workspaces that you can access would be shown here, if
you had any. Follow the first link to the Workspace container.

3. On the top right, click the “add new. . .” option.

4. A drop-down should appear: click the “pmr2 workspace”
option.

5. On the web page that appears, give your new Workspace an Id,
Title, and Description. “Id” will determine the URI of your
Workspace, and may become quite important as you will use
this URI to share your Workspace with others, or perhaps to
cite your models electronically. Thus it is recommended that
you choose your Workspace’s Id with care (see Note 6).

6. Click the “Add” button to create the Workspace. You will be
taken to the page for the new Workspace once it is created (see
Note 7).

Distributed Model Construction 305

http://models.cellml.org/

3.3 Derive a Model

of GFP Degradation

Here you will create a simple model of GFP degrading in the
cytosol (the “right end” of the model depicted in Fig. 1). To do
this, you are going to reuse model components from the Bugbuster
model. The easiest way is to obtain those from the latest Exposure
of that model (see Note 8).

1. Navigate in your browser to http://models.cellml.org/
workspace/bugbuster and navigate down the page until you
find an entry for

Bugbuster_AllFiles.zip

2. Hit the [download] link on the right and download the .zip file
to a convenient folder.

3. On your local file system, create a model-building folder where
you will create the new model.

4. Create a newmodel file in themodel-building folder. It should be
a simple XML file with the basic CellML <model/> element,
as shown here:

<?xml version¼"1.0" encoding¼"utf-8"?>
<model name¼"GFPModel"

xmlns¼"http://www.cellml.org/cellml/1.1#"
xmlns¼"http://www.cellml.org/cellml/1.1#"
xmlns:cellml¼"http://www.cellml.org/cellml/1.1#"
xmlns:xlink¼"http://www.w3.org/1999/xlink">

</model>

and save it as “GFPModel.cellml”.

5. The new model will need a concept of time. Copy the “Time.
cellml” file from the unzipped folder to your model-building
folder. Time can then be imported by adding the following
code inside the <model/> tag of “GFPModel.cellml”:

<import xlink:href¼"Time.cellml">

<component name¼"Time"
component_ref¼"Time" />
</import>

6. The model will need a concept of species to represent the GFP.
Copy the “Template_Species.cellml” file to your model-
building folder. Import an instance of the Species template
that you will use to represent GFP with the following code
placed inside the <model/> tag:

<import xlink:href¼"Template_Species.cellml">
<units name¼"nM_per_s" units_ref¼"nM_per_s" />
<units name¼"nM" units_ref¼"nM" />
<component name¼"GFP" component_ref¼"Template_
Species"/>

</import>

306 Michael T. Cooling and Tommy Yu

http://models.cellml.org/workspace/bugbuster
http://models.cellml.org/workspace/bugbuster
http://www.cellml.org/cellml/1.1
http://www.cellml.org/cellml/1.1
http://www.cellml.org/cellml/1.1
http://www.w3.org/1999/xlink

Note that here you have imported units from the Template
(see Note 9). You have also set the name of the local version of
the Template_Species component to “GFP”.

7. You will need to initialize your imported species component
with an initial value. Create a separate component to hold initial
concentrations of species, by placing the following code inside
the <model/> tag:

<component name¼"SpeciesInitialConcentrations">
<variable name¼"GFP" units¼"nM" initial_value
¼"1" public_interface¼"out" />

</component>

In this simple model, there is only one initial condition; how-
ever in a more complex model there is more than one variable
to set and the separation of initial conditions into a separate
component can be very useful.

8. To introduce the concept of degradation, copy the “Templa-
te_RxR1P1.cellml” file to your model-building location. Copy
also the “Bioenvironment_Degradation_GFP.cellml” file,
which already imports the Template and parameterizes it for
degradation of GFP. Degradation can now be added to the
model by placing the following code inside the<model/> tag:

<import xlink:href¼"Bioenvironment_Degradation_
GFP.cellml">

<component name¼"Bioenvironment_Degradation_
GFP"component_ref¼"Bioenvironment_Degradation_
GFP"/>

</import>

That component itself imports the “Template_RxR1P1” com-
ponent; hence you do not have to import that one explicitly.

9. You should define a component that aggregates fluxes of
GFP—whether GFP is produced from some process (a positive
flux) or removed/consumed (a negative flux). Thus it is useful
to define an “interface” component for GFP as follows:

<component name¼"GFP_interface">
<variable name¼"JGain" units¼"nM_per_s" public
_interface¼"out"/>
<variable name¼"JMinusDegradation" units¼ "nM_
per_s" public_interface¼"in"/>

<math xmlns¼"http://www.w3.org/1998/Math/
MathML">

<apply>
<eq/>
<ci>JGain</ci>
<apply>

<minus/>

Distributed Model Construction 307

http://www.w3.org/1998/Math/MathML
http://www.w3.org/1998/Math/MathML

<ci>JMinusDegradation</ci>
</apply>

</apply>
</math>

</component>
The first part declares variables for the net gain, and for the
degradation flux (see Note 10). The second part declares the
MathML for the equation defining the flux aggregation
equation—in this case the JGain variable—as the negative of
the JMinusDegradation flux.

10. At present, while you have everything necessary to construct
our model, none of the components are connected together.
The imported GFP component, for example, needs to link to
the model’s concept of time. It also needs to have the initial
concentration set. You achieve these goals by connecting them
to your imported Time, and the species concentration you
defined earlier, via the addition of the following code:

<connection>
<map_components component_1¼"GFP" component_2
¼"Time"/>
<map_variables variable_1¼"time" variable_2
¼"time"/>

</connection>

<connection>
<map_components component_1¼"GFP" component_2
¼"SpeciesInitialConcentrations"/>
<map_variables variable_1¼"concentration
InitialValue" variable_2¼"GFP"/>

</connection>

You should link the output of the degradation reaction to the
“GFP_interface” component that you defined, with the follow-
ing code:

<connection>
<map_components component_1¼"GFP" component_2
¼"GFP_interface"/>
<map_variables variable_1¼"JGain" variable_2
¼"JGain"/>

</connection>

11. Finally, the degradation component needs to know which spe-
cies it is degrading. You therefore add the following connection
so that it acts on the GFP species that you defined earlier:

<connection>
<map_components component_1¼"Bioenvironment_
Degradation_GFP" component_2¼"GFP"/>

308 Michael T. Cooling and Tommy Yu

<map_variables variable_1¼"concentration"
variable_2¼"concentration"/>

</connection>

Also, the output of the degradation component, or the calcu-
lated degradation flux, needs to be connected to the “JMinus”
variable you defined in the “GFP_interface”, thus:

<connection>
<map_components component_1¼"GFP_interface"
component_2¼"Bioenvironment_Degradation_GFP"/>
<map_variables variable_1¼"JMinusDegradation"
variable_2¼"J"/>

</connection>

12. You now have a model of the system shown in Fig. 2. It may
have seemed complicated to make such a small model; however
you now have a set of reusable pieces that make it easier to add
other reactions and species, of similar types, to your model. You
may like to try simulating your new model by loading the
“GFPmodel.cellml” file into a CellML simulation tool (see
Note 2). If you run the model for 1,000 s and plot GFP.
concentration over Time.time you should get a decreasing
function as the concentration asymptotically approaches zero,
over the course of approximately 5,000 s.

3.4 Commit the

Model to a Local

Repository, and

Then to PMR

Now that you have a model, you can commit it to PMR. These
instructions assume that you have Mercurial installed as per above
(see Note 11). First you will make a local copy of the Workspace
(even though it is empty) in a local (to your file system) repository
via Mercurial. Then you will put your files in that local folder, and
add and commit them to your local repository. You will then push
your local repository back to the PMR workspace, updating it with
the new files.

1. Obtain the URI for the workspace you defined in Subheading 2
above. Do this by logging in to PMR, clicking “My Work-
spaces”, and then following the link to your Workspace. The
URI will be listed under “URI for mercurial clone/pull/push”.

2. Open a command window and navigate to where you would
like your local repository to be. Issue the following command
to make a local copy of the Workspace:

Fig. 2 A schematic of the GFP model. GFP is assumed to be present in the
system, and is degraded according to mass-action kinetics

Distributed Model Construction 309

hg clone <Workspace URI>

Where <Workspace URI> is replaced with the URI you found
in step 1. You will be required to log into PMR via Mercurial in
order for this to occur—use your PMR login and password.
Your local repository should be created with a folder name
specified by the Id that you specified when you created the
Workspace.

3. Copy the files that you produced in Subheading 3.3 to the
folder that has been created for your Workspace.

4. Issue the following command to add them to your local Mer-
curial repository:

hg add

You should see some confirmation messages as the files are
added.

5. Any changes that you are happy with, such as adding files here,
should be committed to your local repository. Issue the follow-
ing command to do this (see Note 12):

hg commit

OnWindows, a Notepad file is opened. This is for you to add a
comment to the commit explaining what the purpose of the
commit is (such as “Initial adding of files”). The commit
message will be saved along with your commit to help others
(and yourself, in the distant future) to determine what has
changed and why.

6. The local repository is now updated with the files. However,
nothing is on PMR as yet. Issue the following command to
push your changes from your local repository to the Workspace
on PMR:

hg push

Once again, logging into PMR with your user name and pass-
word is required, this time in order to authorize the update of
the remote repository.

7. Navigate with your web browser to the Workspace URI on
PMR and you should now see that the model files have all been
added.

3.5 Grant Access to

Collaborators

It is possible to grant access for collaborators to a Workspace, as
long as they have a PMR user login.

1. From the Workspace web page click the “sharing” button in
the button bar in the upper middle of the page.

2. Permissions for various users and groups are displayed in
tabular form. You can search for a particular user if you know
their PMR username. If you have a collaborator, do this and

310 Michael T. Cooling and Tommy Yu

then select the permissions that you would like to grant them.
At the time of writing these are add, edit, hg push, and
view. Add, edit, and view relate to the workspace itself,
whereas hg push relates to the ability to push changesets to a
local repository with the Workspace (see Note 13).

3. Click “Save” when you are happy with the changes you have
made, or “Cancel”.

3.6 Model Simple

Gene Regulation

Now you will add the elements for simple gene regulation, includ-
ing a promoter, messenger RNA, ribosome binding site (RBS), and
a protein coding sequence (CDS). These will be added to a new
model, which begins as a copy of the old one. The genetic compo-
nents will be reused from the Bugbuster model. These and
subsequent steps could be performed by collaborators that have
been granted access from anywhere in the world, once they have
cloned your Workspace.

1. Create a new model file by copying “GFPModel.cellml” to
“SimpleModel.cellml”.

2. Change the “name” attribute of the <model/> tag in “Sim-
pleModel.cellml” to “SimpleModel”.

3. Add the concept of a CDS by copying the file “Template_Pro-
teinCDS.cellml” to your local repository folder. Copy also the
file “Bugbuster_ProteinCDS_GFP.cellml”. This latter file
imports the Template for the CDS. Add a CDS to the model
by placing the following code inside the <model/> tag of
“SimpleModel.cellml”:

<import xlink:href¼"Bugbuster_ProteinCDS_GFP.
cellml">

<component name¼"ProteinCDS_GFP" component_
ref¼"Bugbuster_ProteinCDS_GFP" />

</import>

(see Note 14).

4. Add the concept of an RBS by copying the files “Bugbus-
ter_RBS_GFP.cellml” and “Template_RBS.cellml” to your
local repository folder. Add an RBS to the model by placing
the following code inside the<model/> tag of “SimpleModel.
cellml”:

<importxlink:href¼"Bugbuster_RBS_GFP.cellml">
<component name¼"RBS_GFP" component_ref¼
"Bugbuster_RBS_GFP" />

</import>

5. Add RNA to the model with the following code:

<import xlink:href¼"Template_Species.cellml">
<component name¼"RNA_GFP" component_
ref¼"Template_Species" />

</import>

Distributed Model Construction 311

Note that you don’t have to add any more files to do this—
since you have already added the concept of a Species to the
model, you can simply re-import the Template_Species com-
ponent under the name “RNA_GFP” (see Note 15).

6. Add an initial condition for the “RNA_GFP” species by adding
the following code to the previously created “SpeciesInitial-
Concentrations” component:

<variable name¼"RNA_GFP" units¼"nM" initial_
value¼"0" public_interface¼"out" />

7. Add the concept of a constitutive promoter by copying the files
“Template_Promoter_Constitutive.cellml” and “Bugbuster_
Promoter1.cellml” to your local repository folder. Add the
following code to your model, inside the <model/> tag:

<importxlink:href¼"Bugbuster_Promoter1.cellml">
<component name¼"Constitutive_Promoter"
component_ref¼"Bugbuster_Promoter1" />

</import>

8. The promoter will need a concept of cellular volume in order to
operate. To introduce the concept of a cell, copy the “Templa-
te_Chassis_WellStirredBag.cellml” file and the “Chassis_Bacil-
lus.cellml” files to your model-building folder. Then add the
following code inside the <model/> tag:

<import xlink:href¼"Chassis_Bacillus.cellml">
<component name¼"ChassisBacillus" component_
ref¼"Chassis_Bacillus" />

</import>

The Chassis_Bacillus file imports the Template_Chassis file and
parameterizes it for a Bacillus cell type.

9. Connect the imported Bacillus cell volume to the promoter by
adding the following connection:

<connection>
<map_components component_1¼"Constitutive_
Promoter" component_2¼"ChassisBacillus"/>
<map_variables variable_1¼"localVolume"
variable_2¼"cellVolume"/>

</connection>

10. In a similar manner to adding the interface component for GFP
earlier, you should add an interface component for the
RNA_GFP:

<component name¼"RNA_GFP_interface">
<variable name¼"JPlusProduction" units¼
"nM_per_s" public_interface¼"in"/>
<variable name¼"JGain" units¼"nM_per_s"
public_interface¼"out"/>

312 Michael T. Cooling and Tommy Yu

<variablename¼"JMinusDegradation"units¼"nM_
per_s" public_interface¼"in"/>

<math xmlns¼"http://www.w3.org/1998/Math/
MathML">

<apply>
<eq/>
<ci>JGain</ci>
<apply>

<minus/>
<ci>JPlusProduction</ci>
<ci>JMinusDegradation</ci>

</apply>
</apply>

</math>
</component>

This interface component has both a JPlus and a JMinus input.
The JPlus input will come from the promoter, and the JMinus
from an RNA degradation process.

11. Add the concept of RNA degradation by copying the file
“Bioenvironment_Degradation_BugbusterRNA1.cellml” to
the local repository folder. The degradation component should
be imported by adding the following code to your model:

<import xlink:href¼"Bioenvironment_
Degradation_BugbusterRNA1.cellml">

<component name¼"Bioenvironment_Degradation
_RNA_GFP" component_ref¼"Bioenvironment_
Degradation_BugbusterRNA1" />

</import>

12. Now the model contains all the elements for simulation, but
many are not connected yet. Add the following three
connections:

<connection>
<map_components component_1¼"RNA_GFP"
component_2¼"Time"/>

<map_variables variable_1¼"time" variable_
2¼"time"/>

</connection>

<connection>
<map_components component_1¼"RNA_GFP"
component_2¼"SpeciesInitialConcentrations"/>

<map_variables variable_1¼"concentration
InitialValue" variable_2¼"RNA_GFP"/>

</connection>

<connection>

Distributed Model Construction 313

http://www.w3.org/1998/Math/MathML
http://www.w3.org/1998/Math/MathML

<map_components component_1¼"RNA_GFP"
component_2¼"RNA_GFP_interface"/>

<map_variables variable_1¼"JGain"
variable_2¼"JGain"/>

</connection>

These connections, respectively, add the model’s notion of
time to the RNA, the initial concentration, and also connect
our RNA_interface component to the RNA, so that the sum of
the JPlus and JMinus variables becomes the net RNA flux.

