
Research Reports ESPRIT

Project 813 . TODOS . Vol. 1

Edited in cooperation with
the Commission of the European Communities

B. Pernici C. Rolland (Eds.)

Automatic Tools
for Designing
Office Information Systems

The TODOS Approach

Springer-Verlag
Berlin Heidelberg New York London

Paris Tokyo Hong Kong Barcelona

EdHor~ addresses

Barbara Pernici
Politecnico di Milano
Piazza Leonardo da Vinci 32, 1-20133 Milano, Italy

Colette Rolland
Universite de Paris I, UFR 06
17, rue de la Sorbonne, F-75231 Paris Cedex, France

ESPRIT Project 813 "Automatic Tools for Designing Office Information Systems (l0-
DOS)" belongs to the Subprogramme "Office Systems" of ESPRIT, the European
Strategic Programme for Research and Development in Information Technology
supported by the European Communities.

The TODOS project develops tools to support office systems design covering all
phases from a planning step to the proposal of an architecture of office systems. The
tools developed will be used by the system designer and will support the phases of
requirements collection and analysis, logical design, rapid prototyping of office sy
stems to validate requirements, and architecture design.

Participating Organisations:
Dornier, 0; Italtel, I; Oce, NL; Politecnico di Milano, I; Serna, F; Thom'6, F; IEI-CNR, I;
Systems & Management, I; Universite de Paris I, F; BIFOA, D.

ISBN-13: 978-3-540-53284-2 e-ISBN-13: 978-3-642-84323-5

001: 10.1007/978-3-642-84323-5

This work is subject to copyright. All rights are reserved. whether the whole or part of the material is con
cerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or
parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its
version of June 24,1985, and a copyrightfee must always be paid. Violations fall under the prosecution act of
the German Copyright Law.

Publication No. EUR 13107 EN of the
Commission of the European Communities,
Scientific and Technical Communication Unit,
Directorate-General Telecommunications, Information Industries and Innovation,
Luxembourg
Neither the Commission of the European Communities nor any person acting on behalf ofthe Commission is
responsible for the use which might be made of the following information.

© ECSC - EEC - EAEC, Brussels - Luxembourg, 1990

2145/3140-543210 - Printed on acid-free paper

Foreword

The market for information technology products is rapidly changing from a manufactur
er-driven market where new products were determined by the evolution of technology,
to a user-driven market where users buy only products corresponding exactly to their
needs and where competition is very strong.

Confronted with this market situation, hardware and software producers are being
obliged to adopt new strategies, and to make a large number of products available on
the market in response to a variety of different needs.

As a result of the multiplicity of choice available, the design of an office system which
corresponds precisely to user needs is becoming an increasingly complex task.

With exactly this in mind, the Commission, as early as 1985, invited submissions
of projects aiming at the development of such adequate tools in its Call for Proposals
for the ESPRIT Programme, in order to assist companies in the design of their office
systems. This topic was recognised as being of strategic importance, considering the
low level of penetration of Information Technology in European enterprises compared
to the United States and Japan.

Following this strategy, the project TODOS was selected and launched. This project
has successfully developed tools and methods for the definition of the functional specifi
cation of the office system, as well as the system architecture and user interface - results
which can be of great interest for the IT community at large.

For this reason, the TODOS consortium, in accordance with the Commission of the
European Communities, has decided to publish the main results of the project in this
book.

We take this occasion to congratulate the consortium's team for the success of the
project, as well as the excellent spirit of collaboration that has animated the participants.

Didier Bouis

ESPRIT Project Officer
Commission of the European Communities

Preface

The TODOS methodology and design support environment for office information sys
tems development are presented in this book. In TODOS, a method for the definition
of an office system is proposed, and tools support the developer in the different design
phases in making design choices, analyzing results, and presenting these design results
to final users of the office systems.

The book is mainly oriented to professionals looking for a method for office system
development. The TODOS approach provides a framework within which each designer
can evaluate and tailor his own method. In addition, a set of design tools is proposed,
which can be realized by professional groups interested in developing their own tools,
or requested directly to the TODOS team partners who proposed them.

The TODOS team was formed answering a Call for Proposal from the ESPRIT
(European Strategic Programme for Research and Development in Information Tech
nologies) Programme of the Commission of European Communities, within the Office
Systems Area. The team worked from January 1986 to December 1988, and it proposed
an original method for office systems development and a set of tools for the different
design phases in the TODOS method.

The main ideas underlying the TODOS approach are the goal of avoiding unneces
sary reimplementation of hardware and software components available on the market,
and the use of computer based design support tools to achieve this goal. Data and
knowledge bases are used in TODOS to store information about available components
and about design choices. A prototyping tool is used to present the office system to the
users before its actual realization, to obtain users' evaluation. The result of a project
developed with the TODOS approach is the definition of the functional specifications of
the office system, of the user interfaces, and of an architecture for office hardware and
software components.

The book may also be valuable for office system managers interested in exploring
possibilities of developing office information systems in their organizations. Moreover,
it offers material for study in the academic world: researchers in the field can extend the
approach defining new advanced design support tools; students can examine the state
of the art in office system development support tools, and study office design support
environments.

The TODOS consortium is composed of partners and subcontractors from several
European countries: Dornier GmbH (D) acted as the main contractor in the ESPRIT

VIII

TODOS project; other partners are the following: Italtel (I), Oce (NL), Politecnico di
Milano (I), Serna (F), Thom'6 (F). IEI-CNR (I) and Systems & Management (I) were
subcontractors of Italtel, and Universite de Paris I (F) of Thom'6. BIFOA joined the
Consortium when the project was under way, providing experience from another ES
PRIT project, FAOR, in which a methodology for functional analysis of office require
ments has been developed, and giving precious integration and evaluation suggestions
to improve on-going work.

The book illustrates methods and tools to support requirements collection and anal
ysis, conceptual modeling, rapid prototyping, and architecture design for office systems.
The goal of the method is to improve the quality and facilitate the design of office
systems, minimizing the development effort. The complete TODOS methodology was
validated on an office information system development case study, which is presented
in detail in the book.

The TODOS team acknowledges the constant support of the Commission of the
European Communities, and in particular of J. Roukens and J. Machnik.

We also thank the reviewers of the TODOS project for their patient work and valu
able suggestions, aimed in particular at achieving an integrated approach to OIS design:
1. Bhabuta (UK), J.P. De Blasis (F), R. Niessen (D).

Besides the authors of the papers in this book, contributions to ideas presented
in the book came from the many persons who participated in some of the TODOS
phases. Prof. G. Bracchi from Politecnico di Milano helped to start the project with his
invaluable suggestions and to drive it in its initial phases. W. Vogel from Dornier GmbH
as a project manager created a supportive and cooperative environment among the
partners. Other researchers participated in the project: G. Benci, C. Richard (Thom'6),
R. Malherbe, J.J. Roubiere (Serna), C. Antonelli (Systems & Management), M. Aksit,
E. Bledoeg (Oce), F. Barbic, R. Maiocchi, S. Pozzi (Politecnico di Milano), M. Rabon,
W. Kerber, G. Mischke, J. Shaw, W. Scherer (Dornier).

We thank all of them for their cooperation.

Milano and Paris, July 1990 Barbara Pernici - Colette Rolland

Table of Contents

1. The TODOS Environment
Barbara Pernici ... 1

2. Requirement Collection and Analysis
Gianluca Bassanini, Fabio Di Stefano, Pascal Henry, Giancarlo Lunghi,
Edda Pulst, and Gerd Wolfram .. 15

3. Conceptual Design
Mariagrazia Fugini, Barbara Pernici, Silvano Pozzi, Jean Rene Rames,
Colette Rolland, and Andre Vignaud ... 43

4. Office Rapid Prototyping
Antoinette Kieback and Jochen Mader .. 109

5. Architecture Design .. 147
I: Architecture Generation in TODOS

Daniela Musto ... 149
II: Architecture Specification in TODOS

Donatella Castelli, Carlo Meghini, and Daniela Musto 171
III: Performance Modeling Phase

Etienne L.M.E. van Dorsellaer and Frank J.M. Heijmink 201

6. TODOS Case Study
Gerd Wolfram and Edda Pulst .. 235

7. Concluding Remarks and Future Work
Barbara Pernici, Colette Rolland, and the TODOS Team 307

References .. 311

Glossary .. 317

Authors' Address List ... 319

Chapter 1

The TODOS Environment
Barbara Pernici

1 Office Information Systems Design

Management of information and data exchange in the office are based more and more on
the use of advanced technologies. The office of the future will provide many computer
supported services for data acquisition, information retrieval, message exchange, data
and activity distribution. Modern office are already based on the use of one or more of
these services, but their effective integration is still an investigation issue. The major
problems towards integration are not only technological, but also methodological, since
it is necessary to provide criteria for the evaluation of systems being proposed to support
office activities.

Methodological issues have been investigated in the design of office information sys
tems. Office Information Systems (OIS) are office systems in which some established
procedures to perform office work can be identified. This definition does not imply that
all office activities can be classified as a part of one of the office procedures, but rather
that many office activities are oriented towards the realization or support of well defined
office goals. The office activity as such is well integrated with the overall organization
goals. Therefore, the design of Office Information Systems is driven by the goals of the
organization and by its structure.

Activities performed in the office have been traditionally classified into two categories
(Panko 1984): routine activities and creative activities. Tools provided by modern
technology to support these two types of activities may be either distinct or integrated.
It is essential to consider both types of activities during office systems design, to achieve
good quality of work in the resulting office systems, and flexibility in performing it.

The goals of a office design methodology are manifold. The main aim is that of
making the OIS design process easier and more reliable (Bracchi and Pernici 1984). A
methodology has also to take into consideration the complexity of the office environment.
First of all, it is necessary to define office and business goals, which are not always
evident, in order to understand what the work performed in the office is, and how
the system to be designed will affect this work. The analysis of office work that must
be carried out in order to gain this knowledge is also complex, due to the nature of
the office work itself, including routine and creative activities, with a large number of
exceptions to established procedures. The need for methodologies is evident in office
systems design, since they provide a guidance for analysis and design of complex office
systems. The result of their application is in terms of more clearly understood needs of
the organization and better justified proposals for technical solutions.

2

The first goal of an office design methodology is that of obtaining a description of
the office. A complete and formal description of all aspects of office work is unfeasible
owing to the large number of exceptions, special cases, which are hard to identify, and
also due to the difficulty of evaluating the impact of the use of new technologies in the
pre-existing work environment. Therefore, to support office description, office design
methodologies use models, whose purpose is that of describing as many aspects of the
office as possible in an unambiguous way. The descriptions of the office can be performed
at different levels of detail and consider multiple views, to capture various aspects of
office work. A second goal of a methodology is that of guiding the designer in using
office models as a basis for the analysis of the office. The result of analysis, aimed at
improving office work, are suggestions to change the organization of work within the
office, integrated with technical solutions based on modern office support technology.
One of the problems to be considered by a methodological approach is the ability to
support the designer in choosing among technical solutions in a continuously changing
market, in which new products are added and supersede previous proposals very quickly.
A methodology should therefore offer a set of criteria to enable the designer to evaluate
possible solutions.

OIS design is strongly affected by the availability of new technologies to support
office work. For instance, workstations are becoming more and more widespread in office
systems, due to their increasing performances and their decreasing cost. Multimedia
data are more and more often handled electronically within office system, replacing
previous archiving techniques, such as for instance file cabinets and microfiches. Storage
and retrieval of multimedia documents requires sophisticated technical solutions to store
documents efficiently and in order to be able to retrieve them according to their contents
with acceptable response times. Other types of data which are not manipulated in
conventional information systems concern the need for storing information along the
temporal dimension. Temporal information is associated to versions of documents,
to times and durations of activities, to work plans. Integration with data stored in
the organization databases is needed. Another important aspect in office systems is
communication. Electronic communication links are established among office workers
of the same organization and with the external world. Rapid exchange of information
due to electronic communication links modifies the way work is performed in offices.
All the above discussed aspects of new technologies must be identified and supported
by modern OIS design methodologies.

Several methodological approaches to OIS design have been suggested (Bracchi and
Pernici Winter 1984, Ellis and Naffah 1987). A possible classification of these method
ologies is based on the design phases they cover (Fig. I).

A feasibiIity analysis is necessary before starting an office system development project
on a wider scale. Once the need for providing technology-based support has been iden
tified, and the organization goals stated for the office system to be developed, the OIS
development process can start with a requirements collection and analysis phase. The
goal of this phase is that of collecting data about the present organization of office
work, and to suggest potential areas for improvement, supporting these suggestions
with adequate motivations. The design phase is concerned with the realization of the
potentialities for improvement identified in the previous phase. Design of an OIS covers
several different aspects: definition of the functionalities to be provided by the office
system, and automation of procedural steps where this is possible; design of the user

3

REQUIREMENTS
COLLECTION AND

ANALYSIS

MAINlTINANCE

Figure 1: OIS design phases

interfaces to be provided to office workers; design of the architecture of the system,
evaluating the different possible technological solutions. Realization of an OIS is rarely
based on the development of new ad hoc solutions for a specific office. The office system
will be constructed on the basis of a set of existing hardware and software components.
This aspect characterizes office systems development, in particular if compared to soft
ware development in information systems of conventional type. The realization phase,
therefore, is based more on integration and personalization of existing hardware and
software components, rather than on the development of new components. To this pur
pose, the design choices proposed in the previous phase have to be formulated in terms of
items available on the market. Alternative solutions have to be evaluated during design
according to cost and performance requirements defined in the requirements collection
and analysis phase. In the case of office systems, maintenance is mainly in terms of
adjusting the realized system to new requirements due to modified organization goals,
and, most importantly, to new available technological proposals. These changes have
to be evaluated with the same criteria used in the design phase mentioned above.

A number of methodologies has been proposed since the beginning of research
and application of Office Automation, in the early eighties. A classification of avail
able methodologies can be based on the development phases they cover. Early design
methodologies, such as OAM (Sirbu et al. 1984) and OFFIS (Konsynski et al. 1982),
focus their attention on the initial phases of OIS development. The goal of OAM (Office
Analysis Methodology) is the identification of OIS requirements and the definition of
the functionalities needed by office units, OFFIS is oriented in particular to the descrip
tion of the organization of the office and on activities to be supported, thus focusing
on later development phases. The common characteristic in these approaches is that
they follow a traditional approach to the development life-cycle, with the assumption
than the design phase implies a major effort in software development. More recent
approaches focus instead mainly on the first phases of OIS development. Two projects

4

aimed at OIS development methodologies in ESPRIT are FAOR (Schaefer et al. 1988)
and OSSAD (Conrath et al. 1988, De Antonellis and Zonta 1990). In FAOR (Functional
Analysis of Office Requirements) a methodology has been developed that provides a set
of methods tailorable to different office requirements. FAOR covers the phases Fea
sibility Analysis and Requirements Collection and Analysis. FAOR results have been
integrated in the TODOS methodology to cover the initial development phases in OIS
design. OSSAD (Office Support Systems Analysis and Design) focuses on organiza
tional problems, tightly connected with technical aspects: the aim is to bridge the gap
between the vendors and the user organizations.

TODOS proposes a new approach to OIS design based on two major assumptions:

• the development activity is aimed at integrating and personalizing existing com
ponents, rather than developing new ones. This approach is distinct from other
proposals, which aim principally at defining the functional requirements of OIS. As
a consequence, TODOS covers Feasibility Analysis, Requirements Collection and
Analysis, and Design. Realization is intended to be only in terms of composing
and personalizing available components.

• the development process must be supported by computer aided design tools.
While the importance of support instruments was recognized also by previous
approaches, only limited computer-based assistance was proposed to support the
activity of the designer. In TODOS, a toolkit is proposed to cover all phases from
requirements analysis and design to the selection of an adequate architecture for
supporting office work.

The TODOS proposal is therefore articulated in a set of tools to support design and
evaluation of technical solutions.

2 The TOnOS Life-Cycle

TODOS proposes a design life-cycle that is particularly oriented towards reuse of exist
ing components and user evaluation of results of the design (Pernici and Vogel 1987).
The goal of the TODOS methodology is to define the functional and architectural re
quirements of office information systems. In TODOS, we envision a design activity
performed in strict cooperation by a design team composed by two different types of
professional figures:

• developers.
Developers collect and analyze requirements from the target organization and
design technical solutions.

• user representatives.
User representatives evaluate technical proposals from the user side. This evalua
tion is particularly critical in the first development phases, i.e., feasibility analysis
and the definition of requirements, and in evaluating user interfaces to the office
system.

The TODOS development phases are iterated until the resulting design is accepted by
user representatives and considered adequate by developers.

The TODOS development life-cycle is composed of two design loops (Fig. 2.):

user interface
design

5

conceptual
model

Figure 2: The TODOS life-cycle

architecture
design

6

• functional design loop
The functional design loop has the goal of defining the functionalities to be pro
vided by the office system. The result of the functional design loop is the definition
of an DIS conceptual schema and of interfaces to the office system, derived from
an office prototype. The office conceptual schema represents activities performed
in the office, in terms of documents to be manipulated, office workers, message ex
changed, and actions triggered by events. Interface requirements define, for each
office worker, the more appropriate interface to the OIS.

• non-functional design loop
The non-functional design loop defines non-functional requirements, to allow the
developer to examine possible alternative architectural choices, and providing cri
teria to evaluate them, mainly in terms of technical feasibility and performance.
The result of the non-functional design loop is the definition of an DIS architec
ture.

As shown in Fig. 2., four design phases are iterated in TODOS:

• Requirements Collection and Analysis

• Conceptual Design

• Rapid Prototyping

• Architecture Design

The Requirements Collection and Analysis phase focus both on functional and non
functional requirements. Functional requirements include the office organizational struc
ture, description of the office goals and products, tools being used to achieve them and
requirements for additional functionalities. Non-functional requirements are mainly in
terms of cost and performance parameters, office layout, and include constraints on
technical characteristics of the OIS to be realized, such as compatibility with already
existing equipment.

The Conceptual Design phase is concerned with designing an OIS with the required
functionalities. Such functionalities are represented in the OIS conceptual schema.

The Rapid Prototyping phase produces a prototype of the OIS to be developed.
Such prototype demonstrates the functionalities provided to each office worker, focusing
mainly on interfaces.

The Architecture Design phase has the goal of proposing an OIS architecture, in
terms of hardware and software office components. Such an office architecture must
be compatible both with functional requirements expressed in the Conceptual Design
phase and with non-functional requirements.

The functional design loop includes the phases of functional requirements collection
and analysis, conceptual design, and rapid prototyping.

The non-functional design loop includes non-functional requirements collection and
analysis and architecture design.

The two design loops are strictly connected, since required functionalities have impli
cations on the choice of the architecture, and architectural choices can restrict possible
functionalities. The OIS conceptual schema produced by the Conceptual Design phase
is the basis for Architecture Design, since it describes required functionalities. On the

7

other hand, some of the required functionalities may be changed according to available
equipment and architecture choices. For instance, requiring advanced image manipula
tion functionalities subsumes the availability of a graphical interface. As shown in Fig.
2., the OIS conceptual schema is particularly relevant in the TODOS life cycle: it is the
link from the functional design cycle to the non-functional design cycle, being the basis
for rapid prototyping and interface design and the basis for architecture design.

As discussed in the previous section, TODOS is concerned only with design of func
tional and architectural characteristics of OIS systems. A system design and develop
ment phase is outside the scope of TODOS, since a major assumption is that the OIS is
only built out of pre-existing components. The outputs of a project developed with the
TODOS methodology indicate which are the hardware and software component~ avail
able on the market to realize the required functionalities. A further implementation
step will consist on the construction of the proposed architecture and personalization
of the software components according to the results of Conceptual Design and Rapid
Prototyping.

3 The TODOS Development Environment

3.1 TODOS Tools

The principal characteristic of TODOS is to to provide not only a methodology, but
also computer assisted design support. TODOS development aids can be classified in
three broad categories:

• Models

Each design phase in TODOS is based on a model used to structure relevant
information and to construct analysis instruments on top of it. Due to their pur
pose, models in different phases have different characteristics, but nevertheless
they present some common features. First of all, all design phases consider offices
open systems (Hewitt 1986). In a continuously changing environment, such as
Office Information Systems, future extensions should be easily included in design
models. Flexibility, tailorability and extensibility are essential characteristics for
an OIS model. New organizational and technological approaches can require ba
sic changes to the design .approaches being followed at present. To ensure the
feasibility of such extensions, each TODOS model is associated with a meta-level
description of the model itself, thus enabling redefinition of existing concepts and
adding new features, without the need to reimplement existing design support
tools from start. Semantic models provide flexibility characteristics which are
particularly indicated to achieve the goals mentioned above. The approach to
semantic modeling used in TODOS presents some common aspects in all design
phases: generalization hierarchies are a particularly powerful concept derived from
semantic modeling (Brodie et al. 1984); other abstraction concepts, such as ag
gregation and association of entities, and semantic links between entities have also
been included in TODOS models. We refer the readers to chapters discussing spe
cific design phases for details about characteristics of models used in a particular
development phase.

8

• Languages

To each model proposed in TODOS a language is associated. The language as
sociated to a model is mainly used internally by each design support tool, while
interfaces of developers to tools are designed in order to provide a user-friendly
access to tools during OIS development. Some discussion about internal represen
tation languages for the different design phases is presented in the book, and, for
further details, the reader is referred to technical reports describing implementa
tion of TODOS tools.

• Design Repositories

Models are used as a basis for describing information needed for analysis and de
sign in the different development phases. The TODOS environment provides a set
of integrated design repositories, in which design information is stored. Each devel
opment phase has a repository containing several levels of information. Meta-level
information specifies the characteristics of the model being used; such information
is needed due to the extensibility approach discussed above. Schema information
specifies design information for a particular OIS development project, organizing
information around the model described at the meta-level. Instances (real office
data) can also be inserted, for instance to give examples of an item described at
the schema level.
The above mentioned approach is used in each development phase. Details about
the application of this approach to each of the phases are given in the relevant
chapters.

• Analysis Tools

Models and repositories are proposed in TODOS to support analysis of design
information and formulation of design solutions.
Tools may either provide generic analysis functionalities, common to all design
phases, or be peculiar to a particular design phase. A generic analysis tool, used
in all TODOS design phases, is a tool for retrieval of information stored in design
repositories. Such a query interface is usually tailored to each design phase in
order to support specific queries on repositories needed in that phase. It is impor
tant to notice that design repositories are not only used by developers working in
the design phase in which information contained in the repository is stored, but
also by developers working in other related design phases. For instance, the Spec
ification Database, containing OIS Conceptual Schemas (see Fig. 2.), is not only
used during conceptual design, but also during rapid prototyping and architecture
design. Since the TODOS phases are iterated, the results of a design phase can
also be used by developers in earlier phases in the development life-cycle: for in
stance, OIS Architectures produced during Architecture Design (see Fig. 2.) can
be examined by analysts during iterations of the Requirements Collection and
Analysis phase, in order to analyze previously proposed architectural solutions.
Views on repositories, specific to the needs of developers in a given design phase,
are defined. In general, several views are needed during a given design phase. Such
views provide different perspectives on the OIS being analyzed. For instance, it
is useful to analyze collected requirements both to examine which documents are
relevant to a given office unit, and to analyze how a given document flows in the
organization. The definitions of views on a given repository are associated with
the description of the model, in the repository meta-level.

9

Other analysis and design tools are specific to different design phases. The char
acteristics of these tools are described in the relevant chapters of this book. Anal
ysis tools can be used to identify abnormal situations, inconsistencies in collected
information, and provide relevant explanations, suggesting appropriate modifica
tions. Design tools provide the developer with a support to construct OIS design
proposals.

All TODOS tools are proposed within the methodological framework developed in
TODOS. In the following section, an overview of the TODOS is presented. Methodolog
ical and computer based design support provided within each phase is briefly illustrated.
Each design phase is then presented in the following chapters of the book.

4 TODOS Development Phases

4.1 Requirements Collection and Analysis

The TODOS design methodology starts with the Requirements Collection and Analy
sis phase. The objective of this design phase is to identify and specify requirements,
transforming unformatted information into an organized, although not rigid, structure
which is useful for analysis and the preparation of the following design phases.

First of all, the task of this phase is to assess initial feasibility of the DIS with
new technologies in an organization (Heijmink et al. 1988). Collection of requirements
inside an organization in the scope of an automation process is a cooperative process
between employees, their managers, and the team of analysts in charge of the study.
Social aspects are very important, so the computer based tools for this phase assist
the analyst in his work, but automation can hardly be proposed. Initial feasibility
assessment is followed by a further collection phase, in which informal or low formalized
information is organized into a structure, both to enable requirements analysis, and to
prepare the basis for subsequent design phases.

The process of requirements identification is a complex one. In fact, office data are
collected along several dimensions, to be able to provide information about function
alities, activities performed in the office, interface requirements, cost and performance
requirements. The methodological guidelines for the early phases of requirements iden
tification and collection are provided by the Activity Framework developed within the
FAOR project (Schaefer et al. 1988). Office workers and their activities are represented,
volumes and frequencies of document flows memorized, distribution of work and layout
of the office collected. To enable to organize collected material, this task is performed
at different levels of details.

Requirements Collection and Analysis may be performed in TODOS along different
perspectives. A functional perspective indicates why given office activities are per
formed, a procedural perspective what is done, and a physical perspective how work
is executed. Another way to examine and structure data is proposed in relation to
design phases: a view collects and analyzes information to perform a feasibility study,
while a different level of detail and different types of information are needed to col
lect data to be used in the following phases of Conceptual Design and Architecture
Design. In TODOS, a number of observable entities has been classified within the
framework of Requirements Collection and Analysis: activities are organized according

10

to the product-objectives they are related to; information about people in the office con
cerns characteristics of human resources and the organization structure; technological
aspects are structured in terms of office tools used by office workers.

As discussed in the previous section, it is important to be able to tailor analysis and
design tools according to changing technology and to different organization situations.
Therefore, an extensible analysis model is proposed for the Requirements Collection and
Analysis phase in TODOS (TODOS Analysis Model - TAM). The Interpretative Model
of TAM makes it possible to define different perspectives to describe functional char
acteristics of OIS, in terms of the categories of observables mentioned above. For each
perspective (or interpretation), a structure for requirements is specified: the structure
defines relations between observables, types of observables, and analysis information.
Analysis information is specified in terms of qualitative and quantitative indicators, such
as for instance cost and performance parameters, adequacy indicators (e.g., reliability,
timeliness, completeness), volumes, and so on. The information modeled according
to the Interpretative Model corresponds to meta-level information. Actual informa
tion is structured according to the Descriptive Model of TAM, which allows to collect
requirements under a given interpretation. The TODOS Analysis Model is oriented
principally to collection and analysis of functional requirements. For aspects concern
ing non-functional requirements, TAM is complemented with the TODOS Performance
Model (TPM). In TPM, performance measures, office goals in terms of performances,
response time requirements, ergonomic aspects are specified. Also in TPM it is possible
to specify meta-level information, e.g., new performance evaluation rules, to tailor the
analysis to a given office and to adjust it according to possible changes in the way OIS
performance is evaluated.

The results from the application of the functional and performance analysis are in
terms of areas of interest for OIS development. Critical areas are identified and problems
to be solved specified.

After identification of critical areas, information needed by the subsequent design
phases is identified and collected, completing previously identified requirements, and
storing it within the same frame of reference.

The repository used during Requirements Collection and Analysis is called Office
Data Dictionary (ODD). Tools for requirements analysis utilizing the contents of the
ODD have been developed. Several query interfaces have been defined to support ways
of analyzing requirements which were traditionally performed with paper and pencil.
Moreover, some analysis tools specific to this phase have been developed. For functional
analysis, TAM defines indicators to identify dysfunctions. To analyze non-functional
requirements, a tool for performing performance evaluation to identify bottlenecks and
critical areas is provided.

4.2 Conceptual Design

The goal of the Conceptual design phase is to design an OIS in terms of the function
alities to be provided, defined in the previous Requirements Collection and Analysis
phase. Conceptual Design should be as independent as possible of the characteristics
of the architecture of the target system. The result of the Conceptual Design phase
is an OIS Conceptual Schema, which is constructed on the basis of the functional re
quirements collected in Requirements Collection and Analysis phase and stored in the

11

ODD. The OIS Conceptual Schema is used as an input from two subsequent design
phases: the Rapid Prototyping phase helps to validate the OIS Conceptual Schema,
the Architecture Design phase has the goal of providing an architecture to support the
required functionalities.

In TODOS, a conceptual model has been defined (TODOS Conceptual Model -
TCM), supporting the definition of two types of conceptual entities: static entities
describe structural aspects of the office, such as for instance documents, office workers,
messages; dynamic entities describe how these entities are interrelated for performing
office activities. TCM provides a basic set of concepts (predefined static and dynamic
entities), which can be extended according to the needs of specific developments.

OIS Conceptual Schemas are stored in a Specification Database (SDB). The SDB
stores both meta-level information about predefined entities and information about
entities in the schema of the specific office being designed.

A set of tools is provided to access and analyze the contents of the SDB. A powerful
query language is the basis of the query interface (TODOS Query Language- TODQuel).
Actual queries are performed using a designer oriented interface, which provides the
developer with a set of predefined queries. Such queries allow the designer to retrieve
information from the SDB to analyze characteristics of the OIS Conceptual Schema.
The principal goal during conceptual design is the derivation of a consistent schema,
which is also satisfactory according to some design criteria. Consistency and quality
analysis are therefore included in the query interface to the SDB.

Another important requirement of conceptual modeling is the ability to represent
the conceptual schema in an understandable form, both for the designer and for the
user. A graphical interface is particularly appropriate to this purpose. A graphical
representation of specifications has proved essential in information systems and software
design; most of the Computer Aided Software Engineering (CASE) tools provide a
graphical interface based on a particular specification model (Sommerville 1989). Such
a need has also been since long recognized for OIS design (Nutt and Ricci 1981). The
graphical editor for TCM schemas allows user representatives' evaluation of conceptual
schemas.

Other tools developed in TODOS are oriented to the evaluation of particular char
acteristics of the OIS being designed, such as for instance the communication protocol
followed in the office between the OIS and the office workers.

The SDB is a source of information for the following design phases. Its contents can
be accessed in bulk, such as in the case of office prototyping, where all information in the
SDB has to be processed to produce an office prototype, or using the query interface,
as in the case of Architecture Design, where data about functionalities have to be
aggregated in several ways, depending on the architectural aspect being considered.

4.3 Rapid Prototyping

The Rapid Prototyping phase has the goal of presenting the user a rapid view on a
possible realization of his requirements; working with a prototype, the user has the
possibility of better assessing how the required functionalities will be provided in the
final office system. The result of this design. phase is the realization of a prototype of
the office being developed, with the main goal of demonstrating office functionalities.
A derived result is the design and evaluation of user interfaces to the office system.

12

In these terms, we may say that the rapid prototyping phase defines OIS interface
requirements. The rapid prototyping phase derives necessary information from the SDB,
where functional requirements are stored, and from the ODD, where requirements about
office interfaces and document layouts are memorized.

The rapid prototyping tool uses a knowledge base to store both general information
about how a prototype is derived from a conceptual schema and specific information
about a prototype being created. Generic rapid prototyping knowledge defines how the
translation from OIS Conceptual Schemas described according the TCM model to the
prototyping tool knowledge base has to be performed; basic activities performed in an
office, such as printing, editing, and so on, have predefined implementations in the rapid
prototyping tool (office primitives), which can be used to set up the appropriate user
environments. The main attention in the prototyping tool is towards the definition of
user interfaces. An interface generator is provided, to map from TCM static entities to
user interfaces in the prototype system. Some support is also provided to enable the
user to evaluate sequences of activities performed in the OIS. Sequences of activities
may be triggered in the prototype, if necessary with user intervention, according to the
specifications of the TCM dynamic submodel.

4.4 Architecture Design

Architecture Design is a complex activity. It is necessary to consider the present state of
technology, to make use of hardware and software components available of the market;
moreover, it is necessary to evaluate different architecture proposals according to differ
ent criteria, among which cost and performance are the most important. Architecture
Design is disregarded in the principal OIS design methodologies, while it is given in
TODOS a particular attention. The result of the Architecture Design is a proposal for
an office architecture, in terms of components available on the market. The proposed
architecture is guaranteed to be realizable, and performance analysis is provided.

Architecture Design is performed in steps: first, a manual method is proposed to
map from an OIS Conceptual Schema and non-functional requirements to a possible
architecture. The Architecture GEneration Methodology (AGEM) provides the designer
with a series of steps for deriving a set of office architectures for the OIS being developed.
The steps guide the designer in identifying, in succession, individual office workers and
their action, needed functionalities, service access points, subsystems and networks,
their internal structure, and finally office architectures. The approach is based on a
top down approach, in which, from general requirements to perform office activities,
a more and more detailed architecture is derived. Each derivation allows the designer
to propose alternative choices, to refine previous choices, and to discard inconsistent
architectures.

The main assumption in developing office architectures is that they are based on
a set of workstations networked together, principally through Local Area Networks
(LAN). Components for the architecture are chosen using an Architecture Specification
System (ASPES). This system supports the last step of the AGEM methodology, where
specific hardware and software components are selected. The ASPES tool is based on
a knowledge base of office components. The individual characteristics of components
are specified, together with their interface constraints. Architectures are described in
AS PES using an Architecture Specification Language (ASL). Using the ASPES tool

13

in generating an architecture, the developer is sure that the selected architecture is
technically realizable.

The last step of Architecture Design consists in the evaluation of the performances
of each of the alternative architectures proposed. The evaluation is performed associ
ating performance measures to each component, derived either from the ODD or from
the components knowledge base, or directly entered by the designer. The evaluation
of performances is done with a Performance Evaluation (PE) tool, based on a queuing
network analysis package, which evaluates workloads, response times, and utilization of
resources. Using the results of simulations, the designer can choose among alternative
solutions, or modify proposed solutions to solve identified problems. Required modifi
cations may be fed back to the non-functional Requirements Collection and Analysis
phase, and be further evaluated. Such modifications may also have consequences on tlie
types of functionalities provided to office workers, and therefore affect the functional
design loop, as well as non-functional design.

5 Structure of the Book

Each chapter of the book is devoted to illustrate the TODOS methodology and design
support tools for one design phase.

Chapters 2-4 are devoted to the functional design loop. In Chapter 2, the Re
quirements Collection and Analysis phase is presented; the method for requirements
collection and the analysis support tools based on the Office Data Dictionary are illus
trated. In Chapter 3, conceptual modeling of office systems is discussed, showing tools
associated with interaction with the Specification Database. Chapter 4 illustrates rapid
prototyping tools, focusing on definition of office user interfaces.

The non-functional design loop is presented in Chapters 2 and 5. In Chapter 2, non
functional requirements collection and analysis with the TODOS Performance Model
is illustrated. In Chapter 5, Architecture Design is discussed in detail: the first part
presents the TODOS Mapping Methodology, from requirements and functional specifi
cations to an architecture proposal; the second part illustrates how architecture compo
nents are selected with the Architecture Specification System; finally, the performance
modeling phase is presented.

In Chapter 6, a case study is presented. The case study shows an example of appli
cation of the TODOS method to the design of an office system for a large regional bank,
and in particular for offices in the bank supporting the proposal and preparation of loan
contracts to large clients. Such application requires good message exchange facilities,
interaction with external archives, tools for decision support. In all the chapters of the
book, examples largely refer to material presented in the case study. Results from dif
ferent design phases, interrelation between phases, and iterations of the TODOS design
loops are illustrated in Chapter 6.

Finally, in Chapter 7, suggestions for future work on computer based office develop
ment support tools are discussed.

Chapter 2

Requirement Collection and Analysis
Gianluca Bassanini, Fabio Di Stefano, Pascal Henry, Giancarlo Lunghi,
Edda Pulst, and Gerd Wolfram

1 Requirements analysis for the design of office in
formation systems (OIS): State of the art

Requirements determine the fundamental characteristics of an office information sys
tem. They are an informal step to systems specification and design as they focus on
features and characteristics of the technical system that will be developed (Hirscheim
and Schaefer 1987). The following chapter therefore will outline both the character
istics of requirements and the requirements analysis in order to show the necessity of
methodological and automatic support of requirements analysis.

1.1 Characteristics of requirements

Requirements are the result of a dialectical process where an analyst, in consultation
and in concert with the user(s), decides which office aspects ought to be changed and
which ought to be preserved. The decision is made by studying the existing office
situation and considering necessary and/or desirable characteristics of the future office
information system.

Requirements and requirements analysis play a key role in the office information
system life cycle: "Defining user requirements accurately and completely is probably the
most essential task in the whole systems project, and one most critical to its success."
(Jeffery and Lawrence 1984, Page 125). Its output on the one hand, constitutes the
results of the analysis phase where the actual office situation and problems as well as
desired changes are investigated. On the other hand, the requirements document what
the designer has to know in order to build the system. Requirements are thus a kind of
abstract specification of what the future system must be able to do.

To focus on the requirements for office information systems does not imply that only
technological aspects are specified. Because of the socio-technical nature of the office,
requirements must also address the social and organizational environment in which the
office information system functions. A very narrow view on technology which ignores
its environment can cause serious deficiencies in the design: firstly, the system may
not be appropriate for the task in hand for example by imposing rigid standards and
procedures which do not fit the task and thus creating extra work or reducing flexibility
to provide the required service; secondly, the system may make work more unpleasant
and/or less satisfying for the users than previously by removing areas of discretion,

16

Toeh.cal £<ooo,,'e Or ••• Jutlo ••• Socl.1

S'r.,.,'e Be IBM <ompa.'" Lave,1 iD IT onl)' when b.po .. ibiliry lOt IT Sy".m .hould • upport

Service 1e .. llhould ir i. ec:onomicaUy .hould bo del .. ,,,,, ., coopcttlion in RUllI

be belle, "'11199 . ~ 'II. jus.li,bl. Iowa. le'Ve' poasible

Tnllcal et'NOd: iutall.tiOlll IItowt SYIlemi pmpou'" C"0I1- Sy • .,m •• hould """,\de Syaccmi should oblcrve

'IIppM IiINle ",,"""'.0 be ... li rio hoWd toto... p<rI fo< luch erpoomie llMdatd.e

ISDN ITII:eI slriCI l"CqWanc-nI .pp. IO thar" houn work wiD nor
~1.O,.ruh

Oper.llo ••• Atcc:esa ri&btl IhcKikI be "' .. pay bl<k period fo, Daily bl<k-"" or Oe_habIo ey.ho&nIs
dofi o b or Illy IT po/« I .hould bo <hans«! documerMI o sJare from IC'ftlCN
il'ldividual documena le-u fhan4 fun

Figure 1: Examples for requirements on different levels

variety and interest. This, in turn, may decrease user's motivation to produce work of
the required quality, or, more importantly, to make the system a success.

Consequently requirements have to take into account the following aspects:

• technical aspects, i.e. compatibility with already implemented systems, processor
speed, amount of storage,

• organizational aspects, i.e. the purpose of the office information system and its
major application area in the specific organizational setting,

• functionality aspects, i.e. the essential or desired office information system func
tions expressed in terms of information object form and handling capabilities the
office information system must have in order to support the business operations,

• social aspects, i.e. what the users want or agree upon,

• economic aspects, i.e. a fixed budget for the workplace.

All those aspects form the necessary comprehensive view of requirements. Besides
this the requirements can be considered on different relevance levels: strategic, tactical
and operational levels (Fig. 1).

These differentiation of requirements captures the fact that there are very general or
fundamental requirements, such as basic technical standards, which in some organiza
tions are decided upon at the general policy-making level, while others are formulated
at the departmental or office level and focus on a particular task in the office. Require
ments are of a very complex nature and consequently their specification is a complex
process encompassing a number of problems the people involved have to tackle with.

1.2 Complexity of the requirements analysis

Requirements analysis comprises the identification and specification of requirements.
Its complexity due to the presence of human and technological factors can be reduced

by employing models of abstraction and computer based tools. The cooperative process

17

Figure 2: Types of designers within TODOS

encompasses an information exchange between the studied organization, the people
involved and the analyst conducting interviews, selecting people and setting the time
and sequence for interviews as well as the relevant instruments.

The resulting model should always be as independent as possible from the imple
mentation details in order to represent an effective communication tool between users
and designers being as invariant as possible from the technology. A complete specifica
tion is reached by stating why an office information system needs to be introduced and
what functions of the office information system are necessary for achieving the intended
support. Up to now these instruments are mainly used in a paper version.

Requirements collection in analysis is part of the four design phases of TO DOS which
have been outlined in Chapter 1. with focus both on functional and non-functional
requirements for the different design tasks (Fig. 2):

The conceptual designer is concerned with the required functionalities of an OIS.
Central concepts are the representation of specific roles of office workers and of commu
nication among office workers within their business goals. The architectural designer has
the goal of proposing an OIS architecture in terms of hardware and software components.
This architecture must be compatible both with functional requirements expressed in
the conceptual design phase and with non-functional requirements like technical feasi-

18

bility and performance. The interface designer produces a prototype of the OIS to be
developed. A prototype system is constructed to illustrate the feasibility of new ideas
or design (Kieback 1987).

1.3 Methodological support of the requirements analysis

Diverse methodologies offer support for executing a requirements analysis. The following
provides a brief review of the major officI! information system requirements methodolo
gies (Schaefer et al. 1988, p. 24). Two groups of methodologies can be distinguished in
principle:

• Frame-oriented methodologies: They concentrate specifically on how to rep
resent the object system in terms of a model. Methodologies considering this
aspect are: ICN (Information Control Nets; (Ellis 1979)), SCOOP (System for
Computerization of Office Processing; (Zisman 1982), FFM (Form Flow Model;
(Tsichritzis 1980), OMEGA (Barstow 1985) and OFFIS (Konsynski et al. 1982).

• Principles of operation-oriented methodologies are focusing instead on the princi
ples one should use in eliciting office information system requirements. Examples
of such kind of methodologies are: ISAC (Information and Office Systems Specifi
cation; (Lundeberg et al. 1979)), ETHICS (Mumford 1983), OAM (Office Analysis
Methodology; (Sirbu et al. 1984)).

There are also methodologies which can be located in between these two orientations.
An example is the FAOR approach (Schaefer et al. 1988).

Further methodologies try to capture requirements from the view of the designer.
They mainly focus on the future system chosen by the system designer employing mod
els like information flows, activities and data stores as the foundation for evaluating
requirements. Some of the methodologies focus specifically on the information objects.
In summary, with respect to the different methodologies, it can be concluded the fol
lowing: They considerably adopt different perceptions on the role of requirements and
specification.

Mostly common to this methodologies is the fact that they don't integrate a suit
able language or a graphical representation for specifying requirements which supports
the achievement of the objectives connected with the subsequent systems specification
and design processes. The requirements specification therefore is connected both to the
analysis of offices and the design of an office information systems. On the one hand,
knowledge about both parts of the life cycle is necessary for the requirements specifi
cation while, on the other hand, the specified requirements are a prerequisite for the
later design. Requirements also reflect back onto the analysis by allowing to check the
completeness of the analysis or its consistency (Fig. 3).

2 Requirements collection and analysis in TOnOS

The main idea of the requirements analysis in TODOS is the orientation towards both
application and design needs for the later system taking into account the functional and
non-functional criteria in a structured way. The TODOS tool for requirements collection
and analysis has been developed to help the analyst in his work. Main characteristics of

19

" ,,/ Knowledge of Design
Application Needs Needs

~ / necessary for
requirements specification -----II Requirements ~--------

. Specification .

./ importance of
Analysis Basis for specified requirements
Needs
~

Design

Figure 3: The focus of requirements specification

the work is to transform unformatted or low formalized information in an organized but
not rigid structure useful for analysis and the preparation of design phases by expressing
property requirements for the future office information system.

The provided structure bases on a data dictionary concept called TODOS ODD
(Office Data Dictionary). It contains entities of the office encompassing static and
dynamic aspects, human and technical dimensions, qualitative and quantitative data,
geographical and hierarchical positions of offices. The provided structure can be easily
adapted to every organization in analysis.

In the following chapters the ODD will be presented. This starts with the elaboration
of the underlying office models and the description of the phases and instruments of the
requirements analysis process. This will be followed by the ODD implementation and an
outlook on how the ODD supports the analyst within the requirements analysis process.

2.1 Overview of the TODOS Analysis Model

An Analysis Model should both identify dysfunctions or problems and support feasibility
studies which give hints upon aspects and constraints of the future office information
system. The collection of data should help the analyst in obtaining the information
needed in the later "Conceptual Design" phase for the conceptual model of the office
and the architectural modeling of the required solution.

Therefore the tool should guide the selection of those areas in which the other
phases of the design will be applied. This model is the TODOS Analysis Model
(TAM), which frames the requirements analysis phase inside a reference plan. TAM
also provides quantitative parameters synthesizing the overall operation of the "office
machine". Naturally the kinds of measurements which will be processed by the tool are
the ones required to describe the work flow from a requirements analysis point of view.

It is divided into three views performing the office analysis according to three differ
ent perspectives: "Feasibility Study" view, "Functional Analysis" view, "Architectural
Modeling" view. On the basis of this scheme, a prototype of an automatic tool for carry
ing out the Requirements Analysis was developed. The main feature of TAM prototype
is to allow the collection of data and information describing the office modeled using
TAM by means of suitable forms. A form enables the analyst to insert, retrieve, delete
and modify entities describing aspects of the office environments according to TAM.

20

The results of testing TAM prototype (Bassanini et al. 1988) showed the utility of an
automatic tool aiding the Requirements Analysis of an OIS and pointing out critical
areas to be later analyzed during a phase of Functional Analysis:

• Goals to be pursued by the new 0 IS

• Results expected from the phase of Requirements Analysis

• Industrial sector which the analyzed office belongs to (e. g. banking, health care,
manufacturing, insurance, and so on).

The TODOS Analysis Model is further divided into two distinct models being strictly
connected from a logical point of view:

• The interpretative model providing a key to the interpretation of the working
activity, a logical criterion to be used for the identification of the essence of office
work showing in different perspectives the working environment.

• The descriptive model pointing out all the functional information of the inter
pretative model. This information is needed in order to be able to identify the
critical areas requiring the introduction of an OIS.

2.1.1 Interpretative Model

On the basis of what is suggested by the analogy with the physical sciences an interpre
tative model of office reality has the priority on defining one of its descriptive models.
Let us think, as examples of interpretative models in the physical sciences sphere, to
the corpuscular and the undulatory models of light propagation. Choosing the first
model advantages a descriptive model of reality founded on observables which are typi
cal of rational mechanics (mass, quantity of motion, kinetic energy, cross section and so
on). Choosing the second model advantages a descriptive model founded on observables
which are typical of the electromagnetic wave (wavelength, frequency and so on). On
the same basis the term "interpretative model" is - from a conceptual point of view
- synonymous with the term "interpretative hypothesis". An interpretative model (hy
pothesis), indeed, keeps its effectiveness until the descriptive model it inspires is able to
describe all the observable phenomena and to furnish data that do not show false the
hypothesis itself.

Trying to give a definition of office, a wide number of various aspects must be consid
ered: the place, the set of activities performed, the resources required for performing an
operation, the personnel's satisfaction, the control procedures, the overall organization,
and so on. At least two different levels of description can be distinguished (Ciborra
1984): a macro level, where the office is seen as the set of activities needed to coordi
nate the true productive activities; a micro level where the office is seen as a behavioral
setting where several activities are carried out by cooperating people, characterized by
their own cultures, interest, knowledges. Just examining this second point of view, three
different approaches to the office work analysis can be pointed out (Ciborra 1984). These
families of models show as many possible strategies in the support of office procedures,
on the basis of the different analyzed degrees of complexity in the office work.

The variables characterizing office reality allow a large spectrum of possibilities to
define interpretative models. Their name can be derived from the relative importance

21

of a particular observable in respect of the other ones. Inside the office at least four sets
of observables can be pointed out (Leavitt 1964): people, the tools they use to carry out
their office work, the tasks they are supposed to accomplish, the organizational structure
fixing the procedures of communication and the sharing of responsibilities among the
human resources. These sets of variables are rather generic and can be easily divided into
subsets: "people" can be meant as professional curricula, natural attitudes, personal
relationships with other employees; "tools" stands for traditional manual instruments,
computer-based tools, paper forms (or document); "tasks" is for elementary activities,
operational procedures, communications between the office workers, and so on.

Generally speaking, the simplest kinds of models for requirements' analysis are those
which attach a relevant importance to only one of the possible subset of observables:

• tool-based models: the main emphasis is put on the manual execution of the
office activities: all the work flowing inside the working environment is modeled
as a series of elementary operation whose execution can be optimized by means
of suitable instruments (Taylor 1911);

• document-based models: the relevant elements of this family of models are the
data and the documents processed inside the office (Zloof 1982);

• procedure-based models: the office work is seen as a continuous flow of work
which should be controlled by an office worker in order to correct disturbs in the
shortest response time (Zisman 1978);

• speech-based models: the office work is analyzed from the point of view of the
conversations developing among the people lining inside the office environment
(Flores and Ludlow 1981).

The most general and complex ones underline the mutual relationships between two
or more observables: coherently with what is shown by FAOR (Schaefer et al. 1988)
the TODOS approach recognizes that office reality is a highly complex system which
badly fits for rigid representative schemes. Therefore the TODOS interpretative model
matches fairly well with the FAOR approach of individuating a Generic Office Frame of
Reference GOFOR(Schaefer et al. 1988): GOFOR employs the concept of perspective
for specifying the relevant aspects of the office domain. The perspectives are means for
coping with the complexity of offices by separating domains of office functioning, one at
a time, and for bringing them together as building blocks for constructing a model of the
given office. Within this sphere it is possible - according to the analysis objectives and
perspectives - to define a "base of observables" necessary and sufficient for describing
the considered phenomena and interpreting them through suitable "filters".

The goal to be achieved by an OIS design and implementation is the improvement
of the productivity of office work. By productivity it is not merely meant the measure of
the units of product per employed resource, but, in more general terms, the suitability
of the office performances to the demands coming from the external organizational
environment. Therefore, the more the outputs of the office being analyzed will be
convenient for users' needs and expectations, the higher the productivity will be. By
users it must be meant both offices belonging to the same corporation and external
organizations. The office is seen as an environment where a group of people using
suitable tools carries out a set of coordinate activities. Office workers do not conform

22

to pre-established rules and rigid procedures, like e.g. IF situation "sl" THEN action
"al". On the contrary they are responsible for attaining fixed goals and they will be
appraised on the basis of the achieved results. In this ideal representation the human
resources are managed by objectives and not by the way they adhere to organizational
rules. This kind of control system offers a series of advantages. In fact:

• It does not require a well known and stable reality (the more turbulent reality
becomes, the more it turns to be difficult to define precise procedures).

• It presupposes a high degree of acceptance and sharing of business missions and
constraints; in this way the identification of the office worker with the company
to which he belongs will be encouraged.

The office, congruously to this ideal kind of management and control, is seen as an
organizational unit providing services to other offices of the same company or to external
organizations (reference scheme). Theoretically the provided services, should not
suit the market standards but the users should address their requests to the external
environment in order to be able to satisfy their needs. This marketing oriented approach
gives the following benefits:

• an easier measurement of the performances provided by the office;

• the possibility to take into consideration also the users' requirements, that is, the
results of the office working activity will be brought up in discussion again if they
would not turn out to match with users' needs.

A filter characterizing the interpretative model enables the analyst to cluster infor
mation functional to the selected approach, according to the goals to be reached by the
design of a new OIS. The clustering operation is needed to easily characterize reality
by means of quantitative indices. Only using these parameters it will be possible to
develop a computer based tool helping the analyst during the requirements analysis.

The conceptual basis used by TAM is called product-objective (p-o), developed
in order to achieve the goals of the analysis. A p-o is a product that the office being
analyzed must supply in form of a service, document, information, etc. with sufficient
quality, in order to effectively satisfy the business goals fixed by the organization to
which it belongs.

The product-objective· is not a merely physical object such as a form to be filled
in or a report to be produced, but it is an objective to be reached to fulfill the goals
assigned to the office without regarding the media which is used to deliver the p-o to
the user (in this sense also a decisional process can be regarded as a p-o). The selected
approach will aim at evaluating the role played by the office being examined inside the
company. The outputs of the activities carried out in order to come up to the business
expectations should be as suitable as possible to the users' needs complying with the
constraints to which the office is subject. These outputs are the p-o's. As it will be
shown afterwards, the p-o's generated by the office will be specified through a process
aiming at aggregating the activities carried out by the employees. The p-o concept has
been developed because:

• it allows to carry out meaningful measurements of the performances of the office,
to be meant both as adequacy of the contributions given by the office to the
operation of the firm and as a degree of exploitation of the resources;

23

• it lets to effectively synthesize collected information, looking as a whole to activi
ties, tools, human resources cooperating in generating the individual p-Oj

• it focuses the mission of the office being analyzed, the very reasons of existence of
the office inside the organization to which it belongsj

• it allows to redesign the modality of carrying out work, in order not to execute
more quickly the same activities, but to attain the same goals in a more efficient
and effective manner.

The term product-objective has been intentionally chosen since the analysis process
will aim at verifying the congruency of the products of the working activity.to the
business needs: in fact the objective of the office under examination is to satisfy these
requirements. So it becomes possible to involve in the analysis also the receivers, the
users of work carried out by the office being analyzed.

In the previous paragraph it has been stressed that productivity is "the suitability
of the office performances to the demands coming from the external organizational en
vironment." Therefore quantitative parameters are needed in order to get a description
of the office environment that can be easily processed by a computer based tool. These
indexes are called "critical indicators" inside TAM, and they are calculated starting
from the information collected during the analysis of the office environment. They al
low to evaluate the performance of the office, considering it from a functional point of
view, congruously to the chosen approach to office work interpretation.

Only if criteria of measurement can be defined it will then be possible to carry
out a diagnosis allowing to specify critical areas indicating the introduction of new
technologies. The most important critical indicators that will be adopted during the
analysis are the following:

• cost of p-o. It includes all the costs ascribable to the production of p-o. For
instance it concerns cost of human resources, cost of used tools, etc. Considering
a p-o characterized by a manufacturing cost of $ 1 and a second one costing $ 100,
the efforts of analysis will be concentrated on the second one, on obvious grounds
of expediency of the study. In fact it is sufficient to gain a small percentage cut
in the cost of the second product to obtain savings higher than the whole cost of
the first one.

• value of p-o. The value of p-o indicates the importance attached by the organi
zation to p-o provided by the office. A method enabling the analyst to classify the
order of importance of information inputs entering an office consists in relating
these inputs to the goals fixed by the company. The more the requirement of an
improvement in the qualitative standard of a product is felt, the more a further
and more detailed step of analysis is needed. Once again it should be clear how
it is important, in this kind of approach, to keep in mind users' point of view.

• productive topology of p-o. If the productive cycle of a p-o involves several
offices, the chance that the communication channel connecting the resources be
comes a critical aspect increases. Therefore it will be necessary to evaluate the
possibility of reducing the number of offices involved in p-o production, the ra
tionalization of information flow and the suitability of a proper communication
network.

24

• degree of technological covering of p-o. The instruments used by office
workers could be divided in three categories: manual tools (M), Office Automation
tools (OA), EDP tools (EDP) (another classification is presently being considered:
M, OA, EDP, CE - Communication Equipment such as telephone and telex, SE -
Special Equipment, such as copier and color slide projector). For every product
the Measurement Covering Degree (MCD) will be defined by a term of numbers
representing the percentages of tools of different technologies used during the
generation of p-o. For instance the product "invoicing" could be characterized by
the following MCD: 40 % M, 30 % OA, 30 % EDP. Then as Functional Quality
Degree (FQD) it will be defined as the estimate of quality of the support provided
by tools: for instance a p-obelonging to OA class could have a FQD-l if it meets
users' needs completely, FQD-0.8 if some changes in its functional features are
desired, and so on. Lastly, the Real Covering Degree (RCD) will be defined as
the product of the two previous indexes. The terms of numbers measuring the
covering degree show the analysts the timeliness of a deeper analysis aiming at
redesigning the technologies assisting p-o production. The analysis could point out
the need to introduce automatic tools unknown inside the working environment
under examination; to update, or to replace the existing ones; to redefine the
percentages of covering (for instance the analysis process could emphasize the
need of executing a corporate EDP procedure in a local environment).

• volumes of production of p-o. It is the number of p-o's of the same type
generated per unit of time. A high value of this indicator suggests the need of a
deeper study of p-o productive process, in order to examine how efficiency gains
could be made possible.

• adequacy of p-o. Let us estimate a p-o on the ground of its reliability, com
pleteness, timeliness. The evaluation of these characteristics made by the office
generating p-o being analyzed might not be coincident with the one made by the
office which will use the product. Different points of view show the need of a bet
ter tuning between producer and consumer, that is the requirement to carry out
an analysis aiming to designing a product characterized by qualitative standards
requested by the users.

2.1.2 Descriptive Model

The descriptive model congruent to the interpretative model is identical the one de
veloped by Leavitt (Leavitt 1965). The main hypothesis of this approach to the intro
duction of changes in an organization already existing and working is that an effective
change can be carried out only if several organizational variables are at the same time
analyzed and modified. Referring to the system theory of organizations, Leavitt's model
points out a set of interacting variables which allow to consider the working environment
from several perspectives (Fig. 4): "first of all it must be pointed out the need to en
visage organization as multiple variables systems. At least four kinds of variables seem
of special importance: variables concerning tasks, structure, technology and actors" .

"H we want to give a rough definition of these variables, we will say that task
signifies the raisons d'etre of the organization, and it includes a lot of different subtasks,
meaningful if considered from an organizational point of view. By agents or actors I

25

Structure

Actors
(people)

Figure 4: The Leavitt model (Leavitt 1965)

mean especially people, but stating precisely that the acts usually carried out by people
must not necessarily pertain to this variable, but they concern also the other variables.
By technology I mean the instruments and the equipment, as well as the inventions
and the techniques allowing to solve problems, such as, for example, the electronic
calculators or the measurements of work. Lastly, by structure I mean the systems of
communication, systems of authority (sharing of roles), systems of work flow. These
four variables are strongly interdependent: a changing in anyone of them will most
likely produce a changing in the other ones due to adjustment or counter-reaction".
For instance "the introduction of new technological tools can give raise to changing in
the structure (the system of communication or the decision system could be affected),
in people (as far as number or workers, skills, attitude and activities are concerned),
in the accomplishment and even in the definition of new tasks going to be carried out
for the first time. Most of the efforts aiming at producing changes, regardless of their
original startpoint - that is they could be addressed to people, technology, structure -
will have to very soon involve also the other variables. More than once it was noticed
that a change in only one of these variables caused alternations in all the other ones.
These modifications led to unexpected and often expansive directions" (Leavitt 1964).

The variables pointed out by Leavitt are translated in the following way into the
TODOS descriptive model:

• The concept of task has been replaced by the concept of product-objective (to be
generated in order to satisfy customer offices' needs). On the contrary subtasks
have been renamed activities carried out in order to accomplish the tasks assigned
to the office .

• The actors or agents are coincident with human resources, their actions are linked
to the other variables being analyzed. Inside the descriptive model relationships

26

will be established between resources and activities, resources and instruments,
etc. taking into account that human resources are the main informative source
concerning the office work and the environment.

• The concept of technology allows to consider tools, equipment, forms to be filled,
archives, communication network.

• Structure is coincident with organization, seen as organizational charts, goals to
be reached,. decision systems, list of duties, etc.

It must be clearly stressed that these variables represent different ways of viewing
the office work, studying it from different perspectives. These points of view, naturally
concur to define an overall picture of the environment being analyzed. But, once again,
it must be emphasized that the variables taken into consideration by Leavitt, and the
links binding them, must not be intended as entities and relationships of a formal Entity
Relationship (E-R) model. Till now, therefore, we have justified the choice of the p-o
concept as the interpretative criterion of the office work. Subsequently the theses of
Leavitt have allowed to adopt as descriptive model the group of variables and links
previously described.

On the basis of these considerations inside the office we will collect information
concerning the following variables: Organization, Tools, Human Resources, Activities,
Product-objectives (Fig.5). The data and information which are analyzed within the
TODOS Analysis Model are identified and gathered in the early phases of the require
ments analysis process. The FAOR approach has been used as a basis to support the
analyst in this task. The different activities and actions of this process are therefore
guided by the FAOR Activity Framework (Schaefer et al. 1988). This Activity Frame
work provides the basis for executing a study in a particular client organization. It
provides guidelines on how to structure an investigation in order to elaborate and in
terrelate partial results while defining typical baselines of a study and including aspects
of project organization and management.

It should however be stated that at the beginning of the analysis the objectives to
be attained should be clearly known whereas it can be ignored how these objectives are
reached. Lastly the analysis could point out that some products are useless, or that they
can be included inside another product, or that complete p-o's should be redesigned. It
is necessary to compare the characteristics of the different p-o's with the requirements of
the users (both to be inserted via the Analysis Model): from this comparison information
can originate that, requiring a redistribution of the activities among the resources, will
heavily affect the whole organization of the office. P-o's therefore are objects that are
dynamically defined during the development of the analysis. Nevertheless it should be
presupposed that at the moment of the re-design of the office they will be defined in a
certain way.

In TAM all the information needed during the phase of Requirement Analysis of an
OIS design is described. This information is structured using the Entity-Relationship
model (Bassanini et al. 1987).

INTERPRETATIVE
MODEL

27

r-------------------,
! Expected i I PRODUCTS ! L.________ _ ________ ..J

PRODUCT
OBJECTIVES

DESCRIPTIVE
MODEL

ORGANISATION t--- - RESOURCES

'-- ACTIVITIES f-

TOOLS
Offfice

... ".',' -..... ,; ".- ~ .. ,"'"' .•... " .; ''"'' " ," ' , ... ~ ,', ,"

Figure 5: Variables for the TODOS Analysis Model

28

2.2 TODOS Performance Model: Evaluation of requirements
and connection to later design phases

During the analysis, especially with respect to interviews of users, the analyst will get
requirements about the future system but without any control of consistency between
them. Such level of requirements may be better called "expectations" because it in
ventories all the expectations of the users about a possible (and not very well defined)
future system. At the end of feasibility study, the results and the following debates
inside the organization will allow to confirm, update or redefine the initial guidelines.
The resulting new version of guidelines will trigger the definition of a set of requirements
both functional (modeled with the descriptive model) and non-functional ones.

The TODOS Performance Model (TPM) therefore provides important support in
two ways:

• Definition of each elementary requirement

• Explicit and preliminary definitions of both measuring methods and judgment
rules

• Computation of judgment rules for a set of solutions

As indicated hereabove, definition of requirements is a progressive process, so the
TPM will handle a status for each performance requirement allowing to update the
status according to analyst decision and to query requirements considering their status.
Main sorts of status are guideline, constraint and expectation.

Level classification is used to have a scale of the scope of a requirement in order to
ease arbitration between conflicting requirements during the consolidation operation.
Different lists of levels can be defined at will. In a first approach, main levels are
strategic, tactic and operational.

Domains are used as a way of classing requirements according to the people in charge
of specifying and evaluating them, being of economic, social, technical and organiza
tional nature.

Measurement rules allow individual evaluation of each solution and for each individ
ual performance requirement.

Judgment rules allow to compare between the measured solution for a given perfor
mance requirement and to allocate a mark for it. Parameter of judgment rule is the
weight of the requirement. "Mandatory" could be a kind of weight.

A list of predefined rules are defined with the TPM. During requirements definition,
the analyst can choose rules for each individual requirement and fix relevant parameters.

To be able to measure and judge solutions, a prerequisite function is the capability
of storing architectural solutions (designed with Architecture Design-tools) in the re
quirements data base. The storage should fit with the structure of requirements data.
So, only a subset all the data of Architecture Design is needed like the name of a
solution, the solution perfonnance for each requirement, the query and deletion
of a solution.

Typical reasons of failures of office information systems is the lack of clear defini
tion of evaluation criteria for the correspondence between the implemented system and
the previously defined requirements. The TPM provides a support for these activities
by implementing a multi-criterion analysis capability. The rules of analysis should be

29

fixed simultaneously with requirements definitions during the investigation of an orga
nization. The evaluation report offers the automatic computation of the marks of the
different solutions stored in the data base, every defined requirement being processed
separately. For other requirements, assumed requirements weights are applied to the
marks. Ordering of requirements could be done at will in a report parametrization
dialog.

A key point of the "requirements analysis" phase is the definite distinction between
the analysis of the existing organization and the progressive definition of a consistent
set of requirements to be further used by the other TODOS design tools. Nevertheless
it should be stated that the analysis and requirement definition processes are recursive:
they are often interleaved, the study of the present situation being the source of ideas for
possible future systems and organizations. Both analysis and requirements are based on
the same modeling tool provided by the descriptive model. This modelization describes
in a generic but evolutive way the static and dynamic characteristics of any complex
organization (actual or imagined).

This approach allows to specify Office Information Systems with or without changes
in the socio-organizational environment. This is fully consistent with the concept of the
Leavitt model used as foundations of the set of tools defining the office as a complex
system mixing social and technical problems. During the analysis phase it is essential
that the support encompasses all aspects mentioned above. Major decisions about future
organization, technical constraints and budget of the project should have been stated
during requirements base definition.

The developed Office Data Dictionary (ODD) is the starting point for the design
phase which benefits from the data stored inside. The interface is determined as a top
down interface since it goes from general specifications to detailed design activities.
This procedure should not be fully automated, as this would render the requirements
base redundant with design oriented data bases used by logical and architectural design
activities. The role and scope of an Office Data Dictionary is clearly different from
design problems as it is not only used by designated specialists but also by the people
within the investigated organization (organizational analyst, management).

The designers are working onto the ODD after the introduction of consultants and
management. Within that work they use the specific extensions of the descriptive model
in order to connect typical objects or attributes useful for their design tools to a Leavitt
oriented description. In a second step they transfer these data into their specific design
environment as a starting description to be worked upon by their individual design tools.
Therefore consistency between requirements and design is maintained by the designers
but their hypotheses and choices are memorized and stored in the requirements base in
order to be queried or modified in the following way:

The Performance Model will give information for the architectural design concerning
the performance objectives for the equipment, the technical constraints to be fulfilled
as well as the budget constraints.

The prototyping phase can be served by ergonomic requirements stored in the
requirements base. The bottom-up interface will be used for a regular updating of
requirements according to users verification during the prototyping process. The Con
ceptual Design gets useful information from the ODD represented by agents (human
resources), processes (activities) and documents handled.

30

Those intersections will be shown in detail by presenting the important features of
the ODD.

3 The Office Data Dictionary (ODD)
Analysis of a real office is a complex process which varies greatly according to orga
nizational, social and technical aspects even if some topics and trends are permanent.
Furthermore it consists of clearly distinct kinds of thinking processes. The feasibility
study is composed of both an analysis of the real situation and an evaluation of the
analyzed situation. The initialization of design tasks is a collection of constraints
and guidelines about future organization on the one hand and an imagination of a fu
ture situation on the other. For the final judgment of architectural solutions is an
objective definition of criteria.

All these processes deal with a common set of data describing different aspects of
the office. Therefore the intention for the tool was to provide a computer based support
for the well-structured processes of the analysis without impacting creativeness of the
users (analysts) by narrow-minded rules or restrictions. Even taking into account AI
techniques, computers are still better in repetitive actions and data base management
than in brainstorming. Therefore the tool is definitely data base oriented but has a very
flexible structure clearly distinguished from traditional data base programs.

It is termed Office Data Dictionary (ODD) with respect to its efficiency and flexibility
for office related data storage. It is not a pure dictionary where words are stored without
considering their semantic but an encyclopedia with a thematic storage.

3.1 Overview of the ODD structure

ODD is composed of three kinds of software components:

• Initialization programs are to be run only once in a fixed sequence. The generic
models determine the form of the dictionary. All programs are performing both
data entry and data administration functions.

• On line prograIlls - according to their scope - comprise domain management,
semantic management, population and model management. Domain manage
ment contains a directory of properties and domains as well as tables of domain
data. Semantic management consists of a directory of trees, a directory of
branches and a directory of properties. Population management administrates
any office data table via a directory of partitions.

• Report prograIlls produce practical reports upon the feasibility study, the in
terface for design tools and the judgment of architectural solutions to be obtained
either on screen or on printer

The ODD - with respect to domain management - eases data entry through an
active dictionary giving total control on data field entry. The entered value is checked
against a list or an interval defined as the authorized domain of values of the property.
In case of error, windows with a description of the domain are displayed on the screen.
The concept of domain allows the definition of a consistent list of values corresponding
to the terminology of the office studied. A library of domains each adapted to a given

31

organizational branch (bank, insurance, EEC administration, and so on) can be created
and stored. With each project or study the necessary domains can be named and
inserted into the library. The screens of domain management allow to create, populate
and update domains. Domains are linked to properties being grouped with respect to
entities handled by semantic management.

The semantic management therefore is the definition of aggregated properties
handling semantic is-a relationshipS. Consequently it is possible to add properties first
and then define them in classes and subclasses through a partition in the table. The
operations can be iterated without limit: Extension of the table can be done even if
properties are already stored, however the deletion is controlled to maintain the integrity
of structure and contents of the ODD.

These capabilities are extremely useful in order to cope with unplanned situations
while analyzing the office. Starting with a generic analysis model the analyst may
complete the ODD by areas of interest which he detected during his field work .This
modification will never lead to a loss of previously collected data or complex operation
on them but to a structured enrichment of the data base while maintaining is overall
structure and consistency.

PopUlation management allows to enter, update, delete or query properties in
the tables which have been defined by the semantic management before. Each data field
entry is checked according to the domain of the property associated to it. Relevance of
such operations is on behalf of the analyst. A major item is to make the ODD really
ergonomic.

The analyst will perform this operation after a preliminary survey when deciding to
study a deeper part of the organization: Different departments of a direction, substeps
of a work process and so on. The service given by the ODD handles the operation,
keeps track of it, automates part of the creation of new properties according to the
initial definitions of the properties of the table, this can be iterated without restriction.

Finally, when working with all the data stored in the ODD the analyst may infer
general results from field data. For instance a set of similar office workers can be
summarized in an anonymous office worker type. ODD allows storage of such types and
manages the link between type and instances.

Within model management a set of functions is provided to define semantic re
lationships. Relationships can be defined at any time. Cardinality rules are checked to
ensure consistency of the relationships.

Additional functions have been added to support the analyst, i.e. to reduce repetitive
typing, to perform a step by step refinement and conceptualization.

3.2 Implementation of the ODD

A relational data base model for the ODD has been chosen as a basis for implementation
for its flexibility and wide use. The relational database is a logical structural limitation
in order to facilitate the storage and administration of the complex (various) data.

Due to portability reasons the developed tool runs on an IBM AT with at least
2 MB-RAM and a 6O-MB hard disk. The database application has been written on
INFORMIX which needs a XENIX SCO Development version. The analyst can execute
an automatic creation and initialization of the data base when it does not exist in
conjunction with a property dictionary according to the TAM scheme. The analyst,

TODOS
STRUCTURING
TOOL
TODOS
ANALYSIS
PROTOTYPB

TPM
Repon
r lICililiea

32

:a_: •• 11 11::1;1.:11:11::1* :l:Z: ••• 1I

zz~ ::z ~ .. :.::z: 2.: .:.
.. : ... : .. 2::. ==Z ::::

'" .. .S. =." :z= •• =a:oC ===::1
zz. • n a :=- ==:z: ,
...

I. MODEL AND DOMAIN MANAGEMENT
2. SEMANTIC MANAGEMENT
3. POPULA nON MANAGEMENT
4. TAM WPI (pan I)
S. TAM WP2 (pan 2)
6. TAM WP2
7. TAM REPORTS
8. TODOS PERfORMANCE MODEL
9. INTERFACE urn.tTIES

til CTRL-I for retarD to Xem CHOICE: '·:1
CTRL-F for_ belp

Figure 6: ODD-Menu

wishing to use the querying capabilities of the ODD has to populate the database first
by means of simple creation of objects, duplication of objects and partition of objects.

Hierarchical mechanism can be modeled with their corresponding properties in order
to systematize the office reality. The creation of domains of values and of properties
follows the schema of TAM as well as the introduction of objects (population manage
ment), partitions of objects, creation of templates and duplications, updates and queries
and editing of reports (Fig. 8).

Choosing 1, the analyst will get the appropriate mask of the Model and Domain
Management in order to fill in further properties and domains of values By typing 2,
semantic relationships can be created. Choice 3 allows the detailing of the different
objects according to the real circumstances in the office (Fig. 7). This acts also as
the data source for functionalities being used within the specification database of the
conceptual design phase. With 4 and 5 - TAM - the scope of possible query masks is
demonstrated and ready for choice. Choosing 6 gives further details on documents and
processes for the conceptual design. 8 offers the possible insertion into the TODOS
Performance Model (TPM).

Further details on the practical use of the ODD within the Case Study context
may be found in Chapter 6. In the following we describe how the ODD is used in a
requirements analysis.

33

SET RELATION BETWEEN OBJECTS
(,"abtulr a "WiD" bdw •• " tlr. lit obpcts witlt a" objut bd"",I",
to tlr. s"bsd ,,,,;01<11, u/ut.d)

RELA nONS: Query Co ... lt B Remove E1it

.dd •• e .. relatio.

OBJECT TO UNK

tree: T H RESOURCES
code : -0-
..... re:

bra.c
.. me :
stat.,

LIST OF LINKED OBJEC

.- C'J'RL.r ,...
ESC led _ "jed

1.' Cut"'-"
, . -CrMit •••• r t .

I.. leo II h_
11 01 .Inct
12 I c
13 0.

Figure 7: Population Management with TODOS Structuring Tool

34

4 The use of the ODD within the requirements anal
ysis process

As stated before the requirements analysis is performed according to FAOR Activity
Framework. The Activity Framework views office analysis as a learning process and rec
ognizes that objectives in real world analysis situations are not necessarily well-defined
and well-structured. The background for problem-solving in the Activity Framework is
the concept of soft systems thinking: its application means that the outcome of a learn
ing process is not an optimal solution but leading to purposeful actions to bring about
improvement. Each activity within the Activity Framework employs SSM concepts in
order to analyze and describe the office problem situation, to understand the situation
and to design and structure the analysis method.

The Activity Framework comprises the activities exploration, method tailoring, anal
ysis and evaluation. Going from one activity to the next does not imply a strict ter
mination of this activity. The analyst can always come back to further elaborate on a
previous activity if he feels the need to do so (Fig. 8).

The practical intersection between the FAOR Activity Framework and the ODD
has a dual meaning. The data gathered during the FAOR activities extend the ODD.
At the same time the analysis is well supported by queries to the entities which are
already in the ODD. Any new data resulting from the current analysis can be fed into
the ODD and hence improve its content. The advantage of using the ODD within a
FAOR analysis is the acceleration of the analysis process, easy report generation of
i.e. maximum, minimum and average ratios as well as cost indicators for the feasibility
study (Fig. 9).

