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Preface

During the last two or three centuries, most of the developments in science (in par-
ticular in Physics andApplied Mathematics) have been founded on the use of classical
algebraic structures, namely groups, rings and fields. However many situations can
be found for which those usual algebraic structures do not necessarily provide the
most appropriate tools for modeling and problem solving. The case of arithmetic
provides a typical example: the set of nonnegative integers endowed with ordinary
addition and multiplication does not enjoy the properties of a field, nor even those
of a ring.

A more involved example concerns Hamilton–Jacobi equations in Physics, which
may be interpreted as optimality conditions associated with a variational principle
(for instance, the Fermat principle in Optics, the ‘MinimumAction’principle of Mau-
pertuis, etc.). The discretized version of this type of variational problems corresponds
to the well-known shortest path problem in a graph. By using Bellmann’s optimality
principle, the equations which define a solution to the shortest path problem, which
are nonlinear in usual algebra, may be written as a linear system in the algebraic
structure (R ∪ {+∞}, Min,+), i.e. the set of reals endowed with the operation Min
(minimum of two numbers) in place of addition, and the operation + (sum of two
numbers) in place of multiplication.

Such an algebraic structure has properties quite different from those of the field
of real numbers. Indeed, since the elements of E = R∪ {+∞} do not have inverses
for⊕ = Min, this internal operation does not induce the structure of a group on E. In
that respect (E, ⊕,⊗) will have to be considered as an example of a more primitive
algebraic structure as compared with fields, or even rings, and will be referred to as
a semiring.

But this example is also representative of a particular class of semirings, for which
the monoid (E, ⊕) is ordered by the order relation ∝ (referred to as ‘canonical’)
defined as:

a ∝ b ⇔ ∃ c ∈ E such that b = a ⊕ c.

In view of this, (E, ⊕,⊗) has the structure of a canonically ordered semiring
which will be called, throughout this book, a dioid.

v
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More generally, it is to be observed here that the operations Max and Min, which
give the set of the reals a structure of canonically ordered monoid, come rather natu-
rally into play in connection with algebraic models for many problems, thus leading
to as many applications of dioid structures. Among some of the most characteristic
examples, we mention:

– The dioids (R, Min, +) and (R, Max, Min) which provide natural models for the
shortest path problem and for the maximum capacity path problem respectively
(the latter being closely related to the maximum weight spanning tree problem).
Many other path-finding problems in graphs, corresponding to other types of
dioids, will be studied throughout the book;

– The dioid ({0,1}, Max, Min) or Boolean Algebra, which is the algebraic structure
underlying logic, and which, among other things, is the basis for modeling and
solving connectivity problems in graphs;

– The dioid (P(A∗),∪, o), where P(A∗) is the set of all languages on the alphabet
A, endowed with the operations of union ∪ and concatenation o, which is at the
basis of the theory of languages and automata.

One of the primary objectives of this volume is precisely, on the one hand, to
emphasize the deep relations existing between the semiring and dioid structures
with graphs and their combinatorial properties; and, on the other hand, to show
the capability and flexibility of these structures from the point of view of modeling
and solving problems in extremely diverse situations. If one considers the many
possibilities of constructing new dioids starting from a few reference dioids (vectors,
matrices, polynomials, formal series, etc.), it is true to say that the reader will find here
an almost unlimited source of examples, many of which being related to applications
of major importance:

– Solution of a wide variety of optimal path problems in graphs (Chap. 4, Sect. 6);
– Extensions of classical algorithms for shortest path problems to a whole class of

nonclassical path-finding problems (such as: shortest paths with time constraints,
shortest paths with time-dependent lengths on the arcs, etc.), cf. Chap. 4, Sect. 4.4;

– Data Analysis techniques, hierarchical clustering and preference analysis (cf.
Chap. 6, Sect. 6);

– Algebraic modeling of fuzziness and uncertainty (Chap. 1, Sect. 3.2 and
Exercise 2);

– Discrete event systems in automation (Chap. 6, Sect. 7);
– Solution of various nonlinear partial differential equations, such as: Hamilton–

Jacobi, and Bürgers equations, the importance of which is well-known in Physics
(Chap. 7).

And, among all these examples, the alert reader will recognize the most widely
known, and the most elementary mathematical object, the dioid of natural numbers:
At the start, was the dioid N!

Besides its emphasis on models and illustration by examples, the present book is
also intended as an extensive overview of the mathematical properties enjoyed by
these “nonclassical” algebraic structures, which either extend usual algebra (as for
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the case of pre-semirings or semirings), or (as for the case of dioids) correspond to
a new branch of algebra, clearly distinct from the one concerned with the classical
structures of groups, rings and fields.

Indeed, a simple, though essential, result (which will be discussed in the first
chapter) states that a monoid cannot simultaneously enjoy the properties of being a
group and of being canonically ordered. Hence the algebra for sets endowed with
two internal operations turns out to split into two disjoint branches, according to
which of the following two (incompatible) assumptions holds:

– The “additive group” property, which leads to the structures of ring and of field;
– The “canonical order” property, which leads to the structures of dioid and of

lattice.

For dioids, one of the immediate consequences of dropping the property of
invertibility of addition to replace it by the canonical order property, is the need
of considering pairs of elements instead of individual elements, to avoid the use of
“negative” elements. Modulo this change in perspective, it will be seen how many
basic results of usual algebra can be transposed. Consider, for instance, the properties
involving the determinant of a square n × n matrix. In dioids (as well as in general
semirings), the standard definition of the determinant cannot be used anymore, but
we can define the bideterminant of A = (ai,j) as the pair (det+(A), det−(A)), where
det+(A) denotes the sum of the weights of even permutations, and det−(A) the sum
of the weights of odd permutations of the elements of the matrix. For a matrix with a
set of linearly dependent columns, the condition of zero determinant is then replaced
by equality of the two terms of the bideterminant:

det+(A) = det−(A).

In a similar way, the concept of characteristic polynomial PA(λ) of a given matrix
A, has to be replaced by the characteristic bipolynomial, in other words, by a pair
of polynomials (PA

+(λ), PA
−(λ)). Among other remarkable properties, it is then

possible to transpose and generalize in dioids and in semirings, the famous Cayley–
Hamilton theorem, PA(A) = 0, by the matrix identity:

PA
+(A) = PA

−(A).

Another interesting example concerns the classical Perron–Frobenius theorem.
This result, which states the existence on R+ of an eigenvalue and an eigenvector for
a nonnegative square matrix, may be viewed as a property of the dioid (R+,+,×),
thus opening the way to extensions to many other dioids. Incidentally we observe that
it is precisely this dioid (R+,+,×) which forms the truly appropriate underlying
structure for measure theory and probability theory, rather than the field of real
numbers (R,+,×).

One of the ambitions of this book is thus to show that, as complements to usual
algebra, based on the construct “Group-Ring-Field”, other algebraic structures based
on alternative constructs, such as “Canonically ordered monoid- dioid- distributive
lattice” are equally interesting and rich, both in terms of mathematical properties and
of applications.
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Chapter 1
Pre-Semirings, Semirings and Dioids

As an introduction to this first chapter, we show, by discussing four characteristic
examples, that even with internal operations with limited properties – in particular
those are not invertible – there exist nonetheless algebraic structures in which it is
possible to solve fixed-point type equations and obtain eigenvalues and eigenvectors
of matrices. It will be seen throughout this book that it is possible to reconstruct, in
such structures, a major part of classical algebra.

This first chapter is composed of two parts. The first is devoted to some basic
properties and to a typology of algebraic structures formed by a set endowed with
a single internal operation: semigroups and monoids in Sect. 2, ordered monoids in
Sect. 3.

The second part is devoted to the basic properties and typology of algebraic
structures formed by a set endowed with two internal operations: pre-semirings in
Sect. 4, semirings in Sect. 5 and dioids in Sect. 6.

For each of these structures, the most important subclasses are pointed out and
the basic terminology to be used in the following chapters is introduced.

1. Founding Examples

Example 1.1. Let us denote by R the set of reals to which we have added the elements
−∞ and +∞. In the algebraic structure (R, Max, Min), composed of the set R

endowed with operations Max (denoted ⊕) and Min (denoted ⊗), the equations:

a ⊕ x = b

a ⊗ x = b

do not have solutions if a > b (resp. b > a).
On the other hand, the equation:

x = (a ⊗ x)⊕ b

1
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has solutions for all the values of a and b: infinitely many solutions, including a
minimal solution b (minimality being understood in the sense of the usual order
relation on R) if b < a. A unique solution x= b if a≤ b. Thus, even if the operations
⊕ and ⊗ are not invertible (nor symmetrizable), it is possible to solve equations of
the fixed-point type as above.

The algebraic structure (R+, Max, Min) is a distributive lattice which appears as
a special case of the more general dioid structure studied in the present work. ||
Example 1.2. In the algebraic structure (R+, Min, +), that is to say in the set
of positive real numbers to which we have added +∞, endowed with operations
Min (denoted ⊕) and + (denoted ⊗), the equations:

a ⊕ x = b

a ⊗ x = b

do not have solutions if a < b (resp. a > b).
On the other hand, the equation

x = (a ⊗ x)⊕ b

has, here again, solutions for any a and b: infinitely many solutions (the whole
segment [0, b]), including a maximum solution x = b if a = 0; a unique solution
x = b if a > 0. The structure (R+, Min, +) is a dioid. ||
Example 1.3. In the algebraic structure (R+,+,×), that is to say the set of posi-
tive real numbers endowed with ordinary addition and multiplication, the equation
a+ x = b only has a solution in R+ if a ≤ b.

On the other hand, for any value of b, the equation x = ax + b, has a solution in

R+, x = 1

1− a
b = (1+ a + a2 + · · · ) b as soon as a < 1.

The Perron–Frobenius theorem (see Chap. 6, Sect. 4 and Exercise 1) also ensures
that a square matrix A with elements in R+ has an eigenvalue in R+\{0} and an
eigenvector with coordinates in R+\{0}.

We will see in Chap. 6 that this theorem extends to a great number of dioids, and
in particular to the above two dioids (R, Max, Min) and (R+, Min, +).

The algebraic structure (R+,+,×) also appears fundamental, because it is subja-
cent to measure theory and probability theory. On the one hand, measures, or densities
of probability, are functions (or distributions) with values in R+. On the other hand,
to define the measurability of a function f with values in R, one must decompose f
in the form f = f+ − f−, where f+ and f− are positive and measurable functions.
The basic mathematical object corresponding to the concept of measurable function
is therefore the pair (f+, f−), made up of two functions with values in the dioid
(R+,+,×).

