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Series Editors' Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously and these are then discussed, used,
discarded or subsumed into the prevailing subject paradigm. Sometimes these
innovative concepts coalesce into a new sub-discipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts
then archival publication as a scientific or engineering monograph may occur.
A new concept in control and signal processing is known to have arrived when

sufficient material has evolved for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduate, graduates or industrial engineers.
Advanced Textbooks in Control and Signal Processing are designed as a vehicle
for the systematic presentation of course material for both popular and innovative
topics in the discipline. It is hoped that prospective authors will welcome the
opportunity to publish a structured and systematic presentation of some of the
newer emerging control and signal processing technologies.
In control engineering the difference between the theories of academic control

and the realities of the industrial application lies in the simple phrase "operational
constraints". Most control textbooks omit the actuator saturation block and/or the
output constraint conditions on the linear system feedback block diagram but there
are very few real-world control systems where they are not present. In the toolbox
of the industrial control engineer, the antiwindup circuit and the control override
module are essential items for successful control.
Dolf Glattfelder and Walter Schaufelberger have long recognised the

importance of these two industrial procedures in overcoming input and/or output
constraints in control system designs. The outcome of a decade or more of research
is this new volume in the Advanced Textbooks in Control and Signal Processing
series. At last it is possible to study a global presentation of control designs for
system constraints in one volume. The first part of the textbook deals
systematically with the single loop control problem whilst the second part covers
more advanced control system problems. The reader will find strong motivation
from the practical industrial problems and examples in the presentation; as such,
industrial control engineers should find the approach illuminating and accessible.
The extensions to more complex systems will interest the industrial and academic
control readership alike. The book may be used as a course-book, a book for self-
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study or a reference book and is a welcome entry to Advanced Textbooks in
Control and Signal Processing.

M.l Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.

April, 2003



Preface

In current industrial process control, PID technology is firmly established as
the standard. PI control performs best on linear time-invariant plant models
of "dominant first order", i. e. a first order lag element or open integrator in
series with a small delay, such as used in the famous Ziegler-Nichols rules.
Typical examples are control of speed, level, temperature, etc.
For plant models of dominant higher order, such as position control in mecha­
tronic systems, linear control performance can be conserved within the classic
PID technology by an additional derivative action, or by using cascade ar­
rangements. If performance is still not sufficient, one may resort to linear
state feedback, and add an observer if needed.
Such linear time-invariant plant models of low dominant order are often a
sufficiently precise approximation of the real process response. This is one of
the key success factors of PID technology in practice. In most cases it is valid
only in a small enough neighborhood of a given nominal steady state operat­
ing point. However, if deviations increase, for instance by applying large ref­
erence steps, then the actuator will saturate transiently or even permanently.
In other words, plant "input constraints" will manifest themselves. The same
effect will appear for reduced deviations, if the closed-loop bandwidth is in­
creased by using advanced control design methods. Typical examples of input
constraints are mechanical limits on servomotor position, on valve position,
on voltage from a power amplifier, etc. Such actuator saturations will appear
in any "linear" control loop on a real plant.
Furthermore, in many applications, operational limits will be encountered on
some additional variables within the plant. This situation is known as plant
"output constraints". Typical examples would be limits on armature current
or winding temperature in DC-servomotors, on flow and dynamic overpressure
in hydraulic systems, and on temperature, or on local temperature gradients
in thermal power systems, etc. Thus, any "linear" control loop on a real plant
will surely have such output constraints, although they may be far off during
normal operation.
This outlines the type of control problem investigated in this book.
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Considering methodology, three general approaches are available for the
analysis and design of such input and output constraint systems. The first
one would be Optimal Control Theory, by applying the Maximum Principle.
Or one solves the problem by numerical optimization of the performance index
for the trajectory, subject to the constraints from the system response equa­
tions and to the nonlinear constraints on input and output. This approach of
Predictive Control has been investigated intensively in the last two decades,
and there are numerous industrial applications. It has been developed (and is
best suited) for complex multi-input systems with many constraints.
The third approach has been developed empirically, mainly for single-loop PI
control. Practitioners were always confronted with constraint control problems
on their particular processes. So they had to invent some solution, implement
it with the equipment available at the time, check it by experiments on the
plant, and if performance was not up to specifications, again invent, imple­
ment and test. Such iterative development has led to the current "antiwindup"
schemes for input constraint problems and to "override" schemes for output
constraint problems. Essentially they are nonlinear add-ons to the basic linear
control algorithms. They are available as software blocks in most commercial
Process Control Systems (PLCs) today. Therefore, they are quite popular
with control design engineers, and are in everyday use in industry. The main
motives for their use are that the resulting systems are quite simple, intuitive,
and that they are known to perform surprisingly well.
However, not much effort was spent by the inventors on transferring the
knowhow to other areas, on exploring the limits of applicability in a more
systematic way, and on other general aspects, such as on comparing different
solutions, looking for any equivalence, or making them easier to understand,
to learn and to teach, or on publishing results to make the basic concepts more
generally known, etc. In short, there is much isolated practical knowhow and
experience around, but not much is available on a more scientific level.

This particular situation has motivated us to do research in this area for
many years now, and has led up to this book. Our main objective is a deeper
understanding of such systems, and on this basis to design more effective con­
trol systems within typical industrial time constraints.
The usual approach from theory would be to aim for a solution of the most
general problem first, and afterwards look at special cases, such as PI con­
trol. Instead of using such a "top-down' (deductive) approach we decided on a
"bottom-up' (inductive) one. The first step is to solve the simple cases, which
also happen to be the most frequent ones in applications, while taking care
that the assumptions agree with most typical cases. The further steps then
are to use these results as building blocks to investigate successively more
complex cases, i.e. to proceed by "extension' rather than by "specialization'.
In other words, we have elected an engineering design approach for this book
rather than a mathematically oriented one. Also, the focus will be on exploit­
ing available control theory rather than developing new theory. And it is also
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more on employing and adapting schemes which are currently in use rather
than inventing new ones. - Such choices may be disputed, of course. We made
them by considering the likings and needs of design engineers we personally
know, and also of many of our students.
The investigations will follow a typical design sequence. For motivation we of­
ten use a typical industrial case, and then move up one level of abstraction to
typical process models which cover a wider area of application. As the prob­
lem statement we use "specifications", both for clarifying assumptions and
for defining benchmarks. Then we consider currently used alternatives for
controller structure, and present generic structures, from where the different
alternatives may be instantiated. This will also show some equivalences, which
are important in practical design. Then we do simulations for the benchmark
situations in order to get typical, comparable transient responses. This will
serve as verification, as first screening and the findings will provide a clear
basis for redesign of structure, if necessary. However, this can provide only a
point-wise view on the behavior of such strongly nonlinear systems. Getting
an overall view only by simulations is tedious and always incomplete, extrap­
olation is dangerous, and the underlying relations have to be extracted with
much effort from the data. In this situation, nonlinear stability analysis offers
a framework which is both elegant and fairly easy to use. It provides this
overview, gives a better understanding of the relations of causes (structure)
and effects (transient response), and it indicates limits of applicability.
This sequence of motivation, specification, structure, transient response, and
stability properties is then repeated for a next, more complex case.
Also, an intermediate level of abstraction is used. This allows one to relate
directly the cases being investigated to everyday design problems, and it also
provides more general insights and results. On the other hand, the links to
theoretical concepts are visible, but the assumptions and objectives are ori­
ented to practical design situations.
To summarize, this design approach starts from specific design problems aris­
ing frequently in design practice, and uses them as background for a more
abstract treatment. It is inductive (starting with simple problems and then
generalizing them), it is a stepwise procedure, and it is iterative, until results
are within specifications (and not necessarily optimal in the strict sense). It
also systematically considers alternatives, and integrates control theory at key
design phases.

The content of this book is organized as follows. The first part of the book
is devoted to the standard techniques based on PID technology. First the basic
concepts of antiwindup on a PI regulator and of overrides using PI controls
are presented and investigated. Then an additional derivative action is intro­
duced, and other forms of disturbance inputs to the loop, such as finite pulses
and high frequency measurement disturbances. Also, more realistic actuator
models are considered.
The second part of the book is about advanced techniques, i. e. extensions of
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the basic methods to more complex problems and also to additional meth­
ods of investigation. The extensions are towards process models of dominant
higher order, i.e. to plant windup and extended antiwindup, generalized over­
rides, split range controls, and multi-input plants with internal coupling, i.e.
multivariable systems.
Concerning methods, short extensions are made into optimal control, specifi­
cally minimum-time systems, and into the numerical methods (Model Predic­
tive Control). Robust control methods for quantitative performance evaluation
are mentioned but not used. A summary of the nonlinear stability tests used
here is given in an appendix.

The examples in the text are based on typical industrial situations. Also,
the case studies offered at the end of chapters have been abstracted from
projects the authors have been involved with.
In such a book, the selection of topics and methods is always arbitrary, and
surely no complete coverage is possible. Here, we have tried to investigate the
most frequent situations in practical design, to be consistent in the methods
as far as possible, but not to be encyclopedic.

The objective of the book is to enable the reader to
- make informed choices on such structures,
- interpret correctly any observed transient responses,
- understand better and predict the effect of design variations.
The main aim is to make the industrial control design process more efficient
and effective, and also to provide an application-based entry to research and
development in this area.

Readers should have a good background in standard linear control theory,
from a typical one-year course at the university level. An introduction to
nonlinear control systems, to the describing function technique and the sector
or circle stability criteria, is recommended. The examples and case studies
make use of Matlab/Simulink©.
The files are available for downloading in .zip form (size: 927 KB) at

http://control.ee.ethz.ch/-glatt/book.htm

This book has grown out of our practical experience from industrial appli­
cations, from research, and from lecture notes, which have slowly evolved in
many years of teaching an advanced course for students majoring in Auto­
matic Control at the Mechanical and Electrical Engineering departments at
the ETH Zurich. We greatly appreciate the contributions of many people over
the years.

Zurich,
June 2003

Adolf Hermann Glattfelder
Walter Schaufelberger
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1

Introduction

"Antiwindup", "Overrides", and "Bumpless Transfer" are typical nonlinear
add-on functions to linear feedback controllers. They cope with typical non­
linear effects "in the large", such as plant input constraints by actuator sat­
urations, plant output constraints by operational limits on secondary plant
outputs, and interaction between logic control and feedback control loops.
They have been invented and refined by practitioners in an intuitive engineer­
ing design way for their standard control equipment. They work well for most
control tasks, but are not so well understood from a more scientific point of
View.
The aim of this book is to provide a structured introduction into this

particular area of applied control, both from an engineering design approach
and a more analytic one. This may contribute to a better understanding and
a more effective use of such add-on features.
Before going into details of the subject matter, the introduction illumi­

nates the context of such systems from different aspects, such as by a typical
example from power generation control and other current industrial applica­
tions, a short historical perspective on their development, the basic control
problems to be investigated, the expectations on control performance of such
systems from a higher level of overall plant operations, a discussion of avail­
able methods and methodology, and finally an overview on the contents of
this book.

1.1 A Typical Case

A typical case shall illustrate the technical context of the design methods.
Consider the automatic operation of a production plant in the power and
chemical industries. Then the following operational tasks will appear almost
everywhere. The first one is to bring the plant from standstill status to nom­
inal operation status through a sequence of controlled steps. On this level of
abstraction, the system is seen as a finite state machine, and described best

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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by a Petri net. Control design is based on the well-established IEC 1131 stan­
dards. On the next level below, then the second group of tasks is feedback
control, where individual loops usually are active during one sequence step
only.

This is illustrated on a hydropower unit control system in Table 1.1 , in a
simplified, typical form, where many details have been omitted.

Table 1.1. Sequence steps and feedback control tasks

Sequence steps Control loop activated Design situation
Run-up Feedforward input stroke limit Speed control, antiwindup

to run-up opening
Speed-no-load Speed control, PI action Linear, disturbance suppression

Synchronizing Speed control, driving relative Linear range, high performance
speed and rotor angle to zero response

Generator Switch from speed control to Bumpless transfer
switch-in power control (both PI)
Power to grid Power control with transient Output constraint control

water pressure rise
Generator trip Power control to speed control Bumpless transfer

Shutdown Feedforward input stroke limit No feedback control, antiwindup
to zero for speed regulator

On the next level down, simulation results illustrate the performance of
antiwindup and override schemes we are going to investigate here.

Fig. 1.1 shows the response of the speed control loop at the transition from
feedforward run-up to the "speed-no-load" operation. For the left hand plot
a standard linear PI speed regulator was used in combination with the stan­
dard start-up limit on main servomotor position (here set at 10% higher than
speed-no-load opening), and no antiwindup. Note that the speed overshoot is
excessive. Usually this would produce an overspeed trip.
On the right hand plot one of the current antiwindup features has been added.
It effectively eliminates the speed overshoot, and cuts time to synchronization
from 150 to 30 seconds.
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Fig. 1.1. Run-up and control of speed (yI) on a hydropower unit, with no anti­
windup (left) and one of the standard antiwindup schemes (right)

Fig. 1.2 shows the response of the power control loop to setpoint steps with
overrides acting from the transient water pressure rise. The non-minimum
phase response on Yl is due to the elastic water hammer effect.
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Fig. 1.2. Setpoint step response of power (Yl) control on the hydropower unit with
turbine opening u and constraints to -0.15% and to +0.075% on transient water
pressure rise (Y2)

Note that the standard features perform well in this particular case.
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In industrial control systems many similar control tasks show up:

• In hydropower systems
- limits on upstream or downstream reservoir level or
- generator power limits, if water level difference is substantially
higher than nominal

- etc.
• In gas turbines with power control
- gas turbine turbine inlet temperature limit
- differential expansions
- thermoshock limits
and for the exhaust steam generators in combined cycle plants:
- steam temperatures at the exit and at critical intermediate positions
- corresponding thermal gradients and thermoshock in the
associated steam turbine

- etc.
• In mechatronic systems with position control
- speed limits
- acceleration limits
- acceleration buildup ("jerk") limits,
- transient torque limits across flexible couplings
- etc.

• A very frequent case is a servomotor with both slew and stroke limits
(saturations on both rate and position), modeled by an integrator with a
P controller for linear range positioning and with an input saturation for
slew and an output saturation for stroke.

This list of examples can be easily expanded and extended into other areas.
It motivates investigating the above-mentioned design techniques in a more
general setting.

1.2 A Historical Perspective

Such add-on features go back to mechanical and hydraulic governors, as they
were used in power generation control up to the 1960s. Consider for instance
the flywheel speed governor for hydropower turbines shown in Fig. 1.3, where
the main servomotor provides the integral action. It was equipped with a
mechanical blocking of the main servomotor position, in order to produce
a smooth run-up without too much upset of the waterway. This mechanical
block had to be set manually by the operator before starting the unit and
had to be removed after the unit had reached nominal speed and had been
synchronized and switched to the grid, but prior to loading the unit. This is
a typical input constraint case.
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Fig. 1.3. Flywheel speed governor on a hydropower unit, with a mechanical (screw
down) opening limit on servomotor opening for run-up

An output constraint situation is sketched in Fig. 1.4, for a steam turbine
unit delivering both low-pressure steam and electric power into an insular
grid.

Pe :

m", -6- C ------------------ T
+!

L.J L.J

~ .. _. ---- ----_.... -- _. - - - - - - _. _. - - - - - .. - - - - - _.. _. - - - - - - _. ---

Fig. 1.4. Hydraulic speed/frequency control on a steam-turbine generator unit
connected to an insular grid with exit pressure override (schematic)

Here the low pressure may not exceed a high level, regardless of the electric
power demand. This is implemented by an override controller, which opens an
additional outlet on the control oil circuit to the turbine inlet valves. It thus
limits steam inflow to what can be absorbed in the low-pressure subsystem.

In the 1960s pneumatic controllers were the standard in the chemical in­
dustries. They essentially consist of a high-gain element (fixed orifice and vari­
able nozzle) and additional positive and negative force feedbacks (by bellows
as capacities and adjustable orifices as resistors); see Fig. 1.5.
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Fig. 1.5. Using standard pneumatic PI controllers with externally accessible reset
(Tn) feedback for bumpless manual-to-automatic transfer and override control by
minimum selection

Manual-to-automatic transfer was implemented through external access
to the feedback capacities in order to equilibrate their pressure rapidly with
the externally supplied one. For override control purposes, this switch was re­
placed by a pneumatic relay selecting and passing through either the minimum
or the maximum of two or more input pressures; Fig. 1.5. And finally, actuator
limitations inside the regular working range determined by the supply pres­
sure were implemented by applying corresponding constant pressures to the
minimum or maximum selectors. Such structures using standard equipment
were described by Buckley [21].

In the 1970s, analog electronic PID control hardware became the stan­
dard in the power generation industry. Overrides were used such as in the
BrownBoveri "Turbomat" for loading of steam turbine units with constraints
from thermal gradients within thick-walled casings, and similarly the "Freilas­
trechner" from Siemens-KWU for temperature load swing constraints in once­
through boilers and steam turbines. A list of such techniques was compiled
within the Belgian "Projet CHANCE" . Plant input saturations were typically
handled by limiting diode feedback on the operational amplifier Fig. 1.6(a),
and bumpless transfer by external access to the feedback capacitor for integral
action Fig. 1.6(b), and overrides by paired diodes for minimum or maximum
selection Fig. 1.6(c). Implementation of overrides required additional hard­
ware. It added costs and increased the complexity of the control system for
operators and maintenance. So the technique was used sparingly, and only to
supplement feedforward measures, such as conservatively slow reference ramp­
ing instead of reference steps, by limiting allowable load swings and ramps
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Fig. 1.6. Using analog electronic PI controllers with externally accessible reset
feedback for (a) actuator saturation, (b) bumpless manual-to-automatic transfer
and (c) override control by minimum selection

severely, and giving conservative instructions to operators. Obviously all this
lowers the overall plant productivity.
With the introduction of digital control the restrictions from implemen­

tation were much reduced. But the add-ons had to be "re-invented", e.g. see
[16, 25], because the high-gain loop structures in pneumatic and analog elec­
tronic equipment were not directly portable for numerical stability reasons.
This has led to both "output" and "input conditioning" techniques [32].
Today, the necessary features are available in all commercial process control
systems. So the traditional hardware constraint has been removed, and the
way to exploit the design techniques fully is open.

In research, antiwindup has become a recognized topic since the 1980s
[26, 27], , with many current publications (for instance a special issue of Eu­
ropean Journal of Control, May 2001), research-oriented books, e.g. [13], and
at scientific conferences, such as in the proceedings of the recent American
and European Control Conferences. It is interesting to note that such a devel­
opment has not yet taken place for output constraints and overrides [28, 34].

In textbooks, the subject of antiwindup, bumpless transfer and overrides
has been present since the mid-1980s [1]; but this has been as a supplement to
linear control, and not as a subject matter on its own. To our knowledge, no
textbook has appeared recently, that has been devoted exclusively to this area
and which covers it both from a practical design and a more abstract analytic
point of view. So there is no established way of presenting the material, such
as for linear control. Thus, we had to develop a structure, which makes sense
to us, but of course may be discussed at will.
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1.3 The Control Problem

So far three typical design tasks have emerged: for input constraints, bump­
less transfer and output constraints. The aim of this section is to state the
associated control problems more clearly.

1.3.1 Control Systems with Input Constraints

Consider the system to be controlled, or "plant" for short, in Fig. 1.7. There
are two (scalar) inputs, the manipulated or control variable U and the distur­
bance input v, and one (scalar) output, the controlled variable y. A typical
example would be a tank with level y to be controlled to its reference value
r, with persistent outflow v and manipulated inflow u. Thus the value of v
determines the operating point of u.

One of the very basic nonlinearities of such simple control loops are satu­

rations on the control variable u(t). They are due to the working range of the
actuator, which is always bounded by physical reasons to a low and a high
limit. A model often used is

{

Ulow if Ulin < Ulow

U = SAT(ulin) = Ulin ~f Ulow :::; Ulin(t) :::; Uhigh

Uhigh If Ulin > Uhigh

This is the "input constraint" situation, Fig. 1.7, where "input" refers to the
plant, i.e. the system to be controlled, and not to the closed-loop system.

v

"lin " y

Fig. 1.7. Control system with "input" saturation

A typical example is a valve in the process industries, which can be oper­
ated from its low (fully closed) to its high (fully open) limit position.
In normal operation (i. e. in the range of operating conditions the feedback

loop was originally designed for), the control loop then stabilizes at some
equilibrium u:

Ulow + .1ulow < U < Uhigh - .1uhigh (1.1)

situated at a finite distance (.1u) inside the working range limits of u. This
allows regulation as specified for sufficiently small-sized loop input changes (to
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the reference r and/or to the disturbance v), such that u(t) does not touch the
limit values. This is the typical situation in control design. Here, the model
of the dynamic response may be linearized around the equilibrium, and linear
controllers (classical PID, state feedback, etc.) are commonly used with much
success.
For larger loop input changes, however, the control variable will saturate,

either transiently or permanently. In the second case the control function will
be permanently interrupted, and control objectives clearly cannot be met any
longer. In other words, this is an "ill-posed" control problem, and must be
remedied by redesign of the actuator subsystem, such as by an expanded
working range or additional actuators. This case shall be considered later.
First, the focus will be on the transiently saturating case (the "well-posed"
control problem), where a new equilibrium can be established with u inside
limits; see Eq. 1.1.
In such situations, where the controller output transiently exceeds the

saturations on the actuator, the linear loop performance may seriously degrade
and become unacceptable; see Fig. 1.1. As we shall see, this is due to excessive
run-away or "windup" of state variables both in the controller and the plant.
It calls for "antiwindup" measures.

1.3.2 Control Systems with Mode Switch

Another basic nonlinearity in almost all control loops is the "manual-to­
automatic" control mode switch on the manipulated variable u(t); Fig. 1.8.

v
"auto

"man

o
o
o

man tooulo :

" y

Fig. 1.8. Control system with manual-to-automatic transfer switch on u(t)

The input signal to the actuator is to be switched from an external source
such as
- a manual input generator manipulated by the operator
- a programmable logic controller output, or
- the output of a second controller
to the output of the linear controller, which so far has been operating in
open-loop conditions. Later, the loop usually has to be switched back from
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automatic mode to manual mode again.
Then the transfer in both directions has to be "bumpless", meaning that no
excessive control transient should be generated in the loop by this switching
action. This requires appropriate values of all state variables in all subsystems,
that is
- in the plant,
- the automatic controller,
- and in the manual input generator or the second controller.
If this is not the case, then the subsequent transient may move U to the input
constraints, or output constraints may be met.
In process control, this assumption usually means that the control system
has to be brought close to equilibrium in the vicinity of the target closed loop
operation point by an appropriate control movement uman(t). Allowable devi­
ations from the target equilibrium are defined backwards, such that deviations
of Uauto(t) after the transfer stay within predefined bounds, say ±5 % of full
range of u.
Note however that this is rather conservative. The general case would be au­
tomatic switching of U in transients to achieve overall optimal response. Such
mixed continuous-discrete predictive control is an interesting new topic in
control.

1.3.3 Control Systems with Output Constraints

A third major class of basic nonlinear systems exhibits "output constraints" .
Consider Fig. 1.9: for large transients, an additional output Y2(t) may exceed
operational limits. Then "overrides" are used, see Fig. 1.2. From the list of
examples given in Sect. 1.1, it seems that output constraints are quite frequent
in practice, and become even more so, as operational limits are fully exploited
in order to maximize plant output. In most situations, more than one con­
strained output is present. Here, cases of one Y2 per U shall be considered
first.

v

u

Fig. 1.9. Control system with constraint on the secondary output Y2

The constrained output Y2 (t) is proportional to a single state variable of
the plant or to a linear combination of those.



1.4 Expected Control Performance 11

Output constraints are operational limits rather than "hard" physical lim­
its, such as the mechanical end stops in an actuator. Transgressing limits is
possible, but will advance ageing of process equipment, such as by low-cycle
fatigue, and shall be avoided. Very large transgressions will cause spontaneous
equipment failure, but this is to be avoided by separate safety functions and
shall not be considered here.
Output constraints are typically "soft" constraints:

(1.2)

i. e. there exists a continuously differentiable model of the response along the
constraint values Y2 l ow or Y2 hi9h for small enough deviations (within the
span indicated by the L1Y2 hi,IOW values).

For the control problem to be "well posed" , three key conditions must be
fulfilled.

1. The constrained output Y2(t) is controllable from u(t).
2. During the transient (run-up, load swing) the u(t) required to drive Y2(t)
to its upper limit r2high or its lower r2low limit shall decay to a value within
the operating range of u determined by the input constraints. This has to
be valid for the specified range of disturbances v. If not, then again the
actuator subsystem must be redesigned.

3. At the final steady state of the control system, the steady state value 112
of Y2(t) must lie at a finite distance between the upper and lower limits
respectively.

(1.3)

with the L1r2 values being positive finite. Otherwise, control would not be
transferable to the main control loop for Yl by u near final steady state.

In other words, the output constraints are not reached for small enough de­
viations from the final steady state of the main control loop. And for large
deviations, control of Y2 (t) to its limit by u(t) is feasible, i. e. the limit values
are reachable.

1.4 Expected Control Performance

A third aspect of context is the performance of such control strategies as
expected from an overall plant operation view.
Here we shall give some outlines and general directions based on experience. 1

Note that this is a key element for selecting the appropriate analysis and
design tools from control theory.

1 More precise specifications may then be stated for the individual design case.
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• For small deviations from steady state, i. e. linear conditions, high­
performance regulators are to be used, typically including integral action
(in order to drive steady state control errors to zero).
This means that only well designed and well tuned linear regulators for
narrow range control will be considered further. In other words, if the
linear analysis of the narrow range control loop reveals slow or weakly
damped modes, then this has to be remedied first.

• Typical transients considered here are from an initial steady state to a
final steady state, where u(t) is to end up inside its linear operating range
such as to allow linear narrow range control to be active around the final
steady state. Reference (setpoint) steps are applied, while the load is kept
constant, and also load (disturbance) steps with constant reference.
This amounts to equivalent initial conditions responses decaying to the
final equilibrium.

• For large deviations, the closed-loop performance to be attained is char-
acterized as follows:
Such transitions should be as fast as the process will allow, considering
the constraints from actuators and secondary variables.
In other words, the actuator saturations should be fully exploited, and
steady state errors along constraints should decay to zero, such as to
exploit the given operational limits fully. Also, de-tuning of feedback
to avoid the constraints is not a valid option.
No perceptible overshoot on controlled variables y(t) is allowed, both
for the main output Yl (t) and the constrained secondary outputs Y2(t).
Smooth enough transient of control variable u(t), i.e. no "chattering",
no jumps exceeding typically ±5% of working range. This is to avoid
excessive wear, noise or power consumption.
Main plant parameters shall be known a priori with an error margin
of approximately ±25 %. This is acceptable for feedback control, but
is difficult to absorb by a pure feedforward control.

This means that, for the wide range responses, "minimum-time" behavior
is predominant, but it must be sufficiently robust. It is also not intuitively
clear how well other widely investigated performance criteria (such as the
"minimum quadratic" one) fit in here. And for deviations decaying into the
linear range, transition must be made to a linear design, such as by the linear
quadratic method, with no discontinuities on u(t).

1.5 Methods

Methods are an important component of context, and must be discussed now
as such. Three general approaches are available. So far, the focus has been on
the intuitive method of add-ons. However, other methods are available since
the 1960s, such as optimal control theory and the numerical optimization
approach.
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1.5.1 Optimal Control

In optimal control theory, the Maximum Principle [4] applies for large devi­
ations, where constraints are met. 2 An optimal feedforward control function
u*(t) is produced. Converting this into an optimal feedback of states u*(x), i.e.
the synthesis problem, is a separate and nontrivial step. Of special interest for
the overall plant operation (as discussed above) is the case of minimum-time
transients. They produce a "bang-bang" control sequence u*(t), and the feed­
back synthesis leads to "switching hypersurfaces". They are instructive and
simple to use in the two-dimensional case, e.g. for the two-open-integrators
chain with control saturation only, but unfortunately not for general higher
order systems.
The input saturation case is said to be a regular problem, whereas state

(output) limits yield a singular problem, which needs additional arguments to
solve. It will essentially result in a very high-gain feedback of the constrained
state along its constraint value. Also, it is assumed that the endpoint x = 0
may be reached by at least one control sequence u(t) from the given initial
condition Xo :/= O. In other words, the reachability is not investigated, but
assumed. Also, such minimum-time systems are known to be very sensitive to
parameter uncertainty and to persistent unknown inputs. This is due to the
basic property of being a feedforward approach. A well-established way out
is sliding mode control [10]. Finally, the trajectory is only considered up to
the end-time tEo Afterwards, control has to be transferred to its equilibrium
value. If the switching surface concept from "wide range" control is continued
for t > t E, then chattering appears on u in the "small range". However, the
situation there is linear. Therefore, a common solution is to transfer control
to a linear regulator.
To summarize, the optimal control solution may be very helpful in clarifying
actual versus ideal performance. As such, it shall be used here.

1.5.2 Numerical Optimization: Model Predictive Control

The numerical optimization approach goes back to the concept of "Dynamic
Programming" [3] from the 1960s. It has been developed further in indus­
try for cases where a simple single-loop-based approach would not generate
a good enough trajectory. It is best suited for complex multi-input systems
with strong couplings and with many constraints. The number of variables
for the optimization is a concatenation of the number of input variables Ui, a
sufficient number of samples of the individual control inputs, and the number
of samples from process outputs Yj(k) required to cover its impulse responses.
So, numerical optimization requires a substantial computational effort, mak­
ing it well suited for slow (thermal) processes and large sampling intervals Ts .

2 In fact, for many theorists, the add-on methods described here are just patches.
They are there because the problem was not correctly stated and solved. And if
this were the case, they would not be needed any more.
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Again, it is assumed that at least One trajectory exists from the initial condi­
tions to the final steady state. Then the control error between actual output
and a reference trajectory is considered, which is to converge to near zero
for all steady states. Typically, open integrators are also introduced in the
algorithm before outputting u(t) to the actuators, such that the inputs v(t)
to the integrators also tend to zero for all steady states. Then a performance
index is selected. Usually, this is a quadratic One weighing both e(t) and v(t).
The performance index built up along the predicted trajectory is then mini­
mized, subject to the constraints from the system respOnse equations and to
the nonlinear constraints On input and output. This results in a feedforward
discrete time optimal control variable sequence u *(kTs ).

By applying only the first control move of this sequence, and repeating the
whole procedure at the next sampling time (receding horizon) with newly ac­
quired measured variable values, an iterative sort of feedback is implemented.
If nO nonlinear input and output constraints are present then this converges
to the basic discrete time linear quadratic cOntrol. - To avoid the numerical
optimization in real time, "explicit" model predictive cOntrol is currently be­
ing developed, where the optimization is performed offline and then a lookup
table is used for online operation.
This predictive control approach has received much attention from the

research community in the last two decades, and there is a large and quickly
growing number of industrial applications. It may have some convergence
problems, which tend to exclude it from safety-critical applications. It also
may not be cost effective, if the cOntrol problem is not of the "very complex
and multivariable" type. So there is an ongoing need for simple and reliable
methods for the many less complex control design tasks.

1.5.3 The Intuitive Approach

The third general approach shall comprise the intuitive, empirical methods of
add-on functions developed basically for the most commOn single input single
output (8180) linear controllers. It is also known as the "two-step design
procedure":

The first step is to design a linear control around steady state, assuming
that a linearized model is an adequate representation of actual closed-loop
dynamics.
In the second step, additional nonlinear feedbacks are designed to improve
respOnse, until specifications are met.

The procedure will not produce an optimal solution in the strict sense, but
from our experience may be iteratively brought close to it.
It is best suited for comparatively simple, but frequent cases, where only
standard function blocks are available and the overall engineering effort is
strictly limited. It is also well accepted and used by practitioners. This makes
the approach attractive to design engineers.
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Considering methodology, this is a typical engineering design approach.
From the beginning, practitioners were confronted with specific control prob­
lems with constraints in their particular plants. So they were forced to invent
a solution, implement it with the means available at the time, check it on
the real plant and, if performance was not up to specifications, improve on
the original design, implement and check again. Not much effort was spent on
more general aspects, such as on transfer to other situations, on simplifying
the design and making it more transparent, easy to understand and learn (this
may even have been avoided for competitive reasons), and on exploring the
limits of applicability (often avoided as well), etc.
As such solutions have been developed on an empirical basis, a more the­

oretical analysis is needed to establish their properties more consistently, and
also to show the limits for their "good usage".

From a theory perspective, the deductive analytical "top-down" approach
would be solving the most general problem first, and only then looking at spe­
cial cases (such as PI(aw) control). This is, of course, a quite valid alternative,
and "abstraction saves time" .
But theory in its own interest may assume system properties which seldom
hold in practice. This will severely restrict the straightforward application to
real-world design problems. A typical example is standard nonlinear stability
analysis. It requires, that the open-loop transfer function in the linear range
is Hurwitz stable, which is not the case in many practical applications. So
this requires some work-around, which then becomes a key factor to practi­
cal application. Another element is the inherent conservativeness of nonlinear
stability tests. From a theoretical point of view, global asymptotic stability
may be the only worthwhile result. However, this is much too restrictive for
practical design purposes. In other words, the stability radius becomes a key
issue and must therefore be investigated much more closely. A third element
is that practical design problems can mostly be broken down into small and
simple subproblems, which are relevant only in specific phases of the process
operation (see Sect. 1.1). Thus, the simple special cases are very frequent, and
the general solution would have to be broken down explicitly first, in order
to provide the "missing links" between the general theory and the everyday
design problems, and this "takes time" .
For all these practical reasons, we shall use an intermediate approach, on a

median level of abstraction. We start from physical examples as an introduc­
tion and motivation. Then we move up one level of generalization and proceed
to classes of processes which are frequent in practice, and choose typical rep­
resentatives as benchmarks.
We also pick up some currently used regulator structures and present generic
structures, from where the different structures may then be instantiated. This
will also show possible equivalences, and thus addresses a main need of control
engineers. In the past, investigations have often stopped at this point.
We continue by simulations for the benchmark situations in order to get typi-
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cal, comparable responses. This will serve as verification, as the first screening
and the findings will provide a clear basis for redesign of structure, if neces­
sary. However, simulations alone can provide only a point-wise view for such
strongly nonlinear systems. Getting an overall view by simulations only is te­
dious and always incomplete. Extrapolation is dangerous. And the underlying
relations have to be extracted with much effort.
Nonlinear stability will provide a tool which is both elegant and easy to use to
get this overview, and to understand better the underlying relations of struc­
ture and transient response, as well as to perceive the limits of applicability.
We shall use the circle and Popov criteria and the describing function method.
This procedure is then repeated for the next, more complex case, again for an
appropriate class of processes and controls.

So, three views shall be used in the following, i. e. "structure", "transient
response" and "stability properties" . From our experience it is crucial to have
a good balance of these three views to obtain a good design result. Note
that most discussions of alternatives in practice are about "structure" only,
whereas the other views are not taken into account.
On the one hand the median level of abstraction chosen here allows to see
the relations to everyday design problems directly. In addition, it provides
more general results, including stability and limits of application. On the
other hand, the links to theoretical concepts are also directly visible, but the
assumptions and aims are oriented to practical design situations.

To summarize, this approach may be characterized as a typical engineering
design process, which starts from specific design problems arising often in
design practice, and uses this as background for more abstract treatment. It
is inductive (starting with simple problems and then generalizing them), it is
a stepwise procedure, and it is iterative, until results are within specifications
(and not necessarily optimal in a strict sense). It also systematically considers
alternatives, and integrates suitable analytical tools at each design phase. It
aims at a more efficient and effective design process by the way of better
understanding.

1.6 Contents

As stated above, we have opted for an inductive rather than a deductive ap­
proach, i.e. addressing the basic simple cases first, and extending them step by
step until a reasonable coverage of the field from an application point of view
is attained. Within each step we shall adhere to the investigation sequence
described above, i.e. a motivating real-world example, some abstraction to a
class of problems, a specification statement, alternative structures, transient
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response, nonlinear stability properties, and relations to optimal control.
This has led us to organize the book into two main parts. 3

The first part is devoted to 'Standard Techniques " meaning those ar­
eas of application, where standard PID algorithms perform sufficiently well,
and considering ease of implementation, using what is directly available as
standard software blocks in today's industrial process control systems.
This implies that we focus on discrete-time (sampled data) algorithms. How­
ever, analysis and quantitative design in control is habitually performed in
the continuous domain. Therefore, we shall have to discuss continuous-time
equivalents as well.
This also implies that we restrict ourselves in this part to plant models of
the Ziegler-Nichols type, i.e. being of a dominant first-order lag (or one open
integrator) in series to a (small) pure time delay, which shall be a conservative
approximation of non-modeled fast dynamic modes.

Y(s) -sD b
Gu(s) = U( ) = e Ts s 1 + a

(1.4)

This finally implies that we deal with the basic SISO loop situation, for which
the standard antiwindup and override schemes have been developed.

r

y

aw-fb +
I---~-----l
I l- I

I

v

u y

Fig. 1.10. Anti windup control

We shall start with the basic input constraint case, i. e. with the most
common case of P- and PI control with input stroke saturation, Fig. 1.10,
demonstrating the "windup effect" and different "anti windup" features (ab­
breviated in the following to PI(aw) control). We then add a derivative action,
i.e. we extend to PID(aw) control, and alternatively to a PI(aw)-P cascade.
We also expand to other disturbance forms, such as high-frequency measure­
ment noise models and single pulses of finite length.

3 We are aware that any such separation is arbitrary, and may well be disagreed
upon. Here, we have selected practical and implementation-oriented allocation
criteria.
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Then the basic output constraint case is addressed, such as using the basic
"override" structure shown in Fig. 1.11.

.- - --- - - - - - - - - - - - - - - - - - - - --,
I 0

o

I.------,

u

Fig. 1.11. Override control for an upward constraint on Y2 at T2up

Next, combined constraints on input and output are considered, on the
common case of an actuator subsystem with both "slew" (rate) and "stroke"
(position) saturations. However, we shall not discuss the "bumpless transfer"
situation at length here. It may be considered as a generalized form of input
and output constraints implementation.

The second part of the book deals with 'Advanced Techniques'.
A first attribute of an "advanced case" shall be that the control algorithms are
non-standard in current process control systems. It may take some ingenuity
to build the additional functions needed from available elementary function
blocks, or else a customized module in C-code is required.
A second attribute is that the standard add-on techniques from the first part
will not perform sufficiently well and will have to be augmented, i. e. additional
add-on functions are needed.

First we discuss the input constraint case on plants of higher dominant
order, where PID control will perform poorly and additional state feedback
is indicated, which may be implemented e.g. by multiple cascade arrange­
ments. This will lead to "plant windup", "dynamic antiwindup", trajectory
generators with antiwindup, and the use of override techniques for antiwindup
purposes. It will also lead one to perceive more clearly the limits of good usage
of such add-on techniques. We shall establish the link to MPC here.

The output constraint case shall be discussed on higher order plants as
well, and also in more complex and multiple constraint situations. Again, this
will indicate the limits of good usage for override schemes.

So far, the scalar plant input signal case has been investigated. We now
proceed to the split-range situation, where plant response to the control inputs
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is so different as to require separate control algorithms.
We finally investigate the full multi-input-multi-output (MIMO) case with
strong interaction of the local control loops. This will lead to crosscoupling of
the antiwindup feedbacks as well.

Concerning examples and problems for the reader, we have tried to be
consistent with the general approach of this book, i. e. not to ask for proofs of
theorems to be worked out, but rather to design and analyze control systems
with a visible industrial background. The case studies at the end of chapters
have been developed from industrial projects the authors have been involved
with.

Readers should have a good background in standard linear control theory,
such as from a typical one-year course at university level. An introduction to
nonlinear control systems, to the describing function technique and the sector
or circle stability criteria is recommended. The examples and case studies
make use of Matlab/Simulink©. The files used to generate the figures are
available for download from http://www. (size 924 KB).

1.7 Objectives

This book has grown out of our practical experience from practical applica­
tions, from research, and from lecture notes. They have slowly evolved in many
years of teaching a one-semester advanced course in this area for students in
Automatic Control at the Mechanical and Electrical Engineering departments
ofETH Zurich. We greatly appreciate the contributions of many people during
all those years.

Our objective for this book is to enable the reader to

make informed choices on antiwindup and override add-on structures
interpret correctly any observed transient responses
understand better and predict the effect of design parameter variations
recognize when a given design task is outside the area of "good usage"
of such simple add-ons, and when one should resort to more demanding
methods.

This should help the industrial control design process to be more efficient
and effective. It also may provide an application-based entry to research and
development in this area.
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PI Control with Input Saturations

We start our investigations with the basic case of PI control, with actuator
saturation and on plants of dominant first order. This situation covers a very
large percentage of industrial cases. It is also the most simple one and will
serve as a building block for more involved cases.
A motivating example is what happened to John.

2.1 John's Case

Many years ago John was a young engineer with the Hydraulic Transient
Analysis group of a major producer of hydropower equipment. He knew linear
control theory from his studies, but was not intimately familiar with all details
of the electronic turbine regulator used by the company at that time. One day
he was called to step in to commission such a regulator. It was a retrofit for
the previous mechanical governor on a Pelton turbine in a small power station
in the Swiss Alps.
The customer wanted him to reproduce the run-up and speed stabilization

transient obtained with the mechanical governor in Fig. 2.1 (left). A maximum
delay of 30 s was specified from the startup command given at standstill to
synchronization.
After a very serious effort at tuning the regulator, all he was able to pro­

duce was similar to Fig. 2.1 (right). His verbal comment was that initially
he got an oscillatory response where the decay rate was low. He remembered
from linear control theory that the gain should be reduced to improve the
decay rate, but all he got was an even slower decay. Fortunately, just then,
the senior specialist was available again, and by tuning they obtained a result
similar to Fig. 2.2 (left). This was within the specification on startup delay,
but still was not as good as previously, Fig. 2.1 (left). The following investi­
gation will show that the remaining overshoot-undershoot sequence on speed
is due to windup, and it can be eliminated by more precise antiwindup, as
demonstrated by Fig. 2.2 (right).

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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Fig. 2.1. Run-up and control of speed (yI) on a small Pelton hydropower unit, with
the mechanical governor model (left), and with the Electronic Turbine Regulator and
the tuning John ended up with (right)
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Fig. 2.2. Run-up response of speed (Yl) after tuning by the senior specialist (left),
and with an improved antiwindup scheme (right)

2.1.1 Modeling

The plant consists of three subsystems, the turbine wheel and rotor, the wa­
terway with the nozzle, and the servomotor to actuate the nozzle plunger. We
shall use simplified models without discussing all details. All variables v are
to be in "per units" V/VR, scaled by their reference ('rated') values VR.
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The rotor with its inertia e and speed W is subject to a driving torque

Td (wmax w) (Q) W max .- = -- - - -Q ; --:= 2 for Pelton turbmes
~ WR ~ R WR

(2.1)

with water flow Q. Note that this will lead to a run-away speed of twice
nominal and a standstill torque twice the torque at nominal speed.
A small braking torque is due to air and bearing fiction. It is assumed
proportional to speed:

n = at (~) (2.2)
TR WR

and may be observed at coastdown to standstill. A typical value is used:
at = 0.01.
Thus

which also defines the rotor run-up time coefficient 71. Again, a typical
value is used: 71 = 3.0 s.

The waterway dynamics are modeled as a rigid mass with inertia, but
without elasticity. Linearizing around the steady state operating point
(3 = An/AnR yields for the flow variation 8Q/QR as a function of nozzle
aperture variation 8An/ A nR :

(2.4)

As typically 7 w = 1.0 sand (3 = at = 0.01, this leads to a first-order lag
with unity gain and a very short time constant compared with the rotor
run-up coefficient 71. Fig. 2.3 visualizes the model for the two subsystems
discussed so far.

In the servomotor model, in the linear range of operation, the change rate
of position h is proportional to oil inflow, which is set proportional to the
pilot valve opening v. That is, oil pressure variations due to changing load
forces are neglected.

hR d ( h ) d ( h) ( QOil) ( V )
vRdt hR =~dt hR = QoilR = VR

with a typical value of 72 = 3 s.

(2.5)
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nl------y '---<, I.------J

Fig. 2.3. Model of the waterway and rotor dynamics

Two nonlinearities appear in the servomotor for larger input deviations.
The first one is the effect of the orifices shown in Fig. 1.3. They limit the
oil flow to and from the servomotor and thus the transient water pressure
rise. This is a standard safety measure in hydropower plants. The limiting
effect is modeled by input saturations,

Vdn < ~ < vup

VR - VR - VR
(2.6)

where E<Ln. = -0.10 and ~ = +0.10, yielding a travelling time of 30 s for
VR VR

full stroke, which is again typical for such hydropower units.
The second nonlinearity is caused by the mechanical limits imposed on the
servomotor position; consult Fig. 1.3. It is modeled by a stiff spring coming
into action, if the position exceeds the limit values. To attain equilibrium
of forces, the servomotor pressure PSM will rise to the supply pressure
pp, which then reduces the oil inflow to zero for standstill. The relation
to use would be Qoil cv vJ31) ,with L1p = pp - PSM. This effect is
approximated here by an additive high-gain feedback on the servomotor
integrator input, if the servomotor position exceeds the limit values at zero
(fully closed position) and at the screw-blocked opening position in Fig.
1.3 for run-up; see Fig. 2.4.

Suppressing all small and fast effects and nonlinearities yields the following
approximate model of the dominant plant dynamics, valid within the linear
operating range and around steady state at nominal speed:

(2.7)

This model with af:= 0 shall be used for the design of the feedback param­
eters next.
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2.1.2 The Mechanical Governor

A standard linear PD controller model is used on the plant model, see Fig.
2.4

3
u-PO

2
u.y2

" I,1

Fig. 2.4. Model of the mechanical governor consisting of a PD controller and the
nonlinear servomotor model in the speed control loop with plant model in Fig 2.3

where e(s) = r(s) - y(s)

u(s) S
CR(S) = -() = k1+ k2T1 with Tv = 0.lT1

e S STv + 1
and CRd(S) = k1+ k2sT1 (2.8)

The parameters k 1 , k2 are determined by pole assignment, using the dominant
dynamics models CUd and CRd(S)

(2.9)

(2.10)
i.e.

k2 = 2(nT2 and k 1 = n2T1 T2

and with n := 1; 2( = 2.0 then k1 = 9; k2 = 6

which are typical values for such installations. The simulations with the struc­
ture in Fig. 2.4 yield the response shown above in Fig. 2.1

Exercise
- Investigate by simulation the effect of the design parameters nand 2(.
- And also of the slew and stroke limits on the servomotor.
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2.1.3 The Electronic Regulator

The linear controller now consists of a cascade, with a P regulator for servo­
motor position Y2, and a PI regulator for speed Yl; see Fig. 2.5:

u(S) = GR2e2(S) = k2 (r2(s) - Y2(S))

um(s) = r2(s) = GR1el(S) = (kl + ko-
1
) (rl(s) - Yl(S)) (2.11)

STI

This provides better disturbance suppression on speed, i.e. easier synchro­
nization, than with the mechanical governor.

Fig. 2.5. Model of the plant and the electronic turbine regulator ETR

The parameters k2 , kl , ko are again determined by pole assignment

1 1 ( 1 ) 3 2 k2 k l ko0= 1+ -k2 +-- kl + ko- k2 --. S + S - + S-- + -2-
ST2 s2Tl T2 STI T2 TlT2 Tl T2

~ (S2 + 2(ns + n 2) (s + n) (2.12)

yields

k2 = (1 + 2D) nT2

kl k2 = (1 + 2() n2Tl T2; kl = nTl
1 2

ko= (1 + 2() n TlT2 (2.13)

What John ended up with was equivalent to

k2 = 6.0; kl = 3.0; ko = 4.5

which can be generated from the pole assignment by using n = 1.0 as above
and 2( = 1. These parameter values agree fairly well with the usual ones for
such plants.
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The next step is to model the antiwindup scheme implemented in this
particular electronic turbine regulator ETR. It basically consists of a diode
feedback as in Fig. 1.6, where the actual position of the servomotor is used for
the constraining input -Uhigh. The diode breakpoint lets the regulator output
stabilize at +0.05 above the actual Yz, i.e. there will be a (small) windup, see
u(t) and um(t) in Fig. 2.1 (right), up to t ~ 20 s.
What John was not aware of, but what was well known to the senior specialist,
is that there was no such diode feedback in the downward direction, i.e. for
the full servomotor closure. This was simply not installed, as with well tuned
regulators and turbines with a usual speed-no-load opening, this low limit was
never run into for any extended time span, and so "windup" had never been
a serious problem along the low limit.
But in John's case it did: a severe mismatch of u(t) and um(t) (i.e. "windup")
is visible in Fig. 2.1 (right), for t > 20 s. After this has died out, for t > 60
s and the lower limit is not run into anymore, then servomotor position and
speed behave well damped.

The re-tuning by the senior specialist, as shown in Fig. 2.2 (left), was
equivalent to

kz = 8.1; k1 = 2.7; ko = 2.43

which can be generated by inserting [2 = 0.9 and 2( = 2.0. In other words,
he increased the closed loop damping 2( substantially, and he also decreased
the closed-loop bandwidth [2 slightly. Thus, he managed to stay below the
specified 30 s without compromising linear closed-loop dynamics unduly. The
result is quite sensitive to small parameter changes, as simulations will show.

Exercise
Simulation results are not given here, but you may use this as an exercise.

The next step would be to complete the antiwindup feedback for the fully
closed limit, and also to improve it by reducing the diode offsets of 5% from
above. In Fig. 2.2 (right), this has been set to 1%. The antiwindup gain has
been kept as before at 10.0. This allows to augment [2 to its previous value
of 3.0 again, i.e.

kz = 9; k1 = 3; ko = 3

and even further, without deteriorating effects on the response. It is now much
more robust to small parameter changes. The specified delay of 30 s is now
met with a substantial margin.

Exercise
Again investigate this by simulation.
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2.1.4 Summary

This section and the example in Sect. 1.1 have shown that:

Startup response was well behaved for the PD governor using the servo­
motor as an integrator, if both slew saturations (by the orifices in the oil
flow) and stroke saturations (by the mechanical end stops) were run into.
However, startup response deteriorated substantially if a linear PI con­
troller was used on the servomotor with stroke constraints but no slew
constraints; see Fig. 1.1.
This was eliminated by using a standard antiwindup in Fig. 1.1.
Here, startup transients have again deteriorated with the PI-P controller
configuration and incomplete and not sufficiently precise antiwindup.
This can be partly compensated by careful tuning, by increasing propor­
tional gain and decreasing integral gain. However, such tuning is very time
consuming and the result is very sensitive to small changes.
Using a correct antiwindup feedback has given a substantial increase in
performance without additional tuning effort and the result is less sensi­
tive.

Note that these findings are related to the specific experiments performed
here, and should not be generalized without caution.

2.2 Problem Statement and Test Cases

We focus in the standard input saturation case.
The following set of specifications is used for the control system under study;
see Fig. 2.6. It also defines a benchmark for testing controllers with alternate
antiwindup forms.

(a) The plant is given by its transfer function

G(s) = y(s) = e- Ds _ b_
u(s) sT+a

(2.14)

This corresponds to the standardized plant model used by the Ziegler­
Nichols and Chien-Hrones-Reswick design methods [2], and covers a large
percentage of industrial control cases, such as speed, level, pressure, con­
centration and temperature control. The small delay D shall represent the
fast non-modeled dynamics of actuator, process and sensor, and will limit
the attainable closed-loop bandwidth to a realistic value.
An additional load input v(t) shall be present as follows:

G s _ y(s) b_
v( ) - v(s) - sT+a (2.15)
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Numerical values to be used in the test cases are:

b := 1.0; T:= 1.0; D:= 0.025; a := 1.0 or := 0.0 (2.16)

which covers both standard cases "unity gain first-order lag" and "open
integrator" .

Neglecting the small delay yields the "dominant first-order" plant model

Gd(S) = y(s) = _b_
u(s) sT+a

to be used in the pole assignment design.

(b) As controllers, both P and PI(aw) types shall be considered.

The P controller
u(s) = kpe(s) + U man

usually has an additional offset input U man . Here it is set to zero.

(2.17)

(2.18)

(2.19)

The PI controller is in the standard continuous form used in the Ziegler­
Nichols rules [2]:

R(s) = kp ( 1+ S~i)
The integral action 1/sTi often is called "reset action" for historical rea­
sons. For the discrete-time form the continuous integration is replaced by
its discrete forward and backward Euler integration equivalent.

and R(z) = kp (1 + ~Ts 1-1)
Ti 1- z

(2.20)
As in almost all applications today, Ts is short compared with the domi­
nant closed-loop time constants. This will not generate a substantial differ­
ence in loop response, but the distinction will be relevant in the antiwindup
feedback context.
Finally, a one sampling delay Z-l is introduced after R(z). In other words,
the output values computed from the current input sample will be delivered
to the process interface only at the next sampling instant. This covers the
finite computation time required by the algorithm, which therefore must
be less than Ts . For the test cases, the sampling time Ts is set to

Ts = 0.010 s (2.21 )

(c) The PI controller settings kp and T i are obtained by pole assignment
using the "dominant first-order' plant dynamics Gd(S) in series to the usual
zero-order hold, i. e.
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(2.22)

For brevity, we shall directly revert to the equivalent continuous form by
substituting

1 - Z-l
--- ----. 8 and Z-l ----. 1 (2.23)

Ts

This implies that the sampling time Ts is to be short compared with the
closed-loop dominant time constants (see below).
The closed-loop characteristic equation

(8 + n)2

(2.24)

1
and for a = 0: kpb = 2nT;

Ti

yields

n
2
(2.25)

Setting the closed-loop bandwidth to n := 5 rad/s, i.e. the dominant
closed-loop time constants to 1/n = 0.20 s, provides a sufficient margin
with respect to the sampling time Ts = 0.010 s.
Then, for b= 1 and a = 0: kp = 10 ; and ,A = 2.5; i.e. T i = 0.40 s

Similarly for the P controller

(2.26)

and setting the closed-loop bandwidth here to n = 10 rad/s yields the
same kp values as for the PI controller.

(d) The following test sequence shall be applied to the closed loop in Fig.
2.6, where r is the setpoint and v is the load acting additively to u at the
plant input:
Initially (index 0) the loop is to be at standstill conditions:
ro = 0; and Vo = 0; i. e. Yo =0; and Uo = O.
At time TI, a setpoint step to rl = 0.95 is applied while there is still
no load, i. e. VI = O.
Then at time T2, a setpoint step to r2 = 1.0 is applied while there is still
no load, i.e. V2 = O. This will show the small signal (linear) closed-loop
response. At equilibrium, a plant input U2 = (a/b)r2 results.
At time T3 a load step V3 = 0.90 is applied, while the setpoint is
constant, r3 = r2 = 1.
Finally, at time T4, a full load reversal is applied V4 = -V3, again with
constant setpoint r4 = r3 = 1.

No high-frequency measurement disturbance [521 shall be considered.
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(f) The actuator saturation is specified as follows:

Ul ow = -1.0 + U2; Uhigh = +1.0 + U2; (2.27)

With U2 specified as above, this provides the same "margin to maneuver"
for setpoint steps around the speed-no-load condition for both values of a
introduced above.
Also, V3 = +0.90 yields a realistic steady state control margin of Llu = 0.10
for the load step conditions.

Fig. 2.6 visualizes the control loop specified above.

r(l)

reference
sequence

v(t)

load sequence

uJin

Plant

up

'------------------l.f\.~----'

Fig. 2.6. The control loop with P controller (top) and the linear Ziegler-Nichols
type PI controller (bottom)

Note that both the Ziegler-Nichols and the Chien-Hrones-Reswick tuning
rules would also allow a derivative action. In most practical cases, however,
the derivative action is set to zero at commissioning. This is to avoid ex­
cessive high-frequency movement of the control signal, and thus to reduce
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actuator wear, noise, etc., if high-frequency measurement disturbances are
present. Therefore, the derivative action is set to zero here as well. We shall
come back to this later.

2.3 The Reset Windup Effect

The transient response of the system in Fig. 2.6 to the test sequence is shown
in Figs. 2.7, 2.8 and 2.9.
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Fig. 2.7. Transient response to the test sequence with P controller for a = 0 (left)
and a = 1 (right), with U man = 0

The P controller in Fig. 2.7 performs as expected. There is no large over­
shoot on y, but there is a nonzero steady state control error e. To suppress
this, an integral action (reset action) is inserted.

The PI controller in Fig. 2.8 (left) produces an unexpected, large transient
overshoot on y in the run-up phase, during which Ulin runs into its upper
saturation. But y(t) evolves as expected for the small setpoint step, where
Ulin stays below the saturation. Such overshooting of y(t) also appears in the
load swing phases, although it is much smaller.

By inspection of the internal controller signals Ui (t) and Ulin (t) in Fig.
2.8 (right), the overshoot is caused by an excessive buildup of the integral
action Ui (t) whenever e(t) is large and Ulin (t) exceeds its saturation val­
ues. This buildup cannot be reduced in time before e(t) approaches its zero
crossover, and consequently y(t) will overshoot. This effect is known as "reset
windup" .
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Fig. 2.8. Transient response to the test sequence with PI controller, for a = 0

Finally, the case of a = 0 seems to be more sensitive to this effect than for
a = 1; see Fig. 2.9.
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Fig. 2.9. Transient response to the test sequence with PI controller, for a = 1
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2.4 Antiwindup Structures

Many stratagems have been and are still being invented to alleviate this effect,
both for continuous-time and discrete-time forms.
Here, we shall focus on forms where the antiwindup is based on feedback,
such as shown in Fig. 2.10. Other concepts have been proposed, but these will
not be investigated here.
A key issue for design engineers, and the reason for much controversy, is com­
parative properties of different antiwindup forms, i.e. whether they perform
identically or not. We shall say that different antiwindup controller structures
are equivalent, if they produce the same output signal u(t) from the same
input signal e(t) = r(t) - y(t). This implies proper initialization of shift ele­
ments or integrators. In other words, equivalent structures will produce the
same closed-loop response, if all other experimental conditions are the same.
Conversely, it is not possible to determine from observing input and out­
put alone which particular form of the set of equivalent forms has been used
within. In other words, one is at liberty to choose from the set of equivalent
forms by applying other additional design criteria. So, equivalence shall be a
main topic in the following discussion.
We shall present a generic structure first, from which most of the existing
forms with antiwindup feedback can be instantiated. We mainly look at the
discrete-time versions.

2.4.1 The Generic Antiwindup Feedback Structure

Here, the focus is on solutions related to the basic antiwindup feedback (awf)
structure Fig. 2.10, where R2 contains the integral action in PI control, or
more generally speaking, those parts of the controller where internal states
may "run away", i.e. "wind up".

y

:5J-GJa +
Ga ka - ---()4- - - - --l

I T- I

I 'I
+ I 0

v

u

G

Fig. 2.10. The generic awf controller structure

The basic idea is to monitor the difference ea of the input and output
signal to the saturation block. It is zero within the linear operating range,
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and nonzero outside, where the integral action (or other such states in the
controller) would "wind up". Then, feedback of ea = U - Ulin is used to keep
the integral action (or such other states) from running too far off. For more
transparency, the transfer function in the awf path is split into the gain ka

and a filter Ga with unity gain.

There are three design elements to be selected within the awf path: the
gain ka , the filter dynamics Ga , and the splitting of R into R 1R2, i.e. the
location of the summing point for the awf.
Ga is an additional design element to previous proposals for a generic struc­
ture [38]. Its usefulness will become clearer later.
By appropriate choice of the three design elements, the most current awf ver­
sions in practice can be generated.
Note that Fig. 2.10 also directly generates both the discrete-time and
continuous-time implementation by using either Z-1 or s.

From the generic form in Fig. 2.10, the discrete-time form A of the PI con­
troller follows directly from R = R 1R2, where R is as defined in the previous
section:

ea
r -- --- - --~o:.-----I

Va I l- I

I z-I • I

(A·l)

ea
:--------~<f-----!

Va I z-I i I

(A·2)

Fig. 2.11. Forms A of the PI(aw) controller derived from the generic structure

Form A-I uses the forward Euler integration

(
1 -1 )

R1(z) = kp -T~ Ti + z-1

and Form A-2 the backward Euler integration

(
1 -1 )

R1(z) = kp -T: Ti + 1

(2.28)

(2.29)
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and for both

R2(z) = ~ 1 _lZ- I and Ga = Z-I (2.30)

Finally, the value of kA is an open parameter, to be selected in the design
process.

In the feedback structure in Fig. 2.11, the awf signal Va = kAGaea
calculated at each sampling instant may be used only at the next sampling
instant for addition to the output of R I . Otherwise an arithmetic loop would
result in the controller. So there must be at least one Z-I around the awfloop.

The continuous form implementation is

1
RI(s) = kp (sTi + 1); R2(S) = q;-; G a = 1.0; and design parameter kA

S.l.i

Dynamic properties of the awf loop
The output variable of interest is ea = -Ulin + U as a measure of windup of
Ulin outside u, and the input is e. Then, for the forward Euler case from Fig.
2.11

(2.31 )

i.e.

(2.32)

and similarly for the backward Euler case

(2.33)

Abbreviating k~ := kA~' the left side is rewritten as

[( l-k~ ) 1-z-
I

]
~Ts Ts +1

(2.34)

and inserting this into Eqs. 2.32 and 2.33
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(2.35)

(2.36)

where 9 = z-l for the forward and 9 = 1 for the backward case. In other
words the awf loop will be of first order with a time constant TAd'
If k~ := l/(n + 1), then TAd = nTs is a multiple of the sampling time.
And if n = 0, then k~ := 1. This amounts to the deadbeat response.

For the continuous case, i.e. T i » Ts , read directly from Eq. 2.35:

1 1
ea = -k T [u sTi - ekp (sTi + 1)]

Ase+1

Later we will need the input ec to the integral action with the awf loop being
closed:

and also the internal state variable Ui

111 1
U t = -ec = ekp (sTt + 1) -k r + u--=r:-·--

sTt A se + 1 se + 1

r
1

[u + ekp k
1

(1 + STi )]
se+1 A

(2.37)

(2.38)

(2.39)

There is an equilibration transient within the controller along the saturation
with time constant TA c = e.
Obviously, the tracking is ideal if kA --+ 00. Then ea --+ 0 and the band­

width of the awf loop kA/Ti --+ 00. However, this is feasible only in the contin­
uous case. In the discrete time forms, there is a limit on kA from the stability
of the awf loop. Its characteristic equation is from Fig. 2.11

1Ts 1 Ts 1 ( TsO=l+kAZ- - =l+kA---= z-l)+kA-
Ti 1 - Z-l Ti Z - 1 Ti

Using the bilinear transformation z = ~~: yields for w

(2.40)
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Thus for stability

and for the special case

kA
Ts ~ 1 0 l' 0--t = W + 2. e. Z =
Ti

(2.41 )

(2.42)

there appears a pole at Z = 0, i.e. the deadbeat response.

We shall now look into different forms of PI controllers with such awf.
As suggested by Hanus [32], they are put into three groups, i. e. "output
conditioning", "input conditioning" and "self conditioning". Note that input
and output here refer to the controller, and not to the plant, as is now used
in most publications. In order to avoid such confusion, we shall use

- "input" and "output" as referring to the plant,

- "control conditioning" instead of "output conditioning" , and

- "reference conditioning" instead of "input conditioning" .

2.4.2 Control Conditioning

The basic idea of control conditioning is to use ea to "reset" the integrator
such that the controller output Ulin(t) stays close to the saturation output u.
In other words the control variable Ulin(t) is conditioned quite directly.
There are several possibilities to implement this.

Forms B

To obtain them, the summing point is moved further downstream across the
factor Ts/Ti , see Fig. 2.12 B-1 (a), for the forward Euler case.

By inspection, this structure is equivalent to structure A-I, if and only if
(iff)

, Ts
k B == kA T

i
(2.43)

Note that for structure A the relevant factor for stability of the discrete awf
loop was found to be kA ~, i. e. in fact kB.

For implementation, the division by the (small) Ts/Ti in the derivative
part of R1 and the subsequent multiplication in the integral part R2 amounts
to poor scaling of internal variables. This can be avoided by moving the factor
Ts/Ti into R 1 , as shown in Fig. 2.12 (b).

An important special case.is shown in Fig. 2.12 (c): for kB := 1 the posi­
tive and negative feedback paths from Ulin through z-l cancel, and only the
positive feedback from U through z-l remains. This produces a particularly
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simple structure. And as with the analysis of structure A, this amounts to
the deadbeat response situation.

Finally, note that this structure B does not lend itself directly to a con­
tinuous form. For this one must go back to structure A.

a)

b)

-, ~~------------: "
D-------·b--------

+

c)

Fig. 2.12. Form B of the PI(aw) controller derived from Fig. 2.11:
(a) by shifting the awf summation point;
(b) by subsequent re-scaling of internal variables;
(c) and for the special case of kB = 1

Forms C

The structure in Fig. 2.12 (b) may be described as a PD part for R1 in series
with an I part in backward Euler form with awf. This suggests using a forward
Euler integrator as an alternative, Fig. 2.13 (a) and further to (b).
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For kc := 1 this may be reduced to Fig. 2.13 (c). Finally, by moving the
delay element downstream of the saturation and the branch point produces
Fig. 2.13 (d). And this corresponds to Fig. 2.12 (c) with an additional delay
on u. This also holds for the general awf case

(2.44)

In other words the forms Band C are not equivalent in the strict sense, but
very nearly so. The only difference is the one sample delay to be appended to
RB to obtain Rc. It does not influence the awf loop dynamics, but will have
a (small) effect on the main loop dynamics.

a)

+
+

.-----------------------------------,
o 0
o 0
o 0
o 0
o 0
, 0

o 0
, 0

e : :
,---;---~

b)

o

o
o
o
o
o
o
oeo

-:
o

~ ~I.

,- - - - - - - ..,,,
o,
o,
oe:-o ,+
: R:
~ ----- }-'

c) d)

Fig. 2.13. Form C of the PI(aw) controller derived from Fig. 2.12 (b)
(a) by shifting the awf summation point,
(b) by subsequent re-scaling of internal variables,
(c) for the special case of kc = 1,
(d) and shifting the delay element
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Forms D

Forms A, B, and C are very convenient for theoretical analysis, and shall
be used as such later. But, from an implementation point of view, the time
derivative should be avoided, because it amplifies any high frequency dis­
turbances. This drawback is remedied by applying the rules for linear block
diagram transformations. The summation point of the derivative and propor­
tional path in R 1 is shifted downstream of the integrator in R2 . This yields
forms D-l with the forward Euler integration and D-2 with the backward
one; Fig. 2.14.

(D-l)

ea
r -- -- -- --~o:. -- ---I
I f- I

I z'] , I

(D-2)

Fig. 2.14. PI(aw) controller derived from Fig.2.1O, which avoids the time derivative:
D-l with the forward Euler integration (top); D-2 with the backward one (bottom)

Equivalence shall be analyzed as above using the awf tracking response.
From Fig. 2.14 (a):

ea = -Ulin + U

T -1

(
s Z

Ulin = ekp + ekp + eakD ) -T -1
i 1 - z

i.e.

( T -1) (T -1)
ea 1+ k D i 1 ~ Z-l = U - ekp 1+ i 1 ~ Z-l

which is identical to Eq. 2.32 for form A, if

(2.45)

(2.46)

(2.47)
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i. e. for the discrete awf loop

stability range:
Tsand deadbeat response for: kD- = 1
Ti
(2.48)

Similarly, for the backward Euler case from Fig. 2.14 (bottom):

( T -1) (T -1)
ea 1+ kD i 1 ~ Z-1 = U - ekp 1+ i 1 ~ Z-1 (2.49)

which is identical to Eq. 2.35 for form A, leading to the same conditions for
kD and to the same awf properties.

Exercise: Connect form D to form B(b) and investigate the equivalence.

Form E

A very common version (form E) is to place the gain kp in the linear control
algorithm downstream of the part 1 + sh, whereas it has always been put
upstream so far. Then kp appears in the awf loop.
Using the forward Euler integration:

ea = -Ulin + U

Ulin = (e + q) kp

T -1

q = (e + kEea ) ~ 1 ~ Z-1

that is

( T -1) (T -1)
ea 1+ (kpkE ) i 1 ~ Z-1 = U - ekp 1+ i 1 ~ z-1

which is identical to Eq. 2.46 for form D-l, if

And correspondingly for the backward Euler case.

2.4.3 Reference Conditioning

(2.50)

(2.51)

(2.52)

So far, the awf idea has been to act on the integral action, which has led to
control conditioning. Here the basic idea is to act on the input (e(t)) of the
PI controller, such that Ulin(t) does not "wind up". The main consequence is
that both the proportional and the integral path inputs are modified by the
awf, and not only the integral part as with the "control conditioning" .
There are several implementation alternatives, depending on the splitting up
of R into R 1 and R2 . The forward Euler algorithm is used.
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For Form F the awf is added downstream of the gain kp , i.e.

Ts Z-l

R2 = 1+ rp 1 -1
.Ii - Z

(2.53)

In Form G it is moved to the control error e(t),

(2.54)(
T -1)

R1= 1; R2 = kp 1 + i 1 ~ Z-1
The summing point of the awf may be moved even further onto the setpoint
r(t), Form H. This leads to the concept of the "realizable reference" proposed
by Hanus [32].
In any case, the awf loop now contains the proportional action path as

well, which will significantly influence its dynamic properties. We shall see
that for stability the value of awf gain is restricted to a much lower value,
i.e. there will be more windup. Intuitively, an additional low-pass filter Ga

inserted in the awf path will allow one to increase the awf gain substantially.
We shall use a unity gain first-order filter here, with its time constant Ta as
an additional design parameter.

Z-l
Ga (z) := --;----;---­

(1-;.-1) Ta + Z-1
The reasons behind this will become clearer in the following.

(2.55)

Form F

The signal flow diagram is shown in Fig. 2.15, using the forward Euler inte­
gration:

,--------------------------,, ,
: :-----------~ ,
, I ': , r---i ,:
: ; , -- J..+ ''T-I t-: r--- ea +

~-LJ--lz-li_U....l2,-o-~~ (kF) I---cr:----,
I ; ~- + :.1i1J +, L... __ ' -.

i: Ga i ' i, c__________________________ I ,

I ' I,-------------------------------. I ,, ,
+ ' , 'rn '", , ---..lC
: "t· .../j ., m,,,

: R2 :L ~

e

Fig. 2.15. PI(aw) controller with reference conditioning (Form F).



46 2 PI Control with Input Saturations

Stability of the discrete awf loop

where for short

Ts
a1 = T

a
(1 + kF )

and b1 = a1 - 2 ;

Then using the bilinear transformation

l+w
Z=--

l-w

yields as characteristic equation of the transformed continuous system

0= (1 + W)2 + bdl + w)(1 - w) + bo(1- w)2

O
2 2 (1 - bo) 1+ bt + bo= w + w + ---,-::.-----,~

1 - b1+ bo 1 - b1+ bo

Then

(2.57)

and also

Ts Tso< (1 - b1+ bo) = 1 - (2 - a1) + (1 - a1 + ao) = ao = kF T
a

T
i

Ts0< kF T
i
for the lower bound

There are four interesting cases:

(2.59)
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Let Ta := Ts .

-1
Then Ga(z) z = Z-l

(1- Z-1) 1+ Z-1

T 2·1-1 2
and kp-!.. < 2 « 1.0

Ti 2(~)-1 2(~)-1
as always T i » T s (2.60)

Let Ta := nTs

then

then

Finally let Ta := Ti

T
s I T

s Ikp- = (2n -1) kp -
Ti n>l Ti n=l

T
s I (1) T

s Ikp~ = 2- - 1 kp~
T. m>l m T. m=l

(2.61 )

(2.62)

then (2.63)

This is the same condition as for Form A, and hints at possible equivalence.

In other words, the first case Ta := Ts leads to the smallest awf gain kp , and
it increases with increasing Ta, until attaining at Ta := T i the same level as
for the control conditioning forms.
Intuitively, increasing Ta will make the awf loop slower, i.e. there will be an
increasing transient windup of Ulin' It is associated with a decreasing perma­
nent one, as the awf gain can be increased. At this point it is not evident how
Ta should be selected with respect to T i . This shall be answered later.

The main awf stability result from Equation 2.58 can be rewritten as

Ts
k p - < 2'Ta '" ,

T 1- 1. I..
k s 2 2 Tn

p 'TO

a
<

.L. l-1.I..
2 Ti

(should not be used for Ta, T i ~ lOTs)

(2.64)

(2.65)

The same approximate result can be obtained directly from Fig. 2.15 by
- omitting the integral action part in R2 , i.e. R2 := 1
- and omitting also in Ga the feedback path around the discrete integrator.
This simplified system has the characteristic equation
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T -1
s Z

O=l+kp -
T

1
a 1- z-

(2.66)

where the bilinear transformation has been applied, and where 2 - kpL.. > 0Ta

for stability, q.e.d.

Transient response of the awf loop

Consider again the forward Euler algorithm. From Fig. 2.15

(
T -1) T -1 1_z-

1
T + Z-1s Z s Z T t

= ek 1 + - + eakp - s (2.67)
p Ti 1 - Z-1 Ti 1 - z-1 1-;'8- 1Ta + z-1

that is

For the special case Ta := Ti the numerator and denominator polynomials on
the left side cancel and

( T -1) (T -1)
ea 1 + k p i 1 ~ Z-1 = U - ekp 1 + i 1 ~ Z-1

and this is indeed equivalent to form A, if

Similarly, the other special case Ta := Ts yields

If the backward Euler algorithm is used then

(2.69)

(2.70)

(2.71)

that is
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(
Ts 1 ~TiZ-l +Z-l) (Ts 1 )

ea 1 + kF Ti 1 _ Z-l 1~;s 1 T
a
+ Z-l = U - ekp 1 + Ti 1 _ Z-l

(2.73)
which is not equivalent to the corresponding case of form A, due to the element
Z-l set in bold in Eq. 2.73.

For the continuous case, i.e. Ts «Ta, Ti

( k 1 sTi + 1) _ k sTi + 1ea 1+ F - - U - e p --=---
sTi sTa + 1 sTi

_ [s2TaTi + (1 + kF )sTi + kF]
- ea

sTi(sTa + 1)

and for the input to R2 after adding the awf

(2.74)

and for the integral action output Ui

Consider first the case Fa, Ta ---+ O. Then

Ui = l+k 1 (u + ekp -k
1

)
~s'n+1 F

kF '

(2.76)

(2.77)

there is a slow equilibration within the controller with the time constant

l+kF
TF =--T>T

a kF ,-, (2.78)
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and 1 (1 1)Ui = U +ekp-sf?;; + 1 sTi + 1 kF

Exercise
Compare and discuss Eq. 2.80 with respect to form A, Eq. 2.38.

Form G

(2.79)

(2.80)

This form is obtained from the previous one by moving the awf summing point
across the kp block up to the control error e, i.e.

RIG = 1

R2G = kp ( 1+ ;J
1

GaG = sTa + 1

kG to be designed (2.81)

R2 contains the full control algorithm. This also covers the classic form, where
kp is placed downstream of the 1+ 1/sTi part.

For equivalence to form F, the awf closed-loop properties must also be
conserved, i. e. ,

kpkG == kF

to be replaced in the results obtained above for Form F.

Form H

(2.82)

(2.84)

Here, the awf summing point is moved still further to the reference signal r(t),
i.e.

1
rc(t) = r(t) + va(t) = r(t) + T 1kHea (2.83)

s a +
It reduces the (large) r(t) to rc(t) much closer to y(t), such that the windup
ea(t) is small enough. This is the "realizable reference" concept. Then

eCH = rc(t) - y(t)

= r(t) + va(t) - y(t)

= e(t) + va(t)

In other words, eCH = ecG , if kH = kG, and then form H is equivalent to form
G.
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2.4.4 Self-conditioning

The concept of self-conditioning is shown in Fig. 2.16.

+

Fig. 2.16. The concept of self-conditioning controllers

There is no extra awf visible, hence the name self-conditioning. The con­
troller transfer function in the linear operating range is

1
R(z-1) = E(Z-1) 1 _ F(r 1) (2.85)

Note that the transfer functions E(z-1), F(z-1) in Fig. 2.16 may be the result
of advanced design techniques, such as observer-based state feedback. There,
the input u to the observer has to be picked up downstream of the saturation,
in order to supply to the observer the u which is active on the plant. Otherwise
the observer states would run off far away from the corresponding plant states,
i. e. they would "wind up".
From Fig. 2.16, self-conditioning forms also are related to "Internal Model
Control" and similar approaches.
We shall focus on the PI algorithms here and discuss extended forms later.

Forms J

Note that for F(z-1) = Z-1 and E(Z-1) = kp (Ti 1-;'8-
1 + g)

this is
- with g = 1 equal to Form B, with kB = 1, Fig. 2.12 (c), and
- with g = Z-1 equal to Form C, Fig. 2.13 (d).

In other words, the special cases of Forms Band C are also self­
conditioning.