13. Add the following connections, so that the production of RNA
from the promoter becomes the JPlus flux for the RNA_inter-
face, and the degradation of RNA becomes the JMinus flux:

<connection>
<map_components component_1¼"RNA_GFP_
interface" component_2¼"Constitutive_
Promoter"/>

<map_variablesvariable_1¼"JPlusProduction"
variable_2¼"JRNA"/>

</connection>

<connection>
<map_components component_1¼"RNA_GFP_
interface" component_2¼"Bioenvironment_
Degradation_RNA_GFP"/>

<map_variables variable_1¼"JMinus
Degradation" variable_2¼"J"/>

</connection>

14. Add the following connection, so that the RNA Degradation
component acts on the amount of RNA_GFP present:

<connection>
<map_components component_1¼"Bioenvironment_
Degradation_RNA_GFP"component_2¼"RNA_GFP"/>

<map_variables variable_1¼"concentration"
variable_2¼"concentration"/>

</connection>

15. The RBS component needs to connect to themodel’s concept of
cellular volume, and to know which RNA concentration to use
in order to calculate the genetic translation rate. Add the follow-
ing two connections to the model to provide this information:

<connection>
<map_components component_1¼"RBS_GFP"
component_2¼"ChassisBacillus"/>

<map_variables variable_1¼"localVolume"
variable_2¼"cellVolume"/>

</connection>

314 Michael T. Cooling and Tommy Yu

<connection>
<map_components component_1¼"RBS_GFP"
component_2¼"RNA_GFP"/>

<map_variables variable_1¼"RNA" variable_
2¼"concentration"/>

</connection>

16. The CDS component also needs to know the model’s concept
of cellular volume, and which RBS is directly upstream of it (via
translating ribosomes per second or RiPs). Provide this infor-
mation with the following connections:

<connection>
<map_components component_1¼"ProteinCDS_
GFP" component_2¼"ChassisBacillus"/>

<map_variables variable_1¼"localVolume"
variable_2¼"cellVolume"/>

</connection>

<connection>
<map_components component_1¼"ProteinCDS_
GFP" component_2¼"RBS_GFP"/>

<map_variables variable_1¼"hostRNARiPs"
variable_2¼"RNARiPs"/>

</connection>

17. Previously, the amount of GFP in the cell was set at 1 nM, and
this degraded over time to zero. Now that the model contains
genetic elements that produce GFP, the initial concentration of
GFP should be set to zero, and a JPlus flux from the CDS
should be added to the GFP_interface component. Therefore,
adjust the GFP variable declaration in the SpeciesInitialCon-
centrations component to be the following:

<variable name¼"GFP" units¼"nM" initial_
value¼"0" public_interface¼"out" />

The GFP_interface component declaration should be modified
by the following:

<component name¼"GFP_interface">
<variable name¼"JGain" units¼"nM_per_s"
public_interface¼"out"/>
<variable name¼"JMinusDegradation" units¼
"nM_per_s" public_interface¼"in"/>
<variable name¼"JPlusProduction" units¼
"nM_per_s" public_interface¼"in"/>

<math xmlns¼"http://www.w3.org/1998/Math/
MathML">
<apply>

<eq/>
<ci>JGain</ci>

Distributed Model Construction 315

http://www.w3.org/1998/Math/MathML
http://www.w3.org/1998/Math/MathML

<apply>
<minus/>
<ci>JPlusProduction</ci>
<ci>JMinusDegradation</ci>

</apply>
</apply>

</math>
</component>

and connect the new JPlus variable to the output of the CDS:

<connection>
<map_components component_1¼"GFP_interface"
component_2¼"ProteinCDS_GFP"/>
<map_variables variable_1¼"JPlusProduction"
variable_2¼"J"/>

</connection>

If the model is now saved and simulated in a CellML-ready
tool, it will produce an increasing concentration of GFP that
goes to a steady state of about 1,380 nM at around 5,000 s.

3.7 Commit and

Push All Changes

Local commits can of course be performed at any time during local
development. If new files have been added, such as in the previous
section then

1. An
hg add
command should be issued, as you did after the construction of
the previous model.

2. An
hg commit
command should be issued whenever you would like to per-
form a local commit, as it was in Subheading 3.4. You will have
to enter some commit comments.

3. An
hg push
command should be issued when development has progressed
to the point that the model builder would like to push the
changes back to the PMR Workspace. Assuming all previous
steps have been performed, do this now. You will be required to
log in with your PMR username and password.

3.8 Replace the RBS

Virtual Part

Assume that you wish to replace the RBS in the model with a more
powerful one. You could edit the RBS model file and adjust the rate
constants therein; however in a larger model this would also change
other RBSes in the model that rely on an import of that same
Virtual Part. Here you will create a new, more powerful part in a
separate file and replace the existing RBS with the new one

316 Michael T. Cooling and Tommy Yu

1. Copy the “Bugbuster_RBS_GFP.cellml” file to a new file
“MorePower_RBS_GFP.cellml”.

2. Open the “MorePower_RBS_GFP.cellml” file in a text editor
and replace the name attribute of the model tag with
name¼"MorePower_RBS_GFP"

3. Remove the cmeta:id attribute of the model tag.

4. Remove the <rdf:RDF> tag containing author information
(see Note 16).

5. Rename the <component/> element from “Bugbus-
ter_RBS_GFP” to “MorePower_RBS_GFP”.

6. In that same component, increase the initial_value of the
“k” variable from 0.145 to 14.5 (a 100-fold increase in transla-
tion speed!).

7. In the <group/> tag, ensure that the top-level “component
_ref” element points to “MorePower_RBS_GFP”.

8. In the <connection/> element, ensure that the “compo-
nent_2” attribute of the <map_components/> tag is set to
“MorePower_RBS_GFP”.

9. Copy the “SimpleModel.cellml” file to a new file: “MorePo-
werModel.cellml”. You now have a new model file.

10. In the “MorePowerModel.cellml”, change the “name” attri-
bute of the <model/> tag to “MorePowerModel”.

11. In that same file, find the element that is declared:

<importxlink:href¼"Bugbuster_RBS_GFP.cellml">
<component name¼"RBS_GFP" component_ref¼
"Bugbuster_RBS_GFP" />

</import>

and change it to

<importxlink:href¼"MorePower_RBS_GFP.cellml">
<component name¼"RBS_GFP" component_ref¼
"MorePower_RBS_GFP" />

</import>

This will replace the old Bugbuster RBS with the more power-
ful version.

12. Be sure to use hg add, hg commit and hg push to commit
your changes back to the PMR Workspace.
If simulated now, the MorePower model produces a steady-
state value of GFP of about 138,000 nM, or 138 μM.

3.9 Expose the

Workspace to the

General Public

Once a set of models in a Workspace is ready for release to the
general public, one or more Exposures can be made. Exposures
provide links to view and download models, as well as provide an
online documentation source for the model. Here you will create

Distributed Model Construction 317

an Exposure for the first model that you created above. Additional
Exposures can be created for the other models if desired.

1. Documentation for the Exposure can be provided by a sample .
html page that you can include in your Workspace. Go to your
local repository and create a file “exposure.html”.

2. Create a documentation file for your models in “exposure.
html”. Here is an example template that you can start with:

<html>
<head>
<title>Example GFP Model</title>

</head>
<body>
<h1>Documentation</h1>
Here is some documentation.
<h2>Sub-Documentation</h2>
..and some sub-documentation.
</body>
</html>

3. Add, commit, and push the “exposure.html” to your Work-
space (as detailed above).

4. Ensure that your Workspace is public by navigating to the
Workspace page and selecting the element in top right of the
bar with the caption: “state private”. Select the drop-down
option “submit for publication”.

5. When yourWorkspace has been published (meaning that now it
and the code that it contains is accessible to the general public—
seeNote 17), click the “history” button in the menu bar.

6. A list of changesets will be displayed. You can make an Expo-
sure that is linked to any changeset. Select the [files] part of the
changeset that you would like to make an Exposure for (for this
example, the latest one).

7. The top right menu bar element “workspace actions” will now
display “create exposure” when clicked. Do this and select
“create exposure”.

8. In the “Exposure main view” box, fill out “HTML annotator”
for ViewGenerator, and “exposure.html” for Generator Source.

9. Exposures provide the option to nominate specific files of
interest in a Workspace. To do this for the first model
“GFPModel.cellml”, select that file in the New Exposure File
Entry area as “File”, and select “CellML file” as “File Type”.
Click on the Add button.

10. The next screen allows you to provide more information about
that file. For now, you can skip adding more information, but it
would be good to similarly add the other two models in your

318 Michael T. Cooling and Tommy Yu

Workspace. To add another model, click on the “Add File”
button. Another New Exposure File Entry section will
appear—fill this one out with “SimpleModel.cellml” and
“CellML file” and click the “Update” button.

11. Similarly, add “MorePowerModel.cellml” to the Exposure via a
New File Entry section. You should now have three of those
sections.

12. Click “Build” at the bottom of the screen.

13. Your new exposure should be displayed. Note that the Expo-
sure is private by default, so you will have to “submit it to make
it public” in order for it to be viewable by the outside world,
much as you did for theWorkspace previously. Note that on the
right-hand side there is a “Navigation” panel with the three
model file names displayed. These can be clicked on to take
viewers to pages where models can be viewed with a range of
different plug-ins, depends on what is installed on PMR. In the
future, it may also be possible to simulate models from PMR,
or view the models in new ways with different plug-ins. There-
fore adding the main files of interest to the Navigation area in
the manner described in the above steps is recommended for
future utility.

4 Notes

1. However, if a species and initial condition combination was
useful to reuse (e.g., the known physiological initial condition
under “normal” conditions for a species in a particular cell
type), then a Virtual Part could be made to encapsulate both
the variable’s ODE and the initial condition in order to facili-
tate reuse of both in concert.

2. At the time of writing, several CellML modeling environments
are available. These can be found at the CellML web site (www.
cellml.org) under Tools, and then Modelling Environments.
“OpenCell” is capable of building any of the models in this
chapter; however some users find it difficult to use. “COR” is
more user-friendly, but does not cater for CellML 1.1 models
(i.e., with imports). However, it may still be useful for produc-
ing monolithic models which can be federated into CellML 1.1
models at a later time. “OpenCOR” is currently under devel-
opment (available at www.opencor.ws), and aims to combine
the advantages of both OpenCell and COR, and incorporate
new useful features. For the more programmatically inclined, it
is also possible to script model creation using the CellML API
(see http://www.cellml.org/tools/api). This chapter will not
assume any particular tool but will describe the raw CellML

Distributed Model Construction 319

http://www.cellml.org/
http://www.cellml.org/
http://www.opencor.ws/
http://www.cellml.org/tools/api

code that might be produced by such a tool, or entered directly
into a file with your favorite text editor.

3. Installing Mercurial or any CellML-editing tool will require
administrator access to your machine. If your working environ-
ment does not grant you such access, you may have to enlist the
assistance of your local IT department before starting the
examples in this chapter.

4. Tortoise provides a GUI (Graphical User Interface) to Mercu-
rial, which can be helpful for new users or for when projects
become complex. However, since it is only available for Win-
dows users, we will not describe its use in this chapter.

5. You will need to enable cookies in your web browser, if they are
not already enabled, in order to navigate PMR while logged in.

6. Workspace Ids are unique to the PMR user (hence two users
can have the same Id, but these would point to different Work-
spaces), and are case sensitive.

7. Your new Workspace will contain no files (and therefore no
model files). It is also possible to create a new Workspace as a
“fork” of an existing Workspace. This is particularly useful if
you will be extending or modifying models from anotherWork-
space. You achieve this by navigating to the Workspace of
interest, and pushing “fork” in the button bar in the upper
middle of the page. You will be prompted to give the Id of the
new Workspace, and you can then press the “fork” button to
add the new Workspace as a fork of the existing one. This fork
will contain files, being a fork of the underlying Mercurial
repository that implements the Workspace that was forked.

8. There are a number of other options here. One is to use PMR
to create a fork as described in Note 7. Another is to use
Mercurial to make a local clone of the Bugbuster workspace.
That workspace is set up to use the “Embedded Workspaces”
feature, which means that it contains links to other workspaces
(for the Template models, mainly) to form a hierarchy of Work-
spaces which can all be updated from your local repository.
Both local clones and Embedded Workspaces are advanced
uses of PMR and will not be covered directly in this chapter.

9. If a unit is used by the top-level model, it needs to be either
defined in that model, or imported from one of the imported
models. As far as the code is concerned, it does not matter
where the unit is defined or imported; however for maintain-
ability you may find it useful to keep the definitions somewhere
specific, such as near the start or end of the model file. A
common source of error during validation (which is often
performed prior to simulating the model) is to have declared
the same unit definition twice, so be sure to only declare it
once, or import it once, but not both.

320 Michael T. Cooling and Tommy Yu

10. One could follow any convention that they liked with the
naming of these variables. From experience, we have found
that a useful custom is to define a net flux as “JGain”, and
other fluxes beginning with “JPlus” or “JMinus” depending on
how they influence the net flux. Naming the individual fluxes in
this way can assist ensuring that we add or subtract each flux
appropriately when coding the flux aggregation equation.

11. If you are unsure if Mercurial is installed correctly you can try
issuing the command

hg

at the command prompt. If you get some Mercurial informa-
tion, then it is installed correctly.

12. If you get an error message about the user name not being
defined, ensure that you have created an Mercurial.ini file as in
Subheading 2.1

13. We suggest using the view permission to allow “read” access,
and “hg push” to allow write/update/delete.

14. It does not matter where in the model you place this code, as
long as it is a direct child of the <model/> tag.

15. You could have called the component simply “RNA”; however
since a model could be extended to include several RNA for
different proteins, we recommend naming it more specifically:
thus “RNA_GFP”.

16. If you prefer you could change the cmeta:id attribute of the
model tag to something appropriate and edit the <rdf:RDF/>
tag to contain author information (e.g., about you).

17. If you are concerned about making your entire Workspace
public, another option is to place your releasable models in a
new Workspace, either by the processes described in this chap-
ter, or by “forking” an existing Workspace (which copies the
revision history up to the current point as well), and Exposing
your models from there.

Acknowledgments

This work was supported by theMaurice Wilkins Centre for Molec-
ular Biodiscovery, New Zealand.