The integral of a function (of a distribution) may be viewed as a linear form on the
dioid (R+,+,×). We will see in Chap. 7 that by substituting the dioid (R+,+,×)

with other dioids (such as (R+, Max, Min) or (R+, Min,+) we can define new linear
forms on these dioids. These forms are nonlinear with respect to ordinary addition
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and multiplication and thus lead to nonlinear analyses which therefore can be studied
with tools of “linear analysis”. ||
Example 1.4. Let A be a finite set, referred to as an alphabet, whose elements are
referred to as letters. Any finite sequence of letters is called a word. The set of words,
denoted A∗, is called the free monoid (see Sect. 2, Example 2.1.13). We call language
on A any subset of A∗. We can endow the set E = P(A∗) of languages on A with
two operations: union, denoted by the sign +, and the Cauchy product, denoted .:

L1 . L2 = {m1 m2/m1 ∈ L1, m2 ∈ L2}
In this algebraic structure (P(A∗),+, .), the equations

L1 + X = L2

L1 . X = L2

generally do not have a solution.
On the other hand the system of equations:

X = L1 . X + L2

has, for any L1 and L2, an infinity of solutions including a minimal solution:

X = L∗1 . L2 = L2+L1 . L2+L2
1

. L2+· · · . The algebraic structure (P(A∗),+, .)
is the basis of Kleene’s theory of regular languages. (see e.g. Eilenberg, 1974) ||

2. Semigroups and Monoids

After having presented semigroups and monoids through a number of examples, we
recall some combinatorial properties of finite semigroups before introducing regular
monoids and groups.

2.1. Definitions and Examples

Definition 2.1.1. We call semigroup a set E endowed with an internal associative
(binary) law denoted ⊕:

a ⊕ b ∈ E ∀a, b ∈ E

(a ⊕ b)⊕ c = a ⊕ (b⊕ c) ∀a, b, c ∈ E.

Example 2.1.2. (R, Min), the set of reals endowed with the operation Min is a
semigroup. The same applies to (Z, Min), (N, Min), (R, Max), (Z, Max), (N, Max). ||
Example 2.1.3. R+\{0} the set of strictly positive reals, endowed with addition or
multiplication is a semigroup. The same applies to N∗·, the set of strictly positive
integers. ||
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Example 2.1.4. R+\{0} endowed with the law ⊕ defined as:

a ⊕ b = a + b

1+ ab

is a semigroup (for the associativity, note the a ⊕ b⊕ c = a + b+ c+ abc

1+ ab+ ac+ bc

)
.

The same applies to R+ endowed with the law

a ⊕ b = a(1+ b2)1/2 + b(1+ a2)1/2.

(for the associativity, note that (a⊕ b)⊕ c = a(1+ b2)1/2(1+ c2)1/2+ b(1+ a2)1/2

(1 + c2)1/2 + c(1 + a2)1/2(1 + b2)1/2 + abc). (see Exercise 1 at the end of the
chapter.) ||
Example 2.1.5. C+, the set of complex numbers z with strictly positive real compo-
nent {z ∈ C, Re(z) > 0}, endowed with addition is a semigroup. ||
Example 2.1.6. C+, endowed with the law ⊕ defined as

a ⊕ b = a + b

1+ ab

is a semigroup. ||
Example 2.1.7. The complex numbers of the form x+ iy with x > |y|ρ, 0 < ρ ≤ 1,
endowed with addition, form a semigroup (indeed a sub-semigroup of (C+,+)). ||
Example 2.1.8. If we consider for a set E, the set of mappings F of E onto itself, the
set F endowed with the law of composition of mappings is a semigroup. ||
Example 2.1.9. Let E = C[0,∞], the Banach space of continuous functions defined
on the closed interval [0,+∞] with the norm ||f || = sup

t
|f (t)|. We define for

every α > 0:
T(α)[f ] = f (t + α)

The family T(α) is a semigroup with one parameter of linear transformations in
C[0,∞] with ||T(α)|| = 1.

It is the prototype of semigroups with one parameter upon which a great part
of functional analysis is based, see, e.g. Hille and Phillips (1957). For examples,
see Exercise 1. ||
The neutral element of a semigroup (E, ⊕), denoted ε, is defined by the property:

ε⊕ x = x⊕ ε = x ∀x ∈ E.

If a semigroup has a neutral element ε, then this neutral element is unique. Indeed,
if ε′ was another neutral element, we would have ε ⊕ ε′ = ε = ε′. As a result, if
the neutral element does not exist, we can add one to the set E. Thus, in the case
of the semigroup (R, Min) (Example 2.1.2), a neutral element in R does not exist.
However, we can add one, denoted +∞, which augments R to R̂ = R ∪ {+∞}.
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Definition 2.1.10. We call monoid a set E endowed with an associative internal law
and a neutral element.

Examples 2.1.3, 2.1.4, 2.1.5 and 2.1.6 become monoids by adding the neutral
element 0.

Remark 2.1.11. The terms semigroup and monoid seem more or less stabilized today.
Bourbaki applied the term magma to what we have referred to as a semigroup and
restricted the term semigroup (which suggest that the set is “almost a group”), to
a monoid for which ⊕ is simplifiable and which, consequently, is extendable to a
group via symmetrization. This is what we will refer to henceforth as a cancellative
monoid (see Sect. 2–3). ||
If the operation⊕ is commutative, then the monoid (E,⊕) is said to be commutative.

An element a is idempotent if a ⊕ a = a.
If all the elements of E are idempotent, the monoid (E,⊕) is said to be idempotent.
An even more special case is when the operation ⊕ satisfies the property of

selectivity:
a ⊕ b = a or b ∀a, b ∈ E.

In this case, the monoid (E, ⊕) is said to be selective.
Selectivity obviously implies idempotency, but the converse is not true, as shown

by the operation below (mean-sum) defined on the set of real numbers

a ⊕ b = a + b

2
∀a, b ∈ R.

This law is commutative and idempotent, but not selective (and not associative
either).

An element w ∈ E is said to be absorbing if and only if

x⊕ w = w ⊕ x = w ∀x ∈ E.

Example 2.1.12. (E,⊕), where E = P(X) is the power set of a set X, endowed with
⊕ = union of sets, is a commutative monoid. It has a neutral element ε = ∅ (the
empty set) and an absorbing element w = X. ||
Example 2.1.13. (the free monoid)

Let A be a set (called “alphabet”) whose elements are referred to as letters.
We take for E the set of finite sequences of elements of A which we call words,

and we define the operation ⊕ as concatenation, that is to say:

If m1 ∈ E: m1 = s1 s2 . . . sp

m2 ∈ E: m2 = t1 t2 . . . tq
m1 ⊕m2 = s1 s2 . . . sp t1 t2 . . . tq
m2 ⊕m1 = t1 t2 . . . tq s1 s2 . . . sp

We see that, in general, m1 ⊕ m2 �= m2 ⊕ m1, the operation ⊕ is therefore not
commutative. The set denoted A∗ of finite words on A endowed with the operation
of concatenation is called the free monoid on the alphabet A. ||
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Example 2.1.14. R = R ∪ {−∞} ∪ {+∞} endowed with the operation ⊕ = Min
(a ⊕ b = Min {a, b}) is a commutative monoid. It has a neutral element ε = +∞
and an absorbing element w = −∞. ||
Example 2.1.15. R and [0, 1] endowed with the operation ⊕ defined as a ⊕ b =
a + b − ab are commutative monoids. They have a neutral element ε = 0 and an
absorbing element w = 1. ||
Example 2.1.16. [0, 1] endowed with the operation⊕defined as a⊕b=Min(a+ b,1)

is a commutative monoid with neutral element ε = 0 and absorbing element w = 1.
Similarly, [0, 1] endowed with the operation⊕ defined as a⊕ b=Max(0, a+ b− 1)

is a commutative monoid with neutral element ε = 1 and absorbing element
w = 0. ||

2.2. Combinatorial Properties of Finite Semigroups

We recall some classical properties of finite semigroups, see for example Lallement
(1979) and Perrin and Pin (1997). We present them by noting the associative internal
operation in a multiplicative form. xk denotes the kth power of x, that is to say the
product x · x · . . . (k times).

Proposition 2.2.1. Any element of a finite semigroup (E, ·) has an idempotent power.

Proof. Let Sx be the sub-semigroup generated by an element x. Since Sx is finite
there exist integers i, p > 0 such that:

xi = xi+p

If i and p are chosen to be minimal, we say that i is the index of x and p its period.
The semigroup Sx then has i + p − 1 elements and its multiplicative structure is
represented on the figure below:

• • • •
•

•
•x x2 x3 xi

xi + p−1

xi + 1

xi + 2

xi + p

The sub-semigroup {xi, xi+1, . . . , xi+p−1} of Sx then has an idempotent xi+r with
r ≥ 0 and r ≡ −i (mod p). "#
Corollary 2.2.2. Every non-empty finite semigroup contains at least one idempotent
element.
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Proposition 2.2.3. For every finite semigroup E, there exists an integer q such that,
for every x ∈ E, xq is idempotent.

Proof. Following from Proposition 2.2.1, any element x of E has an idempotent
power xnx . Let s be the least common multiple of nx, for x ∈ E. Then xs is idempotent
for every x ∈ E. The smallest integer q satisfying this property is called the exponent
of E. (s not being necessarily the smallest integer k such that xk is idempotent∀x). "#
Proposition 2.2.4. Let E be a finite semigroup and n = |E|. For every finite sequence
x1, x2, . . . , xn of elements of E, there exists an index i ∈ {1, . . . , n} and an
idempotent e ∈ E such that x1x2 · · · xi e = x1x2 · · · xi.

Proof. Let us consider the sequence {x1}, {x1 · x2}, . . . , {x1 · x2 · · · xn}. If all the
elements of this sequence are distinct, all the elements of E show up in it and one of
them, let us say x1x2 · · · xi, is idempotent (Corollary 2.2.2). The result in this case is
immediate. Otherwise, two elements of the sequence are equal, let us say x1 . x2 · · · xi
and x1 . x2 · · · xj with i < j. We then have x1 · · · xi = x1 · · · xi (xi+1 · · · xj) =
x1 · · · xi (xi+1 · · · xj)

q where q is the exponent of E. The proposition follows from
this, since (xi+1 · · · xj)

q is idempotent (Proposition 2.2.3). "#
With every idempotent e of a semigroup E, we associate the set

e E e = {e x e/x ∈ E}.
This is a sub-semigroup of E, referred to as the local semigroup associated with e,
and which has e as neutral element. It is therefore a monoid and we easily verify that
e E e is the set of elements x of E which have e as a neutral element, that is to say
such that e x = x e = e.

2.3. Cancellative Monoids and Groups

Let us complete this section with the definition of cancellative elements, cancellative
monoids and groups.