FormK

This is derived from the traditional (and still widely used) positive feedback
loop implementation of linear PI controllers, e.g. see [2].
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Set

1
E(Z-1) := kp and F(Z-1) = 1 T z 1

+ ~ 1-z-1

then in the linear operating range

1-z 1T + -1----r;- I Z

(2.86)

1 1-z- 1 T + Z-1
R(Z-1) = kp -------,--1__ = kp Ts 11

1- z 1-z T
~ T +Z-1 ----rr;- I

T s f

(
T -1)

= kp 1+ T; 1 ~ Z-1 (2.87)

I

For TI ~ Ti this is equal to Form A-I with the forward Euler algorithm.
Note that it is not possible to generate the backward Euler form in this way. 1

According to Fig. 2.16 this structure is used in saturating operation as
well. Note that F(z-1) is a unity gain first-order lag element with its input
connected always to the saturation output. Therefore, its internal state vari­
able will not increase beyond the saturation values, i.e. it will not "wind up".
This is the main feature of self-conditioning.

Equivalence is investigated next. We start from Form F, Fig. 2.15. The
first step is to split up the awf path into two parallel paths, form L; see Fig.
2.17.

Fig. 2.17. Intermediate structure L to investigate equivalence of forms F and K
Note that (Ga)L := (Ga)F, (ka)L := (ka)F and (R2)L := (R2)F

Then, if the inner negative-feedback loop has a transfer function (Gi(Z))L
equal to one, by inspection form L is equivalent to form K. That is

1 This will have an algebraic loop.
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l-z- 1 T + -1----r i Z

If now
- kL = 1, and
- (Ga) L is a first-order lag (such as used above for (Ga) F ) ,

- and Ta = Ti is inserted,
then forms F and K are equivalent.
In other words, form K is a very special case of form F, where no free design
parameters for the awf are available anymore.

2.4.5 Summary

Concerning methodology, we have derived ten different versions ofPI(aw) con­
trollers, A to K, by systematic variation of a generic form A. Note that this
does not reproduce the historic development, but helps to get an overview.
Note also that this does not cover all existing proposals for awf. Notable excep­
tions are "feedforward awf", the "back calculation" awf or simply saturating
the integral action in D on its own.
A second methodic element has been the analysis of the awf-Ioop response
properties, isolated from the rest of the control system. This has produced
upper bounds for the gain ka in the discrete awf loop. It has also shown
equivalences, and thus has enabled a reduction from ten versions down to two
representative forms
- form D for the "output" conditioning subgroup, forms A to E, and
- form F for the "input" and "self" -conditioning subgroup, forms F to K.
Forms D and F shall be investigated further. This will also reveal further
equivalence properties.

2.5 Transient Responses for the Test Cases

2.5.1 The Effect of Antiwindup Feedback Structure

From the equivalence discussion above, only the two forms D and F need to
be considered further. Their closed-loop performances are compared with the
awf gain ka as the main experimental parameter on the test benchmark from
Sect. 2.1. The forward Euler version is used in D for consistency with F and
K.
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Fig. 2.18 shows the transient response for form D, covering A to E and J,
- Fig. 2.19 for form F, covering G and H, with Ta < Ti ,

and Fig. 2.20 for forms F, G and H, with Ta = Ti .

Finally, form K is covered by Fig. 2.21 with kF = 1.
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Fig. 2.18. Transient response with controller form D to the test sequence with
different values of the awf gain ka : for a = a (left column) and a = 1 (right column).
output y(t) (top); plant input u(t) (bottom)
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Fig. 2.19. Transient response with controller form F with Ta = Ti/4 to the test
sequence with different values of the awf gain ka : for a = 0 (left column), a = 1
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output y(t) (top); plant input u(t) (bottom)
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Observe that:

With all forms, the windup effect is strongly reduced for high enough awf
gain values (here k 2: 1).
Again the case a = 1 seems less critical than the case a = O.
From Fig. 2.18, Form D eliminates the overshoot for kD 2: 2.0.
From Fig. 2.19, Form D performs better than form F.
From Fig. 2.20, Form D performs better also than form K.
The responses for forms D and F are strikingly similar, if both

and kF := kD·

Note that this holds for arbitrary values of the awf gain, i.e. also for k =I- 2.

But keep in mind that these findings are subject to the specific experimental
conditions defined in this benchmark, and may not be valid in a very different
setup.

2.5.2 The Effect of Controller Tuning

John's case has demonstrated that performance of the main loop with awf
also depends on how kp , Ti are tuned.
From the benchmark specification:

kp = 2(nTl and (2.88)

In the previous subsection, 2( := 2.0 has been used.

Now 2( := 1.0 (as in John's case). The simulations are shown in Fig. 2.21,
for the plant case a = 0 and for the awf forms D and F for Ta = Til4 only.

Considering only ka 2: 2, there is now a considerable overshoot of y even
for form D in the range of 10% (there was none before), whereas for form F
with Ta = Til4 it is now rv 20 %, i. e. twice as large as before.

Exercise
Investigate the other cases not shown here.

2.5.3 Overshoot Analysis

From the general expectations on control performance of such control sys­
tems (see Sect. 1.4), they are expected to have "no perceptible overshoot".
The simulations shown so far illustrate that this could not be achieved with
any arbitrary awf, but requires a well-tuned combination of controller param­
eters, awf structure and awf gain. So a more detailed investigation is needed.
We shall look at the general mechanism first, then turn to our benchmark sit­
uation, and investigate the two representative awf forms D and F separately.
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Fig. 2.21. Transient response with de-tuned controller to the test sequence,
for a = 0, with different values of the awf gain ka : form D (left column) and form
F Ta = Ti /4 (right column).
output y(t) (top); plant input u(t) (bottom)



2.5 Transient Responses for the Test Cases 59

The General Mechanism

We shall look at the time interval around the last transition from nonlinear
operation to linear operation, i. e. the final settling to the new steady state.
This linear transient starts at time t = tT, where Ulin(t) lifts off the respective
saturation limit Uhigh or Ulow ' This takes place at the instant where the awf
tracking error ea (t) crosses to zero.

for t < tT: ea #- 0 and for t > tr: ea = 0 (2.89)

The nonlinear motion of the control loop up to this instant may be charac­
terized by the control error e(tT) and its n time derivatives, where n is the
order of the linear system. These values are the initial conditions of the linear
system response down to steady state at e = O.
So overshoot depends on the specific combination of values of the initial con­
ditions at the transition time tT, and on the eigenvalues of the linear closed
loop.

Assumptions

We now consider the benchmark from Sect. 2.2 to obtain more specific results.

We shall look at the plant of dominant first order with a PI controller. So
the linear loop is of second order. And we need e(tT) and e(tT) as initial
conditions for the final linear transient.
From the simulations, the large setpoint step rl of the run-up phase is the
most critical one for overshoot. So we focus on this particular situation.
We also focus on the open integrator plant, i.e. a = O.
Only cases of ka > 0 shall be considered further, as for the no-awf case
the overshoot is excessive anyhow.
We shall also focus on the continuous case, because we look at the main
control loop here, and where Ts « T i (see Sect. 2.2).

Then, in the nonlinear part of the run-up phase, by inspection of the specific
plant structure, the derivative of the control error quickly converges to a
constant value

e(t) = r'l - y(t) = 0 _ L\u
T

determined by the steady state control margin L\u:

L\u = Uhigh - U or Ulow + U

and assuming a constant rl.
Then for the control error

( )
. L\u

e t = eo + e t = rl - T t

(2.90)

(2.91 )

(2.92)
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And in the linear part of the transient for t 2: tT, the response e is gen­
erated by the superposition of the responses to the initial conditions of the
control error e(tT) and its derivative e(tT) at t = tT, i.e.

1
e(s) = S2 + s2(il + il2 [(s + 2(Sl) l(s)e(tT) + l(s)e(tT)]

Analysis for Form D

(2.93)

The transition takes place at the instant t = tT, where ea(t) hits zero. From
Equation 2.46

1 1
--+ ea = - T ekp -

k
(sTi + 1)

sf:; + 1 D

(2.94)
if u, i.e. the upper or lower saturation value, is time invariant.

For the special case kD = 1, the numerator and denominator polynomials
cancel, and ea hits zero when the control e error crosses zero, i. e.

e(tT) = 0 while e(tT) = _ ~u

In other words an overshoot of e(t) is unavoidable.

And if kD » 1, then

(2.95)

1o~ - (sTi + 1) ekp kD
T..

i.e. e(tr) = -e(tr )Ti = L1u ~ (2.96)

Now the conditions are favorable to avoid an overshoot of e(t).

Consider now the general case of kD. In Equation 2.94 there is an addi­
tional first-order lag with time constant TT = Ti/kD, which will delay the
transition time tr with respect to the case kD » 1. To simplify matters, as­
sume that this first-order lag has attained its steady state before t = tT. This
implies that the duration of the run-up phase is at least rv 3TT. Then the time
delay L1tD for transition is equal to the time constant of the first-order lag
TT, that is

( 1) T.1 - - L1u---:
kD T

(2.97)

which reproduces the previous results for kD = 1 and »1.
Note that for kD < 1, e(tT) will be negative, and overshoot will be even more
pronounced than for kD = 1.
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Exercise
- Derive Eqs. 2.93 and 2.97.
- Investigate the effect of this assumption on the size of rl.
- What if the steady state of the first-order lag
has not been attained at t = tT.

We now turn to the linear transient for t 2: tT.
Introducing e(tr) from Eq. 2.97 and e(tT) from Eq. 2.90 into Eq. 2.93

from the nominal closed-loop pole assignment to (S2 + s2(Sl + Sl2) = 0 in
Sect. 2.2.

If as the first case

2( := 2 and SlTi = 2( := 2 and if further kD := k* = 2

are introduced into Eq. 2.93, then

(2.99)

1 1 L1u [( s ) (1) ] 1 1 L1u
e(s) = Sl (12 + 1)2 SlT Sl + 2 2 2 -1 1(s) = Sl (12 + 1) SlT 1(s)

(2.100)
and in the time domain

(2.101)

This is the impulse response of a first-order lag, which will not overshoot. This
nicely confirms the observation from Fig. 2.18.

Then, using as the second case the controller tuning from Sect. 2.5.2

2( := 1 and SlTi = 2( := 1 and if kD := 2

are put into Eq. 2.93, then

(2.102)

(2.103)

This is the impulse response of a non-minimum phase system, which will
strongly overshoot.



62 2 PI Control with Input Saturations

And if kD » 1 then

1 TI .1u
e(s) = n ~2 + 1~ + 1 nT

n n
(2.104)

which will also produce an overshoot together with its lower damping. This
again confirms the observations from Fig. 2.21.

Exercise
Investigate form B, Fig. 2.12, with kB = 1 (which also covers form J).

Analysis for Form F

We proceed along the same lines. The transition occurs at t = tT, when Ulin

lifts off the saturation u, i.e. when ea hits zero. Then, from Eq. 2.74

(
k _1_ sTi +1) _ _ k sTi +1

ea 1+ F TT.l - U e P T
SiSa+ Si

sTa + 1 1
e - - ek - (sTi + 1)

a - s2T. -IT + l+kpsT + 1 P kF
a kp' kp ,

(2.105)

(2.106)

where again the respective upper or lower constraint value U is set as time­
invariant.

For the special case of Ta := Ti , then

sTi + 1 1 1 1
ea = - ( T ekp-

k
(sT, + 1) = - T ekp-

k
(sTi + 1)

sf:; + l)(sTi + 1) F sf:; + 1 F

(2.107)
I

which is equivalent to Eq. 2.94 for form D, if kF == kD

and the same overshoot properties hold as discussed there. In particular, if
kF = 1 this results in e(tT) = 0, and thus overshoot is unavoidable. We have
shown that this special case of form F is equivalent to the self-conditioning
form K.
Then, by inference, one expects the overshoot to be suppressed for k F :::: 2
and for 2( = 2 in the closed-loop pole assignment.

Another special case of interest is Ta --+ 0:

1 1
ea = - l+k ekp -

k
(sTi + 1)

s--PT+l Fkp ,

In this case the time constant of the first-order lag element

(2.108)

1 + kF
TF = ---Ti is

kF
(2.109)
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i.e. e(tT) = 0 now appears for k F ---+ 00 only. Then, by inference, the overshoot
will be present for all kF values, and increase with decreasing kF entries.
In other words, Ta should be selected large not only for stability of the discrete
awf loop (as shown in Sect. 2.4), but also for overshoot suppression.
It is still open, whether Ta should be increased beyond Ti . This can be inves­
tigated in the same manner as above. Briefly, a simulation shall give a hint of
what may be expected; Fig. 2.22. There, the response is slowed down unduly
for Ta > Ti , so Ta = Ti seems to be the best selection. Of course this needs
to be confirmed by a more general investigation.
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Fig. 2.22. Transient response with nominal controller to the run-up phase of the
test sequence, for a = 0, with different values of the awf gain ka and awf form F:
Ta := Ti (left column) and Ta := 2Ti (right column);
output y(t) (top); plant input u(t) and output of the controller Ulin(bottom)
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Exercise
Investigate form F for awf design parameters Ta and kF in a more
general manner, similar to what is presented above for form D.

Hint: It may be useful to let Ta := TTi V T > 0

2.5.4 The Effect of the Relative Pole Shift nT

In the simulation study the relative pole shift from plant bandwidth w = liT
to closed-loop bandwidth n has been fixed at nT = 5 as per specifications in
Sect. 2.2.
Now the results from the overshoot analysis can be used directly to clarify
the question, without further simulations.

We again assume that the setpoint step rl is of sufficient height, such that
the low-pass filter has reached steady state at the transition instant t = tT.
From the nonlinear phase, the transition leaves as initial conditions for the

subsequent linear settling transient

(2.110)

i.e. the approaching speed e(tT) does not depend on nT, while the lift-off
error e(tT) decreases for increasing nT, and also decreases for reduced linear
damping ratio 2(.
In other words, there is less space for the linear control to reduce the kinetic
energy of motion to zero without overshoot.

For the linear transient we consider only the special cases of Form D with
kD = 2 and 2( = 2, and for Form F we assume further Ta = Ti . Then,
by inspection of Equation 2.101, the no-overshoot property is conserved. The
linear response is smaller by 1I (nT) and faster by nT.

A word of caution against undue generalization of those neat results: keep
the assumptions made earlier in mind.

The relative pole shift is not a fully free design parameter. It is limited
upward by the small delay element approximating the non-modeled fast
dynamics in the plant, and downward by the minimum disturbance rejec­
tion performance required. For low enough nT the full run-up transient
will be non-saturating, i.e. linear. Overshoot must then be countered by
an appropriate two degree of freedom PI structure ( e.g. see [2]).
We have assumed the open integrator plant a = O.
We also have a comparatively short sampling time Ts .

Exercise
- Confirm the results from above by simulations.
- Investigate the effect of 2( =I 2 for variable nT on the overshoot.
- Investigate the effect of a =I 0 on overshoot.
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2.5.5 Summary

From a methodology point of view, we have started with simulations to obtain
a first overview. We then have investigated an area of special concern (the final
overshoot) analytically, which has helped us to understand the basic relations
and predict the effect of variations of other design parameters.
We have investigated two representative forms: D for the "control condition­
ing" and F for the "reference conditioning" groups of structures, both on the
open integrator plant a := 0, non-time-varying saturations, and comparatively
small sampling time Ts .

For Form D, we have shown that there will be no overshoot in the final set­
tling transient for the awf gain kD = 2 and for the linear closed-loop damping
factor 2( = 2. The main reason is that the initial conditions at the transition
point, where Ulin lifts off the saturation u, are favorable for the linear settling
transient. They are even more so if kD > 2, or 2( > 2. The relative pole shift
DT has no significant effect on overshoot.
For Form F, there is an additional awf design parameter Ta . We have shown
that, for Ta/Ti --+ 0, such final overshoot is unavoidable, even for high-gain
awf kp --+ 00. We have shown that for Ta/Ti = 1 the response of F is equiva­
lent to D for all k p . Finally, we have shown that for Ta/Ti > 1 and for all kp ,
the transition to the linear operation is advanced further, and a slow mode
appears in the run-up response.
Therefore, as initial design values we suggest
- set 2( = 2 for the main loop
- set kp ~ 2 for the awf loop, and
- for F set Ta = Ti

and then iterate on the process to accommodate modeling deviations and sim­
plifying assumptions.
Also note that the self-conditioning form K, while being very simple in struc­
ture, is predisposed to overshooting.

All statements and conclusions above are subject to the specific experimen­
tal setup from Sect. 2.2, and may change for substantially different conditions.

2.6 Stability properties

2.6.1 Motivation

From what we have seen so far in the simulations, stability is not an urgent
problem with the control loops as they were specified in the benchmark in
Sect. 2.2, as long as a 'reasonably high' awf gain ka was used. If, however,
ka --+ 0, as this happened inadvertently in John's case, then large over- and
under-shoots of y(t) appear; see also Fig. 2.23.

The obvious question is whether the control error e(t) still converges and
ultimately will end up at the transition instant t = tT to linear control, or
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whether this is not the case. This is answered by nonlinear stability analysis,
as by inspection of Fig. 2.23 the transient of e is substantially shaped by the
saturation element.

• IS.,
0 .. ,,_. ~ ~

• I

Fig. 2.23. 'TUrbine speed run-up response (see Sect. 2.1) with awf gain ka = 0.05
both for high and low saturations. The opening limit value is lowered to 0.03, to
reduce the maximum speed overshoot

At first glance this may seem to be an academic exercise, as in the current
particular benchmark situation, stability is not an urgent problem except
for the "pathological" case ka ----t O. However, we will see that it becomes
important for plants of dominant order higher than one. The results turn out
to be of eminent practical value for design. And the simple benchmark case
of Sect. 2.2 will establish a useful base line for later investigations.

2.6.2 Methods

In the previous section the focus was on the final phase of the trajectory to
the new equilibrium, where Ulin(t) lifts off the saturation for the last time,
and the successive transient is linear. Here, the focus is on the initial part of
the transient, where the saturation has a dominant effect on the trajectory,
e.g. see Fig. 2.23.
So far, the closed-loop trajectories have been induced by applying setpoint or
disturbance (load) steps. In this part, the setpoint or the disturbance steps
are interpreted as equivalent initial conditions being applied to the control
loop out of the final steady state. In other words, the trajectories are seen as
the corresponding initial conditions responses. This allows us to use standard
nonlinear stability tests, which apply to initial condition responses.
Specifically, the circle criterion and the Popov criterion shall be used, see e.g.
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[5, 6, 9, 11]. These deal with convergence of the initial condition response to
the new steady state, which obviously is the main interest for practical appli­
cations.
The describing function method (e.g. see [12]) is useful to investigate oscilla­
tory instability, which has been observed on higher order plants (see Chapter
6).

Appendix A provides a short introduction to these nonlinear stability tests.

2.6.3 A Generic Result

The nonlinear system to be investigated is the basic control loop in Fig. 2.6. As
shown in Sect. 2.4, the typical implementation forms A to K may be generated
by assigning the appropriate expressions to R1(z), R2(Z), Ga(z), and ka and
by selecting appropriate parameter values and initial conditions.

To apply the circle criterion, the basic system in Fig. 2.6 must be rear­
ranged into its "canonical form". It has to consist of one nonlinear block and
one linear block connected in a negative feedback loop, where the linear block
(subsystem) contains all linear time-invariant dynamic elements, and is de­
scribed by its transfer function; see Fig. 2.24(a).
The circle criterion requires the linear subsystem to be asymptotically stable.
In other words, its poles must lie to the left of the imaginary axis for contin­
uous systems, or inside the unit circle for discrete systems, e.g. [11].
But this is not the case here, as the PI controller contributes one non­
asymptotically stable pole from the integral action, at least for the no-awf
case (ka = 0), and others may be contributed by G(s), which contains open
integrators or even positive feedback paths in many practical applications.
Excluding all such cases from the stability test would seriously diminish its
value for practical use.

Fortunately, asymptotic stability of the linear subsystem may be obtained
by the "loop transformation" or "pole shifting" technique (e.g. see [12, 34] and
references therein for more details). Specifically, the saturation nonlinearity
is replaced by an equivalent arrangement of a deadspan nonlinearity with
breakpoints at Ulow , Uhigh and unity slope gain, in parallel with a unity gain
path; Fig. 2.24(b). Then the unity gain path is joined to the rest of the linear
system; Fig. 2.24(c). The new linear part F now has feedback, and thereby is
asymptotically stable, as we shall see below.
The closed-loop system of Fig. 2.24(c) is now in its canonical form as required
by nonlinear stability tests. Note the sign conventions in Fig. 2.24(c).
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Fig. 2.24. Transformation steps of the nonlinear system of Fig. 2.6 into its canonical
form, suitable for the stability test

The nonlinear subsystem

From the specifications of the benchmark in Sect. 2.2, i.e. from the control
problem being "well-posed", the final steady state value of Ulin = U will be
inside the deadspan interval and at a finite distance from the breakpoints
Ulow , Uhigh. Then the origin of the nonlinear characteristic is shifted to U,

and

.dUlinmax lup = Ulinmax lup - U and .duup = Uhigh - U (2.111)

for the upward movement, and similarly for the downward direction

and .dudn = Ulow - U (2.112)

For brevity, we shall focus on the more constraining situation, and omit the
indexes up, dn, i.e.

L1Ulinmax = Ulinrrtax - ii and .du = Usat - U (2.113)

This implies that the origin is now at the center of the deadspan interval.
This is the case for the run-up phase of the test sequence, which from the
simulations seems to be the most sensitive one to the saturations. It is not
the case for the subsequent load swings.
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Exercise
What are the consequences of the assumption to the stability properties?

Also note that, from the specifications, Ul ow , Uhigh are time-invariant, and
there is no energy storage (such as by backlash, etc.).

Then, to proceed with the test procedure, the upper sector slope from Fig.
2.24(c) is:

b
,,1Ulinmax - ,,1il

s=
L1ulinmax

valid for ,,1ulinmax > ,,1il (2.114)

z.e.
1 ,,1il
-=1+ =1+,,1
bs ,,1ulinmax - ,,1il

(2.115)

which defines ,,1.
The lower sector slope is from Fig. 2.24(c):

as = 0 i.e. (lias) = 00 (2.116)

The on-axis circle for the graphic stability test for both continuous-time sys­
tems (e.g. [12]) and for discrete-time systems (e.g. [11]) runs through the points
-l/bs and -lias on the real axis and its center is on the negative real axis.
Then, the circle must lie to the left of the Nyquist contour for the linear sys­
tem part if the frequency is run from 0 to 00. In other words, there may be
no intersections. Then the initial condition response of the nonlinear closed
loop will converge to the origin, i.e. asymptotic stability is shown.

In our case, (lias) = 00, and the circle degenerates into a vertical straight
line positioned at -1Ib = -1.0 - ,,1 on the real axis.

The off-axis circle test and the Popov test are applicable if the nonlinear
characteristic is time-invariant and non-energy-storing, which is the case here.
Then the straight line runs through the same point at -1- ,,1, but it needs not
be vertical, it may be inclined. This generally provides a larger region of ,,1,
where asymptotic stability can be shown, i. e. a larger "region of attraction" .
In other words, the test results will be less conservative.

Furthermore, if the Nyquist contour of the linear subsystem is such that the
straight line may be drawn through the point (-1+jO) on the real axis without
intersection, i.e. -l/bs = -1.0 or equivalently ,,1 ---+ 0, then Ulinmax ---+ 00 is
admissible and the closed-loop response will be globally asymptotically stable.

If, on the other hand, Ulinmax stays below the breakpoint value ,,1u, then
bs = 0 and 1/bs ---+ 00, i.e. the straight line is positioned at -00. Now
the Nyquist contour may evolve in almost all of the complex plane with no
intersection, i. e. there are no additional restrictions for asymptotic stability
of the linear closed-loop system from the nonlinear test.

We shall discuss this situation further in Sect. 2.6.5.
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The Linear Subsystem

The second step in the test procedure is to draw the Nyquist contour F(jw)
for the linear subsystem: By inspection of Fig. 2.24(a).

H = kaGaR2 _ GR
1

R2
1 + kaGaR2 1+ kaGaR2

and from Fig. 2.24(c)

F =~ = -GR1R2+ kaGaR2
1 - H 1+ kaGaR2 - kaGaR2+ GR1R2

inserting R = R1R2 yields the main result

A Further Equivalence

(2.118)

(2.119) I

This general result is now used to investigate the alternative forms D and F
from Sect. 2.4 further.
For form D:

(2.120)

and for form F:

(2.121)

If both

then
(kaGaR2)F = (kaGaR2)D

and, as we have from the design of the linear loop

I

(1 + GR)F ~ (1 + GR)D

(2.122)

(2.123)

(2.124)
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then finally
(F)F = (F)D (2.125)

that is, the two forms D and F are equivalent also from the point of view
of nonlinear stability of the complete loop and not only from the awf loop
alone.2

Analysis of the Benchmark Cases

The next step is to discuss the general shape of the Nyquist contour of F(z)
for the benchmark loop. For brevity, we shall use Gd(S) instead of G(z) with
the continuous PI(aw) controllers. Afterwards we shall check the design nu­
merically with the full G(z) and R(z).

(a) The P controller case
Ideal cancelation of steady state control errors due to persistent setpoints
r =I- 0 and loads iJ =I- 0 is assumed by an appropriate value of u man . Then

and

ka = 0

Ga(z) ----> 1

R1(z) = z-lkp ----> kp

R2 (z) = 1

b
Gd(z) ---->-­

sT+a

(2.127)

where the factor z-l in R1 accounts for the one sample delay to cover the
calculation time requirements.
Then

F(s) + 1 = 1+ kaGa R2 = sT + a = (s/n) + (a/Tn) (2.126)
1+GdR sT+(a+kpb) (s/n)+1

where nT = a + bkp. For a > 0 (and as usually kp > 0), the Nyquist
contour of F(jw) evolves exclusively to the right of the vertical straight
line at -1. Therefore, the closed-loop response will be globally asymptotically
stable.

And for a = 0
(s/n)

F(s) + 1 = (s/n) + 1

the contour starts at (-1; jO). Thus, the closed-loop response can no longer
be shown as being globally asymptotically stable, but only up to a bounded
Ulinma",. However this upper bound is very large compared to .diL, i. e. the loop
will be asymptotically stable in the (very) large.

2 Note that this nicely explains the striking similarity of the transient responses in
Figs. 2.18 and 2.20.
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This correlates well with the observations in Fig. 2.7.

(b) The PI(aw) controller case
For the form D in Fig. 2.14, with ka as parameter, Gd(s) as above, and

where the computation time delay again is placed at the entry of R 1 , to keep
it from interfering with the awf. Then the transition to the continuous form
yields

Ga(Z) = 1

R1(z) = kp (1 + Tis)
1

R2(Z) = ---;::;:;
S.Li

i.e.

If now
(2.129)

then one of the closed-loop poles is canceled by the zero in F + 1 from the
awf loop. Therefore, k~ is denoted as "compensating" awf gain. And

F() 1 = (s/n) + (a/Tn)
s + (s/n)+1

(2.130)

which is the same as for the P controller and, therefore, with the same stability
properties as discussed above. In other words one can expect very similar
responses. Note that this is independent of a, i.e. a need not be zero.

For other ("non-compensating") values of the awf gain, ka =I- k~

F(s) 1 = (s/n) + (ka/nTi ) (s/n) + (a/Tn)
+ (s/n) + (k~/nTi) (s/n) + 1 (2.131)

Observe that the second fraction is the shape for ka = k~ and the first fraction
is a series lead-lag element. For ka > k~, its phase contribution is negative.
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This will increase the real part of F +1 in the relevant w-range, and therefore
improve the stability properties.
If, however ka < k~, then its phase contribution will be positive in the

relevant w-range, and the minimum real part of F +1 will eventually become
negative. And for the "no awf" case ka = 0, its phase contribution at w -> °
is +1f/2 and the Nyquist contour will start horizontally to the left. Then with
the on-axis circle criterion, asymptotic stability can only be shown for much
smaller Ulin",ax than for ka ;::: k~.

For a =°,and from the controller design given above, then: T i = 2/n

k~ = 2 and F(s) + 1 = [(sin) + 1] (s/n) 2

[(sin) + 1]
(s/n)

(s/n) + 1 (2.132)

Finally, for form F of Fig. 2.15, the low-pass Ga (s) will have a similar
effect on the stability properties, as the characteristic polynomial of the awf
is the numerator of F + 1

(2.133)

and thus produces a positive phase shift to the Nyquist contour, which is zero
for Ta := Ti and increases with decreasing Ta . In other words, a decreasing Ta

means less favorable stability properties and one would expect more overshoot.
This correlates well with the difference of response from e.g. Fig. 2.19 to 2.18.

Reverting to the discrete-time case is straightforward. As l/Ts « n, the
shape of F is not affected in the region°~ w ~ n, which will be relevant for
the circle test. The same argument holds for the small plant delay D, which
has been neglected so far. Note that this assumes that the limits on both Ts

and D for discrete feedback stability given in Sect. 2.4 are respected.

2.6.4 Stability Analysis of the Test Cases

The Nyquist contours of F(z) corresponding to the test transient responses
of Sect. 2.5 are shown in Fig. 2.25 for form D, and in Fig. 2.26 for form F
with Ta/Ti = 1/4.
Note that from the equivalence of form Fat Ta = Ti to form D and from the
equivalence of form K to form F at ka = 1.0, no further plots are needed.

Clearly, the shape of the Nyquist contour of F + 1 is much more favorable
in the graphic stability test for the cases a = 1 than for a = 0, especially for
ka = 0. It is also more favorable for Ta = Ti than for Ta « Ti , and finally
more favorable for ka = 2 than for ka = 1, i.e. for form D and F than for
form K.

Again, this corresponds well to the simulation findings.
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Fig. 2.25. Nyquist contours with controller form D to the test system with different
values of the awf gain ka , for a = 0 (left) and a = 1 (right).
Also covers form F with Ta = Ti, as well as form K, if ka = 1

Fig. 2.26. Nyquist contours with controller form F to the test system with Ta

O.25Ti and with different values of the awf gain ka , for a = 0 (left) and a = 1 (right)

2.6.5 Estimating the Range of Attraction

In nonlinear stability analysis often only "global asymptotic stability" is con­
sidered, implying that the shape of the Nyquist contour of F can only be such
that L1st -+ 0 holds, (with L1st defined in Eq. 2.115, where the index st stands
for "stability test").
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However, from our experience, in many practical applications the shape of F
will be such, that only a finite but small lL1st I results. Then lL1ulin",ax I will
be large but still bounded. However, all nonlinear system trajectories generat­
ing lL1ulin(t)1 below this upper bound lL1ulin",axl will converge to the steady
state. They evolve in a compact area, which contains the final steady state,
i.e. within the "region of attraction". This leads to the concept of "stability
in the large" rather than "in the whole" .
In the following we shall distinguish

stability in the small for Ulin",ax ::; L1u, i. e. responses in the linear range;
stability in the large for Ulin",ax - L1u 2:: 1, i. e. for nonlinear transients,
with large but still bounded overrun of the saturation (.1 > E, where
O<E«l);
stability in the whole for (Ulin",ax - L1u) / L1u --+ 00 , i. e. for nonlinear
transients with infinite overrun (.1 --+ 0). Note that we exclude the case
of L1u = 0 as being "ill posed", because this means that linear closed-loop
control is no longer possible around the final steady state.

Note that the concept of stability in the large is very suitable for real physi­
cal systems, where all states and signals necessarily have both high and low
bounds, and where the controller states are bounded by awf gains ka > O.

The main theoretical difficulty is to determine the precise region of initial
conditions for trajectories where this L1tr (with L1tr defined as in Eq. 2.115,
where the index tr indicates "trajectory") stays above the L1 st from the sta­
bility test without actually generating all those trajectories by simulations.
An algorithm given by Khalil [12] generates appropriate Ljapunow functions,
i. e. a conservative approximation.

Another approach is to look for a first estimate instead of a strict upper
bound.3 Such an estimate can be obtained by considering typical transients
where the nonlinear effects are most pronounced. From the simulations this
would be in particular the large setpoint step responses (for run-up) in the
benchmark test sequence (e. g. [34, 47]). Then, a first estimate of the maximum
L1tr can be obtained using the maximum setpoint step from the specifications.
This value should be greater than L1st . We shall now go into more detail.

First note that

and from Sect. 2.4

(2.134)

(2.135)

where L1u is assumed as time invariant and where G f (s) is a unity gain filter
with coefficients depending on the particular form of antiwindup (A through
K) and of the awf gain value ka .

3 Note that the following argument is not at all conclusive from the theoretical side,
it cannot produce more than an indicative value.
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In the following, we exclude the "no-awf" case, and also the cases where (from
Sect. 2.5) an overshoot cannot be avoided for the final linear settling transient,
i.e.

(2.136)

If the particular case of D with ka = 1 is considered, then G f (s) = 1, and
similarly for F with Ta = Ti and ka = 1. Then

1
ea(t) = -e(t)kp k

a

which makes it particularly simple to determine ea",ax:

(2.137)

(2.138)

where by inspection of the transients in Sect. 2.5, Figs. 2.18 to 2.21, the
control error is largest at the moment T1 the setpoint step is applied, and
then decreases monotonously during the plant run-up, i.e.

(2.139)

In all other cases there is an additional filter, which deforms e(t), and
determining ea",ax analytically is more involved. To avoid this we generate
a conservative estimate of ea",ax by slightly modifying the run-up sequence
phase 1 of the benchmark:

We insert a phase 1a where the controller is switched on with the reference
r preset at rl, but the process is kept at standstill (YTl = 0) by stepping Uhigh

down to zero. The input e to the awf loop then is constant at eT1 :

(2.140)

The duration LlT1a of phase la is such that the awf loop reaches its steady
state, i. e. approximately three times the dominant time constant of Gf. For
form D:

TiLlT1a ::::: ~ 3-
ka

and correspondingly for the other forms. Using

(2.141)

then (2.142)

Then in phase Ib the process is run up by stepping Uhigh to its specified
value. Then ea(t) starts at ea and afterwards will decrease monotonously, i.e.

(2.143)

and finally
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Llit. ka ( )1+ Llst := - - 2.144
eTl kp

We shall now develop the result for the Nyquist contour further. Having
set k a > 0:

( )
_ 1 + kaGaR2 _ [sjD + kaj(DTi)] [sjD + aj(DT)]

F s +1 - I+RG - (sjD)2+2((sjD)+1

[sj(~aD)+ 1] [sjD + aj(DT)]
= ~a (sjD)2 + 2((sjD) + 1

ka ka
where ~a:= Dr- = k*

t a

and as D2 .= kp
. i e Dr- = kp from the pole assignment. TiT' .. t DT

ka
finally ~a = k DT (2.145)

p

Now both 1+ F(s) and 1+ Ll st have the common multiplier kajkp > 0,
which can be eliminated in both for the graphic test. And the multiplier DT is
transferred from the Nyquist contour side 1+F(s) to the nonlinear subsystem
side 1+ Llst . The test is then performed with

(F(s) + 1)' = [sj(~aD) + 1] [sjD + aj(DT)]
(sjD)2 + 2((sjD) + 1

, Llit. 1
and (1 + Llsd = - nT

eTl Jt
(2.146)

Further insight is provided by discussing the end points of the Nyquist
contour (F(s) + 1)'.

, 1
lim (F(s) + 1) = a~

w--+O JOT
(2.147)

which is on the real axis, on the positive side for a > 0, at the origin for a = 0,
and on the negative side for a < 0, i.e. for an unstable plant (we have not
considered this case so far).
Also

. ' 1 1 k p 1 2(DT - a 1 ( 1 )hm (F(s) + 1) = - = - - = - = - 2( - a-
w--+oo ~a DT ka DT ka ka DT

(2.148)
As kp > 0 and as 1 < ka < 00, the Nyquist contour will always end on the
positive real axis. Therefore, the area of interest for the stability properties is
at w ~ O.
To avoid an intersection of the straight line and the Nyquist contour there,
then
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z.e.:

if a < 0:

and if a 2 0:

- (1 + L1st )' < (1 + F(s))' IS=jw-+o

L1u 1 1
--<a­
eTl DT DT

L1u
eTl < ~

(2.149)

Note that this is independent of the awf gain ka 2 1, and of the linear loop
design parameter DT. For 2( = 2 the on-axis circle criterion can be used;
for lower 2( one may have to resort to the off-axis version.

Exercise
- What is the margin introduced by using £a instead of eamax ?
- Investigate the case for -0.5 ::; a ::; +0.5 by simulations.
- How well is the actual stability limit predicted by the circle criterion?
- What is the physical interpretation of the result in Eq. 2.149?

We shall now very briefly apply the same procedure to the P controller case.
There is no awf here; Fig. 2.6. By inspection of Fig. 2.7, the control error e(t)
is largest at t = T1 , just after the reference step rl has been applied. It then
decreases monotonously.
Therefore

(2.150)

i.e.

1 1

DT 1- aj(DT)

and for the Nyquist contour

F sT+a
(1 + (s)) = sT + a + k

p

sjD + aj(DT)

sjD+ 1
(2.152)

Exercise
- Discuss this case further in the time and frequency domain.
- Look for any equivalence with the PI(aw) case from above.
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2.6.6 Summary

A generic result has been derived for the stability test

.1i1. .1i1.
1+.1 = -----

Ulinrnax - L1u eamax

and

which is not restricted to the dominant first-order plants considered here.

The general shape of the Nyquist contour 1+ F(jw) for the control loops
considered here is such that asymptotic stability in the very large (for a = 0)
or in the whole (for a > 0) can be shown, if the awf gain value ka is above a
threshold k~.

This gain value k~ coincides with the value where the overshoot in the
final linear settling transient is suppressed (for a = 0).

A conservative estimate has been given for the position of the straight line
originating from the nonlinear subsystem in the graphic stability test, on the
basis of the run-up reference step input, i.e. eTI •

and
.1i1. ka

1+.1> -I-I -k
eT1 P

This produces a "region of attraction" (i. e. asymptotic stability in the
large), even for plants with positive feedback (a < 0), for reference steps
generating an initial control error up to eTl = ti.
So, nonlinear stability analysis has brought about a much better and more

compact understanding of such control loops than what simulations alone can
provide.
On the other hand, some simulations are still needed to check the final per­
formance of a stability-based design, due to the inherent conservativeness of
the tests.

2.7 Relations to Optimal Control

2.7.1 Motivation

The aim of this section is to explore the relations of the awf control loops
investigated so far with Optimal Control. This will help to estimate what is
lost by the intuitive design in this respect. It will also establish a base line for
later investigations of higher order plants with awf control.

The key decision for Optimal Control is the choice of an appropriate per­
formance index, i. e. the function to be optimized over the trajectory.
Looking at the simulation results suggests separating into a linear end part
and a strongly nonlinear initial part.
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The control for the linear part has been designed by constant state feed­
back as a structure and pole assignment as a design method. The same con­
troller may be obtained by linear quadratic control on an infinite time horizon
and by choosing appropriate weights for the state and control variables. In
this respect, the controller used so far is already an optimal one.
For the nonlinear part, several approaches are in use, see Sect. 1.5. A very

popular one is to go on using the quadratic cost function from the linear
part, and inserting additional inequality constraints on control variables and
output variables, such as needed. Then there is no closed-form solution as for
the linear case, and the optimal control sequence u*(kTs ) must be determined
by numerical optimization. The advantage of this method is that basically the
same control algorithm is applied over both parts of the trajectory; there is
no method switching. A disadvantage is that it is not clear at the beginning,
what shape u*(kTs ) will have typically.
This type of approach has been investigated much, and many results exist.
We shall not go into it here, but refer the reader to the respective literature.
Instead we shall use the minimum transition-time approach. The main

reason is that this is basically what practical specifications will want, though
not in a mathematically rigorous form. For instance, the speed control of a
water turbine should attain the shortest transition time from "standstill" to
"ready for synchronization" in order to be of best use for covering demand
peaks in the power grid. The alternative would be to operate the unit at
speed-no-Ioad, which would continuously draw from stored hydropower. The
situation is even more pronounced with gas turbines as prime movers. One
disadvantage of this approach is the "method switch", as we shall see.

2.7.2 The Exact Solution

Optimal Control theory assumes that the transients to be optimized start at to
at x(to) = Xo and end at h in the state space origin x(td = 0 at u = O. Note
that the end condition amounts not only to the control error being zero but all
its time derivatives as well, i.e. steady state. In other words, this is again the
initial condition situation from the stability analysis in Sect. 2.6. It implies
that there exists at least one such trajectory from Xo to 0 which then can be
optimized. It also implies that u= 0 lies at a finite distance inside the closed
control saturation interval [Ul ow , Uhigh], for reachability. These conditions are
familiar and have been complied with in the previous sections.

Optimal Feedforward Control

The cost integral is

J = it! 1 dt = tE-to; and for the optimum: u*(t)I~~ such that Ju * ---.. min
to

(2.153)
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In other words a control sequence u* from to to tl is sought, which minimizes
the transition time h - to to the state space origin. This amounts to feedfor­
ward control.
The Maximum Principle states for the solution u*(t) that:

u* is always at one of the limits of the control interval.
It is either Uhigh to move upward or Ulow to move downward.
In the transition time interval to to h, there are at most n - 1 switchings
between both limits, if the linear system part (the plant) is of order nand
has no conjugate complex eigenvalues.

Considering only the dominant dynamics Cd of the benchmark case, then
n = 1 and there is one real eigenvalue. Thus there will be no switching between
Ulow and Uhigh, but u* will stay at one limit from to to tl.

Optimal Controller Synthesis

The aim is to replace u*(t), a function of time, by a function of plant state
u*(x), such that the required u*(t) will be generated automatically whilst the
system moves along its minimum-time trajectory x(t) in state space. This is
also called solving the synthesis problem, or designing the optimal feedback
u*(t) = j(x(t)).
In the general case this leads to switching hypersurfaces in state space, where
u* = Uhigh on one side, and u* = Ulow on the opposite side. In this particular
case, obviously

u* = {Uhi9h if e > 0
Ulow if e < 0

(2.154)

Note that u* is not defined for e = o. It is also not defined outside the
optimization time interval, i. e. for t > T 1 . However, time goes on and some
control must be provided there as well.

2.7.3 Ongoing Control

A simple idea would be to let the above switching control algorithm continue
after T1 . In practical implementations there are always additional small de­
lays. This then leads to high-frequency oscillations of small amplitude (limit
cycles) around the origin. This is known as "sliding mode" control, and there
is a considerable literature on this subject. The drawback of the method is
noise and wear in the actuator subsystem.
There are several work-around concepts. In the following we discuss two al­
ternatives.
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Form I: Suboptimal Control

A popular concept is to substitute the ideal switching characteristic in Equa­
tion 2.154 by the well-known saturation characteristic Ulin(t) --+ u(t), where
Ulin(t) = ke(t):

{

Uhigh if Ulin 2': Uhigh

u' = Ulin ~f Ulow < Ulin < Uhigh

Ulow If Ulin :::; Ulow

(2.155)

Here, k --+ 00 would lead to u' --+ u*, i. e. to minimum-time control.
For finite k values this amounts to P control with kp := k, with k small
enough, such that there are no limit cycles, and the control loop is sufficiently
damped in the linear range.
Next we investigate how much is lost against minimum-time by resorting to
such P control.
Using the open integrator plant (a = 0) and neglecting the small delay Tt = 0,
then the minimum-time for the run-up phase is

(2.156)

and for finite k = k p values, lift off of LlUlin from Llu occurs earlier by Tl

1 Tl
Tl = -T i.e.

kp h
Llu 1
----
leT1 !2DT

(2.157)

Allowing 3Tl for decay leads to an overall lengthening of the transient by Lltl

(2.158)

The next step is to insert an integral action to suppress steady state offsets,
of course with awf. Setting ka = k~ = 2 leads to the same response without
overshoot from lift-off onwards, and thus to the same lengthening of the tran­
sient. This is documented in Fig. 2.28(a), where the small delay and the finite
sampling time from Sect. 2.2 are used. The settling time is about 25% longer
than the minimum.

Form II: Transfer of Control

The aim is to reduce this lengthening further. The basic idea is shown in Fig.
2.27.
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Fig. 2.27. Structure for "transfer of control'

A generator for the minimum-time control sequence u*(t) is arranged in
parallel with the PI(aw) controller. A switch transfers control u(t) between
both as follows

switch to u*(t)

and back to UPI(aw)

if

if

..du
le(t)12 2

k p

..du
le(t)1 :::; O.25 kp

(2.159)
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Fig. 2.28. Transient response to the test sequence with "ongoing" linear PI(aw)
control (left); with transfer to u*(t) in the run-up phase only (right)
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This allows the transfer to u*(t) only in the run-up phase, and the load
swings later in the test sequence will be handled as before by the PI(aw)
feedback.

The settling time in Fig. 2.28(b) is not at the minimum, but about 10%
longer due to the small delay and the finite Ts .

Exercise
- Improve this further (hints: reduced Ts , PI(aw) output tracking, etc.).
- Investigate the influence of plant feedback (-0.5 :S a :S +0.5).

2.8 Case Study:
Temperature Control in a Chemical Batch Reactor

The aim of the design case studies is to provide a framework for active learning
of the material presented so far. The idea is not only to do the calculations and
simulations', but to check all assumptions carefully as well, and to evaluate
the results of the analysis and design critically from a plant operation view.

The example has been very much abstracted from a control engineering project
that one of the authors has been involved with.

This case study will be continued at the end of the next chapter.

2.8.1 The process and the main control task

Fig. 2.29 is a much-simplified sketch of the batch reactor.

Jacket

heating / cooling
input U(I)

Wall

Fig. 2.29. Sketch of the plant
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The main control task is to keep the fluid temperature at a given setpoint.
Overshoots are to be avoided, because over-temperatures may generate
unwanted secondary products from the reactions. Under-temperatures will
prolong the batch production time, as reaction rate goes down. Thus, high­
performance temperature control is required.

Temperatures are denoted by {) [QC], and heat flows by 1* [Wth ]

Available instrumentation and operation subsystems: the fluid content is
continuously stirred. Its temperature {)c is measured by a temperature
sensor (Yl) in the fluid. The wall temperature and the jacket temperature
are not measured.
The jacket is a source or sink for thermal energy flowing to or from the
wall to the content fluid. The response of the jacket and wall subsystems
is approximated by a pure delay e-sD with unity gain, where D is short
compared with the main time constant T of the fluid content.
This delay shall cover the dynamic responses of the fluid temperature
sensor and of the heating/cooling control valves as well.

A chemical reaction shall take place in the content fluid, which starts
at a given temperature threshold value {)s below the nominal content
temperature {)r .

The heat flow from or to this reaction I~ shall be modelled by

I~ = -kR({)c - {)s) for {)c;::: {)s

I~ = 0 for {)c < {)s
where

< 0 for exothermal reactions (heat source)
k R = 0 for inert reactions

> 0 for endothermal reactions (heat sink)

The actual value of kR is not known, but upper and lower bounds are
specified.

The test sequence consists of

- starting from standstill (all variables at zero)

- step up to the contents temperature setpoint rl to nominal, i. e. rl = 1.0;
- after reaching the steady state, apply a small setpoint step to rl = 1.025
- then introduce a small heat flow disturbance step I~ to the content.
This is to model a warmer reactant flow infused into the content.
The last two test steps will show the linear loop performance.

No measurement disturbances shall be considered here.

Input constraints from actuator saturation only shall be considered
[-1.0 ... + 1.0]
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2.8.2 The Plant Model

In this model, only one (well stirred) main storage domain for thermal energy
of the fluid content is considered, resulting in one ordinary first-order differ­
ential equation.
Considering the range f) > f) s around the steady state at rl = 1.0 and
introducing 'per unit' (p.u.) variables, (the index r standing for 'rated')

(2.160)

yields

+ u(t) + v(t)

and Yl = Xl

(2.161)

This leads to the dominant denominator polynomial d(s) = ST + a and the
transfer functions

and

Gu = JL = e-sD _
1_

u ST+a
_ Y _ 1

Gv -----
u sT+a

(2.162)

where the "fast" (non-modelled) dynamics are represented by a series delay
element e-sD with D « T.

2.8.3 Parameter Values

T = 900. s
X s = 0.90
a = - 8.0 ... +8.0

D = 20. s
u = - 1.0 ... + 1.0
v = + 0.025

reaction threshold temperature, in p.u.
reaction enthalpy gain, in p.u.
sum of all "non-modelled time constants"
actuator saturations, in p.u.
warm reactant inflow, in p.u.
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2.8.4 The Controller

To avoid any overshoot in the linear range, a "two-degrees-of-freedom" linear
PI algorithm is suggested for the YI loop:

(2.163)

2.8.5 The Design Program

It is suggested to proceed in three phases. Here are some additional hints:

1. Linear design
Design the controller settings by pole assignment as function of nl.
What options are available to incorporate the variation of a?
Select Ts .

Build a suitable 'Simulink/Matab' file pair with a discrete-time implemen­
tation of the controller.
Check its performance for the test sequence starting from steady state at
1h = 1.0, i.e. without the run-up phase.

2. Saturation on UI(t)
Start with the stability analysis.
Determine first for the range of a the steady state u relative to the satu­
ration values.
What sizes of setpoint step deviations orl and step disturbances v are ad­
missible for a "well-posed" stability problem?
Draw the Nyquist contour for the "reduced order and continuous" loop
- for a high closed-loop bandwidth D
- and different awf gains
and then for the actual control loop (with D > °and Ts > 0).
What is the predicted "area of attraction"?

Check the transient response by simulation for the full test sequence.
What is the actual "area of attraction"?

3. Tuning of R
Demonstrate the effects of not properly tuning R.
Hint: implement this by variation of pole assignment in s2 + s2(n + n 2

by
- decreasing n for de-tuning
- and inserting either 2( « 2 or 2( » 2 for mis-tuning.
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2.8.6 Typical Results

Figs. 2.30 and 2.31 may help you to check your solutions.
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2.9 Summary

The basic control loop with a plant of dominant first-order, input saturation
and PI(aw) control has been investigated. The performance is satisfactory
from an engineering design point of view.

As to structure, several simple alternatives are available. They are instan­
tiations of a generic structure. And equivalence properties have been given.

Considering transient response on y and u, they perform well (some better
than others) for both large setpoint steps and large load swings. Note that the
"well-posed" control problem has been considered, where the ultimate steady
state control variable u is at a finite distance inside of the saturation values.
The response approaches that of the minimum-time one, with smooth transi­
tion to linear control and with no perceptible overshoot.

Nonlinear stability analysis applied to this basic loop shows that the ini­
tial condition response will be globally asymptotically stable to the ultimate
steady state, if the internal feedback in the plant is negative. If the plant is
unstable, the same methods apply and a finite region of attraction will result.

Some areas within the standard PI(aw) technology have not been investi­
gated so far, such as

- the combination of derivative action D and awf

- how to implement antiwindup on a PII2 controller for cases where the
tracking error to a setpoint ramp must be brought to zero

- bumpless transfer

- and disturbances other than steps spaced which are widely enough
that the loop may settle in between.

However, the implementation of Output Constraints is a much more fun­
damental question, and also a key element for industrial design. So it shall
be addressed next, and the other areas of antiwindup just mentioned shall be
looked into afterwards.
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PI Control with Output Constraints

The motivation for investigating this area and its historical background have
been briefly discussed in Chapter 1.
As for the input constrained case, many different solutions to output con­
strained control loops have been developed by practitioners decades ago and
are in current use today. The aim here is to introduce selected basic concepts,
investigate their dynamic performance in a particular test case, and analyze
their nonlinear stability properties.

3.1 Arthur's Case

This case is again from the hydropower control field. Besides motivation, the
aim is to demonstrate the basic ideas of output constraint control and also to
illustrate how complex practical design problems may be compared with the
simplified situations we shall investigate here.

About 20 years ago, Arthur (the senior control specialist from John's case
in Sect. 2.1) was asked to do a control feasibility study for a customer oper­
ating a pumped storage plant. The large pump was driven by a synchronous
motor. Switching such a large motor to the AC grid at standstill would create
large overcurrents and torques and is not feasible. So the customer had to use
one of his turbine-synchronous generator sets for run-up. It is coupled electri­
cally to the pump motor at standstill. Then the turbine is run up slowly (for
instance with approximately constant acceleration), and its generator delivers
variable-frequency AC power to the synchronous motor and thereby pulls up
the pump unit. This technique is known as "back-to-back" run-up.
In contrast to John's case, the load torque on the turbine is not near zero.
At very low speed it is small, and then it increases approximately with the
square of rotor speed, while the flow is zero. At about 75% of nominal speed,
the pressure delivered exceeds the penstock pressure, and the main pump
valve may be opened. Then, the flow up the penstock increases sharply with

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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rotor speed and reaches its nominal value at nominal speed.
After speed stabilization there, the two-unit back-to-back system is synchro­
nized with the grid, and then the AC power supply is switched over to the
grid (at full power flow). Note that this amounts to a full load rejection on
the turbine. Finally the turbine is shut down.
Note that the whole sequence should be run through quickly for economic
reasons, and also because operating the pump at zero flow generates strong
vibrations and heat and, if prolonged, may damage the pump. Also, the gra­
dients should not be too large to avoid excessive pressure and flow transients
in the waterways. A typical specification would be no more than 60 s from
standstill to ready-for-synchronization.

First, we shall extend the plant model from Sect. 2.1 appropriately, then
look into Arthur's solution, and finally show the results of a design that ex­
ploits the techniques we are going to present in the sequel.

3.1.1 Extending the Plant Model

From what we have developed for John's case, the following extensions have
to be discussed; see also Fig. 3.1.
- the rotor acceleration signal as derived from the speed transducer
- the load torque produced by the pump as a function of speed
- the dynamics of the electrical back-to-back coupling, and
- the dynamics of the water columns,
all other elements being unchanged. Details are given below for simulations
and exercises.

Water Column Dynamics

The low inertia, incompressible model used so far is a valid approximation for
low head units at low flow. In this case, however, the elasticity and inertia
effects are such that they have to be included in a useful model. The penstock
dynamics are described by a partial differential equation of the telegraph type,
which we shall approximate by a lumped model of second order showing the
lowest one-end-open resonance mode of the penstock.
From the conservation of momentum of the mass content mL = PLLLAL of
the penstock at speed WL and with nominal head Hr, pressure at turbine PL
and friction pressure loss ,1pf

Using p.u. notation with rated values (index r) yields

LLWLr~ (wdt)) = Tw~ (wdt ))
gHr dt WLr dt WLr

= 1.0 _ (pdt)) _ ,1Pfr Iwdt) I (WL(t)) (3.2)
Pr Pr WLr WLr
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which defines Tw , and where the head is considered constant at rated and the
friction pressure loss fJ.pf proportional to IwLIwL (note that this is to cover
any reverse flow situations).

Q)f------­
yJ

Fig. 3.1. Signal flow diagram (Simulink) of the plant submodel for Arthur's case

For relation of volume change fJ.Vdt) to pressure PL(t) with inflow QL =
wLAL and outflow to the turbine QT

and

i.e.

( )_ .!. fJ.Vdt )
PL t - A L

'" L L

(3.3)

(3.4)

Again in p.u. notation
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which defines TK •

For QT := 0 this yields a harmonic oscillator with zero damping and resonance
frequency WI:

2 11
WI = -- = 2 (3.7)

TwTK /'i,LPLLL

and with the speed of sound aL in the penstock as aL := IIV/'i,LPL, then

(3.8)

where typically aL ~ 1000 m/s. This is used to determine TK , such that the
lowest resonance mode WI is at LL, being a quarter wavelength.
Numerical values for the simulations shall be:

LL = 500 m; WL r = 5 mls;
from 4LL = 2000 m ----+ h = 0.5 Hz;

and iJ.PfrlPr = 0.05

H r = 250 m; that is Tw = 1.0 S

WI = 3.14 radl s ----+ TK = 0.10 s

(3.9)

Finally the outflow QT(t) to the turbine is mO'deled by

(3.10)

where the turbine opening AT is proportional to the servomotor stroke Y3(t);
that is, in p.u. notation:

(3.11)

As pL(t) ~ 1.0, i.e. pL(t) > 0 'V t, no exception handling is needed for the
square root.

The Back-to-back Coupling

The two rotor inertias are coupled by the electric torque, which is approxi­
mately proportional to the difference between both rotor positions, the pole
wheel angle. This produces a model from input torque to speed consisting of
a harmonic resonator in series with an open integrator. The resonance fre­
quency is typically at 2...3 Hz, i. e. a factor of five higher than the hydraulic
resonance of the penstock. If the controller output is designed smooth enough,
then the pole wheel resonance will not be excited, and thus it is excluded from
the model here for simplicity. Then
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8wr !!:.- (WT(t)) = T
1

!!:.- (WT(t)) = (TT(t)) _ (Tp(t)) (3.12)
Tr dt Wr dt Wr Tr Tr

defining the rotor run-up time T1 .

The numerical value for the simulations is set to a typical value:

(3.13)

Driving and Load Torques

The driving torque TT at the turbine is as in Sect. 2.1:

(3.14)

where vpdt)jPr introduces the pressure influence on water inflow speed to
the turbine.

The load torque Tp of the pump shall be modeled intuitively by

Tp Tpp TpQ
-=-+-
Tr Tr Tr

Tpp = kp (WT(t)) 2 for a~ WT(t) :s 2
Tr Wr Wr

TpQ = kQ (WT(t))
Tr Wr

with kQ = a for
a WT(t) WTQ
~--<-

Wr Wr

and
1- kp

for
WTQ WT(t) <

kQ = WT -~--rv2

1-~ Wr WrWr

such that TpjTr = 1 at WT(t)jwr = 1 (3.15)

Also WTQ jWr is the pump speed where pressure in the pump at zero flow attains
the penstock pressure PLjPr = 1. And torques due to losses are neglected.
The numerical values for the simulations are set to

kp = 0.5; WTQ = 0.75 i.e.
Wr

TplT ~ 0.281
r W=WTQ

(3.16)

The Rotor Acceleration Signal Y2(t)

In the model, Y2(t) shall be picked up directly from the difference of turbine
and pump torques by way of a first-order filter with unity gain and TY2 = 0.1 s.
On the real plant this will have to be obtained as the (filtered) time derivative
of the speed transducer output.
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The Servomotor Positioning Loop, Y3 (t)

The structure from Fig. 1.3 in Sect. 2.1 is used with the following numerical
values:

Tsm = 1.0 s; uup = +0.05; Udn = -0.05; (3.17)

that is, the typical 20 s run time for full stroke. All other values are the same
as before.

3.1.2 Arthur's Solution

The main restriction he had to comply with was staying as closely as possible
to the proven structure of the standard analog electronic turbine regulator.
Any add-on functions had to come from the catalog of available boards, and
were restricted in numbers.
His basic idea was to use the opening limit setpoint on the standard controller
(which was constant during run-up in John's case), and adjust it by an appro­
priate feedback loop such that rotor acceleration is approximately constant.
Here is what he came up with in some more detail; Fig. 3.2.

Tuswt
USlop 10 ustan

Fig. 3.2. Arthur's solution for the controller extension (converted to Simulink)
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- The feedback adjustment of the opening limit is done by a standard
substraction module,
- forming the feedback control error e2 = r2up - Y2,
- followed by a standard integrator with adjustable ki2 /To,
- and with awf to keep it from running off the actual u.
- The reference r2up is produced by a standard ramp generator,
- which is set to zero at standstill and then ramps up to its preset value.
As the pump torque requirement for constant rotor acceleration would increase
steeply after the pump starts delivering flow into the penstock, he also decided
- to lower the setpoint r2up ' if WT ~ WTQ'

- such that the turbine opening u(t) does continue at about the
same gradient as just before
- in order to avoid upsetting the waterway dynamics excessively.

The controller parameter entries for the simulation have been calculated
by pole assignment for a much reduced order model, containing only the ser­
vomotor and the rotor dynamics as open integrators with run-up times TI

and Tsm only, and neglecting all other effects, i. e.

for the speed regulator

SlITI = 5; ksm = 3SllTsm = 3;
kPl = 3Sl~TsmTdksm = 5;
ki1 = SlfTsmTITo/ksm = 8.333;

and ka1 = Sll = 1.0
for the acceleration regulator

Sl2TI = 5; ki2 = Sl2TO = 5;
ka2 = Sll = 1.0

start phase setpoint r2up = 0.16
loading phase setpoint r2up = 0.08

and r2up ,r2dn ramp rate at ±0.025/s

The simulation results are shown in Fig. 3.3.

Observe that

where To := T I

(3.18)

(3.19)

Transitions are executed without bumps or windup effects.
The run-up time specified (::; 60 s) is complied with, and this with a fea­
sible control action u(t). Note that r2 setpoints for both start and loading
phases have been tuned accordingly.
Run-up gradients on u(t) before and after flow into the penstock starts
are as prescribed.
The controller output u(t) seems smooth enough not to excite pole wheel
oscillations (see above).
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Both closed-loop bandwidths .al and .a2 entries are near the upper limit,
which is imposed by the waterway dynamics. They cannot be increased
substantially without generating strong oscillatory modes.
But, by inspection of Fig. 3.3, .al is at the low limit regarding closed­
loop performance for synchronization. Note that this is to be done under
full power, and this puts tight specifications on performance of the speed
control loop.
Finally, there is a very substantial residual error e2, especially in the pump
flow phase, where near the end e2 attains around 50% of the setpoint value.
Note that this happens even with the integral controller R2 . This makes
tuning of the setpoints r2 a tedious task.

1.2 -yl
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Fig. 3.3. Arthur's solution: the model run-up transient

3.1.3 An Advanced Solution

The control system of Fig. 3.2 has been designed within the implementation
restrictions, as they were imposed by the analog regulator equipment avail­
able to Arthur at that time. It functions correctly, and the results may be
considered acceptable, but they are not very good. Further performance im­
provement would be very welcome, i. e.
- both .al and .a2 should be improved by at least a factor of two,
- and the residual error e2 should be reduced at least by a factor of five,
to ~ 10% of r2.
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This can be attained without losing the smoothness properties on u(t); see
Fig. 3.4,
- if the implementation restrictions from above are put aside,
- and if state feedback is added to both loops for active damping
of the penstock oscillation,
- and, finally, if the override techniques we shall investigate later
are put to use.

-yl
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I
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0 10 20 30 40 50 60 70

Fig. 3.4. Model run-up transient with an advanced control structure

Comments
On current digital turbine control systems, function blocks may be configured
more freely, so this is now a realistic assumption.
Active damping feedback allows the closed-loop bandwidth to be moved up
to st1 = st2 = 3 rad/s in the model; see Fig. 3.4. On the real plant, pdt)
may be measured with low expense, whereas Qdt) will have to be estimated
by an observer. Note that such additional feedback has been implemented
successfully in a number of hydropower stations, but it is not yet routine. Note
that this add-on measure will be unavoidable for plants where the penstock
resonance frequency is lower than in our case.

Exercise
- Use the data given as the basis of a "case study".
- Design your own control system.
- And improve on what is shown in Fig. 3.4 !
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3.2 The Basic Concept

3.2.1 Problem Statement

Consider the control problem of Fig. 3.5, see also Sect. 1.3.

v

u

Fig. 3.5. Control system for Yl by u with upper and lower constraints on the
secondary output Y2

The main controlled variable is Yl. Associated with it is the feedback
controller R I with setpoint ri. Then a second output variable yz is to be
constrained to operational limit values YZ 1o ' YZ hi •

A typical case is a DC-servomotor, where Yl is the rotor speed, yz is the
armature current (which is to be limited), and u is the voltage supplied by
the power amplifier (which is not to be constrained here). Another typical
case is position control of a rigid mass, where Yl is its position, yz is speed,
and u is force or torque applied, which again shall not be constrained.

The final steady state fh of the second output shall lie at a finite dis­
tance inside the limits YZ 1o ' YZ hi , such that linear control of YI around rl is
feasible for small but finite deviations 8rl, 8v without yz interfering with its
limits YZ1o ' YZ hi • In other words, control shall not be stuck to the constraint
limit permanently. This would be considered as an "ill-posed" problem, to be
remedied by structural changes in the plant.

Also, no input constraints (on u) shall be active here. In other words,
only transients will be considered, where the input constraints are not met. 1
This also implies sufficiently bounded disturbance inputs v. Therefore, the
investigations are clearly restricted to a subset of all operational transients. A
more complete problem setup with both output and input constraints being
active will be considered in Chapter 4.

All input-output paths indicated in Fig. 3.5 are linear and time invariant,
described by their transfer functions.
In particular, the response of yz to u is to be linear across the limits YZ 1o '

1 Note that input constraints are always present in control loops due to physical
actuator saturations.



3.2 The Basic Concept 101

Y2hi' within a sufficiently large region around the limits to accommodate the
control trajectories to be expected.

Then

The first basic element is to modify UI delivered by the controller RI prior
to applying it to the plant as u, such that Y2 does not exceed its respective
limit value Y21

0
or Y2 hi , but runs along it, and as closely as possible.

Intuitively this will produce the least possible constraint on U versus UI,
and thereby the weakest interference with the YI-loop, and thus the least
performance degradation in the YI transient, which is still consistent with
respecting the output constraint.

The second basic element is that this modification on UI is done by feed­
back, i. e. feedback controllers R 21o ' R2hi' rather than by feedforward, for
better rejection of parameter changes and disturbances. A feedforward
scheme would amount to putting appropriate saturation clamps on stroke
and/or slew of u. In practice, often a combination of feedforward and feed­
back schemes is used.

The third basic element concerns easy setup and tuning. The reference
values r21o ' r2hi to be used on the feedback controllers should be equal
to the respective limit values Y21o ' Y2hi' In other words, the corresponding
control errors e21o' e2hi should converge to zero, when the system trajectory
evolves along the constraints.
This leads to integral action in the constraint feedback controllers R2hi ,
R21o' the same as in the main controller R I.

3.2.2 Typical Controller Structures

Three typical implementations of these basic ideas are given in Fig. 3.6.

• The Nonlinear-Additive form was introduced with hydraulic-mechanical
regulator equipment more than 50 years ago. Note that it will function
properly only if there is no integral action upstream of the summing point,
i.e. neither in R I nor in R2 • In other words, there will always be nonzero
control errors e2 along the constraints, as u(t) is a linear combination of
el(t) and e2(t). Also, the gain k2 in the Y2-path must be several times
higher than the gain on YI in RI to produce any useful constraining effect.
In order to attain a sufficient phase margin in the Y2-looP for such a high
gain k2 , some compensation is usually required. This is indicated in R~.

Note that an integral action is admissible downstream of the summing
point to obtain el ---+ 0 at least.

• The Cascade-Limiter form is very popular in drive systems, such as for
current limiting within speed control loops, or for speed limiting in position
control loops. It is applied in other contexts as well, but, as we shall see, it
is not as versatile as the bottom form Fig. 3.6(c). Note that both R I and
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R2 must contain integral action to have control errors e1 and e2lo' e2hi

converge to zero. Then R1 needs awf from the T21 o ' T2hi saturation.

"1

"

(a)

awf l +
r-----().:.-----l
I l- I

I +,

(b)

Max
Sel.

(c)

Y1

awf +
Y2 2hTY ------------!

i "2 hi !
I,
I v
,

-l,
Min I
Sel. h---"

I ",
I

Y2

GU2~~)'

GUI (s)
Y1

Fig. 3.6. Typical implementation structures for output constraint control
Nonlinear-Additive (top) Cascade-Limiter (center) Selectors (bottom)
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• The Selectors form has been developed in the 1960s for electronic analog
and pneumatic equipment for control in the power generation and chemical
industries; see also Sect. 1.2. It is also known as the "lowest wins" strategy
[26]. This suggests that u is constrained in the "up"-direction only.
Here it is extended for both "up" and "down" directions: Ul is modified into
U by a Maximum Selection with U2lo for control along the lower constraint
r2lo' which is followed by a Minimum Selection with U2hi for control along
the upper constraint r2hi' All controllers have integral action with awf
from u.

Note that in all three cases the output constraint feedback manipulates the
control variable u(t), i.e. they use the "control conditioning" approach. We
shall investigate them in more detail now using the following benchmark where
necessary. In Chapter 7 we shall also consider structures using the "reference
conditioning" approach.

3.3 The Benchmark Test

Consider the positioning control task mentioned above.

(a) The plant shall be described by the two first-order differential equations
for speed s and position p:

where the mass m is constant and the driving and braking force Fd and Fb

are both independent of speed s and position p. Introducing rated values
for all variables produces a "per unit' notation

withfor position

for speed

and

p(t)Xl=­
Pr

s(t)
X2=­

Sr

Fd l
bu = F

r
;

mSr71 =-­
Fr

Prwith 72 =-
sr

Fbi
bv =-

Fr

[71 0] d [Xl] [0 + 1] [Xl] [0o 72 dt X2 = 0 0 X2 + +bu
o ] [u 0](3.20)

- bv 0 v

where Fd I' Fbi are the respective full-scale values.

Letting Yl := CIXI and Y2 := C2X2 with sensor gains Cl, C2 and introducing
again a small delay D to cover the non-modeled fast dynamics yields the
transfer functions to u
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and

c _ Y2
U2 - U

C - Y1
U1 - U

Setting D := 0 yields the dominant dynamic response Cd1 and C d2 .

Similarly, the response to the load force input v is modeled by:

C - Y1 1
(3.22)bv C2-V2 - V

S72

and C _ Y2 1 c1
C

_1_
(3.23)bv C1--V1 - V s27172

V2
C2 S71

Numerical values for the test case are entered as follows:

bu = bv := 1; 71:= 5; 72:= 1; D:= 0.025; C1 = C2 := 1 (3.24)

(b) Controller Structures
Consider first both feedbacks of Y1 and Y2 separately.

Controller R 1

Applying basic linear design rules leads to a standard linear cascade ar­
rangement for the main controlled variable Y1, with a P controller with
gain kS1 in the inner loop for the speed signal Y2, and a standard PI(aw)
controller in the outer loop for Y1, i.e.

(3.25)

with the awf form E of Sect. 2.4.2 and gain ka1 •

Controllers R 2

Applying standard design rules for the output constraint feedback of Y2 to
r2lo' r2hi leads to two standard PI(aw) controllers R 210 ' R 2hi ,

(3.26)

with awf of form D and gains ka2 • In other words, both controllers
R2/o' R 2hi shall have the same parameters kp2 , Ti2 .

Note that this is directly applicable to the selectors form of Fig. 3.6. The
other two forms require further modifications.

For the nonlinear additive form the controllers must be split into an lin­
early equivalent series arrangement with an integrator 1/(s70) used by all
loops, and

and

70
U1 = kP1 T (STi1 + 1) e1 - s70 ks1 Y2

'1

70
U2lo,hi = kP2 T (sTi2 + 1) e210,hi

'2

(3.27)
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The cascade limiter form will require the inner loop controller to be of PI
type in order to suppress persistent errors e2 along the constraints. The
outer loop controller may then be either of P type (which is often the
case in mechatronics) or of PI(aw) type. In this case it turns out to be
more convenient for pole assignment design if the structure of the inner
loop controller is modified, such that its setpoint r2(t) is only active on
the integral part and not on the proportional path as well. This slightly
nonstandard structure is tolerated here, as it is often available in industrial
process control systems.

(c) The controller parameters are determined by pole assignment using the
"dominant dynamics" models Cd l and Cd2'

Controller R1
For the selector form, in a first step the state feedback gains klo' k1l , k12 of
the main controller R1 are determined. From the characteristic equation

o = s3707172 + s27071 (a2 + buC2k12)

+S70 (al + buc1kh ) + buc1k1o

~ (s+S?d 3

i. e. buc2k12 = 3S?172 - a2

buCl k1l = 3S?r7172 - al

buc1k1o = S?r707172 (3.28)

where in this case 70:= 72; a2 = al := 0;

and for the standard PI P cascade structure, Eq. 3.25

kSl = k12 ; kPl = k1) k12 ; Til = k1l / k10

Controllers R2

(3.29)

0= S27072 + s72(a2 + buC2k22) + (al + buC2k2J

~ (s + S?2)2

yielding buC2k22 = 2S?272 - a2

buC2k2l = S?~7072 - al (3.30)

with 70:= 72; a2 = al := 0;

and for the standard PI structure

kP2 = k22 ; Ti2 = k22 /k2l

with numerical values S?l := 3, S?2 = 2S?1 = 6, and Ts = O.OlD.

(3.31 )

For the cascade-limiter form specified above, a very simple and convenient
approach is to design both controllers in one step to the same pole locations
at -S? The inner loop controller is given as
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(3.32)

Then the characteristic equation is:

o= S4T~TIT2 + S3T~TI (a2 + buC2k22)

+S2T~ (al + buC2k21) + STO (bu c I k I1 k 2J + buCIkIok21

:!::(S+Sl)4

i.e. buC2k21 = 4SlT2 - a2

buC2k22 = 6Sl2TI T2 - al

bu c I k I1 = 4Sl
3

TOTIT2/ k 21

bucIkIo = Sl4T6TI T2/k21 (3.33)

with TO := T2.

The numerical value Sl := 3 is suitable for D = 0.025 from above and for
setting Ts := 0.010 s.

(d) The test sequence shall be basically the same as in Sect. 2.2 for the input
saturation case. Some refinements are added to model a typical startup
sequence in more detail.
After starting the simulation, rl := 0 until time T = 0.5 s and then
rl := 0.98.
Also, a shutdown input constraint is inserted on u. It forces u := 0 until
time Ton = 5.0 s and only then transfers u to the controller output.
The control system then has to run up along the r2hi constraint, which
will take approximately 10 s (see numerical values in items (a) and (e)).
During this phase, a load step VI = +0.90 is applied at time Ton + 6 s,
to check the performance of the output constraint loop (similar to what
appeared in Arthur's case).
After settling at YI = rl = 0.98, a small setpoint step to rl = 1.00 is
applied as in Sect. 2.2, and then a large reverse load swing to V2 = -0.90,
to check the performance of the YI-Ioop.

Again no high-frequency measurement disturbance shall be considered.

e) The constraint setpoints are set to

r2 hi = +0.5 and r210 = -0.5 (3.34)

that is, to a minimal transition time of 10 S from 0 to 100% of position.

3.4 Structures for Output Constraint Control

The next step is to investigate candidate structures for output constraint con­
trol of the "control conditioning" class more closely and check them on the
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benchmark test if necessary.
We shall start with the nonlinear additive idea, which seems to be the most
intuitive, then go on to the selector concept and finally investigate the cascade­
limiter arrangement.
A broad sweep will be made, ending up in a "generic structure". Its transient
response properties will be discussed in more detail in the following section.
Typical forms of the "reference conditioning" class shall be discussed sepa­
rately later.

3.4.1 The Nonlinear-Additive Concept

Designing the separate linear controllers in Sect. 3.3, item (b) has led to
a series arrangement of an integrator downstream of the nonlinear addition
point in Fig. 3.6(a), which is used by all feedback loops, and corresponding
PD elements upstream of it.

Form A

This leads to Fig. 3.7. Note the shutdown input constraint switch, which is put
within the discrete integrator loop, and thus conforms to the awf structure
of Fig. 2.12(c). Note also that the setpoint step rl is only applied to the
proportional path and not differentiated, to avoid undue upset of u and thus
of the output constraint feedback. Finally, note that in R I the d2 yddt2 path
is replaced by using dY2/dt with appropriate weight, for numerical reasons.

The response to the benchmark test sequence in Fig. 3.8, shows that
- the YI-loop performs well,
- but the Y2 constraint feedback is far from working as specified.
By inspection of the structure in Fig. 3.7 this must be due to the interaction
of the main control signal VI with the constraint feedback output V2 along the
constraint.

Fig. 3.7. Structure of the controller form A
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Fig. 3.8. Response to the benchmark test sequence with form A
load step applied at t = 8 s

FormB

This defect can be suppressed very easily; see Fig. 3.9.
The input Wi to the deadspan nonlinear block is augmented by VI, i.e.

Wi := VI + V2

and V = VI - W

Now if Wi < U2hi then W = 0 and V = VI

but if Wi > U2 hi then V = Wi - U2hi

z. e. V = VI - Wi + U2hi

= VI - VI - V2 + U2hi

V = -V2 + U2hi (3.35)

and similarly along the lower constraint U2lo'

Now V depends only on V2, as U2hi is a constant offset which is determined by
the output constraint setpoint T2hi; see above. In other words, the interaction
of VI on V2 is now eliminated.

This is confirmed in the simulation in Fig. 3.10, where now e2 ----t 0 for the
run-up trajectory along T2hi' as per specification.
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Fig. 3.9. Structure of the controller form B
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Fig. 3.10. Response to the benchmark test sequence with form B
load step v applied at t = 11 s

Form C

There may be applications where the integral action is not needed nor wanted
for some other reasons. This leads to the very simple structure of P cascade
for YI and P control for Y2; Fig. 3.11. The controller parameters have been
determined by pole assignment to the same locations fh, [l2 as above. Note
that in the response in Fig. 3.12 there are now persistent control errors on
both e2 and el (from VI, v2 being nonzero).
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Fig. 3.11. Structure of form C with P controllers
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Fig. 3.12. Response to the benchmark test sequence with form C

FormD

The aim of developing form B further into D is to avoid the differentiation,
make the form more flexible, and make it implementable by standard soft­
ware modules on current process control systems. This needs several small
manipulations; see Fig. 3.13 for illustration.