References

1. Marchisio MA, Stelling J (2008) Computa-
tional design of synthetic gene circuits
with composable parts. Bioinformatics 24:
1903–1910

2. Peccoud J, Blauvelt MF, Cai Y, Cooper KL,
Crasta O, DeLalla EC, Evans C, Folkerts O,

Lyons BM, Mane SP, Shelton R, Sweede MA,
Waldon SA (2008) Targeted development of
registries of biological parts. PLoSOne 3:e2671

3. Cooling MT, Rouilly V, Misirli G, Lawson J,
Yu T, Hallinan J, Wipat A (2010) Standard
virtual biological parts: a repository of modular

Distributed Model Construction 321

model components for synthetic biology. Bio-
informatics 26:925–931

4. Cuellar AA, Lloyd CM, Nielsen PF, Bullivant
DP, Nickerson DP, Hunter PJ (2003) An over-
view ofCellML1.1, a BiologicalModel Descrip-
tion Language. Simulation 79:740–747

5. Cooling MT, Hunter P, Crampin EJ (2008)
Modeling biological modularity with CellML.
IET Syst Biol 2:73–79

6. Hunter PJ, Borg TK (2003) Integration from
proteins to organs: the Physiome Project. Nat
Rev Mol Cell Biol 4:237–243

7. Cooling MT, Hunter P, Crampin EJ (2009)
Sensitivity of NFAT cycling to cytosolic cal-
cium concentration: implications for hypertro-
phic signals in cardiac myocytes. Biophys J
96:2095–2104

8. Nickerson DP, Nash MP, Nielsen PF, Smith N,
Hunter P (2006) Computational multiscale

modeling in the IUPS Physiome Project:
modeling cardiac electromechanics. IBM J
Res Dev 50:617–630

9. Yu T, Lloyd CM, Nickerson DP, Cooling MT,
Miller AK, Garny A, Terkildsen JR, Lawson J,
Britten RD, Hunter PJ, Nielsen PMF (2011)
The Physiome Model Repository 2. Bioinfor-
matics 27:743–744

10. Miller AK, Yu T, Britten R, Cooling MT, Law-
son J, Cowan D, Garny A, Halstead MDB,
Hunter PJ, Nickerson DP, Nunns G,
Wimalaratne SM, Nielsen PMF (2011) Revi-
sion history aware repositories of computa-
tional models of biological systems. BMC
Bioinformatics 12. doi:10.1186/1471-2105-
12-22

11. O’Sullivan B (2007) Distributed revision con-
trol with Mercurial, Mercurial project

322 Michael T. Cooling and Tommy Yu

http://dx.doi.org/10.1186/1471-2105-12-22
http://dx.doi.org/10.1186/1471-2105-12-22

Chapter 16

The Synthetic Biology Open Language

Chris Myers, Kevin Clancy, Goksel Misirli, Ernst Oberortner,
Matthew Pocock, Jacqueline Quinn, Nicholas Roehner,
and Herbert M. Sauro

Abstract

The design and construction of engineered organisms is an emerging new discipline called synthetic biology
and holds considerable promise as a new technological platform. The design of biologically engineered
systems is however nontrivial, requiring contributions from a wide array of disciplines. One particular issue
that confronts synthetic biologists is the ability to unambiguously describe novel designs such that they can
be reengineered by a third-party. For this reason, the synthetic biology open language (SBOL) was developed
as a community wide standard for formally representing biological designs. A design created by one
engineering team can be transmitted electronically to another who can then use this design to reproduce
the experimental results. The development and the community of the SBOL standard started in 2008 and
has since grown in use with now over 80 participants, including international, academic, and industrial
interests. SBOL has stimulated the development of repositories and software tools to help synthetic
biologists in their design efforts. This chapter summarizes the latest developments and future of the
SBOL standard and its supporting infrastructure.

Key words Synthetic biology, Standards, Engineering design

1 Introduction

Within the synthetic biology community, there is a pressing need for
the ability to share and communicate designs in a simple and unam-
biguous manner. Typically, users need software support for a num-
ber of design steps, including genetic design automation (GDA)
tools and workflows to construct genetic designs, analyze and visua-
lize their behavior, explore design alternatives, and edit and opti-
mize their DNA sequences, as well as, repositories for saving and
sharing designs. Clearly, this software must be capable of exchang-
ing information about these designs in a consistent manner.

The biological community has produced many excellent and
long-lived standards, include FASTA format [1], GenBank [2],
SwissProt [3], PDB [4], and SBML [5], to name a few. Part of

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_16, © Springer Science+Business Media New York 2015

323

the reason for the long-term success of these formats has been a
broad agreement on the scope of the data that the format captures
and a clear description of how this data is encoded and subse-
quently interpreted by compliant software. Another aspect of the
success of these standards, however, has concerned the ability of
software developers to present, visualize, and support user interac-
tion with standardized data in the context of their individual soft-
ware packages. A well-defined standard allows developers to create
software environments that support both the scientific and software
development needs of users’ projects, and to enable users to accom-
plish group projects with minimal loss or miscommunication of
data during inter-software exchange.

The needs of the synthetic biology community go beyond the
scope of the standards already developed by the biological commu-
nity and include the ability to communicate designs that combine
data on biological sequences, functional composition, molecular
interactions, expected performance, and experimental context, as
well as standardization of the visual representation of these data. To
meet these complex data exchange needs, the community has devel-
oped a new standard, the synthetic biology open language (SBOL).

SBOL is an open standard in that participation in standardiza-
tion activities is unrestricted to all people or organizations who wish
to be involved, all essential information is publicly accessible on the
web, and both the standards and all supporting materials can be
used, without cost, by anybody, for any purpose. This information
includes specifications, use case descriptions, and a Java library for
SBOL that is utilized by many of the tools described in this chapter.

2 SBOL Data Model

SBOL is a standard being developed by the synthetic biology com-
munity to describe designs of biological components and modules.
The first version of SBOL was ratified by the SBOL Developers
Group in 2011 [6, 7]. The current version of the SBOL standard,
Version 1.1, is depicted using the unifiedmodeling language (UML)
in Fig. 1. Version 1.* centers around the hierarchical composition of
DNA components by annotating their sub-components and DNA
sequences. TheDNA components are typed using the Sequence Ontol-
ogy (SO) [8] and can be grouped into Collections.

Recently, several extensions to SBOL have been proposed to
enable representation of further information about a biological
design. Examples include design-specific information about
intended and observed regulatory interactions, characterization
data and performance measurements, host context information,
system and modeling artefacts, and information about assembly
and synthesis. Figure 2 shows an abstract UML diagram for a
draft of SBOL Version 2.0 with an emphasis on connecting the
SBOL extensions more easily.

324 Chris Myers et al.

Fig. 1 UML diagram for SBOL Version 1.1. SBOL can document each DNA component with an identifier, name,
description, and SO type. The DNA sequence for a DNA component may also be provided and locations on this
DNA sequence can be annotated. Each sequence annotation is a reference to a DNA sub-component that
includes its starting and ending positions on the DNA sequence and which strand it appears on. When the
exact DNA sequence of a sub-component or its parent component is not known, its location relative to other
sub-components can be specified using a precedes relation between annotations. Finally, a collection can be
used to group DNA components on the basis of whether, for example, they come from a common source or
share the same SO type

Fig. 2 A proposed UML diagram for SBOL Version 2.0. Components are generalized to represent sequenced
components such as DNA, RNA, and protein components, as well as components without a biological
sequence such as small molecules and light. Modules are used to instantiate and hierarchically group
components and other modules on the basis of their intended function in a biological design. Modules may
also include data on interactions between their component instantiations, connections to mathematical
models of their behavior, and descriptions of experimental context. Lastly, both components and modules
may have ports that allow them to be connected using port maps upon instantiation

The Synthetic Biology Open Language 325

In SBOL Version 2.0, components are generalized to represent
other sequenced components, such as RNA and protein compo-
nents, as well as components without a biological sequence, such as
small molecules, and even environmental inputs such as light. This
generalized model of components captures the elements that make
up a design.

In addition to describing the static components that make up a
design, SBOL 2.0 can describe biological modules which capture
the dynamic behavior of a design. A module represents a group of
components that together are intended to perform some intended
biological function. Complex modules can be composed from sim-
pler modules, just as complex sequence components can be com-
posed from simpler ones.

These components are referred to via signals, which instantiate
the component within the context of a particular module. For
example, a protein component that is a transcription factor may
repress a DNA component that is a promoter. Such relationships
between signals can be defined using interactions. Each interaction
has a type taken from the systems biology ontology (SBO) [9] and a list
of participations. Each participation refers to a signal and the role
that the signal plays in the interaction. In the previous example, the
protein component’s role would be repressor while the DNA com-
ponent’s role would be repressed.

Connections between the components in a module and those
in its sub-modules are made through ports and port maps. A port
exposes a signal as part of a module’s interface, annotating it with
directionality (input, output, or both). A port map wires a signal in
a parent module to a port in a sub-module. By wiring the same
signal in the parent module to multiple signals from different sub-
modules, these sub-modules can be plugged together.

Finally, a module may include experimental context and con-
nections to any number of models. Context elements include infor-
mation necessary to deploy the design, such as the strain of the
host, the growth medium and any added or absent nutrients
required for correct function, the container in which the medium
is stored, the environmental conditions, and the measurement
device used to study the system. Model elements point to a mathe-
matical model of the module defined outside of SBOL, the lan-
guage that the model is written in, the type of the modeling
framework used, and the role of the model. It is best practice
to provide models for each module where possible, and for at
least one of these models to be in a standard modeling language,
such as SBML.

326 Chris Myers et al.

3 SBOL Visual

SBOLVisual (SBOLv) is the graphical counterpart to SBOL. While
SBOL enables the exchange of design data among software pro-
grams, SBOLv enables standardized, abstracted, human-readable
visualization of designs. SBOLv was first published in 2009 [10],
and an updated version was ratified by the SBOLDevelopers Group
in 2013 [11].

The SBOLv standard is comprised of a set of symbols that
represent common functional abstractions for DNA components
used in synthetic biology, such as promoter, coding sequence, and
terminator. Each SBOLv symbol corresponds to terms in the SO,
complimenting the SBOL data model and enabling straightforward
representation of SBOL encoded designs in SBOLv. Symbols are
inspired by symbology used in synthetic and molecular biology
practice. SBOLv aims to catalog and standardize the depiction of
biological components and modules in order to promote greater
clarity in graphical representation of biological design both in
software tools and free-hand diagrams.

Several software applications have adopted SBOLv as a core
component of graphical user interfaces (GUIs). Four such applica-
tions are represented in Fig. 3. In such applications, SBOLv is used
in graphical editors that allow users to compose modules, or as
computer generated displays of the output of design tools. SBOLv
has also been used in publication figures both composed manually
and generated via visualization software [12, 13].

Normative image files for SBOLv symbols are available on the
SBOL website at http://sbolstandard.org/visual. While these icons
are made available for reference and convenience, use of these
particular files is not required for adoption of SBOLv. Software
programs that can assist in generating figures in SBOLv can be
found at http://sbolstandard.org/visual/tools.

As the concepts, constructs, and terminology of synthetic biol-
ogy evolve, the SBOLv symbol set is expected to expand and
mature. The scope of SBOLv is also likely to expand to cover
concepts such as molecular interaction, providing a framework for
the representation of designs encoded in SBOL 2.0.

4 SBOL Adoption

The adoption of SBOL has been greatly facilitated by being devel-
oped by a representative group of stakeholders, drawn from all
sections of the synthetic biology community, each with diverse
and varied needs. The SBOL Developers Group is composed of a
diverse group of researchers, developers, and other stakeholders
from academic, government, and commercial organizations. At

The Synthetic Biology Open Language 327

http://sbolstandard.org/visual
http://sbolstandard.org/visual/tools

the time of writing, the SBOL Developers Group has more than 80
members from 29 organizations (16 academic, 11 commercial, and
2 government labs), who work across organizational and interna-
tional boundaries to set priorities and reach agreement on the
vision, development, and future for the standard. While the
SBOL Developers Group is led by a chair and five elected editors,
all decisions are made democratically by the SBOL Developers
Group members.

To date, SBOL and SBOLv have been adopted by nearly 20
synthetic biology software tools. This section briefly describes the
use of SBOL in a few of these tools to illustrate how SBOL adop-
tion has benefited these efforts. It is not meant as an exhaustive list
as the tools that support SBOL is changing rapidly.

Fig. 3 Screenshots from software applications that have adopted SBOLv, and an abridged glossary of symbols
appearing in the screenshots. Example applications (starting at top left moving clockwise) that use SBOLv
symbols as GUI editable elements are Teselagen’s DNA design and assembly platform (www.teselagen.com),
Life Technologies’ VectorNTI Express Designer (www.lifetechnologies.com), the Joint BioEnergy Institute’s ICE
data repository (public-registry.jbei.org), and Boston University’s Raven assembly planner (www.ravencad.
org)

328 Chris Myers et al.

http://www.teselagen.com
http://www.lifetechnologies.com
http://public-registry.jbei.org
http://www.ravencad.org
http://www.ravencad.org

4.1 Repositories The first class of software tools that have added support for SBOL
are repositories. These repositories allow information about genetic
designs to be both stored and retrieved in the SBOL format. This
section briefly describes the Virtual Parts Repository and JBEI-ICE
repository.

4.1.1 Virtual Parts

Repository

The Virtual Parts Repository (http://www.virtualparts.org) pub-
lishes information about biological parts and their interactions.
These are represented by modular models, called Standard Virtual
Parts (SVPs–see Chapter 15) [14]. SVPs have defined inputs and
outputs, and can be composed computationally to create simulata-
ble models for the composite biological systems. This enablesGDA
tools to simulate the behavior of these composite models, enabling
model-driven design. Additionally, tools can automate combinato-
rial searches of SVPs where simulations achieve user-specified
behavior. The selected models act as blueprints for genetic circuits
and can be used to derive DNA sequences necessary to encode
desired behaviors [15]. DNA sequences of the resulting genetic
circuits, along with their models, can themselves be deposited at the
Virtual Parts Repository.

The repository is publicly accessible via a Web interface. This
allows manual browsing of the SVPs and manual downloading of
associated data files. Additionally, genetic circuit designs are visua-
lized using Pigeon [16], a design visualizer for synthetic biology
that conforms to the SBOLv standard. SVPs can be queried com-
putationally using a REST-based Web service interface. A Java
client to the REST-based Web service interface is also available.
While internally SVPs are represented in a custom data structure,
SBOL and SBML are used to exchange genetic descriptions of
these parts and their models.

4.1.2 Joint BioEnergy

Institute Inventory of

Composable Elements

The Joint BioEnergy Institute Inventory of Composable Elements
(JBEI-ICE) [17] is an open source registry platform for managing
information about biological parts. The software implementation,
GD-ICE (http://code.google.com/p/gd-ice/), is a web accessible
repository designed to handle synthetic biology parts, devices, and
constructs. GD-ICE has recently been modified to support import
and export of SBOL data files. This has permitted users to import
their data from other software tools into the repository and share
their data with other project participants. GD-ICE is currently the
platform of choice for hosting synthetic biology repositories so it
was a relatively simple matter to export and import the SBOL
design files into other partner repositories for local use.

4.2 GDA Tools One of the major challenges for synthetic biology is to automate
the design of biological systems. Without intelligent computational
tools to automate the processes of selecting, composing, and ana-
lyzing biological components and modules to meet a specification,

The Synthetic Biology Open Language 329

http://www.virtualparts.org
http://dx.doi.org/10.1007/978-1-4939-1878-2_15
http://code.google.com/p/gd-ice/

it is much more difficult to efficiently and rigorously design
biological systems of ever increasing complexity. The usefulness of
any GDA software, however, is limited in the absence of standards
for computationally representing synthetic biological designs and
enabling their exchange between different tools. From a GDA
perspective, one of the central purposes of standards, such as
SBOL, is to enable an ecosystem in which software tools can
focus on different aspects of the same design and complement
each other’s strengths. This section examines two GDA tools,
Eugene [18] and iBioSim [19], and discusses how their use of
SBOL enables them to be interfaced with other tools as both
providers and consumers of design services.

4.2.1 Eugene Eugene [18] is a design specification language for synthetic biology
that can be used to specify genetic components at different levels of
abstraction, define constraints on how these components can be
composed, and manage the flow of control when synthesizing
designs. In addition, Eugene includes an API that can be used to
automatically generate all possible composite genetic components
(devices) from a library of components and user-defined constraints
on their composition. Prior to its use of SBOL, Eugene already
possessed a genetic data model combining both structural and
functional data. However, at this time there was no suitable com-
munity standard capturing both structural and functional genetic
data in a hierarchical, modular fashion, hampering the use of
Eugene by third-party tools. When the SBOL 1.1 standard was
developed, Eugene became an early SBOL adopter, enabling its use
as a service in a wide range of tools.

After the mapping of its data model to SBOL Version 1.1,
Eugene can now import and export data on genetic components
between a wider variety of software tools and repositories for
synthetic biology. As demonstrated in [7], Eugene can import
partial SBOL designs from SBOL Designer—a tool for creating
and visualizing both partial and complete designs natively in SBOL.
Next, it can generate many complete variant designs by permuting
additional genetic components imported from the iGEM Registry.
The generated variants can then, for example, be exported to SBOL,
making it possible to import them in iBioSim (as described below).

While SBOL 1.1 does not capture certain classes of functional
data such as regulatory interactions between genetic components,
SBOL 2.0 is currently under development to extend its representa-
tion of function for design. Based on its data model and provided
constraints, Eugene is already able to take regulatory interactions
into account when synthesizing designs.