Let (E, ⊕) be a monoid. We say that a ∈ E is a cancellative element if and only
if:

∀x, y ∈ E: x⊕ a = y ⊕ a ⇒ x = y

and a ⊕ x = a ⊕ y ⇒ x = y

When a only satisfies the first (resp. the second) of these conditions, we say that it is
only right-cancellative (resp. left-cancellative). When the monoid is commutative,
the two concepts coincide.

Definition 2.3.1. (cancellative monoid)
We call cancellative monoid a monoid (E, ⊕) endowed with a neutral element ε

and in which all elements are cancellative.
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In a cancellative monoid, the internal law ⊕ is said to be cancellative.

Example 2.3.2. (free monoid for concatenation)
Let us return to the example of the free monoid A∗ on an alphabet A (see

Example 2.1.13).
It is easy to verify that every word m ∈ A∗ is right-cancellative and left-

cancellative for the operation of concatenation. It is therefore a cancellative monoid. ||

Example 2.3.3. On R+, we consider the law ⊕ defined as a ⊕ b = a + b

1+ ab
.

We verify that (R+,⊕) is a commutative monoid (see Example 2.1.4) with a
neutral element 0, that 1 is an absorbing element and that every element different
from 1 is cancellative. It then follows that (R+\{1},⊕} is a cancellative monoid. ||

We say that an element a of a monoid E with neutral element ε has a left inverse
(resp. right inverse) if there exists an element a′ (resp. a′′) such that

a′ ⊕ a = ε

(resp. a ⊕ a′′ = ε)

An element a has an inverse if there exists an element a′ such that

a ⊕ a′ = a′ ⊕ a = ε

Definition 2.3.4. (group)
A monoid (E,⊕) in which every element x has an inverse is called a group.

Proposition 2.3.5. Every cancellative commutative monoid is isomorphic to the
“nonnegative” elements of a commutative group.

Proof. From the cancellative commutative monoid (E,⊕), endowed with the neutral
element ε, construct the set S whose elements are ordered pairs of elements of E:

S = {(a, b)/a ∈ E, b ∈ E}
By definition, the elements of S of the form (a, ε) are referred to as the nonnega-
tive elements of S, and the elements of the form (ε, b) the nonpositive elements.
We observe that there is a one-to-one correspondence between E and S+, the set of
nonnegative elements of S.

By defining on S the following equivalence relation R:

(a1, a2) R(b1, b2)⇔ a1 ⊕ b2 = a2 ⊕ b1

and by endowing G = S/R with the law ⊕ defined as:

(a1, a2)⊕ (b1, b2) = (c1, c2)

where (c1, c2) R(a1 ⊕ b1, a2 ⊕ b2).
We easily verify that G = S/R is a commutative group and that E is isomorphic

to the nonnegative elements of G. "#
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We observe that the concept of nonnegative element used in the above proof did not
require the existence of an order relation on E (for the study of ordered monoids, see
Sect. 3.2).

Remark 2.3.6. Even in the case where the commutative monoid (E, ⊕) is not can-
cellative, we can construct the set S whose elements are ordered pairs of elements
of E: S = {(a, b)/a ∈ E, b ∈ E}, and define the following equivalence relation R:

(a1, a2) R(b1, b2)⇔
{

a1 �= b1, a2 �= b2 and a1 ⊕ b2 = b1 ⊕ a2

(a1, a2) = (b1, b2) otherwise

We then distinguish between three types of equivalence classes: the “nonneg-
ative” elements corresponding to the classes (a, ε), the “nonpositive” elements
corresponding to the classes (ε, a) and the “balanced” elements corresponding to
the classes (a, a). ||

3. Ordered Monoids

The aim of this section is to study the monoids endowed with an order relation
compatible with the monoid’s internal law.

In Sect. 3.1, we recall some basic definitions concerning ordered sets. Then,
in Sect. 3.2, we introduce the concept of ordered monoid, illustrating it through
some examples. We next introduce, in Sect. 3.3, the canonical preorder relation in a
monoid, followed by canonically ordered monoids in Sect. 3.4. Theorem 1 (stating
that a monoid cannot both be a group and be canonically ordered) introduces an
initial typology of monoids. The subsequent sections further expand the typology
of canonically ordered monoids which may be divided into semi-groups (Sect. 3.5)
idempotent monoids and semi-lattices (Sect. 3.6).

3.1. Ordered Sets

We recall that an order relation on E, denoted ≤, is a binary relation featuring:

reflexivity (∀a ∈ E: a ≤ a),

transitivity (a ≤ b and b ≤ c ⇒ a ≤ c),

antisymmetry (a ≤ b and b ≤ a ⇒ a = b).

Let E be an ordered set, that is to say a set endowed with an order relation ≤.
Two elements a ∈ E, b ∈ E are said to be non-comparable if neither of the two

relations a ≤ b and b ≤ a are satisfied.
If there exist non-comparable elements, we say that E is a partially ordered set

or a poset.
On the other hand, if for any pair a, b ∈ E, either a≤ b or b≤ a holds, we say that

we have a total order and E is called a totally ordered set.
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Remark. Since the relation ≤ is reflexive, the set of the elements x ∈ E satisfying
x ≤ a contains the element a itself, we say that it is an order relation in the wide
sense.

With every order relation ≤ in the wide sense it is possible to associate a strict
order relation < defined as:

a < b ⇔ a ≤ b and a �= b.

Observe that this relation is irreflexive (a < a is not satisfied), asymmetric and
transitive.

Conversely, with every strict order relation < that is irreflexive, asymmetric and
transitive, we can associate a symmetric, transitive and antisymmetric order relation
≤ defined as:

a ≤ b ⇔ a < b or a = b. ||
For a subset A ⊆ E, an element a ∈ E satisfying

∀x ∈ A: x ≤ a

is called an upper bound of A.
An upper bound of A which belongs to A is called the largest element of A.

When A ⊆ E has a largest element a, it is necessarily unique. Let us in fact assume
that a and a′ are two upper bounds of A belonging to A.

We have: ∀x ∈ A, x ≤ a, and, in particular: a′ ≤ a.

Similarly: ∀x ∈ A, x ≤ a′, and, in particular: a ≤ a′.

Through the antisymmetry of ≤ we then deduce a = a′.

Similarly b ∈ E is a lower bound of A if and only if:

∀x ∈ A b ≤ x.

A lower bound of A which belongs to A is called the smallest element of A. If A has
a smallest element, it is unique.

A subset A ⊆ E is said to be bounded if it has an upper bound and a lower bound.
When the set of the upper bounds of A ⊆ E has a smallest element, this smallest

element is called the supremum of A. It is denoted sup (A). Similarly, when the set
of the lower bounds of A has a largest element, we call it the infimum of A (denoted
inf (A)).

We say that the ordered set (E, ≤) is complete if every subset A of E has a
supremum, which can be denoted ∨A or ∨

a∈A
a.

It is said to be complete for the dual order if every subset A of E has an infimum,
which can be denoted ∧A or ∧

a∈A
a.

We say that a set S ⊂ E is a lower set if x ∈ S and y ≤ x implies y ∈ S. Given a
subset P, we denote:

↓(P) = {x ∈ E | ∃ p ∈ P, x ≤ p}.
This is the smallest lower set containing P.
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Furthermore, if a lower set S satisfies, for all a, b ∈ S, a ∨ b ∈ S, then S is called
an ideal. If it satisfies, for every a, b ∈ S, a ∧ b ∈ S, then S is called a filter.

We observe that for x ∈ E,↓({x}) is a ideal. The ideals of this form are referred to
as principal ideals and denoted↓(x). Exercise 7 at the end of the chapter is concerned
with the properties of ideals and filters.

We call maximal element of A ⊆ E every a ∈ A satisfying:

� x ∈ A, x �= a, such that: a ≤ x.

Similarly, we call minimal element of A ⊆ E every a ∈ A satisfying:

� x ∈ A, x �= a, such that: x ≤ a.

When a subset A ⊆ E has a maximal (resp. minimal) element, the latter is not
necessarily unique.

It is easy to show that every finite subset of a (partially) ordered set E has at least
one maximal element (resp. one minimal element).

3.2. Ordered Monoids: Examples

Definition 3.2.1. (ordered monoid)
We say that a monoid (E,⊕) is ordered when we can define on E an order relation

≤ compatible with the internal law ⊕, that is to say such that:

∀a, b, c ∈ E a ≤ b ⇒ (a ⊕ c) ≤ (b⊕ c).

Example 3.2.2. The monoid (R+,+) is ordered for the order relation “less than or
equal to” (≤) on R+. ||
Example 3.2.3. The monoid (R̂, Min) is ordered for the order relation “less than or
equal to” (≤) on R̂ = R ∪ {+∞}. ||
Example 3.2.4. The monoid (R,+) is ordered for the order relation “less than or
equal to” (≤) on R. ||
Example 3.2.5. (a few algebraic models useful in fuzzy set theory)

An infinite class of ordered monoids can be deduced through isomorphisms from
(R+,+). More precisely, for every one-to-one correspondence ϕ between M ⊂ R

and R+, we can associate with every a ∈ M, b ∈ M, the real value:

a ⊕ b = ϕ−1 [ϕ(a)+ ϕ(b)].
This class of ordered monoids arises in connection with many algebraic models in
fuzzy set theory (see e.g. Dubois and Prade 1980, 1987).
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For instance, considering the parameter h ∈ R+, we obtain a family of ordered
monoids associated with the following functions:

ϕh (x) = xh (x ∈ R+)

ϕh (x) = x−h (x ∈ R+)

ϕh (x) = e−
x
h (x ∈ R)

ϕh (x) = e
x
h (x ∈ R)

Observe that the operation ⊕h defined as

a ⊕h b = h ln
(

e
a
h + e

b
h

)

“tends” towards Max{a, b} when h “tends” towards 0+, and that the operation ⊕h

defined as a⊕h b = −h ln
(

e− a
h + e− b

h

)
“tends” towards Min{a, b} when h “tends”

towards 0+.
In the same way, the operation ⊕h defined as a ⊕h b = (

ah + bh
)1/h

“tends”
towards Max{a, b} when h “tends” towards +∞ and the operation ⊕h defined as a

⊕h b = (
a−h + b−h

)−1/h
“tends” towards Min(a, b) when h “tends” towards +∞.

Similarly, we can consider a one-to-one correspondence ϕ relative to the multi-
plication (on R) by setting: a ⊕ b = ϕ−1 [ϕ (a) . ϕ (b)].

For a detailed study of some of these ordered monoids, refer to Exercise 2 at the
end of the chapter. For the study of the asymptotic behavior of the operations ⊕h
and ⊕h, refer to Exercise 3. ||

3.3. Canonical Preorder in a Commutative Monoid

Given a commutative monoid (E, ⊕) with neutral element ε, it is always possible,
thanks to the internal law ⊕, to define a reflexive and transitive binary relation,
denoted ≤, as:

a ≤ b ⇔ ∃ c ∈ E such that b = a ⊕ c.