Fig. 3.13(a): The output constraint feedback through the deadspan non­
linear element is split into two separate branches for U2hi and U21o'
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Y2

(a)

(b)

(c)

Fig. 3.13. Developing structure form D out of form B

Fig.3.13(b):
The breakpoints of the deadspan elements are shifted upstream across
the Rz controllers into a standard "+ measured value - setpoint" sub­
traction element delivering -eZhi into RZhi .
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The nonlinear characteristic then has to be modified into

that is, a standard diode characteristic with unity slope.
And correspondingly for the "low" constraint, but there with the non­
linear characteristic

w = VI +V2lo if Vl +V2lo < 0 and w = 0 if VI +V2lo ;::: 0 (3.37)

Fig. 3.13(c): Finally the signs are adjusted to obtain standard regulator
blocks for the R2 controllers, and the nonlinear characteristics are modified
accordingly.

Form E

The next step is to avoid the differentiations in the R~- and R~-blocks of
Fig. 3.13. This is done by moving the integral action upstream into each R i ,

i.e. to use a standard PI structure such as in Fig. 2.14. As the individual
controllers are operating intermittently, an awf is required on each one. The
open question is where to pick up the signals for forming the awf errors eai ,

then the rest of the structure would be straightforward.

Hanus'Idea
This is resolved by slightly generalizing the construction rule for ea used so
far, which was to use the signals just upstream and just downstream of the
saturation element. As proposed by Hanus, we shall replace this by using the
output of the linear controller (Uilin) and the final u as it is applied to the
plant. Note that this may contain several successive modifications of UI by
saturations, nonlinear additions, etc.
Applying this generalized rule to R I and the previous rule to both R2 con­
trollers yields the structure shown in Fig. 3.14(top).

The final modification is to shift the signals to awf paths of the R2 con­
trollers as shown in Fig. 3.14(bottom), producing form E.
The structures in Fig. 3.14 are equivalent, as

from Fig.3.14(top) ea ! = -UI + U

and ea2hi = -w + v

where w = U2hi - Ul

and U = V + UI V = U - Ul

from Fig.3.14(bottom) ea2hi = -U2hi + U

which is the same.

(3.39)
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Fig. 3.14. Using integral action upstream of the nonlinear addition function and
awf (top) and Controller form E (bottom).
The internal structure of the R1 and R2-blocks is form D from Sect. 2.4.

Form E now consists of three standard PI(aw) controllers with individual
finite awf feedback gains ka;, and with a common tracking input u from the
output of the "nonlinear additive" block, which is shaded in Fig. 3.14, bottom
right.
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This structure is more flexible and adaptable to different design needs than
e.g. form B, because either R1 or Rz may also be designed without integral
action.

Its performance will be investigated in more detail in Sect. 3.5.

3.4.2 The Selector Concept

Minimum and Maximum Selector blocks have been used for many decades
in control engineering, and are the root of a second family of structures for
output constraint control.

Form F

The "nonlinear additive" block of form E Fig. 3.14(bottom right) is the only
non-standard function block in current process control systems. This shall be
rectified next.
The nonlinear characteristic from w to v in the shaded block may be inter­
preted as

and as

v = Min{O, w}

= Min {O, UZ hi - ud

U = Ul + V = Ul + Min { 0, UZ hi - ud

(3.40)

(3.41)

where Ul may be added instead to both elements within the Minimum Selec­
tion, finally

(3.42)

Similarly for the low side:

VIa = Max{ 0, Wla } = Max { 0, uZlo - Ul}

and U = Ul + Max { 0, uZ lo - ud

i. e. finally
U = Max { Ul, uzlJ

Now if the "well-posedness" condition holds:

(3.43)

(3.44)

then the Min- and Max-selector blocks may be put in arbitrary sequence in the
signal flow graph, such as putting the Max-selector first, and the Min-selector
next:
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u = Min { U2hil Max { U210' uI}} (3.45)

or equivalently
(3.46)

Such Min- and Max-selector hardware blocks or software functions have
been standard elements of industrial process control equipment since the
1960s.
This produces the controller form F, Fig. 3.15, which is equivalent to form E,
Fig. 3.14, as we have just shown. We shall develop this into a "generic form"
of output constraint controllers later.

If the condition of Eq. 3.44 should not hold, then the result depends on
the sequence of the selector blocks. 2

,- ~ -r --- --- --- --- --l
+, : :
-: I I

-------------------.

Max
• eJ.

,,,,,,,,,,,,,
I,

--.----------------

Fig. 3.15. Controller form F.
Note that the sequence of Min- and Max-selectors may be inverted

Exercise
- Investigate the effect of this sequence, if the problem is
not "well-posed".
- and also with form E in this case.

2 this property will be actively exploited later.

II
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Form G

So far, the selection has been performed on the outputs of the linear controller
parts. It has also been proposed to perform the selection on the individual
control errors instead, i. e.

(3.47)

and then using a common control algorithm R for e -t u.
The advantage is that the integral action contained in R is always "in the
loop", and thus will not wind up, and no awf is needed. The disadvantage is
clearly that no reasonable closed-loop performance can be expected from a
common R, as G1 and G2 are usually quite different. So this form will not be
pursued any further, also because better alternatives are available.

Form H

This form tries to combine the advantage of G with having separate R1 and
R2 controllers for individual tuning. This leads to placing the integral action
in the common R, and having the R1 and R2 as generalized PD controllers,
form H, in Fig. 3.16. It has been in use since the 1970s for boiler load control
with multiple output constraints from critical temperatures, and temperature
gradients, i.e. thermal stresses [18] .

.. _.. ----------_.-~
1---......., :..

Fig. 3.16. Controller form H.
Again note that the sequence of Min- and Max-selectors may be inverted

And for continuous-time controllers:
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1
U =-v

S

VI = k 01 (rl - yd - Sk11Yl - Sk21 Y2 - ...

V2hi = k 02 (r2hi - Y2) - Sk12 Y2 (3.48)

It may be convenient to insert an appropriate time scaling factor To.

For discrete-time implementations it is recommended to use:

1
U = v1- Z-l

VI = ko1Ts (rl - Yl) - (1- Z-l) k11Yl - (1- Z-l) k 21 Y2 - ...

V2hi = k o2 T s (r2hi - Y2) - (1 - z-l) k 12 Y2 (3.49)

rather than use as derivatives (1- z-l) ITs, to improve scaling (especially
useful for short Ts ).

The strength of form H is the very simple and transparent structure.
Unfortunately, there are numerous weaknesses: integral action must be im­
plemented in all paths, whether it is required or not, and very different time
scales in G1, G2 may generate scaling difficulties. The main problem, however,
is its sensitivity to measurement noise, which must always be considered in
real plants. The sensitivity is due to the differentiation in the R 1 , R2 together
with the high-gain awf, as we shall demonstrate in Chapter 5.

Form J

This form is generated from H in its discrete-time form by splitting the one
step delay of the integral action into three parallel ones and moving them
upstream around the Max-Min-selector group; Fig. 3.17.

If these delay elements are all initialized to the same value, then by in­
spection form J is equivalent to form H:

+ -1
U2hi = V2hi uz

and Ul = VI + uz- 1

and U = Min { U2hi' Ul}

i.e. U = Min { V2hi + UZ-\ VI + uz- 1
}

or u - uz- 1 = Min { V2hil vI}

finally u (1 - Z-l) := V (3.50)

o
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Fig. 3.17. Controller form J

Special Case of Form J: Input Saturation

Consider now the special case

(3.51)

In other words, Y2 is the control input u, shifted by one sampling delay. This
is generated by the output via the DA converter, and the input through the
AD converter at the next sample.
Set also

i.e.: R2 is a unity gain integral controller (3.52)

Then the two one-delay feedback paths in Fig. 3.18 cancel, and the "hi" input
to the Min-selector block is reduced to T2hi' i. e.

(3.53)

In other words, this special form in Fig. 3.18 reverts to the input saturation
structure of Fig. 2.12(c).
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Fig. 3.18. Special case of form J (top), which reverts to an input saturation form
(bottom)
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FormK

The next modification is to shift the integral action fully upstream of the
selector blocks, and add individual awf paths; Fig. 3.19.

~5;]-_ .:------------ .. ~

--------------------: i
}-__L..- ~,..., : :

+: : I...._.. _.. _.. _... ,
: : '
: :, ., ., .

····,
. __ ._ .. _ .. _~.I

Fig. 3.19. Form K

Then, if and only if the awf gains are such that deadbeat response results
in the awf loops, i.e. if and only if in Fig. 3.19

(3.54)

holds, then form K is equivalent to form J, and thereby to form H; see [34].

Note that now the serial structure of type R'I(aw) in Fig. 3.19 may be
transferred into a parallel one, PI(aw), as shown in Chapter 2. This avoids
the differentiation in the R' blocks.

Form L

This goes back to what Buckley [21] described for pneumatic control equip­
ment; see Fig. 1.5.
Fig. 3.20(a) shows the block diagram for this arrangement. The first-order
unity gain lag element with time constant Tf models the variable throttle and
bellow arrangement in the positive feedback path, which generates the "reset"
action.
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Fig. 3.20. Developing form L

"

This is developed further in Fig. 3.20(b) by shifting the feedback gain kf
into the input path as l/kf. Then the unity negative feedback around the
high-gain element can be replaced by a unity gain element, and thus drops
out of the block diagram.

FormM

This leads to Fig. 3.21, where more general transfer functions E and Fare
inserted in the input and feedback path.
For equivalence of M to L in Fig. 3.20(b)

E = 11k! = kp

Z-l
and F(z) = -,-------,-----­

1-z IT + -1----r;-! z
(3.55)

For equivalence of M to form J (and thus to forms Hand K)

(3.56)
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Fig. 3.21. Form M

Exercise
Develop the equivalent continuous structures.
Hint: look for RC networks around operational amplifiers; Fig.1.6.

Summary

From what we have shown, form M is a (mini-)generic structure for H, J,
and K, but only with deadbeat awf gain, and the self-conditioning form L;
see also Sect. 2.4.4. However, it is less general than what we shall present in
Sect. 3.5.
We have also shown that the input constraint control problem may well be
considered as a special form of the output constraint control problem, with
Gz = Z-I.

3.4.3 The Cascade-Limiter Concept

This concept (see Fig. 3.6(b) is very popular in the drives field, and is the
root for a third family of output constraint control structures.
From Fig. 3.6(b) this may be seen as an input constraint control problem,
with awf to the master controller R I . From this, it is often concluded that the
cascade limiter concept covers all output constraint control problems as well,
and that thus any further development of structures is superfluous.
We shall show that this is not the case. In fact, the cascade-limiter forms are
best suited only for one class of plants, a large one in fact, but do not cover
other practically important cases. Overlooking this will lead to poor control
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performance.
Note that the benchmark plant defined in Sect. 3.3 belongs to this particular
class, where the cascade-limiter concept is applicable. However the design of
the linear controllers of Sect. 3.3 must be revised.

Assumptions on the Plant Model and the Control Structure

The basic idea of cascade control is to use an additional measured output Y2
for an inner feedback loop (often denoted as "slave"), where Y2 contains trend
information on the future change of Yl in the outer loop ("master"), and thus
improve closed-loop performance of Yl.
More formally, define a class of plant models with the following properties:

1. Let the plant model be in control canonical form.
2. Let Yl = ClXl, i.e. no zero in Gl(s) = Yl(S)jU(s) is admitted.
Otherwise Yl (t) would already contain such "trend information"

3. Let Y2 = C2X2, i.e. from item 1: Y2 = (c2fcl)(dyddt),
meaning that loosely speaking the "trend information" about the output
Yl should not be mixed up with information from other parts in the plant.

This holds for the two-integrators-chain specified as the benchmark plant in
Sect. 3.3:

1
Yl(S) = 2T'T' u(s)

S 1-L 2

1
and Y2 = --;:;:;-u(s) := sTl Yl(S)

S12
(3.57)

The feedback control structure is shown in Fig. 3.22.

Fig. 3.22. Form N.
A second awf path has been added to R1 to prevent windup if the run-up switch is
in its "down" position
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It is a cascade arrangement with control of Y2 by the inner loop with a
P controller (gain k2l ) and an outer loop for YI with a PI controller in a
traditional arrangement of a P controller with gain kii and a reset action on
its reference by an integrator with gain kOl ITo, driving el = TI - YI -+ 0.
It is also a state feedback structure for the plant (Xl, X2) augmented by the
controller integrator (xo).

The controller parameters kp2 , kpl , Til may be determined by the closed­
loop pole assignment procedure via the state feedback gains kOl , kll ,k2l to
(8 + S/1)3 = 0:

bkol = S/3ToT I T2 ; al + bkll = 3S/2T I T2 ; a2 + bk21 = 3S/T2

and then to the controller parameters

(3.58)

(3.59)

and the standard awf (with gain kas = l/kp J is used.
Note that this extends directly to plants of higher order, if the cascade loops
are nested accordingly for each state variable.
The inner loop with P control will show a persistent control error e2 i=- 0, if a
persistent load v i=- °is applied in parallel to u; see Fig. 3.23.

.oS

0.5
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Fig. 3.23. Benchmark response for form N, the PI P cascade

An Additional Requirement and Modified Control Structure

However, the output constraint control task generally requires e2 -+ 0, i.e.
the open loop transfer function H 2 = R2G2 of the Y2 loop has to have the
necessary limit property
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. 1
hm H2(8) rv - (3.60)
8--->0 8

Now the general case of al ¥- 0 in

requires (3.61 )

i.e. a cascaded integral action as well. This situation occurs fairly often in
practice (see Arthur's case), and requires to extend the basic controller blocks
offered by industrial process control systems. It shall be investigated later (see
Chapter 5).
But if al = 0 (as in the benchmark plant), then the standard PI algorithm is
sufficient for R2 .

k
requiring U2(8) = ~ (r2(8) - Y2(8)) + k Iz (0 - Y2(8))

81 0
(3.62)

A two-degrees-of-freedom structure is used here (which is often available in in­
dustrial process control systems), as this makes the pole assignment procedure
much easier. Then for (8 + [lz)2 = 0:

(3.63)

The "master" controller R I may be of P type only, as the main load
disturbance has been suppressed by the integral action in R2 , and as al = 0,
the control error el ---+ 0 for constant rl; see Fig. 3.24. This structure is often
used in mechatronic positioning loops.
The parameters are again determined by pole assignment. The closed-loop
characteristic equation now is with

cub
YI(8) = ( y. ) T U(8)

8 2 + a2 8 I

for the benchmark plant

3 C2 2 C2
0=8 ToTIT2 + (a2 + -bkIz )8 ToTI + (-bkoz )8TI + cubkll koz (3.64)

CI CI

and with (8 + std3 = 0

(3.65)
i.e.

1
kh = "3stITI (3.66)

If now the poles for the YI loop are assigned by Eq. 3.65, all three parameters
are fixed, in particular the parameters of R2. In other words, koz ' k1z are now
given, and st2,2(2 follow from Eq. 3.63, i.e.:
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2 ! 2
3f.\T2T l = [l2 T 2T l

I
3[llT2 ~ 2D2[l2 T 2

i.e.

i.e. (3.67)

In other words, considering the inner loop in isolated operation, its band­
width is higher by a factor of J3 and the damping ratio 2(2 is slightly lower
than the damping ratio of the full system, but tolerably so.

Inserting the saturation for T2 hi and T2 10 leads to form 0, Fig. 3.24. No
awf is required for R l , which makes the system particularly simple and trans­
parent.

'----------------------ij\.I4----'
ZOH.

Fig. 3.24. Form O.
A deadbeat awf has been added to R2 to avoid windup prior to enabling run-up

The response to the test sequence shown in Fig. 3.25 is well behaved.
Should a PI type be required for R l due to additional elements in the speci­
fication, then obviously an awf has to be added to R l .

Exercise
Investigate this further:

What additional elements are needed to require a PI(aw) algorithm
for R l ? Extend the benchmark accordingly.
Hint: append an additional disturbance step input to the plant inte­
grator for Xl; see Eq. 3.20
Design the linear controller parameters for the PI PI cascade, see
Eq.3.33.
Then, how do the closed-loop dynamic parameters [l2 and 2(2 for
isolated operation along the constraint relate to ill and 2(1 from
above?
Check the transient response with the extended benchmark.
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Fig. 3.25. Benchmark response for form 0, the P PI cascade

Equivalence to Selector Control

Starting from Fig. 3.24, the saturation element is replaced by an equivalent
Max-Min-selector block, and R2 is converted into serial form, see Fig. 3.26(a),
where3

(3.68)

(3.69)

and

u(s) = :~ (r2 - ih) with ih = Y2 (1 + sTo~~:)

In the next step, as shown in Fig. 3.26(b), the Max-Min-selector block is
moved downstream in front of the integrator k02 / sTo.
Subtracting ih everywhere in Eq. 3.68

and multiplying with k02 everywhere

o (3.71)

as in Fig. 3.26(b). So Figs. 3.26 (a) and (b) are equivalent.

Now (b) corresponds to form H, and thus for the discrete-time versions
may be manipulated further by way of form J to form K, (only valid for dead­
beat awf gain entries), finally to form L, all these structures being equivalent.

3 For brevity, the argument is presented for the hi-constraint only.
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r2hi --------.- ... _-----

+

a)

b)

Fig. 3.26. Conversion of the cascade-limiter-type controller to a selector-type

Note that all three controllers for Y2 are the same. So there is no flexibility
for tuning the Yl and Y2 loops individually.

Exercise
Above, we have tuned for the Yl loop, and thus fixed the Y2 dynamics.
Investigate the other alternative of tuning first R2 for the Y2 loop in
isolated operation running along the constraint, and then tuning R 1 .

The basic assumption for .this subclass of cascade limiter control systems
was

d '. .
Y2(t) := T1dtY1(t); z.e. for the benchmark Y2(S) = sT1Yl(S) (3.72)

If this holds then the P PI cascade for Yl can be manipulated further into
the PI P cascade used preViously. But again, the tuning can only be done for
either the Yl- or the Y2-100p.

Exercise
Investigate this, show the equivalence to selector control, and check
your results by the responses to the benchmark.
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3.5 The Generic Structure

3.5.1 A First Version, for Direct Implementation

The Generic Structure for output constraint control using "control condition­
ing" feedback shall have the following properties:

All structures forms B to P which perform adequately in the benchmark
test can be generated from it by inserting appropriate transfer functions.
It allows to do without integral action in any of the control loops (which
is a key property for mechatronic systems).
If an integral action is present, then the generic awf form of Chapter 2
shall be used.
It can be directly implemented on current process control systems, where
Min- and Max-selector and PI(aw) function blocks are standard library
elements.

Form F is closest to these requirements. It leads directly to the first version
of the Generic Structure, form Q in Fig. 3.27

Min
!WI. !-+--"--!---'-l
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I
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,

;--2--.:
,

--- 1

Fig. 3.27. The Generic Structure using standard pcs function blocks, suited for
direct implementation

Its transient response is checked in the following simulations. The PI(aw)
controllers are of the form D of Chapter 2.
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Fig. 3.28. Form Q, all controllers having integral action
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Fig. 3.29. Transient response with controller form Q with:
- deadbeat values kai , i = 1,2 of the awf gain (top),
- compensating values k;i' i = 1,2 (center),
- and weak values kai = 0.2 . k;i' i = 1,2 (bottom)
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Next, the form variant with integral action in the main loop only is checked;
see Figure 3.30:
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Fig. 3.30. Form Q, R] with integral action, and compensating awf gain k:], and
both R2 without integral action
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and now the form with integral action only in the R2 controllers; see Figure
3.31:
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Fig. 3.31. Form Q, R2 with integral action, compensating awf gain k;2' and R 1

without integral action
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and finally the form with no integral action at all; see Figure 3.32:
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Fig. 3.32. Form Q, all R1 and R2 controllers without integral action

The responses are as expected, and well behaved,

It has been argued [55] that selectors "break" the main control loop, as
they transfer control in a switching manner, and that this property may not
be intuitively acceptable to users in safety-critical applications.
In such cases note that the selector blocks in form Q may be equivalently
replaced by "nonlinear-adding" blocks, such as shown in form E above. This
does not "break" the loop, but modifies the control signal u(t) of the main
loop via an addition block. Then, this resoning may be more easily accepted,
but it does not change the substance.
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3.5.2 A Second Version, for Stability Analysis

The Generic Structure with selectors is not well suited for nonlinear stability
analysis. The canonical form to be used then requires the nonlinear element
to have one input and not three as in form Q.
However this may be obtained using some weak assumptions:

Use the equivalent nonlinear adding elements as in form E instead of the
selectors.
Assume that R 210 and R 2hi have the same structure and the same coeffi­
cients, and differ only in their setpoint values T210 and T2hi'

The setpoint values T210 and T2hi are time-invariant,
and are selected such that a "well-posed" design problem results:

(3.73)

Then the R 210 and R 2hi may be fused into one block R2, and the two nonlinear
characteristics into one of the deadspan type, yielding the second Generic
Structure, form R in Fig. 3.33.

)'2

· )'.· ..... _---. - - - - .-- -.- ---- - - - -- _.'

.--- -------- ------------------- - ----~-::.:. ......- - -· . .· .• + •· .· :

Fig. 3.33. The Generic Structure using a deadspan nonlinear element, adapted for
stability testing

The break points U210 and U2hi are determined as follows:

Consider first the case where R2 does not contain an integral action. Then,
by inspection of Figs. 3.30 and 3.32:

(3.74)
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Consider now the case, where Rz contains an integral action, as shown in
Fig. 3.33. Assume further that there is a non-vanishing awf gain, ka2 > 0, as
otherwise the Rz would obviously wind up beyond all bounds in steady state
operation of the main loop. If then the Rz loops are needed in a transient,
Uz will surely not be selected in due time, see e.g. Fig. 3.29(bottom). Assume
also that Rz is of the form D of Chapter 2.

Consider now the phase of the benchmark test sequence when the con­
troller has been switched on and the setpoint raised to the startup value, but
the plant is still at standstill due to the shutdown switch being in its low
position, i. e.

u= 0 and ih = 0 (3.75)

For steady state of the awf loop in RZhi , the input to its integral action must
be zero, i. e.

that is

and

and

ea2 = -UZhi + U := -UZhi

kP2
uZ lo = TZ lo k for ka2 > 0

a2

(3.76)

.----------.;---1--~ •..

.,

Fig. 3.34. Form R.
R 1 and Rz controllers with integral action, and awf gains ka" ka2 > 0

In Fig. 3.35 this is checked by simulations on the control structure shown
in Fig. 3.34. The transient responses are the same as in Fig. 3.29.
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Fig. 3.35. Transient response with Generic Structure form R to the benchmark
test sequence, with D1 = 3 and D2 / D1 = 3,
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The right column shows the inputs U; and v to the deadspan nonlinear block
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3.6 Stability Analysis

3.6.1 The Cascade-Limiter Form

The cascade limiter version is quite similar to the structures from Chapter
2, and stability can be analyzed along the same lines. This shall not be done
here, and is left to the reader as an exercise.

3.6.2 The Nonlinear-Additive and Selectors Forms

The analysis of the selectors forms is not that straightforward, because the
nonlinear block at the plant input (consisting of the Maximum and Minimum
Selector arrangement) has three time-varying inputs, instead of one required
by the canonical structure; see Fig. 2.24.
However, such a canonical form can be derived if some weak assumptions are
made, using the results from the previous section; Fig. 3.38.

,
... - --- ------ --- --- --- --- --- --- ---_.

:
F(z) !

'--_-.-_-.-_-.-.-.-.-_-.-.-_-.-.-_-.-.-.----. .._..J

Fig. 3.38. Redrawing form R into its canonical form

Rearranging the linear elements in the Generic Structure of Fig. 3.33 leads
to the canonical structure in Fig. 3.38, with F(z) for the linear subsystem, the
deadspan element from Fig. 3.33 for the nonlinear subsystem, and the sign
inversion for negative feedback.
In the next subsections we shall look into the nonlinear subsystem first,

into the linear subsystem next, and then discuss some general stability prop­
erties.
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The Nonlinear Subsystem

The nonlinear characteristic in Fig. 3.38 is of the sector type. It is non-energy­
storing (no hysteresis) and time-invariant.
Its lower sector slope a is zero

a=O i.e.
1

------+-00
a

(3.77)

and relates to the linear operation of the main control loop (for Yl).
Thus the prerequisites for the Popov test or for the off-axis circle test are met.
And we may expect least conservative results from the test.

Loosely speaking, by inspection of Fig. 3.38, the upper sector slope b is
determined by how far the extremal input v max , which occurs during the
transient to be considered in the stability test, exceeds the break point value
Vhi, or alternatively Vmin versus Vlo. For brevity of notation we shall write for
indices max and hi only, but imply the "low" case as well.

Let v be the final equilibrium value of vet) for the transient considered in
the test. Denote

Then for b :

and Llvmax := Vmax - V (3.78)

b = Llvmax - LlVhi

Llvmax
z.e.

1

b
(3.79)

1
-- =-1

b
L1Vhi 1

------ = -1- = -1- L1v
Llvmax - LlVhi ~ - 1

LlVhi

(3.80)

which defines Llv . And

or yields
1

- t; ----+ -1.0 (3.81 )

The first condition Llvmax ----+ 00 translates into initial deviations from steady
state tending to infinity. The second condition LlVhi ----+ atranslates into having
an equilibrium on the constraint border and not inside it, i. e. what we consider
an "ill-posed" design case. Both conditions will not be met under reasonable
design conditions, i.e.

1
-t; < -1.0

A more specific estimate of b shall be discussed later.

(3.82)
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The Linear Subsystem

The transfer function for the linear subsystem is derived next. From Fig. 3.38:

and

and

v u
that is - = (HI + H2 ) -

w w

Then

(3.83)

and finally

yielding the main result

or also

(3.84)
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(3.85)

(3.87)

This compact result shows a nice symmetry. Note that it is not restricted to
the low-order systems we are investigating here. This will be followed up in
the second part of this book.

General Stability Properties

The nonlinear stability test requires F + 1 to be both proper and asymptoti­
cally stable. This shall be checked next.

For preparation, the result Eq. 3.84 may be rewritten using the following
notation

D i for the closed-loop characteristic polynomial of control loop i
di for its open-loop characteristic polynomial
dPi for the open-loop characteristic polynomial of the plant
dai for the parts of the controllers, that are inside the awf loop (the
integral action), i.e. di = dPi . dai
Dai for the closed-loop characteristic polynomial for the awf loop.

Then

(3.86)

For controllers with integral action, dai contains the corresponding pole
at the origin, which will also be contained in the di = dpida; (i = 1,2).
Therefore, these poles and zeros in Eq. 3.86 will cancel without creating
observability and controllability problems. And thus

F + 1 = dP1 D2 D a1

D1 dP2 Da2

Inspecting the degrees deg of the polynomials yields

and

and

and also assume

deg(Dt} = deg(dp,) + 1

deg(D2 ) = deg(dp2 ) + 1
degDa1 = degDa2 = 1

deg(dp, ) > deg(dp2 ) (3.88)

then the transfer function will be proper, but it is not strictly proper.

In other words, the first requirement is met.

We now discuss the second requirement, i.e. the stability of F + 1:



(3.89)
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Both D 1 and D 2 are asymptotically stable by design of the respective loops
in their linear operating range.
The same holds for the contributions of the awf loops Da1 and Da1 .

In other words the stability properties of F + 1 depend on the open loop
parts.
If the transfer function G1 of the plant should contain any non­
asymptotically stable poles, they appear by way of dP1 in F + 1 as zeros,
i.e. they do not adversely affect the stability of F + 1.
But any unstable poles in G2 appear by way of dP2 in the denominator of
F+1.
In other words G2 must be asymptotically stable, whereas G1 need not
be.

There is an important special case, where this condition may be relaxed:

Consider G1 and G2 having physically common parts, which generate the
same non-asymptotically stable poles in dP1 and dp2 , then they cancel
without generating observability and controllability problems, and F + 1
will still be asymptotically stable.

Note that the benchmark plant used so far is such a special case!

A Practical Estimate of lib

As used above, the value of lib determines the position of the circle with
respect to the origin as a function of L1vmax :

_~ = -1- L1V2hi
b L1vmax - L1v2hi

In many practical cases, the graphic test would admit only a L1vmax with
a finite upper bound, if asymptotic stability is to be shown. For such cases
consider the transients produced in the benchmark, Fig. 3.35. There, L1vmax

is attained just before startup, when the controller structure and its awf loops
are in operation and have reached their equilibrium with the setpoint moved
at rl = 0.98, but the plant is still being held at standstill, i.e. Yl = Y2 = O.
Then in Fig. 3.34

with

and in the awf loop of R1

L1v = L1Ul + L1u2

L1u2 = 0 because fh = 0
1o= kP1 el + ka1 kea1
81
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Using this as an estimate for lib yields (with the notation k12 := kP2 and
kl, := k P1 ksJ:

(3.91 )

which defines .dva .

Discuss how the position of the vertical straight line is changed by modi­
fying the design parameters in .dva as a small exercise.

3.7 Stability Properties of the Test Case

These will be investigated in two steps. The first aims at the shape of the
Nyquist contour for the stability test and how it is influenced by the design
parameters. For this the small delay D is omitted, and the continuous-time
representation is used. In the second step, the original system is considered.

The Simplified System

The open- and closed-loop polynomials for the linear subsystem are

d1 = s3Ti1 T 1T 2

D 1 = s3Ti1 T 1T 2 + s2TilTlksl + STilkslkpl + kp1ks1

and d2 = s2Ti2 T 2

D2 = s2Ti2 T 2 + STi2 k p2 + k P2

and for the awf loops da1 = STi1 ; D a1 = STi1 + k a1

da2 = STi2 ; Da2 = STi2 + k a2 (3.92)

Inserting into Eq. 3.87 yields

(s + S!2)2

S (s + ~)

s

( s + k~l)
T' l

(3.93)
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where "(j denotes

"(j = ~:j for j = 1,2
aj

Then Eq. 3.93 may be rewritten as

F + 1 _ (s/{h) [(S/s:?2) + 1] 2 [(shls:?d + 1] s:?2 "(1
- (s/s:?d+l (s/s:?l)+1 (sh2s:?2)+1 s:?l "(2

(3.94)

(3.95)

The position of the straight line at -1/b to the left of -Ion the negative
real axis is determined by Eq. 3.91 and using Eq. 3.94:

_~ + 1 < _ r2hi 2 s:?2 T2 3"(1 _ r2hi _1_ s:?2 "(1 (3.96)
b rl 3 Slr TlT2 2"(2 rl SllTl Sll "(2

Discussion

Note that the factors s:?2/s:?1 and "(1/"(2 appear in both Eq. 3.95 and 3.96.
This can be seen as a radial expansion of the complex plane, which does
not change the relative configuration in the graphical stability test.
The Nyquist contour is independent of the s:?l value, as long as the relative
closed-loop bandwidth s:?2/s:?1 and "(1/"(2 are not changed.
The Nyquist contour of the first factor in Eq. 3.96 starts at the origin
along the positive imaginary axis, and then evolves into the positive real
half plane.
The second factor is a lead-lag element, which deforms this Nyquist con­
tour in the direction favorable for nonlinear stability, if Sl2 ~ Sll, which
intuitively is a very reasonable design choice.
And the vertical straight line position moves from the left to -1 + jO
proportional to the fraction of the setpoints and to 1/(SllTd.

In other words, the closed-loop response of this system is not globally asymp­
totically stable, but will be asymptotically stable for up to very large initial
initial conditions.

Particular cases
Consider

(a) deadbeat awf gains in both Rl, R2, i.e.:

1
and "(j = s:?jT

s
; i.e. (3.97)

Then from Eqs. 3.95 and 3.96

[ ]

2
F + 1 = (s/Sld (S/s:?2) + 1

(s/s:?d + 1 (s/s:?d + 1
1 r2hi 1
--+1=-- --

b rl s:?lTl

(shls:?d + 1
(sh2s:?2) + 1

(3.98)
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(b) compensating awf gains in both R 1 , R2 , i.e.:

"(j = 1 for j = 1,2

then from Eqs.3.95 and 3.96

(c) and finally if [22 = [21 in cases (a) and (b), then

(3.99)

(3.100)

(3.101)

Exercise
Discuss the shapes of F + 1 using Bode plot techniques and compare
with the numerical results of Fig. 3.39.

The Original System

As in Chapter 2, the delay D and sampling time Ts are short compared to
the closed-loop time constants 1/[21, 1/[22. So including them now will affect
the Nyquist contours only in a frequency range well above the relevant one
for the graphic stability test.
Fig. 3.39 shows the Nyquist contours from Matlab/Simulink for the Generic
Structure (form R) with Ts = 0.010, and for the plant with delay D = 0.025,
i.e. corresponding to the simulations Figs. 3.35, 3.36, and 3.37, and the cor­
responding vertical straight lines from Eq. 3.91 for the on-axis circle test.
This indicates asymptotic stability for almost all initial conditions, i.e.
V max -+ 00, for such design selections that

ratio

and ratio (3.102)

Comparing this with the simulation results, this corresponds to good exploita­
tion of the range available within the output constraints, and no overshoot
due to windup.



148 3 PI Control with Output Constraints

.s 07

06 , ,., ,
, , , ,

\
\

OS

I, , ,. ,
0'

, 04 ...
03 ,. ,

-<>, ,., o• ,, ,-, , , I

0'
.,

-1,S "

-2

-os ....
-2 -" .... O. IS 2' _II -108 -106 -104 -'02 -. -098 -096 _0 Q4. -092 ....
" 0.7

06
I~::=~I_k.WNIl.

.,
O.

0'
04

0'

~.-0'
O.

-1

o.-. ,
-2

-" ... ,-. -1.5 -. ...5 0' ,s :>.s -II -108 -106 -lOt -102 -, -0918 -OM -094 ..... ....
os 07

06

15

os

-::;~ .....~
04

0'

0'

....
02

_1

0'
-IS

-2

-.. ...,
-2 _1' -, .... 05 IS :>.s -11 -1,08 -106 -104 -102' -1 -098 -096 -Gi4 -092 ....

Fig. 3.39. Graphic stability test with Generic Structure form R with n1 = 3; and
different awf gain values ka ;, i = 1,2;
for nZ/nl = 3 (top row), nZ/nl = 1 (center row), nZ/nl = 1/3 (bottom row).
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Thus, both the constraint feedback loop gains (for yz) and the awf gains
kai need not be made very large for stability reasons, but can be lowered to
a comparable level to those of the main controller R l . From an application
point of view this is very convenient, considering such properties as sampling
rate, robustness and high-frequency noise suppression.

Note that Eq. 3.102 has such a simple form that it is tempting to use it
as a general design rule.
However it is only valid for this particular benchmark case, and should not
be used elsewhere without circumspection. We shall come back to this item
in the second part of this book.

3.8 Relations to Minimum Time Control

This short discussion will be along the same lines as in Sect. 2.7 for the input
constrained case, and it will focus on the benchmark case considered so far.

By the transversality condition of the Maximum Principle for the
minimum-time transient, the control u(t) has to run along its saturation val­
ues, as long as state variables do not meet their constraint hypersurfaces (the
'regular' case). But if one state variables does run into its constraint hyper­
surface, then it has to run on it (with zero deviation from it), which then
requires a u(t) in-between the saturation values (the 'singular' case).

The benchmark case here deviates from this, because u(t) has no satu­
ration.4 We also do not consider the small delay D. So the minimum-time
trajectory for th.e run-up (see Sect. 3.3 d)) would consist of three successive
phases:

A: move the state variable X2 in minimum-time from the initial equilibrium
at zero to rZ hi (by applying through u a Dirac-8(t) of appropriate weight
in the continuous-time case or a pulse of width Ts and appropriate height
in the discrete-time case);

B: then controlling u such that Xz = rZhi irrespective of any disturbances,
until Xl = rl is attained in the continuous-time case, and for the discrete­
time case Xl = rl - lOl, where lOl is sufficiently large to accommodate the
deadbeat response of phase C),

C: and finally move X2 in minimum-time to zero, again by applying a suitable
8(t) or a pulse as above.

For the continuous case, the minimum transition time .I1tm in then is

(3.103)

4 We shall come to the normal case in Chapter 4.
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This has to be compared with the performance of the 'output constraint
control by feedback' scheme used above. The properties of the minimum-time
transient described above would obviously require infinite gain feedback in
the continuous-time case, and deadbeat response in the discrete-time case.
But for practical reasons we have resorted to finite gain feedback, i. e. finite
closed-loop bandwidths rlt, rh. We have also used integral action in all con­
trollers in order to drive steady state errors to zero, and awf of course. We
shall use compensating awf gains in the sequel.
For the three phases of the trajectory described above, the following results:

A: The run-up of Y2 ~ X2 from zero to its setpoint r2hi is the same situation
as discussed in Sect. 2.5, Analysis for form D: the response of Y2(t) is of
first order with time constant 72 = l/fh. And the response for the main
output

Yl(S)
u(s)

is therefore a ramp delayed by 72.

B: The integral action is inserted to drive the steady state error to zero, i.e.
Y2 ----t r2hi in the response for phase A. Thus there will be no additional
delay in this phase, if:
- no disturbances are introduced,
- r2hi is not time varying,
- and Y2 is the input to a final open integrator with Yl as its output (see
Sect.3.3(a)).

C: This is the initial condition response of the linear control loop for Yl as
discussed in Sect. 2.5, and will contribute another 7 ~ 2/rlt until the final
steady state is attained.

The overall transition time L1t then is

(3.104)

Exercise

Give an estimate of the addition to L1t, if a step disturbance is in­
troduced in phase B, see also the test sequence Sect. 3.3, item (d),
as function of il2 .

Investigate the transient in phase C and the contribution 2/ill given
above.
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3.9 Case study (continued):
Temperature control in a chemical batch reactor

The example continues the case study from Chapter 2, but is closer to reality
and to the original project. The model is more complex and there are output
constraints in addition to the input saturation.

3.9.1 The Process and the Main Control Task

Fig. 3.40 is a simplified sketch of the batch reactor.

Jacket

healing I cooling
input 1/(1)

Wall y_2 (I)

Fig. 3.40. Sketch of the plant

The main control task is to keep the fluid temperature at a given setpoint.
Overshoots are to be avoided, because over-temperatures may generate
unwanted secondary products from the reactions. Under-temperatures will
prolong the batch production time, as reaction rate goes down. Thus high
performance temperature control is required.
Available instrumentation and operation subsystems: the fluid content is
continuously stirred. Its temperature {Jc is measured by a temperature
sensor (yd in the fluid. There is a second temperature sensor (Y2) for the
wall temperature {Jw'

The jacket is a source or sink for thermal energy flowing to or from the
wall to the content fluid. There is a third sensor for the jacket temperature
{Jj (not used here). The response of the jacket subsystem is approximated
by one short first-order lag with unity gain and time constant T u .

The responses of the two temperature sensors shall also be approximated
by two short first-order lags with time constants T y .

Again, a chemical reaction shall take place in the content fluid, which
starts at a given temperature threshold value {J s below the nominal
content temperature {Jr'
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The heat flow from or to this reaction I~ shall be modeled by

I~ = -kR('{)c -198 ) for 19c 2198
I~ = 0 for 19c < 198

where

< 0 for exothermal reactions (heat source)
kR = 0 for inert reactions

> 0 for endothermal reactions (heat sink)

The actual value of kR is not known, but upper and lower bounds are
specified.

The test sequence consists of

- starting from standstill (all variables at zero)

- step up to the contents temperature setpoint rl to nominal, rl = l.0.

- After reaching the steady state, apply a small setpoint step to rl = l.05
- then introduce a small heat flow disturbance step I~l > 0 to the content
- finally apply another step I~2 < O.
This is to model a warmer and then a colder reactant inflow.

These last three test steps will show the linear loop performance.

No measurement disturbances shall be considered here.

Three cases of constraints shall be considered,

case A: input constraint from actuator saturation
i.e. limits on u; [-l.0··· + l.0]

case B: output constraint on the
"wall to fluid temperature difference",
i.e. limits to heat flow

case C: output constraint on
"wall temperature above nominal fluid temperature" ,
i.e. limits to max. fluid temperature at the wall

3.9.2 The Plant Model

In this model, two (well-stirred) main storage domains for thermal energy are
considered, namely one for the fluid content and one for the wall, 5 resulting
in two coupled ordinary first-order differential equations.

5 Note that using the jacket subsystem as a second well-stirred storage domain and
reducing the wall storage to the small value would lead to the same equation
system.
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Considering the range {) > {)s around the steady state at TI = 1.0 and
introducing 'per unit' variables as in the case study of Sect. 2.8

d
TI dt Xl = +(xz - xd - a(XI - Xs ) + VI + Vz

= -(1 + a)XI + Xz + axs + VI + Vz for the fluid
d

TZdtXZ = -(xz -xd +U

= + Xl - Xz + u for the wall

YI = Xl

(3.108)

(3.105)

(3.107)

(3.106)

yz = Xz

This leads to the transfer functions

G _ YI _ 1
Ul - U - sZTITz+shU+a)+Td+a

and G _ yz _ STI + (1 + a)
U2 - U - SZT1TZ + shU + a) + Td + a

G _ yz _ YI STI + a
U(Y2-Yl) - U U SZTITZ + shU + a) + TI] + a

Again, the "fast" dynamics shall be represented by a series delay element
e-sD with D := Tu + Ty.

3.9.3 Parameter Values

TI =
X s =
a=

TZ =
D=
u=

Xz - Xl =
Xz =

900 s
0.90
- 0.50 ... +0.50
120 s
10 s
- 1.0 ... + 1.0
- 0.25· .. + 0.25
0.0 ... + 1.15

reaction threshold temperature (in p.u.)
reaction enthalpy gain (in p.u.)

sum of actuator and sensor time constants
actuator saturations
bounds on temperature difference (in p.u.)
bounds on wall temperature (in p.u.)

3.9.4 The Controller

To avoid any overshoot in the linear range, a two-degrees-of-freedom linear
PI algorithm with additional feedback of the wall temperature signal yz is
suggested for the YI loop:

and (3.109)

and similarly for the yz override loop

and
1

uZ"p = -wz"p (3.110)
STO
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3.9.5 The Design Program

It is suggested to proceed in four phases. Here are some additional hints:

1. Linear design:

Design the controller settings by pole assignment as function of pole loca­
tion ill.
What options are available to incorporate a?
Select Ts .

Build a suitable Simulink/Matab file pair with a discrete-time implemen­
tation of the controller.
Check its performance for the test sequence starting from steady state at
112 = 1.0, i.e. without the run-up phase.

2. Case A: saturation on u(t)
Start with the stability analysis for the range of a
Determine first the steady state conditions ii relative to the saturation
values.
What sizes of setpoint step deviations orl and step disturbances ov are
admissible for a well-posed stability problem?
Draw the Nyquist contour for the reduced order and continuous loop
and the actual control loop.
Check the transient response for the full test sequence.

3. Case B: output constraint on the heat flow, i.e. on Y2 - Yl

Proceed as for case A.
Investigate a control structure modified as follows: to speed up the contents
temperature run-up, enable the output constraints only if Yl is larger than
a design parameter 0 :::; Ylan :::; 1.0. Discuss the effect of variation of Ylan

on stability and response.

4. Case C: output constraint on the wall temperature Y2

Proceed as for case B.

5. Finale: combine constraints of cases A, B, and C.
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3.9.6 Typical Results

The following Figs. 3.41-3.43 may help you to check your solutions.

Simulation results are displayed for a = °only, with Ts = 5.0, [hT1 = 10,
[l2T2 = 2.5.
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3.10 Summary

The basic PI control loop with one output constraint (but no input constraint)
has been investigated.
Again, "well-posedness" is assumed, i. e. the final steady state of the loop Y1 =
rl produces an output variable Y2 inside the constraint limits r2lo < r2hi' In
other words, the constraints are encountered transiently, but not permanently.

Structures
Starting from three quite different basic forms that are often used in practice,
we have discussed numerous alternatives. Equivalence has been investigated.
This led to a Generic Structure (Form Q) in Sect. 3.4, which uses the generic
awf structure form from Sect. 2.4.1, in conjunction with either nonlinear ad­
ditive correction of u or Max-Min-selection.
It has also been shown that the cascade limiter version is more restricted in
application than the other two basic forms.

Transient response
A benchmark has been proposed to test the performance of such structures
by simulation. It uses for the plant the two-open-integrator chain, abstracted
from positioning control, and with speed limitation as the output constraint.
The Generic Structure has performed well from a practical design point of
view, both for awf gain values being "high" (deadbeat) and "moderate" (com­
pensating) .
The run-up trajectory approaches the minimum-time one for increasing band­
width of the main (f?d control loop and the constraint (f?2) control loop. By
observation, u(t) is sufficiently smooth ('bumpless'). No chattering or other
high-frequency phenomena were observed.

Stability properties
Using the standard Circle Criterion, the stability test has been prepared in
general form for transfer functions Gi , Ri , i = 1,2; and for the characteristic
polynomials for the open and closed loops (di and Di , Dai , i = 1,2).
The result is an extension of the result for the generic awf form. Due to its
symmetry properties, it is easy to memorize, and straightforward to use in
practical design work.
It has been applied to the benchmark, where it nicely supports the results
from the simulation, and provides much valuable insight into the effects of
plant and design parameter variations.

In short, such output constraint control systems are straightforward to
design, and to analyze, and they seem to perform quite well. This may well
be the main reason for their popularity with industrial design engineers.
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However, many important areas and topics have not been investigated so far,
such as detailed below:

Regarding structure, the alternatives considered in Sect. 3.4 have a com­
mon root: the output constraining feedback acts directly on the control vari­
able u, i. e. by "control conditioning". This is mainly motivated by the good
performance achieved in Chapter 2. Another family of structures may be gen­
erated by letting the output constraining feedback act on the reference input
rl of the main loop, i.e. by applying the "realizable reference" or "reference
conditioning" stratagems. We shall address this topic in Chapter 7.

Considering the transient response aspect, using this particular benchmark
may seem rather special, and the results on it may not be overextended. One
element has already been mentioned: a more general transfer function for G2

would be

G ( )
_ Y2 (s) _ STI

2 S - - ---;;-=-:=---=---
u(s) s2TlT2 + sTlal + ao

where ao =I O. Using a PI algorithm for R2

yields

d2(s) = s2TlT2+sTlal +ao and D 2(s) = s2TlT2+sTl (al +klJ+(ao+ko2 )

and a steady state control error e2 for the constant setpoint r2hi > 0

To drive e2 -> 0, the control algorithm must be augmented to

(3.111)

How this is integrated in the override structure will be shown in Chapter 5.

Another topic is Gi(s), i = 1,2 being of second order. This is to be
discussed further in the second part of this book. But we shall not go into the
minimum-time problem for these cases.

The stability test has been presented already in a form that covers much
more general situations than the benchmark. This shall be used extensively
in the second part of the book.

From an applications point of view, however, the main restriction is that
either one input or one output constraint is admitted, but not both. This is
the most pressing need, and shall be addressed in the next chapter.
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PI Control with Input and Output Constraints

From a practical point of view the most restricting assumption in Chapter 3
is that the control variable is required to be unbounded. In almost all applica­
tions, however, one also has to expect that u(t) may transiently saturate in at
least one phase of the transient for cases with an output constraint feedback.
Again, we shall start by stating the general control problem, define a bench­
mark which can be handled sufficiently well within the scope of standard PI
control techniques, and discuss possible controller structures and their tran­
sient response in parallel. Then the performance is investigated in relation to
the minimum-time case, and stability properties are discussed. A case study
is given as an exercise.

4.1 Problem Statement

4.1.1 The Plant Model

Fig. 4.1 shows the system to be controlled.

Gu (s) ,/

;""--

v

1/

~---~-+----------

Fig. 4.1. Problem statement: the plant model

It is generated from the plant model of Fig. 3.5, with the same proper­
ties, having one pair of output constraints as (soft) operational limits on Y2:

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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r2hi' r21o' by adding one pair of input constraints as (hard) control saturations
on u(t): Uhi, Ulo '

The main assumption again is that linear control of the main variable Yl (t) by
u(t) is feasible for small but finite deviations from that steady state, without
interference from both input and output constraints.
Otherwise this is considered an "ill-posed" control problem. It must be rec­
tified by appropriate modifications in the plant layout and design, such that
the constraints are not interfering with small deviations control, and by this
to produce a "well posed" problem.

4.1.2 The Basic Control Idea

The basic idea is to combine the proven concepts of Chapters 2 and 3.

The first version, in Fig. 4.2, is based on the selector form from Chapter
3.

- +r- ,~-T--;,;r-----------------
, T ,

, 112h~

Yz

Fig. 4.2. Control concept u!,ing the elements of selection and saturation sequentially

Two main assumptions are made:
- the paradigm of control conditioning is used,
- and u(t) is shaped appropriately by selection first
and saturation second, in "sequence".

Both have to be questioned, and shall be investigated later. At this instant,
we intuitively argue that the first one has been simple and well-performing so
far; for the second one, we observe that the input constraints are final limits
to the working range of u, and may not be overrun by any output constraint
action. So the saturation block should be placed downstream of the selection
block, and not vice versa.
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Remarks

The awf reference for tracking of individual controllers must be picked up
downstream of all nonlinear operations (Hanus's rule).
The SAT block may be replaced by the equivalent Selector block, and then
both Selector pairs by the equivalent Nonlinear-Additive blocks.
As shown in Fig. 3.18, the saturation to Uhi, Uta may be replaced by a feed­
back implementation with setpoints Uhi, Uta' This can then be generalized
into a second output constraint feedback (to be used later as an advanced
technique).

The second basic version uses the cascade-limiter concept, shown in Fig. 4.3.

Y2

GU2 ~~)..
II Gu ()

Y.

r--- .. -·-------------.
I "....., +r', ---------'1
. f .
1 • 1
• 1 I I.• , 1

! ~ ,!-'----,-:-t
Ii., ~-

-lin "10

Fig. 4.3. Control concept combining the Cascade-Limiter and Control-Saturation
elements

Note that if the master controller R1 has integral action, then it needs a
second awf to allow tracking of the final u-saturation as well; see the double­
dot-dashed line in Fig. 4.3.

4.2 Benchmark System

We are using the same benchmark as in Chapter 3, with the addition of the
control saturation at

(4.1)Uta = -1.0; Uhi = +1.0
and the test sequence in the following versions

va: with no step load Zl applied during run-up Zl = 0, but then Z2 = -0.90
(shall require I(aw) action in Rd

vI: with step load Zl applied during run-up Zl = +0.90 and Z2 = -0.90,
as in Chapter 3, (shall require I(aw) action in the both R2 as well)
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v2: with step load Zl = -0.90 and Z2 = +0.90
v3: same as v2, but Zl = -0.90 is applied 1 slater.

The motivation for this will appear in the following sections.

4.3 Structures and Transient Responses

We build on the extended evaluation of various possible structures in Chapters
2 and 3 and focus on the final ones obtained there. This shortens the discus­
sion considerably. Also, we consider only forms using the control conditioning
paradigm.

4.3.1 Form A: Sequential Max-Min-Selection

The control structure is shown in Fig. 4.4. Here, the saturation element has
been replaced by the equivalent Max-Min-selector combination, while respect­
ing the sequence of nonlinear operations as discussed above.

l-----------------------tj!.I+-------'
Z<J'"

Fig. 4.4. Form A: sequential selection
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Results
The transient responses in Fig. 4.5 show

The constraints on u and Y2 are respected as long as the awf gains ka2 are
above or at least equal to the "compensating" values ka ~ k~. Below this
there will be windup, i.e. the constraints on Y2 can no longer be respected.
The response of Yl is well behaved for benchmark vI (left column). There
is no significant deterioration compared with the non-saturated case of
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Fig. 3.35. They are not sensitive to the awf gain kal , as long as they are
above or equal to the "compensation" value.
However, the responses of Yl for benchmark v2 (right column) are not
acceptable: there is a large overshoot of Yl(t) at the end of the run-up
phase, for all awf gain values.
But the constraints are respected for awf gains ka2 , again if they are se­
lected to be above or equal to the "compensation" value.

This misbehavior is due to the shift in the steady state of u(t) due to ZI, which
is now close to Ul a ' That is, the available control span U - Ul a for bringing the
plant to the steady state iiI = Tl is much smaller here than in benchmark vI.
This property is crucial for applications of antiwindup and override systems
to plants of dominant order higher than one, and will be discussed in more
detail later.
To get a better feeling for it, consider the following situation. You are

driving your car at the statutory speed limit towards a traffic light. You start
braking at a distance which, based on your driving experience, is sufficient for
normal road conditions, a horizontal road and normal car mass.
If now the road is steeply downhill and you have loaded your car to the brim,
and you start braking at the same distance, and apply the same braking force,
then the deceleration will be much weaker, the speed will reduce more slowly
(see Fig. 4.5 (right)), and your car will come to standstill beyond the traffic
light, even if you apply the full braking force.
If, however, the road is steeply uphill and all other conditions are the same,
then the capability for deceleration (the control span) is much higher and the
problem disappears.
This example also suggests a possible remedy: you reduce your approach

speed as the road gets steeper, such that you expect to be able to stop before
the traffic light, with some safety margin. This strategy has been implemented
in Fig. 4.6 (left column) on the benchmark v2 by stepping down the initial
reference T2hio (statutory speed) to a lower value T2hil (safe speed), as soon as
the control variable u(t) has stabilized to the new Zl and the reduced control
span U - Ula is established and thus may be detected. In the simulation, this
is achieved 2 s after Zl has been applied. And then T2hil must be tuned to
produce the required safety margin, in the simulation to 0.25 of the initial
value. The responses are now acceptable. Again, the awf gains should be
selected above or equal to the "compensating" ones.
Unfortunately, this simple strategy may fail, see Fig. 4.6 (right column) for
the benchmark v3, where you are 1 s closer to the traffic light when the road
gets steep. So your speed is too high for the remaining distance to the traffic
light to avoid overshoot, but you apply full braking earlier than in Fig. 4.5
(right column), and thus the overshoot is at least reduced.
More robust strategies will be discussed later.



4.3 Structures and Transient Responses 167

-'. -'.
" .. --rj. .

1 ..-··

0. ~---- .~,

I

, I, , ,, , . , '. .,
t'

,

-0. -0'

' ..

" .. ., 50 " "
,.

" .. " ., 50

-', -',
" --rJ " "

: ,

- 0' '}---.,
",

1" "
, }, ,, , , , , -.' "

I I'I I

l I
-0' -0. J

:

" " " .. .. 50 ., "
,.

" .. .. 50

-'. -',
" " .. --Y,

- .

(
0'

,,_.,, ,,,
,,'l......

,
, r" ~"

I /" ~" I '.... _, , ,
"

,

-0. -0, .,
".
"

'" '. ,
, , ,', "

. "-, ..

" " " .. ., " '0 II " " .. ., 50

Fig. 4.6. Responses of form A with stepdown of T2 h; (see text) to the benchmark
v2 (left) and v3 (right);
awf gains: deadbeat (top); compensating (k:;) (center); low (O.25k:;) (bottom)



168 4 PI Control with Input and Output Constraints

4.3.2 Form B: Parallel Selection

Most process control systems offer function blocks for Min- and Max-selection
ofmore than two inputs. This suggests replacing the sequential selection based
on two inputs everywhere in Fig. 4.4 by such blocks, where all the Min- and
Max-selections are compressed in one such block; see Fig. 4.7. This reduces
the number of function blocks, and may increase transparency.

'.'

,'"''
1---+..--------------1--+--t-+(.

"'"

I---'---------------++{......
R VO lPIptJ

Fig. 4.7. Form B: "Parallel" Selection, with optional step-down of T2 hi

One may say, that this is a "parallel" selection of the maximum and min­
imum u(t), which suggests the name used for this form B. Note that the
result of the "parallel" Max-selection block is still sequentially submitted to
the "parallel" Min-selection block.
The transient responses in Fig. 4.8 are for the benchmark v2, with con­

stant T2hi (left column), and with T2hi-step down (right column).
The main result is that the constraints are not respected everywhere, in con­
trast to form A. Arrows have been placed to indicate where this occurs. For
the steps 0 ~ Zl and T2hi ~ T2hil' the controller R2hi produces transient
control signal excursions U2IJt) far below Ulo. And this is not clipped before
putting U2lo to u(t), because the Max-Selection, which should perform this
clipping, is not at the appropriate place, but has migrated upstream.
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Going back to driving your car towards the traffic light, the controller
outputs a control u(t) such that the speed would be reduced nearly instan­
taneously to the new (safe) value, i.e. nearly infinite deceleration, which is
clearly not feasible.
An idea to remedy this would be to change the sequence of the selections,

i. e. selecting for the minimum first and then for the maximum. This would
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clearly fix this misbehavior, as now the clipping to Ulo is performed. But the
problem would now appear during acceleration.

Exercise
Investigate this by adapting the benchmark appropriately and by sim­
ulations.

In other words, such "parallel selection" may produce a simpler structure, but
it is considered functionally non-sufficient, and thus unfit for practical use. It
will not be considered any further here.

4.3.3 Form C: "Lowest Wins"

Implying standard programming techniques, very probably the multi-input
selector blocks in Form B internally will be implemented by sequential selec­
tion, e.g. for three inputs

out = Min {inl,Min {in2,in3}}

out = Max {inl, Max {in2,in3}} (4.2)

This parses into four two input selector blocks. By arranging them appropri­
ately in the signal flow graph, this may be interpreted directly as applying a
pre-selection of type Max to all constraining Ujlo inputs.

Vlo = Max {U21o' Ulo}

and another pre-selection of type Min to all constraining Ujhi signals

and then feeding the results Vlo, Vhi of the pre-selections to the standard
Max-Min-selector block with three inputs (the third input being Ul), as has
been used exclusively so far. So the pre-selections may be seen as "parallel"
operations. They produce the most constraining Ujhi; Ujlo' If only the Min
part is considered, this motivates the designation "lowest wins" (which is also
used by practitioners).
Thus, form C is equivalent to form B. Therefore, it is also considered "unfit
for use", and not investigated any further.

4.3.4 Form D: Sequential Nonlinear Additive

To obtain this, replace each Max-Min-selector block in form A directly by the
equivalent nonlinear-additive block which contains a corresponding deadspan.
This is nothing new functionally, but provides a more suitable structure for a
stability analysis using sector criteria.
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4.3.5 Form E: Cascade Limiter

The cascade-limiter concept of Fig. 4.3 is implemented in Fig. 4.9.

Fig. 4.9. Form E: Cascade-limiter structure with control saturations,
with optional stepdown of T2 hi

Remarks

An integral action in R2 is sufficient to drive the control errors el and e2 re­
spectively to zero for the disturbances rand z specified in the benchmark.
Thus R2 will be of PI(aw) type.
As no integral action is required for R1 (valid within the scope of this
benchmark), no multiple awf paths are needed (see Fig. 4.3), and thus
need not be designed. Such more general cases will be addressed later.
R2 is designed as a two-degrees-of-freedom structure, where the setpoint to
the proportional action is separated and set to a constant, here specifically
to zero. This has the practical advantage that inputs to the control signal
u(t) are filtered in the integral action path and thus tend to be smoother.
Also, computing the controller parameters is less involved in the dominant
pole assignment method.

The transient responses in Fig. 4.10 for benchmark v2 show the following:

Concerning the constraints, they do not exhibit such functional deficiencies
as forms Band C.
At first glance the performance of Yl is comparable to what is produced
by form A,
both for constant r2hi and with the stepdown option activated.
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Closer inspection reveals that there is now (in contrast to form A) an
overshoot on Y2 during the initial phase of the run-up, if the awf gain is
set to the compensating value. It disappears, however, for deadbeat awf
gain. This is a slight drawback for applications.
The performance of the full structure (the cascade of two PI(aw) con­
trollers) remains to be seen.

To summarize: two structures, forms A and E, have emerged. They seem
to perform adequately. However, the overshoot on YI caused by the control
saturation must be investigated further. This is needed to provide a basis for
designing more robust solutions.

4.4 Performance Analysis

4.4.1 Introduction

Again, the minimum-time transients shall be used as performance reference.
We are particularly interested in the increments of settling time for the struc­
tures discussed before and the underlying differences of function.
To provide an intuitive understanding, we shall stay close to the benchmark
situation used before:

the plant shall be the two-open-integrator chain
with time constants scaled to one, T I = 1.0 and T2 = 1.0
the delay is suppressed, D = a
and the sampling rate shall be reduced such that its effect is negligible,
Ts = 0.001
both constraints are normalized to one, i. e.

-1.0 :s: u(t) :s: +1.0 and - 1.0 :s: Y2(t) :s: +1.0 (4.3)

the focus is on the run-up phase from standstill YI = 0, Y2 = a to the final
equilibrium YI = rl = 1.0, Y2 = a
with no load swing, z = a
a coordinate shift is performed to move the final steady state to zero,
Xl = YI - rl, X2 = Y2·

The phase plane method is a powerful analysis tool for such second-order sys­
tems: trajectories are depicted on the (Xl, X2) plane, with the final steady
state at the origin. They are to be supplemented by the usual time-response
plots.
The first step will be to construct the minimum-time trajectories in the phase
plane, for "almost all" initial conditions. Then we shall investigate the re­
sponses for the control structure form A, with P controllers first and then
with integral actions.
Repeating this for the cascade-limiter and saturation Form E is left to the

reader as an exercise.
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4.4.2 Applying Open Loop Control Sequences u(t)

The standard procedure to construct the minimum-time trajectories in the
phase plane is to let time run backwards, i. e. to start from the final equilibrium
at the origin. We apply either Ula = -1.0 or Uhi = + 1.0 as the control signal.
This produces a pair of minimum-time ejection trajectories of parabolic shape;
see Fig. 4.11(top). Note the arrows indicating the direction of movement.
Let ii be the value of the control variable needed at the final equilibrium and

The parabolic shape of the finals trajectory is (for Ula):

(4.4)

and < 0;

i.e.

or

< 0;

(4.5)

and correspondingly if Uhi is applied (X2hi < 0; Xl hi > 0; ahi > 0).
So the trajectory running from the origin to the upper left is generated by
applying U = Ula, and the opposite one running to the lower right by using
U = Uhi.

Check Eq. 4.5 as an exercise.

Then starting at -ta, the opposite control saturation signal is applied.
In Fig. 4.11(center), two values for ta have been entered, and the resulting
continuation trajectories are depicted. They are of parabolic shape again, but
of opposite curvature. If the reverse time continues up to -te < -ta then
"almost all" end-points of the ejection trajectories in the phase plane may be
reached with an associated pair of ta, te < +oo-values.
In Fig. 4.11(bottom) the constraints on the state variable X2 have been in­
serted. Then the ejection trajectory for U = Ulo will run upward until X2 = X2hi
is encountered at time -t~. For -t < -t~ the u(-t) must be such that X2(t)
slides along the horizontal line at X2hi' up to a -tb ~ -t~ (in our case u(t) = 0
for -tb ~ -t ~ -t~).

Finally, the opposite control saturation U = Uhi or U = Ulo is applied, and the
trajectory will be the corresponding parabola up to an arbitrary -te ~ -tb.
Thus, again "almost all" end-points in the state plane can be reached for
tb, te < +00.
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The final move is now to let time run forward again. Then, the endpoint
reached so far translates the initial point, and the final point translates the
origin. And only the arrows in Fig. 4.11 must be reversed to obtain the phase
plane portraits of the minimum-time trajectories. The ejection parts from Fig.
4.11(top) will translate in the final approach parts, the "finals" for short.

The phase portraits also suggest how U at an arbitrary time instant t > 0
can be generated from the values of Xl and X2 at that time instant, i.e. how
a control function u = f(xl, X2) can be set up. In other words we replace the
feedforward control sequence u(t) by a feedback control law f(XI' X2). This
is known as solving the synthesis problem.

In Fig. 4.11(top and center), all points Xl, x2 below and to the left of the
ejection parabolas have to produce u = Uhi > 0, whereas all points above and
to the right have to produce u = Ula < O. On the ejection parabolas U changes
to the opposite saturation. They are therefore called switching curves.
Then

if X2 > 0
if Xl - alaX~ 2: 0 then U = Ul a else U = Uhi

if X2 < 0
if Xl - ahix~ > 0 then U = Ul a else U = Uhi (4.6)

Exercise
Generate the feedback control function for Fig. 4. 11 (bottom).

4.4.3 Generating u(t) by Proportional Feedback and Selection

In the basic structures investigated above, the control u(t) is generated by
linear feedback using standard PI(aw) controllers and subsequent selection.
This may be seen as piecewise linear control along the transient. For simplicity
we shall look at the case of P control, Fig. 4.12, and shall insert the I(aw)
actions later.

L------------------jJl,.I+---------'

Fig. 4.12. The control system with proportional feedback and selection
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We shall use the same approach as with the minimum-time control in Sect.
4.4.2, i.e. calculate U for each point of the phase plane.

"I =()

Fig. 4.13. Generating u by RI (left)

liZ :>0
10

and by the R2 controllers (right)

Consider first only the linear R l controller; Fig. 4.13(left)

with Ul = canst --+

and for Ul = 0 :

Ul = -kl1 Xl - k2 1 X2

k21 1 2 1 Tl
Xl = --X2 - -Ul:= ---X2 - Ul

kl1 kl1 [/tTl (nl Tl )2 T2

2
Xl z = - nlTl X2 z (4.7)

where all points Xl, X2 below and to the left of the UI = 0 line produce U > o.

Consider next the linear R 2 controllers. For R 2hi

with

U2hi = -k12 X 2 + k12T2hi

1 1
U2hi = canst --+ X2 = -kU2hi + T2hi := - (n To) U2hi + T2hi (4.8)

12 2 2

and correspondingly for R2!o' This produces horizontal lines with parameter
U2hi' U210 on the phase plane; Fig. 4.13 (right).

The third step is to apply the selector block, as shown in Fig. 4.14 (left).
Transition from R2hi to R l will take place at

U2hi = Ul

i.e. - k12X2 + k12 T2hi = -k l1 Xl - k 21 X2

1
X2 = k k (kl1 X l + k 12 T2hJ (4.9)

12 - 21
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and correspondingly for transition from R2to to R I .

So R 2hi will be selected for points above and to the left of the dashed line
in Fig. 4.14, R I for points in the corridor delimited by the dashed and the
dash-dotted line, and R 2to for points below and to the right of the dash-dotted
line.

I

I

I

I

1I~ <0

:..:::...:.:....•~.•
1f~,~O /' \.\ \.

: .

Fig. 4.14. Selecting u from Ul, U2hi , and U2 lo (left); applying the saturation (right)

The last step is to apply the saturation on u, Fig. 4.14(right). Thus the phase
plane is finally partitioned into
- a narrow corridor, where control is linear, along U2 hi = 0,
along UI = 0, and along U2to = 0,

- a large area to the upper right, where U = Ulo ,

- and a second large area to the lower left, where U = Uhi.

4.4.4 Comparison

We are now ready to compare the selection control law with the minimum­
time control law from Sect. 4.4.1.
We consider an initial condition point at the left end of the U2hi = °horizontal
line, Fig. 4.15. Then Xl (t), X2 (t) will move along this line to the right, until it
meets the UI = °line, where transfer to R I control will occur. We now assume
that u(t) will be switched without any delay to its saturation value Ulo , as is
the case for minimum-time systems. Then the trajectory will continue as the
corresponding parabola.

As a special case, this may coincide with the "finals" parabola, Fig.
4.15(left), i.e. the Selector form would produce the minimum-time transient:
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Fig. 4.15. Comparison of u above the phase plane by state feedback, selection and
switching to Usat and for the minimum-time system, for three values of rZhi

that is

for the "finals" parabola

for the line UI = 0

Xl = -Ialolx§
k21 2

Xl = --Xz = ---X2
k l1 J'hTI

and

i.e.

or

2n;T I = .,----,--
lalolrzhi

4 T I ILlulol
T2 r2hi

r;hi = n:T2ILlUlOI

2
.!T2 _l_r
2T,ILlulol2hi

(4.10)

and correspondingly for the r2lo' ahi case.
For a given set of parameters Tl, T2, LlUlo, r2hi this allows you to calculate the
value of ni that would produce the minimum-time transient, or for a given
nl , T I , T2, LlUlo the corresponding value for the speed constraint setpoint r2hi .

In other words, there is a clear tradeoff between performance of the linear
R I loop (as determined by the value of nl ) and the "allowable" value of r2hi'
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If now this value is reduced by a factor of two (while not changing ild,
then from the properties of the parabolic shape, the line UI = 0 is the local
tangent to the parabola at the transfer point; Fig. 4.15 (top right). In other
words, UI will only saturate at the very first instant, and not for the rest of
the trajectory to the origin, i. e. the "finals" approach under R I control will
be linear. The same effect can be obtained by reducing ill by a factor of )2,
while not changing r2 hi .
If, however. r2hi > r2hi then a substantial overshoot of Xl is unavoidable;

Fig. 4.15 (bottom right). The trajectory is still nearly minimum-time in a
mathematical sense, but violates the basic specification from the applications
point of view.

We shall now drop the assumption that u(t) switches without delay to the
opposite saturation after X2 crosses over the UI = 0 line. As R I is a propor­
tional feedback with finite gains, i.e. the linear corridor in Fig. 4.14(right) is of
finite width, u(t) = UI(t) will move more slowly to the saturation value, and
thus run over the "finals" parabola. Consequently, there will be a noticeable
overshoot.

In order to avoid this, we will either have to reduce ili or r2hi or both by
some small amount. A conservative estimate for ili (to ili*) may be derived
as follows. The basic idea is to delay the transfer of u(t) from Uhi to Ula until
the phase plane point XI(t),X2(t) crosses over the parallel line for UI = Ula,
and there step from Uhi to Ula without further delay, yielding

from the "finals" parabola

from the UI = Ula line

. ("**T) 1 [1 ± 1- l.1ulal (I 1 )2 TI ]z. e. J& I I = 1 I 1 1 2 ala r2h.ala r2hi ala r2hi 'T2

(where the - of ± is irrelevant)

1 [ TI
] 1 [ J 1T2 TI

].,.---,--- 1+ 1-I.1ulallalal- = 1+ 1- ---
lalahhi T2 lalahhi 2 TI T2

--. (ili*TI ) = il~TI (1 + Ji72) = O.854(il*TI) (4.11)

and correspondingly for the r2lo' ahi situation.
This is illustrated by the simulations in Fig. 4.16.



Fig. 4.16. Transient response along the time axis (left) and on the phase plane
(right); top: flI = n;; center: nl = .a;*; bottom: nl = /l72 .a;*
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Consider now a given set

TI = 1.0, T2 = 1.0, Uhi,lo = ±1.0, r2hi,lo = ±1.0, Xl (0) = -1.0, X2(0) = °
for the system used in Fig. 4.16 and DI/Di as a parameter.
Then for DI/Di < 1 the transfer to R I will be before the U2hi = °line
crosses the "finals" parabola; consequently, the settling time will be larger
than the minimum-time. And if DI/Di > 1 the transfer to R I will be after
this crossover. Then Xl will overshoot, which again leads to a larger settling
time.
This is illustrated by Fig. 4.17, where the results of simulations on the

system used in Fig. 4.16 are shown. The settling time for any system with
a linear trailing phase is usually defined by observing from when the control
error el(t) stays in a given corridor, typically lell < 0.05. Here, we use U

instead (Iu - ill < 0.05), as this is a more sensitive criterion.
The minimum-time response for this system settles in 3.0 s to the origin. I

4.S

3.S '.

I.S

0.5

Fig. 4.17. Settling time to ILlul ::; 0.05 for different [hlm*, compared with the
minimum-time 3.0 s; with nr* = 3.414

The discontinuity in the measured settling times indicated by the arrow
appears because u(t) now overshoots outside its corridor, and re-enters it
distinctly later. So, for practical design purposes, one would recommend using

DI/Di*:= 1

to provide a small safety margin against overshoot.

1 You may want to check this as a short exercise.

(4.12)
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The transient responses also indicate that the dominating part of the addi­
tional settling time is due to the linear transient from the "sliding equilibrium"
at T2hi to the final equilibrium at O. This suggests increasing DI . But then
(from the basic tradeoff mentioned above) T2hi must be decreased to avoid
overshoot. And this will lengthen the settling time again.

4.4.5 Adding Integral Action with Antiwindup Feedback

The next move to a more practical setup is to add integral action to both R I

and R2 controllers in order to suppress step disturbances; Fig. 4.18.

The awf gains must be designed such that there are no overshoots either
on Xl (t) or on X2 (t). From the previous simulations we have to look into two
transfers, i. e.
- from the saturation on u to R2

- and from R2 (with X2 = T2hJ to R I

The first transfer has been investigated in depth in Chapter 2, from where the
awf gain should be selected at least as the compensating value and up to the
deadbeat value 2 ~ ka2 ~ (Ti2 /Ts )

H-------+(,
>-2

Fig. 4.18. The control system with PI(aw) feedback, selection and saturation
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Fig. 4.19. Details of the Rl controller with PI(aw) P structure

The second transfer can be investigated using the same approach. Consider
the continuous equivalent form of Fig. 4.19.

S'i:;k81 f k81

Ul = 1 k k 1 - 1+ _l_k k Y2, usingu = const. = 0
1+ -T. 81 a, T 81 a,

S zl S il

1 f h Til ( )1 1; were Tal = -kk 4.13+ STa, 81 a,

It(t)

It(s)

i.e. with rl

(4.15)

and again from Fig. 4.19

kP1 (1 + sTi ,) el(s); where el = rl - Xl

const.= 0:

kP1 [-Xl (t) - Til :tXl (t)]

---. kP1 [-Xl(t) - Til ~/2hi]
with zero crossover at (xt}!:

(Xl)!

where Xl (t) (and thus It (t) as well) ramps up with constant speed Ar2hi' In
other words, Ul(t) will ramp up as well, but for t » Tal it will be delayed by
Ta" That is, the zero crossover of It (t) is also delayed by L1tu1 := Ta"

During this time interval, Xl (t) travels horizontally in the phase plane by L1Xl

1 Til 1 Til 1
L1Xl = +Ta, -T r2hi = -kk -T r2hi = -T-kk r2hi

1 81 a,II 81 a,
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and thus the delayed zero crossover will take place at

(4.16)

Now we are ready to consider specific entries of the awf gains:

1. For the deadbeat case:

1 « 1.0; that is

2. For the compensating case

1 1
3' z.e. (4.18)

This is the same result as for the P-controller version from above, i.e. the
same transient response can be expected.

3. For the "low-gain" case

1 11 1
k k - 3; with 'Y set to, say, 4; then

81 a1 'Y

Xl = __3_ (1 - 4/3) r2 .
zc fhT

I
h,

(4.19)

Note the change of sign of Xl zc : the transfer of u from one saturation to
the opposite one is now delayed beyond Xl = rl.

Finally, note that the zero crossover of UI (t) is the point in time where control
transfers from R2hi to R I .

Remarks

Item 2 in the list above suggests setting again Sll = Sli* . Then we can
expect to get a near minimum-time response again.
For item 3, we have to expect strong overshooting of Xl (t).
For item 1 the transfer to R I will be earlier than necessary, the opposite
saturation will not be run into so strongly as in item 2, and the settling
time will be distinctly longer than near minimum-time.

These findings are checked by simulations in Fig. 4.20.

The last remark suggests modifying the design rule, but only for the dead­
beat awf case, to Sll = 1.5Sli*. Then we would again expect a near minimum­
time response.

Exercise
Check this by simulations and discuss the results.
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4.4.6 Back to the Benchmark

The benchmark in Sect. 4.2 provides a more realistic setup than the simple
two-integrator-chain plant with initial condition response back to the origin,
and we shall use it to check the results from above. It features an additional
delay D, a larger T s ' and also different values for Tl,T2,T2hi,lo' And the dis­
turbance sequence specifies additional load swings during the run-up phase,
which then motivated using PI(aw) controllers in the output constraint loops
as well. Again, we focus on controllers with integral action, and consider only
the case of compensating awf gains kaj = k~j; j = 1,2.

Benchmark vO

Here
1 T2 1 1

alo =- - -- .-
2 Tl L1ulo 10

and from

Including the delay D = 0.025, the sampling time Ts = 0.010 and the finite
width of the proportional band of R l leads to an estimate for Sli*:

From the simulations Fig. 4.21(top), setting Sli* = 7.01 produces a very small
overshoot (not shown), which disappears for Sli* = 6.86.

In any case, the design value from the benchmark Sll = 3.0 is smaller than
Slt /2. So there is no overshoot to be expected. And the "finals" trajectory
in the R l regime will avoid the opposite saturation on u, i.e. will be linear.
These predictions are confirmed by the simulations in Fig. 4.21(bottom).
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Fig. 4.21. Transient response for benchmark vO.
Top: with D l = D;- = 6.86; D2 = Dl ; bottom: with D l = 3; D2 = 3Dl

Benchmark v2

-0.90 during run-up (instead ofAs specified for version v2, we apply Zl

+0.90 as in Chapter 3). Then

1 Tz 1 2
alo = -2 -T~ = 1.0; and therefore n; = = 0.8

1 UUlo alOrZhiTl

As the current design value for nl is much larger than ni, a large overshoot
can be predicted. This is confirmed by the simulation in Fig. 4.22.
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A way out, continued

In Sect. 4.3 we proposed an intuitive way out by stepping down the speed
constraint setpoint T2hi from its specification value 0.5 down to a reduced
value T2hil ' which was determined by trial and error.
Now we are able to pre-calculate at least a good estimate. While neglecting
all delays

* 2 * 2
a!oT2h"l ~ T2 = - = 0.133.fhT1 hil 15

This is indicated by the dashed arrow in Fig. 4.23.