4.2.2 iBioSim iBioSim [19] is a GDA software suite with a wide range of design
capabilities, including construction of SBML models, ODE and
stochastic simulation, stochastic model checking, model learning

330 Chris Myers et al.

from time series data, and more recently, model annotation and
genetic technology mapping (matching and composing genetic
modules from a library to satisfy a specification). Prior to its incor-
poration of SBOL, iBioSim’s data model primarily described
genetic circuits using biochemical models, mathematical equations,
and parameters. Missing from these functional descriptions, how-
ever, were structural data such as the nucleotide sequences of DNA
components and their hierarchical relationship via sequence
annotations.

Following its extension with SBOL, iBioSim’s data model now
represents both the function and structure of genetic circuits in a
hierarchical, modular fashion that is useful for engineering
biological systems. This representation is accomplished by annotat-
ing SBML models with the identifiers for SBOL DNA components
[20], thereby directly associating elements in the functional layer of
a genetic circuit design with elements in its structural layer. Conse-
quently, iBioSim can be used to build libraries of genetic modules
from SBML and SBOL. Furthermore, it draws upon these libraries
during genetic technology mapping to find the set of library mod-
ules that optimally satisfy a specification for a genetic circuit and
compose these modules to obtain the hypothetically best genetic
circuit design. Through SBOL and the Java library, libSBOLj,
iBioSim’s capabilities have been expanded in a manner that is
conducive to the exchange of its design output. For example, the
SBML models and SBOL DNA components of iBioSim’s genetic
circuit designs can now be stored in repositories such as the Virtual
Parts [14] repository, and the DNA components can also be stored
in the JBEI-ICE repository [17].

Lastly, in terms of tool interoperability, iBioSim can now inter-
face via SBOL with sequence editors/optimizers and other GDA
tools that can be used to explore possible structural implementa-
tions of a design. In particular, iBioSim has interfaced with Eugene
and with the Vector NTI Express Designer. In the case of Eugene,
iBioSim can import collections of composite DNA components
that have been combinatorially generated with Eugene. iBioSim
can then be used to annotate models of these components’ behav-
ior with the components themselves. The end result is a library of
genetic modules that can later serve as an input to iBioSim’s tech-
nology mapping tool. In the case of Vector NTI (as described
below), iBioSim can export the structural portion of the output
of its technology mapping tool to Vector NTI, which can then
further refine the DNA-level design, for example, by performing
host-specific codon optimization.

4.3 Sequence Editors

and Optimizers

After a genetic circuit has been designed, sequence editors and
optimizers are used to produce the final DNA sequence for con-
struction or synthesis. This section briefly describes Vector NTI and
the j5 software tools which can be used for this task.

The Synthetic Biology Open Language 331

4.3.1 Vector NTI Express

Designer

Vector NTI Express Designer is an example of traditional
molecular biology desktop software that has been extended to
support synthetic biology design (http://www.lifetechnologies.
com/us/en/home/life-science/cloning/vector-nti-software/vec
tor-nti-express-designer-software.html). Under traditional molec-
ular biology practices, sequences are annotated with features and
these features are manipulated into cloned constructs. Many of the
target users are unfamiliar with synthetic biology practices or con-
cepts, so the software needs to provide support for both of these
approaches while allowing users to easily transition between the
two. In order to facilitate this transition, sequence features are
associated with SO terms in the same way as SBOL DNA compo-
nents. Thus, SO terms provide a bridge between traditional and
synthetic biology models.

Vector NTI Express Designer provides a wide range of
sequence analysis and manipulation tools, with special emphasis
on (1) tools that can assist with the design of new parts, devices,
and circuits, (2) refactor existing biological sequences and operons,
(3) perform codon optimization [21], and (4) evaluate cloning
approaches for designs. By applying these tools, users of Vector
NTI Express Designer can develop parts collections into designs for
devices and circuits. Implementing SBOLv as a standardized visual
metaphor for synthetic biology data has allowed these users to
compare designs from other tools and to determine that they
have smoothly transferred into Vector NTI.

The use of SBOL has enabled inter-tool exchange with Vector
NTI Express Designer. For example, it can now codon optimize the
DNA sequences for SBOL DNA components exported by GDA
tools, such as iBioSim. Vector NTI Express can then export the
optimized design in SBOL format and send it to a repository such
as JBEI-ICE or Virtual Parts.

4.3.2 j5 Tools The Joint BioEnergy Institute (JBEI) has supported the develop-
ment and deployment of the web-based software tool, j5 [22],
which automates the design of scar-less multipart DNA assembly
protocols including SLIC, Gibson, CPEC, and Golden Gate. Based
upon the imported design files, J5 can be used to evaluate cloning
methods that would permit construction of the planned devices by
considering cost optimization, the enforcement of design specifica-
tion rules, hierarchical assembly strategies to mitigate likely assem-
bly errors, and the instruction of manual or automated
construction of scar-less combinatorial DNA libraries.

The j5 tools also include Device Editor [23], a web-based
bioCAD software with a graphical front end that is used with either
GD-ICE repositories or the J5 software. Device editor was used to
demonstrate how biological designs from j5 are developed and to

332 Chris Myers et al.

http://www.lifetechnologies.com/us/en/home/life-science/cloning/vector-nti-software/vector-nti-express-designer-software.html
http://www.lifetechnologies.com/us/en/home/life-science/cloning/vector-nti-software/vector-nti-express-designer-software.html
http://www.lifetechnologies.com/us/en/home/life-science/cloning/vector-nti-software/vector-nti-express-designer-software.html

display the elements of these designs. Use of the SBOLv symbols
again simplified the process of comparing design outcomes
between the different software to validate the correct representa-
tion of the designs.

4.4 Synthetic Biology

Workflow Tools

Workflows are sequences of connected activities where each activity
represents one step that needs to be taken in the design phase of
novel biological systems. Every activity is enabled after the comple-
tion of another activity. Today, several synthetic biology software
tools exist that tackle the involved problems of the individual design
steps or activities. The tools are mostly loosely coupled, and auto-
mated data exchange is hard to achieve if the tools’ data models
differ. This section presents two synthetic biology workflows,
Clotho and TASBE, and explains their relation to the SBOL stan-
dard. The Clotho platform and the TASBE tool-chain are initial
exploratory approaches toward connecting various synthetic biol-
ogy design tools. Both efforts demonstrate the need for a standar-
dized data model to enable the data exchange between each step in
the workflow, to enable full automation.

4.4.1 Clotho Clotho [24, 25] motivates the need for community standards,
modular design tools, and rigorous design flows. The Clotho plat-
form represents biological objects using an underlying data model
that is loosely based on SBOL. A key feature of the Clotho
platform-based approach is the decoupling of tools (so-called
“Apps”) from the data. The platform provides APIs enabling the
development of Apps, where each App is tailored to specific design
problems and activities in synthetic biology. The APIs enable creat-
ing, reading, updating, and deleting objects in the data model, and
persistence of this data in a relational database.

The current Clotho repertoire comprises various Apps to
import, view, modify, assemble, create, and export novel DNA
sequences, supporting biologists to design novel genetic systems.
Clotho’sHermes App enables it to (1) import data from SBOL files
and to store the data in Clotho’s database and (2) to export data
from Clotho’s database to SBOL files. Hence, the Hermes App
enables Clotho for a round-trip mapping between the SBOL and
the Clotho data objects.

4.4.2 TASBE TASBE [26] is a free, open-source tool-chain for a complete end-
to-end design and construction of synthetic biological systems. In
general, the TASBE tool-chain divides the whole design problem
into tractable sub-problems necessary to lower the level of
abstractions.

The TASBE tool-chain connects various synthetic biology
design tools, specifically the Proto BioCompiler for specification
and compilation [27], MatchMaker for part assignment [28],
Puppeteer [29], and BioCAD for physical assembly. The TASBE

The Synthetic Biology Open Language 333

tool-chain utilizes the Clotho platform and its data model [24, 25]
behind the scenes to exchange the data among the involved soft-
ware tools. Proto BioCompiler is SBOL compliant software tool
that is able to import biological data stored in an SBOL file. Due to
the Clotho utilization and Clotho’s SBOL compliance, the TASBE
tool-chain is able to import and export biological data to and from
SBOL files. The TASBE research team evaluates the tool-chain on a
sensor/actuator test program in two different cellular platforms:
mammalian HEK293 cells and E. coli bacteria.

5 Discussion

SBOL offers a standard way to represent the design of synthetic
biology constructs, and has gained widespread use in both industry
and academia. While these results are a great beginning, there are
still a number of critical next steps. First, SBOL must be extended
as described above to include more of the important information
about synthetic biology designs. The incorporation of general
components and design modules coupled with experimental con-
text information and models will greatly enhance SBOL’s utility
and encourage further adoption. To assist in this adoption by more
potential developers and interested parties, the community must
develop SBOL libraries for frameworks other than Java, such as C/
C++ and.NET. In order to help developers improve compliance,
the community is developing a suite of SBOL example files that can
be used during development, as well as an online web portal to
validate SBOL files (http://www.virtualparts.org/sbolvalidator.
jsp). Finally, a rising concern in the science and engineering fields
is the poor state of reproducibility of published work. Standards,
such as SBOL, can help by capturing information critical to
enabling reproducibility in an unambiguous and standard format,
providing a precise description of a given design and associated
requirements such as host and culturing details. Ultimately, we
would like to see journals associate synthetic biology articles with
the corresponding SBOL details.

Finally, the long-term vision of much of this work is to enable
the design of biological constructs using computer aided design.
Such designs would be transmitted in SBOL to DNA fabrication
centers or even local desktopDNA synthesis machines and returned
to the designer for testing. This ability would enable much more
rapid prototyping and testing, and thus, accelerating progress in
synthetic biology.

334 Chris Myers et al.

http://www.virtualparts.org/sbolvalidator.jsp
http://www.virtualparts.org/sbolvalidator.jsp

Acknowledgments

Wewould like to thank themembers of the SBOLDevelopers Group
for their work in making the SBOL standard a reality. The SBOL
project also acknowledges the generous support of a “Computational
Challenges in Synthetic Biology” Award fromMicrosoft. In addition
we wish to also thank the National Science Foundation under Grant
Number CCF-1218095, the UK Engineering and Physical Sciences
Research Council, the Agilent Technologies Applications and Core
Technology University Research (ACT-UR) program, AutoCAD,
the CIDAR Group at Boston University, IWBDA, Newcastle Uni-
versity Center for Synthetic Biology, and Raytheon BBN Technolo-
gies for their generous support in helping develop SBOL. Any
opinions, findings, and conclusions or recommendations expressed
in thismaterial are those of the author(s) and donot necessarily reflect
the views of the National Science Foundation.

References

1. Pearson WR, Lipman DJ (1988) Improved
tools for biological sequence comparison.
Proc Natl Acad Sci 85(8):2444–2448

2. Benson DA, Karsch-Mizrachi I, Lipman DJ,
Ostell J, Sayers EW (2010) Genbank. Nucleic
Acids Res 38(Suppl 1):D46–D51

3. Boeckmann B, Bairoch A, Apweiler R, Blatter
M-C, Estreicher A, Gasteiger E, Martin MJ,
Michoud K, O’Donovan C, Phan I et al.
(2003) The swiss-prot protein knowledgebase
and its supplement TrEMBL in 2003. Nucleic
Acids Res 31(1):365–370

4. Berman H, Henrick K, Nakamura H, Markley
JL (2007) The worldwide protein data bank
(wwpdb): ensuring a single, uniform archive
of pdb data. Nucleic Acids Res 35(Suppl. 1):
D301–D303

5. Hucka M, Finney A, Sauro HM, Bolouri H,
Doyle JC, Kitano H, Arkin AP, Bornstein BJ,
Bray D, Cornish-Bowden A et al. (2003) The
systems biology markup language (sbml): a
medium for representation and exchange of
biochemical network models. Bioinformatics
19(4):524–531

6. Galdzicki M et al. (2012) Synthetic biology
open language (SBOL) version 1.1.0. BBF
RFC #87

7. Galdzicki M et al. (2013) SBOL: a community
standard for communicating designs in syn-
thetic biology

8. Eilbeck K, Lewis S, Mungall CJ, Yandell M,
Stein L, Durbin R, Ashburner M (2005) The
sequence ontology: a tool for the unification of
genome annotations. Genome Biol 6(R44)

9. Courtot M et al. (2011) Controlled vocabul-
aries and semantics in systems biology. Mol
Syst Biol 7(543)

10. Rodriguez C et al. (2009) Bbf rfc 16: Synthetic
biology open language visual (sbolv) specifica-
tion. BBF RFC #16

11. Quinn J et al. (2013) Synthetic biology open
language visual (SBOL Visual) version 1.0.0.
BBF RFC #93

12. Temme K, Zhao D, Voigt CA (2012) Refactor-
ing the nitrogen fixation gene cluster from
Klebsiella oxytoca. Proc Natl Acad Sci USA
109:2–7

13. Stevens JT, Myers CJ (2013) Dynamic model-
ing of cellular populations within ibiosim. ACS
Synth Biol 2(5):223–229

14. CoolingMT, Rouilly V, Misirli G, Lawson J, Yu
T, Hallinan J, Wipat A (2010) Standard virtual
biological parts: a repository of modular mod-
eling components for synthetic biology. Bioin-
formatics 26(7):925–931

15. Misirli G, Hallinan JS, Yu T, Lawson JR, Wima-
laratne SM, Cooling MT, Wipat A (2011)
Model annotation for synthetic biology: auto-
mating model to nucleotide sequence conver-
sion. Bioinformatics 27(7):973–979

16. Bhatia S, Densmore D (2013) Pigeon: a design
visualizer for synthetic biology. ACS Synth Biol
2(6):348–350

17. Ham TS, Dmytriv Z, Plahar H, Chen J, Hillson
NJ, Keasling JD (2012) Design, implementa-
tion and practice of jbei-ice: an open source
biological part registry platform and tools.
Nucleic Acids Res 40(18):e141

The Synthetic Biology Open Language 335

18. Bilitchenko L, Liu A, Cheung S, Weeding E,
Xia B, Leguia M, Anderson JC, Densmore D
(2011) Eugene–a domain specific language for
specifying and constraining synthetic biological
parts, devices, and systems. PLoS ONE 6(4):
e18882

19. Madsen C, Myers CJ, Patterson T, Roehner N,
Stevens JT, Winstead C (2012) Design and test
of genetic circuits using iBioSim. IEEE Des
Test Comput 29(3):32–39

20. Roehner N, Myers CJ (2013) A methodology
to annotate systems biology markup language
models with the synthetic biology open lan-
guage. ACS Synth Biol. doi:10.1021/
sb400066m

21. Notka F, Liss M, Wagner R (2011) Industrial
scale gene synthesis. In: Voigt C (ed) Synthetic
biology, part B computer aided design and
DNA assembly. Methods in enzymology,
Chap 11, vol 498. Academic Press, London,
pp 247–275

22. Hillson NJ, Rosengarten RD, Keasling JD
(2012) j5 dna assembly design automation
software. ACS Synth Biol 1(1):14–21

23. Chen J, Densmore D, Ham TS, Keasling JD,
Hillson NJ (2012) DeviceEditor visual
biological CAD canvas. J Biol Eng 6(1), 1

24. Xia B, Bhatia S, Bubenheim B, Dadgar M,
Densmore D, Anderson JC (2011) Develo-
per’s and user’s guide to clotho v2.0: A soft-
ware platform for the creation of synthetic
biological systems. In: Voigt C (ed) Synthetic

biology, part B computer aided design and
DNA assembly. Methods in enzymology,
Chap 5, vol 498. Academic Press, London,
pp 97–135

25. Densmore D, Van Devender A, Johnson M,
Sritanyaratana N (2009) A platform-based
design environment for synthetic biological
systems. In: The Fifth Richard Tapia celebra-
tion of diversity in computing conference:
intellect, initiatives, insight, and innovations,
TAPIA ’09. ACM, New York, pp 24–29