The reflexivity (∀a ∈ E: a ≤ a) follows from the existence of a neutral element
ε (a = a ⊕ ε) and the transitivity is immediate because:

a ≤ b ⇔ ∃ c: b = a ⊕ c

b ≤ d ⇔ ∃ c′: d = b⊕ c′

hence: d = a ⊕ c⊕ c′, which implies a ≤ d.
Since the antisymmetry of ≤ is not automatically satisfied, we can see that ≤ is

only a preorder relation. We call it the canonical preorder relation of (E, ⊕).
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We observe that ⊕ being assumed to be commutative, the canonical preorder
relation of (E, ⊕) is compatible with the law ⊕ because:

a ≤ b ⇒ ∃ c: b = a ⊕ c

therefore, ∀d ∈ E:

b⊕ d = a ⊕ c⊕ d = a ⊕ d ⊕ c

⇒ a ⊕ d ≤ b⊕ d.

When (E,⊕) is a noncommutative monoid having a neutral element ε, we can define
two canonical preorder relations, denoted ≤

R
(right canonical preorder relation) and

≤
L

(left canonical preorder relation) as follows:

a≤
R

b ⇔ ∃ c ∈ E such that: b = a ⊕ c

a≤
L

b ⇔ ∃ c′ ∈ E such that: b = c′ ⊕ a.

Here again, the properties of reflexivity (ε being a neutral element on the right and
on the left) and transitivity are easily checked.

Example 3.3.1. The free monoid A∗ on an alphabet A is not a commutative monoid
(see Example 2.1.13). Two words m1 ∈ A∗, m2 ∈ A∗ satisfy m1≤

R
m2 if and only

if there exists a word m3 such that: m2 = m1 . m3, in other words if and only if m1
is a prefix of m2. Similarly: m1≤

L
m2 if and only if there exists a word m3 such that:

m2 = m3 . m1, in other words if and only if m1 is a suffix of m2. ||

3.4. Canonically Ordered Monoids

Definition 3.4.1. A commutative monoid (E,⊕) is said to be canonically ordered
when the canonical preorder relation ≤ of (E,⊕) is an order relation, that is to say
also satisfies the property of antisymmetry: a ≤ b and b ≤ a⇒ a = b.

The Examples 3.2.2 (R+,+), 3.2.3 (R̂, Min) and 3.2.5 correspond to canonically
ordered monoids. The monoid (R,+) in Example 3.2.4 is not canonically ordered.

This property of canonical order with respect to the internal law ⊕ is precisely
the one which will be involved in the basic definition of dioids in Sect. 6.

The following is an important property on which the typology of monoids
(see Sect. 3.9) and the distinction between dioids and rings (see Sect. 6) will be
based:

Theorem 1. A monoid cannot both be a group and canonically ordered.

Proof. Let us assume that (E,⊕) is a group (we denote a−1 the inverse of a ∈ E)
and is canonically ordered. Let a and b be two arbitrary elements a �= b.
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Since (E,⊕) is a group:

there exists c such that a = b⊕ c ⇒ a ≥ b (take c = b−1 ⊕ a)

there exists d such that b = a ⊕ d ⇒ b ≥ a (take d = a−1 ⊕ b)

If (E,⊕) is canonically ordered, we deduce a = b, which gives rise to a
contradiction. "#

Thus the group (R,+) is not canonically ordered, and the canonically ordered
monoid (R+,+) is not a group. Let us give some further examples of canonically
ordered monoids.

Example 3.4.2. (qualitative addition)
On the set of the signs, together with the indeterminate ?, E = {+,−, 0, ?}, we

consider the operation denoted ⊕ defined by the table:

⊕ + − 0 ?
+ + ? + ?
− ? − − ?
0 + − 0 ?
? ? ? ? ?

(E,⊕) is a canonically ordered idempotent monoid with 0 as neutral element.
We have: ? ≥ + ≥ 0 and ? ≥ − ≥ 0, which may be represented by the following
diagram:

??

–+

0

||
Example 3.4.3. (qualitative multiplication)

On the set of signs E = {+,−, 0}, we consider the product of signs⊗(+⊗− = −,

+⊗+ = +,−⊗− = +, 0⊗ a = 0 ∀a ∈ E). (E,⊗) is not a canonically ordered
monoid.

We can add to the set E the indeterminate sign (denoted: ?) satisfying: ?⊗+ =?,
? ⊗ − =?, ? ⊗ 0 = 0, ?⊗ ? =?. Still, the resulting monoid is not canonically
ordered. ||

Examples 3.4.2 and 3.4.3 define a qualitative physics where the various signs of
E can have the following interpretation:+ corresponds to the set ] 0,+∞[,− to the
set ]−∞, 0[, ? to the set ]−∞,+∞[ and 0 to the set {0}.
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Example 3.4.4. (order of magnitude monoid)
We consider the set E formed of the pairs (a, α) with a ∈ R+\{0} and α ∈ R, to

which we add the pair (0,+∞).
We then define the ⊕ operation as:

(a, α)⊕ (b, β) = (c, min(α, β)) with c = a if α < β, c = b if α > β,

c = a + b if α = β.

We verify that (E,⊕) is a canonically ordered monoid with neutral element (0,+∞).
The elements (a, α) of this monoid correspond to the numbers of the form a εα

when ε > 0 tends to 0+.
By setting p = − ln(ε) and A = e−α, we have εα = Ap. We can therefore define

a new set F formed by the pairs (a, A) ∈ (R+\{0})2 to which we add the pair (0, 0).
F is endowed with the law ⊕ defined as (a, A) ⊕ (b, B) = (c, max(A, B)) with

c = a if A > B, c = b if A < B, c = a + b if A = B.
The elements (a, A) of this monoid correspond to the numbers of the form a Ap

when p tends to +∞. ||
An important special case arises when the⊕ law is commutative and idempotent

(i.e. ∀a ∈ E, a⊕ a = a); the antisymmetry of≤ can then be directly deduced, without
further assumption.

Proposition 3.4.5. If⊕ is commutative and idempotent, then the canonical preorder
relation ≤ is an order relation.

Proof.

a ≤ b ⇒ ∃ c: b = a ⊕ c

b ≤ a ⇒ ∃ c′: a = b⊕ c′

hence we deduce: a = a ⊕ c⊕ c′
and

b = a ⊕ c = a ⊕ c⊕ c′ ⊕ c = a ⊕ c⊕ c′ = a

which proves antisymmetry. "#
A slightly more general case of Proposition 3.4.5 arises when the ⊕ law is commu-
tative and m-idempotent,

i.e. a ⊕ a ⊕ · · · ⊕ a︸ ︷︷ ︸
m+1 times

= a ⊕ a ⊕ · · · ⊕ a︸ ︷︷ ︸
m times

;

here again, the anti-symmetry of ≤ is directly deduced.

We denote m × a the sum a ⊕ a ⊕ · · · ⊕ a︸ ︷︷ ︸
m times

.
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An example of 2-idempotency corresponds to the following law ⊕, defined for

elements a =
(

a1
a2

)
∈ R2 with a1 ≤ a2 as:

(
a1
a2

)
⊕

(
b1
b2

)
=

(
min(a1, b1)

min2(a1, a2, b1, b2)

)

where min2(A) corresponds to the second smallest element of the set A.
We verify that ⊕ is 2-idempotent; indeed

2×
(

a1
a2

)
⊕

(
a1
a2

)
=

(
a1
a1

)
and 3×

(
a1
a2

)
= 2×

(
a1
a1

)
.

Proposition 3.4.6. If ⊕ is commutative and m-idempotent, then the canonical pre-
order relation ≤ is an order relation.

Proof.

a ≤ b ⇒ ∃ c : b = a ⊕ c

b ≤ a ⇒ ∃ c′ : a = b⊕ c′

hence we deduce:

a = a ⊕ c⊕ c′ = b⊕ 2 c′ ⊕ c = a ⊕ 2 c⊕ 2 c′ = · · · = a ⊕m c⊕m c′,
b = b⊕ c⊕ c′ = b⊕m c⊕m c′ = a ⊕ (m + 1) c⊕m c′ = a ⊕m c⊕m c′. "#

Observe that, in a canonically ordered monoid, the relation:

∀a ∈ E : a ⊕ ε = a implies: ε ≤ a

which shows that ε is (the unique) smallest element of E.

Proposition 3.4.7. If ⊕ is selective and commutative (a ⊕ b = a or b) then ≤ is a
total order relation.

Proof. Selectivity implies idempotency, therefore ≤ is an order relation.
Furthermore, a ⊕ b = a or b implies for every a, b ∈ E:

either a ≤ b

or b ≤ a

which proves that ≤ is a total order. "#
Aselective operation is not necessarily commutative.As an example, the⊕ operation
defined as:
∀a, b ∈ E: a ⊕ b = a (the result is the first of the two elements added) is clearly

selective but not commutative (because a ⊕ b = a and b⊕ a = b).

Proposition 3.4.8. In a canonically ordered monoid, the following so-called posi-
tivity condition is satisfied:

a ∈ E, b ∈ E and a ⊕ b = ε⇒ a = ε and b = ε.

Proof. a ⊕ b = ε implies a ≤ ε and b ≤ ε but since: ε ⊕ a = a and ε ⊕ b = b we
also have: ε ≤ a and ε ≤ b.

From the antisymmetry of ≤ we then deduce a = ε and b = ε. "#
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3.5. Hemi-Groups

Definition 3.5.1. (hemi-group)
We call hemi-group a monoid which is both canonically ordered and cancellative.

The set (N,+) is a canonically ordered monoid in which every element is cancella-
tive. It is therefore a hemi-group. The same applies to (R+,+), see Example 3.2.2.
On the other hand, the set of reals R endowed with addition and the usual (total) order
relation (see Example 3.2.4) is a cancellative ordered monoid but not a canonically
ordered one. It is therefore not a hemi-group.

Property 3.5.2. A cancellative commutative monoid (E,⊕) is a hemi-group if it
satisfies the so-called zero-sum-free condition: a ⊕ b = ε⇒ a = ε and b = ε.

Proof. It suffices to show that (E,⊕) is canonically ordered.
Let us then assume that: a ≤ b and b ≤ a, So:

∃ c such that: b = a ⊕ c

∃ d such that: a = b⊕ d

hence:
a ⊕ b = a ⊕ b⊕ ε = a ⊕ b⊕ c⊕ d.

Since a ⊕ b is a cancellative element, we deduce c⊕ d = ε

The condition of positivity then implies

c = d = ε hence a = b.