And including the delay D and T s , but neglecting the proportional band

* 2 0.035
T2 < - - -- = 0.126
hil 15 5

In the simulations for T2hil = 0.126 (full line arrow in Fig. 4.23) a residual
small overshoot is found. It finally can be suppressed by slight re-tuning, to
T2hil = 0.120 (not shown).
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Fig. 4.23. 'Ifansient response for benchmark v2, with .01 = 3, .02 = 3.01 , and with
stepdown of r2hi to pre-designed r2hil

Other alternatives to avoid overshoot will be explored in a more systematic
way in the "Advanced Techniques" part.

4.5 Stability Analysis

Stability means that the response trajectories to almost all initial conditions
(1 « IXl(O)I, IX2(0)1 < 00) end up at the origin.
This shall be investigated by using two different approaches. The first one is
the standard one. It considers the system as having two separate nonlineari­
ties of the sector type and a linear subsystem with two inputs (the outputs of
the two nonlinearities) and two outputs (the inputs to the nonlinearities). In
other words, we shall have to apply the multivariable circle criterion.
The second approach will use the concept of reaching the original initial con­
ditions in state space by letting the trajectory evolve backwards in time. So
we start from the final equilibrium of the control system at fh = Yl (0) =

rl; fh = Y2(0) = 0, increase the initial conditions in successive steps, and
investigate the stability properties of the resulting trajectory.
This will result in partitions of the phase plane.

In the following we shall consider again the double integrator chain as plant
and cascaded P-controllers as R l and two poles assigned to -.nl , and the R2

as P-controllers, with one pole assigned to -.n2 for each output constraint
loop, where u E [Ula, Uhi] as input constraint; see Section 4.4.1 ff.
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4.5.1 The Multivariable Circle Criterion Approach

We start with the "nonlinear additive" form of the system, Fig. 4.24 (top), and
redraw it into the canonical structure for the multivariable2 circle criterion,
Fig. 4.24 (bottom).
For this system to be globally asymptotically stable, all four transfer functions
in the 2 x 2 matrix Z(s) must be positive real, i.e. all the Nyquist contours
must evolve exclusively in the right hand half plane.

v=o

+

"L- ---'

~~
;:-~-

?~
~ .,

Z()

Fig. 4.24. The system with both input and output constraints
in its nonlinear additive form (top) and redrawn in the canonical form for the mul­
tivariable circle criterion (bottom)

Note that this is not a standard full two-by-two problem, because the
inputs to the two nonlinear blocks are not independent, and not generated
by separate sets of transfer functions or initial conditions.

2 two-inputs-two-outputs
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We shall look at four cases:

case 1

Let first VI (t) = 0 and V2 (t) = 0 \j t > 0, i. e. small enough initial conditions,
such that the transient will be linear. This leads to the trivial requirement that
the RI loop has to be stable by design of RI .

case 2

Consider next the case of transients where VI (t) = 0 but V2 #- 0 at some
length along the trajectory. This leads to the linear subsystem in Fig. 4.25,
and to the requirement that the RI-loop with saturation has to be stable; see
Chapter 2.

Fig. 4.25. The subsystem with both VI = 0 and V2 =Ie 0

case 3

Consider now the case of transients where VI(t) #- 0 at some length along the
trajectory, but V2(t) = O. This leads to the linear subsystem in Fig. 4.26 and
to the requirement that the RI-loop with the R2 overrides, but without the
saturation being active, has to be stable; see Chapter 3.
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Fig. 4.26. The subsystem with both Vl i- 0 and V2 = 0

case 4

Consider finally the case of transients where VI (t) :f:. 0, i. e. one of the R2
controllers is selected first (and thus the output of R I is masked), and then
it saturates at some length along the trajectory, i.e. V2(t) :f:. o. Then the
contribution of the feedbacks of CUI RI through the nonlinear block cancels
with the one added downstream of the nonlinearity VI.
This leads to the linear subsystem in Fig. 4.27, and to the requirement that
the R2-loop with saturation has to be stable, see Chapter 2.

Fig. 4.27. The subsystem with saturation while R2 is selected
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4.5.2 An illustrative example

Applying this to the simple example given above (with state feedback gains
kIll k2J yields for the four cases discussed above

case 1

k k
0= 1+~ + __11_ ---+ 0 = (s + stI)2 where stl > 0

sT2 s2Tl T2

which is covered by design of R l .

case 2

(4.20)

We start with the on-axis circle test.
Applying the main stability result from Chapter 2 yields for the linear sub­
system

S2
F(s)+I= 2

(s + stI)
Its Nyquist contour is, with the normalized frequency a = w/ stl

(4.21)

F( 'a) + 1 = (ja)2
J (ja+l)2

which is plotted in Fig. 4.28

1- a 2 + j2a

_a2 [(1 - ( 2) - j2a]

(1 + ( 2)2
(4.22)
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Fig. 4.28. Nyquist contour (-) and Popov contour (. - .) for the R1-1oop with
saturation
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and from Eq. 4.22 the real part ~(F(jo:)+ 1) has its minimum at

J3 . 1
0: = 3 and ~(F(JO:) + 1)min = - 8

Again, from Chapter 2:

I
\O(F() ) 1 Llu LlUlmax < 9
n jo: + 1 min :s LlUlmax _ Llu z.e. Llu -

(4.23)

(4.24)

(4.25)

(4.26)

Finally, for ILlulmax / Llul outside the range given by the on-axis circle crite­
rion, asymptotic stability (i. e. asymptotic convergence to the origin) can be
proved by the Popov test, as follows:

w
P(j D

l
) = P(jo:) = ~(F(jo:) + 1) + jo:CS(F(jo:) + 1)

__ 0:
2 (1 - 0:

2
) . 2 a 4

- (1 + ( 2)2 + J (1 + ( 2)2

the imaginary part of P(jo:) is positive for all a > 0, i.e.

1 ~ 1Ll~~ax 1< 1001

from which follows IXl(O)I, IX2(0)1 < 1001.

case 3

From chapter 3 the Nyquist contour is given by

F(s)+1= s2 2s+D2 _s_s+D2
(s + Dd s s + Dl S + Dl

(4.27)
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Fig. 4.29. Nyquist contour (-) and Popov contour (. - .) for the R1 loop with R2

override and no saturation
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Therefore, the response is stable to the origin, as long as the initial condi­
tions are such that u(t) does not transiently saturate.

case 4

From Chapter 2 the Nyquist contour is given by
s

F(s)+l=-n­
s + Jt2

1Sr---~---~--~-----,

(4.28)
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Fig. 4.30. Nyquist contour (-) and Popov contour (. - .) for the R2 loop with
saturation

Therefore the response is stable to the origin e2(t) ~ 0 for almost all initial
conditions.

The conditions for showing asymptotic stability are least favorable in case
2. This point has to be investigated further. The main idea is to use the fact
that the output constraints are shaping the trajectories such that the transfer
to the R1 loop with saturation will not take place at arbitrarily large initial
conditions, but rather in a quite restricted region of the phase plane which
contains the origin. And the size of this area is determined by the design
parameter values of r2hi , r21o'

4.5.3 The Phase Plane Partitions Approach

Step 1: Linear Control Zone of R 1

We start by applying initial conditions small enough such that Ul (t) stays
within the linear operating range, i.e. neither the input nor the output con-
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straint are run into. Then all the trajectories starting from these initial condi­
tions will decay asymptotically to the origin, by design of R I . In other words,
the final equilibrium is an asymptotically stable attractor for this compact
partition of the phase plane around the origin.
Such linear trajectories will evolve in the phase plane in the polytope depicted
in Fig. 4.31 (right column). They are bounded in the horizontal direction

to the left by

and to the right by

- kllXI - k21 X2 = Uhi

- kllXI - k21 X2 = Ulo (4.29)

The top and bottom bounds of this polytope will be derived in step 2.

The main interest will be on trajectories starting at initial conditions
Xl (0), X2(0) such that

i.e. along the line U z in the polytope, where

(4.30)

i.e. (4.31)

from the pole assignment.

Step 2: Saturating Control Zone of R 1

We now continue to augment the initial conditions along the line U z . We will
come up to a value X2(0)*, where the trajectory will be the finals parabola for
U= Ulo V t ~ 0, and ending at the origin.

For the Uz line (XI(O)*)f = - n~Tl X2(0)*

and for the parabola (Xl(O)*)p = alo (X2(0)*)2

where (Xl(O)*)f ~ (Xl(O)*)p

i.e. X2(0)* = - 1 2

aloS?lTl

(4.32)

Inserting also

finally yields (4.33)
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Fig. 4.31. Phase plane trajectories with D1 = 4; D2 = 12 for initial conditions:
(top) such that u(t) would produce the finals trajectory if not delayed;
(bottom) for initial conditions reduced by .1x2(O) as estimated in Eq. 4.34

Note that this implies instantaneous transition of u(t) from its previous
value Uhi to Ulo when crossing the U z line, and also instantaneous transition
to the steady state value u when reaching the origin. However, in this case,
both changeovers will be delayed, see Fig. 4.31 (top).
This is due to the finite width proportional band of R1 .3 Thus, the effective
X2(O)* will be lower by LlX2(O) than the value calculated above.

For a first estimate of this LlX2(O), by inspection of Fig. 4.31 (top), the
finals parabola may be estimated to start at the U = Ulo line instead of at the
U z line. Therefore (replacing the parabola by its local tangent)

3 And in more realistic setups to other elements, such as the delay D in the plant,
the sampling delay Ts , etc.



4.5 Stability Analysis 199

(4.34)

This has been introduced in Fig. 4.31 (bottom).

We can now determine the upper bound on the polytope in Step 1:

(4.35)

This is derived from the observation that the tangent in the phase plane at
the initial condition point to the Ulo parabola must be the U z line. Then u(t)
will not exceed Ulo while moving the plant to the origin. Note that this again
implies instantaneous transition of u(t) at the U z line.
With the finite P band of the R1 controller, then (see Fig. 4.32)

(4.36)

So this simple estimate is fairly conservative.

0.'

0.•

0" .... ,

0.2

/

-<1.2
/

-<I.' ,
-<I.G .. ,

-
-<I.'

-.
O. 1.5

UJ rnu-hI- , ..• - u-le>_ _ u2

,
,

,
, ,

-- - - - - - -'
"-... ,

-------- 0.5 ,
,

I

•
",

,

,
-<I.' I , ,

2.. 3.5 -. -<I~ -<16 -<I.' -<1.2 0 0.2 0.' 0.' O~

Fig. 4.32. Trajectory for initial conditions such that u(t) stays within its linear
range, with correction by Eq. 4.36

Step 3: Radius of Attraction for the Saturating R 1 Control

We increase initial conditions along the Uz line further, i.e. X2(O) > X2(O)*.
Then the phase plane trajectory will be a L1ulo parabola, until the U z line is
met again in the fourth quadrant; Fig. 4.33
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Fig. 4.33. Trajectories for u(t) = Ul o and instantaneous transfer of u with initial
conditions: (left) at Xl(O)*,X2(O)* on the finals parabola; (right) such that the Ul o­

parabola meets r2lo = -r2hi on the U z line

The question now is whether the trajectories on the full line parabolas in
Fig. 4.33 can be shown to be asymptotically stable to the origin.
The system to be analyzed is the R l loop with control saturations (input con­
straints) at LlUlo, LlUhi. Then, for the graphical stability tests from Chapter
2, we assume the saturation to be symmetrical, i.e. ILlulol = ILluhil = Llu,
and we have to determine
- the Nyquist contour F(jw) + 1 of the linear subsystem, and
- the position of the straight line on the real axis at - t = - u Llu_ Llu '

Imax

i.e. Ul max '

(4.37)LlUlmax < 9
Llu -

The Nyquist contour for the on-axis circle test has been discussed previ­
ously:

and for ILlulmax/Llul outside this range, asymptotic stability has been proved
by the Popov test (see above).

The next step is to determine ILlulmax/Llul from the trajectory. Transitions
of u(t) shall be instantaneous at crossing the U z line.

Consider first the situation in Fig. 4.33 (left). From above, parallel lines to
the U z line are lines of constant LlUl' So LlUl will be at its maximum for the
parallel line that is tangential to the finals parabola. From the basic properties
of the parabola, this tangent will be at X2, := (I/2)x2hi(0)*.
There the horizontal distance 8xr is

8xi = 0.5xi - (0.5)2 xi = 0.25xi
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where

i.e.

and thus

Furthermore, the P band of the R I controller is

i.e.

(4.39)

(4.40)~ * 2 A -t .1Ulmax = 2 < 9
uX I = ..wXllin .1u

i.e. the finals trajectory from XI(O) = xi; X2(0) = x2 shown in Fig. 4.33
(left) is asymptotically stable to the origin by the on-axis circle criterion.

Consider now the situation in Fig. 4.33 (right), where the initial conditions
XI(O), X2(0) have been chosen such that the full-line parabolic trajectory
meets the Ul z line at X2 = T2lo = -X2'

From the properties of the parabola in Fig. 4.33 (right) it follows that

i.e.

XI(O) = 2x~; X2(0) = 2x;

and 8XI = 2x~ + 8x~ 2.25x~

J.1ulmax I = 18 > 9 but < 00
l.1ul '

(4.41)

In other words, asymptotic stability to the origin can no longer be shown by
the on-axis circle criterion for this trajectory. But it can be shown using the
(less conservative) Popov criterion.

Step 4: Linear Control Zone of R 2

We now increase the initial conditions along the T2hi' T2lo lines in the phase
plane. More precisely we consider Xl (0), X2(0) for which the output U2 of the
R2 controller, which is currently switched through to U by the selectors, is
within the saturation limits.
In the phase plane this corresponds to introducing initial condition values
Xl (0), X2(0) within corridors along T2hi' T21o' which are delimited by horizontal
lines parallel to the U2 z lines (denoted by U2lo and U2 hi ).
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We assume first that the setpoint values r2hi' r2Lo are sufficiently low such
that, after the transition from the R2- to the Rl-control, u(t) does not satu­
rate, i.e.

r2hi :S O.5x; and correspondingly for r2Lo

A typical such transient is shown in Fig. 4.34.

(4.42)
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Fig. 4.34. Trajectory for initial conditions corresponding to the assumptions of the
stability test of Chapter 3

Then u(t) will saturate nowhere along the initial condition response. And
only the selection nonlinearity will be active, i.e. the stability test of Chapter
3 applies. Thus for the system considered here, where

F(s) + 1 = _s_ s + il2
S + ill S + ill

(4.43)

see Fig. 4.29, the initial condition response will be asymptotically stable to the
origin for almost all initial conditions within the horizontal corridors delimited
above, i.e.

Consider now increasing the constraint setpoints beyond the values used
above, keeping everything else constant:

O.5x; < r2 hi :S 2x; and correspondingly for r2Lo (4.44)

Then u will transiently saturate, but only in the R l regime; see Fig. 4.35

Exercise
Derive why this particular choice of r2hi / x:;; has been made in Fig. 4.35.
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Fig. 4.35. Trajectory for initial conditions along the T2hi line, at a level correspond­
ing to Fig. 4.33 (right). Here, T2hi = 0.5(1 + y'5)X2

To check the stability of such trajectories we argue that the circle criterion
is based in fact on the Ljapunow stability concepts with a corresponding
Ljapunow function V. This means that for all parts of a stable trajectory
dV/ dt :S 0 holds. So we have to show that each part of the trajectory is stable
by applying the appropriate circle criterion. Specifically:

In the first part, the trajectory decays to r2hi by control of R2hi . This part
is non-saturating, and by applying the stability test of Chapter 3, this part
converges, i.e. the state variables decay from their initial conditions down
to the values Xl, X2 indicated by the arrows in Fig. 4.35 (right).
When XI(t), X2(t) are crossing the Uz line at Xl" X2" the selection mech­
anism will transfer control to the R I loop.
The values of the state variables there (Xl" X2J are now the initial con­
ditions for the trajectory controlled by R I . The movement along the next
part of the trajectory may either be linear, as U does not saturate, which
is the case if r2hi was set complying to 0 < r2hi S; 0.5x2, or else nonlinear.
The system to be considered then is the combination of R I and the UI­

saturation. As shown above, the trajectory to the origin will be asymp­
totically stable by the on-axis circle criterion if r2hi was set according to
0.5X2 < r2hi S; 0.5(1 + J5)X2' 4

In other words, the key element is the choice of r2hi with respect to x 2. The
stability test then is conducted for the two parts of the trajectory
(a) leading up to the transfer condition in the selector and

4 And for larger T2hi the trajectory would still be asymptotically stable by the
Popov test.
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(b) leading from there on to the origin.
This "consecutive parts procedure" will be used again in the following steps.

Step 5: Saturating Control Zone of R 2

We now continue to expand X2(0) vertically; Figs. 4.36 to 4.38.

First look at the Min-selection between UI and U2hi' This partitions the
phase plane by the straight line 'V2hi' in Fig. 4.36, which is determined by

UI = -kl, Xl - k2, X2 and U2hi = -k12 (X2 - r2hJ

where - UI -U2hi

and thus (4.45)

In other words, for all initial conditions in the upper left partition, the R2hi

controller will be selected initially. For initial conditions Xl (0), X2(0) above
the linear corridor around r2hi' U = Ulo, the corresponding Ulo trajectory 'open
to the left' will be generated; see Fig. 4.36.
We now investigate where the Ulo trajectories lead to and use this to partition
the phase plane.

Area A
IfXI(O), X2(O) is above the linear corridor of R2hi and below the Ulo parabola
through the transfer point U2hiz ' Ul z ' then the trajectory will enter the linear
corridor of R2hi .
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Fig. 4.36. Phase plane trajectory for initial condition Xl(O) = -3.0, and X2(0) in
area A
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And for the stability of this part of such a trajectory, it must be asymptot­
ically stable for all initial conditions in this area of the phase plane, extending
outward to near-infinite values. Then the system to be investigated reduces
to the R2hi loop with the input saturation [Ulo , Uhi]. Its stability properties
are determined as in Chapter 2 by the Nyquist contour of

s
F2 +1 = --lO­

s + Jt2
(4.46)

See Fig. 4.30. It indicates asymptotic stability for all IX2(0)1 < 1001. In other
words, X2(t) will decay towards r2hi for almost all initial conditions in this
specific area.

Area B
This is delimited by the Ul o trajectory through the transfer point U2hiz' Ul z

(read z as zero) to the lower and left side and by the Ul o trajectory through the
transfer point U2loz' Ul z (associated to R2lJ to the upper right side, and again
extending outward to near-infinite values, and inward to the v2hi-separation
line; see Fig. 4.37.
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Fig. 4.37. Phase plane trajectory for initial condition Xl(O) = -3.0, and X2(0) in
area B

Trajectories from such initial conditions will first be formed by the R2hi
loop with saturation, up to this separation line. In this part, the same stability
test as above applies.
After crossing the separation line, the selector transfers control to the R 1 loop
with saturation and the Ulo trajectory will proceed to the linear R 1 corridor
adjacent to the Ul z line, and from there on to the final equilibrium at the
origin. Therefore, the system to be investigated in the stability test is the R1
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loop with saturation, but with initial conditions Xl (0), X2(0) delimited within
the finite, (and comparatively small) area around the origin.

In other words the R I loop with saturations need not be asymptotically
stable for almost all initial conditions, but only for those in this restricted area.
Furthermore, the key design parameter for this area is the value attributed
to r2hi with respect to x2 for the particular set of plant parameters. As we
have shown above, stability can be shown with a substantial margin for 0 <
r2hi / x2 :::; 2 with the Popov test. This nicely covers the delimited area around
the origin, where the R I loop with saturation will be active.

Area C
The third area for XI(O), X2(0) in the phase plane is delimited to the lower
left by the Ul o trajectory through the transfer point U2loz' Ul z (associated to
R2IJ, and again extending outward to the upper right side to near-infinite
values.
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Fig. 4.38. Phase plane trajectory for initial condition Xl(O) = -3.0, and X2(0) in
area C

There the Ulo trajectories will proceed to the U2loz horizontal line, asso­
ciated with the R2 loop with saturations. In other words the system to be
considered for stability of this part of the trajectory is the R2lo loop with
saturation, where stability to its own origin at X2 = r2lo must be shown for
almost all initial conditions in this area.

Exercise
Repeat this for initial conditions below the line U2hiz' Ul z ' U2loz in the
phase plane.
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4.5.4 A Modified Approach

Another approach to stability analysis would be to consider the selection
between the three controllers first. This partitions the phase plane into three
areas, see Fig. 4.39, by the separation lines 'v~ . and 'v~ .

h1, lo

For initial conditions in area A from above, the first part of the trajectory
converges to T2hi within the partition to the left of 'V~hi' i. e. the R2hi loop
with saturation has to be tested for convergence of X2 to T2hi as before.

For initial conditions in area C from above, as shown in Fig. 4.39, the
first part of the trajectory up to the 'V~hi separation is generated by the R2hi

loop with saturation, the next part up to the 'V~lo separation by the R 1 loop
with saturation, the next part up to the T2lo line and further to the transfer
at the point U2loz' Ul z by the R 2hi loop with saturation again and the next
part (the final one in Fig. 4.39) again by the R1 loop with saturation.

For the whole trajectory to converge, each part has to be generated as
stable; that is, each of the three loops with saturation has to be stable for
almost all initial conditions.

I

I' ---------- •• --------- ••,<,
I ,

OS / .\
I ,

I

I

.. ,
I
I

I

, I

'....... ",, ,,
"11

Fig. 4.39. Phase plane with separation lines 'V;hi and 'V;lo from the Max-Min­
selection between the three controllers, and downstream saturation.
Trajectory for initial condition Xl(O) = -3.0, and X2(0) in area C, as in Fig. 4.38

This approach is much less involved than the first one; but, as we have
seen, it puts more restrictive assumptions on the R1-Ioop with saturations.
This is a disadvantage for some applications, where this simpler approach
cannot show stability, whereas the more-involved one succeeds.
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4.5.5 A Fourth Approach to Design for Stability

The stability test would be further simplified by restricting the design values
of r2hi to 0 < r2hi :::; 0.5x2, and r2lo = -r2hi'

Then the trajectories consist of two parts, first the approach to the r2hi' r2lo

lines by the R2-loop with saturation (and continuing along them in a 'sliding
mode'), and then, after transfer to the R I loop, a linear final approach to the
origin.

4.5.6 Summary and Generalization

Looking backwards from the final equilibrium of the R I loop at Xl = 0, X2 = 0
along the trajectories to the starting conditions, we have extended step by
step the range of "admissible" initial conditions to almost all points on the
phase plane, where "admissible" initial conditions means that the trajectories
starting there can be shown to be asymptotically stable, i. e. to converge to
the final equilibrium, and where "almost all" means: V IXI (0)1, IX2(0)1 < 1001.
This has been discussed for a specific example, i.e. the two-integrator chain
with simple proportional controllers R I , R2 and zero load disturbances.

For this we have needed and used the following elements:

1. Both the R2hi and R2l0 loops with the u saturations must be asymptot­
ically stable to their respective equilibria at e2hi -. 0 and e2lo -. 0 for
almost all initial Y2(0).

2. The R I loop with the u saturations must be asymptotically stable to the
origin, el -. 0 for a bounded, compact area in the phase plane, the size of
which is chiefly determined by the design choice of r2hi = r2lo in relation
to X2' It need not be asymptotically stable for almost all initial conditions.

Discussion

Note that the actual shape of the Ula, Uhi trajectories (of parabolic shape
in the phase plane for the case above) does not enter explicitly into the
stability analysis (but of course it will in the performance analysis). This
indicates that this stability test procedure may be applied to other plants
of dominant second order.

For practical purposes, the P feedbacks used so far must be augmented by
I(aw) actions. We have shown before that if the awf gains kaj are set to
their compensating values, then the response and the stability properties
are the same as for the P feedbacks investigated so far.
But if higher awf gains are introduced, then the transfer from the R2 con­
trol to the R I control will occur earlier (because of less transient windup).
For example, if deadbeat awf gains are selected, the transfer will occur on
the line5

5 this implies Ts ---. 0 and D = O.
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~n . ~n .
X2 = - -3-X1; mstead of on X2 = - -2-X1 for compensatmg kaj

(4.47)
This may be utilized for increasing robustness to variations of ala, ahi.

About selecting the r2hi or r210 values, there are two different aspects.
The first one is that these setpoints are equal to operational limits imposed
on the secondary output variable Y2(t). In other words, they are fixed by
plant properties.
The second one is from the control system dynamic performance, i. e. from
the design rules derived above to obtain responses, which comply to per­
formance specifications (such as no perceptible overshoot).
If the first set of r2hi or r210 values (from operations) is more constraining
than the second one, then there is no conflict, as the first set will automat­
ically produce responses complying to control specifications. If, however,
the second set is the more constraining one, then implementing it would
not exploit what the plant offers, and overall performance will suffer.
One possible way out is to apply the more constraining set only in the final
approach phase, as demonstrated in Fig. 4.6 (left column). Others will be
discussed later in the "Advanced Techniques" part.

The assumption in the fourth approach to stability testing (about not
permitting any saturating u in the final approach under R1 control) may
seem too conservative. However, from a practical design point of view,
it has the advantage of increasing robustness against overshoot caused by
additional unknown loads and variations ofT1 , T2 , i. e. to off-design values
of ala, ahi. Of course, one then has to accept some increase of settling time,
as indicated in Fig. 4.17.

Considering the general control problem with both input and output con­
straints shown in Fig. 4.2, the same elements from the list above apply
for the stability analysis. But for the performance analysis, the change of
shape of the Ulo and Uhi trajectories must be taken into account.

Finally, the set of initial conditions considered so far must be carefully
reviewed.
From a theoretical point of view, looking at all or at least almost all points
of the phase plane is the standard procedure for stability analysis.
However, the initial conditions which may appear in the actual control
loop are much more restricted. So, from an applications point of view, the
bounds on the compact set of initial conditions to be investigated are also
more restricted. That is, proving asymptotic stability for almost all initial
conditions is "nice to have", but in general there is "no need to have" .
From this it follows that the physical bounds of initial conditions must be
carefully checked for a specific application. This becomes a key issue, if
the general procedure is not able to prove asymptotic stability for almost
all initial conditions.
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In practice, actuator subsystems often have so-called slew and stroke con­
straints. This may either be seen as a special case of combined input and
output constraints, or as a more general anti windup problem. We shall
investigate this next.

Exercise

Evaluate the physical bounds on the initial conditions for the
benchmark specified in Sect. 4.3 and discuss the consequences.
Apply the concept and procedures from above to the example
in Sect. 4.1 to show why using the opening limitation applied
there has such a beneficial effect on the run-up response.

Extended Exercise
The cascade-limiter form with I(aw) on both controllers has not
been investigated with respect to both performance and stability
so far. Do this as an extended exercise.

4.6 Case Study: Elevator Positioning Control

4.6.1 Plant Description and Data

Consider the typical elevator system shown in Fig. 4.40, where the cabin and
a constant counterweight mass are suspended by a cable from a drive drum
situated above the top floor. The drum is part of an electrical drive subsystem.

Drum

Cable

Counter­
weight

Position
sensor

Cabin

Fig. 4.40. The elevator (schematic)
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Plant Data

Mass of cabin (empty) mK 500 kg
Mass of counterweight mw 500 kg
Payload mass mp oto 250 kg
Drum inertia 8 0 kg m2

Elevator operating height L 3 to 43 m

Reference value for masses mR 250 kg
Reference value for cable force FR := mRg 2500 N
Reference value for speed VR 2.0 m/s
Reference value for position SR 40.0 m

Speed constraints Vhi, Vl o ±2.0 m/s
Cable force constraints
from drive torque constraints Uhi +2FR N

Ul o -lFR N

Position sensor gain kYl 1.0/SR l/m
and time constant TYl 0.010 s

Speed sensor gain kY2 1.0/VR l/(m/s)
and time constant TY2 0.10 s

Drive subsystem gain ku FR/1.0 N
and time constant Tu 0.040 s

Cable mass me 0 kg
and cable stiffness coefficient Ce 00 N in/m

Friction and drag forces are neglected

4.6.2 Mathematical model

The equation of momentum for all (rigidly coupled) masses is

i.e.
(mK+mp+mW)VR d v Fu (mK+mp)g mwg

--=-- +--
FR dt VR FR mRg mRg

finally (4.48)

with the notations

= (mK+mp+mw)vR =08t 10 .
T2 F

R
. 0 . s,



212 4 PI Control with Input and Output Constraints

and

mp
Z = - = 0 to 1.0;

mR

v Fu
X2 = VR; Ul = FR = -1.0 to +2.0;

and with the drive subsystem equation

d
7u dt Ul = - Ul + ku U

From cabin speed to cabin position

d SR d S
- S = v . that is - --
dt' VR dt SR

where
SR

71:= - = 20 s;
VR

S
and with Xl := ­

SR

(4.49)

(4.50)

and with the sensor equations

d
7 Yj dt Yj = - Yj + kyjxj; j = 1,2 (4.51)

4.6.3 Suggestions for the Control System Design and Analysis

Case A

Consider the system as specified above. Then all necessary design and analysis
elements for the position control system are available from Chapters 2 to 4.
We suggest using as design parameters

Ts = 0.020 s; fl l = 1.0 rad/s; fl2 = 3.0 rad/s

but check and confirm that this is feasible.

Case B

Extend the system by adding a "jerk" limitation, i. e. the change of force and
cabin acceleration is not instantaneous but has a speed of change limit, such
that an increase of one unit of FR takes 5 s.
Hint: focus on the speed control first and then extend to the position control.

CaseC

Extend the system by letting the cable be elastic, such that for the cabin
being at the lowest position, a resonance frequency of 10 rad/s is observed.
Hint: use additional feedback for active damping.
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4.7 Summary

After investigating control loops with input constraints (a pair of saturation
limits) in Chapter 2, and one pair of output constraints in Chapter 3, the
focus is now on control loops combining both constraints.

Regarding the design of the controller structure, the intuitive approach is
to combine the structure elements from the two previous chapters. The ad­
ditional new element used here is to implement the constraints by sequential
selection on the control variable u. The output constraint feedback action
on u is selected for first, followed by the input constraints action, as those
are hard actuator limits and cannot be moved outward by the output con­
straint feedback action. So this makes use of particular masking properties.
Thus the output and input constraints act on the control variable, i. e. control
conditioning is used (and not reference conditioning).

The transient response for the benchmark system is well behaved, but
unfortunately not for all cases: the saturation of the control variable may be
so restrictive that, figuratively speaking, the kinetic energy at the transition
to the finals trajectory is too high for being "braked off" in the remaining
interval of the control error el, and an excessive overshoot is unavoidable. So
one possible countermeasure is to reduce the approach speed by lowering the
speed constraints appropriately.

The stability properties are more involved, as there are now two separate
nonlinear elements, although both are of the deadspan type. There are several
methods available. A sequential approach using the one-nonlinearity form has
been demonstrated.

Performance is now a less trivial matter, due to the overshoot tendency.
Here, the analysis in the phase plane is a powerful additional tool. In this
framework, a standard element is looking at the trajectories with their par­
ticular shape (parabolas in the benchmark case). An additional element is the
lines, along which control is transferred by the sequential selection block, and
which partition the phase plane.

This opens an additional approach to stability analysis by starting with
small deviations (initial conditions) from the final equilibrium, testing sta­
bility with the sector criteria, and then increasing the initial conditions into
adjacent partitions of the phase plane, again checking the stability, until this
covers a sufficient part of the phase plane for the particular application. This
may be seen as "moving backwards in time" along the trajectory from the
final equilibrium to the actual initial conditions. Note that this approach to
stability is closely related to Ljapunow's.

So far, the focus has been on plants of dominant first and second order
with PI control and PI-P cascaded control, where the visualization in the phase
plane is straightforward. But this poses the problem of higher order systems.
Again, the intuitive approach would be to apply the same basic method to
this new problem class, i. e. using the selection block for implementing the
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constraints as above, and replacing the standard linear PI(aw) algorithms for
R1 and the R2 by more advanced ones, such as state feedbacks (with observers
if needed), and augmented by I(aw) actions.
However, this shall be investigated later, as there are some open questions
within the standard PID-control area that must be addressed first.



Part II

Advanced Techniques
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Further Topics on PI(aw) Control

So far, the basic situations of constrained control with PI controllers have
been investigated. In practical applications additional questions arise. Three
such topics are selected here for further discussion:

• PI control with actuator slew and stroke constraints.
This situation will be present in almost all applications. It takes into ac­
count that moving an actuator will always require an inflow or outflow
of mass or energy. Such flows are always bounded, leading to such slew
constraints. The question is for which such constraint values the transient
and stability properties will start to deviate significantly from the case of
pure stroke constraints, as they have been assumed so far.
This will provide an indication how much dynamic performance (and thus
cost) of the actuator subsystem may be reduced without significantly af­
fection closed-loop performance.

• PI(aw) control with derivative action.
The standard structure is in fact PID control, and not just PI control as
discussed so far. So the D action, which is available, has been set to zero.
In cases where such additional D action would be required to stabilize
the loop and produce acceptable performance, it has been replaced by
a cascade structure of PI(aw)-P type. The reasons for this will become
apparent in this section.

• PI(aw) control with measurement noise.
So far, the measured signals Yi(t) used for feedback have been considered
to contain no measurement noise component. This is unrealistic, of course.
Even if high-quality signal conditioning and filtering are applied, some low­
level component will remain.
Here, the focus shall be on the effect of a low-level high-frequency distur­
bance on the measured variables to PI(aw) control as developed above.

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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5.1 PI Control with Actuator Slew and Stroke
Constraints

5.1.1 Motivation

So far, no actuator dynamics have been considered. In other words, all moves
to new actuator position are instantaneous. There are no rate or speed con­
straints, i. e. no bounds on "slew".
However, real-world actuators generally have some storage (integrating) ele­
ments, such as servo cylinders in electrohydraulic actuators, or screw-and-nut
arrangements in linear actuators with rotative electric drives, etc. And the
flow to the servo cylinder or the rotative speed of the electric motor is al­
ways bounded by physical reasons. This introduces rate constraints or "slew
saturations" in addition to any position limits or "stroke saturations" .

High slew-rate actuators require high power input, such as to produce
the high flow at given cylinder pressure, or high speed at the given load
torque on the screw. And this will be more expensive. So there is a strong
economic motive to use not only the smallest actuator, which has the lowest
stroke constraints, but also the least power-consuming actuator, i.e. with the
lowest slew constraints, such that the control loop still can meet its dynamic
specifications.

On the other hand, slew saturations slow down the movement of u, which
will deteriorate performance and stability properties. And this will be more
pronounced if the slew saturations are lowered.
The dynamic effects of such additional slew saturations are visible in John's
case; Fig. 2.2. Such slew saturations are even introduced expressly for con­
straining the pressure surge in the penstock of the hydroelectric power plant,
and not only to reduce power supply costs.

So there is a strong need in the design phase to consider additional slew
constraints on stroke-constrained actuators. Any such design procedure or
stability test must be simple and straightforward to be practicable.

5.1.2 Actuator Modeling

Fig. 5.1 shows a simplified layout of a typical electrohydraulic actuator sub­
system. In the range of linear operation, the rate of change w = dh/dt of
position h is assumed as proportional to oil inflow Q oil. It is set proportional
to the pilot valve opening v; see Eq. 5.1, which defines T2.

hR d ( h ) d ( h ) Qoil V
WR dt hR = T2 dt h R = QoilR = VR

That is, variations of oil pressure from the pump, from the oil reservoir and
in the servomotor due to changing load forces and acceleration of the closing
weight are neglected.
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Two nonlinearities are considered. The first one is the effect of the orifices
shown in Fig. 5.1. They limit the oil flow to and from the servomotor, and
thus the transient water pressure rise. This is a standard safety measure in
hydropower plants. The limiting effect is modelled by input saturations on
flow to/from the servomotor,

Vdn V vup-<-<­
VR - VR VR

(5.2)

Fig. 5.1. The actuator subsystem
pump (1), oil reservoir (2), spring loaded servo valve (3), with drive solenoid (4) and
power amplifier (5), pipe (6) with safety orifices (7) to and from the servomotor (8),
closing weight (9) for fail safe shutdown, position transducer (10)

The second nonlinearity is caused by the mechanical limits imposed on
the servomotor position, again consult Fig. 5.1. It is modelled by a stiff spring
coming into action, if the position exceeds the limit values hlo, hhi' To at­
tain equilibrium of forces, the servomotor pressure PSM will rise to the supply
pressure pp, which then reduces the oil inflow to zero for standstill. The re­
lation to use would be Qoil rv vVpp - PSM, and correspondingly at the low
end. This effect is approximated here by an additive high-gain feedback on
the servomotor integrator input, if the servomotor position would exceed the
mechanical limit values at hlo or hhi. The servo valve dynamics are modeled
by a first-order lag with unity gain and time constant Tsv . Any further small
time constants in the servo valve, its power amplifier, and the position trans­
ducer are neglected. Finally, the position shall be controlled by a proportional
controller with gain ks ' see Fig. 5.2. Numerical values are:

hlo = 0.0; hhi = 0.80; Tsv = 0.10 s; k s = 9.0;

T2 = hR = 5.0 s; Vdn = -0.2; vup = +0.2; ~ 100 % in 25 s. (5.3)
WR VR VR
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Fig. 5.2. The actuator control loop model, and typical setpoint step responses
(small, medium, high)

5.1.3 Control Structures and Transient Response

This actuator subsystem shall now be embedded in a speed control loop,
where it manipulates the driving torque. The plant is shown in Fig. 5.3, with
numerical values T1 = 5.0 s; a = 0.025.

1

vv)in

Fig. 5.3. The plant model for speed control with slew- and stroke-saturated actuator
The P control loop for actuator positioning from Fig. 5.2 is omitted here

Again, several alternative controller structure forms are used in practice.
Here, we shall build on what we have discussed so far; see Fig. 5.4:

An input constraint (saturation on u) is representing the working range
of flow through the servo valve. This implies constant oil pressures and a
linear valve characteristic.
An output constraint is used to capture the mechanical limitations on
servomotor position Y2.
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'------------------------11\.1+-------1

Fig. 5.4. Implementing the speed control with input saturation (for slew) and
output saturation (for stroke)

Note that if a saturation block is introduced at the controller output, with
saturation values Udn, uup at a small distance inside of the working range of
flow [Udn p , uUpp ], then the input saturation on the actuator will not become
active, and can be deleted from the actuator model.
Similarly, if the setpoints r2hi' r2lo are adjusted at a very small distance inside
of the stroke working range, then the mechanical limitations are not met, and
the high-gain feedback in the actuator model will not become active, and can
again be deleted from the actuator model.
In other words, the actuator model is now linear, and the corresponding con­
straints are implemented in the controller structure.

The controller R l is a cascade structure of
- a P controller for the actuator positioning (as used above)
- a PI(aw) controller for turbine speed.
The three parameters are calculated by pole assignment, using Cl = 1.0:

(8 + Qd 3
= 0 with Q l = 0.6; that is QlTl = 3.0

yielding ks = 9.0 (as above); kPl = 3.0; and Til = 5.0 (5.4)

This fits well with typical values for such hydroelectric units.

And for the override controller R2:

yielding kP2 = 9 (5.5)

The transient response in Fig. 5.5 shows a large overshoot, which cannot be
tolerated. It is the consequence of a large buildup of the actuator position,
which cannot be reduced in time due to the downward slew saturation.
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Fig. 5.5. Runup response of the speed control loop in Fig. 5.4,
with awf gains: deadbeat (left); compensating (right)

A standard countermeasure is to introduce an "opening limit". This can
be implemented quite simply in Fig. 5.4 by lowering r2hi appropriately from
the upper mechanical limit of 0.80. In this case, 0.20 is a suitable value (and
a typical one for such applications); see Fig. 5.6. The overshoot is suppressed,
and the run-up time is reduced from 110 s to 40 s.
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Fig. 5.6. Runup response of the speed control loop in Fig. 5.4 with the "opening
limit" set to r2hi = 0.20, and with awf gains: deadbeat (left); compensating (right)
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5.1.4 An Approximation

The Basic Idea

The aim is to reduce the effort for the stability test from above.
Consider a system that has only an output constraint feedback of i12 and no
input constraints, where i12 is an appropriate linear combination of the stroke
Y2 = U and slew dy2/dt, with parameter Ta in the approximation.

_ d
Y2 := Y2 + Ta dtY2

For steady state in the constraint feedback loop:

dY2/dt --t 0 i. e. Y2 --t Y2 and thus i12 --t T2hi (or --t T2/J (5.7)

At t = To the transfer to R 1 shall occur. Let Ul(t) move stepwise to its final
steady state value ii = O. Then Y2(t) will decay to zero with time constant T a ;

that is, the downward slew rate on Y2 (t) will not exceed

~Y21
dn

(5.8)

On the other hand, from the slew saturation in the actuator in the original
system:

d I Vdn
dt Y2 dn T

2
(5.9)

Let both left-hand sides be equal. Then the value of Ta in the replacement
system with the same slope of Y2(t) is

'T"a = -'7'2 LlUhii.e. ,. .L'

Vdn
(5.10)

and correspondingly for a step of Ul from zero upward.

Fig. 5.7. The replacement model of the actuator
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Transient Responses

This is checked by simulations; see Fig. 5.8.
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Fig. 5.8. Responses of the replacement system Fig. 5.7 for different values of T2 hi

(full lines); compared with those of the original system (dotted lines), for Ul steps
o--+ 1 (left) and 1 --+ 0 (right)

Within the speed control loop (Fig. 5.4) the approximation is conservative,
see Figure 5.9, as the movement of U is slower than in the original system. The
opening limitation at left is set to T2hi = 0.6, such that it does not interfere in
the original system, and the awf gain ka1 is set to the compensating value.
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Fig. 5.9. Speed run-up responses with the replacement model of the actuator for
T2hi = 0.6 (left) and T2hi = 0.2 (right)
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5.1.5 Stability Analysis

The general result of Chapter 3 may be applied now.
For the Nyquist contour

F(s) + 1 = 1+ ka1 Ga1Rzl 1+ GzRz
1+GIRl 1+ 0

(5.11)

Note that the output constraint controller is of P type, and needs no awf, i.e.
ka2 = O. Furthermore set ka1 to its compensating value. Then

with

and

where

(5.12)

We now discuss the second factor in Eq. 5.12.
Let

(5.13)

which defines '" (here '" = 3).
Its denominator and numerator zeros cancel if

yielding

where from Eq. 5.10

are the same

(5.14)

This allows one to determine directly the value for T2hi for such cancelation.
Using the numerical values from above:

* 1 11 2
TZh = it + ('" -1)(-vdn) n 'T' = 0 + (3 -1)-- = - ~ 0.0444

, J£Z.LZ 59 45

Inserting this into Eq. 5.12 yields

s
F* + 1 = '" ------r;­

s + Jq (5.15)

and a Nyquist contour with the real part !R(F* (jw) + 1) > 0 for w > 0, that
is asymptotic stability for almost all initial conditions by the on-axis circle



224 5 Further Topics on PI(aw) Control

criterion. Note that this nicely covers the case with the opening limiter set to
r2hi = 0.20 in the example.

Fig. 5.10 shows the Nyquist contours for opening limiter setpoints beyond
r 2hi . Up to r2hi = 0.10, the Nyquist contour of F + 1 still evolves to the right
of the vertical line in 0, jO for w > O. So there is an ample safety margin.
For r2hi = 0.20 and r2hi = 0.80 the Nyquist contour evolves to the left of
this vertical line, but then stability can still be demonstrated for almost all
initial conditions by using the Popov test. This covers the cases of r2hi from
the simulations.
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Fig. 5.10. Nyquist contour for the stability test with the replacement model of the
actuator, for different values of r2hi at and beyond r2hi' according to Eq. 5.14

A More General Result

So far, the goal of a much simpler stability test has been attained, but the
main result in Eq. 5.12 is still based on the speed control case.
However, it may be interpreted in a more general way, by rewriting it as
follows:

= a· (Fslew + 1) + (3. (Fstroke + 1) (5.16)

In other words, the contour of F + 1 for the system with the replacement
actuator model is a linear combination of the Nyquist contours for the systems
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with slew saturation only (Fslew +1) and with stroke saturation only (Fstroke +
1), with weights a and (3. Note that this statement does not depend on the
specific speed control system any more. It generalizes Eq. 5.12 for all cases
with plant dynamics G(S)Y2->Yl of dominant first order at least.

In the Nyquist plot the contour of F + 1 will evolve within the area de­
limited by those two contours, which are more directly determined.

Another consequence is that, in the frequency range relevant for the stabil­
ity properties, the contour with additional slew constraints will always evolve
to the left of the contour with no such slew constraints, i.e. the stability prop­
erties will deteriorate. However, we see from the numerical example in Fig.
5.10, that the effect is starting slowly with increasing slew constraints, i.e.
increasing Ta .

On the other hand, the case (3 = 0 would be the most critical situation
for stability, see chapter 2. However this is not a realistic design situation. It
would require that the stroke limits are set to infinity. But they are at least
bounded to their finite physical limits. As we see from the example, the area
of attraction from the stability test is not reduced significantly for realistic
slew constraints. l

Note that Eq. 5.16 also holds for non-compensating awf gain kal .

Exercise
- Check the last statement.
- Analyze the effect of T a on the contour F in more detail.
- Check Eq. 5.16 for plants with dominant order> 1.

5.1.6 An Implementation Alternative

The structure in Fig. 5.4 we have investigated so far is rather complex. It
needs an internal signal from the actuator, i.e. the flow from the servo valve
with its constraints for awf, meaning a rather expensive sensor, and also Max­
Min-selectors. The aim here is to develop a simpler alternative, which should
not perform significantly worse.
We shall get there by several block diagram modification steps; Fig. 5.11.

Consider first form (a) in Fig. 5.11. The shaded block covers the servo
valve stroke saturation and the integrating servo cylinder 1/sTs with the
mechanical end limitations acting back to the inflow by the very high-gain
feedback through kas •

There is a standard awf with gain gal from the servovalve opening satu­
ration (which is a priori known) back to the integral action of R1, but no
awf from the inflow and from the end limitations.
As long as the upper end limit Y2hi is not encountered, only the servo
valve stroke limit Vhi is active, and the R1 output would track to r2(t) =
Y2(t) + vhdks for a deadbeat awf gal'

1 But performance will deteriorate.
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Fig. 5.11. Redrawing of the block diagram of the actuator subsystem

Now if the upper end limit Y2hi is reached, then Y2 will stop moving at
Y2hi' The integrator output will stabilize at a small value outside Y2hi' due
to the very high gain ka•. Then the R 1 output will stabilize at T2(t) =

Y2hi + vhi/ks . In other words, there will be a windup to vhi/ks ; and
correspondingly for the downward moving and the low end limit.
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Form (b) shows how to suppress this windup at the end limits. It consists
of moving the summing point of the end limit feedback upstream to the
input of the servo valve saturation, but still downstream of the negative
input to the awf error for R I .

As long as Y2(t) is below its end limit Y2hi> the system behaves as form
(a). If Y2hi is reached, then the feedback through kas reduces the integrator
input to zero. But in this form, it moves the positive input to the R I awf
error down to zero as well. By this, r2 will now track to Y2hi' In other
words, the windup at the end limits vanishes, as it does in the case of Fig.
5.4 with output constraints to Y2hi' Y2l o and selectors. From a physical
viewpoint this is a limitation of the inflow to the servo cylinder.

Then form (c) is produced by shifting the negative input to the R I awf
error (the output of the k s block) upstream of the summing point.

Finally, form (d) is obtained by two steps.
The first one is to shift the positive input to the R I awf error (the output
of the Vhi, Vlo saturation) downstream to the output Y2. This leads to a
block sT2 in this path.
The second one uses from above that

with kal as the standard awf gain in the generic controller structure. This
leads to unity gains in the r2- and Y2-paths from form (c), and to the
block sT2 / ks .

Now this may be interpreted as a basic input conditioning structure from
Chapter 2 for the speed control loop with RI and G = GY2 --->YI' with two
modifications.
The first one is that the non-dynamic input saturation from Chapter 2 is
now replaced by the closed loop for actuator positioning with internal slew
and stroke saturations. In other words, this is now a dynamic, but passive
nonlinearity.
The second modification is that, to account for the dynamic response of the
actuator loop, a derivative action sTs/ks has been placed in the awf path.

Regarding implementation, no additional signal need be measured besides
the standard sensor for Y2. For R I this requires a standard PI(aw) controller,
but with an input for an externally generated awf tracking signal. 2 And the
derivative action in the awf path of Y2 can be implemented by a standard PD
module.
Note that its contribution decreases with higher actuator position controller
gain ks . Note also that the differentiation in the awf-Ioop may require faster
sampling than without it for the awf loop to be numerically stable. And it

2 This may not be available in all industrial process control systems.
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is a liability in the presence of measurement noise on Y2. So one may rather
force it to zero and put up with the poorer performance.

These block diagram modifications are implemented in Simulink in Fig.
5.12. Note the additional factor "'I inserted in the awf path. For "'I = 1, this
implements the design as derived above. With "'I = 0, the derivative action
sT2 /ks is suppressed.

Planl with
slew and sireke

satU(8led aetuatOf

l----------------------lR~----J

Fig. 5.12. Simulink implementation of the block diagram modifications.
""'I" switches in/out the derivative action in the awf path

From the simulation, Fig. 5.13, the performance deterioration with "'I = 0
turns out to be acceptable here, but this should always be checked.
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Fig. 5.13. Transient responses for the system in Fig. 5.12:
(left) with the design derivative action on Y2; (right) and if it is forced to zero
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5.2 PI(aw) Control with Derivative Action

5.2.1 Introduction

Industrial controllers today are almost exclusively of the PID type. But, from
experience, in almost all applications the D part is set to zero during commis­
sioning, for various reasons. Some of them will become clearer in the following.
One of the historical roots of the D action seems to be in the 1920's for au­
topilots keeping a ship on a reference heading by acting on the rudder angle.
More generally speaking this is position control on a system of dominant sec­
ond order. The control problem is similar to the benchmark of Chapter 3, but
without speed constraints. There we have used for linear range control a P-PI
or PI-P cascade structure instead of a PID type.
Intuitively, the D action provides a look-ahead correction to the u(t) produced
by the PI part, which increases with the finals approach speed of y(t). In short,
it reduces u earlier, and therefore reduces overshoot and improves closed-loop
damping.
From experience, a very significant improvement can be attained for plants
of dominant second order, such as positioning control. The effect is not so
marked on plants of dominant first order, such as speed or temperature con­
trol, where the Ziegler-Nichols rules apply and provide design values for Td

in the D action.

We shall proceed as follows. First we shall put the qualitative statements
on linear control from above on a more quantitative basis, using a specific
case (again a benchmark) for illustration. Next, we insert a saturation on u,
and demonstrate the effects. Then we implement a standard awf scheme from
Chapter 2, and again demonstrate the effects on transient response. Finally
we shall discuss improvements.

5.2.2 The Benchmark

The Plant

The plant u --+ y shall be modeled by its transfer function

(5.17)

with T1 = 5.0, T2 = 1.0 and a small delay D = 0.025 to cover the non-modeled
dynamics. The only difference to the plant from Chapter 3 is a2: it was a2 = 0
there, and is now a2 = 1.0.
The physical background to this would, for instance, be a DC-servo positioning
loop with no cascaded current or torque feedback control, and with an input
saturation on the armature voltage, and no speed constraint.
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The Controller Structure

The standard Ziegler-Nichols arrangement is used, with e = r - y

R = '!!:.. = kp (1 + _1_ + STd--
1
-)

e sTi 1 + STd

As usual, the D action is first-order filtered with Td

controller can be obtained by setting Td = O.

The Controller Design

(5.18)

Td /5, and the PI

For the PID case we shall use again the pole assignment procedure on the
dominant dynamics model (D = 0 and Td = 0)

O 1 RG
S2 kpTdTi + skpTi + kp 1 1= + = 1+ --'------'----'- -,----=-

sTi 1+ sT2 sTl

yielding for the controller parameters

(5.19)

3
--'
[lTl '

(5.20)

From the simulations shown later, we obtain a well-damped linear range
closed-loop performance with [l = 1.5.

For the PI case, we set Td = 0, from where

and thus (5.21)

Compare the design results in the following table:

Controller type Bandwidth [l Gain k p Reset T i

PI 1/3 1.667 9
PID 1.5 33.75 2

By inserting the D action, the closed-loop bandwidth can be improved by
a factor of 4.5, i.e. the gain k p is increased by a factor of 4.52 c::: 20. This
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is a significant improvement in control performance indeed, and is a strong
motivation for using the derivative action at all.

The sampling time for the discrete-time implementation is set to Ts
0.010 s, as in Chapter 3. The discrete controller is implemented by

U ( Ts 1 1 - Z-l )
R = - = kp 1+ T -1 + T Td

e i1-z s
(5.22)

Using a non-filtered derivative may seem unrealistic, but it simplifies the fol­
lowing arguments considerably. And the usual first-order filtered derivative
will be investigated in an exercise later.

The Input Saturations

These are set to

The Test Sequence

Uhi = +1.0; Uta = -1.0 (5.23)

ka = TilTs
ka = 3.0

This shall be similar to Chapter 2:

We start at t = 0 with the the plant at standstill: Xl = 0; X2 = o.
At t = 0.5 the loop is closed, with r = O.
Then at t = 1.0 s, the setpoint r is stepped up to 0.95. There is no load
disturbance (z = 0) during run-up.
After completion of run-up and stabilization, a small setpoint step is ap­
plied; while z = 0, r = 0.95 -+ 1.0 3
Finally a load step z = 0 -+ +0.90 is introduced.

The Anti Windup Feedback

The obvious move is to install the simple awf scheme from Chapter 2, with
awE gain
- first at its deadbeat value,
- and then at its compensating value,

3 The step is larger for better visibility. You may check that this does not change
the typical response.
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5.2.3 Transient Response

Experimental Findings
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Fig. 5.14. The control loop with a "PI(aw) and D" controller and its responses
with deadbeat awf gain, ka = TilTs.
In the bottom right graph Y~ = 10 (Yl - 1.0) + 1.0 is plotted, for better visibility
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At first glance, the load step response is the same as in Chapter 3 for the
PI-P cascade. But the setpoint step responses show an erratic behavior not
experienced so far.
For the large initial setpoint step r1 = 0.98 (see bottom left for details), and for
the first sampling period, the control variable u moves to the upper saturation
Uhi as one would expect. But for the second sampling period, surprisingly it
moves to the lower saturation Ulo' From there on, it slowly increases up to Uhi

again (here in about 12 Ts ). This "lack of u" produces a transient decrease
of Y2 instead of the monotonic increase one would expect as regular behavior.
Then Y1 will also decrease transiently, although this is not visible here.
For the small setpoint step r2 = 0.02 applied at t = 15 (bottom right), this
effect is even more pronounced. Here, Y1 distinctly moves in the opposite
direction first (in this case to approximately -r2) before settling at the final
setpoint. Such responses are obviously not acceptable.

Note that the PI-P structure does not show such effects; see Fig. 5.15
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Fig. 5.15. Responses with linearly equivalent PI(aw)-P controller, and deadbeat
awf gain
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The Cause

Starting from the generic form of the input constraint controller of Chapter 2
with the linear parts R1 and R2

R1 = kp (1 + sTi + s2TiTd)
1

R2 =­
sTi

for the discrete-time version in difference equation form is:

L1u[k] = kp (Ts elk] + (e[k] - elk - 1]) + (e[k] - 2e[k - 1] + elk - 2]) Td)
~ ~

Ulin[k] = u[k - 1] + L1u[k];

where

u[k] = SAT(ulin[k]); with Ula, Uhi for SAT (5.25)

For the reference step input at k = 1 of height r and considering both Yl = 0
and its time derivative dYl / dt = 0 to be still at their initial steady state values
for k = 1,2,3,4, then

elk] = 0 for k = -3, -2, -1, 0
elk] = r for k = 1, 2, 3, 4 (5.26)

yields

Note that

[~ ~]L1u[l] = kp T
i
r + (1 - 0) r + (1 - 2 x 0 + 0) r T

s

(
Ts Td)= kp T

i
+ 1+ T

s
r

[~ ~]L1u[2] = kp T
i
r + (1 - 1) r + (1 - 2 x 1+ 0) r T

s

= kp (Ts _ Td) r
Ti Ts

[~ ) ~]L1u[3] = kp T
i
r + (1 - 1) r + (1 - 2 x 1+ 1 r T

s

Ts= kp-r
Ti

and L1u[4] = L1u[3] (5.27)

T Tdi «1 and T
s

» 1

In other words, for the large setpoint step rl ~ 1:
- L1u[l] will be » 0, whereas

(5.28)
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- L1u[2] will be « 0, due to -r(Td/Ts), and
- L1u[3], L1u[4] = f will be > 0, but small.
Therefore

u[l] = Uhi; u[2] = Ulo ; u[3] = Ulo + f; u[4] = u[3] + f; ... (5.29)

which explains the transient of U in Fig. 5.14 (bottom left).

This "deficit on u" -effect will be visible for decreasing r values (all other
parameters being constant), until

(
Ts Td)Uhi + L1u[2] = Ulo z.e. L1u[2] = - (Uhi - Ulo) = kp - - - r (5.30)
Ti Ts

which determines the threshold value ri of r

(5.31 )

(5.32)

where for the current benchmark

kpTd = (3DT2 - a2) T1

Inserting the current numerical values yields

2 -3
ri = (4.5 _1)5 0.01 = 1.14310 (5.33)

which is far below the smaller setpoint step size r2 = 0.02 from the benchmark,
see Fig. 5.14 (bottom right). The slower recovery of U is due to the smaller
increment f from above. This explains why the deflection of Yl in the opposite
direction is so much stronger than with the large setpoint step, Fig. 5.14
(bottom left).

Consider now a reset of U to ainstead of Ulo. This will suppress the "deficit
on u" effect. In order to obtain this, the setpoint step size must be further
reduced to rio

uhi - aTs .
rio = i.e. for the benchmark: rio = 0.5ri = 0.571 . 10-3

kp Td'
(5.34)

Consider finally reducing r2 further to rlin such that the initial increment
L1u[l] is below Uhi - 0, and therefore the subsequent response is linear:

rlin = ( ); and using Eq. 5.28:
k L.+l+ Li

p T, T.

Uhi
rlin < k T Ts = rio

p d

(5.35)

Exercise
- Check and visualize this by simulations.
- Investigate the effect of a first-order filtered derivative action
by simulations first,
- and then more analytically.



236 5 Further Topics on PI(aw) Control

5.2.4 Some Solutions

It is obvious that such erratic behavior must be eliminated. Again, many
different approaches are possible. We shall focus on three such solutions here.

Avoiding the Derivative Action

This behavior can be eliminated by simply avoiding the D action.
And this can be achieved very efficiently by using the linearly equivalent4

PI(aw)-P cascade instead; see Fig. 5.15. Such a cascade has further practical
advantages. It is easy to tune and to handle during start-up of the control
system. It is also less prone to negative effects from high-frequency measure­
ment noise (such as actuator wear).
Note however that this requires an additional measured signal Y2 to be avail­
able, where Y2 contains at least a strong component proportional to dyddt.
It may also be useful to consider an observer.

A "two degrees of freedom" Structure

An inherent property of the standard "text book" PID controller of Eq. 5.18
is, that both the measured variable y(t) and the setpoint signal r(t) are dif­
ferentiated, due to e = r - y. In other words, the transfer function of r is the
same for both inputs -y and +r, and therefore this structure is said to be of
"one degree of freedom" .

,Ott,

Fig. 5.16. "Two degrees of freedom" structure; with first-order filtered derivative
action on the y-path only

4 It has the same characteristic equation.
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However, closed-loop stability, and performance ofresponses to initial con­
ditions and plant disturbances, will need dy / dt in the feedback only. The part
of dr / dt is a feedforward path to u, which only contributes to the performance
of the reference response r(t) ----+ y(t).
So, in order to eliminate the cause for the "deficit on u" effect, one would
simply suppress this feedforward path of dr/dt; see Figs. 5.16 and 5.17.
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Fig. 5.17. Response of system in Fig. 5.16 to the benchmark, with deadbeat awf
gain

In industrial process control systems, such a modified controller structure
is not always standard. But it may be available as an option, called "derivative
action on the measured variable only" or similarly. Note that this will slightly
slow down the linear reference response r(t) ----+ y(t). But also notice that for
very small sizes of r, see Eq 5.35, the saturation on u will become active and
diminish any such speedup effect from dr / dt.
Now the transfer function of the controller is different for both inputs,

which contributes an additional degree of freedom for the design. This concept
may be expanded to the proportional path ofR as well. Then the reference step
response will slow down further. However, this also suppresses the overshoot
on the linear setpoint step response, which is so typical for PI control, and
without any noticeable increase in loop settling time.

Lower awf gain

This alternative is based to the standard one degree of freedom form.
The basic idea is not to suppress the negative L1u[2] from the differentiation of
r, but to reduce its offset effect on u[2]' which is produced by the very strong
awf action, as a consequence of the (high) deadbeat gain. In other words, one
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attempts to reduce k a sufficiently.
But this will increase the transient windup, and thus tends to reduce perfor­
mance and affect stability. But as has been shown above, there is no significant
reduction as long as ka stays above a certain threshold value k~, the compen­
sating one. Note that for the current benchmark: k~ = 3.

Consider Ulin while operating along the upper saturation Uhi (see Chapter
2):

Then let

+ (5.36)

1. Uhi = const. ---+

2. Td = Td4; as in the Ziegler-Nichols and Chien-Hrones-Reswick rules

(i.e. lower than Td ~ Td3 from pole assignment)

3. ka = 2 (also lower than k~ = 3 from the design above) (5.37)

Inserting into Eq. 5.36 yields

(
Ti 2T?) 1 1 1 ( Ti )Ulin = r kp 1+ 2s-
2

+ s -4 = r k - 1+s-
2 s1l + 1 p 2 2

2

(5.38)

Applying an r-step to this will produce no undershoot on Ulin after the first
overshoot, and therefore eliminates the "deficit on u" effect. Furthermore, this
is valid for r of arbitrary size. So there is no such limit on r, as found in the
deadbeat awf gain case.

In case of the first-order filtered derivative action with time constant Td «
Td (here Td = O.lTd), note that

i.e. (5.39)

Again, the step response to r will produce no undershoot. This is confirmed
by the simulations on the current benchmark in Fig. 5.18.
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Fig. 5.18. Responses of the control loop structure in Fig. 5.14,
but with first-order filtered derivative action, Td = O.20Td, and with compensating
awf gain, ka = 3.0

Remarks
As stated before, there are many more than the three alternatives discussed
so far.
One other possibility would be to use the low-pass filter Ga in the awf path
together with the deadbeat gain ka , in order to suppress the undershoot in
the tracking loop.
Another strategy would be to clip the derivative action to the working range
of u by a separate saturation block. But the stability analysis is more compli­
cated, as there are now two nonlinear blocks.
A third approach would be to consider the filtered D action as to contribute a
second state variable (besides the I action) to the controller, which may also
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"wind up". In other words the erratic behavior is attributed to wind up, and
thus an awf to this second state variable is indicated. Note however, that the
time constants in this awf loop are very short compared with all others, which
would enforce a very short sampling time. Also, it seems that the case with
the non-filtered D action is not covered directly.

5.2.5 Stability Analysis

The general approach of Chapter 2 directly applies here.

The Linear Subsystem

The Nyquist contour is

(5.40)

PI(aw) and D with low-gain awf

Using ka = k~ = 3, i.e. ka/Ti = n

(5.41 )

(5.42)

For the special case of~ = 1

s

F+1=-lL.
17 + 1

which evolves in the right-hand half plane for w > 0, and thus indicates
asymptotic stability in the large by the on-axis circle test.
In the special case of~ = 1, i.e. a2 = 3,

(5.43)

the Nyquist contour will start for w = 0 at the origin and evolve along
the positive imaginary axis, i. e. with a vertical tangent there. This again
indicates asymptotic stability in the large by the off-axis circle test or by
the Popov test.
For a2 = 0 the Nyquist contour will start horizontally from the origin to
the left. This leads to a finite radius of attraction; see Chapter 4.
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Fig. 5.19 (left) illustrates this for the current benchmark system. The contin­
uous equivalent is used.
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Fig. 5.19. Nyquist contours for the continuous equivalent to the current benchmark
system, with non-filtered D action:
(left) with low-gain awf (compensating, ka == 3.0);
(right) with high-gain awf (deadbeat equivalent)

P/ (aw) with D action on the measured variable and with deadbeat-gain awf

Here

1

Ii + 1
1

(F + 1h =k- -8-1
a a n + (5.44)

The shape from above is modified by a unity gain first-order low pass in series'.
So this will not alter the Nyquist contour for low frequencies 0 < w < n.
Thus the stability properties are not altered significantly for w ---+ 0, and the
deformation of the contour is towards the right half plane, i. e. in the favorable
direction for stability.
Fig. 5.19 (right) illustrates this for the continuous equivalent of the current
benchmark system.

P/(aw)-P Control

The Nyquist contours are the same for the same awf gains.
(Show this as a short exercise.)
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The Nonlinear Subsystem

As shown in Chapter 2 for the graphic test, the nonlinear part determines the
position of the straight line on the negative real axis:

1 Uhi-- = -1 - __..c..:..:...__

b Ulinmax - Uhi
(5.45)

for u= 0 and for the case Ulinmax > Uhi.

This needs a good estimate of Ulinmax . It can be determined from the
setpoint step size as in Chapter 2, but only if there is no "lack of u" effect,
and therefore no undershoot of Yl (t), Y2(t).

For the one degree of freedom PID structure with Td = O.25Ti and a
low-gain awf ka = 2 < k~

(5.46)

Then, taking into account that for the graphic test (see Chapter 2), ka cancels
on both the nonlinear subsystem side and on the Nyquist contour, and from
Chapter 4 for the on-axis circle test, for the non-trivial case a2 = 0

1 1
->­
b 8

UlO
.nmax < 9
Uhi

UhO
i. e. finally rmax < 9 -f

p
(5.47)

And for the two degrees of freedom PID structure and deadbeat awf, the
contribution of the D action to U is 0, as long as the outputs Y2(t), Yl(t) do
not start to move. Then again for the graphic test, ka cancels on both the
nonlinear subsystem side and on the Nyquist contour, and again for a2 = 0,
the final result is the same: rmax < 9 1f'i.

p

5.2.6 Summary

The main finding has been that the standard awf strategy (which has never
failed so far) does not always work well with derivative action, if used in a
standard (one degree of freedom) PID structure. It fails for high-gain awf, but
succeeds for low-gain awf (with the compensating value). But in a two degrees
of freedom PID structure, high-gain awf also performs well.
Similar effects will appear on a PI(aw) control loop, if r is not moved stepwise
to a new steady state, but instead as a pulse of finite length, such that the awf
loop has settled due to its short closed-loop time constant, but the controlled
output Y has barely started to move. Another such situation is measurement
noise on Y, to be investigated in the next section.
This indicates some "limits of applicability" (and a "use best for... " region)
for those simple and effective awf design methods from Chapter 2.
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5.3 PI(aw) Control with Measurement Noise

5.3.1 Introduction

Intuitively, the best design choice for the awf gain ka would be to make it as
high as possible, i. e. on its deadbeat value in time-discrete implementations
or to near infinity in continuous forms. This will produce the best possible
tracking of the controller output to the constraints, i. e. to minimum transient
windup, and thus intuitively to minimal performance degradation.
However, such design rules must be used with caution, because there are
always limits to their applicability one may not be aware of.

One such limit has been found for the "PI(aw) and D" case. On the stan­
dard one degree of freedom structure, the high-gain awf has produced a sig­
nificant degradation in closed-loop response for small setpoint steps. But the
two degrees of freedom structure provides a simple work-around, which allows
to go on using the high-gain awf.

A more severe limitation will be addressed in this chapter. This limita­
tion appears if the measured signal Yl (t) contains some persistent (quasi­
stationary) high-frequency disturbances. This may be measurement noise, e.g.

due to turbulence, or residual interference from the power line frequency, etc.
It is assumed in the following, that this cannot be filtered further without
degrading the closed-loop performance in the linear working range.

Then, depending on the operating point, a control error el(t) -=J. 0 can
appear, where el(t) shall denote the median of el(t) taken over the linear
closed-loop settling time. el may be slowly time varying or can even turn into
a steady state offset. This shall be denoted as the offset effect.

In contrast, if no such persistent high-frequency disturbances are present,
then ultimately el(t) ---+ 0 due to the integral action, as shown in the previous
chapters.

This offset effect was reported by Rundqwist in his PhD thesis [42]. As
it is caused by the awf, it can be reduced by lowering the awf gain (among
other alternatives). For this "low-gain awf" approach, Rundqwist [42] presents
design rules such as

(5.48)

with Tt as the awf tracking time constant.
The design rule in Eq. 5.48 has been derived on a specific case, i.e. for a
continuous implementation of a PI(aw)D controller on a second order process
(positioning of a DC-servo), subjected to both pulse and high-frequency si­
nusoidal disturbances. Since then not much seems to have been published on
the subject, e.g. [52].
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Similar effects have been experienced by the authors while commissioning
antiwindup loops in industrial plants, for instance with digital temperature
control loops using PI(aw)D controllers. Here heat-up turned out to be sig­
nificantly slower than predicted by simulations, which had been performed
without such high-frequency disturbances.
Another such experience will be described in Section 5.3.2.

The aim is to explain the mechanisms with a simple model and to predict
the offset effect quantitatively. This is done for three typical situations:
- PI(aw) control on a plant of dominant first order,
- PI(aw)D control on a plant of dominant second order, and
- PI(aw)-P cascade control on the same plant.

First, a motivating example is presented ("Louis' problem"). A suitable
measurement noise model is introduced and discussed next. Then the three
typical situations from above are investigated, using the same framework of
- specification by a benchmark,
- analysis of the steady state control error limt->oo Cl(t) , and
- simulations to check performance and the results.

Finally, some alternatives for reducing or eliminating the offset effect are dis­
cussed.

5.3.2 Louis' Problem

In the early 1980s electronic analog control, e.g. [24], had become the stan­
dard equipment in the hydropower industry (see also John's case, Sect. 2.1).
At the same time, the first industrial microprocessor-based control systems
with comparable prices were available, although only for comparatively slow
thermal processes.

At that time Louis was a young control engineer with the R&D department
of a major supplier of hydroturbines and associated control equipment. His
project was to show the technical feasibility of microprocessor-based control
for hydroturbines. He had to put together a prototype based on a suitable
commercial microcomputer system, implement the main functionality of its
analog counterpart, test it by simulations, install it (in parallel to an analog
controller) at a power station in the Swiss Alps, commission it, and obtain
some indicative experience from several months of continuous operation.
All went reasonably well. But one day, during the continuous operation period,
the plant manager informed him that the synchronization took much longer
than customary with the analog controller, and that this needed fixing.

Observations quickly revealed that the actual turbine speed was not equal
to the speed reference (i. e. grid frequency) as one would expect with PI con­
trol. It was consistently higher and outside the control error gate of the syn­
chronization logic for most of the time. Also, this offset was slowly fluctuat­
ing, and from time to time fell below this error gate. Only then was the unit
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switched into the grid, but with a noticeable bump.
Recordings then documented a typical narrow-band stochastic variation of
the discrete time control error, which originated from the grid, and with peak
to peak values of approximately ±0.1 Hz. A second element was that Pelton
turbine units typically operate at the speed-no-Ioad steady state quite close
to the fully closed actuator, i.e. here at U - Ulo :::::: 0.01 with Ulo = 0.0.
This induced him in the design phase to reduce any windup to the minimum,
in order to avoid any speed overshooting. Therefore, he set the awf gain to its
deadbeat value and the lower opening limitation at the PI controller output
directly to Ul o .

Trying to resolve the synchronization problem, Louis looked more closely
at the analog counterpart implementation. He found a small difference: it had
a supplementary tracking offset on the opening limitation of approximately
±0.02, i.e. the output of the controller was tracking to approximately 0.02
outside the actual actuator position. This had been introduced earlier on an
intuitive basis to have the servomotor press the gate vanes with a nonzero force
into its end position and thus provide better closure. Louis then demonstrated
by simulations that this windup had a negligible effect on transients. So he also
introduced the supplementary tracking offset on the digital version. And the
synchronization problem disappeared! But it reappeared when he introduced
some small derivative action on the speed controller to improve on initial
overshoot robustness.
The reasons for all this were not fully understood at the time.

Exercise
This is a further Case Study:

After having studied the material of this chapter, investigate Louis' case
further and try to reproduce his findings by simulations using:
- the model of Sect. 2.1.1,
- the control structure of Sect. 2.1.3, with a sampling time of 0.010 s,
- and with a (weak) derivative action on the speed controller,
- the awf gain at deadbeat and compensation values,
- first without and then with a tracking offset as described above,
- and the information about the high-frequency disturbance level
from below.

5.3.3 The High-Frequency Disturbance Model

Two types of such high-frequency disturbance may be distinguished.
The first one stems from residual grid frequency interference. It will be peri­
odic at the grid frequency (here at nominal 50 Hz) and possibly some multi­
ples for harmonics, and will have approximately constant amplitude and zero
mean. This is similar to what Rundqwist [42] assumed.
The second type will be some stochastic process, such as the grid frequency
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fluctuations in Louis' case. We may assume it to be stationary and of zero
mean. Its power spectrum shall have its dominant part closely below the
sampling frequency. This will produce the narrow-band noise characteristics
observed by Louis. As the sampling frequency is much higher than both the
open-loop bandwidth of the plant and of the closed loop, this also justifies the
attribute "high frequency" .
The disturbance signals are continuous and additive on y. They are then sam­
pled and quantized in the AD-converter. To give some quantitative values in
Louis' case: using a standard lO-bit converter, i.e. a 'Least Significant Bit'
(LSB) of approximately 10-3 , and a typical sensor span of 45 to 55 Hz as
1.0, this would lead to 1 LSB := 10 mHz. And short-term grid frequency
variations may easily attain ±100 mHz.

Tn

A
n

Ts

Fig. 5.20. The "rectangular wave" disturbance model and its parameters

Then set Ts = 0.010 s, i.e. 2Ts to one nominal grid period, and consider
the first type of disturbance only. Then the output of the AD-converter plus
zero-order-hold due to the disturbance signal will be a rectangular wave, with
- period Tn := 2Ts,
- zero mean,
- and peak-to-peak value 2fi (which defines fi).

Fig. 5.20 illustrates this model of n(t).
If the second type of disturbance is considered, then the analysis gets much

more involved, as the awf effect is highly nonlinear and depends on the actual
time course n(t). So a usual RMS-based modelling with Gaussian distribution
is not applicable. A detailed analysis of the general case seems not to be
available to date.
Therefore, a conservative approximation is used here, where the actual noise
process is replaced by the "rectangular wave" from above, and 2fi is set to the
maximum observed peak-to-peak value. If no such observations are available,
then one has to resort to an educated guess first, and refine it later from
experiments whenever possible.
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We shall now consider the following three cases of
- PI(aw) control,
- PI(aw)D control, and
- PI(aw)-P cascade control.

5.3.4 PI(aw) Control

The Control Problem

The following set of specifications is used as a benchmark

(a) The plant is given by a first-order transfer function

b
y(s) = -T- (u(s) - v(s))

s +a
(5.49)

There are two inputs, the control variable u and a load disturbance variable
v. For simplicity, the delay e- Ds is omitted here.
Numerical values to be used are: b := 1.0; T:= 1.0; a:= 0.0;

(b) As controllers, both P and PI(aw) types shall be considered.

The P controller is

u(s) = kp (r(s) - y(s)) + U v (5.50)

where the additional offset input U v is used to compensate the steady state
control errors due to persistent loads v =I- O.

And the PI controller is

R(s) = kp ( 1+ s~J (
ITs )R(z) = kp 1+ T -1
i 1 - z

(5.51 )

where Ts := 0.010 s.

(c) The controller settings kp and T i are obtained by pole assignment for the
continuous-time case with the first-order plant dynamics Gu(s) and R(s).
From the closed-loop characteristic equation

-. bkp = 2f2T - a;

and for numerical values b = 1 and a = 0 : kp = 2f2T;

(5.52)

1 n
T; -"2.



248 5 Further Topics on PI(aw) Control

The closed-loop bandwidth is set to n = 5 rad/s. This provides a sufficient
margin with respect to the sampling frequency.
That is, finally kp = 10; T i = 0.40 s.

(d) As awl structure we shall consider only the standard control conditioning
form D of Chapter 2, with the awf gain ka as design parameter.
Note that in [42] a slightly different controller structure is used, with a
tracking time constant Tt instead of the awf gain ka . However, by compar­
ing both structures:

(e) The following test sequence shall be applied to the closed loop, where r is
the setpoint and v is the load as specified in item (a):
Initially (index 0) the loop is to be at "standstill" conditions:
ro = 0 and va = 0; i.e. Yo = 0; and Uo = 0 .
At time T I , a setpoint step to rl = 1 is applied while there is still no
load, i.e. VI = O. Then, at equilibrium, a plant input UI = arl = 0
results.