4.1 ODD within the Exploration

Within this first phase of the Analysis Framework a broad understanding of the con
text and background of problems the client organization is facing should be obtained.
Aspects which the analyst think relevant will be further explored by structuring and dis
cussing them with the client. This helps the analyst to structure the problem situation
conceptually and to analyze it for consistency and completeness.

On this basis, one or more "relevant systems" are outlined. They have the status
of an hypothesis of the eventual improvement of the problem situation by means of
changes which seem likely to be both "feasible and desirable". Thus, the relevant
system defined in this phase outlines a preliminary and rough model of how support by
an office system can be achieved. This model, constructed as a "notional system", is
the basis for discussing the study scope with the client. This will also reveal constraints
both for the study, e.g. resource limitations, and for the requirements, e. g. the need to
take into account the equipment of a certain manufacturer. Of particular importance
are the study objectives. They determine the desired results of the study, e.g. the level
of requirement detail and the comprehensiveness of the requirements specification.

The results of the exploration phase are summarized in a study brief. This study
brief contains:

• a thorough and multiperspective understanding of the investigated office;

• problem aspects or issues to be addressed;

35

FAOR Activity Framework

Phase Content/Results

• Defining Objective
• Information Gathering

Exploration - • Analysis of Problem Situation
• CosUBenefit Factors
• Objectives of Change

• Specifying organisational , Approaches
• Specifying Results
• Choice of Instruments

Method
~

• Tailoring Instruments accord-
Tailoring ing to Content

• Integration of Data-Gathering
and Evaluation Techniques

• Schedules and Appl ication
Planning

, • Gathering, Structuring and
Evaluating Data

• Structured Presentation
Analysis ~ • Constraints

• Functions
• Definition of Requirements
• Approach Strategies

"
• Analysis of Benefits

Evaluation ~ • Purpose and Application Area
• Requirement Specification
• Major Implementation Issues

Figure 8: FAOR Activity Framework

Ai .

36

FAQR·Activities

A2 · A3

• Adaptation
• Data gathering ><:": .. ~

and input ·

WPI-Tool

Query

Analysis

Figure 9: FAORjTODOS intersection

.. A4

37

Descr iptive Model 1.lerprelaUve Model

Figure 10: TODOS tool within the Exploration Phase

• a high-level model of the office system reflecting desirable and feasible changes;

• basic criteria for evaluation of changes;

• constraints on a project relating to the office problem situation.

The exploration provides the groundwork for the next phase "Method Tailoring"
and for the later detailed analysis.

The Exploration Phase can be only marginally supported by the ODD. Aspects
which the analyst thinks to be relevant will be further explored and the findings struc
tured and discussed with the client. The systemic analysis is based on different per
spectives - according to GOFOR - relevant to the office problem situation. They are
preliminary models of the office information system (and its environment) and describe
the logical activities which need to be carried out for reasons of completeness. Accord
ing to the needs of the specific analysis the descriptive model can be further extended
by specifying new properties (Le. new class of equipment or human resource) with their
corresponding objects and domains of values. The analyst is always allowed to inte
grate new properties (semantic-, model- and domain-, population-management) which
he thinks to be important (Fig. 10).

TAM programs are the prototype of a defined analysis schema, which may be used
as long as it is suitable for the individual analysis. During the exploration phase the
need may arise for enter more attributes than actually available in TAM. TAM can
be dynamically extended with a refinement of structure and objects according to the

38

situational necessity. TST allows to enlarge further the descriptive model describing
the real world of the office by specifying new properties and domains.

4.2 Use of the ODD within the Method Tailoring

In Method Tailoring, the analyst has to determine the means for solving the issues
addressed in the study brief. The analyst has to decide what he needs to know about the
organization and with what tools and techniques for investigation, modeling and analysis
he can obtain this knowledge. At the same time, he must overcome the constraints of
the situation. The primary purposes of this phase is Method Tailoring and the setting
of the project organization.

Method Tailoring is essentially a comparison between analysis problems identified
in the previous phase and analysis capabilities available through instruments. Avail
able instruments constitute possible "pre-structurings" of the analysis covering different
aspects. For a detailed discussion of several instruments see Sect. 4.3.

During Method Tailoring different activities occur:

• selection of instruments

• combination which points out overlapping areas between instruments and possible
inconsistencies,

• adjustment/completion by pointing out additional aspects which must be taken
into account in order to integrate the instruments.

The results of this phase comprise the choice of instruments according to the content
of the investigation, an integration of data gathering and evaluation techniques as well
as schedules and application planning for the analysis and a short characterization of the
output of the following phase. The results are specified in a study plan which contains:

• the formal project contract

• a detailed project plan

• the tailored method

• clarification of the client-analyst relationship.

The results of the Method Tailoring phase can also be deferred to the ODD descrip
tive model in order to add new attributes and domains by completing the relationships
of office (organizational structure) and document entities (information categories). Fur
thermore this phase could provide product-objectives and critical indicators for the in
terpretative model, i.e. the information which is required by the different departments
and the degree of utilization anticipated.

Quantitative attributes for phases are also defined in phase 2. The task of the an
alyst will be to classify the phases according to a certain perspective in order to allow
a communication analysis to be made with the descriptive model. The strengths of
the TODOS Requirements Collection and Analysis tool are powerful queries on the
ODD. Therefore it will mostly support the analysis itself providing queries for the de
termination of requirements on information flow, communication pattern and hardware
constraints.

39

4.3 Use of the ODD within the Analysis

The analysis phase - as the major activity within the Activity Framework - is the appli
cation of tailored instruments with the objective of deriving a requirements catalogue
for the planned OIS.

The need for instruments as the practical means for investigation can be better
understood if their task and functions are clear. Instruments have to:

• provide the tools and techniques together with the application guidelines necessary
to use the instrument for investigating a particular area;

• support the entire process of investigation starting from the gathering of informa
tion, through the documentation or modeling of (partial) results, and terminating
with the interpretation and the subsequent identification of requirements.

The results of this phase are detailed requirements, which already imply resources
for the implementation of the proposed system and thereby offer a possible schedule.

The Analysis Phase involves further data gathering and therefore the TODOS de
scriptive and interpretative model can be filled up with mostly field provided data and
more propositive data concerning the future office information system (by the pop
ulation management of Requirements Collection and Analysis tool). The final out
come of phase 3 is the requirements specification, these requirements will also enter
the database. The TODOS support will provide the possibility of complex queries in
order to get more detailed requirements on information flows, communication patterns
and hardware, whereas FAOR additionally deals with the overall level of requirements.
Therefore it is possible to simulate feasible changes by querying the TODOS Analysis
Model .

FA OR instruments provide practical means of using aspects of the GOFOR per
spectives as part of a multi-perspective office analysis. Instruments support the data
gathering on relevant aspects of the office and organizational situations in order to
generate models and an adequate specification of requirements. In exploring the office
environment, the instruments are related to each other: They cover the same aspects
of the office and they are supplementary and supportive in terms of both the scope and
the results of the investigation.

The ODD therefore can be interpreted as the support given to the FAOR instruments
in order to be flexible and fit to divergent situations and thus facilitate mainly the
analysis process (Fig. 11).

FAOR instruments provide practical means of using aspects of the GOFOR per
spectives as part of a multi-perspective office analysis. Instruments support the data
gathering on relevant aspects of the office and organizational situations in order to
generate models and an adequate specification of requirements. One of the FAOR prin
ciples is that tools and techniques should not become too deterministic so that they
are always open to the integration of more adequate ones. There is always the danger
that by pre-specifying the kinds of aspects to be investigated, the range of problems
which an instrument is able to solve is significantly reduced; this, in turn, introduces
the possibility that the relevant issues may lie beyond the capabilities of the instrument.

In exploring the office environment, the instruments are related to each other: They
cover the same aspects of the office and they are supplementary and supportive in terms
of both the scope and the results of the investigation (Fig. 12).

40

De ••• iplhe Model Inle.p.elaliYe Mode l

Figure 11: TOnOS Models within the Analysis Phase

FUNCTIONAL ANALYSIS

• Quality requiremenlS
• NormI (_urity)
• ToIennc ..
• Hienchy / ... bordinJlions of objec:tivel

INFORMATION ANALYSIS
• UOCumall t'low
• Use of Equipment
• Slcng _

Query • WO'\Jood ..
COMMUNICATION ANALYSIS

• Activity Row / Refaence Scheme

ADalyst • Ccmmunicuion Network
• Ponem 0(Ccmmunkorion
• Degree 0(rechnological covering

BENEFIT ANALYSIS

• C08bI 0(ujolin, office
• Financiol requiremeflll
• CriIi<:a1 success faelors

Figure 12: TOnOS Analysis tool and FAOR instruments

41

The Functional Analysis Instrument (FAI) identifies, defines and characterizes the
essential functions of the office in order to fulfill the organizational objectives and to
provide a rational basis for requirements specification. By focusing on the purposive
ness of office work in relation to the needs and requirements of the wider system, the
application of the function perspective abstracts from the implementation. The analyst
distinguishes conceptually between tasks and activities on one hand and functions on
the other.

The result of the Function Analysis Instrument is a determination of the pertinent
properties in terms of characteristics like objectives, norms, values, constraints, quality
requirements, contradictory objectives, conflicting goals, controversies, structuredness
and interdependency. The ODD will provide informations on the implemented informa
tion system, the number of diffused documents, different phases and their classification
as well as critical indicators and quality standards concerning the diverse product
objectives. The Function performances, represented by norms, values, constraints and
quality requirements, can be easily inserted via the TODOS Analysis Model.

The output of the Communication Analysis Instrument (CAl) is a specification of
the communication requirements of the future office information system. TODOS ODD
contains a number of means of modeling communication activities in an appropriate
way: It is able to list the basic activities of individuals. The analyst will acquire a
reference scheme with a list of the human resources involved in the analysis as well
as a documentation or relationship allowing him to determine which unit a human
resource belongs to, what kind of tool it uses etc. The ODD therefore helps to illustrate
the communication patterns during the communication analysis. One result of the
communication analysis is the overview of people's access to archives which can be
easily stored via the TAM screens. Accesses to certain archives, periodicity, frequency
and the time, a folder is for example, withdrawn from an archive can be related to the
person investigated. By using the report generator it is possible to obtain information
of the total of the use of archives. TAM also helps to get an overview of the equipment
supporting the communication process by storing the use of instruments related to
the communication activity of a person. The ODD is able to list the basic activities
of individuals in the investigated organization. The results of the application of the
Information Analysis Instrument (IAI) comprise several degrees of relationships in order
to determine how well the information object supports the activities of the office workers;
these findings enhance part of the investigation carried out by the Function Analysis
Instrument. The ODD provides useful information upon the life cycle of documents,
their physical characteristics, periodicity, frequency and duration as well as the use
of equipment by the different documents. The objectives of the User Needs Analysis
Instrument (NAI) within the FAOR framework are an identification of user needs and
expectations for fulfilling them in a future office information system, office information
systems requirements especially related to the fulfillment of human needs and adequate
indicators for a human benefit evaluation as part of the FAOR Benefit Analysis. The
N AI particularly evaluates the current situation, the expectations concerning the future
and attitudes in order to identify needs of an office worker with some degree of reliability.
A moderating factor is the background of the person. The evaluation of the current
situation by an individual shows where the individual as well as the analyst see room for
improvement. It shows whether the person is ready to get actively involved in making
improvements or whether he feels frustrated so that the current situation inhibits his

42

perception of any improvement. The NAI is an instrument which differs entirely from
other instruments in that it is dedicated to the collection of social information, whereas
TODOS is able to offer only mild support as being oriented towards (technical) system
design.

5 Concluding remarks

The use of the ODD is twofold: it is not just a means for supporting the data gathering
process via inserting data but also an information supplier via queries to the database.
It is a helpful support within the analysis phase itself. The data resulting from the
analysis of an organization can be easily inserted into the ODD so that it consists of
mostly field provided data and more data necessary for the future office system. The
final outcome of an analysis is the requirements specification. These requirements will
also enter the database.

The TODOS ODD is very powerful and its complexity causes difficulties in practi
cal handling. In future emphasis will be put on the user interface as it is not simple
and needs more support through windowing techniques and mouse, as the analyst is
no system-specialist. However the ODD is a useful support to former manual analysis
instruments (FAOR) providing a common database for the total of processes during an
analysis with a flexible user-mode. Those data are the basis for preliminary architec
tural solutions and evaluations in order to get a common subject of discussion between
analyst/designer and management of the investigated organizations.

Chapter 3

Conceptual Design
Mariagrazia Fugini, Barbara Pernici, Silvano Pozzi,
Jean Rene Rames, Colette Rolland, and Andre Vignaud

1 Introduction

This chapter illustrates the Tonos conceptual design phase. Such phase aims at
building a conceptual schema of the Office Information System (OIS) that represents
the functions of the OIS in a formal way, as independently as possible of implementation
details. This schema is checked for consistency and correctness and for quality of the
design, then is passed on to the prototyping and architecture selection phases of the
TOnOS environment (see Chapter 1).

The tool that supports conceptual design in Ton OS is C-TOnOS (standing for
Conceptual-TOnOS). This is organized around a specification database which stores the
OIS specifications formalized according to the TOnOS Conceptual Model (TCM).
TCM concepts derive from both the SOS office model (Bracchi and Pemici Winter
1984) and the REMORA methodology for Information System (IS) design (Rolland and
Richard 1982). TCM represents office functional requirements in their static (structure
of office elements) and dynamic (related to system behavior) aspects. The Tonos
Specification Language (TSL) provides constructs bound to TCM concepts; it allows
for a formal description of office conceptual schemas based on TCM.

Since the specification database is the core tool of the conceptual design phase, one
of the key objectives of C-TOnOS is to provide easy-to-use interfaces to interact with
the database. Interfaces allow the designer to insert, modify, delete specifications in
the database and to query the stored specifications in order to extract information and
reports on the design activity.

In addition, C-TOnOS includes mechanisms to handle incomplete specifications
thus supporting incremental design, and to check the consistency, correctness,
and completeness of the specifications. At the end of the conceptual design phase, the
contents of the specification database is taken as a correct input by the rapid prototyping
and architecture design phases.

The outline of this chapter is as follows. In the remainder of this section, we first
discuss the role of conceptual design in the development of an OIS (Sect. 1.1); then
we present the features that an OIS conceptual model should exhibit to support such
role (Sect. 1.2). Next, we introduce a taxonomy of models and tools for conceptual
design of OIS (Sect. 1.3); the references to models, tools, and methods for Information
System conceptual design are obviously frequent in this taxonomy, because of the strong
relationship and influence existing between IS and OIS.

The sequel of the chapter presents in detail conceptual design in TOnOS. In Sect. 2,
the conceptual model TCM and its specification language TSL are illustrated. Sections

44

3 and 4 focus respectively on the architecture of C- TODOS and the support for the
modeling activity provided by the tool, and on the interfaces of C-TODOS to its users.
Methodological guidelines for the TODOS conceptual design phase are presented in Sect.
5. C-TODOS as a cooperative design tool is discussed in Sect. 6: OIS applications can
be designed separately by different analysts skilled about various aspects, and then
merged into a global OIS schema. This is a cooperative design activity that benefits
from computer based support. Finally, a brief discussion on the TODOS conceptual
design method is included in Sect. 7.

1.1 Role of Conceptual Design in the Development of an OIS

The OIS can be considered as a model of the office world which provides office workers
with a common understanding of their work environment. In other words, while every
individual in the office may have his own, subjective view which may (or may not) match
with the perspectives of the other workers, it is necessary for them to create a common
view of office data and activities. This common view is provided through the OIS which
supports them in their activities.

More abstractly, the OIS is considered as a set of elements having structural and
behavioral relationships with each other and with the environment. The structure
describes the components and properties of an element. Behavior refers to state transi
tions caused by the occurrence of facts externally and internally to the office world.

For OIS, conceptual design has the same meaning that it does in the Information
Systems area (Schneider and Wasserman 1982). In particular:

a) Conceptual design activities are modeling activities requiring formal specifications

Designing an OIS means to model and describe those aspects and parts of the of
fice reality which are relevant to the construction of an automated system. Thus,
conceptual design means real-world modeling and it is an abstraction activ
ity.

Specifying an intended OIS means to prescribe its properties (structure and be
havior) and the interface with its environment (office agents and communications
from/to the external world). A conceptual specification defines a class of systems
which functionally fulfills the requirements of the specification.

The 018 conceptual schema is the result of the modeling activity; it formally
describes the set of elements of the target OIS, their relationships, and their
behavior. It is both an abstract representation of the office real world (world
model) and an abstract view of the target OIS (system model).

b) Conceptual design deals with semantics and functionalities, not with technological
or implementation issues

The OIS conceptual schema is a conceptual - in the sense of the ISO report
(ISO 1982) - specification of the OIS. Such specification is not a completely de
tailed description of the target system, rather it prescribes its intended structure,
behavior, and interface with the environment.

The conceptual schema should not deal with technological details of the OIS,
rather with the functions of the OIS. For example, conceptual design should

45

concentrate on providing a complete description of the office activities (e.g., con
ditions for the execution of the activities, agents responsible for them, documents
manipulated) that can be supported by hardware or software tools. It should not
contain any suggestions about these tools. The technological issue has to be solved
in other, subsequent phases of the development process, namely in a logical design
phase and during implementation of the OIS. In TODOS we devote one phase to
technological issues, the architecture selection phase, as described in Chapter 1.

c) Methodological tools for conceptual design are models, formal languages and com
puter aided design tools

According to the nature of OIS conceptual design, models and formal languages are
necessary to deal with the modeling and specification activities. In addition, the
TODOS approach puts the emphasis on the synergy between the methodological
and modeling issues, and the software tools supporting each step of the method.

1.2 OIS Conceptual Models: What do we need from them?

An OIS conceptual model is intended to support the designer in the conceptual design
activity, which is a modeling activity requiring a clear formalism, abstraction capabilities
and semantic power (Brodie et al. 1984, Hull and King 1987).

a) First, the designer must be able to represent similar individual elements of the
office world into classes of elements, and, analogously, to represent classes
of relationships among the element classes. Hence, the OIS conceptual model
should provide the analyst with classification mechanisms that allow him to
distinguish the instance level from the type level. An instance is a value or
a particular individual of an entity type. An example is that "22 years" is a
particular instance of the "age" type. Classification is needed to define a type
from a class of similar instances. For example, viewing a set of individual client
instances as one CLIENT is a classification.

We use the term entity to refer to a class, and entity instance to refer to an
instance of a class.

b) During the modeling activity, the analyst needs to use abstraction to hide some
details of the application and to concentrate on general, common properties of set
of entities, thus representing this set as one unique entity. Abstraction is usually
included into conceptual models through the generalization mechanism.

Generalization is an abstraction mechanism that allows to consider a set of entities
(named specialized entities) as a complex entity (called the generic entity).
For example, the types LETTER OF _CLIENT and LETTER_OF _PROSPECT
can be viewed as two specialized entities of the generic entity LETTER through
generalization (see Fig. 1a).

By using generalization, the emphasis is on the similarities of entities. Further
more, the repeated use of generalization allows the designer to build hierarchies
of types, as shown in Fig. 1a. Generalization mechanisms are needed in an OIS
conceptual model to help the analyst in the classification of types of office elements
in a given conceptual schema.

LETTER
OF_CLIENT

name

street

LETTER

46

DOCUMENT

LETIER
OF_PROSPECT

a) generalization hierarchy

CLIENT

I
I

address phone status

b) the aggregation mechanism

CLIENT

I
address

town country

c) aggregation hierarchy

Figure 1: TCM abstraction mechanisms

CONTRACT

47

c) The design process can be simplified if complex entities are viewed as the synthe
sis of simple entities. This view is provided by another abstraction form called
aggregation mechanism. Aggregation is the abstraction by which an entity is
built from its component entities. For example, the CLIENT entity of Fig. Ib is
built from the types: name, address, phone, status and clientJlo.

Aggregation as an abstraction form is very helpful because it gradually makes
visible the structure of an entity and the way individual components of the entity
relate to the aggregate entity and to each other.

The repeated use of aggregation allows to build nested structure hierarchies:
the components of an aggregate entity can in turn be defined as aggregate com
ponents. For example, the address type can be built upon the simple types street,
town, and country (Fig. Ic).

d) In order to guide the analyst in selecting those aspects and parts of the office
world which are relevant to the design, the OIS conceptual model should be based
on a set of predefined types. For example, "DOCUMENT" is a usual prede
fined type in OIS conceptual models: it represents documents produced, filed,
received and transmitted in the office. "AGENT" is another common predefined
type. "ACTIVITY", "EVENT", "MESSAGE",. "DOSSIER" are other examples
of needed predefined types which are at the basis of several existing office models.

e) The set of predefined types determines to a large extent the semantic richness
of the OIS conceptual model. The main criteria for the evaluation of the semantic
richness of a model are illustrated in the following.

• Minimality of the set of concepts:
In order to produce "canonical" or "normalized" OIS conceptual schemas,
the model concepts must be orthogonal, i.e. non redundant to each other.
This helps the designer in that he is guided in identifying the concept of the
model that best represents a given element of the office.

• Semantic power of the set of concepts:

Predefined types play the role of filters in the analysis of the real office world:
only those parts which fit into the model concepts will be represented in the
OIS. Thus, in order to obtain a satisfactory representation of all aspects of
the office world which are perceived as relevant to the design process and to
the target application, it is fundamental that the semantic richness of the set
of concepts provided by the model be powerful enough.

In particular, models providing only static concepts (i.e. predefined types
related to the description of office elements and their structure) proved in
adequate. Concepts are needed that describe the behavior of the OIS and to
express how and when changes occur to the OIS elements.

f) The set of concepts of the model must be able to deal with the key aspects of
OIS, which distinguish OIS applications from traditional IS applications. Let us
mention them:

• unstructured data like texts, annotations, graphics, phone calls are often ma
nipulated in the office. They are frequently used in groups rather than being

48

Figure 2: Using classification, aggregation and generalization during the design process

manipulated as individual pieces of information. For example, a signature,
or a text have no real meaning if considered independently from one another:
they are meaningful when grouped together into a letter.

• multimedia data: documents manipulated in offices integrate purely numer
ical data, texts, images, graphics, and voice.

• temporal aspects of office activities: most of the office activities are scheduled,
either according to absolute time (July 1", 1988; every first monday of a
month, etc.) or relatively to other activities or events (one week after the
order has been sent, two months after the appointment, etc.).

• communications among office workers and of these with their environment.

g) The model should support two kinds of approaches to the modeling activity,
a bottom-up and a top-down approach. AB an example, consider the PERSON
entity shown in Fig. 2. Using a bottom-up approach, abstraction is viewed
as a synthesis of simple entities: this enables us to understand a complex ob
ject. We start with observations, the instances (John Smith, 25-12-23, 12 place
du Pantheon, Andrea Todd, 20-34-35, 18 avenue of America) to which we ap
ply classification to produce types (EMPLOYEE, NAME, CLIENT, PHONE~B,
...). Aggregation and generalization can then be used to classify and structure
types into new generic and aggregate types. For instance, NAME, PHONE~B,
ADDRESS are aggregated to define PERSON; EMPLOYEE and CLIENT are
specialized types from the generic object PERSON.

Alternatively, an analytical top-down approach may be used to decompose com
plex types. We start with a complex type, and decompose it into its compo
nents, through specialization and instantiation, down to the instance level. For
example, starting with PERSON, using aggregation we decompose it into NAME,

49

PHONE_NB and ADDRESS, while using generalization we structure it into EM
PLOYEE and CLIENT. Instantiation of NAME will give <John Smi,th> and
<Andrea Todd>.

1.3 State of the art in models and tools for OIS conceptual
Design

Conceptual design has progressively increased its role in methodologies for IS and
Database (DB) development methodologies and is today a largely-accepted phase in
the development of these systems. Since the major directions in IS and DB methodolo
gies have a deep relationship with methods and tools for OIS development, because of
the many similarities existing between the IS, DB, and OIS world, in this section we
give an overview of these directions.

a) Models and methods

The current trend is to base IS and DB conceptual design on models able to capture
the semantics of the real world in a precise yet natural way. Thus, "semantic" data
models have been proposed, such as SHM, SHM+, RM/T, SDM , TAXIS (see (Borgida
et al. 1982 and Brodie et al. 1984) for a survey) or OICSI (Rolland and Proix 1986).
"Semantic" stands for independence of the model of system implementation issues, and
for expressiveness of the model constructs and properties in capturing the semantic
contents of and the relationships among the objects of the real-world being modeled.
Often, in these models, concepts can be grouped together using constructs borrowed
from the models used in Artificial Intelligence, such as entity, classification, aggregation
and generalization.

The emphasis put by traditional data modeling on the structural properties of ob
jects has gradually extended to include system behavior. Most recent models provide
concepts to integrate in the same modelization both structural and behavioral prop
erties of IS: REMORA (Rolland and Richard 1982), ClAM (Gustafsson et al. 1982),
INFOLOG (Carmo 1985) are examples of methodologies based on behavior-oriented
models.

An increasing number of methodologies for OIS are based on conceptual models.
These proved extremely helpful to cope with a relevant feature of the OIS development
process, that is, the intensive relationship between different groups of people: analysts,
end-users, system experts, organization management experts, and behavioral scientists.
The major cooperation problem is the need for a common formalism to express the
world each is talking about. Office conceptual models, being abstract and yet precise
enough to be understood by the different people involved in the design, contribute to
merging of competing viewpoints by providing a common universe of discourse.

DIS conceptual models can be classified in the following main categories:

• data-based models

• process-based models

• object-oriented models

• mixed models

50

Data-based models group data in forms which are similar to paper forms used in
the manual office (as illustrated in Chapter 2).The basic elements are types of data and
operations on data (storage, retrieval, manipulation, transmission). Office activities are
seen as a series of operations on data.

An office model based on data is used in the Office Development Methodology ODM,
developed in Esprit project n. 59 "Minstrel" (Dunnion et al. 1985). ODM model uses
objects or entities to model "things" (real-world objects) in the office such as worksta
tions, filing cabinets, folders and documents, and in the enterprise such as departments,
employees and customers. These entities are organized in types.

Process-based models can be distinguished in network models and goal-based
models.

Network models describe sequences of activities performed in the office. Each proce
dure is decomposed in steps interconnected to each other. Triggering conditions regulate
the transitions from one step to another. The first example of this approach is SCOOP
(Zisman 1978) that uses Petri Nets augmented by production rules to represent office
activities. The office is seen as a system of asynchronous event-driven tasks that may
occur concurrently. The production system consists of rules, of a database that stores
data of the various system states, and of a rule interpreter. Another example is Infor
mation Control Nets (ICN) (Ellis 1979) that models office activities in a procedural
way and allows for simulation of office work. An important aspect of ICN is that the
model has a mathematical nature and therefore is rigorous and useful to prove prop
erties about the modeled system (correctness of task coordination, of information How,
etc.).

In goal-based models office procedures are modeled by stating goals; the system will
then determine the correct sequence of steps to be undertaken to achieve a goal. Thus,
the design activity does not require to consider in advance every particular case that
may arise in the system, because it is the system that will adapt its behavior to handle
each case on a goal-oriented strategy. This approach is used primarily for systems in
the area of Artificial Intelligence and expert systems. Examples of systems based on
these concepts are POISE (Croft and Lefkowitz 1984) and OMEGA (Barber 1983).

Object-oriented models have become very popular because of the SMALLTALK
(Goldberg 1981) system that showed that a similarity exists between office elements
acting in their environment and objects moving, deciding and transforming themselves
within an object-world. A similar approach has been followed by OPAL (Ahlsen et al.
1984) that uses the central concept of packet, which contains data and actions (OPAL
has evolved in AVANCE, developed at SISU).

Mixed models explicitly consider various types of elements as the basis for system
specification, and define the relationships among these elements. The different elements
are often grouped into submodels; an example of mixed model is the Semantic Office
System (SOS) (Bracchi and Pernici Winter 1984) that uses three submodels - a static,
a dynamic, and a control and evolution submodel- to represent separately the structure
and behavior of OIS elements.

b) Computer-based tools

As a support to both IS and OIS design methodologies, computer aided development
tools are currently becoming more and more popular.

Several commercial proposals exist, such as MAESTRO (Philips), FOUNDATION

51

(Arthur Andersen & Co), EXCELERATOR (James Martin & Associates), lEW (Arthur
Young), GRAPHTALK (Rank Xerox).

Research in automated tools to support IS/OIS design is rapidly making progress
and a number of tools have been proposed. RAMATIC (Johansson 1984, Eriksson 1984)
is a computer graphics based tool whose main purpose is to support ongoing discussion
of a project group in real time. RAMATIC supports system analysis by supplying a
specific model to each group involved in the project; the various descriptions are then
integrated.

OFFIS (Konsynski et al. 1982) is a system designed to facilitate an interactive
and iterative office analysis and design process, providing the planner/designer of the
automated office with a flexible method of analyzing system features and constraints.
The OFFIS methodology is based on a technical model of the office, and office elements
are studied in great detail.

QUINAULT (Nutt and Ricci 1981) is an experimental system for OIS modeling
and analysis based on an extended version of ICN. Quinault integrates many features
of ICN models in a highly interactive personal computer system.

The POISE system (Croft and Lefkowitz 1984) is centered around a data model
and can be used both to automate routine tasks and to provide support in more complex
office tasks by assisting the pattern of work in progress. The POISE system automates
some tasks and keeps an agenda of activities, the status of which can be examined using
a natural language interface. POISE can operate in two different modes: interpretation
and planning. In the interpretation mode the user invokes tools directly and POISE
attempts to recognize the user's goals in the context of its procedure library. In the
planning mode, the user invokes a procedure and POISE executes the procedure as
far as possible, based on the procedure's goals.

OMEGA (Barber 1983) describes office work in terms of goals and actions and
represents it by using constructs borrowed from Artificial Intelligence. An office worker
performs a task by establishing a goal, and the system will then attempt to achieve
this goal by decomposing it into a hierarchy of subgoals, where a leaf-node subgoal
can be achieved using OMEGA's knowledge about it. OMEGA has been designed as
a learning system; it can be easily enriched with new procedures and constraints on a
learn-by-example apprenticeship base.

AMS (Activity Manager System) (Tueni et al. 1988) merges OIS and AI techniques.
It comprises an abstract mixed-type model used to handle the office static aspects
(agents, roles, documents, and operations are the basic entities). Activity Networks,
that can be defined by the user, are a kind of augmented Petri Nets: logical operators
- analogous to "places" - deal with synchronization; the activities act as "transitions"
augmented by rules. AMS represents office knowledge in a declarative way: "packets
of abstract knowledge" and "explicit sequences" are the AMS approach to knowledge
reusability and to dynamic construction of sequences of activities at different levels of
abstraction.

Tools employing AI techniques to specify office procedures have the disadvantage of
being inefficient, and also of hiding the flow of activities in the organization. For office
procedures a mixed approach, where some of the procedures are specified procedurally
and others are specified through their goals, provides a more effective representation.
Some of the tools that were prompted by this observation are the following.

OICSI (Rolland and Proix 1986) is an expert design tool for supporting the RE-

52

MORA methodology. The goal of OICSI is to progressively generate the REMORA
conceptual schema from a description of the application domain expressed in a subset
of the French natural language. Starting with the analysis of an initial description,
the system provides syntactic trees as internal representations of the natural language
sentences of the description. Then, using a set of interpretation rules and structuring
rules, the system constructs a semantic network corresponding to the IS conceptual
schema. The whole design is interactively done with the designer.

DAIDA (Jarke and DAIDA Team 1988) is a knowledge base management system for
controlling IS development and maintenance. It is based on a semantic representation
of the relationships between design objects (Le. any software object or document in
the world/system modeling process), design tools and design decisions. A decision class
links two object classes through a tool that realizes the transformation of one object into
the other. This semantic description is given using the Conceptual Modeling Language
(CML), based on an object-oriented model with generalized instantiation hierarchies and
embedded time calculus. The description is stored into a layered knowledge base whose
levels correspond to the knowledge of objects, decisions and tools. Such description
enables DAIDA to support the following tasks: selection by the user of tasks and tools to
be applied; backtracking of decisions and revision support by re-playing the decisions in
case of modifications; documentation facilities on the relationship between development
objects and the tools that created and managed these objects.

2 The TODOS Conceptual Model and Specification
Language

The TODOS conceptual design phase is based on the TODOS Conceptual Model (TCM)
and the TODOS Specification Language (TSL) which are presented in this section.

We first give in Sect. 2.1 a general overview of TCM. Then, in Sect. 2.2, we present
in more detail each TCM modeling concept and the corresponding TSL constructs.

2.1 A TCM Survey

In conceiving a model for conceptual design of an OIS, our goal was to meet the re
quirements that we have presented in Sect. 1.2. Accordingly, we derived a model whose
main features conform to those requirements and that are outlined in this section.

Six predefined concepts (entity types) and three structuring mechanisms have been
introduced in TCM.

a) The predefined concepts

They are: document, object, message, agent, action and event.
In defining TCM, a special effort has been devoted to define concepts for representing

both static and dynamic aspects of the office world. IN TCM there are predefined static
and dynamic concepts. Predefined static concepts that model static aspects of the
OIS are the document, object, message and agent entities. Predefined dynamic concepts
that model dynamic aspects, Le., the behavior, of the OIS aTe the action and event
entities. All the model entities derive from these predefined types.

53

Each concept in the model refers to a type. For example, the LETTER type of
document describes the documents that have a sender, a receiver, a date, a signature,
and a text portion, and that are usually sent in/out of the office for communications.
A class is a set of tokens having the same (or at least similar) properties.

A class of elements like CLIENT (Fig. Ib) belonging to one of the six predefined
types of the model is called TCM entity.

Entities can be static or dynamic entities. For example, ORDER is a static entity.
TCM static entities represent either physical elements of the office (TCM documents,
messages, agents) or more abstract concepts like office information (TCM objects). In
particular:

• document entities model office documents such as letters, forms, dossiers.

• message entities model temporary office communications like phone calls or elec
tronic mail messages.

• an agent entity defines the role played by individual office workers or groups of
them, when they interact with the DIS. Examples are senders and receivers of
messages.

• object entities represent office information needed by agents or by the DIS to
perform the office work. Examples are loans, states of progress of letters, meetings.

TCM dynamic entities allow to describe in the DIS conceptual schema the rules
according to which static entities behave over time (when they change and how). In
particular:

• action entities represent activities that are performed in the office and that modify
the status of static entities. Examples are copying a document, modifying an
address.

• event entities ascertain state changes of static entities that trigger actions. Ex
ample are message arrivals, end of the week, address modification.

In summary, actions allow to describe "how" static entities change, while events
describe "when" actions must be performed. Since the execution of actions can in turn
modify the state of static entities, new state changes can occur upon actions that is
ascertained by other events, an so on. These sequences globally describe the office
behavior over time.

Any TCM entity is characterized by its properties. For example, the entity CLI
ENT is described by the properties name, address, phone, status and client-no (see Fig.
Ib)i the event NEW _CONTRACT is characterized by the event date and the client who
signed the contracti the action CONTRACT _CREATION has the property contract-no
which is the number of the new contract.

The six predefined TCM concepts are mutually orthogonal (their intersection is
empty). According to what discussed in Sect. 1.2, the orthogonality issue helps to guar
antee minimal conceptual schemas, since a concept is guided to be described through
one specific type of entity.

54

b) The structuring mechanisms

They are generalization, reference and structure. They can be applied to each of
the six predefined TCM entities.

Generalization corresponds to the concept used in AI which is called "is-a". It
allows to model hierarchical relationships between entity types. An entity E; may be
defined as a specialization of a more general entity Ei (E; is-a Ei): E; inherits all the
properties defined for Ei • Multiple supertypes are also allowed. Moreover, subtyping
may be restricted to instances with particular property values through a condition.

Fig. 3a shows a generalization hierarchy for agents, documents, and events are de
rived from static entities and dynamic entities. Generalization can be used to describe
relationships between the predefined types of TCM itself. More generally, all the model
ing concepts used for the description of office systems have been used to describe TCM
itself.

The reference mechanism is used to express logical relationships between two enti
ties. It is a binary relationship mechanism. A reference between two entities Ei and E;
has a reference name which is considered as a property of Ei (named the source entity).

Fig. 3b shows an example of reference between the document entity CONTRACT
and the BANK agent. This reference links the instances of CONTRACT with the
instances of BANK.

Four types of reference relationships are defined in TCM:

• a "ref-to" reference denotes a pointer to a referred entity, giving to the source
entity the visibility of the referred entity.

• a "copy-of" reference indicates that the source entity contains a part of the
structure of the referred to entity. Updates to values of the source entity are not
propagated to the copy.

• a "same-as" reference is analogous to the "copy-of" reference, but determines a
referential integrity constraint on the referred entity.

• a "view-of" reference is analogous to the "copy-of" reference; however, updates
to values of the instances of the source entity are propagated to the instances of
the "view-of" entity.

The structure mechanism defines the properties of office elements. The structure
concept has two predefined subtypes: association and aggregation.

The association mechanism specifies a property that includes a repeating group of
properties. In Fig.3c, for example, Names is defined as an association of Name. The
association mechanism is similar to the abstraction mechanism also named association
added to SHM (Smith and Smith 1977) by Brodie in the ACM/PCM methodology
(Brodie and Silva 1982); in our case, grouping is limited to properties of entities.

The aggregation mechanism defines a collection of different entity properties. Fig.
Ib shows an example of entity aggregation: CLIENT is an aggregation of five properties
(clienLno, phone, name, status and address). Fig. 3d is a more detailed picture of the
CONTRACT entity shown in Fig. 3b. Here, CONTRACT is an aggregation of:

• characteristics of the contents of the contract: header and textuaLpart;

55

a) the generalization mechanism

CONTRACT

I
I

bnk

~~K
Names

Name

b) the reference mechanism c) the association mechanism

CONTRACT

I
header eli bnk

CLIENT BANK

d) structure of the CONTRACT document

Figure 3: Examples of TCM mechanisms

56

DOMAIN

t
ADDRESS

I
street city country

Figure 4: The ADDRESS domain

• two references to the CLIENT and the BANK entities which are mentioned in the
contract: "eli" and "bnk".

Compared to the aggregation abstraction form introduced by Smith in SHM, the
TCM aggregation mechanism is restricted in that it applies only to the upper level of
structure of entities and on properties of entities.

TCM entities are defined over domains. Predefined domains are for example in
teger, string, text, date, image. User-defined domains built through TCM mechanisms
(except the reference mechanism) are also allowed. In Fig. 4, the user-defined AD
DRESS domain is an aggregation of the street, street..nb, city, and country properties.
Usually, domains are not depicted in TCM schemas for reasons of readability.

2.2 Presentation of TCM Concepts and TSL Constructs

Now we present the six predefined TCM entities in more detail. Their specification in
TSL and their graphical description ate used.

a) The document concept

Definition: A document is a static predefined entity whose instances represent concrete
documents (i.e. groups of data which are meaningful as a whole) that exist in the office
real world and that will be stored in the OIS.

Examples: Letters, memos, dossiers are typical examples of the document entity.
Fig. 5 shows both the graphical representation (Fig. 5a) and TSL specification (Fig.

5b) of the NEWSPAPER-ARTICLE document, which is an aggregation of a text, an
author, and a source.

Fig. 5 shows one type of the reference mechanisms previously introduced. The "view
of" reference shows that "source" shares some information with the NEWSPAPER
entity. Moreover, the "with" elause indicates that the source property can be considered
as an aggregate ofthe two properties newspaper..name and newspaper_date. Thus, if the

article_
text

57

DOCUMENT

NEWSPAPER _ARTICLE

I

author source

newspaper _
name

newspaper_
date

a) graphical representation

NEWSPAPER

<NEWSPAPER-ARTICLE> is-a DOCUMENT;
{ aggregation-of { article_text: image;

}
}

author: string (20);
source: view_of NEWSPAPER

with { newspaper-oame,
newspaper_date}

b) TSL representation

Figure 5: Specifications of the NEWSPAPER-ARTICLE document

58

values of the name or the date of a NEWSPAPER instance change, the modifications
are reported onto the source property of the corresponding NEWSPAPER_ARTICLE
instance.

This mechanism allows the designer to reduce the inherent redundancy of documents.
In fact, in the above definition of NEWSPAPER-ARTICLE, we avoid to re-define two
properties, newspaper...name and newspaper_date, that are defined elsewhere. How
ever, the semantics of each document is preserved. In our example, for each entity,
"newspaper ...name" and "newspaper _date" cannot be interpreted separately from the
other properties:· a NEWSPAPER_ARTICLE is composed of a text, an author and a
newspaper ...name and a newspaper _date.

Aggregation and association can be used iteratively to deal with complex structures
of documents: Fig. 6a shows the TSL specification of the SPREADSHEET document,
which is composed of a title and cells; cells is a two-dimensional list of individual cells
specified using the vector mechanism. The vector mechanism expresses an infinite list
of ordered elements (in the association mechanism no order is defined on elements).
Cells are aggregates of a formula and a value.

In addition, TCM includes three more mechanisms: identical values, parameters
and cases.

One identical value can be taken by one property for each instance of an entity. For
example, the logo of all individual invoices is always the same. The identification of the
company (address, phone number, etc.) is the same for any instance of any document
produced by the company. Identical values are denoted by the keyword "values" in TSL
(see Fig. 6b).

A parameter of a textual property is a property which belongs to the text, and
which must be distinguished from the text. For example, Fig. 6c shows the ADVER
TIZEMENT _LETTER document, where the property "cli" is contained in and is a
parameter of the contents of the document (the "cont" property).

At each level of the document hierarchical structure, one property can be decom
posed into several exclusive ways, called cases. For example, in a curriculum vitae,
the professional profile property of an applicant can be described as a list of jobs or as
textual sentences.

All these mechanisms can be combined to describe more complex documents, as
in Fig. 6b. The LETTER_OF _REFUSAL document contains a property name and
contents. "contents" is a text that includes a variable part (parameter-of): the value of
the parameter is the client name (denoted by a "$" character).

b) The object concept

Definition: An object is a static predefined entity whose instances represent abstract
information stored in the OIS and needed by office agents or by the OIS itself to perform
office work.

Examples: Loans, entity states (of progress of projects, for example), marks, key
words can be represented as objects. Objects can also be used to represent information
which is useful to manipulate documents (for example for retrieving them) but which
is not contained in the documents.

Figures 7a and 7b show the graphical representation and the TSL specifications of
the MEETING object. This entity represents a repository which contains information

<SPREADSHEET> is-a DOCUMENT;
{ aggregation-of

{ title : st~ing (15);
cells: vecor [*.*1 of cell

{ formula: text;
value : string (*)

}

a) using aggregation and vector

< LETTER_OF_REFUSAL > is-a DOCUMENT;
{ aggregation-of

59

{ content1: text;
parameter-of : aggregation-of

{ content : aggregation-of

aggregation-of

{ cli : view-of CLIENT with {name}}
} ;

values : aggregation-of
{ content: { -To cli~nt-. $cli.name.

- : your credi't request has not been
approved"}

b) combining aggregation, parameters, reference and values mechanisms

<ADVERTIZEMENT_LETTER> is-a DOCUMENT;
{ aggregation-of

{ cont : text;

}

parameter-of aggregation-of
{ cont : aggregation-of

{ cli : view-of CLIENT witp (name }}

c) the parameter mechanism

Figure 6: Using different mechanisms for structuring documents

60

OBJECT

MEETING

I
eli status

CLIENT

a) Graphical representation

<MEETING> is-a OBJECT;
{ aggregation-of

}

{ eli : ref-to CLIENT;
m_date : date;
status: string <*);
aeq~an : ref-to ACQUISITION-HANAGER

}

b) TSL representation

ACQUISITION_
MANAGER

Figure 7: Graphical and TSL representations of MEETING

61

about meetings between a client and the acquisition manager. It illustrates that all the
structuring mechanisms introduced for document entities can be used for object entities.

It is possible to use a "view-of" and a "ref-to" reference for objects, as for example
in Fig. 7.

By describing the MEETING object, we are interested in modeling the relationship
between clients and acquisition managers. Clients can meet several managers, and ac
quisition managers canmeet several clients (MEETING represents a "n-m" relationship
between CLIENT and ACQUISITION-MANAGER).

The "same-as" and "copy-of" mechanisms can also be used in the specification of
objects.

c) The agent concept

Definition: Agent entities represent real office agents (individual persons, groups of
persons, computers, machines) which interact with the OIS by initiating office activities
or by receiving communications from the external world, and responsible for a set of
office tasks. Descriptions of agent instances are stored in the OIS.

Examples: Examples of agents are receivers or senders of messages, owners of doc
uments, the secretarial staff, the office manager.

An example of agent specification in TSL is given in Fig. 8. The SECRETARY
agent is a specialization of the CREDIT-DEPT..AGENT entity and is defined by the
type of task (typing or phone operator) and by the office number.

All the structuring mechanisms and all the reference constructs apply to agent spec
ifications.

Generalization: Fig. 8 shows that any SECRETARY agent is also a CREDIT_
DEPT ..AGENT agent, and is thus defined by a name, an address and a hiring status.

It is also possible to restrict the generalization mechanism. By using the following
specification:

<SECRETARY> is-a CREDIT-DEPT..AGENT where @status="hired"@j

we limit the SECRETARY entity to represent only the permanently hired secretaries.
Multiple subtyping can be expressed as follows:

<SECRETARY> is-a
CREDIT -DEPT ..AGENT where @status="hired" union EMPLOYEEj

Here, we define a secretary as a permanently hired agent who is also an employee.
In this case, SECRETARY inherits properties from both CREDIT -DEPT ..AGENT and
EMPLOYEE, and is therefore characterized by a name, an address, a status, a task, an
office number, and by the EMPLOYEE properties (salary, phone number, etc.). Multi
ple subtyping must meet a set of consistency rules, like: "EMPLOYEE and CREDIT_
DEPT ..AGENT must not have the same property name at the same level of their struc
ture" j if this rule is not satisfied, two identical property names exist in the definition of
SECRETARY, which leads to an ambiguity. Other checking rules exist on the model
structures.

In TCM, predefined roles are assigned to agents, in particular the "message sender",
"message receiver" and "activity responsible" are defined. Agents' roles are known
by the OISj this associates personal data and duties to agents, thus being able to treat

62

<CREDIT-DEPT_AGENT> is-a AGENT;
{ aggregation-of

}

{ name: string (20);
address: string (250);
status: ("hired", "temporary")

<SECRETARY> is-a CREDIT-DEPT-AGENT;
{ aggregation-of

}

{ task: ("writing", "typing", "operator");
office-nb : integer

}

Figure 8: Specification of agents

situations like the absence of an aKent (messages directed to him are to be automatically
forwarded to a substitute agent).

The notion of which agent interacts with the OIS and how, is particularly mean
ingful to the TODOS architecture selection phase because this affects the software and
hardware endowment of each access point to the OIS.

d) The message concept

Definition: Message entities model office communications from and to the external
world; they describe the OIS interface to the other functions of the enterprise which the
OIS is being designed for.

A message instance is valid only during its transmission and its acquisition by the
receiver agent. If the contents of the message has to be kept, the designer has to
explicitly model an action of copying the message contents into a document or an object.

Examples: Phone calls, oral messages, electronic mail messages are typically rep
resented as messages. In Fig. 9, the TSL specification of the ARRANGE-MEETING
message is represented.

Structure of messages: TCM messages are composed of two parts:

• the envelope contains default transmission data: the sender~ and the receiver .

• contents property defines the information contents carried by the message. The
contents property has a structure which is analogous to the document structure.

In Fig. 9, each message instance is sent by a secretary to the OIS (represented by the
SYSTEM agent). Messages are automatically forwarded by the OIS to every receiver
agent (in Fig. 9, the clerical worker).

"same-as" or a "copy-of" can be used in message specifications. For example, if the
contents of a message includes the following property definition:

applicant: same-as PERSON with { name };

63

<ARRANGE-HEETING> is-a message;
{ aggregation-of

}

{ envelope : aggregation-of
{ from : SYSTEM;

}

to : CLERICAL_WORKER
} ;

contents : aggregation-of
{ cont : text;

}

parameter-of : aggregation-of
{ cont : aggregation-of

{ client : }
} ;

values :
{ cont

}

aggregation-of
{"A meeting has to be arranged for

client $cli.name. who has shown
interest in the credit offer"}

Figure 9: TSL specification of a message

every message instance will be taken into account by the OIS in the case where the
name of the applicant in the message already exists as a PERSON name in the OIS.

By using a "copy-of" reference, the designer specifies that two entities share the
same structure (and not the same values as for the other types of references).

Generalization: Message generalization is identical to other static entities gener
alizations.

e) The action concept

Definition: An action is a predefined dynamic entity that represents office activities to
be automated. Actions modify the states of static entities and are triggered by events
under some conditions.

Examples: Creation, modification or deletion of static entity instances, such as
"create" the CLIENT object, "copy" the LETTER document, "send" the Ml message,
are examples of actions.

Basic assumption: TCM actions model elementary activities of the office: an
action entity is a set of action instances which act upon one entity and change the state
of the instances of this entity.

This assumption, by forcing the designer to describe in detail the effect of the office
procedures on static entities, leads to several advantages in the TOnOS conceptual
design method:

• minimizing redundancy: two office activities which act upon the same entity in a
similar way are represented by one action in the -OIS.

• enhancing consistency: due to the level of detail of actions, synchronization and
correct concurrency are better ensured because errors such as action pairs that
modify the same entity simultaneously are easily detected.

64

<CLIENT_CREATION> is-a action;
{ aggregation-of

}
}

{ values : aggregation-of
{ comments : "creation of the CLIENT object";

act-entity: CLIENT;

};

steps : RT ($c, " searching for the last created
client");

CR ($cl, "creation of the new client".
$cl.client-oo = $c.client-oo + 1;
$cl.address = $cont.client.address;
$cl.phone = $cont.client.phone;
$cl.name = $cont.client.name;
$cl.status = "interested")

in : aggregation-of { cont : ref-to CLIENT };
var : aggregation-of { c : ref-to CLIENT };
out: aggregation-of { cl : ref-to CLIENT };
date_c:- : date;
cli : ref-to CLIENT

Figure 10: Specification of an action

• guiding the conceptual design: the designer models static entities and, for each of
them, checks how the various properties are modified by associated actions.

Structure of actions: Actions contain structural properties, which are spe
cific to the action concept, and descriptive properties. We illustrate these two kinds
of properties using the example of Fig. 10 that shows the TSL specification of the
CLIENT _CREATION action (creation of a new instance - denoted by "$cI" - of the
CLIENT object).

Structural properties: The action structural properties are specified in the values
part of an action. They are fixed for all the action instances. The values part contains:

• the "comments" property: information useful for the designer;

• the "act-entity" property: name of the static entity acted upon (the CLIENT
object in Fig. 10);

• the "steps" property: it procedurally indicates the execution of actions. The
steps are expressed in a programming- language like language with primitives and
control operators. The primitives are the following (each acts upon instances):

CR: creation of static entities

TX: transmission of messages

PR: printing of documents

RM: removal of static entities

MO: modification of values of static entities

CP: copy of (parts of) documents

65

RF: creation of a reference relationship between two instances

RT: retrieval of OIS information

CO: computation of values

ED: interactive editing of documents

Primitives can be combined by using control operators: sequence (denoted by
";"), parallelism ("&"), block (grouping of primitives by means of parenthesis),
condition ("IF ... THEN ... ELSE ... ") and iteration ("FOR ... DO ... ").

Primitives are often associated to free-text comments used to informally describe
the behavior of the primitive. For example, when creating an instance by using the
"CR" primitive, the designer does not indicate the values taken by the properties
of the new instance: these can be expressed through comments which are not
interpreted by C-TODOS. Comments are useful also for the other phases of the
TODOS method because they indicate useful details such as constraints on the
execution of an action. For example, the constraint that printing must occur on
a quality printer located near agent Al is expressed in a comment useful for the
architecture selection phase.

In the example of Fig. 10, the steps part indicates that the action retrieves the
last instance of client (Sc) - to get its client number - then creates the instance
of the current client (Scl), and assigns it a progressive number and information
about the client (address and phone) which is passed onto the action through the
input parameter ("in" part in Fig. 10) .

• the "in" and "out" properties: these properties contain respectively the input
and output parameters of the action.

Input parameters are values needed for the execution of the action. In general,
one of the input parameters is a reference to the static entity that changed its
status thereby triggering the action (the corresponding value is passed through
the triggering event, as we will see later on).

The output parameters are values produced by the action, and precisely a reference
to the static entity acted upon ("act-entity" part).

In the "var" part information which is created and used during the action execu
tion is contained.

In Fig. 10, the input parameter contains the value of the LETTER..MSG instance
received by the OIS; the var part contains the variable "c" used for retrieval; the
output part is the new instance of CLIENT.

Descriptive properties: These are optional properties used to keep track of the
execution of an action.

In the example, the "date..cr" and "cli" descriptive properties denote respectively
the date of the action execution and the CLIENT referred to in the contract.

f) The event concept

Definition: The event is the predefined dynamic concept that represents types of state
changes in the office that trigger activities of the same type.

66

In the definition of event we make the assumption that event instances of the same
type recognize state changes of instances of the same static entity.

Examples: The end of the week is modeled as an event which, for example, triggers
message sendings. Another event is the arrival of letters which triggers the action of
copying its text into a TCM document.

These examples show that there are different types of events in the office. Coherently,
TCM has three kinds of events, or event subtypes:

• temporal events describe time-related facts, either an absolute reference (e.g.,
November 25, 1989), or a periodic reference (e.g., the 13110 day of each month), or
a reference to another event (e.g., 3 days after the arrival of a new contract).

• external events describe the arrival of messages from the world to the OIS (e.g.
a letter arrival, a new contract arrival).

• internal events describe state changes of the OIS, and are caused by an action
execution. We classify them as follows: creation event (which is induced by a
creation action), modification event (e.g. induced by an address modification),
removal event, completion event (which recognizes that a document instance is
complete according to its structure).

Specification of events: Analogously to actions, the event specifications contain
structural and descriptive properties.

Structural properties: They are:

• the name of the static entity associated to the event (whose state changes are
recognized as the event instances).

Fig. 11 shows the TSL specification of the external event EV2 which ascertains
the arrival of the LETTER-MSG message.

• the name of a predicate expressing the formal conditions of the state change (for
example, in a temporal periodic event, it indicates the period of occurrence of the
event instances). In the example, upon the message arrival, if PI is true (Le., if
the message contains the needed information about the client), EV2 triggers the
CLIENT _CREATION and MO_CLI.L actions.

• a triggers property specifying the names of the actions to be triggered when
the predicate is true. Actions can be associated to conditions and/or trigger
ing factors when they are triggered conditionally and/or iteratively by events.
The triggering condition is the pre-condition that must hold for the action to be
executed. The triggering factor computes a set of values; the associated action is
executed for each value of the computed set (Le. as many times as the number of
different values in the set). In the triggers pa.rt, all these features can be combined
by using the primitives and control operators previously illustrated.

Predicates, conditions and triggering factors are specified as separate entities in
TSL. When no predicate and no condition is specified, the event can occur without
restrictions; when no triggering factor is associated with an action, the action is executed
once.

In the example, EV2 triggers in parallel:

67

<EV2> is-a arrival_event;
{ aggregation-of

}

{ values : aggregation-of

}

{ comments : "Arrival of a letter sent by an

} ;

interested client";
ev_entity : LETTER_HSG;
predicate: PI;
triggers : if CI_F then HO_CLI-L &

if not CI_F then CLIENT_CREATION

date_ev : date;
cli : ref_to CLIENT

Figure 11: TSL specification of an event

• the conditional execution of the CLIENT _CREATION action (it is executed if the
client does not yet exist in the OIS);

• the conditional execution of the MO_CLLL action (modification of the CLIENT
action).

Descriptive properties: These are optional properties which keep track of event
recognitions. The event specification of the example contains two descriptive properties
(the date of the event and the client).

g) The notion of dynamic transition

As we have shown, the behavior of the 0 IS is modeled through sets of events and actions.
The notion of "dynamic transition" combines one event and the actions it triggers in
order to give a comprehensive view of the cause-effect relationships that determine the
OIS behavior. It is not a basic TCM concept, rather a useful notion derived from TCM
concepts.

A dynamic transition contains one event, its associated static entity, all the actions
triggered by the event, and, for each action, the optional condition and triggering factor,
and the static entity acted upon.

Fig. 12a illustrates the dynamic transition corresponding to the EV2 event. Notice
that the TSL specification of an event corresponds to the description of the dynamic
transition (see Fig. 11).

The concept of dynamic transition turns out to be a very relevant one, since it
represents the evolution of the OIS from one state to another. The dynamic transition
is the OIS consistency unit: if the OIS is consistent before a state change is recognized
as an event, it should remain consistent after the execution of the dynamic transition
associated to the event. Dynamic transitions are executed one at a time.

68

LETTER_II II MSG

EV2

CLIENT

a) a dynamic transition

Lrm:R MSG

@

..... I--OWIGE ___ =-M..;;EET~a:v.!a I 0 I
MEETING

b) sequences of dynamic transitions

Figure 12: Dynamic transitions

69

Dynamic transitions can cause new dynamic transitions to occur. For example, Fig.
12b shows that the dynamic transition associated to the EV 4 event (modification of the
status of a client, which becomes "interested") follows the transition associated to the
EVI event (telephone call). It can be noticed that such sequences of dynamic transitions
are equivalent to sequences of events. In Fig. 12b, for instance, EV4 can follow EVI or
EV2. EV5 (there is a new date of meeting) can follow EV4 or EV20 (modification of a
meeting date).

Modeling sequences of dynamic transitions is thus equivalent to globally modeling
the DIS behavior. The portion of the conceptual schema that contains all the OIS
dynamic transitions is called TCM dynamic schema. An example of dynamic schema
is given in Fig. 12b.

Fig. 12b shows that there are two ways for acting on the CLIENT object (EVI and
EV2). Upon one event, there is a creation or a modification of a client object. The
event EV 4 is recognized on client creations or modifications; it allows to create meet
ing information. Meeting changes are modeled through the EV20 dynamic transition
relating to event EV20. EV5 models message sendings corresponding to new meetings.
Another graph which is frequently used is the event precedence graph (see Fig. 26b)
that represents the sequences of events. For instance, in Fig. 26b EV4 follows EVI or
EV2, and EV5 follows EV4 or EV20.

3 Modeling with the C-TODOS Support Tool

C-TODOS is the OIS conceptual modeling tool that assists the office designer in pro
ducing a correct and complete DIS conceptual schema.

C-TODOS is centered around a Specification Database (SDB) that stores the
conceptual schema of the OIS application. The conceptual schema, based on the TO
DOS Conceptual Model presented in Sect. 2, is incrementally produced by the office
designer who enters the specifications of the OIS application using the formal TODOS
Specification Language of the model.

TCM entities specified by the designer to be part of the schema are automatically
mapped by C-TODOS.into elements of the database. Support upon insertion is given
in that the entered specifications are checked by C-TODOS for consistency against TCM
concepts and against the already existing specifications.

Other tasks of the conceptual design, such as modification and analysis of the
schema to detect semantic inconsistencies or design errors and to test the quality of
the design are supported by C-TODOS by automatically maintaining the consistency
of the SDB upon modifications, and by providing the analyst with a query language to
analyze the conceptual schema stored in the SDB.

Semantic information about the conceptual model and about the design steps is
available to the tool in the form of self- description of the SDB. Using such information,
C-TODOS actively assists the designer. For example, the designer can insert speci
fications into the SDB without any precise precedence order (practically, some rules
apply for example to inheritance). Active assistance is provided through a mechanism
of incomplete specifications handling, that consists of the automatic insertion in
the schema of system-defined entities when entities not yet defined are referred by the
designer.

Design checks are automatically performed by C-TDDOS to enforce the consis-

META-META
LEVEL

META
LEVEL

APPLICATION
LEVEL

META-META SCHEMA

TCM Schema for
meta-meta data

META SCHEMA

TCM Schema for
description of OIS

SCHEMA

TCM Schema for
OIS application

70

- Description of
TCM concepts

- Project management
information

- Description of the
OIS application

- Real data of the
OIS application

a) levels of the SDB schema

Figure 13: The Specification Database

tency among entities defined at various moments of the schema production process, with
particular attention to the system-defined entities.

C-TODOS provides also support to project management functions by maintaining
project information while the schema is produced.

In this section we illustrate the SDB (Sect. 3.1) and the management functions
performed against the SDB by the modules of C-TODOS (Sect. 3.2). Then, we present
some implementation issues (Sect. 3.3).

3.1 The Specification Database

The SDB of C-TODOS is a self-describing database (Mark and Roussopoulos 1986)
whose purpose is to store the OIS conceptual schema. The SDB is self-describing in the
sense that it incorporates the description of the conceptual model; such description is
used by C-TODOS to actively participate in the conceptual design process by supporting
insertion of correct specifications and by treating incomplete specifications.

The logical architecture of the SDB comprises three levels, as shown in Fig. 13a;
Fig. 13b shows the semantic network of the SDB information. Such network contains
both TCM concepts and C-TODOS concepts.

The meta level of the SDB contains the conceptual schema of the OIS application.
The data in this level are the description given by the designer of the real data of the
OIS application using TCM, and are called metadata. Metadata are stored in the SDB
according to TCM concepts (metaschema).

71

C_ rODOS_concept

'" management information

"'I \f 0 Specl Icatlon_

rCM_concept :~:: ____ ____ ~c:o:m~m~e~n~t:s database

/ \~Iementary -Structure

domain 0 "" \

entity property _ logical_

t path expression
reference_
structure

aggregation_
static _ structure

/. entity

®j~t/ \ \
document agent message

t
system

/ ~~ili_
domain:efs~!!'V \
structure copy_ some

as_str - of_str

dynamic view_
- of str

~ entity ~-

dOti""/ ... t '- triggering_ con I on .", foetor

action predicate

~event~

temporal_ + arrival

event /.. ;"...:~_ '- t-

mOdif;:~~~~-:v-;nt / t' '" I ti t - '\ comp eon_even

creation_event removal_event

modification_event

Figure 13 b) semantic network of the SDB information

72

The application level should contain the real data of the OIS application, i.e., the
instances of the entities specified in the meta level. Since the SDB is a project database
used to store the description of the application, this level is empty.

The meta-meta level of the SDB provides the database self-description issue. It
contains the description of the TCM concepts used to model the application. The
meta-meta data describe TCM and use as a reference schema the semantic modelization
concepts of TCM (meta-meta schema).

The purpose of meta-meta data is to support correct insertion and consistency main
tenance of meta-data. For example, as described in Sect. 2, a TCM entity has a name,
an id, a type, a specification text, belongs to an is-a hierarchy and has a collection of
properties. This structure is described using TCM as depicted in Fig. 14: an entity has
a name, a type, a specification text, can be defined or undefined, has an ancestor in the
is-a hierarchy, has children entities and so on. The properties of an entity belong to a
property-list which has a structure composed as shown in Fig. 14; in the figure, also an
example of the structure of the "document" static entity is depicted (an aggregation of
author, text and type).

Such description is stored in the meta-meta level of the SDB. When the designer
inserts the specification of an entity, C-TODOS checks that the entity structure conforms
to the structure described in the meta-meta level.

Additionally, as shown in Fig. 13, meta-meta data comprise information that is not
part of the model but is included in C-TODOS, for example the <session> concept.
This is project management information, such as the duration of a design session,
the author of a specification, the date of insertion/deletion of elements, the relational
schema of the SDB implementation. These data are used by C-TODOS to provide the
designer with automatic design documentation functions.

The SDB is initialized to contain the following information:

• at the meta-meta level, the self-description of the TCM entities;

• at the meta level, the TCM predefined entities, such as document, object, action.
These entities are "predefined" in the sense that C-TODOS knows their structure
and they can be referenced to by the designer.

3.2 Management of the SnB

The SDB management functions performed by C-TODOS against the SDB are the
following:

1. insertion of specifications

2. deletion of specifications

3. consistency checking

4. query execution.

These functions are performed by the modules of C-TODOS shown in Fig. 15 against
the SDB metadata using meta-meta data. In the following, we examine in detail these
four functions.

<
en

ti
ty

>

I
-1

-.
_-1

. 1-

-1

--
--

I
I

I
n

o
m

e
~

lI
;)

e
C

-t
a

x
t

d
er

ln
ed

a

n
c

e
s

to
r

ch
ild

re
n

PI

 o
p

«1
y-

-1
rt

T
u

ol
u

A

JX
"O

P
er

ty
-li

st

m
e

n
r-

to

(o
tr

in
q)

(.

. ~;
"
.,.,

.-l

("
'n

q
)

IY
,N

I
t

t
t

t
·

·
<_

... ti
o

n
-"

""
" .

..
. >

 ~

[

<
.t

ru
ct

.u
rw

 >

~
~

/
r
-
~
t
 . IS p

t'
t:

II
)«

't
y

.J
)Q

th

(
:
:
:
 ••

n

rf

co
n

d

~

n
rf

co

n
d

~

n
rf

.
c
~
.

-
)

P
..

J)
n

:I
I)

<
lIt

n
Ic

tu
re

>

I
<N

ti
or

~>

e
n

tit
y

r-
--

--
--

T

I
I

pc
 o

p
«

ty
-

p
t'

0
9

«
ty

-
p

t'
0

9
e

rt
y

-
d

om
ai

n

n
o

".
..

p

at
h

~

(M
ri

nq
)

(I
It

ri
n

q
)

(s
fr

in
q)

<
d

oc
u

m
en

t.
>

I J
1

F
ip

re
 1

4:
 T

C
M

 s
tr

uc
tu

re
 o

f
T

C
M

 e
nt

it
ie

s
a

u
th

e
r

tn
t

~

~

MODELING
MODULE

74

CONSISTENCY CHECKIN
MODULE

Figure 15: Architecture of C-TODOS

a) Insertion and deletion of metadata: the Modeling Module

The insertion and deletion of specifications into and from the SDB are processed by the
Modeling Module of C-TODOS that maps the specifications into metadata. Modifi
cations of stored specifications are supported as sequences of insertions/deletions.

Interaction with the Modeling Module occurs on the basis of TSL that allows the
designer to specify TCM entities in TSL. Based on TSL, different interfaces to the
Modeling Module are provided to the user, allowing him to operate in batch mode, via
menus, or graphically (the interaction modes are described in detail in Sect. 4).

Before accepting new specifications, the insertion support component of the Mod
eling Module applies syntactic checks and invokes the Consistency Checking Module for
semantic checks. Afterwards, it generates the appropriate metadata and stores these
into the SDB. Syntactic checks executed by the Modeling Module ensure the correctness
of TSL specifications according to the TSL grammar, and ensure that some constraints,
such as the uniqueness of entity identifiers, are met.

Upon deletion of specifications, the deletion support component of the Modeling
Module invokes the Consistency Checking Module to check the deletion dependencies
involved in the deletion, and then performs the necessary deletions of metadata from
the SDB.

The Modeling Module handles incomplete specifications, according to the TO
DOS design method that the OIS can be incrementally specified and refined by the
designer. Incomplete specification handling is performed through calls to the Consis
tency Checking Module and works as follows.

The ancestor of the entity that is currently being defined must be defined in the
schema. For the reference mechanisms, C-TODOS allows the referenced entity to be
still undefined at the moment of insertion of the entity where the reference is made.

In order to illustrate the basic operations performed by C-TODOS, we consider a
fairly complex example; we consider the Product Order office of a company. Let us

75

suppose that the designer enter the TSL specification of the PRODUCT _ORDER_
LETTER entity shown in Fig. 16. This entity models the answer letter that a product
agent of a company (PRODUCT -.AGENT) sends back to a client who ordered a product
through a letter (CLIENT _LETTER).

C-TODOS requires the ancestor type LETTER to already exist in the SDB as an
entity explicitly defined by the designer (for example as a specialization of the predefined
TCM DOCUMENT entity).

Assuming that the referenced entities PRODUCT -.AGENT and CLIENT have not
yet been inserted, C-TODOS them inserts automatically into the SDB the metadata
corresponding to two undefined entities PRODUCT-AGENT and CLIENT. The TCM
structure of these entities is shown in Fig. 16b.

The self-description of TCM stored in SDB the meta-meta level allows C-TODOS
to derive the information that PRODUCT -.AGENT and CLIENT are static entities.
The properties pa-name, pa-address and c-name, c-address are derived from the specifi
cations contained in PRODUCT _ORDER-LETTER and are automatically inserted by
C-TODOS; their types are unknown.

The two undefined entities must be defined explicitly by the designer during the de
sign process; upon definition, C-TODOS will enforce consistency between the properties
specified by the analyst and those of the undefined entities.

Upon the user actions shown in Tab. la, C-TODOS performs the actions summa
rized in Tab. lb. The designer first inserts the specification of <product-order- letter>
(action 1 in Tab. 1a). The actions of C-TODOS upon this insertion are existence checks
(actions 1.1 and 1.2 in Tab. 1b) and insertion of two undefined entities. Finally, C
TODOS records that a check must be executed upon completion of the current design
session (action 1.3 in Tab. 1 b). Then we suppose that the designer inserts the following
TSL specification of <client> (action 2 in Tab. 1a):

<client> is-a <person>
{ aggregation-of

}

{name: string (20);
add: aggregation-of

{street: string (10);
number: integer;
city: string (10)

};
code: integer 1..100
}

Consequently, C-TODOS performs the actions 2.1 through 2.4 of Tab. 1b; since the
consistency check of step 2.3.a is not successful because the properties of <client> do
not match, the designer is required to re-enter the specification of <client>.

b) Analysis of conceptual schemas: the Consistency Checking and Query Modules

These two modules of C-TODOS allow the designer to validate the OIS conceptual
schema stored in the SDB before using it as a basis for the prototyping and architecture

76

<product-order-letter> is-a <letter>;
{ aggregation-of

{ logo : image;
header: text;
contents : text;

}

parameter-of : aggregation-of
{ head : aggregation-of

} ;

{ sender : view-of product_agent

} ;

with { pa-name, pa-address };
receiver : view-of client

with { c.name, c-address };
current-date : ref-to office-calendar

contents : aggregation-of
{ d : view-of client-letter

with { letter-date};
signature : view-of product_agent

with { name }

values aggregation-of
{ header : { "$sender";

"$receiver";
"$current-date"

} ;
contents "Dear Sirs,

Thanks for your "$d" letter. We inform
you that the quantity of product you
order is available from today. Please
execute the money transfer.
Y~rs sincerely,

"$signature"

a) specification entered by the analyst

<static-entity>

+ <product..;,ogent> <client>

I I
I

po-name po-address c:-name c-oddress

b) undefined entities inserted by C-TODOS

Figure 16: TSL specification of an entity referring to entities not yet inserted in the
SDB

USER
ACTION ENTITY

1. insert <product-order
-letter>

2. insert <client>

77

REFERENCED
SUPERTYPE ENTITIES

<letter>

<person>

Tab. 1a)

<product_agent>
<client>

PROPERTIES

logo,sender,
receiver, d,
day, signatur
contents

name,add,
code

Table 1: User actions and C-TODOS actions upon insertion of metadata

selection phases. They support the analysis of the characteristics of a schema aimed to
checking both design errors and the quality of the design. For example, the analyst
may want to examine the correctness of a document flow in the system, i.e., whether
the flow paths designed for the document are correct, do not contain deadlocks, flow
between proper agent pairs, and bring the correct information content. C-TODOS
supports this analysis by enabling to abstract from one schema all the elements (actions,
events, predicates, trigger conditions, agents, etc.) that are involved in the flow of that
document.

Much of the quality analysis on the conceptual schema can be performed by the
designer using appropriate queries, both predefined and user-defined, using the Query
Module. This module is illustrated in more detail in Sect. 4.

The Consistency Checking Module is in charge of executing semantic checks on the
conceptual schema using correctness, completeness, and accuracy rules.

• Correctness rules ensure that the elements of the schema meet semantic con
straints bound to the model structure. For example, TCM dynamic transitions
should contain at least one action; the is-a network of the entities defined by the
designer must be loop-free.

• Completeness rules allow to detect entities missing from the schema. Checks
executed by the module to enforce these rules include:

- entity existence checks on ancestors of inserted entities, and on the referred
entities according to the mechanism shown in Sect. 3.2.a: if it does not exist,
the referred to entity is inserted by C-TODOS as undefined, and must be
subsequently explicitly specified;

- property existence checks when a property P; of entity E; is referenced by an
entity E; as follows:

78

C-TODOS ACTIONS ON THE SOB

1.1 check existence of supertype:
<letter>' (~ust exist as DEFINED)

if not defined ----> reject specification

1.2 check existence of referenced entities:
< p roduc t_agen t >

<c lien t>

- if do not exist ----> generate meta-data for referenced
entities as UNDEFINED entities:

<product_agent> UNDEFINED static-entity
properties: pa-name (type unknow)

pa-address (type unknow)

- if exist (UNDEFINED or defined)
----> check consistency of properties

1.4 add new UNDEFINED entities to list of UNDEFINED to be
specified by user

---0--- ----0--- ---0--- ---0---
CHECKS ON UNDEFINED ENTITY

2.1 check existence of supertype:
<person> (must exist as DEFINED)

., ?
<-.w

if not defined ----~ reject speci:ication

check existence of referenced entities:
~TONE

2.3 check entities referring to it:
<product-order-letter>

--> a. check consistency of properties
client.c-name : client.name
client.c-address : client. add

NO NAME COH?ATIBILITY-->
ERROR TO USER

b. if check a. OK:
---> set status of <client> entity
to DEFINED

2.4 remove current entity fro~ UND~FINED

Tab. Ib)

79

< Ei > is-a ... ;
{ aggregation-of

{ ...
Pi: view-of Ei with {Pi}

}
}

Pi must exists.
Moreover, properties defined explicitly must be consistent with those of the
undefined entity.

• Accuracy rules are the basis for active design support functions provided by
C-TODOS. In fact, their application detects design flaws that do not correspond
to errors, but that might be inconsistencies, or that might represent undesired
features of the target application (for example, because they influence parameters
such as the performance of the target system).

For example, communication paths or document flows can be optimized if accu
racy checks show that there exist elements of the schema that are bottlenecks for
the activities performed in the application (for example, an object from which
too many transitions depend). An other example of accuracy check regards the
similarity of entities. The structural equivalence of entities may suggest a redun
dancy in the schema: the designer can decide to merge two similar specifications,
or decide that the redundancy is useful and keep it.

Consistency checks are executed at various moments of the design:

• Upon insertion and deletion of specifications. These checks are executed automat
ically.

• Upon completion of one design session. These permit to ensure the global con
sistency of one schema before passing it on to the prototyping phase and to the
architecture selection phase (for example, no entity can remain undefined). Typ
ically, accuracy rules are applied upon completion of a session.

• On portions of the schema, or on groups of specifications. These checks can be
initiated by the designer at any moment.

Consistency checks are implemented through the TODOS Query Language as queries
on the conceptual schema; therefore, the Consistency Checking Module invokes the
Query Module (Fig. 15).