The canonical preorder relation is therefore clearly an order relation. "#
The zero-sum-free condition involved in the previous result is satisfied by many

algebraic structures investigated in the present work, e.g. the boolean algebra,
distributive lattices, and inclines (see Cao, Kim & Roush, 1984).

3.6. Idempotent Monoids and Semi-Lattices

The concepts of semi-lattice (sup-semi-lattice, inf-semi-lattice) may be defined,
either in terms of sets endowed with (partial) order relations, or in algebraic terms. We
recall the set-based definitions below, then we show that algebraically, semi-lattices
are in fact idempotent monoids.

Definition 3.6.1. (idempotent monoid)
A monoid (E,⊕) is said to be idempotent if the law⊕ is commutative, associative

and idempotent, that is to say satisfies:
∀a ∈ E, a ⊕ a = a.
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Observe here that a cancellative monoid not reduced to its neutral element ε cannot
be idempotent. Indeed, for every a �= ε, a⊕a = a = a⊕ε implies, since a is regular,
a = ε, which gives rise to a contradiction. Hemi-groups and idempotent monoids
therefore correspond to two disjoint sub-classes of canonically ordered monoids
(see Fig. 1 Sect. 3.7).

Proposition 3.6.2. If (E,⊕) is an idempotent monoid, then the canonical order
relation ≤ can be characterized as:

a ≤ b ⇔ a ⊕ b = b.

Proof. a ≤ b is by definition equivalent to:

∃ c ∈ E such that a ⊕ c = b.

We can then write:
a ⊕ b = a ⊕ a ⊕ c = a ⊕ c = b.

We therefore clearly have a ≤ b ⇔ a ⊕ b = b. "#
Definition 3.6.3. (sup- and inf-semi-lattices)

We call sup-semi-lattice a set E, endowed with an order relation≤, in which every
pair of elements (x, y) has a least upper bound denoted x ∨ y.

Similarly, we call inf-semi-lattice a set E, endowed with an order relation, in
which every pair of elements (x, y) has a greatest lower bound denoted x ∧ y.

A sup-semi-lattice (resp. inf-semi-lattice) is said to be complete if every finite or
infinite set of elements has a least upper bound (resp. a greatest lower bound).

Theorem 2. Every sup-semi-lattice (resp. inf-semi-lattice) E is an idempotent
monoid for the internal law ⊕ defined as:

∀x, y ∈ E: x⊕ y = x ∨ y (resp. x⊕ y = x ∧ y).

Conversely if (E,⊕) is an idempotent monoid, then E is a sup-semi-lattice for the
canonical order relation ≤.

Proof. Let E be a sup-semi-lattice, where ∀x, y ∈ E, x ∨ y denotes the least upper
bound of x and y; then (E, ∨) is an idempotent monoid.

Conversely, let (E,⊕) be an idempotent monoid, and let≤ be the canonical order
relation. We have a⊕ b ≥ a and a⊕ b ≥ b. This is also the least upper bound of the
set {a, b} because for every other upper bound x of a and of b, a ≤ x and b ≤ x, we
have:

a ⊕ b ≤ x⊕ x = x. "#
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HEMI-GROUPS

CANONICALLY
ORDERED
MONOIDS

OTHER
MONOIDS

SEMI-GROUPS AND
MONOIDS

IDEMPOTENT
MONOIDS

= SEMI-LATTICE

GROUPS

OTHER
CANONICALLY

ORDERED MONOIDS

SELECTIVE
MONOIDS

OTHER
IDEMPOTENT

MONOIDS

Fig. 1 Classification of monoids

Table 1 The various types of monoids and their basic properties

Properties of ⊕ Canonical preorder
relation ≤

Additional properties
and comments

Monoid Associative Preorder
Commutative
monoid

Commutative Preorder

Cancellative monoid
Commutative, neutral
element, every element
is cancellative

Preorder

Ordered monoid Preorder

Monoid endowed with an
order relation different
from the canonical
preorder relation

Group
Neutral element ε, every
element has an inverse

Commutative group Invertible commutative

Canonically
ordered monoid

Order
Monoid in which the
canonical preorder
relation is an is an order

Idempotent monoid
(semi-lattice)

Idempotent Order

Selective monoid Selective Total order

Hemi-Group
Cancellative monoid
(every element is
cancellative)

Order
The zero-sum-free
condition is satisfied
(see Sect. 3.5)
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3.7. Classification of Monoids

Table 1 sums up the main properties of the various types of monoids.
Figure 1 provides a graphic representation of the classification of monoids.

Observe on the first level the disjunction between the class of groups and that
of canonically ordered monoids and, on the second level, the disjunction between
idempotent monoids and hemi-groups.

4. Pre-Semirings and Pre-Dioids

The term of dioid was initially suggested by Kuntzmann (1972) to denote the alge-
braic structure composed of a set E endowed with two internal laws ⊕ and ⊗ such
that (E,⊕) is a commutative monoid, (E, ⊗) is a monoid (which is not necessarily
commutative) with a property of right and left distributivity of ⊗ with respect to ⊕.
In the absence of additional properties for the laws⊕ and⊗, such a structure is quite
limited and here we refer to it as a pre-semiring, thus keeping the name of semi-ring
and of dioid for structures with two laws endowed with a few additional properties
as explained in Sects. 5 and 6.

4.1. Right, Left Pre-Semirings

Definition 4.1.1. We call left pre-semiring an algebraic structure (E,⊕,⊗) formed
of a ground set E and two internal laws ⊕ and ⊗ with the following properties:

(i) a ⊕ b = b⊕ a ∀a, b ∈ E (commutativity of ⊕)
(ii) (a ⊕ b)⊕ c = a ⊕ (b⊕ c) ∀a, b, c ∈ E (associativity of ⊕)

(iii) (a ⊗ b)⊗ c = a ⊗ (b⊗ c) ∀a, b, c ∈ E (associativity of ⊗)
(iv) a ⊗ (b⊕ c) = (a ⊗ b)⊕ (a ⊗ c) ∀a, b, c ∈ E

(left distributivity of ⊗ relative to ⊕)
The concept of right pre-semiring is defined similarly, by replacing left distributivity
with right distributivity:
(iv)′ (a ⊕ b)⊗ c = (a ⊗ c)⊕ (b⊗ c) ∀a, b, c ∈ E.

We observe that in the above definitions, we do not assume the existence of neutral
elements. If they do not exist (neither on the right nor on the left), we can easily add
them. In the case where ε, the neutral element added for ⊕, is absorbing for ⊗, we
have a semiring structure, see Sect. 5.

Example 4.1.2. There exist many cases where there is neither right distributivity
nor left distributivity. As an example, the structure (E,⊕,⊗) with E = [0, 1],
a ⊕ b = a + b − ab and a ⊗ b = ab does not enjoy distributivity and is
therefore not a pre-semiring. The same applies to the structure (E,⊕,⊗) with
E = [0, 1], a ⊕ b = Min(1, a + b), a ⊗ b = Max(0, a + b− 1). ||
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The reason why it is of interest not to assume both right and left distributivity in
the most basic structure (the pre-semiring structure) is that there exist interesting
applications which do not enjoy both properties. This is the case, in particular, of
Example 4.1.3 below.

Example 4.1.3. Left pre-semiring of the set of mappings of a monoid onto itself.

Let (E,
◦+) be a commutative monoid, and H the set of mappings: E → E.

We define on H the following operations ⊕ and ⊗:
For every f ∈ H, g ∈ H we denote f ⊕g the mapping which associates with every

a ∈ E the value f (a)
◦+ g (a).

The properties of the
◦+ operation on E induce similar properties for ⊕ on H.

If
◦+ has a neutral element ε in E, then we can define the neutral element of ⊕ on

H as the mapping hε (E → E) given by:

hε(a) = ε, ∀a ∈ E.

(H, ⊕) is therefore a commutative monoid with neutral element hε.
For every f, g ∈ H we denote f⊗g the mapping which, with every a ∈ E associates

g ◦ f (a) = g (f(a)) (⊗ is therefore directly deduced from the law of composition for
mappings).

We observe that ⊗ is associative and has a neutral element which is the identity
mapping he defined as:

he(a) = a, ∀a ∈ E.

We check the property of left distributivity because ∀f , g, h ∈ H, and ∀a ∈ E:

f ⊗ [g⊕ h](a) = ([g⊕ h] ◦ f )(a)

= [g⊕ h] (f (a))
= g(f (a))⊕ h (f (a))

= [g ◦ f ⊕ h ◦ f ](a)
= [(f ⊗ g)⊕ (f ⊗ h)](a).

On the other hand, the property of right distributivity is not satisfied without addi-
tional assumptions (see Sect. 4.2, Example 4.2.2). The structure (H,⊕,⊗) above is
therefore a left pre-semiring. ||
Particular instances of the above structure have been proposed and studied by many
authors in the area of computer program analysis, specifically through data flow
analysis. For example, in the case of the data flow analysis models referred to
as monotone (see e.g. Kam and Ullman 1977), E is taken as an idempotent monoid
(= sup semi-lattice) and H is the set of monotone functions: E → E. For further
detail, refer to Chap. 8, Sects. 2.1 and 2.2.
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4.2. Pre-Semirings

Definition 4.2.1. We call pre-semiring an algebraic structure (E,⊕,⊗) which is
both a right pre-semiring and a left pre-semiring.

Example 4.2.2. Pre-semiring of the endomorphisms of a commutative monoid.
Let us return to Example 4.1.3 above, but now we assume that we are studying a

particular subset of mappings H′ ⊂ H satisfying:

h(a
◦+ b) = h(a)

◦+ h(b) ∀h ∈ H′, ∀a, b ∈ E

in other words, we are dealing with endomorphisms of E (it is easily checked that H′
is closed for ⊕ and for ⊗).

In addition to left distributivity, which is always present (see Example 4.1.3), right
distributivity is now satisfied because:

∀a ∈ E: (g⊕ g′)⊗ f (a) = f (g⊕ g′(a))

= f (g(a)
◦+ g′(a))

= f (g(a))
◦+ f (g′(a))

= g⊗ f (a)
◦+ g′ ⊗ f (a)

From this we deduce that (H′,⊕,⊗) defined above is a pre-semiring. ||
A structure of this kind has interesting applications in the area of program analysis
(problems of continuous data flow, see Kildall 1973) and the study of non-classical
path-finding problems in graphs (see Minoux 1976). Examples of such pre-semirings
are described in Chap. 8, Sect. 2.2.

4.3. Pre-Dioids

Definition 4.3.1. We call right pre-dioid (resp. left pre-dioid) a right pre-semiring
(resp. left pre-semiring) canonically ordered with respect to ⊕.

We call pre-dioid a canonically ordered pre-semiring.