Then, at time T2 , a load step V2 is applied (V2 = +0.90), while the
setpoint is kept constant, r2 = rl = 1.

(f) The actuator saturation is: Ulow = -1.0 and Uhigh = +1.0

(g) For the measurement disturbance signal, the model of the previous section
is used, with the numerical value it = 0.015 = 1.5 % .

Note that both the Ziegler-Nichols and the Chien-Hrones-Reswick tuning
rules would also allow a derivative action. But if high-frequency measurement
disturbances are present, then the derivative action is usually set to zero at
commissioning in order to avoid excessive high-frequency movement of the
control signal.

In Chapter 2 this system was analyzed for its transient response (although
without n(t)) and its stability properties. This has led to the concept of "com­
pensating" awf gain k~ = 2.
Using the notation of [42]

then yields
Tt = Td2

which nicely confirms the result in Eq. 5.48 from [42] for PI(aw) control (i. e.
Td = 0).
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Transient Response

The aim is to illustrate by simulations, how the response can be affected by
such a high-frequency disturbance. Fig. 5.21 shows the transient responses to
the benchmark test sequence with P control, (left) without and (right) with
n(t) applied, and Fig. 5.22 the same for PI(aw) control.
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Fig. 5.21. Structure and responses with P control,
(left) without and (right) with n(t); top row: y(t)j bottom row: u(t)
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Remarks
For the P control, there is no significant effect of n(t) in phase 1, i.e. on run-up
overshoot and on the subsequent steady state. In phase 2 (the load swing), for
n = 0 there is no steady state offset on y(t) due to the fact that U v = v has
been switched in at the same instant as the step on v. But for n =f 0, there
appears a steady state control error e := rl - Y =f O. The numerical value read
from the experiment is e~ +0.0055.

And for the PI(aw) control, n(t) =f 0 has again no significant effect in phase
1. For instance, there is no perceptible overshoot of y(t) for ka = k~ = 2, and
the overshoot for ka = 1 is the same (Ymax ~ 1.062).
In phase 2 there again appears a steady state control error e=f 0, which now
increases with increasing awf gain ka . The deadbeat value of ka = TilTs = 40
leads to e~ 0.454 after a settling time of about 50 s. This is not fully shown
in Fig. 5.22 (top right), but the trace is indicated by the small arrow.

Offset Analysis

The aim now is to calculate this steady state control error as function of the
main parameters for the experiment.

Linear Operating Conditions

Consider first the operating conditions at the end of run-up phase 1. Apply­
ing the square wave sequence u(z) with U to the plant Gu(z) produces an
amplitude fj on the output

A 1 Ts A

y= - - u
2 T

Then for the controller input
e=fj+n

For the P- and the PI-controller respectively

Up = kpe and Up! = kp (1 + ~) e

yielding

(5.53)

(5.54)

(5.55)

Up - kp nand
-1-k.!L.

P2 T

kp (1 + ¥)
UPI = 'n1- k (1 + L.) .!L.P Ti 2 T

(5.56)

and with the numerical values for the benchmark

Up ~ 0.158 and Up! ~ 0.162 (5.57)
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Operating Conditions Close to the Actuator Saturation

Consider now the operating conditions in phase 2. For steady state operation,
a mean control input value

U = -v = 0.90 (5.58)

is required, which is close to the upper saturation Uhi = 1.0. If now the
disturbance signal n(t) is applied, then the actuator input signal Ulin(t) will
periodically saturate; Fig. 5.23.
Then the steady state operation of the closed loop requires

i.e. from Fig. 5.23

d,
-y~O
dt

U = Uhi - U

(c)

(5.59)

(5.60)

-
u

Ts Ts

(a)

___ ~~_- < "m I

(b)~-
Fig. 5.23. The signals (a) at the input to the saturation,
(b) at its output, i.e. the input to the plant, (c) the input to the awf, ea(t)

For the P controller:

Ulin(t) = kpe(t)

Ulin = kpe

Ulin = kpe

where e=n+y

d
A ITSAan y = --u

2T
(5.61 )
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By inspection of Fig. 5.23 for steady state conditions

,
Ulin - Ulin ~ U - Uhi

z.e.
Ulin = kpep = Ulin + U - Uhi = kpelin + U - Uhi

yielding the main result for P control:

(5.62)

(5.63)

_ A Uhi - U ( kiTs)- n- 1---
k P2 Tp

(5.64)

i. e. a nonzero steady state control error ep appears for n large enough such
that Ulin periodically saturates.
And the offset ep will be zero if

A Uhi - U ( kiTs)n < 1---
k P2 Tp

(5.65)

(5.66)

i.e. the high-frequency disturbance level Umust be low enough compared with
the residual control working range Uhi - U.

For the PI(aw) controller:
For steady state conditions the awf action has to reset the integrator output
UI in Fig. 5.23 (a) to the same value as one period of the square wave before.
During this time interval UI will move upward due to the non-zero error input
ePI in both half periods:

Ts _
LlUI up = 2kp T

i
ePI

and UI is moved downward at the end of the second half period due to the
awf error eaw in the second half period by

(5.67)

For steady state conditions

Furthermore, from Fig. 5.23 (b) and (c),

eaw = 2Ulin - 2 (Uhi - u)

(5.68)

(5.69)

that is

(5.70)

To determine Ulin, consider the discrete-time awf loop in Fig. 5.22:
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" 1
Ulin = 1 _ !L.k

2 Ti a

Inserting this into Eq. 5.70

k (
ITs) "1+-- e

p 2 T i
(5.71)

e - __k---,a=-=- [(1 + ~ Ts.) e_ Uhi - u]
PI- 1 _ k 1.L. 2'T' k

a2T
i

.1., P

and using
e=n+fj

with fj from Eq. 5.61 produces the main result for PI(aw) control:

e - ka [ ( 1 Ts )" Uhi - U ( kITs) ]
PI - -l---k----=1.--;;L.;;- 1+ -2;P n - k 1 - p -2 T

.1.i Pa2 Ti

Note that the offset e will be zero if:
- ka = 0, i.e. for the no-awf case - or if the second term [00'] is zero.

This means

(5.72)

(5.73)

(5.74)(1
1 Ts )" Uhi - U (1 kITs)+-- n< - p--
2Ti kp 2T

That is, the high-frequency disturbance level umust be low enough compared
with the residual control working range Uhi - U:

Uhi - U 1 - k 1. L.n < P2 T
kp 1+1.L.

2 Ti

Comparison

" Uhi - U
or for short n < k

p
(5.75)

P control
The main result in Eq. 5.64 evaluates to

ep = 1.5% - 1.0% (1 - 0.05) = 0.55%

which agrees well with the simulation result rv 0.55% from Fig. 5.21.

(5.76)

PI(aw) control
Inserting thenumerical values from ka = 0 up to the deadbeat value ka = 40.0:

ka 0 1 2 8 40
Evaluation: epI [%] 0 0.576 1.167 5.06 45.5
Simulation: ePI [%] 0 0.55 1.18 5.10 45.4

Again, the results from the simulation in Fig. 5.22 agree well with the values
predicted by the main result in Eq. 5.73.
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5.3.5 PI(aw) Control with Derivative Action

The case discussed so far of PI(aw) control on a dominant first-order plant
covers a large area of industrial applications. But if a PI(aw) controller is used
on a plant of dominant second order, the phase margin will be low and linear
range closed loop performance will be poor. Then it is very effective to add a
derivative action. However the high frequency disturbance contribution from
the derivative action to uwill become large. This will produce an even larger
control error offset e. Low pass filtering of the derivative may reduce this, but
at the cost of reducing the phase margin again.

The Control Problem

This shall be stated as in Sect. 5.3.4 by modifying the relevant items.

(a) The plant model is replaced by

(5.77)

again with a1 = 0 and a2 = 0, and also T1 := T2 := T,
and with the load transfer function Gv(s) = -Gu(s).

(b) As controller, a standard PID type shall be considered with the linear
transfer function

R(S)=kp (l+ T
1

+sTd 11) -7
s i STd +

(
1 1 1 - Z-l Z-l )

R(z) = kp 1+ T. 1-z-1 +Td T 1-z 1 _
,-- s --Td+Z 1T s T s

(c) The controller settings shall be calculated using pole assignment with

Gu(s) for a1,a2 = 0, and Rd(S) = kp (1 + sh +sTd)' where the filter
with Td is omitted. The poles shall be placed at

(5.78)

leading to

kp = 3 (QT)2 ; :i ~, Td = ~ (5.79)

For numerical values, Q shall be set such that the same value for kp results
as for the dominant first-order system, i. e.

Q = y'2. 5/3 ~ 1.826 -7 kp := 10 , Td:= 0.548

(5.80)
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Using the common design rule Td := O.lTd (e.g. see [2]) yields Td = 0.0548;
and as Ts = 0.010, therefore set

(5.81 )

and items (d), (e), (f), and (g) shall be the same as in Sect. 5.3.4

Stability analysis

Again, the awf tracking loop will attain its dead beat response at kamax = ~;

and with the numerical values for the benchmark kamax = [l~s ~ 164.3.
The nonlinear stability analysis for the main loop shall be conducted in

its continuous equivalent form. With

F(s) + 1 = (sTI + ad (sT2+ a2) sTi

[s3TI T2Ti + s2TI Ti (al + a2 + kpTd) + sTi (ala2 + kp) + kp]

x(1 + ka s~J

(slfl)2 + (slfl) [(aI/Tlfl) + (a2IT2fl)] + (aI/Tl fl)(a2IT2fl)

[(slfl) + 1]2
X ~[(s...:.../-:-:-fl:.-)+:-::-,--(k=aI---=-T,:.......fl..:..:..)1

[(slfl) + 1]
(5.82)

Global asymptotic stability can be shown, if al > 0 and a2 > 0 and ka > 0,
using the off-axis circle criterion.
Again, for the awf gain

ka := k~ = flTi

one pole in F + 1 cancels with the zero from the awf loop. And inserting
al = a2 = 0 in the controller design

and

1 fl *
-=-~k =3Ti 3 a

(F + 1)* = (slfl)2
[(slfl) + 1]2

(5.83)

(5.84)

Note that k~ = 2 was found for the comparable PI(aw) case.

For k~ < ka :::; kamax the second fraction in F(s) + 1 in Eq. 5.82 is a
low-pass element. Therefore, it shifts the phase of the Nyquist contour in the
direction, which is favorable for stability.
If, however, 0 < ka :::; k~ then the second fraction in F(s) + 1 is a high-pass
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element, which reshapes the contour unfavorably. In other words, if k a < k~

then windup effects will again become pronounced.
Finally, note that the contour for Eq. 5.83 is such (it starts from the origin
along the negative real axis) that only a finite radius of attraction may be
shown. So some overshoot must be expected for the run-up response. But this
can be reduced by increasing ka > k~.

Transient Responses

Again, we shall compare the cases with n(t) to those without. The amplitude
parameter it has been reduced such that the amplitude Ulin on the control
signal in the linear range has about the same size as with the PI(aw) case,
i.e. rv 16.0 %.
Fig. 5.24 documents the structure of the control loop used in Fig. 5.25.

Fig. 5.24. Structure with PI(aw)D control

Consider Fig. 5.25 (top left). Using the compensating awf gain value
ks = k~ = 3 produces an overshoot of rv 2.75%. This is in contrast to the
finding for the first-order plant. But it is to be expected from the stability
analysis, which indicates that ka should be increased. From the simulations
ka := 3k~ = 9 reduces the run-up overshoot to about 0.07%, and for the dead­
beat gain ka = TilTs ~ 164.3 to about 0.035%. Note that this is still> O.
Note that the level of disturbance it is so low that it is not visible in the traces
of either Xl(t) or X2(t), but only shows up on u(t).
Comparing the left and right columns in Fig. 5.25 reveals that n(t) has no
significant effect on either run-up or stabilization in phase 1 of the test se­
quence.
However, in phase 2, there appears a non-negligible steady state offset on the
control error.
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Offset Analysis

The approach from the PI(aw) case is used.

The residual amplitude Xl from U is reduced by a factor of (Ts /T)2 and
may well be neglected, i. e.

The input to the saturation element is (for Td := Ii Ts with integer Ii ::::: 1 and
for the n-period Tpn = 2Ts ):

( 1) ( )• 1 Ts Td • 1 Ts 1 Td •
Ulin ~ kp 1+ -2 T. + lIT Td e = kp 1+ -2 T. + 1 T - e

t 1--- s t 1--~Td
2~ 2~

Also
eaw = Ulin - (Uhi - u)

and for steady state at the I(aw) part of the controller

( ITs) _kp l-k
a2Ti

e=kaeaw

finally resulting in the main result for PI(aw)D control:

1
epID ~ ka 1 T

1- k -~a2 T i
[(

1 Ts 1 Td). Uhi - u]
1+ -2 T. + 1 T - n - k (5.85)

t 1 - -~ Td P
2 Td

Inserting the numerical values of the benchmark

. (1 Ts 1 Td)Ulin = kp 1+ - T + 1 T n = 10 (1 + 0.00304+ 12.1955) 1.5%
2 i 1 - -~ Td

2 Td

= 198% 0)

shows that the contribution to Ulin from the derivative action is now the
dominating one. It is by a factor of rv 12.2 larger than the contribution of
the proportional action.

Such a large offset is not tolerable. It must be reduced by acting on the
disturbance level n. A reasonable assumption would be that Ulin attains the
same level as for the PI(aw) case, i.e. 16.0%. This requires a reduction factor
p

- 197.98% _ 23
p - 16.0% - 1 . 5

as has been used in the simulations in Fig. 5.25.
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Comparison

Evaluating ePID by using Eq. 5.85 first and then taking it from the simulations
in Fig. 5.25 (top right) yields

ka 0 1 3 9 27 164.3 (deadbeat)
Evaluated: ePl D [%] 0 0.599 1.82 5.55 17.6 198
Simulated: ePID[%] 0 0.6 1.82 5.56 17.6 197.2

where the deadbeat case has been simulated, but is not shown in Fig. 5.25.
So Eq. 5.85 seems to predict the experimental results well enough.

To summarize, it is definitely not recommended to use a PI(aw)-D con­
troller in the presence of such high frequency disturbances. Other solutions
must be sought.

5.3.6 PI(aw)-P cascade control

In industrial applications a PI-P cascade structure is often used instead
of a single PID controller. It avoids calculating the sampled derivative of
Yl(t) + nl(t) by using a second feedback variable Y2(t). However, this needs
an additional sensor and will introduce its own high-frequency disturbance
component n2(t).
This alternative shall be investigated next, and compared with the PI(aw)D
version.

Specifications

In item (b) of the specifications in section 5.3.4, the controller is replaced
by

the "slave" controller R2 (z) = kP2

and the "master" controller R1(z) = kP1 (1 + ~: 1 _1Z-1 )

In item (c) the controller settings are calculated as before using the
continuous-time equivalent and al = a2 = O. This results in

1 D
3

In item (d) the awf shall act on the integral action input as before. Its
awf gain shall be denoted as k~, as kP2 is in the awf loop here.

In item (g) the high-frequency disturbance signals nl (t) and n2(t) shall be
of the same form and frequency as n(t) from Sect. 7.3. Furthermore nl(t)
and n2(t) shall be "in phase", which is the most pessimistic assumption.
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For numerical values, again choose n such that Ulin :~ 16%, which leads
to

n:= 1.0% (5.86)

i.e. a reduction factor p ~ 1.5 with respect to the PI(aw) case. In other
words, the high-frequency disturbance level can be higher by a factor of
rv 8 compared with the PI(aw)D case.

Fig. 5.26 shows the structure of the control loop.

Fig. 5.26. Structure with PI(aw)-P cascade control

Stability Analysis

The awf tracking loop now contains the "slave" regulator gain kP2 as well. To
obtain the same properties of the awf loop as before, set:

k~ := ka /kp2

Then F(s) + 1 is the same as in Sect. 5.3.5, i.e. the PI(aw)-P cascade has the
same stability properties as the PI(aw)D structure.

Offset Analysis

This is investigated using the same approach and previous results. The input
amplitude Ulin to the saturation from Fig. 5.26 is generated by two compo­
nents from nl + ih and n2 + Y2.
As above

Then for the inner loop

where

and also

fh:= 0
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finally resulting in

Transient Response

The simulation results in Fig. 5.27 compare the cases with n(t) to those
without, using n = 1.0%. Considering Fig. 5.27 (top left), the compensat­
ing awf gain value ks = k~ = 3 produces an overshoot of ~ 3.5%. And for
ka := 3k~ = 9 the run-up overshoot is suppressed.
Again, n(t) has no significant effect on either run-up or stabilization in phase
1 of the test sequence. And in phase 2 there is a steady state offset on the
control error as predicted.

Comparison

Evaluating Eq. 5.87 for iiI = n2 = 1.0% agrees well enough with the results
from the simulations in Fig. 5.27:

Evaluated: epI_p [%]
Simulated: ePI-p [%]

5.3.7 Some Solutions

o 1 3 9 27
o 0.59 1.79 5.48 17.4
o 0.58 1.75 5.35 17.1

164.3 (deadbeat)
195
191

The basic move is to avoid derivative action strictly in the controllers. And if
such additional feedback is needed for loop stabilization or performance, then
the derivative action should be replaced by a cascade (or equivalent state
feedback) structure. Then there are several possible solutions to this offset
problem.

Low-Gain awf

From Eq. 5.73 (also 5.85) and 5.87, we find that for ka = 0 -+ e = 0, but
obviously this is not an acceptable solution, as the windup effect is then at
its maximum. So the second move is to avoid high-gain or deadbeat awf, and
choose ka as low as possible. In other words, a design compromise has to be
made between offset and overshoot. This seems to work rather well with the
basic dominant first-order plant and PI(aw) control, but deteriorates quite
markedly for the dominant second-order plant and PI(aw)-P control.
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Actuator Re-sizing

Again, from Eq. 5.73 and 5.87 also for 5.85:

e --+ 0 if Ulin ~ (Uhi - u) (5.88)

independent of the ka value and the regulator type. In other words, the resid­
ual actuator maneuvering range (Uhi - u) must be re-sized so as to accommo­
date the actual Ulin-Ievel.

That is, the actuator limit Uhi should be moved outward accordingly. In nu­
merical values for the benchmark, Sect. 5.3.4, this would move the original
value Uhi = 100% to the re-sized value Uhi r = (90 + 16.2)% = 106.2%

Inserting a Controller Output Saturation

But note that this will not work if the actuator operates near its fully closed
position Ulo = 0 (as in Louis' case).
His solution was to insert an additional saturation on the controller output
with limits Ulo-lo , Uhi-hi outside the actual ones Ulo , Uhi in the actuator with
the margins:

LlUlo = Ulo-lo - Ulo ; LlUhi = Uhi-hi - Uhi (5.89)

But this will add to integrator windup, and thus increase the overshoot. So
the margins must be kept to the minimum. This shall be investigated further
using the benchmark case of Sect. 5.3.4, with the following modifications (see
Fig. 5.29 and 5.30):

rl = 1.0; a = 0.010; v = 0.0; --+ u = 0.010; and Ulo = 0.0; Uhi = +0.20
(5.90)

Several entries of n shall be considered in order to get an overview of the
overshoot as a function of the awf gain ka .

Offset Analysis

The aim is to determine the margin LlUlo, such that the steady state offset on
e is suppressed. In Fig. 5.28 (a)

, k ( ITs) ,
Ulin = p 1 + 2" T

i
n (5.91 )

This is separated in the nonlinear element into Fig. 5.28 (c) and (b). From
the steady state condition at the plant input (see Fig. 5.28 (c) )

-d-
-Yl = 0 --+ U = U - Ulo ; i.e. in Fig. 5.28 (b): Vlo := 2Ulin - 2u (5.92)
dt

Now the awf must not be activated, i.e. ea = 0, or
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(5.93)

~
'(e) _

/ u -' • - - T - -"..
___ _ ._~ / 10 ~~

j,1J 1t)

(0)

T, T,

(b)

Fig. 5.28. Analysis for the controller output saturation larger than the actuator
limits

Transient Response and Overshoot

Fig. 5.29 shows the PI(aw) control structure on the first-order plant, with an
additional saturation Ulo-I o to Uhi-hi inserted at the controller output and
then used for awf instead of Ulo to Uhi.

Fig. 5.29. Inserted controller output saturation

Fig. 5.30 documents the responses of y(t), with emax values for ka = 2.

Left Right
Top

Bottom
ii = 1.5% emax :::::: 1.8% ii = 1.0%
ii = 0.5% emax :::::: 0.28% ii = 0.20%

emax :::::: 1.8%
emax :::::: 0.04%

Note that the overshoot is not suppressed by increasing ka beyond k;. The
only way out seems to be a small enough n (as in Sect. 5.3.2, where n :::::: 0.1%).
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Comparison

For the numerical values of iL, Equation 5.93 evaluates to

From evaluation:
From simulation:

11 [%]
LlUlo [%]
LlUlo [%]

1.5
28.375
28.6

1.0
18.25
18.4

0.5 0.20 0.10
8.125 2.05 0.025
8.25 2.2 0.03

This is compared with values obtained from the simulation in Fig. 5.30. There,
.1ulo has been adjusted such that a reasonable speed of convergence on Yl (t)
is obtained for ka = 40 (deadbeat).

Digital Filtering of Measured Signals

In the benchmark case of Sect. 5.3.5, the closed-loop bandwidth is set to
{l = 1.826, and the frequency W n of n(t) is 1001f rad/s, i.e. wn/{l = 172. In
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other words, there is a sufficient distance to insert digital filtering without
disrupting closed-loop performance.5 The structure is shown in Fig. 5.31.

"

Fig. 5.31. Structure of Fig. 5.26 with digital first-order filtering of inputs

Simulation results are shown in Fig. 5.32.

For the left column, the filter bandwidth

has been chosen such that

Ulin := Uhi - U := 10%

In other words ePI_p = 0 for all ka

And for the right hand column,

such that
Ulin := 2%

Note that such filtering is only feasible if the gap W n to .!t1 is large enough to
allow inserting a filter at .!tf with sufficient rejection at W n , as was the case
here.
If not, then an observer may be used, e.g. see [52]. But this requires mod­
ules, which are usually non-standard within current industrial process control
systems, and therefore lie outside the "Standard Techniques" environment.

5 This also holds for the case of Sect.5.3.4, where wn/D = 314.2/5 = 62.8.
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Exercise
- These are experimental results. Confirm them by calculation.
- Consider the case of PI(aw) control, Sect. 5.3.4, along the same lines.
- Idem for PI(aw)D control, Sect. 5.3.5.

5.3.8 Conclusion

The most common structures for discrete-time controllers with integral ac­
tion, control signal saturation, and static awf (PI(aw), PI(aw)D, PI(aw)-P
cascade) have been investigated, while operating the control loop close to the
saturation, and with stationary high-frequency measurement disturbances n
at the sampling frequency.
Results are presented for the steady state control error offset e induced by
such n. They demonstrate the effect of design parameter choices. They are
also compared with simulation results, with good agreement.

It is often postulated, at least implicitly, that awf must be "high-gain".
But it has been shown in previous chapters that this is not necessarily so, and
that "low-gain" awf does not significantly affect the stability properties and
the run-up overshoot, if it is higher than a threshold, which depends on the
plant transfer function type. This property is useful to reduce the offset, but
cannot eliminate it.
It is also demonstrated that any derivative action should be avoided in this
context. But if this were necessary for loop performance, then an equivalent
PI(aw)-P cascade produces much less offset.

Several proposals for suppressing this offset have been investigated.
One is to redesign the actuator size such that Ulin stays in the linear actuator
range for all steady state operating conditions. If this is not feasible due to
physical restrictions, then inserting an additional saturation on the controller
output is helpful, but only as long as n is small. Otherwise, this will lead to
an increased overshoot.
Also, the effect of the high-frequency disturbance may be reduced by digital
filtering of measured signals. But this requires a sufficiently large gap between
closed-loop bandwidth and the sampling frequency. If this is not available,
then an observer may be used instead. But this also has its limits regarding
rejection of large load swings.
Finally, the controller structures with a low-pass filter Ga(s) in the awf path
from Chapter 2 have not been investigated here. They might perform better.
But this remains to be investigated.

To summarize: Controllers with static awf are sensitive to such high­
frequency measurement disturbances. So, from an overall design point of view,
it is strongly recommended to make every effort to reduce as much as possible
the level nout of the sensor subsystem first, and then use one or a combination
of the measures proposed above to handle the residual n.
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Generalized Antiwindup

6.1 Introduction

In the first part of this book, the focus has been on plants of dominant first
order, where standard PI(aw) controllers are best suited. The integral action
has been considered as a must, and not as an option. Such control systems
can be directly implemented, as PI(aw)-controllers are available as standard
modules in industrial process control systems.

The concepts have been quite successful so far. They are now extended as
follows.

• Plants of dominant higher order n (n 2 2) are considered, where simple
PI(aw) control would perform poorly in the linear range, if stabilizable at
all.

• The second characteristic element is that we shall explicitly use state feed­
back controllers, and consider the integral action not as a must, but as
an option. To simplify matters we shall consider all state variables to be
measured, i.e. no observer is required. Note that such controllers may still
be implemented on industrial process control systems by re configuring
them into cascaded P controls.

• The third characteristic element is "plant windup": Internal state variables
linked to the dominant part of the dynamics run so far off their equilibrium
values that they cannot be brought back in the final approach phase in time
due to the control saturation. So far, "windup" has been used exclusively
for the integral action, or more generally to the state variable within the
controller. Now "windup" becomes applicable to all state variables of the
loop: it is generalized.

• And finally, nonlinear stability now becomes a major issue for practical
design. It is more than just a nice property of academic interest.

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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We shall start with a motivating example (Peter's case), then state the control
problem and design the linear range controller. Nonlinear stability analysis is
performed next in a systematic way, using both the circle and Popov criteria
and the describing function technique. Then a transient analysis is performed
for two main cases, also to obtain some insight into the conservativeness of
the stability analysis and corresponding hints for design.
The focus then moves to design. As a measure of best performance, the
minimum-time (optimal) trajectories are given for the two main cases. Then
a selection of typical design techniques is presented and considered in detail.

6.2 A Motivating Example: Peter's Case

In the 1980s, Peter and his colleagues were active in university research aimed
at bringing state feedback design techniques closer to application. An im­
portant aspect therein was control-variable saturation. They found that the
response of linearly designed control loops could be very sensitive to such in­
put constraints. Their findings are given in the following. The presentation is
slightly adapted to the framework and notation used here.

6.2.1 The Control Loop

As to the plant, they did not consider a specific application (as we did above
in the various cases), but rather a more general form

y 1
Gu(s) = - = 3

U (sT + 1)
(6.1)

They also did not consider any non-modeled fast dynamics, captured above by
a short delay e-sD in series. So there was no closed-loop bandwidth limitation
for their feedback design.

As controller they considered an observer-based state feedback with con­
stant coefficients. Here (as mentioned above) the state variables shall be con­
sidered as directly measurable without any lag. And Gu shall be inserted in
its control canonical form; see Fig. 6.1. The gain in the setpoint path is such
that the steady state control error tends to zero for setpoint steps. Also, there
is no disturbance: v(t) = 0 'Vt ~ O.

The controller parameters are determined using pole assignment to 0 =

(s + 5?d3 yielding

bukI = (5? l T)3 - aI; buk2 = 3(5?l T)2 - a2; buk3 = 3(5? l T) - a3 (6.2)

with the design parameter 5?1 (or with the 'relative pole shift' factor 5? l T
instead).
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The controller is implemented in its discrete- time form with sampling time
Ts = 0.01, and one delay Ts to model the computational delay. And bu := 1.

'------------1J1-,..1+---------'
'-------------l.f'-.-f+---------------'

'-------------j.f'-.-f+------------------'

Fig. 6.1. The control system with the third-order plant

The test sequence is reduced to starting from equilibrium at TO = 0 and
stepping the setpoint up to TI = 1.0 at TTl = 1.0. No further load swings v
are applied. This produces a steady state control value

The saturation values are set to

iir = 1.0 (6.3)

6.2.2 Transient Responses

Fig. 6.2 shows the simulation results. For [l = 4 there is no perceptible over­
shoot on the response of Xl. The actuator working range is well used by u(t).
So this would be a near-optimal response from an application point of view.
For [l = 8 there is a considerable overshoot and the settling time increases
from rv 4 s to rv 7 s. And for [l = 16 there is a limit cycle with a period of
rv 3 s and an amplitude Xl ~ 0.08.

6.2.3 Peter's Analysis

The limit cycle lead Peter to select as his analysis tool the "Describing Func­
tion Method" (DFM for short), see e.g. [12], and Appendix A.1.

As the limit cycle period is much larger than the sampling time TS1 we
shall use the continuous approximation.
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Then the linear subsystem has the transfer function L

L(s) = R(s)Gu(s) with

and

1
Gu (s) = -,---:-;:---,-----:-::-----,----,----

(ST)3 + a3(sT)2 + a2(sT) + al

R(s) = k3(sT)2 + k2(sT) + k1 (6.5)

The describing function N for the saturation element with input amplitude
A , unity gain in the linear range and saturation values being symmetrical at
[-a, + a] to the final equilibrium iiI in the linear range, and where ih is also
shifted to zero, is:

a ::; A < a N = 1.0

A~ a N= ~ [arcsin (~) + ~Jl- (~f] (6.6)
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The negative inverse of N is at (-1, jO) for 0 ~ A ~ a, and then for increasing
A> a, proceeds along the negative real axis to -00.

From the graphic test performed in Fig. 6.3, limit cycles may appear, if
the Nyquist contour L(jw) for the linear subsystem crosses over the negative
real axis between -1 and -00.

~--_2OO-'-----'...,"'----,-1...,00----,_so~-~--.J
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_20

-15 _ 0, • •:1
- • e
- - .16
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Fig. 6.3. Applying the DFM test to the system in Fig. 6.1 (in the discrete-time
version) and using the' dlinmod' and' dnyquist' functions of Simulink.
The right-hand plot is a zoom-in of the left-hand one

This is only the case with the contour for fl = 16. There are two inter­
section points A and B, where A evaluates to a stable limit cycle, and B to
an unstable one. Small initial amplitudes (to the right of B) will decay to the
linear range and thus to zero. Larger initial amplitudes (to the left of B) will
increase and end up in A. And very large amplitudes (to the left of A) will
decay to A.

Exercise
- How well does the DFM applied at the intersection point A predict
quantitatively the limit cycle obtained from the simulation?
- Check the response around the unstable intersection point B (simulation).

There are no intersections for the cases of fl = 8 and fl = 4. But the DFM
implicitly assumes that such an intersection exists. Only this allows the har­
monic linearisation to be applied, as well as the Nyquist stability test for the
linearized system. In other words, the DFM is not able to supply an answer
here.
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However,

- by inspection of those two Nyquist contours in Fig. 6.3 and the
associated transients from Fig. 6.2 (top row), and also
- by carrying over the phase margin concept from linear design
by defining a "phase margin sector" from the negative real axis
to the dashed tangents on the Nyquist contours out of the origin,
see Fig. 6.3 (right side),

Peter and his colleagues conjectured
- that a "phase margin sector" of '" 45° is associated with an acceptably
well-damped closed loop response (case of Q = 8), and
- that a "phase margin sector" of '" 60° is associated with no perceptible
overshoot and near minimum settling time (case of Q = 4).

This led them further to develop a "systematic design procedure" [41]:

choose the closed-loop bandwidth Q such that a "phase margin sector"
of at least 45° results.

They reported testing it successfully on several other plants of the Hurwitz
class as well.

The results of this conjecture seem to be good, but regrettably its theoret­
ical basis is not very solid. A better founded approach (see also [40]) will be
shown below. It will also include explicitly both plants and controllers being
non-Hurwitz, and show in more detail the effect of the setpoint step size and
of the saturation width (i. e. the actuator working range).

6.3 Problem Statement

This is to specify the control loop and its subsystems, as a basis for the
subsequent stability analysis. Numerical values will be introduced later for
the transient responses.

6.3.1 The Plant

The model of dominant first order has been discussed in Chapter 2. It will be
listed here for completeness.

with
bGl(s) = e- sD _

sT+al

The focus will be on the model of dominant second order

b
G2 (s) = e-sD -----,,2------

(sT) + a2 (sT) + al
with -1.0:::; al :::; +1.0

and -1.0:::; a2 :::; +1.0

(6.7)

(6.8)
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and on the model of dominant third order.

G () -sD b
3 S = e 3 Z

(sT) + a3 (sT) + az (sT) + al
with -1.0 ~ al ~ +1.0

-1.0 ~ az ~ +1.0

and -1.0 ~ a3 ~ +1.0 (6.9)

The state space representation of the "dominant dynamics" shall be in control
canonical form.

Remarks

Let b := 1. This implies an appropriate scaling.

There is a common time scale T for the "dominant dynamics" part, a small
delay D to cover the non-modelled fast dynamics, and the bounds on the
ai are to indicate, that the ai may be zero or negative as well, but this
within reasonable bounds. 1

Note that there are no zeros in the transfer functions Gi(s). The focus
is on the basic state feedback, without feed-through, and without a more
general output feedback (Such cases have been investigated in e.g. [56]).

A persistent load v shall be applied as above, but only at the plant control
input, i. e. parallel to u, similar to Chapter 2.

To provide some applications background, the model in Eq. 6.7 may be
seen as speed control of a rigid body, and where the control input (the
driving force) can be applied without significant lag. The second-order
model in Eq. 6.8 can be associated to position control of a rigid body
with "normal spring", "zero spring" , or "negative spring" force feedback,
plus a feedback force proportional to speed, which provides either "positive
(dissipative)" damping, or "zero damping", or "negative damping". And in
the third-order model in Eq. 6.9, the force or torque buildup is no longer
instantaneous. A typical example would be an elevator position control
with limits on the acceleration buildup ("jerk limits").

Plants with dominant order larger than three shall not be considered here.
This is mainly for practical reasons, as such cases tend to be difficult to
control in the linear range, and a work-around (meaning a redesign of the
plant) is strongly indicated anyway.

1 Otherwise adapt T and b suitably.
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6.3.2 Controller structures

Two versions shall be considered, the P+ and the I(aw)-P+ types. Both ver­
sions are implemented in their discrete time forms, with the sampling time Ts

set short enough to allow using their continuous forms for analysis (as above).

u

u

Fig. 6.4. The two controller structures, p+ (top) and I(aw)-P+ (bottom),
for the model of dominant third order

The P+ controller in Fig. 6.4 (top) consists essentially of a P controller for
Y = Xl with gain kl . In addition, there is a feedforward path from r to Ulin

with weight aI, in order to drive the steady state control error for setpoint
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steps to zero. Then there are state feedbacks -k2X2 (and -k3X3 for the case
in Eq. 6.9). These motivate changing the notation from P- to p+-control.

And the I(aw)-P+ controller Fig. 6.4 (bottom) is basically an I(aw)­
controller producing Uo with additional state feedback U123:

(6.10)

This may also be seen as a special "two degrees of freedom" implementation of
a PI(aw) controller, where the setpoint r is applied only to the integral action,
and with additional state feedbacks U23 = - (k2X2 + k3X3). The motivation
for this is that, with this particular structure for R in Eq. 6.11, the overshoot
on setpoint step responses ( Gr ) in the linear range produced by "one degree
of freedom" PI controllers can be suppressed:

ko ko 2
Let Rr = sT and Ry = sT + k1+ k2(sT) + k3(sT)

Then

( )
RrGuGr s = ---­

1+ RyGu

ko

(6.11)

Thus Gr has unity gain and has no zero(s), as would be the case if Rr := Ry.
The second motivation is that u(t) is not subjected to a large step by the

proportional path (from +k1r(t)), and thus tends to saturate less.

Similarly, for the p+ version

let R r = k1+ al and Ry = +k1+ k2(sT) + k3(sT)2

then

(sT)3 + (a3 + k3)(sT)2 + (a2 + k2)sT + (al + kI)
1

Ct + 1)3

Again, Gr has no zero(s), and it has unity gain.

6.3.3 Controller Parameters

(6.12)

These are determined as above by pole assignment for the dominant dynamics:
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(6.13)

where n p is the order of the dominant plant dynamics and nc the order of the
controller (nc = 0 for P+, and nc = 1 for I(aw)-P+). The damping ratio 2(
in the linear range is set to 2( = 2 to avoid overshoot also in the nonlinear
range (from previous experience; see Sect. 2.1).
The equations for the controller parameters are then particularly simple:

n p n c ko k l k2 k3

1 0 0 (.fhT) - al 0 0
1 (S?IT)2 2(S?IT) - al 0 0

2 0 0 (S?IT)2 - al 2(S?IT) - a2 0
1 (S?IT)3 3(S?IT)2 - al 3(S?IT) - a2 0

3 0 0 (S?IT)3 - al 3(S?IT)2 - a2 3(S?IT) - a3
1 (S?IT)4 4(S?IT)3 - al 6(S?IT)2 - a2 4(S?IT) - a3

where the closed-loop relative bandwidth S?IT must be selected low enough
for the delay D and the sampling time Ts not to interfere.

6.3.4 Test Sequence

The test sequence of Chapter 2 is slightly extended, by inserting the second
item:
- standstill with r = 0 and v = 0,
- step-up of r to 0.99, while U is forced to 0, such that the awf loop
stabilizes to .1ulin"wx'
- release of u and run-up to equilibration,
- a small setpoint step 0.01 up to r = 1.0 for near-linear behavior,
- a full load step v up to +0.90,
- and a full load reversal to v = -0.90.

6.3.5 Saturation Limits

In order to provide sufficient maneuverability around r = 1 (and centered at
v = 0), they are set to

Ulo = -.1u + iiI; Uhi = +.1u + UI; with .1u = 1.0 (6.14)
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6.3.6 Antiwindup Feedback

For the I(aw)-P+ version, the standard static awf structure of Chapter 2 shall
be used. Then

deadbeat response will be produced by

and the compensating value is at

6.4 Nonlinear Stability Analysis

The general result in Chapter 2 has been derived in the context of a dominant
first order system with PI(aw) control. It has already been mentioned there
that it is not restricted to this class, but may be applied to systems of arbitrary
order.
So, the following is essentially a straightforward application of this general
result. However, some refinements will be made here, which are not strictly
necessary, but provide more insight.

Based on the experience from Chapter 2, the focus will be on the run­
up phase, following the large setpoint step rl from 0 to 0.99): the largest
"saturation overrun" .:1u1in>nax = Ulin>nax - Uhi is to be expected there.

6.4.1 The p+ Case

The control loop is visualized in Fig. 6.5

r--------------------,
H:

(a) (b)

Fig. 6.5. The control loop with p+-control and no awf:
(a) with the saturation nonlinearity; (b) redrawn with the deadspan element

The Linear Subsystem

The general result was
1

F+1=--­
1 + RyGu

(6.15)
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that is

where

finally

(sT)n p+ anp(sT)np-1 + ... + a2(sT) + al
F+ 1 = ( n t ; ors + I p

1 (sT)np+ anp(sT)np-1 + ... + a2(sT) + al

al + kl (A1 + 1fP

(6.16)

(6.17)

The numerator polynomial of F +1 is the denominator polynomial of the plant
(without feedback control), whereas the denominator polynomial of F + 1 is
the closed-loop polynomial (with feedback control). This is easy to memorize.

The Nonlinear Subsystem

The general result was

1 .:1u
--- = -1- = -1- Llmax

bmax .:1ulinrnax - .:1u
(6.18)

which defines .:1max . A conservative estimate is derived next.

Before the setpoint step is applied (i. e. for t < 0 ) is TO = O. And all state
variables ;r;, = [Xl, X2,'" X np ] are zero from the equilibrium condition there.

Consider now the first time increment (at t = +0) after the setpoint step
TI has been applied. The contribution to the control signal Ulin (+0) from the
plant feedback -!s{;r;, through Ry is zero, as all state variables ;r;, have not
moved from zero.
And the contribution from the setpoint path Rr to the control variable is; see
Fig. 6.4 (top):

(6.19)

The next step is to set as an estimate for the run-up transient

(6.20)

This seems reasonable from past experience with the dominant first-order
system, but should be confirmed by recording .:1ulin(t) in simulations. Then
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.:1u

.:1u
.:1max = --,----------,-­.:1Ulinmax - .:1u

1 .:1u
.:1ul" 1 .::1u

'l.nm,ax - LlUlinmax

1 1
--"'-A-(6.21)

r 1- ...,u
I r, (a, +k,)

where the last of the three factors is > 1. It tends to unity for rl (kl +al) » .:1u,
which is the case for high-performance control ([hT» 1).
And for the first factor:

(6.22)

This leads to the conservative approximation, which is also easy to memorize

= (6.23)

(6.25)

Stability Test

By inspection, Eq. 6.16 and 6.23 have the same factor (k l + al) = (nlT)np.
If now kl increases, because nIT is increased for better linear control perfor­
mance, then the plot ofF+1 and the position of the straight line at -1- .:1max
will shrink equally.

To allow a more direct comparison of variations of design parameter nl T I ,

this shrinking can be compensated by

multiplying both P+ 1 and .:1~ax by kl + al := (nlT)n p (6.24)

This may also be seen as scaling the complex plane accordingly, hence the
index sc.

Then the graphic test is to be performed with

( )
_ (sT)n p+ anp(sT)np-1 + ... + a2(sT) + al

F + 1 sc- ()np

..£ + 1D,

and (.:1max + 1)~c = .:1u
rl

That is, the position of the straight line in the stability test is now invariant of
the design parameter nIT, and given by a very simple expression. F(jw) + 1
is discussed next.

The Shape of the Nyquist Contour

The shape of F +1 is seen as being generated by
a high-pass element with the transfer function PH (s) consisting of the
numerator of Eq. 6.25

(6.26)
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connected in series to a low-pass filter Pds) with unity gain and relative
bandwidth fltT.

(6.27)

where p(s) is the characteristic polynomial of the plant
and P(s) the closed-loop characteristic polynomial.

In other words, the shape of PH (s) in the complex plane is determined by
the plant (p(s)) only and cannot be modified by changing the control feedback
P(s).
It can be plotted easily in the complex plane from

(6.28)

as shown in Fig. 6.6 (left) for a third-order system with all ai > O.

P(jro) + 1

z
• UJ (roT)
,...---------

• j(roT l

p (jro)

Fig. 6.6. Construction of the Nyquist contour for the high-pass element PH(S)
(left); and of the Nyquist contour F(jw) + 1 (right) at the low-frequency end from
p(jw)

Note that this is also the Nyquist contour of F + 1 for ill ---+ 00, i.e. the
asymptote of the shape for a loop with infinitely high performance.

Now the shape of the low-pass element Pds) is discussed. It is determined
by the design of the closed loop only, i. e. by the choice of P(s). From Chapter
2, the nonlinear stability properties are determined by the shape of the Nyquist
contour at the low frequency end 0 :S w « ill'
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In this low-frequency region 0:::; w « DI
and using the polar form for PL (jw)

z.e.

and f1<p = -np arctan (~l) ~ -np ~l (6.29)

- PL will not change the length of IPH (jw )I significantly,
- but will generate a progressive phase shift f1<p.

This will reshape the contour of PH from Fig. 6.6 (left) as illustrated in Fig.
6.6 (right), drawn for a high closed-loop bandwidth (marked DI », and for
a low bandwidth (DI <).
In other words, decreasing the closed-loop bandwidth will improve the non­
linear stability properties, as the Nyquist contour is pushed to the right. And
thus it makes room for moving the straight line further to the right, i. e. for
smaller f1~ax' This leads to
- either a larger allowable size of rl,
- or smaller allowable size of f1u, i. e. lower Uhi and thus smaller actuators.

It also nicely explains the experimental findings in Fig. 6.2 for low DI's, where
the DFM is not applicable.

For the high-frequency region w» DI
the Nyquist contour converges to

( ())
[

(sT) n
p + ... ] ( n

lim F jw + 1 se ~ lim ()n = DIT) p
w->oo w->oo ~ p +

S2
1

•.•

(6.30)

i. e. the contour ends on the positive real axis at (DITt p
• So the end point

moves out to the right for increasing relative bandwidth, and the size of the
contour increases accordingly. But note that the result in Eq. 6.30 neglects any
small delay D in the plant and finite sampling time Ts from the controller. The
actual shape there can best be determined by using the functions 'dlinmod'
and 'dnyquist' on the full Simulink model.

Finally, at the bandwidth frequency w = D l

the low-pass element Pds) furnishes from the end point at w ~ 00 backwards
to w = D l a positive phase shift of

and a gain of

that is

(6.31)

(6.32)

(6.33)
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where Ipl is the length of the vector due to the high pass PH (s) as constructed
in Fig. 6.6 (left).

The three elements

Equations 6.26 or 6.28 for the low-frequency range,
Eq. 6.30 for the high-frequency end, and
Eq. 6.31, and 6.33 for the point at w = ill in the intermediate frequency
range

allow one to sketch the approximate shape of F + 1, and get a first idea on
how critical a specific case is concerning nonlinear stability.

The Describing Function Test

On the other hand, the circle or sector test cannot show asymptotic stability
if there is an intersection of the straight line and the Nyquist contour. This
will appear for large il values and small .1~ax; but then limit cycles may
appear, as the experiments in Sect. 6.2 have shown.
This suggests using the DFM as a supplementary tool for nonlinear stability
analysis as well.

Consider the control loop in its redrawn form, Fig. 6.5 (b). For small
enough initial conditions its response is linear and decays exponentially to the
steady state. All variables shall be zero there, by adding offsets of appropriate
SIze.

Then, for the linear part:

H
F=--­

l+H
(6.34)

where H = GuRy is a low pass, and therefore F is a low pass as well. Fur­
thermore, F is Hurwitz by design of the linear loop, even for unstable plants.

It is interesting to note the relation between F used here and the transfer
function E used by Peter and his colleagues in the "phase margin sector"
criterion, (Sect. 6.2). From there for np = 3:

E := R(s)Gu(s)

Then introduce

i.e.

E:= -l+E'

(6.35)

and

E' = E+ 1
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E' = [(ST)3 +a3(sT)2 +a2(sT) +al] + [k3(sT)2 + k2(sT) + k1]
(sT)3 +a3(sT)2 +a2(sT) +al

(ST)3 + (a3 + k3) (ST)2 + (a2 + k2)(sT) + (al + kt}
(ST)3 +a3(sT)2 +a2(sT) +al

(S + S?t}3 (S + S?1)3 P(S)
S3+¥S2+~~S+# s3+a~s2+a~s+a~ p(S)

finally
1

E'

i.e.

1

l+E
F+1 (6.36)

arg{F(jw) + I} = - arg{E(jw) + I} and IF(jw)+ll = IE(j~) + 11 (6.37)

The nonlinear part is the unity gain deadspan element of width ±a, sym­
metrical to zero (u := 0), and input amplitude A := .&t1in . Then, the describ­
ing function is

O:::;A<a N=O

A;'a N~ [l-~""'inG)-~~Jl-G)']
and the plot of the negative inverse of N
- starts at (-00, +jO) for 0:::; A :::; a
- runs to the right along the negative real axis
- and ends at (-1.0,+jO) for Ala ---. 00.

(6.38)

In the stability test, the contour of F + 1 has been used for the sector test.
To go on using this contour here, -[(liN) + 1] must be plotted. It will start
at -00 as well, run along the negative real axis and end up at the origin for
Ala ---. 00.
So, if E(jw) + 1 crosses over the negative real axis, which indicates limit

cycles, then F(jw) + 1 does as well, and at the same w-values.
Or also, if the Nyquist contour of F + 1 crosses over the negative real axis,
then the DFM conditions are met. Note that the scaling on the negative real
axis is different for both tests.
Fig. 6.7 shows two such cases. Note that intersection point B is also indicating
the Llmax for the off-axis circle criterion.
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(,I

A> A>

Fig. 6.7. Two cases from the describing function test:
(left) with two intersections, B indicating an unstable limit cycle, and A indicating
a stable limit cycle with large bounded amplitudes A/a;
(right) with the stable limit cycle moving to infinite A/a

To· summarize: the Nyquist contour plot can be used for both tests at
the same time, and thus provide a sound answer for both situations, the "fast
response without overshoot" one, which is usually specified and is the relevant
design target, and the "limit cycle" one, which is more of theoretical interest,
because it must be avoided in applications. But clearly, if F(jw) + 1 evolves
across or even near the negative real axis, then this indicates a "demanding"
case for practical design.

6.4.2 Stability Charts

The idea of drawing such stability charts is to visualize the effect of differ­
ent dominant plant dynamics (P(s)) on the Nyquist contour of F + 1 in a
systematic way, and thus on the nonlinear stability properties to be expected.

p(s) of first order

Variation of the single para!Jleter al will produce a one-dimensional sequence
of corresponding plots (along the horizontal). Fig. 6.8 shows the charts for
F(jw + l)sc for three values of al.

u - Q~ •

•.. 0.5

,..

Fig. 6.8. Nyquist contours for the dominant first-order plant:
(left) a1 = +1; (center) a1 = 0; (right) a1 = -1
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Therefore, the stability properties are good for al 2: 0, because .1maxsc --+

0, i. e. the radius of attraction tends to infinity.
But the radius of attraction is bounded to

for al < 0: .1maxsc = lall independent of the choice of Q;

i.e. with (6.39)

which is the same as what is obtained by considering the equilibrium condition
of the loop.

Exercise
Show this in more detail.

p(s) of second order

Variation of the two parameters aI, a2 will produce a two-dimensional chart,
as shown in Fig. 6.9.

Discussion

Only for the case depicted in the upper left corner (with al > 0, a2 > 0) can
global stability be shown with the on-axis circle criterion, if Q is selected
small, such that ~(F+ 1) > ° \:j w.
In other words, it has the best stability properties. Or, it is the least
sensitive to saturations.

For the case al > 0, a2 = 0, i. e. an oscillator with zero damping, the
condition ~(F + 1) > ° \:j w may also be attained, but then Q must
be selected even smaller.
For the higher Q value shown in Fig. 6.9 (left column, center row), the
off-axis circle criterion is needed to show global stability.

For the case a2 > 0, al = 0, Fig. 6.9 (top row, center column), i.e. an open
integrator in series to a first-order lag, the off-axis circle criterion will show
stability in the very large only.

And for the case a2 = 0, al = 0, Fig. 6.9 (center row, center column), i.e.
the two-open-integrator chain, the radius of attraction is restricted even
more: the off-axis circle criterion will show stability in the large, but not
in the very large.

For the cases with al < 0, a2 2: °(top and center row, right column), the
radius of attraction is restricted to lall, as with the case of first order p.

Finally, the case with negative damping a2 <°(bottom row, right column)
has an even smaller radius of attraction.
Or, it is the most sensitive to saturations.
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Fig. 6.9. Nyquist contours for the dominant second-order plant.
Rows: (top) a2 = +1, (center) a2 = 0, (bottom) a2 = -1;
columns: (left) al = +1, (center) al = 0, (right) al = -1

p(s) of third order

Variation of the three parameters aI, a2, a3 will produce a 3-D chart.
A selection ofp(s) instantiations with ai 2: a'V i is shown in Fig. 6.10, arranged
as follows:

p(s)
top left (s + 1) 1
top center (5 + 1)2 S

top right (s + 1) S2

bottom center 1 5
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Fig. 6.10. A selection of Nyquist contours for the dominant third order plant;
see legends for coefficients of p(s) and fl

Remarks

Again for the case al = 1, a2 = 3, a3 = 3 (top, left), i.e. three first-order
lags in series (this is Peter's case), global stability can be shown with the
on-axis circle criterion, if D is selected sufficiently low.
If al = 0, a2 = 1, a3 = 2 (top, center), i. e. one open integrator in p(s),
the situation is similar to that in Fig. 6.9 (top, center), and one can show
stability in the very large using the off-axis circle criterion.
If al = 0, a2 = 0, a3 = 1 (top, right), i.e. a double integrator chain and
one first-order lag in series, then the Nyquist contour ejects tangentially
along the negative real axis from the origin. Thus, stability properties are
similar to those of the double integrator chain in Fig. 6.9 (center, center).
And for the triple integrator chain, the Nyquist contour ejects along the
negative imaginary axis. Thus, there will always be an intersection of the
Nyquist contour with the negative real axis at a finite distance from the
origin, yielding a finite Llmaxsc' and thus a finite radius of attraction. By
choosing [l smaller, this distance Llmaxsc can be reduced. But it will be
zero only for D -+ 0, which is not a useful solution for design purposes.

To summarize: the stability properties of the control loop with input con­
straints (saturation) are dominated by the number N of open integrators in
the plant. If this number is zero, then stability properties are very good. They
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are still good for N = 1. But they are significantly reduced for N = 2, and
even more so for N > 2.
In other words, it is easy to obtain good performance for plants of N = 1
with input saturation, but it gets increasingly difficult for N ~ 2. And the
situation quickly deteriorates with one (and then multiple) unstable poles.

Finally, what Peter and his colleagues investigated in their case (Sect. 6.2)
turns out to be the least difficult situation. This also holds for the benchmark
plant introduced by Rundqwist [42]' which is of second order with al > 0 and
a2 > 0, and which has been used by many other authors to illustrate their
proposals for awf.

6.4.3 The I(aw)-P+ Case

The Nonlinear Subsystem

The awf of Fig. 6.4 shall be used. Then, along the upper constraint

(6.40)

and for steady state in the awf loop while rl has been stepped up, but u is
still blocked at zero for standstill:

(6.41)

That is, for the position Llmax of the straight line on the negative real axis:

Ll - LlUhi LlUhi LlUhi ka (6.42)
max - L1ulin",,,,, - L1uhi ea",,,,, rl ko

The Linear Subsystem

The general result of Chapter 2 yields, with the closed-loop bandwidth [21,
nn +1and where ko := HIP :

F + 1 = p(s) s + ka

(s + [21) n p s + [21

ka p(S) k
S
" + 1

ko (J/+1)n p J/+1
(6.43)

The Graphic Stability Test

Again Llmax and F + 1 contain the common factor (kafko), which may be
eliminated in both, and produces the "scaled" plot:

and F 1 _ p(s) :" + 1
( + )sc - (~ + 1)np ~ + 1n, n,

(6.44)

Thus, the position of the straight line
- again does not depend on the closed-loop bandwidth design [21,
- and also is the same as for the P+ cases.
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Compensating-gain awf: k a = fh T

For this special case, the numerator and denominator of the second factor in
Eq. 6.44 cancel, and

p(s)
(F + l)sc = (~/ + l)np (6.45)

which is the same result as for the P+-controller. So one expects the same
stability properties and the same transient response (see below).

High-gain awf:

From Eq. 6.44, with

lim (F + l)sc
1 ...... 00

1o< "V < -- and Tsill « 1
- 1_ Tsill '

p(s) 1

(nr + 1)np (n/ + 1)

p(s)

For the low-frequency region 0 ~ w «ill again

IF + 11 = Ip(jw) I and arg (F + 1) = - (np + 1) arctan (~l) (6.47)

that is, the phase shift into the favorable direction for the stability test is
larger than for the P+ controller. In other words, the bandwidth ill with the
I(aw)-P+-controller can be increased (see Fig. 6.11 (right)).

For the high-frequency end w» ill

IF + 11 -t a and arg (F + 1) = -900 (6.48)

Keep in mind that this neglects the effect of the finite (small) Ts and any
small delay D, and extrapolates the dominant dynamics to w -t 00.

And at the bandwidth frequency w = ill

( )

np+l
IF + 11 = Ip(jw)1 v'2/2 and arg (F + 1) = - (np + 1) 45° (6.49)

This again enables you to sketch the shape of the Nyquist contour by deforma­
tion of the shape for the P+ controller case, and thereby see the consequences
on the stability properties.

Fig. 6.11 (left) illustrates this deformation for Peter's case, Sect. 6.2
- p(s) = (8 + 1)3,
- ilp = ill = 4.0,
- discrete-time controllers from Fig. 6.4 with Ts = 0.01,
- and deadbeat awf gain ka = "(ill with "( := 1/(ill Ts).
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And in Fig. 6.11 (right), flp = 4.0 for the P+-controller, whereas fl l has
been manually adjusted (-+ 5.5), such that the Nyquist contours for both
controller types are nearly the same in the relevant low-frequency range.
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Fig. 6.11. Deformation of the Nyquist contour for the plant p(s) = (s + 1)3:
(left) ilp = 4.0, ill = 4.0, and deadbeat awf gain; (right) ilp = 4.0, ill = 5.5,
such that the Nyquist contours are approximately the same

6.4.4 Another Approach to the Graphic Stability Test

Consider the graphic stability test in its scaled version in Eq. 6.25. There,
variations of the closed-loop bandwidth fl affect the shape of the Nyquist
contour (F + l)sc quite strongly, whereas the position of the straight line
(L1max)~c is not affected.
So if variations of L1u or rl are considered, and if stability is to be conserved,
then fl has to be adjusted by trial and error. This type of design problem
may be solved more conveniently by choosing a different approach to scaling.

The p+ case is considered first.

For the linear subsystem in Eq. 6.16, divide the numerator of F + 1 by
al + k1 = (fl1T)n p

:

( ~)np +~ (~)np-l + ... + ao ( s ) + a!F 1 _!l !lIT!l (!lIT)np 1 n (!lIT)np
+ - ()n p (6.50)

-L + 1
!l!

(6.51)

As flT » 1, the influence of the coefficients ak, k = 1· .. n p , decreases with
increasing k. In other words, the shape of

( s )np

F+ 1 = n n

(JI + 1) p



(6.52)
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may be considered as the asymptotic one for QT --+ 00. Note that for the
chain with n p open integrators, where ak = 0, k = 1 ... np , the shape is equal
to the asymptotic one. Also note that this shape now is independent of the
choice of QI.

For the nonlinear subsystem from Eq. 6.23 then

Lla = Llu
max rl (QIT)np

And for the stability test, the graphic configuration remains the same if

(6.53)

or using a reference case denoted by index n:

(6.54)

and thus the stability properties are the same. Then one would expect the
performance properties to be quite similar as well.

If (QIT)r has been determined for the reference case r, either by stability
analysis or by simulations, then Eq. 6.54 allows one to generate the relative
bandwidth QIT as function of rl and Llu in a very transparent way.
Note that this will produce only a first approximation for plants with some
or all ak -I- 0. However the approximation gets better for decreasing lakl and
increasing relative bandwidth QIT, and vice versa.

The I(aw)-P+ case is considered next.

For the linear subsystem in Eq. 6.16, divide F + 1 by ko = (QIT)np+1

F+1=
( ~)np + ~(..L)np-l + ... + a2 ( S ) + aj

n nrT nr (nrT)np '?ii (nrT)np

(Ar + 1fP
and for the nonlinear subsystem in Eq. 6.23

Llu 1 ka

rl UhT)np QIT

For the graphic test, it is useful to apply further scaling: both equations are
divided by the common factor ka/ QIT := "f.
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(F + l)sc =

( s )np + a np ( s )np-1 + + a2
[1] {lIT Dr . . . (DrT)np

(Ar + 1fP
(6.55)

Again the position of the straight line is not affected by the choice of ka , i.e.
"f, and it is the same as for the p+ case.

For the compensating awf gain, "f := 1, the graphic configuration will be
the same as for the p+ case, if Dr := D1 .
And for deadbeat awf, "f » 1, the scaled contour (F + l)sc converges to

(F + l)scl -----
')'»1

( --.!!..-)n p + ~(--.!!..-)np-1 + ... + a2 ( s ) + aj
Dr DrT Dr (DrT)np j 7i[ (DrT)np

(Ar + 1fP
(6.56)

which is again not affected by the choice of Dr, if the chain of np open inte­
grators is considered.

To summarize: the same relation as Eq. 6.54 holds for variations of Llu,
T1 and DT.

6.5 Transient Analysis

So far, the elements for a given control loop with state feedback and input
saturation have been assembled to analyze, whether the initial condition re­
sponse is stable. Anyone of the sector criteria can be used.
However, these tests are known to be conservative, i.e. the design to nonlinear
stability will, in fact, produce a response with a significant "rate of conver­
gence". Note that this is in contrast to linear systems, where meeting the
Nyquist stability condition will produce a stationary oscillation, where the
rate of convergence is zero. Note also that the "damping ratio" is defined for
linear systems, and should be used exclusively there. Therefore, the term "rate
of convergence" is considered more appropriate for this nonlinear context.
The analysis and design can be done computationally, using concepts of Ro­
bust Control theory and Linear Matrix Inequalities (LMIs), e.g. see [55, 53]
and references therein.

Here, we shall resort to simulations. The aim is to generate some insight
as to how the geometric situation in the graphic stability test relates to the
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properties of the transient response. This may be useful in a first short de­
sign phase, and it may help to prepare a second design phase, when such a
computational approach to performance optimization is to be used.

However, the problem with simulations is the increasing number of param­
eters. In general, a very large number of experiments must be performed to
obtain a reasonable overview. A careful selection has to be made to keep this
number down to a feasible size. Any such selection is subjective, and may thus
be viewed very critically. Also, the results must be restricted to the selection,
and may not be generalized unduly.

The following assumptions are made here:

The plant shall be of order 2 and 3, and with the delay set to D := O.
This shall be further narrowed down to the double-open-integrator chain,
and the triple one, with equal time parameters Tk = 1.0, k = 1,2,3, i.e.
al = a2 = a3 := O. This selects the cases for p(s) in the center of the
stability charts, and also considers the cases which are being borderline
manageable.

The controller structures are P+ and I(aw)-P+, and in their discrete-time
form, with a short sampling time Ts = 0.01.
The controller coefficients shall be determined from the linear closed-loop
bandwidth, i.e. from pole assignment to (s+,Q)m = 0, where m = np+nc'
Then ,Q is the main control design parameter.

The test sequence shall focus on the run-up response from forced standstill
y = a with u blocked at zero, while r = 1.0, up to nominal operation at
Xl = 1.0. From previous experience, this is the most critical transient
regarding stability (where ILlUlin",ax I is largest).
The saturation on u shall be symmetrical and allow a dynamic working
range of u up to ±1.0.

The compensating awf gain case is trivial from the stability analysis, once
the p+-case has been analyzed, and will therefore not investigated sepa­
rately. More interesting is the deadbeat awf gain. Also, some reduced value
shall be inserted. This is inspired by the noise sensitivity, see Chapter 5.

An Overview of the Simulations

In the following figures, the graphic stability test for one particular experi­
ment is always shown in the left-hand plot, while the associated run-up time
response is given in the right-hand plot. One figure typically covers three val­
ues of the single parameter to be varied, with the value for the best stability
properties always shown in the top row.

The experiments are listed in the following table:
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Plant order p(s) Controller type Variations on Fig.
N
2 (sT)" p-r flp 6.12

I(aw)-P+, deadbeat ka fl I 6.13
3 (sT);j p-r flp 6.14

I(aw)-P+ , deadbeat ka fl I 6.15
2 (sT)" I(aw)-p-r , flI fixed ka 6.16
3 (sT? I(aw)-P+ , fl I fixed ka 6.17

For the group of Figures 6.12 to 6.15, the main design parameter [2 has
been adjusted such that the minimum value of the real part of F(jw) + 1 is
approximately
-1.0 for the top row, -2.0 for the center row, -4.0 for the bottom row.

Considering performance, the results from the simulations for the run-up
settling time measured up to

lu(t)1 < 0.05, 'V t > tE

are as follows.

For the second-order case p(s) = (sT)2 with p+ control; see Fig. 6.12:

tE - to [s]
Min. time
2.0

and for the third-order case p(s) = (sT)3 with p+ control; consult Fig. 6.14:

tE - to [s]
Min. time
3.175

The second-order case performs well, and comparatively better than the third­
order case, which still performs acceptably.

These performance results will serve as a base line for the design methods.

Discussion

For the group of Figs. 6.12 to 6.15, the main parameter is the linear closed-loop
bandwidth ([2T).

The top row in all four figures corresponds to the situation, where the
on-axis circle test indicates stability for the specific transient (the "run-up").
The transients show consistently that the response is not at the stability limit
in the linear systems sense, but that there is still a considerable "margin".
This illustrates that the circle test is quite conservative.
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But it also shows that the on-axis circle test produces a value of flT and an
associated run-up response that is at least 'acceptable' from a practical point
of view. It may be considered rather slow, but it also provides some margin
for uncertain parameters. And it produces at least a reasonable starting point
for subsequent tuning.

For the center row (and the bottom one as well) the situation is such
that stability of the run-up transient can no longer be shown by the on-axis
circle criterion. But, at least for the center row, it may still be shown with
the off-axis circle or the Popov tests. The transients are such that there is a
small overshoot on the main control variable. The settling time is close to the
minimum-time response one. From a practical point of view, this is near to
the optimal response. But it is only to be used if robustness is not an issue.

For the bottom row, where flT is adjusted to ~(F(jw)+ 1) 1 . :=::: -4, them,n
run-up response is not acceptable any more. There is a considerable overshoot
for the N = 2 case, and a weakly damped oscillation for the N = 3 case.
The run-up responses, in particular X2(t), also illustrate the "plant

windup" effect.

The second group of Figures 6.16 and 6.17, illustrates the effect of reducing
the awf gain from the deadbeat value (top row) to the compensating one
(bottom row). The bandwidth parameter fl has been set to the value where
~(F(jw) + 1)1 . :=::: -4 for the P+ controller. Note that

m'n

and
TIl

"(db = T
s

flT = flT
s

; with 1::; "( ::; "(db

From the stability test situation for N = 2, the effect of ka is strong from
"( = 1 up to "( = 2, and much less from "( = 2 to "(db. And for N = 3, the effect
is strong up to "( = 3.

6.6 Design Methods: An Overview

So far the analysis has been discussed. Now the synthesis or design shall
be addressed. Eight design approaches or methods are selected from a still
growing pool of proposals and ideas, and are investigated in more detail.
They are bundled into three groups:

de-tuning the linear loop (Sect. 6.7), and "nested loops" (Sect. 6.8),
first-order dynamic awf (Sect. 6.9), trajectory generators with awf (Sect.
6.10), and the "continued states" concept (Sect. 6.11),
and add-on output constraints implemented by cascade-limiters (Sect.
6.13), selection for approach speed (Sect. 6.14), and selection for lower­
bandwidth control (Sect. 6.15).
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The selection for lower-bandwidth control method is closely related to recent
results in MPC. These links are discussed in Sect. 6.16.

The common aim is to produce design solutions for which nonlinear sta­
bility may be shown (at least by plausibility) within the specified range of
input sizes, or equivalent initial conditions. Performance shall be judged by
comparison of the simulation to the minimum-time run-up.
Further aims, such as formalized optimality, robustness, etc., are not postu­
lated here. This is an area, where research is currently very active.

6.7 Design by De-tuning n
The linear closed-loop bandwidth in absolute (il) or relative (ilT) form is
considered as the primary design parameter. It is very often determined by
the requirements of the actual application, such as the disturbance rejection
rate, etc., and may not be altered at will.

If this is the case, then the shape of the Nyquist contour is given. Also
the maximum size of the setpoint step is considered as given. Then the only
remaining design parameter to comply with the stability test is .::1u, i.e. the
actuator working range. It has to be sized accordingly, which may lead to a
very costly installation.

Then, as an engineering compromise, one may think of reducing the band­
width nevertheless, such that stability may be shown with the existing actu­
ator (and the setpoint step size as specified). And then one is interested in
lowering il not more than necessary to comply with the stability test. There­
fore, this is called the "de-tuning" design approach.

Then the design rules follow directly from the findings in the stability and
transient analysis of the previous sections:

1. Use the on-axis circle test with ~(F(jw) + 1)1 . ~ -(.::1u/rd to obtainmtn
a first value of il. This is conservative, but not excessively so.

2. Use the on-axis test with ~(F(jw) + 1)1 . ~ -2 (.::1u/rd to obtain amtn
value of il, which produces a near minimum-time response. Some small
additional tuning will be required.

3. For I(aw)-P+ controllers set the awf gain to its compensating value: 'Y :=

N, for N = 2,3. This reduces the admissible il value somewhat, but also
lessens sensitivity to any high-frequency measurement disturbances
indexSensitivity to!measurement noise.

4. If deadbeat awf gain 'Ydb can be used, then ill can be substantially in­
creased from the value ilp for the p+ controller.

Note that these rules have been obtained on (and thus are valid only for) the
double- and triple-open-integrator plants.
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Therefore, they are checked next on Peter's case, with p(s) = (s + 1)3 and
for the P+ controller only; see Fig. 6.18. This shows

that adjusting [l for !R(F(jw) + 1)1 . ~ -(L\u/rt} produces again am.n
"good" initial value.
And nearly minimum-time run-up is produced by adjusting [l for
!R(F(jw) + l)lmin ~ -4 (L\u/rl)'
instead of previously - 2 (L\u / rl) for the triple-open-integrator chain. This
is to be expected from the stability analysis.

Exercises
Check the de-tuning design rules in adjacent areas
- for other N = 3 plants, p(s) = s (s + 1)2 and p(s) = s2 (s + 1),
- and for N = 2 plants, p(s) = (s + 1)2, and p(s) = s (s + 1),
- and for I(aw)-P+ controllers, with high- and low-gain awf,
as in Figs. 6.16 and 6.17.

- Investigate the effect of different setpoint step sizes,
and then use Eq. 6.54 to adjust fl.

- Apply the full test sequence of Sect. 6.3, and
- check also the assumption about Ulinmax by simulations.

6.8 The "Nested Loops" Method

Looking again at the stability charts in Section 6.4.2 reveals that plants hav­
ing their own internal negative feedback will yield much better closed-loop
stability properties than those without. This is due to the influence of the
feedback coefficients aj, j = 1 ... n p being> 0 on the shape of F(jw) + 1.
The basic idea of the nested loops method is to provide the plant with some
weak negative feedback first, and then to implement the full design feedback
in a second step; see Fig. 6.19.

Fig. 6.19. The basic idea of the "nested loops" method
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For the first step, the feedbacks k12 , j = 1· .. n p , are determined by pole
assignment

(8 + Sl2tl' = 0; where

with Sl2 as a first design parameter.

The next design step is to introduce the saturation element with its val­
ues marked in Fig.6.19 by [ rL 2_ hi, rL2_lo], as the second set of design
parameters.

Finally the outer feedback is added, with the gains

(6.58)

where the total gains kj1 are given by the specified closed-loop bandwidth Sll
and by the pole assignment (8 + SlI)nl' = O.
Note that the outer feedback may again be split up into two cascaded feed­
backs with im additional saturation in the outer loop. This method has been
proposed by Buhler [51].

Now the design parameters must be entered.

The feedforward weight b is chosen such that the steady state effect of the
inner feedback is canceled, i.e.

This lets the additional saturation element operate around its center in
steady state.
The parameters for the additional saturation are intuitively set to the same
values as with the control saturation

rL 2_ hi := Uhi; rL 2_ lo:= Uta (6.60)

Exercise
Clarify this.
Develop and check other ideas for entering the feedforward from rl.

And Sl2 is determined by tuning first. For this, the following trend is
useful: increasing Sl2 also increases the positive effect on the numerator
shape of F(jw) + 1, and therefore will allow to increase the value of Sll,
for approximately the same closed-loop stability properties. We shall show
later how the value for Sl2 can be derived more concisely by stability
considerations.

Note that the basic idea and the layout in Fig. 6.19 may be seen differently:
the input rL2 to the inner control loop is clipped to a size, which results in
a stable trajectory for the inner loop. Then this method belongs also to the
group of input size modifiers in Sect. 6.8 to 6.10.
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6.8.1 Transient Response

The case G(s) = 1/(sT)3 is considered. The control structure is shown in Fig.
6.20

" .

'-'

'-'

......----

Fig. 6.20. The "nested loops" method applied to the plant G(s) = 1/(sT)3

For the tuning of []2 an intuitive first value would be []2 := 1.0. And from
the specifications ill := 5.0. This pair produces the response in Fig. 6.21 (top
row). The response is stable (in contrast to the original one without a nested
loop), but the oscillatory component is not acceptable.
The trend mentioned above indicates that this can be improved either by

reducing ill, or by increasing []2.
In Fig. 6.21 (center) ill is reduced by tuning to 2.76 such as to suppress

the oscillatory component, while the inner loop is kept at []2 := 1.0.
There are two distinct phases in the transient response. In the first phase, the
outer loop controller output saturates at rL2-hi, i.e. the inner loop "sees" a
constant setpoint at +1.0. Thus it will generate a run-up transient, determined
by the gains kh due to []2 and the control saturation [Uhi, Uta].

In the second phase, the inner loop controller output u(t) does not saturate
any more, i.e. the constraints [Uhi, Uta] can be omitted; that is, the plant with
the weak feedback is now linear, and constitutes the modified plant (with all
aj > 0, j = 1· .. n p ), and only the outer loop constraints [rL 2_ hi, rL 2_ Lo]
are active.
In Fig. 6.21 (bottom) both [] values are increased by manual tuning: []2

is raised to 1.575, while ill := 5.0 has achieved its initial specification.
Again the two phases described above can be clearly distinguished. Note that
u(t) does transiently saturate for a short time interval (rv 0.2 s) in the second
phase.
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Performance is checked by reading tE from the simulations for the three
cases of Fig. 6.21, such that

lu(t)1 < 0.05 V t > tE

and comparing to the minimum-time run-up:

tE - to [s]

1.0 1.0
5.0 2.76
5.7 4.4

1.575 Min. time
5.0
3.8 3.175

Exercise
Derive t E - to I . for this benchmark case.

mtn

6.8.2 Stability Properties

From the time and the phase plane plots, the run-up trajectory may be seen
as two consecutive parts, with a first part

starting at XI(O) = -rl, (virtually) ending at the origin

with one saturation [Uhi, Ula];

the plant being C(s) = 1/(sT)3;

and the bandwidth D2 (<< DI )

leading up to a second trajectory part

with input size rl; ending at the origin

with one saturation [rL2_hi, rL2Jo] := [Uhi, Ula ];

1
the plant being C+(s) = [(s/D

2
) + 1]3;

and the bandwidth DI

The graphic stability test for both subsystems in Fig. 6.22 shows the Nyquist
contours for F + 11G; !l2 and F + 11G+; !l,' It also indicates the positions of the
straight line for the circle test at uhd[rl(D2T)3] and uhdh(DI T)3]. There­
fore stability is indicated by the circle test for both subsystem trajectories.
This now suggests a design procedure for D2 :

select the inner loop bandwidth D2 such that the circle test
indicates stability for the subsystem with F + 11G; !l2' and
uhdh(DI T)3].

And this is just what the "de-tuning" method does. Therefore, the "nested
loops" method has been bundled with the "de-tuning" method.
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right: zoom-in to the relevant area

6.8.3 Checking the Design Procedure

The design procedure from above shall now be checked for the other bench­
mark case, i.e. G(s) = 1/(sT)2. Let
ill := 10.0, as per specifications,
b:= k12 ,

[rL2_hi, rL2Jo] := [Uhi, Ula], and
il2 := 2.75 from the "de-tuning method" for this case (see Fig. 6.12).

Fig. 6.23 shows the stability properties for the two subsystems. The run-up
response obtained for fh from the stability test is acceptable. Note, however,
that for ill = 10 the saturation [Uhi, Ula] in the inner loop is also encountered
in the second trajectory part, i. e. both saturations are active, and the separa­
tion into two subsystems with one saturation each (as has been assumed for
the stability test) is no longer valid. But this can be attained by reducing ill
to "-' 6.
Performance is again measured by the settling time to lui < 0.05

2.75
6.0

2.75
10.0

Min. time

tE - to [s] 2.25 2.50 2.0

To summarize: The "nested loops" method produces a simple structure, which
is not difficult to implement. However, both the transient response and the
stability test are not very transparent in the general case, but are better
accessible in the special case of sufficiently low bandwidth ill. Performance
seems to be good. Note that this is also a useful concept for pre-stabilizing
plants with unstable poles.
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6.9 First-order Dynamic Antiwindup Feedback

6.9.1 The Design Procedure

This method has been proposed by Peter and his colleagues as a solution to
the stability problems encountered in his case in section 6.2. Their basic idea
IS

to transplant the idea of control error conditioning awf to reference con­
ditioning awf and from the case with integral action to the case without
integral action,
to stabilize the control system by inserting a dynamic block Ga (s) in the
awf loop,
where Ga(s) is always a unity gain first-order filter with time constant Ta,
and to use both ka and Ta as additional design parameters,
thereby deforming the Nyquist contour of the linear subsystem, such that
it stays outside a cone of say 60° from the negative real axis,
where appropriate values for ka and Ta have to be determined iteratively
(by systematic variation and inspection of the resulting shape),
but no indications are furnished on how to do this search systematically.

Fig. 6.24 shows the structure of the control loop.

IL----------------------1Jl,..I----­
L---------------------lJ'"'-I-----J
L-----------------------jJ'"'-I+-----

Fig. 6.24. The control system with dynamic awf, parameters ka , Ta

This design procedure is now applied to Peter's case, Sect. 6.2,
where p(s) = (sT + 1)3, T = 1, and with {lp = 16; see Fig. 6.2 (bottom).