3.3 Implementation Issues

C-TODOS has been implemented on a relational database system using the ORACLE
DBMSl. The system is running on IBM AT-Class computers in the 640 Kbyte RAMI
4Mbyte Fixed Disk configuration, under MS-DOS 3.112•

The relational implementation of the SDB consists of the following basic relations:

lORACLE is a trademark of Oracle Corp.
2MS-DOS is a trademark of Microsoft Corp.

80

1. In the meta level of the SDB the ENTITY, the IS-A and STRUCTURE relations
store information about the entities of the schema.

For example, the tuples generated by C-TODOS in the ENTITY relation from
the specification of PRODUCT ORDER-LETTER of Sect. 3.2 are shown in Tab.
2a.

The tuples that are generated in the IS-A relation are shown in Tab. 2b and the
tuples generated in the STRUCTURE relation are shown in Tab. 2c.

2. In the meta-meta level of the SDB, the relations are divided into three groups:
project management relations (such as ENTITY- HISTORY, SESSION-HISTORY,
and SESSION-CHECKS-TO-BE-PERFORMED), relations that store the TCM
concepts (META-ENTITY, META-IS-A, META-STRUCTURE), and relations
that describe the relational schema (RELATIONS, ATTRIBUTES, DOMAINS,
DOMAIN-VALUES).

For example, the tuples generated in the ENTITY-HISTORY relation when PROD
UCT _ORDER_LETTER is defined are shown in Tab. 3a (we suppose the current
design session is the 11th). The tuples generated in the ENTITY-INFORMATION
relation are shown in Tab. 3b.

4 Interfaces of C-TODOS

In this section, we describe the interfaces that C-TODOS provides to its users for
inserting, deleting, and inspecting the specifications contained in the SDB.

The insertion of specifications can be made in three different ways (see Fig. 15):

• by using the TSL batch interface, the designer can enter specifications written
in the TSL language. These specifications are first written using a text editor
external to C-TODOS. They are then "compiled" by the TSL batch interface.

• the TSL menu based interface allows the designer to insert specifications in
a menu-driven fashion. This interface is particularly useful for inexperienced de
signers who are not familiar with the syntax of TSL.

• the graphical interface is an easy-to-use interface which allows the designer to
insert specifications by using the graphical notations presented in Sect. 2.

All the specifications inserted in the SDB are checked by the Consistency Checking
module. At any moment in time, both the graphical and the TSL notations of a TCM
entity are stored in C- TODOS in the Graphical Data Base (GDB) and the SDB respec
tively (see Fig. 17). This means, for instance, that the TSL representation of an entity
is automatically produced by C-TODOS when the graphical representation is inserted.

The deletion of specifications is performed through the deletion module. Modifica
tion is supported through deletion and creation of the entity.

Inspecting specifications allows the designer to check the specifications stored in the
SDB and to analyze them. This operation is performed through the query interface.

In the following, we focus on the graphical interface called G- TODOS (Graphical
TODOS): it is illustrated in Sect. 4.1. Then we present in Sect. 4.2 the query interface
provided by the Query Module.

81

ENTITY

entity-id subschema entity-name specification-text

el
el05
el06
el07
el08
el09
ellO

IS-A

child

el06
el06
el05

prop-id

p400
p40l
p402
p403
p404
p405
p406

p407
p408
p409
p410

static
static
static
static
static
static
static

ancestor

el05
el
el

entity-id

elO6
elO6
elO6

levO

document
letter
product-order-letter
product_agent
client
office-calendar
client-letter

Tab. 2a)

level condition

1
2
1

levl

Tab. 2b)

prop-name

logo
header
parameter

elO6 parameter header
elO6 parameter header sender
elO6 parameter header receiver
elO6 parameter header current

-date
elO6 contents
elO6 parameter
elO6 parameter contents d
elO6 parameter contents signature

Tab. 2c)

!TSL-source-doc
!TSL-l
!TSL2

UD
UD

!TSL-source-cal
!TSL-source_clett

type domain value

simple image
simple text
aggr
aggr
view elO7
view elO8

ref elO9
simple text
aggr
ref ellO
view elO7

Table 2: SDB relations in the meta level

82

ENTITY-HISTORY

entity-name entity-id insertion-session deletion-session

product-order
-letter e1aS 11

product_agent ela7 11
client ela8 11

ENTITY-INFORMATION

entity-id definition-state

elaS
e1a7
e1a8

YES
NO
NO

3a)

author

analyst-id
analyst-id
analyst-id

3b)

comments

answer to client"

.. client will be a
<person> object"

Table 3: SDB relations in the meta-meta level

t.COOEl.ING
MOOU.£

TSL batch
TSL menu-based

deletion
consistency checking

input functionalities

83

graphical
insertion and
modifICation I-II.---I.o-l

G-TOOOS

QUERY
t.COOLl.E

C-TOOOS

TOOQUEl. menu based

output functionalities

graphical
generation

Figure 17: G-TODOS within C-TODOS architecture

84

4.1 G-TODOS: the C-TODOS Graphical Interface

G-TODOS is the graphical component of C-TODOS. It helps the designer in manipu
lating the office conceptual schema by providing an easy-to-use user interface based on
graphical representations. These graphical representations give a global, synthetic view
of all the entities of the conceptual schema; G- TODOS helps the designer in drawing
the OIS schema and illustrating parts of it.

In the following of this section, we present the main features of G-TODOS and its
functionalities for building and showing OIS schemas. G-TODOS has been developed
on an IBM PC-AT. For a detailed presentation see (TODOS TR 2.4.1).

a) G-TODOS main features

The location of G-TODOS within C-TODOS is shown in Fig. 17. G-TODOS provides
input and output functionalities. More precisely:

• the input functionalities concern the way the designer can graphically insert new
entities in the SDB and modify existing ones through their structural represen
tation. The G-TODOS submodule that handles the input included in (and is
consistent with) the C-TODOS Modeling Module .

• the output functionalities concern two aspects:

- G-TODOS can automatically produce three entity diagrams which corre
spond to synthetical information which is deduced from the content of the
SDB.

- G-TODOS allows the designer to inquiry the SDB using the C-TODOS Query
Module, and to display the pictorial representation of the result on the screen.
The corresponding G-TODOS submodule belongs to the C-TODOS Query
Module.

Any diagram which is used in G-TODOS (either in input or in output) is stored
by G-TODOS in a repository which is called the Graphical Data Base (GDB). This
feature allows one to retrieve quickly any diagram in the state where it was created by
the designer or produced by the tool. This improves the capability of the designer to
analyze the OIS conceptual schema.

For all these functionalities, G-TODOS provides a homogeneous graphical interface
for all manipulations. This user-friendly interface is based on windows and icons for
displaying information, and on pop-up menus, keyboard and mouse for entering data.
It provides graphical facilities for changing the drawings of graphical representations.
G-TODOS also allows the designer to simultaneously see on the screen several views of
the contents of the GDB by using a multi-windowing technique.

In the following, we analyze the input and output functionalities of G-TODOS.

b) Graphical insertion

The goal of the G-TODOS insertion (and modification) module is to allow the designer
to interactively build the graphical representation of an entity (or to modify it). In ad
dition to the general G-TODOS interface, several facilities are provided by the graphical
editor for achieving this goal:

85

• the designer is not bound to a too-strict sequence of manipulations for drawing
the diagram,

• the editor uses its knowledge of the TCM model semantics for executing automatic
manipulations and avoiding errors,

• G-TODOS ensures consistency between the GDB and the SDB.

These three facilities are now considered separately.

A flexible interface: Such an interface is characteristic of graphic interactive tools
and is basic to enhancing the man- machine communications of G-TODOS. For example,
using the mouse, the designer can create the new entity MEETING by selecting and
executing menu lines of the "CREATE" pop-up menu (see Fig. 19a).

Then, in order to build the diagram pictured on Fig. ISb, the designer can start
drawing either the 'is-a' or the reference link.

The designer is not limited by the size of the screen: he can use the scroll arrows to
examine the whole diagram.

Knowledge of TCM semantics: This knowledge enables G-TODOS to perform
automatic manipulations of the specifications. For example, upon movement of the
symbol of CLIENT shown in Fig. 19a, G-TODOS rearranges the link between CLIENT
and the 'cli' property symbol (see Fig. 19b).

This is performed because 'cli' and CLIENT are related and allowing CLIENT to
be linked with no properties would be an error.

The knowledge of TCM also avoids design errors. For example, G- TODOS does
not permit the designer to add an 'is-a' link over the 'eli' property: it is forbidden in
TCM.

Another effect of the TCM knowledge availability is the use of the multi-windowing
facility. Suppose the designer wants to see the structure of the CLIENT entity. G
TODOS allows him to display the corresponding diagram through a new window (Fig.
20).

This is feasible because G-TODOS knows that CLIENT is an entity and can therefore
manage the correspondence with its graphical structure.

Fig. 20 also shows the is-a hierarchy on the screen. Some other windows (the
reference network and the dynamic schema which have been automatically produced)
have been opened by the designer but are not displayed on the screen, probably because
of lack of place on the screen. It is possible to display each of them at any moment,
thus displaying the window in the state where it was before being hidden.

Consistency: G-TODOS is globally coherent with C-TODOS. It performs the same
consistency checks that the other input modules perform against the SDB.

Moreover, in order to make the GDB and the SDB consistent, we have chosen to
make both the TSL textual and the graphical representations of any entity available at
any moment.

This means that the TSL description of an entity is automatically produced by G
TODOS when the designer graphically inserts this entity. The graphical representation
is generated when the designer uses the TSL batch or the menu based modules for en
tering an entity. The graphical representations of entities are not strictly equivalent to

86

STRUCTURE CREATE MEETING 6J
EXIT SELECT DRAWING GRAPH CREATE MODIFY REMOVE

MEETlNG

status m_date eli

~
El

a)

~ STRUCTURE CREATE MEETING 6J
EXIT SELECT DRAWING GRAPH CREATE MODIFY REMOVE

MEETING

status eli

b)

Figure 18: Sequences of drawings in the "CREATE" pop-up menu

87

STRUCTURE CREATE MEETING

EXIT SELECT DRAWING GRAPH CREATE MODIFY REMOVE

MEETING

status eli

a) before the movement

STRUCTURE CREATE MEETING

EXIT SELECT DRAWING GRAPH CREATE MODIFY REMOVE

MEETING

status eli

b) after the movement

Figure 19: Rearrangement of links between entities

~

D
IS

PL
A

Y

IS
-A

 m
ER

A
R

C
H

Y

@
I
~

ST
R

U
C

TI
JR

E
C

R
EA

TE

M
EE

TI
N

G

6J

SE
LE

C
T

D
RA

W
IN

G

G
R

A
PH

EX

IT

SE
LE

C
T

D
R

A
lfl

N
G

G

R
A

PH

C
R

EA
TE

OB
JE

CT

/
C

LI
EN

T

" M
EE

TI
N

G

(§

ST
R

U
C

TI
JR

E
D

IS
PL

A
Y

C

LI
EN

T

SE
LE

C
T

D
R

A
lfl

N
G

G

R
A

PH

@
C

T

t
~

eJ

6J

M
EE

TI
N

G

G
E

C
T

t
~
-
-
-
-
-
-
-
l

st
a

tu
s

m
_

d
o

te

g:

C
LI

EN
T

na
m

e
a

d
d

re
ss

~

e:
J

\h

t
F

ig
ur

e
20

:
T

h
e

m
ul

ti
-w

in
do

w
in

g
fa

ci
li

ti
es

89

the TSL specifications, because, as we mentioned in the previous sections, the graphical
representation does not contain detailed information about domains. For example, in
Fig. 21, the domains of the properties appear only in the TSL specification. Conse
quently, G-TODOS forces the designer to add the missing parts of the specifications.
Upon termination of the insertion process, both the graphical representation and the
missing parts are stored in the GDB.

c) Using G-TODOS for graphical analysis

G-TODOS performs automatic production of graphical representations: G-TODOS pro
duces three entity diagrams which are derived from the actual contents of the SDB:

• the Static-Reference Network (SRN: see Fig. 25), which represents all the entities
which are connected by a reference link;

• the is-a Hierarchy (IH: see Fig. 13b), which depicts all the entities and their
generalization relationships,

• the Dynamic Schema (DYN: see Fig. 12b), as presented in Sect. 2.

The production of graphical representations creates a version of a diagram from the
state of the SDB at any moment when the designer activates this process. The process
is not interactive and is highly time consuming.

The generation algorithms place the graphic symbols at some appropriate locations,
and draw arcs between them. Some aesthetic criteria are taken into account. For
instance, in the Dynamic Schema, two layout criteria are the following:

• the message symbols must be placed on the border of the picture, without any
line which is drawn "behind" them.

• the lines of actions should traverse one another only when necessary.

G-TODOS allows the designer to modify the layout of the produced diagram, in order
to let him place and arrange the graphical symbols to his taste. The produced diagrams
can also be displayed on the screen at any moment. For this facility, the designer can
use all the functionalities of G-TODOS interface such as multi- windowing and symbol
movement. In particular, each diagram can be printed at any moment, which allows
the designer to maintain the documentation of the conceptual design phase.

4.2 Querying the SDB

Queries to retrieve information about the OIS conceptual schema stored in the SDB
can be performed at several points during a design session, as an aid for the designer
to retrieve already defined specifications and to check the completeness and consistency
of the OIS schema being created: when elaborating new specifications, inserting speci
fications, at the end of a design session.

While defining elements of the 0 IS schema, the designer may be interested in know
ing which element types have already been defined. It may be interesting to aggregate
office conceptual elements according to different points of view: list actions performed

90

GECT

t GENT MEETlNG

~
status m_date cli

<MEETlNG> is-a object;

aggregation-of

status : text;

cli : ref- to CLIENT

Figure 21: Correspondence between graphical and TSL specifications

91

by a given agent, list documents with non textual parts, list subtypes of a given docu
ment, and so on. A first support to extract such information from the SDB is provided
by the graphical interface, through the entity graphs, the is-a graph, the dynamic graph,
and the static-reference and the event precedence graphs shown in Fig. 25. However,
such graphs provide summary information about the contents of the OIS conceptual
schema. The designer, while defining and checking the schema, needs to examine the
specifications in detail, focusing on particular aspects.

To allow for retrieval of specific information from the SDB, we use the Query Module
of the C-TODOS tool shown in Fig. 15 of Sect. 3.

When defining the Query Module, we examined several design alternatives for its
implementation. First, we considered the opportunity of using SQL as a query language,
as the Specification Database is realized using a relational DBMS. This possibility was
discarded as the queries would be too implementation dependent, and the benefit of
having a semantic data model for describing office elements in the conceptual schema
would be partially lost. Therefore, we decided to develop a specific querying module
for the TODOS conceptual design environment. The problem to be solved was that of
being able to extract information useful for the designer in a flexible and easy way. Two
solutions have been proposed during the project:

• a semantic query language

• a menu-based interface allowing to ask queries relevant for OIS conceptual design.

As a basis for both solutions, we studied the classes of queries that are important for
supporting OIS design and for delivering the results of the conceptual design phase to
other design phases in TODOS.

TODQuel (TO DOS Query Language) (Pernici 1988) is a query language for semantic
models. In TODQuel, the queries are constructed using a semantic description of the
TCM model. Each modeling concept in TCM is described using the same concepts
of aggregation, association, and classification on which TCM is based. Queries are
formulated using this description as a basis. For instance, in Fig. 22, we show a partial
description of the semantic schema for entity "entity" in TCM. "entity" has a name and
an association of properties, each with a name and a type. If we want to know which
entities in the OIS schema have multimedia (image) properties, we use the semantic
schema for "entity" in the following way:

• relevant entities are selected, traversing the schema of entity to find at least one
property type equal to image;

• the names of the selected entities are retrieved.

TODQuel is based on first-order predicate calculus. We refer the interested reader to
(Pernici 1988) for details on TODQuel.

The disadvantage of TODQuel is that query formulation is rather technical and
results in a difficult querying interface for conceptual designers, which should be con
sidered as non technical users of the conceptual design tool.

Therefore, we decided to apply the theoretical basis gained with the study of TODQue
in the realization of a menu based interface that enables the designer to formulate
queries easily and according to possible types of analysis to be done on the conceptual
OIS schema.

nome

92

<entity>

property _list ,
I
p

property _type

Figure 22: TCM entity structure

In the following, first we present and discuss the types of queries necessary for
supporting conceptual design, then the interface realized for the query module.

a) Classification of queries

Queries needed to support conceptual design are of four types:

• structural and static queries

• dynamic queries

• reports

• checks.

In the following, we discuss separately each type of query.

Structural and static queries: With this type of queries, it is possible to
retrieve entities specified in the OIS conceptual schema with given characteristics. For
instance, entities with a given name, with a given property name, with a given type,
and so on. For a careful design, it is necessary to distinguish between inherited and
non inherited properties of an entity, for instance for evaluating the impact of a given
change in the specification of an entity. This type of queries is principally applied to
retrieve characteristics of static entities, such as documents, objects, and messages. It
is also useful for retrieving structural properties of dynamic entities: e.g., retrieving the
name of the entity associated with a given event type.

93

ev-en tity act-en tity
"'---~.. ~eventt "--...

/.. "'\ I ~ action ".

\ , ___ ~) ~;:)----(-a-ge-n-t-) ----1:.- f,, __)

Figure 23: Dynamic transition

Dynamic queries: This class of queries allows to extract information contained
in the dynamic subschema, i.e., about the procedures performed in the OIS. Dynamic
queries are based on the concept of dynamic transition presented in Fig. 23.

The designer is enabled to retrieve particular information about all the possible rela
tionships between the elements defined in the dynamic schema, following the description
of Fig. 23.

For example, he may ask to retrieve all events originated from a given entity (ev
entity). Similarly, all pairs of elements in Fig. 23 can be considered, originating queries
such as: retrieve all actions acting on a given entity, all actions triggered by a given
event, and so on. It is also possible to extract information about responsible agents for
entities and for actions.

Reports: Reports allow to generate summary information. The principal types
of reports used in C-TODOS are those used for delivery of the results of conceptual
design to the other design phases in TODOS. The inserted entities report lists all
the specifications of new entities, inserted after last delivered session. Similarly, the
modified entities report lists all modifications and deletions. These files are used to
communicate incremental modifications of the conceptual schema to the prototyping
team, which is thus able to modify the office prototype incrementally. Other types of
reports' are used by the conceptual designer himself. Session reports provide infor
mation about the history of insertion, modification, and deletion of entities, about the
date of sessions and the inserted and modified entities in each session. Lists of defined
entities can be created by type (e.g., all documents, all messages, all agents, and so on).
It is also useful to retrieve lists of undefined entities.

• Checks. Some checks are performed routinely by the designer to control the con
sistency and quality of specifications. As discussed in Sect. 3, some consistency
checks are automatically performed by the insertion module at design time. The
checks presented here are those which cannot be performed automatically, as their
result has to be evaluated by the designer. Three types of checks are predefined.
Other checks can be performed directly by the designer using the other classes of
queries presented above. The predefined checks are the following:

94

• static entities used in no action: those entities that are defined in the specifications,
but never accessed by any action are listed; it is the task of the designer to examine
these situations and evaluate if they correspond to a design error or to acceptable
situations in the system.

• static entities with no associated event: this case is similar to the one presented
above; a static entity usually has one or more associated events denoting it is used
in the office procedures. The lack of associated events, however, does not imply a
design error, since some entities may be necessary to store information for other
office procedures which are not part of the OIS.

• overloaded entities: entities causing more than five events are considered as over
loaded, and the designer has to evaluate whether to split the entity in different
entities, or if this overloading is correct within the logic of the application.

b) Menu based query module interface

The formulation of queries is based on a menu-guided interface. The classes of queries
presented above constitute the top level of the menu. For each class of queries, a
sequence of menus is defined. Queries are parametric, thus enabling to define the query
parameters using the menu.

In Fig. 24b, we show an example of a simple menu sequence, used to retrieve the
list of properties defined for the NEWSPAPER_ARTICLE entity defined in Fig. 24a.

Results of queries can be saved and utilized to combine query results (using the set
operations of union and difference) in order to be able to retrieve specifications based
on complex conditions.

5 The Modeling and Analysis Method for Concep
tual Design

In this section, we describe the method that is at the basis of the TODOS conceptual
design phase.

The purpose of this method is to structure the production of the formal TSL spec
ifications in a set of design steps. Partitioning of the design task is a must when large
projects are considered (OIle et al. 1982, Ceri 1983).

In defining a method, we have to establish:

• which steps compose the method;

• which inputs and outputs are expected from each step and when they should be
delivered;

• the facilities to support the execution of the steps.

For the TODOS conceptual design phase, the inputs are the functional requirements
collected and analyzed during the first phase of the TODOS design process (see Chapter
2).

article
text

95

DOCUMENT

H

NEWSP APER _ARTICLE

I

source

sm

" H

NEWSPAPER

newspaper _date

<newspaper_article> is-a document;
C aggregation-of

C article_text: image;

client

sm

CLIENT

source: same-as newspaper ~ith C name};
ne~spaper_date : date;
client : same-as client { ~ith }

}
}

a) entity graph and TSL specification of NEWSPAPER...ARTICLE

Figure 24: Query on the NEWSPAPER-ARTICLE

96

Ex~mple of query formulat~

.. Retrieve all propert ies of en t ity < NEWSPAPERJ.RTICLE>"

Screenl.

QUERY START

Select ~ith arro~s:

list control ~ dynamic

PFl PF2 PF3
help visualize query files

Screen 2.

STATIC START

Select ~ith arro~s:
- properties of entity
- domain of property

PF9
quit

- entities ~ith given property
- subtypes of entity
- referred to entities form an entity
- similar entities

PFl PF2 PF9
help visualize quit

Sreen 3.

Select ~ith arrows:

retrieve all properties
inherited only
ngn inherited only

of an entity.
------------------~--
Screen 4.

Retrieve not inherited properties of entity ne~spaper_article.

article_test
source
newspaper_date
client

PFl PF2
help visualize
PF9
quit

PF3 PF4 PF5 PF6
save scroll up scroll down combine queries

b) interaction with the query module

97

Such requirements contain information about the main documents in the office, the
goals of the office and the main activities that are performed in the office tQ achieve
these goals.

The output of conceptual design is a conceptual description of the office system,
that is, the OIS conceptual schema describing the automated system functions that are
able to support the office activities described in the requirements. The envisioned OIS
should provide improved ways of producing documents and of executing critical office
steps, while treating exceptions and anomalies in office work.

In this section, we describe the methodological steps outlined for the TODOS con
ceptual design phase (Sect. 5.1). A discussion about the method concludes this section
(Sect. 5.2).

5.1 The Method for Conceptual Design

a) Mapping the Descriptive Model into TCM

The specification of an OIS conceptual schema in TODOS proceeds from weakly
structured requirements coming from the requirement collection and analysis phase
described in Chapter 2, and produces the formal definition of the conceptual schema.

The requirement collection and analysis phase models the office activity in such a
way that a simplified view of the document flow and the sequence of phases of work
performed by human resources is given.

The representation of this view is provided according to the Descriptive Model
(described in Chapter 2). The concepts of "documents" and "human resources" in
this model are compatible with those of documents and agents in TCM. The "phase"
concept in the Descriptive Model describes a set of actions and its connection with other
phases. These connections can be directly mapped into TCM events by the designer,
thus obtaining a first version of a TCM schema.

Inputs from the requirement collection and analysis phase to the conceptual design
phase are contained in the Office Data Dictionary, including, among others, details
on the structure of the organization, layout of documents, structure of archives and
description of sequences of office activities.

b) Conceptual design steps

In TODOS conceptual modeling, we perform the following design steps:

1. specification of the structure of the most important documents

2. introduction of objects

3. first informal TCM schema of the OIS dynamic behavior (dynamic schema)

4. revision of the dynamic schema

5. detailed specification of the dynamic and static schemas

6. completion of the design session through specification of missing elements

7. delivery of the schema to the rapid prototyping phase

98

8. revision of the schema according to suggestions for modification by the end-user.

These eight steps are iterated until the end-user approves the prototype obtained
from the functional specifications. This is the functional design cycle of Fig. 2.

Each step is performed in a number of sessions, where each session is defined as a
sequence of one or more operations of definition/modification of specifications. Sessions
are initiated and terminated upon the designer's decision.

Let us now examine the conceptual design steps in more detail.

1 - Specification of the structure of the most important documents
The first problem for the designer is where to start the conceptual modeling task.

We propose to start from the most precisely defined elements in the office. The most
relevant documents are usually clearly defined at this stage of the design process, since
they are seen by the user as the output and goal of the office activity. For example,
in our test case, it is clear that the office should produce a contract, and the format of
the contract is well defined. On the other hand, the procedure for preparation of the
contract is ill-defined. Thus, we leave its definition to a subsequent design step. In this
phase, the information in the Office Data Dictionary is used to describe the structure
of the main office documents.

2 - Introduction of objects
A global analysis of documents specified in step 1 would suggest the designer to

introduce objects. Objects avoid redundancies in documents; they illustrate the set of
information shared by different agents, different documents and different activities.

3 - First informal TCM schema of the DIS dynamic behavior
The third step consists in the activity of modeling the dynamics of the DIS. A

first draft of the TCM schema is set up by making an intense use of the graphical
representation of the dynamic schema. The obtained schema is used as a basis for
verification of the correct understanding of DIS requirements by the designer. Unclear
issues are submitted to the attention of the design team who prepared the descriptive
schema of the office. One or more meetings are held with this team and with the
end-user in order to clarify these issues.

4 - Revision of the dynamic schema
The dynamic graph is revised according to the results of the meeting with the anal

ysis team.

5 - Detailed specification of the dynamic part
The graphical DIS conceptual schema is refined and formally defined in this step.

The designer formally defines the elements of the graphical dynamic schema. In the
process, he examines the activities performed in the office, the data utilized by each
activity, the performer of each activity and the responsible for each event. Event prece
dence is carefully considered (see Fig. 25b). Although the final result is the delivery
of a complete and correct specification of the dynamic schema, the other graphical rep
resentations of the specifications are utilized during this step as tools for defining and
checking the specifications.

6 - Completion of the design session through specification of missing ele
ments

When the dynamic schema is formally defined, the designer checks its completeness.

99

newspaper

contract

meetinq

a) static-reference network (portion)

EVl En

\/
EV20

~/
EV5

b) event-precedence graph

Figure 25: Examples of the static-reference and of event-precedence graph

100

In general, several intermediate static elements are defined in the conceptual static
schema, in addition to the main static elements already defined in the first step. In this
step, the designer formally defines all undefined office elements, until the conceptual
schema is found consistent and complete.

'T - Delivery of the schema to the rapid prototyping phase
When the designer terminates the definition of the conceptual office schema, he

delivers it to the rapid prototyping team, which, with the help of the prototyping tool,
sets up a prototype of the OIS. This will be operated by the end-user to check whether
the system responds to the requirements.

In the first iteration of the functional design cycle, all the specifications are delivered;
in subsequent iterations of the design cycle, only incremental modifications of the formal
specifications are passed on to the prototyping team. The schema is delivered by the
designer at the end of one design session, and the delivered schema must be complete,
that is, it has to contain no undefined element.

S - Revision of the schema according to suggestions for modification by
the end-user

The prototype is examined by the end-user and modifications and additions are
suggested. The modifications are examined by the requirement collection and analysis
team, and appropriate updates are performed to the Office Data Dictionary. Updates
are notified to the designer who in turn incrementally modifies the OIS conceptual
schema going through the necessary design steps.

6 C-TODOS as a Support to Cooperative Work

This section deals with aspects of cooperative work that may arise in the conceptual
design of an OIS and that can be handled by C-TODOS.

Cooperative work is receiving much attention in areas such as group decision mak
ing, collaborative production of documents, meeting organization, etc. (Greif and Ellis
1987).

Design of applications is also an area where cooperative work is relevant, especially
when designing large systems: for example, environments for the development of large
software systems can be regarded as a set of tools aimed at supporting a group of people
that cooperatively work towards a common goal. Computer-based support in these
environments, as well as in IS and DB development, is extremely helpful to coordinating
the different development tasks executed by different people.

In the conceptual design of an OIS application, cooperative work issues arise because
the whole design task can be split into sub- tasks leading to separate design of different
aspects of the application. For example, differently skilled analysts can work separately
on different functional aspects of the application: the structure of documents, the office
procedures and their synchronization, the communication aspects, etc. Alternatively,
if the OIS application affects various organization areas, such as secretarial support,
management, administration, staff support, the design can take place by organization
units.

In both cases, each team of analysts produces a conceptual subschema of the
OIS application. An integration phase will then merge. the subschemas into the global

conceptual Ichema of the application.

101

Automatic support to OIS cooperative conceptual design is useful both in the stage
of designing the subschemas and in the integration phase. C-TODOS can be enhanced
to provide support to cooperative design by providing further facilities for information
sharing and for communications within the design team. Automated assistance to the
cooperation aspects involved in the cooperative design helps to manage design informa
tion dictionaries, to maintain the whole schema consistency and non- redundancy, and
to support cooperative work sessions (Greif and Ellis 1987) of the design team.

In (Fugini and Pozzi 1989), the enhancement of C-TODOS to support cooperative
conceptual design has been investigated. The result consists of a method for cooper
ative design and new functions of C-TODOS needed to design the subschemas and
to support their integration.

In the following, we illustrate the case of cooperative design performed for different
organization units: first the cooperative design method is illustrated (Sect. 6.1), then
the new functions of C-TODOS are discussed (Sect. 6.2).

6.1 The Method

The first step in the cooperative conceptual design of an OIS application is to decide
which issues of the application can be designed separately. Subsequently, the various
design tasks can be performed independently by the analysts. Finally, the products of
these activities are merged into the global conceptual schema.

The OIS application is viewed as a set of organization units that perform internal
activities (such as document handling, information filing, etc.) and that communicate
to each other through message passing. A design unit is the task of producing a
subschema for each organization unit.

The cooperative design method consists of the following stages.

a) Design of a raw global schema and identification of the design units

Through informal or computer-assisted conversations (for example based on WYSIWIS
(What You See Is What I See) tools, as presented in (Stefik et al. 1987)) among the
participants in the design, the overall structure and functions of the OIS are identified
and a raw global conceptual schema of the application is produced.

The purpose of this step is to help the whole design team to get a basic understanding
of the application, and to identify the design units.

The raw schema is a TCM dynamic schema where the transitions represent the
internal communications of the application.

Design units are the objects of the raw schema that are connected by transitions
representing communications within the OIS application. Each design unit has a com
munication interface through which it sends and receives messages from the other
units.

b) Detailed design of units

The design units are assigned to the analysts who work asynchronously on their sub
schemas. The units share a design dictionary where the specifications of entities of

102

common interest for all the units are contained. For example, the <person> object can
be defined as a public entity of the dictionary as follows:

<person> is-a object, public;
{ aggregation-of

}

{name: string (20);
address: address-domain;
phone-#: ph-num-domain

}

Then, the design units can import the definition of <person> and specialize it
according to their needs. For example, within one unit the <client> can be defined as
a <person> having, additionally, some properties describing the orders of the client:

<client> is-a <person>
{ aggregation-of

}

{product-orders: ref-to order;
payment-mode:

association-of modes: payment-mode-domain
}

A design dictionary provides the basic facilities for importing and exporting entities
from the shared area to the design units and vice versa.

Design units can export specifications from this work area into a dictionary buffer;
the dictionary administrator is responsible for consolidating the dictionary permanent
storage after the examination of the buffer's contents. Fig. 26 shows the structure of the
dictionary and a sample export operation. The internal-message is a new TCM concept
(see Fig. 27) that models communications within the application and that is the basic
entity at the level of the interfaces of the design units. An internal-message can be sent
from a unit (output-message) or received by a design unit (input-message). The seman
tic structure of the internal-message entity is shown in Fig. 27. Upon its definition,
an internal message is transferred automatically by the support tool, as uninterpreted
text, from the defining unit into the interface of the addressed unit. The analyst of the
addressed unit checks the consistency of the message with the requirements of his unit.
IT the analysts of two units need to cooperate on the definition of a message, a coop
erative work session is performed, supported by the cooperative design tool using
conventional cooperative work means, such as message passing (Malone et al. 1987) or
electronic mail (Kaye and Karam 1987).

c) Integration of the subschemas

In order to obtain the global schema, the integration task consists of the following
steps:

1. integration of the units' interfaces

103

SUBSCHEMA 1

r"-- ...,/

EXPORT -- DESIGN
I - DICTIONARY

1. <secretary> is-a agent;

I aggregation-of

I home : string (20);

chief : ref-Io manager

! IMPORT
!

2. <manager> is-a agent;

I aggregation-of • I name: string (20);

depl : inleger; SUBSCHEMA 2
pj : ref-Io project

! import <secretary>
I

3. <project> is-a object;

I aggregation-of

I code : integer;

orea : siring (10)

I
I

Figure 26: The design dictionary

104

static-entity

t
reM-message

/~
message internal-message

/~
input-message output-message

output-message

I
envelope follows preceeds contents

~ , I
from to logical-expr msg to , , , ,

agent design-unit input-message design-unit

Figure 27: TCM <internal-message> entity

105

2. merging of redundant specifications.

The first step consists of recognizing pairs of related messages and in designing the
object or document that corresponds to the pair. In fact, these messages cannot be
modeled as TCM messages because they are internal to the application.

The second step consists of identifying the specifications that belong to different
subschemas but have the same semantics. This allows one to produce a redundancy
free global schema. For example, a unit may define the <client> object as here above
(see step b.), and another unit may define client as follows:

import <person>;

<client> is-a person;
{ aggregation-of

}

{personal-data: aggregation-of
{birth-date: date;
birth-place: string(lO};
soc-sec: integer;
confidential-info: ref-to confidential-dossier

}
}

In the global schema, the analyst may want to have just one definition of <client>
and integrate the two definitions into one entity whose properties are the set union of
the properties of the two entities.

6.2 C-TODOS Features for Cooperative Design Support

The cooperative C-TODOS (CC-TODOS) tool is the enhancement of C-TODOS pro
posed to support both subschema design and subschema integration.

CC-TODOS comprises two new modules:

• the unit design module that supports subschema design

• the global design module that supports subschema integration.

The unit design module handles the interface of the design units and information
exchange between the unit and the dictionary. One basic feature is external reference
handling.

The global design module supports the functions of merging the units interfaces.
In these interfaces, internal messages are defined. These have to be transformed into
objects or documents, because they are internal to the OIS application. This task is sim
plified because of the early consistency mechanism that transfers a message immediately
from the defining unit to the addressed unit (see Sect. 6.1).

A complex task to be supported by the global design module of CC-TODOS is
merging of similar entities among the subschemas. Also this task is simplified through
the dictionary: when entities are considered of common interest for the whole design,

106

they are exported to the dictionary and made available to the whole design environment.
We can suppose that the analyst who is in charge of the integration, or the project
leader examines the dictionary on a regular basis in order to eliminate the redundancies.
However, entity merging remains a hard task and must be supported by ad-hoc queries
directed to all the subschemas, or distributed queries.

7 Discussion about the Conceptual Design Method

The method and tool described in this chapter for conceptual design in TODOS show
implicitly the benefits deriving from the use of a design support tool, in particular
for bookkeeping operations in incremental design, and for checking the consistency,
completeness and accuracy of the conceptual schema.

We conclude this chapter with a brief discussion about some problems concerning the
quality of the result of the TODOS conceptual design phase. In fact, a good method,
and consequently a tool supporting this method, should provide support not only for
the production of a schema, but also for helping in the production of a good-quality
schema. Although this is still a research issue, some points that have been observed
while testing the method and tool on some small-size examples, and on the TODOS
test case. These observations are also hints to overall enhancements of computer-based
OIS design tools in general.

The first point concerns the difference between the design of a computer-based
OIS and an office system in general. According to the method, we assume we have a
description of the activities performed in the office, and from this description we extract
the OIS conceptual schema. In the described process, much is left to the designer in
terms of what to automate and how. The principal problem is the risk of automating
existing procedures, including inefficiencies and paths that could be avoided using a
computer-based support environment in the office. While the goal of some office systems
is to have a paperless office, a design that automates all existing office activities will
produce the same amount of paper as in the non automated office, or even more. The
analysis of document flows and information exchange in the office are still a research issue
(Pernici et al. 1989); some work has been done within the TODOS project concerning
the analysis of message exchanges in the office (Cazzola et al. 1990), in order to verify
the correctness of message exchange in the office, according to given agent protocols,
described through finite state automata. However, more work is needed on this issue,
in order to take full advantage of the fact of having formal specifications.

Another issue, related to the previous one, is that of considering exceptions in
the office activities. In general, requirements specifications describe normal activities
and document flows. Major exceptions are considered, if they are important for the
correct functioning of the office. Minor exceptions, in a non computer-based office,
are handled by office employees according to common-sense reasoning. However, when
specifying a computer-based support for these activities, it is necessary to consider also
minor exceptions. Not considering them could cause the realization of an inflexible
system; inflexibility of OIS is one of the major reasons for their failure. On the other
hand, considering all possible exceptions is a very heavy task in design. Therefore,
a suggestion coming from our work is that of providing default modules for general
exception handling in the system. These modules should be a predefined part of the
office schema, and automatically invocated when an exception arises. For example, if the

107

agent responsible for a given action is missing, his substitute should be automatically
considered for performing the action in case the action cannot be delayed. Future
research in this field should cover the definition of such modules, to be integrated in
TCM as predefined concepts.

Further work is required also on the extension of C-TODOS to support OIS coop
erative design; the target is the construction of a design dictionary where reusable
specifications are stored which are accessible to the OIS analysis team. Mechanisms for
dictionary bookkeeping are required to support application engineers in the task of clas
sifying into the dictionary structures the OIS specifications produced during the designs
of various OIS, and in the task of maintaining the level of redundancy under control.
Mechanisms are the required to support the OIS analysts in performing the integration
of the OIS subschemas in a consistent and non redundant way. Knowledge-based mech
anisms for representing the OIS design activities and elements both in-the-small and
in-the-Iarge, a powerful query mechanism based on the semantic queries illustrated in
Sect. 4.2, and a friendly interface supporting navigation and browsing along semantic
networks of design concepts are the directions that we are currently exploring.

Chapter 4

Office Rapid Prototyping
Antoinette Kieback and Jochen Mader

1 Introduction

This chapter introduces the rapid prototyping phase in the TODOS envirorunent. Rapid
prototyping can be used as a process in system development to support several phases
in the system life cycle, which lets expect better quality and higher reliability during
the development by early use of experiments in preliminary system versions. This phase
aims at constructing an OIS prototype, supporting system designers and end users in
validating the conceptual design (described in Chapter 3).

The Rapid Prototyping Tool in TODOS is the tool supporting the rapid prototyping
phase. It builds an OIS prototype based on the specifications of the conceptual design
phase and additional requirements of the analysis phase. Since the specifications of
the conceptual design phase are mainly independent of implementation details, the
purpose of the prototyping tool is to interpret those designed specifications. In order
to visualize the functional description of the OIS, its representation on the screen is the
second purpose of the TODOS Rapid Prototyping Tool. These screens represent the
user interfaces to the OIS prototype, possibly different for each involved end user.

The prototyping tool is transforming the formal specification into an executable OIS
prototype, as far as possible automatically, to facilitate the handling by the designer and
to avoid to repeat work, already done in the conceptual design. Since the conceptual
design phase provides consi&tency and other checks, the given formal specification is
consistent, syntactically correct and complete in terms of TCM and is used as the basis
for the OIS prototype.

In the following the outline of this chapter is represented. In the first section we give
a general view on prototyping, how it is seen in literature. There we first show why it is
good to use rapid prototyping (Sect. 1.1). Then we present different models in system
development (Sect. 1.2) and the principles of evolutionary system development (Sect.
1.3). After an excursion on the term prototyping (Sect. 1.4) we discuss prototypes in
the software development (Sect. 1.5). Next, we define prototyping methods (Sect. 1.6),
the terms specification, prototype, and target system (Sect. 1.7), and introduce the
three most important prototyping techniques (Sect. 1.8). Finally we give an overview
of software tools supporting prototyping (Sect. 1.9).

In Sect. 2 we present the prototyping philosophy in the TODOS project. The basic
TODOS prototyping concepts are illustrated in Sect. 4, with the static concept (Sect.
3.1) and the dynamic submodel (Sect. 3.2).

The prototyping tool architecture is presented in Sect. 4 describing each module of
the prototyping tool (Sections 4.1 - 4.6) and displaying the use of the OIS prototype

110

(Sect. 4.7). How the prototyping tool is realized in hardware and software, and how
the user interaction is established is presented in Sect. 5.

Sect. 6 concludes this chapter with some remarks.

1.1 Why rapid prototyping

"The management question, therefore, is not whether to build a pilot system
and throw it away. You will do that. The only question is whether to plan
in advance to build a throwaway, or to promise to deliver a throwaway to
the customers. Seen this way, the answer is much clearer. Delivering that
throwaway to the customer buys time, but it does so only at the cost of
agony for the user, distraction for the builders while they do the redesign,
and a bad reputation for the product that the best redesign will find hard to
live down. Hence plan to throw one away, you will anyhow". (Brooks 1975)

This citation shows a view agreed on by many system developers. Costly mistakes
made in the field of system development due to misunderstandings of user requirements
and application fields led to new concepts in developing software systems. Knowledge
of the changing context was taken into consideration and feedback of the user require
ments was integrated into the developing process. This drives towards the concept of
prototyping.

This section shows prototyping in general and afterwards how it is used for the
TODOS methodology. Before explaining we would like to start with pointing to basic
elements of system development.

1.2 System development

System development basically consists of modeling the information system, construction
by coding, testing, integrating and documenting, and implementation into the office
environment. At this point the adequacy of the system will be either proved - or
not. This kind of top-down-strategy is executed by the following conventional methods
(Balzert 1982):

1. LiFe Cycle Models:
The elements of the system development are principally organized in the way
that the different activities and results lead straight from design to product, and
feedback is minimized.

2. Phase-Concepts:
The procedure and mode of running a software system ought to be normatively
laid down. The main task is hierarchically separated into several subtasks which
are refined to the executable software solution. The procedure is separated into
phases, the results of one phase serves as specification for the next phase.

3. SoFtware Engineering:
Requirements of a new product are vague, unstructured, incomplete, and incor
rect. They should be structured in a consistent and complete document, modules

111

should be constructed according to the principle of information hiding. Specifi
cation takes place before realization, and programs should have a struct~re. This
view stresses the idea of software development but leaves aside the activities that
lay in front and behind.

These methods lay emphasis on the result of software development - the product
itself. The software is seen as independent product detached of user and basis machine.
The representatives of these methods view the application context as fixed. Therefore
they provide division of labor very early and use requirement documents, once agreed
on, until the system is implemented. But in using these methods problems usually arise.

1.2.1 Problems of conventional development strategies

Due to complexity and change of requirements a valid description cannot be of dura
bility. Change of requirements opposes a strict fixation of phases whose results serve
as specifications for the next ones. Formal specifications in the software engineering
process lack understandability for the user and often ~ven for the developer. Important
decisions for activities are made without consulting the user. Thus, "maintenance" is
often misused for adaptation of the system to the application context. It is said that
conventional development strategies support project control. But lack of information
can cause inadequate decisions at the beginning of the project which are first discovered
later on in a product's development when revision is very expensive.

On the other hand it cannot be denied that there are a lot of successes based on
conventional strategies. Why?

1.2.2 Reasons for successes of conventional development strategies

Feedback is often misinterpreted. It may be called elimination of errors. Developers
often have experiences in feasible technical and organizational solutions. A lot of systems
are made by developers for themselves; then feedback is inherent. Many developed
systems are later transformed for other application fields. Last but not least one must
not forget that guidelines generally agreed on may be either circumvented or ignored.
To remedy grievances we propose to look at software in the context of human processes
like learning, working and communicating. The elements of system development should
be set into relation and supplied by further ideas. During development the process of
developing is more important than the product. According to this concept the expression
"system development" is extended by the characterization "evolutionary".

1.3 Evolutionary system development

In contrast to conventional system development evolutionary system development ac
cepts a dynamic context, and the alteration of requirements. There is no strict division
between specification and implementation but relation and supplement. Continuously,
during the time of the project, communication and cooperation between users and de
velopers take place. System development is understood as learning process of all the
persons involved. This requires a high level of discipline on developer's and on user's
sides, as well as dropping the developer's position as the one knowing best. To secure
the adequacy and correctness of the construct, prototypes should be designed and eval
uated providing a basis for productive discussions. Evolutionary system development

112

en.closes strategies like incremental system development or slowly growing systems, and
installation of pilot systems. Incremental system development uses existing concepts
as a basis and substitutes elements by new computer-supported components. Complex
problems are solved step by step, extending the system while always bearing the main
work task in mind. The incremental development strategy can be used for prototypes
as well as for the target system.

1.4 Excursion on the term "prototype"

In other technical engineering branches a prototype is a model of a product which is
produced in advance. It shows all the characteristics of the anticipated product and
all of its functions can be tested. When the results of the tests are satisfactory mass
production will be started. Prototyping in this context is a well defined phase of the
mass-production process.

1.5 Prototypes in software development

Prototyping in software development as described in (Floyd 1984) is part of a process
that usually leads to only one product poorly defined at the beginning. It is a technical
method within system development. A prototype means an executable model of the
target system. It may be a part of the requirement analysis and of the specification, as
well as a model at further stages of development. Each prototype can be a predecessor
for the next one or, in the end, for the target system. It always shows essential aspects
of the target system and therefore serves as an expressive basis for communication and
cooperation between developer, user, and manager. At the practical demonstration
of important parts of the target system the user's requirements are checked and, as
occasion demands, reviewed. Prototyping gives place to a change of context.

Another term often used in American literature is according to (Balzert 1982) "rapid
prototyping". This refers to the speed of prototyping development and mainly consists
of similar concepts.

It is wrong to declare prototyping as strategy giving up requirement analysis and
overall system design for a trial-and-error method. In this case the term "prototyping"
would be a euphemism for the so called "hacker-style". On the other hand, a product
is sometimes named "prototype" later on when customers complain about errors. Then
they are either left alone to look for the errors and correct them on their own, or
expensive redesign is necessary.

Prototyping can be divided into four steps (Floyd 1984):

1. Functional Selection:
At this time the appearance of the prototype must be defined.
If it has all the functions of the final product but not in detail we speak of hor
izontal prototyping. In this sense the prototype gives the user a notion of the
working appearance of the system. It defines the user interface.
If the prototype shows selected parts of the target system, completely imple
mented, we speak of vertical prototyping. In this sense the prototype is a
limited but detailed sample of the target system.

2. Construction:
The less effort - the better! By using existing tools, techniques, and high level

113

languages the prototype is constructed in a very short time, certainly at the ex
pense of robustness, efficiency, and reliability, but the emphasis should b,e on the
intended evaluation.

3. Evaluation:
Evaluation is the essentic!.i step in prototyping. Developer, user, and manager
discuss the appearance of the running prototype, requirements are modified or
refined. Feedback takes place.

4. Further Use:
Further use depend on the purpose the prototype is constructed for. It may either
serve as medium for learning and then be thrown away or used as a component
of the target system.
We can distinguish between three kinds of prototypes, each with a special desig
nation:

• Prototype in a narrow sense:
The list of requirements is supplied by a provisional but executable software
system.

• Lab Model:
Basis for developers' discussion as well as for questions of technical realiza
tion.

• Pilot System:
The prototype is used as part of the final system for the application.

We want to use the term "prototype" in its narrow sense. In the following we discuss
the classification of methods of prototyping in three categories proposed by (Floyd 1984).

1.6 Methods of prototyping

1. Explorative Prototyping:
This kind of prototyping is used at the beginning of system development. There,
problems are obscure and a prototype is constructed to clarify nature and size of
the desired system as well as requirements given by the application context. This
is done by intense discussion with the user and the management. The prototype
is used to settle the desired functionality of the system.

2. Experimental Proto typing:
This method is used to control the adequacy and the feasibility of the systtlm
functions. It emphasizes their technical realization. Developers and users discuss
questions of software ergonomics. The users go on in refining their requirements.

3. Evolutionary Proto typing (Versioning):
This method enables the developers to adapt the data processing system to chang
ing conditions of a dynamic environment. The product is not developed in a
straight line but in several versions. Each version is evaluated and thus serves as
a prototype for the next one. System software is constructed in development cycles
and therefore drops the conception of separation. The distinction between proto
type and target system is given up. Basis for this is, within an overall strategy,

114

a functional specification of the system defining user hardware including interface
and target machine.

This classification relates to the different stages in the development life cycle, where
prototypes are used. In each stage, those aspects should be prototyped that are of
special interest at that given stage in system development.

1. 7 Specification, prototype and target system

Before relating these terms to each other we would like to give our interpretation of
"specification" .

Specification

In (ANSI/IEEE 1987) standard no. 729-1983 the term specification is defined as:

• a document that prescribes, in a complete, precise, verifiable manner, the require
ments, design, behavior, or other characteristics of a system or system component;

• the process of developing a specification;

• a concise statement of a set of requirements to be satisfied by a product, a material
or process indication, whenever appropriate, the procedure by means of which it
may be determined whether the requirements given are satisfied. (ANSI N4S.2.10-
1973).

The term specification language is defined as "a language, often a machine-processable
combination of natural and formal language, used to specify the requirements, design,
behavior, or other characteristics of a system or system component ... "

(Hussmann 1986) is pointing out, that therefore the language must have operational
semantics. But a specification is also a vehicle for human beings; and for that purpose
it should be abstract and understandable, e.g. independent of machine models.

In the past specifications were not executable. Only few were supported by ma
chines. Classical, machine oriented languages were used to write prototypes. By now
the situation is different. High and very high level languages having the characteristics of
specification languages are available, and interpreters for special specification languages
have been developed. Due to these developments the fences between specification and
prototype within software system development are removed.

In the context of information systems the state of the art and of the development have
not quite reached that far. Tools for prototyping specifications, such as for instance the
RUBIS project (Rolland 1982), show the execution process by listing executed actions
and happened events. The combination of this execution flow with the interface design
is still missing. However, much effort has been spent on writing specifications, bearing
in mind that they have to be made executable later on.

Specification and prototype

Both the specification and the prototype have the same methodical goal as (Hussmann
1986) pointed out: "to give a logical, formal description of the anticipated product and

115

to explore it before starting the large process of implementation". Such formal specifica
tions may easily be transformed into a program code for the prototype. Therefore they
are suited for prototyping in a special way. Not only do they serve for the exploration of
the specified functions but also for the explanation of more common questions. Within
requirements engineering prototypes generated from specifications are of special use.
The translation of informal requirements into the formal specification may be checked
while the prototype is running.

Prototype and target system

Prototypes can be constructed at several stages of system development. According to
(Zuellighoven 1987)' the intention behind and the application of prototyping is usually
in one of the following two classes:

1. The prototype serves as specification for the next stage and as a learning instru
ment but is not integrated in the target system. The final system is constructed
anew to guarantee a clean software solution.

2. Step by step the prototype is developed and transformed until it may be integrated
into the final system. This method is possible since high level languages, efficient
interpreters, and compilers are used. Cheap hardware, input/output-components
and elements for handling errors are available and do their part to establish this
method.

According to the goal prototypes are constructed for different techniques may be
used to reach this. We would like to point to three of them.

1.8 Techniques for prototyping

(Floyd 1984) described in her paper the three most important techniques relevant in
connection with prototyping:

1. Modular Design:
Modular design supports the integration of the prototype into the target system.
It is helpful for the method of incremental development. If necessary, modules
may be exchanged. This characteristic supports the replacement of prototype
modules with components of the target system. In combination with an extended
vertical prototyping, showing the overall structure of the system, modular design
enables the communication between modules through interfaces. Modular design
includes human interface simulation.

2. Dialogue Design:
Dialogue design is applied to user interfaces. It supports the transparency and the
flexibility of user interfaces. It should be possible to discuss and change aspects
of a dialogue without any problems. Therefore the conversational aspects of the
dialogue should be as far as possible separated from the specific processing aspects
of the application field. The concept laying behind is that it should be possible
to change either of them without too much affecting the other. Dialogue design
refers to the complete dialogue structure, to the choice of system commands, and

116

the layout of screens. The handling of errors and dealing with special cases are
additional tasks in dialogue design. Conversational independence is an essential
requirement for the flexibility of interactive systems design.

3. Simulation:
The term "simulation" is applied to a wide field of activities, usually signifying
the working replica of something in reality which would be too expensive to test.
As a technique for prototyping simulation has a different meaning. There it serves
to demonstrate important parts of the target software system which will not be
shown in their final appearance. For example, during prototyping time, file man
agement and organization would cause too much effort in constructing them in
their intended form as a component of the final system. Careful analysis of storage
capacity and retrieval needs - very important for the construction of the target
system - would override the size and meaning of prototypes. Thus, for prototyp
ing, storage capacity and retrieval needs may be simulated by a trivial in- core
data organization allowing several realistic and relevant cases studies.
Simulation as a technique for prototyping clearly depends on modular design.
Otherwise it would not be possible to separate the component to be simulated out
of the complete system.

Up to this point we have discussed various aspects of prototyping. Certainly pro
totyping is neither something without foundation nor bound to special tools, but it is
made easier by the existence of comfortable software environments based on modern
construction methods and supported by software tools. In the following we illustrate
general demands on software tools and present a few of these software tools supporting
prototyping.

1.9 Software tools for prototyping

There already exist several amounts of methods and tools useful for prototyping, like
(see Floyd 1982):

• very high-level languages,

• database management systems,

• dialogue definition systems,

• interpretive specification languages, and

• symbolic execution systems.

All these tools are general-purpose tools, offering no model of the application area,
but supporting rapid development of demonstrable operational system versions.

1. Relational Databases:
Relational databases allow formal descriptions of the software system as well as
informal ones in natural language; there might even be mixed descriptions. In
addition, they allow revisions and reconfigurations of the software design without
altering the architecture model.
However they lack some very important requirements of prototyping:

117

• they do not allow recursive structures;

• they are not suitable to represent hierarchical class/object structures as far
as prototyping demands;

• they lack any control/scheduling mechanism to execute transactions on stored
objects; and

• they are mainly used for management information systems (MIS), not sup-
porting an application area on a larger extension as required by prototyping.

4t" generation languages, e.g. NATURAL (Natural 1986), are more powerful
than the conventional relational database languages. They offer the following
functionalities:

• intelligent editors for global data elements;

• verification and processing rules, integrated with mask generator definitions;

• interactive test and debugging;

• integrated text and data application support containing text-retrieval-functio

• multiple output options using graphics;

• features for prototyping.

2. Integrated Tool Kits:
An integrated tool, supporting the different types of prototyping (as discussed
above), would be the most convenient solution for the construction of prototypes.
(Floyd 1984) gives a view of how an effective prototyping tool kit may look like.
It should be composed of an editor and a text processing system, a high-level
language, a database system, simulation facilities, a statistical package, a window /
screen management system, and a compiler-writing system. In addition a program
library as well as tools for configuration, embedment, and integration of existing
programs are needed. The tool kit should be integrated to make effective work
possible.
Unfortunately available tools (like ACT /1 described in (Mason 1982)} are mostly
related to special tasks. In general (as for ACT /1) they support the requirement
collection phase and therefore do not fit into other prototyping types. There exists
no tool on the market which supports an object/class hierarchy.

3. Very High Level Languages:
Very High Level Languages (VHLL) are suitable for prototyping because they
allow the programmer to concentrate on the presentation of the problem and not
only on the coding of the solution. This advantage can be compared to the one of
prototyping where the developer in first line is interested in the process of system
development and secondly in the final result. Therefore similar concepts underlay
VHLL as well as prototyping.
The effectiveness of VHLL is increased if they are used within an environment that
simplifies organizational duties, providing a coordinated set of tools. A VHLL
should allow the conversion between its data structures and its programs and
therefore guarantee reflexivity. Of importance is the possibility to combine it
with other languages and software tools. VHLL should also be interpreted. An

design model
and data of

the conceptual
design phase

118

Rapid
Prototyping

Tool

OIS end user
system
designer

OIS end user
system
designer

Figure 1: TODOS Rapid Prototyping Tool

incremental compiler within the VHLL is favorable for quick prototyping in cycles,
as well as a structure of small units easy to translate. To increase the speed of
the development- and debug-cycle, incomplete programs written in VHLL should
be executable.

2 Prototyping in TOnOS

In the previous section we have presented the overall ideas of rapid prototyping. Now
we show how prototyping has been realized in the TODOS project .

In the TODOS methodology, prototyping takes its place after the conceptual mod
eling of the office system, described in Chapter 3. The modeled specifications are the
basis for prototyping, they are used to formally describe the static and dynamic aspects
of a future office system, previously defined by the requirements collection methods (see
Chapter 1) . The prototyping phase transforms the formal specification into an exe
cutable prototype, representing the conceptual model and the semantics behind it. As
the specifications become executable, the office worker who has defined his requirements
to a specific office system may validate that prototype, whether it fulfills his expecta
tions. The presentation of the functionality via a prototype is one aspect of prototyping
in TODOS.

During the conceptual modeling phase, the user interaction with the future office
system does not playa major role. The modeling of a user interface to the office system
prototypes is a second aspect of prototyping in TODOS.

Following from this, the objectives of the prototyping phase in the TODOS project
where to develop a software tool, based on the conceptual model TCM and on require
ments (like layouts, and instances) , building executable prototypes as models for office
systems, and to provide a user-friendly interface connected to the office system proto
types. Closing the functional design loop, presented in Chapter 1, a user of the office

119

system will test the developed office prototype on the aspects of functional flow and
user interfaces according to his own requirements.

There might evolve two possibilities: The user is either satisfied with the results or
he will propose some alterations. These alterations will be delivered to the requirements
collection phase, and the cycle is thus being closed. This loop will be iterated until the
office prototype is acceptable for the customer.

Using rapid prototyping in TODOS is based on the following considerations:

• the characteristics of the final office system are usually not well defined at speci
fication time;

• during the prototyping cycles the designers and/or users can make constructive
use of experiences gained during.previous cycles;

• prototypes are means of communication and feedback between designer and office
worker;

Within TODOS office systems design the prototyping is in essence a mean of ex
pressing the user's functional requirements and a way to demonstrate their implications.
When working with the prototype, the user and the office system designer may refine
the given requirements or gain new ones.

According to these objectives we have to automate the process of transforming the
specifications into programming code for the prototype and creating user interfaces to
the prototype.

With respect to the characterizations of prototyping presented in the previous sec
tion, the prototyping phase in TODOS can be classified as vertical as well as horizontal,
experimental, being a "lab model" and being used for dialogue design. As in vertical
prototyping the TODOS methodology takes some aspects of the whole system and pro
totypes the functional flow of them in detail and in horizontal prototyping it takes the
whole system and prototypes the functional dependencies on a higher level. Whether
prototyping is vertical or horizontal depends on the demands of the user requirements.
The fact that the produced prototype is used as a basis for discussions and answering
questions on realization makes the TODOS prototype a "lab model". This "lab model"
is used to control the adequacy and the feasibility of OIS functions and emphasizes
their technical realization, which is called experimental prototyping. Due to the inter
face generation of the OIS prototype, prototyping in TODOS is also seen as dialogue
design, individually to the office worker, whose requirements are applied.

The prototyping tool in TODOS is used by a designer, who knows TCM and the
handling of the tool and a user, who previously expressed requirements in the first
phase. The user normally is an office worker, who wants to see how the requirements
are interpreted and how the system he wants to interact with in the future, looks like.
The prototyping tool is not meant to be used just by the user, without a designer.
Mainly the designer is working with the tool and will be supported by the office worker,
while modeling the user interfaces.

Functionalities of the prototyping tool in TODOS

Starting the tool the designer is able to create a new prototype for a new applica
tion. The data for the prototyping, representing the formal description of the user

120

requirements, are transferred from the conceptual design phase to the prototyping tool.
Furthermore the designer may change or update existing prototypes by inserting new
classes, deleting or modifying existing classes in that prototype, if the user require
ments for example changed. This must be realized via the interface to the conceptual
design phase and will not be done interactively by the prototyping tool, to guarantee
consistency between the two phases.

The remaining functions of the prototyping tool are widening the OIS prototype
with layouts (representing the user requirements of the interface to the office system)
and instances (representing existing objects of the office system like data of agents,
predefined documents contents), and help the designer editing office primitives, being
simple functions common in all prototypes, such as creating a new document, editing
or printing documents.

Interacting with the OIS prototype is the business of the office worker, possibly
under supervision of the designer. The user identifies himself to the OIS prototype and
sees the interface as well as the messages belonging to him. Sending one message after
the other to the prototype, he watches all the consequences directly on the screen. A
report on the right side of the screen is documenting the execution sequence of the
prototype and is intended for the designer to observe the processes formulated in TCM
and the user requirements.

3 Construction of a TCM Based Prototype

In Chapter 3, TCM has been described in detail including the functions to design the
applications interactively. In this section, the construction of a TCM based prototype
is explained. This model is the basis for the prototype interpreter, which executes the
built prototype.

The TCM is composed of a static and a dynamic submodel, which on one hand
describe the characteristics of static objects of an office system like

• personal data, grouped to "agents";

• reports, articles, grouped to "documents";

• information, communication, grouped to "messages";

• internal data, grouped to "objects".

and on the other hand describe the dynamic flow in the office system using

• actions, describing the activities;

• events, describing the conditions for a state change and the actions to be triggered
subsequently.

These entities of the TCM are not enough for execution. Instances are very im
portant, as well as layouts for the documents and messages, and primitives. As TSL
was not intended to be a programming language, some of TCM constructs have to be
transformed into code, for example the "condition-part" of the events.

Common to all the classes are the internal constructions, already presented in Chap
ter 3. They are composed of "aggregation_of", "association_of", "reLto", "copy _of" ,

121

"same_as", and "view_of" (for a detailed description see Chapter 3). For having exe
cutable specifications these constructions have to be transformed into machine readable
code. The methods doing that transformation are stored in the predefined root-units
of the concepts (i.e. "event", "action", "document", ...) and are therefore inherited by
all the subclasses.

The processing of the methods depends very much on the kind of entity, and there
is quite a difference between what to do with static entities, messages and domains
(shortly called statics hereafter) on the one hand and dynamic entities on the other
hand.

3.1 Static concept

The model of the static concept of TCM is used as the basis for the data structure of
the prototype, the static entities, storing structured data (representing a state) during
building and executing the office prototype. These static entities can be handled by
dynamic entities producing state changes. Static entities are organized hierarchically
and the system is object-oriented, where each entity is represented by an object. For
several reasons (most important for instance: supporting object handling, inheritance,
and layouts connected to objects), later on described in more detail, the KEE system
(Trademark of IntelliCorp) (IntelliCorp 1986) is used to build the TO DOS prototyping
tool, which generates a prototype upon the specifications created in the conceptual
design phase, based on TCM. Structures of TCM are set against KEE structures as in
the following table:

TCM-concept x KEE-unit x

property y of x slot y of x

value of property y value of slot y

One can see the close relationship between TCM and the resulting knowledge base,
which is due to the object-oriented feature of KEE.

The "is_a" hierarchy is represented by the class-subclass structure of KEE. The
different static concepts are discussed in the following according to their structure and
use in the generated prototypes.

Agent

All classes under the agent entity represent types of persons in the office interacting
with the system. For example, if a secretary wants to interact with the prototype, an
instance of the class secretary representing that person is needed. Each agent instance in
the prototype has a login name he will use to identify himself to the prototype, because
the prototype works on personal views of the office system.

For instance in the case study example (presented in detail in Chapter 6), Mrs.
Schneider is a clerical worker and Mr. Schmitz is an Acquisition manager; so two

122

235 Human Resource Name Mrs. Schneider
236 Code clerical worker
237 Level Hiah school
238 ~ OM 60.000
239 Birth Date 2. Dez.52
240 D\!!y' Credit administration
241 D\!!l. starti'.:l9.. date 1.Miir73

159 Human Resource Name Mr~hmitz
160 Code Acquisition manager
161 Level Dr. University
162 Cost OM 150.000
163 Birth DtYi. Acauisition contacts
164 DutY. 6. Jan 80
165 D!& startirul. date 3. AYQ.40
166 Terminal

Figure 2: a) Informal requirements

units, one for each agent, are created as instances of the corresponding classes CLER
ICAL_WORKER and ACQUISITION-MANAGER respectively, as can be seen in the
following figures.

This figure is extracted from the case study requirements list (see also Chapter
6). It contains detailed information on the agents interacting with the office system.
These information are used for the design of data structures, for instance those of the
CLERICAL_WORKER and the ACQUISITION-MANAGER. Both data structures are
generalized in the CREDILDEPT_AGENT. Here, the link to TCM can be seen. For
more detailed information on the design structures we refer to Chapter 3.

Having the entities of agents designed by the conceptual design phase, the prototyp
ing tool builds a class hierarchy for the prototype, where all the class information are
stored.

Messages

Messages are the means for users of the prototype to communicate with the office
system (prototype) or with other agents. They are divided into input messages and
output messages. The input messages are connected to events, which will occur if a
message arrives.

Output messages are transmitted by the system to a special user. Common for all
messages is the predefined structure in TCM, as well as in the prototype KB; that is
each message has an envelope (consisting of a from and a to part) and contents.

The message envelope may be of several types depending on the classes of the FROM
and TO properties.

Due to communication purposes of the users, messages need visual representations,
realized by layouts. The layouts are different for each user (instance) and for each
message class. Later on we will show the correspondence of the TSL structure and the

AGENT

123

Figure 2: b) Classes represented by TCM

DEPARlMENT

ADMINISTRATIVE_SERVICES
CREDIT_MANAGEMENT
ECONOMICS.-AND_PRESS
INDUSTRIAL_CLIENTS
LEGAL_DEPARlMENT
MANAGEMENT_SERVICES
PUBLIC _RELATION
SERVICES
TELEX_SERVICE ~ ACOUISITION_MANAGER <CREDIT_DEPT_AGENT ~ CLERICAL_WORKER

DEPT_AGENT SECRETARY
PUBLlC_RELA TION_AGENT

Figure 2: c) Classes created by the Prototyping Tool

layout structure. The behavior of the system is different during the transmission of
messages. It depends on the user who is sending the message (the user must belong to
the class which is the value of the FROM slot of the member). If an output message is
transmitted to a user who is logged in, the message will be displayed on the screen. If
the user is not logged in, that means the TO slot does not contain a class, where the
user is a member of, this message will be stored in a message KB until an authorized
user is running the prototype and will see the message.

Documents

Documents are representing real office reports or articles as well as form sheets, to be
filled by the office agents. All documents have visual images allowing users to fill in
data. The visual images, which will be prototyped by layouts, are mainly composed of
windows.

124

< ••• > is a message;
{aggregation-of

}

{envelope: aggregation-of
{from: ...

to:
}

contents: aggregation-of
{ ... }

}

Figure 3: a) Data structure of the "message" entity of TCM

From To execution

Input agent System arrival-event

Output System agent
} save ge in •••

Input- Output agent agent separate knowledge base
(Message KB)

Figure 3: b) Table of message handling

First the data structure of a typical document used in office systems is shown in the
TCL notation. This document is then presented by a layout, showing for each simple
and composed data structure in the class letter a corresponding window of one user
view, the layout representation of this letter document may be different for an other
user.

Objects

The objects in the prototype are used primarily internal in the system to transfer data
to an intermediate storing. They normally need no layout presentation, because they
are seldom directly modified by the user.

During transformation the main thing to do for statics is to create for every property
a corresponding slot, which is going to hold the value of the property in instances of
the class, but which also has a number of facets describing the domain of the property
and providing access functions and a test predicate to check whether a value is in the
slot's domain, for each slot.

125

<letter> is-a document;

{aggregation-of
{sender-address aggregatioJl-of

}

{name : string(20);
street : string(*);
town : string(15);
state: string(lO);

} ;
receiver-address: aggregation-of

location
letter-date
reference
letter-text
signature
}

{name : string(20);
street : string(*);
town : string(15);
state: string(10);

} ;
string(lO);
date;
text;
text;
image;

Figure 4: a) TSL description of entity "letter"

Slot-specific access functions are used instead of the KEE slot access functions to
implement the dynamic behavior of the PARAMETER-OF and VIEW-OF constructs
of TSL. For the detailed description of those constructs we refer again to Chapter 3.

Domain checking is also done by special predicates constructed automatically for
each slot, as it turned out that the KEE "valueclass" concept is not suited to implement
TSL data types. Difficulties occur especially where structured data types (AGGREGA
TION, ASSOCIATION) are used, as those give rise to a whole cascade of units standing
for the value of such a slot.

The information resulting from the transformation of static entities is also used by
the interface generator module.

Layouts

Layouts are not handled by TCM, so they have to be created by a user or designer
interactively, if for a special entity a layout is desired. The structure of the layout
corresponds directly to the structure of the represented entity.

The entity frame is represented in a region on the screen possibly with a title.
The user will decide whether the regions have borders and titles. The different kind

126

Figure 4: b) Layout corresponding to document entity "letter"

<telephone-notice>

{aggregation-of
{contents

}
}

127

is-a input-message;

aggregation-of
{tel-date : date;
call aggregation-of

subject
recall
notice
}

(name text;

}

company : string(·);
telephone: integer

text;
("yes", "no");
text;

Figure 5: a) TSL description of Entity Input-Message

of structures in the entities are represented in different ways, depending on the value
types they are connected to. The properties that do not have structured values will be
represented by windows which display the text or string.

In the example in Fig. 5, an entity is described first in TSL notation and then with
a possible layout for it.

In this example the name telephone-notice is representing the structure of a special
message, an input-message, and is displayed by a frame. All the properties are located
in the frame, as it is normally seen on a piece of paper. It is not necessary to view all
properties, here for example contents is not represented in the layout.

Users may model their layouts according to the contents they are interested in,
by leaving out representations of some properties. If for example an office worker for
statistical calculations is just interested in the date, the person name, and the company
name in the telephone-notice, he will not display the message text as well, to concentrate
on the essentials.

Instances

TCM is describing classes of entities but does not deal with instances. For running
a prototype instances are necessary to show the behavior using different values in the
application. For example TCM describes the classes of agents like secretary, but if
a special secretary wants to interact with the system, there must be an instance of
secretary representing that special person. Instances have the structure described in
the classes they belong to.

To have a good starting point for running the prototype, it may be desirable or even
necessary to instantiate some classes before the first run of that prototype.

128

TELEPHONE-NOTICE

NOTICE

Figure 5: b) Corresponding layout to the entity "input-message"

129

3.2 Dynamic submodel

The dynamic submodel is composed of actions and events (both have a partly ptedefined
structure). They describe the behavior of the office system, where those events are
triggering actions under several conditions, and cause state changes of the static entities
(see (Pernici 1986)).

To make this dynamic concept executable the description of TCM is transformed
into code. To realize that, different methods (Le. LISP functions) have to be installed
in predefined (and thus inherited) slots, which will then make the prototype running,
in cooperation with the scheduler object. For example, events need a method to decide
whether the event should fire, actions need a method to perform the operation(s) de
scribed in TSL. In addition, actions have a slot whose value is a unit holding information
about all the parameters of the action.

Transformation of dynamic entities is an area where designer interaction with the
tool will relatively often be necessary. The reason is the possibly widespread use of
so-called free text, which is unstructured text that can stand for a condition, describe
the outcome of a factor or the expression of a predicate. Primitives which represent
basic office functions (see also Chapter 3 and Sect. 5 in this chapter) also take mostly
an argument "primitive_comment" which may cause similar problems, as it cannot be
used only as a comment, but can also stand for one or more arguments that have then
to be specified by the designer.

Events are separated for different applications, where arrival events take a special
part. The arrival events are related to input messages which allow the interaction with
the system (prototype).

If the user sends an input message, and if there is an event firing on arrival of
this special kind of message (which should generally be the case; it does not seem to
make too much sense to send a message to a system that, in response, has absolutely
no consequences), the prototype begins with a cycle of activities that lasts as long as
more events are recognized (which may occur because of actions or because of temporal
reasons). Only if no more events are found, the user can send the next message to the
system to trigger a new cycle of activities.

The execution flow in the office prototype can be seen as a search through a graph
whose nodes are the events defined in TCM. The successors of each node, Le. the events
which should fire next, are then determined dynamically by the scheduler object. For
each event that is found to fire, the corresponding actions are triggered, which will
generally cause more events to occur and so on.

There is some freedom in the choice of the search strategy. By default, a depth-first
strategy is used, Le. if after execution of the actions triggered by some event several
events are found to fire, the consequences of one of those are first completed before
another one is taken into account. It seems to us that this strategy lets activities which
are logically connected also be executed together. However, other strategies may be
wanted.

Breadth-first can be selected simply by changing a parameter. It is also possible
to provide every event with a priority and then have a best-first search. If it seems
desirable, the designer may even implement any arbitrary search strategy by a relatively
simple change in the scheduler object of the office prototype knowledge base.

C
e
x

it
=

>

~
 1

Jag

e
~
 l

og
in

 ~
 e

ve
nt

s
~

m
en

u
-
~
~
~

F
ig

ur
e

6:

E
xe

cu
ti

on
 f

lo
w

 o
f

th
e

b
u

il
t

p
ro

to
ty

p
e

di
sp

la
y

an
iv

ed

m
es

sa
ge

s

se
nd

lQ
ag

en
t:

st
or

e
in

to

M
es

sa
ge

K
B

sy
st

em
:

I
~

an
iv

al
-

ev
en

t
no

t d
ef

in
ed

an

iv
al

 -
ev

en
t

de
fin

ed
 t

-'
"

CA
l

o

131

ev3

depth first
(a_ev)
(ev1, ev2, ev3)
(ev4, ev5, ev6,ev2,ev3)

breadth first
(a_ev)
(ev1, ev2, ev3)
(ev2, eV3, ev4,ev5,ev6)

Figure 7: Events execution sequence

4 Prototyping Tool Architecture

4.1 Model treated as a prototype

For prototyping the user requirements, we developed a prototyping tool, based on the
TODOS Conceptual Model. This tool supports the methodology of executable speci
fications and partly automatic prototyping and allows the user of the office system to
develop a user interface to his office system prototype.

The more automatic part of the prototyping tool is the transformation of TSL into
executable code. As described in Section 3.1, we use Common Lisp and KEE to develop
the prototyping tool and the executable version of TCM, the office system prototype.

TCM is reflecting the information of the user requirements, as described in the
chapter on specifications. This information will be transferred from the conceptual
design phase by a file containing the user requirements in the form of TSL to the
prototyping tool, which stores them after transformation in an executable version, in
an office prototype knowledge base ("TCM KB" in Figure 8). For changing requirements
the tool has to modify this knowledge base. Therefore another file will be transferred,
containing the names of the deleted or modified entities.

The non-automatic part contains the primitive editor, an editor for necessary func
tions, which are not part of the primitive library, and an instance generator, which adds
instances to the entities provided by the TCM. Instances are necessary to provide the
user a test environment with real data, which will initialize the office prototype.