26. Beal J, Weiss R, Densmore D, Adler A, Apple-
ton E, Babb J, Bhatia S, Davidsohn N, Had-
dock T, Loyall J, Schantz R, Vasilev V, Yaman F
(2012) An end-to-end workflow for engineer-
ing of biological networks from high-level spe-
cifications. ACS Synth Biol 1(8):317–331

27. Beal J, Lu T, Weiss R (2011) Automatic com-
pilation from High-Level Biologically-
Oriented programming language to genetic
regulatory networks. PLoS ONE 6:e22490+

28. Yaman F, Bhatia S, Adler A, Densmore D, Beal
J (2012) Automated selection of synthetic biol-
ogy parts for genetic regulatory networks. ACS
Synth Biol 1(8):332–344

29. Vasilev V, Liu C, Haddock T, Bhatia S, Adler A,
Yaman F, Beal J, Babb J, Weiss R, Densmore D
(2011) A software stack for specification and
robotic execution of protocols for synthetic
biological engineering. Talk presented at the
international workshop on bio-design automa-
tion (IWBDA)

336 Chris Myers et al.

Chapter 17

Computational Methods for the Construction, Editing,
and Error Correction of DNA Molecules and Their Libraries

Ofir Raz and Tuval Ben Yehezkel

Abstract

The field of synthetic biology is fueled by steady advances in our ability to produce designer genetic material
on demand. This relatively new technological capability stems from advancements in DNA construction
biochemistry as well as supporting computational technologies such as tools for specifying large DNA
libraries, as well as planning and optimizing their actual physical construction. In particular, the design,
planning, and construction of user specified, combinatorial DNA libraries are of increasing interest.
Here we present some of the computational tools we have built over the past decade to support the

multidisciplinary task of constructing DNA molecules and their libraries. These technologies encompass
computational methods for [1] planning and optimizing the construction of DNA molecules and libraries,
[2] the utilization of existing natural or synthetic fragments, [3] identification of shared fragments, [4]
planning primers and overlaps, [5] minimizing the number of assembly steps required, and (6) correcting
erroneous constructs.
Other computational technologies that are important in the overall process of DNA construction, such as

[1] computational tools for efficient specification and intuitive visualization of large DNA libraries (which
aid in debugging library design pre-construction) and [2] automated liquid handling robotic programming
[Linshiz et al., Mol Syst Biol 4:191, 2008; Shabi et al., Syst Synth Biol 4:227–236, 2010], which aid in the
construction process itself, have been omitted due to length limitations.

Key words Synthetic biology, DNA editing, Computer-aided design, DNA libraries

1 An Algorithm for the Construction of Single DNA Molecules

Divide and Conquer (D&C) solves a problem (in our case,
planning the construction of a long DNA molecule) by dividing it
in silico into two smaller subproblems, solving each subproblem
recursively using D&C, and combining the solutions to the sub-
problems into a solution to the original problem. If the problem is
small enough (in our case, the DNAmolecule is short enough), it is
not divided further but is solved directly (in our case, planned as a
synthetic oligo). Solving problems with D&C is naturally imple-
mented using recursive procedures.

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2_17, © Springer Science+Business Media New York 2015

337

A fundamental prerequisite of a recursive procedure is that its
output is of the same type as its inputs. Our construction procedure
[1] is designed so that it accepts two overlapping ssDNA (single-
stranded DNA) molecules as input and produces an elongated
ssDNA molecule as an output.

The D&C recursive algorithm receives a user-specified target
sequence as input and returns as output a list of oligos to be
synthesized and a protocol in the form of a robot control program
that can be used to construct the desired DNA molecule using the
specified set of oligos. The basic recursive subroutine of the algo-
rithm takes as input the sequence of a target molecule and returns
as output a construction protocol and its associated cost.

This subroutine divides the target sequence into two overlap-
ping sequences and calls itself recursively with these subtarget
sequences as new input. The cost of constructing the target mole-
cule by this protocol is computed by adding the cost of assembling
the two overlapping subfragments to the cost of constructing these
two individual subfragments. The computed cost accounts for the
various features of the construction process, including the number
and length of oligos, number of reactions, and the total number of
levels in the protocol. The recursive division ends if the subrou-
tine’s target is short enough to be synthesized directly as an oligo-
nucleotide. Division points are not chosen so that oligos are of
equal length, as usually practiced in polymerase cycling assembly
(PCA) methods. Instead, division points are selected to minimize
the cost of constructing the target and to respect a set of con-
straints, including whether good PCR primers exist for each of
the subtargets and whether the two subtargets can be elongated
together efficiently and specifically in the elongation reaction
described in Fig. 1. Validation of specificity and affinity of elonga-
tion overlaps and PCR primers is performed using sequence align-
ment algorithms and Tm (temperature at which 50 % of DNA
molecules are annealed to their reverse complement sequence)
calculations, respectively. The optimized recursive protocol is then
transformed into a robot control program that instructs the robot
to construct the molecule bottom-up. It starts with the leaves of the
recursive construction tree and iteratively executes the basic chemi-
cal step all the way up to the root of the tree until the target
molecule is constructed. The hierarchal structure of the resulting
construction tree, as also the basis of our error-correction proce-
dure, is described in the following.

The algorithm starts with the target molecule given by the user
and searches for an optimal and valid division point. Such a point
fulfills a set of constrains such as the existence of specific primers
and overlap specificity for the division point in addition to the
existence of two valid protocols which may build the two divided
parts. Once a valid division point is found, the algorithm recursively
searches a protocol to build its two parts. The recursion stops when

338 Ofir Raz and Tuval Ben Yehezkel

Fig. 1 Recursive construction of error-free DNA molecules from error-prone oligonucleotides. (a) Recursive
construction of the Green Fluorescent Protein (GFP) DNA. The Divide and Conquer procedure, as applied to the
construction of the 768-nt GFP, is illustrated from top to bottom. The target sequence is recursively divided in
silico into overlapping oligonucleotide sequences (16 oligos of average size of 75 bp). The specified oligos are
synthesized by conventional means and serve as inputs (in blue) for recursive construction performed in vitro.
Construction proceeds by recursively combining pairs of overlapping ssDNA molecules into longer ssDNA
molecules, as described in (b) until the target molecule is formed. Target molecules typically have the same
error rate as their source oligos and are corrected using recursive error correction (see Subheading 3).
A certain number of target molecules are cloned and sequenced (seven in the case of GFP) and errors (marked
in red) are identified. Error-free segments found in the erroneous clones are then amplified using PCR and
used as inputs to a new recursive reconstruction of the same target molecule. In this case construction started
from one half of the target molecule and two quarters of the target molecule that were found to be error free in
the sequenced clones. The error-free segments are chosen to contain nodes in the recursive construction tree,
so that they can be amplified with the same primers used in the initial procedure. This second iteration of the

Computational Methods for DNA Editing 339

the target molecule is short enough to be produced by oligo
synthesizer. A cost function is computed for each sub-protocol
based on the number of oligos and their lengths, the number of
reactions, and the number of protocol tree levels required to build
its target. The smallest cost protocol is selected as the optimal
protocol. Since the protocol space is very large dynamic program-
ming algorithm is used to keep previously computed sub-protocols
in a cache and is reused when needed in a different search path. In
addition, branch and bound algorithm is used to trim the search
space when the intermediate cost shows that the current best cost
for a protocol cannot be improved. Specificity of fragments in
elongation reactions and of PCR primers is evaluated using
sequence alignment algorithms and Tm formulas from the MatLab
bioinformatics toolbox.

2 Processing DNA Molecules as Text

While the electronic representation of text in computers allows
composing new text and processing an existing piece of text within
the same framework, DNA composition and processing are handled
completely separately and using unrelated methods. DNA compo-
sition, also called de novo DNA synthesis, uses several methods for
assembling synthetic oligonucleotides into ever longer pieces of
DNA. DNA processing, the modification of existing fragments, on
the other hand, has no systematic solution to date, and the various
DNA processing tasks are performed by a plethora of manual labor-
intensive methods such as site-directed mutagenesis. Generally, as
most of these methods require iterative steps of mutagenesis, clon-
ing, sequencing, and selection, they become inefficient if multiple
non-random sequencemanipulations are required.Moreover, many
of these methods require several steps that are not easily automat-
able; therefore the time and effort necessary to create libraries of
different mutations scale with the size of the library. Alternatively,
these methods impose restrictions on the types of changes that are

Fig. 1 (continued) procedure typically (as in this case and all our experiments to date) results in an error-free
clone. However, if errors remain, another error-correcting iteration of the procedure can be performed. The
figure further demonstrates the construction of a 3-kb DNA fragment by combining, with the same construc-
tion procedure, the synthetically produced GFP molecule and DNA from a natural source (bacterial plasmid, in
green). This yielded an error-free molecule. Expected optimal times for each step using state-of-the-art
standard equipment are shown on the left. The cloning step could potentially be replaced by single molecule
PCR. (b) The core step of recursive construction receives two overlapping ssDNA molecules as inputs and
produces the elongated ssDNA molecule as output in the following way: the overlapping ssDNA molecules
hybridize and prime each other such that an overlap extension elongation reaction returns an dsDNA molecule.
This is then amplified by PCR with one of the two primers phosphorylated at its 5’ end. The phosphate-labeled
PCR strand is then degraded with Lambda exonuclease, yielding an elongated ssDNA molecule as output

�

340 Ofir Raz and Tuval Ben Yehezkel

possible, which limits the scope of their usefulness, e.g., restriction
enzymes require specific sites to be present. So far no universal
method that overcomes these limitations has been proposed and
consequently no engineering discipline that eliminates this manual
labor has emerged. A general DNA processing method should
enable extensive manipulation of a DNA molecule while maximiz-
ing the use of existing DNA and minimizing the need for synthesiz-
ing new DNA, similarly to the way a text editor enables efficient
editing of an existing text byminimizing the need to retype pieces of
text that are already available. A general method should also be
amenable to full automation and thus enable the creation of large
libraries with a small additional effort.

In this work we present a summary of the computational meth-
ods for a uniform framework for DNA processing that encompasses
DNA editing, DNA synthesis, and DNA library construction [2].
The framework is based on one core biochemical operation, called
Y, that takes as input two DNA fragments, A and B, and produces
the concatenated DNA molecule AB (Fig. 2). The input fragments
A and B can be two individual DNA molecules or two DNA
fragments embedded either in one or two longer DNA molecules,
and they can be in single-strand (ssDNA) or double-strand
(dsDNA) form. They must, however, be amenable to amplification
by a PCR. The output molecule AB of the Y operation is double
stranded. This allows the process to be iterated as many times as
needed to perform the DNA editing task, as the output of one step
is used as the input for the following step. Also, an output of one
step can be used as the input for many different processing opera-
tions. This property enables the efficient reuse of intermediate
DNA fragments. We developed a Divide and Conquer algorithm
to find an optimal set of Y operations to produce the target mole-
cules from the input molecules.

The input to the algorithm is the sequence T of the desired
target DNAmolecule, as well as a set of sequences S of the available
input DNA molecules, which could be naturally available or the
result of a previous synthesis or processing task. As output, the
algorithm produces a DNA processing plan consisting of a set of
Yoperations. For a single target molecule, the plan has the form of a
binary tree of Y operations, where the leaves are either fragments of
the input molecules (with valid PCR primers) or synthetic oligos.
Internal nodes correspond to intermediate dsDNA molecules built
using Yoperations and the root is the target molecule T. If there are
multiple target molecules, for example a combinatorial variant
library, the plan has the form of a directed acyclic graph in which
each internal node has two inputs and one or more outputs. A node
with multiple outputs represents a DNA molecule that is used as
the source of multiple Y operations. The output of the algorithm
includes the list of primers and oligos needed to execute the plan as
well. Naturally, the plan need not be executed sequentially: all Y

Computational Methods for DNA Editing 341

operations at the same level of the tree or graph can be executed in
parallel, so the overall time of executing the plan is typically a
function of its depth rather than of its size.

For a target molecule, T, the algorithm computes the DNA
processing plan as follows. First we identify in T so-called “input
fragments,” which are maximal fragments in T that occur also in
one of the input molecules. Clearly any part in T that does not
occur in any input molecule has to be synthesized de novo. The

Fig. 2 DNA processing operations. (a) Simple composition of DNA fragments done by combining Y operations.
In addition, simple DNA edit operations can be performed by composing Y operations. (b) Insertion of an
existing DNA fragment into another existing DNA fragment. (c) Deletion of an internal fragment. (d) Replace-
ment of an internal fragment by a new fragment. (e) Cut and Paste in which a fragment is deleted and then
inserted in another location. (f) Copy and Paste, where a fragment B is copied from one location (between A
and C) and the copy is inserted in another location (between C and D). (g) Short insertions or substitutions can
be accomplished simply with a single Y operation, as the modified sequence can be embedded in the overlap.
(h) Detailed description of the Copy and Paste operations including primers, their overlap extensions, and the
required phosphorylation

342 Ofir Raz and Tuval Ben Yehezkel

algorithm tries to minimize de novo synthesis by maximizing the
use of input fragments in composing T.

Next, all end points of the input fragments and all their mid-
points in T are marked. At each recursive application of the
planning procedure, the marked target sequence is divided into
two adjacent parts at a point selected as follows: All potential
division points are sorted according to whether or not they occur
in an input fragment. Points which fall between input fragments are
preferred division points as they do not disrupt the potential use of
an input fragment. The points are further sorted according to their
absolute distance from the closest middle point of the neighboring
input fragments, as this consideration leads to a balanced division
and to better concurrency. In this sorting, points that are at the
exact ends of an input fragment are preferred over their close
neighbors. This allows maximizing the utilization of input frag-
ments by ensuring that their end points are preferred division point.

Once the candidate division points are sorted from best to
worst, the first division point is selected and the algorithm tries to
plan a basic step reaction that will combine the two sub-fragments
induced by the division point into the target molecule. The neces-
sary primers are planned and validated for specificity, affinity (Tm),
dimerization, and length constraints for both PCR amplification
and elongation reactions of the basic. Should a division point not
satisfy any of these constraints, it is removed and the algorithm tries
the next potential division point. If a division point satisfies all
chemical constraints, the left and right sub-fragments of T, Tl and
Tr, are considered new targets and the same algorithm is used
recursively to plan their construction. Should none of the division
points satisfy the chemical constraints, the algorithm returns a
failure. A division point where either the planning of Tl or Tr fails
is also excluded. The recursive division ends when the target can be
extracted from one of the input fragments or when it is small
enough to be produced synthetically. The algorithm produces an
efficient DNA processing plan that enables parallel steps on the one
hand and makes efficient use of input DNA on the other hand.

3 Correction of Erroneous DNA Clones

The molecules produced in the first iteration of any DNA construc-
tion are error prone, reflecting the error rate of the building blocks
and the polymerase used. Our recursive construction procedure [1]
enables a novel error-correction strategy that employs the very
same construction methodology and reagents to produce error-
free molecules. Like previous DNA construction protocols, our
error-correction procedure uses cloning and sequencing to identify
faults, but unlike previous protocols it does not require additional
or external methods or reagents to turn the error-prone DNA into
error-free DNA.

Computational Methods for DNA Editing 343

3.1 General

Description of Error

Correction

In general, a composite object constructed from potentially faulty
basic components is expected to have a higher number of errors
than each of its components. However, if errors are randomly
distributed among the basic components and occur randomly dur-
ing construction, and if sufficiently many copies of an object are
constructed, it is expected that some of the copies may contain
error-free composite parts. If such parts could be identified and
extracted from the faulty objects, they could be reused as inputs to
recursively reconstruct the object. Since the reconstruction starts
from larger parts that are error free, the number of errors in the
resulting object is expected to decrease, possibly down to zero.
Even if the objects produced in this way have errors, they are
expected to have fewer errors than their predecessors and hence
to have even larger error-free parts, which can be reused in another
iteration of the recursive construction process, until an error-free
object is formed (Figs. 1, 3, 4, and 5).