Fig. 6.25 shows the result, where ka has already been searched and found
(at ka := 30), and where Ta is still to be selected (three values are entered).
This seems to suggest that Ta := T may be a good first choice.
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Looking at the bottom row plot reveals that the run-up response consists
of two distinct phases. The second one is an approach to the final steady state,
which seems to be formed by the response of Ga(s) and its time constant Ta.
And the first phase seems to be a nonlinear approach to the second phase
trajectory. By further fine tuning of ka , Ta from the values used in the center
row plot, the second phase may be reduced to near zero; in other words, a
near-minimum time response can be obtained.

In summary, this procedure is not very transparent, it is strongly tied to
the specific plant, and the results are not that convincing. We shall try to
improve on this now.
The first step will be discussion of stability properties, which has been very
helpful so far to channel the parameter variations. Then the benchmark cases
of the double- and triple-open-integrator chain are investigated in the graphic
stability test and corresponding transient response. This will finally yield a
more general design procedure for such a first-order dynamic awf, and show
its limitations more clearly. And this will motivate the next following design
method; Sect. 6.10.

6.9.2 Stability Analysis

Again, the general result of Chapter 2 applies.

For the linear subsystem recall:

(6.61)

where R2 is the part of the controller transfer function contained within the
awf loop. By inspection of Fig. 6.24

(6.62)

Then, using the continuous approximation, i. e. considering the dominant dy­
namics of the plant and a very short sampling time Ts :

1
F + 1 = (1 + kaGa) 1+ RG

sTa + 1+ ka (sT)n p + ... + a2(sT) + al
sTa + 1 (sT)n p + ... + (a2 + k2)(sT) + (al + kI)

ka + 1 sItt- + 1 (sT)n p + ... + a2(sT) + al

al + k l sTa + 1 eh + 1r p
(6.63)

For the nonlinear subsystem consider the awf loop transfer function from
Fig. 6.24 in continuous form
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ea(s)
-(-) = (a1 + kt)
r1 s

a1 + k1
ea = 1 + k

a
r1 := eamax

that is
L1u L1u

L1max + 1 = L1 L1
Ulinmax - U eamax

(6.64)

(6.65)

For the graphic test, again scaling is applied to both Eq. 6.63 and 6.65:

(F + 1) = sk + 1 (sT)n p + ... + a2(sT) + a1
se sTa + 1 Cb + 1tp

and

sk+ 1

sTa + 1
L1u

(L1max + l)se = -
r1

p(s)

(6.66)

Observe that the second term in (F + l)se is the same as for the system
without dynamic awf.
And the first term from the dynamic awf loop is a low-pass filter, as k a > o. It
therefore re-shapes the original Nyquist contour in the favorable direction for
stability. But obviously the range of deformation is restricted, due to admitting
only first-order blocks Ga.
And the position of the straight line is the same as without dynamic awf. So
the plots can be drawn in the same window for easy comparison.

Compensating awf Gain

Now consider the special case for k~ as follows:

Ta 1
-

k~ + 1· Sl
yielding k~ := SlTa - 1 (6.67)

Then the numerator contribution of the awf loop cancels with one of the
closed-loop pole factors, and

L1u
and (L1max + l)se = ­

r1
(6.68)

Consider further Peter' case, where p(s) = (sT + 1)3.
If then Ta := T is selected, the denominator contribution of the awf loop

(sTa + 1) cancels with one factor of p(s), and

(sT + 1)np -1 _ (sT + 1)2 L1u
(F+1)se = n -1 - 2; while (L1max +1)se = - (6.69)

(-h + 1) p (-h + 1) r1
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which is equivalent to the case N = 2 with a p+ controller (and no awf).
So this amounts to a reduction of equivalent system order by one, for instance
from N = 3 of the original system to N = 2 for the system with dynamic
awf, if ka and Ta have been selected as just prescribed. This reduction of N
markedly improves the stability properties; see the stability charts in Figures
6.8 to 6.10.

Note that such cancelation requires of p(s) to contain at least one such
term (sT + 1); the rest of p(s) may be arbitrary.

Note, further, that the integrators associated to the canceling zero and
pole are not physically the same. So there may be unwanted transient effects
due to non equal initial conditions, such as shown in [47].

Deadbeat awf Gain

In the continuous approximation this would lead to

k~ ---7 00 z. e. (6.70)

Then there is no such cancelation as above, and

1 p(s)
(F+1)sc= sTa +1 (-!J+1rp and (6.71)

If, again, Peter's case (sT + 1)3 is considered and if also Ta := T is selected,
then

while

(sT + 1)2 1

(-h + 1)2 (-h + 1)

(6.72)

which is equivalent to the case of N = 2 with an I(aw)-P+ controller and
high-gain awf.
In other words, the favorable phase shift on the Nyquist contour is even
stronger, and the stability properties will improve further.

For the discrete-time implementation, k~ has an upper limit at the dead­
beat response of the awf loop. This requires a unity open awf loop gain in Fig.
6.24:

( , )Ts k' = Ta _ 1 ()1:= kadb + 1 T
a

---7 adb T
s

6.73

However, using such a high gain will have an adverse effect if high-frequency
measurement disturbances are present (they always are in real plants). So it is
recommended to use the lower compensating value, and accept the somewhat
reduced stability properties.
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6.9.3 Checking Peter's Method

The design procedure shall now be checked by simulations and the corre­
sponding stability test plots for the double- and triple-open-integrator chain
plants.

The Case p(s)
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Fig. 6.26. Plant: p(s) = (ST)2, P+-control, Ta = Tl:
(top) ka = 0; (bottom) ka = k:
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The stability analysis for the case without dynamic awf yields:

(ST)2 2 [ ?i]2. L1u(F + l)se = 2 = (SlT) -s-- ; whIle (L1max + l)se = -
(?i + 1) n + 1 TI

(6.74)
and with dynamic awf, letting Ta := T, and with compensating awf gain ka :

(F + 1)se = (sT)
2

?i + 1 = (SlT) 2 [ ?i ] 2 ?i + 1
(?i + 1) 2 sT + 1 ?i + 1 sT + 1

(6.75)

(6.76)

where the value for (L1max + l)se is the same.

As SlT » 1, the last multiplicative factor in Eq. 6.75 is a low pass, which
reshapes the Nyquist contour in the favorable direction for stability.
From Fig. 6.26 this effect is considerable, and sufficient for practical purposes.
There is no need to revert to deadbeat awf gain.

Exercise
Investigate the effect of varying Ta .

The case p(s) = (ST)3

The stability analysis for the case without dynamic awf yields:

3 [ ..§... ] 3 L1u(F + l)se = (SlT) ~ ; while (L1max + l)se = -
n + 1 TI

and with dynamic awf, setting Ta := T, and with compensating awf gain
ka = k~;

(F + l)se = (SlT)3 [ s?i ] 3 ?i + 1
n + 1 sT+ 1

or with deadbeat awf gain

(F + l)se -+ (SlT)3 [s?i]3 1
n + 1 sT+ 1

(6.77)

(6.78)

with the same value of (L1max + l)se for both cases of ka.
Again, the last multiplicative factor in Eq. 6.77 is a low pass, which reshapes
the Nyquist contour in the favorable direction for stability. Now, two values
of closed-loop bandwidth Sl are considered.
In Fig. 6.27 Sl := 2.5 is chosen such that the transient response without
dynamic awf is oscillatory, but still converging. Then, the reshaping effect is
sufficient to yield a response within specifications.
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For Fig. 6.28 (Sl = 5.0) this effect is not sufficient any more; ka has to be
increased to the deadbeat value (Eq. 6.78).

If Sl needs to be even higher from linear design specifications, then the
procedure fails to achieve a stable response. This is because the reshaping
capability of the first-order filter Ga is not sufficient for the shape of (F + 1)
produced by such high SlT values.

This weakness will be addressed with the following design method.
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6.10 Trajectory Generators with Antiwindup Feedback

Observe that the main cause for the insufficient stability properties (and rate
of convergence) is the large initial "overload" of .dulin",ax versus .duhi, where
.dulin",ax ~ rl (S7T)n p is generated by the large setpoint step rl with its near­
infinite slope.
One work-around to reduce .dulin",ax by reducing flT has already been inves­
tigated above.

Here, the idea is to generate a reference trajectory rd 1 (t) from the reference
step rl by an appropriate filter, which produces less "overload" on L1ulin",ax'
but does not lengthen the settling time unduly, and also leads to el = O.
The filter shall be denoted as a "trajectory generator" , or TG for short.
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The design procedure is given first. It leads to a suitable controller struc­
ture. Then the stability properties are investigated, confirming the designed
structure and yielding the parameter values. And the performance is checked
by simulations on the triple-open-integrator chain plant.

6.10.1 The Design Procedure

The plant shall be given in a state space representation of control canonical
form, such as derived directly from the transfer function representation of
(dominant) degree np ' All state variables (x j h, j = 1 ... np , are directly
accessible for feedback.

The controller shall be of P+-form as above, and its gains
(kjh, j = 1 ... np , determined by pole assignment: (8 + Sld np = O.

The order of the TG shall be equal to n p ' This will produce for each state
variable (x j h, j = 1 ... np , of the plant one state variable (x j h, j =
1 ... np , in the TG, which then serves as its reference time function
(rd}j(t) , j = 1 ... np '

The reference trajectory rd(t) is the vector of these individual time func­
tions.

It is best to duplicate the plant model in the TG. Then the reference
variables from the filter correspond one-to-one to the plant variables, and
no additional scaling factors, etc. need to be introduced, i.e.
rd(t) := X2(t).
Then this plant model is augmented with its own P+-state feedback with
gains kh , j = 1 ... n p , such that its poles are assigned to (8 + Sl2)np = 0,
where Sl2T is the TG design parameter. See to it that the steady state
gain of the TG is unity.

Note that Sl2T may be selected very low, such that the plant with its state
feedback control can follow the generated trajectory without its control
variable u(t) ever saturating. This design strategy may be in order for
some practical cases, but it is trivial, and shall not be investigated further.

Here, Sl2T shall be chosen such that u(t) will transiently saturate. This will
reduce the settling time. A typical target response may be near minimum­
time, such as found above in the de-tuning approach.
Then the windup error ea(t) shall be injected by an awf into the TG, as
shown in Fig. 6.29. This introduces one additional design parameter ka ,

which is to be determined.

An alternative is a structure with separate awf paths to each integrator in
the TG. But it is more complex and will not be considered further here.
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<It---t+--+l

Fig. 6.29. Control Structure:
(lower left) TG with awf ka , p+-feedback, S?2;
(lower right) plant: p(s) = (sT)3, (al = a2 = a3 = 0), P+-control, S?l

Fig. 6.28 also illustrates the main feature of the TG design method. It al­
lows one to separate the reference response ("servo" response) with dynamics
according to [h from the disturbance response ("regulator" response) with
dynamics determined by [21, and where [21 » [22 is feasible without deterio­
rating stability properties. This shall be shown next.

6.10.2 Stability Properties

Linear Subsystem

Owing to the assumptions on the awf structure in Fig. 6.29, the main result
of Chapter 2 applies here as well.

with G(s) = pts)

where according to the design procedure, item 5, the TG incorporates the
plant G(s), i.e. contains p(s) as the denominator of the "plant" Gg(s) with
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Pg(s) := pes)

to which is added the TG state feedback g(s). Then with Fig. 6.29

1
C(s) := (sT)np+ anp(sT)np-l + ... a2(sT) + al

1 1
Ca(s) = Pg(s) + g(s) .- pes) + g(s)

1
(sT)np+ (anp + gnp)(sT)np-l + ... + (a2 + g2)(sT) + (al + gt}

R2(s) = kn)sTtp- l + ... + k2(sT) + kl
Rl(s) = 1

and with the awf design parameter ka to be determined.
Then

(sT)n p+ ... + (kl + at}
(sT)np+ (sT)np-l(kaknp_l + anp-l + gnp-I) + ... + (kakl + al + gt}
x---'----------,-::---,----,-::----,---"---,------'-------'-

(sT)n p+ ... + (al + gl)
(sT)np+ ... + al
(s+!tlP

(sT)np+ (sT)np-1(kakn -1 + an -1 + gnp-I) + ... + (kakl + al + gI)X p p

(S + !t2 )np

and then with dnp - j being the binomial coefficients for degree np

(sT)n p+ ... + al
F + 1 = --'---7------;---

[s + !tl]np

snp+ (dnp_t}snp-l!tl [ka+ U~~)] + ... + !t~P [ka+ U~~) n
p
]

x--------,-----=---,-------'--~"------~---'---'---=­
snp + (dnp_I)snp-l!tl + ... + !t~P

(6.79)

This strongly suggests setting ka := 1 as a design rule

If, furthermore, !t2/!tl -+ 0,
then the coefficients of the numerator and denominator polynomial of the
second term in Eq. 6.79 tend to the same values, and

which defines the asymptotic shape F2 + 1.

(sT)n p+ ... + al
(s + !t2 )np (6.80)
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In other words, the Nyquist contour now is dominated by the choice of [22T

for the TG, and the influence of the linear range closed-loop bandwidth
[21 tends to zero. This documents the separation effect of "servo" and
"regulator" responses mentioned above.
However, in usual design situations 0 < [22/[21 < 1.
Then the second term in Eq. 6.79 will be a lead-lag element, as the numera­
tor coefficients are larger than the corresponding denominator coefficients.
This will produce in the relevant w-region a deformation of the contour of
F2 (jw) + 1 to the left, and thus adverse to the stability properties.
Equations 6.79 and 6.80 show the strength of this method. By designing
the TG as prescribed in the procedure, one is able to replace the Nyquist
contour for [21 by one with a reduced [22, and thus much better nonlin­
ear stability properties. This is clearly more effective than reshaping the
Nyquist contour by one first-order filter only.
And [22 can be directly taken over from the "de-tuning" method.
Note that by admitting individual awf gains (ka)j, j = 1, ... n p , instead
of a common one as in Fig. 6.29, an exact compensation could also be
attained for the usual design situation 0 < [22/[21. However, the examples
in Section 6.10.3 indicate that the improvement in stability properties is
too small to merit the additional complication of the structure.

The Nonlinear Subsystem

Consider the system Fig. 6.29 at steady state with u forced to zero by the run­
up enabling switch, but with the setpoint already set to its operating value
r1(:= 1.0). Then for the TG to have unity gain, the reference input r must be
weighted by (a1 +gl). The awf loop with the TG will reach its equilibrium ea
at

r1 (a1 + gl) = kaea where ea = LlUlin - LlUhi (6.81)

Then inserting ka := 1 yields for the position of the straight line (while as­
suming that this steady state also produces ea",ax)

(6.82)

The Stability Test

With

then
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Note the similarities to the previous results for the design by "de-tuning" and
Peter's method.

6.10.3 Checking the Transient Response

The cases of open integrator chains from above shall be used again, see Fig.
6.30 for N = 2 and Fig. 6.31 for N = 3.
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Fig. 6.30. Response of the system in Fig. 6.29 with p(s) = (sT?, T = 1,
and with a l = 10.0 and a2 = 3.4
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2.0
3.175

Min. time
(sTY 10 3.4 2.3
(sT)3 5 1.9 5.3

Considering performance, the results for the run-up settling time
to lu(t)1 < 0.05, V t > tE are as follows:

Plantp(s) 5?l 5?2 tE-tO [s]

The second-order case performs well.
But there is a considerable loss of performance for the third-order case. This
is due to the slow trailer generated by the TG with its low 5?2. Here, some
re-tuning (increasing 5?2 further from its stability-based design value) may
be tried, but will not have a significant impact.

Discussion

The results from the simulations nicely confirm the results from the "design
for stability" process.

Applying the on-axis criterion leads to a conservative solution, but not
very much so. A near-minimum transient is obtained by using the off-axis
criterion and by inserting 5?2 such that ~F(jw) + l)lmin ~ 2 i1u/rl.

If rl were reduced, but with i1ulin still evolving into the awf region, then
the TG with awf will produce in its linear final phase a slow trajectory,
which follows from the low value of 5?2 (see Fig. 6.31 for t 2: 4.0).
But the stability analysis indicates that (rl(5?2T)np/i1u) should be
constant as a first approximation. This strongly suggests a simple "gain
scheduling" type of adaptation of 5?2 as function of the sizes of rl and
i1u, such as proposed in [46].

Exercise
- Develop the TG design method further to incorporate an I(aw) action.
- Check the design procedure for other plants, for instance
in Peter's case with a3 = 3, a2 = 3, al = 1.
- How do the design methods "dynamic awf" and "TG with awf" relate
to the standard "setpoint rampers" from process control?

To summarize: The "Trajectory Generator with awf" -design has a transparent
structure, which makes it easy to implement. Both transient response and
stability analysis are straightforward, as there is strictly one nonlinearity, the
u saturation. This also holds for the design of the control parameters.
Its main weakness seems to be the comparatively slow "finals" trajectory. This
is due to the low 5?2 value needed for stability, and which is not suppressed or
switched out as in some other related methods; see Sect. 6.8, 6.14, and 6.15.
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6.11 The "Continued States" Concept

This method was developed on a quite different track, [49]. We shall show
that it is closely related to the TG method from the previous section.
The starting point was that the state variables in the plant Gp(s) behave
differently in the control saturated regime than what the linear state feedback
controller would expect. To alleviate this, the method installs a parallel model
Gm(s) driven by the awf error -ea as its input; see Fig. 6.32.

+,. xJ
I .. ------------

I , +f
I

,

-o-0-p,

*
I, ,

/I_lill /I G-p (s)

Fig. 6.32. The "continued states" idea

Assume Gm = Gp . Then for each state variable Xjp in Gp , a corresponding
one Xj", is added by the model to the system.

Assume further adding corresponding state variables

Finally, assume both systems at rest at the origin, i.e. all initial conditions in
Gp and Gm at zero.

that is, U = Ulin V t > 0, and - ea = 0, i.e. the additional states Xj",

stay at zero, and

Xj = Xjp + 0 V j and

In the saturating regime of u, the corresponding state variables Xj", (t)
run off zero, and supplement the part of x jp (t) which is intuitively "missing" ,
as perceived from the linear control law.

But note that along the upper control constraint, -ea(t) is always positive,
i.e. it drives the states Xj", outward. Any inward movement, i.e. any decay of
the states Xj"" must therefore be caused by
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either Ulin running into the opposite saturation, i.e. -ea(t) being negative,
or by -ea(t) still being positive and decaying to zero, in combination with
negative internal feedback in Gm(s).

The first situation is associated with the "bang-bang" type of response for
second or higher order plants with very large inputs. And the second situation
is what will happen with -ea(t) for any system transient as it returns to the
linear control regime around the final steady state.

So Gm must be Hurwitz; and, from Gm := Gp , the method is strictly
applicable only to plants which are Hurwitz. This is a severe restriction for
practical applications. Fig. 6.33 visualizes the structure.

r----------------------------------------------------- --------.-.- .. ~,,,,,,,,,_. -- ...
II_Ill

II-P
--T-'­,

I,,,,,

Fig. 6.33. The "continued states" method: the system structure

The work-around for non-Hurwitz plants is now to resort to an approxi­
mation, where Gm consists of an exact replica of Gp , but with an additional
state feedback with gains gj, V j , such as to obtain a Hurwitz G~od. Thus
the states Xjm will not be a strict continuation in the above sense, but an
approximative one.

This may be carried one step further, by not only using the gj to ensure
that Gm is Hurwitz, but to actively shape the dynamics of Gm , such that
a desired overall system response results. Note that, in the initial "continu­
ation of states" design method, the question of desired system response or
performance has not been addressed. It only comes in now.

Fig. 6.34 shows the modified structure.
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Fig. 6.34. The "continued states" method: the system structure with active feed­
back in Gm , i.e. Gm # Gp

As a next step, the system Fig. 6.34 is re-drawn into Fig. 6.35. Note the
change of signs.

1-· - - - - - - - - - - - - - _. - - - - _. - - - - --..,

IIr-,--'-,Jit,--II*
, G_1tI (s)
,

+
X_Ill

£,III (0) +

Fig. 6.35. The "continued states" method: the system structure with active feed­
back in Gm , redrawn
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But this is now the structure from the TG method, with one difference:
initial conditions appear instead of the reference input Tl to the TG. But this
is very minor for two reasons.
First, that setpoint step response from a given initial steady state up to the
final steady state may always be generated as an initial conditions response
with appropriately shifted initial conditions. And secondly, the stability-based
design of the TG parameters gj is in fact for the initial conditions response.

Also note the assumption that Gm := Gp , which has been used there as
well, and the assumption that the corresponding initial conditions in Gm

must be the same as in Gp • Otherwise the "continuation of states" concept will
not even hold at the first instant. And if the corresponding initial conditions
are not the same, then a fast equilibration transient will be generated, e.g.
see [45].

On the other hand, the gj of the "continuation of states" can be designed
in a transparent way using the stability-based TG design.

To summarize: Starting from a very different point, the "continued states"
concept leads to a control structure that is very nearly the same as obtained
by the TG and awf method, and therefore does not bring new elements to the
design. But it clarifies assumptions.
By comparative characteristics, such as complexity of structure, tuning, sta­
bility properties and performance, both methods score equally well.

6.12 The Group of "Add-on Output Constraints"

Generally speaking, the dynamic problems of large overshoot or stability prob­
lems are caused by state variables within the plant running off their equilib­
rium values, and not being brought back in time due to the saturation on u
("plant windup").

This suggests the next design approach. It considers such excessive buildup
of state variables as a violation of operational constraints on these state vari­
ables, i. e. as additional output constraints. They have no direct physical mean­
ing, such as was the case in Chapters 3 and 4, but they only help to improve
the dynamic properties of the main control loop. Their contribution is to con­
strain the initial conditions for the finals approach phase of the R 1 loop with
its u saturations, as it has been discussed at length in Chapter 4.

More precisely, the constraining action is only needed in some finite time
interval before the control is transferred to R1 for the "finals" phase. The
length of this time interval is what is needed by the constraint feedback loop
(R2 loop) to attain those transfer conditions from its own earlier initial con­
ditions, where it has started from. And this is determined by the R2-loop
bandwidth, and also its own control saturations effects.
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Further backwards in time the constraining feedback should not restrict u
further, as this increases the overall settling time.

Clearly this leads to constraint setpoints r2hi' r2l o that are no longer
constant, but mutate into functions of the actual state x(t), in the sense that
they increase with the distance from the origin, but still end up in the region
of appropriate transfer conditions to R1-SAT-control around the origin.
However, such state-dependent constraint setpoints add to the complexity of
the control structure and of the design process. This suggests proceeding by
successive approximations: start with the version having constant setpoints,
and then extend it to non-constant setpoints wherever the better performance
merits the additional complexity.

Considering implementation of such add-on output constraints, two struc­
tures were discussed in Chapter 3, the cascade-limiter and the selector meth­
ods. The cascade-limiter method is related to the "nested loop" method, and
shall be investigated first. Then two structures with Max-Min-selectors are
looked into. Note that the Max-Min-selectors may be replaced directly by the
equivalent deadspan nonlinear-adding element.
As will be seen, this may lead to systems with multiple nonlinearities. Thus,
the structure gets more complex than in Chapter 4 for the general case of
dominant plant order np , and the stability test tends to be more complex as
well. However, a conservative approximation shall be presented, which is still
manageable. As plant models, the open integrator chains of order n p = 2 and
n p = 3 shall be used. This makes the basic idea, the design procedure and the
control structure more transparent than if the most general case of G(s) were
considered.

Exercise
Consider the extension to the general case.

6.13 The Cascade Limiter Method

6.13.1 Problem Specification

As stated above, the plant model is assumed to be

1
G(s) = (sT)n p ; np = 3 (6.84)

with T as a suitably selected time scaling factor. The corresponding state
space representation is then in control canonical form. Note that for the more
general case it is recommended to use this assumption as well.

The linear controller is designed by state feedback as in the preceding
sections, yielding the feedback gains k j . The closed-loop bandwidth is set to
rh = 5 as above, which produces an unstable response for rl = 1.0.
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But then the structure is redrawn in a cascaded form; see Fig. 6.36. This is a
linear transformation, yielding as gains hj in the nested loops (by inspection
of Fig. 6.36)

(6.85)

Note that this uses the assumption on the special form of G(s).

And let the control saturation be symmetrical to the final equilibrium value

(6.86)

6.13.2 The Design Procedure

This is developed by induction.

The case N = 1 has been discussed in Chapter 2, with the controller being
of P type (no I(aw) action). There is no such plant internal state which can
wind up, and no action is required.

The case N = 2 has been discussed in Chapter 4 in the phase plane, with
Xl proportional to the controlled variable YI. Now there is one such plant
internal state variable X2, which can wind up. As

the "plant windup" is an excessive buildup of approach speed. It must there­
fore be constrained such that it may be reduced to zero in time by the satu­
rated effect of braking.
This has been discussed in detail in Chapter 4, see Eq. 4.9, yielding speed
constraint setpoints r2hi' rL as upper limits, such that the subsequent final
approach does not overshoot unduly. These values may be adopted directly
as saturation settings on r2.

Note that due to the assumption in Eq. 6.86 and on G(s) the constraint set­
points are symmetrical as well and the pair shall be denoted as r2SAT'

In practical applications, a safety factor f3 should be inserted for robustness

r2SAT := f3 r~SAT with 0 « f3 < 1

The case N = 3 is depicted in Fig. 6.36.
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Fig. 6.36. The "cascade limiter" control system with the third-order plant

It is built around the N = 2 structure as the inner subsystem, where
indices in the innermost loop have been incremented by one:

To this is added a third integrator in the plant structure for Xl, and an addi­
tional proportional feedback with gain hI and output Ul, and a symmetrical
setpoint saturation on it, to T2sAT.

6.13.3 Transient Response

This is shown in Fig. 6.37, where T3sAT = 0.5 has been taken from Chapter
4, and with two values of T2sAT to illustrate the effect of its tuning.

Clearly, the design parameter T2sAT should be made as large as possible to
shorten the run-up transient, but from Fig. 6.37 there is an upper threshold
to avoid overshooting in the "finals" approach phase. The parameter T3sAT

is of minor influence, but if it is significantly reduced (such as to avoid the
overshoot on X2 in the initial phase of the run-up), then the movement of U

gets more constrained, and T2sAT must be reduced as well.
Suitable numerical values would be T3sAT = 0.30 --+ T2sAT = 0.24.
In Fig. 6.37 this produces a run-up settling time to lu(t)1 < 0.05 V t 2 tE

of tE -to = 4.8 s, where the minimum-time would be 3.175 s, i.e. an increase
to approximately 150%.



6.13 The Cascade Limiter Method 339

Note also that this is caused by an extended phase in the run-up transient,
where u is not at its limits, but at zero. And this is due to the approach
speed constraint r2SAT being constant, and set to what is determined by the
finals approach. Such "coasting" on the trajectory will lengthen the run-up
time linearly with increasing size of rl.

This is clearly suboptimal, and less than what is produced by the TG with
awf design. But there is the usual tradeoff with robustness.
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Fig. 6.37. Run-up and load swing responses of the "cascade limiter" control system
with the plant 1/(sT)3: (left) with T2sAT = 0.24, (right) with T2sAT = 0.30

6.13.4 Stability Analysis

As mentioned above, the system now has np saturation nonlinearities. A work­
around using one saturation element has been presented in Chapter 5 for
actuator slew and stroke limitations. It shall be extended here.

Consider first the innermost loop for X3 in Fig. 6.36. There, the control
saturations USAT are acting as slew limitations on X3. And its setpoint lim­
itations r3SAT are acting as stroke saturations. From the transients on U in
the nonlinear phases in Fig. 6.37, one infers that r3(t) will change no faster
than stepwise. Then the innermost loop may be conservatively repla~ed by a
linear one with '.

X3 1
G3 = - = --- ; where from Chapter 5

r3 ST3 + 1
T r3SAT

T3= --
USAT

(6.87)

Extending this one step outward to the X2 loop yields

G2 = X2 = 1 with
r2 ST2(ST3 + 1) + 1

(6.88)
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Considering finally the Xl loop, the saturation T2sAT is now the only nonlin­
earity in the "conservative approximation" , with index ca; see Fig. 6.38

Fig. 6.38. The "conservative approximation" system

For the stability test the main results of Chapter 2 apply

and (6.89)

Compared with the case without cascade limiters, the shape of the' Nyquist
contour will be deformed significantly in the favorable direction: for w ~ 0 it
converges to zero as sT does, i.e. along the positive imaginary axis. And this
shows stability for "almost all" TI step sizes, which covers the practical needs.
Note that the stability of the linear system with the closed-loop characteristic
polynomial s3T7273 + S2T72 + sT + hI must be checked as well. This leads
to restrictions on 73 and 72, i.e. on T3sAT and T2sAT (they may not be made
arbitrarily small).
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Fig. 6.39. Stability test with Eq. 6.89 and run-up response of the system in Fig.
6.38 with r2SAT = 0.24, r3SAT = 0.30

6.14 Selection for Approach Speed

The main drawback of the cascade limiter method is that the additional con­
straints are constants, and must be set such that the "finals" trajectory has
no perceptible overshoot. This is too time-consuming for the run-up transient
as a whole. It would be convenient to have variable constraints. And those
can be implemented very easily, if the selectors method is used instead.2

The method shall be introduced with the double-open-integrator chain plant,
where it can be visualized in the phase plane. Then it shall be generalized to
the n p > 2 case.

6.14.1 The Design Procedure

It consists of

1. replacing the cascade limiter structure in Fig. 6.36 by the nearly equivalent
"cascade of R j plus selectors" with j = 2, ... n p , as shown in Fig. 6.41,

2. where initially the setpoints of the additional constraint controller pairs
are constants, and determined as in the cascade limiter method. The tran­
sition to the "finals" approach phase yields the value for rj 10'

3. Then those setpoints are replaced by functions of the distance to the
origin.

4. A typical setup is a linear combination of the state errors

r(x) = -Q(x - x) + rio (6.90)

2 As an exercise, try to find an equivalent structure based on the cascade limiter
concept.
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with the coefficients matrix Q of appropriate dimensions. Note the sign
convention.

The design method for r(x) of Eq. 6.90 is used in "sliding mode" systems, e.g.
[10]. There, the functions must be selected such that u does not saturate during
a substantial time interval, when the system state moves along the "sliding
mode" trajectory. Note that, in such sliding mode systems, the control gains
are set very high, and "high-frequency chattering" appears on u. This is not
the case here, where the control is linear on Ulo ' .. Uhi. In other words, the
switching planes of the sliding mode system turn into corridors of finite width
along both the "sliding surface" U2 hi = 0 and U2lo = O.
From this, a last item is generated for the design procedure:

5 Select the coefficients in Q such that, along the "sliding" trajectory, u(t)
is not forced into its saturations USAT.

From Fig. 6.37 this is feasible at least for all coefficients in Q being zero, and
rio small enough (such that the finals trajectory is linear).

6.14.2 The Second-order Case G(s) = 1/{sT)2

Concerning item 3 of the design process, a possible setup for the functions
r(x) would be parabolas, such that U will not saturate while the trajectory
runs along them.
Applying item 4 produces here

r2hi = -q(xl-rd+r2hilo and r2!o = -q(xl-rd+r2lolo with q ~ 0
(6.91)

From item 5, q should be selected such that u(t) does not saturate during
an excessive time interval. In other words, the line U2hi = 0 in the phase
plane must stay to the lower left of the "finals" parabola generated for Ulo ;

see Fig. 6.40. Thus, the value of q is determined by the maximum initial
conditions arising in the specific application.

Fig. 6.40. Visualization of the design process for G = 1/(sT)2 in the phase plane
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The Control Structure

The control structure is shown in Fig. 6.41.

L- -L --jJ\.I+-_......J

L..---------------------iJ\-I+---~

Fig. 6.41. The control structure for G = 1/(sT)2

The linear controllers R 1, and R2hi = R2l0 are designed to

511 := 10 and 512 := 20 with Ts = 0.01

Transient Response

(6.92)

The simulation results are given in Fig. 6.42. There, r2hi 10 := 0.24 has been
selected, such that u(t) does not run into the saturations during the finals
trajectory (see chapter 4). This is for improved robustness.
Then three values of q2 are used. The lower limit case q2 = 0 yields constant
setpoints and corresponds to the cascade limiter method, although with lower
values for r2hi , as one would use there. The upper limit case is to select q2 = q2'

such that also during the second part of the run-up transient u saturates nearly
everywhere, and thereby generates the minimum-time approach parabolas in
the phase plane; see Fig. 6.42 (bottom left). For this benchmark case, and for
instantaneous transition of u between saturations, the numerical value is q'2ax .

And then taking into account the delayed transition in the linear corridors,
tuning yields Q2'

(6.93)
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Fig. 6.42. Responses of the control structure for G = 1/(sT)2, with T2 hi 10 := 0.24:
(left) phase portrait; (right) time response; (top) q2 = 0; (center) q2 = 0.5 q2;
(bottom) q2 = q2
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Consider now the run-up time as a measure of performance. From the
simulations, and taking the end time tE such that lu(t)1 :::; 0.05 V t 2: tE,

q2N2 Min. time
tE - to [s] 2.0

There is a substantial gain by increasing q2 from zero while still at small
values, but it diminishes for q2 approaching q2' In other words, as a design
rule-of-thumb, not much will be lost in run-up time for q2/q2 > 0.5, but
robustness will improve.

Stability Test

The procedure of partitioning the phase plane from Chapter 4 is used.
The "finals" approach under R 1-control is linear (by choosing r2hi 10 appropri­
ately low). Then, for initial conditions close enough to the "sliding surface"
U2hi = 0, the results of Chapter 3 apply.

For the linear subsystem:

F + 1 = 1+ R2G2
; where

1 + R1G1

R G - k ~ k _1__ (ST)2 + k22 (sT) + q2 k22
1+ 2 2 - 1+ 22 sT + q2 22 (sT) 2 - (sT)2

i.e.

F
(sT)2 (sT)2 + k22ST + q2 k22+ 1 = ..,.-----:-::----'-----'---- -"'---'---.,.--..,..."...---

(ST)2 + k2sT + k1 (ST)2

(ST)2 + k22 ST + q2k22
(sT)2 + k2sT + k1

As q2 « k22 , the numerator can be approximated by

(ST)2 + k22 (sT) + q2k22 ::::; (sT)2 + (k22 + q2)(sT) + q2 k22

= (sT + k22 ) (sT + q2)

F
_. [22T A2 + 1 sT + q2

that is + 1 N -- ---::-----==-
([21 T)2 Ai + 1 Ai + 1

Note that

(6.94)

(6.95)

as from the structure q2 2: O.

That is, the Nyquist contour evolves in the right half plane, except at
w -+ 0 and for q2 = O. In other words, the stability properties improve with
increasing q2 values. The low limit is for q2 = 0, i.e. for the cascade limiter
method. This is intuitively clear, as the constraints on u(t) get weaker.
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And for the nonlinear subsystem, again from Chapter 3:

r2hi D2T
rl (D1T)2

(6.96)

That is, the position of the straight line for the test is independent of q2, and
the same as for q2 = O.

Then, by extending the initial conditions laterally away from the sliding
surfaces, the active system part is the R 2-SAT control, with

(6.97)

sT

sT + k22
sT

sT

F+l

(ST)2

and with

and for the nonlinear part

USAT
(6.98)

The Nyquist contour starts from the origin as (ST)2 does, which indicates local
stability only. However, as q2 « k22 , the Nyquist contour will not proceed far
into the left-hand plane, such that the radius of attraction will be sufficiently
large, and covers what is needed for most applications.

Fig. 6.43 shows the Nyquist contours for the three cases of Fig. 6.42.
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Fig. 6.43. The Nyquist contours for the partitioned stability test:
(left) for trajectories along the sliding surface to the origin; (right) for trajectories
from the initial conditions to the sliding surface; where * indicates .dmax + 1 for
Tl = 1.0
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To summarize: for q2/q2 -t 1 the stability properties of the trajectories
from the initial conditions to the sliding surface turn out to be more critical
than for the rest, from near to the sliding surface up to the final equilibrium.
Note that this property is also due to the particular choice for the value of

r2hi 10'

6.14.3 The Third-order Case G(s) = 1/(sT)3

First, the approach from Sect. 6.14.2 will be used here.
The initial step is again to select the value of r2hi 10' such that the "finals"
trajectory will be linear, i.e. u(t) does not meet its saturation. This again will
provide nice stability properties for all trajectories originating near the sliding
surfaces, as for 0 < w/!?l « 1 the Nyquist contour will have the same typical
shape as in Fig. 6.43 (left).

Exercise
Show this.

The second step is to look at the lateral approach to the sliding surface. It
now has to be done with a double-open-integrator chain plant, in combination
with the saturation USAT. As demonstrated in previous chapters, this tends to
overshooting for large !?2 entries (which one needs to produce an acceptable
tracking quality along the sliding surface), and a large initial control error
e2(0) (that is, a large lateral offset from the sliding surface).
Starting from the initial equilibrium at Xl = -rl, X2 = 0, the initial control
error is

e2(0) = r2hi (0) - X2(0) = (q2 rl + r2hi 10) - 0 (6.99)

In other words, avoiding overshoots of X2(t) relative to the sliding surface by
q2 alone will result in a quite restrictive upper bound on q2. But this will slow
down the run-up unduly, i.e. result in poor performance.
As has been shown above, the overshoot may also be reduced by constraining
the approach speed to the sliding surface, i.e. by introducing an additional
constraint pair on X3. The reference values r3SAT can be set constant, see Fig.
6.44, or optionally increasing with le21.

The Control Structure

The control structure is shown in Fig. 6.44 (top).
The linear controllers R l, and R2hi = R2l0 , R3hi = R3l0 are designed to

(6.100)

Transient Responses

Consider Fig. 6.44 (center).
First r2hi 10 is tuned manually to .- 0.15. This produces a linear "finals"
trajectory.
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Then q2 is increased from zero to shorten the run-up time as much as possi­
ble, and at the same time r3SAT is lowered to avoid excessive overshoot on X2(t)
at the sliding surface. A reasonable combination is q2 = 0.36, r3SAT = 0.30.
A second combination, q2 = 0.54, r3SAT = 0.45, is used in Fig. 6.44 (bottom),
to shorten the run-up time further. But u(t) saturates much longer, and ro­
bustness is reduced.
Run-up times to lui:::; 0.,10 are summarized in the following table.

tE - to [s]
Min. time
3.175

Concerning stability, the structure now has three nonlinear additive elements
in series. Therefore, the test will be more involved, and shall not be followed
up here.

Exercise
Investigate the stability properties.

To summarize: The structural complexity is much higher than for the
second-order case. This makes tuning and stability testing more involved.
The performance is acceptable from a qualitative point of view, but note that
the main quantitative measure of performance, which is the relative increase
of settling time versus the minimum-time, is higher that for the second-order
case.

6.15 Selection for Lower-bandwidth R1-Control

Looking at the phase plane plots in Sect. 6.14 and comparing them to what
has been discussed in Chapter 4 suggests a new approach to design. The basic
idea is to reinterpret the inclined sliding surface U2hi (ed as being generated
by a second R1 controller, with less aggressive (lower-bandwidth) tuning.

6.15.1 The Design Procedure

The "second" R1 controller is denoted by R12hi .

It shall have a lower bandwidth [l12hi < ill, such that the line Ul 2hi = 0
is more inclined to the left
(note that from Chapter 4 its slope is given by ([IT)/n p ),

and an additional vertical offset Uhhi 10 > 0, such that it does not cross
the origin, as the line UI = 0 does
(this is to avoid interference of the R l2hi control with the linear RI control
for small deviations).

The same setpoint rl (t) shall be applied to both R I and Rl2hi controllers.

The same approach is applied in the opposite direction with R l2 ,with10

Ul 2 10 and [l12
lo lo

This is visualized in Fig. 6.45.
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The offsets in both directions are design parameters. They are set to the
control saturation values, i.e. U1 2 .10 := Uhi and U12 10:= Ulo ·

hl, Lo

This is an intuitive compromise to have low interference with the R 1-loop
(in the linear regime), and also to provide reasonably bounded transfer
conditions on X2, Xl from the R 12 regime to the R 1 regime.

And the design parameter slope is derived via [2 from the de-tuning
method; see below. The slopes for up and down movement may be de­
signed to different values.

u_l =0,,,,,,,,,,,,,
'-,

xj

-1-'<:c.....L_u-=_C2_10 10

\ "" ...,
, .~

... ',- uj_2_10 = 0
,,

Fig. 6.45. Visualization of the design process in the phase plane

6.15.2 Stability Properties

The last item on the design procedure list connects to the stability analysis.
Again the partitioning approach is used.

In the first phase of the run-up transient, the R 12hi controller will be
selected, as in this time window U12

hi
(t) < U1 (t), see Fig. 6.45 (this is mainly

due to [212hi < [21). And then the control saturation Ul o , Uhi is applied. In
other words the active subsystem is the R 12hi -SAT control loop.

Consider now the selector to be blocked, such that no transfer can occur.
Then the basic stability analysis from Sect. 6.4 can be performed directly.
The bandwidth [212 is a design parameter (and not fixed from the linear
specifications as [21 is). Thus, the de-tuning method from Sect. 6.7 applies,
and yields [212.

But there is the offset U12hi 10 := Uhi. For the final steady state it has to be
compensated by the nonzero controller output U1 2hi = -Uhi, which requires
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a (small) steady state control error e12hi = uhi/k12 = uhi/(fh2T)3.
Thus the R12hi -SAT control loop (while the selection for Rl is still blocked)
will stabilize the run-up transient close to the origin (at e1

2h
J Therefore,

while crossing over the (blocked) transfer conditions to R1 at time tT, the
values of the state vector x(tT) are bounded. Thus, the associated (Ulin h2hi
at tT is bounded as well to some finite range above the offset Uhi.

Now the selector is de-blocked. Then the transfer condition at time tr

(Ulinhl tT < (ulinh2hi Itr
must be such that the state vector x(tT) lies within the radius of attraction
for the R1-SAT loop. This puts an upper bound on the ratio fh 2 /fh.
So far, this is only a plausibility argument.

Exercise
Try to prove this.

6.15.3 Transient Response

The case of G(s) = 1/(sT)3 is considered first; see Fig. 6.46.

The structure is much less complex than the previous one for "selection for
approach speed" in Fig. 6.44.

The design is as follows:

The offsets are set to Uhi and Ula, as per the design procedure.

The bandwidth of the R1 loop is set to Sll := 5, as above.

For R12 , a first possible design target is good stability properties. So Sl12
is taken from the de-tuning method, which indicates stability with the on­
axis circle criterion for Sl = 1.575 (see Fig. 6.14 (top row)), and therefore
set Sl12 := 1.575.

A second possible design target for R12 is the shortest run-up settling time
without overshoot. Then, the value for Sl12 has to be tuned manually with
simulations, yielding Sl12 rv 1.91. In Fig. 6.14, this led to Sl rv 1.975.
In other words, the de-tuning method seems to produce a good initial value
for the second design target as well.

The performance (measured by the settling time tE to lu(t)1 < 0.05, and listed
below) is substantially improved, e.g. compared with the TG and awf method
in Sect. 6.10.

tE - to [s]
Min. time
3.175
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From the experiments, and for the first design target .(2h := 1.575, u(t) will
touch the saturations only for short time intervals, when the new loop switches
in. So a reasonable robustness can be expected. Nevertheless the increase in
run-up time versus the minimum-time trajectory is small (approximately 20
%).
Also from the experiments, and for the second design target .(212 := 1.91, the
run-up time tE-tO is quite sensitive to the choice of .(212. This is not surprising,
as u(t) runs along the saturations most of the time, and thus robustness must
be low.

6.15.4 Checking the design procedure

The case of G(s) = 1/(sT)2 shall be used, with .(21 := 10. Then for stability
by the on-axis circle criterion, .(212 := 2.75 (see Fig. 6.12).

The simulation results are given in Fig. 6.47. The settling time is tE - to ~
2.5 [s] versus tE - tOlmin = 2.0 [s].
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Fig. 6.47. Response with "Selection for lower-bandwidth R 1 control" for G =
1/{sT?,
D1 = 10, D12 = 2.75

To summarize: the "selection for weak R1-control" method scores high
regarding such comparative characteristics as complexity of structure, number
of tuning parameters, stability properties, and performance of both run-up
and load swing transients.
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6.16 Links to Model Predictive Control

6.16.1 Introduction

MPC is one of the three fundamental approaches (see Chapter 1) to the design
of control systems with input and output constraints. It is based on numerical
optimization of system trajectories rather than the analytical approach (by
the maximum principle) or the intuitive design (by antiwindup or overrides).
There are excellent books on the subject, for instance see [57, 58]. This is
also a very active research area, see the proceedings of the recent Control and
Decision Conferences (CDC), and the American Control Conferences (ACC),
etc. One of the research topics is on the relations of antiwindup and MPC.
In the following we shall focus on one particular approach ([59] and references
therein, and [60]), which has been developed quite recently, and which nicely
fits to what has been presented so far.

First, three benchmark problems are stated. Then the classic solution is
applied, with numerical trajectory optimization repeated at each sampling
instant, i.e. with moving horizon. Next the explicit form of MPC is discussed
for one of the benchmarks, and the link to the "selection for lower-bandwidth
control" method is established.
The support of Tobias Geyer and Francesco Borrelli from our laboratory is
gratefully acknowledged.

6.16.2 The Benchmarks

In order to illustrate the relations to the designs resulting from the intuitive
approach, the three main benchmark problems used so far will be investigated.

The plant shall be modelled by:
Case i, for one integrator

(6.101)

Case ii, for a double integrator chain

(6.102)

Case iii, for a triple integrator chain

(6.103)

The time constants shall be equal for simplicity, and set to T = 1 s.
They shall be known a priori with a sufficiently small tolerance, such that
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robustness need not be investigated for the moment.
The small delay D used before shall be omitted here.
Also, there shall be no high-frequency measurement disturbance present.

For the test sequence, the focus is on the run-up phase from standstill
(rl = 0) to the nominal setpoint value (rl = 1.0). However, the equivalent
set of initial conditions shall be applied

Yl(O) = -1.0, and where needed Y2(0) = Y3(0) = 0

and the transient to the origin shall be optimized.
No further small setpoint steps or load steps shall be applied.

Exercise
You may want to extend this.

For the constraints, and consistent with the current chapter, only input
saturations Ula, Uhi shall be considered. They are set symmetrical to
the final steady state value u, which is from the specification of the test
sequence

u=O ~ Ul a = -1.0; Uhi = +1.0 (6.104)

Also, there shall be no constraints on slew rate.

The controller for the small range shall be linear (to avoid chattering on
u(t) around steady state), and with time-invariant coefficients (for ease of
implementation) .

Regarding performance, the resulting trajectory shall be by design optimal
with respect to the given value function (see Sect. 6.16.3). In other words,
the value function and its entries are now the design parameters to be
selected in a suitable manner.
In addition to being optimal in the above sense, the transient shall have
at most an acceptably small overshoot (;S 2.5%) in the finals approach
phase. This is in compliance with usual applications specifications. It must
be achieved by appropriate selection of the design parameters in the value
function.

6.16.3 Classic Model Predictive Control

The Optimization Problem

The system to be controlled (the plant) is

x(t + 1) = Ax(t) + Bu(t)

and y(t) = Cx(t) (6.105)
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which describes a linear time-invariant system, in discrete-time form at time
t = kTs and t + 1 := (k + l)Ts, where x(t) E IRn, u(t) E IRm, y(t) E IRP, and
the pair (A, B) is stabilizable.
The constraints are

Ulo ::; u(t) ::; Uhi with Ulo ::; Uhi as m-dimensional vector

and Ylo::; y(t) ::; Yhi with Ylo::; Yhi as p-dimensional vector (6.106)

The optimization is specified as follows. It is assumed that all components
of the state vector x at time t are measured. Then the value function is taken
as the quadratic cost functional with weights Q on the sequence of sampled
transient states x from t up to t + Ny, weights P on the terminal state at
t + Ny, and weights R on the control input sequence U over the same time
window as x:

Ny-l

J(U, x(t)) = x~+NyltPXt+Nylt + L [X~+NYltQXt+NYlt +U~+kRUtH]
k=O

(6.107)
where XtHlt denotes the predicted state vector at time t+k, which is produced
by applying the input sequence

U = [Ut, ... ,UtH-l] (6.108)

to the plant model Eq. 6.105. For the weights it is assumed that

Q,P

R

and (JQ,A)

is symmetric and semi-definite or definite

is symmetric and definite

is detectable. (6.109)

The optimization problem then is to minimize the value of J by using the
control inputs Uj in the input sequence U of Eq. 6.108 as N u independent
optimization variables, subject to the constraints

Ylo ::; Yt+klt ::; Yhi,

Ulo ::; Ut+k ::; Uhi,

k = 1"" ,Nc

k = 0,," ,Nc

and

Xtlt = x(t)

XtH+llt = AXt+k + BUtH, k 2: 0
Yt+klt = CXt+klt, k 2: 0

(6.110)

where Ny, N u , N c are the prediction horizons for the output Y, the input u,
and the constraints c, with N u ::; Ny and N c ::; Ny - 1.

This is the full problem statement for both input and output constraints.
In this section, only the input constraints shall be considered, and the high
and low output constraints shall be set to +00 and -00 respectively.
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The "Finals" Approach

In this setting, the control is specified to end up as a linear state feedback
control law in the linear "finals" approach to the origin. Therefore the gain
matrix K in Eq. 6.110 is set to the linear quadratic controller with infinite time
horizon (to obtain the time-invariant gains specified above), using weights Q L,

RL, and with no terminal weights, PL = O.

Set first r = 0.01.
Furthermore, to enable a direct comparison with the intuitive design from
above, the weights in QL are selected such that the same feedback gains and
the same closed-loop bandwidth n result. This leads to the following numerical
values for the diagonal entries in QL (the off-diagonal elements are all set to
zero):
case i: single integrator plant

2.5
0.0625

case ii: double integrator plant

10 7.071
100 25
2 1

5 3.80 3.40 2.75
6.25 2.08525 1.33625 0.5719
0.5 0.28875 0.23120 0.15125

case iii: triple integrator plant

n 5 3.25 2.93 2.5 2.0 1.575
qll 156.25 11.785 6.25 2.4413 0.64 0.1525
q22 18.75 3.345 2.2 1.175 0.48 0.1844
q33 0.75 0.3175 0.25625 0.1875 0.12 0.0750

The Nonlinear Phase of the Transient

Now there is no longer a closed-form solution and the optimization has to
be performed numerically. This is done by re-formulating the problem into a
Quadratic Program (QP).

By inserting

into Eq. 6.110

k-l
k ,,",'

Xt+klt = A x(t) + L.J AJ BUt+k-l-j

j=O

(6.111)

1 1
V(x(t)) = -2x'(t)Yx(t) +min-U'HU +x'(t)FU

u 2

subject to GU:::; W + Ex(t) (6.112)
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where U in Eq. 6.108 is the optimization vector, H is symmetrical and positive
definite, and H, F, Y, G,W, E follow from Q, R. And Y is usually removed, as
the focus is on the dependence on U.

This QP has to be solved at each time step.

Again, the weights Q, R are to be selected. Intuitively set

Q := QL; and R:= RL (6.113)

to have continuity in the energy of motion along the trajectory. In other words,
the qii reported in the tables above are adopted for the benchmarks.
For the sampling time, as in [59, 60],

Ts := 1.0 and N 2': 2 (6.114)

The prediction horizons N thus cover a sufficient part of the run-up response.
This has the advantage of low dimensions of the matrices, and a fast opti­
mization. However, the performance for disturbance suppression will be low,
due to the large delay. Therefore, here

Ts = 0.050 and N = 50 (6.115)

i.e. a prediction horizon of 2.5 s. The optimization now takes much longer,
and may not be able to finish in real time.

Transient Responses

For case i the simulation results are shown in Fig. 6.48. This establishes a base
line for the next cases, and is for comparison with the corresponding case in
Chapter 2 with P control; Fig. 2.7.
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Fig. 6.48. Response with standard MPC for case i, G = 1/(sT):
fl = 5 (left); fl = 10 (right)
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For case ii, the simulation results in Fig. 6.49 (center) and (bottom) show
in the first part of the response a "bang-bang" sequence on u(t), similar to
what the minimum-time optimal solution would require, followed by a linear
"finals" approach phase. Qualitatively, this corresponds well with what has
been found for the generalized awf design. There is also an overshoot in Yl (t)
for the design parameter [l := 10 and for the equivalent weights (qn, q22).
Note that the response is still the optimal solution for those values.
To avoid such overshoot, intuitively the design parameter [l must be selected
below some upper limit. In this particular benchmark layout, this was found
to be at [l i=::j 6.0 (not shown). And the particular response turns out to be
nearly minimum-time as well.

For case iii, Figure 6.50 shows the same trends. Again there is an upper
limit on the value of the design parameter [l, if overshoot is to be small
enough. In this particular case simulations produce [l i=::j 3.25 (not shown).

To summarize: the run-up response, produced by the standard MPC al­
gorithm and with the design choices as described above, also turns out to be
fitting well into the practically motivated specifications, as they were used
before in the intuitive design approach.

Exercise
Explore this more broadly by
- considering plants with both negative and positive internal feedbacks,
- extending the test sequence to small setpoint steps and load swings,
- increasing the sampling time Ts ,

- and reducing the control prediction horizon Nu .

6.16.4 Explicit Model Predictive Control

The time required for computing anew the optimal U* at each sampling in­
stant may exceed what is available from Ts .

One approach is to split up the computation into two steps. The first one is
performed off-line, and consists of the optimization, i.e. determining the U*
sequence as a function of current state x(t), and storing this (loosely speak­
ing) in a look-up table. The second step consists of entering the look-up table,
reading out the control U* and implementing it. This is much less time con­
suming, and can now be performed on-line in real time.
This idea has been developed since the 1980'ies at least, mainly in the Oper­
ations Research field, and has found its current form as the "Explicit MPC
approach" [59, 60].

The main result is, that U* need not be computed and stored at length
Nu . Its first move u*(t) is the only one to be implemented in the receding
horizon technique, and it can be generated by a local linear affine control law:
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(6.116)

where the index j points at the one of a finite number of finite-sized, compact
regions in state space that contains the current x(t) --+ Xj, and K j is the
corresponding gain matrix, and qj is the offset for this region. This makes the
control law affine to the standard state feedback law u = Kx. The output Uj

is then put through the saturation element Ulo :::; u(t) :::; Uhi and applied to
the plant input.3

In this setting, region # 1 contains the origin, and contains all x(t), from
where on the control law is linear, i.e.

(6.117)

As has been discussed at length in previous sections, this region is of finite
size, which strongly depends on linear closed-loop bandwidth fl, and thus on
the choice of Q, R. The adjacent regions are then determined by algorithms
given in [60]. They are also of finite size. Their number Nmpc increases with
the number Nu . Increasing Nu will add new areas adjacent to the existing
ones.

Benchmark Case ii, with a Slow Sampling Rate

This is illustrated in Fig. 6.51, [60], for
- the double integrator plant with both time constants T = 1.0,
- saturations -1.0 :::; u(t) :::; + 1.0,
- an area in the phase plane delimited by ±5,
- weights qn = 1.0, q22 = 0, and r = 0.10,
- and sampling time Ts = 1.0,
- using the finite-time version.

For Nu = 2, nine regions result from the "Explicit MPC" algorithm. Their
delimits are shown in Fig. 6.51 (top right). The resulting control laws for the
regions are (from [60])

#1
#4
#5
# 2, 6, 8
# 3,7,9

U* = [-0.579, -1.546] x

u* = [-0.435, -1.425] x - 0.456

u* = [-0.435, -1.425] x + 0.456

u* = +1.0
u* = -1.0 (6.118)

3 Note that this general result is valid for both input and output constraints.
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Fig. 6.51. Regions with Explicit MPC for case ii, G = 1/(sT)2, with Ts = 1.0:
N u = 1 (top, left), 3 regions; N u = 2 (top, right), 9 regions;
Nu = 3 (bottom, left), 19 regions; N u = 4 (bottom, right), 33 regions

Fig. 6.51 also indicates the "finals" trajectories ( see Sect. 4.4), that would
result from instantaneous switching between the u saturations (--), and by
including a look-ahead for the delay of one sampling time Ts (- . -), in order
to avoid a final overshoot.

Discussion4

Note that the lower left delimit of region # 1 coincides with the line for
u = +1.0 = Uhi produced by the linear affine control law ui = -K1x; and
correspondingly for the upper right delimit with ui = Ulo = -1.0.

4 As an exercise, investigate further the properties stated here.
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The same holds for the lower left delimit of region # 4. It coincides with the
line for U = Uhi produced by the linear affine control law u~ = -K4x+q4;

and correspondingly for the upper right delimit with u~ = Ulo . And the
same holds for region # 5.

The control input U to the plant is continuous across the region delimits.
In other words, there are no excessive bumps on U when transiting from
one region to the next, but the time derivative of U may be discontinuous.

Consider the phase plane plot for N u = 2 first.
By inspection, the regions # 1 to # 9 can be assembled into three "super­
regions" A, B, C, i.e.
- A consists of regions # 1, # 4, and # 5 and is a corridor,
where U is in its linear range, Ulo < u(t) < Uhi,

- B consists of regions # 2, # 8 and # 6, Le. the lower left area,
where U = Uhi = + 1.0,

- C consists of regions # 3, # 9 and # 7, i.e. the upper right area,
where U = Ulo = -1.0.

In super-region A, the regions # 1 and # 4 can be distinguished not only
by checking the current x with the delimits from the table above, but
equivalently by calculating both ui = K1x and U4 = K 4x + q4 first, and
then performing a Max-selection between ui and u4. The same holds for
regions # 1 and # 5, but then with a Min-selection between ui and us.
The result of this evaluation shall be denoted as U A.
The delimits between super-regions A and B can be implemented equiv­
alently by performing a Min-selection between the result of the previous
step uA and the upper saturation limit Uhi = +1.0, and similarly for A
and C by a Max-selection between uA and Ulo = -1.0.

Also, observe in Fig. 6.51 that the super-region A is situated with respect
to the "finals" parabolas in such a way, that trajectories will enter first
the linear corridor before meeting the "finals" parabola branch. This is
favorable to avoid overshoot; see Sect. 4.4.

Observe that this holds only in a restricted area of x around the origin.
For trajectories evolving outside this area, the linear corridor would be
entered later than the "finals" parabola being crossed over. Thus, a final
overshoot will be unavoidable.

This is avoided if Nu is increased. The optimization process adds two
other regions to the linear corridor, which are more inclined, and again
fit in before the "finals" parabolas. In other words, trajectories in a wider
area of the phase plane will enter the extended super-region A before the
"finals" parabola branch is encountered. And final overshoot may then be
avoided for this larger area as well.



6.16 Links to Model Predictive Control 365

Note that this argument applies not only for increasing N u , but also for
Nu = 1. There, the optimization process results in a linear corridor, which
is region #1 from Nu = 2, but without the delimits to regions #4 and
#5. Then the area in the phase plane is much smaller, where the linear
corridor is entered before meeting the "finals" parabola. In other words,
there will be a final overshoot except for small initial conditions.

Benchmark Case ii: A More Realistic Sampling Rate

So far a comparatively large sampling time (Ts = 1.0 s) has been used in­
tentionally. Now it shall be lowered to Ts = 0.250, which is about halfway to
what has been used with the standard MPC (Ts = 0.050).

In a first step this allows a higher linear closed-loop bandwidth n. Here,
the weights are increased to

qll = 3.0; q22 = 0.3; and r = 0.10

Therefore, region # 1 will be more inclined, less wide, and its vertical size will
shrink as well. Also, the adjacent regions in the linear corridor will decrease
in size. But they will still be situated ahead of the corresponding "finals"
parabola branch with zero delay. But it will be entered later, i.e. at X2 values
closer to the minimum-time trajectory.

Finally, Nu will have to increase substantially, as the overall prediction
time NuTs must not change significantly. An overall prediction time of 2.0 s
leads to Nu = 8. Then the optimization process generates as the number of
regions nR = 129 (!); see Figure 6.52. For comparison, the solution for N u = 4
with nR = 33 is also shown.

....
-.

-2

-2_1. -2 _. • _I ....s 0 o. -2 _1 S _1 -05 0 05 t 5 2' 25

Fig. 6.52. Regions with Explicit MPC, G = 1/82 , with Ts = 0.25:
(left) N u = 4, nR = 33; (right) N u = 8, nR = 129
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Fig. 6.53. Initial condition responses of the system in Fig. 6.52 (right), N u = 8:
Xl(O) = -1.0 (top); Xl(O) = -2.0 (center); Xl(O) = -4.0 (bottom);
note the differents scalings of the plots
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By further analysis of Fig. 6.52 (right), 108 regions have saturating first
control moves of the type

They form two large super-regions to the lower left with Uhi, and to the upper
right with Ulo ' And only 21 regions have a linear affine control law with nOn­
vanishing gains. They form a linear corridor similar to what was found for
Ts = 1.0, and predicted above. Its structure adjacent to region # 1 is slightly
more complex, however.

The run-up response is shown by the equivalent initial conditions response
in Fig. 6.53 for three different setpoint step sizes: Xl (0) = -1.0, - 2.0, - 4.0.

Direct implementation (as it was described for the slow sampling rate
above) gets much more tedious. A very large number of region delimits have
to be implemented and then sorted through in real time.
In a first step, intuitively, the regions from the linear corridor lead to 21
linear affine controllers, and U is evaluated from their outputs by successive
Max-Min-selection. And then the Max-Min-selection to Ulo , Uhi can eliminate
checking the 108 regions.
This evaluation can be further simplified and speeded up by lumping adjacent
regions in the linear corridor into larger ones, with constant gains and offsets
in that region. Owing to this approximation the trajectory will be suboptimal,
and more so if the lump size is increased.

This lumping approximation shall be illustrated On the double integrator
plant with both time constants T = 1.0. Also let Ts ---. 0 for simplicity.
Then for the "finals" parabola with U = Ulo = -1.0

1 1
with alo = - -I-I

2 Ulo
(6.119)

(6.120)

The tangent to this parabola at (Xl" X2,), using Eq. 6.119, is

X2, X2, IUlo 1 X2,
X2 = ---Xl + - = --Xl +-

2Xl, 2 X2, 2

The linear affine controller produces the straight line for U = Ulo in the phase
plane:

kl q - Ulo
X2 = --Xl +-- (6.121)

k2 k2

where kl := (stT)2 and k2 := 2(stT with design parameters st, (.

Now let this border line for U = Ulo , Eq. 6.119, and the tangent to the
parabola, Eq. 6.120, coincide. Then, for the slope coefficient

stT
2(

(6.122)
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and for the offset coefficient q

q - Ula

k2
-+ q = Ul a + x2,2k2 = Ul a + 2dT IUlal(DT = Ula + 2(2lula l

(6.123)
Inserting numerical values yields

(= 1; Ul a = -1.0; -+ q = +1.0; i.e. further q:= Uhi (6.124)

(6.125)

In other words, the offset q from Eq.6.123 does not depend on the choice of
the bandwidth DT for the affine controller.
However, q depends on the design damping ratio (. Lower values for ( pro­
duce a lower q, i.e. the linear corridor is lowered with respect to the "finals"
parabola, and this increases settling time (all as one would intuitively expect).

And from Eq. 6.124, with the usual assumptions ( = 1 and symmetric
saturations on u, produces an offset equal to the saturation value. This is
easy to memorize as a design rule. But keep in mind that many assumptions
have been made. So this design rule should not be overextended.
By the way, Eq. 6.124 also provides a background to the (intuitive) design
choice of the offset in Sect. 6.15.

Finally, reasonably sized lumps for the affine control laws have to be ag­
gregated, "reasonable" referring to the compromise between the reduction in
number of affine control laws and the loss in optimality. This reduces to rea­
sonable choices of their relative bandwidths Dj . The basis is given by the
bandwidth DI , as it is specified for linear operation around the final steady
state, in region # 1. Intuitively then, from the shape of the "finals" parabola,
a reasonable choice for the affine control laws in the adjacent lumped regions
# 2-, # 2+ of super-region A (the linear corridor) would be

1
D#2- := D#2+ := 2D#1

And for the next lumped regions # 3-, # 3+ in the linear corridor set

(6.126)

Exercise
Investigate this design rule further.

6.16.5 Comparison with Previous Design Methods

All this is strikingly similar to what has been investigated in previous sections.
So it is not surprising that the transient responses shown above are not that
different.
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For Ts = 1 and Nu = 1, the link to the "design by de-tuning fl", Sect. 6.7,
is evident. Both approaches lead to a linear state feedback ut = K1x, with
subsequent Max-Min-selection for the input saturations Ulo , Uhi. Previously,
K 1 has been designed by pole assignment and stability considerations for the
nonlinear case, whereas here it is designed as a Linear Quadratic Regulator us­
ing the weights QL, RL, and by manipulating those as the design parameters
suitably (to obtain the specified step response characteristics).

For Nu 2': 2, the link is obvious to Sect. 6.15, the "selection for lower­
bandwidth control" approach. Again, the structures are the same, as far as
there are linear state feedback laws with offsets generating the uj for the
regions other than j = 1. The parameters for the final linear controller in
region # 1 are designed using Linear Quadratic-design instead of pole assign­
ment, but resulting in the same state feedback gains, if the design parameters
QL, RL are adjusted accordingly.
The affine controller parameters (gains and offsets) for the regions other than
# 1 have been determined above on a nonlinear stability basis, whereas here
they are determined by optimization. Here, the U applied to the plant is se­
lected by checking first in which region the current x(t) is, and then computing
the corresponding u*(t). The saturation is incorporated into the control law
for each region. In contrast, in the override design, u is determined by cal­
culating first the Uj, with j such that all regions in the linear corridor are
pointed at, and subsequent Max-Min-selection, and a final Max-Min-selection
for the input saturations Ul o , Uhi.

In the cases studied here, both approaches are "equivalent", as they yield the
same result. The control input U to the plant is the same for a given x(t) within
its overall delimits for the optimization (Xi"'in S Xi S Xi",ax' i = 1,2, ... ,n).
Note that this equivalence greatly reduces the implementation effort. And it
seems plausible for the general case as well, but no proof is available yet.

The insight from the Explicit MPC solution also helps to improve the
intuitive design. For the double integrator plant, the Explicit MPC with sub­
sequent lumping for the regions in the linear corridor has led to the design
recommendation for offsets being set to the saturation values and for band­
widths for the linear control laws being staged by a factor of rv 2.
In the example shown in Fig. 6.47, based on design for stability (see Fig. 6.12),
the first rule is adhered to, while the second rule is dearly violated: The stag­
ing factor is fldfl2 = 10.0/2.75;:::; 3.64, which explains the final overshoot.
And the MPC-based design also suggests a systematic improvement: insert an
additional override controller pair, which is designed to fl = 5.0, and again
with offsets Uhi and Ulo respectively.

Exercise
Check this last statement.
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6.17 Summary and Outlook

In this chapter, plants have been considered with dominant order larger than
one, i.e. cases not covered by the Ziegler-Nichols rules, and where PI(aw)
controllers can no longer provide an acceptable closed-loop performance.
Therefore, state feedback controllers of p+ and I(aw)-P+ type are used. They
are designed to a given closed-loop bandwidth n as the main design param­
eter, and damping 2( := 2. It is assumed that all dominant state variables
are directly measurable, and no observer (with its additional dynamics) is
needed. The non-modeled dynamics of the plant are accounted for by putting
an appropriate upper limit on n.

If input constraints (actuator saturations) are inserted, and if advancing
into the nonlinear range, then performance progressively deteriorates, and
may end up with oscillatory unstable responses. This happens for the algebraic
state feedback already, without an additional state variable in the controller
from the integral action. The cause is that some plant internal state variables
are pushed far away from their equilibrium values in the initial part of the
trajectory, such that they cannot be brought back in time when approaching
the new equilibrium. This is "plant windup".

Nonlinear stability properties may be assessed in a convenient way in the
"stability charts". They show that plants with all internal negative feedback
coefficients aj > 0 (i. e. Hurwitz stable plants) are not very criticaL5 And the
more open integrators there are in the plant, the more critical the situation
gets. Finally, the situation is very critical for open-loop unstable plants.

Then several known design methods are investigated (note that such a se­
lection will always be subjective). From a stability point of view, they all aim
to increase the radius of attraction sufficiently for meeting practical design
targets. Nonlinear stability analysis is the main systematic design tool here,
while performance is checked qualitatively by benchmark simulations.
Recently, methods from "Robust Control" have received much attention in
research, "robust" referring to the effect of saturation. They assume and im­
ply that the system is already stable, and then the focus is on quantitative
performance. However, to date, their application still needs extensive numer­
ical calculations.
The last method in this list, the "selection for lower-bandwidth control", turns
out to be very similar to what MPC in its Explicit formproduces, i. e. affine
linear control laws for the optimal first moves. Investigating this "similarity"
further can help in mutually refining both design approaches. In this view,
MPC generates the optimal trajectory as an upper bound for the intuitive
(override) design. And the intuitive design helps to produce implementation­
friendly control strategies, and also suboptimal ones, in a controlled manner.

5 "Critical" refers to how sensitive the stability properties are to the maximum size
of the overload on the saturation.
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Generalized Override Control

7.1 Introduction

In Chapter 3, Override Control has been developed on the basis of a common
but rather simple case, i. e. positioning control on a rigid point mass. Several
structures have been investigated, and transient performance was found to
be excellent. This has then be extended in Chapter 4 to situations where, in
addition, there is a high and low saturation on the control input u to the
plant.
This may be considered as too narrow a view by the design engineer, who is
confronted with a large variety of control problems. From a more theoretical
point of view, the above case implies a number of assumptions, which need to
be relaxed.

The aim of this chapter is to discuss those assumptions in more detail.
We shall show that the design elements from above are quite versatile and
produce good solutions for a large field of practical applications. We shall also
show some links to the design approach by MPC.

Sect. 7.2 considers situations where the plant dominant response is of first
order (mainly of the open integrator type), where PI(aw) controllers are best
suited. The selector/override idea shall be used in different novel ways.
Then, in Sect. 7.3, situations are investigated where the plant response is
of higher order, and where PI(aw) control must be augmented with state
feedback or related add-on features, similar to the ideas in Chapter 6 on
generalized antiwindup.
In Sect. 7.4, the class of G2 having a zero in or near the origin is discussed.
This relates to an important and successful application in the power industry.

Up to now, the override action has been on the control variable. This
paradigm is investigated next in Sect. 7.5, by shifting the override action to the
reference of the main loop, which is similar to using "reference conditioning"
instead of "control conditioning"; see Chapter 2. This has some structural

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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advantages, but we shall also find significant drawbacks.
The second paradigm was that, during the output constrained parts of the
trajectory, the focus of control is on running along the constraint as closely
as possible (Y2 ---+ r2hi' r2tJ, regardless of the transient excursions of the
main controlled variable Yl (t). In Sect. 7.6, a compromise design strategy is
proposed and investigated.
Finally, links to MPC are established in Sect. 7.7.

7.2 Systems with Dominant First-order Plants

Consider a tank, which serves as a buffer between an upstream production
unit delivering the inflow, and several downstream units with time-varying
outflows from the tank, or vice versa several inflows and one outflow. There
may be other parallel flows to the single inflow and single outflow, but this
is not considered further here. The purpose of the buffer tank is to absorb
transient mismatches of inflow and outflow, such as to have less load swings
on the production unit.
A level control system shall be installed. It can act either on the inflow or on
the outflow, depending on the specific overall situation. The opposite flows
then act as the disturbance. If the inflow is controlled, then the total outflow
is the disturbance, and vice versa.
The closed-loop bandwidth of the level control is set rather low, such that the
controlled flow will match the disturbance flow in a longer term mean, but
will not follow large short excursions. In other words, disturbance suppression
is to be low at high frequencies and high at very low frequencies.
But then, on rare occasions, the flow mismatch may be both higher and longer
than designed. Then the tank will overflow or fall dry. This must be avoided,
even if the controlled flow unit has to be maneuvered more strongly. And this
upset on the controlled flow should be eliminated as soon as possible, after
the excessive flow mismatch returns to its normal size again.

The constrained variable Y2 and the main controlled variable Yl are now
the same, Y2 := Yl, and thus the plant transfer functions in both the main and
the override paths are the same, G2 := G1. This is a special case of N2 = N1.
Also, we have "loose" control for small level deviations and "tight" control of
the same level along its constraint values.
In the following, we shall consider first the case of acting on the inflow only,
then while acting on the outflow only, and also a mixed strategy. Next we
shall consider the case where there is no main level control, as the controlled
flow is determined from outside the buffer tank. Finally, we shall look at a
more complex application with multiple control variables and overrides.
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7.2.1 Actuation on the Inflow

The Control System

The control system Fig. 7.1 is put together from the elements of Chapter 3.

Fig. 7.1. Level control system on a buffer tank, actuation on the inflow

It consists of a PI(aw) controller R l for level Yl acting on the inflow Uin

with settings for low bandwidth: for the simulation, poles are assigned to
fhT := 0.10, where T is the nominal filling time of the tank, which is time­
scaled to := 1.0 for the simulation. The integral action sees to high disturbance
suppression at low frequencies w « ill. The setpoint rl for the long-term
mean of the level Yl is set to 0.50. And the mean flow through the system is
set to 0.50 units.

Excessive level excursions are avoided by two level override loops
R2hil R21o ' with setpoints at r2hi := 0.99; r2lo := 0.01, both acting on Uin'

Both override control loops shall have the same gain and reset parameters.
This implies that the tank has constant surface area with height. If not, the
parameters can easily be adjusted to the local plant transfer function.
For the simulation, their closed-loop bandwidths are set to il2T := 2.0, i.e.
by a factor of 20 higher than in the R l loop.
Finally, the inflow is limited to its working range by the saturation block with
limits at Ula, Uhi.

All PI(aw) controllers are of form D from Chapter 2, with sampling time
Ts = 0.050, and with compensating awf gains ka1 = ka2 := 2.

Transient Response

Fig. 7.2 shows the simulation results for three disturbance (outflow) profiles:
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(a) A "normal" sequence of outflow variations:
+0.25 for 2 time units followed by -0.25 for 2 time units,

such that the level stays away from the constraint setpoints. Note that the
inflow variations u are much smaller than the imposed outflow variations
v. Note also the slow equilibration by the weak R i level control.

(b) A "rare" case of excessive length of flow mismatch:
+0.25 for 4 time units, followed by -0.125 for 8 time units.

Here, the level transiently runs into the upper level constraint and the
override is activated. Note that, after the excessive outflow reduction v
is finished, the inflow Uin returns approximately to the value before the
override became active. Thus the corresponding functional specification
stated above is met. The second phase of outflow mismatch nOw lets Yi
run into its opposite constraints. Finally, there is a linear slow equilibration
transient, with Uin not straying far from its steady state value 0.50.
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Fig. 7.2. Transient response of the level control system Fig. 7.1:
(left) for the "normal" flow mismatch sequence (a);
(right) for the "rare" flow mismatch sequence (b), leading into the upper level con­
straint, and then into the lower one

Stability Analysis

The mismatch sequence (a) is such that the system stays within its linear
operating range, and thus stability is as designed through R i .

For case (b) this no longer holds. Note that now stability is of the input­
output type, and not of the initial condition response type, which has been
built upon so far. So, L:2-stability (see [12], chapter 6) is to be investigated.
This shall not be followed through in detail here, but only outlined.
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Consider the disturbance input deviation from its steady state value L1v =

v(t) - v. Note that its "energy" Jooo L1v2 (t) dt is bounded, as v(t) is a finite
length pulse returning to zero at its end. And the nonlinear control system is
globally asymptotically stable (which shall be shown in an instant). In other
words, it will dissipate this finite energy and thus el = rl - Yl will decay to
zero.
We shall focus on the typical v(t) shapes in Fig. 7.2. There two phases may
be distinguished.

In the first phase, A, the system stabilizes on the constraint setpoint,
which is taken as a new "final equilibrium". Then the equilibrium of the R l

loop before applying the v step is seen as the initial condition with respect to
this new "final equilibrium". The control system now has the R2 loop as its
new "main loop", while the R l loop functions as the override loop.

Then the initial conditions stability may be checked as in Chapter 3. Using
the basic result and inserting compensating awf gains

(7.1)

The Nyquist contour evolves in the right half plane, and the circle test shows
global asymptotic stability.

In the second phase, B, the system starts with initial conditions such that
the override loop is switched in, and the "final equilibrium" is controlled by
Rl to rl = 0.50.
Then the flow mismatch step back to zero can be seen as a corresponding initial
condition injection on the integral actions within the PI(aw) controllers. The
basic result of Chapter 3 with compensating awf gains again yields

F
s s + O2

B+1=-- --
s + 0 1 S

(7.2)

Its Nyquist contour again evolves in the right half plane, yielding global
asymptotic stability also for the second phase.

A Different Control Structure

In practice, a control structure is often used, which is available in most com­
mercial process control systems as "error progressive" or similarly.
It consists of one standard PI(aw) controller with a nonlinear characteristic
on the control error e = r - y. The characteristic consists of a linear propor­
tional element with very low gain placed in parallel to a deadspan element
with high gain slopes, where the break points are adjustable to implement the
level constraint setpoints. The low gain is to implement the low bandwidth
control for the "normal" operation range, while the high gain is used for the
high bandwidth limiting control.
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This layout is certainly simpler than the override structure of Fig. 7.1. But
it has at least two significant drawbacks.
One is that it will work well with pure P control in all loops (in fact it is easy
to show that it is equivalent to the override structure with P controllers).
But there are no direct means to re-tune the integral action as well. It stays
fixed to the very slow setting for the normal operation, and therefore the
response along the constraint will be excessively sluggish, and far below the
performance from Fig. 7.2.
The second drawback is that there is no "look-ahead" effect on u while Yl
approaches the constraint limits, as the structure Fig. 7.1 has. To see this,
replace the controller form D by the equivalent one of form A, which has a
PD element upstream of the selection. The D part provides the "look-ahead"
property. This is missing in the simpler form, where there are only P elements
upstream of the selection. This may produce overshooting of the constraints.
Both drawbacks will lead to shifting of the constraint setpoints inward from
the physical level limits, and thus to losing the corresponding part of the
buffer tank operational capacity.