The tool configuration is such that it first translates or completes the OIS model
when a prototype version has been implemented. Functionalities which are used as
prototype functions are stored in a library. The tool checks if all functions described in
the model are contained in the library and, if necessary, missing functions are introduced
by an editor.

In the following we explain the components of the prototyping tool in more detail

(see also Figure 9).

132

4.2 Initialization

The office prototype is based upon the TCM, interpreting the features in the same way
as the semantics of TCM denotes. In TCM there is one part which is common to all
office information systems which will be designed by this tool. This part contains the
predefined descriptions of the static and dynamic submodel. The action, event and
message entities have such a predefined structure.

We want to use the prototyping tool for developing several office information sys
tems. To this purpose, the basic part of the TCM with the predefined entities has
been stored in a knowledge base. Starting developing a new office information system
we will initialize the new office prototype by copying the basic model structure (basic
TCM KB) using the "initialization" component in a new knowledge base for a new office
system prototype. Upon this basis the designed user requirements of the office informa
tion system can be expanded for prototyping purposes and completed with layouts for
interfaces.

4.3 TCM Transformer

After each session in the conceptual design phase an insert and a modify file will be
transmitted to the prototyping phase. These files will be read by the TCM transformer.
The files are containing the description of the user requirements in TSL. The TCM
transformer inserts the contents into the application dependent part of the TODOS
office prototype (see Figure 9).

The TCM transformer is to create semi-automatically a KEE knowledge base from
the TCM delivered by the conceptual design phase. It is important to mention here that
designer interaction with the tool during transformation cannot be completely excluded.
TSL has some features which are too imprecise to allow for a completely automatic
translation. However, TSL was never intended to be a programming language but a
specification language.

The transformation takes place in two steps. First, the "is-a" hierarchy of TCM is
mapped directly into a hierarchy of KEE- units. In this step, the TSL description of each
user-defined concept is put into a slot (called TCM-STRUCTURE) of the corresponding
unit.

In the second step, this textual description is processed by a parser based on the TSL
grammar to fill the unit with the information which make the prototype knowledge base
executable (together with a scheduler module controlling the event/action handling).
Each predefined TSL class has its own methods to perform this second step as seen in
the previous section.

This component also takes into account deletions and modifications placed in the
modified files, but there are just the names of the deleted or modified entities.

4.4 Primitive Editor

Office information systems may be of different types, needing different office function
alities and probably other office primitives are needed for the design of those systems.

Conceptual
Design

- insert file
- modify file

133

Analysis
- layouts
- agents

Figure 8: Prototyping Knowledge Bases

L
eg

en
d
~
~

-
-
.
.
 n

ex
t a

ct
iv

ity

~
 d

al
ai

np
ut

F
ig

u
re

 9
:

T
O

D
O

S
 P

ro
to

ty
p

in
g

 T
oo

l
ar

ch
it

ec
tu

re

O
D

D

.... ~

In
st

an
ce

s

U
se

r
In

te
rf

ac
e

(L
ay

ou
ts

. M
en

us
)

135

PRIMITIVE EDITOR

I
Primitive

I Name RM

Comment This primitive removes instances from reM classes J
Arguments I variable I

Body
(intemal.remove. variable)

Edit primitive body. Press <END> to finish.

Figure 10: Primitive Editor

It is wrong to think that implementation of "all" office primitives necessary for
individual office system design is possible at once. We just have to think about new
technologies in the fields of office information systems and the increasing efforts in office
automation, which are up to now dominated by manual work.

In making the prototyping tool flexible to build office prototypes, this tool has a
component, the primitive editor, to create new primitives, or to modify existing ones,
if necessary.

We used this editor ourselves during the tool development to implement our basic
office primitives, right from the beginning of the empty primitive library. This library is
another KEE knowledge base, which will be loaded when loading the office prototype.
It contains the primitives as objects which can receive messages from within the office
prototype knowledge base.

The primitive editor supports the following activities:

• creating new office primitives

• allowing editing the program code

• entering code into the primitive library

For transferring the primitives from the conceptual design phase to the prototyping
tool, the primitives will be identified by the primitive name and a parameter list.

name (parI, ... , pam)

This figure is showing the layout, the designer is using to edit primitives in the
primitive library.

136

4.5 Interface Generator

This chapter describes the user interface of a TODOS prototype developed using the
TODOS prototyping tool. Starting from the prototyping support tool, the user develops
his own interface to the OIS prototype. This interface can look different for each user
accessing the OIS prototype. In the following we explain in more detail the user interface
creation component with the interface generator and the user interface of the prototype.

A part of the TODOS prototyping tool is an interface generator supporting the
modeling of the user interface of the prototype.

The user of the prototype should have the possibility to create a user friendly inter
face to his office prototype. The interface generator supports the user and the designer
to build those interfaces. It supports in offering

• choices on different interface techniques

• possibilities to create layouts of static elements, like documents.

This component is the only part the user of the prototype is allowed to interact with.
All the other components will be handled by the designer.

4.6 Basic Instantiation

The last component of the prototyping tool is the instantiation component. The TCM
is not dealing with instances of the office system types. Those instances are necessary
for the prototype to provide the user with test data. For example, via this component,
all the users interacting with the office system will be integrated in a subtype of agent.

The instantiation process is related to the static entities. If the entities are already
connected to interfaces, they will appear on the screen and one can fill in the data of
the instance, delivered by the requirements collection phase. After that the data are
stored in the appropriate office system prototype in newly created instances to existing
unit classes, representing the entity classes.

There is one exception: the messages. They are handled a little bit differently. Mes
sages are the communication features between the user and the office system prototype.
They have a predefined structure with an envelope, containing the sender (From) and
the receiver (To), and the contents. We are distinguishing three kinds of messages, as
shown before:

- input
- output
- input-output

From: agent
From: System
From: agent

To: System
To: agent
To: agent

The first one is an arrival message and will be created only during execution time.
The other two types can be instantiated before running the prototype and will be stored
in a message KB.

137

4.7 Prototype Execution

The office prototype allows the user to test the specifications he made by watching a
system running that is directly based on these specifications. Let us see how he interacts
with the system and what happens inside it.

To work with the prototype, the user must first identify himself (see also Figure 6),
so that the system knows who he is and can fill the FROM property of messages sent
by the user and, perhaps more important, can load the appropriate layout knowledge
base containing this user's private layouts giving him a personal interface to the office
prototype.

He can then either decide to view messages that have been sent to him since he was
the last time on the system, or send an input message to cause activities within the
office prototype.

We will now take a closer look at what happens in every single search step. Before,
it is necessary to say some words about the KEE worlds concept.

KEE worlds are originally designed to allow reasoning with hypotheses by letting
any slot have different values in different worlds, i.e. under different assumptions.

The office prototype, however, uses the worlds concept to reach a different goal.
Worlds are used to allow a quasi-parallel execution of actions which are defined in TCM
to take place in parallel. "Quasi-parallel" here only means that all the actions that shall
be executed "in parallel" see the same state of the system, so that, if Al and A2 are to
be parallel, A2 does not see the state changes caused by AI.

Let us now assume that some event EI has been found to fire and the scheduler
decides to take into account this event (there might be others that are firing, too!).

The scheduler then calls the method placed in the triggers slot of EI, which then
again calls - possibly conditionally or repeatedly, as specified by conditions or triggering
factors - the listed actions and/or primitives with the arguments which are specified
(or not) by TCM. If several actions/primitives are to be executed in parallel, they
are not called directly, but within a LISP macro that takes care to create for every
action/primitive a particular world in which it runs and afterwards collapses all the
worlds, i.e. brings into effect the changes that took place in them. The scheduler then
looks first whether there are any temporal events to process and puts them into the list
of events to look at next (i.e. the list of "successor nodes" of EI). Behind these it places
the events-on-event depending on El. Finally, the other internal events describing state
changes caused by the operations which just finished are appended. This completes one
search step.

The primitives and the actions consisting of primitives are responsible for any inter
action of the office prototype with the user and for all state changes made automatically
by the office system. They are worth while being inspected in more detail.

Primitives are the lowest level of system activity that is visible for the user (and also
for the designer). They can be called by actions or directly by events. Their arguments
must always be specified. A call to a primitive is in fact a message to an object in the
primitive library knowledge base, which must therefore always be loaded together with
an office prototype. There are primitives which provide system interaction with the
user; those make always use of the layouts (of static entities) which are in a separate,
user-specific knowledge base. Others simply supply functions changing the internal state
of the system by creating or deleting new instances or changing property values.

Actions mayor may not be called with their arguments. If not, the action unit has

138

the problem to collect the necessary arguments. Normally arguments are declared as a
ref-to some class. In this case, the default argument is the last instance of the referred
class that has either been created afresh or had any change in a property value. The
domain of an action argument as well as its present value during the execution of an
action are stored in a unit attached to the action unit.

The interface to the prototype was designed to be as simple to handle as possible.
Wherever appropriate, the user is supported by menus offering a number of alternatives
from which he can choose one. He can also make wide use of the mouse in activities
which do not consist simply of a choice, for example, when editing a longer text.

When the user logs out, the changes he made in the prototype are written out to
the file system so that he or anybody else can continue where he stopped.

5 Realization of the Prototyping Tool

5.1 Requirements to a development environment

The TODOS prototyping tool is used to demonstrate the effect of a TSL office in
formation specification by showing the functionality of the office system specified. The
TSL-specification of the intended office information system has to model not only pieces
of software, but real-world entities like clerks too, as far as their functional interaction
is necessary to model the office functionality. This is clearly a much more demanding
task than only specifying program requirements.

Correspondingly TCM and TSL offer a very powerful tool for specification. So the
problem at hand is to transform a TSL office system specification into an executable
prototype including the intended system surfaces! In order to tackle this task in an
efficient way the target tool or language should meet these TCM-specific criteria:

1. Allow the implementation of an object/class hierarchy

2. Model nested and recursive TCM-DOMAIN constructs

3. Model the TCM EVENT/ACTION - state change mechanism

Most of these criteria directly stem from the object-oriented representation mecha
nisms chosen by TCM.

Additionally other, more general, programming aspects should be kept in mind, too:

4. The support of user defined data structures

5. The possibility of recursive programming

6. The possibility of data driven programming

7. Tools and facilities for a comfortable system interface construction

These eight selection criteria represent only a subset of desirable features a tool/langu
for prototyping should have.

Their fulfillment ensures that the TODOS-prototyping tool can make as much use
of existing technology as possible.

139

5.2 Choosing a tool for Tonos
For deciding which language and tool we could use for implementation, we have analyzed
the conditions concerning realizing prototyping and transforming TCM.

As for prototyping, it is important to use languages and tools supporting

• changes, additions and testing of programs interactively, as prototype creation is
a dynamic process,

• possibilities for programmatically creating other programs,

• comfortable and flexible system surfaces to provide user friendly interfaces, here
for a designer and a test user,

• transparent system behavior.

Concerning TCM, it is useful to have languages and tools which have provisions for:

• predefined hierarchical structure concerning the "IS-A" structure of TCM,

• supports to model nested and recursive constructs with respect to the "aggregation
of" and "association-of" abstractions,

• an easy construction to model state changes provided by event/action concepts of
TCM.

As a result of a study on languages and tools, it had been found out that expert sys
tem shells, specially the KEE-system, are the best choice for the TODOS prototyping
tool according to the selection criteria. This choice is based on the superior program
ming environment offered. This kind of an environment increases software productivity
substantially (factors between 2 to 5 are discussed in the AI-community).

The main drawback of these tools are their costs and the need for a large LISP
machine to run the shell upon. For the cost factor, by far most important is the
development time needed for the TODOS project.

A great deal of the productivity stems from the fact that most TCM entities translate
almost directly into KEE-structures, preserving the combined functionality of TCM and
KEE.

Additionally the Flavor/KEE-system offers with the WINDOW /KEE pictures sys
tem an extremely rich toolbox to construct flexible graphical system surfaces. Therefore
we think this choice for a prototyping tool really pays.

5.3 Office operations

Now we are going to look at operations, which might occur in an office system.
It is difficult to define, what office work is: "it is easier to define what offices are

not" (Tsichritzis 1985). There are a lot of analyzing methodologies for office information
systems, analyzing the work of different offices. But, which are those office functions
(activities as a synonym) being characteristic for "all" office systems?

Current office systems mainly support the access to large databases and communi
cation networks.

There is no standard in the area of office business. Some ESPRIT projects aim at
developing standards and descriptions of those activities. The elaboration of standards

140

is not part of the TODOS project. It will just make use of the results of other projects.
There exists an increasing interest in those standards.

The main task in most office systems is the handling of information, the exchange
of office data. Defining whether a task is part of an office or not is difficult and depends
on the office objectives.

5.4 Office primitives

The matter of office work is information, appearing as speech, data, text and graph
ics/pictures. Permanent information, that means in written, painted or stored form,
are called office documents.

One can split office work in the following tasks:

• communication

• store / retrieve information

• process information

Office activities can be described as connections of single tasks, which may be dis
tributed to several workstations connected to each other. The connection of several
tasks together are called office processes, or actions (in TCM). Examples of such office
processes are contract preparation, budget planning, technical documentation, and so
on.

(Balzert 1985) provides a list of office applications. Some of them will be presented
here, with a short description:

- graphics

- information
retrieval

- electronic
archive

- calendar

- chart
calculation

- pocket
calculator

- word
processing

- statistics

- electronic

creation of diagrams, pictures

database and knowledge base queries,
e.g. library

storage and retrieval of documents

management of terms

calculation in a matrix, allowing manipulations on table
elements

ordinary arithmetic functions

ordinary text editing functions, additionally integrating
data, graphics and so on

creation and evaluation of statistics

transmission and receipt of electronic documents

141

mailing

- project
planning

planning and management of projects

A basic office primitive is a basic function in an office, allowing the execution of
this function. Several office primitives can be composed to obtain global functions, the
actions of an office model.

Office primitives in the TODOS project are basic operations like:

• store

• retrieve

• edit

• create instance

In the conceptual design phase, those primitives are used to specify the actions in
detail, without considering implementation aspects on software and hardware.

In the prototyping phase those primitives are implemented in code and then will be
executed when running the office prototype.

Actions in TCM, as described before, are containing a property 'steps', where the
primitives are placed. They are separated by semicolon (for sequence) and & (for parallel
execution).

All primitives are defined as procedures, not functions. This means that primitives
do not give back a result, but consist only of their side-effect. If one is interested in
the value of some operation (as it is the case especially for the 'compute' primitive),
one has to use an additional parameter which will contain the computed value after the
execution of the primitive.

Since primitives are used in TCM to describe more complex actions, it is often
necessary that there is a communication between primitives. For example in some
action one might want to create an instance of some entity and immediately edit some
of its properties; then the 'edit' primitive has to "know" the name of the newly created
instance in order to be able to access it.

Primitive parameter

Interfaces between the office primitives are managed by the parameter list in the pro
cedure calls. If an action is composed of several interdependent primitives they are
passing the parameters as follows:

The parameter "par!" is placed in the "in" property and will be the input for the
primitive "prim!". "par2" and "par3" are just internal variables, but "par4" an output
parameter, because it is placed in the "out" property. The "prim!" may calculate the
value of "par2" using the value of "par!".

steps:

in : parI

out: par4

var : par2, par3

142

prim 1 (parI, par2)
prim2 (par3)
prim3 (par4, par3, par2)

Figure 11: Primitive parameters

5.5 User interface definitions

In this section we describe the main components of the user interface to the prototyping
support tool and the prototype. We define hardware and software components which are
foundations of the user interface implementation in the prototyping phase and finally,
we give a brief survey on the interface between the user interface and the prototyping
support tool.

Definition of user interface techniques

As an analysis of the available interfaces on the market shows, the existence of menu
driven and window-based systems has become the state-of-the-art of computer systems,
software packages, and information systems. In the following we illustrate the user
interface techniques used in the TODOS tool.

The development of the TODOS user interface is restricted by the hardware and
software used in the construction of the tool, i.e. the LISP-machine EXPLORER from
TEXAS INSTRUMENTS and the software development environment KEE. Further
more the lack of powerful speech input and natural language interfacing facilities re
stricts additionally the shaping of the interface. The hardware and software components
of the interface are presented in the following paragraphs.

Hardware part

First of all, the interface uses a keyboard. Even a menu-driven information system
needs a keyboard to enter names, data, text, and so on.

The use of the mouse is a convenient way to interact with the prototyping support
tool. The mouse features buttons that enable the user to execute commands without
acting on the keyboard reduce or replace the operations on the keyboard. The operations
the user can invoke with the mouse buttons in a particular situation will be described
in a documentation window. The mouse clicks are dependent on the software behind
them. Clicking an item in a menu stands for selecting that menu point and performing

143

an operation or invoking another menu. So the mouse will be a suitable and excellent
tool for user interactions with the prototyping support tool as well as with the prototype.

Software part

In this section we give some information about the software requirements for modeling
the user interface. Window and menu techniques are treated but also unrealistic targets
are described.

Windows are special input/output interfaces to display system answers or requests
and to enter user actions. In the prototyping tool windows are used to develop the
designer and user interface. These windows are permanent ones, the user cannot delete
them. Other windows may appear according to the field of application, as frame of
forms, menus, text editors, and so on. Temporary windows disappear after the user
moves the cursor outside of the menu.

Menus usually are temporary windows for a special purpose that offer the user
the choice of items or options. Using the mouse enables him to select mouse-sensitive
items from menus quicker than typing a command or pressing a sequence of keystrokes.
Command menus present a series of options where the user can select one and execute
it, multiple-item menus give a list of items from which he can select several and execute
these by clicking "Do it" at the bottom of the menu.

The function of windows and menus within the prototyping tool are described in the
following paragraphs.

So the hardware and software part of the user interface lay the foundation for mod
eling the interface to the prototyping support tool and the prototype.

Interface between the user interface and the prototyping support tool

The user interface of the prototyping support tool is restricted by the fact that accept
able natural language user interfaces are not commercially available and that such an
interface is not feasible in the framework of the prototyping phase. Nevertheless we
wanted to develop an easy-to-use interface for the prototyping support tool. Therefore
we utilized parts of the commercially available interface of the expert system shell KEE
and of the EXPLORER Lisp machine.

The interface to the support tool (KEE and Common Lisp) describes the user in
teraction with KEE functionalities and LISP functions which are presented to the user
via a LISP Listener and/or menus. This interface offers the designer of the prototype
a variety of possibilities to design his interface to the prototype. These functionalities
include keyboard and mouse from the hardware side and KEE command language or
menus from the software part.

By means of this interface, the designer can select, after the accomplished imple
mentation of the user interface features, from the total functionality of the tool the
desired one, and arrange his intended prototype. When he acts by means of command
language, he operates on commands from KEE and functions written in Common Lisp;
choosing menus, he can select his functionality from the menus offered at the current
state of his work.

In the TODOS project, the user interface serves as an interface for the development
of the prototype from the prototyping tool as well as an access possibility for a future
user of the prototype in forming his individual office environment on the screen. Here

144

the main aim lies in interfacing components as help or explanation components, user
instruction or access control mechanisms.

5.6 User interfaces and rapid prototyping

Rapid prototyping is an effective communication link between the designer and the
end-user, providing a medium for exploration of the end-user's needs in regard to the
man-machine interface. Integrated tools for evaluation and modification encourage this
exploration, and are also valuable when updating applications.

Demonstrable prototypes for the purpose of showing the functionality of the proto
type with its user interface and of getting a feedback on the user requirements should
be presented in the earliest stage possible of the prototyping tool evaluation. Rapid
prototyping and the simulation of the future user interface will be efficient facilities to
reorganize the shape of the interface. Premature simulations, whose results and latest
findings can be integrated in the modeling of the interface, are mostly more cost effective
than later necessary modifications and adaptations.

The procedure of rapid prototyping for the user interface starts with the recommen
dations, the given facts and the analysis of the tasks to fulfill. The two former points
lead to the definition of the user interface, the latter to the definition of task processes.
Both definitions end up in the implementation and demonstration of the user interface
by means of prototyping techniques. The demonstration can change the definition of
the user interface as well as the definition of task processes but also the analysis of the
tasks to fulfill. After a finite number of flows through this loop, the designer lays down
the final definition of the user interface and the tasks.

In the following we will describe more deeply the designing of the TODOS user
interface from the point of view of rapid prototyping. Doing that we will not direct our
attention to interface components as help or explanation components, user instruction
or access control mechanisms, but we will point out the importance of the user interface
with respect to rapid prototyping.

In the TODOS project, we have to distinguish two interfaces:

1. tool interFace: the interface through which the designers interact with the proto
typing tool

2. prototype interFace: The interface of the generated prototype, through which user
interaction takes place during sessions with the prototype.

The tool interface may be considered part of the prototyping tool, and as such it is
fixed and designed to allow for an easy access to the various tool components.

The prototype interface, on the other hand, is constructed during the prototyping
phase, and may be designed individually for every single user. It serves not only as a
mean for the user to interact with the prototype, but also as a model for the interface
of the future OIS. Therefore this interface had to be held more flexible than the tool
interface.

Designer's view

From our point of view, the designer of the prototype should profit at any time from
the functionality of the user interface, therefore all access possibilities of the tool like

145

keyboard and mouse from the hardware side or command language and menu from the
software part should be available. According to his requirements or to the mos~ efficient
application, the user should decide unrestrainedly on the use of tool access.

By means of this user interface, the designer selects from the total functionality
of the tool the desired one and arranges his anticipated prototype. He operates on
commands from KEE and functions in Common LISP, choosing menus, he can select
his functionality from the menus offered at the time.

For the time being the designer the interface looks like as follows:

• a Lisp Listener, on which the designer communicates with the tool by means of
KEE commands and LISP functions,

• an EXIT button, which allows to leave the tool,

• a window region to represent pop-up menus,

• a status area, where error messages can be displayed,

• a work space to display file contents, to configure forms or documents.

Through this interface the designer is establishing the executable functional specifi
cations, before the designer and the user are developing the related user interface. The
designer may propose a layout for the user, who then refines it, or the user is present
right at the beginning, when creating layouts.

User's view

Each user must have the possibility to configure his user interface at the beginning of
his work with the prototyping tool or else at the start of every work session. Of course,
this work should not be lost when leaving the tool/prototype. Therefore, every user can
save his interface in a sort of profile so that he will get his interface at any start of the
prototype. Just as the designer, the user can choose between the mouse and the menus
or the keyboard and the LISP Listener.

As the case may be, the screen can be described as follows:

• in the first case (mouse with menus), the screen looks like the user interface of
the system designer, or the user arranges his screen from the offered (by default)
possibilities.
The messages or documents which have to be displayed during a prototype session
appear within the "work space" .

• in the second case (keyboard and LISP Listener), the user acts on the prototype
by means of LISP functions or KEE commands. In a separate area, set down by
the prototyping tool, a window displays messages or help texts.

The user of the prototype can use by means of the possibilities of rapid prototyping
the advantages of this software technology in a twofold way:

• In the first place, the user profits from the new possibilities of an easier develop
ment of the user interface by applying rapid prototyping techniques.

146

• Second, the user interface developed with the prototyping tool lightens and im
proves the access to the prototype of TODOS.

Through this interface the user plays with the OIS prototype and watches its behav
ior. The behavior is also stored in a history file, for the designer to relate the change
request by the user to that behavior.

6 Conclusion

Rapid prototyping is certainly a promising approach for designing an OIS. It offers
a comfortable frame to "model very quickly user requirements in order to get an early
feedback. This does not release the designer from subsequent development steps, since a
considerable designing and programming effort is left in order to convert the concept to a
marketable product. In fact, rapid prototyping needs the transfer of software and tools,
developed on huge and expensive AI machines, to middle-sized systems. Nevertheless
rapid prototyping seems to be a promising attempt to manage the software crisis, and
to narrow the software gap.

Chapter 5

Architectural Design

The design of an Office Information System (OIS), as described in Chapter 1, is seen in
the TODOS Methodology as consisting of four strongly integrated phases: Requirements
Collection and Analysis, Conceptual Design, Rapid Prototyping and Architecture Design.

The Architecture Design phase is a contribution of the TODOS Methodology to the
area of OIS design. The aim of the Architecture Design phase is the identification of an
Architecture that realizes the OIS being designed. By Architecture any set of intercon
nected hardware components, running software packages, is meant. Thus, rather than
realizing the OIS by developing software, the TODOS methodology focuses on the use of
existing software packages and emphasizes the design of an Architecture that is able to
support the OIS.

To achieve its aim, the Architecture Design phase is subdivided into two stages. In the
first stage, which we call Architecture Generation, a number of alternative Architectures,
suitable for realizing the OIS, are identified. The input to the Architecture Generation is
quantitative and qualitative information about the office activities. The qualitative infor
mation is provided by the conceptual design phase, in the form of a conceptual schema
describing the data objects manipulated by the office activities and the functions ab
stracting such activities (see Chapter 3). The quantitative information is provided by
the requirements collection and analysis phase (see Chapter 2), and integrates the con
ceptual schema with data such as the frequency of activities, the location of the office
workers carring them out, the size of the involved data, etc. The Architecture Genera
tion is carried out in the framework outlined by the Architecture GEneration Methodology
(AGEM). AGEM starts with the above mentioned information and through a transfor
mation process, in which a close interaction with the Architecture designer is required
and backtracking is allowed to undo the effects of decisions taken at some previous steps,
produces alternative office Architectures suitable for processing the office activities. The
office Architectures are specified completely at the last step of AGEM by using the Ar
chitecture SPEcification System (ASPES), a tool that assists the Architecture designer in
interactively defining the hardware and software constituents of the office Architecture.

In the second stage of the Architecture Design phase, called Architecture Selection,
the most appropriate Architecture, among those identified in the first stage, is selected.
To support this choice a performance modelling phase is proposed in which performance
measures are associated to the previously generated Architectures. The performance mea
sures delivered by the performance modelling study are twofold. On the one hand, the
requirements, in terms of user-oriented performance measures (response times for and
throughputs of user transactions), must be reflected. On the other hand, the modelling
study must deliver system-oriented performance measures (utilization of Architectures
components and queue lengths for system resources), a system designer might be inter
ested in order to identify critical parts of a proposed Architecture. The final task of the
selection process, that is the comparison of the proposed architectural solutions, takes the

148

performance measures into account and identifies the most appropriate Architecture on
the basis of a cost-benefit tradeoff. Figure 1 schematizes this view of Architecture Design.

The three parts that comprise this chapter describe in detail the different steps of the
Architecture Design phase. Part I focuses on AGEM. The concept of Office View, which
provides a framework for representing in a uniform way the different abstraction level
description of the office identified in the Architecture Generation stage, is introduced and
the methodological steps of AGEM are outlined. Part II completes the description of the
Generation stage, by focusing on ASPES. First an informal model of office Architecture is
presented, then it is formalized as a first order theory. Finally a prototypical implemen
tation of ASPES is described. It consists of an assistant in the Architecture Specification,
that is a computer program that supports the user in the construction of a model for the
given Architecture theory, and a graphical interface which makes the interaction between
the Architecture designer and the program easier. Part III describes the approach to
performance evaluation chosen within TODOS, that is based on queueing networks mod
els. These models have been incorporated into the Qu~ueing Network Analysis Package
that contains a collection of resolution algorithms and a common interface for description,
analysis control and result presentation.

OFFICE DATA
DICTIONARY

Architecture 1

Performance
Model1

SYNTHESIS OF
MAPPING INPUTS

Architecture2

Performance
Model2

Selected
Architecture

OIS
CONCEPTUAL SCHEMA

Architecture Generation

Arch itecture N

Performance
ModelN

Fig. 1. - Architectural Design

Chapter 5 - Part I

Architecture Generation in TODOS
Daniela Musto

1. Introduction

The Architecture Generation in TODOS consists in the derivation of a set of alterna
tive computer system Architectures suitable for realizing an Office Information System
(OIS) from a collection of requirements and a conceptual model specified for the office.
Such requirements and conceptual model are those respectively produced by the Require
ments Collection and Analysis phase and by the Conceptual Design phase of the TODOS
methodology, illustrated in Ch.l. The office Architectures are defined according to the
model introduced in Part II of this chapter.

In order to realize the Architecture Generation, a methodology has been defined, by
which one can obtain an architectural specification for the office from its abstract spec
ification provided by the requirements and the conceptual model. Such a methodology,
called in the following Architecture GEneration Methodology (or, shortly, AGEM), per
mits to derive a number of architectural solutions from the same abstract specification.
All these solutions satisfy by construction the properties of the office given as input.

AGEM consists of several steps, in which a close interaction with the Architecture
designer is required. At the final step the specification of the office Architecture is sup
ported by ASPES, the tool described in Part II of this chapter. ASPES not only assists
the Architecture designer in defining the hardware and software constituents of the office
Architecture, but also guarantees the feasibility of the proposed Architecture, that is AS
PES ensures that each Architecture derived by AGEM is composed of elements that can
be physically connected together in an effective way.

This part of Ch.5 focuses on AGEM, and contains three major sections: Section
2, which introduces the basic ideas and concepts underlying AGEM; Section 3, which
describes the steps of AGEM; and, finally, Section 4, which presents some concluding
remarks.

2. AGEM: ideas and concepts

The Architecture Generation is realized by AGEM by consulting the Specification
Database (shortly, SDB) and the Office Data Dictionary (shortly, ODD), produced by
the Conceptual Design phase (see Ch.3) and by the Requirements Collection and Analy
sis phase (see Ch.2), respectively. SDB provides the conceptual model of the office, while
ODD provides the collection of office requirements. In particular, SDB gives qualitative
information concerning the office, such as the form of the activities performed in the
office, and the data objects manipulated by them, while ODD gives quantitative infor
mation concerning the office, such as the periodicity of the office activities, the location

150

of the office workers carrying them out, the volume of the data involved, etc. ODD is
also consulted for analyzing objectives and constraints for the OIS design, like the budget
available for the OIS automation, the inclusion in the office Architecture of hardware and
software products already used in the office, the skill or the preferences revealed by the
office workers, etc.

AGEM consists of a step-wise refinement process carrying out successive transforma
tions of an initial office description, reflecting the abstract specification of the office given
as input, to produce an Architecture scheme and, finally, an Architecture that satisfies
that scheme. The initial office description provides the main functional and non func
tional characteristics of the office, which are established on the basis of the informations
contained in ODD and SDB. The Architecture scheme fixes the kinds (or categories) of
hardware components (e.g., personal computers, laser printers, workstations, bus net
works etc.), and the classes of software packages running on the computer components
(e.g., graphics tools, electronic mail, spreadsheets, etc.), that will realize the office Ar
chitecture, together with their connections, their location in the office environment and
their assignment to the office workers. The office Architecture is composed of compati
ble commercial products, and is derived from the Architecture scheme by specifying for
each category of components pointed out in the scheme a particular commercial product
selected among those that are available in the ASPES Catalogue for that category (see
Part II of this chapter). We will say in the sequel that the Architecture instanciates the
Architecture scheme.

At each transformation step of AGEM one specific problem concerning the mapping
of the abstract specification of the office into an architectural one is tackled, and the in
volved decisions are emphasized. Usually a number of choices is allowed for each required
decision, thus each step of AGEM leads to a potentially non empty set of alternative so
lutions. Possibly, some of these solutions come out to be inappropriate or useless during
the next steps, and thus are afterwards rejected. If all or some of the proposed alternative
solutions run with success up to the last but one step, where the Architecture scheme is
defined, then different proposals of Architecture schemes become available. The Architec
tures derived by AGEM from the same abstract office specification may therefore differ
one from the other not only for the included hardware and software instances but also for
their scheme.

Remark that AGEM never accomplishes decisional steps, but asks every time the
Architecture designer for that. However the fact that no decision process is allowed inside
AGEM must not be taken as a strong limitation of our proposal. In fact this lack of
decisionality is entirely due to the inherent complexity of the problem into consideration,
which involves a large amount of knowledge and human expertise not yet formalized.
In addition, AGEM provides a number of default solutions to support the Architecture
designer during the Architecture Generation process.

In order to model the office during the Architecture Generation process, AGEM in
troduces the concept of Office View, that provides a framework for uniformly representing
the different abstraction level descriptions of the office identified within the Architecture
Generation. An Office View is a description of the office, and consists of the elements
(called in the following constitutive elements) that make up the office at the abstraction
level selected for the description. The working places individuated in the office, the com
munications occurring between them, the categories of hardware and software components
included in the office Architecture, and the particular hardware and software commercial
products realizing the office Architecture are all examples of constitutive elements. The
constitutive elements of an Office View may have a complex structure (as it occurs, for
example, for the hardware components), or may be described from different viewpoints

151

(as is the case of the office working places, for which the steps of the activities carried out
on them by the office workers or the services to be provided by the architectural compo
nents in order to satisfy such activities can be specified). Therefore additional elements
(called in the following internal elements) are included into the Office View, with the
purpose of describing the form of the constitutive elements, whenever required. In turn
these internal elements may be specified in terms of lower level descriptive elements, and
so on. In the following we will represent an Office View as a 3-tuple (B, C, 'V), where:

- B, called the Base, points out the constitutive elements of the office at the selected
abstraction level, and provides their description in terms of the internal elements
included in C;

- C, called the Catalogue, presents the internal elements contributing to the description
of the office, and possibly specifies them in terms of lower level descriptive elements
included in 'V;

- 'V, called the Dictionary, presents the lower level descriptive elements considered for
the office.

AGEM consists of six successive steps, and at each step an appropriate Office View
is defined through interactions with the Architecture designer. The initial Office View is
derived from the information contained in SDB and ODD. For each subsequent step, the
Office View is generated by processing the one produced at the immediately preceding
step. The abstraction level selected for describing the office in each Office View strictly
depends on the step in which the Office View is derived. In particular, Step 0 focuses on
the location of the working places in the office and on the activities performed at them;
Step 1 focuses on the services to be provided by the Architecture in order to support the
activities described at Step 0; Step 2 focuses on the definition of Service Access Points
(shortly, SAPs) in the office, which provide the services indicated at Step 1; Step 3 focuses
on the identification of Subsystems and Networks, defined respectively as clusters of SAPs
and as clusters of Subsystems, which, according to the model of Architecture introduced
in e Part II of this chapter, partially fix the scheme for the Architecture to be derived;
Step 4 focuses on the internal structure of the Subsystems and the Networks identified
at Step 3, defined in terms of hardware and software categories of components, which
completes the definition of the Architecture scheme; finally, Step 5 specifies one or more
Architectures instanciating this scheme, by using the tool ASPES.

Remark that there may be cases in which no Architecture is derivable from an Archi
tecture scheme. This occurs either because commercial products satisfying that scheme
are not present in the ASPES Catalogue, which describes the software and haraware
commercial products available for realizing Architectures, or because the products in the
ASPES Catalogue that satisfy the scheme are not compatible among them 1. In these
cases ASPES does not produces any output, therefore alternative schemes must be taken
into account to generate an Architecture proposal. This requires a backward skip from
Step 5 to Step 4 (and possibly to previous steps of AGEM): the sequence of steps for the
Architecture Generation may therefore be not strictly sequential.

Since all the steps successive to Step 0 possibly produce alternative Office Views, the
Architecture Generation may be described by a tree (called in the following Architecture
Generation Tree, or, shortly, AGT). Each step of AGEM, in particular, will provide storing
facilities to freeze some paths of AGT and backtrack facilities for avoiding its undesirable
paths 2. The root of AGT consists of the Office View preliminarily derived from SDB
and ODD. The internal nodes of AGT are the different Office Views corresponding to

1 Refer to Part II of this chapter.
2 An undesirable path of AGT may be, for example, one for which no Architecture is derivable, due

to compatibility reasons.

152

the intermediate steps of AGEM. The leaves of AGT are the different Office Views that
describe office Architectures, which are expressed by using an output of ASPES.

Remark that alternative Office Views may be derived also at Step 0, depending on
the information available in ODD and SDB. It is the Architecture designer that may
propose them. Thus in the general case the Architecture Generation is more appropriately
described by a forest rather than by a unique tree.

Fig. 1 schematizes AGEM, and provides an indication of the focal aspects examined
at each step together with a picture representing a possible AGT.

SKELETON OF THE ARCHITECTURE GENERATION METHODOLOGY

Step 0 location of the working places and activities performed at them.
Step 1 services required by the activities performed at the working places.
Step 2 Service Access Points (SAPs).
Step 3 Subsystems (as cluster of SAPs) and Networks (as cluster of Subsystems).
Step 4 internal structure of Subsystems and Networks.
Step 5 office Architectures.

Step 0
Step 1
Step 2
Step 3
Step 4
Step 5

ARCHITECTURE GENERATION TREE

Fig. 1 - Architecture Generation Methodology

3. The Steps of AGEM

In the following we describe the steps of AGEM. For each step we present the Office View
produced within the step and emphasize the decisions required for its definition. The
formal and complete description of the Office Views outlined here is given in (TODOS
TR 4.3.3).

3.1. Step 0

At this step the Office View OVa = (Bov.,Cov.,Vov.) is produced, which represents the
starting point of AGEM. OVo provides a high level description of the office, by specifying
the location of the working places, the activities that take place at them and, furthermore,
the communications and the data access required by these activities.

3.1.1. The Office View OVa

The constitutive elements of OVa are the following:

(a) Logical Working Places;
(b) Logical Communications;
(c) Logical Archives;
(d) Logical Data Accesses.

A Logical Working Place is an abstraction for a site in the office where one or more
office workers sequentially perform some activities. A Logical Working Place is described
in terms of the office workers that have access to it, the activities that are performed at
that working place and its location. Note that an office worker may have access to more
than one working place in the office (this is especially true for offices that do not provide

153

strongly integrated electronic facilities). At the Architecture level each Logical Working
Place will be joined to an appropriate computer, (e.g., a mainframe, a personal computer,
a workstation, etc.). In order to support the activities associated to the Logical Working
Place, the computer will run particular software packages and, possibly, will be connected
to input-output or secondary-memory peripherals. The link between the Logical Working
Place and the computer as well as the links between the computer and the peripherals
will be realized either by local connections or by remote connections via a Local Area
Network (LAN).

A Logical Communication establishes a link between Logical Working Places, and rep
resents a direct communication required in the office between the corresponding working
places. The Logical Communication is described by giving the structure of the messages
exchanged. These messages may concern formatted data, text, graphics, voice, mllltime
dia data, etc., and possibly have different structures. All the Logical Communications
pointed out in OVo must be satisfied at the Architecture level. AGEM, in particular,
assumes that each working place in the office is connected with every other through a
telephone line. The office communications not supported by telephone (which messages
can be verbally transmitted and which are not is a decision to be taken by the Architec
ture designer, on the basis of the structure presented by the messages 3) will be realized
in the Architecture in one of the following ways:

- via a physical cable, either as a point-to-point connection between two different com
puters, or as a multi-point connection established by aLAN;

- via the computer internal memory, whenever the Logical Working Places involved in
the communication are either the same or are supported by the same computer.

In both cases appropriate software is required in order to guide the message exchange.
A Logical Archive is an abstraction for an office archive or a portion of it, and is

described by giving the types of the data it is concerned with, their volume and their
location in the office. The office Architecture will provide both the software and the
hardware for the Logical Archives. In particular, when the scheme for the Architecture
will be completely defined 4, each Logical A rchive will be joined to a software support. This
support will be either a Word Processing or a DBMS package, depending on the structure
of the informations associated to the Logical Archive: e.g., for formatted and strongly
interrelated data the DBMS would be a preferable solution, whereas for unformatted
data a Word Processing would be more convenient. At the same time each Logical Archive
will be connected to a hardware component. This hardware component will be eit.her a
computer or a sequential- or random-access secondary-memory peripheral. In the former
case the hardware support for the Logical Archive will be the computer hard-disk; in the
latter case it will be either a magnetic disk, or an optical disk, or a cartridge, etc. The
hardware support will be dedicated to a single office worker or shared among different
office workers, depending on whether the informations associated to the Logical Archive
are personal or not 5. In general more than one Logical A rchive may be joined to the same
physical support. A Logical Archive, in turn, may be duplicated or distributed on several
physical supports, depending on the office requirements. These decisions, together with
that concerning the choice between a Word processing or a DBMS package, must be taken
by the Architecture designer after Step 0, according to the request of AGEM.

A Logical Data Access establishes a link between a Logical Working Place and a Log
ical Archive, and represents the request to access the data corresponding to the Logical
Archive from the working place represented by the Logical Working Place. The Logical

3 See Step l.
4 See Step 4.
5 Following Ch.2, AGEM classifies the office archives into personal, departmental and central ones.

154

Data Access is described in terms of the collection of data to be read or written by
this working place. Each Logical Working Place may refer to zero, one or more Logical
Archives; in turn, each Logical Archive may be connected to one or more Logical Working
Places, depending on the office requirements. The Logical Data Access will be realized
in the Architecture according to the modalities adopted to realize the involved Logical
Archive: only by software, if the Logical Archive is supported by the same computer that
provides the Logical Working Place, or, otherwise, with the addition of a physical link be
tween the secondary-memory peripheral supporting the Logical Archive and the computer
supporting the Logical Working Place, defined either via a point-to-point connection or
via a LAN.

To summarize, the elements of Bov 0 satisfy the following properties:

- each Logical Working Place establishes a working place in the office, and provides its
location, the activities performed on it, and the office workers realizing them.

- each Logical Communication establishes a communications between working places,
and provides the structure of the messages exchanged between them.

- each Logical Archive points out a collection of permanent data in the office, and
provides their structure, their volume and their location in the office.

- each Logical Data Access defines the access to (a portion of) an office archive from a
working place, and provides the structure of the data that the working place requires
to be transferred to or from the archive.

In order to complete the description of the office, OV 0 gives the following additional
informations:

- for each office worker:
<> the name;
<> the set of roles (possibly more than one) that define his tasks in the office;
<> the team in which he works, if any.

- for each information utilized in the office (according to Ch.3, the informations are
classified into documents, messages and objects, which represent, respectively, concrete
documents that exists in the office real world and that are stored in the OIS, data
exchanged between office workers, and abstract information manipulated within the
activities and possibly stored in the OIS):

<> the structure (i.e., the number of formatted fields, of text fields, etc.);
<> the volume;
<> the life time (for stored data only).

- for each activity:
<> the set of conceptual primitives it involves 6, together with the kinds of information

such conceptual primitives act upon (the application of a conceptual primitive to
a particular kind of information will be called in the sequel conceptual primitive
cal~.

<> the periodicity with which it is performed in the office;
- for each location (the general case is modelled, in which a company has several di

visions dislocated in different places, in the same nation or not; at the same address
the office may comprise several buildings; several office units (e.g., departments) may
share the same floor; the same office unit may be distributed on different floors):

<> the address;
<> the building at the given address;
<> the floor within the building;
<> the room at the floor;

6 See Appendix A.

155

o the particular office unit involved.

Table 1, Table 2 and Table 3 summarize, respectively, the elements of Bovo' Covo and
Vovo'

Table 1. - Elements of the Base Bovo

P, the set of Logical Working Places.

A, the set of Logical Archives.

P P, the set of Logical Communications.

P A, the set of Logical Data Accesses.

Table 2. - Elements of the Catalogue COy 0

W, the set of office workers in the office.
ACT V, the set of activities performed by the office workers.

LOC, the set of locations pointed out in the office.

INFO, the set of informations involved in the office,
which, in turn, is specialized in:

M SG, the set of messages;
DOC, the set of documents;
OBJ, the set of objects.

CONCEPT.P RIM.CALL, the set of conceptual primitive calls.

Table 3. - Elements of the Dictionary Vov 0

RO L, the set of office worker roles identified in the office.
TEAM, the set of office worker teams present in the office.
ADDR, the set of addresses concerning the office.

BLD, the set of buildings which constitute the office.
FLO, the set of floors in the buildings.

ROO M, the set of rooms in the buildings.
OF F.U NIT, the set of office units.
IN FO.F I ELD, the set of fields characterizing the structure of the office information.

CONC EPT.P RI M, the set of conceptual primitives.

3.1.2. Derivation of OVo

The basic task accomplished at Step 0 in order to derive OV 0 consists in the formulation
of appropriate queries to ODD and SDB, and in the rewriting the selected information
according to the Conceptual View formalism.rhis task can be partially automatized. In
particular, all the elements concerning the Dictionary and the Catalogue can be directly
derived from ODD or SDB, while the elements of the Base must be decided by the Ar
chitecture designer, on the ground of the available data. More specifically, the elements

156

of OVo which are extracted from ODD are: ROL, TEAM, ADDR, BLD, FLO, ROOM,
OFF. UNIT, included into the Dictionary, and Wand LOC, included into the Catalogue.
The elements of OVo which are extracted from SDB are: INFO. FIELD, included into
the Dictionary, and ACTV, INFO, and CONCEPT.PRIM.CALL, included into the Cat
alogue. The CONCEPT. PRIM in the Dictionary is a predefined set, derived from the
Conceptual Design phase (see Appendix A).

The Architecture designer must decide the Logical Working Places and the Logical
Archives. The Logical Communications and the Logical Data Accesses follow accordingly,
from the form of the office activities. In order to support the Architecture designer, AGEM
provides two default solutions for the definition of the Logical Working Places and the
Logical Archives. They consist, respectively, in the introduction of one Logical Working
Place for each office worker and in the introduction of one Logical Archive for each office
archive. This second solution, in particular, does not allow any partition of the office
archives specified in ODD into independent portions within the Architecture Generation
process. The first default solution simply personalizes the sites in the office where the
activities must be performed, and prepares the definition of architectural solution that
maximize the number of hardware equipments dedicated to individual office workers.

3.2. Step 1

At this step the Office View OVo defined at Step 0 is processed through interactions with
the Architecture designer, to finally produce an Office View OV1 = (Bov"Cov"Vov,)
that provides a selection of services supporting the activities described in OVo. Such
selection will guide the subsequent steps of the Architecture Generation toward the search
of appropriate software packages to be installed in the office. The services taken into
consideration at this step, together with their parameters, are described in Appendix B.
The specification of a service by giving particular values for its parameters will be called
in the sequel service instance.

3.2.1. The Office View OV 1

OV 1 is similar to OVo. In particular, OV 1 provides the same categories of constitutive
elements that are given in OV 0 with some little differences in the contents of Bov 1 with
respect to Bov. (see Table 4). Some other little differences between OV 1 and OVo concern
the Catalogue and the Dictionary. The elements of Cov 1 and Vov 1 are summarized in Table
5 and Table 6, respectively.

3.2.2. Derivation of OV 1

OV 1 is derived from OV 0 through the definition of a management policy for each infor
mation manipulated in the office, and by translating accordingly the conceptual primitive
calls involved by the activities, that are specified in OVo, into services. Step 1 requires
that the Architecture designer executes the following tasks:

(Tl) Document Analysis and Archive Reorganization, in order to decide the management
policy of the documents (that is, what documents must be stored as files and what
as elements of a database), and to assign to the same Logical Archive documents
managed with the same policy.

(T2) Message Analysis, in order to detect the messages to be handled electronically (those
messages that will be exchanged through the telephone line will be disregarded after
this step of AGEM).

(T3) Object Analysis, in order to decide the management policy of the objects.

157

Table 4. - Elements of the Base Bov 1

P, the set of Logical Working Places.

A, the set of Logical A rchives reorganized according to the management
policy decided for the documents.

P P, the set of Logical Communications representing communications
to be exchanged electronically.

P A, the set of Logical Data Accesses, as follows from the redefinition
of the Logical Archives.

Table 5. - Elements of the Catalogue COV 1

W, the set of office workers working in the office.
LOC, the set of locations pointed out in the office.
INFO, the set of informations involved in the office,

which, in turn, is specialized in:
M SG, the set of messages to be handled electronically;
DOC, the set of documents with their decided management policy;
OBJ, the set of objects with their decided management policy.

SERV.REQ, the set of service instance requests.

Table 6. - Elements of the Dictionary 'Dov 1

RO L, the set of office worker roles identified in the office.
TEAM, the set of office worker teams present in the office.
ADDR, the set of addresses concerning the office.
BLD, the set of buildings which constitute the office.
FLO, the set of floors in the buildings.
ROO M, the set of rooms in the buildings.
OFF.U NIT, the set of office units.
IN FO.F I ELD, the set of fields characterizing the structure of the office information.
SERV, the set of services.

After the accomplishment of the tasks described above, the mapping of the conceptual
primitives which are required by the office activities into services can be obtained according
to Table BA (see Appendix B), in an automatic way. In particular, the parameters values
characterizing these services can be derived from the periodicity of the activities requiring
the services, and from the structure of the information the conceptual primitives involved
in these activities manipulate.

The solutions adopted by the Architecture designer during the execution of the three
tasks indicated above depend on several factors. The most important of them are:

- for task (TI):

for each document:

<> the form it has, that may be structured or not;

158

<> the conceptual primitives working on it;

<> the periodicity of the activities involving it;

<> the number of its instances;

<> the degree of access concurrence on it;

<> constraints or preferences for its management policy, if provided in ODD (includ
ing the previous electronic treatment of the document, if any, in order to possibly
reuse resources already employed in the office).

for each Logical Archive:

<> the location in the office;

<> the periodicity and the purpose of its access by the office workers 6

- for task (T2):
<> the structure and the dimension of messages (for short text notices, for example,

the telephone would be a preferable solution);

<> the periodicity at which messages are exchanged.
- for task (T3):

<> the structure and the dimension of the objects;

<> the conceptual primitives working on them;

<> the periodicity of the activities involving them;

<> the number of their instances.

Remark that the execution of the tasks (Tl), (T2) and (T3) modifies the content of
some of the sets derived from OVo, and thus produces their redenomination in OV1 (refer
to Table 4 and Table 5, respectively).

3.3. Step 2

At this step an Office View OV2 = (Bov"Cov"Vov,) is produced which refines the de
scription of the office provided by the Office VieuiOV 1 generated at Step 1. In particular,
OV 2 specifies how to distribute the requests of services identified in OV 1 into the Ar
chitecture under definition. To accomplish this task, OV 2 introduces the Service Access
Points (SAPs), which represent locations in the office in which specific service instances
are provided, and specifies how the Logical Working Places and the Logical Archives de
rived from OV 1 are linked to them. The selection of the Service Access Points that is
made at this step, together with their joining to the Logical Working Places and to the
Logical Archives, will give useful indications about the location of the services in the office
to the next step of AGEM, where the scheme of the office Architecture will be delineated.

3.3.1. The Office View OV2

OV 2 provides the same constitutive elements that are given in OV 1 and, in addition, the
following ones:

(e) Service Access Points (SAPs),
which in turn are classified in:
(el) Computer SAPs (C.SAPs);
(e2) Input-Output SAPs (IO.SAPs);
(e3) Secondary-Memory SAPs (SM.SAPs);

(f) Logical Working Place to SAP Links;

6 The access purpose to an office archive. even if not explicitly provided in OVo. is derivable from
ODD (see Ch.2).

159

(g) Logical Archive to SAP Links.

A SAP represents a place in the office in which some services are provided with par
ticular parameter values. Three kinds of SAPs are considered, according to the standard
classification of the hardware components into computers, input-output peripherals, and
secondary-memory peripherals: the C.SAPs, where the processing facilities are available,
the IO.SAPs, where the inputsfoutputs take place, and the SM. SAPs, where the storing
facilities are supported. The SAPs are specified in terms of the service instances they pro
vide, and their location in the office. For the SM.SAPs, in addition, the set of informations
supported by them is given. Remark that the selection of SAPs does not heavily constrain
the final office Architecture. However it becomes relevant in the next step of AGEM for
the identification of the Subsystems and the Networks realizing the Architecture scheme:
in fact, by showing where to provide the services, it points out what services should be
preferably shared and what instead should remain local in the office, and, moreover, it
emphasizes what are the similar service requirements among the Logical Working Places
and the Logical Archives.

A Logical Working Place to SAP Link represents a link between a Logical Working
Place and a SAP of kind Computer or Input-Output; asserting what service instances
among those required by the Logical Working Place are provided by that SAP. The SAP
may be linked to a single Logical Working Place or to more Logical Working Places. In
both cases the SAP must satisfy the parameters values for all the services it supports:
this may require an appropriate setting of the service instances provided by the SAP, in
order to take into account all the requests specified by the Logical Working Places linked
to it. In turn, a Logical Working Place may be connected to one SAP or to several SAPs.
At least one of the SAPs, however, must be a C.SAP, since we assume that processing
facilities are provided for each Logical Working Place (see Step 0). In the case in which
more than one SAP is connected to the Logical Working Place three different possibilities
arise:
(a) the SAPs are all of different kinds;
(b) the SAPs may be of identical kind, and possibly provide the same services, but they

offer different parameter values for the replicated services.
(c) the SAPs may be of identical kind, may provide the same services, and furthermore

offer identical parameter values for the replicated services.
Case (a) implies that the Logical Working Place is connected exactly to one Computer
SAP and to one Input-Output SAP. Case (b) occurs when different requests of a service are
recognized for the same Logical Working Place: e.g., for the service print one request may
involve a low printing quality, to be provided by a dedicated low-price printer, and another
one a high printing quality, to be provided by a laser printer shared with other Logical
Working Places. Case (c) corresponds to the decision of the Architecture designer to
insert a sort of redundancy in the office Architecture, to take into account fault-tolerance
problems or a better load balance of the resources.

A Logical Archive to SAP Link represents a link between a Logical Archive and a
SM.SAP, which asserts what services and what informations are supported by the SM.SAP
among those required by the Logical Working Places linked to the Logical Archive. In gen
eral several Logical Archives may be connected to the same SM.SAP, with the constraint
that the management policy selected for the data contained in them is for all the same.
The SM.SAP, in this case, is shared among all these Logical Archives, which means that
the Logical Archives can be grouped together in the same office location. In turn, a Log
ical Archive may be connected to more than one SM.SAP, which means that the Logical
Archive can be distributed on several locations in the final office Architecture. Remark
that the process concerning the decision of the physical allocation of the informations in-

160

eluded in the Logical Archives starts at this step of AGEM but will be entirely completed
only in the subsequents steps.

Table 7 summarizes the elements of Bov,. The elements of the Catalogue and of the
Dictionary of OV 2 are the same as those provided by OV 1 (see Table 5 and Table 6,
respectively).

Table 7. - Elements of the Base Bov,

P, the set of Logical Working Places.

A, the set of Logical Archives reorganized according to the management
policy decided for the documents.

S, the set of Service Access Points,

which in turn is specialized in:
C.S, the set of Computer Service Access Points;

10.S, the set of Input-Output Service Access Points;

S M.S, the set of Secondary-Memory Service Access Points.

P P, the set of Logical Communications representing communications

to be exchanged electronically.
P A, the set of Logical Data Accesses, as follows from the redefinition

of the Logical Archives.

P S, the set of links between Logical Working Places and Service Access Points.

A S, the set of links between Logical Archives and Service Access Points.

3.3.2. Derivation of OV2

In order to define OV 2 the Architecture designer must decide the SAPs and their links to
the Logical Working Places and to the Logical Archives. The crucial decision to be taken
by the Architecture designer at this step concerns where and how to serve each service
request, that is if to introduce a local SAP or to associate the service request to a shared
SAP, and if to distribute the service request on more than one SAP. A shared SAP will be
preferably introduced each time is known that to provide the associated services expensive
components are required, and also that the request of these services is not frequent in
the office. On the other hand, the distribution of a service request of a Logical Working
Place on several SAPs, that signifies that the same service can be required by the Logical
Working Place to more than one SAP, become convenient each time a sort of redundancy
is required in the Architecture for the reasons already mentioned before. Factors that
may influence the choice of the Architecture designer at this step are, for example, the
location of the Logical Working Places and the list of service instances specified for them,
and the accessibility of the Logical Archives. Another important factor is represented by
the periodicity of the service requests: in fact if requests of the same service that have all a
low periodicity (and therefore a high frequency) are aggregated together in the same SAP
then the resulting office Architecture will be probably affected by bottle-neck problems.
Further constraints or preferences for the SAPs definition, that must be taken into account
by the Architecture designer, can possibly be proposed as office requirements, and thus
inelU:ded in ODD.

AGEM assists the Architecture designer in the construction of OV 2 by supporting
several default solutions. Among them, we recall the distributed solution which provides a
dedicated C.SAP for each Logical Working Place and a dedicated SM.SAP for each Logical
Archive, and the other one which proposes a partial centralized solution, by introducing

161

a single C.SAP for each office unit, or alternatively, for each floor, to be shared by all
the Logical Working Places located on the office unit, or on the floor, respect.ively. In
addition AGEM assists the Architecture designer by controlling that the service requests
of each Logical Working Place are distributed among the SAPs in such a way that these
requests are completely covered by the service instances provided by the accessible SAPs,
and, furthermore, that the Logical Data Accesses produced in OV 1 are preserved by the
definition of the SM.SAPs.

3.4. Step 3

At this step the Office View OV 2 defined in Step 2 is augmented through interactions with
the Architecture designer, in order to produce an Office View OVa = (Bov.,Cov.,Vov.)
which provides the location of the Subsystems and Networks in the office. OVa partially
fixes the scheme for the Architecture to be defined. Remark that this is the lowest step of
AGEM where the physical office Architecture is taken into account, and thus the decisions
taken at this step have a strong impact on the form of the office Architecture (see next
steps).

3.4.1. The Office View OVa

The constitutive elements of OV3 are the same as those given in OV2 with the addition
of the following ones, reflecting the model of office Architecture presented in Part II of
this chapter:

(h) Subsystems;
(i) Networks.

A Subsystem represents the simplest form of aggregation of resources occurring in
the Architecture, which consists of resources connected point-to-point to each other. The
Subsystems are defined in OV 3 as clusters of SAPs which realize a partition on the set of
SAPs derived from OV2 •

A Network represents a remote aggregation of resources in the office, which is realized
through a LAN. The Networks are defined in OVa as clusters of Subsystems. Each Network
includes at least two Subsystems. In general a Subsystem may belong to more than one
Network 1, which makes the Networks communicating each other. The Subsystem in this
case becomes a place-holder for a gateway to be installed in the office Architecture.

Table 8 summarizes the elements of Bov •. The elements of the Catalogue and of the
Dictionary of OVa are the same as those provided by OV1 (see Table 5 and Table 6,
respectively).

3.4.2. Derivation of OV 3

In order to define OV 3 the Architecture designer must identify the Subsystems and the
Networks that define the office Architecture. To realize this task the Architecture designer
must decide what services to make locally accessible and what accessible in remote, and
thus which SAPs to aggregate together into a single Subsystem and which Subsystems
to connect together into a common Network. The specification of the internal structure
of the derived Subsystems and Networks in terms of hardware and software components
supporting the SAPs will be realized in the next step of AGEM, on the basis of the
informations collected at this step.

7 An office Architecture may includes also isolated Subsystems, according to the technological level
selected for realizing the office. But in the sequel we shall only consider Subsystems integrated in the
office.

162

Table 8. - Elements of the Base Boy 3

P, the set of Logical Working Places.

A, the set of Logical Archives reorganized according to the management
policy decided for the documents.

S, the set of Service Access Points,

which in turn is specialized in:
C.S, the set of Computer Service Access Points;

IO.S, the set of Input-Output Service Access Points;

SM.S, the set of Secondary- Memory Service Access Points.

SUB SY S, the set of Subsystems.

N ETW, the set of Networks.

P P, the set of Logical Communications representing communications

to be exchanged electronically.
P A, the set of Logical Data Accesses, as follows from the redefinition

of the Logical Archives.

p S, the set of links between Logical Working Places and Service Access Points.

A S, the set of links between Logical Archives and Service Access Points.

Crucial factors that influence the definition of the Subsystems are, for example, the
distance between the SAPs in the office, the service they provide, the number of Logical
Working Places sharing the same SAPs, etc. In particular, SAPs that are far one from
the other usually become part of independent Subsystems, in order to take into account
technological hardware constraints. The same holds for SAPs that are shared by several
Logical Working Places, for identical reasons s. Moreover, the examination of the services
provided by the SAPs may give suggestions on how to partition the SAPs into Subsys
tems: for example, it may be natural to associate SM. SAPs with C.SAPs into the same
Subsystems, since usually computers offer both processing and storing facilities.

The Networks must be defined by the Architecture designer in such a way that the
Logical Communications and the Logical Data Accesses derived from OV 3 are all preserved.
This fact is controlled by AGEM on the basis of the links established in OV 3 among Logical
Working Places, Logical Archives and SAPs. Remark, in particular, that Subsystems
collected into the same Network are supposed to be communicating. Subsystems related
to different Networks can also communicate each other, provided that these Networks
share a common Subsystem.

3.5. Step 4

At this step the Office View OV 3 defined at Step 3 is processed through interactions with
the Architecture designer, in order to produce an Office View OV 4 = (Boy., COY., 'DaY.)
which specifies for each Subsystem and Network the classes of hardware and software
components they consists of. The Architecture scheme so derived will be instanciated
with commercial products in the next and final step of AGEM, which will conclude the
Architecture Generation process.

3.5.1. The Office View OV4

8 In fact it is obvious that if a SAP service is required by many Logical Working Places the
component that will provide the service in the office Architecture cannot be linked in a point-to-point
manner with all the components supporting the Logical Working Places.

163

The constitutive elements of OV 4 are the following:

(a) Logical Working Places;
(b) Logical Communications;
(c) Logical Archives;
(d) Logical Data Accesses;
(e) Architectural Units;
(f) Subsystems;
(g) Networks;
(h) Logical Working Place to Architectural Unit Links;
(i) Logical Archive to Architectural Unit Links;
(1) Architectural Unit to Architectural Unit Links;
(m) Architectural Unit to Network Links.

The Logical Working Places, the Logical Communications, the Logical Archives and
the Logical Data Accesses are those derived from OV 3.

An Architectural Unit represents the basic component of the office Architecture, and
is described in terms of a hardware products category available in the ASPES Catalogue.
Each Architectural Unit which is a computer, in addition, is equipped with a set of software
products categories, representing the classes of packages that run on that unit in the final
office Architecture.

The Subsystems and the Networks are the same as those identified in OV 3, but a
different specification is given for them, which completes the definition of the Architecture
scheme started at Step 3. In particular, each Subsystem is defined as a set of Architectural
Units point-to-point connected each other. Each Network is seen as a LAN with a given
topology.

A Logical Working Place to Architectural Unit Link establishes a link between a Logical
Working Place and an Architectural Unit, which means that the Architectural Unit will
support the Logical Working Place in the office. This link is described by specifying what
service requirements among those identified for the Logical Working Place are provided
by the Architectural Unit.

A Logical Archive to Architectural Unit Link establishes a link between a Logical
Archive and an Architectural Unit. This link means that the Architectural Unit, which
is in this case a secondary-memory unit, will support the Logical Archive in the office.
The link is described by specifying what informations among those included in the Logical
Archive are stored in the Architectural Unit.

An Architectural Unit to Architectural Unit Link establishes a point-to-point connec
tion between Architectural Units included into the same Subsystem.

An Architectural Unit to Network Link establishes a connection between an Archi
tectural Unit and a Network. The Architectural Unit is, in this case, a computer, and
connects the Subsystem to which it belongs to the Network.

Table 9 summarizes the elements of Bov.. The Catalogue of OV 4 extends the Cat
alogue of OV3 in order to support the specification of the Architecture scheme. The
elements of Cov. are shown in Table 10. The elements of the Dictionary of OV 4 are the
same as those provided by OV1 (see Table 6).

3.5.2. Derivation of OV4

In order to define OV 4 the Architecture designer must decide the internal structure of the
Subsystems and the Networks, and must establish accordingly the connections among the
Logical Working Places, the Logical Archives and the Architectural Units occurring in the
office.

164

Table 9 - Elements of the Base Bov.

P, the set of Logical Working Places.

A, the set of Logical Archives reorganized according to the management
policy decided for the documents.

ARC H.U NIT, the set of Architectural Units.
SU BSYS, the set of Subsystems.

N ETW, the set of Networks.

P P, the set of Logical Communications representing communications
to be exchanged electronically.

P A, the set of Logical Data Accesses, as follows from the redefinition
of the Logical Archives.

P ARC H.U NIT, the set of links between Logical Working Places and Architectural Units.

A ARC H.U NIT, the set oflinks between Logical Archives and Architectural Units.

ARC H.U N IT ARC H.U NIT, the set of links between Architectural Units.

ARC H.U N IT N ETW, the set of links between Architectural Units and Networks.

Table 10 - Elements of the Catalogue Cov.

W, the set of office workers working in the office.
LOC, the set of locations pointed out in the office.
INFO. the set of informations involved in the office,

which, in turn, is specialized in
M SG, the set of messages to be handled electronically;
DOC, the set of documents with their decided management policy;
o B J, the set of objects with their decided management policy.

SERV.REQ, the set of service instance requests.
ASP ES.C AT ALOGU E.SC H EM E, the set of hardware and software products categories

that are specified in the ASPES Catalogue.

A crucial task required by these decisions is the mapping of the SAPs derived from
OV3 into Architectural Units. In general, an Architectural Unit may correspond to one or
more SAPs. This last case represents the fact that the Architectural Unit offers several
access points to the services it provides. The decisions concerning this correspondence are
affected by several factors: among them, the functionality requirements associated to the
SAPs, the workload, cost constraints, preferences concerning the hardware to be installed
in the office that are expressed by the office workers, the availability of products already
used in the office (if any), etc. All these informations are provided by ODD. Remark that
the decisions taken at this step can also be influenced by the results of the performance
evaluation produced by the Architecture Selection stage (see Part III of this chapter). To
realize a SAP, in turn, several Architectural Units may be required: this case occurs, for
example, whenever components like terminals, network servers and line switchers must
be introduced in the Subsystems to appropriately support the characteristics of the office
that are specified in OV 3.

Another crucial task to be accomplished at this step concerns the selection of the
categories of software products that the computers individuated in the Architecture must
run in such a way that the service instances associated to the SAPs are provided in the
office. AGEM supports the Architecture designer in performing this task, by producing
tables like those presented in Appendix B (e.g., see Table B.2).

165

3.6. Step 5

At this step the Office View OV 4 defined at Step 4 is processed through interactions with
the Architecture designer, in order to produce an Office View OVs = (Bov.,Cov., 7Jov.)
which instanciates the scheme of the Architecture provided by OV 4 with particular hard
ware and software commercial products. This step is supported by the tool ASPES and
concludes the Architecture Generation process.

3.6.1. The Office View OV5

The Office View OV 5 specify an Architecture for the office. OV 5 provides the same
categories of constitutive elements that are given in OV4 (see Table 9). The Catalogue of
OV5 is similar to the Catalogue of OV4 , but COy. contains the whole ASPES Catalogue.
The elements of Cov. are summarized in Table 11. The elements of the Dictionary of OV 5

are the same as those provided by OV 4 (see Table 6).

Table 11 - Elements of the Catalogue Cov.

W, the set of office workers working in the office.
LOC, the set of locations pointed out in the office.
INFO, the set of informations involved in the office,

which, in turn, is specialized in
M SG, the set of messages to be handled electronically;
DOC, the set of documents with their decided management policy;
OB J, the set of objects with their decided management policy.

SERV.REQ, the set of service requests.
ASPES.CATALOGUE, the ASPES Catalogue.

3.6.2. Derivation of OV 5

In order to derive OV 5 the Architecture designer must instanciate the Architecture scheme
provided by OV 4 with commercial compatible products. This task is accomplished with
the support of the tool ASPES, which assists the Architecture designer in interactively
defining the particular components to be installed in the office and their mutual connec
tions. The ASPES Catalogue provides a repository of the commercial products that are
currently available to realize office Architectures, and gives a description of their allowed
expansions. ASPES controls that the particular hardware products included in the Archi
tecture, possibly expanded with respect to their basic commercial version, are compatible
among them and that can be physically connected together in an effective way. In ad
dition, ASPES controls that the Architecture is equipped with compatible software, and
that the appropriate network software is installed wherever remote connections must be
supported.

Among the crucial factors that the Architecture designer must take into account at this
step, we recall the ones already mentioned at Step 4, and, in addition, the following ones:
the role of the office workers, the preferences of the office workers and the teams to which
they belong, the quantitative parameters associated to the service instances required in
the office, the characteristics of the particular commercial products. Suggestions for the
definition of the office Architecture can be derived by the Architecture designer also at
this step from the results of the Architecture Selection stage.

166

4. Conclusions

In this paper we have presented a methodology for generating alternative computer sys
tem Architectures appropriate for realizing an OIS. This methodology, called Architecture
GEneration Methodology (or, shortly, AGEM), receives as input a collection of functional
and non functional informations concerning the office, and produces as outputs Architec
tures that satisfy the input specification.

Each Architecture is generated by AGEM through a step-wise refinement process that
carries out successive transformations of a description of the office preliminary derived
from the contents of two databases, respectively providing a collection of requirements
and the conceptual model of the office. These transformations produce different views
of the office, each view emphasizing some particular aspects in a coherent way with the
others and presenting the office at a different abstraction level. The final view of the office
derived by AGEM provides an Architecture that satisfies all the properties of the office
given as input.

The major contributions of AGEM are:
(1) the identification of six focal steps toward which distributing all the decisions required

to generate an Architecture satisfying the office needs;
and
(2) the introduction of a descriptive framework for representing the office which allows a

uniform definition of the different abstraction level descriptions of the office produced
within the Architecture Generation process.

In order to be applied AGEM requires a close interactions with the Architecture
designer: AGEM supports the correctness of the transformation steps and provides some
default solutions to the Architecture designer, but the Architecture designer is responsible
for all the decisions that must be taken within the Architecture Generation process. In
particular, at each step of AGEM the Architecture designer can either adopt one or more
default solutions (if any), or autonomously define one or more solutions, or, finally, try
both ways. AGEM guides the Architecture Generation process and controls that all the
solutions adopted by the Architecture designer fit well with the office view currently under
examination.

AGEM has been devised as an interactive tool which assists the Architecture designer
in the definition of Architectures appropriate for the OIS. The lack of decisionality of
AGEM is entirely due to the complexity of the application domain, which involves a large
amount of knowledge and human expertise not yet formalized. Therefore it must not be
taken as a strong limitation of our proposal. An application of AGEM to the test case
illustrated in Ch.6 is sketched in (TODOS TR 4.3.4).

Presently no automatic tool implementing AGEM is available, but the last step of
AGEM is supported by the automatic tool ASPES, which implementation is described
in Part II of this chapter. ASPES assists the Architecture designer in the specification
of the components of the office Architecture, and of the connections among them. A
tool implementing AGEM would provide an assistance which extends that provided by
ASPES to aspects that concern the satisfaction of the office requirements, so that the
matching of the Architecture with such requirements become not integrally demanded to
the Architecture designer. It seems to us that a tool implementing AGEM can be realized
through a straightforward extension of the tool ASPES, provided that the performance
of this realization can be maintained within acceptable values in terms of both space and
time factors. In fact AGEM adopts the same model of office Architecture that is used
by ASPES, and integrates this model with additional informations concerning the spatial
location of the architectural components in the office and their assignment to the office

167

workers. Moreover an implementational framework analogous to that used to represent
office Architectures can also be used to represent the other views of the office produced
within the Architecture Generation process, due to the uniform approach adopted by
AGEM to describe all the views of the office taken into consideration. The results of a
preliminary investigation concerning the feasibility of such an automatic tool are shown
in (TO DOS TR 4.3.3).

5. Appendix A: Conceptual Primitives

This appendix focuses on the conceptual primitives that have been identified within TO
DOS to specify the office activities (refer to eh. 3), and which apply to the informations
manipulated in the office (documents, messages, etc.). The list of conceptual primitives
is presented in Table A.I. These conceptual primitives represent the basic steps of the
office activities, and can be combined together to define complex steps by using control
structures, like decision structures, looping structures, etc.

In order to generate office Architectures, the conceptual primitives listed in Table A.I
must be mapped into services to be provided by the components of the Architecture being
defined 7

COMPUTE

COPY
CREATE
EDIT
MODIFY
PRINT
REFER
REMOVE

RETRIEVE
TRANSMIT

Table A.1 - Conceptual Primitives

6. Appendix B: ServiCes

This appendix focuses on the services that support the work done in the office. A service
is a facility offered by a software product running on an appropriate hardware which
is constituted by at least one computer and, possibly, by additional input-output and
secondary-memory peripherals; furthermore it is equipped with all the software packages
required to run that particular software product. Remark that the selection of the software
and hardware products to be included in the Architecture in order to satisfy the office
requirements is one of the crucial points of the Architecture Generation, and that another
important problem consists just in the identification of the services that are suitable for
implementing the conceptual primitives characterizing the office activities.

In the following we will concentrate on the basic services provided by the application
software, since they seem to us the most significative ones for the Architecture Genera
tion. Therefore we will disregard in the sequel both the services provided by the operating
system and other basic software, and the services provided by the advanced application

7 See Appendix B.

168

packages (like time schedule, project planning, etc.). The basic software, in fact, consti
tutes the standard software equipment for computers, and hence it does not require any
choice from the Architecture designer during the Architecture Generation process. On
the other hand, the inclusion of advanced application packages in the software equipment
of the computers of the Architecture improves the facilities offered by the Architecture
but does not influence the definition of its form.

The application software covers different categories of tools, that we shall call in the
sequel Office Support Tools. Table B.1 gives a list of these categories, while Table B.2
sketches a list of services provided by each of them. Remark that the class LANGUAGE
that appears in Table B.1 provides the union of all the facilities offered by the other Office
Support Tools (these facilities, in fact, can all be obtained through the construction of
appropriate programs), thus, without entering into details concerning the selection of the
most appropriate commercial languages for the office needs, a LANGUAGE represents
the default solution for every requirement of application software in the office. A list of
parameters that characterize the services presented in Table B.2 is shown in Table B.3.

LANGUAGE
WORD PROCESSING
DBMS

Table B.I - Office Support Tools

GRAPHICS TOOL
SPREADSHEET
ELECTRONIC MAIL
OFFICE ADVANCED TOOL

Table B.2 - Services offered by the Office Support Tools

LANGUAGE

(the union of all the facilities listed below)

WORD PROCESSING

create file
edit file
display file

DBMS

create database-record-type
edit database-record-type
modify database-entry
print database-report

GRAPHICS TOOL
edit graphic-data

SPREADSHEET
edit spreadsheet

ELECTRONIC MAIL
send/receive

delete file
retrieve file
copy file

delete database-record-type

create database-entry
edit database-entry
query database

process graphic-data

process spreadsheet

OFFICE ADVANCED TOOL

(advanced facilities: not considered here)

modify file
spell file
print file

modify database-record-type

delete database-entry
display database-report

visualize graphic-data

visualize spreadsheet

169

While performing the Architecture Generation a mapping between the conceptual
primitives proposed in Appendix A and the services pointed out in this appendix is
required in order to bridge the gap existing between them, which is originated by the
different abstraction levels they are concerned with when modelling the office. A list of
possible correspondences is proposed in Table BA. Note that the established mapping is
one-to-many: in fact the same conceptual primitive can be translated into several different
services (see, e.g., EDIT), according to the management policy decided for the information
to which it applies. The selection of the management policy concerns Step 1 of AGEM,
and is left to the Architecture designer.