Fig. 3 Comparative analysis of error-correction methodologies—error correction
of a single molecule. The required number of clones that have to be sequenced
to obtain an error-free synthetic DNA molecule as a function of its length is
shown for different methods of construction: naive construction from synthetic
oligos with no error correction (blue); construction from gel-purified oligos
(green); a two-step DNA construction, where in the first step molecules of length
500 are constructed, cloned, sequenced, and in the second step these error-free
molecules are used as building blocks for larger molecules (red); a two-step
construction from oligos purified by hybridization (cyan); and recursive construc-
tion with iterative error correction (purple)

344 Ofir Raz and Tuval Ben Yehezkel

3.2 Minimal Cut A cut in a tree is a set of nodes that includes a single node on any
path from the root to a leaf. Let T be a recursive construction (RC)
protocol tree and S a set of strings. We say that S covers T if there is
a set of strings C such that every string in C is a substring of some
string in S and C is a cut of T. In such a case we also say that S covers
T with C.

Claim: If S covers T, then there is a unique minimal set C such
that S covers T with C. Proof: Easy.

Error-free reconstruction algorithm: Given an RC protocol
T and a set of sequences (of molecular clones) S, find a minimal C
such that S covers T with C. Then we amplify C with PCR and do
the recursive construction starting with C.

3.3 Computing the

Minimal Cut

We use a recursive approach for computing the minimal cut of a
protocol tree. Each node in the tree represents a biochemical
process with a product and two precursors. The algorithm starts
with the root of the tree (target molecule) and for each node checks
whether its product sequence exists with no errors in one of the
clones. If such a clone exists this product is marked as a new basic

Fig. 4 Error correction of libraries: a graph representing a DNA library with four
variable sites, each containing four variants, for a total of 256 possible library
members (top). Using recursive construction one can first construct and error
correct a representative set of only four library members, which constitute a
minimal cut through the construction graph of the entire library. A subsequent
iteration of the protocol can use error-free fragments obtained from these four
library members to efficiently construct the entire 256-strong library. This
dramatically economizes the error correction of libraries compared to the
correction of each library member separately, as presented in Fig. 3

Computational Methods for DNA Editing 345

Fig. 5 Recursive construction and error correction of a simple combinatorial library. The recursive construction
of six p53 variants is illustrated top to bottom. A diagram describes the shared (A, C, E in gray) and unique
(B, D, colored) components of the target p53 combinatorial DNA library. A library construction protocol is
computed, where target library sequences are recursively divided into shared and unique components and
then further divided into basic oligonucleotide sequences that are then synthesized conventionally. Gray oligos
are shared by all library variants, and colored segments are used by variants with the corresponding colors.
Oligos are recursively combined in vitro to form the six target p53 variants. These variants were cloned and
sequenced, and errors were identified (marked in red on top of clones). An error-free minimal cut (the non-
faded part of the graph below the minimal cut black line) of the library construction graph was computed
from only four error-prone clones (variants 1, 3, 5, and 6). Error-free segments out of these clones were used
as inputs for another iteration of the recursive reconstruction protocol, this time producing error-free clones of
all six target library members. Expected execution times for each step using standard equipment are shown
on the left

346 Ofir Raz and Tuval Ben Yehezkel

building block for reconstruction of the target molecule and
its primer pair and relevant clone (as template) are registered as its
generating PCR. If there is no clone that contains an error-free
sequence of the node product, the reaction is registered as existing
reaction in the new protocol and the algorithm is recursively exe-
cuted on the two precursors of the product. The output of such a
protocol is a tree of reactions that comprises a minimal cut of the
original tree. It contains leaves for which error-free products exist
and that all its internal nodes are error free in the clones that
contain them. An automated program that utilizes these new
error-free building blocks for recursive construction of the target
molecule is generated for the robot.

3.4 Computing the

Required Number of

Clones

For a fragment of size L under mutation rate R the probability of
having an error-free fragment in a single clone is taken from a
Poisson distribution with λ ¼ L � R (the probability to have
0 errors when the average expected number of errors is L � R).
For example, a 1,000 bp fragment (L) with an average error rate of
1/200 (R) would have a λ value of 5 (L � R). Consequently,
following a Poisson distribution the probability of obtaining a
clone with exactly 0 errors in this case is 0.7 %, while the probability
of obtaining a clone with more than 0 errors is 99.3 %. To find the
smallest number of clones required to get an error-free fragment
with probability larger than 95 % we use a binomial distribution and
compute the probability of having at least one error-free fragment
out of N clones.

In the Divide and Conquer approach the length of the pure
fragment can be reduced to the size of an oligo (~80 bp) at the
expense of having to perform more steps during reconstruction.
Thus, to guarantee error-free coverage of the target molecule, the
probability of having an error-free fragment of size L in N clones
(P Success(L,N)) is multiplied by the number of fragments of size
L that are required to construct the target molecule (since multiple
L-sized fragments are required to reconstruct the target molecule).
We compute this number after considering the overlap, which
reduces the contribution of each oligo to be smaller than its
actual size (~55 bp). Then, we find the smallest number of clones
which satisfies the requirement that the total probability of having a
minimal cut will exceed 95 %.

4 An Algorithm for DNA Library Construction

Both combinatorial DNA assembly and de novo DNA synthesis can
be improved considerably (e.g., made cheaper, ameliorate error
rates) by maximizing DNA reuse—identifying shared parts and
utilizing them during construction. Most DNA generally needed
in biological and biomedical research, and in synthetic and systems

Computational Methods for DNA Editing 347

biology in particular, are extensions, variations, and combinations of
existing DNA. This provides ample opportunities for DNA reuse.
De novo synthesis relies on synthetic oligos that are inherently error
prone, and therefore reusing existing error-free DNA in construct-
ing new DNA provides an inherent advantage. Moreover, even in
applications that require completely new DNA, for example due to
change of codon usage,manymolecules are often needed, typically a
library of variants of a given molecule. The production of these
variants, once an error-free prototypical instance of the DNAmole-
cule is isolated or synthesized, includes opportunities forDNA reuse
almost by definition.

4.1 High-Level

Description of the

Algorithm

Combinatorial DNA libraries (graphically represented in Fig. 6) can
be assembled algorithmically in an efficient manner from pre-
existing and newly synthesized biological parts. This is achieved
by recognizing that consecutive combinations of input parts appear
multiple times within the output molecules (targets). Ordering the
necessary assembly steps into stages, in which a judicious selection
of intermediates is assembled earlier, facilitates reuse of assembled
parts, leading to an overall reduction in the number of biochemical
operations required to assemble the library.

A DNA library assembly task includes a set of input molecules, a
set of output molecules (targets), and assumes a binary part concat-
enation operation that can select two parts within existing (input or
intermediate) molecules to produce their concatenation. An assem-
bly plan that produces the outputs from the inputs can be viewed as a
graph representing the binary part concatenation operations leading
to the set of targets from the set of inputs through a number of
intermediates. Figure 7 visualizes several possible plans for con-
structing a simple library composed of four targets. The quality of
a plan can be categorized by the pair of integers (stages, steps), which
allows comparing the outputs of assembly-planning algorithms.

Fig. 6 Schematic DNA library of 625 targets where stacked parts represent combinatorial regions. Every path
of the graph represents a target. Note that many parts are shared between several targets, some are shared
throughout the library

348 Ofir Raz and Tuval Ben Yehezkel

Aplan is considered to be better if it has fewer stages and fewer steps.
There may be a trade-off between stages and steps. However,
whether a suboptimal number of stages with significantly fewer
steps is preferable or not is a technology-dependent manufacturing
decision.

Here we present the computational methods for an algorithm
that directly addresses whole library assembly by operating, at each
stage, on all potential binary concatenations [3]. The algorithm
assembles all targets simultaneously from their individual parts, akin
to the visualization of an assembly graph (as can be seen in Fig. 7).
The central idea is recognizing that maximal reuse of an intermedi-
ate part can result in fewer biochemical steps (as illustrated by the
examples B and C in Fig. 7). This is achieved by greedily concate-
nating the most frequently occurring pairs of adjacent parts, in the
hope of producing only those members of the smallest intermediate
parts set. It is well known that greedy algorithms, applying locally
optimal choices at each stage, can quickly obtain solutions that
approximate the global optimum, even for some hard problems.

Starting fromadata structurewhere each library target is decom-
posed into a sequence of available unitary parts, the algorithm
repeatedly—in analogy to independent steps within an assembly
stage—concatenates a subset of the remaining pairs of adjacent
parts within the sequences until no pairs remain, meaning every
target has been successfully reassembled. The sets of pairs concate-
nated at each stage of the execution constitute a viable assembly plan.

Three heuristics operate to influence the choice of assembly
steps at each stage:

1. Each class of pairs is treated as being mutually exclusive to
another class of pairs if at least one instance of each overlaps:
share of a right or left part respectively such as B in the pairs AB

Fig. 7 Graphs of three alternative valid assembly plans for a set of four sequences {acde, abde, ade, abe}.
Primitive parts are shown in blue, intermediate composites in red, and targets in green. From the top
downwards, each step is represented by a black dot concatenating two parts from an earlier stage into a
new intermediate or target part. The set of vertically aligned steps forms a stage. The thicker line from a part
to a dot/step indicates the left component of the concatenation

Computational Methods for DNA Editing 349

and BC, for the trio ABC. This makes it possible to safely
concatenate all instances of any given pair, because instances
of overlapping pairs will be prevented from also being assem-
bled in the stage. For greedy efficiency, all non-excluded pairs
are concatenated.

2. For efficacy, the choice of which pairs to concatenate is deter-
mined by the relative number of times each pair occurswithin the
nascent library data structure. Pairs are sorted by count (which
establishes a ranking) but are then processed individually and
either chosen as a step or excluded. The first few pairs to be
processed aremuchmore likely to be chosen because they are less
likely to have been excluded by a previous pair. Those with lower
or equal frequencies, assessed later, are likely to have already been
excluded and cannot therefore be chosen at that stage.

3. To enable the broadest exploration of the space of assembly
plans obtainable under the previous heuristics, we introduce an
element of non-determinism to every stage. A random shuffle
followed by a stable sort serves as a tiebreaker—reordering
pairs with the same count while retaining the ranking, such
that the most frequently occurring pairs are still selected.

This combats the potential for the introduction of bias towards
the first encountered pairs, when breaking ties between pairs.

An explanatory example is assembling the single target
{ABCABC} given {A, B,C}. The algorithm will first produce either
AB or BC, then always ABC and finally ABCABC, in the minimum
three stages. Figure 8 gives another worked example, yielding the
solution in Fig. 7b.

4.2 Formalized

Problem and Previous

Work

More formally, we will refer to strings over a given fixed finite
alphabet (i.e., of nucleotides). The part concatenation operation
applied to a set of stringsX consists of selecting two stringsA and B
from X, selecting a part (substring) A0 of A and a part B0 of B, and
adding the string A0 followed by B0, denoted A0B0, back to X.

An S-T library assembly problem is to produce the set of target
strings T using a finite number of applications of the part concate-
nation operation on S (the set of initial sequences).

We note that the part concatenation operation is realizable in
most cases using standard biochemistry. Part selection can be
achieved via PCR amplification. Concatenation can be realized
using various binary assembly protocols. The cost of a solution is
defined by the number of concatenation operations. The depth of a
solution is defined as the minimum number of parallel stages
needed, where a parallel stage is a set of concatenation operations
that can be performed in parallel since they do not depend on each
other. Equivalently, the depth of a solution is the maximum num-
ber of concatenation steps on a directed path from a source string to

350 Ofir Raz and Tuval Ben Yehezkel

a target string. We also consider the problem of finding a solution
of depth at most d and minimum cost. We call this problem
bounded-depth min-cost string production (BDMSP).

When assembly steps are restricted to binary concatenations,
the minimum number of stages can be calculated as round up
log2(nmax). Determining the minimum number of steps is more
difficult. It could be determined by exhaustively enumerating all
possible assembly plans. However, even for modestly sized libraries
this is an intractable task. Even for just a single target, the number
of possible assembly graphs is the Catalan number, (2p � 1)!/
(p � 1)!p!, that grows very rapidly with the target length in ele-
mentary parts (p), e.g., 1, 12, 360, 20160, 1814400. Furthermore,
the bounded multistage DNA library assembly problem is either
NP-hard or APX-hard [3], indicating that a superpolynomial

Fig. 8 Step-by-step walkthrough of a run with the example library {ABE, ABDE, ACDE, ADE}. While targets
remain to be assembled, each iteration progresses in five phases: (1) occurrences of every pair are counted;
(2) pairs are mapped to containing triplets and vice versa; (3) a list of pair-count tuples is shuffled (blue wave)
and stably sorted by count descending (purple arrow); (4) for each yet-to-be-excluded pair, choose the pair to
be a step (green rows) then exclude other pairs (red rows), which share the same containing triplets, by using
mappings from the second phase (these mutually exclusive pairs are marked with ^); finally (5) concatenate
all instances of each step-pair. Note that in this example, no triplets exist in the second iteration, as the
structure of the library after the first iteration is exactly the set of pairs that will comprise the steps of this
final stage

Computational Methods for DNA Editing 351

number of operations is required to determine the minimum num-
ber of steps for minimal stages or even just to approximate it up to a
constant error. In these circumstances, robust (fast and scalable)
assembly algorithms, which do not sacrifice solution quality for
performance, are required.

The previous state-of-the-art heuristic for BDMSP is the mul-
tiple goal-part assembly algorithm [4] that iteratively assembles
individual targets by using the minimum number of stages, and
produces a high-quality library assembly graphs by using three
techniques:

1. Making accumulated subgraphs available to subsequent targets
at no cost.

2. BIASING subgraph choice based on precomputed counts of all
possible intermediates.

3. Permitting the depth of any target tree to grow up to the global
minimum depth (“slack”).

This algorithm has a runtime complexityO(k2nmax
3), where k is

the number of targets and nmax the number of component parts in
the largest target. The algorithm presented earlier in Subhead-
ing 4.1 has a runtime complexity O(knmax) and offered significant
reduction in computation time, allowing for both instantaneous
assembly planning as well as incorporation into an immediate feed-
back of construction costs to the library designer [3].

4.3 Problem Solved? In our opinion, CAD software for the combinatorial design of
DNA-based devices’ libraries still lack an accurate measure of the
optimal number of biochemical operations required to assemble any
given library. An integrated decision-support mechanism leveraging
this measure could guide the researcher inmaking themost effective
use of limited funding and analytical resources. Moreover, knowing
the value of the near optimal stages and steps, objective functions
of solution quality would be an effective means by which to bench-
mark and differentiate algorithms that address this problem.