7.2.2 Actuation on the Outflow: Direct vs. Reverse Control

The Control Structure

Consider now the design situation where the outflow is available for level con­
trol as u and the total inflow is the disturbance v. If the definition of the
control error e = r - y is maintained, then the negative level feedback of Fig.
7.1 turns into a positive feedback, i.e. the level loop will be unstable. This is
due to u acting on the (positive) outflow, which enters with the negative sign
in the mass balance. In other words, Gu(s) now has a negative sign.
To cope with this, a block with gain -1 is inserted in the level controller error;
see in Fig. 7.3. This feature is standard in commercial process control systems.
The switch-selectable gain is either +1 or -11. No other modifications are re­
quired. For instance, the initial values of the integral actions in the controllers
are the same as in the previous case of inflow control, i.e. Ul(O) := v(O) for
initial steady state. Note also that u is positive and increases with increasing
outflow. (Such simple design rules simplify the checking out in the real plant.)

Consider now the action of the R2hi controller. In order to keep the level at
the constraint setpoint r2hi' the outflow has to be increased with respect to u 1,
whereas the inflow would have to be decreased. This calls for a Max-selector
instead of the Min-selector on the inflow. And similarly the output of the R2to

controller has to be connected to the Min-selector, whereas previously it was
to the Max-selector.
In Fig. 7.3 this is implemented by "crossing over" the R2 outputs, and con­
serving the graphic symbol for the Max-Min-selector block. (Again such a

1 This is often denoted as "direct action" vs. "reverse action"
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simple design rule helps to avoid mistakes and to interpret the signal flow
graph.)

U-----------------~JI,.I+------....J

Fig. 7.3. Level control with actuation on the outflow ("reverse control")

Transient Responses

The correct functioning of this system is verified in Fig. 7.4, where the same
disturbance sequence is now applied to the total inflow.
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Fig. 7.4. Transient response of the level control system Fig. 7.3, ("reverse action"):
(left) for the "normal" flow mismatch sequence (a);
(right) for the "rare" flow mismatch sequence (b), leading into both level constraints
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Stability Analysis

There is no fundamental difference in the control structure apart from the
signs, and this can be eliminated right away. Thus, no separate stability anal­
ysis is required.

7.2.3 Main Control on the Inflow and Overrides on the Outflow

The Control Structure

The next idea is to use a mixed strategy, where the inflow is controlled with
the low bandwidth loop (to keep the fast outflow variations from the pro­
duction unit). And the override action is now on the outflow, cutting off the
disturbances such that the level does not exceed its constraints; see Fig. 7.5.
Note that this requires some compact access to the total outflow signal. Here,
there is a local flow-controller with output uv , and its setpoint being the sum
of all outflow demands v. In both the inflow and outflow control loops, there
are "man-to-auto" mode transfer switches. They allow the awf loops to equi­
librate before the loops are put into "auto"-mode, similar to what has been
used previously.

Fig. 7.5. Level control with actuation on the inflow ("direct control") for normal
operation, and with level overrides acting on the outflow ("reverse control")

Transient Responses

From Fig. 7.6, the control structure performs as expected.
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Fig. 7.6. Transient response of the level control system Fig. 7.5, with a mixed
strategy; level main control on the inflow and overrides on the outflow:
(left) for the "normal" flow mismatch sequence (a);
(right) for the "rare" flow mismatch sequence (b)

Stability Analysis

Again, there is nothing fundamentally different from the system Fig. 7.1, and
thus the stability properties are the same.

7.2.4 Output Limitation with N 2 > N l

The Basic Case

This situation arises when the control task from Sect. 7.2.3 is slightly modi­
fied: the main control variable (yd is no longer level, but inflow. Its setpoint
shall be determined by other sources than the buffer tank level.
Then, obviously, the level can no longer be stabilized to a given setpoint as in
the previous case, simply because there is no level control. Thus, the level will
move up and down freely following the flow mismatch over time. This system
is not asymptotically stable in the linear range. 2

However, if the level constraints are met, then the override level control is ac­
tivated and stabilizes the system at the constraint setpoint. This corresponds
to phase A of Sect. 7.2.3, with R2 playing the role of the main controller, and
R1 (the flow controller) being the override controller.
Denoting YL as the measured level signal and YF as the flow signal, and using

2 You might consider this an ill-posed control problem. Nevertheless, this is a prac­
tical situation, as the application example below shows.
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yp 1
Cp(s) = - = ;

u sTp + 1
Cds) = YL = _1_ 1

u sTL sTp + 1 (7.3)

where Tp « TL. For the stability test, with c'ompensating awf gains

8(8 + iF)
FA + 1 ~ ---'----~----'--.,-

(s + !h) (s +A)
(7.4)

where the Nyquist contour evolves in the right half plane, indicating global
asymptotic stability.

For phase B, however:

(7.5)
s+-.L s+[h---IE... _
s s + [IF

(s+Sh)(s+t)

s(s + iF)
which is not asymptotically stable (there is one pole at the origin). Thus, the
basic assumption of the circle test for the linear subsystem is not fulfilled, and
thus it may simply not be applied here.

An Application Case

A typical example of this situation is in hydropower control. The flow is gener­
ated by the power control loop of a power plant. During "normal" operation,
the power setpoint, and thus flow, is generated by a supervising control sys­
tem, such that the overall water content in the river system will stay about
constant. In other words, the flow has to be approximately equal to the total
upstream inflow to the hydrological system, and the power setpoint is adjusted
accordingly. Therefore, the plant will deliver "base load" into the grid.

However if a large mismatch power flow occurs in the grid, large grid
frequency deviations result. To avoid this, the "normal" power setting for the
hydropower plant will be overridden such that the power station contributes
to cover the load mismatch. Thus, the power station transfers from base load
operation to load/frequency control mode, or to "primary" control mode.

But there are constraints. One is the finite working range of turbine flow.
The second one comes from upsetting the water flow balances along the river.
Reservoir levels will move away from their normal values. This can be tolerated
up to limits which are dictated by navigation, regulatory agencies, or simply
flooding. This leads to override loops from the adjacent reservoir level to the
water flow loop. This may be the upstream level, or the downstream level,
or even both. When the level constraints are met, they will move the actual
flow back to near the equilibrium flow in the hydrological system, and thus
shift power production back to the base load level. But this time interval may
be sufficient to adjust production of thermal power plants along their typical
load gradients of 5%/min, see Sect. 7.4.
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Note that, after the grid mismatch has been driven to near zero by load
shift on those other plants, the local reservoir level will stay at its constraint
value as long as the local power setpoint is not moved in a way to establish
a new equilibrium in the water system around the "normal" levels. In other
words, the deficit or surplus in reservoir content which was accumulated during
the phase of primary control must be compensated later by an equivalent water
flow mismatch in the opposite direction. And this will upset all downstream
reservoirs again.

This strongly suggests that such management of levels, flows, and power
output is better performed by a central dispatcher for the river system. Any
local action will upset neighboring subsystems in this strongly coupled system
unduly.
In other words, such transients should be controlled by the central dispatcher,
where for instance MPC is clearly a well suited design method. Note that
this requires all information to be available at the dispatcher. In this control
structure, the local overrides then evolve to additional local safety features,
which will come into action only in abnormal situations.
This is a nice example of how simple override controls can cooperate with
central optimizing controls in a complex multivariable system.

7.3 Systems with Dominant Higher-order Plants

So far the plant transfer functions G1,G2 have been of dominant first order,
where PI(aw) controllers are best suited. As in Chapter 6, on generalized
antiwindup, plants of dominant higher-order (NI , N2 2: 2) shall now be con­
sidered. Again, state feedback is needed, possibly implemented in some form
of multiple cascades. To simplify matters it is assumed that all relevant state
variables are directly measured, and thus no observer is needed.

7.3.1 Open Integrator Chain Plants

Consider first the positioning of a rigid mass along one axis. The standard
setup would be position control with speed constraint, as has been discussed
at length in Chapters 3 and 4, i.e. N I = 2, N2 = 1.

A different setup from practice is speed control as the main loop (see
Chapter 2), but now with position constraints: the position is not relevant as
long as it is off the end constraints. But it becomes dominant if the position
approaches those end points, in order to avoid damaging the plant. Another
case is elevator control, where the main control loop is for cabin speed, and po­
sition control becomes dominant when approaching the target floor position.
In these cases N I = 1, N 2 = 2.
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This is similar to what has been looked into with the buffer tank in Sect.
7.2.4. Thus the stability problem for the complete system can be considered as
"ill posed", if speed is identified as the main controlled variable Yl to rl, and
the position is identified as the secondary output Y2 constrained to r2hi' r2Lo.

Visibly, the complete system will not be at rest for Yl ~ rl ¥ O.
But it will be "well posed", if the control task is stated in the opposite way,
by considering stability to the position setpoint r2hi , while the speed control
Yl to rl > 0 is considered as the override loop: it limits the speed to rl for
this approach. This occurs symmetrically for Y2 down to r2Lo' with negative
speed Yl ~ rl < 0 being the constraint. And this is the basic problem from
Chapter 3, although with a one-sided override only. But this does not change
the sector bounds for the nonlinear stability test.

Generally speaking, testing stability for open integrator chains with L1N =

N 1 - N2 < 0 does not make sense. This will lead to F + 1 having -L1N poles
at the origin, and therefore not being Hurwitz as the sector criteria require.
However, exchanging the role of the variables as described above leads to a
well-posed stability problem for the equilibrium along the original constraint
setpoint. Now F + 1 has -L1N zeros at the origin, and F meets the require­
ments of the sector criteria.

The Case of N 1 = 3 and N 2 = 2
So far cases of N 1 = 2 have been considered. In positioning control this means
that acceleration is proportional to the control input u, and not a distinct
state variable. But this is not always adequate. Examples are elevators with
"jerk" limitation, where the rate of change of acceleration is relevant. Then
the control structure is extended by an additional open integrator, which is
attributed to the plant; see Fig. 7.7.

The Control Structure

The plant is given as

(7.6)

where integrators for T2 and T3 are physically the same. Numerical values are
set to

T1 = 10.0; T2 = 1.0; T3 = 1.0

Speed and actuator stroke constraints are

r2hi = +1.0; r2lo = -1.0; and Uhi = +1.0; Uta = -1.0

The controllers are of the form D from Chapter 2 for the PI(aw) part
with additional state feedbacks; see Fig. 7.7. The controller parameters are
determined by pole assignment using
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(7.7)

Furthermore, set [22 := 2.0[21, with [21 as the key design parameter, and
the sampling time at T s = 0.020. The awf gains ka1 , ka2 are set to their
compensating values: ka1 = 4.0 and ka2 = 3.0.

The test sequence starts at standstill at x = 0 with u = O. Then the
reference T1 is stepped up to 1.0, while u is forced to zero by the standstill
switch. One time unit later the run-up is enabled by this switch. Note that
no small setpoint steps or load swings are applied later.

L..-------------------tJ1,..I4-----'
L..-------------------iJ1,..I4--------'
L..---------------------tJ\.I4-------'

Fig. 7.7. Positioning control with output constraint on speed (integrator with T2),
and where acceleration is a significant state variable (integrator with T3 ).

(top) the controller; (bottom) the plant
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Transient Response

Fig. 7.8 shows the run-up responses for three sets of the design parameter ill.
For the first set (top figure), the u saturations are met only in the acceleration
phase to the sliding equilibrium along the speed constraint. Thus, the stability
analysis from Chapter 3 is feasible.

For the second set, Fig. 7.8 (center), u saturates in the "finals" phase from
the R I controller. That is, the stability analysis of Chapter 4 applies. Finally,
for the third set, the u saturations are dominant in the final approach phase
of YI to rl. From experiments not shown here, the YI loop is unstable for a
small increase of ill to 3.333 (and il2 to 5.0).

Stability Analysis

The first case, (a) in Fig. 7.9, is the output-constrained system without input
constraints. For compensating awf gains:

S (s+il2)2

s+ill (s+ild 2 (7.8)

As il2 > ill, the Nyquist contour evolves into the right half plane, and shows
asymptotic stability for almost all initial conditions Xl =1= 0, X2 = 0, X3 = 0.

And the second case, (b) in Fig. 7.9, is the input-constrained R2 loop, with

(7.9)

which now evolves transiently into the left half plane, and thus indicates only
local asymptotic stability, Note the small overshoot in the "finals" phase in
Fig. 7.8 (bottom).

To complete the analysis, consider case (c) in Fig. 7.9 with the R I loop
with input saturation, i. e.

(7.10)

which crosses over the negative real axis. Thus, the describing function test
indicates that unstable limit cycles appear, if the deviations are very large.
But this is suppressed by the R2 loops.

Exercise
Expand the system to allow linear range setpoint steps and load swings,
as in Chapters 3 and 4, and check transient responses as well as stability.
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Fig. 7.9. Nyquist contours for the stability analysis of the positioning control system
given in Fig. 7.7

The Case of N 1 = 3 and N 2 = 1

Now the acceleration shall be the constrained output in the positioning loop.

The Control Structure

Fig. 7.10 shows the override structure.

Fig. 7.10. The positioning control system, where acceleration is the constrained
output
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The structural elements and the parameters are the same as in the previous
case, except

Y3 := X3; r3hi = +0.50; r3l o = -0.50; and also st3 := 5.0stl

again with stl as the key design parameter.

Transient Response

(7.11)

Fig. 7.11 shows the run-up responses.
With the exception of the set with "weak" Rl-control (stl = 1.0), there is a
distinct speed "windup" now, leading to an unacceptable overshoot of Yl(t).

Stability Analysis

The three elements to consider are now (see also Fig. 7.12):

For case (a), that is for the output-constrained, but not input-constrained,
"finals" approach, again with compensating awf gains

(7.12)

The Nyquist contour now evolves into the left half plane, thus indicating
local stability.

For case (b), the input-constrained acceleration to the speed "sliding equi­
librium"

(7.13)

and the Nyquist contour is in the right half plane, indicating almost global
stability.

For case (c), the input-constrained R l loop

(7.14)

which, however, does not seem to be an important case in the transients
shown in Fig. 7.11.
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Fig. 7.12. Nyquist contours for the stability analysis of the positioning control
system shown in Fig. 7.10

Using Multiple Output Constraints

In order to meet the general specifications on system response, the overshoots
of Yl(t) and of yz(t) must be suppressed.
This can be obtained in the previous case (N1 = 3, Nz = 1), Fig. 7.11, by
inserting extra speed overrides to counter speed "windup" observed in the
run-up transient. In the other case (N1 = 3, Nz = 2), extra acceleration
overrides are inserted against the "windup" of X3 in Fig. 7.8.

The control structure for the case N 1 = 3, Nz = 1 is shown in Fig. 7.13.
Set

(7.15)

with .a1 as the key design parameter. And, as in the previous case, of accel­
eration constraint:

r3hi := +0.5; r3I o := -0.5; (7.16)

The extra speed limits are taken from the case of speed constraint (N1 =
3, Nz = 2) above, but note that this is in fact a second design parameter,
because the control problem does not assume a physical constraint on speed.
Also, Ts := 0.020.

Comparing the transient responses shown in Fig. 7.14 with those in Fig.
7.11 documents the beneficial effect of the extra speed constraint. Note that
this allows the key design parameter .a1 to be increased by a factor of '"
2.5, thus increasing kP1 by a factor of '" 15, and improving the disturbance
rejection accordingly.
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Fig. 7.13. Positioning control with output constraint on acceleration (X3),
and an extra (nonphysical) constraint on speed (X2)

This also shows that there is a design compromise between thr increased
bandwidth ill of the Rl loop, and the extra speed constraint setpoint r2,

which must be lowered to avoid overshooting of yi (t). And this will increase
the overall settling time. One way out is to replace the constant extra speed
setpoint by a better-suited function; see Sect. 6.14.

A Design Guideline

The aim here is to extract some criteria to help the designer determine at a
glance whether the given design problem is non-critical or critical, i. e. whether
an in-depth investigation is needed or not.

The plant u --+ Yl to be considered is a chain of integrators of order N l .

The controller R l is a PI(aw) controller of form D of Chapter 2 with additional
state feedbacks.

If there are input saturations (on u) as discussed in the previous chapters,
the case of N l = 1 is "not critical". The case N l = 2 is "sensitive", as there
may be a considerable overshoot and a low rate of convergence. And the case
N l = 3 is "critical", as unstable limit cycles may appear.
For the output constraint feedbacks, PI(aw) controllers with state feedback

are used. The constraints on output Y2 shall be on some integrator output
upstream of Yl, i.e. G2 (s) is a part of G l (s).
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Its order is N2 ::; N l . This allows cancelation of zeros and poles in F + 1
without causing controllability and observability problems, and also yields the
properties of F + 1 required by the sector stability tests.
Let

iJ.N := N l - N2 (7.17)

Then for the cases with output constraints only, i.e. the (F + 1)a-situations
from above.

[ ]

LJ.N [ + n ] N
2

S S H2
F+1- -- --

- S + ill S + ill
The first factor shapes the Nyquist contour in the low-frequency range relevant
for the nonlinear stability properties. The second factor is a lag-lead element.
Its influence on the Nyquist shape in the relevant range is minor, if il2 > ill,
which is a reasonable design assumption.
The first factor is what would appear for a plant G l with order iJ.N and input
saturations. And thus the stability charts (see Sect. 6.4.2) may be used for
visualizing.
In other words, the stability analysis of (F + l)a yields:

The case iJ.N = +1 leads to favorable stability properties. It is therefore
"non-critical". The same holds for iJ.N = 0, which is the design case of
"loose-tight" Yl control.
iJ.N = +2 leads to a restricted area of attraction. It is therefore "sensitive" ,
and will need a closer investigation, if very large inputs are to be expected.
And the case iJ.N = +3 may be considered "critical", and requires an
in-depth investigation.

In addition, input saturations are almost always present. Thus, the (F + 1h
and (F + l)c situations from above must be discussed as well. However, they
may be integrated into the same framework by using the result from Chapter
3, that input saturations are a special case of output saturations with N 2 := 0.
This will generate additional cases of iJ.N.
This leads to the general rule, that all the values of iJ.N within the control
system should not exceed +1. If this is not the case, then extra constraints
should be inserted. This will improve dynamic properties considerably (see
the multiple overrides example from above, where extra speed constraints
have been inserted to have all the values of iJ.N at +1).
These results from the stability analysis correlate well with the findings

from the simulations. The control performance turns out to be very good
from a practical design point of view. Note that this is not self-evident for the
higher order plants.

Remarks

For iJ.N < 0, the control problem is "ill posed" , and must be turned around
such that the equilibrium along the constraint setpoint is considered; see
the case in Sect. 7.2.4.
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Only cases up to dominant order N I = 3 have been investigated by simu­
lations. But from a practical point of view, cases with N I > 3 get difficult
to control even in the linear range. Thus, it is highly recommended to
re-design the control configuration, such as using better-placed actuators,
etc., to reduce N I .

Only run-up setpoint step responses have been considered, but no distur­
bance steps (load swings) have been applied. 3 Then, from the finding in
Chapter 4, the extra constraints must be inserted upstream of the physical
ones to avoid any violation of the physical constraints.
Note that the structure in Fig. 7.13 complies with this rule, if the ac­
celeration constraint is the physical one, and the speed constraint is the
non-physical add-on. If this were the other way round, then the sequence
of overrides on u must be exchanged as well.

Consider inserting extra acceleration constraints on a positioning system
with physical speed constraints, in order to reduce the corresponding .1N,
and thus to avoid overshoot in the run-up phase to the sliding equilib­
rium along the speed constraint. This may be counterproductive in the
"finals" approach phase, as the braking capability is reduced by the extra
acceleration constraint, and thus leads to a YI(t) overshoot (see Fig. 7.14
(bottom), at t > 13).
This observation applies to plants with unstable poles and for disturbance
responses, where any restriction on the control action may considerably
reduce the radius of attraction.

The main restricting assumption so far has been on the plant being a chain
of open integrators. This will be investigated next.

7.3.2 Output Constraint Control on a Flexible Transmission

This specific example has been selected because the plant contains an un­
damped resonance, and its non-transformed state space representation is not
in control canonical form.
The aim is to clarify if the override design technique can cope as well with
this type of control problem.

The Plant Model

This is a mechanical system of two (rigid) masses ml, m2 coupled by an
elastic spring with zero mass and stiffness Cs ' The actuator force Fu drives
mass ml, while a load force Fv acts on mass m2. And YI is the speed W2 of
mass m2.

Typically, such plant models appear in robot control and machine tools, where

3 You may investigate this as an extended exercise.
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the spring represents the gear elasticity, or in elevators with m2 as the cabin
mass, and the spring element would be the elastic cable.
Part of the plant may be rotative. Then replace forces by torques, m bye,
and W by w.

The state variables are
- momentum, i. e. speed WI of ml,
- deformation of the spring Ll£s, and
- momentum, i.e. speed W2 of m2.

The driving force Fu shall not depend on the speed WI, and similarly the
load force Fv shall not depend on W2. All friction forces are set to zero. And
the constrained output Y2 shall be the coupling force Fs = csLl£s, to avoid a
plastic deformation.
Then

d
ml dtWI = -Fs + Fu ; with

d
dt Ll£s = WI - W2; and

d
m2 dt W2 = +Fs - Fv

and as outputs:

Yl = kY1 W2 and

Y2 = kY2 Fs where

Y3 = ky3 Wl

FSlo :s Fs :s FShi (7.19)

For the control problem to be "well posed" , set

FSlo + LlF < Fv < FShi - LlF

FUlo + LlF < Fs < FUhi - LlF (7.20)

where LlF is finitely small and positive, such as to allow stable linear control
along the constraints within a small but finite interval.
All state variables shall be· directly measurable, i.e. in addition to Eq. 7.19:

Next, the model is transformed into "per unit" form,4 yielding

d
71 dtXl = OXI + 1x2 + OX3 - Iv

d
72 dt X2 = - IX l + OX2 + 1x3

d
73 dt X3 = OXI - 1x2 + OX3 + 1u

and as outputs Yl = Xl; and Y3 = X3 (7.21)

from which the state space representation in matrices T, A', B' ,C, D can be
read directly (T stands for diag(71,72,73)),
The characteristic polynomial 1sT - A'l = d(s) then is

4 Do this as an exercise, and obtain Tl, T2, T3 as functions of the plant parameters.
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with
- the run-up time parameter 7 := 71 + 73 for the open integrator part, and
- the mechanical resonance frequency W r := /(71 + 73)/(717273), and
- with zero damping.

And thus for the transfer functions

(7.23)

The Control System

Fig. 7.15 shows the plant model in Simulink form together with the controller
structure. R1 is an I(aw) controller with three additional state feedbacks. This
special structure is needed to implement a negative coefficient k11 for pole as­
signments n1 « W r ; see Eq. 7.24.
The R2 controllers are PI(aw) elements with additional state feedbacks, the
same as in Fig. 7.7. The controller parameters are determined by pole assign­
ment, as before, to n1 for R1 , and to n2 for both R2 controllers, yielding

ko! = nt7 071 7 27 3

k1 ! = 4 nr717273 - 4n173

k2! = 6 ni7273 - [1 + (73/7d]
k2! = 4 n173

ka ! = n170 (7.24)

k02 = ni7072 7 3

k12 = 3 n~7273 - [1 + h/7d]
k22 = 3 n~73

kP2 = k 12 ; Ti2 = k12 /k02

ka2 = 3 (7.25)

where the R2 feedbacks have been designed using the denominator d2 (s) of
G2 from above.
Note that, for the additional state feedback through k22 , the difference X3 - Xl

is used in Fig. 7.15. With the standard state feedback of X3 only, a steady state
offset e2 =I- 0 will appear during run-up.

Exercise
Check this statement.

The region of interest for n1 shall be around the mechanical resonance
value Wr , while again n 2 := 2n1 .
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Fig. 7.15. The control system for speed control across the elastic coupling, and
with constraints on the coupling force

For the simulation, set

71 = 1.0, 72 = 0.02, 73 = 1.0; ~ W r = 10.0 and Ts = 0.010

Furthermore, Fv := 0, and r2h; := +0.5, r2lo := -0.5.

(7.26)



7.3 Systems with Dominant Higher-order Plants 397

I.'

,
o.a

0.'

0.' ,
/

0.' I,
I ,~ -

·0.2

·0.4

-a.'

-a.a
\.50 0.5

\.,
'.5

0'--~- .,
- "

,.5

0,.

0,'

~
- -- - -- - -- -- - -- - -- ....

" I

o' i
,
\,

I

0'
.,

I, I

I, - --/' - -"-~

[]-a" - - ~
- .,

-a,' "
-0.6

-0.8
0 0.5 I.' .,. '.5

I.'

0.3

, '
0.'

,,- - -- - -- - -- -- - ~- - -- -,
I0.'

" " ,
0.' I

; .. I

.....:-.....-----

[]-0.2 _- k;
- "

~O•• "
-0.'

-0.8
0 0.' 1.5 '·5 3.5

Fig. 7.16. Transient response of the control system in Fig. 7.15, with fh = 2.f.?1:
(top) .f.?l:= O.5wr ; (center) .f.?l:= lwr ; (bottom) .f.?l:= 2wr



398 7 Generalized Override Control

Note that the gain factor k2 of G2 is

Therefore, applying r2hi := +0.5 requires an input working range up to

which motivates setting Uhi:= +1.10 and also Ul a := -1.10.

Transient Responses

The dynamic performance shown in Fig. 7.16 is again very acceptable. Notice
in the R l loop the countermovement on u(t), which is typical for plants with
resonances, and which gets more pronounced for increasing bandwidth .al .

Stability Properties

For the output-constrained (but not input-constrained) case, with compen­
sating awf gains

8(82 + TI+Ta)
Tl T2T3

In other words, the part in the plant transfer function from the resonance
cancels in (F+1)a, and thus is no longer of influence to the stability properties
here.

But there is no such cancelation for the input-constrained cases (b) and
(c), i.e. in (F + 1h and (F + 1)c.
However, from the stability charts, case (b) has better properties than the

double integrator chain, because the Nyquist contour starts in the right half
plane.
And in case (c) the Nyquist contour starts vertically on the positive imaginary
axis, which also indicates better stability properties than the double integrator
chain.
This correlates well with the good performance observed in Fig. 7.16.
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7.4 Load Gradient Control

This is a very successful application of advanced input and output constraint
control with PID techniques. It has become a standard feature of control
systems for thermal power units. It is also used in other situations, where u(t)
has to be moved in a ramping manner to run along the output constraints.
The term "Load Gradient" control5 is often used in the power plant field. This
may be misleading for an outsider. More precisely it would be "load ramping
control". The gradient, which usually designates the spatial derivative, is not
involved directly here, but rather the time derivative.

From a control point of view, this is a class of plants where the transfer
function G2 (s) in the general output constraint control structure of Chapter
3 has one zero at the origin (or very close to it). And the zero is not canceled
by a corresponding pole, as has been the case up to now.
In other words, G2 and G1 shall now model different physical parts of the
plant. Thus, the integrators in both transfer functions are not associated with
the same physical balance equations, such that canceling zeros and poles from
G1 and G2 may have secondary effects on observability and controllability.
This difficulty did not arise in the applications investigated so far.

Considering implementation, its structure can be built from standard mod­
ules within industrial process control systems. This evidently contributes to
its popularity.

We shall start with Henry's case as a motivating example. Deviating from
our usual procedure, we shall use this directly as the current benchmark.
Then we shall perform the required modeling, design the linear controllers,
and add the override and awf. This will require some additional elements to
what has been used so far. On this structure, we shall investigate the transient
response for performance, and check the stability properties.

7.4.1 Henry's Case

For many decades there was an iron rule in steam turbine operation about load
changes: within a band of ±1O% of rated load, fast load changes were allowed.
For larger load swings a loading rate or "gradient" of ±5% / min was imposed.
This was to constrain transient temperature differences in the thick-walled
turbine casings, rotors, etc., and thus to limit transient thermal stress and
ultimately to avoid material fatigue, cracking and permanent deformations.
This constraint had to be observed regardless of the thermal state of those
thick-walled components, which is different after a long standstill (cold start),
when temperatures are at ambient, from the state after a weekend shutdown
(warm start), and from the state shortly after a unit trip (hot start).

5 And other similar names, many of them proprietary.
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From a control point of view, this is a feedforward output constraint strat­
egy. It will have to be set to the most constraining situation, i.e. the cold
start. It is conservative for all other situations; consequently, load-following
to grid demand is slowed down unnecessarily.

In the early 1970s, analog electronic control equipment had replaced the
previous generation of mechanic-hydraulic systems. It was much more flexible,
and opened the way to a more refined strategy.

At that time Henry was a senior electronic control specialist with a major
supplier of steam turbogenerator sets. His project was to design, implement
and test an electronic control structure, which allows a better exploitation of
the thermal state within the turbine.
In terms of Chapter 1, the idea was to replace the rigid feedforward scheme by
an output constraint feedback control. More precisely (see chapter 3), the main
(Yl) loop is for turbogenerator power output. The constrained variable (Y2) is
an estimate of the most limiting thermal stress. It is obtained by measuring the
temperature difference between the surface (with fast temperature response to
heat input) and the interior of the thick turbine casing (with slow temperature
response). And the control variable u is the turbine inlet valve stroke.

Henry designed such a control structure with an intuitive approach, using
many of the ideas from the previous chapters. The first test was on a cold start
and the loading was following the "iron rule" closely enough. Then the warm
start was tested. Power was ramping up much faster as expected. This was
so unexpected to the plant operations manager that he had to be restrained
bodily from tripping the unit. But the test was successful. However, Henry
detected some weakly damped transient behavior in the loading phase. He
soldered in a larger capacitance on his printed circuit. On the unit loading
test next day, the control performance was to his satisfaction.

Finally, this new scheme was such a success, that the supplier was not
able to sell any new unit without this loading controller. It quickly expanded
to steam generator control and to the whole power-generating industry. Since
then it is a standard control feature.

As stated above, we shall use this case as the current benchmark, and start
by developing a suitable model.

7.4.2 Modeling

Fig. 7.17 is a schematic of the relevant subsystems, the control valve with
servomotor and input u, live steam pressure Ps and temperature {)s, the tur­
bine rotor and the generator rotor with its electric power output Pel, and the
turbine casing modeled by two metal layers with temperatures {)l, {)2 at their
respective centers of mass, and one isolation layer to ambient temperature {)3'

The steam temperature at the most critical location shall be {)o.
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PSfrag replacements

U

ps; {)s

Fig. 7.17. The steam-turbine-generator subsystem with the thick-walled turbine
casing, modeled by two metal layers and an isolation layer

Assume that steam pressure Ps and temperature {}s are constant.

Then the power output of the turbine is proportional to mass flow, i.e. to
u. Any small time constants from servomotors and other storage elements,
as well as the generator dynamics, shall be replaced by a pure delay element
e-SD1 , i.e.

G1(s) = Yl = Pelf e-SD1 with index f for full scale
U Uf

Pelf
and by scaling set -:= 1 (7.28)

uf

For the metal temperature model, it is assumed that heat conductivity within
the layers tends to infinity. The finite conductivity is concentrated into thin
interfaces. This leads to one first-order differential equation for the thermal
energy content (heat balance equation) for each layer, and one algebraic equa­
tion for the heat flow I~-+k+l across each interface, which is driven by the
temperature difference.
Also, the local steam temperature {}o along the length of the turbine will
drop due to the expansion. This shall be proportional to mass flow, i.e.

{}oNs = 6u.

Then (see Fig. 7.18)

for layer 1

and for layer 2

d * *
mlCl dt {}1 = 10-+1 - h-+2

iO-+l = afA ({}o - {}d
*
h-+2 = (JA ({}1 - {}2)

d * *
m2 C2 dt {}2 = h-+2 - 12-+3

i2-+3 = ,A ({}2 - {}3)

aA ({}s6u - {}d

(7.29)

(7.30)
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For brevity we use

Xl = (::); X2 = (::); Tl = ~~l; T2 = ~~2; k = 1; f = ~ ~ 0
(7.31 )

which yields

and

d
Tl

dt
Xl=-(k+l)Xl + x2+kb·u

d
T2 dt X2 = + Xl X2

Y2 = Xl - X2 (7.32)

and

This produces the transfer functions

Xl = kb ST2 + 1
U S2 T1T2 + S [Tl + T2(k + 1)] + k

X2 = kb 1
u S271T2 + S [71 + T2(k + 1)] + k

i.e.
~=U~ ( )
u S271T2+S[71+T2(k+l)]+k 7.33

which has the typical "zero at the origin" mentioned above.

u [0·· ·1]

PSfrag replacements

+

+
j-------{ ,BA

+
1---+- {)2

--------.------.----<~A-_)--------:~) ~
: {)3

Fig. 7.18. Model structure for Fig. 7.17
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However, if f. is not zero, but positive small, then the zero will be on the
negative real axis, i. e. near but not at the origin.6

In order to take the non-modeled fast dynamics into account, a pure delay
element e-SD2 is appended.

The numerical values for the simulation are set to:

a := {3; i.e. k = 1; 8 = 1.0; 72 = 60 s; and 71 = 72/9 = 6.667 s; (7.34)

This is from setting d1 = d2 /3, where dj is the thickness of layer j.

With the material properties of ferritic steel, this leads to d1 ::::: 10 mm, i.e.
d2 ::::: 30 mm, and to the overall wall thickness is d1+d2 ::::: 40 mm. Furthermore,
set D 1 = 3.0 s; D2 = 0.5 s

Defining 7 as a new time constant 7:= ¥ := 20 s

G - e-SD2 3 (S7)
2 - 2

(S7) + [1/3 + (2 . 3)] (S7) + 1
(7.35)

It is convenient to do time scaling to 7, i. e. one time unit t' is now equivalent
to 20 s, or t':= t/20. Consequently Sis replaced by s' = S/7 in the transfer
functions, where s' is in p.u. and no longer in S-1.
Therefore, D~ := 0.15; and D~ := 0.025.

Notice that the values for the physical parameters are fairly realistic.

7.4.3 Controller Structures and Transient Response

Four control structures shall be discussed. Version A implements the "iron
rule" strategy, and produces a base line for the subsequent designs. Then a
simple version of override control (B), and two more complex ones (C and D)
are discussed, where D will introduce a new design element, i.e. an extended
form of awf.
The same investigation pattern shall be used, starting with the control struc­
ture, followed by the design of controller parameters, and transient responses.
Stability analysis will be performed at the end for all four cases.

Version A: The "Iron Rule" Feedforward Approach

The control structure is implemented as one linear controller for Y1 and a
subsequent nonlinear block on u, which shapes u(t) according to the "iron
rule" specifications in a feedforward manner; Fig. 7.19.

6 Check this as a short exercise.
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kJl"T,

L..---------------__---1j\..-_----'

Fig. 7.19. Control structure for version A, the feedforward implementation

The parameters of the step-and-ramp generator are the instantaneous step
size uSup ' U Sdn , and the ramp gradient set by the saturation in the integrator
input at urup ' urdn with the feedback gain kr := 2.
As to R 1 , a PI controller with weak proportional action is best suited for
the type of G1 (s). Here, the proportional path is set to zero for simplicity,
i.e. an integral controller is used. The awf loop to R 1 is taken over from a
non-dynamic saturation.

(7.36)k' = n1''1
i.e.

In the linear control design phase, only R1 need be determined. It is de-
signed by pole assignment as previously in the time-scaled system:

A 1 k~1 1 a ' n'= +- --t =S+ Jt 1
S'

with an upper limit n~" (u stands for "ultimate")

n' D' < ~ and in numeric values n'l" ~ 451" 1 - 2 (7.37)

The other phase shift of 1r/2 up to the critical one (1r) is contributed by the
integrator. Note that here the delay D~ has been augmented by two times
the sampling time T~, which is set to T~ = 0.005 (i.e. Ts = 0.10 s in real time).
The numerical value for the bandwidth shall be n~ = 12.0, having a sufficient
margin factor of rv 4 to n~". And the awf gain k f is set to the compensating
value kj.
Considering the awf gain, note that the I(aw) controller in Fig. 7.19 is in the
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output conditioning form (as shown in Fig. 2.11), and not in the generalized
form used in Chapters 2 and 3 for the stability test. However, to obtain the
same awf loop gains:

ka
yields kf = T

i
Ts

! kf
ka = TiTs

k*
and with the definition ~:= fl ---+

Ti
kj = flTs (7.38)

Also note that this result is independent of the dominant order of the closed
loop.

As to the transient responses, all the following simulations are for a "cold
start". At time zero the unit is at the spinning-no load condition: it is con­
nected to the grid, the power control loop is on automatic and the power
setpoint is at near zero. The turbine is at thermal equilibrium for this oper­
ating point, i.e. at low metal temperatures.
Then at t = 1 a power setpoint step is applied to 100 %, and both the tran­
sients for power Yl and the constrained temperature difference Y2 are
plotted.7 On the left side the full transient is shown, and the right side zooms
in on the first minute after the setpoint step rl = 0 ---+ 1 is applied to show
more details about the dynamic performance of the Yl- and Y2-100ps.
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Fig. 7.20. Loading transient with controller version A of Fig. 7.19:
(left) full run-up transient; and its initial phase (right)

Fig. 7.20 shows the responses for the feedforward strategy to constraining
Y2. Three step sizes are investigated.

7 Note that time units are in minutes in the following graphs of Sect. 7.4.
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If no such step is applied (Ust = 0), then Y2 (t) slowly rises to its equilibrium.
The power ramp-up is delayed by 2 time units with respect to the Ust = 10%
step response. There, Y2 (t) moves quickly close below its constraint setpoint
and then slowly rises to its final value. However, if a step size of Ust = 12.5 %
were applied, Y2(t) overshoots and takes about 5 time units to return to the
constraint level.

To summarize: the "iron-rule" step size of Ust = 10 % reproduces the
expected response quite well. This gives an indication about the validity of
the model.

Version B: Standard Overrides

The basic idea is to go on using R1 as designed for version A, and use PI(aw)
controllers for the R2 .

The control structure B is shown in Fig. 7.21.

yl

y2

Plant

kp2dn

'--------------------tRI4------'

L.----------------lRI+--------'

Fig. 7.21. Control structure for version B, with the PI(aw) feedback implementa­
tion for R2
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Note that the R2 are in parallel form, such as to accommodate any negative
kp resulting from pole assignment to low st~ entries.
The notation hi, 10 for the override controllers has been changed to up, dn, as
this fits better here.

In the linear control design phase, the main controller R 1 is taken over
from Version A without any changes.

And for R2 , the characteristic equation is (without the delay D 2 ):

k~2 s' + k~2 3s' '2' (/ ') ( , )
0= 1+ s' S'2 + (19/3)s' + 1 = s + s 19 3+ 3kp2 + 1+ 3ki2

(7.39)
that is

3k~2 = st~2 - 1; and 3k~2 = 2st~ - 19/3 (7.40)

with the upper limit for st~u > 10 (from simulations: st~u ::::; 15 is suitable).
And there is a lower limit as well, because negative controller parameters
should be avoided. This leads to

st' > ~ 19 = 3.1667
2 - 2 3

The awf gain is set to the compensating value (kh := st~Ts).

Numerical values for the bandwidth are set to st~ = [3.1667, 4.0, 5.0],
these having margins to st~u of;::: [5, 4, 3] respectively.

Note that in Eq. 7.39 the pole at the origin from the PI controller is
cancelled by the zero at the origin in G2 (s) of the plant. In other words, one
has to expect that the control error e2 does not converge to zero for nonzero
constant setpoints r2lo' r2hi' To keep this offset small, st~ must be made as
high as possible, i. e. not far below the limit st~u'

The transient responses in Fig. 7.22 show how this structure performs.
There is some overshoot of Y2 in the first minute. Then Y2 stabilizes to some
value below r2hi' This steady state control error diminishes for higher entries
of st~, but the overshoot increases. The effect on power (yI) is a slower run-up:
with st~ = 3.1667, about 2 min are lost at the 100 % power endpoint. With
st~ = 4, approximately 1 min is lost, and about 0.5 min with st~ = 5.
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Fig. 7.22. Loading transient with controller version B of Fig. 7.21, with compen­
sating awf gains kjl' kj2: (left) full run-up transient; and its initial phase (right)

Version C

In order to suppress this offset, an additional integrator is inserted at the
controller output; see Fig. 7.23. Its function is to cancel the zero in G2 .

L...-----~------------_____1.f\.I4---'

l---------------_____1.f\.~--'

Fig. 7.23. Control structure for version C, with R1 as PI(aw), and R2 as "PI(aw)
and D", followed by an integrator block after the selection
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The integrator is inserted at the controller output downstream of the selec­
tor block. Note that this is one possible layout. There are several alternatives
around in practice. The individual controller structures are PI(aw) for R1 ,

as G1(s) is now of dominant first order, and "PI(aw) and D" for R2 , as the
denominator of G2 (s) is of dominant second order.

The linear control design for the main controller R 1, setting D 1 := 0

O=l+kpls'+kil .!.l--+s,2+ s'k +ki =0 (7.41)
s' s' P2 2

and thus

(7.43)

kh = n? and kPl = 2n~ (7.42)

with an upper limit n~u at ~ 45, and no lower limit to avoid negative feedback
parameters. Therefore, as above set n~ := 12.

For the override controller R2 , with D2 := 0

0= 1+ kd2S,2 + kp2 s' + ki2 .!. 3s'
s' S' S'2 + 19/3s' + 1

= s,3 + S,2 (19/3+ 3kd2) + s' (1 + 3kp2 ) + 3ki2

i.e.

3ki2 = n~3; 3kp2 = 3n~2 - 19/3; and 3kd2 = 3n~ - 1 (7.44)

with n~u from simulations at rv 16, and for the lower limit n~ ~ j1i = 1.45.
Therefore, set n~ := [2.0, 3.0, 4.0], yielding a margin to nL ~ [8, 5, 4].

The transient response in Fig. 7.24 shows that this performs as expected.
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Fig. 7.24. Loading transient with controller version C of Fig. 7.23, with compen­
sating awf gains: (left) full run-up transient; and its initial phase (right)
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The steady state error on Y2 now tends to zero with all .n~ entries, and
the run-up time to Yl := 100 % is increased only marginally (rv 0.08 min for
.n~ = 3.0, and rv 0.2 min for .n~ = 2.0). Considering the response in the first
minute, .n~ = 3.0 seems a good compromise. Then u(t) rises to the 10 % level
in about 0.2 min (compare this with version A). And there are no weakly
damped modes in the Y2 (t) response.
Note that the size of the actual delay D 2 is the key factor for sizing .n~ and
obtaining a good performance.

Version D

The structure C has two weak points, which must be addressed now.
One is the "PI(aw) and D" form of R2 . This does not perform well with
high-frequency disturbances, and therefore should be avoided. The second
weakness is the awf tracking signal being the output of the selector block.
This implicitly assumes that the additional integrator output is always within
the control saturations. Otherwise it will wind up.
The basic idea is to replace the structure of R2 in C, which consists of a PID
structure in series with an I element, by a "P+I+12" structure.
Correspondingly, the R1 -controller changes to "1+12". Then the selection
takes place on the control signal u (and not on its time derivative as in version
C). Therefore, saturations on u can be implemented directly; e.g. see Fig. 7.1.
Note that the "P+I+12" or "1+12" structures are not standard in all industrial
process control systems. And this will also need a modification in the awf loop;
see below.

The control structure D is shown in Fig. 7.25. The integrator which has
been inserted downstream of the selector block is now moved upstream into
all three controller outputs, as in Chapter 3, forms H to K.

Then the basic idea is to extend the awf concept of Chapter 2, such that
the tracking feedback now acts on both integrators to keep them from wind­
ing up. In Fig. 7.25, this is implemented in the same way as in a standard
observer arrangement, where the observer output fj tracks the plant output Y
by proportional feedback with gains gi of the observer error e = Y - fj to each
of the i observer states (integrators). Here, the awf error ea = u(t) - U2(t)
provides proportional feedback to all controller integrators, with gains kIi.

For the linear controller design let

and similarly

(7.45)

(7.46)
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Fig. 1.25. Control structure for version D,
with R 1 as "I+e(aw)", and R2 as "P+I+I2 (aw)"

The characteristic equations then are the same as for version C, and thus
the controller parameters for R I and R2 shall be taken over without change.

Note that the awf in Fig. 7.25 has been slightly modified from before: the
summing point of the awf signal to the integrator input signal elki1 is moved
upstream across the factor Ts , such that the R I2 (z) := Ts /l- z-l block now
is equivalent to the continuous integrator R21 (8) := 1/8. This is equivalent if
for the compensating awf gain kj := n~ instead of kj := n~Ts. This makes
the design for the R2 awf more transparent.

Now the awf gains kI, are designed. The "compensating awf" idea from
the stability analysis in Chapters 2 and 3 and the noise effects discussion in
Sect. 5.3 suggests using pole assignment for this awf feedback system as well,
which is now of order higher than one. In this particular case, a first choice
would obviously be (see Fig. 7.25 for definition of khl and kh2):

And for the R I controller:

O 1 k 1 k 1 ~ (8' + n'I)2= + III I + h 2 12 Jt
8 8

i.e. kh2 = n? and kIll = 2 n~

(7.47)

(7.48)



412 7 Generalized Override Control

An alternative to assigning the awf loop poles in the R2 controller is

(7.49)

The second version is used for the simulation. The reason will become clearer
in the stability analysis below.

Transient responses

Again, this performs as expected; Fig. 7.26. There is no perceptible difference
to the responses with version C in Fig. 7.24. Again, this will become clearer
in the stability analysis.
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Fig. 7.26. Loading transient with controller version D of Fig. 7.25: (left) full run-up
transient; and its initial phase (right)

Discussion

The only weakness now seems to be the small size of the "initial instantaneous"
step of delivered power Yl. However, this can be tolerated, as the time interval
for moving up u to 10 %of I'V 10 s is acceptable as seen from dynamic power
grid requirements.
Note also that the two-compartment model for the turbine casing is only
valid for low frequencies. In fact, applying a step in u to a multi-layer model
produces a sharp but short peak in temperature differences, i. e. thermal stress,
which will accelerate surface ageing. Therefore, one is interested in reducing
step size and step slope on u(t). And a similar argument holds for thermal
stresses in the steam generator. In other words, the shape of u(t) produced by
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versions C and D is even better suited than the "step and ramp" shape from
the base line version A. By the way: this is a typical discussion in thermal
power plant operation on the tradeoff between faster grid load-following and
longer life expectation for equipment.
For brevity, no small-sized power setpoint step responses are shown here, and
also no cases other than "cold" loading. You may investigate this and other
questions in the proposals for case studies in Sect. 7.4.5.

7.4.4 Stability properties

Version A

The relevant part of the system is shown in Fig. 7.27 (a). The nonlinear block
consists of two nonlinear elements in parallel, and therefore does not comply
directly with the assumptions on the sector nonlinearity.
But inspection of Fig. 7.27 (a) and its expected step response suggests a
(conservative) approximation, which has the required properties, see Fig. 7.27
(b): the direct path is suppressed, and only the ramp part is considered.

"-

L----------------------1j\.I+---....J

Y'-

"-
Fig. 7.27. Stability test for version A: (top) original structure (a); (center) con­
servative approximation (b); (bottom) with shifted inputs to the awf (c)
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This may be redrawn into Fig. 7.27 (c), by shifting the awf inputs to the
input and output of the ramp saturation. Then, this is the system we have
investigated in Chapter 2 and shown to be asymptotically stable in the large.

Exercise
Check the statement about Fig. 7.27 (b) being a conservative approxi­
mation, and check for which assumptions (c) is equivalent to (b).

Version B

The nonlinear system in Fig. 7.21 is the standard one from Chapter 3, and
the main result from there can be applied directly.

1
(F+1)B= RG (1 + khGalR12) (l+RzGz)

1+ 1 1

s' s' + kh (s' + n~)Z s'

s' + n~ s' s'z + a s' + 1 s' + kh

s' (s' + n~)z

s' + n~ s'z + as' + 1

1

(7.50)

where a = 19/3 from the 1: 3 thickness relation of wall layers.
Note that this is independent of the value inserted for kf = kh = kh .

Fig. 7.28 shows the Nyquist plots for n~ = 12 and n~ = [3.166, 4, 5].
The Nyquist contour of [F(jw) + l]B for the stability test starts at (-1; jO)
in the vertical direction. This indicates good stability properties.

,
\. - ... \
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D'

, , -D.2 ,

1-= 0,·'''''1.4.0
- a 5.0

-o.L-~_~_~~_--:,:-_~----l
..0.2 0.2 0.. 0,6 0.8 I 2

Fig. 7.28. Nyquist contour with controller version B of Fig. 7.21

Version C

Again, the structure Fig. 7.23 fits into the framework of Chapter 3.



7.4 Load Gradient Control 415

s' +kj,
s'

(7.51 )

(s' + Sl~)3 s'

s' (S'Z + as' + 1) s' + kh

(s' + Sl~)z

s'z + as' + 1

s,z
(F + l)c - -----n

- (s' + SlD z

and with kj, = kh

s'
(F + l)ca = s' + Sl~

s' + Sl~

s' + Sl~

with the same remarks as for Eq. 7.50.

Fig. 7.29 shows the Nyquist plots for Sl~ = 12 and Sl~ = [2.111, 3, 4].
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o.

02

,,,,
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Fig. 7.29. Nyquist contour with controller version C-a of Fig. 7.23

The Nyquist contour starts from the origin in the vertical direction, and
indicates asymptotic stability for almost all initial conditions.
Alternatively, let kj, = Sl~; kh = Sl~. Then, from Eq. 7.51

s' (s' + Sl~)z
(F + 1)Cb = S' + Sl~ S'Z + as' + 1 = (F + I)B (7.52)

Version D

1

(s' + SlD
z

X (s' + Sl~)3
S' (s'Z + a s' + 1)

The main result of Chapter 3 applies again.

1
(F+l)D= I+R

1
G

1
(l+kj,Ga1 R 12 ) (I+RzGz)

1+ khGa2Rz2

(s' + kj,) (s' + kfJ
s'z

where kj, = Sl~; kh = Sl~ (7.53)
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Note the particular choice of the characteristic equation for the second-order
awf loops.
Then

(F + l)D
(s' + S?~)2 s'

s,2 + as' + 1 s' + S?~

(s' + S?~) s' s' + S?~

S'2 + as' + 1 s' + S?~

(7.54)

The stability properties are the same. Therefore, the finding from the simu­
lations is not surprising that the transient responses do not differ. Note that
this is connected to the particular design of the awf gains.

7.4.5 Some Suggestions for Case Studies

The aim here is to extend the investigations such as to approach real design
situations more closely. You may select items you are particularly interested
in from the following menu. They are on structures and transient response,
i.e. on simulations, and should be extended into stability analysis.

Check the performance of the linear Yl loop by small enough L1rl.

What is the effect of a nonzero heat loss 0 < I « (3 (see Fig. 7.18).

Investigate D~ up to 0.05, as the current value seems rather short for
typical sensors.

Investigate the effect of a high-frequency disturbance on measured tem­
perature 191 , with a peak-to-peak level of 0.002 of span. In other words,
is the "PI(aw) and D" structure for R2 a realistic option? How much is
version D performing better?

The input u may also saturate. This may arise if the Yl loop is operated
at very low or very high setpoints rl, i.e. near to fully closed or fully open
steam valves (see Fig. 7.17). Design suitable add-on awf loops to versions
A through D.

Replace the current casing model of Fig. 7.18 by a three-layer one,
where layer 1 and 2 are as before, but there is a layer 3 attached to the
outside with thickness t3 = 3t2 := 90 mm, but still with Y2 = 191 - 192 as
the constrained output. This is more realistic for large, high-pressure and
high-temperature units. Use versions A through D.

Alternatively use a three layer model to catch better the surface ther­
mal transients and thus get an indication of thermal ageing, using tl =
3 mm, t2 = 9 mm, t3 = 27 mm, with Y2 = 192 - 193 for constraint control,
and observing Y3 = 191 - 192 , but not controlling it. Again use versions A
through D.
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Investigate the "warm" and "hot" loading cases. For this, modify the model
in Fig. 7.18 by having the heat transfer coefficient a not constant, but
proportional to steam mass flow, i. e. to u.
Hint: the Y2 model will be nonlinear. One possible design approach would
be a linearized model having floating coefficients and robust controllers
with fixed coefficients.

And finally, if you are familiar with the variable pressure mode for power
control of thermal units ....

7.5 Override Action on the Reference Input

7.5.1 Introduction

One of the basic assumptions in Chapter 3 has been that the additional feed­
back from the constrained output Y2 is acting on the control signal u, as in
the "control conditioning" approach to antiwindup.
This may not be always easy to accept in practice. Consider, for instance, the
attitude control system of an aircraft, where such a "breaking of the control
loop" by the override and the minimum selector is difficult for the pilot to
accept for safety reasons. He would prefer that the basic loop remains intact,
and the override acts on his command inputs, such that he can switch out
this additional function if necessary, and supply it in manual mode.
A second argument is that the aircraft will react quite differently to the pilot's
stick inputs when the override takes over. In other words, there is no compro­
mise between the original control and the constrained one. This second point
will be looked into in Sect. 7.6.

A similar topic comes up with multivariable control systems and con­
straints. There, the design of the linear control system is much more involved
and the linear structure of R1 is more complex, because the interactions or
cross couplings between plant inputs and outputs have to be accounted for.
So it would seem unreasonable or even dangerous to disrupt this finely tuned
structure by letting some override loop take over any plant input. But it would
be much more transparent to have such overrides acting on the references to
R1 , and thus on the next higher hierarchical level.

This motivates investigation of the consequences of overriding the setpoint
instead of the control variable. This would be similar to the "reference condi­
tioning" paradigm in antiwindup.

The single input loop shall be considered here (as this has been the case
so far). A benchmark is specified first. Then three versions for the controller
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shall be looked into.8 The standardized methodology from above is used. It
starts with a structure (based on intuition). Then the linear feedbacks are
designed. The transient performance on the benchmark is shown by simula­
tions, and illustrates the performance achieved. Finally, the stability analysis
is performed.

7.5.2 The Benchmark

This shall be the same as in Chapter 3, to allow a direct comparison. Consider
the positioning of a rigid mass with an actuator force u against an unknown
load force v. No friction and no spring forces shall be present. The main output
to be controlled is the position Yl. And there is a constraint on speed Y2. A
small delay D shall approximate the dynamics of actuator and sensors. That
is

(7.55)

with numerical values

T1 = 5.0 s; T2 = 1.0 s; D = 0.025 s; (7.56)

The test sequence shall be starting from equilibrium at rl = O. A large setpoint
step to rl = 0.98 is applied, which will lead into the speed constraints. During
the run-up a load step v = 0.90 is applied to check the performance of the
speed constraint feedback. After stabilizing at Tl = 0.98 a small setpoint step
is applied to check the linear response of the Yl loop. Finally a load swing to
v = -0.90 is injected to check the disturbance suppression.
The constraints are set to

Ul o = -1.20; Uhi = +1.20; T2/ o = -0.50; r2hi = +0.50 (7.57)

The controllers shall be in discrete-time form, with sampling time T s = 0.010.

7.5.3 The Design Targets

The final design targets shall be

no significant overshoot of Y2 on r2hi during run-up,
no steady state offset on e2, (which would slow down the run-up),
no steady state offset on el,
high closed-loop bandwidth for both linear loops (i.e. no significant band­
width restrictions due to the nonlinear operation),
acceptable closed-loop damping in both linear loops.

8 Note that there are many other possible structures.
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7.5.4 Form A: Nonlinear Y2-Feedback

This approach has been proposed, for example, for vehicle anti-roll-over [50]
and aircraft attitude control [55].

Structure

From Fig. 7.30, this consists of a P-P cascade controller for R 1 with gains kSl
for speed feedback and kPl for position control. And the nonlinear Y2 feedback
consists of a P element with gain kP2 and a deadspan element with breakpoints
at

(7.58)

The override is additive on the main setpoint Tl (t), thereby modifying it into
the actual setpoint w(t) for the Yl loop.

,--------------r----------11\I+----,

w(t)

'-----------------t1\~-....J

Fig. 7.30. Controller structure version A

It has also been suggested to replace the P element with gain kP2 in Fig.
7.30 by a first-order lag with gain kP2 and time constant T2 after the nonlinear
element, where T2 is an additional design parameter. The idea is to smooth
the override action further, and thus to reduce the effect felt by the pilot. On
the other hand, this obviously compromises the performance of Y2 along T2hi

even further.

Exercise
- Investigate this alternative using the standardized methodology.
- Are there other suitable transfer functions R2?

Linear feedback design

For small Tl values, there is no override action, and the system response is
linear. It is determined by R1 :
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R1G l
Glin = 1+ R1G

l
(7.59)

Neglecting the small delay D, i.e. designing for the dominant dynamics:

G
. - kp1 ksl ! SIr

I (7.60)
me - s2T1T2 + sTlks ! + kp ! kSl (s + Sll )2

For a given bandwidth Sll then

(7.61)

where the bandwidth Sll has an upper limit from the delay D.
For large inputs rl, the nonlinear element produces an additional feedback of
Y2. Consider the isolated Y2 loop (this will become clearer with version B).
Its characteristic equation is

(7.62)

(7.63)

that is
1 1 [Sl2 ]kP2 = kk (Sl2T2 - ksJ = ... = SI T ""if - 2
PIsIll 1

where the bandwidth Sl2 has an upper limit from the delay D, and also a lower
limit Sl2 / Sll > 2, as kP2 must be positive. And finally, if the design value for the
bandwidth Sll of the main loop is increased, then the override feedback gain
kP2 decreases, and therefore the tracking quality and disturbance suppression
of the override loop decreases as well. In other words, there is a trade-off
between the performance of the main loop (given by nl , i.e. kp1 , ks !), and
the performance of the override feedback (given by kP2 with fixed Sl2 at its
upper limit).

For numerical values on the benchmark:

let D e := D + Ts ; and using

that is

21f
W u = --

4De

Wuset Sl2 = - ----+ Sl2 := 15
3

(7.64)

Sll O.75 1.50 3.00
kP2 4.80 1.0667 0.20

which clearly shows this trade-off.

Transient Response

The responses shown in Fig. 7.31 illustrate the results from above. With the
lowest entry for Sll , there is a constraining effect on Y2(t), but not up to
specifications. However, the steady state control error el is largely insufficient.
For Sll = 3.0 this is much improved, but it is still not up to specifications,
whereas the constraining effect on Y2 is not visible any more.
A better solution must be sought.
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Stability Analysis

At least this configuration has good stability properties. The structure Fig.
7.30 is in canonical form for the stability test. The nonlinear subsystem is the
deadspan element with breakpoints from Eq. 7.58 and unity slope outside.
And the linear subsystem has the transfer function

L = sT1kp2

((slnt) + 1)2
which has the properties required by the circle test. Its Nyquist contour L(jw)
evolves from the origin into the right half plane, and thus stability can be
deduced for almost all initial conditions.

7.5.5 Form B: Override Structure with P Controllers

The results of form A are far from satisfactory. They are similar to what
was found for the corresponding structure in Chapter 3. But a much better
performing solution was developed there: the linear signal Ul from the main
loop is added to the input of the deadspan nonlinearity, which compensates
its effect on U during nonlinear operation.

Structure

This idea is not directly applicable here, as Ul was the output of a controller
R1 and not a reference input r, as it is the case here. However, there is a
simple way to link the basic system from Chapter 3 to this case; see Fig. 7.32.
Fig. 7.32 (a) is a form of the generic structure of Chapter 3, where the

nonlinear feedback acts within the controllers R j = Rj ] R12 , j = 1,2, such that
Rj ] is upstream and R12 is downstream of the "nonlinear additive" element,
which is highlighted in Fig. 7.32 (a). That is (variables are defined in the
figures):

From Chapter 3 this is equivalent to the structure with a Max-Min-selectors
block placed on the control error el of the main loop and having as override
inputs U2hi = kP2 (r2hi - Y2) on the Min-selector and U2lo = kP2 (r210 - Y2) on
the Max-selector. From the simulation results in Chapter 3 this structure can
be expected to perform much better, although there may be a tendency to
overshooting on both Y2 (t) and Yl (t). This structure also allows the "prefab­
ricated" stability analysis of Chapter 3 to be applied directly. So this seems a
reasonable base to start from.
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Fig. 1.32. Developing the basic override configuration (a), (top)
into Controller structure version B (d), (bottom)
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Then, in Fig. 7.32 (b), Yl(t) is added and then subtracted in sequence
downstream of the "nonlinear additive" block. This evidently has no effect on
function. But it introduces the "setpoint minus measured variable" element
upstream of the kP1 block in the original structure in Fig. 7.30. In other words,
Fig. 7.32 (b) now contains the complete R1 loop of the original system.

Next, in Fig. 7.32 (c), the summation block inserted in Fig. 7.32 (b) is
moved upstream along the linear path. And the rl - Yl block at the input of
R11 in Fig. 7.32 (a) is moved downstream.

Then, on the linear path, the consecutive subtraction and addition of Yl (t)
cancel, and the setpoint rl is left, as in Fig. 7.30; see Fig. 7.32 (d). But on
the input to the deadspan element the rl - Yl block is still there.
In other words, the structure in Fig. 7.32 (d) is equivalent to that in Fig.
7.32 (a). And Fig. 7.32 (d) is the original structure from Fig. 7.30, with one
modification: the addition of the control error el to the input to the deadspan
element.

So far, the well-known block diagram manipulation rules have been ap­
plied. An alternative is the algebraic approach as follows. Start again with
the basic structure from Chapter 3; Fig. 7.32 (a). There, with dsp denoting
the deadspan function:

U = Ul - dsp(wz +Ul) where Ul = l(rl - Yl)
i.e. U = (rl - Yl) - dsp [wz + (rl - yd]

re-written as U = [rl - dsp(wz + el)] - Yl = W - Yl (7.67)

where w is the modified setpoint to be applied to the closed loop. And this is
the structure version B; see Fig. 7.32 (d).

Linear feedback design

The controller R1 for linear range operation is the same as in version A, and
thus kp1 , kS1 are carried over with the same numerical values.

During nonlinear operation, the effect of Yl (t) is canceled by the addition
of el (t) to the input of the deadspan element. And the effect of yz(t) is carried
through without modification. Considering the Max-Min-selector implemen­
tation of Fig. 7.32 (a), then the closed loop transfer function (along the upper
constraint) is

(7.68)

with the characteristic polynomial used in Eq. (7.62) for pole assignment in
the Rz loop in version A. Thus kP2 is taken over from there.
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Note that the gain of the transfer function in Eq. (7.68) is < 1. This predicts a
steady state offset on e2 (but no ramp-like behavior as in Fig. 7.31). Note also
that the trade-off between gains k

PI
kSI and k

P2
continues to hold. In other

words, increasing Q I will decrease the steady state errors el, but increase the
offset e2 during run-up.
This will have to be addressed next; see version C.

Transient Response

The simulations in Fig. 7.33 confirm the predictions. Only the case QI = 1.5
is shown for brevity.
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Fig. 7.33. Response with controller version B, Fig. 7.32 (d),
with Q 2 = 15 and Q l = 1.5; (left) full transient, and initial phase (right)

Stability Analysis

As mentioned above, the equivalent structure in Fig. 7.32 (a) is used. Then

As Q2 » QI, the Nyquist contour evolves from the origin into the right half
plane, thus indicating good stability properties.
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7.5.6 Form C: Override Control with Integral Action

Although the controller structure B with P feedback is reasonably simple,
the performance is not sufficient for most practical applications. The steady
state control errors are too large, compounded by the trade-off effect discussed
above. One approach would be to increase [22 and thus increase kp2 • But this
requires not only a shorter sampling time Ts , i. e. a more powerful micropro­
cessor, but also reducing the delay D. This means more powerful actuators
and faster sensors, which may be not feasible technically or be very expensive.
The usual approach is to add integral action. This shall be tried here as well.
It is done in the R I control algorithm first, to drive el ---+ O. Then the structure
of R2 has to be selected for driving e2 ---+ o.

Structure

The first step is to insert the integral action into R I . Here, this is done by
an additional cascaded feedback through a discrete integrator; see Fig. 7.34
(center area). For its gain Ts/Til the equivalent form kilTs/To will be used.
This integral action requires an awf with gain kal from the saturations on u.

Fig. 7.34. Control structure version C

From the linear design (see below) this in fact drives el ---+ 0, but produces
a zero at the origin in G2 . Therefore, an additional integral action is required in
R2 to drive e2 ---+ 0 during run-up; Fig. 7.34 (top left area). Its integral action
again requires an awf. The awf reference signal is picked up downstream of the
addition point for the awf from the u saturation. This interleaved awf loop
structure is taken from the "slew and stroke" constrained actuator system
(see Sect. 5.1 for more details).

The output constraint acts on the setpoint rl in Fig. 7.34 (lower left area),
using the same structure as in Fig. 7.32.
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There are other possible structures. For instance, the output constraint
may act on the output of the integral action instead. This does not comply
with the specification that the override acts on the overall setpoint, but it acts
on the setpoint for the P cascaded solution from Fig. 7.32. In other words the
integral action in the R1 loop is thought to be part of the next hierarchical
level.

Exercise
Develop this idea as version D, design the controller, and investigate
both transient response and stability properties.

Linear Feedback Design

The Y1-feedback is designed first. Read from Fig. 7.34:

Y1 (s)
w(s) s3ToT1T2+ s2ToT1ksl + sTokpl kSl + kil kPl kSl

! [2r
(s + [21)3 := Gw(s) (7.70)

that is for the R1 controller parameters:

1 2 1 3
kSl = 3[21T2; kPl = k[21T2T1; kil = kk[21T2T1To; and Til := To/kil

Sl PI Sl
(7.71)

and for the compensating awf gain: kal = 3/(kpl ksl ).

Then the Y2-feedback loop is designed. Its characteristic equation is

(7.72)

that is, R2 must be of PID type to enable the usual pole assignment procedure.
Let

R
2
(s) = kd2 (sTo)2 + kp2 (sTo) + ki2

sTo
into the characteristic equation yields

(7.73)

(7.74)

o~ s3ToT1T2 + s2ToT1[kSl + kd2K] + sTo [kSl kPl + kP2 ~~ K]

+ [kSlkplkil +ki2~~K] (7.75)
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(7.76)

In other words, a feasible solution demands [22 > [21. And with a given [21,
there is again an upper limit on [22 from D and Ts from the innermost loop.
Its gain is9

and to have acceptable closed-loop damping, set

92 := 0.33 92u

1f T2 1f 1.0
where 92 ~ -- = --- ~ 45 i.e. 92:~ 15 (7.78)

u 2 De 20.035

In numerical values for the benchmark, where

and R1 = 1;

Transient Response

The responses shown in Fig. 7.35 confirm the predictions from the linear
design. The improvements compared with Fig. 7.33 are significant, and the
specifications are now met. This design result may be considered as a good
basis for further development.

Stability Analysis

The saturation on u shall not be considered here. You may investigate this
case as an exercise.
With the output constraint loop, the standard situation of chapter 3 arises
with

G
1
::J:: k. _1_ kP1 k S1

tl sTo s2T2T 1 + sT1ks1 + k
P1

kS1

G - k. T 1 kP1 kS1

2 - tl To s2T2T 1 + sT1k
sl

+ k
P1

k
S1

9 Check this as a small exercise.
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and with a2 = ~: and al = k~~~l

(7.79)

As ill < il2 , the Nyquist contour starts from the origin and evolves into the
right half plane, thus indicating good stability properties.

Note the relation of (F + l)c from Eq. 7.79 to (F + l)B from Eq. 7.69.

7.5.7 Summary

The practical motivation for having the override on the setpoint rl is to avoid
"breaking the loop", and also to obtain a hierarchical (two-level) function
structure.

It has been demonstrated here that having a nonlinear feedback
(deadspan) in the override feedback will not produce an acceptable result,
if practical gain restrictions due to the ever-present small delays are taken
into account.
A feasible solution has been found by developing the controller structure from
a special case of the basic one in Chapter 3. This has the benefit that the
stability analysis can use the "pre-fab" procedure from Chapter 3.
It has also been demonstrated that this leads to a more complex R 2 controller:
it has to be of the "PI(aw) and D" type, whereas in Chapter 3, a PI(aw) type
was sufficient. Note that the additional D part is particularly disadvantageous
in applications.
Also, the controller Fig. 7.34 contains two integral actions in series, because
G2 has a zero at the origin. This is due to the feedback loops in the "plant"
for the override loop (with gains k p" kp2 ). In Chapter 3 only one integrator
was required.
Finally, the R2 controller gains ki2 , kp2 , kd2 being in series with the Rl-gains
leads to severe restrictions on their admissible values, and thus to reduced
disturbance rejection in the R2 loop. This is similar to what was found in
Chapter 2 for the "reference conditioning" approach. In numerical values for
the benchmark, the upper limit was found il2 ~ ill + 1, whereas in Chapter
3, il2 = 3ill was feasible.
So, at this point, the "not breaking the loop" requirement leads to several
distinct design drawbacks. Further research may show a way out.
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7.6 A Compromise Between Yr and Y2-Control

Another paradigm so far has been that if Y2 approaches its operational limit
r2hi or r2La' then the control shall focus on driving Y2 along the respective limit
regardless of how far the main variable YI may evolve from its setpoint rI, as
long as it ultimately can reach its setpoint. Otherwise, the control problem is
considered to be not "well posed". In other words, there is a "crisp" decision
between main control or constraint control, which keeps the design and the
response relatively simple and transparent.

This may not always be the best strategy for a particular application. Some
sort of compromise between main control and override control or "softening
up the Y2 constraint" may fit the control specifications better.

This suggests using Fuzzy Logic Control techniques. Another approach
would be a suitable extension of the previous techniques. Then, preferably,
there should be no more than one design parameter governing the degree of
compromise, in order to keep the design process well in hand.

The second approach shall be followed up here. The target application
has already been mentioned in Sect. 7.5: the pilot would expect some (linear)
compromise between Y2 and YI control in the "override" mode.
For other control problems,lO another strategy would be to "override the over­
rides" . The basic idea is to implement an additional upper and lower constraint
on YI to keep it within a given range rILa' rlhi around rl' For YI (t) within
this range, the override from Y2 will be dominant, and will narrow down u.

But near the constraints of YI, this additional output constraint feedback will
have to override the constraint action from Y2, and widen up the control u
again. Thus, it will have to act on u downstream of the action from Y2. This
strategy again leads to a "crisp" decision.

Structure

The basic idea is to attenuate the output w of the deadspan element by the
new design parameter 1 - f3; see Fig. 7.36 (top).

U= UI - (1 - (3)w = UI - (1 - (3)dsp(w2 + UI) where 0:::; f3 :::; 1 (7.80)

and further

u = [1 - (1 - (3)]UI - (1 - (3) [UI - dsp(w2 + ud] (7.81 )

see Fig. 7.36 (lower left), where the part [UI - dsp(w2 + ud] is the expression
for the "crisp decision" case.

10 A typical example would be steam generator pressure control with fixed setpoint
Tl, strong "load gradient" limitations, large load swings, and pressure limitations.
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Fig. 7.36. Equivalent versions of the nonlinear element for implementing the com­
promise

- For 13 = 0, this is the crisp selection of either Ul or W2.
- For 13 = 1, L:lu = L:lul, and the R l loop is active everywhere.
- And for intermediate values of 13, u is a linear combination of both cases.

For easier implementation on a current process control system, the nonlinear
additive version is substituted by the Max-Min-selector combination; see Fig.
7.36 (lower right), with

U2hi = R2(r2hi - Y2) and U2to = R2(r2to - Y2)

U = j3Ul + (1 - 13) [Min {U2hil Max (U2to' uI)}] (7.82)

In a next step, both the multiplication by 13 and the addition point of (1- j3)Ul
are moved upstream across the Max-Min-selector block to its inputs

u = j3Ul + Min [(1- j3)U2hil Max {(1- j3)U2to' (1- j3)ud]

= Min [j3ul + (1- j3)U2hil Max {j3Ul + (1- j3)U2to' j3ul + (1- j3)udJ

= Min [V2hi' Max {V2to' Ul}]

where Vhi = j3ul + (1 - j3)U2hi and V2to = j3Ul + (1 - j3)U2to (7.83)

In essence, an offset is added to the override controller outputs. This amounts
to adding offsets to the inputs of the R2 controllers. And the offsets are pro­
portional to el. Note, that this is quite similar to what has been used in Sect.
6.14 as "selection for approach speed". So, one would predict a similar re­
sponse, i.e. Y2 being proportional to the main control error el, and thus an
exponential approach of Yl to rl.
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Exercise
This is only a sketch. Substantiate it by considering the general case.
Hint: start with a common integrator downstream of the selectors for
both el --Y 0 and e2 --Y 0, and Rj controllers containing one propor­
tional and all other feedback paths using derivatives.

The nonlinear element from Fig. 7.36 (top) is now inserted into the benchmark
system from Chapter 3 (with override action on u); see Fig. 7.37.

.---------------.--------------11\1+-----,

plant

L---------------------------11\I+---'

Fig. 7.37. Structure for position (Yl) control with speed (Y2) constraints, with a
"compromise" override block from Figure 7.36 (top), with design parameter 0 ~

,B~l

Transient response

The top left graph of Fig. 7.38 shows the response with the crisp decision
(;3 = 0) as a reference. Then ;3 is increased in steps. The changes in response
are characterized by two parameters:

Ymax/r2hi shows how far the Y2 -constraint is overrun,
and Tr shows the effect on performance of the main loop,

where the run-up time Tr is measured from the start signal to when R1

takes over for the finals approach to rl. From Fig. 7.38 read:

;3 0
Y max / r2hi 1.0

Tr [s] 10

1/8
2.0
7.0

1/4
2.9
5.8

1/2
4.0
4.5

min. time
5.0
4.0
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where the values for the minimum-time transient are appended in the last
column for comparison.
Loosely speaking, the improvement in Yl performance comes with a heavy
cost increase on Y2.
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Fig. 7.38. Runup response for structure in Fig. 7.37, with ill = 3.0; il2 = 3il1 :
(top, left) (3 = 0; (top, right) (3 = 1/8;
(bottom, left) (3 = 1/4; (bottom, right) (3 = 1/2

Stability Analysis

Consider the nonlinear element of Fig. 7.36 (left) and insert it into the basic
output constraint control system, with no constraints on u.

The nonlinear subsystem is the deadspan and unity slope element with
the same break points and input signals as in Chapter 3.
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The linear subsystem is the one from Chapter 3 again, but from Fig. 7.36
(left) with the attenuation factor 1 - (3 in series.

(F + 1){3 = (1- (3) (F + 1)1{3=0 (7.84)

Consider now the graphic stability test with a given overload of the deadspan
element, i. e. a given position .:1 of the straight line on the negative real axis,
and a given original Nyquist contour for (3 = O. Then increase (3 > O. The
Nyquist contour will shrink, but its shape will not be deformed. And the
straight line will not move. Therefore, the stability properties will continuously
improve, with respect to the initial case of (3 = O.

The next step is to include the saturations on u, as in Chapter 4.

Exercise
Compare this with the related case in Sect. 6.14.

7.7 Links to Model Predictive Control

7.7.1 Introduction

The MPC design method covers both input and output constraints, especially
if output constraints are added to a control system with input constraints.
Thus, it may serve as a reference for the intuitive design.
The Explicit MPC approach is used directly here. The main result from [59, 60]
is again that the optimal controls which takes into account both the input and
the output constraints turn out to be linear affine control laws where each one
is valid for a finite part of the bounded state space area of interest.
The design is performed on the double- and triple-integrator plant bench­
marks.

7.7.2 Case ii: The Double-integrator Plant

The benchmark of Sect. 6.16 shall be used, i.e.

Q = [~~]; r = 0.10; Uto = -1.0; Uhi = +1.0; T1 = Tz = T = 1.0

(7.85)
and with the output constraint

YZ := Xz; YZ lo = -1.0; YZ hi = +1.0 (7.86)
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Design with Low Sampling Rate

The sampling time is set to Ts = 1.0.

The results of the optimization are reported in the phase plane represen­
tations in Fig. 7.39.

25

005

-05

-,

-'5

-21-------+-------"'-~ ...

Fig. 7.39. Regions in the phase plane with linear affine control laws, for the double­
integrator case, and for different control horizon entries, Ts = 1.0:
(top left) Nu = 1: 5 regions; (top right) Nu = 2: 15 regions;
(low left) Nu = 3: 21 regions; (low right) N u = 4: 27 regions

Consider first the plot for Nu = 1. For region # 1 around the origin, the
control law is

(7.87)
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Then two horizontal regions are attached, with the affine control laws

(7.88)

The three regions are bounded by Ulo , Uhi.