Table B.3 - Parameters characterizing the Services offered by the Office Support Tools.

copy file (file-size, periodicity)
create database-entry (data-size, periodicity)
create database-record-type (data-size, periodicity)
create file (file-size, periodicity)
delete database-entry (data-size, periodicity)
delete database-record-type (data-size, periodicity)
delete file (file-size, periodicity)

display database-report (data-size, periodicity)
display file (file-size, periodicity)
edit database-entry (data-size, periodicity)
edit database-record-type (file-size, periodicity)
edit file (file-size, periodicity)
edit graphic-data (data-size, periodicity)
edit spreadsheet (data-size, periodicity)
modify database-entry (data-size, periodicity)
modify database-record-type (data-size, periodicity)
modify file (file-size, file-percentage, periodicity)
print database-report (data-size, periodicity)
print file (file-size, quality, periodicity)
process graphic-data (data-size, periodicity)
process spreadsheet (data-size, periodicity)
query database (data-size, pe.riodicity)
retrieve file (file-size, periodicity)
send/receive (message-size, periodicity)
spell file (file-size, periodicity)
visualize gl·aphic-data (data-size, periodicity)
visualize spreadsheet (data-size, periodicity)

170

Table BA - Correspondence Table between Conceptual Primitives and Services

COMPUTE
process graphic-data
process spreadsheet
spell file

EDIT
display database-report
display file
edit database-entry
edit database-record-type
edit file
edit graphic-data
edit spreadsheet

REFER
retrieve file

query database
edit graphic-data

edit spreadsheet

TRANSMIT
send/receive

COpy

copy file
query database
edit graphic-data
edit spreadsheet

MODIFY

CREATE
create database-entry
create database-record-type

create file
edit graphic-data
edit spreadsheet

PRINT
modify database-entry print database-report

modify database-record-type print file
modify file visualize graphic-data

process graphic-data
process spreadsheet

REMOVE
delete database-entry

delete database-record-type
delete file

visualize spreadsheet

RETRIEVE
query database

retrieve file
edit graphic-data

edit spreadsheet

Chapter 5 - Part II

Architecture Specification in TODOS
Donatella Castelli, Carlo Meghini, and Daniela Musto

1. Introduction

This paper introduces the Architecture Specification System (ASPES), a computer tool
which assists the designer in last step of the Architecture Generation phase of the TODOS
methodology. ASPES provides an interactive environment, accessible through a graphical
interface, to incrementally define the specific hardware and software machinery to be
used in the office architecture being designed. In addition, ASPES guarantees that the
architecture being incrementally constructed by the designer is feasible, that is it consists
of components that can be effectively combined together.

ASPES is implemented as a knowledge based system which embodies knowledge on
commercial hardware and software components and on the possible ways of combining
these c:omponents into components of increasing complexity, up to the level of office ar
chitectures. Such knowledge is represented and manipulated via a procedural semantic
network, a powerful data structure which enriches the expressive power of semantic net
works with procedural attachment. The knowledge of ASPES is formally specified as first
order theory, called Architecture Specification Theory (AST), whose intended models are
the office architectures definable by means of ASPES. Such models must satisfy two basic
requirements: on the one hand they must be able to represent real world Architectures
whose functionality can be matched with the architectural constraints implicitly stated
in the conceptual schema and in the requirements database; on the other hand they
must represent architectures at the level of detail suitable to represent the conditions of
compatibility and connect ability among architectural components.

The paper consists of three major parts: in Section 2, the model which inspires AST
is informally introduced, by illustrating the concepts that have been thought as relevant
in representing Architectures. This model is then formalized in Section 3, as a first
order theory, whose intended models are office Architectures, and represent the formal
counterparts of the Architecture concepts previously introduced. For space reasons, the
formalization in Section 3 regards only a part of the informal model, but a significant
one, which includes all the relevant aspects of Architectures. In Section 4, a prototypical
implementation of ASPES is described. The implementation consists of an assistant in
Architecture specification, that is a computer program that supports the user in the
construction of a model for our Architecture theory, and of a graphical interface, which
makes the interaction between the user and this program easier.

2. A Model of Office Architectures: Informal View

Our model views an office Architecture as consisting of interconnected hardware compo
nents, supporting the operations of software components. A hardware component is any

172

physical device that can be employed in an information system Architecture; computers,
input/output peripherals, local area networks are typical hardware components. Soft
ware components are the software packages that run on the computers of Architectures,
performing tasks that determine the functionality of hardware components. The connec
tions among hardware components may be point-to-point or multipoint. A point-to-point
connection is a physical link between two hardware components that allows the communi
cation between them. A multipoint connection enables the communication among several
hardware components, so establishing a computer network.

In modelling multipoint connections, we restrict to Local Networks, which typically
provide interconnection of a variety of data communicating devices within a small area.
Furthermore, among the various categories of Local Networks that have been proposed
(Stalling 1984), our model includes only Local Area Networks, which are the most appro
priate for the kind of communication under consideration. Therefore, from a structural
viewpoint, Architectures, in their most general form, are modelled as consisting of Local
Area Network which communicate between each other through common hosts. In or
der to avoid any confusion between a Local Area Networks seen as a set of hosts, and
the hardware machinery that is employed to establish such a network (cables, receivers,
absorbers and the like), we will use the term 'Office Network' for the former, while re
serving the word 'LAN' for the latter. An Office Network is a set of hosts, or Subsystems,
where a Subsystem is constituted by one or more computer Units, which may be point
to-point connected to peripheral Units. This view determines a top-down decomposition
of Architectures through four levels:

(1) Architecture level, where Architectures are defined in terms of Office Networks;
(2) Office Network level, which we will simply call Network level, where Office Networks

are defined assets of interconnected Subsystems;
(3) Subsystem level, comprising the definition of Subsystems as sets of point-to-point

connected hardware Units; and
(4) Unit level, the lowest level, where Units are defined as instances of commercial hard

ware and software components.

The set of commercial hardware and software components whose instances can be
employed in an Architecture is included in the CataI0Kue. The Catalogue also contains
the relationships among components which are relevant in the definition of Architectures,
such as, for instance, compatibility relationships. Any element of the Catalogue that is
to be included in an Architecture must then first be instanciated1 through an apposite
Unit. Since the same architectural component may appear in several different places of an
Architecture, the instance relation between the Catalogue elements and Units is clearly
one-to-many: many Units may be instances of the same Catalogue object, and a Unit must
be instance of exactly one Catalogue element.

2.1. Architectures

Architectures may be of two kinds: simple Architectures, which consist of just one Sub
system, and Complex Architectures, which consist of a (non empty) set of communicating
Office Networks. Simple Architectures capture the special case of an office information
system supported by point-to-point connected devices. This may be the case of a single
workstation directly connected with few peripheral devices, as well as that of a mainframe
supporting a number of more or less intelligent terminals. In general, an Architecture is
expected to be of the Complex kind, with its constituting Office Networks corresponding
to the branches of the office.

1 We use the term 'instanciate' as a synonym of 'create an instance'.

173

2.2. Office Networks

Office Networks can be characterized in terms of topology, which may be a bus, ring, or
tree topology. A Subsystem is connected to an Office Network through an 'escape Unit',
that is a computer Unit of the Subsystem which is directly linked to the Office Network.
Of this connection, we abstract the details concerning transceivers and transceiver cables,
as they are not relevant to our framework. There is, however, a notion of compatibility in
LAN connections that must be represented, as not any computer Unit can be connected
to any LAN. To this end, we introduce the concept of network interface and associate it
with those of computer and LAN, as follows: a computer has a set of network interfaces,
whereas a LAN requires one of a set of network interfaces. Now we can define a computer
to be compatible with (hence connectable to) a LAN if it has, or can have by expansion,
at least one of the network interfaces required by the LAN. The basic configuration of.·a
particular computer may not have a certain network interface, but the computer may be
later expanded in order to acquire that interface, and this must be taken into account in
defining the notion of network compatibility. We will return on the concept of computer
expansion when detailing the Unit level of our decomposition.

2.3. Subsystems

Subsystems are hosts of Office Networks, and model the simplest form of aggregation of
Units that can be found in an Architecture, i.e. that established through point-to-point
connections. The presence of at least one computer in a Subsystem guarantees the 'au
tonomy' of the Subsystem. In fact, whether the Subsystem is a host of an Office Network,
or it stands alone, thus representing the simplest form of Architecture, it must necessarily
have a. computer in order to be able to operate. Another important constraint on the
definition of a Subsystem is that there be no isolated Units within the Subsystem. This
constraint can be expressed more formally by viewing a Subsystem as an undirected graph
whose nodes represent the Units and whose arcs represents the point-to-point connections
of the Subsystem, and imposing a condition, that we call seriality, on the graph, which
says that there must be a path from any node of the graph to any other node.

Similarly to LAN connections, point-to-point connections are represented by introduc
ing the concept of external interface: a point-to-point connection between two hardware
Units is established by relating an appropriate external interface of each Unit. There is
of course a notion of compatibility also at the Subsystem level, which is stated in terms
of point-to-point connectable external interfaces. Since an external interface is always
associated to exactly one hardware component, this is equivalent to declare which com
ponents may be linked to each other when making up a Subsystem. As already pointed
out, point-to-point connections may in general be established either between computers
or between a computer and any kind of peripheral; the only allowed peripheral-peripheral
connection is that between magnetic disks.

2.4. Units

A Unit is a member of a Subsystem and an instance of one Catalogue object. There is
one kind of Unit for each kind of objects that are in the Catalogue, and one relationship
between Units for each Catalogue relationship that is structurally relevant in the con
struction of an Architecture. For instance, the relationship between a certain computer
and its network interfaces is relevant in the construction of Architectures, as it describes
the ability of the computer to participate in an Office Network; thus an instance of that
computer will be associated to an instance of each one of its interfaces through a relation
that mirrors at the Unit level the Catalogue relation between computers and their network

174

interfaces. The same applies to external interfaces. In other words, a Unit is given all the
relevant properties of the Catalogue object that it instanciates. In addition, a computer
Unit may acquire further properties by being expanded.

Expanding a computer Unit means to increase one of the computer's functionalities by
adding an appropriate device to the computer. This device may be a hardware component
or a software package. In the former case, we have a hardware expansion, whereas in the
latter we have a software expansion. The notion of expansion captures an operation
that the current technology has made very common in the practice of computer systems
configuration. For this reason, a considerable number of expansions are currently possible.
We have limited the hardware expansions to the following kinds:

- coprocessor, that is the installation on a computer of an additional CPU;
- maID memory;
- diskette, that is the addition of a diskette drive;
- fixed disk, that is the addition of fixed disk drive or the augmentation of the storage

capacity of an existing fixed disk drive;
- cartridge, similar to the diskette expansion;
- external interface;
- network interface.

Regardless of its kind, a hardware expansion is modelled through the concepts of
expansion slot and expansion board. In particular, each computer of the Catalogue is
associated (via an apposite relation) with a set of expansion slots; each of these slots
may be used for an expansion, that is it can be occupied by an expansion board, where
an expansion board is a Catalogue object which bears some other component(s). Which
expansion boards can be placed on which expansion slots is told by hardware expansion
compatibilities, which associate expansion slots to the expansion boards that can be in
stalled on them. Although the information needed for performing expansions is contained
in the Catalogue, an expansion is a notion associated to a Unit, hence a concept of the
Unit level.

The representation of software expansions requires less conceptual machinery, as the
installation of a program on a computer does not involve the manipulation of any physical
device. In fact, the only relation needed to model software expansions in the Catalogue
is one which states software expansion compatibilities; these are richer than their hard
ware counterparts, as each of them describes: the operating system, the amount of main
memory and the set of software packages that are required in order to install a certain
software package on a certain computer. A software expansion is performed as an hard
ware expansion, that is by associating via an apposite relation the expanded computer
with the installed software package.

2.5. The Catalogue

We have already introduced all the elements that comprise the Catalogue. To summa
rize, the Catalogue consists of two parts. The first maintain the hardware and software
components whose instances are used to build Architectures, along with the relationships
among such components. For instance, computers, their network and external interfaces,
and their expansion slots are in this part of the Catalogue.

The second part of the Catalogue gives the compatibilities among components, and
is consulted in the construction of higher level architectural objects, like expanded Units
and Subsystems. As we have seen, there are the following kinds of compatibilities:

(a) pojnt-to-point compatibilities, stating which external interface can be connected to
which external interface in order to establish a point-to-point connection between two
hardware devices;

175

(b) hardware expansion compatibilities, asserting which boards can be placed on which
slots in performing a hardware expansion to a computer;

(c) software expansion compatibilities, describing under which conditions a software
package can be installed on a given computer.

3. A Theory of Architectures

In this section we will present a formalization of the concepts introduced in the previous
section by defining the Architecture Specification Theory (AST), a first order theory whose
intended models are office information system Architectures. The first order language of
our theory of Architectures is called Architecture Specification Language (ASL). The
ASL symbols, grouped by level they refer to, are given in Appendix A, together with an
informal description of the intended meaning of each of them. In the next section, we will
give the proper axioms of our theory of Architectures.

3.1. Axiom System

As for the definition of the predicate symbols of the language in Appendix A, we will
group the axioms of our Architecture theory by level, and provide a brief and informal
explanation when required. In order to improve the readability, in this section we will list
only some of the AST axioms. The missing axioms are given in Appendix B. As we have
set- and number-theoretic symbols in our language, we should provide axioms also for
number theory and set theory. To avoid the repetition of well-known axiom systems, we
assume that one of the proposed axiomatizations of formal number theory and set theory
be included in the logical axioms.

3.1.1. Catalogue Axioms

The Catalogue axioms concern the hardware and software components whose instances are
to be used in the construction of Architectures, and the compatibility of these components.

The most important among hardware components are computers and peripherals,
whose properties are given by the following axioms:

(Vx)(Computer(x) :::) (3XIX2X3X4X5XSX7)(H as_Slot(x, xt) A

H as_ExternaLInter jace(x, X2) A Has_N etwork_Inter jace(x, X3) A

Has_M emory(x,x4) A H as_Peripheral(x,xs) A

H as_Operating_System(x, xs) A Has_Sojtware(x, X7)))
(Vx)(Peripheral(x) :::) (3xt)H as-ExternalJnter jace(x, xt))

The first axiom says that a computer must necessarily be associated to an expansion slots
set, an external interfaces set, a network interfaces set, an amount of main memory, a
peripherals set, an operating system, and a software packages set. The second axiom
states that only external interfaces are to be associated to peripherals.

Each property may have a unique value, and this is enforced by the property unique
ness axioms, an example of which is:

(Vxy)(H as_Slot(x, y) :::) (Vz)(H as_Slot(x, z) :::) Same_Set(y, z)))

where Same_Set(y, z) is true if and only if y and z denote the same set.
The other property uniqueness axioms can be found in Appendix B. An expansion

slot may not belong to more than one computer, and the same applies to external and
network interfaces, and to peripherals. The next axiom, and the similar ones in Appendix
B, express the disjointness of the appropriate sets:

(VXIX2X3X4)((H as_Slot(xI, X3) A H as_Slot(x2' X4)) :::)
(3y)((Member(y, X3) A M ember(y, X4)) :::) (Xl = X2)))

176

The other hardware components of the Catalogue are expansion boards, defined as
follows:

(Vx)(Board(x) :J (3xJ)(Bears_ExternaLlnter jace(x,xJ) ®
Bearsfi etworkJnter jace(x,xJ) ® Bears-Memory(x,xJ)))

where the exclusive or connective is used to express the fact that an expansion board is
only one of external interface, network interface, main memory expansion board.

As far as compatibility is concerned, it has been already pointed out that there are
three kinds of compatibility: expansion, point-to-point, and network compatibility. An
expansion compatibility may be hardware or software. The former are declared through
the Hw-Expansion_Compatible predicate. In order to guarantee the meaningfulness of
hardware expansion compatibilities, it must be enforced that the involved slot effectively
belongs to the involved computer, as stated by the axiom:

(Vxyz)(H w-Expansion_Compatible(x, y, z) :J (3u)(H as-Blot(x, u) A M ember(y, u)))

where x stands for a computer, y for a slot and z for an expansion board. Software
expansion compatibilities are a bit richer assertions, which involve the operating system,
the amount of main memory, and the software packages that a computer must have in
order to be expanded with a software package. As a consequence, the meaningfulness
of a software compatibility is more complex to express. It amounts to say that: (a) the
computer is required to support a specific operating system; (b) the computer must have
at least the amount of memory required by the compatibility, or it must be expandable
to reach such amount; and (c) the computer must have all the software packages required
by the compatibility, or it must be software expandable to acquire such packages. Here
is the axiom:

(VX1X2X3X4X5)(Sw-Expansion_Compatible(xl, X2, X3, X4, Xli) :J

H as_Operating-Bystem(Xl, X3) A

«3y)(H as-M emorY(Xl, y) V «3zu)Hw-Expansion_Compatible(xl, z, u) A

Bears-M emory(u, y)) A (y ~ X4))) A

(Vv)(M ember(v, X5) :J «3w)(H as-Bojtware(xl, w) A M ember(v, w)) V

(3t)Sw-Expansion_Compatible(xl' v, X3, X4, t)))))

We have used indentation to help the reading of this axiom, whose second line cor
responds to point (a) above, third and fourth to point (b), and fifth and sixth to point
(c).

The point-to-point compatibility is expressed by the PT P _Compatible predicate,
whose first and third argument are the connectable devices, i.e. either a computer or
a peripheral, whereas the second and fourth arguments are the external interfaces to be
used in the connection. Point-to-point compatibilities clearly enjoy symmetry:

(VX1X2X3X4)(PT P _Compatible(xl, X2, X3, X4) :J PT P _Compatible(x3, X4, Xl, X2))

and make sense only if the involved computers or peripherals have, or can acquire by
expansion, the involved external interfaces:

(VX1X2X3X4)(PT P _Compatible(xl, X2, X3, X4) :J

«3y)(Has-ExternaLlnter jace(Xl'Y) A M ember(X2, y)) V

(3yzw)(Hw_Expansion_Compatible(xl'y,z) A

(Bears_ExternaIJnter jace(z, w) A M ember(X2' w)))) A

«3y)(Has-ExternaIJnter jace(X3,y) A M ember(X4, y)) V

(3yzw)(Hw-Expansion_Compatible(x3' y, z) A

(Bears_ExternalJnter jace(z, w) A M ember(X4' w)))))

The third kind of compatibilities are network compatibilities, which assert, by means
of the Network_Compatible predicate, that a computer can be connected to a Local Area
Network. As for the compatibilities encountered so far, network compatibilities have a

177

special axiom that enforces their meaningfulness. In particular, the network compatibil
ity axiom guarantees that the involved computer has, or can acquire by expansion, the
required network interface and software package: .

(VXJX2X3X4)(N etwork_Compatible(xJ, X2, X3, X4) ::>
(((3y)(Has_Network_Inter face(xJ,y) " M ember(X3, y)) V

(3vwt)(Hw...Expansion_Compatible(xJ, w, v)"
(Bears_N etwork_Inter face(v, t)" M ember(X3, t))))"

((3z)(H as-Boftware(x, z)" Ai ember(X4, z)) V

(3urs)Sw...Expansion_Compatible(xJ, X4, U, r, s))))

The Catalogue axioms are completed by set-typing axioms, which can be found in
Appendix B.

3.1.2. Unit Axioms

Units are instances of Catalogue objects, therefore the language provides one Unit predi
cate symbol for each Catalogue object predicate symbol. The relationship between these
two predicate types is given by the instanciation axioms, that is axioms like the following:

(Vx)(Computer_Unit(x)::> (3xI}(Computer(xI) " Instance(xJ,x)))

The axioms like the previous one guarantee that any Unit is an instance of at least
one Catalogue object. In order to avoid the case where a Unit is an instance of two or
more Catalogue objects, the following axiom is needed;

(Vxy)(lnstance(x,y)::> (Vz)(lnstance(z,y)::> (x = z)))

Sets of Units mirror at the Unit level the corresponding sets of Catalogue objects.The
set-typing axioms in Appendix B guarantee that the member of Unit sets are in fact
objects of the appropriate type.

The definitions of computer, peripheral and board Units reflect those given at the
Catalogue level:

(Vx)(Computer_Unit(x)::> (3xJx2 x3x 4x sx6x7)(Has_SloLUnit(x,xI) "
Has_ExternaLInter face_Unit(x, X2)"
Has_Network_Inter face_Unit(x, X3)" H as_TotaLM emory(x,x4) "
Has_PeripheraLUnit(x, xs)" Has_Operating_System_Unit(x, X6)"
Has_Software_Unit(x,x7)))

(Vx)(PeripheraLUnit(x) ::> (3xI}Has...ExternalJnter face_Unit(x,xJ))
(Vx)(Board_Unit(x) ::> (3y)(Add_ExternalJnter face(x, y) ® AddJl emory(x, y) ®

AddJVetworLInterface(x,y)))

The predicate Add...ExternalJnter face for board Units is analogous to the predicate
Bears_ExternalJnter face for Catalogue boards, in that it associates to an external
interface board Unit the external interfaces that it brings when installed on a computer
Unit. The same applies to the AddJletworkJnterface and Add_Memory predicates.

The slot Unit set that is associated to a computer Unit upon instanciation, cannot
have as members arbitrary slot Units, rather its members must be one to one instances of
the slots associated to the Catalogue computer being instanciated. The same applied for
the peripheral Unit set and the Operating System of a Computer Unit. The next axiom
expresses this condition on the slot Unit set: .

(Vxy)(H as-BloLUnit(x, y) == (3XJX2)((H as-Blot(xJ, X2)" (lnstance(xJ, x))"
(Vx3x4)(lnstance(x3,x4)::> (Member(x3,x2) == Member(x4,y))))))

The same condition must be expressed for the external interface Units associated
to a computer or peripheral Unit, with the exception that an interface Unit may be also
acquired by expansion. Thus, the external interfaces of a Unit are those given upon instan-

178

ciation (indicated by the predicate Standard_ExternaLInterface), and those acquired
by expansion (indicated by Added_ExternaLInterface):

(Vxy)(H as_ExternaLInter face_Unit(x,y) ==
(3YlY2)(Standard-ExternaLInter jace(x, yt) A

Added_ExternaUnter jace(x, Y2) A (y = (Yl U Y2))))

The external interface Units given upon instanciation are one to one with the Cata
logue's external interfaces of the object being instanciated:

(Vxy)(Standard-ExternalJnter face(x, y) == (3xlx2)(lnstance(xl, x) A

H as_ExternaLInter face(xl,x2) A

(Vx4xS)(lnstance(x4' xs) :::> (M ember(x4' X3) == M ember(xs, y)))))

The external interface Units that the Unit has gained by expansions are collected from
the external interface expansions made to the Unit in question (expansions are explained
later):

(vxy)(Added_ExternaLInter jace(x,y) == (Vxt}(M ember(xl, y) :::>

(3X2X3X4)(Hw-Expanded(x,x2' X3) A M ember(xl, X4) A

Add.;.E xternaLI nter j ace(X3, X4))))

The Units brought by an external interface expansion board Unit must be instances
of the external interfaces brought by the Catalogue expansion board.

(vxy)(Add_ExternalJnter face(x, y) :::> (3zu)(Board(z) A Instance(z, x) A

Bears-ExternalJnter face(z, u) A (Vxlx2)(lnstance(x!) X2) :::>

(M ember(x!) u) == M ember(x2, y))))

Similar axioms hold for the network interface Units, the software Units and the main
memory of a computer Unit.

Finally, we have to deal with hardware and software expansions of computer Units.
Introducing the informal model, we have spoken of seven kinds of hardware expansions,
but we will deal here only with three kinds: main memory, external interface, and net
work interface expansion. These expansions are somewhat more important than the others
because they directly affect the possibility of building a larger number of Architectures
with the same machinery. In fact, by acquiring main memory, a computer Unit is able
to acquire new software by being software expanded, whereas by acquiring an external
(network) interface it gains the possibility of being connected to other computer or pe
ripheral Units (Office Networks). The axioms for the other hardware expansions quoted
in the informal model and not dealt with (coprocessor, diskette, cartridge and fixed disk
expansions), would be a more or less obvious application of the principles being described
here.

Hardware expansions are represented by instances of the Hw_Expanded predicate.
Two constraints must be expressed on hardware expansions: first, the same slot may be
used only for one expansion, which is to say that an expansion can be made only if the
involved slot has not been used for another expansion:

(Vxyz)(H w_Expanded(x, y, z) :::> (Vxt}(Hw-Expanded(x, y, xt) :::> (Xl = z)))

Second, an expansion may be made only if there is an appropriate expansion com
patibility among the Catalogue objects whose instances are the Units involved in the
expansion:

(Vxyz)(H w-Expanded(x, y, z) :::>

(3XIX2X3)(Hw_Expansion_Compatible(xl' X2, X3) A

Instance(x!) x) A Instance(x2' y) A Instance(x3' z)))

Software expansions are stated through the Sw_Expanded predicate, which relates a
computer Unit to the software package Unit with which it is being expanded. A software

179

expansion is legal if there is a software compatibility in the Catalogue involving the appro
priate computer and software package, such that: (a) the computer and software package
Units are instances of the computer and software package that appear in the software
compatibility; (b) the operating system Unit of the computer Unit under expansion is an
instance of the operating system that appears in the software compatibility; (c) the total
memory of the computer Unit under expansion is greater than or equal to the amount of
memory required by the expansion; (d) the computer Unit has among its software pack
age Units at least one instance of each software package required in the compatibility.
The next axiom expresses this constraint, by stating condition (a) above in its third line,
condition (b) in the fourth, (c) in the fifth, and (d) in the last two lines.

('Vxy)(Sw_Expanded(x,y) :::>

(3ZUVXIX2X3X4XS)(Sw_Expansion_Compatible(xl, X2, X3, X4, xs)"
Instance(xt, x)" Instance(x2' y)"
H as_Operating_System_Unit(x, z)" Instance(x3, z)"
H as_TotaLM emory(x, u)" (u ~ X4)"
('Vxe)(M ember(xe, xs) :::> (3t)(lnstance(xe, t)"
H as_Software_Unit(x, v)" M ember(t, v))))))

3.1.3. Subsystem Axioms
A Subsystem has been (informally) defined as consisting of a non empty set of point
to-point connected computer and peripheral Units, among which there is at least one
computer Unit. As a consequence of this definition, it turns out that a computer Unit is
in fact a Subsystem, although a 'simple' one, since it has no point-to-point connections.
Subsystems with one or more such connections may then be thought of as 'complex'
Subsystems. To this end, we have included in the language two predicate symbols to
represent Subsystems: one is Subsystem, which applies to all Subsystems, and the other
is Complex_Subsystem, which applies only to Subsystems with at least one point-to-point
connection. Both computer Units and Complex Subsystems are Subsystems, as stated by
the next axiom:

('Vx)(Subsystem(x) :::> (Computer _Unit(x) ® Complex_Subsystem(x)))

The definition of a Complex Subsystem is given by the following axiom:

('Vx)(Complex_Subsystem(x) :::> (3xt)(Has_Unit(x, xt)" Serially_Connected(xt)))

The predicate Has_Unit relates a Complex Subsystem to the set of Units that consti
tute it. A number of constraints hold for the set of Units of a Complex Subsystem. First,
only one such set can be associated to a Complex Subsystem:

(Vxy)(Has_Unit(x,y):::> ('Vz)Has_Unit(x,z)):::> Same_Set(y,z))

Second, since two Subsystems are not allowed to share Units, all the Unit sets of
Subsystems must be disjoint:

(VXZXIX2)((H as_Unit(xl' x) "H as_Unit(x2, z)) :::> (3y)((M ember(y, x) "
M ember(y, z)) :::> (Xl = X2)))

Third, the Units that are members of a Complex Subsystem may only be computer
or peripheral Units:

('Vxy)(Has_Unit(x,y):::> ('Vxl)(Member(xl,y):::> (Computer_Unit(xl)
V PeripheraLUnit(xt))))

Last, at least one of such Units must be a computer Unit:

('Vxy)(H as_Unit(x, y) :::> (3xt)(M ember(xl, y)" Computer _Unit(xt)))

The Units of a Complex Subsystem must be serially connected:

(Vxy)(H as_Unit(x, y) :::> Serially_Connected(y))

180

that is, any Unit of a subsystem can be reached from any other Unit by following point
to-point connections. This condition avoids the partition of the Complex Subsystem into
isolated fragments, and is guaranteed by the following axiom, which just says that any
pair of Units of a Unit set must be reachable from each other:

(Vx)(Serially_Connected(x) == (Vxlx2)«M ember(x" x) A M ember(x2' x» ::::>

Reachable(x" X2»)))
In the simplest case, two Units are reachable if they are point-to-point connected:

(Vxyuv)(PT P _Connected(x, y, u, v) ::::> Reachable(x, u»
Furthermore, two Units are reachable if they are point-to-point connected to the same

Unit, which is to say that the reachability relation is transitive. It is clearly also reflexive
and symmetric, hence the following axioms hold:

(Vx) Reachable(x,x)
(Vxy)(Reachable(x, y) ::::> Reachable(y, x»
(Vxyz)«Reachable(x,y) A Reachable(y, z» ::::> Reachable(x, z»
We have already introduced the PT P _Connected predicate, which relates two point

to-point connect Units, and the external interface Units directly involved in the connec
tion. The external interface Units that appear in a point-to-point connection must belong
to the external interface Unit set of the connected Units:

(Vxyuv)(PTP _Connected(x,y, u, v) ::::> (3x,x2)(Has-ExternalJnter jace_Unit(x,x,) A

H as_ExternalJnter jace_Unit(u, X2) AM ember(y, Xl) A M ember(v, X2)))
Between two Units there cannot be more than one point-to-point connection:

(Vxyuv)(PTP_Connected(x,y,u,v)::::> (Vzw)(PTP_Connected(x,z,u,w)::::>
«z = y) A (v = w))))

A point-to-point connection is bidirectional:

(Vxyuv)(PTP _Connected(x,y,u, v) ::::> PTP _Connected(u, v,x,y»
Finally, a point-to-point connection may be established only if there is a compatibil

ity assertion between the involved computer and/or peripheral Units. As point-to-point
compatibility is stated in terms of Catalogue objects, the axiom that enforces the com
patibility condition is:

(Vxyuv)(PTP _Connected(x,y, u, v) ::::> (3x,x2x3x4)(Instance(xI,x) A Instance(x2, u) A

Instance(x3,y) A Instance(x4, v) A PTP _Compatible(x"x3,x2' X4)))

3.1.4. Network Axioms

Network axioms concern the Office Networks that appear in an office Architecture. These
Networks consist of three parts: the LAN Unit, which is an instance of the hardware
machinery employed in the realization of the Network; the set of Subsystems which con
stitute the Network; and the set of connections, called LAN-connections, from an element
of each Subsystem to the Network Unit. This is reflected by the axioms that defines Office
Networks:

(Vx)(O j jice-.N etwork(x) ::::> (3XIX2)(H as-LAN(x, X2) A

Has_Subsystem(x,xd A HoStS(XI,X2)))
The Has-LAN predicate relates an Office Network to the LAN Unit upon which the

Network is realized. No two LAN Units may be used to realize the same Office Network:

(Vxy)(Has-LAN(x,y)::::> (Vz)(Has-LAN(x,z)::::> (y = z)))

The predicate H as..8ubsystem relates an Office Network to the set of Subsystems
that constitute the Network. As for LAN Units, no two Subsystem sets may belong to
the same Network:

181

(Vxy)(H as_Subsystem(x, y) ::> (Vz)(H as_Subsystem(x, z) ::> (y = z)))

The Hosts predicate is used in the language to associate the set of Subsystems of an
Office Network with the Network's LAN Unit. This connection is made explicit through
the LAN _Connected predicate, which is used in the axiom below to state which property
must satisfy each member of a Subsystem set:

(Vxyz)((Hosts(x,y) /\ M ember(z, x» == (3uv)LAN _Connected(z, u, v, y»

Strictly speaking, only the third and fourth argument would have sufficed to repre
sent a LAN connection; these are the network interface and the LAN Unit which are
at the two ends of the connection. To enrich the information carried by instances of
the LAN_Connected predicate, we have included also the specification of the Subsystem
and of the computer Unit. This redundancy makes necessary two consistency conditions.
First, the computer Unit must be a Unit of the Subsystem. Second, the network interface
Unit used in the connection must belong to the computer Unit. These two conditions are
expressed, in the order, by the next two axioms.

(Vxyzu)(LAN _Connected(x,y, u, z) ::> (3xd(Has_Unit(x,xd /\ M ember(y, xd»
(Vxyzu)(LAN _Connected(x, y, u, z) ::>

(3xd(Has-NetworkJnter jace_Unit(y,xd /\ Member(u,xd»

No two computer Units of the same Subsystem may be connected to a LAN Unit:

(Vxyzuvw)((LAN_Connected(x, y, v, z) /\ LAN _Connected(x, u, w, z» ::> (y = u»

The same network interface Unit may not be used for more than one LAN connection:

(Vxyzvw)((LAN_Connected(x, y, v, z) /\ LAN_Connected(x,y, w, z» ::> (v = w»

Finally, in order to establish a LAN connection, the appropriate network compatibility
must hold among the Catalogue objects whose instances are used in the connection, and
the involved computer must have, among its software package Units, an instance of the
required software package:

(Vxyzu)(LAN _Connected(x, y, z, u) ::> (3XIX2X3x4v)(lnstance(xl, y) /\
Instance(x2' z) /\ Instance(x3, u) /\ H as_Sojtware(y, v) /\
M ember(w, v) /\ Instance(x4' v) /\ N etwork_Compatible(xt, X2, X3, X4)))

3.1.5. Architecture Axioms
An Architecture has been defined as a set of zero or more Office Networks, which commu
nicate through common Subsystems. An Architecture with zero Office Networks is meant
to consist of just a single Subsystem. In order to represent this situation, our Archi
tecture specification language distinguishes between two kinds of Architectures: general
Architectures, represented via the Architecture predicate, which applies to all the legal
Architectures; and Architectures with at least one Office Network, represented through
the Complex_Architecture predicate. The relationships among these two kinds of Archi
tectures and Subsystems is given by the following axiom:

(Vx)(Architecture(x) ::> (Subsystem(x) ® Complex-Architecture(x)))

A Complex Architecture is made up by a set of Office Networks sharing Subsystems
for communication:

(Vx)(Complex-Architecture(x) ::> (3xd(H as_N etwork(x, xI) /\ Communicate(xl)))

The H as-N etwork predicate associates a Complex Architecture with the set of Office
Networks that constitute it. Clearly, an Architecture can have only one set of Office
Networks:

(Vxy)(H as-N etwork(x, y) ::> (Vz)H as-N etwork(x, z) ::> (y = z)))

whereas two different Architectures cannot have the same Office Network set:

182

('Vxyzv)((H asfl etwork(x, y)" H as_N etwork(z, v» :::>

(3w)((Member(w,y) " Member(w,v»:::> (x = z»)

The Office Networks of an Architecture must communicate:

('Vx)(H as_N etwork(x, y) :::> Communicate(y»

that is, any two Networks of an Architecture must be reachable from each other, vIa
common Subsystems:

('Vx)(Communicate(x) == ('VX1X2)((M ember(xl, x)" M ember(x2, x» :::>
Connected(xh X2))))

The behaviour of the Connected predicate is defined analogously to that of the
Reachable predicate between Subsystems. In the simplest case, two Office Networks
communicate if they share at least one Subsystem:

('Vxy)(O f fice_N etwork(x) " 0 f fice_N etwork(y) "
(3XJX2Z)(H as_Subsystem(x, xt)" H as_Subsystem(x, X2)"
Member(z,xt} " Member(z,x2»:::> Connected(x,y»

The general case is handled by stating the transitivity of the Connected predicate
(symmetry and reflexivity follow from the previous axiom):

('Vxyz)((Connected(x, y)" Connected(y, z» :::> Connected(x, z»

4. Architecture Specification System

The Architecture Specification System (ASPES) is a computer program that supports
the definition of Architectures as models of the Architecture Specification Theory. The
user of the current implementation of ASPES is the designer of the office system, who
incrementally makes up the Architecture of the office being designed by interacting with
the ASPES interface. By doing so, the designer will obtain a formal specification of his
Architecture, being at the same time guaranteed on the feasibility of such Architecture
with respect to the compatibility of the employed hardware and software components.
Such formal specification will be used either as an unambiguous description of the future
office Architecture and as input to the Architecture selection phase.

This section is structured as follows: first, a brief description of the implementation
language that has been employed to realize ASPES is be given. Then the structure of an
ASPES knowledge base will be sketched, along with the operations that are provided to
construct an Architecture. Finally, the ASPES user interface is illustrated. A presentation
of ASPES implementation can be found in (Castelli et al. 1988). For a more detailed
exposition, see (TODOS TR 4.3.4).

4.1. The Implementation Language

PSN (Levesque and Mylopoulos 1979) is a knowledge representation language that formal
izes traditional semantic network concepts within a procedural framework. PSN provides
the mechanisms for representing and manipulating objects and binary relationships be
tween them, according to the modelling principles of object oriented languages. These
principles can be summarized as follows:

(1) there is a one-to-one correspondence between the objects in the reality being modelled
(in our case office information system Architectures) and the model objects, and
between the real world (binary) relationships and the model relationships;

(2) three of these relationships are factored out and used as abstraction mechanisms that
permit the organization of the knowledge in the model; they are:

183

(2.1) the instance-of relationship, corresponding to the classification abstraction mech
anism, by which objects with common properties are gathered into classes; an
object is then an "instance-of" the class it belongs to; in turn, classes may be in
stances of metaclasses. Metaclasses help the organization of meta level knowledge,
allowing, among other things, the definition of properties of classes.

(2.2) the part-of relationship, corresponding to the aggregation abstraction mechanism,
by which an object is seen as the aggregate of the objects which are related to it;
these relations can be further divided into structural (the ones that "constitute"
the object, also called properties), and assertional (those that merely make an
assertion about the object, and can be later retracted) (Woods 1975);

(2.3) the is-a relationship, corresponding to the specialization abstraction mechanism,
by which a class of object is seen as a special case (or subclass) of another class;
the former class is then "is-a" the latter.

The three abstraction mechanisms interact with each other by means of inheritance:
a subclass inherits all the properties defined by its superclasses, whereas an instance of a
subclass is also an instance of its superclasses.

Four operations are possible on PSN classes:

- create an instance of a class, realized by the to-put procedure associated to the class;
- remove an instance from a class, performed by the class to-rem procedure;
- get all the instances of a class, for which the to-get procedure is defined;
- test whether an object is an instance of a class, corresponding to the to-test procedure.

These procedures give the semantics of the class, as they interpret the class structure
in the intended way. The PSN interpreter provides a standard procedure for each of the
four operations, to be used when the semantics of a class is standard. However, a class
may be given a non standard semantics by specifying ad hoc programs to perform one or
more of its four operations. This feature gives to PSN classes the flavor of abstract data
types 2, and turns out to be an elegant way of embodying procedural knowledge into a
knowledge base.

4.2. ASPES Knowledge Bases

In order to support the construction of models of AST, ASPES relies on a number of
procedures that enforce the constraints corresponding to the axioms of AST upon a given
interpretation of ASL. These procedures carry out their task by manipulating the rela
tions that interpret the ASL predicate symbols. The collection of the PSN definitions of
the axiom enforcement procedures, of the relations interpreting the ASL predicates, and
the relationships between these two, is the ASPES Kernel Knowledge Base. An Archi
tecture, i.e. an AST model, is an ASPES Knowledg.e Base (KB), which is generated from
the kernel KB by providing an extension (or state), that is a set of tuples to each relation
definition, that is by specifying which are the constant values that satisfy the correspond
ing predicate. Different Architectures are obtained from the kernel KB by varying the
extension of the interpreting relations.

As we have seen in the previous section, a unary relation can be naturally represented
in PSN as the extension of a class, i.e. as the set of the instances of a class. Therefore,
every ASL unary predicate symbol is interpreted in an ASPES KB by the extension of a
PSN class, which we call the class interpreting that predicate. In order to maintain an
intuitive link between ASL and its interpretation, a PSN class is given the same name as
the predicate symbol that it interprets. But to avoid any confusion between the language
and its interpretation, we will use for class names a font different from that of predicate

2 PSN does not have the concept of type

184

symbols. For instance, objects representing computers are represented in an ASPES KB
as instances of the class Computer, which interprets the ASL predicate symbol Computer.

The PSN class mechanism has also been used to circumvent the semantic networks
idiosyncrasy in representing relations with an arity greater than two. The problem has
arisen in our context when giving the semantics to n-places predicate symbols, with n
greater than two, like for instance the Hw_Expansion_Compatible and the Hw_Expanded
predicate symbols, both 3-placed. In these cases, a class with n slots has been used,
each slot corresponding to one and only one position of the n-place predicate symbol
interpreted by the class.

Two-place predicate symbols of ASL are represented in PSN in two different ways: as
properties (or PSN slots), if such predicate symbols must be interpreted as representing
structural attributes of components; as assertions (or PSN relations), if they are to be
intended as representing time varying statements. For instance, as we want to give a
structural meaning to the HaS-.ExternaLlnterface predicate symbol, relating a computer
to the set of its external interfaces, the slot Has_ExternaLInterface has been defined
for the class Computer. On the contrary, as the set of the external interface Units of
a computer Unit may vary due to the fact that some of these interface Units may be
used for point-to-point connections, the interpretation of the Has_ExternaLlnterface_Unit
predicate symbol has been realized as a relation having the class Computer_Unit as domain
and the class ExternaLInterface_Uni t as range.

The enforcement of the constraints which are the model theoretic counterparts of the
AST axioms, is performed in two ways: either implicitly by the PSN interpreter, for those
constraints that turn out to be inherent to PSN, or explicitly by a PSN program, for the
other constraints. Of course, by PSN program we mean one of the four programs that can
be attached to a PSN class. The constraints corresponding to typing axioms for two-places
predicates fall in the first category, and are automatically enforced by the PSN interpreter,
as these predicates are represented as PSN links (whether slots or relationships), whose
specification correctness is checked by the PSN interpreter. The same can be said for
the constraints corresponding to some axioms on the uniqueness of attribute values: if
such attributes are represented as PSN slots, then the PSN interpreter guarantees that
only one value is given for such slots. Instead, there is no such automatic checking for
relations, so, when required, the uniqueness of a pair must be explicitly controlled by the
non-standard "to-put" procedure associated to the involved assertion class. This is also
the case of all the non-inherent constraints, which, as we will see later in this section, are
usually checked by non-standard "to-put" procedures.

So far we have described how an interpretation of AST is realized in PSN, and how it
is handled by PSN programs in order to guarantee that it is in fact a model of AST. But,
as we have already mentioned, in order to maintain the theory at a reasonable level of
compactness and readability we have presented a simplified version of AST. An ASPES
KB is so much richer in semantics than a model of the illustrated theory. In particular in
addition to what has been presented so far, an ASPES KB contains also:

(1) a set of properties defined for hardware and software components classes, which we
call descriptive properties. Descriptive properties are not involved in the construction
of an Architecture, but are there in order to give more information on hardware and
software components to the ASPES user. An examples of a descriptive property is
the Has-Display property, which associates a computer with its display. Of course,
the introduction of such properties requires the introduction the classes where they
range, like the class Display required by the Has_Display property. Both descriptive
properties and their range classes can be formalized in AST as the other properties
and classes of an ASPES KB, e.g. as binary and unary predicates with the appropriate
typing and uniqueness axioms;

185

(2) a subdivision of components and Units for representing more specific functionali
ties. Computers, for example, are divided in PersonaLComputer, Network-Server,
Word_Processor, Integrated_Workstation, Mini-Computer, Main-Frame. This level
of granularity of knowledge is required in order to have a meaningful representation
of Architectures with respect to the aims of Architecture Design within the TODOS
methodology. This subdivision can be formalized proof theoretically by axioms that
have the form of an implication, whose antecedent is the unary predicate representing
the less general relation, and whose consequent is the unary predicate representing the
more general relation (Reiter 1984). The PSN is-a relation allows to easily implement
these refinement relations by partially ordering the classes in a is-a hierarchy accord
ing to their functionality, with the most general class representing the least specified
functionality. The introduction of the is-a hierarchy requires the introduction of new
classes, which can be understood as partial specifications of the is-a leaves.

4.3. Implementational Remarks

In this section we will present some implementation details of the ASPES kernel knowledge
base in order to illustrate the use of PSN in implementing an Architecture builder system.

A PSN metaclass is a class whose instances are classes. Metaclasses have been intro
duced in the ASPES KBs for two reasons. First, they have been used as "handles" for
set of classes; this turns out to be very useful in dealing with higher order functions, as
the enforcement of constraints like 'there must exist a compatibility class such that ... '.
The second reason is that metaclasses allow the definition of properties of classes, which
are the only place in a PSN KB to record information about collections of objects. The
is-a hierarchy at the metaclass level is shown in Figure 1.

Fig. 1. - Metaclass level is-a hierarchy

The most general ASL metaclass is ASL_Class, which is specialized into CatalogueClass
and ArchitecturaLUnit_Class. The former is the metaclass of the classes constitut
ing the Catalogue, while the latter has as instances the classes corresponding to the
four levels of Architecture abstraction (Unit, Subsystem, Network, and Architecture). In
turn, Catalogue_Class has two specializations: Compatibility_Class, the metaclass of
all compatibility classes, and Catalogue_Itelll..Class the metaclass of classes modelling
Catalogue components.

186

As we have already mentioned, the PSN procedure mechanism has been used to en
force constraints on the Architecture models. The four programs attached to a class are,
when necessary, appropriately redefined to give the correct semantics to the class. This
is, for example, the case of the PTP_Compatibility classes whose semantics is given by
their to-test procedure. In general, the to-test procedure of a point-to-point compatibil
ity class receives as inputs two hardware units and searches the class extensions to see
whether there exists an instance asserting the compatibility of their base models. In doing
so, the procedure tests also if the given units have still available the external interfaces
of the type required for the connection, that is if they have not already been used in
a previous conn~tion. Such a behavior is impracticable for the terminal/computer and
printer/computer compatibility due to the very high number of compatible devices pairs.
An ad-hoc solution has been adopted for these cases. As the compatibility between a
terminal or a printer and a computer simply requires that they have a common inter
face, the terminal/computer and printer/computer compatibility has been represented by
means of a class with no instances and an attached to-test procedure that checks whether
the computer has available any external interface that matches one of the free external
interfaces of the terminal or printer. The procedures are defined in such a way that they
always change the knowledge base in a consistent way, that is if the initial state is con
sistent, the state after the execution of the procedure never violates the constraints. To
this end, each procedure has associated a set of preconditions that, if satisfied, guarantee
the correctness of the change. For example, the to-put procedure associated to the class
PTP_Complex_Subsystem that requires as inputs the list of Units that are to be included
in the Subsystem, and a list of Unit pairs, each pair representing a point-to-point connec
tion that must be established between two Units of the Subsystem, performs the following
steps:

(1) it checks whether the input data are consistent; this involves a number of controls,
ranging from the check on the type of the data to that on the congruency between
the list of Units and the list of Unit pairs;

(2) it checks whether the specified Subsystem topology is correct, i.e. if the graph is
serial;

(3) for each point-to-point connection to be established, it checks whether the Units to be
connected are compatible and whether they have an available free external interface
Unit;

(4) if all the above conditions are satisfied, it establishes the point-to-point connections
by creating appropriate instances of the class PTPConnection used to implement the
knowledge on the topology;

(5) it creates the Subsystem.

Sometimes the creation of an object can be performed only after the creation/removal
of other objects. In order to relieve the Architecture designer from the burden of it, the
procedures make such operations automatically when possible. The to-put procedure of
the Expansion_Board_Uni t, for example, that is called in expanding a computer, works
as follows:

(1) the computer Unit to be expanded is checked to ascertain whether it has a free ex
pansion slot Unit of the required kind;

(2) if yes, the appropriate expansion compatibility class is searched, in order to find out
whether there exists a board satisfying the user request that can be installed on the
given Unit;

(3) if such a board is found, the expansion is made by accomplishing the following steps:

- ~: a Unit representing the board is created;
- ~: an instance of the appropriate expansion class is created;

187

- ~: an instance of the relation HardwareExpansions, having the expanded
Unit as domain element, and the expansion instance as range element, is created,
thus associating the expansion to the expanded Unit;

- ~: the pair <expanded Unit, used slot> is removed from relation FreeEx
pansionSlots , in order to represent the fact that the slot Unit of the expanded
Unit that has been used for the expansion is no longer free;

- ~: operations that are specific to the particular expansion being made are
performed; for instance, in case of an external interfac~ expansion, the external
interfaces carried by the expansion board must be added to the set of free external
interfaces of the expanded Unit.

4.4. A Graphical Interface for ASPES

In this section, is illustrated the main features of a graphical interface developed for
ASPES. In particular, it will be described: (1) the basic environment made available to
the user at the beginning of an ASPES session; (2) the invocation of the ASPES user
functions; (3) the visualization of the result of these operations; (4) the controls that
are enforced on the operations at the interface level; (5) the error handling; (6) the user
buffer. Each of these topics will be discussed in a separate section.

The Interface has been implemented as a C program that runs under Unix 3 and
that uses the graphical facilities provided by the Sunview software library. It has been
developed on a SUN 3/52 Workstation.

4.4.1. The Main Window

The M,ain Window is the only window that appears on the screen at the beginning of an
ASPES session, and it is shown in Figure 2. The decomposition of an Architecture through
five levels of abstraction is made transparent to the ASPES user by presenting him a
Main Window with five icons, which are one-to-one with the Catalogue, Unit, Subsystem,
Network, and Architecture levels. As Figure 2 shows, these icons are displayed in the
top portion of the window, and the user cannot move them around as normal Sunview
Sunwindows icons. A menu is associated with each icon, called the Icon Menu.

~ II ::?ub I~:,~:,il Ar~
system leclure

0 01 0 ~

Is·a Window User Window
I-- I--
0 0

• Fig. 2 - ASPES Interface Main Window

3 UNIX is a trademark of AT&T

188

This menu presents the operations available at the ASPES level corresponding to the icon,
and can be obtained by clicking the cursor on the icon.

The bottom portion of the Main Window is subdivided into two windows: one is the
Is-a Window, where ASPES displays the Catalogue is-a hierarchy, upon a user request;
the other is a standard Text Subwindow, reserved for the user needs, whence the name of
User Window.

4.4.2. Invocation of ASPES User Functions
A selected list of the user operations is given in table 1 below. The operations available at
each level can be viewed as hierarchically structured. This operation hierarchy is realized
by having a menu hierarchy at each ASPES level. The root of the hierarchy is the Icon
Menu associated to the level. In an Icon Menu, the name of each specialized operation
is followed by an arrow: by following that arrow with the cursor, a menu containing the
names of the lower level operations is displayed. This second level menu may contain
in turn specialized operations, which are treated in the same way as in the Icon Menu.
Figure 3.a shows a path of the Icon Menu of the Catalogue level.

A window, called the Operation Window, is associated to each operation. The Op
eration Window appears after its operation has been invoked via an appropriate menu
selection. An Operation Window is divided into two portions, the usage of which will be
explained later, and can be resized and moved around the screen. In almost all cases,
the selection of an operation starts a dialogue between the user and the system, having
as final aim the specification of an ASPES operation. This dialogue takes place in the
Operation Window, which therefore may assume different forms depending on which is
the current state of this dialogue. To talk to the system the user selects one of the buttons
that appear in the window. Upon this selection, the content of the window is interpreted
by the interface as input data for the execution of the action corresponding to the selected
button.

Table 1. - Selected List of ASPES User Functions

Catalogue Level
Is-a

Get_Component

Display _Component
Instance_Of
Create_Component

Create_Version
Create_Main_Memory_Compatibility

Create_Computer_Display_Compatibility

Unit Level
Get-Unit
Display_Unit
Create_Unit

Expand_ With_M ain_Memory _Board

Subsystem Level
Get-Subsystem

Display_Subsystem
Create_Subsystem

Add_U niL To-Subsystem
Add_PTP _Connection_ To-Subsystem

Network Level
Get_Network

Display_Network

Create_N etwork
Add_SubsysteITL To_N etwork

Architecture Level
Get_Architecture
Display_Architecture

Create_Architecture
Add_Network.. To-Architecture

DELETE
GET
CREATE

189

Class Name: Wori\station

KeyBoard (KeyBoard) Vendor (Vendor) EO SUN

MainMemory (Pnumber) ScreenType (ScreenType)

ColorScreen (Boolean) EO TR\.E

o Price (Pnumber)

CompName (CompName)

Display (Display)

KeyBoard (KeyBoard)

MainMemory (Pnumber)

Get Workstation: SUN3/S2 SUN3flS

Fig. 3. - Steps of the specification of a Get-Component operation

3.a

3.b

3.e

3.d

190

The execution of an action may result in a call to ASPES, in which case the dialogue has
reached its last step and an ASPES operation has been fired; or it may result in a change
of the form of the Operation Window, which means that further information is required.

As an example, let us consider the invocation of a Get-Component operation at the
Catalogue level. Figure 3 shows the various steps of this invocation. In Figure 3.a the
selection from the second level menu is showed; as a result, the system display to the user
the Operation Window associated to Get-Component, in its initial form. At this stage
of the dialogue, the user is asked for the name of the class to be queried; having typed
this name, the user can select one of the two buttons. Selecting WITH CONDITION (Figure
3. b) he will get from the system the list of the properties of the specified class. He can
successively fill the space left after each property with a predicate to be satisfied by the
result of the query. Complex conditions, involving objects which are property values of the
object being queried, may be specified by invoking nested windows, as shown in Figure
3.c. Having done this, the user can select the EXEC button, to finally fire the ASPES
operation that corresponds to the query. The result of the query is a list of qualifying
objects, which will be returned by the system in the bottom portion of the Operation
Window (Figure 3.d).

The Operation Window does not automatically disappear after the execution of an
operation, because, as explained below, the system usually returns the result of the oper
ation in that window. The user may remove the Operation Window at any time by using
the functions provided by Sunwindow. If the use wishes to execute again an operation, he
may go back to the desired state of the dialogue by using the CLEAR and RESET buttons
provided (where appropriate) by the interface to this end. The CLEAR button restores
the initial form of the Operation Window. In the Get-Component operation example, by
clicking the CLEAR button after the display of the result, the user will get the Operation
Window in its initial form. RESET, instead, causes the last values specified by the user to
be reset, so that new values can be given. For instance, after the creation of an object has
been executed, the Operation Window still contains the pairs (property, value) specified
for the object just created. By RESET-ing at this point, the values will be removed, so
that the user can insert new values to create a new object.

4.4.3. Visualization of Results
ASPES operations may in general have three kinds of results (excluding errors, which
will be treated later): (1) a 'yes' result, which typically comes from a creation or remove
operation. The system displays the result by opening, in the middle of the screen, a small
window which contains the message that the operation has been successfully completed;
(2) a set of objects; this is the result of a query on an ASPES class. The list of the
returned objects is listed in the Operation Window from which the query has been issued
(see Figure 3.d); (3) an object display. If the object is a token, its list of (property, value)
pairs will be shown in a tabular form. If it is a class, the class definition will be given in
tabular form, where each row of the table contains a pair (property, range). In both cases
the result will be returned to the user in the bottom portion of the Operation Window
associated to the specified operation. For Subsystem, Network, and Architecture objects,
the result of the display may be given in both textual and graphical form.

To this end, the Operation Window of these operations consists of two different por
tions to display the two forms of the result. Figure 4 presents both the textual and the
graphical display of a Subsystem consisting of four interconnected Units. The EXEC but
ton in Figure 4, has to be selected only after having chosen the display form, which is
controlled by the two circular buttons shown next. In the figure, the TEMPLATE button has
been used in order to get the textual display given in the middle window; then, the oper-

191

ation has been re-executed with the GRAPHIC button selected, so obtaining the graphical
display shown in the bottom portion of the window.

() I "l t) L 1\ " I "'-) II t) ~ t·! 11)

SubsystemName: 52

(EXEC) Format choice: graphic • template

<>

<>

DI5PLAY:S2

Units (Unil) 5UNUnitl
5UNUnit2
PrinlerUnit
PCUn~

PTPConnections ... (PTPConneclion) ········· ··5unUnill SunUnil2

SunUnil2 PCUnit
PrinterUnil SunUnil2
PrinterUnit PCUnit

<> <>

SUNUnil2

SUNUnill

PrinterUnit PCUnil
<>

o

Fig. 4. - Textual and graphical display of a Subsystem

<>

A special treatment is reserved for the visualization of the is-a hierarchy. As already
pointed out, a portion of the Main Window, called Is-a Window, is always available for
the displaying of a graphical description of the hierarchy. As the dimension of the graph
does not fit in the Is-a Window, a scrolling facility is provided to move the visible portion
of the hierarchy along the four dimensions.

4.4.4. Controls Enforced by the ASPES Interface
The kind of interaction between the user and the system allowed by the ASPES Interface
presents a double advantage. The first advantage is that the system guides the specifica
tion of an operation, so that the user does not have to know in advance the parameters to
be specified, their order, and their type. But there is another major advantage deriving
from using this technique, and that is the automatic enforcement of certain constraints on
the user operations. If the user interacted directly with the ASPES kernel, for example,
there would be nothing that guarantees that the operations be specified in the correct
form, that is with the right type and number of parameters. In this case, it would be the
responsibility of the system to check the operation form, performing a usually high num
ber of checks, which are tedious to code, and time consuming at run time. The presence
of a graphical interface makes it possible to enforce many constraints when specifying the
operation, as the interface may prevent the user from making certain mistakes.

192

As an example, let us consider again the GeL Component operation. When the user
is given the list of properties (as in Figure 3.c), the only thing that he can do is to write
something in the space left at the right-end of each row. Thus, ASPES is guaranteed that
the query predicate only involves the properties of the queried class, and does not have to
check for this. The same applies in the creation of an object, with the system providing
the user with the list of properties to be filled in, and the user cannot change the portion
of the window where the property names are displayed.

It would be too long to enumerate, operation by operation, the controls that are
automatically enforced by the interface. We stress here only the effectiveness of a graphical
interface in alleviating the language interpreter task concerning the operation consistency
checking.

4.4.5. Error Handling

There can be two kinds of errors that can occur in the ASPES system. The first kind
consists of the errors on the invocation of a user function, as for example when a parameter
is missing or when an operation is invoked before the termination of the previous one.
These errors result in a message which is displayed to the user in an 'ad hoc' window that
appears in the middle of the screen. The rest of the screen is left unchanged so that the
user can issue the correct operation after editing the incorrect specification. The window
containing the error message may be removed by clicking any mouse button.

The second kind of errors regards not legal requests such for example the PTP connec
tion of two units having no free external compatible interfaces. In this case, the message
may be shown to the user either in an 'ad hoc' window, or in the bottom portion of the
window associated to the operation that caused the error.

4.4.6. The User Window
The User Window occupies a part of the Main Window, and its raison d 'etre is to provide
the user of the ASPES system with a private workspace. The User Window is a standard
Text Subwindow, i.e. a window for text editing that can be saved in a file, resized, and
moved around the screen. Text can be selected by any other window and inserted in
the User Window via the Sunwindow Selection Service, which relies on the mouse and a
small set of functional keys of the SUN keyboard. Once the text has been put in the User
Window, it can be processed via the normal editing facilities.

5. Conclusions

We have presented ASPES, a software system for the specification of office information
system Architectures. ASPES is based on a formal theory (AST), whose models comprise
such Architectures. The outcome of our work is twofold. On the practical side, we have
showed how naturally the models of a theory can be translated into procedural semantic
networks, with a straightforward correspondence between language and axioms from one
hand, and classes and procedures from the other. On the theoretical side, we have encoded
our perception of an architecture into a first order theory, thus providing a firm framework
for the analysis of the properties of such perception. We have not performed this analysis,
because it was beyond the scope of the Project, but we have proven the consistency of
the theory, by effectively constructing ASPES Architectures, (TODOS TR 4.3.4). Our
proof is of course informal, as it relies on the belief that PSN programs really enforce the
constraints that are the model-theoretic counterparts of AST axioms.

193

6. Appendix A: Architecture Specification Language

We recall that a formal theory consists of the following parts (Mendelson 1964):

(1) a lan~ua~e, that is a set of well formed formulae (wffs) selected from the expressions
over a given set of symbols;

(2) a set of wffs, called the ~ of the theory;
(3) a finite set of relations among wffs, called the rules of inference of the theory.

A first order theory is a formal theory such that: the language is a first order language;
the axioms are divided into lo~ical axioms, which are given once the language is given,
and proper axioms, which vary from theory to theory; there are two rules of inference,
generally called Modus Ponens and Generalization, whose schemata are, respectively:

(Mf) from 0 and (0 J (3) infer (3, and
(.Gm) from 0 infer (Vx)o.

A first order language is built upon the following symbols:

- the parentheses ')' and '(';
- the propositional connectives J, conditional, and .." negation;
- the universal quantifier V;
- a (possibly empty) finite or denumerable set of constant symbols;
- a denumerable set of variable symbols;
- a (possibly empty) finite or denumerable set of function symbols;
- a finite or denumerable non-empty set of predicate symbols.

Among the expressions, i.e. finite sequences, that can be made out of the above
symbols, the wffs of a first order language are defined as follows:

(a) constant and variable symbols are ~; if tl, t 2 , ••• , tn are terms and f is an n-ary
function symbol, then j(t1,t2 , ••• ,tn) is a term;

(b) if P is a predicate symbol and tl,t 2 , ••• ,tn are terms, then P(t1 ,t2 , ••• ,tn) is an
atomic formula;

(c) an atomic formula is a well formed formula (~); if x is a variable symbol and 0 and
(3 are wffs, (..,0), (0 J (3), and «Vx)o) are wffs. .

The existential quantifier (3) and the other propositional connectives usually found in
first order languages (A: conjunction, v: disjunction, 181: exclusive or, =: biconditional),
can be included in the language as syntactical abbreviations of their equivalent wffs.
Furthermore, we will simplify the notation by using (VX1X2 ... xn)o as an abbreviation of
(VX1(VX2 ... (Vxn)o ...)), and by omitting parentheses according to the following rules:

- we omit the outer parentheses of a wff;
- when a wff contains only one binary connective, parentheses are omitted by association

to the left;
- the connectives and quantifiers are ordered as follows: 181, =, J, V, 3, A, V, ..." and

parentheses are eliminated according to the rule that, first, .., applies to the smallest
wff following it, then v is to connect the smallest wffs surrounding it, and so on. In
applying this rule to occurrences of the same connective, we proceed from left to right;

- we omit parentheses around quantified wffs when they are preceded by other quanti
fiers.

A first order language can be interpreted via Tarskian semantics, by which a truth
value can be assigned to any wff of the language. This is done by giving a non-empty set
D, called the domain of the interpretation, and an assignment to each predicate symbol
of a relation in D, to each function symbol of an operation in D, and to each constant
symbol of some fixed element of D. Given such an interpretation, variables are thought of
as ranging over the set D, and .." J and V are given their usual meaning. An interpretation

194

is said to be a model for a set of wffs if and only if every wff in the set is true for the
interpretation.

6.1. Architecture Specification Language

The Architecture Specification Language is a first order language built upon the following
symbols:

- variable symbols: x'Y'Z' ... 'XhX2, ... ,YllY2, ... j
- function symbols: the unary function symbol !;, which has as argument a set of

numbers, and returns the sum of these numbers (0 for the empty set)j the binary
function symbols + (to be interpreted as the sum operation of number theory), and u
(to be interpreted as the set-theoretic union operation), both used in infix notationj

- predicate symbols: of the usual arithmetical symbols, ASL includes = and ~, which
will be also used in infix notationj the set-theoretic equality predicate symbol
Same_Set, and the following (grouped by level and associated with their informal
semantics) :

(a) Catalogue level predicate symbols

- Computer(x): x is a computerj
- Peripheral(x) : x is a peripheralj
- LocaLAreafi etwork(x) : x is the communication hardware device on which a

Local Area Network reliesj
- Slot(x) : x is an expansion slotj
- Board(x) : x is an expansion boardj
- ExternaLInter Jace(x) : x is an external interfacej
- N etwor k_I nter J ace(x) : X is a network interfacej
- Number(x): x is a natural numberj
- Operating_System(x): x is an operating systemj
- SoJtwareYackage(x) : x is a software packagej
- SloLSet(x) : x is a set of expansion slotsj
- ExternalJnter Jace_Set(x) : X is a set of external interfacesj
- N etworkJnter Jace_Set(x) : x is a set of network interfaces;
- PeripheraLSet(x) : x is a set of peripheralsj
- SoJtwareYackage_Set(x) : x is a set of software packagesj
- H as_Slot(x, y) : the computer x has the slot set Yj
- H as_ExternaLInter Jace(x, y) : the computer or peripheral x has the external

interface set Yj
- Has_Network_InterJace(x,y): the computer x has the network interface set Yj
- Has-A!emory(x,y): the computer x has the amount of memory Yj
- H as_Peripheral(x, y) : the computer x has the peripheral set Yj
- H as_Operating-System(x, y) : the computer x has the operating system Yj
- Has-SoJtware(x,y): the computer x has the set of software packages Yj
- Bears-A!emory(x,y): the expansion board x bears the amount of memory Yj
- Bears-ExternaLInter Jace(x,y): the expansion board x bears the set of external

interfaces Yj
- BearsfietworkJnter Jace(x,y): the expansion board x bears the set of network

interfaces Yj
- Hw_Expansion_Compatible(x,y,z) : the computer x can be hardware expanded

by inserting the board z into the slot Yj
- Sw_Expansion_Compatible(xh X2, X3, X4, xs) : the computer Xl can be software ex

panded by installing the software package X2, provided that Xl runs the operating

195

system Xa, has at least X4 main memory, and has each one of the software packages
in the set XS;

- PTP-Compatible(xl,X2,Xa,X4) : the computer or peripheral Xl can be point-to
point connected to the computer or peripheral Xa, through the external interfaces
X2 of Xl and X4 of Xa;

- Network_Compatible(xl,x2,xa,x4) : the computer Xl can be connected to the
Local Area Network hardware X2 through the network interface Xa, provided that
Xl has the software package X4-

(b) Unit level predicate symbols

- Instance(x,y): the Unit y is an instance of the Catalogue object X;
- Computer _Unit(x) : X is a computer Unit;
- PeripheraLUnit(x) : X is a peripheral Unit;
- SloLUnit(x) : X is an expansion slot Unit;
- Board_Unit(x): x is an expansion board Unit;
- ExternaLInter face_Unit(x) : X is an external interface Unit;
- Network_Interface_Unit(x): X is a network interface Unit;
- Operating_System_Unit(x) : X is an operating system Unit;
- Software_Package_Unit(x) : X is a software package Unit;
- Slot-UniLSet(x): X is a set of expansion slot Units;
- ExternaLInter face_UniLSet(x) : X is a set of external interface Units;
- N etworkJnter face_UniLSet(x) : X is a set of network interface Units;
- PeripheraLUniLSet(x) : x is a set of peripheral Units;
- Software_Package_UniLSet(x): x is a set of software package Units;
- Has_SloLUnit(x,y): the computer Unit X has the set of expansion slot Units y;
- Has_TotaLMemory(x,y): the computer Unit X has the amount of memory y (y

includes also the memory acquired by x through hardware expansions);
- H as_ExternaLInter face_Unit(x, y) : the computer Unit x has the set of external

interface Units y (y includes also the external interfaces acquired by x through
hardware expansions);

- Has..Network_Interface_Unit(x,y): the computer Unit x has the set of network
interface Units y (y includes also the network interfaces acquired by x through
hardware expansions);

- H as_PeripheraLUnit(x, y) : the computer Unit x has the set of peripheral Units
y;

- H as_Operating_System_Unit(x, y) : the computer Unit x has the operating sys
tem Unit y;

- Has_Software_Unit(x,y) : the computer Unit x has the set of software pack
age Units y (y includes also the software Units acquired by x through software
expansions) ;

- Add-.Memory(x,y): the expansion board Unit x bears the amount of memory y;
- Add-ExternaLInterface(x,y): the expansion board Unit x bears the set of ex-

ternal interface Units y;
- Add_Network_Interface(x,y): the expansion board Unit x bears the set of net

work interface Units y;
- Hw_Expanded(x,y,z): the computer Unit x has been hardware expanded by the

insertion of the board Unit z in the slot Unit y;
- Sw_Expanded(x,y) : the computer Unit x has been software expanded by the

installation of the software package Unit Yi
- Standard_ExternalJnter face(x, y) : the computer or peripheral Unit x gets from

the Catalogue the set of external interface Units Yi

196

- Added_ExternaLlnterface(x,y) : the computer or peripheral Unit x gets from
hardware expansions the set of external interface Units Yj

- Standard_NetworkJnter face(x, y) : the computer Unit x gets from the Catalogue
the set of network interface Units Yj

- Added_Network_Interface(x,y) : the computer Unit x gets from hardware ex
pansions the set of network interface Units Yj

- Added_Memory(x,y) : the computer Unit x gets from hardware expansions the
amount of memory Yj

- Standard-Software(x,y) : the computer Unit x gets from the Catalogue the set
of software package Units Yj

- Added-Software(x,y) : the computer Unit x gets from software expansions the
set of software package Units y.

(c) Subsystem level predicate symbols

- Subsystem(x) : x is a Subsystemj
- Complex-Subsystem(x) : x is a Complex Subsystem, i.e. a Subsystem with at

least one point-to-point connectionj
- UniLSet(x) : x is a set of Unitsj
- Has_Unit(x,y): the Complex Subsystem x consists of the set of Units Yj
- Serially_Connected(x): the set of Units x is serially connectedj
- Reachable(x,y) : the Unit x is reachable from the Unit y by following a path of

point-to-point connectionsj
- PT P _Connected(x, y, '1.1, v) : the Unit x is point-to-point connected to the Unit

'1.1, and the connection takes the external interface Units y and v, of x and '1.1,

respectively.

(d) Network level predicate symbols
- Officefietwork(x): x is an Office Networkj
- LAN_Unit(x): x is a Local Area Network hardware Unitj
- Subsystem_Set(x): x is a set of Subsystemsj
- Has.LAN(x,y): the Office Network x has LAN hardware Unit Yj
- H as_Subsystem(x, y) : the Office Network x consists of the set of Subsystems Yj
- Hosts(x,y): the set of Subsystems x are hosts of the LAN hardware Unit Yj
- LAN _Connected(z, '1.1, v, y) : the computer Unit '1.1 of Subsystem z is connected to

the LAN Unit y through the network interface v.

(e) Architecture level predicate symbols

- Architecture(x) : x is an Architecturej
- Complex-Architecture(x): x is a Complex Architecture, i.e. an Architecture with

at least one Office Networkj
- Network-Set(x): x is a set of Office Networksj
- Hasfietwork(x,y) : the Complex Architecture x consists of the set of Office

Networks Yj
- Communicate(x) : the Office Networks in the set x communicate via common

Subsystemsj
- Connected(x, y) : the Office Network x is connected to the Office Network y.

7. Appendix B: Completion to the AST Axiom System

This Appendix contains the axioms that complete the AST axiom system introduced in
Section 3.1. The axioms have been partitioned according to the kind of constraint they
represent.

197

7.1. Type Axioms

These axioms give the proper structure (or type) of predicate symbols.

('Vxy)(H as_Slot(x, y) :::> Computer(x) A SloLSet(y))
('Vxy)(H as-ExternaUnter Jace(x, y) :::> (Computer(x) V Peripheral(x)) A

ExternalJnter Jace_Set(y))
('Vxy)(H asfl etworkJnter Jace(x, y) :::> Computer(x) A

N etworkJnter Jace_Set(y))
('Vxy)(H as_M emory(x,y) :::> Computer(x) A Number(y))
('Vxy)(H asYeripheral(x, y) :::> Computer(x) A

PeripheraLSet(y))
('Vxy)(H as_Operating_System(x, y) :::> Computer(x) A Operating_System(y))
('Vxy)(Has_SoJtware(x,y):::> Computer(x) A SoJtwareYackage_Set(y))
('Vxy)(Bears_ExternaLInter Jace(x, y) :::> Board(x) A ExternaLInter Jace_Set(y))
('Vxy)(Bears_N etwork_Inter Jace(x, y) :::> Board(x) A N etworkJnter Jace_Set(y))
('Vxy)(Bears-Memory(x,y):::> Board(x) A Number(y))
('Vxyz)(Hw_Expansion_Compatible(x,y,z):::> Computer(x) A Slot(y) A Board(z))
('VX1X2XaX4Xs)(Sw_Expansion_Compatible(xl, X2, xa, X4, xs) :::> Computer(xt} A

SoJtwareYackage(x2) A Operating_System(xa) A Number(x4) A

SoJtware_Package_Set(xs))
("Ix I X2XaX4)(PT P _C ompatible(XI, X2, xa, X4) :::> (C omputer(xt) V P eripheral(xt}) A

ExternalJnter Jace(x2) A (Computer(xa) V Peripheral(xa)) A

ExternaLI nter J ace(X4))
('VXIX2XaX4)(N etwork_Compatible(xl' X2, xa, X4) :::> Computer(xd A

LocaLArea_N etwork(x2) A Network_Inter Jace(xa) A

SoJtware_Package(x4))
('Vxy)(H as-BloLUnit(x, y) :::> Computer _Unit(x) A SloLUniLSet(y))
('Vxy)(H as_ExternaLInter Jace_Unit(x,y) :::> Computer_Unit(x) A

ExternaLInter face_UniLSet(y))
('Vxy)(H asfletworkJnter Jace_Unit(x, y) :::> Computer _Unit(x) A

N etworkJnter Jace_UniLSet(y))
('Vxy)(H asJ'otal-M emory(x, y) :::> Computer _Unit(x) A Number(y))
('Vxy)(H asYeripheraLUnit(x, y) :::> Computer _Unit(x) A PeripheraLUniLSet(y))
('Vxy)(H as_Operating_System_Unit(x,y) :::> Computer _Unit(x) A

Operating-Bystem_Unit(y))
('Vxy)(H as_SoJtware_Unit(x,y) :::> Computer _Unit(x) A

SoJtware_Package_Set(y))
('Vxy)(Add-M emory(x,y) :::> Board_Unit(x) A Number(y))
('Vxy)(Add_ExternaLInter Jace(x,y):::> Board_Unit(x) A

ExternaLInter Jace_Unit-Bet(y))
('Vxy)(Add_N etworkJnter J ace(x, y) :::> Board_Unit(x) A

N etwor k_I nter J ace_U niLS et(y))
('Vxyz)(Hw-Expanded(x, y, z) :::> Computer_Unit(x) A SloLUnit(y) A

Board_Unit(z))
('Vxyz)(Sw_Expanded(x,y):::> Computer_Unit(x) A SoJtware_Package_Unit(y))
('Vxyuv)(PT P _Connected(x, y, u, v) :::> (Computer _U nit(x) V PeripheraLU nit(x)) A

ExternalJnter Jace_Unit(y) A (Computer _Unit(u) V PeripheraLUnit(u)) A

ExternalJnter Jace_Unit(v))
('Vxy)(H as..LAN(x,y) :::> OJ Jicefl etwork(x) ALAN _Unit(y))
('Vxy)(H as_Subsystem(x, y) :::> OJ Jice_Network(x) A Subsystem_Set(y))
('Vxy)(H osts(x,y) :::> Subsystem_Set(x) ALAN _Unit(y))

198

(Vxyzv)(LAN _Connected(x, y, z, v) :::> Subsystem(x) 1\ Computer _Unit(y) 1\

Network_Inter jace_Unit(z) 1\ LAN _Unit(v))
(Vxy)(H as_N etwork(x, y) :::> Complex_Architecture(x) 1\ N etwork_Set(y))

7.2. Set Type Axioms

Set type axioms bind the members of the argument of a set predicate symbols to their
proper type.