References

1. Linshiz G, Ben Yehezkel Tet al (2008) Recursive
construction of perfect DNA molecules from
imperfect oligonucleotides. Mol Syst Biol 4:191

2. Shabi U, Kaplan S et al (2010) Processing DNA
molecules as text. Syst Synth Biol 4:227–236

3. Blakes J, Raz O et al (2014) A heuristic for
maximizing DNA reuse in synthetic DNA

library assembly. ACS Synth Biol. doi:10.
1021/sb400161v

4. Densmore D, Hsiau THC, Kittleson JT,
DeLoache W, Batten C, Anderson JC (2010)
Algorithms for automated DNA assembly.
Nucleic Acids Res 38:2607–2616

352 Ofir Raz and Tuval Ben Yehezkel

http://dx.doi.org/10.1021/sb400161v
http://dx.doi.org/10.1021/sb400161v

INDEX

A

Abstraction ..81, 82, 84,

90, 92, 98, 99, 102, 115, 217, 218, 222–225,

232, 235, 242, 243, 262, 301, 327, 330, 333

Adapter-flux... 140, 152, 154

Affinity ... 6, 8, 14, 17, 121, 125,

132, 144, 145, 147, 148, 200, 338, 343

Agent105–110, 114, 115, 118–126, 132

Alpha factor ...205

Angle

minor groove... 28

twist... 28, 30, 40

Antimony... 98

Aptamers...................................45, 71, 75, 146–148, 160

Aptazyme .. 45–47, 75

Ara system..266

Arabidopsis thaliana .. 111, 113

aTc..................................69, 76, 219, 226, 227, 241, 245

Autocorrelation function 292–294

Autodesk Maya..27, 28

B

Bacillus subtilis ..6, 133

Bayesian approach ... 14

Bifurcation ...200–201, 204, 210

Bio-battery...139

BioBrick ..106, 111, 116–126,

128–130, 132–134

Biological

part ... 83, 84, 118, 125, 131,

137–164, 177, 259, 266, 301, 329, 348

potential... 139

BioNetGen ... 105, 106, 117,

138–142, 146, 148, 152, 161, 162, 263

BioPEPA .. 81

BioPerl ..49, 50, 59

Biosensor ...4, 6, 31, 32, 38, 46

BLAST ...5, 7, 8

Boolean gates

AND 138, 150–159, 161, 164, 246

NAND .. 245, 246

NOT ... 151–153

OR ... 246

YES..151–154, 161

Bottom-up... 261, 264, 338

Bounded-depth min-cost string production

(BDMSP) .. 351, 352

C

Cadnano25–28, 32–35, 37–40, 42, 43

Caenorhabditis elegans ..266

CanDo .. 25–27, 30

Cas9 nuclease ..74, 75

Cascade ... 112, 115, 141,

195, 196, 199–200, 205, 278, 279

CD-HIT ..5, 7

CellML... 301–307, 309,

311–313, 316–320

Chapman–Kolmogorov equation.................................181

Characterization ... 65, 69, 70, 76,

84, 100–102, 116, 117, 127, 167, 173, 182, 291,

292, 324

Chemical

Langevin equation (CLE)......................181–183, 293

master equation (CME)................179–189, 221, 222

Chemical (molecule) ...149

SiPS .. 141

Chimera ..5, 8, 9, 27

Closure scheme180, 184, 186, 188, 189

Clotho...98, 333, 334

Coding region .. 81, 83–85, 87,

90, 96, 125, 138, 142, 146–149, 151–155,

157, 162, 163

Combinatorial

complexity .. 131, 133

explosion.. 106, 108, 138

Common signal carrier 138, 139, 151

Compartment..85, 86, 88,

93–94, 96, 97, 106, 110, 114, 115, 117, 145,

149, 150, 155–164, 220, 261, 262, 266

Compiler.............................. 82–85, 88, 90, 91, 100, 102

Complex formation...224

Composable parts ...138

Computational protein design3–20

Concavity ..5, 12, 13, 15

Constraint solving ...102

Consurf ...5, 12, 13, 15

Contact graph .. 108–110

Mario Andrea Marchisio (ed.), Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244,
DOI 10.1007/978-1-4939-1878-2, © Springer Science+Business Media New York 2015

353

Continuous stochastic logic ...234

Cooperativity .. 18, 125, 133,

139, 144, 146, 147, 153, 159, 160, 162, 224

Corepressor 143, 145, 146, 148,

151, 153, 156, 159, 162

CRISPR ..63, 73, 75

Cytoplasm... 141, 147, 149,

151, 152, 154–158, 160, 162, 164, 278

Cytosol. See Cytoplasm

D

Database

BRENDA.. 5, 12, 14

ENZYME .. 5, 7

GenBank50–51, 55, 59, 60, 84, 323

IntEnz.. 5, 7

KEGG ..5, 11

MetaCyc.. 5, 11, 16

PDB5, 6, 8, 9, 12, 13, 42, 323

Pfam ... 5, 9

PROSITE .. 5, 7

Uniprot .. 5, 7

Degradation tag ...76, 260, 266

Deoxyribonucleic acid (DNA)

crossover .. 25, 27–34, 40–42

editing... 26, 341

lattice.. 23

library...332, 341, 345–352

molecules’ error correction 337–352

nanostructures .. 23, 25, 27

origami...23–43

sequence ... 27, 50, 51, 99,

101, 179, 265, 323–325, 329, 331–333

staple .. 27

Design space exploration 237, 253, 255

Dicer enzyme... 140, 149,

151, 155, 156, 160, 161

Diffusion coefficient..293

Dimerization .. 150, 343

Direct evolution ..3, 4

Divide and Conquer (D&C).............................. 337–339,

341, 347

Docking .. 17, 19, 118–121,

123–125, 133

E

Entropy... 184–187

Equilibrium point .. 197–200

Escherichia coli ...46, 59, 68,

111, 133, 219, 266, 334

Eugene..98, 330, 331

Euler–Maruyama method.................................... 183, 184

EvolTrace...5, 15

F

Falloff .. 118, 121, 123–125, 133

Fan-out ... 289–292

FASTA ...323

Feedback loop

negative..85, 87, 90–92,

194, 203–207, 209, 210, 267, 271, 274, 278, 289

positive...202–208, 271, 274

Feedforward loop... 264, 267

Fingerprint... 11

Fitness .. 17

FLO-QXP.. 5

Folding

DNA .. 23

frequency ... 52–54, 56, 58, 60

RNA... 46, 47, 60, 76

Formal language.. 81

Förster resonance energy transfer (FRET)31, 32, 34

Free energy .. 6, 47, 51,

67, 72, 73

FRET. See Förster resonance energy transfer (FRET)

Fus1 .. 206–210

Fus3 .. 205–209

G

GDA. See Genetic design automation (GDA)

GEC. See Genetic engineering of cells (GEC)

Gene circuit ...65, 98–100,

117, 137–164, 167–177, 179, 217–223,

231–233, 235, 237, 251, 255, 287–297, 301,

329, 331

Gene network... 151–159,

179, 194, 201, 210, 282, 284

Genetic design automation (GDA).............323, 329–332

Genetic engineering of cells (GEC).......................82–103

Genetic Muller C element237, 244–250

GenoCad .. 98

Ghecom ..5, 12, 13, 15

Gillespie (stochastic simulation) algorithm (SSA)......180,

181, 189, 227

Goldbeter-Koshland kinetic ...111

Graph ..11, 19, 89, 108–110,

131, 186, 194, 200, 206, 207, 224, 225, 255,

341, 342, 345, 346, 348, 349, 351, 352

Graphic user interface 152, 320, 327

Graphml...110

GSNO... 111–116

H

Heatmap ..176

High osmolarity glycerol (HOG) pathway......... 278, 279

High throughput screening..3, 4

354 COMPUTATIONAL METHODS IN SYNTHETIC BIOLOGY

Index

Hill

coefficient139, 173, 208, 210

constant ... 139

function 84, 139, 195, 202, 204, 269

Homologous recombination .. 75

Hopf bifurcation ...201

Hot spot ...4, 14, 18, 19

Hybrid algorithm ... 182–184

Hybrid Stochastic Simulator for Supercomputers

(Hy3S) ... 183, 184, 189

I

iBioSim ...254, 330–332

iGEM ...111, 126, 128, 330

In silico closed loop ..278

Incremental stochastic simulation algorithm

(iSSA) ... 218, 226–231,

237–241, 245, 247, 248, 251–253, 255, 256

Inducer ...76, 143–146, 148,

151, 154–156, 159, 198, 207, 219, 224

Initial conditions .. 89, 108, 110,

122, 124, 132, 184, 186, 197, 231, 243, 248,

263, 303, 307, 312, 319

Interaction

matrix ... 174, 175, 177

protein–protein11–13, 18, 108, 128, 130

RNA–RNA ... 69, 72, 76

Isopropyl β-D-1-thiogalactopyranoside
(IPTG)69, 219, 224, 226,

227, 241, 243, 245, 266

iSSA. See Incremental stochastic simulation

algorithm (iSSA)

J

j5 tool ... 332–333

Jacobian ... 194, 198–200,

202–207, 210, 293

Jacquard coefficient... 11

Joint bioenergy institute inventory of composable

elements (JBEI-ICE) 329, 331, 332

K

Kalman filter ..280

Kappa ...81, 105–134, 263

BioBrick ... 106, 111,

117–126, 128, 130, 132–134

KaSim.. 110, 129

Kinase... 106–108, 111,

121, 167, 193, 195, 196, 200, 264

Kinefold .. 47, 48, 50–55, 58, 60

Kinetic parameter128, 142, 164, 167, 186

L

Lagrange multiplier method ..184

Language for biochemical system (LBS) 87–88, 94

Library assembly problem 350, 351

Ligand..4–6, 8–11, 13,

16, 17, 19, 20, 173

Light

activated ion channels ... 267

mediated synchronization.............................. 125–130

Linearization

analysis ... 197, 199, 210

system ... 194, 198

Link... 7, 25, 107, 139,

140, 148, 149, 153, 156–158, 160, 162, 169,

170, 305, 306, 308, 309, 317, 320

Liquid handling robot ... 338, 347

Little B...263

LUC protein..116

M

Machine learning...............................5, 12, 14–16, 19, 20

Mammalian cell45, 152, 266, 283

MAPK pathway. See Mitogen-activated protein kinase

(MAPK) pathway

Markov

chain.. 108, 181, 218,

232, 233, 235, 236, 242, 243, 249, 255

continuous time Markov chain (CTMC)218,

232–236, 242, 243, 248, 255

process .. 181, 221

Mass-action kinetics140, 171, 195, 309

MathML302, 307, 308, 313, 315

Matlab format...................... 89, 159, 164, 200, 263, 340

Maximal enzyme rate ..196

Mercurial distributed version control system303

Metabolic engineering .. 4

Metropolis algorithm..133

Michaelis–Menten approximation....................... 171, 196

Microfluidic device..279

Micro RNA (mRNA)

50UTR...47, 54, 63, 64, 67,

70, 71, 73–76, 146, 148

degradation.. 87

mature mRNA.......................................146–149, 152,

156, 157, 160, 163

Microscopy24, 100, 279, 282, 291

Milstein method..183

Minimal cut .. 345–347

MIT StarCluster ..48, 49

Mitogen-activated protein kinase (MAPK)

pathway 194, 195, 200, 205–211, 267

COMPUTATIONAL METHODS IN SYNTHETIC BIOLOGY

Index 355

Model

predictive controller (MPC)................. 279, 280, 282

rule-based105–134, 138, 142

3D modeling26, 27, 29, 36, 75

Model Definition Language (MDL).................. 138, 139,

142, 146, 149, 150, 152–158, 161, 163, 164

Modularity ..82, 99, 111, 125,

129, 132, 287, 288, 294, 297

Molecular

dynamics (MD) .. 14, 17–19

mechanics (MM) ... 16

Molecule type ... 142, 155

Monte Carlo (MC) 16, 17, 69, 181

MPI..184

Msg5 ..205–207, 209, 210

Multiscale model ..180–189, 301

Multistationarity..194

Mutagenesis... 3, 19, 128, 340

Mutant ...3–5, 7, 8, 10–18, 20

Mutation... 4, 6–8, 11, 12,

16–19, 65, 69, 72, 76, 260, 340, 347

N

Network topology...............................168–177, 205, 294

Newton–Raphson optimization scheme......................185

Noise propagation...................... 288, 292–294, 296, 297

Nonlinearity..180, 287–297

NPR1 .. 111–116

Nuclear localization ... 266, 269

Nucleus ... 106, 116, 141,

147, 151, 155–158, 160, 161, 164, 205, 266,

267, 278

NUPACK...25, 27, 65, 72, 73

O

Observable..108–110, 124

ODE system. See Ordinary differential equation (ODE)

system

Oligo.............................. 31, 42, 337–341, 344, 346–348

Openbabel ... 5

Optogenetic... 267, 282, 283

Ordinary differential equations (ODE)

system... 170, 181, 187,

194, 195, 197, 198, 200, 203, 209, 210, 220,

222, 226, 227, 261, 263, 302, 303, 319, 330

Oscillator 4, 179, 204, 237–241,

255, 260, 289, 290

Osmo-stress responsive promoter278

OxDNA ...25, 27

P

p53 signaling pathway .. 267–274

Parts and Pools... 137–164

PCR. See Protein coding region (PCR)

PEPA.. 81

Perl ... 49, 58, 59, 142

Perturbation ... 108, 110, 114,

115, 128, 168, 259–275, 277

Pharmacophore ...8–10

Phase portrait ... 200, 201

Phenomenological model 195, 196

Pheromone-responsive pathway...................................205

Phosphatase .. 106–108,

111, 205, 264

Phosphodiester bond ..46, 47

Phosphorilation .. 106, 107, 109,

110, 127, 168, 195, 196, 205, 278, 342

Photinus pyralis ..128

Physiome model repository (PMR) 303–305,

309–310, 316, 317, 319, 320

Pi calculus .. 81

Plasmid ..60, 69, 76,

102, 206, 291, 340

Plot... 86, 87, 89, 96, 116,

200, 226, 227, 231, 239–244, 247–250, 252,

253, 309

PMR. See Physiome model repository (PMR)

Polymerase cycling assembly (PCA) methods338

Polymorphism ... 7, 8, 11, 12, 16

Pool...108, 137–164

Population control experiment 280–282

Primers..338–343, 347

PRISM .. 89, 235

Probability moment ..181

Probes ... 13, 54, 259–275, 283

Programming language81–103, 110

ProMoT..138–142, 152–154,

156–158, 161, 163, 164

Promoter operator ... 145, 223

Propensity (function).. 108, 182,

221, 222, 228

Protein

design... 3–20

engineering.. 3, 4

structure... 8, 9, 13, 14, 17

Protein coding region (PCR)................................. 83, 96,

338–341, 343, 345, 347, 350

pSTL1 induction.. 279, 280

PyMol .. 5

PySB...263

Python ... 142, 158, 164

Q

Q-Site Finder...5, 13

Quantum mechanics (QM) .. 16

Quasi-steady state approximation 184, 223, 224

356 COMPUTATIONAL METHODS IN SYNTHETIC BIOLOGY

Index

R

R (software) ...5, 20

Rate constant.. 105, 108, 116,

119, 120, 144, 145, 147, 149, 150, 161, 167,

196, 220, 223, 263, 316

RC circuit (analog to).. 289, 291

Reaction

database ...85, 94

enzymatic..10, 97, 139

transport .. 85

Readthrough 121, 123–125, 129, 160

Recombinase ...265

Repository .. 20, 42, 59, 100,

102, 111, 303, 305, 309–312, 318, 320, 323,

328–332

Registry of Standard Biological Parts83, 84,

118, 125

Repressilator86, 92–95, 106, 111,

121–132, 134, 160, 237–241, 260, 289, 290, 296

Retroactivity ...99, 287–297

Ribonucleic acid (RNA)

device ..47, 70, 74–75

interference (RNAi) 117, 148,

155, 260, 266, 314

polymerase .. 54, 74, 117–121,

124, 134, 138, 139, 141, 144, 145, 147,

149–153, 155, 156, 159–163

PoPS.. 117, 121, 125,

138, 141, 153, 157, 158, 161, 163

Riboregulator ...63–65, 68–76

Ribosome..55, 73, 117, 118,

120, 121, 123–125, 134, 138, 139, 141, 147,

148, 150, 151, 155, 157, 161, 315

RiPS .. 117, 121, 125,

138, 141, 315

Ribosome-binding site (RBS) 45, 47,

54–58, 71–74, 83, 84, 87, 94, 96, 98, 117,

120–125, 138, 140, 303, 304, 311, 314–317

Riboswitch

single aptamer .. 146, 147

tandem aptamer... 146

Ribozyme...45–47, 54–56, 63, 75

RISC complex140, 149, 151, 155, 157, 161

Robustness.................. 67, 101, 170, 176, 177, 243, 250

RosettaDesign .. 5, 17, 18

RuleBase (software) ... 111, 129

S

Saddle nodes..201

SARSE..25–27

Satisfiability Modulo Theories (SMT) 102, 103

SBOL. See Synthetic biology open language (SBOL)