Example 4.3.2. The set R+ endowed with the internal laws Max and+ is a pre-dioid
(see Chap. 8 Sect. 2.4). ||
In a pre-dioid, the neutral element ε is not necessarily absorbing (see Example 5.3.1).
On the other hand, the following result shows that ε is always nilpotent.

Proposition 4.3.3. Let (E,⊕,⊗) be a pre-dioid in which ε and e are the neutral
elements of ⊕ and ⊗ respectively. Then ε is nilpotent (εk = ε, ∀k ∈ N).

Proof. It suffices to show that ε2 = ε.
Let ≤ be the canonical order relation of (E,⊕). We have, ∀a ∈ E: ε ⊕ a = a

hence: ε ≤ a.
We deduce ε ≤ ε2 = ε⊗ ε, then ε ≤ ε2 ≤ ε3.
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By using right and left distributivity, we can also write:

e = e⊗ e = (e⊕ ε)⊗ (e⊕ ε) = (e⊕ ε)⊗ e⊕ (e⊕ ε)⊗ ε

= e⊕ ε⊕ ε⊕ ε2

= e⊕ ε2

We deduce: ε2 ≤ e, then ε3 ≤ ε.
From the above it follows:

ε = ε2 = ε3. "#
Proposition 4.3.4. Let (E,⊕,⊗) be a pre-dioid where ε, the neutral element for ⊕,
is non-absorbing. Then ε E is an idempotent pre-dioid.

Proof. For every a ∈ E we have:

a = (e⊕ ε)⊗ (a ⊕ ε) = a ⊕ ε⊕ (ε⊗ a)⊕ ε2 = a ⊕ (ε⊗ a)

(ε2 = ε from Proposition 4.3.3).
By multiplying on the left by ε, we obtain: ε ⊗ a = (ε ⊗ a) ⊕ (ε2 ⊗ a) =

(ε ⊗ a) ⊕ (ε ⊗ a), which shows that ⊕ is idempotent for all elements of the form
ε⊗ a and thus ε E is an idempotent pre-dioid. "#

5. Semirings

5.1. Definition and Examples

Definition 5.1.1. (semiring, right semiring, left semiring)
A semiring is a pre-semiring (E,⊕,⊗) which satisfies the following additional

properties:

(i) ⊕ has a neutral element ε

(ii) ⊗ has a neutral element e
(iii) ε is absorbing for ⊗, that is to say:

∀a ∈ E: a ⊗ ε = ε⊗ a = ε.

A right semiring (resp. left) is a right pre-semiring (resp. left) satisfying property (i)
and properties (ii)′ and (iii)′ below.

(ii)′ ⊗ has e as a right neutral element (a ⊗ e = a, ∀a) (resp. left: e⊗ a = a, ∀a)
(iii)′ ε is a right absorbing element (a ⊗ ε = ε, ∀a) (resp. left: ε⊗ a = ε, ∀a)

A semiring in which the operation ⊗ is commutative is said to be commutative.

Example 5.1.2. Let us return to Example 4.2.2 where (E,⊕) is a commutative
monoid and H the set of endomorphisms of E. We have seen that (H,⊕,⊗) is a
pre-semiring. The neutral element hε of H for ⊕ does not satisfy the absorption
property in general.
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On the other hand, if we consider the subset H′ ⊆ H of endomorphisms having
the additional property:

h ∈ H′ ⇔ h ∈ H and h (ε) = ε

then the absorption property:
∀h ∈ H′: hε ⊗ h = h ⊗ hε = hε is satisfied and the structure (H′,⊕,⊗) is a

semiring. ||
Example 5.1.3. Let us return to Example 4.1.3 of Sect. 4.1 relative to the set H of the
mappings of a commutative monoid E onto itself. The neutral element hε of H for
⊕ does not satisfy the absorption property in general. On the other hand, if we limit
ourselves to the subset H′ ⊆ H of mappings: E → E having the additional property:

h ∈ H′ ⇔ h ∈ H and h(ε) = ε

then the absorption property is satisfied and the structure (H′,⊕,⊗) is a left
semiring. ||

The class of semirings can be naturally subdivided into two disjoint sub-classes
depending on whether the law ⊕ satisfies one of the following two properties:

(1) The law ⊕ endows the set E with a group structure;
(2) The law ⊕ endows the set E with a canonically ordered monoid structure.

In view of Theorem 1 of Sect. 3.4, (1) and (2) cannot be satisfied simultaneously. In
case (1), we are led to the well-known Ring structure, whose definition is recalled
in Sect. 5.2; in case (2) we are lead to the Dioid structure, (see Sect. 6 below) the
in-depth study of which is one of the main objectives of the present volume.

Apart from Dioids and Rings, the other classes of semirings appear to have less
potential interest. For example, we can mention the semirings obtained as products
of a ring and a dioid. Some other examples are given in Chap. 8, Sect. 2.

5.2. Rings and Fields

Definition 5.2.1. (ring)
We call ring a semiring in which the basic set E has a commutative group structure

for the addition ⊕. A ring (E,⊕,⊗) is said to be commutative if the operation ⊗ is
commutative.

Example 5.2.2. The set (Z,+,×) of signed integers endowed with the standard
operations+ and× is a commutative ring. Similarly, the set of square n×n matrices
with real entries is a (non commutative) ring. ||
An important special case of the ring structure is obviously the field structure in
which the basic set E has a group structure (not necessarily a commutative one) with
respect to the law ⊗. When ⊗ is commutative, we refer to a commutative field.
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Definition 5.2.3. (semi-field)
We call semi-field a semiring in which every element other than ε has an inverse

for the multiplication ⊗.

We will see that many dioids, in particular idempotent-invertible dioids such as
(R, Min,+) and (R, Max,+) are semi-fields (see Sect. 6.7 and Exercise 8).

Hereafter, we will use rarely the term of semi-field, because the resulting
classification (based on the properties of “multiplication”) would not be directly
comparable to that of semirings (based on the properties of “addition”). Classifying
with respect to the properties of the first law appears to be more fundamental insofar,
in that it is with respect to the first law that the distributivity of the second law is
defined.

5.3. The Absorption Property in Pre-Semi-Rings

In order for a pre-semiring to be a semiring, ε (the neutral element for ⊕) must be
absorbing for ⊗. This is not always the case as seen in the following example.

Example 5.3.1. Let us take for E the set of intervals of the real line R of the form
[a, a] with a ≤ 0 and a ≥ 0.

Let us define the ⊕ law as:

[a, a] ⊕ [b, b] = [Min{a, b}, Max{a, b}]
⊕ is commutative and idempotent with the interval [0, 0] as a neutral element
Furthermore, let us define the ⊗ law as:

[a, a] ⊗ [b, b] = [a + b, a + b].
The ⊗ law has as neutral element [0, 0].

The distributivity of ⊗ with respect to ⊕ follows from the immediate properties:

Min{a, b} + c = Min{a + c, b+ c}
Max{a, b} + c = Max{a + c, b+ c}.

Finally, the canonical preorder relation is an order relation because of the idempo-
tency of ⊕.

On the other hand, (E,⊕,⊗) is not a semiring because ε is not absorbing
for ⊗. Indeed, for an arbitrary element [a, a] �= ε we have [a, a] ⊗ [0, 0] =
[a, a] �= ε. The structure (E,⊕,⊗) defined above is therefore a pre-semiring (in
fact a pre-dioid, due to the canonical order relation, see. Sect. 4.3) but it is not a
semiring. ||
The above example shows, moreover, that assuming that≤ is an order relation is not
sufficient to guarantee the absorption property.

The following result provides a sufficient condition to guarantee this property in
a canonically ordered pre-semiring, that is to say, in a pre-dioid.
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Proposition 5.3.2. If ≤ (the canonical preorder) is an order relation and if, ∀a ∈
E: a ⊗ ε ≤ ε, then we have the absorption property:

∀a ∈ E: a ⊗ ε = ε.

Proof. For every b ∈ E we have: b = ε⊕ b, therefore ε ≤ b.
In particular, if we consider an arbitrary element a ∈ E and we apply the above

property to b = a ⊗ ε, we obtain:

∀a ∈ E: ε ≤ a ⊗ ε.

With the assumption of the proposition, we therefore have ∀a ∈ E: a ⊗ ε = ε. "#
Observe that the above proposition applies in particular when e, the neutral element
for ⊗, is the largest element of E, that is to say when, for every a, a ≤ e.

5.4. Product of Semirings

Given p semirings (Ei,⊕i,⊗i) the product semiring is defined as the set E =
E1 x E2 x · · · x Ep endowed with the “product” laws ⊕ and ⊗ defined as:

∀x =
⎛

⎝
x1
:

xp

⎞

⎠ ∈ E, ∀y =
⎛

⎝
y1
:

yp

⎞

⎠ ∈ E: x⊕ y =

⎛

⎜⎜
⎝

x1 ⊕1 y1
x2 ⊕2 y2:
xp ⊕p yp

⎞

⎟⎟
⎠

and:

x⊗ y =

⎛

⎜⎜
⎝

x1 ⊗1 y1
x2 ⊗2 y2:
xp ⊗p yp

⎞

⎟⎟
⎠

We easily verify that the laws ⊕ and ⊗ enjoy the same basic properties as the laws
⊕i and ⊗i, and that, consequently, (E,⊕,⊗) clearly has a semiring structure.

In particular, we verify that the product of a ring and a dioid is a semiring (see also
Chap. 8, Sect. 3.1).

5.5. Classification of Pre-Semirings and Semirings

Table 2 below sums up the main properties of the various types of pre-semirings and
semirings.

Figure 2 provides a graphic representation of the classification. In the semiring
class, it shows two main disjoint sub-classes, rings (see Sect. 5.2) and dioids which
are studied in Sect. 6. In the first case, (E,⊕) is a group, in the second case (E,⊕) is
canonically ordered, these two properties being incompatible in view of Theorem 1
(Sect. 3.4).
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Table 2 Pre-semirings, semirings and dioids and their basic properties

Properties of
(E,⊕)

Properties of
(E,⊗)

Relation ≤ Additional properties and
comments

Right (resp. left)
pre-semiring

Commutative
monoid

Monoid Preorder
Right (resp. left)
distributivity of ⊗ with
respect to ⊕

Pre-semiring
Commutative
monoid

Monoid
Right and left distributivity
of ⊗ with respect to ⊕

Semiring
Commutative
monoid, neutral
element ε

Monoid,
neutral
element e

Right and left distributivity
of ⊗ with respect to
⊕, ε absorbing for ⊗

Ring
Commutative
group

Monoid, neutral
element e

Dioid
Canonically
ordered monoid

Monoid, neutral
element e

Order

RINGS

PRE-SEMI-RINGS

RIGHT (LEFT)
PRE-SEMI-RINGS

DIOIDS
(cf. figure 3)

§ 6-10

SEMI-RINGS

OTHER
SEMI-RINGS

PRE-DIOIDS

FIELDS

Fig. 2 Classification of pre-semirings, semirings and dioids
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6. Dioids

6.1. Definition and Examples

Definition 6.1.1. (dioid, right dioid, left dioid)
We call dioid a set (E,⊕,⊗) endowed with two internal laws⊕ and⊗ satisfying

the following properties:

(i) (E,⊕) is a commutative monoid with neutral element ε;
(ii) (E,⊗) is a monoid with neutral element e;

(iii) The canonical preorder relation relative to ⊕ (defined as: a ≤ b ⇔ ∃ c:
b = a ⊕ c) is an order relation, i.e. satisfies: a ≤ b and b ≤ a ⇒ a = b;

(iv) ε is absorbing for ⊗, i.e.: ∀a ∈ E: a ⊗ ε = ε⊗ a = ε;
(v) ⊗ is right and left distributive with respect to ⊕.