(Vx)(SloLSet(x):::> (Vy)(Member(x,y):::> Slot(y)))
(Vx)(ExternaLInterjace_Set(x):::> (Vy)(Member(x,y):::> ExternaLInterjace(y)))
(Vx)(Network_Interjace_Set(x):::> (Vy)(Member(x,y):::> Network_Interjace(y)))
(Vx)(PeripheraLSet(x) :::> (Vy)(M ember(x, y) :::> Peripheral(y)))
(Vx)(Sojtware_Package_Set(x) :::> (Vy)(M ember(x, y) :::> Sojtware_Package(y)))
(Vy)(SloLUniLSet(y):::> (Vxd(Member(xbY):::>

SloLUnit(xd))
(vy)(ExternaLInter jace_UniLSet(y) :::> (Vxd(M ember(xl, y) :::>

ExternalJnter jace_Unit(xd))
(Vy)(N etwork_Inter jace_UniLSet(y) :::> (Vxd(M ember(xbY) :::>

N etwor k_I nter j ace_U nit(Xl)))
(Vy)(PeripheraLUniLSet(y):::> (Vxd(Member(xbY):::>

PeripheraLUnit(xt}))
(Vy)(Sojtware_Package_UniLSet(y):::> (Vxt}(Member(xl,y):::>

SojtwareYackage_Unit(xl)))
(Vx)(UniLSet(x) :::> (Vxt}(M ember(xl, X) :::>

(Computer _Unit(xt) V PeripheraLUnit(xt})))
(Vx)(Subsystem_Set(x) :::> (Vxt}(M ember(xl' X) :::> Subsystem(xt}))
(Vx)(N etwork_Set(x) :::> (Vxt}(M ember(xl' X) :::> OJ jice_N etwork(xt})))

7.3. Property Uniqueness Axioms

The following axioms apply to those predicate symbols representing binary relationships
for which the uniqueness of value of such relationships is required.

(Vxy)(H as-ExternaLInter jace(x, y) :::> (Vz)(H as_ExternaLInter jace(x, z) :::>
Same_Set(y, z)))

(Vxy)(HasJVetworkJnter jace(x,y):::> (Vz)(Has_Network_Inter jace(x,z):::>
Same_Set(y, z)))

(Vxy)(Has_Memory(x,y):::> (Vz)(Has_Memory(x,z):::> (y = z)))
(Vxy)(H as_Peripheral(x, y) :::> (Vz)(H as_Peripheral(x, z) :::>

Same_Set(y, z)))
(Vxy)(H as_Operating_System(x, y) :::> (Vz)(H as_Operating_System(x, z) :::>

(y = z)))
(Vxy)(Has_Sojtware(x,y):::> (Vz)(Has_Sojtware(x,z):::> Same_Set(y,z)))
(Vxy)(Bears_ExternalJnter jace(x,y) :::> (Vz)(Bears_ExternalJnter jace(x, z) :::>

Same_Set(y, z)))
(Vxy)(Bears_Network_Inter jace(x,y):::> (Vz)(Bears_Network_Inter jace(x, z):::>

Same_Set(y, z)))
(Vxy)(Bears-Memory(x,y):::> (Vz)(Bears_Memory(x,z):::> (y = z)))

7.4. Set Disjointness Axioms

These axioms express a set disjointness condition on the external interfaces of a com
puter (or peripheral), and on the network interfaces and the peripherals associated to a
computer.

199

(IIXIX2X3X4)«H as_ExternalJnter jace(Xh X3) 1\

H as_ExternaLInter jace(X2,X4)) :::>

(3y)(M ember(y, X3) 1\ M ember(y, X4)) :::> (Xl = X2)))
(IIXIX2X3X4)«H as_N etwork_Inter jace(Xh X3) 1\

H as_N etwork_Inter jace(X2' X4)) :::>

(3y)«M ember(y, X3) 1\ M ember(y, X4)) :::> (Xl = X2)))
(IIXIX2X3X4)«H as_Peripheral(xl' X3) 1\

Has_Peripheral(x2,x4)) :::>

(3y)«M ember(y, X3) 1\ M ember(y, X4)) :::> (Xl = X2)))

7.5. Instanciation Axioms

The following axioms are the completion to the instanciation axioms.

(lIx)(PeripheraLUnit(x):::> (3xd(Peripheral(xd 1\ Instance(xbx)))
(lIx)(SloLUnit(x):::> (3xd(Slot(xd 1\ Instance(xilx)))
(lIx)(Board_Unit(x) :::> (3xd(Board(xd 1\ Instance(xh x)))
(lIx)(ExternaLInter jace_Unit(x) :::> (3xd(ExternalJnter jace(xd 1\

Instance(xil x)))
(lIx)(N etworLInter jace_Unit(x) :::> (3xd(N etworkJnter jace(xd 1\

I nstance(Xl, x)))
(lIx)(Operating_System_U nit(x) :::> (3xd(Operating_System(xl) 1\ Instance(xl' x)))
(lIx)(SojtwareYackage_Unit(x) :::> (3xd(SojtwareYackage(xd 1\

Instance(xil x)))
(lIx)(LAN _U nit(x) :::> (3xd(LocaLArea_N etwork(xd 1\ Instance(x!, X)))

7.6. Completion to the Unit Axioms

Finally, the list of Unit axioms that complete the description of the Unit level.
(lIxy)(H asYeripheraLUnit(x, y) == (3xlx2)(lnstance(xl, x) 1\

H as_Peripheral(xl' X2) 1\

(lIx3x4)(Instance(x3' X4) :::> (M ember(x3, X2) == M ember(x4, y)))))
(lIxy)(H as_Operating_System_U nit(x, y) == (3xlx2)(lnstance(xl, x) 1\

Instance(x2' y) 1\ H as_Operating-System(xh X2)))
(lIxy)(H as_N etwork_Inter jace_Unit(x, y) ==

(3YI Y2)(Standard_N etwor k_I nter j ace(x, Yl) 1\

Added_N etwork_Inter jace(x, Y2) 1\ (y = (Yl U Y2))))
(lIxy)(StandardJV etwork_Inter jace(x, y) == (3xlx2)(lnstance(xl, x) 1\

H as_N etwork_Inter jace(xl, X2) 1\

(lIx3x4)(Instance(x3, X4) :::> (M ember(x3, X2) == M ember(x4, y)))))
(lIxy)(AddedJVetwork_Interjace(x,y) == (lIxd(Member(xilY):::>

(3X2X3X4)(Hw_Expanded(x,x2' X3) 1\ Member(xl' X4) 1\

AddJVetwork_Inter jace(x3' X4))))
(lIxy)(AddJV etwork_Inter jace(x, y) :::> (3zu)(Board(z) 1\ Instance(z, x) 1\

Bears_N eiwork_Inter jace(z, u) 1\ (lIxlx2)(lnstance(xl, X2) :::>

(M ember(xl, u) == Member(x2' y))))
(lIxy)(H as_TotaLMemory(x,y) == (3xlx2x3)(Instance(xl,x) 1\

H as_Memory(xl,x2) 1\ (Added_Memory(x,x3) 1\ (y = (X2 + X3)))))
(lIxy)(AddedJ1 emory(x, y) == (3z)(y = I:(z)) 1\

(VXIX2X3)(Hw-Expanded(x, Xll X2) 1\ (AddJ1 emory(x2,x3)
== Member(x3' z)))))

(lIxy)(Add_Memory(x,y):::> (3z)(Board(z) 1\ Instance(z,x) 1\

Bears_M emory(z, y)))

200

(Vxy)(H as-Boftware_Unit{x, y) == {3Y1Y2){Standard_Software{x, yt} A

Added-Boftware{x, Y2) A {y = (Yl U Y2))))
(Vxy)(Standard-Boftware{x,y) == (3X1X2)(lnstance(Xl,x) A

Has_Software{Xl,X2) A (Vx3x4)(Instance(x3,x4) :)
(M ember{X3, X2) == M ember(X4, y)))))

(vxy){Added-Boftware{x,y) == (Vxl)(Member{Xl,y):) Sw_Expanded(x,xt)))

Chapter 5 - Part III

Performance Modeling Phase
Etienne L.M.E. van Dorsselaer and Frank J .M. Heijmink

1 Introduction
Numerous demands can be made concerning Office Infonnation Systems (OISs). These
include such factors as cost, reliability, availability, functionality, correcbless,
serviceability, security, and perfonnance. The 1'OOOS methodology supportS a multi
criterion evaluation of OIS architectures, proposed during the architecture specification
phase (Ch. 5, part IT), with respect to the office requirements defined in the requirements
collection and analysis phase (WPl). The increasing complexity of computer systems, and
this certainly holds for OISs as well, results in a growing demand for tools and techniques
that assist in the understanding of these systems during their whole Iife-cycle, from design
until exploitation. Performance Evaluation (PE) of computer systems pursues the objective
of quantitatively assessing the behaviour of these systems with respect to the computational
tasks to be performed. Despite the advances in the field of computer performance
evaluation made during the last few decades as a result of considerable resean:h efforts, it
has developed in substantial isolation with respect to such disciplines as computer systems
design, implementation, and management (Ferrari 1986). One of the distinctive features of
the TOOO5 Design Methodology is therefore the explicit integration of performance
evaluation into the development process of Office Information Systems. The objective of
the performance modelling phase within the 1'OOOS methodology is to support the choice
of the best alternative among a. number of proposed OIS architectures.

In Section 2 a number of different approaches to solve PE problems are be shortly
reviewed. The approach to PE chosen within 1'0005 is performance modelling, that is
performance evaluation based on abstract system representations, here queueing network
models, which will consequently get the most attention. Solution techniques for queueing
network models are usually based on complex mathematical theories. In order to make
them available to system designers, who nonnally are no experts in the field of queueing
network theory, these techniques should be incorporated in performance evaluation tools.
These tools should support their users in the tasks of specification of performance models
and choice of appropriate solution methods. A small number of such tools are readily
available. Within 1'OOOS, we have chosen the Queueing Network Analysis PaclcJJge
(QNAP2) (Potier 1984), (Veran et al. 1985), developed by INRIA and CII-Honeywell Bull
and currently marlceted by Simulog. QNAP2 contains a collection of resolution algorithms
and a common user interface for description, analysis control and result presentation.

202

A PE problem has three basic constituents:

1) the computing resources to be considered (machine);

2) the computational tasks to be perfonned (load);

3) the assessment metric to be employed (performance measures).

A solution to a PE problem consists of the mapping of a machine and a load onto a range
of perfol7lllJnce measures (BeHner 1985). Within TODOS the machine represents the
architecture of the OIS, or more precisely those architectural components that are relevant
to OIS performance, and the load represents the activities carried out by office workers,
that is for as far as these are supported by software functions of the OIS.

The OIS architectures considered in TODOS are modularily constructed using the
Architecture Specification Language (ASL) (TODOS TR 4.2) and are based on existing
hardware (HW) and software (SW) components. In order to let even a system designer,
who has very little knowledge of performance modelling, construct performance models for
the OIS architectures, the PE tool employed should support construction of performance
models in the same modular way from 'basic' performance components representing the
HW and SW components employed during architecture specification. This required
modularity has been achieved by developing a number of modelling techniques on top of
the standard QNAP2-mechanisms (TODOS TR 4.2.5). In Section 3, a characterisation of
the considered OIS architectures is presented, and the developed modelling techniques to
support modular construction of performance models for these architectures are explained.

System performance may be specified in various ways. When quantitatively
evaluating OIS architectures, we are interested in system-oriented as well as user-oriented
performance measures. System-oriented performance measures are utilisation of resources,
i.e. the fraction of time that a resource is busy, and population, i.e. the average length of
queues for resources. Resources in this context are hardware components like processors,
disks, printers, etc. User-oriented performance measures are response times of transactions,
i.e. the average amount of time needed to completely serve a user request, and throughput
of transactions, i.e. the rate at which transactions are being completed.

In the following, performance is used as a generic term for the set of performance
measures for an OIS architecture in a given PE study, which corresponds to the way it is
commonly used. The exact definition for the concept of performance may therefore only
be given by referring directly to the performance measures chosen for a particular PE
study, and may consequently differ from one study to another. Thus, for example, in one
study performance may be used as a synonym for the interactive response time of a certain
application, while in another study it may represent a combination of response times and
throughputs.

It takes more than a PE tool supporting model construction and solution to obtain
meaningful results from a performance modelling study as part of the TODOS
methodology. Therefore, a methodological approach to the performance modelling process
has been developed defining the interfaces with other activities in the TODOS
methodology, the steps to be taken during a performance modelling study, and the role of
both system designer(s) and PE tool during such a study (TODOS TR 4.2.6). This
methodological approach is explained into some more detail in the Sections 4 and 5.

203

From it, one may learn that some of the most crucial steps of the perfonnance
modelling process, such as definition of objectives and workload characterisation, require
(expert) knowledge about the OIS under development and its environment from the (team
of) system designer(s) responsible for architecture design, and that consequently the
performance modelling process will be manually driven. To illustrate the performance
modelling process as part of the TODOS methodology and the operation of the TODOS
performance modelling tool, in Section 6 an example OIS architecture is modelled and
evaluated. The OIS architecture considered is based on the overall TOOOS Test Case (Ch.
6).

2 Performance Evaluation Methods
PE methods, that is techniques to solve PE problems, may be sub-divided into two main
categories, namely measuring and 11IOiklling. Measurements may be performed on existing
systems or on physical prototypes.

2.1 Measurements on Existing Systems
System performance of existing systems may be measured under operational conditions,
that is under a workload imposed by actual system users. or under an artificial workload
(benchmark). Benchmarking is mainly used to compare different systems under the same
conditions during system acquisition.

There exist two major types of measurement tools: hardware and software monitors.
Hardware monitors are plugged into the system and measure electrical signals. They have
the advantage of imposing only very small or no overhead to the system, but have only
limited capabilities for the performance measures they can produce. Software monitors can
produce much more detailed information about the system's operation, but they have, since
they are programs which run on the system, the disadvantage of using system resources,
which are difficult to precisely account for.

Clearly, measurements can only give some understanding of the behaviour of the
current system. It is extremely difficult to use the data obtained by measurements to
predict future behaviour of the system as workload and configuration may change, and
measurements are rarely of much use during system design. Though measurements are not
much in use for performance evaluation as such, they may prove very useful during
performance modelling studies for parameterisation and validation of a baseline-model of

an existing system.

2.2 Prototyping
An approach that overcomes the need of a running system for performing measurements is
to build a physical prototype of the system under study. The idea is to incorporate as
much (relevant) details of the system as possible in a prototype, and perform measurements
on this working prototype, instantiated with an artificial workload. Prototyping may
consequently be used during system design, but has the disadvantage of being rather
labour-intensive and therefore is hardly applicable to evaluate different (design) alternatives

for complex systems.

204

2.3 Modelling
A model of a system is an abstract representation that embodies the system's behaviour.
A perfonnance model may be built at many levels of detail, but even the highest level of
detail must incorporate some of the complexities of the real system. Perfonnance
modelling may be employed during all phases of a system's life cycle. It may be easily
used for evaluating performance under system change by adjusting model parameters
according to an evolving worldoad or a change of system components. Another advantage
of modelling is that it frequently helps in gaining a deeper understanding of how the
system performs, since it forces a modeller to think conscientiously about which system
details/components actually influence system performance and therefore should be
incorporated in the abstract system representation.

The performance evaluation method, which has been chosen within TODOS consists
of modelling of OISs in tenDs of Queueing Network Models, which are the models most
widely used for perfonnance evaluation. In the following a short introduction to queueing
network models and the techniques to solve them is presented.

2.4 Queueing Network Models
Queueing network models are mathematical models that consist of one or more
interconnected service centers, and are used to represent systems in which there is
contention (and therefore queueing) for resources. In order to completely specify a service
center, which consists of a queue and one or more servers (see figure below), it is
necessary to describe the following parameters:

• arrival process, i.e. (a distribution of) the time between two successive customer
arrivals at the service center;

• service process, i.e. (a distribution of) the time it takes to serve a customer at the
service center;

• queueing discipline, i.e. the algorithm that determines in which sequence
customers are served at the service center. Example of queueing (or scheduling)
disciplines are first<OlIlC first-served (FCFS), priority queueing (with pre-emptive
resume) (pRIOR (-PR», processor sharing (PS), last-come first-served (with pre
emptive resume) (LCFS (-PR», etc.

arriving
customers --1110

queue
server

Fig. I A single server.

departing
customers

For a queueing network model conslsbng of multiple service centers, also the
sequence of service centers visited by each customer has to be specified.

205

Two major approaches for solving queueing network models are simulation and
analysis. Analytical methods seek equations relating desired perfonnance measures to the
available parameters. Simulative methods generate possible behaviour sequences of the
system and measure the desired performance measures in those sequences.

EXJJct analysis of queueing network: models may involve the solution of a complex set
of state equations. Except for models that are inherently simple because of their limited
size, an exact solution is feasible only for queueing network: models that satisfy a number
of assumptions, the so-called product form networlcs. Two approaches to the product fonn
solution exist, namely the stochastic and the operational approach, which differ mainly in
the way assumptions are formulated and hardly in the results obtained.

In the stochastic approach (Baskett et al. 1975), the assumptions are described in
tenns of the theory of stochastic processes such as service time and interarrival time
distributions. The main disadvantage of this kind of assumptions is that in general it is
very difficult to verify positively whether they are met or not

The operational approach (Denning 1978) is based on the premise of testability. All
parameters are defined from data taken over a finite period of time and the performance
analyst can test whether the basic assumptions hold in any observation period. Of course,
this advantage only exists when evaluating the performance of a computer system in
operation. An important operational principle is the assumption of flow balance, which
means that the number of arrivals at a given device must be (almost) the same as the
number of departures from that device during the observation period. The job flow balance
implies that the throughputs everywhere in the system are determined by the throughput at
any ORe point Since an increasing worldoad will drive some device into saturation, this
assumption allows determining asymptotes on throughputs and response times.

For models that cannot be solved by exact analytical methods, approximate or
simulative methods may be employed. SimuIalive methods may be used for solving
virtually every model, but may be computationally very expensive. Another problem with
simulation is concerned with the statistical nature of the simulation process. The analyst
has a need for determining how close simulation estimates are to the correct values for the
model, and the run time necessary to obtain estimates near the correct values. An
appro8(;h to solve the first question is the estimation of confidence intervals, while the
second may be handled by sequential stopping rules, i.e. repeated execution for a certain
sampling period until a satisfying confidence level is reached. Statistical analysis of
simulation results may be supported by performance evaluation tools.

Approximations may be attractive, because they are usually computationally
inexpensive. A disadvantage of approximations is that it is exceedingly difficult to
characterise the error made, since characterisation of the error implies a solution for a
(presumably) unsolvable network: model. In general, only some empirical evidence that the
error is small can be provided.

206

2.5 The Queueing Network Analysis Package (QNAP2)
QNAP2 (Queueing Network Analysis Package 2) is a performance evaluation tool,
developed by INRIA and CII-Honeywell Bull, to support the construction and solution of
complex queueing network models of discrete flow systems or resource contention
problems (e.g. communication networks or computer architectures). It contains a collection
of resolution algorithms (analytical, both exact and approximate, and simulative as well as
an exact Markovian solver) and a common user interface for description, analysis control
and result presentation.

The modelling framework of QNAP2 is the representation of a system as a network
of stations through which customers are circulating. The stations represent the physical or
logical processing facilities of the system, the customers represent the processes being
executed and competing for these facilities. The QNAP2 language is a high-level object
oriented interactive language, including two levels of specification : the command language
and the algorithmic language. The command language consists of a sequence of
commands, each corresponding to a specific function. It consists of commands for the
creation of variables or structured objects (JDECLAREI), the description of the stations
(1ST A nON!), analysis control (lCONTROlJ), and the execution of a sequence of
algorithmic statements (/EXEC!). The command language supports two important features
of QNAP2: interactivity (because each command is interpreted sequentially the user may at
any time input any command) and structuring (the command language enforces the
modelling framework of QNAP2).

The algorithmic lmaguage provides access to a set of statements, procedures and
functions for specifying any non-standard behaviour. It is close to PASCAL as far as
expressions and statements are concerned. The algorithmic language includes a large set of
system functions and procedures. These procedures may be used in a service description
to specify modelling mechanisms, or in an /FXEC/ command to specify input/output
operations or solver activations.

3 Modular Construction of Performance Models
for OIS Architectures

During the IIChitcchR specification phase, OIS architectures suitable for the
implementation of the office requirements resulting from the requirements collection and
analysis (Ct. 2) and the logical design phase (Ct. 3), is represented as interconnected HW
components, supporting the operations of a number of SW components. In general, there
will be a number of architectures suitable to implement the office requirements, which may
differ both in components being employed and the way components are being
interconnected. In order to discriminate between several proposed architectures from a
performance viewpoint. these architectures are modelled and evaluated in the performance
modelling phase. As mentioned above, an objective of the performance modelling phase is
to support modular construction of performance models for OIS architectures.

As mentioned before. a performance evaluation problem consists of three elements,
namely machine, load and performance measures. In Section 3.1, we shortly characterise

207

the OIS architectures considered within TODOS, thereby focusing on the architectural
aspects concerning machine and load, which are of primary interest during the perfonnance
modelling phase. This leads in Section 3.2 to the identification of a number of demands to
the modelling techniques to be employed. The modelling techniques developed in order to
meet these demands are described in the remaining of this Section 3.2.

3.1 Characterisation of OIS Architectures
Sharing of infonnation and resources is a basic requirement in any OIS. Expensive
hardware resources such as printers, plotters, disk and tape storage devices, etc. usually
will be shared for economical reasons. Sharing of resources may be achieved by
establishing a communication network among a number of computer systems, thus enabling
communication between these system components. Within TODOS, the communication
networks considered are restricted to Local Area Networks (LANs) (Part I), being the kind
of networks typically employed in OISs. In OIS Architectures there is a trend towards
distribution of resources. This means that resources will be distributed over the LAN, each
point-to-point connected with a host machine, a so-called server, rather than being
connected to one central mainframe machine. Resources will be. accessed by office
workers from personal workstations, so-called clients, which will typically provide their
users with some local intelligence, this opposed to the convential dumb tenninals, but with
no or limited storage capacity.

In such an OIS enviroment, we have:

• workstations and Pes with no or limited storage capacity;

• file servers that provide archiving facilities; file servers have large storage capacity
(disks, drums, tape drives);

• print servers that enable the printing of documents on connected (laser) printers;

• database servers that enable access to shared data bases;

• mail servers that enable distribution of documents among office workers;

• local area networks for communication between the different machines of an office
system;

• gateway servers that enable communication with other networks and possibly
enable connections to a central computer (mainframe).

3.1.1 OIS Applications
Within TODOS, all required OIS services are supposed to be provided by application
software packages. Some of these are implemented as personal support tools, i.e. they are
present on every workstation on the network when required by the office workers. One
may think here of a word processing package or a personal data base management
package. From a performance modelling point of view, these personal or single-user
applications are not very interesting. They will generally be used by only one user at a
time, namely the one working on the workstation on which the tool is implemented.
Consequently, there is no contention involved in these applications. The response times
that the user experiences simply consists of the sum of the service times that logically
constitute the applications. The perfonnance of the single-user applications depends

208

therefore only on the service times of the transactions, and may be conveniently evaluated
by taking a stopwatch and measuring elapsed times of transactions.

Perfonnance evaluation based on queueing network models is only useful for
applications in which there is contention for resources. In the office environment
considered in TOOOS, these will generally be (distributed) applications which involve
accessing of shared resources, such as storage devices or printers, which are connected to a
server.
For instance, a computer with a disk connected to it may, according to the way data are
structured on the storage device, act as a file server (when the disk contains file systems), a
data base server (when the disk contains a shared data base) or as a mail server (when the
disk contains users' mailboxes), while a printer is connected to a print server. Obviously,
a computer can act as both file server, mail server and print server, as well as any
combination of these.
To provide the service to the clients connected to the network, software components are
implemented on both the clients and the server. On the server, a software package, called
e.g. the file service or the print service, provides the actual access to the resource. On the
client, a software package provides the service directly to the user and the user
applications. These application software packages communicate using the transport service
which is provided over the Local Area Network.
The transport service over the LAN therefore plays a central role in the OIS architectures
considered within TOOOS. Consequently, the transport service will play the same central
role during the construction of performance models for the distributed OIS applications.

Consider as an example a file service. Figure 2 shows the actions performed when a
client requests to read a file from disk.

After the call from the user (application) and some local computing (on the client cpu), a
request to read the desiIed file is delivered to the transport service for transmission to the
file server. There, after some local computing, the disk access is prepared and executed
after which the response containing the file is returned to the client, again by means of the
transport service.

3.1.2 Local Area Networks
A LAN is a data communication network limited in geographical scope. It provides high
speed data transmission at relatively low costs compared to a Wide Area Network (WAN)
and therefore is typically employed in OISs.

A communication network can be seen as having a typical hierarchical structure
which can be visualised by the Reference Model (RM) for Open Systems Interconnection
(OSI), proposed by the International Standards Organisation (ISO) (ISO 1983),
(Zimmerman 1980). The RM identifies seven layers which together form an open system,
but in specific implementations of open systems some of the layers may be (nearly) empty,
especially in LAN-environments. The LAN model employed for performance modelling is
based on a simplified version of the RM. Only four layers of each site are explicitly
represented : the application layer, the transport layer, the data link layer and the physical
layer (see figure below).

TIME

1

USER

CAll by user or
user applkation

209

WORKSTATION

~ local computing

t
request ~

local computing

/
response to user or

user app/klllion

TRANSPORT
SERVICE

(LAN)

,..-..----, ,
" " "

SERVER

", _ computing on servtr

!
prepare disk access(IS)

transmission !
disk access(es)

!
compose file

Fig. 2: A Remote File Read Operation

In the model, the application layer relies directly on the transport service of the network,
which in terms of the OSI-RM is the service provided by the layers up and including the
transport layer. Examples of application layers to be inserted into the perfonnance model
for OIS architectures are a file service and a database service.

In the OSI-RM, two aditional layers may be identified between application and
transport layer, being the presentation and session layer. The presentation layer perfonns
functions that are requested sufficiently often to warrant finding a general solution for
them, rather than letting each user solve the problems (e.g. text compression). The session
layer is the user's interface into the network. It is with this layer that the user must
negotiate to establish a connection with a process on another machine. In the model
presented here, both presentation and session layer are empty. It is assumed that the tasks
of these layers are perfonned in the application layer.

The model of the transport service over a LAN serves' as a framework for the
modelling of the distributed applications, which all rely on this transport service. The

210

sending receiving

y application

y transport

SYMMETRIC
data link FOR

SITE 2

adapter network
fnedium

:=J

SITE 1

Fig. 3: Layered queueing rrwdel 0/ a LAN

transport layer provides a reliable end-to-end transfer of application messages.
Segmentation of a message into packets takes place here. In a first version of the LAN
model, the network layer is assumed to be empty. This is not unusual in OIS architectures
since, the network layer only plays a role when more than one LAN are connected via a
gateway server. The data link layer takes care of sending single packets over the medium.
The LAN-adapter represents the physical layer and controls transmission of the packets
over the network medium.

The transport service on each site relies on two hardware resources, a processor (cpu)
and an adapter. The processor is the server for both the transport layer and the data link
layer. The transport and the data link layer may be regarded in this case as being
implemented in a single software package, the network package. In most networks, the
transport layer protocol is indeed part of the operating system, but the data link layer is in
many cases (at least partially) implemented in hardware.

In this model, a communication session between two sites consists of a sequence of
packets sent from one site to another, and a number of acknowledgements sent back from
receiver to sender. Acknowledgements may be sent at both data link and transport level.

211

No piggybacked acknowledgements are considered here.
The protocol of a layer is implemented in a program that is executed for each packet that
visits the layer. An assumption made here is that the protocol code of both the transport
and the data link layer is non-reentrant, meaning that the code can only be executed for
one packet at a time. This is a usual implementation for the network package of a LAN.
Moreover, it is assumed that each site of the network may have only one single outgoing
and one single incoming cOMcction at a time, so each site can send at most one message
at the time, and can also receive at most one message at a time. Again, this represents a
typical case in a LAN.
A further assumption is the absence of errors (e.g. transmission errors). This assumption
can be justified for a model of the transport service of a LAN since errors are usually very
rare in such an environment

3.2 Modelling Techniques for OIS Architectures
The objective of modular construction of performance models for the OISs considered
within TODOS imposes two major demands on the modelling strategy employed.

First, there should be independent modelling of all architectural components involved,
i.e. HW and SW components should be modelled independently of each other.
So, applied to the ttansport service of a LAN, there should be independence between the
software which implements the ttansport and data link layer (the network package) and the
hardware resources, being the cpu, the LAN adapter and the physical transmission medium.
It should be possible to change or replace any of these components without affecting the
other ones.

Second, since the ttansport service acts as a basic service on which all distributed
applications in an OIS rely, independence between the ttansport service of the LAN and
the application layers on top of it should be guaranteed. Replacement and addition of
applications should be possible without the need to change the transport service and other
applications.

3.2.1 Independence Between Hardware and Software Components
In a straightforward queueing network model this independent modelling of architectural
components is not present In general, the hardware is represented by servers (or stations)
in the model, thus forming the actual queueing network. Software components, or more
precisely processes executing program code, are then modelled as customers circulating
through this network. The effect of the software is embedded in the description of the
selVers by adjusting the service descriptions and routing information to reflect the software
workload, i.e. the aggregate demand of all software processes which use the service of the
hardware resource represented by the server. The following technique is developed to
achieve the desired modularity of the queueing network model.

Software components are modelled in a (number of) dummy station(s), in which the
"protocol" of the software component is modelled. The actual execution of the code will
naturally be simulated at the appropriate station, i.e. the seIVer representing the hardware
resource whose seIVice is required by the software package.

212

In the following we take again the transport service of a LAN as an example. The
network package, which contains the code of both the transport and the data link layer, will
accordingly be represented by a number of stations for both layers separately. Each layer
consists of some dummy stations in which the protocol is modelled, e.g. handling
incoming and outgoing packets, updating the window counters, generation and handling of
acknowledgements, blocking of the transmission in case of full windows etc. The
execution of the code will then be simulated at the processor of the network site.

pack r-------.

from
APPLICA nON transport

PIIok

to
ADAPTER

,------"'""1 act

pack

oct

our

link oct

pock

from
ADAPTER

Fig.4 Communication process at sending site.

To achieve an independent modelling of components, processing requirements at the
processor to execute a particular part of the layer's protocol, and information to which
station a customer is to be routed after receiving the service at the processor, are attached
to the customers in specially defined attributes. These attributes will get their value in the
dummy station modelling that particular part of the software protocol. Using the QNAP2
specification language, they may be defined as follows:

IDECLARFJ
CUSTOMER REAL pr;

CUSTOMER REF QUEUE next;

The real pr represents the number of
instructions the processor must execute for a layer's protocol code, the queue reference
nat refers to the queue the customer, which represents a process executing a software
protocol, is routed to when leaving the processor. For each layer of the network package,
the correct values are substituted in the station in which the protocol is modelled. There,
the execution of the protocol code is simulated (the number of instructions to be performed
is equal to pr) and the routing to the next layer is perfonned (the correct queue has been
substituted in next).

213

The description of the cpu may consequently be very simple, and completely independent
of the tasks it has to execute:

/STATION!

NAME=cpu;
SERVICE=EXP(pr);
TRANSIT=next;

Adding or replacement of SW components to the model will not affect
the description of the cpu. Applying this modelling technique consistently to all HW and
SW components, the required independence between hanlware and software has been
achieved.

3.2.2 Independence Between Applications and Transport Service
To enable a fast and efficient replacement or addition of applications in the queueing
network model, the transport service should be modelled as a black box, meaning that the
application layer should not be aware of the way the transport service is provided, only of
the service itself which is the sending of a message to a remote destination on the network.
To accomplish this independence between the application layer and the transport service, a
customer is enhanced with two attributes :

IDECLARFJ
CUSTOMER REF QUEUE des _ appl;
CUSTOMER REF QUEUE ret_ appl;

As explained above, the OIS architectures
considered consist of a number of client workstations attached to a LAN, to which also a
number of specific servers (file servers, database servers, print servers, etc.) workstations
are attached. When an application process that is running on a client wants to access the
service of a remote server, a request is sent to this server using the transport service over
the LAN. The two defined attributes are substituted to perform this sending : des _ appl will
contain the queue in the queueing network that represents the application on the remote
server that is accessed, and ret_ appl will contain the queue to which the response of the
remote server has to be returned. In the remote server, the attribute des_appl will be set to
ret_ appl. This implies that the transport service always delivers a message at des _appl and
needs to know nothing about whether the traffic is client to server or the other way around.
This modelling technique ensures the required independence between the transport service
and the applications over a LAN.

The two modelling techniques described above, enable modular construction of
performance models for OISs. Both aspects are achieved by adding attributes to the
predefined QNAP2-type CUSTOMER. Some additional characteristics, e.g. the non
reentrancy of software modules, are modelled using semaphores. Since these QNAP2-
mechanisms are being used, the only way to evaluate the resulting queueing network model
is through simulation.

214

4 Performance Evaluation in the TODOS Methodology
The objective of the performance modelling phase within the TODOS methodology is to
support the choice of the best alternative among a number of proposed OIS architectures.
As has been described in (TODOS TR 1.2.3.1), the selection process consists in fact of
three parts:

• definition of the requirements that should be met by the OIS to be implemented;

• evaluation of proposed OIS architectureS;

• comparison of proposed OIS architectures.

In the TOOOS methodology, the requirements are defined in the requirements collection
and analysis phase (Ch. 2). These requirements will be stored in the TODOS Requirement
Model (TRM), which combines the rooos Descriptive Model (TOM) and the TODOS
Performance Model (TPM). The TOM allows to describe the real world of offices and
mainly deals with functional requirements. while the TPM is the model for the description
of objectives and constraints to be met by the new system and mainly deals with non
functional requirements.

Following the TODOS Design loop through the logical design (Ch. 3) and rapid
prototyping phase (Ch. 4), it is the task of the architecture design phase (Ch. 5) to come up
with (a number of) architectures which meet office requirements and to evaluate the
performance of suitable architectures with respect to the office workload. Correspondingly.
the two major activities that may be identified during architecture design are architecture
specification and architecture performance evaluation, both being executed by the same
(group of) system designer(s). Architecture specification considers functional aspects,
delivered by logical design in the TODOS Conceptual Model (TCM), as well as a number
of requirements specified in the TPM, such as physical aspects of the equipments, part of
the logical aspects (e.g. adequacy to user experience). cost aspects and compatibility
aspects.

~uring Performance Evaluation. quantitative values are being assigned to the
performance measures, which are of interest for the particular OIS architectures being
proposed during architecture specification. The performance measures to be delivered by a
performance modelling study within the TODOS methodology are twofold. On the one
hand, the requirements specified in the TPM in terms of user-oriented performance
measures (response times for and throughputs of user transactions) should be reflected. On
the other hand, a modelling study should deliver system-oriented performance measures
(utilisation of and queue lengths for system resources), a system designer might be
interested in in order to identify critical parts of a proposed architecture.

As described in (TODOS TR 1.2.3.1), after performance evaluation the resulting
user-oriented performance measures for each of the proposed architectures will be stored in
the TPM. The final task of the selection process, the comparison of the proposed
architectural solutions, will then be supported by the TPM, which will, according to pre
defined judgement rules, automatically compute marks for the different solutions for all of
the defined requirements.

Having concluded the general description of the selection process in order to come up
with the best alternative among the proposed OIS architectures, we are now in a position to
explicitly state the interfaces of the performance modelling phase with the other activities

215

within the TODOS methodology. First, we consider the activities which will give inputs to
the perfonnance modelling phase. The most obvious one is clearly the activity
immediately preceding the performance evaluation, namely the architecture specification
phase.

Another source of input for the performance evaluation, which has already been
mentioned, is the TODOS Performance Model from Requirements Collection and Analysis
phase. In the TPM, among others, requirements for a number of user-oriented perfonnance
measures, which have to be met by the OIS under design, are stored. In order to check
whether these requirements are actually met by the proposed architectures, the perfonnance
modelling phase obviously should deliver these measures. A final source of input is the
TODOS Analysis Model (TAM) (TODOS TR 1.2.2.1), which will conklin a
characterisation of the office workload. An accurate characterisation of the workload
which will be applied to the OIS is of the first importance, since obviously the
performance of any system may only be detennined with respect to the work it should be
able to support, and consequently a performance modelling study which uses an
inappropriate workload model will never be able to give meaningful estimates for the
performance of the actually implemented system. More details on the required workload
characterisation will be given in the section S.

TODOS Analysis
TODOS Performance Model

performance II Model ~ workload model

requirements D

Performance
Evaluation

Architecture
Specification

~ OIS "",/dUe_.

lUer-oriented
performance measures

s1'tem-orVllted
perfonntlllee measure,

Fig. S Interfaces of the Performance Modelling Phase.

The first of the outgoing interfaces of the performance modelling phase has already been
mentioned, namely the delivery of the required uscr-oriented performance measures for
storage in the TPM, which will then support multi-criteria comparison of the proposed
architectural solutions. Furthermore, outputs in the form of system-oriented performance
measures may provide feedback to the architecture specification phase. Interpretations of
resulting measures for utilisations of and populations at resources may thus lead to

216

reconsideration of the proposed OIS architectures. TIle way in which perfonnance
evaluation may support architecture specification will be further detailed in the presentation
of the methodology to be employed for conducting a performance modelling study within
TODOS.

The interfaces of the performance modelling phase and other activities within the
TOOOS Design Methodology are graphically presented in figure 5.

5 Conducting a Performance Modelling Study
The procedure of developing accurate performance models for the OIS architectures
proposed in the architecture specification phase is not an easy task. Because of the
complexities involved in the modelling process, methodological approaches are very
beneficial (McNair et al. 1985). In the following, a methodological approach to the
performance modelling phase within the TOOOS design process will be presented. In this
presentation, the performance modelling activity, which has been presented so far as a
single activity, will be divided into a number of phases and the interfaces to other
activities, which have been identified above, will be further detailed.

A performance modelling study may be divided into several phases:

1) Understanding the system design;

2) Definition of objectives;

3) Identification of relevant system components;

4) Model construction;

5) Parameterisation;

6) Model solution;

7) Interpretation of results.

The performance modelling phase within TODOS serves to support the choice between
several proposed OIS architectures and will therefore in general involve the construction of
several performance models, representing (part of) the proposed architectures. Obviously,
this implies that some of the steps will have to be taken explicitly for each of the models
to be constructed. To be more precise, this holds, for the steps 3) to 6). As will be
explained in the following, the steps 1) and 2) as well as 7) will be mainly concerned with
the set of proposed architectures as a whole.

This enumeration of phases may give the impression of a linear process. It must
however be emphasised that in practice a performance modelling study will be a highly
iterative process. In addition to feedbacks to earlier phases due to discovery of
errorsIincompleteness, this iterative nature may in many cases already be imposed by the
objective of the modelling study. Part of a modelling study may be a modification
analysis, with the objective of assessing performance implications of architectural and/or
workload changes. Such changes may be reflected in changing parameters (in the case of
workload changes), or even in model changes (e.g. in the case of replacement of certain
architectural components). Another integral part of a performance modelling study may be
a sensitivity analysis, which has the objective of identifying critical parameters. It involves
trying multiple values for a (set of) parameter(s) and observing the magnitude of changes

217

in the performance measures. If the results change quite a bit with only small changes in
the parameter, the value of this parameter is critical, indicating that this parameter might
need special attention.

The complete performance modelling cycle is depicted in Figure 6.

performance
requirements ~

(TPM)

workJoad
model ~
(TAM) L.--""T""'1r-r--~

user-oriented rf'" il
performance system-oriented

measures performance
to TPM measures to

architecture
specification

.,tJli4IUio"
~tlCtDI1.

flUJd4/ktlllo" ~.
sellS;li"lity IIIIIII1I11

Fig. 6 The Performance Motklling Cycle.

5.1 Understanding the System Design
A first pre-requisite to construct an appropriate model of the system under study, is clearly
that the modeller is familiar with the system design. Since the model is an absttact
~sentation of the system, it must contain enough information to behave similarly to the
real system as far as the performance aspects of interest ~ concerned. Of course, a model
can be built at many different levels of detail, but even the highest level of detail must
incorporate some of the complexities of the real system.

In the performance modelling phase within the TOOOS methodology, the performance
of a number of proposed architectural solutions will be evaluated in order to support the
choice between these solutions. Consequendy, the performance models constructed should
be able to discriminate between the proposed architectures. Note that the performance
modelling phase will be directed by the same (team of) system designer(s) who performed
the archi~ specification, which implies that enough (expert) knowledge on the systems

218

under study will be available. Therefore, this first activity of the performance modelling
phase will not require extensive system study. Emphasis during the activity should be on
making explicit the differences between the proposed architectures.

5.2 Definition of Objectives
A good understanding of the objectives of a performance modelling study is, though
perhaps less obvious, as important as a thorough understanding of the system itself. The
objective of a modelling study namely determines the level of abstraction, or level of
detail, to be employed. Many system characteristics that would need to be represented in a
fully general model may be irrelevant in a particular study, and identification of such
characteristics may consequently lead to a simpler model and modelling study.

In general, the objective of the performance modelling phase within the TODOS
methodology is to support the choice of the best alternative of a number of proposed OIS
architectures. A TOOOS performance modelling study should address the critical factors
of the office's business, which were identified in the TOOOS Performance Model. This
might be the file service in an environment where office workers need frequent access to
documents from shared archives, or the print service in an environment where it is vital to
be able to rapidly submit mailings to clients. As explained above, this implies that the
performance modelling phase should for each of the proposed architectures deliver user
oriented performance measures related to the performance objectives described in the TPM.

Furthennore, the performance modelling phase may support a system designer in
identifying critical parts of the proposed architectures, which might need special attention.
In order to get a better feeling for these critical parts, a system designer might be interested
in certain system-oriented performance measures, which give information about utilisation
of resources and queue lengths for these resources. Performance evaluation may therefore
lead to reconsideration of proposed architectures. Accordingly, it may be also be employed
to eliminate uncertainties when making rough architectural choices (e.g. centralisation vs.
distribution of resources, personal usage vs. sharing of resources) during the architecture
specification phase. Performance evaluation may thus lead to an early reduction of the
solution space during architecture specification.

The level of abstraction to be employed during the performance modelling phase of
TOOOS is largely determined by the differences between the several proposed
architectures. Performance models used to compare rough architectural choices, such as
the choice between centralisation or distribution of storage devices, will in general be
specified at a high level (system level), and will include subsystem units as basic building
blocks. When performance models are used to discriminate between types of devices in a
similar architecture, e.g. the choice between two types of storage devices in the same
architecture, it may be necessary to descend into a lower level, specifying the model in
terms of basic hardware units.

Summarising, the result of this activity should be a definition of the questions the
performance modelling phase should answer and an identification of the abstraction level(s)
to be employed during the construction of the performance models for the proposed
architectural solutions.

219

5.3 Identification of Relevant System Components
The next step to be perfonned after describing the obj«;tive of the perfonnance modelling
study, and thus the level of abstraction to be employed, is the identification of the system
components to be included in the performance models to be constructed. Note that this
activity should be carried out for each of the performance models to be constructed.
Obviously, this step depends heavily on the previous step.

The architecture specification phase is concerned with modular construction of OIS
architectures, based on existing HW and SW components, while the perfonnance modelling
phase is concerned with construction of performance models for these architectures. One
should note however that this does not imply that necessarily all architectural components
will be represented in the performance model. As explained above, the objective of the
modelling study will largely determine what applications should be modelled, and thus
which of the HW and SW components should actually be included in the perfonnance
model. Furthennore, the objective of the study determines the level of abstraction to be
employed, so while in some cases all relevant system components should be represented
individually, in other cases the model could be restricted to a representation of subsystem
units. These considerations imply that the performance evaluation tool will be manually
driven in a sense that the system designer should decide which components to include in
the performance model.

5.4 Model Construction
While the former phase was concerned with which system components should be
represented in the performance model, the model construction phase deals with how to
represent them. In this phase, the actual abstraction from the 'real' system to the queueing
network has to be perfonned.

An objective of the model construction {I;lase within TODOS is to provide a
methodology for constructing performance models of complex OIS architectures out of
'simple' performance models of the architectural components. In order to achieve this
desired modularity, the modelling mechanisms of QNAP2 have been enhanced as has been
described in section 3.2.

5.5 Parameterisation
The model constructed in the previous phase will contain a number of parameters that will
have to be instantiated before performance measures may be obtained by solving the
model. This parameterisation is an important part of the modelling study, since obviously
results obtained from model evaluation can be no more accurate than the parameter values
provided.

Queueing network model parameters may be divided into two groups, parameters that
specify the service centers, or machine, and parameters that specify the customers, or
workload. Service center parameters should specify the service rate of a resource and the
scheduling discipline of a resource. These parameters are integral properties of a resource
and will therefore be part of the performance description of a HW component, as was
described in (fODOS TR 4.1).

220

Workload parameters should specify service demands of customers at resources, visit
ratios at resources, and (in case of a closed queueing system) the number of customers or
(in case of an open system) the interarrival time distributions. Usually, the workload
characterisation is the most critical element of the parameterisation.

In the TODOS methodology, the quantitative data needed to parameterise the
workload parameters will be collected by the requirements collection and analysis phase to
be stored in the TODOS A.."lalysis Model. The workload in the office may be considered at
different levels. First, we may consider the rem office workload as imposed by office
workers in terms of executed office support tool functions. This workload characterisation
as such is not very useful in relation with service requirements to the shared resources, in
which we are most interested during the modelling study. A workload description in terms
of use of office support tools is useful though for a rough characterisation of the (expected)
resource usage at personal workstations.

The level of workload characterisation that is most appropriate for our purposes will
be in terms of apparent workloads, i.e. the workload observed as inputs to the system. The
workload will be in terms of file handling, document printing, and document mailing. The
workload characterisation at this level should represent the service requests to shared
servers from the workstations of office workers. For example, with respect to file services
these workload parameters should specify the (distribution of the) frequency of file
accesses, or alternatively the mean time between two subsequent file accesses, and the
distribution of document volumes involved. Oearly, accurate grouping of workload
components is vital here, since these parameters may vary considerably between different
work places in an office, or in some cases even between different office workers and
support tools. For example, the user interface of office support tools, which governs the
way of command input and results presentation, and user's experience with the tools he is
working with, partly determine the time between completion of one request and issuing of
the following, which usually is refemd to as a user's think time.

Besides grouping, another important aspect of the workload characterisation is the
period which it covers. Obviously, the office workload may vary from one period to
another, and it should therefore be defined what workload should be considered during
performance modelling. Usually we will be interested in performance measures for the
period of time during which the workload is the highest, rather than on Friday afternoon,
but in some cases it may be sufficient that performance requirements will be met for the
"average" workload thereby accepting performance degradations during (short) periods of
peak workload.

An approach to compensate for the lack of precise workload parameters is to perform
a kind of sensitivity analysis by evaluating the model for a range of plausible parameters.
This procedure may give indications of trends in performance measures under an increasing
workload and of possible future bottleno;..:a in an architecture, which may in many cases
be enough to discriminate between different architectural solutions.

221

5.6 Model Solution
In a perfonnance modelling study supported by a perfonnance evaluation tool such as
QNAP2, a performance modeller does not need to bother about details of the solution
method to be employed in order to obtain performance measures corresponding to the
parameterised queueing network model.

The result of model solution using QNAP2 will be a set of basic steady-state
perfonnance measures (utilisation, population, response time, and throughput) for each of
the stations in the network. Results may be presented in a standard report, but all
perfonnance measures may also be accessed individually using the QNAP2 result access
functions. Consequently, they may be used for deriving other meaningful performance
measures, such as the interactive response times for applications. QNAP2 thus offers its
users the possibility to present resulting performance measures in the way they find most
appropriate for further interpretation.

5.7 Interpretation of Results
Interpretation of results is an important phase of any perfonnance modelling study.
Reflecting directly to the TODOS perfonnance modelling phase, two aspects should be
taken into consideration during this activity. First, it should be checked whether the
obtained performance measures actually represent system perfonnance. This check may
conceptually be made independently for each of the models. Once this first task has been
satisfactorily executed, the second important step is to analyse the results with respect to
the questions which were to be answered by the modelling study. This second task will in
general require comparison of resulting performance measures for all models, and
consequently, this task will be engaged with results of all models as a whole, rather than
with the results of each model separately.

Validation is the process of ensuring that the model produces correct results. Model
results may contain different errors, and a number of sources of these errors may be
identified. One particularly common source of error is caused by inaccurately estimating
model parameters. Some of the parameters may turn out to be extremely critical in
producing the model's performance measures. Slight errors in estimating their values may
result in large errors in some of the performance measures. This can be a very difficult
problem to deal with. WOIkload forecasting for systems under development, such as in the
TODOS methodology, is a complicated task in which one has to deal with many
uncertainties. Critical parameters may be found by performing a sensitivity analysis, as has
been explained above. As mentioned before, performing a sensitivity analysis may also be
an approach to compensate for the lack of accurate workload parameters. In the rooos
methodology, a sensitivity-analysis may be useful to discover perfonnance-sensitive parts
of the proposed OIS architecture. QNAP2 supports a sensitivity analysis by offering the
possibility of solving a model repeatedly in a loop in which some of the model's
parameters are updated.

A second source of error may be errors in the model itself. The structure of the
model can be incorrect, some key resources may be missing from the model, or the model
may contain logical errors. These type of errors are in general not as difficult to deal with
as the errors in the parameterisation phase.

222

When evaluating a model with simulation, we must also be concerned with the
statistical variability in the results. Since there is a certain randomness involved in
sampling from distributions, this randomness is also present in the results. QNAP2
includes several facilities for confidence interval estimations to deal with this statistical
variability of simulation results.

Once all models have been validated satisfactorily, the next obvious step to be taken
is to make sure that the questions defined during the definition of objectives may be
answered by analysing the resulting performance measures. With respect to the user
oriented performance measures, which are to be stored in the TPM to support the choice
between different proposed architectures, it should be checked whether the obtained results
for the different models are appropriate in order to discriminate between the different
architectures. When results for different models are too close to discriminate between
them, the question should be answered whether this is the case because of model
construction at a too high level of detail, or simply because proposed architectures have
similar performance for the applications under study. If the former is the case, the system
designer(s) should go back to the identification of components in order to construct more
detailed models which may achieve the discrimination between the architectures. If the
latter is the case the choice between the architectures should be made solely on the basis of
other aspects defined in the TPM.

On the basis of both user-oriented and system-oriented performance measures, the
system designer(s) may get more insight in the suitability of the proposed OIS architectures
to support the office work in the office under study. It may lead to the decision to do
away with specific architectural solutions, while others may be reconsidered. The latter
may be the case for architectures for which measures are very good (low response times,
utilisations of resources below 50%, small queues for resources), which might indicate that
an overkill of resources is present, as well as for architectures for which measures are less
favourable, indicating possible (future) bottlenecks. As mentioned before, one should not
only include the results of a single evaluation of a model in these considerations but also
the results of for example a sensitivity analysis. The system designer might ask himself
some what-if questions, such as "what will be the performance implications of a
slowerlfaster processor at a server?", or "what will be the implications of replacement of a
UO device by a slowerlfaster one?". These kind of questions may be answered during a
modification analysis, which is the process of changing a performance model to reflect
system changes or anticipated workload changes. Obviously, the latter is also relevant for
the OISs developed within 1'OOOS, since the OIS will also be supposed to support the
office work in times to come, although possibly upgrades/reconfigurations may be
necessary in the future. In many cases, these model changes may be made by simply
adjusting one or more of its parameters, to reflect a change in the service rate of a resource
or changing demands for a certain service. QNAP2 supports this kind of modification
analysis by giving its user the option of interactive solution of the model. The user, in the
TOooS methodology a system designer, might take over control after solution of the
baseline model, change some parameters, and solve the model with those changed
parameters.

Results of a modification analysis may be fed back· to the architecture specification
phase and lead to proposal of modified and even new OIS architectures, which defines the

223

link back from perfonnance evaluation to architecture specification which has been
identified in a former chapter of this report. The ease of interactive modification analysis
in QNAP2 may lead to the consideration not to specify a separate performance model for
each of the proposed architectures, but rather to evaluate similar architectures on the basis
of a single perfonnance model by making small model adjustments or changing some
parameters. It is up to the system designers and their experience to decide what strategy to
employ during the perfonnance modelling phase.

6 Example
This section serves as an illustration of the performance modelling process within TODOS.
The OIS architecture covered in the example consists, as depicted in ag. 7, of a number of
client workstations, a file server and two database servers, connected by a LAN .

....

Fig. 7 Example of an OIS architecture.

The perfonnance of this (class of) OIS architecture(s) will be evaluated as a function
of an increasing number of connected clients. The perfonnance will be described in terms
of file service and database service response times, and utilisations of shared resources (file
server cpu, file server disk, database server cpu, database server disk, and physical
transmission medium).

In the following, the process of interactive model construction for all relevant
architectural components is described. In this description, the focus is on the support of
this process by the perfonnance modelling tool. This support consists of ensuring model
completeness by forcing the performance modeller to define . all relevant performance
components, and by giving default values for parameters. After that some results which

224

may be delivered by the perfonnance modelling tool after simulation of the parameterised
model are presented.

6.1 Global Configuration
First, the perfonnance modeller has to specify the global configuration of the OIS
architecture to be evaluated. At this point, the elements identified in this global
configuration are the above-mentioned client workstations, file servers and database servers,
which all will form a node of the LAN. Clearly, a node may be any combination of three
elements, e.g. a combined database and file server, or a file server acting as a client
workstation as well.

As a first question, the performance modelling tool will ask: its user whether he wishes
to vary the number of one of the elements and consequendy have multiple simulations. In
the case presented here, we indicate that we want to vary the number of client
workstations. After this, the user will be prompted for the number of file servers, in our
case I, the number of database servers, in our case 2, and the number of clients. Since we
have indicated that we would like to vary the number of clients, the tool will ask for the
initial number of clients (we choose 10 workstations), the final number of clients (we
choose 90 workstations), and the step size with which the number of clients should be
varied between two consecutive simulations. We enter the value 20 for the step size,
which implies that there will be 5 simulations.

Now that we have specified the global configuration of the OIS architecture, the
performance modelling tool will guide us through the specification of all relevant
performance components of the OIS under study. The following architectural components
may be identified:

• Hardware components:

- central processing unit (CPU); i.e. a processor, which clearly will be present at all
nodes of the network.

- disk subsystem; a disk will be present at both file and database servers.

- LAN adapter.

- physical transmission medium.

• System software components:

- transport service; i.e. the software implementing transport and data link layer.

• Application software components:

- file access application; this is the part of the file service running at client
workstations.

- file service application; this is the part of the file service running at the servers.

- database access application.

- database service application.

As an example, the figure below is a graphical representation of a performance model for a
file server in which the architectural components may easily be identified. A connection
between two architectural components means that the higher component uses the service
provided by the lower one, e.g. the application SW component file service uses the CPU
for processing and relies on the transport service for communication.

225

Application SW

System SW

Hardware

disk cpu LAN adapter

Fig. 8 Performance Modelfor a File Server.

6.2 Transport Service
Next the transport service over the LAN, including the physical aspects of the transmission
medium, will be specified. The performance modeller is prompted for a number of
parameters, but for each a default value is provided.

Parameters for the physical transmision medium are the LAN packet size (default =
1.0 Kbytcs) and the LAN transfer rate (default = 10.0 Mbits per second, in other words
Ethernet).

For the transport layer, the transport window size (default = 7), i.e. the number of
data units a sender may send at transport level before suspending transmission and awaiting
an acknowledgement, has to be provided. At the moment, only one transport layer
implementation has been modelled, which has been obtained from (Meister et al. 1985).

The data link layer may be either connection-oriented (default) or connectionless.
Only in the connection-oriented case, acknowledgements will be sent at data link level. In
that case, the performance modeller should specify data link layer window size (default =
4) and whether or not there will be acknowledgement accumulation at the receiving site. H
there is no acknowledgement accumulation, the receiving site will send a data link
acknowledgement upon arrival of every packet, which is the default case. H there is
acknowledgement accumulation, the performance modeller will have to specify the number
of packets which will be collected at the receiving site before sending an
acknowledgement. The performance modelling tool will check for the validity of the given
values. For example, the value for the acknowledgement accumulation should be not
larger than the data link layer window.

226

It may be noted that no parameters have to be specified for the physical layer, which
will be represented by a LAN adapter. This is because up to this moment only a single
performance component representing a LAN adapter has been included in the performance
model base, whose characteristics again have been obtained from (Meister et al. 1985).

In this example we choose the default transport service configuration, that is a
transport service with default values for all parameters.

6.3 CPU Configuration
Clearly, each node of the network will have a central processing unit The performance
modeller will have the option to have identical CPUs at all servers or have different CPUs
at file servers and database servers. In case of multiple simulations, all client CPU s will be
forced to be identical, since otherwise comparison of performance as function of a varying
parameter will hardly be meaningful. In case of a single simulation, the performance
modeller is free to define different CPUs at each site, for both clients and servers.

For each CPU to be defined, the performance modeller has to specify the scheduling
discipline. At this moment, the performance modelling tool will present 4 options (first-in
first-out, quantum scheduling, priority scheduling, and priority scheduling with a pre
emption distance of 2), which will all lead to different component descriptions.
Furthermore, the performance modeller will have to specify the processor speed in MIPS
(millions of instructions per second). Default value will be 1 MIPS, which represents the
performance of an Intel 80286 (Heidelberger et al. 1988). The performance modeller is
free to choose any processor speed. including both existing or realistic ones (e.g. a
processor speed of 2 MIPS to represent a Motorola 68020), and more futuristic ones, for
example in order to use the performance modelling study to obtain the necessary
processing capacity to meet required performance for certain applications.

For our example, we will have CPUs which are priority-scheduling with pre-emption
distance 2, and default processor speed of 1 MIPS at all sites.

6.4 Server Disk Configuration
Both file servers and database servers will have a disk subsystem connected to them. The
performance modeller will get the option to have identical disks at all servers or have
different disks at file servers and database servers.

At the moment, only a single type of disk subsystems has been included in the
performance model base. This disk subsystem is characterised by two parameters, being
the disk block size in Kbytes (default = 4 Kbytes), and the mean access time to fetch a
block from disk or to write a block to disk (default = 20 msec.). The default values are
typical for today's workstation technology, but again the performance mOOeller is free to
choose whatever value he likes.

In our example we choose disks with a default block size of 4 Kbytes at all servers.
The disk at the file server will have a mean access time of 15 msec., while the disks at
both database servers will have the default mean access time of 20 msec.

227

6.5 Application Configuration at Servers
Up to this moment we have defined the hardware and system software configuration of the
OIS architecture to be evaluated. Now we are ready to proceed with the application
software components.

At file servers, a file service application will be present For this application SW
component no additional parameters will have to be specified. The performance
component for this file service component has been obtained from (Lazowska et al. 1986).

At database servers, a database service application will be present. The description of
the database service component has been obtained from (Heidelberger 1988) and represents
a relational database with SQL. Two additional parameters will have to be specified for
the database service. At the database server there will be a buffering of index and data
pages in main memory, which implies that not all of the data required by a database
transaction have to be fetched from disk. The buffer miss ratio may be defined as the
mean percentage of pages which will not be present in the page buffer in main memory
when requested and consequently have to be fetched from disk. Obviously, this buffer
miss ratio depends on both database access pattern and the buffering strategy being
employed, but (Heidelberger 1988) suggests 0.667 to be a reasonable value, which
therefore is employed as default value. The performance mOOeller is however free to
choose another value in order to adequately represent the database access pattern and the
buffering strategy in the particuler OIS under study. Another parameter to be provided is
the size of data pages employed in the database service, for which a default value of 2
Kbytes is proposed.

In our case we will choose the default values for both buffer miss ratio and data page
sizes.

6.6 Application Configuration at Clients
At the client workstations, two types of application SW will run, being file access software
and database access software. In case of multiple simulations, the application configuration
at each client is forced to be identical, while in case of a single simulation the performance
modeller has the option of defining the application configuration independently for each
client workstation.

For the file access application, the performance modeller should first specify the
distribution of file sizes accessed from a client workstation. At this moment three types of
distribution have been implemented, namely constant file sizes, exponentially distributed
file sizes, and a general file size distribution. For all distribution types, the performance
modeller will have to specify the mean file size. For the general distribution additional
parameters are the percentage of files smaller than 1 Kbyte, and the percentage of files
between 1 and 4 Kbytes. A second parameter to be specified is the read/write ratio, which
is the ratio between read accesses to files and write accesses of files.

In our case we choose the general file size distribution as observed in (Ousterhout et
al. 1985), with a mean file size of 11 Kbytes, where half of the files is below 1 Kbytes,
and approximately 25% between 1 and 4 Kbytes. Since usually file read operations will be
more frequent than file write operations, we will choose the default read/write ratio of 3,
meaning that the number of read operations will be approximately 3 times the number of

write operations.

228

For the database access application, the perfonnance modeller should specify the
average database transaction complexity, i.e. the average number of SQL-calls per
transaction. Obviously, the transaction complexity heavily depends on the application area.
For example, according to (Heidelberger et al. 1988) the manufacturing transaction has a
complexity of on the average 12 SQL-calls, while banking debit/credit transaction has a
complexity of 5. In our case, we will use the latter transaction complexity.

6.7 Workload Characterisation
Up to this point, we have constructed the complete performance model for the OIS
architecture under study, including all relevant components. Now we should characterise
the workload in terms of server accesses. The workload characterisation consists of two
elements. First, the mean time between two server accesses (or think time) and the
percentage of these accesses going to the file service and the database service will have to
be specified.

The workload in our example will be identical for all clients with a mean time
between server accesses of 3 seconds. We choose 75% of the service requests to be to the
file service, and consequently 25% to the database service.

Second, in case of multiple servers providing a service, which in our example holds
for the database service, it should be specified how the accesses are distributed over the
different servers. H there is going to be a single simulation, the performance modeller will
have the option to define for each client the percentage of accesses to each server, but in
case of a varying parameter a balanced load over all servers is enforced. There are three
load balancing options. In the first option, the accesses for a particular service from a
client will be uniformly distributed over all available servers providing that service. In the
second option, all accesses from a client will be served by one server, the so-called local
server of that client In the third option, a certain pen::entage of the accesses of a client
will be routed to the local server, while the remaining service requests are uniformly
distributed over the remaining servers. When the latter option is chosen, the performance
modeller should specify the percentage going to the local server (default = 0.8). The
performance modelling tool will take care of establishing a balanced load of client requests
to servers according to the chosen option.

For the database service in our example, we will choose the third load-balancing
option with the default parameter.

6.8 Results Presentation and Interpretation
So far we have constructed a complete perfonnance model for the OIS architecture under
study, with attached to it a parameterised workload. This performance model is now ready
for simulation. Before the simulation will be carried out, the performance modeller has
some options with respect to the performance measures to be delivered by the simulation.

The perfonnance modelling tool will by default present results for response times of
service requests and utilisations of shared resources, but a performance modeller with some
elementary knowledge of the QNAP2 algorithmic language and the structure of the
constructed performance models, may easily derive additional performance measures from

229

the basic perfonnance measures which QNAP2 delivers for each queue in the queueing
network model.

All results may be written into a file, which implies that a perfonnance modeller is
not obliged to wait for the end of the simulation, which, if precise results are requested,
may take several hours. The perfonnance modelling tool will first show the configuration
of the OIS architecture, which has been modelled, with all relevant parameters, so there
will not be any confusion about the input parameters belonging to a particular set of
performance measures

The perfonnance modeller will get the option to have response times presented for
each of the clients, or only have mean response times for all clients together. If all clients
are identical usually the performance modeller will only be interested in the latter, but if
client access patterns are not identical, response times per client will be mandatory. As in
our example, all client workstations are identical, we will only present the mean response
times of all clients taken together. A second option with respect to response times
concerns the presentation of 95%-confidence intervals for the delivered response times.
The performance modeller is free to suppress these confidence intervals. Usually a
performance modeller will be interested in these confidence intervals, as they present a
measure for the accuracy of the response times. If confidence intervals are not sufficiently
small, simulation times may be increased. The perfonnance modelling tool gives its user
the possibility to change the simulation time per run.

With respect to utilisations, the performance modeller has similar options. He may
choose to have utilisations presented for each server, or only have mean utilisations per
group of servers providing the same service (e.g. mean utilisation for CPUs at database
servers.). Furthermore, he has the option to either present of suppress confidence intervals
for the utilisations.

As a final option the performance modeller has the option to store the results with
respect to mean response times per service and mean utilisations per hardware resource of
a service in a format appropriate for graphical representation.

The resulting response times of the five simulations and their corresponding
confidence intervals are presented both graphically and in a table.

A number of observations may be made from these results. It may be easily seen that
there is a considerable performance degradation with respect to the file service as a result
of the increasing number of connected client workstations. It may therefore be concluded
that the file server is saturating. This conclusion is clearly supported by the measures for
the utilisations of the hardware resources, shown graphically in figure 10 and in table 2
For the database service on the other hand, the perfonnance degradation is quite
acceptable. With the increasing number of clients, the response time only shows a
marginal increase, thus indicating that the database service in the considered architecture
will not be a bottleneck even when the number of connected workstations is considerably
increased.

From the measures for the resource utilisations, it may be concluded that network
contention, reflected by the measure ptm (physical transmission medium), will not easily
become a bottleneck in this OIS, since even with 90 workstations connected to the system,
the utilisation stays well below 35%.

3.0 [seconds

fs response
db response
fsconflwb
dbconflwb
fsconfupb
dbconfupb

H.'

230

7...
number of clients

response times

Fig. 9 Response times 0/ file and database service.

RESPONSE TIMES
lei fs resp dbs resp
10 0.2285 0.4188
+/- 0.01839 OJ)tI(1)1

30 0.4161 0.4856
+/- 0.02661 0.05677
50 0.7572 0.5652
+/- 0.04174 0.08129
70 1.5096 0.6272
+/- 0.06208 OJW)15
90 2.7334 0.6667
+/- 0.07308 0.09348

Table 1 Response times.

The perfonnance measures delivered by the performance modelling study may be
used to assess the number of workstations which may be connected to the LAN, while still
having acceptable perfonnance. Of course, 'acceptable perfonnance' may be different in
different environments, which will be reflected in different values in the TODOS
Performance Model (rPM). Let's for example define acceptable performance in the OIS

231

1.0 _ percentage

0.1

D .1

0 .• __ -_ ... -
,

/
.... -..

.. :. ---.".-.- -----
0.2

.. _. • ••• L

number of clients
ptm

------- db cpu ----- fs disk
---- fscpu resource utilisations --- db disk

Fig. 10 Utilisations of hardware resources.

urn.ISATIONS OF HARDWARE RESOURCES

lei
IS dbs I clbs2

cpu ctisk cpu disk cpu ctisk
ptm

10 0.1661 0.1138 0.0773 0.0658 0.0783 0.0664 0.0582
+/- 0.00611 0.00487 0.00530 0.00472 0.00607 0.00500 0.00219
30 0.4873 0.3349 0.2151 0.1816 0.2248 0.1925 0.1706
+/- 0.00832 0.00731 0.00930 0.00819 0.01154 0.00952 0.00274
SO 0.7479 0.5148 03294 0.2818 03447 0.2915 0.2616
+/- 0.00817 0.00615 0.01317 0.01230 0.01154 0.01143 0.00270
70 0.9107 0.6269 0.4145 0.3515 0.4204 ·0.3605 0.3202
+/- 0.00713 0.00612 0.01360 0.01356 0.01539 0.01336 0.00277
90 0.9618 0.6632 0.4267 0.3668 0.4409 0.3799 03369
+/- 0.00314 0.00331 0.01578 0.01379 0.01711 0.01419 0.00149

Tobie 2 Utilisations of hardware resources.

under study for the file service to deliver mean ~sponse times below I second. It may
then be concluded from the simulation ~sults that certainly no mo~ than around 60
workstations should be connected to the LAN with the current number of connected
servers.

232

Obviously, resources are not heavily utilised when only a few workstations are
attached to the network. For the system under study, utilisation of all resources is still
under 50% for 30 connected workstations, indicating that there will hardly be any
queueing. A relatively low utilisation at all resources implies that overall performance still
may be improved by reducing the service demand at any device. However, at high loads,
e.g. more than 50 workstations connected to the LAN in the considered OIS architecture,
the performance is totally governed by the most heavily utilised device, which in our case
is clearly the CPU at the file server. It may be noticed that for 50 workstations file server
CPU utilisation is already 75%, while from 70 connected workstations upwards the CPU is
close to being fully utilised, causing performance to degrade rapidly with an increasing
number of workstations. Now, performance may only be improved by a service demand
reduction at the file server CPU. Any other modification is expected to have little or no
result

In order to improve file service performance, a number of design alternatives may be
considered, such as:

• doubling of the speed of the file server CPU to 2 MIPS;

• add a second file server to the system.

It should be noted that these design alternatives may be easily derived from the original
system, which in the following will be referred to as the baseline system, by some simple
parameter changes. The first design alternative may be derived by indicating the file server
CPU speed to be 2 MIPS when asked for it by the performance modelling tool, while the
second alternative may very easily generated by answering the question with respect to the
number of file servers with 2, which will lead to the construction of two file servers as part
of the overall performance model.

The file service response times of these two design alternatives, compared to those in
the baseline model, are graphically presented in figure 11.

It may be concluded that both design alternatives considerably improve file service
performance.
Since in the baseline case the file server CPU was clearly the system's bottleneck, speeding
up this CPU is an obvious modification. Clearly, it improves file system performance,
though it does not entirely solve the problem of the file service saturation at high loads.
From the estimates for the utilisations of the hardware resources, which are not displayed
here, it may be concluded that in the modified systems the file server disk is the most
utilised resource, and that this disk will consequently become the bottleneck device.
Therefore, improvements to the disk subsystem, e.g. by adding a second disk, are likely to
lead to better performance improvements than speeding up the file server CPU even more.

The second design alternative, in which a second file server is added to the LAN, to
share the load imposed by the clients, clearly leads to the best performance improvement.
It should be noted however that the qualification 'best' is only based on performace
characteristics, and that cost and other aspects, which will influence the selection process
between the several design alternatives, are not considered here.

The elaborated example above has illustrated that a performance modelling study, may
clearly support the selection process between a number of proposed OIS architectures. A

3.0 I seconds I

2.5

a .0

1.5

1.0

O.!

baseline
second fs
2 MIPS fs

233

~

70.0 '0.0

number or clients

fs response

Fig. 11 File service response times for design alternatives.

number of relevant questions during this selection process may be answered more
accurately after performance evaluation of the design alternatives.
Examples of such questions are:

Will expensive modifications (e.g. adding a second server, upgrading devices) be
justified by an equivalent performance improvement, and a consequently increasing
office workers' productivity?
Will the OIS be able to support a growing fuhR workload (increase of the number of
connected workstations, heavier use by current users)?

Chapter 6

TODOS Case study
Gerd Wolfram and Edda Pulst

1 Introduction

This chapter illustrates the application of the different tools prepared to support the
TODOS methodology in a practical case study. The case study has the following ob
jectives:

• The attainment of a natural, consistent application view including possible feed
backs from real users in order to ease further development. Testing the handling
of the tools provides useful information for the user-interface. The case study
demonstrates how the different tools and therefore parts of the new system can
be integrated and work in an interrelated way.

• Practical use and application of the developed tools has an important impact on
the evaluation of the research results attained.

• The case study demonstrates how developed functions and/or combinations of
functions could be used and reused to provide the practical intersection between
different design phases, each of them being concerned with a different step in the
design process.

2 Background to the enterprise and case study field

The case study was chosen from a study carried out while using the FAOR method
ology (Schaefer 1988). In the following section the main steps involved in applying
the approach and the results are presented. First we describe some of the facts and
background about the procedure and about the client enterprise situation in the case
study.

2.1 The enterprise

The case study took place a large regional bank where the major tasks are financing,
services, accounts, payments, lending and debentures. The bank has regional, national
and international tasks. Special emphasis is put on international banking, portfolio
management and building and loan management. The organization's branches are lo
cated at various places in Germany as well as abroad, furthermore the bank keeps
intensive corresponding contacts with almost 5000 banks abroad.

236

(... 4 of) I Direct

I I I 1 I I
Mana p..titM -1 Ponfolio Service.

In .. mIIionaJ Achinilcnli>e InsIiDlOonl I Servicco men! domc1Cic M deponmenll ocrvicco
~.Inn

(==-) • SI-ina bulb • Sleds ·lnwacmenl ·8tMChes • Mail • Buildina ond
• Leuin. • Bonds c:onaullinl • Offic:es • ConIroI 10., IIWIIF-
r..-y • Cull • Export udIi_ ment

.~ flRlDdnl • Subvention ·enerp (~ __ n!) C;:~) m_
• Conaollinl • ~) • 0ITi0eI ® ~c~ 'Rcpt'H"ft-
• J>Ij,Ijc I I I I I I I I I I I I tati>es I

Rclllioo I I I I I I I I I I I I I

I c:J: In_~liaoled I Unns

Figure 1: Organizational chart of the case study enterprise

The banking organizational structure may be roughly subdivided into 7 entities
(Fig. 1).

The investigated units (marked) were the chosen departments where the FAOR
application took place. 4.200 persons are employed in total. They can be classified into
four different groups. The criteria for differentiation is the type of task or work they
mainly perform (Fig. 2).

The manager's work consists of tasks like representation, leadership and motiva
tion, problem-solving and decision-making. Besides, managers are often involved in
technical work, e.g. in the acquisition of clients or the control of work. Managers are
often outside their office. Their work consists to a large extent of communication (face
to-face or phone) and meetings. Managers have the tendency to write and read short
texts. The storage of information is located at the workplace.