Scaffold protein ...4, 267

Schlögl model.. 184, 186, 188

Seed species ...142

Sequence

alignment6, 11, 19, 338, 340

annotation ..7, 325, 331

conservation (aminoacid) 6, 12–14

ontology ..324, 325, 327, 332

Shine-Dalgarno ...64, 72

Signaling pathway 126, 129, 133, 201, 267–274

Similarity7–13, 16, 19, 113, 177, 292, 293

search ...4, 6–11

Simmune..263

Simulated annealing...17, 47, 69

Simulation .. 39, 42, 46–48,

50–52, 54–56, 58–60, 82, 84–90, 94, 96, 98, 100,

108–110, 114–116, 122, 124, 130, 138, 141,

159, 163, 167, 168, 174, 176, 177, 180, 182,

183, 185, 186, 189, 193–195, 203, 207, 210,

217, 222, 226–228, 230, 231, 235, 240–243,

247, 248, 255, 270, 274, 309, 313, 329

Single-cell control experiment282

Single-stranded DNA (ssDNA).....................23, 338–341

siRNA ...146–149, 151, 152,

154–158, 160, 161, 163, 266

Small hairpin RNAs (shRNAs)266

Small RNAs (sRNA) 63–65, 67, 70, 71, 73–76

SMT. See Satisfiability Modulo Theories (SMT)

Spacer.. 47, 54, 56–58, 60, 123

Species...65, 67, 69–73, 75,

76, 85–91, 96, 97, 138, 140, 142, 152, 154, 155,

158, 170–175, 180, 181, 193, 195, 197, 202,

212, 220–226, 231–233, 235, 237–239, 245,

248, 255, 261, 303–309, 311, 312, 319

Spliceosome .. 141, 147, 150,

151, 155, 156, 160, 161

sRNA. See Small RNAs (sRNA)

ssDNA. See Single-stranded DNA (ssDNA)

Ste4 ... 205–209

Steady state .. 159, 163, 184, 186,

188, 189, 196, 223, 233–237, 240, 255, 263, 316

Stochastic

chemical kinetics... 220–222

model checking218, 231–237,

239, 240, 251–255, 330

modular analysis ... 287–297

Stochasticity...117, 241, 287–297

Storage-intra..149, 150, 152, 158

Strand displacement26, 27, 32, 63–76

SWISS modeler ... 5

Switch ...107, 111–116, 127,

134, 145, 159, 179, 205, 219, 230, 231, 241,

242, 245, 250–254, 260, 267

SynBioSS..189

Desktop Simulator .. 189

Synthetic biology 3–20, 63, 68, 81,

98, 99, 105–134

COMPUTATIONAL METHODS IN SYNTHETIC BIOLOGY

Index 357

Synthetic biology open language (SBOL)........... 46, 140,

323–334

Systems biology markup language (SBML) 89, 98,

158, 159, 164, 323, 326, 329–331

T

T-Coffee ..5, 7

TALEN ..265

TASBE. See Toolchain to Accelerate Synthetic Biology

Engineering (TASBE)

Terminals ..95, 98, 139, 140,

150–158, 161–164

Terminator.. 45, 67–68, 70,

73, 76, 83, 84, 87, 96, 98, 117, 119–124, 133,

138, 149, 151–154, 157, 160, 161, 327

Theophylline... 6, 75, 76

Thermodynamic limit ...180

TIAMAT..25, 27

Tinkercell ...117

Toggle switch 4, 106, 113, 204, 212,

219, 224–227, 230, 231, 236, 237, 241–250

Toolchain to Accelerate Synthetic Biology Engineering

(TASBE)..98, 333–334

Top-down...98, 261, 264

Topology search ... 167–177

Transcription factor

activator 120, 125, 127, 143–145

CI ... 123

FaPS .. 141, 157

LacI 67, 68, 123, 124, 127, 219,

226, 227, 230–232, 236–240, 242, 243

repressor .. 127

TetR ... 67, 68, 84, 85, 90, 91,

123, 124, 127, 219, 224, 226, 227, 230–233,

237, 238, 242, 243, 289, 290, 296

Transcription network .. 4

TRXh5 .. 111–116

U

Ultrasensitivity.......... 111, 168, 170, 171, 176, 205, 295

Uniquimer3D.. 27

V

Vector NTI Express Designer 331, 332

ViennaRNA package .. 65–67, 73

Virtual Parts 118, 301–321, 329, 331, 332

W

Web server ... 13, 27, 47, 58

Wiener process ..182

X

Xanthine ..5–7, 11

Xanthine phosphoribosyltransferase (XPRTase) 5–7,

9–12, 16

Xenorhabdus luminescens ..128

Y

Y operation ... 341, 342

Yeast (Saccharomices cerevisiae) 6, 45, 63, 111,

113, 133, 194, 201, 205, 210, 266, 267, 277–283

yED..110

Z

z-score..12, 19

Z3...103

Zero-information closure180, 184–186

Zinc-finger nucleases ..265

358 COMPUTATIONAL METHODS IN SYNTHETIC BIOLOGY

Index

	Computational Methods in Synthetic Biology
	Preface
	Contents
	Contributors
	Part I: Component Design
	1 Computational Protein Design Methods for Synthetic Biology
	1 Introduction
	1.1 The Computational Protein Design Workflow

	2 Materials
	3 Methods
	3.1 A Motivating Example for Protein Design in Synthetic Biology
	3.2 Similarity Search for Proteins
	3.2.1 Sequence-Based Search
	3.2.2 Structure-Based Search
	3.2.3 Pharmacophore-Based Search
	3.2.4 Ligand-Based Search

	3.3 Identification of Potential Mutants
	3.4 Combinatorial Screening of Candidate Mutants
	3.4.1 Machine-Learning Approach
	3.4.2 Energy-Based Approach

	4 Notes
	References

	2 Computer-Aided Design of DNA Origami Structures
	1 Introduction
	2 Materials
	3 Methods
	3.2 Scaffolded DNA Origami Crossover Patterns
	3.3 Design of a DNA Origami Device
	3.4 caDNAno Design
	3.5 Maya Modeling
	3.6 Suggestions for Further Work

	4 Notes
	References

	3 Computational Design of RNA Parts, Devices, and Transcripts with Kinetic Folding Algorithms Implemented on Multiprocessor Clusters
	1 Introduction
	2 Materials
	2.1 Dependencies
	2.2 Installation and Setup
	2.3 Building a Framework for Submission
	2.3.1 Application Hierarchy
	2.3.2 Parsing Genbank Files (parser.pl)
	2.3.3 Setting Up Directories (writer.pl)
	2.3.4 Submitting Jobs to Cluster
	2.3.5 Parsing Output (grepper.pl)

	3 Methods
	3.1 Experimental Design
	3.2 Experimental Method
	3.2.1 Determining Target Structures for RBS and Rbz
	3.2.2 Spacer Sequence Library

	4 Notes
	References

	4 Regulatory RNA Design Through Evolutionary Computation and Strand Displacement
	1 Introduction
	2 Materials
	2.1 Software
	2.1.1 ViennaRNA (Version 2.0)
	2.1.2 Nupack (Version 3.0)

	2.2 Necessary Elements for in Vivo Implementation and Expression
	2.2.1 Promoters
	2.2.2 Transcription Terminators
	2.2.3 Strains (Cellular Chassis)
	2.2.4 Plasmids

	3 Methods (Computational Design)
	3.1 General Strategy of Evolutionary Design
	3.1.1 Specifications and Initiation
	3.1.2 Selection
	3.1.3 Mutation Operator
	3.1.4 Post-analysis

	3.2 Negative Riboregulation
	3.3 Positive Riboregulation
	3.4 A Generic Methodology for the Design of Logic RNA Devices
	3.4.1 Three-Input Logic Systems
	3.4.2 Pseudo-3D Modeling
	3.4.3 Integration of Aptamer and Ribozyme Sequences
	3.4.4 Integration with CRISPR Systems

	4 Notes
	References

	Part II: Circuit Design
	5 Programming Languages for Circuit Design
	1 Introduction
	2 The Visual GEC Tool
	2.1 The Design Section
	2.1.1 The Database Tab
	2.1.2 The GEC Tab
	2.1.3 The LBS Tab

	2.2 The Output Section
	2.2.1 Compilation
	2.2.2 Simulation

	3 The GEC Language
	3.1 Part Types
	3.2 Part Variables and Properties
	3.3 Parameterized Modules
	3.4 Compartments and Reactions
	3.5 Quantitative Constraints
	3.6 The Syntax of GEC

	4 Discussion
	4.1 Related Work
	4.2 Limitations
	4.3 On-Going Developments

	References

	6 Kappa Rule-Based Modeling in Synthetic Biology
	1 Introduction
	2 Modeling a Synthetic Switch
	3 The Kappa BioBrick Framework
	3.1 Introducing the Kappa BioBrick Framework
	3.2 The Repressilator in the Kappa BioBrick Framework

	4 Extending the Repressilator: Light-Mediated Synchronization
	5 Looking to the Future
	References

	7 Modular Design of Synthetic Gene Circuits with Biological Parts and Pools
	1 Introduction
	2 Methods
	2.1 A New Method for Circuits´ Modeling with Parts and Pools
	2.2 Parts and Pools Within the ProMoT/BioNetGen Framework
	2.3 Parts and Pools Generation
	2.3.1 Promoter (promoter.inp)
	2.3.2 Coding Region and Mature mRNA Pool (EU_coding.inp)
	2.3.3 siRNA Coding Region and Pool (sirna.inp)
	2.3.4 Terminator (EU_terminator.inp)
	2.3.5 Chemicals´ Pool (sigpool.inp)
	2.3.6 Transcription Factor´s Pool (tfpool.inp)
	2.3.7 Other Pools (EU_pools.inp)
	2.3.8 Sum Pools (EU_sum.inp)

	2.4 Circuit Design: A Small Gene Network Mimicking the AND Boolean Function via Transcription and Translation Regulation
	2.4.1 YES_A and NOT_B Gate Design
	2.4.2 YES_B Gate Design
	2.4.3 AND Gate Design
	2.4.4 Chemicals´, Transcription Factors´, and Reporter´s Pools
	2.4.5 Other Pools
	2.4.6 Compartments´ Design
	2.4.7 Closing the Circuit: Compartment Connection

	3 Notes
	References

	8 Computationally Guided Design of Robust Gene Circuits
	1 Introduction
	2 Topology Search Procedure
	2.1 Exhaustively Enumerate Minimal Networks
	2.2 Build a Systems Model for Each Network Topology
	2.3 Sample Sets of Parameter Values
	2.4 Implement and Simulate Network Models
	2.5 Evaluate Network Robustness
	2.6 Rank Network Topologies
	2.7 Cluster Network Topologies

	3 Notes
	References

	9 Chemical Master Equation Closure for Computer-Aided Synthetic Biology
	1 Introduction
	2 Methods for Multiscale Models of Biomolecular Systems
	2.1 Chemical Master Equation
	2.2 Stochastic-Discrete and Stochastic-Continuous Algorithms
	2.3 Hybrid Algorithms
	2.4 Zero-Information Closure of the Master Chemical Equation
	2.5 ZI-Closure Example

	3 Conclusions: Future Directions
	References

	10 Feedback Loops in Biological Networks
	1 Introduction
	2 Dynamic Models for Molecular Systems
	3 Analysis of Dynamic Behaviors
	3.1 Linearization
	3.1.1 Linearization Example: The MAPK Cascade
	3.1.2 Phase Portraits

	3.2 Bifurcations

	4 Feedback in Synthetic Biological Networks
	4.1 Feedback Loops Reshape the Dynamic Behavior of a System
	4.2 Synthetic Feedback in the MAPK Pathway
	4.2.1 A Synthetic Positive Feedback Loop Can Yield Bistability
	4.2.2 A Synthetic Negative Feedback Loop Has the Potential to Yield Oscillations

	5 Conclusions
	6 Notes
	References

	Part III: Circuit Analysis and Simulations
	11 Efficient Analysis Methods in Synthetic Biology
	1 Introduction
	2 Genetic Toggle Switch
	3 Classical Chemical Kinetics
	4 Stochastic Chemical Kinetics
	5 Reaction-Based Abstractions
	6 Incremental Stochastic Simulation Algorithm
	7 Stochastic Model Checking
	7.1 Translation of a Genetic Circuit into a CTMC
	7.2 Specifying a Property
	7.3 Stochastic Model Checking

	8 Case Studies
	8.1 Repressilator
	8.2 Dual-Feedback Genetic Oscillator
	8.3 Genetic Toggle Switch
	8.4 Genetic Muller C-Element
	8.5 Quorum Trigger

	9 Conclusions and Future Work
	References

	12 Using Computational Modeling and Experimental Synthetic Perturbations to Probe Biological Circuits
	1 Introduction
	2 Methods
	2.1 Modeling the Natural Circuit
	2.2 Probing Possible Synthetic Changes In Silico
	2.3 Implementing Changes In Vivo

	3 Case Study: The p53 Signaling Pathway
	4 Conclusions
	References

	13 In Silico Control of Biomolecular Processes
	1 Introduction
	2 Results
	2.1 The Controlled System
	2.2 The Experimental Platform
	2.3 Model of pSTL1 Induction
	2.4 Closing the Loop
	2.5 Closed-Loop Population Control Experiments
	2.6 Closed-Loop Single-Cell Control Experiments

	3 Discussion
	3.1 Summary
	3.2 Related Works
	3.3 Perspectives

	References

	14 Stochastic Modular Analysis for Gene Circuits: Interplay Among Retroactivity, Nonlinearity, and Stochasticity
	1 Introduction
	2 Alternative Gene Circuit Representation in Terms of Electrical Circuit Components
	3 Gene Circuit Fan-Out
	4 Modular Description of Signal Noise
	5 Modular Description of Noise Propagation
	6 Noise Effect on Nonlinear Responses
	7 Stochastic Modular Analysis
	References

	Part IV: Distributed Systems and Automation
	15 Distributed Model Construction with Virtual Parts
	1 Introduction
	2 Materials
	2.1 Install Mercurial

	3 Methods
	3.1 Obtain Access to PMR
	3.2 Create a New Workspace
	3.3 Derive a Model of GFP Degradation
	3.4 Commit the Model to a Local Repository, and Then to PMR
	3.5 Grant Access to Collaborators
	3.6 Model Simple Gene Regulation
	3.7 Commit and Push All Changes
	3.8 Replace the RBS Virtual Part
	3.9 Expose the Workspace to the General Public

	4 Notes
	References

	16 The Synthetic Biology Open Language
	1 Introduction
	2 SBOL Data Model
	3 SBOL Visual
	4 SBOL Adoption
	4.1 Repositories
	4.1.1 Virtual Parts Repository
	4.1.2 Joint BioEnergy Institute Inventory of Composable Elements

	4.2 GDA Tools
	4.2.1 Eugene
	4.2.2 iBioSim

	4.3 Sequence Editors and Optimizers
	4.3.1 Vector NTI Express Designer
	4.3.2 j5 Tools

	4.4 Synthetic Biology Workflow Tools
	4.4.1 Clotho
	4.4.2 TASBE

	5 Discussion
	References

	17 Computational Methods for the Construction, Editing, and Error Correction of DNA Molecules and Their Libraries
	1 An Algorithm for the Construction of Single DNA Molecules
	2 Processing DNA Molecules as Text
	3 Correction of Erroneous DNA Clones
	3.1 General Description of Error Correction
	3.2 Minimal Cut
	3.3 Computing the Minimal Cut
	3.4 Computing the Required Number of Clones

	4 An Algorithm for DNA Library Construction
	4.1 High-Level Description of the Algorithm
	4.2 Formalized Problem and Previous Work
	4.3 Problem Solved?

	References

	Index