We call right dioid (resp. left dioid) a set (E,⊕,⊗) satisfying the properties (i) to (iv)
above and where⊗ is only right distributive (resp. only left distributive) with respect
to ⊕. (We observe that for a right dioid, it in fact suffices for e to be a right neutral
element (a ⊗ e = a, ∀a) and for ε to be right-absorbing only (a ⊗ ε = ε, ∀a)).

The fundamental difference between a ring and a dioid lies in property (iii).
In a ring, addition induces a group structure, whereas in a dioid, it induces a
canonically ordered monoid structure. From Theorem 1 (Sect. 3.4) this implies a
disjunction between the class of rings and the class of dioids.

Example 6.1.2. Z endowed with the standard operations + and ×, is a ring but it is
not a dioid.

Indeed, in this structure, we always have, for every pair of signed integers a, b:
a ≤ b and b ≤ a for the canonical preorder relation (a ≤ b ⇔ ∃ c: b = a + c).

It is therefore not an order relation. On the other hand, the semiring N (the set
of natural integers) is a dioid because the canonical preorder relation coincides with
the standard (total) order relation. ||

It is therefore the presence of an order relation intrinsically linked to the addi-
tion⊕ which constitutes the main distinction between rings and dioids. This order
relation will naturally lead to define topological properties. These will be studied in
Chap. 3.

Remark. In the Definition 6.1.1, we can replace (iv) by the weaker assumption:
ε ≥ a ⊗ ε which suffices to guarantee a ⊗ ε = ε, according to Proposition 5.3.2. ||
Apart from the well-known dioids (N,+,×) and (R, Min,+) let us give a few other
examples of interesting dioids.

Example 6.1.3. Qualitative algebra
On the set of signs E = {+,−, 0, ?}, we consider the law⊕ (qualitative addition,

see Example 3.4.2) and the law ⊗ (qualitative multiplication, see Example 3.4.3).
We verify that (E,⊕,⊗) is a dioid. (see Chap. 8, Sect. 4.5.3) ||
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Example 6.1.4. Right dioid and shortest path with gains or losses
On the set E = R× (R+\{0}) we define the following operations ⊕ and ⊗:

(
a
k

)
⊕

(
a′
k′
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
a

k

)
if

a

k
<

a′

k′
or if

a

k
= a′

k′
and k = max{k, k′}

(
a′

k′

)
if

a

k
>

a′

k′
or if

a

k
= a′

k′
and k′ = max{k, k′}

(
a
k

)
⊗

(
a′
k′
)
=

(
a + ka′

kk′
)

⊕ has as neutral element ε any element of the form
(+∞

k

)
with k ∈ R+\{0} and ⊗

has as neutral element e = (
0
1

)
.

We easily verify all of the properties (i)–(iv) as well as the right distributivity of
⊗ with respect to ⊕. On the other hand, ⊗ is not left distributive as shown in the
following example:

(
4
1

)
⊗

[(
1
1

)
⊕

(
4
2

)]
=

(
4
1

)
⊗

(
1
1

)
=

(
5
1

)

[(
4
1

)
⊗

(
1
1

)]
⊕

[(
4
1

)
⊗

(
4
2

)]
=

(
5
1

)
⊕

(
8
2

)
=

(
8
2

)

The structure (E,⊕,⊗) is therefore a right dioid. This is the algebraic structure
underlying the resolution of the shortest path problem with gains or losses (see
Chap. 4, Exercise 4). ||
Example 6.1.5. Order of magnitude dioid

On the set E of pairs (a, α) with a ∈ R+\{0} and α ∈ R, to which we add the pair
(0,+∞), we define the two laws ⊕ and ⊗ as:

(a, α)⊕ (b, β) = (c, min(α, β))

with c = a if α < β, c = b if α > β, c = a + b if α = β, (see Example 3.4.4)

(a, α)⊗ (b, β) = (a b, α+ β).

We check that (E,⊕,⊗) is a non idempotent dioid.
This dioid is isomorphic to the set of elements of the form a εα endowed with

ordinary addition and multiplication when ε > 0 tends towards 0+.
We obtain a dioid that is isomorphic to the above by setting A = e−α, and by

taking for E the set of pairs (a, A) ∈ (R+\{0})2 to which we add the pair (0, 0),
endowed with the operations ⊕ and ⊗ defined as:

(a, A)⊕ (b, B) = (c, Max(A, B))
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with c = a if A > B, c = b if A < B, c = a + b if A = B,

(a, A)⊗ (b, B) = (ab, AB).

Moreover, the elements (a, A) of this dioid can be interpreted as the set of elements
of the form a Ap endowed with ordinary addition and multiplication when p tends
towards +∞.

We can interpret (a, A) as the coding of an asymptotic expansion of the form
a Ap + o(Ap) when p →+∞.

The latter dioid was introduced by Finkelstein and Roytberg (1993) to calculate
the asymptotic expansion of distribution functions in the study of biopolymers. It
was also used by Akian et al. (1998) to calculate the eigenvalues of a matrix with
coefficients of the form exp(−aij/ε) where ε is a small positive parameter. ||
Example 6.1.6. Non standard number dioid

On the set E of ordered triples (a, b, α) ∈ (R+\{0})3 to which we add the ordered
triples (0, 0,+∞) and (1, 0,+∞), we define the two laws ⊕ and ⊗ by:

(a1, b1, α1)⊕ (a2, b2, α2) = (a1 + a2, b, min(α1, α2))

with b = b1 if α1 < α2, b = b2 if α1 > α2, b = b1 + b2 if α1 = α2,

(a1, b1, α1)⊗ (a2, b2, α2) = (a1 a2, b, min(α1, α2))

with b = a2 b1 if α1 < α2, b = a1 b2 if α1 > α2,

b = a1 b2 + a2 b1 if α1 = α2.

We verify that (E,⊕,⊗) is a dioid. This dioid is isomorphic to the set of non standard
numbers of the form a + b εα, (a > 0, b > 0), endowed with ordinary addition and
multiplication, when ε > 0 tends towards 0+. ||
The concept of positive semiring and positive dioid is studied in Exercise 5.

Proposition 6.1.7. In a dioid (E,⊕,⊗), the canonical order relation≤ is compatible
with the laws ⊕ and ⊗.

Proof. The fact that ≤ is compatible with⊕ was already proved in Sect. 3.3. Let us
show that ≤ is compatible with ⊗. We have: a ≤ b ⇔ ∃ c ∈ E: a ⊕ c = b, hence:

(a ⊕ c)⊗ x = b⊗ x

thus, using distributivity:

a ⊗ x⊕ c⊗ x = b⊗ x

hence we deduce a ⊗ x ≤ b⊗ x.
We would similarly prove that x⊗ a ≤ x⊗ b. "#
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Definition 6.1.8. (complete dioid)
A dioid (E,⊕,⊗) is said to be complete if it is complete as an ordered set for the

canonical order relation, and if, moreover, it satisfies the two properties of “infinite
distributivity”:

∀A ⊂ E, ∀b ∈ E

(
⊕

a∈A
a

)
⊗ b = ⊕

a∈A
(a ⊗ b)

b⊗
(
⊕

a∈A
a

)
= ⊕

a∈A
(b⊗ a)

From this definition it follows that, for every A ⊂ E and B ⊂ E:
(
⊕

a∈A
a

)
⊗

(
⊕

b∈B
b

)
= ⊕

(a,b)∈A×B
(a ⊗ b)

In a complete dioid, we define the top-element T as the sum of all the elements of
the dioid

T = ⊕
a∈E

a

We observe that T satisfies, ∀x ∈ E:

T⊕ x = T and T⊗ ε = ε.

As an illustration the dioids (R, Max,+) and (R, Min,+) are not complete. To make
them complete, a top-element must be added:

T = +∞ for (R, Max,+)

T = −∞ for (R, Min,+).

In the same way as for other algebraic structures, we say that a subset F ⊂ E is a
sub-dioid of (E,⊕,⊗) if and only if: ε ∈ F, e ∈ F, and F is closed with respect to the
laws ⊕ and ⊗. Thus for instance the dioid ( N, Max, +) is a sub-dioid of the dioid
(R+, Max,+).

In the following sections, we discuss some particularly important sub-classes of
dioids.

6.2. Dioid of Endomorphisms of a Canonically Ordered
Commutative Monoid

Let (E,⊕) be a canonically ordered commutative monoid with neutral element ε. As
in the Examples 4.2.2. and 5.1.2., we then consider the set H of endomorphisms on
E satisfying, ∀h ∈ H:

h(a ⊕ b) = h(a)⊕ h(b) ∀a, b ∈ E

h(ε) = ε
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endowed with the laws ⊕ and ⊗ defined as: ∀h, g ∈ H:

(h ⊕ g) (a) = h(a)⊕ g(a) ∀a ∈ E
(h ⊗ g) (a) = g ◦ h(a) ∀a ∈ E

where ◦ is the law of composition of mappings.
We verify that (H,⊕,⊗) is a dioid.
This is a very important class of dioids underlying a wide variety of problems,

in particular many non classical path-finding problems in graphs (see Minoux 1976,
the two following examples and Example 4.2.3 in Chap. 8). Solution algorithms will
be discussed in Chap. 4, Sect. 4.4.

Example 6.2.1. Shortest path with time-dependent lengths on the arcs
Let us consider the following problem. With each arc (i, j) of a graph G we

associate a function hij giving the time tj of arrival in j when we leave i at the instant
ti: tj = hij(ti).

Leaving vertex 1 at the instant t1, we seek the earliest time to reach vertex i.
For this problem, we take

E = R̂ = R ∪ {+∞},⊕ = min, ε = +∞.

The set H is taken to be the set of nondecreasing functions h: E → E such that
h(t)→+∞ when t tends towards +∞.