Experts work mainly in the service functions. They try to solve specific problems
which can be characterized as innovative and difficult. Creativity and initiative are
crucial qualities. Their work follows a task-orientation; special knowledge is required.
Their task is to hand on information to people working in the market functions when
necessary or to prepare reports on specific topics. Complex texts and documents, in
formation storage and retrieval, communication with other knowledge workers and the
usage of information systems are the main aspects of the office work.

The clerical workers are concerned mostly with standardized and administrative
tasks in various business areas. They perform routine work. The work processes and the
problems they solve are not innovative. Their work starts with folders and standardized
documents.

Support tasks are fulfilled by secretaries and typists. They support the managers,
experts and clerks. Their work is order-oriented.

237

69,10%
management tasks

11,70%

expert tasks

9,70%

Figure 2: Classification of tasks within the case study organization

2.2 The Lending Process

The case study concentrated on the process of lending, especially to large enterprises.
This process is of special interest to all types of tasks as it incorporates typical office
activities ranging from unstructured to very structured ones. It is also very resource
consuming in terms of office workers and equipment. Furthermore it provides a lot of
functional requirements, i.e. desired speed of information transfer, quality of informa
tion and communication processes, one obtains useful hints regarding the final results
and layout of each design phase.

The lending of money is one of the bank's prime business areas. Loans are given to
private persons or small companies as well as to huge enterprises and trusts. While the
lending business for private persons and small companies is more or less standardized,
the individual contact with the client and the adaptation of the loan and its correspond
ing conditions to the client's specific needs is critical for the latter.

The lending procedure can be divided into four sub-processes (App. B) :

• Acquisition: During the acquisition, the first contact with the client takes place.
The bank in general, its business and the lending conditions are presented. The
effective marketing of the bank is critical as a basis for further and more detailed
contacts with the client (e.g. advertisements in the daily newspapers).

238

• external contacts
Acquisition • reading (press, reports)

• com munication (visitsl

~
• reading
• calculating (solvency)

Offer [>
• searching
• communication (phone,

fact to face)

Approval • ,,""iting (tnt, forms,
acceptanct for the client,

• mail handling

~ • filing

Administration
I • searching (annual solvency

naminalion)

Figure 3: Phases of the lending process

• Offering the loan: After investigating the specific needs of the client and the
possibilities open to the bank in offering a loan an individual offer is made.

• Approval of the loan: The main activities within this process involve verifying
the documents submitted by the client and the final decision concerning the loan.

• Administration: The money is transferred to the client and the approved loan
recorded (Fig. 3).

These sub-processes involve a lot of diverse office activities. The activities com
prise having available external contacts and visiting the client, reading, face to face
communication, calculating, filing, searching, handwriting and typewriting and mail
handling. The lending process is characterized by the diversity of its documents like
letters, short notes, spread sheets and forms.

The treatment of those organizations who are already clients of the bank does not
differ from the treatment of potential clients even if there is the risk that the whole
process is in vain and no contract will be signed in the end.

Several organizational units with diverse locations are involved in the various
processes of lending (as indicated in Fig. 1):

• Credit department (external)

• Credit administration department (internal process)

• Economics and press department

• Public relations department

• Legal department

239

• Centralized typing pool

• Board of directors

• Telex service

The credit department (external) and credit administration department (internal
process) are practically one and the same, the "external" section is responsible for
the acquisition process involving the numerous clients' contacts whereas the "internal
process" mainly concerns the internal administrative procedure within the bank. The
accounting (payment of the loan) is undertaken by the accounts department located in
the services department of the bank.

The public relations department is concerned with the image of the bank in public
employs prospectuses, folios and advertising campaigns i.e. in newspapers and journals
to promote its interests.

Generally speaking conditions of credit are always approved by the board of directors
in order to allow flexible reactions to market changes (interest rates). If the acquisition
manager decides to offer special (more advantageous) conditions to a client, for instance
on account of his excellent solvency or long relationship with the bank, he arranges a
personal meeting with the board of directors to gain acceptance for his proposal under
special circumstances. This takes place before the acquisition letter is sent to the client.

The case study examined in detail the credit department, credit administration
department, the economics and press department and the typing pool (Fig. 4).

The characteristic features lending process activities are due to the qualification and
tasks of the people involved (Fig. 5).

3 Case study application

The present section describes the application of the TODOS methods and tools for
each design phase. Each paragraph follows the same procedure: First the objectives
and goals of the case study for each design phase are presented together with a short
overview about the tool components and input of data. The usage of these data, their
processing and the results are shown afterwards. Each paragraph concludes with a
critical review of the tools and method within the design phase. Special emphasis is
put on the interconnections of design phases, that is, the data exchange between design
phases and their interrelated use and feedback.

3.1 Requirements collection and analysis

The TODOS tool for Requirements collection and analysis is termed "Office Data Dic
tionary" (ODD). As shown in Chapter 2. it provides a set of functionalities for the
analysis process, e.g. storing and administrating requirements' data in a structured
way. Report programs produce practical reports whether on screen or on printer for
both the analysis and the judgment of architectural solutions.

The ODD is composed of several parts. The TODOS Structuring Tool (TST) acts as
the focus administrating the data in the analysis. It provides the opportunity of storing
and retrieving the components of the individual analysis. It contains information on the
data structures and their use within the analysis. The TODOS Analysis Model (TAM) is

240

Buildiag A
HochstraBc 2

lst Aoor

Credit Dcpanment

Industrial Clients

Aquisition Manager
Name:
Mr. Schmitz

2nd Aoor

Economits
&;

Press

Expert
Name:
Mr. Heinemann

Building B
HochsuaBc 4

Expert
Name:

Board
of

Diret tors

Mr. Schuler

Se<:retary
Name: Ms. Lange

Figure 4: Location of departments involved

241

Characterisation of human resource-types
involved in the lending proces

Manager ______________ ~
- problem-solving
- decision-making
- acquisition of clients

• communication
• meetings
• writing, reading short texts

- individual storage

Expert __________________ ~
- problem-solving
- infonnation-provision

• complex texts and documen
• infonnation storage and

retrieval
• use of infonnation systems

LENDING PROCESS

Clerical Worker _....lIIo. __ -,

- routine work
• use of folders and

standardized documents

S up port ~~~:§..JIlSU:aU:ial,
- order-oriented
- typing
- filing

Figure 5: Human resources within the lending process

242

the user-interface to insert the data of the analysis into predefined screens. The TODOS
Performance Model (TPM) finally is a model describing objectives and constraints to
be met by the new system and therefore mainly deals with non-functional requirements
like size noise, display etc. The TAM facility should be used for the feasibility study:
Field data of the analysis are inserted in the predefined structure. Every data entry
is checked against the specified domains property values within the TST. The concept
of domain provides a consistent list of values corresponding to the terminology of the
office studied. As previously described in Chapter 2 any addition of new elements of the
investigated office can be easily done by enlarging the list of domains within the TST.
However a lot domains do already exist in predefined libraries, each refers to a specific
organization type (bank, assurance, EEC administration, ...). Within the case study
it was therefore tested how easily new elements could be inserted into the ODD. The
flexibility was successfully proved by inserting ideas of the users upon new functionalities
which meant an expansion of the generic models of the tool. Furthermore data upon non
functional requirements (noise and workload) were inserted through the TPM (TODOS
Performance Model) of the ODD. During the exploration phase (with respect to the
FAOR framework which has been presented in Chapter 2) a broad understanding of
the context and background of problems the client organization is facing should be
obtained. Aspects which the analyst think relevant will be further explored and the
findings structured and discussed with the client. Using TODOS requirements collection
and analysis tool showed how the organizational preconditions could be inserted into
the data dictionary for a more structured presentation. Furthermore the ODD was
adjusted to the specific client situation.

As discussed in Sect. 2., the application of the case study data was restricted to 3
organizational units situated in various locations:

• Credit Department industrial clients

• Economics and Press Department

• Board of Directors

The organizational structure was inserted via the l't screen of the TODOS Analysis
Model (Fig. 6) indicating the name of the units involved as well as their addresses and
overhanging units.

Units and their tasks (mission) were related to the people working in the organization
via an appropriate mask which adds details of the professional status occupied by each
person (Fig. 7).

Loans are given huge enterprises and trusts; this process is characterized by a bal
anced mixture of standardization and unstructured work.

Within TAM the sub-processes of the lending process were defined in the form
3 product-objectives: acquisition, definition and approval of the offer, administration
in order to be inserted via the "Product-objective-screen" of TAM (Fig. 8). A first
evaluation of the various processes (formal and support level) provided useful indicators
for the analysis phase.

Significantly, the case study provided many different office activities which comprise
among other features external contacts with the client, a number of internal contacts
and meetings, activities like reading, face-to-face-communication, calculating, searching,

243

MENU: Insert Query Exit

UNITS
code name

UNIT: CREDIT DEPARTMENT

Name of the head: M_R_._W_E_B_E_R ____ _

Localization place: MUENCHEN

noor:

address: HOCHSTRASSE 2

code rn~a~me _______ ~

Overhanging UNIT: D I

Figure 6: Input of departments involved

MENU: Query Exit

UNIT and its HUMAN RESOURCES

Cost:

birth

03-Aug-40

code name

degree

MA

hiring qualify duty duty da.te

03-Jao-80 DR.;UNIV. ACQ.;CONT. 03-Jan-80

Figure 7: Professional details of human resources involved

244

QUERY: UpclM' Pap Nut D..... Ellt

UNITS aad PRODUCT OBJECTIVES (p ... 1)

UNIT:

P.O. :

cod. IUIm.

UOOI

0"1

CREDIT DEPARTMENT

ACQUISITION

QuaDdty : [!!] Periodicity : [:!] Cycl. : [!:]
R.H.bUlty : m Tlm.llty: m Compld.D.U : m
For ... 1 I.v" [I)
I NOTES UPON PHONE CONTACTS; VISIT REPORTS

Support lev.1 m
(l'ERMINAL, PRONE. EXT. DATABASE, FAX. TELBX. TYPEWRITER)

Figure 8: Product-Objective-Screen in TAM

filing, handwriting, typewriting and mail handling. These activities are executed with
the help of instruments. During the exploration phase the instruments in general use
and their characteristic features were also defined (Fig. 9) .

As mentioned in Chapter 2. TAM provides a defined analysis scheme, which the
analyst may use as long as it is suitable for his investigation field. In case of any further
information going beyond that schema he may easily extend the generic models of the
Office Data Dictionary with the help of TST (TODOS Structuring Tool).

Within the case study the TST was further enlarged by specifying new properties
(new class of equipment) and domains on the one hand. On the other hand specific
attributes for the office itself and and the persons, archives and equipment (current
technology, incompatibility of technology) were added.

In the subsequent method tailoring phase new attributes and domains which com
pleted the relationships of office and information categories were added to the ODD. The
ODD proved to be a helpful support within the analysis phase itself. This involved data
gathering guided by several instruments like the function analysis instrument, communi
cation analysis instrument, information analysis instrument, and the user needs analysis
instrument. This data were inserted into the ODD. The final outcome of this phase was
the requirements specification. Those requirements also entered the ODD.

The application of the FAOR information analysis instrument was detailed data
upon archive being a central archive and departmental and personal archives (Fig. 10) .

IC
I(

245

MENU: lluert Query Exit

INSTRUMENTS
code name

INSTR: ~ I IBM PC XT

Localization place: I OFFICE MR. SCHUELER I
Topologic use: l!::J Kind: E:J Techn. type: IO.A.1

COSTS

Amortiz.: r-------...
Hiring: :=======:::::
Mainl.: :=======:::::

Insuran.: --==========
Ulilizal.: ~r=======:c

Total 2.700

Analyst's opinion about use

I SW MUST BE INTEGRATED I

Figure 9: Instruments used in the organization

Archives: Structure and Access

Credit Departme.t E '" • Departme.t

/ C •• tnl ""'.1 .. /
~. Mr. H ... _ • .1 Dr. Sduilitz I 'IMioI_n~y

C Mr. Miller, ·200qm
.IOyean_ ..

/ ·10'lI0-

/ Cre411 Dop. Ardolft / IA • .-d:
L aeat •• p . .. ,I

Dr. SclllllltZ

__ 2

'·5 Mrs. Wa • .., ·30001
Mr. Miller : '~y ~,.:e

Ms. Rotlle
Mrs. Sell.elder :~r.:....-=- l.I -,,.21

-
/ II! .. , Do,. ""' / - Mr. Hel __ • _ 2

·10001_ Mr. Scllll« • 2yanll_
'..-.ny

/ M
·~ incftUe

/' reno .. ' Arela /
Dr. Schmitz - Mr. Helae_.

Mrs. Sell.elder - '101_ ...
Mr. Scll.ler

,
• ~ c:0I'IIIId'

....
Mr. Mililer - ./ M

Figure 10: Types of archives

246

Personal archives are therefore those folders which are usually stored in either the
credit departmental or the economics &; press departmental archive and which can be
taken out using borrowing slips. The credit departmental archive only contains data on
established and potential clients whereas the E &; P departmental archive also stores
information on firms which as yet have no contact with the bank. Information identical
to both archive comprises:

• Balance sheets of established and potential clients

• Hard copy versions of the external database CREDITREFORM

• Newspaper articles (original in E &; P; copy in credit d. archive)

Therefore the credit departmental archive (Fig. II) consists of folders in alphabetical
order containing client's files classified according to date. Unsuccessful contracts are
stored for 1 year after which they are deleted from the records. Successful contracts are
kept in the credit departmental archive and accessed once a year by a clerical worker
for solvency until they are repaid and thus terminated.

Folders belonging to the E &; P departmental archive are also arranged alphabeti
cally, each containing press and other information on various firms. The economics and
press departmental archive has the largest annual increase of 30%.

The central archive contains only former folders of the economics and press depart
mental archive consisting of terminated contracts which are under a legal obligation to
be stored for 10 years. Storage is generally in alphabetical order. Activities performed
in the office were detailed and specified with flow charts (please refer to App. B) to
demonstrate in detail the diverse office activities and human resources involved in pro
ducing the objectives within the lending process. They also show the use of documents
and archives, data processing equipment and therefore give useful hints with respect to
the future office information system. The type of documents used was also specified.

TAM and TST provided the possibility both of storing all features of the relevant
archives and relating the archives to the persons involved so that full consistency with
the above mentioned features was attained.

The FAOR functional analysis instrument (part of Analysis in FAOR Activity Frame
work) interprets the office as a functional system within the organization, that means
in relation to the broader system and the task environment of the office (Fig. 12).

The analysis process was responsible for producing functional and
non-functional requirements for future performance of the system. Queries as to

the features of product-objectives provided useful assistance in indicating functional
requirements (Fig. 13): It could be easily observed and analyzed how actual deficiencies
of information media were related to the business goals (critical success factors).

The TODOS Performance Model (TPM), (see Chapter 2, Section 2.2), has been
specifically devised for gaining insight into the non-functional requirements of the new
Office Information System. Its main use is in the evaluation phase of the FAOR Activity
Framework. The TPM stores requirements for a number of user-oriented performance
measures, which the future OIS has to meet. The idea of the TPM is to deliver design
parameters actually during the course of the requirements analysis in order to gain both
a swift user feedback and data for the configuration of the system during Architectural
Design (see Chapter 5). Typical classes of requirements to be stored in the TPM are

247

MENU: Insert Query Exit

,."1.,,,1'1'11111,.11,.".,."",.,1111. 1' 11 •• ,.11111"11."1,.,'.'.'.,1,.' •• 1111,,,111111'111 11 1

ARCHIVES
code name

ARCHIVE: fREDIT DEP. ARCHIVE I

Number of ilems: 3000 Type of D sortlng: D
support:

Time of storage: :======1:0:::::
Increase: :=======~

Problems: ______ ..1

Figure 11: Insertion of archive features into ODD

MENU: Insert Query Exit

1 •••••• ,111111,.,11·· • • · ' ••• • • • 1 •••• ,1,.,111, •••• 1 •••••••••••••••••••••••••• , ••• , ••• • ' ••••• 1' •••••••• ".

INSTRUMENTS in ACTIVITIES

code name

PERSON ~ I MR. SCHMITZ I
P.O. : 100011 I ACQUISITION I
ACTIVITY: B I READING

(Software)

code name code name

A002 CREDIT DEP. ARCHIVE

A003 PERSONAL ARCHIVE
IA IBM 3270

ut.way

MA

MA
OA

Figure 12: Functional analysis with TODOS

% or time

[!!]

0

% or time

3S

SO
IS

248

QUERY: Update Page Next Delete Exit

UNITS and PRODUCT OBJECTIVES (page 2)

Informations source & media

Figure 13: Functional requirements within TODOS

249

non-functional aspects like size, noise, display quality, color, ergonomy, help functions
and response time constraints. By means of the TPM the analyst is able to derive various
solutions for evaluating the impact of the future office information system including the
organizational measures accompanying it by analyzing the interrelationships existing
between the elements of the system (Fig. 14).

Following the application of the case study data, it was concluded that substantial
insight through intensive use of the ODD had been obtained. The TAM/TSM integra
tion had been verified. Requirements collection and analysis is also useful in initializing
the design tasks in that it helps to identify constraints and guidelines via the TPM
for the future organization. So the analyst can rapidly obtain a rich picture of a fu
ture situation enabling him to discuss both with the management of the organization
investigated and the designers of the system. For this task diverse reports can be used.

Applying the ODD of WPI within a real life example showed both the functionalities
of the tool and the TODOS/FAOR intersection.

Interface with other TODOS Design Phases

The interface to the Conceptual Design and Rapid Prototyping Tools was realized via
the transmission of data concerning human resources, diversified by their name and code
as well as the complete information on archives and documents. During the two design
phases, the designer could gain easy access to information by querying the appropriate
reports derived from the ODD (Fig. 15).

For Architectural Design the architectural features of the TPM were interesting: The
architectural designers referred to the Office Data Dictionary in order to check which
technical constraints were related to the proposed architectures. In parallel they gave
their performance evaluation to analysts (test of printer speed for proposed servers) in
order to check this against individual marks and weights given by responsible people
during the analysis (analyst, manager etc.).

3.2 Conceptual design of the future Office Information System

The aim of the Conceptual Design in TODOS is to create a conceptual scheme of the
future office information system. This conceptual scheme is a description of the elements
in the office in terms of concepts of the TODOS Conceptual Model (TCM). The scheme
should be complete, correct, and consistent on delivery without containing undefined
elements. The principal purpose of the method for logical design is to structure the
production of the formal specifications in a set of design steps. Partitioning the design
task is obligatory when large projects are involved.

The C-TODOS tool has been developed to support office conceptual design. It
provides the computer-based support to facilitate and improve the quality of office
conceptual designers. In the case study, input into the conceptual design phase consists
of the functional requirements collected and analyzed during the first phase in the
functional design cycle. Such requirements were stored in the Office Data Dictionary
(ODD) (see App. A). The portion ofthe ODD utilized during conceptual design contains
information about the principal documents in the office, the goals of the office and the
main activities required to attain these goals.

250

Nrune:P~_PRlCE
Description: price requirement for printer

solution

solution 1
solution 2

performance

3500
2800

maIk

1.11
8.89

===?:

Nrune: PRINTER_SPEED
Description: number of pages per minute

solution

solution 1
solution 2

performance

80
40

maIk

10.00
5.00

~

< === .

Nrune: PRINTER_ QUALITY
Description: printer quality

solution

solution 1
solution 2

performance

HIGH
lvIEDIUM

mark

10.00
6.67

===€
=:

EVALUATION RESULTS

solution mark

solution 1 56

solution 2 72 (MAXIS 100)

' • •••• +,; •• • •••• ••••••• " '" "

Figure 14: Evaluation of non-functional requirements and solutions

251

•• ACTIVITIES & INSTRUMENTS & SOFTWARE
& HUMAN RESOURCES FOR PRODUCING P. O .••

•••••••• ,11 •••••• " •••• ,."' •• 1'"""'.'.1.,1 1 •• '" •••••• 1,III.tlllllllll.",.,.".,I""IIII •• I IIIIIII."

Product objective : ACQUISITION Code: POOl

Human resource: SCHMITZ Code:H101 Time: 198

Acitivity: %-time Ins. Description %-time Sortware

READING 5 A002 CREDIT OPT. ARCHIVE 35

COMMUNICA TION 20

A003 PERSONAL ARCHIVE 50

11 IBM 3270

118 PHONE

114 FAX

Ilfi TELEX

15

fiO

30

10

y '~"MORE--(' ; %) 11-________________ __

~
/Scroll Dy typmg me space-Key

Figure 15: Example for a preparation of collected data

phone call for
meeting date;
aaangemcnt

Information to the
clerical worker

A

252

copy of

letters
A-K

Archiving
in folder

interest: A
no interest: 8

8 Telephone

notice

copy of
letters

L-R

Archiving
in folder

Figure 16: Examples of principal activities in the case study

253

Specification of the conceptual office scheme proceeds from weakly structured re
quirements, specified in the requirements collection and analysis phase and stored in the
ODD, towards the formal definition of the conceptual scheme. The functional require
ments in the ODD are expressed in terms of units, human resources, product-objectives
and archives within the descriptive model:

• Organizational charts in the case study describe the departments in the bank
which are involved in the lending process: Credit Department, Legal Department,
and so on. Human resources contain the office workers' roles within the different
units (e.g., "manager", clerical worker").

• Product-objectives contain a description of office goals. The main goal of tbe
lending procedure is partitioned into four phases (such as "Acquisition", Offer,
Approval and Administration. shown in Fig. 3): For each phase, the activities
performed to achieve these objectives and the agent roles involved in them were
described using a flow chart. Fig. 16 shows how actions in the office were repre
sented in the ODD, in terms of office workers performing them, documents handled
and decision points. Special attention was paid to the fact that the treatment of
potential new clients doesn't differ at all from those who are in the stable clientele.

• The description of the archives' content was provided in the form of its documents
with reference to the most important types, e.g. "contract" (Fig. 17). The aim
of the logical design phase is to elaborate this description into a TCM scheme
describing the functionalities of the future office information systems. The content
of the ODD was elaborated via queries and report generation to obtain the TCM
scheme and based on the following assumptions:

• The concepts of "documents" and "human resources" and "units" in the ODD are
compatible with those of documents and agents in TCM.

• The "phase" concept in the ODD describes both a set of actions and its connection
with other phases. Actions in the ODD can be mapped onto actions in TCM.
Connections can be transformed in events, thus obtaining a first version of a
TCM scheme (TODOS TR 1.1.2.7).

The conceptual schema for the case study contained 97 entities (45 static entities and
52 dynamic entities). In this chapter, an abridged example of the process of production
of the TCM schema, based on the C-TODOS tool, is presented. Only a small part of
the case application is shown while leaving out minor details of the process.

The case study data application began with the specification of the static part of
the office scheme, i.e., the definition of documents. For instance, let us consider the
"Contract" document the layout of which is presented in Fig. 17.

In C-TODOS specification can be entered using the graphical editor or in TSL text.
If the graphical editor is used, the procedure is automatically transformed into TSL
text (TSL generation). The graphical representation of the static entity "document" in
TCM is shown in Fig. 18. The corresponding TSL text in Fig. 19.

Successively, the dynamic entity specifications are inserted. Let us consider con
tract preparation within the Offer and Approval phases of the lending process. The
corresponding flow chart is shown in Fig. 20.

254

CONTRACT

Contract between

I Client:

Ref.: I alphanumerical

Text

Calculations

Figure 17: Static part of the office scheme

o object

D docwnent

~ aggregation

-.. reference
~ is-a

header
(text)

255

document

t
contract

g~

1 mn Tvw
~ ~
(name) (name)

ref
(string)

textual_
part

status

top _text
(text)

I
spreadsheet
(spreadsheet)

Figure 18: Graphical representation of the contract document

256

<contract> is-a document;

}

{ aggregation-of
{ header: text;
cli : same-as client with { name };
bank : view-of bank with { name};
ref: string (10);
textuaLpart : aggregation-of

{ top_text: text;
spreadsheet : spreadsheet

};
status· ("new" "modified" "ready" "accepted")· . , , , ,
values : aggregation-of

{ header: {"Contract between"
}

}
}

Figure 19: TSL text generation for document type "contract"

Once created, the contract is repeatedly modified by agents in the Credit Depart
ment. When prepared the contract is sent to the Legal Department for verification.
Successive modifications may be requested. When approved by the Legal Department,
the contract is sent to the client for acceptance. When accepted, the document listing
all due payments for the client is prepared.

Fig. 21 shows the TCM schema derived in the conceptual design phase using the
C-TODOS tool.

The TSL textual description of some of the dynamic elements in Fig. 21 is shown
in Fig. 22.(Fig. 22 a to 22 d):

The "is-a hierarchy" graph showed the specialization chains of the basic office el
ements: documents, objects, messages, agents, events, actions, predicates, conditions
and factors. This graph provided an overview of the generalization/specialization rela
tionships among all defined elements.

During the design process, some of the entities stayed undefined. It was possible
to ask for the list of undefined entities using the query module of C-TODOS. When
an undefined entity is successively defined, the tool checks to ensure that the property
existence rule is satisfied (for instance, after definition of the static entity "contract" as
in Fig. 19-20, "bank" must have a property "name").

During the office conceptual scheme analysis phase, the following tasks were per
formed with the help of C-TODOS:

• check constraints: no violation should occur

• check accuracy rules: for instance,some actions may not have a definition of input
or output parameters.

storage in a
complete

folder

257

Meeting with
concerned clerical

~ ... ----t worker; exchange of

Meeting with
the client

Collecting further
clients data

Designing several
alternatives

informalion;preparal
ion of client'.

handwntten
notices

Typing;
correcting

typed document

Figure 20: Contract preparation in the lending process (part 1)

checklist

258

Deaiping several
altemalives

B

checklist complete :A;
L..-....... o::::----l information missing: B

A
.--~--...,

Additional notes
into the conlract

preparation
of contract

phone
caD

letter
securities _

Demand for

rlller information

Figure 20: b) Contract preparation in the lending process (part 2)

CONlRAC1' PREPARA nON (2)

ev 13
credit-input- [g] VEl
message
(credit -dept
agent)

credit- input
message
(credit -de pt
agent)

cOIllract
acccpced
(agent) [g~L4

/PTRUEI

259

D

D

Figure 21: Dynamic part of the specification process

<evI9> is-a modification_event;
I aggregation-of

I values: aggregation-of
I comments: "send contract to client for approval";
ev -entity : contract;
predicate: PREeO;
triggers: I (a19) I;
follows: @ev26@;

ev-agents: @acquisition_manager@

Figure 22: a) TSL definition of event 'ev19'

coottact
msg-Iegal-dept
(rn:dit-dept -
agent)

coottact
msg-dient
(clerical
worker)

computer
list

<PRECO> is-a predicate;
(aggregation-of

(values : aggregation-of

260

(comments: "contract is ready to be sent to client";
expression: "$co.status='ready'"

);
in : aggregation-of
(co : ref-to contract

b) TSL definition of predicate 'PRECO'

<ev26> is-a arrival_event;
(aggregation-of

(values: aggregation-of
(comments: "contract is ready";
ev-entity : credicinpucmessage;
predicate: PTRUE;
triggers: {(MO ($co,"$co.status:='ready"'»);
follows: @evll@;
ev-agents : @acquisition_manager@

);
var : aggregation-of
(co : ref-to contract
);

properties: aggregation-of
(empty: ref-to empty

c) TSL definition of event 'ev26'

<sendcontrtcocli> is-a action;
(aggregation-of

(values : aggregation-of
(comments: "send contract to client";
act-entity : contract_rnsg3lient;
steps: (PR ($co); CR ($cmcl); TX ($cmcl));

act-agents: @SYSTEM@);
in : aggregation-of
(co : ref-to contract
) ;

out : aggregation-of
(cmcl : ref-to contraccrnsg_client

d) TSL definition of 'sendcontrtocli' action

Figure 22: TSL definitions (cont'd)

261

The dynamic process of preparing the data for potential credit clients within the
acquisition process has been modeled (Refer to App. C).

Interface with other design phases

The output of conceptual design consists of a conceptual description of the office system.
Such a description is given by the TCM office scheme, describing the office system
supporting office work to achieve the goals listed in the ODD. The TCM scheme models
the functionalities of the system to be implemented. Document production is modeled
and office procedures formally described; exceptions and anomalies in office work are
also accommodated and supported. The output of conceptual design is simultaneously
an input to the rapid prototyping phase and to the phase of specification of architecture
requirements.

The production of an office prototype allows user's evaluation of the system before
its final implementation. Modifications and suggestions are reported back to the func
tional requirement collection and analysis phase. The whole cycle can be iterated until
the conceptual design produces a set of specifications that are complete, correct, and
accepted by the user. The functional design cycle interacts with the non-functional
design cycle The goal of the non-functional design cycle is to choose an architecture for
the OIS. To achieve this result, two elements have to be considered: the non-functional
requirements and the functional specifications, Le., which types of documents and ac
tivities are used and performed in the office.. Therefore, the conceptual office scheme
forms a part of the input included in the office architecture design. The results of the
architecture design phase, in turn, affects the functional design activities. For instance,
cost or technical limitations could have an impact on the possibility of handling or
transmitting multimedia documents.

Experiences with the design process for the case study

To produce the specifications shown in App. C, three iterations of the functional design
cycle were needed. At the end of the first delivery session, a complete office scheme
was prepared. After prototyping, some modelization errors were found. For instance, in
the first version of the scheme both "modify _contractJIlSg" and "contract..l'eady JIlSg"
were modeled as "credit_deptJIlSg". This was a design error, since the semantics of
the two messages was different, and hence the messages triggered different activities.
The error was identified in the prototyping phase. Another request was for renaming
some activities and messages. The numbering style chosen in the beginning (Le. aI,
a2, and so on for activities) had to be modified, as the significance of entity names was
important in the automatic generated prototype.

Much help could be gained from the tool during the task of specifying office re
quirements. The tool supported documentation production, and provided features to
ensure that the specifications were consistent. In particular, it was possible to query the
specifications for examining them, and to retrieve information about undefined entities.
Moreover, most consistency checks were automatically performed by the tool. In the
described process, much was left to the designer in terms of what to automate and how.

262

3.3 Rapid prototyping

This section describes the case study scenario in the rapid prototyping phase. The
design goals of a prototype are quite different from those of the final product.

• A prototype is always constructed to illustrate the feasibility of new ideas or
design. Unlike the final product, prototype design and construction often begin
with incomplete specifications.

• Prototyping should create a quick software package representing an office sys
tem application considering man-machine interaction, with layout and masks
generation, and the functional flow, with respect to one single working place at
a time. Layouts for the static entities, especially of documents and messages,
provide a visual description of the system, as well as giving the possibility to
change views of layouts under space optimizing aspects. Each user should have
the possibility to configure his user interface at the beginning of his work with the
prototyping tool.

Input to the prototyping phase was made up on one hand of the collections of func
tional requirements resulting form the analysis of office work by the Requirements Col
lection and Analysis Phase The most important information arising from these analyses
encompassed the description of real instances. Further information were layout exam
ples for documents (Fig. 23).

The functional specifications defined in the conceptual design phase were also taken
into consideration. The TSL definitions were used by the prototyping tool. The pro
totyping support tool is started by the process "make new prototype". The case study
prototype was named "credit_department". The process of transferring the TSL defini
tions into an executable prototype knowledge base was composed of three phases:

• Creating units: For every entity defined in the TCM conceptual model, a KEE
unit was created, and the TSL description was stored into a special slot of this
unit.

• Parsing: For every unit, the text (in that special slot) was translated into a list
structure, suitable for the third phase.

• Making the knowledge base executable: by providing the necessary information
for a scheduler module which controls the execution flow of the (office) prototype.

The output of the prototyping phase was twofold: Creation of documents, object
and message layouts on the one hand, implementation of office prototype on the other
hand. The functionalities of the latter had to be tested by office workers.

• The primitive editor was used used to describe a manual process, which was
interpreted for the prototyping phase as an automatic process.

• During the basic instantiation a description of the "credit_department" was
inserted into the "credit_department" knowledge base. The instances were office
workers, who should be allowed to create their own layouts. For example, the
agents Schneider, Schmitz, Mueller, Lange and Rothe were instantiated. They

263

TELEPHONE NOTICE

Date:

Call from:

Name

Company

Telephone

Subject:

Recall: D yes

D no

Notice:

Figure 23: Documents'layout

264

were placed in their respective classes. It was decided that an instance was nec
essary for the "credit-prospects" entity. The designer first created a layout for
this entity and than created an instance to that entity via this basic instantiation
component.

• For the layout creation the interface generator was used. It is an important
part of the prototyping tool as it allows to a certain extent each user to tailor
his own interface to the office prototype. The information about this interface
is stored in a separate knowledge base which is specific to the user and to the
prototype, and is loaded automatically when the user logs into the prototype.
The layout creation for a certain class is in the first phase completely guided
by the system, which offers in the form of menus all the properties necessary to
create windows in the layout. The designer/user clicks through the menus until
there are more windows to create. He has then in a second phase the chance of
modifying the layout, e.g., by changing/removing titles and borders of windows,
moving windows etc. Moreover, he can at any time modify existing layouts using
this interface generator. Following our own experience, it should not be difficult
for the designer and/or user to create layouts for the static entities and messages
concerning the user.

• For the prototype execution the TSL grammar might be extended to allow com
pletely automatic transformation. TSL in the state as it is now makes it possible
to develop rather quickly a TCM for a given office. Fixing the details is then left
to the prototyping phase, where one can experiment with different transactions.
The price for this advantages is that the semantic equivalence between TCM and
prototype cannot be guaranteed; another design might come up with a different
translation for a primitive comment. As a consequence, the TCM alone is not
enough as a specification of the functional requirements to the end system.

Running the prototype mere general experience were made: The implicit parameter
passing concept of TSL works quite fine, if one always follows the course of events
as defined by the "follows" property. But this means that if one office worker has
finished a task and produced some output that is needed by another worker, this
other worker must first perform his task, using the first worker's output, before
the first one can go on working. Fortunately, TSL also offers explicit parameter
passing. So one can for this first version use implicit parameter passing (to get the
first prototype very quickly) and then refine the TCM to create a more realistic
prototypes.

• For the prototype execution one has to identify oneself by a login procedure; the
main purpose of this is to tell the system which messages this user can send and
receive. After logging in, a menu pops up, presenting all the message types the
user may send, and in addition two options: "view arrived messages" and - of
course - "exit". Normally, one chooses a message to send to the system. This
action, then, causes the system to look for the consequences of this message and
to trigger them; the system now remains active as long as its actions possess
consequences. When it stops, the original menu pops up again. The prototype
"credit department" was started by logging in Mrs. Schneider (an instance of
"clericaLworker" class). She selected the "telephone..notice" message type. The

265

prototype hereafter creates an instance of this class (which is documented in the
control window on the right side) and displays Mrs. Schneider's layout for "tele
phoneJlotice" (Fig. 28), allowing her to edit the contents. After she has finished
editing, she points on the message frame to send the message to the system. The
system now recognizes event "evl" and triggers its consequences (for event names
refer to dynamic graphs presented in App. C). Testing provided useful information
on the user interface by prototyping the future system components. The output
of the prototyping phase contained the creation of documents, object and message
layouts on the one hand, implementation of office prototype on the other hand.
The system works fine if the user behaves meaningfully. The implicit parameter
passing concept of TSL works quite fine, if one always follows the course of I!vents
as defined by the "follows" property.

An instance of a client object was created and displayed, so that Mrs. Schneider
could edit it. Finally the status property of the client instance was set to "in
terested". This implied the identification of the "ev4". "ev4" created a meeting
instance and set its status to "new". A reference was established from this meeting
instance to the client instance. The next event whose predicate is true (status is
"new") was "ev5". Therefore an "arrange..meeting" message to "c1ericaLworker"
was constructed, provided with a reference to meeting, and was transmitted, which
meant in this case displayed. In parallel the "credit_prospects" instance, which
had previously been built during "basic instantiation", is retrieved and its con
tents copied into the meeting object. Now Mrs. Schneider logs out via choosing
the "exit" of the main menu.

To show interconnections between agents, the "acquisition-manager" Mr. Schmitz
logged in. He chose the "start..meeting..msg", which was connected to the arrival
event "ev7". So the meeting object got the status "start", which makes "ev9"
occur. The activity "prmeetdoc" printed the "doc" slot of meeting and produced a
"c1Ldoc..msg" with a reference to the meeting and transmitted it into the message
KB, since Mr. Schmitz did not belong to the receiver class ("c1ericaLworker") of
"c1Ldoc..msg". Mr. Schmitz told the system about the end of the meeting by
sending an "end..meeting..msg", which caused the status of meeting to become
"end". This again pushed "evlO" , triggering an action that set the status of client
to "met" and allowed Mr. Schmitz to update client's data. At this point, Mr.
Schmitz interrupted his work and Mrs. Schneider logged in to view the arrival
messages. She found (stored in the message-KB common to all agents) instances
of "c1Ldoc..msg" created during the activity of Mr. Schmitz. A new log in again as
Mr. Schmitz was done in order to arrive at the contract preparation. Mr. Schmitz
chose from his menu the class "credit-approvaLIorm". Mr. Schmitz filled in his
and Mrs. Schneider's name and gave the client a credit..status of "excellent". The
consequence of this was that a reference was made from the client object to the
newly created instance of "credit-approvaLIorm" , and the status of client became
"approved", so that the predicate of "evll" is true. "evll" triggered the creation
of a new "contract" document. Subsequently this document could be edited. The
client name property (of the contract) was filled automatically with the client's
name. Finally the contract was awarded the status "new". At this point, Mr.
Schmitz completed the contract preparation (by sending some more messages) or
could leave this task to another credit department agent.

266

Figure 24: Telephone notice created by a clerical worker

267

Therefore messages sent to the system triggered activities which then led to the
occurrence of more events triggering more actions, until the system came to a halt.

Interface with other TODOS design phases

A feed back to requirements collection and analysis should be the participation of the
analysis team in the prototype test run. There the analysts can see then realization of
the process he described in the ODD (later modeled in the TCM). The work with the
prototyping support tool gives the designer and office agent a comfortable environment
to build the man-machine interface to an office prototype, based upon the conceptual of
an office system. The interface to conceptual modeling consists on an experience report
coming from the rapid prototyping phase, giving the results and difficulties back to the
logical design phase. Further comments are derived from the analysis team evaluation
of the prototype, following the functional design cycle.

3.4 Architecture Design

While the design phases presented above are congruent with any traditional software de
velopment methodology, the architecture design phase is a specific TaD as component
with respect to office information system design. The aim of the architecture modeling
phase is the identification of an architecture that realizes the office information system
being designed. Architecture comprises any set of interconnected hardware components
and available software packages. Thus rather than implementing the office information
system by developing software, TODOS focuses on the use of existing software packages
and emphasizes the design of the architecture that will support the information system.

Therefore Architecture Design is subdivided into two steps (see Chapter 5):

• In the first step, which is the architecture generation step a number of alternative
architectures, suitable for realizing the office information system, is identified (see
Ch. 5, Part I and II) .

• In the second step, the most appropriate architecture, among those identified in
the first stage, is selected. To this end, each candidate architecture is transformed
into an equivalent queuing network model, on which transactions simulating the
office activities are run. The performance of the architecture is evaluated in this
way, so that the most appropriate architecture can be selected on the basis of a
cost-benefit tradeoff (see Ch. 5, Part III).

The input to the architecture generation is quantitative and qualitative information
about the office activities. The qualitative information is provided in form of a con
ceptual schema describing the data objects manipulated by the office activities and the
functions abstracting such activities.

The quantitative information is provided by the requirements collection analysis
phase by integrating the conceptual schema with data such as the frequency of activities
and size of the involved data. Architectures are generated by the interaction of the office
system designers with the architecture generation tool, which assists the designer in the
specification of architectures satisfying the ~equirements given as input. In the case
study constraints on the technical layout (due to the present situation) were specified
in the requirements collection and analysis phase (Fig. 25).

268

1-· "'..--.1

Mr. SC'1I.ltI

Figure 25: Requirements for the architecture specification

.. ACTIVITIES & INSTRUMENTS & SOFTWARE
& HUMAN RESOURCES FOR PRODUCING p, 0 , ••

. , p~~'~~~' ~';j~ti~~' ':' ';.'CQ·U1siiio·N"" '" ,, ',' " "COde': ' 'pooi'" " .. . ".,

Humaa resource: SCHMITZ Code: Hl0l Time:

A(livily: %-lime las . DescriplioD %-lime Soflware

EXTERNAL CONTACT 50

INTERNAL MEETI G 10

READING 5 AOOl CREDIT OPT. AR CHIVE JS

AOOJ PERSONAL ARCH]VE 50

II IBM J270 IS

COMMUNICATION 10 lIS PHO 'E 60

114 FAX JO

IU TELEX 10

WRITING 5 1001 IBM J270 100 WORD TAR

SEARCHING 5 A007 CREDIT OPT. AR HIVE 40

AOIO SC HMITZ'S ARCHIVES 40

1001 IBM J270 20

MAIL HANDLING 5 1009 FAX 60

10 10 TELEX 40

Humaa resource: SCHNEIDER Code: H 102 Time:

Acilivity: 'i"o·time las . Descriptioa ""·time Software

Figure 26: Workload characterization in the ODD

269

Sharing information and resources (storage devices, printers, scanners, etc.) was
a basic requirement in the future office information system of the case study. This
requirement was met by establishing a communication network restricted to Local Area
Networks (LANs). Consequently, the resources were distributed over the LAN, each
point-to-point connected with a host machine.

Another source of input for the performance evaluation in the Office Data Dictionary
was the TODOS Performance Model (TPM), where requirements for a number of user
oriented performance measures, which have to be met by the OIS under design, were
stored. TODOS Analysis Model (TAM) as well was used as a source for information as
it contained a characterization of the office workload, like the access of each person to
the various archives. An appropriate characterization of the workload imposed on the
OIS was very important, since the performance of any system could only be determined
with respect to the work being supported (Fig. 26).

The following assumptions were made:

• Workstations and PCs with no or limited storage capacity,

• file servers providing archiving facilities with large storage capacity like disks,
drums and tape drives,

• print servers that enable the printing of documents on connected (laser) printers,

• database servers that enable access to shared data bases,

• mail servers that enable distribution of documents among office workers,

• local area networks (LAN) for communication between the various machines of an
office system,

• gateway servers that enable communication with other networks and possibly links
to a central computer (mainframe).

The personal workstations under consideration are SUN (-like) workstations and
IBM (-compatible) PCs, while the servers are based on (SUN-) workstation technology.
The LANs are based on Ethernet.

The appropriate level of workload characterization for the performance evaluation
was in terms of:

• file handling,

• document printing,

• document mailing, etc.

The case study dimension was, for demonstration purposes, adjusted in order to
derive OIS architectures. If only the current situation had been taken into consideration
with probably only 8 personal workstations (or PC) connected to aLAN, performance
evaluation should have hardly been worthwhile.

As far as the workload on the OIS is concerned, "meaningful" assumptions were
made whenever necessary, sometimes based on (empirical) performance studies found
in literature.

SCbD~ldu

Board or Dlroctors

L~pl Dept

270

IBM 370 (5)

I IBM PS/2 '0 I
Schmlt1

CeDlral

Figure 27: Architecture Solution

Cr~dll D~pt

271

Experience with the design process for the case 'study

Architecture Design applied to the case study was divided into 2 different steps: the
architecture specification and the architecture performance evaluation,

The delivered solution took into consideration the imposed constraints (Fig, 27),
The implementation language PSN (please refer in detail to Chapter 5, I+II) provided
the mechanism for representing and manipulating the different objects and their rela
tionships and implementing the Architecture Specification System (ASPES). A graphi
cal interface for ASPES was implemented as a C program running under UNIX.

Alternative computer system architectures were then derived from the requirements
collection analysis and the conceptual model through a stepwise refinement process.
Successive transformations of the office description within the case study were derived
from the ODD (TST) and the database produced by the logical design phase(TQL) of
TODOS through interactions with the designers.

The distribution requirements, the reusability of already existing hardware, sugges
tions for the hardware as well as requirements on the integration of the already existing
software were all taken into account. The distribution of software for the above men
tioned architecture mainly corresponded to the requirements of the case study.

Mr. Schiller: Graphics
Spreadsheet
ModulaIJTM
DB In'Thl
PC-Text 4'Th1
PC-Office'Thl

Mr. Heinemann: Graphics
Spreadsheet
ModulaIJTM
DB IIJTM
PC-Text4'Th1
PC-Office'Thl

Ms. Lange: PC-Office'Thl
PC-Text4'Th1

Mr. Schmitz: PC-Text4'Th1
PC-Office'Thl
DB III'ThI

Ms. Rothe: PC-Text 4™
PC-Office™

Mrs. Schneider: Graphics
PC-Text 4™
PC-Office™

Board of
Directors: PC-Text 4™

PC-Office'Thl

ffiM370: Graphics
DB III'ThI
DlSOSS/370™
Officef370™
Textf370'Thl

272

The second step of Architecture Design concerned the performance evaluation of the
proposed architecture.

The SNA communication architecture has a similar hierarchical structure to the
OSI model, and the IBM mainframe in the case study definition was viewed as one big
server to be replaced by several smaller servers. The file access performance of diskless
workstations accessing a remote file server over a LAN was also modeled.

The reviewed OIS architectures comprise a number of client workstations (from
which remote file accesses are initiated) and one or more file server(s) which handle these
requests. Both clients and server(s) are connected to a LAN and rely for communication
on the transport service provided via the LAN.

Since a human user of the system does not access files continuously, but pauses after
a period of time, no constant stream of data is assumed. The length of the human
pause is determined on the basis of further measurements, which show that on average
4K per second is transferred. The corresponding pause is included in the model as an
interactive think time with a length of 0.85 seconds.

It was started with a first model which is assumed as the baseline case. Afterwards,
several design alternatives were applied to the model in order to improve the perfor
mance of the system. The case was investigated on the basis of an increasing number
of client workstations attached to the LAN. The number of workstations was increased
from 10 to 50, and in each of the five corresponding simulations the response time per
4K was transferred in order to estimate the utilizations of the hardware resources at the
server site. The resources at each client site are not relevant to performance degrada
tions since they were not overloaded. The following choices were made for the baseline
system:

Single fIle server
Same CPU for clients and fIle server with a speed of 1 Mips
Priority scheduling discipline with pre-emption distance 2 for all CPUs
LAN's packet size of 1 Kbytes
Transfer rate of 10 Mbps
Transport layer window of 8 for the transport service
Connection-oriented data link layer with data link window 4
No acknowledgement accumulation
Disk subsystem as the client uses a block size of 4 Kbytes
Mean access time is 20 ms

The results of the five simulations were presented graphically (Fig. 28).

It was concluded that network contention would be unlikely to produce a bottleneck,
since even with 50 workstations attached to the system, the network utilization is only

273

seconds

1,0 ' CPU

0,8

0,6

disk

0,4

0,2 Ian

0,0
10,0 20,0 30,0 40,0 50,0

nb ofws

Figure 28: Utilization of the hardware resources

25 %. The measures of utilizations of the shared hardware resources and the confidence
intervals for these measures were also presented in a table (Fig. 29).

Obviously the resources were not heavily utilized when only a few workstations
were attached to the network. This implied that performance could be improved by
reducing the service demand of any device. However, at high loads, e.g. more than
30 workstations, the performance was totally governed by the most heavily utilized
device and, as expected, the system's bottleneck in the file service modeled here was
the server cpu. Already with 30 workstations, the server cpu was close to being fully
utilized, causing the performance to degrade rapidly in accordance with the increasing
number of workstations. Thus performance could only be improved by a service demand
reduction at the server cpu and any other modification was expected to have little or
no result.

In order to show the flexibility of the performance modeling techniques employed,
four design alternatives were modeled, all of which may be derived from the baseline
case by simple parameter changes. The four cases were:

• increase the disk block size to 8Kbytes

• increase the LAN-packet size to 4Kbytes

• double the speed of the server cpu to 2 Mips

274

UTll..ISATIONS OF SERVER HARDWARE RESOURCES
ws cpu disk network
10 0.3729 0.1879 0.8863e-Ol
+/- 0.1201e-Ol 0.8802e-02 0.1821e-02
20 0.7348 0.3682 0.1758
+/- 0.1993e-Ol 0.1065e-02 0.4402e-02
30 0.9611 0.4826 0.2304
+/- 0.9196e·02 0.763ge-02 0.1942e-02
40 0.9983 0.4929 0.2385
+/- 0.1071e-02 0.6031e-02 0.1832e-02
50 0.9999 0.5044 0.2412
+/- 0.248ge-03 0.1l81e-Ol 0.2045e-02

Figure 29: Utilization of server hardware resources

• add a second file server to the system

From these four cases, the response times of the file access requests were obtained
and presented (Fig. 30).

The alternatives were evaluated separately.

1. The increase of the disk block size from 4 to 8 Kbytes had two effects. First, the
effective disk access time was reduced, since the frequency of access requests and
disk acknowledgments diminished: both a request and an acknowledgment now
covered 8Kb instead of 4Kb.

2. By increasing the size of the packets that were transmitted over the medium from
1 to 4 Kbytes, the cpu service demands were reduced since the number of packets
to be transmitted over the medium diminished: transmitting 4K of data could be
performed with one single data packet, rather than with four. Fig. 42 shows that
this systems's performance is comparable to the performance of the system with
8K disk blocks.

The common factor in these first two cases was that the amount of work to be
executed is amortized over larger volumes of data. The conclusion could be drawn
that these volumes, the disk block size and the LAN packet size, should be made

275

seconds
1,2

1,0

0 ,8

0,6

0,4

/'
/'

/'

2 MIPS
/ serverCPU

/' 4K Ian packets
/' ,.,.".;1 / K disk blocks

,,/ .o~ aseline

,...,. .. . --
2t:;~~~;;~"""~~;:::~~;;~:~~':: -::~ 0, •. ~.~ .. ~,._.,.,.._---.- .

0,0 -I--------+------l-----I-----~
10,0 20,0 30,0 40,0 50,0

nb ofws

Figure 30: Response times of the four alternatives

as large as possible to reduce the cpu processing time per kilobyte. However,
there were limits to the amortization. For instance, once the disk block size
exceeded the size of a particular file, no further reduction in access times to that
file could be obtained by further increasing the block size. The same applies to
the packet size over the medium. Another consideration may be that some costs
were proportional to the amount of data processed, so the marginal benefit of
amortization decreases.

3. Since the server cpu constituted by a long way the system's bottleneck, an obvious
modification to improve performance was to speed up the processor. From the
estimates for the utilizations of the hardware resources in this case it could be
concluded that the utilizations of the server cpu and the disk were almost identical.
Therefore, speeding up the processor even further would not lead to an equivalent
performance improvement as the disk itself would then become the bottleneck.
Consequently, further improvements to the processor at the server site would also
require improvements to the disk subsystem, e.g. by adding a second disk in order
to increase profitability.

4. Another approach to improve file service performance at high loads would be by
adding a second identical file server to the network to share the load imposed by
the clients. The results showed that this would be the best improvement to the
baseline case. It should however be noted that the above conclusions only reflect
performance characteristics and do not consider cost aspects.

Appendix A - ODD Contents

A

B

1
R

e
a

u
lr

e
m

e
n

t.

2 3
U

n
it

C

o
d

e

4
N

e
m

e

5
L

o
c
e

llz
e

tl
o

n

II

F
lo

o
r

7
A

d
d

re
 .
.

•
H

e
e

d
c
le

rk

9
H

la
h

e
r

u
n

it

1
0

O

A

a
e

n
.l

v
lt

v
 c

o
m

m
e

n
t

1
1

O

A

.
.
 n
.l

v
lt

y
 q

u
o

te

1
2

O

A
 v

le
b

ili
ty

 c
o

m
m

e
n

t
1

3

O
A

 v
le

b
ili

ty
 a

u
o

te

1
4

S

u
rf

e
ce

 o
f

th
e

 u
n

it
?

1

5

C
o

..
.

o
f

th
e

 D
re

m
l .
.
.

1
8

R

o
o

m
.

1
7

F
u
r
n
l
.
h
l
n
~

1
8

M

e
te

rl
e

l
1

9

E
n

e
ra

e
tl

c

2
0

E

x
te

rn
e

l
21

In

.t
ru

m
e

n
t.

2

2

S
o

ft
.e

re

2
3

M

I.
e

lo
n

 o
f

lh
e

 u
n

ll

2
4

O

b
 e

c
ll
v
e

C

o
d

e
 o

f
lh

e
 o

b
le

cl
lv

e

2
5

H

em
e

o
f

lh
e

 o
b

 e
cl

lv
e

2

8

D
e

e
cr

lp
llo

n

o

f
lh

e
 o

b
Je

cl
lv

e

2
7

Q

u
o

le
 o

f
ve

lu
e

2

8

In
d

lc
e

lo
r

o
f

r .
.
 u
ll

2
9

P

ri
o

ri
ty

 o
f

lh
e

 o
b

 e
cl

lv
e

3

0

T
e

ra
e

l
fo

r
lh

e
 o

b
le

cl
lv

e

3
1

Q

u
e

n
llt

y
o

f
P

-O

1
2

P

e
rI

o
d

Ic
lIY

o

f
P

-O

I
I

L
e

n
a

lh

o
f

p
-o

-c
y
c
le

3

4

R
e

ll
e

b
ll
ll
y

3
5

T

lm
e

llt
y

o
f

P
-O

3

8

C
o

m
D

ie
le

n
e

..

o
f

P
-O

3

7

F
o

m
e

l
le

ve
l

o
f

P
-O

 D
ro

d
u

cl
lv

e
 e

vl
e

3

8

31
1

4
0

In

.l
ru

m
e

n
l.

•

su
p

p
o

rl

4
1

4

2

4
3

4

4

4
5

4

6

C

T
 .
.
 t

C
 .
.
 e

M
e

te
rl

.'

U
0

0
1

C

re
di

t D
ep

ar
tm

en
t -

In
du

st
ria

l C
lie

nt
s

B
ui

ld
ng

 A

1 s
t I

Io
or

H

oc
hs

tra
B

e
2

M
r.

W
eb

er

D
om

es
tic

 C
re

ci
t M

an
aa

em
en

t
N

o
em

er
ie

nc
e

w
ith

 o
a·

 n
o

id
ea

m

ed
iu

m

H
ill

h
ex

P
8C

lB
tio

n
an

d
m

ot
iv

at
io

n
hi

gh

3
0

0
m

2

O
M

 4
00

 O
O

O
Jv

ea
r

10
0.

00
0

O
M

50

.0
00

 O
M

40

.0
00

 O
M

40

.0
00

 O
M

10

.0
00

 O
M

10

0.
00

0
O

M

60
.0

00
 O

M

A
c:

au
is

iti
on

 a
nd

 a
dm

in
is

tra
tio

n
of

 c
r8

di
Is

0

0
0

1

A
cq

ui
si

tio
n

I g
et

tin
g

hi
ah

 a
m

ou
nt

-c
re

di
ls

 a
nd

lo
r a

 la
rg

e
 n

um
be

r o
f c

lie
nt

s
hi

gh

N
um

be
r o

f C
re

ci
ts

lA
m

ou
nt

s
of

 C
re

di
ts

9 10

0
_

_
 y

ea
r

70
 D

ar
ve

ar

w
ee

kl
v

2
m

on
th

s
8 8 7 1 -s

ho
rt

 in
fo

rm
al

 n
ot

es
 a

bo
ut

 te
le

D
ho

ne
 c

on
la

ct
s

-
~
 a

bo
ut

 v
is

its

P
ho

ne

In
fo

rm
at

io
n

sy
st

em
 Im

ec
ia

 =
 Te

rm
in

al
(e

le
ct

ro
ni

ca
lly

)
R

aD
O

rts
 o

f E
&

P
/m

ed
ia

 =
 D8

D
ar

A

nn
ua

l r
eo

or
ts

l m
ed

ia
 =

 pa
l1

!!L

N
ew

sp
ap

er
 a

rt
ic

le
sl

 m
ed

ia
 =

 pa
p

e
r

fo
rm

er
 c

on
tr

ac
ts

l m
ed

ia
 =

 pa
pe

r
in

fo
rm

at
io

n
ab

ou
t c

lie
nt

 re
fe

rr
ed

 fr
om

 e
xt

. d
al

ab
as

e!
 m

ed
ia

 =
 pr

in
t

I\
)

-..
.I

-..
.I

A

B

4
7

4

8

4
9

5

0

5
1

C

o
m

m
e

n
ta

 o
n

 c
ri

lic
a

l
fa

ct
o

ra

5
2

C

o
m

m
e

n
ta

 a
b

o
u

t
Im

p
ro

ve
m

e
n

ta
 o

f
P

.(
)

5
3

O

b
le

c
tl

v
e

C

o
d

e

5
4

N

am
e

o
f

th
e

 D
b

e
ct

lv
e

5

5

o
.a

c
rl

D
tl

o
n

o

f
th

e
 D

b
e

cl
lv

e

5
8

Q

u
o

te
 o

f
va

lu
e

5

7

In
d

ic
a

to
r

o
f

re
su

lt

5
8

P

ri
o

ri
ty

 o
f

th
e

 o
b

le
cl

lv
e

51

1
T

a
ra

e
t

fo
r

th
e

 o
b

je
ct

iv
e

1

0

Q
u

a
n

ti
ty

 o
f

P
.(

)
1

1

P
e

rl
o

d
lc

lt
v

o
f

P
.(

)
1

2

L
e
n
~
h

o
f

P-
O-
C!
Y~
le

8
3

R

e
lia

b
ili

ty

1
4

T

Im
e

ilt
y

o
f

P
.(

)
IS

C

o
m

p
le

te
n

e
..

o

f
P

·O

I
I

F
o

m
a

l
le

ve
l

o
f

P
.(

)
p

ro
d

u
ct

iv
e

 c
yl

e

1
7

1

8

II
I

7
0

7

1

In
a

tr
u

m
e

n
ta

 •

a
u

p
p

o
rt

7

2

7
3

7

4

7
5

7

1

7
7

7

8

71
1

8
0

8

1

8
2

8

3

8
4

8

5

O
b

le
ct

lY
e

C

o
d

e

8
1

D

e
a

cr
lD

lio
n

o

f
th

e
 o

b
je

ct
iv

e

8
7

Q

u
o

te
 o

f
va

lu
e

8

8

In
d

ic
a

to
r

o
f

re
a

u
lt

8
9

P

ri
o

ri
ty

 o
f

th
e

 o
b

le
cl

lv
e

9

0

T
a

rg
e

t
fo

r
th

e
 o

b
je

ct
iv

e

9
1

Q

u
a

n
ti

ty
 o

f
P

·O

9
2

P

e
ri

o
d

ic
it

y
o

f
p·

o

C

Fa
x

T
el

ex

TY
ee

 W
ril

B
r

W
or

d
P

ro
ce

ss
in

g
M

ac
hi

ne
s

R
el

ia
bl

e
in

fo
rm

at
io

n
ab

ou
t c

lie
nt

 s
pe

ed
 o

f i
nf

. t
ra

ns
fe

r
C

lie
n

f.
 d

at
a

fa
st

ar

im
P

lO
W

 th
e

in
ta

m
al

lU
m

ar
ou

nd

0
0

0
2

F

or
m

al
iz

at
io

n
an

d
de

fin
iti

on
 o

f t
he

 o
ffe

r
o

ro
ce

o
ll9

s
co

nc
er

ni
na

 t
he

 c
on

te
nt

 a
nd

 la
vo

ut
 o

f t
he

 f
in

al
 c

on
tr

ac
t

9 C
om

pl
et

e
co

nt
ra

ct

m
ed

iu
m

 -
hi

gh

1 (
)()

 c
on

tra
ct

s
pe

r v
ea

r
70

 c
on

tra
ct

s
p

e
r
ye

ar

w
ee

kl
y

3
m

on
th

s
9 9 9 7 S

ta
nd

ar
di

ze
d

pr
oc

ed
ur

es
 a

re
 f

ol
lo

w
ed

 (
or

ep
ar

at
io

ns
 o

f d
oc

um
en

ts
)

fo
rm

s
co

nt
ra

ct
s

m
us

t b
e

fil
le

d
st

an
da

rd
iz

ed
 c

al
cu

la
tio

ns

so
lv

en
cv

.
ra

ta
s

et
c.

C
on

tr
ac

tIm
ed

ia
-

p
a

p
e

r
In

fo
rm

at
io

n
sy

sl
em

lM
ed

ia
=

T
er

m
in

al
(e

Ie
ct

ro
ni

ca
lly

}
M

ai
V

m
ed

ia
 =

 p
ap

er

B
al

an
ce

 s
he

et
s/

M
ed

ia
 =

 o
ap

er

C
re

di
t B

D
PI

O
va

l f
on

nl
 m

ed
ia

 -
p

ap
er

C

he
ck

lis
t/m

ed
ia

 =
 o

ap
er

C

om
ou

te
r l

is
ts

 a
bo

ut
 d

ie
n

fs
 s

ta
lU

s!
 m

ed
ia

 a
p

a
p

e
r

P
ho

ne

Fa
x

T
el

ex

P
C

IB

M
 W

or
ks

ta
tio

n
T

yp
ew

rit
er

W

or
d

P
ro

ce
ss

in
a

m
ac

hi
ne

s
0

0
0

3

A
dm

in
is

tr
at

io
n

9 oo
tim

al
 r

et
rie

va
l o

f c
lie

nt
s'

 d
at

a
fo

r e
xa

m
in

at
io

n
of

 a
nn

ua
l s

ol
ve

nc
y

m
ed

iu
m

g

o
o

d

30
0

p
e

ry
e

sr

da
ily

N

.

CD

A

B

11
3

L
e

n
a

th

o
f

P
-o

-c
y
c
l.

1

4

R
.I

I.
b

ll
lt

y

11
5

T
lm

e
llt

y
o

f
P

·O

li
e

C
o

m
Il

J
.t

.n
 •
•
 a

o
f

P
-O

11

7
F

o
m

.1
 I

.v
e

l
o

f
P

-O

p
ro

d
u

ct
iv

e
 c

y
l.

li

e

S
Ill

1

0
0

In

a
tr

u
m

.n
ta

 •

a
u

p
p

o
rt

1

0
1

1

0
2

1

0
3

1

0
4

1

0
5

1

0
8

1

0
7

1

0
8

10

11

1
1

0

lI
e

d
la

 o
f

In
fo

rm
a

ti
o

n

a

o
u

rc
.a

1

1
1

1

1
2

1

1
3

1

,.

1
1

5

1
1

8

1
1

7

1
1

8
 A

rc
h

lv
.a

1

1
8

C

.n
tr

a
l

A
rc

h
lv

.
1

2
0

n

a
m

e

1
2

1

L
o

c
.l

lz
.t

lo
n

1

2
2

N

u
m

b
e

r
o

f
It

e
m

a

1
2

3

T
y
p

.
o

f
.0

r1
ln

a

1
2

4

T
im

.
o

f
a

to
r.

a
.

1
2

5

A
n

n
u

.1

In
cr

 •
•
•
•
 o

f
.r

c
h

lv
 •
•

1
2

8

A
n

.l
v
a

ta

d
e

sc
ri

p
ti

o
n

 o
f

p
ro

b
l.

m
a

1

2
7

1

2
8

12

11

D
e

p
a

r1
.m

.n
ta

l
A

rc
h

iv
e

1

3
0

n

.m
.

1
3

1

N
u

m
b

e
r

o
f

It
.m

a

1
3

2

T
v
p

.
o

f
a

o
rt

ln
a

1

3
3

T

im
.

o
f

a
to

r.
a

.
1

3
4

A

n
n

u
.1

In

c
r •

•
•
•
 o

f
.r

c
h

lv
 •
•

1
3

5

A
n

.l
y
a

t.

d

.a
c
rl

p
tl

o
n

o

f
p

ro
b

l.
m

a

1
3

6

1
3

7

P
e

rs
o

n
.1

A

rc
h

lv
.

1
3

8

n
8

m
e

-
-

C

1
w

ee
k

8 9 9 9 S
ta

nd
ar

di
ze

d
pr

oc
ed

ur
es

 o
f f

ili
ng

 a
nd

 r
et

rie
vi

ng

S
ta

nd
ar

di
ze

d
ca

lc
ul

at
io

n
o

f s
ol

ve
nc

y
an

d
re

ru
m

 o
n

ca
pi

ta
l

sh
ee

lS
 fo

r r
el

rie
va

V
m

ed
ia

 -
pa

pe
r

P
re

fa
br

ic
at

ad
 c

al
cu

la
tio

n
sh

ee
ts

! m
ed

ia
 =

 D
Il

D
8t

'
B

al
an

ce
 s

he
et

s
A

nn
ua

l
re

oo
rt

s
N

ew
sj

lll
pe

r a
r1

ic
le

s
In

fo
rm

at
io

n
se

rv
ic

es

M
A

=
4

0
%

D

P
=

18
%

O

A
=

2
%

C

E
 =

4
0

%

P
h

o
n

e

In
fo

rm
at

io
n

sy
st

em
/lB

M
 3

27
0

Fa
x

T
el

ex

P
C

Ty

pe
 W

rit
er

W

or
d

P
ro

oe
ss

in
g

M
ac

hi
ne

s
M

ai
l

IA
0

0
1

fin

is
he

d
cl

ie
nl

S
' c

on
tra

ct
s

af
te

r
su

cc
es

sf
ul

 r
ep

ay
m

en
t

B
ui

ld
in

g
B

 H
oc

hs
tra

B
e

4
1

m
illi

on
 f

ol
de

rs
 /

20
0

m
2

ye
ar

/a
lp

ha
be

tic
al

ly

10
 y

ea
rs

 (
le

ga
lly

)
10

%

80
%

 o
f d

oc
:u

m
en

lS
 o

ua
ht

 to
 b

e
st

or
ed

 in
 a

 D
IiD

er
 v

er
si

on
 b

ec
au

se
 o

f l
ea

al
 r

ea
so

ns

IA
0

0
2

cl

ie
nt

s'
 c

on
tra

cl
S

 in
 w

or
k/

in
fo

rm
at

io
n

ab
ou

t d
ie

nl
S

 i.
e.

 f
ro

m
 E

&
P

30

00
 fo

ld
er

s
ea

ch
 c

on
ta

in
ill

!l
at

 m
os

t
10

 d
iff

er
en

t c
lie

nt
s'

 fi
le

s
(a

t l
ea

st
 3

0
pa

ge
s)

al

P
ha

be
tic

al
lv

.
w

ith
in

 t
he

 s
am

e
cl

ie
nt

 b
v

da
te

at

 m
os

t
10

 y
ea

rs

25
%

R

ed
un

da
nt

 d
at

a
w

hi
ch

 a
re

 a
ls

o
st

or
ed

 in
 E

co
no

m
ic

s&
P

re
ss

 D
ep

ar
ta

m
en

ta
/ A

rc
hi

ve

IA
0

0
3

-9
9

9

ac
tu

al
 c

on
tra

ct
s
~
 D

ar
t o

f t
he

 d
eD

ar
ta

m
en

ta
l a

rc
hi

ve
/c

or
re

sD
on

de
nc

e

I
\
)

--
J

<
0

A

B

C

U
.

N
u

m
b

.-
o

f
I .

..
..

.
10

 fo
Id

er
a

at
 m

os
t

1
4

0

IT
Y

D
e

o
f

.o
n

ln
a

.

.I
v

1
4

1

n
m

e
 o

f
.t

o
ra

H

4
m

on
lll

. a
l m

os
t

1
4

2

1
4

3

U
n

lt
a

P
ro

d
u

ct

O
b

le
ct

lv
e

1

4
4

A

c
a

u
l.

ll
lo

n

50
%

1

4
5

1

4
.

O
ff

er

D
e

fin
iti

o
n

30

%

1
4

7

1
4

.
A

d
m

ln
l.

tr
.t

lo
n

20

%

1
4

1

1
5

0
 U

n
it

.
a

P
.(

)
ua

ad

P
.(

)
_1-

tra
m

 E
a

p

1
5

1

•
co

m
D

la
ta

ne
 ••

90

%

1
5

2

•
re

ll.
b

lll
lY

90

%

1
5

3

·l
Im

e
ll
lY

80

%

1
5

4

P
.(

)
co

m
ln

a
 f

ro
m

B

oa
rd

 o
f

d
ir

e
ct

o
r.

to

o
la

le

1
5

5

•
co

m
o

la
ta

n
e

 ••

90
%

1

5
1

•

re
ll.

b
llI

lY

10
0%

1

5
7

·l

Im
e

ll
lY

70

%

1
5

1

1
5

1
 H

u
m

.n
 R

 .
.
 ou

ro
a

N
am

e
M

r.
S

cl
vn

itz

1
1

0

C
o

d
e

IA

ca
U

is
iti

on
 m

a
n

""
e

r
1

1
1

L

e
v.

1

Dr
.

U
ni

w
Irs

itV

1
1

2

C
o

.t

O
M

15
0.

00
0

N
 ~

1
1

3

D
u

tv

I A
a:

a
is

ili
on

co

nt
ac

ts

1
1

4

D
ul

Y
 .

t.
n

ln
a

 d
 ..

.
S

.J
an

S
O

1

1
1

B

ln
ll

D
a .

.
3.

A
 ...

.
40

1

1
1

Te

rm
in

al

1
1

7
 I

n
.t

ru
m

e
n

t
N

.m
e

IB

M
 3

27
0

1
1

1

T
o

o
o

lo
o

ic

u .
.

P

1
.
.

T
ec

lln
lO

lll

tV
D

e
O

P
1

7
0

L

o
c
.l

lz
.t

lo
n

de

sk

1
7

1

e
o

.t
.

1
I.

ln
ta

n
.n

o
e

In

.u
r.

n
o

e

et
c.

O

M
 1

5.
00

0
in

cI
ud

in
a

oo
ar

at
in

a
e

x
o

a
n

_

1
7

2

D
o

e
r.

tl
n

a

e
X

D
e

n
.e

.
_

&
b

o
w

1

7
3

A

n
a

lY
."

.
o

o
ln

lo
n

 .
b

o
u

t
ti

le
 u

 .
.

W
or

k
It

al
ia

n
w

ou
ld

 b
e

""
",

,"
,b

le

1
7

4
 H

R
 .

n
d

 .
rc

h
lv

e
.

A
ve

ra
ae

 n
u

m
b

.-
o

f
.
_

 ..
.

ce
nt

ra
l-

2
_

_
_

1
7

5

C
re

di
t d

eo
ar

1i
in

en
ta

l a
rc

hi
w

 -
15

 D
e

r d
av

1

7
.

~
 =

 2
00

er
da

v
1

7
7

P

e
rl

o
d

lc
ltv

o

f
.c

c
e

 ..
..

ho

ur
tv

1

7
8

F

re
au

en
cv

 o
f
u

n
.
_

 .
.
 fu

l
.
_

 ..
.

10
%

1

7
.

A
ve

r.
a

e
 b

o
rr

o
w

ln
a

 t
im

e

2
m

on
th

s
11

0m
 d

eo
ar

ta
m

en
ta

l a
nd

 c
en

tr
al

 a
rc

hi
ve

1

1
0

A

c
n

..

ou
rD

O
.e

In

lo
nn

at
io

n
ab

ou
t a

1r
ea

dV
 e

xi
st

in
a

co
nt

ra
ct

s
an

cI
lin

an
ci

al
 s

itu
at

io
n

at
 Ih

e
d

ia
n

l
1

8
1

1

8
2

 U
n

it
.

P
·O

H

u
m

.n
 R

.
A

c
a

u
l.

lt
lo

n

90
%

1

8
3

'II

.
o

f
tim

e
..

 xt
er

n.
1

c
o

n
t.

c
t.

50

%

1
8

4

·ln
te

rn
.1

m

ee
tln

a
-
-
~
-
-

-
-
-

-
-

~
-

-
-

-
-
-
-
-

A

S
1

1
5

·r

 ••
 d

ln
a

1
8

8

·c
o

m
m

u
n

lc
.t

lo
n

1

1
7

·w

rl
tl

na

1
1

8

• •
••

 rc
h

ln
a

1
8

1

·m
..

.
h

.n
d

ll
n

a
11

10
 I

n
.t

ru
m

.n
t.

 I
n

ac
tl

vl
tl

 .
.

11
11

C

om
m

un
ic

at
io

n
1

1
2

T

.I
.p

h
o

n
.

11
13

F

ax

11
14

T

.I
 •
•

11
15

R

.a
d

ln
a

1
1

8

V
D

U

11
17

C

re
di

t
D

 •
•
 n

am
.n

ta
l

A
rc

hl
v.

11

18

p.
,8

O
n.

1
A

rc
h

lv
.

11
11

1
W

ri
ti

ng

2
0

0

V
D

U

2
0

1

S
.a

rc
h

ln
a

2
0

2

V
D

U

2
0

3

C
re

di
t

D
.a

n
.m

.n
t.

1

A
rc

hi
ve

2

0
4

P

.r
8O

na
l

A
rc

hi
ve

2

0
5

II

..
.

H
.n

dl
ln

a
2

0
8

F

ax

2
0

7

T
.I

 •
•

2
0

8

20
11

O

ff
e

r
D

ef
in

it
io

n
•

A
pp

ro
va

l
2

1
0

""

 o
f

ti
m

.
-e

.t
er

n.
1

co
n

ta
ct

.
2

1
1

·I

nt
er

na
l

m
ee

tl
na

2

1
2

·r

.a
d

ln
a

2
1

3

·c
o

m
m

u
n

lc
at

lo
n

2

1
4

·w

rl
tl

na

2
1

5

• •
••

 rc
h

ln
a

2
1

1

·m
..

.
ha

nd
ll

na

2
1

7
 I

n
.t

ru
m

en
t.

 I
n

.c
tl

vl
tl

 ..
 C

om
m

un
ic

at
io

n
2

1
1

T

.I
.p

h
o

n
.

21
11

F

ax

2
2

0

T
.I

 •
•

2
2

1

R
.a

d
ln

a
2

2
2

V

D
U

2

2
3

C

re
di

t
D

 •
•
 rt

.m
.n

ta
l

A
rc

hi
ve

2

2
4

Pe

r8
O

n.
1

A
rc

h
lv

.
2

2
5

W

rl
tl

na

2
2

8

V
D

U

2
2

7

S
.a

rc
h

ln
a

2
2

8

V
D

U

22
11

C

re
di

t
D

ea
rt

.m
en

t.
1

A

rc
hl

v.

2
3

0

P
.r

8O
n.

1
A

rc
hi

ve

5%

20
%

5%

5%

5%

60
%

30

%

10
%

15
%

35

%

50
%

10
0%

20
%

40

%

40
%

60
%

40

%

10
%

10

%

20
%

10

%

30
%

10

%

10
%

10

%

10
%

50

%

40
%

15
%

65

%

20
%

10
0%

10
%

50

%

40
%

C

I\
J

0
>

~

A

B

2
3

1

M
a

ll
H

a
n

d
lin

g

2
3

2

F
a

x
2

3
3

T

.l
e

x

2
3

4

2
3

5
 H

um
an

R

 .
.
 o
u

rc
e

N

a
m

.
2

3
6

C

o
d

.
2

3
7

L

.v
.1

2

3
8

C

o
.t

2

3
9

B

ir
th

D

.t
.