Outside this linear corridor, to the lower left and the upper right respectively

U* = OXl + OX2 + 1.0 = Uhi and u* = OXl + OXl - 1.0ulo (7.89)

For Nu = 2, two small regions are added to the linear corridor in its upper
left bend. In these regions the affine control laws are for the left-hand element
and larger right-hand element respectively

U* = OXl - 1.0X2 + 1.0 and u* = -0.6154xl - 1.2870X2 + 0.4156 (7.90)

for the first elements of the optimal control sequence U*, while the second
elements are saturated. Two other regions are inserted symmetrically at the
lower right bend.

For Nu = 3, additional regions are generated. Two are within the hor­
izontal branches of the linear corridor. By inspection, the control laws are
the same as in Eq. 7.88. All others are in the areas where either U = Uhi or
U =Ulo '

And for Nu = 4, again two additional regions appear in the linear corridor,
where Eq. 7.88 holds, and all others are in the saturating region.

Design with a Higher Sampling Rate

The sampling time is set to Ts = 0.25, while all other parameters are the
same as before. This generates Fig. 7.40.

For N u = 1, the resulting control law for the central region # 1 is

ui = -2.3155xl - 2.1505x2 + 0.0

Attached to it are two regions with the resulting control laws

U; 3 = -OXl - 4.00X2 ± 4.00,

(7.91)

(7.92)

The three regions are delimited to the lower left by U = Uhi and to the upper
right by U = Ulo '

For Nu = 2, two regions are added within the horizontal branches of the
linear corridor, with the same control laws as in Eq. 7.92. Other larger regions
are generated in the lower left area, where U = Uhi, and in the upper right
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area, where U = Ula' Finally two small areas are generated in the upper left
bend of the linear corridor, and symmetrically at the lower right bend. They
are shown in more detail in Fig. 7.41 (left). For the small region to the upper
left, the control law of Eq. 7.92 results, whereas for the larger region

U* = -2.7132xl - 2.7804x2 + 0.4445 (7.93)

as the first move of the optimal sequence, while the second one saturates at

Ula'

2.5

~ ..............
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-,. -, ..
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Fig. 7.40. Regions in the phase plane with linear affine control laws, for the double­
integrator case, and for different control horizon entries, Ts = 0.25:
(top left) N u = 1: 5 regions; (top right) N u = 2: 15 regions;
(low left) Nu = 3: 27 regions; (low right) N u = 4: 37 regions
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For Nu = 3, again two regions are added in the horizontal branches of the
linear corridor, and some others in the saturating areas with either U = Uhi

or U = Ulo . And another two small areas are added at the upper left bend; see
details in Fig. 7.41 (right). For the smallest region in the horizontal branch the
control law Eq. 7.92 is generated, while for the smallest region in the inclined
part

u* = -2.8164xl - 3.2503x2 + 0.9399
for the first move in U*, and

u* = -OXl - OX2 - 1.0

(7.94)

(7.95)

for the following moves. For the larger region in the inclined part, the control
law is the same as in Eq. 7.93.

And for Nu = 4, again two regions are added in the horizontal branches
of the linear corridor, no further small regions appear at the bends, and all
further regions are generated in the saturating areas.
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Fig. 7.41. Details of the regions in the phase plane of Fig. 7.40, Ts = 0.25:
(left) N u = 2, 15 regions; (right) N u = 3, 27 regions

Discussion

As described in Sect. 6.16, the control input u*(t) to the plant is evaluated
at each time step by checking in which region the current x(t) is, and then
applying the corresponding affine state feedback control law. It is

either u* = -Kjx + qj or u* = Ox + Ulo and u* = Ox + Uhi (7.96)

Now u*(t) may be generated equivalently for this case as follows:
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In the central region # 1 the linear state feedback without offset applies;

(7.97)

and with lateral saturations at Ulo , Uhi.

In the horizontal branches, the control law u* = -k22X2 ± q2 applies,
which is independent of Xl, and laterally bounded by Ulo , Uhi. This may
be rewritten as

(7.98)

that is, a P controller for R2 with gain k22 , and setpoint ±r2, and subse­
quent saturations Ulo , Uhi.

The small regions discussed in Fig. 7.41 are attributed either to region # 1
or the horizontal branch regions. This means that, for those attributed
to region # 1, a different first control move will be generated, but the
following moves will be saturated anyway. Thus, there will be a small loss in
optimality for transients through these regions. Note that most transients
will come in with X2 ----> r2, and thus avoid these regions altogether.
For all other regions, the optimal first control move is saturated.
Thus, on the whole area of interest in the phase plane, the (slightly sub-)
optimal control law can be generated by evaluating the outputs of the R l

and the R2 controllers first, subjecting them to a Max-Min-selection, and
the result to a final saturation at Ulo , Uhi.

This is strikingly similar to what has been found for the intuitive design
method.
The only difference is in the gain k22 . In the intuitive design, this has been
a separate design parameter. Here, it is a consequence of the optimization
process and cannot be selected at will. Note that in numerical values

r2 = +1.0 = Y2max or r2 = -1.0 = Y2min (7.99)

In other words, this is a deadbeat controller along the state constraints. It
would therefore degenerate to a very high gain controller for Ts ----> 0, and this
corresponds to what follows from the Maximum Principle, when it is applied
to plants with state constraints.

Thansient Responses

Finally, typical responses for initial conditions Xl(O) = -1.75, X2(0) = °are
shown in Fig. 7.42. There is a final overshoot on Xl(t), which is due to the
pole configuration resulting from the weights Q and r. From the simulations
(not shown) no influence of the value of N u is visible.
If the initial conditions are increased further (to Xl (0) = -2.0, X2(0) = 0), an
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"infeasible" trajectory is reported at t = 3Ts . This is due to the fact that u is
not reduced sufficiently early from its saturation Uhi, such that an overshoot
of X2(t) beyond its constraint value X2hi = +1.0 would result. And this is not
admissible in the MPC context.
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Fig. 7.42. Initial condition response of the system in Fig. 7.40, T s = 0.25, Nu = 1

7.7.3 Case iii: The Triple-integrator Plant

The benchmark of Sect. 6.16 shall be used, i.e.

Uto = -1.0;

Q~ [~
Uhi = +1.0;

o 0]
0.25 0 ;
o 0.0625

r = 0.10 (7.100)

with the output constraints

Y2 := X2;

and Y3:= X3;

Y2 lo = -0.25;
Y3l o = -0.25;

Y2hi = +0.25

Y3hi = +0.25 (7.101)

and with Ts = 0.25.
In the state space area of interest -5:S Xj(t) :S +5.0, j = 1, 2, 3,

the optimization yields the following numbers of regions nR

~1 2 3 4
nRl 7 33 93 181

The delimits in 3-D space of the seven regions for N u = 1 are as follows, with
;r = [Xl, X2, X3]':
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U=

region # 1:

[ -0.674, -1.504, -1.594] ~

region # 2:

+1.000

region # 3:

- 1.000

region # 4:

[0, -2.000, -2.0001~ + 0.500

region # 5:

[0,0, -1.000] ~ + 0.250

[

-0.294 -0.656 -0.695] [+0.436 ]+0.294 +0.656 +0.695 +0.436
if -0.725 +0.533 +0.436 X < +0.538

-0.385 -0.858 -0.339 - - +0.143
+0.725 -0.533 -0.436 +0.538
+0.385 +0.858 +0.339 +0.143

[

-1.000 0 0] [+5.000 ]o +0.707 +0.707 -0.177
'f 0 0 +1.000 < -0.750
1 0 -0.707 -0.707 ~ - +0.530

o 0 -1.000 +1.250
+0.294 +0.656 +0.695 -0.436

[

+1.000 0 0] [+5,000 ]o +0.707 +0.707 +0.530
if 0 0 +1.000 X < +1.250o -0.707 -0.707 - - -0.177

o 0 -1.000 -0.750
-0.294 -0.656 -0.695 -0.436

[

-1.000 0 0] [+5.000 ]o -0.707 -0.707 +0.177
if 0 +0.707 +0.707 X < +0.530

o -0.894 -0.447 - - -0.112
o +0.894 +0.447 +0.335

+0.725 -0.533 -0.436 -0.538

[

-1.000 0 0] [+5.000 ]o 0 -1.000 +0.750
. 0 0 +1.000 +1.250
If 0 +0.894 +0.447 ~:S +0.112

o -0.894 -0.447 +0.335
+0.385 +0.858 +0.339 -0.143

region # 6:

[0, -2.000, -2.000] ~ - 0.500 if
[

+1.000 0 0] [+5.000 ]o -0.707 -0.707 +0.530
o +0.707 +0.707 X < +0.177
o -0.894 -0.447 - - +0.335
o +0.894 +0.447 -0.112

-0.725 +0.533 +0.436 -0.538

region # 7:

[0,0, -1.000] ~ - 0.250
[

+1.000 0 0] [+5.000 ]o 0 -1.000 +1.250
. 0 0 +1.000 +0.750
If 0 +0.894 +0.447 ~:S +0.335

o -0.894 -0.447 +0.112
-0.385 -0.858 -0.339 -0.143

Region # 1 is again the central one delimiting the linear state feedback
with all three gains nonzero, and the offset being zero, as previously.

Regions # 2, # 3 are the saturating ones with all gains at zero, and the
offsets at Uhi, Uto respectively.

Then, in regions # 5, # 7, only the gain for X3 is nonzero, at -1.0, and
there is an offset q5 = +0.25; q7 = -0.25.
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This may be rewritten as

(7.102)

U5 = k3s (r3s - X3)

with r3s = +0.25 = Y3max

1
and k3s = 1.0 = 4T

s

and correspondingly for region # 7 with r37 = Y3m in = -0.25. The gain is
at one fourth of the deadbeat value. This serves as limiting feedback for X3

to r3s and r37' similar to what has been found in case ii for the X2 limitation
there.

Finally, in regions # 4, # 6, the feedback law can be rewritten as

U4 = k24 (r24 - X2) + k34 (r34 - X3)

with r24 = +0.25 = Y2max ; r34 = 0.0
1

and k24 = 2.0 = 2T
s
= k34 (7.103)

and correspondingly for region # 6 with r26 = -0.25 = Y2 m in' This serves as
limiting feedback for X2 with the setpoints being r24 and r26'

Exercise
Investigate the delimits listed above further.
Hint: note that many of the delimits do not depend on Xl. So drawing
projections to the Xl, X2 and X2, X3 planes may be helpful.

Note that the gains in regions # 4 to # 7 are produced by the optimization
process and are not free design parameters anymore. In this case they turn
out to be below the deadbeat values, but still make up a tightly tuned loop.

Finally, for increasing prediction horizons, N u ~ 2, some regions are added
laterally to the central region, where all three gains are nonzero, and the
offsets as well are similar to what has appeared in case ii. Also, the corridors
for limiting X2 and X3 are extended outward in the same fashion (the gains
and offsets for the same type being the same), and there are more saturating
regions.

Transient Response

A typical initial condition response is shown in Fig. 7.43 for N u = 1, 2, 3.
The limiting of states X2(t) and X3(t) to their respective constraint values is

dearly visible, although there seems to be a slow drift on X2(t) for Nu = 2. And
for Nu = 3, a not well-damped mode is visible on u(t) along this constraint.
Further simulations show that this effect diminishes, however, with increasing
control horizon Nu .
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Fig. 7.43. Initial condition responses of the triple-integrator plant, Eq. 7.100 and
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(left) phase portraits; (right) time responses
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Again some problems with the feasibility of solutions have been experi­
enced in the simulations, mainly in the initial phase of the trajectory. They
increase while reducing Nu , increasing Ts , and increasing the weights in Q, or
decreasing r.

The transient response is again very similar to what was obtained in Fig.
7.14 with the successive overrides structure from Fig. 7.13

7.7.4 Conclusions

The main findings from the benchmark problems investigated here are:

The optimization process produces many regions, but a much smaller num­
ber of types of control law.
The linear affine control laws have the same form as the output constraint
feedback controllers Rz.
The control laws along the state/output constraints are enforced by the
optimization process, and are not free design parameters as in the override
design.
Those control laws are equivalent to tightly tuned controls, close to dead­
beat. This makes them not very robust.
The current u is selected in the Explicit MPC design by checking, in which
region the current x(t) is, and applying the corresponding control law,
while in the override design the current x is applied to all control laws,
producing a Uj for each of them, and finally determining the U to be applied
to the plant by Max-Min-selection.
However, note that the checking of regions in the MPC design is checking
on which side of the hyperplanes delimiting the regions the current x(t) is,
and this may be seen as performing a Max- or Min-selection. This leads
to the conjecture that both processes of evaluating U from x(t) may be
equivalent. Note that this is a plausibility argument only. A formal proof
is not available yet, but would be very helpful for implementation purposes.

Finally, the Explicit MPC design (at least in the form used here) may
run into infeasible trajectories, and stop. This has not been found in the
override design. This is because MPC considers state constraints in a much
stricter way, and not as operational limits with some (small) tolerance
band.

Such conclusions based on two benchmarks (although key ones, if seen from
the previous investigations) cannot be more that tentative. Putting them on
a more solid basis would be highly useful for industrial control design.
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7.8 Summary

The override design technique is based on standard linear feedback controllers
with awf combined with Max- and Min-selectors. It has been derived on a
specific (but quite frequent) application, e.g. position control of a rigid mass
with output constraints on speed and input constraints on actuator force. The
technique has already been extended into generalized antiwindup.

Here, we have shown that this approach can be used in a much more
general way. Several additional areas have been explored.

The first one is with plants of dominant first order and PI(aw) control.
However the overrides are not generated from a secondary output but from
the main control variable itself. Furthermore, the override is acting not on the
inflow as before, but also on the outflow. The case of dominant plant order in
the override loop being greater than in the main loop is also investigated.
Then the area is investigated where the dominant plant order in in the output
constraint path is such that additional state feedback is needed in R2 as well.
It was found that the override control still performs well along the constraint.
And for the overall system, the key parameter for stability and the radius of
attraction was found to be the difference of dominant degrees in both paths.
The situation is favorable, if the difference is 1. It deteriorates somewhat if the
difference is 2, and markedly if 2:: 3. Then, inserting additional (non-physical)
constraints may greatly improve the performance of the overall system.
Next, the case has been considered where the transfer function in the con­
straint path has a zero in or near to the origin. Then additional cascaded I
actions are required. And the awf is extended accordingly.
Then, the basic paradigm of overrides acting on the control variable has been
replaced by overrides acting on the main reference Tl, thus conserving its
"loop integrity". Viable structures have been found, although they are more
complex for comparable performance.
And the paradigm of a switch-over from control in the main loop to control
along the constraint and back has been replaced by a "designed compromise" .

Throughout, nonlinear stability analysis has turned out to be an efficient
and effective tool for analysis and design. Performance has been judged in a
more qualitative way by benchmark simulations. The Robust Control frame­
work offers a quantitative step further.

Finally, the Explicit form of MPC has been applied. By inspection, some of
the state space regions extend along the output constraints, and the optimal
feedback laws in these regions are state feedbacks with offsets, which are
directly related to the constraint values. In other words, the control structure
produced by the Explicit MPC design is very similar to what the intuitive
(override) design leads to. In general, the override design will have less regions.
Thus, it will produce sub-optimal responses, though in a controllable way,
because the optimal solution from MPC is so closely related.
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M ultivariable Control with Constraints

8.1 Introduction

From a very distant perspective, the control of multivariable systems may be
designed either by a "top-down" or by a "bottom-up" approach.
The top-down approach is to consider an optimization of the trajectory from
the current state of the plant to a new target state, while taking into account
all the interactions and all the constraints on the control inputs and the state
variables or measured outputs. This is where MPC comes up to its full po­
tential. However there is the problem of infeasible trajectories, of model and
disturbance uncertainties, etc.
The bottom-up approach starts from modeling the multivariable plant as non­
coupled single-input-single-output (SISO) subplants, with suitable pairing of
outputs to inputs, and designing the feedback controls with the methods for
scalar u plus input and output constraints, such as developed in the previ­
ous chapters. For practical design purposes, this is admissible if the coupling
transfer functions in the real plant are weak enough relative to the main trans­
fer functions from the pairings mentioned above. If not, the control actions
will interfere, and performance can be expected to degrade.
Nevertheless, we take this second approach here, as it is commonly used in
design practice, and merits to be understood better.

In other words, the focus so far has been on control systems with one ma­
nipulated variable (i. e. u(t) being a scalar), and one main controlled variable
Yl (t) (note that there may be additional measured variables in a cascade ar­
rangement), and one constrained output Y2(t). This covers input saturations
as a special case.

We shall now step into more complex design situations, denoted for short
as areas. First, a discussion in general terms shall provide an overview. Specific
cases will then be investigated in the following sections.

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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8.2 An Overview

8.2.1 Multiple Overrides

One such area covers design situations with one manipulated plant input u,
one main controlled variable Yl for the linear operating range, but multiple
constrained outputs Y2j ,j = 1, 2, .... Recall that this has been discussed pre­
viously. In essence, only one of the constraints U2j can be "active" (or being
"selected" or "switched through"), while the others are not. This follows from
the override paradigm. Which one of the constraints is selected in the case
of conflicting U2j values is defined by the sequence of the Max-Min-selectors
along Ul: any particular selection masks all upstream selections, and is in turn
masked by all downstream selections. This simple rule allows one to construct
quite complex control strategies.
Note, however, that masked constraints may be violated. Avoiding this obvi­
ously needs extra actuators (see below). Also note that for physical reasons
the most downstream selections must be for the actuator limitations, i. e. the
input saturations.

8.2.2 Multiple Actuators of the Same Type

The second area is again one controlled variable Yl, one linear controller R1 ,

but multiple actuators Ul j , j = 1,2, .... They act jointly to produce a scalar
input effect to the plant. Each of the actuators has its distinct working range
limits. Together they build up the actuator assembly. The individual actuators
shall move either in parallel ("joint control"), where each of them picks up
its proportional share of the total input increment. Or they move in sequence
("split-range control"), i.e. the next actuator will only move if all previous ones
have attained their working range limits, and then it will pick up the whole
input increment. In both cases it must be possible for individual actuators to
be switched in or out without upsetting the main control loop unduly.
Typically, this is implemented by a cascade structure, where a control loop
for total opening is inserted. Note that for such switching transients both the
initial and the final equilibrium must be within the linear operating range.
Otherwise the control problem will be "ill posed" .
Some typical application examples are:

Fossil-fuel fired steam generators with steam pressure control and with
multiple burners as actuator subsystems, operated in split range mode at
low load and in joint mode at high load.
Hydropower stations with control for total electric power output, where
individual turbine-generator units are the "actuator subsystems" within
the actuator assembly, and usually are operated in joint control mode.
Level control on run-of-river hydropower plants with multiple weirs or
gates as actuator subsystems, which are usually operated in split-range
mode.
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8.2.3 Sequentially Acting Control Loops

A third area is closely related to the previous one. There is again one con­
trolled variable Yl, and several actuators Ul j , j = 1, 2, . .. are available. How­
ever, they act at different locations on the process (for instance on inflow and
on outflow), and the plant response Ul j ----> Yl, j = 1, 2, ... for each actuator is
significantly different. This may be due to a different response of the actuator
subsystem itself or of the plant. Also, the different actuators usually produce
different side effects (i.e. have different constraints).
Then, typically, a separate controller R1j for each of the actuators is imple­
mented. This provides the necessary parameters for individual tuning to the
distinct plant responses, and for considering the individual constraints. All
controllers use the same measured variable Yl as input, but they have distinct
setpoints rl j .

(8.1)

The setpoint increments must be sized such that a clear separation between
control loops appears, i. e. one will be active while the others are in saturation
mode, at least for steady state operation. Intuitively, the setpoint increment
can be made small, such that Yl will not run far off its nominal setpoint
rl, if integral action is used in all R1j controllers. Then obviously awf with
appropriate gain will be needed to ensure a timely liftoff of actuator positions
from their constraints.

A typical example is a steam-generator - steam-turbine - alternator unit.
Its normal operating mode is power control. Then, in many cases, live steam
pressure is used as the measured variable for adjusting the heat input to the
steam generator and balancing it to the steam flow to the turbine and further
on to electric power output of the alternator. And this is subject to multiple
constraints on the load gradient both from the steam generator and steam
turbine.
If now the generator is tripped from full load, the steam flow to the turbine
must be reduced in less than 1 s to near zero to avoid rotor overspeed. But
reducing the steam flow from the steam generator will take several minutes,
and will stop at approximately 30% (for steam generator operational reasons).
The transient imbalance of steam flows results in rising live steam pressure,
beyond its normal operating range. Then a second pressure control loop must
come into action. It acts on a bypass valve subsystem to dump the excess steam
flow directly to the condenser. Note that this is a waste of energy and thus
should be kept to the minimum at all times. Intuitively a high performance
pressure control loop with integral action will accomplish this.

The plants considered so far are modeled by one dominant compartment,
where PI(aw) control is suitable. We shall now proceed to plants with more
than one dominant compartment.



450 8 Multivariable Control with Constraints

8.2.4 Parallel-acting Control Loops

The next area covers plants with two compartments Gl , G2 l coupled by a
connecting line, which may be closed down by a switch or a valve; see Fig. 8.6
for an illustration.
Each of the compartments shall have its own outflow VI, V2, its own inde­
pendently actuated flow Ul, U2 and its own measured output Yl, Y2, which
corresponds to its content (i.e. its own state variable Xl,X2). Thus, for the
dominant dynamics model with ql->2 denoting the crossflow in the connecting
line:

d
71 dtXl = Ul - VI - ql->2 and

d
72 dt X2 = U2 - V2 + ql->2 (8.2)

On this basis, two separate control loops can be installed, with controllers

R . - Uj h
J - were Cj = 1, j = 1,2

rj - CjXj
(8.3)

and with individual setpoints rl, r2. They will act as local control loops for
each compartment, when the connecting line is shut down (ql->2 == 0).

Now the connecting line is opened. Then a crossflow will develop which
is essentially driven by the difference of potentials Xl - X2. The most simple
modeling description would be

(8.4)

Note that this sets to zero any inertia or storage effects in the connecting
subsystem. And, by the way, hints at how to extend the description for more
realistic models.

The crossflow ql->2 in Eq. 8.4 has a coupling effect on the local com­
partments; see Eq. 8.2. As long as the conductivity C of the connecting line
is low, then the coupling effect is weak and the loops can be considered as
separate systems. More interesting is the case of high conductivity, leading
to strong crossflow effects. If now the setpoint rl is moved upward a small
amount, then a strong flow from Gl to G2 results. To cover this in Gl to keep
Yl = ClXl -+ rl, a high inflow Ul is needed. And correspondingly the inflow to
G2 must be reduced by a large amount to keep Y2 -+ r2. In short, a small shift
in setpoints rl vs. r2 results in large countermovements on the manipulated
variables Ul, U2, and may easily drive them into opposite saturations. This
property is known as "directionality". It is a major cause for windup.

Set further for the outflows VI, V2 in Eq. 8.2:

(8.5)

1 Note the change of meaning for the indices 1, 2.
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Then

[~~] :t [~~] = [-(a~:c) -(a:~c)] [~~] + [~~]
and further for the common denominator of the four transfer functions
Uj -+ Yk with 71 = 72 = 7

(8.6)

0= 1sT - AI = [7S + (al + c)] [7S + (a2 + c)] - c2

= (S7)2 + (S7) [(al + c) + (a2 + c)] + [(al + c)(a2 + c) - c2]

= (s~)2 + (s~) [(1 + :1) + (1 + a:)] + [(1 + :1) (1 + :2) - (~.7)

Note the time scaling 7 -+ (7/c). If now the crossflow is comparatively strong,
then

o::::: al , a2 « 1.0
c c

(8.8)

and the value of det(A) of the open-loop system matrix A in Eq. 8.6 is small,
or equivalently, the open-loop system is said to be "ill conditioned":

[( a1 ) (a2 ) ] (a1 a2) (a1 a2)--; + 1 --; + 1 - 1 = --; + --; + --; --; = E where 0::::: E « 1
(8.9)

Thus, a small E = IAI /c2 indicates strong directionality; see also Sect. 8.5.

For the special case al = a2 = 0, in Eq. 8.6 det(A) = 0 and

(8.10)

(8.11)

where 27/c is the total filling time constant of the plant. One eigenvalue
moves to the origin, yielding a slow open integrator response, while the other
eigenvalue moves to the left, yielding a fast first-order lag response.
And if al = a2 = a with a > 0, then

0= (s 2~ + 2~) [s ;c + (1+ ;J]
One eigenvalue is near the origin, resulting in a slow first-order mode, and the
other is moved to the left again, producing a fast first-order response.
The slow mode is from the equilibration of the plant as a whole, and the fast
mode from equilibration between both compartments.

8.2.5 The General Multi-input Multi-output Case

Many textbooks are available for the design and analysis of general multivari­
able control systems. They stress the linear range design [61], and investigate
saturation effects as well [62].
Here, not more than a very brief introduction shall be given. The focus is on
2 x 2 systems; see Fig. 8.1.
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Fig. 8.1. The standard 2 x 2 multivariable system with its four plant transfer
functions Gu, G21 , G12, G22, two controllers R 1 , R2, and two optional decouplers
K 12, K21

The usual representation of the plant as a transfer function matrix is used:

(8.12)

with the feedbacks

(8.13)

Note that in Eq. 8.13 the non-diagonal elements of the feedback matrix R
are set to zero. Additional transfer functions may be inserted for decoupling;
see Fig. 8.1 Closing the loops yields

(8.14)

Yl

and further (using Cramer's rule) one of the four transfer functions rl ----t YI

1
(1 + R

1
Cn )(1 + R

2
C

22
) - R2CI2RIC21 (RICn - R2CI2RIC21)

(8.15)
The denominator in Eq. 8.15 is the same for all four transfer functions. It is
rewritten as follows:
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. G12G21
which defines 8 = G G

11 22
(8.16)

where the transfer function 8 indicates the relative strength of the cross­
coupling responses of the plant to the direct ones.

Four cases may be distinguished:

1. If either G12 = 0 or G21 = 0 (one-sided coupling) or both G12 = G21 = 0
(no coupling), then

8=0

and Eq. 8.15 degenerates to the standard result

R1Gll

Yl = 1+ R
1
GIl rl

2. If G12 and G21 are nonzero and have opposite signs, then

8<0

(8.17)

(8.18)

(8.19)

then the zeros of Eq. 8.15 tend to move to the right and may easily cross
over into the right half plane. In other words, the system with both local
loops closed will be oscillatory unstable, although it is stable if only one of
the loops is closed. A typical such case is anti-surge and pressure control
of compressors.

3. If G12 and G21 are nonzero and have the same signs, then if

0< 8 < +1 (8.20)

the zeros move as shown in Eq. 8.10 and in Eq. 8.11, and the directionality
effect is strong.

4. And if
8> +1 (8.21 )

the cross-coupling responses are stronger than the direct ones, and the
"input-output pairing" should be changed (the controller outputs should
be connected the other way round, i.e. R1 to U2 and vice versa).
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Saturations on the Ui

Consider first the case of S < O. Generally speaking, if the saturation is
encountered then this loop is opened. Thus only one loop stays closed perma­
nently, and this intuitively should lead to better stability properties.
And for the case S > 0, the directionality leads to large opposite deviations
in the controls, and thus may move the Ui into the saturations. Therefore, the
further investigation shall focus on this case; see Sect. 8.6.

Decoupling

It is often proposed to stabilize (in case 2) or increase performance (in case
3) by "decoupling". From Fig. 8.1

and (8.22)

such that the effect of the Gjk,j =I- k is cancelled by the corresponding paths
through the corresponding Kjk. Then the controller R 1 sees as its plant 0 1:

- G21
G1 = Gn +K21G12 = Gn - -GG12 = Gn (1 - S) and O2 = G22 (1 - S)

22
(8.23)

Thus the new plant response OJ depends on the same key factor (1 - S) as
the denominator polynomial. It increases for opposite signs of the Gjk, j =I- k,
and decreases if the signs are the same. It tends to zero for S -> +1, i. e. for
cases with strong directionality. So, to obtain a given closed-loop response,
the controller gains must tend to infinity, i.e. the controllers will not be im­
plementable, and also the closed loops tend to be very sensitive to modeling
uncertainty.
In other words, decoupling may be considered primarily for cases with S < 0,
and not for cases with very strong directionality.

The design situations, discussed so far in general terms, shall be investi­
gated now in more detail using benchmark cases, simulations, etc.

8.3 Parallel Actuators

8.3.1 Structure

The parallel actuators may be moved either in parallel, Fig. 8.2, or sequen­
tially, Fig. 8.3. Only the nested loop for total opening (or an equivalent vari­
able such as total flow, etc.) is given. Its setpoint r2 is the output of the master
controller, for instance the level controller, its outputs Ui are the n openings
of the individual actuators within the actuator assembly. The Ui are then the
inputs to the plant.
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Fig. 8.2. The "nested loop" for three actuators moving in parallel

II]

1-----l ~~~-112

IIII-l--------------l---

Fig. 8.3. The "nested loop" for three actuators moving in sequence

The saturation elements in Fig. 8.2 and 8.3 represent actuator subsystems
having internally both slew and stroke limits, local position feedback, and a
switch on their input to put them individually in automatic mode, manual
mode, or shutdown. The controller R2 is of I(aw) type, possibly with a weak P
part to improve performance. The gains ai represent the full-scale contribution
percentage to total opening: if n actuators of equal size are installed, then
ai = lin.

8.3.2 Transient Response and Stability Analysis

This is left to the reader as an exercise:

Implement the "nested loop" in both forms with all details given above as
a Simulink model.
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Investigate its response to setpoint steps, and to switch-out and switch-in
of individual actuators.
Add a level control loop, with the plant modeled by an integrator, and a
PI level controller with suitably designed awf.
Investigate its closed-loop response for a suitably designed test input se­
quence.
Finally, investigate the stability properties.

8.4 Sequenced Control Loops

The example of a steam generator pressure control from Sect. 8.2.3 is carried
further.

8.4.1 Structure

Fig. 8.4 shows the Simulink model. The main element in the plant is the mass
balance of steam flows. The steam inflow is produced by vaporization. One
outflow is to the turbine. It is switched from 100 % down to 0 % to simulate the
effect of the speed controller following the load rejection. The second outflow
is through the bypass valve(s). Heat input to vaporization is controlled by the
steam pressure controller, of PI(aw) type. There is a lag to model the thermal
storage capacities, a gradient limiter, and a typical stroke limit.

The plant coefficients are:

T1 = 10 [s]; T2 = 10 [s]; Va = 1.0; VI = 0.0; Vup,dn = ±1.0 [S-I] (8.24)

The load gradient limiter is set to ±1O % of immediate step
and ±15 %/min of load ramp.
The stroke limit on the heat input is set at 30 - 120 %.
The bypass shall have a working range of 0 - 120 %.

The pressure controller (index 1) acting on the heat input is tuned to

(8.25)

with initial setpoint at 0.975, and then stepped up to 1.0 to show the linear
closed-loop response.

The controller acting on the bypass valve opening (index 2) is tuned to

R2hi : k P2hi = 20; k i2hi = 25; ka2 = 1.0; with setpoint r1hi = 1.05; (8.26)

The sampling rate is set to Ts = 0.10.
Note that the bypass loop has to have the same high performance as the speed
control loop, in order to keep the pressure overshoot low.
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va to y, Aa 8 Umatef
Tvstep v_dn to v_up

u_v

2}-----------'
ub

Fig. 8.4. Steam pressure control: the control structure
acting on the heat-input (rl -> uf); and on the bypass valve opening (rl hi -> Ub)
and the plant model

8.4.2 Transient Response

Fig. 8.5 shows the simulation results.
The discussion is left to the reader as an exercise.

8.4.3 Stability Analysis

The basic effect of the bypass is that the total actuator working range is
enlarged on both slew and stroke, although only one-sided. Therefore, the
stability properties should improve.
Again, details are left to the reader as an exercise.
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Fig. 8.5. Transient pressure response to the setpoint step at t = 10 s, and to the
full load rejection at t = 100 s; with details in right-hand plot

8.5 Parallel Control Loops

The example of Sect. 8.2.4 with two compartments, local control and strong
crossflow interconnection is developed further here.

8.5.1 The Plant Model

Fig. 8.6 shows the 2 x 2 plant model in its state space representation. This
corresponds directly to Eq. (8.6) up to Eq. (8.9). Note that all fast dynamics
from the sensors and actuators are suppressed, and that the crossflow has no
inertia. Note also that the manipulated variable for compartment C2 is the
outflow.
The parameter entries for the simulation are

and

U1hi = +1.0; U1lo = -1.0; U2hi = +1.0; U2lo = -1.0

71 = 1.0; 72 = 1.0; al = 0.5; a2 = 0.5; c = 5.0

(8.27)

(8.28)

That is, the cross-coupling coefficient is a factor of ten larger than the local
feedback coefficients.
Thus, from Eq. 8.11

0= (8 ~ + 0.10) (8 ~ + 2.10) ---> 0 = (8 + 0.50)(8 + 10.50) (8.29)
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i.e. the eigenvalues or open-loop poles are spread by a factor of 21.

"-'
3

"

~-------+---+<.
flOw
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~

Fig. 8.6. The open-loop model of the 2 x 2 plant in its state space representation

This is visualized in the simulation in Fig. 8.7, where first a step is applied
to Ul and then to U2. Note the time scaling.
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Fig. 8.7. Open-loop input step responses of the system in Fig. 8.6:
the fast mode on "flow" .is due to the equilibration between both compartments,
and the slow mode is due to the equilibration of both compartments as a whole
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8.5.2 State Feedback Control

The control structure in Fig. 8.8 consists of local state feedback with feedback
gains k l , k2 and with local feedforward gains krl on the setpoint rl ,and kr2
on r2. This is equivalent to local P controllers with gains k l 1 k2, where the
setpoints are modified

(8.30)

Note also the sign inversion in the local feedback on compartment G2 to
conserve negative feedback.

x1

,1

'ow
flow

,2

2 x 2 plant 2
(V.1)

x2

Fig. 8.8. The system from Fig. 8.6 with local P controllers

The state space representation is

(8.31)

The controller gains are set to

(8.32)

which applies the standard single-loop pole assignment approach to the iso­
lated two compartments GIl G2 .

As for this benchmark case
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The closed-loop denominator polynomial is, by replacing in Eq. 8.11 the
local open-loop feedback coefficients a by the closed-loop ones k + a:

(ST + k + a) (ST + 2c+ k + a) (8.34)

(8.35)

In other words, the closed-loop poles of the interconnected system will be
shifted significantly from the open-loop ones if

k +a 1-->
c

And the numerator polynomial of one of the four transfer functions, rl --+

YI = Xl, is
(8.36)

(8.37)

krl (ST + C + k + a)

This produces a steady state value of the step response

YI krl
rl 2c+ k +a

Thus there will be a considerable steady state offset for finite gain values
k > O. To keep it small, again Eq. 8.35 applies.

For the simulations in Fig. 8.9:

["h := 10; that is k + a = 2, and also kr:= k + a = fh
c

(8.38)

A setpoint step rl = 0.15 is applied first, while r2 = 0, and then a setpoint
step r2 = 0.15 without changing rl. Thus the crossflow variable must return
to zero. Note the change in time scaling vs. Fig. 8.7.
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Fig, 8.9. Closed-loop response of the system in Fig. 8.8, with local P controllers
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8.5.3 Additional Integral Action in the Local Controllers

This is to suppress the steady state errors. As the Uj may saturate, a standard
awf is applied; see Fig. 8.10.

1

xl

"

,2

2
x2

Fig. 8.10. Control structure for the plant in Fig. 8.6, with local PI(aw) controllers

The PI(aw) controller parameters are designed by pole assignment for
isolated operation.

kpj = 2DjTj - aj; k ij = (DjTj)2; kaj = DjTj for j = 1,2

Then the pole locations2 for the interconnected system are at

-26.1803; - 10.0000; - 10.0000; - 3.8197

(8.39)

The response of the interconnected system to the setpoint sequence from
above, and with the same DT = 10.0, is shown in Fig. 8.11 (left).

Re-tuning the local controllers by increasing the kij and kaj twofold yields

-20.000; - 10.000 ± jl0.000; - 10.000;

and speeds up the internal equilibration; Fig. 8.11 (right). Note that such re­
tuning will lead to weakly damped response in isolated mode (from 2( = 2.0
to 2( = 1.0).

2 Determined numerically from the Simulink model; Fig. 8.10.
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Fig. 8.11. Closed-loop responses for the system in Fig. 8.6, with PI(aw) controllers
tuned for isolated mode (left) and re-tuned for interconnected mode (right)

8.5.4 Stability Analysis

To cover almost all of the phase plane trajectories, the multivariable form of
the circle criterion must be used, as both saturations will be met. However,
for part of the transients, only one of the saturations will be active; see Figs.
8.9 and 8.11. Then, the test for the single input saturation can be applied.
One may conjecture that, if the test uncovers a stability problem in the single
saturation case, then the full multivariable case will also have a problem. The
inverse need not hold, i. e. a system with no single saturation stability prob­
lems may have low stability properties in the combined case.
For brevity, only the one-saturation case with P controllers shall be investi­
gated here. Then the general result of Chapter 2 applies directly:

F
"open"-loop denominator polynomial+ 1 = ---::....--......:.---------::.........::....---
closed-loop denominator polynomial

(8.40)

where the "open" loop is in fact semi-closed, as k 1 := 0, but kz i=- O. Therefore

Note that this implies bj = 1. If not, replace kj by bjkj .
Inserting the numerical values for the benchmark

yields

T = 1.0; c = 5.0; al- = 0.10;
c

al + k 1 = az + kz = 2.0
c c
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(~)2 + 4.10 (~) + 2.30
F + 1 = -'-"-:....,2,..-----'-"'-'----

(~) + 6.00 (~) + 8.00
and the Nyquist contour in Fig. 8.12, which evolves in the right half plane for
all w values. This indicates excellent stability properties, and thus confirms
the observation from the simulation.

0.8

0.6

0.4

02

o

-0.2

(\
0.2 0.' 0.6 0.8

Fig. 8.12. Nyquist contour for the single saturation stability test for the system
from Fig. 8.8

Exercise
Consider the full stability problem with both saturations being active.

8.6 Interacting Control Loops

As has been explained in Sect. 8.2.4, the critical windup situation is connected
to an ill-conditioned plant (IAol ~ 0), i.e. strong directionality (8 ~ +1).

The first step is to select a suitable benchmark system. The system used
in Sect. 8.5 has a strong directionality. It is based on a physical plant model,
its state variables have a direct physical meaning, but it is not yet in the
standard form of a transfer function matrix; see Eq. 8.12.

An alternative would be the system in Eq. 8.42:

[
Yl(S)] 1 [43] [Ul(S)]
Y2(S) = sT + 1 54 U2(S)

(8.42)
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As
Gl2G2l 3· 5 15 1

8= =-=-' and thus 1-8=+- (8.43)
GU G22 4·4 16' 16

it is ill-conditioned and thus also exhibits strong directionality. It has been
used very often in this context (e.g. see [63, 64, 53]), and thus has become a
de facto standard.

However, the model of Eq. 8.6 shall be pursued here, also for having been
investigated with state feedback control in Sect. 8.5, as a contrast to the design
approach used next.

8.6.1 The Plant

The state space representation, denoted as plant v.l

[
8T 0] [Xl(8)] = [-(a+c) +c ] [Xl(8)] + [+1 0 ] [Ul(8)]
o 8T X2(8) +c -(a + c) X2(8) 0 +1 U2(8)

(8.44)
and

(8.45)

has to be transformed into the input-output representation with the four
transfer functions Gj,k. Note that again Tl = T2 = T and Cl = C2 = 1 and
that now both Ul and U2 act on the inflow.

Using Cramer's rule results in

[Yl (8)] 1
Y2(8) = (8T + a)(8T + 2c + a)

with

[
8T+a+c +c ] [Ul(8)]
+c 8T + a + c U2 (8)

(8.46)

one pole at 8 = -afT = -0.5
one pole at 8 = -(2c + a)/T = -10.5
and zeros at 8 = -(a + C)/T = -5.5.

This suggests rewriting Eq. 8.46 as

[
Yl(8)] = _1_ [SS;:2~~: sT+i~+a] [Ul(8)] (8.47)

(8) 8T + a +c sT+a+c U (8)
Y2 sT+2c+a sT+2c+a 2

where the zeros and poles in the matrix elements are approximatively a factor
c/a = 10 and 2c/a = 20 further to the left than the pole of the dominant
first-order lag.
This suggests an order reduction by using only the static gains in the matrix
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[
Yl(S)] ~ _1 [2~t~ 2:~a] [Ul(S)] -+

( ) ST + a --±f...- a+c ( )Y2 S 2c+a 2c+a U2 S

with the numerical values for the benchmark

1

sT+1

T = T/a = 2.0; bll = b22 = 1.10/1.05; and b12 = b21 = 1.00/1.05

As the system will be used next with local feedback control of Yl to Ul and
Y2 to U2, it is rewritten as

1
Yl = -T-- (bllUl + b12U2)

S +1
This is denoted as plant v.2.

(8.49)

Fig. 8.13 shows the Bode plots of the four transfer functions for the plant
v.1 and for their approximations, plant v.2

J :s: LI oS: ]
1 10.... 11)' 1~ 10' ,rI 10-1 Ilf' lot 10' la'

:1 :="'-:3 j :ssJ
1~ ~ " 10' ",~ I~' It ~' 1~

J oS: Lt :s:: ]
10' 10·' nl 10' l~ 10'" 10·' I" 1(1' tV

j :ssJ .~ =""-:3
1~ w' I' ,~ l~ I~ 1~ ., 10' fa'

Fig. 8.13. The four frequency responses for the original plant v.l (full line)
and for the approximations, plant v.2 (broken line); G12 shown at top right
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There are two poles at s = -liT = -0.5. And the gain matrix B

indicates both strong directionality and correct input-output pairing.

8.6.2 Local P Controllers

Two local P controllers are used on plant v.2, see Fig. 8.14, similar to what
has been used for plant v.1 from Fig. 8.8. They are designed in the same way,
z.e.

bjjkj = DT - 1; bjjkrj = DT; j = 1, 2 (8.51)

Then, with the symmetry property of plant v.2 and of the controllers, the
characteristic equation (from Eq. 8.16) is

0= 1+ 2RGll + (RGll )2 (1 -~)1.1
that is

with RG _~ _ DT-1
II - sT + 1 - sT + 1

(8.52)

0= (sT + 1)2 + 2(DT - l)(sT + 1) + (DT _ 1)2 (0.21) (8.53)
1.21

Fig. 8.14. Plant (v.2) with two local P controllers from Fig. 8.8

This leads to the two roots s1, S2 at

1
S1 = --T (O.lDT + 1)

1.1

and at

0.1 n 1
--Jt---
1.1 LIT

(8.54)
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82 = __1_ (2.1SlT -1) = _ ~Sl + _1_
LIT 1.1 LIT

(8.55)

Note that
81 + 82 = -2Sl

and also for

SlT := 1 --+ 81 = 82 = -0.5; resulting for k = 0

In contrast to the case with plant v.l, the slow closed-loop mode associated
with 81 cannot be significantly accelerated, if the value of k is to stay in a
practicable region:
let Sl := 10 --+ k ~ 18.136, 81 ~ 1.364 (slow mode), 82 ~ 18.636 (fast mode).

Transient Response

This is visible in the simulation Fig. 8.15 (compare with Fig.8.9).
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Fig. 8.15. Response of the control system Fig. 8.14

Stability Properties

Again for brevity, only situations are checked where one of the Uj saturates.
For the Nyquist contour, applying the general result Eq. 8.40 produces (with
k2 = 0 in the "semi-open system" characteristic polynomial for the numerator)

(8+~)2
F + 1 = ( )( ) [(1 + R1Gl1 )(1 + 0) + 0]

8 - 81 8 - 82

(8+~)(8+Sl)

(8 + nSl + 1.iT) (8 + i:i Sl - 1.iT)
(8.56)
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The Nyquist contour of F + 1 evolves in the right half plane, see Fig. 8.16,
and thus indicates global asymptotic stability.

08

0.6

0.'

0.2

-ll.2

-llj,L.2----'---'"'0.2:--------:-0'-.• --0:'-:.6-~O.8:---~----l'-2

Fig. 8.16. The Nyquist contour for the stability test of the control system in Fig.
8.14 with only the saturation on U2 being active

8.6.3 Decoupling Control

The basic idea is to feed the current output of the local controller R 1 through
a transfer function K 12 to the input U2 at the other local controller site. If K 12

is selected appropriately, then the coupling effect through G12 may be greatly
reduced or even nullified. It has been mentioned above that, although the
concept is intuitively simple, looking at it in detail reveals numerous problems.
Nevertheless, this concept shall be applied here. The situation in Fig. 8.14
is particularly suitable, as the coupling paths in plant v.2 are simple gains
with no dynamics and are at the input side of the dominant (first-order lag)
dynamics; see Fig. 8.17.
Then, for decoupling both loops:

K * b b ! 0 h . K* b12 d i: K*12 22 + 12 = t at is 12 = --j an vice versa lor 21
b22

As shown above, such decoupling also affects the gains bii , i = 1,2, of the
local plant transfer functions Ui --+ Yi

bi = bii (1- b12b21
) --+ ~ 0.1736 bii ; for i = 1,2

bu b22

In other words, the low plant gain bi requires large Ui for a given setpoint step
size, and thus makes the control loop sensitive to saturations. Also, the local
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controller gain ki must be increased to attain a given bandwidth n27 in
the local (decoupled) loops.

for i = 1,2 (8.59)

"

Fig. 8.17. Plant (v.2) with two local P controllers from Fig. 8.14 and decouplers
K 21 ,K12

Transient Response

This is illustrated by the simulations in Fig. 8.18.
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Fig. 8.18. Transient response for the control system with exact compensations Kjk>
with Ii = 2.5 ----> k = 22.0: (left) with r = 0.15; (right) with r = 0.04
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Fig. 8.19 illustrates the effect of non-exact compensation, specifically for
Kjk = 0.90Kjk' The eigenvalues move to ii = -3.2097; 82 = -1.7903.
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Fig. 8.19. Transient response for the control system with approximate compensa­
tions K jk == 0.9Kjk: (left) with r == 0.15; (right) with r == 0.04

Stability Properties

Exact decoupling results in two separate loops, consisting of the plant Gand
the controller R. This leads to

s+ ~
F+1=--_

s+fl
(8.60)

Its Nyquist contour is in the right half plane for all w, and indicates global
asymptotic stability. 3

8.6.4 A Different Control Concept

Another way of accelerating the slow eigenmode from Eq. 8.54 of the system
with local controllers in Fig. 8.14 is as follows; see Fig. 8.20:

(a) Cross over the input-output pairing used previously, i.e. connect Y2 to
controller R1 and to Ul and vice versa for Yl,

(b) change the negative feedback in the R 2-path to a positive one (note the
gain -1 in Fig. 8.20),

(c) and finally reduce the gain k2 in R2.

3 As long as the control problem is "well posed" .
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This strategy has been investigated for instance in [66].

Fig. 8.20. Plant v.2 with two local P-controllers, using "crossed over and inverted"
control

Linear Controller Design

Rename

H n := G21 ; H 22 := G12 ; H 12 := Gn ; H 21 := G22

Then the characteristic equation following item (a) is

(1 + R1Hn ) (1 + R 2 H 22 ) - RIH12R2H21 = 0

and following (b) and (c) insert

k2 = -ak1 with 0 < a < 1.0

That is

(8.61)

(8.62)

(8.63)

1.0
Inserting hn = h22 = -­

1.05
and h12h21

- 1 = 0.210
hn h22

yields

(
I-a )(sT + 1) = - -2-k1hn ±
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finally (8T + 1) = klhu [- 1 ~ a ± ~Jl - (2 + 4 x 0.21) a + a218.64)

The next design decision is to choose a such that two equal real poles result,
z.e.

0= 1 - (2 + 4 x 0.21) a + a 2
----+ al = 2.4282; a2 = 0.4118

with a2 being the valid solution; see Eq. 8.63. This leads to

(8.65)

(
1-0.2941)

81 = 82 = - 0.2941£?t + T with Sll = 10 ----+ 81,2 = -3.2938

to be compared with Eq. 8.54. Also

I-a
Sl2 = aSll + ----;y- ----+ Sl2 = 4.118 + 0.2941 = 4.412

and

(8.66)

(8.67)

(8.68)

In other words, a considerable acceleration of the slow mode is feasible with
reasonably sized controller gains.

Transient Response

This is visualized in the simulations in Fig. 8.21. Note the large transient
excursions of the Uj(t), and the non-minimum phase response in the Yj(t).
In the lower plot, the setpoint step size is increased to rl = r2 = +0.2. Then
both Uj'S get stuck on their upper limit. This "stuck" condition continues
after t = 6.0, when the second setpoint is stepped up to the value of the
first one. There, the crossBow should be zero again, i. e. the system should be
operating in the linear range again. In other words, the system response in
this case is unstable.
As, the open-loop plant response is stable, Yl and Y2 converge to steady
states at Yl ~ 0.0952 and Y2 ~ -0.0952.

Exercise
Note that Sll and Sl2 are no longer the same.

- What are the. consequences, if the design specification is Sll := Sl2?

- And what is the effect of al = a2 = a ----+ O?
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Fig. 8.21. Transient response for the system Fig. 8.20 with values from Eqs. 8.67,
8.68:
(left) for small steps TI, T2 = 0.04; (right) for larger steps TI, T2 = 0.15;

(bottom) for step size TI, T2 = 0.20 ("stuck" condition, unstable)

Stability Properties

Again for brevity, only the two cases with one saturation being active are
investigated.

(a) Consider first the case where only U2 meets its saturations. Then for the
linear subsystem

(8.69)

F
(sT + l)(sT + 1 + k1b2d

+1= 2
(sT + 1) + (sT + 1) [k1b21 - k2b12]+ k1k2 [bll b22 - b12b21 ]

(s+~)[s+(1+klb21HJ (s+~)(s+[h-~)

(s+S?)2 (s+S?)2



(8.70)
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with [l from the closed-loop pole assignment, see Eqs. 8.62 to 8.66,
and with k Ib2I := [lIT - 1 from the loop design.

For [lIT> 1 this starts and evolves in the right half plane. In other words,
this case has good stability properties, and does not weaken the overall
stability properties unduly.

Exercise
Check both Eqs. 8.69 and 8.70 with Fig. 8.20.

(b) Consider next the case where UI saturates only. Then

F + 1 ----;;:__---'('-8T_+_1...:....)...:....(8_T_+_1_-_k...::.2--=bl:=.;2)'--- _
- (8T + 1)2 + (8T + 1) [kIb2I - k2b12]+ k Ik2 [b ll b22 - b12b21 ]

(8+1<) [8+ (1-k2bI2 )1<] (8+1<) (8-[l2+~)
(8+[l)2 (8+[l)2

As [l2 > 0 and as also [l2 » ~, the Nyquist contour starts from the
negative real axis in the downward direction,4 which indicates a small
radius of convergence. In other words, this case is critical for the overall
stability properties.

Fig. 8.22 shows the Nyquist contours for the two cases (a) and (b).

0.5

-05

-0,$ 1,$ -0.5 0.5 1.5

Fig. 8.22. Nyquist contours for the system Fig. 8.20, with values from Eqs. 8.67
and 8.68: (left) case(a): for U2 saturating, but not Ul; (right) case (b): for Ul
saturating, but not U2

4 See also the stability charts in Sect. 6.4.2.
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Introducing Antiwindup Feedback

The unstable response in Fig. 8.21 is the consequence of T2 being large. This
generates a large U2, which will drive Ul beyond its saturation. This is equiva­
lent to having R1 in open-loop, or alternatively to setting k1 := O. Introducing
this into the characteristic equation Eq.8.64 leads to

(8.71)

where 1 - k2b12 « 0, i. e. to a highly unstable response of the system. This
then will move U2 quickly to its own saturation. Then R2 is in open-loop, or
equivalently k2 := O. And the characteristic equation reduces to

o= (sT + 1) (sT + 1) (8.72)

and thus the response will finally stabilize. However, Ul will end up so far
beyond its saturation that the setpoint step on Tl is insufficient to bring it
back into its linear range, and thus to case (a) from above. In other words
Ul "winds up".

This suggests inserting an awf from Ul to U2; see Fig. 8.23. This is to
keep Ul close to its saturation, such that the linear control feedbacks are re­
established, when the operating conditions are moved back into the range of
"well-posed" situations.

The awf gain ka shall be designed by nonlinear stability analysis here.
Another approach is from a Robust Control formulation, e.g. see [53, 67] and
references therein.

Fig. 8.23. The control structure from Fig. 8.20 with awf from Ul to U2, and with
gain ka1 as design parameter
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Stability Analysis

Denote as VI the input to the saturation in the R1 loop, and as Ul the output
of this saturation, and as W21 the output of the awf to U2, i.e.

(8.73)

Then the linear subsystem has one output VI and two inputs Ul and W21.
Denote the individual responses as

(8.74)

Then by superposition of the individual responses

i.e.

(8.76)

which defines L.

Again, the saturation nonlinearity shall be replaced by the deadspan non­
linearity and a unity gain in parallel. Then, for the transfer function F of the
linear subsystem to be used with the deadspan nonlinearity only:

F = _L_ = -1 + _1_ = _1_+_k--,a~l_L..::.l~w
1 - L 1 - L 1 - L 1u

The next step is to determine L 1u and L 1w ' From Fig. 8.23 read

1 [ -(-k2 ) ]
L 1u = -k1sT + 1 b21 + bll b22 (sT + 1) - k 2b12

k 1b21 (sT + 1) + k 1k 2 [bllb22 - b12b211
(sT + 1) [(sT + 1) - k 2b12 ]

and

(8.77)

(8.78)

L 1 - - [- 1 b22 sT
1
+ 1 k1]

w - 1- (+~)
sT+l

into Eq. 8.77 finally yields

(8.79)
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(8.80)

F+1=
1

1 _ L
1u
(1 + ka1 L 1w )

(sT + 1) [(sT + 1) - k2b12+ ka k1b22]

(sT + 1)2 + (sT + 1) [k1b21 - k2bd + k1k2 [b ll b22 - b12b21 ]

(s +~) [(s +~) - ~(k2b12 - ka k1b22 )]

(s + fl)2

(s+~)[s+t¥-]
(s + fl)2

Comparing this with the result for the no-awf case in Eq. 8.69 reveals that
in the square bracket factor of the numerator, a positive term ka1 k1b22 is
added. In other words, /31 increases for increasing ka1 • Therefore the starting
point of the Nyquist contour (at w = 0) moves monotonously to the right,
and thus the radius of attraction increases.

A special case is /31 = O. Then

F+1= (s+~)s
(s+fl)2

(8.81)

and the Nyquist contour starts from the origin in the vertical direction. This
lets the radius of attraction grow to near infinity.

The corresponding awf gain value shall be denoted as k~l . It has a similar
role as the compensating awf gain in Chapter 2.

(8.82)

Inserting from the design

(8.83)

(8.84)

yields

k * -_ b12 fl2T - 2 -, 34
~ ~ O. 21

al b22 fliT - 1

In Fig. 8.24 the Nyquist contours are plotted from the Simulink model corre­
sponding to the control structure in Fig. 8.23 for

vka1 = [0, 0.5, 1.0, 2.0] k~l (8.85)
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Fig. 8.24. Nyquist contours for the system with awf, Fig. 8.23, with values from
Eqs. 8.67) and 8.68 for saturating Ul

8.6.5 Transient Response

Fig. 8.25 shows the response of the system with awf in Fig. 8.23, with the awf
gain at the same values as in Fig. 8.24. The setpoint steps applied here (rl =
r2 = 0.50) are far above the stability limit for the no-awf case (rl = r2 ;S 0.20
from Fig. 8.21).
This confirms the effect of the awf, and the sizing of the awf gain by the
stability-based design method.

To summarize: a solution has been found for making this design choice fea­
sible with saturating controls Ul, U2. However, it still is a dangerous proposi­
tion, as the local R2 loop has been made voluntarily highly unstable by design.
There will be grave consequences if the R1 loop is opened inadvertently by
some equipment failure, or if it is switched to manual. Commissioning of the
control system will also be rather difficult.

Exercise
- Investigate the effect of the opposite awf (from U2, added to ud
on stability and on transient response,
- and also of having both awf loops implemented jointly.
- Are both awf loops needed to ascertain stability?
- And: use local PI(aw) controllers instead of the P controllers.



480 8 Multivariable Control with Constraints

01

o-t.:::: ----

01

O'

0.2

1-- - - - - - - - - - - - - - ---- - - - - - - - - -- - - --- - - --
I :
I ,

I :

0.1

0.1

••
...

-------- ------------,
" ', ,
"

"1.... .. ~',=__'"-'-_--'
l 1 1

I

I
- -------_ .... -----------

-0. -
"

-0" -~_ ",
-01 - ...

.. • '1
-0..8 ..:...:..i.

, ,
, ,, ,
, ,
, ,,.

-.
'0 '0 IS

-0.2

"
-0' -.,

",
-01 - ",

"
-01 .. -',

-.

-0" -
"-0' _ ...

",
-os .. UJ

"
-0 • ..:....:....1..

-,

1;- --- ----- ------- .. -- --- ---I
, "

"
0.1

:: r-------------------------i,fff,:O-::;,,z:'===1
I ' •

0.2' I II '

o~------..--------- :" ,'"
", ,

, '
, 1.,
".'"

,----------------, I
, ,

"
"

~-- ..---- ..-----------------h'<::-~::::::==l
I ' ,
I ", '

I 1
__ -----J ", ,

"'-- ----' II, '. :
; ,
, ,, ,
"

O'

0.1

02

01

'0 '0

Fig. 8.25. Responses of the system in Fig. 8.23, with values from Eqs. 8.67 and
8.68
with awf from U2, added to Ul:

(top left) ka1 = 0; (top right) ka1 = 0.5 k~,

(bottom left) k a1 = k~,; (bottom right) k a1 = 2 k~,

8.7 Summary

The orientation towards control system design has motivated the investigation
of control systems, where there is one main measured variable Yl, but multiple
physical actuators. They may be operated in parallel or sequentially by one
main controller with appropriate awf. Or there may be more than one con­
troller for Yl, again with appropriate awf, but with shifted setpoints such that
the actuators are operated in sequence. The parameters of those controllers
may differ to account for different plant response. Such control structures are
used very often in practice.
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Obviously these are not of the usual single-input type, nor are they of the
fully multivariable type. From their physical background, they have been at­
tributed to the multivariable area here. However, again assuming that the awf
has been designed properly, the stability properties can be determined either
from fusing the multiple physical actuators into one logical actuator of corre­
sponding work span, or from fusing the sequentially operating control loops
into one loop. In other words, the methods developed so far for the scalar u
case can be applied. Or such systems are a subclass of the scalar u class, and
clearly belong there from a more theoretical point of view.

From the multivariable control systems per se, only one (small) part has
been selected, where saturating control variables are known to cause perfor­
mance degradation.5 The benchmark problem investigated here is based on a
simple, transparent physical plant. It leads to a symmetric 2 x 2 plant model
with two dominant state variables, and where standard local P control (with­
out decoupling add-on) is already the full state feedback control.
The system is subject to strong directionality in the control variables. This is
also associated with a comparatively slow equilibration transient. Linear de­
coupling is not an effective design option here, because the coupling reduces
the apparent plant gain (as seen from the local control inputs to the local
measured outputs, and with the other control loop being closed).

Another approach is to invert the sign in one of the two loops, i. e. to
make it voluntarily unstable. However, the controller gain of this loop must
be lower than the gain of the other loop with traditional negative feedback,
in order to conserve overall stability. This speeds up the slow equilibration
transient. But stability will be lost if the stable loop is no longer functional. If
it is voluntarily switched to manual mode, then the positive feedback can be
reverted at once to negative feedback again. But what if its control variable
saturates transiently? If this situation persists long enough, then the two loops
will not recover, when the cause for the saturating u is removed. They will
stay mutually "locked out" , or "wind up" persistently.

It has been shown that this behavior can be suppressed by adding an awf
from the actuator in the negative feedback loop crossing over to the control
input of the positive feedback loop. This re-establishes nonlinear stability. The
radius of attraction can be made very large, if the awf gain exceeds a (finite
and rather low) threshold value. However, from a more distant perspective,
this seems "a patch (awf) on a patch (positive feedback)", and a rather risky
proposition. Therefore, an alternative is needed.
One is hinted at by the observation on the benchmark, that state feedback
design yields a less slow equilibration than designing local feedback on the
traditional 2 x 2 transfer function matrix. And response may be further im­
proved by appropriate feedforward paths to both control inputs as well. MPC
design again supports this in a systematic way.

5 Note that this does not exclude that other such problem areas may exist.
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Conclusion

Some remarks shall conclude this book on the approach, the main achieve­
ments, the limitations, and some open areas for further work.

9.1 Approach

The presentation is oriented to control engineers interested in improving their
design methods, to students preparing their professional career in control de­
sign, and to researchers interested in applications rather than the control
theoretician. An inductive, bottom-up approach has been opted for; rather
than a deductive top-down one, starting with the simple (and most frequent)
cases and progressing to more complex design tasks. A median level of ab­
straction is used, where typical industrial control design tasks are still visible,
where control theory is used with restraint and as a tool (to improve analysis
and design, and not as an end on itself), and where ease of implementation
is a key issue. This has led to separating the "standard methods" (where all
modules for implementation are available in current process control systems
and know-how is the only limitation), from the "advanced methods'. And the
focus is on control systems with one manipulated variable (scalar u), with
some extension to the multivariable area.

9.2 Achievements

A systematic design procedure has been proposed and used throughout. It
consists of a balanced application of four elements:

Structure in alternative forms, where functionality and equivalence is a
key issue.
Transient responses on benchmarks extracted from industrial control de­
sign tasks, serving as a screening tool for structures, and for a qualitative

A. H. Glattfelder et al., Control Systems with Input and Output Constraints
© Springer-Verlag London 2003
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measure of performance. A more quantitative technique is available from
Robust Control, but it is not included here, mainly for brevity.
Nonlinear stability analysis in the form of the sector criteria, which (af­
ter some preparation) is a powerful tool for understanding the effects of
parameter variations, and also for choosing design parameters well.
Links to more formal methods of optimal control, such as minimum-time
systems and numerical optimization of trajectories (Explicit MPC).

The application of this systematic design process has shown it to be an effec­
tive and efficient approach, much more so than focusing on anyone of these
elements alone would be.

Input constraints have been handled by antiwindup feedback (awf). The
basic situation with a plant of dominant first order, actuator saturation as the
input constraint and PI control has been discussed in detail. A generic struc­
ture has been used with dynamic awf, from which the most current control
structures are instantiated. This has been extended to other typical situations
in this context, such as actuators with both slew and stroke constraints, the
effect of a derivative action and of high-frequency measurement disturbances.
Then awf has been generalized to control of plants with higher dominant or­
der, again with input constraints from actuator stroke saturation and state
feedback. Observers have not been considered, for brevity. Stability analysis
has been prepared and standardized as "stability charts". They allow one to
discern quickly, whether the given control problem is a difficult one, i. e. sen­
sitive to such saturation or not.
Again several current and some novel awf structures have been investigated.
One of those, the "selection for lower-bandwidth control", performs particu­
larly well, is comparatively simple to implement, and is closely related to the
corresponding solution of the Explicit MPC method.
In the field of Multivariable Control, only one case has been investigated, one
which is known to be sensitive to saturations and where awf is helpful. A
more complete investigation would be outside the scope of this book, as it
must include many other relevant design techniques.

Output constraints are handled by the override technique. It consists of
feedback control along the constraints with standard linear controllers in­
cluding integral action, and subsequent Max-Min-selection on the controls. In
contrast to the awf field, this is not yet an established research area.
Some inroads have been made in this book. Basic elements are presented about
currently used alternatives for structures, their functionality and closed-loop
performance on the benchmark, a suitable generic structure as their common
root, and the preparation of the stability analysis. It has been demonstrated,
that the override structure is closely related to what the Explicit MPC method
produces as the result of the optimization process. It has also been shown that
the input-constraint case is a special case of the output-constraint one.
Again, the basic concept is generalized into implementing alternative control
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strategies, override control for plants with higher dominant order, and other
override paradigms, such as acting on the reference r of the main loop instead
on the control u, or resorting to a controlled compromise between performance
of the main and of the constrained variable.

9.3 Limitations

As with any other method, the design methods of antiwindup feedback and
override control have their limitations. The broad investigations in this book
have outlined them.

First, both design methods have been developed originally for single input
plants of dominant low order, for which PI control is well suited. Fortunately,
this covers most of the design tasks in industrial control design. And the results
are comparable to what optimal control would provide. But it has also been
shown that the stability properties, and thus performance, will deteriorate
progressively as the problem becomes situated farther away from this simple
setting. In short, loops with plants of dominant first order are not sensitive
to constraints. Loops with plants of dominant second order have a tendency
to overshoot. And plants of dominant third order may lead to unstable loop
response for large inputs. Also, Hurwitz plants are less sensitive than stable
plants with poles on the imaginary axis, and unstable plants are very sensi­
tive to constraints. Here, the design must be very careful, such as providing
sufficient actuator working span, other constraints being shifted outward as
far as possible, well-fitted reference trajectories, etc.

Second, both methods build on a well-designed control system for the
linear range. In other words, a mistuned linear control will negatively affect
the performance of antiwindup or overrides. And override control may not be
a good stand-in for a missing coordinating control in a multivariable situation
with strong interactions.

And finally, both methods are iterative and driven by the intuitive insight
of the designer into the specific needs for the design task at hand. This insight
has to be built up, which requires effort and time, and may be slow going. If
the design task is very complex, then this can get out of hand. A numerical
optimization technique, such as MPC, will surely be faster, but can have other
implementation problems, such as unfeasible trajectories, etc.

9.4 Some Further Research Areas

Obviously there is a strong interaction (and competition) with the numerical
optimization methods. The question is whether the antiwindup and override
designs are going to be eliminated soon by these more general methods.
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For the many small-sized design tasks in industry, a well-designed antiwindup
or override is a cost-effective solution. Furthermore, it seems to be closely
related to the corresponding Explicit MPC solution. On the other hand, nu­
merical optimization is the main method for large-sized problems, where the
selection techniques may be helpful in the implementation phase. Further re­
search in this overlapping area will surely be productive for both sides.

Another promising area is two-level control, which from practical experi­
ence is a wise approach to large complex control problems. Here, local single­
input control loops with high bandwidth reduce the effects of disturbances
and parameter variations as seen from the next higher level. This improves
the operating conditions for the higher level optimization, which then co­
ordinates the lower level loops through more complex, but slower evolving
trajectories, e.g. by an MPC control algorithm with its slow updating rate.
The local high bandwidth loops will still need the functionality for local input
and output constraints, i. e. antiwindup and overrides, at least as a precaution,
and of course they must communicate current constraints to the upper-level
algorithm.

In any case antiwindup and override controls are here to stay in design
practice for the foreseeable future, together with the indefatigable PID con­
troller ....
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Nonlinear Stability Tests

The aim of this appendix is to present the main nonlinear stability tests used
in this text. The assumptions are listed and discussed in verbal rather than
abstract mathematical form. No proofs are given.
Readers interested in the mathematical background are referred to the refer­
ences.

A.I The Canonical Loop Structure and Stability of
Motion

The canonical system Fig. A.I is a standard configuration used by most non­
linear stability tests. It consists of two subsystems Nand L connected in
a negative feedback loop. Any nonlinear system to be tested must be brought
to this form first.

r_N(_Y)M_U

--=U'j~

Fig. A.I. the canonical loop structure

Note that both u and y may be vectors for MIMO cases. In this text, only
the scalar (8180) case is needed and therefore considered.
The negative feedback is accounted for separately in Fig. A.I and is excluded
from the following discussion of the properties of Nand L.

The subsystem N contains the nonlinear characteristic (a nonlinear func­
tion u = -N(y)), and the subsystem L contains all the dynamics. It has to
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be linear and time invariant, and thus can be described by its transfer func­
tion L(8). In other words, the nonlinear and the linear dynamic properties
must be neatly separable into these two blocks. Further assumptions on both
subsystems are test-specific and shall be given there.
Note that no persistent inputs are considered here, i.e. both reference and
disturbance inputs are set to zero. In other words, the focus is on the initial
condition response of the closed loop (this is in contrast to classic control
theory, where initial conditions are usually set to zero, and the inputs are
nonzero, such as steps).

The undisturbed motion of the nonlinear system in Fig. A.I is considered
as a reference. This may be a periodic motion of all variables in the loop (such
as in a stationary limit cycle), or it may be a steady state with a zero motion
of all variables.
Then an initial condition is applied with arbitrary size.

The stability tests now consider the initial condition response. Therefore,
the term "stability of motion" is often used. 1

For asymptotic stability the initial condition response must decay to the
(undisturbed) reference motion, whereas for stability it must stay in a bounded
neighborhood to the reference motion, where the bounds are determined by
the size of the initial condition. Note that this definition of stability allows
one to investigate stability of both limit cycles (which would be classified as
non-stable in linear control theory anyhow) and steady state.
An important parameter is the size of the initial conditions. One therefore
distinguishes between"stability in the small" or "local stability" for infinites­
imal size at one end, and "stability in the whole" or "global stability" for the
size tending to infinity.
It is useful for applications to insert "stability in the large" for intermediate
sizes. Then the initial conditions responses form a compact "region of attrac­
tion" of finite size around the reference motion. For initial conditions outside
this border the responses diverge, i. e. they are not stable.

A.2 Final Steady State and the Sector Criteria

This is a first group of stability tests where the reference is the steady state.
This makes them particularly useful for the class of problems considered in
this text, where the response should settle to a steady state and not to a limit
cycle.

The linear subsystem L(8) must be asymptotically stable itself (without
the feedback through N): It must be Hurwitz, that is all poles must have
nonzero negative parts. Non-rational stable elements, such as a pure delay,

1 Note that, in linear control theory, stability is a system property for short, but
not here.
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are admissible. Also, L(8) has to be a finite bandwidth system,2 i.e. its gain
IL(jw)1 shall decay to zero for w ---+ 00 (strictly proper). This restriction may
be relaxed to "proper", i. e. to a finite, bounded gain. In other words, a pro­
portional feedthrough is admissible.
Finally, the mathematical model must be such that the steady state to be
investigated is at zero (at the origin). In practice, this requires introducing
appropriate offsets to suppress any nonzero steady state values for the partic­
ular operating condition (working point) to be investigated.

The nonlinear subsystem is the nonlinear characteristic N (y). It must
evolve in the first and third quadrant, but need not be symmetric to the
origin. It must run through the origin and must be single-valued in a finite
region around the origin (no hysteresis is allowed, which includes the origin).
It may contain hysteresis outside the origin however, but it shall not contain
any integrator elements. The plot of N(y) shall be contained in a "sector"
(hence the name of these tests) with upper slope b and lower slope a, where
Ibl,lal shall be bounded (they may be large but finite). Note that a < 0 is
admissible, but not needed and not considered here (see references). Within
this sector N(y) may also be time varying. This need not be so slow such as
to be quasi-stationary, but may be on the same time scale as the variables
u(t), y(t).

Under these conditions the circle test in its graphic form consists of drawing
- for the linear subsystem the Nyquist contour of L(jw) for w ~ 0
- and for the nonlinear subsystem the circle with its center on the negative
real axis and running through the points (-l/a, jO) and (-l/b, jO).

In Fig. A.2
6

L(s) = 2 2
(s+l) (O.ls+l)

(A.1)

is used as a numerical example.
If there is no intersection, as in Fig.A.2 (a), with l/al = 4, 1/a2 = 8, l/b = 1,
then the closed loop initial conditions response will be asymptotically stable
to the origin as the reference motion.
If there is an intersection as in Fig. A.2 (b), l/al = 4, 1/a2 = 8, l/b = 1/2,
then no stability result is delivered. The actual system response may converge
or diverge. This is due to the inherent conservativeness of the test, which
checks only "necessary but not sufficient" conditions (see references).

In applications, this may seem to be a severe deficiency. However, from
experience, stability results from sector tests are not as conservative as other,
more general, nonlinear stability tests may be. In any case, if the nonlinear
loop is designed such that the test shows asymptotic stability, then (from our
experience) the real system will show an acceptably well-damped reference

2 Which all physical systems in fact are, but not necessarily their mathematical
models.
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step response.
Notice that for a = b, N will become a linear gain element. Then the circle
degenerates into a point at -1Ib on the negative real axis and the circle test
turns into the well known Nyquist stability test for linear loops. And for a = 0
the circle will degenerate into a vertical straight line at - lib, which makes
the graphic test even easier to perform.
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Fig. A.2. The graphic stability test with the "on-axis" circle test:
(left) case (a) indicating asymptotic stability of the initial condition response;
(right) case (b) allowing no conclusion about stability (the circle and L(jw) intersect)

An important sub-case is N time-invariant and without hysteresis; Fig. A.3.

o.s

-O.s

Fig. A.3. The graphic stability test with the "off-axis" (--) compared with the
"on-axis" (. - .) circle test with L(jw) (-)
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Then the "on-axis" circle test can be relaxed into the "off-axis" circle test,
which allows a larger sector: an upper slope of 2 is admissible instead of 1
from before. Note that a = b= 2 is also on the linear stability border.

If, additionally, a = 0, then the Popov test can be used instead. It allows
one to use an arbitrary inclined straight line, as in Fig. AA, together with the
Popov plot P(jw) instead of its Nyquist plot L(jw). P is generated from L by

P(jw) = R[L(jw)] + jw~[L(jw)] (A.2)

-2
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,, ,, .
,,,,,,,,,,,
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..
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Fig. A.4. The graphic stability test with the Popov line (- -) and the Popov
contour P (-) compared to the "on-axis" circle test with L(jw) (- - .) and the
vertical straight line at - l/bv ::::; -1/0.8621 = -1.165

In this case, the Popov test produces the same upper bound for b as the
off-axis circle test3 and a higher upper bound than the on-axis circle test for
a = 0, which produces the vertical straight line· - . at (-l/bv ) in Fig. A.4.

A.3 Limit Cycles and the Describing Function Method

This method is best suited to check for limit cycles and their stability in loops
such as in Fig. A.I. It is mathematically not very sound, but effective for
engineering analysis and design. One should be careful not to overextend its
usage.
In the context of the systems considered here, phenomena similar to limit
cycles are known to appear for constrained systems of dominant order three

3 This need not always be the case.
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or higher. In constrained systems of dominant lower order, look for other
causes than the constraints.
The linear subsystem L(jw) in Fig. A.I need not be asymptotically stable
by itself, but it has to be a sufficient low-pass filter for the higher harmonic
components of the limit cycle in the loop.
The nonlinear subsystem characteristic is to be non-time-varying. If it is not
symmetric to the origin, a steady state offset is generated. The nonlinear
characteristic may now contain a hysteresis around the origin and very steep
slopes (such as for a relay). It is now described by the pair of gain IBI and
phase arg B of the first harmonic component of u(t), if its input is a pure sinus
oscillation. Both gain and phase are functions of the input amplitude y. This
is known as harmonic linearization of N.
Now the loop is closed with B instead of N. The elements in the loop are
linear and the Nyquist test applies

1
1+ B(YLC)L(jwLc) = 0 ---.. L(jwLC) = - B(YLC) (A.3)

This equation holds at the intersection of the plots of the Nyquist contour
L(jw) and of the negative inverse of B(y) in the complex plane. There, the
linearized model loop is at its oscillatory stability border with frequency wLC
and amplitude YLC of the limit cycle, where WLC is to be read from L(jw)
and YLC from the negative inverse of B. Fig. A.5 depicts this situation for the
numerical case of L from above and for a relay with no hysteresis.
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Fig. A.5. The describing function test for L from the previous example and for a
relay with no hysteresis as the nonlinear element

Stability of this motion may be checked by increasing ihc by a small
amount, and locating the corresponding point on the plot of -1/B. If this
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point is on the left side of the Nyquist contour L for increasing w, then this
is a stable motion, otherwise it is not. From Fig. A.5 the motion is stable.
A second case with the deadspan nonlinearity is shown in Fig. A.6 with4

(s + 1)3
L=-1+(s+ft)3 with ft=7.0
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-1.1 -1.08 -1,(_ -1.04 -1.02 _1

Fig. A.6. The describing function test for L from Eq. AA and for the deadspan
nonlinearity

Here the leftmost intersection point indicates an unstable equilibrium, i. e.
the motion will decay to zero for smaller fj (represented by points farther to the
left), and diverge for larger f) (represented by points farther to the right). The
right-hand intersection indicates a stable motion. Here, a diverging motion
from the leftmost intersection will be stabilized.

AA Summary

Both the sector and describing function tests for stability of motion are useful
tools in this context of constrained systems. They are complementary and
not antagonistic. The sector criteria are useful as long as the Nyquist contour
of F + 1 stays well within the second quadrant and away from the negative
real axis. They fail, however, if the Nyquist contour crosses over the negative
real axis, as then there will always be an intersection. Clearly, the describing
function test is better suited for such cases. But it should not be used if
the Nyquist plot stays far off the negative real axis, and thus far from any
intersection points.

4 Note that this corresponds to Peter's case, Sect. 6.2.
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