2
4

0

D
u

tv

2
4

1

D
u

ty
 .

t.
rt

ln
g

 d
.t

.
2

4
2

 I
n

.t
ru

m
.n

t
N

.m
.

2
4

3

L
o

c
.l

lz
.t

lo
n

2

4
4

T

e
ch

n
lc

.1

tY
D

.
2

4
5

T

O
D

O
lo

gi
c

u
•
•

2
4

8

C
o

.t
.

M
.l

n
t.

n
.n

c
e

In

.u
r.

n
c
.

.t
c.

1

2
4

7

O
D

.r
.t

ln
g

.l

Ip
.n

 •
•
•

2
4

8

A
n

.l
y
.t

'.
 o

p
in

io
n

 .
b

o
u

t
th

e
 u

 •
•

2
4

9
 H

R
 .

n
d

 .
rc

h
lv

 •
•

A
v
.r

.g
.

n
u

m
b

e
r

o
f

.c
e

 .
.
.
.
.

2
5

0

2
5

1

2
5

2

P
.r

lo
d

lc
lt

y

o
f

.c
c
e

 .
.
.
.

2
5

3

F
re

a
u

e
n

e
v

o
f

u
n

.u
c
c
e

 •
•
 fu

l
.c

c
 .
.
.
.
.

2
5

4

A
ve

r.
a

e
 b

o
rr

o
w

in
g

 t
im

.
2

5
5

A

c
c
e

..

~
u
r
p
o
 •
•

2
5

8

2
5

7
 U

n
it

.
P

.(
)

H
u

m
.n

R

.
A

C
Q

u
l.

lt
lo

n

2
5

8

·c
o

m
m

u
n

lc
.t

lo
n

2

5
9

• •

•
•
 rc

h
ln

g

21
10

 I
n

.t
ru

m
.n

t.
 I

n
.c

tl
v
lt

l .
.
 C

o
m

m
u

n
lc

.t
lo

n

21
11

T

.I
.D

h
o

n
.

21
12

F

a
x

2
8

3

T
.I

.I
I

2
8

4

S
 •
•
 rc

h
ln

g

21
15

V

D
U

2

8
6

C

re
d

it

D
B

D
.r

t.
m

.n
t.

1

A
rc

h
iv

e

21
17

P

e
ra

o
n

.1

A
rc

h
lv

.
2

6
8

2

6
9

O

ff
e

r
D

e
fi

n
it

io
n

•

A
p

p
ro

v.
1

2

7
0

·c

o
m

m
u

n
lc

a
tl

o
n

2

7
1

·w

rl
tl

n
g

/c
.l

c
u

l.
tl

n
g

2

7
2

• •

•
•
 rc

h
ln

g

2
7

3

·m
.1

I
h

.n
d

ll
n

g

2
7

4
 I

n
.t

ru
m

e
n

t.
 i

n

a
ct

lv
ill

e
s

C
o

m
m

u
n

ic
a

ti
o

n

2
7

5

T
e

le
p

h
o

n
e

2

I!
 '-

--
-

F
a

x

C

50
%

50

%

M
rs

.
S

ch
ne

id
er

cl

er
ic

al
 w

or
ke

r
H

ig
h

sc
ho

ol

O
M

 6
0

0
0

0

2.
D

ez
 5

2
C

re
di

t a
dm

in
is

tra
tio

n
1.

M
A

r 7
3

T
er

m
in

al
 3

27
0

de
sk

O

P
U

O

M
 6

.0
00

 in
cl

ud
in

a
oo

er
at

in
a

ex
oe

ns
es

W
or

k
st

at
io

n
ne

ce
ss

ar
y

ce
nt

ra
l=

 0

C
re

di
t d

ep
ar

ta
m

en
ta

l-2
0

pe
r d

ay

I p
er

so
na

l =
 1

0
p

e
r

da
y

ho
ur

lv

10
%

4

m
on

th
s
f
r
o
m
~
a
r
t
a
m
e
n
t
a
l
 a

rc
hi

ve

E
nl

llt
jn

g
o

f m
ai

l
fu

rth
er

 in
fo

rm
at

io
n

ac
tu

al
 c

al
cu

la
tio

ns

5%

10
%

90

%

80
%

10

%

10
%

10
%

55

%

35
%

85
%

10

%

60
%

20

%

10
%

50
%

25

%

-
-
_

.
_

-
-
-

-
-
-

-

I\
:)

(X

l
I\

:)

A

B

2
7

7

T
.I

 •
•

2
7

8

W
ri

ti
ng

2

7
9

Y

O
U

.
2

8
0

S
•
•
 rc

h
ln

g

2
8

1

Y
O

U

2
8

2

C
re

d
it

D

ep
.r

t.
m

.n
t.

1

A
rc

h
ly

.
2

8
3

P

.r
eo

n
.1

A

rc
h

ly
.

2
8

4

M
.II

H

.n
d

ll
n

g

2
8

5

F
•
•

2
8

6

T
.I

 •
•

2
8

7

2
8

8

A
d

m
ln

l.
tr

.t
lo

n

2
8

9

• •
•
•
 rc

h
ln

g

21
10

 I
n

.t
ru

m
.n

t.
 I

n
.c

tl
y

lt
l •

•
 S

e
.r

c
h

ln
g

21

11

C
re

d
it

D

ep
.r

t.
m

.n
t.

1

A
rc

h
ly

.
21

12

P
.r

eo
n

.1

A
rc

h
ly

.
21

13

21
14

 H
u

m
.n

R

 •
•
 o

u
rc

.
N

.m
.

21
15

C

o
d

.
21

18

L
.y

.1

21
17

C

o
.t

21

18

B
ir

th

D
.t

.
21

11

D
u

ty

3
0

0

D
ut

y
.t

.r
tl

n
g

 d
.t

.
3

0
1

3

0
2

 I
n

.t
ru

m
.n

t
N

.m
.

3
0

3

T
o

p
o

lo
g

lc

u
•
•

3
0

4

T
ec

hn
lc

.1

ty
p

e
3

0
5

L

o
c.

ll
z.

tl
o

n

3
0

8

C
o

.t
.

(M
.l

n
te

n
.n

ce

In
.u

r.
n

c
 •
•
 tc

.1

3
0

7

O
D

.r
.t

ln
g

•
•
 D

.n
 •
••

3

0
8

A

n
.l

v
.t

'.
 o

D
ln

lo
n

.b
o

u
t

th
e

u .
.

30
11

 H
R

 .
n

d
 .

rc
h

ly
 •
•

A
y
.
r
l
l
~
 n

u
m

b
er

 o
f

.c
e
 ..

..
.

3
1

0

3
1

1

3
1

2

P
.r

lo
d

lc
lt

y
 o

f
.c

e
a
 ••

••

3
1

3

F
re

au
en

cy
 o

f
u

n
.u

cc
e •

• f
ul

.c

c
 ..

..
.

3
1

4

A
ce

 ••
•

D
ur

D
O

 •
•

3
1

5

3
1

8

3
1

7

A
y

er
.g

.
bo

rr
ow

in
g

ti
m

.
3

1
8

3

1
9

 U
ni

t.

P-
O

H

u
m

.n

R
.

A
ca

u
l.

lt
lo

n

3
2

0

• •
•
•
 rc

h
ln

g

3
2

1
 I

n
.t

ru
m

.n
t.

 I
n

.c
tl

y
lt

l .
.
 S

 •
•
 rc

h
ln

g

3
2

2

C
r.

d
lt

D

.p
.r

t.
m

.n
t.

1

A
rc

h
ly

.

25
%

10
0%

10
%

60

%

30
%

50
%

50

%

10
%

10

0%

70
%

30

%

M
rs

. W
ag

ne
r

C
re

di
t a

dm
in

is
tr

at
io

n
S

ec
on

da
ry

 S
ch

oo
l

O
M

 so
 0

00

2.
F

eb
 6

0
C

re
<i

t a
dm

in
is

tr
at

io
n

3.
Ja

n
80

U
se

s
lII

rm
in

ai
 o

f
M

rs
. S

ch
ne

id
er

U

O

P
no

 d
is

ta
nc

e
be

tw
ee

n
th

e
2

de
sk

s
se

e
tin

e
24

6

O
w

n
lII

rm
in

al

ce
nt

ra
l

E
O

C

re
di

t d
ep

ar
ta

m
en

ta
l

=
 2

5
p

e
r
da

y
pe

rs
on

al
=

 0

ho
ur

ly

5%

en
te

ri
na

 o
f a

ct
ua

l c
on

tr
ac

t a
dd

iti
on

al
s

4
m

on
th

s

5%

10
0%

10
0%

C

I\
:)

<X

l
W

A

B

3
2

3

3
2

4

O
ff

e
r

D
e

fi
n

it
io

n

•
A

p
p

ro
v
.I

3

2
5

-w

rl
tl

n
a

3

2
8

-•

•
•
 rc

h
ln

a

3
2

7

-c
o

m
m

u
n

lc
.t

lo
n

3

2
1

-m

.I
I

h
a

n
d

lln
a

32

11
 I

n
.t

ru
m

.n
t.

 I
n

 .
c
tl

v
lt

l_
 C

o
m

m
u

n
ic

a
ti

o
n

3

3
0

T

.I
.D

h
o

n
.

3
3

1

F
n

3

3
2

T

.I
 .
.

3
3

3

W
rl

tl
n

a

3
3

4

V
D

U

3
3

5

S
 .
.
 rc

h
ln

a

3
3

8

C
re

d
it

D

e
II

.r
u

m
.n

ta
i

A
rc

h
iv

e

3
3

7

M
al

l
H

a
n

d
lin

e

3
3

1

F
a.

3

3
1

T

.I
 •
•

3
4

0

3
4

1

A
d

m
ln

l.
tr

.t
lo

n

3
4

2

•
•
•
 rc

h
ln

a

3
4

3
 I

n
.t

ru
m

.n
t.

 I
n

.c
tl

v
"1

_
 S

 •
•
 rc

h
ln

a

3
4

4

C
re

d
it

D

e
II

.r
t.

m
.n

t.
1

A

rc
h

lv
.

3
4

5

3
4

1
 H

u
m

.n

R

_
o

u
re

e

N
.m

.
3

4
7

C

o
d

.
3

4
1

L

.v
.I

3

4
1

C

o
.t

3

5
0

B

ir
th

D

.t
.

3
5

1

D
u

ty

3
5

2

D
ul

Y

.t

.r
tl

n
a

 d
a

te

3
5

3

3
5

4
 I

n
.t

ru
m

.n
t

N
.m

.
3

5
5

L

o
c
a

ll
z
.t

lo
n

3

5
1

T

o
p

o
lo

a
lc

u
•
•

3
5

7

e
o

.t
.

(M
.l

n
te

n
a

n
e

e

In
.u

r.
n

c
.

.t
c
.l

3

5
1

O

p
 ..

..
 tl

n
a

•
•
 D

.n
 •
•
•

35
11

A

n
.l

v
a

t'
.

o
p

in
io

n

3
8

0
 H

R

a
n

d
 .

rc
h

lv
 •
•

A
v
.r

.a
e

 n
u

m
b

 ..
.

o
f
.
_

 ••
•

3
1

1

3
8

2

31
13

P

.r
lo

d
lc

lt
y
 o

f
.c

c
e

 .
.
.
.

3
8

4

F
re

q
u

e
n

cy
 o

f
u

n
.u

c
c
e

 ••
 fu

l
.c

c
 ••

••
•

3
6

5

A
v .

..
. a

.
b

o
rr

o
w

ln
a

 t
im

.
3

6
6

A

c
e

..
.

p
u

r D
O

 •
•

3
1

7

3
1

8
 U

n
it

.
P

-O

H
u

m
.n

R

.
O

ff
.r

D

e
fi

n
it

io
n

.n

d

A
p

p
ro

va
l

C

90
%

50

%

10
%

10

%

30
%

80
%

10

%

10
%

10
0%

10
0%

50
%

50

%

5%

10
0%

10
0%

M
r.

M
O

Ile
r

cl
er

ic
al

 w
or

Iu
Ir

S
e

o
o

n
d

a
ry

 s
ch

oo
l

O
M

 6
0

00
0

6/
24

/1
93

6
C

re
dl

 a
dm

in
is

ln
lti

on

6.
Ja

n
65

ilY
oe

w
riE

r
d

e
sk

P O

M
 5

00
 i

nc
lu

di
ng

 o
pe

ra
tin

g
ex

pe
ns

es

. O
w

n
w

or
ks

ta
tio

nl
T

er
m

in
ai

C

en
tra

l =
 5

 D
8I

' v
ee

r
C

re
di

t D
eP

8l
1l

m
le

nt
ai

 -
30

 p
er

 d
ay

I p

er
so

na
l =

 1
0

p
er

 d
ay

ho

ur
ly

10

%

3
m

on
th

s
ad

di
na

 o
f c

al
cu

la
tio

n
sh

ee
ts

re

tri
ev

al
 f

or
 a

nn
ua

l s
oI

ve
nc

v
ch

ec
ki

na

10
0%

I
\
)

ex
>

.;
.

A

B

3
8

9

·c
o

m
m

u
n

lc
.t

lo
n

3

7
0

·w

rl
tl

na

3
7

1

• •
••

 rc
h

ln
a

3
7

2

·m
.1

I
h

.n
d

ll
n

a
3

7
3

 I
n

.t
ru

m
.n

t.
 I

n
.c

tl
vl

tl
 ..

 C
om

m
un

lc
et

lo
n

3
7

4

T
.I

.D
h

o
n

.
3

7
5

F

ax

3
7

8

T
.I

.x

3
7

7

W
rl

tl
na

3

7
8

T

y
p

.w
rl

t.
r

3
7

8

S
••

 rc
h

ln
a

3
8

0

C
en

tr
.1

A

rc
hl

v.

3
8

1

C
re

di
t

D
eI

Ia
na

m
.n

ta
l

A
rc

hl
v.

3

8
2

P

.r
8

0
n

.1

A
rc

hl
v.

3

8
3

M

.II

H
.n

dl
ln

a
3

8
4

F

ax

3
8

5

T
.I

.x

3
8

8

3
8

7
 H

u
m

.n

R
 ••

 o
u

rc
.

N
.m

.
3

8
8

C

o
d

.
38

11

L
.v

.1

31
10

C

o
.t

31

11

B
ir

th

D
at

.
31

12

D
ut

y
31

13

D
ut

y
.t

.n
ln

a
 d

.t
.

31
14

 I
n

.t
ru

m
.n

t
N

.m
.

31
15

L

o
c.

ll
z.

tl
o

n

31
18

T

O
II

C
io

ai
c

u •
•

31
17

eo

.t
al

M
.l

n
te

n
.n

ce

In
.u

r.
n

ce

.t
c
.l

31

18

O
p

er
.t

ln
a

.x
p

en
 ••

•
3l

1l
i

A
n

.l
y

.r
.

op
in

io
n

4
0

0

A
_

.a
e
 n

um
be

r
of

 .
_

 ..
.

4
0

1
 H

R
 .

n
d

 .
rc

h
lv

 ••

P
.r

Io
dl

cl
ty

 o
f
.
_

.
_

4

0
2

F

re
au

en
cy

 o
f

u
n

.u
cc

e •
• f

ul

.c

c
 ..

..
.

4
0

3

A
_

.G
e
 b

or
ro

w
ln

a
ti

m
.

4
0

4

A
_

..

pu
rp

o •
•

4
0

5

4
0

1
 U

ni
t.

P-

O

H
um

.n
 R

.
A

C
Q

ul
.l

tl
on

4

0
7

·w

rl
tl

na

4
0

8

40
11

O

ff
er

D

ef
in

iti
on

 .
.
A
~
r
o
v
a
l

4
1

0

·w
rl

tl
na

4

1
1

• •

••
 rc

h
ln

a
4

1
2

·m

.1
1

h
.n

d
ll

n
a

4
1

3

·c
o

m
m

u
n

lc
.t

lo
n

4

1
4

 I
n

.l
ru

m
.n

l.
 I

n
.c

tl
vl

tl
 ..

 W
rl

tl
na

1
0

%

5
0

%

1
0

%

3
0

%

2
0

%

4
0

%

4
0

%

1
0

0
%

1
0

%

7
0

%

2
0

%

6
0

%

4
0

%

M
sR

o
th

e

I8
C

1'
9t

ar
v

e
l
e
m
e
n
~
s
c
h
o
o
l

O
M

 4
0

0
0

0

1
/2

3
/1

9
5

9

Ty
pi

ng
. F

ili
ng

 (
C

re
di

t A
dm

in
is

tra
tio

n)

3
.1

.8
5

TV

P8
II

l.c
hi

ne
lm

em
ol

Y

d
e

sk

P O
M

 6
00

 in
cl

ud
in

g
Q

pe
ra

tin
g

ex
pe

ns
es

- ne

ed
s

..
.

in
di

vi
du

al
 te

nn
in

al
 o

r
P

C

C
re

ci
t

ta
l •

 1
5

p
er

 d
aY

h

o
u

rl
y

1
5

%

1
ho

ur

A
d
d
i
~
 o
o
~
s
 0

1
le

tte
rs

5
%

1

0
0

%

8
5

%

7
5

%

1
0

%

1
0

%

5
%

-

-
-
-
-

-

C

N

(
l)

(J

1

A

B

4
1

5

T
V

D
.w

rl
t.

r
4

1
8

S

.a
rc

h
ln

g

4
1

7

C
re

d
it

O

.D
a

rt
a

m
.n

t.
'

A
rc

h
lv

.
4

1
8

M

.I
I

H
.n

d
ll
n

il

4
1

9

T
y
p

.w
rl

t.
r

4
2

0

F
a

x
4

2
1

T

.,
.x

4

2
2

C

o
m

m
u

n
ic

a
ti

o
n

4

2
3

T

.'
.D

h
o

n
.

4
2

4

F
a

x
4

2
5

T

.,
.x

4

2
.

4
2

7

A
d

m
ln

l.
tr

.t
lo

n

4
2

8

·w
rl

tl
n

g

4
2

8

• •
•
•
 rc

h
ln

g

4
3

0
 I

n
a

tr
u

m
.n

ta
 I

n
a

c
tl

v
lt

l.
a

 W
ri

ti
n

g

4
3

1

T
V

D
.w

rl
t.

r
4

3
2

S

.a
rc

h
ln

g

4
3

3

C
re

d
it

O

 •
•
 rt

a
m

.n
t.

'
A

rc
h

lv
.

4
3

4

4
3

5
 U

n
it

C

o
d

.
4

3
.

N
a

m
.

4
3

7

L
o

c
a

ll
u

tl
o

n

4
3

8

F
lo

o
r

4
3

1

A
d

d
r.

a
a

4

4
0

H

.a
d

c
l.

rk

4
4

1

H
ig

h
e

r
u

n
it

4

4
2

O

A
 .

.
 n
a

lv
lt

y
co

m
m

e
n

t
4

4
3

O

A

.
.
 n
a

lv
lt

y
q

u
o

te

4
4

4

O
A

 v
ia

b
ili

ty
 c

o
m

m
e

n
t

4
4

5

O
A

 v
ia

b
ili

ty

Q
uo

te

4
4

8

S
u

rf
a

ce
 o

f
th

e
 u

n
it

?

4
4

7

C
oa

ta
 o

f
th

e
 D

ra
m

l .
.
.

4
4

8

R
o

o
m

a

44
11

F

u
rn

la
h

ln
g

4

5
0

M

a
te

ri
a

l
4

5
1

E

n
.r

g
e

tl
c

4
5

2

E
xt

e
rn

a
l

4
5

3

In
a

tr
u

m
.n

ta

4
5

4

S
o

ft
w

a
re

4

5
5

M

I .
.
 lo

n
 o

f
th

e
 u

n
it

4

5
6

 O
b

j.
c
tl

v
.

C
o

d
.

o
f

th
e

 o
b

je
ct

iv
e

4

5
7

N

.m
.

o
f

th
e

 o
b

Je
ct

iv
.

4
5

8

P
ri

o
ri

ty
 o

f
th

e
 o

b
je

ct
iv

e

4
5

9

In
d

ic
a

to
r

o
f

re
a

u
lt

4

6
0

T

a
rg

e
t

fo
r

th
e

 o
b

je
c
tl

v
.

C

10
0%

10
0%

50
%

30

%

20
%

60
%

30

%

10
%

10
%

50

%

50
%

10
0%

10
0%

? E
co

no
m

ic
s

an
d

P
re

ss

B
ui

ld
in

g
A

2

nd
 fl

oo
r

H
oc

hs
tra

B
e

2
M

r.
S

ch
w

ar
ze

M

an
a.

..l
le

m
en

t S
er

vi
ce

s
E

xP
8r

ie
nc

e
w

ith
 p

e
s

hi
gh

hi

gh

9 10
0

m
2

15
4.

00
0

O
M

40

.0
00

 O
M

13

.0
00

 O
M

12

.0
00

 O
M

14

.0
00

 O
M

10

.0
00

 O
M

50

.0
00

 O
M

15

.0
00

 O
M

E

co
no

m
ic

s
an

d
P

re
ss

 S
er

vi
ce

 fo
r

th
e

pr
ov

is
io

n
of

 s
pe

ci
fic

 d
at

a
ab

ou
t c

lie
nt

s.

? O
rg

an
iz

in
g

cr
ed

it
(s

ol
ve

nc
v)

 in
fo

nn
at

io
n

ac
tu

al
 a

nd
 c

om
m

on
 in

fo
 a

bo
ut

 p
ot

en
tia

l c
lie

nt
s

H
ig

h
S

uf
fic

ie
nt

 d
at

a
ab

ou
t e

ve
ry

 c
lie

nt

D
is

tri
bu

tio
n

of
 r

yg
ui

re
d

in
fo

nn
at

io
n

w
ith

in
 1

 d
ay

I\
J

Q
()

0"

>

A

B

4
8

1

Q
u

.n
tl

ty
 o

f
P

.(
)

41
12

P

.r
lo

d
lc

lt
y
 o

f
P

.(
)

4
8

3

L
e

n
g

th

o
f

P
-O

-e
yc

l.

41
14

R

.n
.b

ll
lt

v

4
8

5

T
lm

e
llt

v
o

f
P

.(
)

4
8

1

C
o

m
D

I.
t.

n
..

.
o

f
P

.(
)

4
1

7

F
om

.1
 l

e
ve

l
o

f
P

.(
)

p
ro

d
u

c
tl

v
.

c
y
l.

4

8
8

L

.v
.1

 o
f

.u
p

p
o

rt

4
8

9

4
7

0

4
7

1

4
7

2

M
e

d
l.

 o
f

In
fo

rm
.l

lo
n

 .
o

u
rc

 .
.

4
7

3

4
7

4

4
7

5

4
7

1

4
7

7

C
o

m
m

e
n

t.
 o

n
 c

ri
ti

ca
l

f.
c
to

r.

4
7

8

C
o

m
m

.n
t.

 .
b

o
u

t
Im

D
ro

v.
m

e
n

t.
 o

f
P

.(
)

47
11

 A
rc

h
lv

 •
•

4
8

0

O
e

D
.r

I.
m

.n
t.

1

A
rc

h
lv

.
4

8
1

n

.m
.

4
8

2

N
u

m
b

e
r

o
f

It
e

m
.

4
8

3

T
y
p

.
o

f
.o

rl
ln

g

4
8

4

T
im

.
o

f
.t

o
r.

g
e

4

8
5

A

n
n

u
.1

In

c
r.

..
.

o
f

.r
c
h

lv
 •
•

4
8

6

A
n

.l
v
.t

.
d

e
a

cr
lD

lio
n

o

f
D

ro
b

l.
m

.
4

8
7

4

8
8

P

.r
a

o
n

.1

A
rc

h
lv

.
4

8
9

n

.m
.

4
8

0

N
u

m
b

e
r

o
f

It
e

m
.

4
9

1

T
y
p

.
o

f
.o

rt
ln

g

4
9

2

T
Im

.
o

f
.t

o
ra

g
.

4
9

3

4
9

4
 U

n
lt

6
P

ro
d

u
ct

O

b
 a

c
tl

v
.

A
c
a

u
l.

lt
lo

n

4
8

5

-
co

m
D

le
t.

n
 •
•
•

4
9

1

-
re

ll
.b

ll
lt

y

4
8

7

-
tl

m
e

llt
v

4
9

8

O
ff

.r

O
e

fl
n

lt
lo

n

4
9

9

-
c
o

m
D

I.
t.

n
 ••

•
5

0
0

-

re
ll
.b

ll
lt

v

5
0

1

-
tl

m
e

llt
v

5
0

2

A
d

m
ln

l.
tr

.t
lo

n

5
0

3
 U

n
it

.
6

P
.(

)
u
•
•
 d

P
-O

co

m
in

g
 f

ro
m

C

re
d

it

D
e

p
a

rt
m

e
n

t
5

0
4

5

0
5

 H
um

an

R
 ••

 o
u

rc
e

N

a
m

.
5

0
6

C
o
~
.

C

da
ily

3

da
yS

90

%

80
%

su

ffi
ci

en
t

m
ed

iu
m

M

A
K

42
%

D

P
=

18
%

0

A
=

2
O

%

C
E

 =
2

0
%

P

ho
ne

R

eo
or

ts

Le
tte

rs

N
ew

sp
ap

er
 a

rti
cl

es

C
re

di
t I

nf
or

m
at

io
n

in
st

itu
tio

ns
 (

C
R

E
D

IT
R

E
FO

R
M

E

B
IL

),
m

ed
ia

 =
 e

xl
llm

al
 d

at
ab

as
es

In

su
ffi

ci
en

t
da

ta

C
lie

nr
s

da
ta

 fa
sl

er

in
fo

rm
at

io
ns

 a
bo

ut
 c

lie
nt

s
n_

S
D

8D
8f

 a
rti

cl
es

 b
al

an
ce

 s
he

et
s

et
c.

 \
10

00
 f

ol
de

rs

al
ph

ab
et

ic
al

ly

2
ye

a
rs

15

%

R
ed

un
da

nt
 d

at
a

w
ith

 C
re

di
t D

ep
ar

tm
en

t

ac
tu

al
 c

li
en

ts

10
 fo

ld
er

s
w

it
h

sh
or

t n
ot

es
 n

_S
D

8D
8r

 a
rt

ic
le

s
al

ph
ab

et
ic

al
ly

,
w

ith
in

 th
e

cl
ie

nt
 b

y
da

Ia

1
m

on
th

90
%

90

%

70
%

90
%

90

%

70
%

0 ok

.

M
r.

H
ei

ne
m

an
n

ex
oe

rt

I
\
)

(X
l

-.
.j

A

B

5
0

7

L
.v

.1

5
0

8

C
o

.t

5
0

8

D
ut

y
5

1
0

D

ut
y

.I
an

ln
a

d
a
l.

5

1
1

B

ir
th

D

al
.

5
1

2

5
1

3
 I

n
.l

ru
m

.n
l

N
.m

.
5

1
4

L

o
ca

ll
z.

ll
o

n

5
1

5

T
ec

hn
ic

al

I
y
~
.

5
1

8

T
op

ol
oA

lc

u .
.

5
1

7

C
o

.I
.(

M
.l

n
l.

n
.n

ce

In
.u

ra
n

ce

.I
c.

)
5

1
8

IO

p
er

.l
ln

a
.I

P
.n

a
.a

5

1
8

A

n
al

v
ar

.
O

D
ln

lo
n

.b
o

u
l

Ih
.

U
 .
.

5
2

0

5
2

1
 S

o
ft

w
ar

e
C

o
d

.
5

2
2

N

.m
.

5
2

3

R
.I

 •
•
•
•

5
2

4

V
.r

.l
o

n

5
2

5

M
.m

or
y

re
au

lr
ed

5

2
8

C

o
.t

5

2
7

5

2
8

N

am
.

5
2

8

V
.r

.l
o

n

5
3

0

M
em

or
y

re
qu

ir
ed

5

3
1

5

3
2

 H
R

 .
n

d
 .

rc
h

lv
e.

A

ve
ra

ae
 n

um
be

r
o

f
.
_

 ..
.

5
3

3

5
3

4

5
3

5

P
.r

lo
dl

cl
ty

 o
f

.c
c
e
 ..

..

5
3

8

F
re

au
en

cy
 o

f
un

au
cc

ea
af

ul
 .C

OM
".

5
3

7

A
_
~
_
 b

or
ro

w
ln

a
11

m
.

5
3

8

A
cc

ea
.

_ p
ur

 PO
 •
•

53
11

A

n
.t

v
.r

a
O

D
ln

lo
n

5
4

0

5
4

1
 U

ni
t.

P

.(
)

H
u

m
.n

R

.
A

ca
u

la
lt

lo
n

5

4
2

·c

o
m

m
u

n
lc

at
lo

n

5
4

3

·r
 ••

 d
lr

u
t

5
4

4

·w
ri

li
na

5

4
5

• •

••
 rc

h
ln

a
5

4
6

·m

.1
1

ha
nd

ll
na

5

4
7

5

4
8

 I
n

.l
ru

m
.n

l.
 I

n
ac

ll
vl

tl
 ••

 C
o

m
m

u
n

lc
.l

lo
n

5

4
9

T

.I
.p

h
o

n
.

5
5

0

F
ax

5

5
1

T

e
l.

x

~

-
-

R
 ••

 d
ln

a

C

U
ni

ve
rs

itY

O
M

 9
5

00
0

I M
an

aa
er

 a
ss

is
la

nt

9.
Ja

n
82

2.

Ju
I5

4

IB
M

 P
C

 A
T

O
w

n
of

fic
:e

se

e
ab

ov
e

O
A

lin
cl

ud
in

o
C

om
m

un
ic

at
io

n
So

ft
w

ar
e

fo
r

ex
t d

at
ab

as
es

P O

M
 2

.7
00

 i
nd

uc
in

g
op

er
at

in
g

ex
pe

ns
es

. SW

 m
U

lt
be

 i
m

ea
ra

te
d

in
-.

ar
at

io
n

w
ith

 in
fo

 I
V

I_
m

l

Jo
en

 A
cc

eI
S

. A
l.

0
l

36
0

15
00

T
ex

t 4

ve
rs

io
n

1.
 0

5
36

0

ce
nt

ra
I-

2
p

er
 y

ea
r

E
co

no
m

ic
s

&
 P

re
ss

 d
eP

8l
1a

m
en

la
l a

rc
hi

ve
 -

20
 p

er
 d

ey

I D
8f

SO
I1

8I
 a

rc
hi

ve
 -

5
p

er
 d

a
y

ho

ur
lv

10

%

1
w

ee
k

R
et

rie
va

l o
f p

re
vi

ou
s

in
fo

rm
at

io
n

ab
ou

t t
he

 c
li

en
ts

A

ec
l.I

nd
an

t d
al

a
be

tw
ee

n
C

re
di

t D
el

)8
l1

am
en

la
l a

nd
 E

&
P

de
pa

rt
am

en
la

l a
rc

hi
w

10
0"

"
10

""

45
""

25

""

10
""

10

""

80
""

10

%

10
%

I\
)

(X
l

(X
l

A

B

5
5

3

E
A

P

A
rc

h
lY

e

5
5

4

P
e

re
G

n
.'

A
rc

h
iv

e

5
5

5

W
rl

tl
n

a

5
5

1

IB
M

P

C

5
5

7

S
 •
•
 rc

h
ln

a

5
5

1

E
A

P

A
rc

h
iv

e

5
5

8

C
re

el
h

D
a

o
.r

u
m

a
n

t.
1

A

rc
h

iv
e

5

1
0

C

a
n

tr
.'

A

rc
h

lY
e

5

1
1

P

e
re

o
n

.'

A
rc

h
lY

e

5
8

2

M
."

H

.n
d

lln
a

5

1
3

F

.I
I

5
1

4

IB
M

P

C

5
1

5

T
e

le
ll

5
1

.
5

1
7

 H
u

m
.n

R

 •
•
 o
u

re
e

N

.m
e

5

1
8

C

o
d

.
5

8
8

L

e
y
e

l
5

7
0

C

o
.t

5

7
1

B

ln
h

D

.t
e

5

7
2

D

u
ty

5

7
3

D

ul
Y

 .
t.

n
ln

a
 d

.t
e

5

7
4

5

7
5

 I
n

.t
ru

m
e

n
t

N
.m

.
5

7
.

T
O

D
O

lo
ai

c
u

.e

5
7

7

T
e

ch
n

ic
a

l
ty

p
e

5

7
.

L
o

c
.l

lz
.t

lo
n

5

7
1

e

o
.t

.,
M

.l
n

ta
n

.n
e

e

In
.u

r.
n

c
a

e

tc
.)

5

1
0

O

II
e

r.
tl

n
a

.l

Ip
e

n
 •
•
•

S
l1

A

n
.l

Y
.t

'.
 o

p
in

io
n

 .
b

o
u

t
th

e
 u

 .
.

5
1

2

5
1

3
 S

o
ft

w
.r

e

C
o

d
.

5
8

4

N
.m

.
5

8
5

R

.,
 •
•
•
•

5
8

1

V
e

r.
'o

n

5
8

7

M
.m

o
ry

ra

C
llu

lra
d

5
8

8

C
o

.t

5
8

8

5
8

0

N
.m

e

5
8

1

V
e

r.
lo

n

5
8

2

M
e

m
o

ry

ra
C

llu
lra

d
5

1
3

5

8
4

 H
R

 .
n

d
 .

rc
h

IY
e

.
A

ye
r.

a
a

 n
u

m
b

e
r

o
f
.
_

.
e

.

5
9

5

5
9

6

5
9

7

P
e

ri
o

d
ic

it
y

o
f

.c
c
a

 .
.
.
.

5
9

8

Fr
aC

IIU
8n

ey

o
f

u
n

.u
c
c
e

 ••
 fu

l
.c

c
 ..

..
.

90
%

10

%

10
0%

70
%

4%

8%

18

%

10
%

80

%

10
%

M
r.

S
ch

O
le

r
ex

pe
n

U
ni

ve
rs

ity

O
M

 7
0

0
0

0

1.
M

A
r 7

9
I ~
r
 a

ss
is

ta
nt

1.

M
A

r 7
9

IB
M

P
C

X
T

P

O

A

O
M

 2
.7

00
 in

du
ci

ng
 o

pe
ra

tin
g

ex
pe

ns
es

no

ne

S
W

 m
us

t b
e

in
te

ar
at

ed

D
D

en
 A

cc
es

s
? A

 1
.0

1
3

6
0

15

00

Te
xt

 4

ve
rs

io
nl

.0
5

3
6

0

E
&

P
 d

eD
ar

ta
m

en
ta

l a
rc

hi
ve

 -
70

 D
er

 d
ay

P

er
so

na
l a

rc
hi

ve
 =

 3
0

p
er

 d
ay

ho

ur
ly

5%

C

I\
.)

0

0

(
0

A

B

5
9

9

A
ve

ra
a

e
 b

o
rr

o
w

ln
a

 l
im

e

6
0

0

A
cc

e
a

a

D
ur

D
O

ae

6
0

1

6
0

2
 U

n
it

s
P

-O

H
u

m
a

n

R
.

A
c
q

u
la

lt
lo

n

6
0

3

-c
o

m
m

u
n

lc
e

llo
n

6

0
4

-r

e
a

d
ln

a

6
0

5

-w
rl

tl
n

a

8
0

6

-a
e

a
rc

h
ln

a

6
0

7

-m
a

ll
h

a
n

d
lln

a

6
0

8

6
0

9
 I

n
a

lr
u

m
e

n
la

 I
n

 a
c
ll
v
il
l .
.
 C

o
m

m
u

n
lc

a
llo

n

6
1

0

T
e

le
p

h
o

n
e

6

1
1

F

a
x

6
1

2

T
e

le
.

6
1

3

R
e

a
d

ln
a

6

1
4

E

&
P

A

rc
h

iv
e

6

1
5

P

e
ra

o
n

a
l

A
rc

h
iv

e

6
1

6

W
ri

li
n

a

6
1

7

IB
M

P

C

6
1

6

S
e

a
rc

h
ln

a

6
1

9

E
&

P

A
rc

h
iv

e

6
2

0

C
re

d
it

D

.a
rl

a
m

e
n

la
l

A
rc

h
iv

e

6
2

1

C
e

n
lr

a
l

A
rc

h
iv

e

6
2

2

P
e

ra
o

n
a

l
A

rc
h

iv
e

6

2
3

M

a
ll

H
a

n
d

lll
!A

6

2
4

F

a
.

6
2

5

IB
M

P

C

6
2

6

T
e

le
.

6
2

7

A
n

a
ly

a
l'a

o

p
in

io
n

6

2
8

6

2
9

 H
u

m
a

n

R
 .
.
 o
u

rc
e

N

a
m

e

6
3

0

C
o

d
e

6

3
1

L

e
v
e

l
6

3
2

C

o
a

l
6

3
3

B

lr
lh

D

a
le

6

3
4

D

U
ly

6

3
5

D

u
ly

 a
la

rl
ln

a

d
a

le

6
3

6
 I

n
s
lr

u
m

e
n

l
N

a
m

e

6
3

7

L
o

c
a

ll
z
a

ll
o

n

6
3

8

T
o

p
o

lo
a

lc

u
se

6

3
9

C

o
sl

sC
M

a
ln

le
n

a
n

ce

In
su

ra
n

ce

e
lc

.)

6
4

0

O
p

e
ra

lln
a

e

.p
e

n
s
e

s

6
4

1
 H

R

a
n

d
 a

rc
h

iv
e

s
A

ve
ra

a
e

n

u
m

b
e

r
o

f
a

ce
e

ss
.s

6

4
2

6

4
3

P

e
ri

o
d

 Ic
il
y

o

f
a

cc
e

ss
e

a

6
4

4

F
r.

q
u

e
n

cy

o

f
u

n
su

cc
e

ss
fu

l
sc

ce
ss

e
.

C

1
w

e
e

k
R

et
rie

va
l o

f o
re

vi
ou

s
in

fo
nn

at
io

n
a

b
o

u
llh

e
 c

lie
nt

 a
dd

in
!!
n

_
 in

fo
nn

at
io

n
(b

al
an

ce
 s

he
et

s

10
0%

10

%

55
%

15

%

10
%

10

%

80
%

10

%

10
%

60
%

40

%

10
0%

68
%

2%

2%

28

%

10
%

80

%

10
%

M
a

.a
na

e
&

ec
r8

1a
rV

el

em
en

ta
ry

 s
ch

oo
l

O
M

 4
0

00
0

3/
30

/1
95

8
Ty

pi
ng

.
F

ili
ng

/C
re

di
t A

dm
in

is
tr

at
io

n
3.

Ja
n

80

TV
D

8I
T1

ac
hi

ne
/m

em
or

v
de

sk

P

O
M

 6
00

 i
nc

lu
di

na
 o

pe
ra

tin
g

ex
pe

ns
es

- E

&
P

 d
eo

ar
1a

m
en

ta
l a

rc
hi

ve
 -

15
 p

er
 d

ay

I ~
r
s
o
n
a
l
 a

rc
hi

ve
 =

 3
 p

er
 d

ay

ho
ur

ly

10
%

N
 c.o

o

A

B

C

11
45

A

v
.,

.g
.

bo
rr

ow
in

g
ti

m
.

1
d

a
y

11
48

A

c
e
e
..

D

ur
D

O
 •
•

Fi
nd

in
a

fo
ld

er
s

in
di

ca
te

d
bv

 m
r.

H
ei

ne
m

an
n

or
 M

r.
Sc

hO
le

r
8

4
7

11

48
 U

n
it

.
P.

.()

H
u

m
.n

R

.
A

cq
u

l.
lt

lo
n

10

0%

11
49

·w

rl
tl

n
g

80

%

8
5

0

• •
•
•
 rc

h
ln

g

10
%

8

5
1

·m

.1
I

h
.n

d
ll

n
g

10

%

8
5

2
 I

n
.t

ru
m

.n
t.

 I
n

.c
tl

v
lt

l .
.
 W

ri
ti

ng

8
5

3

T
V

D
.

M
.c

h
ln

.
10

0%

8
5

4

S
•
•
 rc

h
ln

a
8

5
5

E

a
p

D

eD
.r

t.
m

.n
t.

1

A
rc

hi
ve

78

%

8
5

8

P
.r

so
n

.1

A
rc

h
lv

.
20

%

8
5

7

C
re

di
t

D
eD

.r
le

m
.n

t.
1

A

rc
h

lv
.

2%

8
5

8

M
.II

H

.n
d

ll
n

g

8
5

9

T
V

D
.

"
.c

h
ln

.
80

%

8
8

0

F .
.

10
%

8

8
1

T

.I
.I

I
10

%

8
8

2

8
8

3

C
o

d
.

?
8

8
4

 U
ni

t
N

.m
.

N
um

be
r

2
I\

) ~

8
8

5

L
o

c.
ll

za
tl

o
n

B

ui
ld

in
a

B

8
8

8

F
lo

o
r

2n
d

flo
or

8

8
7

A

d
d

r •
•
•

H
oc

hs
lr

aB
e

..

8
8

8

O
A

_

.I
v

lt
y

 c
o

m
m

en
t

no
 e

xP
8r

ie
nc

e
w

ith
 O

A

8
8

9

O
A

_

.I
v

lt
y

 q
u

o
te

m

ed
iu

m

8
7

0

O
A

vI

.b
ll

lt
y

co
m

m
en

t
hi

gh
ly

 m
ot

iv
at

ed

8
7

1

O
A

vI

.b
ll

lt
y

q
u

o
te

hi

ah

8
7

2

S
u

rf
_

 o
f

th
e

u
n

it
?

hi
ah

1

7
3

C

o
.t

.
o

f
th

e
D

re
m

l .
..

20

0m
2

8
7

4

C
o

.t
.

o
f

th
e

fu
rn

l.
h

ln
a.

20

0.
00

0
O

M
/o

ar
 y

ea
r

1
7

5

C
o.

1e
 o

f
co

n
.u

m
ed

 m
.t

.,
I.

I.

40
.0

00
 O

M
/p

er
 y

ea
r

1
7

8

C
o

.1
e

o
f

h •
•
 tl

na
,

.I
ec

tr
lc

lt
y

20

.0
00

 O
M

/p
er

 y
ea

r
8

7
7

C

o.
1e

 o
f

.l
It

.,
n

.1
 •

 .,
v

le
e
.

7.
00

0
O

M
/p

er
 y

ea
r

1
7

8

M
I •

•
 lo

n
o

f
th

e
un

it

B
oa

rd
 o

f d
ir

ec
to

rs

8
7

9
 O

b
l.

c
tl

v
.

C
o

d
.

o
f

th
e

o
b

 e
ct

lv
.

8
8

0

N
.m

.
o

f
th

e
o

b
 a

ct
lv

.
A

D
D

ro
va

i o
f C

re
di

ts

8
8

1

P
rl

or
lt

v
o

f
th

e
o

b
 a

ct
iv

e
1

0

8
8

2
 @

In

di
ca

to
r

o
f

r .
.
 ul

t
am

ou
nt

 o
f

au
di

t!
 n

um
be

r o
f

cl
ie

nt
s

8
8

3

T
ar

ae
t

fo
r

th
e

o
b

je
ct

iv
e

10
0

p
e
r

ye
ar

Appendix B - Office Activities Definition

~
-_~ Copy of

=-.-== re1cwant pub
~.:.::: of miDutei
.::-.-.:= of the meetiDl ----

293

Product-Objective "Acquisition"

CopieIof
iDfvrm

294

295

mokiaa
iota tbo Ib.l tat
\ypiII&or __

moduli; m<qiDa 1 __ -

moduIa

296

Product-Objective "Formalization and Definition of the Otter"

~

Slarl .r 111« , 11 .. 110. precHI •

N.Ucel
'1110_
.,..-.----

C-P'" -01_ --

297

298

Product.Objective Administration of the contract

299

Appendix C - TCM dynamic graph

A
D

V
E

R
T

IZ
E

M
E

N
T

(p
u

b
lic

_

re
la

tio
n)

p
u

b
lic

_
re

IJ
_

m
sg

ad

ve
rt

iz
em

en
t

le
tt

er

ad
v

le
tte

r_
m

sg

-
-

II "
~V

O_
1

as
ta

rt

~I
I~
 9V:

~:dV
I9tt

9r
F~1~

1 0
 I

/P
T

R
U

e
RA

D
W

(p
u

b
lic

_

re
la

tio
n

ag
en

t)

g

N
E

W

C
LI

E
N

T

(a
g

e
n

t)

te
le

p
h

o
n

e
_

n

o
ti

ce

e
v4

/P

M
O

D
C

L
I/

C
R

;R
F

le
tt

er
_m

sg

(a
g

e
n

t)

le
tt

er
 _

o

f -
cl

ie
n

t

w

o I
\)

M
E

E
T

IN
G

m
sg

(a
g

e
n

t)

a
d

d
it

(a
g

e
n

t)

R
T

;C
P

u
p

d
a

te
cl

id
a

ta

e
d

cl
iin

f

a
rr

a
n

g
e

_

m
e

e
ti

n
g

(c
le

ri
ca

l_

w
o

rk
e

r)

cr
e

d
it

p
ro

sp
e

ct

o
I c

li_
d

o
c_

m
sg

(c
le

ri
ca

l_

w
o

rk
e

r)

~

c.>

C
O

N
TR

A
C

T
P

R
E

P
A

R
A

TI
O

N

(1
)

up
da

te
_

cl
U

n
fo

_

m
sg

(c
re

di
t_

de
pt

_
ag

en
t)

R
F

C
A

P
P

R

cr
n

e
w

co
n

tr

D
n

e
w

sp
a

p
e

r_

ar
tic

le

ch
e

ck
lis

t

~
z

C
R

;T
X

.1

0
ch

e
ck

lis
t

m
sg

~
 P

R
;C

R
;T

X
 _

I 0
 1

,

'e
v

2
2

I e

tte
r_

/P

LR
C

/
o

f -
re

fu
sa

l

co
n

tr
a

ct

re
fu

sa
l

m
sg

(c

le
ri

ca
l_

w

o
rk

e
r)

~

C
O

N
T

R
A

C
T

P

R
E

P
A

R
A

TI
O

N

(2
)

co
n

tr
a

ct
_

re

ad
y_

m

sg

(c
re

d
it_

 d
e

p
tj

lg
e

n
t)

co
n

tr
a

ct
_

a

cc
e

p
te

d

(a
g

e
n

t)

e
v1

3

/P
T

R
U

E
/

M
O

se
n

d
co

n
tr

to
cl

i
o

co
n

tr
a

ct
_

m
sg

_

le
g

a
l_

d
e

p
t

(c
re

d
it_

d
e

p
t_

a

g
e

n
t)

co
n

tr
a

ct

m
sg

_
cl

ie
n

t
(c

le
ri

ca
l_

w

o
rk

e
r)

co
m

p
u

te
r_

lis

t

~

0
1

Chapter 7

Concluding Remarks
and Future Work
Barbara Pernici, Colette Rolland, and the TODOS Team

Computer Aided Software Engineering (CASE) is gaining more and more popularity
in the software development community. While its importance has become evident to
handle design documentation and several tools present on the market provide such a
functionality, still very limited functionalities are provided to support design decisions
and to suggest possible design choices to the developer. The main aim of the TODOS
approach is to provide a set of tools with powerful functionalities to support the designer
in office information systems design.

TODOS has focused on the following aspects of office information systems design:

• supporting analysis of requirements and of conceptual schemas: the tools de
scribed in Chapters 2 and 3 help the designer in collecting information about the
application under development, and provide powerful functionalities to analyze
the consistency of the collected information. Moreover, it is possible to analyze
collected information, under different perspectives, and some facilities are provided
to complete missing information automatically.

• rapid proto typing: tools are provided to realize a prototype of the office system
under development from the conceptual schema. Prototyping is very useful to
support design decisions, in particular to gather users' evaluation of design choices,
and to refine the design of user interfaces.

• architecture selection: architecture design is particularly important in the TO
DOS design life cycle. In fact, the design of the office system architecture is
developed with the goal of reusing available software and hardware components.
In applications such as office and information systems the development of original
components for a given application should be limited as much as possible.

An original aspect in TODOS is the use of information bases to support the de
velopment process. Databases have been proposed in TODOS for the Requirements
Collection and Analysis phase and in the Conceptual Design phase. Knowledge bases
are used to support rapid prototyping and architecture selection. A future extension
of the TODOS approach should provide an integrated information base to support the
different phases of office systems development.

Other research projects are focusing on the use of information bases to support
information systems design: the DAIDA ESPRIT project (Jarke and DAIDA Team

308

1988) proposes the use of a knowledge base, Concept Base, to support design decisions,
and the ITHACA (Integrated Toolkit for Highly Advanced Computer Applications)
ESPRIT II project proposes the use of a Software Information Base to support the
design phases and the reuse of software components (Proefrock et al. 1989).

An office system development methodology is proposed in TODOS. The methodol
ogy is based on a functional development life-cycle and a non-functional development
life-cycle evolving in parallel. The office system is developed iterating design phases,
interacting with the user, and refining design choices until the system is considered com
plete and consistent. The results of a project developed in TODOS are the functional
specifications of the system, the definition of the user interfaces, and a hardware and
software architecture. Detailed design is not covered by the TODOS methodology, since
for this phase the developer can base his work on classical system development methods.

Some issues have to be considered in connection with the TODOS framework. First
of all, the principal problem, particularly in requirements collection and analysis and in
conceptual design, is the risk of automating existing procedures, including inefficiencies
and paths that could be avoided using a computer based support environment in the
office. While the goal of some office systems is to have a paperless office, a design that
automates all existing office activities will produce the same amount of paper as in the
non-automated office, or even more. The analysis of document flows and information
exchange in the office is still a research issue. Exceptions in the office procedures should
be considered, if they are important for correct functioning of the office. Not considering
them could cause the realization of an inflexible system; inflexibility of office support
systems is one one of the major causes of failure in the realization of information sys
tems, and therefore also for an office system. On the other hand, taking into account
all possible exceptions is a very heavy task in design. Therefore, models of exceptions
should be a predefined part of the office scheme and automatically invoked when an
exception arises. For instance, if the agent responsible for a given action is missing, a
substitute should be automatically considered for performing the action. Intelligent sup
port for the designer could be one solution to the above mentioned problems. Another
important issue is that the style of work and the organizational structure can change
rather often. Therefore, the support to system development and maintenance should
be integrated with the system itself, in order to support system evolution: the phase
of system development and system operation should not be considered in isolation, but
supported in an integrated way.

These considerations are being addressed in current research projects. Research on
information systems development environments is continuing in the second phase of the
ESPRIT Programme of the Commission of the European Communities (ESPRIT II),
in particular within the ITHACA and HECTOR projects. The ITHACA (Integrated
Toolkit for Developing Highly Advanced Applications) project has the aim of devel
oping an integrated application development and support environment, based on the
object-oriented programming approach; within ITHACA, the goal of reusing software
components is particularly important (Proefrock et al. 1989). Methodological issues
have been considered within HECTOR (Harmonized European Concepts and Tools
for ORganizational Information Systems), studying a reference framework for existing
methods and methodologies based on requirements of a number of application areas.

309

The TODOS project was completed in December 1988. Tools developed within TO
DOS and described in this book have been engineered by industrial partners after the
end of the project and are being used in office development projects.

For further details on work performed within TODOS, the authors of the chapters
describing the different TODOS tools can be contacted (see the Authors' Address List).

References

Ahlsen M., Bjornerstedt, A., Briffs, S., Hulten, c., Soderlund, c.: An architecture for object
management in OIS. ACM 'frans. on Office Information Systems, 2 (3) (July 1984)

Avison, D.E.: Information Systems Development: A Data Base Approach. Oxford et aI.,
1985

Balser, R., Cheatham, T., Green, C.: Software technology in the 1990's: using a new
paradigm. IEEE Computer (1983)

Barber, G.: Supporting organisational problems solving with a workstation. ACM 'frans.
on Office Information Systems, 1 (1), 45-67 (1983)

Barstow, D.R.: Domain-specific automatic programming. IEEE 'frans. on Software Engi
neering 11, November 1985

Baskett, F., Chandy, K.M., Munts, R.R., Palacios, F.G.: Open, closed and mixed networks
of queues with different classes of customers. Journal of the ACM 22 (2), 248-260 (1975)

Bellner, H.: Workload characterisation and performance modelling tools. University of
Dormund, Informatik IV, 1985

Borgida, A., Greenspan, S., Mylopoulos, J.: Knowledge representation as the basis for
requirements specifications. IEEE Computer 18 (4), 82-91 (1985)

Borgida, A., Mylopoulos, J., Wong, H.K.T.: Methodological and computer aids for inter
active information system development. In H.-J. Schneider, A.I. Wasserman (eds.): Auto
mated Tools for Information System Design. North-Holland, Amsterdam 1982, pp. 109-124

Bracchi, G., Fugini, M.G.: Database support to office system design. Proc. 6th British
Conf. on Databases (BNCOD 6), Cardiff, July 1988, pp. 47-67

Bracchi, G., Fugini, M.G.: Advanced design techniques for office system design. Proc. 11th
IFIP Conf, Invited Paper, S. Francisco, CA, Aug. 1989, pp. 751-752

Bracchi, G., Pernici, B.: The design requirements of office systems. ACM 'frans. Office
Information Systems 2 (2) 151-170 (1984)

Bracchi, G., Pernici, B.: SOS: A conceptual model for office information systems. Data
Base 15 (2), 11-18 (Winter 1984)

Bracchi, G., Pernici, B.: 'frends in office modeling. In A.A. Verrijn-Stuart, R.A. Hirschheim
(eds.): Proc. IFIP Conf. on Office Systems, Helsinki, North-Holland (1986), pp. 77-97

Brodie, M.: Automatic database design and development. ACM Conf. on Management of
Data (SIGMOD 87), Tutorial, 1987

Brodie, M., Mylopoulos, J., Schmidt H-J.: On Conceptual Modelling: Perspectives from
Artificial Intelligence, Databases, and Programming Languages. Springer-Verlag, Berlin
1984

312

Brodie, M.L., Silva E.: Active and Passive Component Modelling: ACM/PCM. In T.W.
Olle, H.G. Sol, A.A. Verrijn-Stuart (eds.): Information Systems Development Mehodologie8:
a Comparative Review. North-Holland, Am8terdam 1982, pp. 41-92

Carey, T. T., Mason, R.E.A.: Information system prototyping: techniques, toole, and method
ologies. INFOR 21 (3) (1983)

Carmo, J.: The INFOLOG branching logic of events. In A. Sernadas et. al. (eds.): In
formation Systems: Theoretical and Formal Aspects. Elsevier Science Publishers B.V.,
North-Holland, Amsterdam - The Netherlands, 1985, pp. 159-174

Castelli, D., Meghini, C., Musto, D.: A knowledge representation approach to architecture
specification in the office information system design. Proc. IFIP Working Conference on
Office Information Systems: The Design Procesa, Linl, August 1988, North-Holland, 1989,
pp.95-107

CUlola, F., Galli, M., Pernici, B.: Diagnosis and correction of office system communication,
accepted for publication on the Journal Decision Support Systems (1990)

Ceri, S. (eds.): Methodology and Tools for Database Design, North-Holland, Amsterdam
1983

Ceri, S., Tanca, L.: ELAND: An expert system for the configuration of local area networks
applications. Proc. 11th Conference on Local Computer Networks, Minneapolis, Oct. 1986

Chang, S.K., Chan, W.L.: Transformation and verification of office procedures. IEEE Trans.
on Software Engineering 11 (8), 724-734 (1985)

Conrath, D.W., De Antonellis, V., Simone, C.: A comprehensive approach to modeling
office organisation and support technology. In B. Pernici, A.A. Verrijn-Stuart (eds.): Office
Information Systems: the Design Procesa, North-Holland, Amsterdam 1989.

Cook, C.L.: Streamlining office procedures - An analysis using the Information Control Net
model. Proc. AFIPS National Compo Conf., May 1980

Croft, B., Lefkowitl, L.S.: Task support in an office sy8tem. ACM Trans. on Office Infor
mation Systems, 2 (3), 197-212 (July 1984)

De Antonellis, V., Zonta, B.: A disciplined aprpoach to office analysis. IEEE Trans. on
Software Engineering, Aug. 1990.

De Marco, T.: Structured Analysis and System Specification. Yourdon Press, New York
1979

Denning, P.J., BUlen, J.P.: The operational analysis of queuing network modele. ACM
Computing Surveys 10 (3), 225-261 (1978)

Dolk, D.R., Kirsch, R.A.: A relational information resource dictionary system. Comm. of
the ACM 30 (I), 48-61 (1987)

Dunnion, J., Harper, D.J., Amker-Moeller, B., Bogh, T., Sherwood-Smith, M., Van Rijsber
gen, C.J.: Minstrel - ODM: a basic office data model, Proc. ESPRIT Technical Week '85,
North-Holland, Brusaels, Sept. 1985

Ellis, C.A.: Information Control Nets - A mathematical model of office information flow.
Proc. ACM Conf. on Simulation, Measurement, and Modelling of Computer Systems,
Boulder, Colorado, Aug. 1979, pp. 225-239

Ellis, C.A., Naffah, N.: Design of Office Information Systems. Springer-Verlag, Berlin 1987

Eriksson, D.: The conceptual representation in the RAMATIC tool. SYSLAB WP 91,
SYSLAB-G, Systems Development Laboratory, Gothenberg, 1984

Ferrari, D.: Considerations on the insularity of performance evaluation. IEEE Trans. on
Software Engineering 8E-12 (6), 678-683 (1986)

Flores, J., Ludlow, J.J.: Doing and speaking in the office. In R. Sprague (ed.): DSS: lsaues
and Challenges. Pergamon Preas, London 1981

313

Floyd, c.: A systematic look at prototyping. In R. Budde et al: Approaches to Prototyping.
Springer-Verlag, Berlin 1984

Fugini, M.G., POlli, S.: An approach to distributed conceptual design of office systems.
In B. Pernici, A.A. Verrijn-Stuart (eds.): Office Information Systems: the Design Process,
North-Holland, Amsterdam 1989, pp. 109-132

Goldberg, A.: Introducing the Smalltalk-80 System. Byte, 6 (8) (Aug. 1981)

Greif, I., Ellis, C.A. (eds.): Special issue on computer-supported cooperative work. ACM
'Irans. on Office Information Systems 5 (2), 113-211 (1987)

GustafllllOn, M.R., KarlllllOn, M.R., Bubenko, J.A. jr.: .A declarative approach to conceptual
information modeling. In T.W. Olle, H.G. Sol, A.A. Verrijn-Stuart (eds.): Information
Systems Development Mehodologies: a Comparative Review. North-Holland, Amsterdam
1982, pp. 93-142

Heidelberger, P., Lakshmi, M.S.: A performance comparison of multimic:ro and mainframe
database architectures. IEEE 'frans. on Software Engineering 5&14 (4), 522-531 (1988)

Heijmink, F., Henry, P., Kieback, A., Rames, J.R.: Development of tools for designing OIS.
In H.-J. Bullinger et al. (eds.): Information Technology for Organizational Systems. Elsevier
Science Publishers B.V., North-Holland, Brussels - Luxembourg 1988, pp. 66-73

Hewitt, C.: Office are open systems, ACM 'frans. on Office Information Systems, vol. 4,
no. 3, pp. 271-287 (1986).

Hirscheim, R., Schaefer, G.: Requirements analysis: a new look at an old topic. Unpublished
article, 1987

Hull, R., King, R.: Semantic database modeling survey, applications, and research issues.
ACM Computing Surveys 19 (3), 201-260 (1987)

IEEE Software, Issue on CASE Technologies. (Mar. 1988)

ISO: Concepts and Terminology for the Conceptual Schema and the Information Base. J.J.
van Griethuysen ed., ISO TC97/SC5/WG3 (1982)

ISO: Open Systems Interconnection - Basic Reference Model. IS 7498, 1983

Intellicorp: Kee Software Development System User's Manual 1986

Jackson, M.: System Development. Prentice-Hall, Series in Computer Science, 1983

Jarke M., DAIDA Team: The DAIDA environment for knowledge-based information system
development. In ESPRIT'88: Putting the Technology to Use, North-Holland, 1988, pp.
405-422

Jeffery, J.R., Laurence, M.: Systems Analysis and Design. Prentice-Hall International,
Sydney (1984)

JohanllllOn, L.A.: Use aspects of RAMATIC. SYSLAB WP 87, SYSLAB-G, Systems Devel
opment Laboratory, Gothenberg, 1984

Kaye, R.A., Karam, G.M.: Cooperating knowledge-based assistants for the office. ACM
'Irans. on Office Information Systems 5 (4), 297-326 (1987)

Kieback, A., Kerber, W.: Prototyping as an automatic tool for designing office systems.
Proc. ESPRIT Technical Week '87, North Holland, 1987

Konsynski, B.R., Bracker, L.C., Bracker, W.E.: A model for specification of office commu
nications. IEEE'Irans. on Communication COM-SO (1), 27-36 (1982)

Lasowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: File access performance of
diskless workstations. ACM'Irans. on Computer Systems 4 (3), 238-268 (1986)

Leavitt, H.J.: Applied organisation change in industry: structural, technical and human

314

approaches. In W.W. Cooper, H.J. Leavitt, M.W. Shelley (eds.): New Perspectives in
Organization Research. Wiley, New York 1964

Levesque, H., Mylopoulos, J.: A procedural semantics for semantic networks. In N. Findler
(ed.): A880ciative Networks. Academic Press, 1979

Lundeberg, M., Goldkuhl, G., NilBBon, A.: A systematic approach to information systems
development: I. Introduction. In: Information Systems 4 (1979)

MacNair, E.A., Sauer, C.H.: Elements of Practical Performance Modelling. Prentice-Hall,
1985

Malone, T. W. et al.: Semistructured me88ages are surprisingly useful for computer-supported
cooperative work. ACM'Irans. on Office Information Systems 5 (2), 115-131 (1987)

Mark, L., ROU8llOpoul08, N.: Metadata management. IEEE Computer (1986)

Meister, B., Janson, P., Svoboda, L.: File transfer in Local Area Networks: a performance
study. Proc. of the 5th IEEE IntI. Conf. on Distributed Computer Systems, 1985, pp.
338-349

Mendelson, E.: Introduction to Mathematical Logic. Van Nostrand Company, New York
1964

Mumford, E.: Designing Human Systems. Manchester Busine88 School, Manchester (1983)

Navathe, S., Kerschberg, L.: Role of data dictionaries in information resource management.
Information and Management 10 (1986)

Newman, W.: Office models and office systems design. In Naffah N. (ed.): Integrated Office
Systems. North-Holland, Amsterdam 1980, pp. 3-10

Nutt, G.J., Ricci, P.A.: Quinault: An office modeling system. Computer 14 (5), pp. 41-58
(1981)

Olle, T.W., Verrijn-Stuart, A.A, Bhabuta, L. (eds.): Computerized Assistance during the
Information Systems Life Cycle. North-Holland, Amsterdam 1988

Ousterhout, J.K., Da Costa, H., Harrison, D., Kuntse, J.A., Kupfer, M., Thompson, J.G.:
A trace-driven analysis of the UNIX 4.2BSD File System. Proc. of the 10th ACM Symp.
on Operating Systems Principles, 1985, pp. 15-24

Panko, R.R.: 38 offices: analYling the needs in individual offices. ACM 'Irans. on Office
Information Systems 2 (3), 226- (1984)

Pernici, B.: Supporting OIS design thorugh semantic queries. Proc. ACM-IEEE Conf. on
Office Systems, Palo Alto, CA, March 1988, pp. 276-283

Pernici, B., Vogel, W.: An integrated approach to OIS development. In ESPRIT '86 -
Results and Achievements, North-Holland, Amsterdam 1987, pp. 835-844

Pernici, B., Barbie, F., Fugini, M.G., Maiocchi, R., Pernici, B., Rames, J.R., Rolland,
C.: C-TODOS: An automatic tool for office system conceptual design. ACM 'Irans. on
Information Systems 7 (4), 378-419 (1989)

Potier, D.: New users' introduction to QNAP2. INRIA Technical Report No. 40, 1984

Proefrock, A.K., Tsichritlis, D., Mueller, G., Ader, M.: ITHACA: An integrated Toolkit
for Highly Advanced Computer Applications. In Office and Business Systems Results and
Progre88 of ESPRIT Projects in 1989, DG XIII, CEC (1989)

Ramamoorthy, C.V., Garg, V., Prakash, A.: Programming in the large. IEEE'Irans. on
Software Engineering 12 (7) (1986)

Reiter, R.: Towards a logical reconstruction of relational database theory. In M.L. Brodie,
J. Mylopoulos, J.W. Schmidt (eds.): On Conceptual Modelling. Springer Verlag, New York
1984, pp. 191-233

315

Rolland, C., Proix, C.: An expert system approach to information system design. In H-J.
Kugler (ed.): Information Processing '86. North-Holland, Amsterdam 1986, pp. 241-250

Rolland, C., Richard, C.: The Remora methodology for information systems design and
management. In T.W. Olle, H.G. Sol, A.A. Verrijn-Stuart (eds.): Information Systems
Development Mehodologies: a Comparative Review. North-Holland, Amsterdam 1982, pp.
369-426

Rolland, C., et al.: The RUBIS system. In (Olle et al. 1988), pp. 193-240

Schaefer et al.: Functional Analysis of Office Requirements. John Wiley and So. Publ.,
1988

Schneider, H.J., Wasserman, A.I. (eds.): Automated Tools for Information Systems Design.
North-Holland, Amsterdam 1982

Sirbu, M., Schoichet, S., Kunin, J., Hammer, M.: OAM: An office analysis methodology.
Behaviour and Information Technology (1984)

Smith, J.M., Smith D.C.P.: Database abstractions: aggregation and generalisation. ACM
'Irans. on Database Systems, 2 (2), 105-133 (June 1977)

Sommerville, I.: Software Engineering. Addison Wesley Publ. Co., 3rd ed., Workingham
1989

Stalling, W.: Local Networks. ACM Computing Surveys 16 (1), (1984)

Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., Tatar, D.: WYSIWIS revised: Early
experiences with multiuser interfaces. ACM 'Irans. on Office Information Systems 5 (2),
147-167 (1987)

Taylor, F.W.: Scientific Management, 1911

1:eichroew, D., Hershey, E.A.: PSL/PSA: A computer- aided technique for structured doc
umentation and analysis of information processing systems. IEEE 'Irans. on Software
Engineering 3 (1) (1977)

Tsichritais, D.: OFS: An integrated form management system. Proc. 6th IntI. Conf. on
Very Large Data Bases, 1980, pp. 161-166

Theni, M., Li, J., Lariviere, F., Juredini, G., et al.: The Activity Manager System environ
ment. ESPRIT Project IWS Tech. Rep., May 1988

Veran, M., Potier, D.: QNAP2: A portable environment for queuing systems modelling. In
D. Potier (ed.): Modelling Techniques and Tools for Performance Analysis, North-Holland,
1985, pp. 5-24

Wasserman, A.I.: Automated tools for information system design. In H.-J. Schneider, A.I.
Wasserman (eds.): Automated Tools for Information System Design. North-Holland, Ams
terdam 1982, pp. 1-10

Woods, W.: What's in a link: Foundations for semantic networks. In D.G. Bobrow and
A.M. Collins (eds.): Representation and Understanding. Academic Press, New York 1975

Yau, S.S., Tsai, J.J.-P.: A survey of software design techniques. IEEE 'Irans. on Software
Engineering 12 (6) (1986)

Zimmermann, H.: OSI Reference Model- The ISO model of architecture for Open System
Interconnection. IEEE'Irans. on Communications COM-28 (4), 425-432 (1980)

Zisman, M.D.: Representation, Specification and Automation of Office Procedures. Univer
sity of Pennsylvania, in Dissertation Abstracts International 38 (11), March 1978

Zloof, M.: Office-By-Example. IBM System Journal 21 (3), 272-304 (1982)

316

TODOS Technical Reports

Aksit, M., Bledoeg, E., van Dorsselaer, E., Heijmink, F., Meghini, C., Musto, D.: Architec
ture components analysis. ESPRIT TODOS Technical Report 4.1, 1987

Barbic, F., Fugini, M.G., Maiocchi, R., Pemici, B., Rames, J.R., Rolland, C.: TODOS
conceptual model and specification language. ESPRIT TODOS Technical Report 2.2., issue
A, December 1986

Baaaanini, G., Di Stefano, F., Lunghi, G.: TODOS Analysis Model overview. ESPRIT
TODOS Technical Report 1.2.2.1, December 1987

Baaaanini, G., Lunghi, G., Temporin, M.: TODOS Analysis Model results and evaluation.
ESPRIT TODOS Technical Report 1.3.5, 1988

Castelli, D., Meghini, C., Musto, D.: Architecture Specification Language: Design and
Implementation. ESPRIT TODOS Technical Report 4.2, June 1988

Castelli, D., Meghini, C.: Application of tte Mapping Methodology to the TO DOS Test
Case. ESPRIT TODOS Technical Report 4.3.4, December 1988

van Doraselaer, E., Heijmink, F.: Performance evaluation within TODOS. ESPRIT TODOS
Technical Report 4.2.6, September 1988

van Dorsselaer, E., Heijmink, F., Peters, H.: Modular construction of performance models
for office information systems. ESPRIT TODOS Technical Report 4.2.5, 1988

Fugini, M.G., Maiocchi, R., Pemici, Poni, S., Stanga, M., Zecca, U.: Specification Database
Design: the C-TODOS tool. ESPRIT TODOS Technical Report 2.3.1, April 1988

Heijmink, F., Meghini, C., Bledoeg, E., van Doraselaer, E., Aksit, M., Musto, D.: Architec
ture Components Analysis. ESPRIT TODOS Technical Report 4.1, March 1987

Heijmink, F.: Definition of Office Primitives. ESPRIT TODOS Technical Report 4.3.1,
September 1987

Henry, P.: Requirements Definition. ESPRIT TODOS Technical Report 1.1.2.6, May 1987

Henry, P.: Overview of the TO DOS Structuring Tool. ESPRIT TODOS Technical Report
2.1.1, September 1987

Henry, P., Malherbe, H.: Overview of the TO DOS Performance Model. ESPRIT TODOS
Technical Report 1.2.3.1, 1988

Kieback, A.: Development of Basic Office Primitives. ESPRIT TODOS Technical Report
3.4, September 1987

Kieback, A., Mischke, G.: Languages and tools for rapid prototyping ofOIS. ESPRIT
TODOS Technical Report 3.2, 1987

Meghini, C., Musto, D.: Architecture Specification Language. ESPRIT TO DOS Technical
Report 4.2.1, January 1987

Musto, D.: Evaluation of TODOS Conceptual Model and study of mapping techniques.
ESPRIT TODOS Technical Report 4.3.3, December 1988

Rames, J.R., Rolland, C.: G-TODOS: the C-TODOS graphical interface. ESPRIT TODOS
Report 2.4.1, Nov. 1987

Wolfram, G., Pulst, E., TODOS Test Case Definition, ESPRIT TODOS Technical Report
5.5.1/5.5.2, July 1988

Wolfram, G., Pulst, E.: Test Case Execution. ESPRIT TODOS Technical Report 5.5.2,
Dec. 1988

Glossary

AGEM
ASL
ASPES
ASL
AST
LAN
ODD
OIS
PE
SDB
TAM
TCM
TODOS
TODQueL
TSL

Architecture GEneration Methodology
Architecture Specification Language
Architecture SPEcification System
Architecture Specification Language
Architecture Specification Theory
Local Area Network
Office Data Dictionary
Office Information System
Performance Evaluation
Specification Database
TODOS Analysis Model
TODOS Conceptual Model
Automatic TOols for Designing Office Systems
TODOS Query Language
TODOS Specification Language

Authors' Address List

Gianluca Bassanini
Italtel
piazzale Zavattari, 12
1-20149 Milano MI, Italy
present address: Data General S.p.A., Via Mecenate 90, Milano

Donatella Castelli
Istituto di Elaborazione della Informazione -
Consiglio Nazionale delle Ricerche,
via S. Maria 46,
1-50126 Pisa PI, Italy

Fabio Di Stefano
Systems and Management
via Zezon 5
1-20124 Milano MI, Italy

Etienne L.M.E. Van Dorsselaer
Oce - Nederland B.V.
st. Urbanusweg 43, Venlo Holland
P.O.Box 101
NL-5900 MA Venlo - The Netherlands

Mariagrazia Fugini
Universita di Brescia
Politecnico di Milano,
piazza Leonardo da Vinci, 32
1-20133 Milano MI, Italy

Frank J .M. Heijmink
Oce - Nederland B.V.
st. Urbanusweg 43, Venlo Holland
P.O.Box 101
NL-5900 MA Venlo - The Netherlands

Pascal Henry
Sema Group
56 rue Salengro
F -94126 Fontenay Sous Bois

320

present address: Bull Ingenierie, Rue de Paris 12, F-78230 LE PECQ. BP 59

Antoinette Kieback
Dornier GmbH
Postfach 1420
D-7990 Friedrichafen 1 - West Germany

Giancarlo Lunghi
Italtel
piazzale Zavattari, 12
1-20149 Milano MI, Italy

G. Mader
Dornier GmbH
Postfach 1420
D-7990 Friedrichafen 1 - West Germany

Carlo Meghini
Istituto di Elaborazione della Informazione -
Consiglio Nazionale delle Ricerche,
via S. Maria 46,
1-56126 Pisa PI, Italy

Daniela Musto
Istituto di Elaborazione della Informazione -
Consiglio N azionale delle Ricerche,
via S. Maria 46,
1-56126 Pisa PI, Italy

Barbara Pernici
Politecnico di Milano,
piazza Leonardo da Vinci, 32
1-20133 Milano MI, Italy

Silvano Pozzi
Politecnico di Milano,
piazza Leonardo da Vinci, 32
1-20133 Milano MI, Italy
CEFRIEL, via Emanueli 15, Milano, Italy

Edda Pulst
BIFOA
Universitatstr. 45
D-5000 Koln 41 - West Germany

Jean Rene Rames
Thom '6 - Telesysteme
33, rue de VouilIe
F-75015 Paris, France

321

present address: ITN Consultants, 43 rue de Chateaudem, F-75009 Paris,
France

Colette Rolland
Universite' de Paris I - Sorbonne
17, rue de la Sorbonne
F-75231 Paris CEDEX 05, France

Andre Vignaud
Universite de Paris 6 - P. et M. Curie
present address: 7, rue Edmond Goudinet, F -75013 Paris, France

Gerd Wolfram
BIFOA
Universitastr. 45
D-5000 Koln 41 - West Germany
present address: Kaufhof-Holding, Leonard-Tietz-Str. 1, D-5 Koeln 1