These functions are indeed endomorphisms because we have:

h(min(t, t′)) = min(h(t), h(t′))
h(+∞) = +∞

(H,⊕,⊗) is therefore a dioid.
For a detailed study of this problem and solution algorithms, see Cooke and Halsey

(1966) and Minoux (1976). ||
Example 6.2.2. Shortest path with discounting (Minoux 1976)

With each arc (i, j) of a graph G, we associate a length which depends, in a path,
on the number of arcs taken previously. If we interpret, for example, the path along
the arc (i, j) as the realization of an annual investment program, the cost of the arc
(i, j) is Cij/(1+ τ)t if t is the number of arcs previously taken by the path, that is to
say the year of the expenditure cij (τ being the discounting rate).

We seek the shortest path in terms of discounted value from vertex 1 to the other
vertices.

If T is the final time period, we take for S the set of (T + 1) - vectors with
components in R+ ∪ {+∞}. If a = (a0, a1, . . . , aT) and b = (b0, b1, . . . , bT), we
define d = a ⊕ b = (d0, d1, . . . , dT) by setting dt = min(at, bt), t from 0 to T.
ε = (+∞, . . . ,+∞). Then we define the endomorphism hij as:

hij(a) = b

with: b0 = +∞ bt = at−1 + cij

(1+ τ)t−1
for t = 1, . . . , T.
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We observe that such endomorphisms are T-nilpotent (see. Chap. 4, Sect. 3.3).
After obtaining the optimal label a ∈ S of a vertex, it is possible to deduce the

shortest path with discounted value from vertex 1 to this vertex, the value of which
is equal to min

0≤t≤T
(at). ||

Many other examples can be constructed on this model (see Chap. 4 Sect. 4.4 and
Chap. 8, Sect. 4.2).

6.3. Symmetrizable Dioids

Definition 6.3.1. We call symmetrizable dioid a dioid (E,⊕,⊗) for which the oper-
ation ⊕ is cancellative, that is to say such that (E,⊕) is a hemi-group. (see
Sect. 3.5).

Example 6.3.2. The set N of natural numbers endowed with the ordinary operations
+ and × is a symmetrizable dioid. Indeed, (N,+) is a hemi-group (see Sect. 3.5).
Similarly, the set R+ endowed with operations + and × is a symmetrizable dioid.
On the other hand (R̂+,+, Min) is not a dioid because Min is not distributive with
respect to +:Min{2, 1+ 5} �= Min{2, 1} +Min{2, 5}. ||
The symmetrization of a symmetrizable dioid produces a ring.Asymmetrizable dioid
could therefore be referred to as a hemi-ring.

Remark 6.3.3. In the literature on the subject, a different type of symmetrization of
a dioid has also been investigated; it is called weak symmetrization (see Gaubert
1992). As in Remark 2.3.6, from the equivalence relation R on the ordered pairs of
elements of E2 defined as:

(a1, a2) R (b1, b2)⇔
{

a1 �= b1, a2 �= b2 and a1 ⊕ b2 = b1 ⊕ a2

(a1, a2) = (b1, b2) otherwise

weak symmetrization consists in defining three types of elements: “positive” ele-
ments isomorphic to the elements of E and corresponding to the classes (a, ε), the
“negative” elements corresponding to the classes (ε, a), and the “balanced” elements
corresponding to the classes (a, a).

These weakly symmetrizable dioids can be useful for instance to express in
algebraic form combinatorial properties of dioids (see Chap. 2); they can also
be used in the framework of studying solutions of linear equations of the form:
Ax⊕ b = Cx⊕ d (see Chap. 4).

Refer to Gaubert (1992) for a detailed study of weak symmetrization. ||

6.4. Idempotent and Selective Dioids

Definition 6.4.1. (idempotent dioid)
We call idempotent dioid a dioid in which the addition ⊕ is commutative and

idempotent.
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A frequently encountered special case is one where addition ⊕ is not only
idempotent, but selective (i.e.: ∀a, b ∈ E: a ⊕ b = a or b).

Definition 6.4.2. (selective dioid)
We call selective dioid a dioid in which the addition ⊕ is commutative and

selective.

Idempotent dioids form a particularly rich class of dioids which contains many
sub-classes, in particular:

– Doubly-idempotent dioids and distributive lattices (see Sect. 6.5);
– Doubly selective dioids (see Sect. 6.5);
– Idempotent-cancellative dioids and selective-cancellative dioids (see Sect. 6.6);
– Idempotent-invertible dioids and selective-invertible dioids (see Sect. 6.7).

6.5. Doubly-Idempotent Dioids and Distributive Lattices.
Doubly-Selective Dioids

Definition 6.5.1. We call doubly-idempotent dioid a dioid which has a commutative
idempotent monoid structure for ⊕ and an idempotent monoid structure for ⊗.

Definition 6.5.2. We call doubly selective dioid a dioid which has commutative and
selective monoid structure for ⊕ and for ⊗.

Example 6.5.3. Let us take for E the set of reals R = R∪ {+∞}∪ {−∞} and let us
define the operations ⊕ and ⊗ as:

∀a, b ∈ E: a ⊕ b = Min{a, b}
∀a, b ∈ E: a ⊗ b = Max{a, b}

(E,⊕) and (E, ⊗) are commutative and selective monoids having neutral elements
ε = {+∞} and e = {−∞} respectively.

(E,⊕,⊗) is therefore a doubly-selective dioid. ||
As we are going to show, doubly-idempotent dioids are algebraic structures which

are very close to distributive lattices.

Definition 6.5.4. We call lattice a set E ordered by an order relation ∝ and which,
for this relation, is at the same time a sup-semi-lattice and an inf-semi-lattice (see
Sect. 3.6).

Consequently, in a lattice E, to every pair of elements a, b ∈ E, we can let corre-
spond:

– an upper bound a ∨ b
– a lower bound a ∧ b.

A lattice is said to be complete if every subset of E (of finite or infinite cardinality)
has an upper bound and a lower bound.
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A lattice is said to be distributive if and only if the operation ∧ is right and left
distributive with respect to the operation ∨, that is to say:

∀x, y, z ∈ E: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

(N.B.: it can be shown that the distributivity of ∨ with respect to ∧ is a consequence
of the above, see e.g. Dubreil and Dubreil-Jacotin 1964, p. 288).

Example 6.5.5. R endowed with the usual order relation is a distributive lattice with,
∀a, b ∈ R: a ∨ b = Max{a, b}; a ∧ b = Min{a, b}. ||
Example 6.5.6. If S is a set, P(S), the power set of S ordered by the inclusion is a
distributive lattice with, ∀A ⊂ S, ∀B ⊂ S: A ∨ B = A ∪ B and A ∧ B = A ∩ B. ||
Distributive lattices form a particular family of interesting dioids as the following
proposition shows.

Proposition 6.5.7. If E is a distributive lattice, then (E,∨,∧) is a doubly-
idempotent dioid, the order relation (canonical) of the dioid being defined as:

a ≤ b ⇔ a ∨ b = b.

Conversely, let (E,⊕,⊗) be a doubly-idempotent dioid for which ≤, the canonical
order relation relative to the law ⊕ is also a canonical order relation for ⊗:

x ≤ y ⇔ x⊗ y = x.

Then E is a distributive lattice.

Proof. The if part of the proposition is easy to verify. In particular, we observe that ε,
the neutral element of (E,∨) is the smallest element of E (in the sense of the canonical
order relation) which implies the property of absorption: ∀x ∈ E: x ∧ ε = ε. Let us
now prove the converse.

Following Proposition 3.6.2 in Sect. 3, (E,⊕) is a sup-semi-lattice for the
canonical order relation relative to the law ⊕ and which is defined as:

a ≤ b ⇔ a ⊕ b = b.

Similarly (E,⊗) is a sup. semi-lattice for the order relation ≤′ defined as:

a ≤′ b ⇔ a ⊗ b = b.

It is therefore an inf-semi-lattice relative to the order relation ≤′′ below:

a ≤′′ b ⇔ a ⊗ b = a.

It is thus seen that the order relations ≤ and ≤′′ coincide and consequently E is a
lattice with:

sup(a, b) = a ⊕ b

inf (a, b) = a ⊗ b.

Finally, this lattice is distributive because of the property of distributivity of the dioid
(E,⊕,⊗). "#
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Example 6.5.8. (N, lcm, gcd) where ∀a, b ∈ N, a ⊕ b = lcm(a, b) and a ⊗ b =
gcd(a, b) is a doubly idempotent dioid. According to the canonical order relation,
a ≤ b if and only a divides b. In this case, we clearly have a ⊗ b = gcd(a, b) = a,
which proves, following Proposition 6.5.7 that (N, lcm, gcd) is a distributive lattice
(see also Chap. 8 Sect. 4.6.2). ||

Let us also observe that a dioid defined from two idempotent laws is not necessarily
a lattice as seen in the following example:

Example 6.5.9. Let us take for E the set of reals endowed with the⊕ law defined as:

∀a, b ∈ R: a ⊕ b = Min{a, b}
and multiplication ⊗ defined as:

∀a, b ∈ R: a ⊗ b = a (the result is always the first operand)

(we easily check the idempotency and associativity of ⊗, as well as right and left
distributivity of ⊗ with respect to ⊕).

(E,⊕,⊗) is therefore clearly a dioid. To be convinced it is not a lattice just observe
that ⊗ is not commutative. ||
A lattice (E,⊕,⊗) is said to be complemented if, ∀a ∈ E: e ≤ a ≤ ε and, ∀a ∈ E,
there exists ā ∈ E such that: a ⊕ ā = e and a ⊗ ā = ε.

A distributive and complemented lattice is called a Boolean lattice.
Examples 6.5.5 and 6.5.6 correspond to Boolean lattices. Example 6.5.8 is not a

complemented lattice.
Lattices are fundamental structures which have been extensively studied in the

literature, see e.g. Birkhoff (1979), Mc Lane and Birkhoff (1970), and Dubreil and
Dubreil-Jacotin (1964). See also Exercises 4, 6–9 at the end of the chapter.

6.6. Idempotent-Cancellative Dioids. Selective-Cancellative Dioids

Definition 6.6.1. We call idempotent-cancellative dioid a dioid which has a com-
mutative idempotent monoid structure for ⊕ and a cancellative monoid structure
for ⊗.

Example 6.6.2. Let us return to Example 2.1.13 in Sect. 2.
A being a set of letters (“alphabet”), the set of words on A (the so-called free

monoid on A) is denoted A∗. Every subset (whether finite or infinite) of A∗, L ∈
P(A∗), is called a language on A. We denote L the set of all the languages on A. The
sum of two languages L1⊕ L2 is defined as the set union of the words of L1 and the
words of L2.

The product of two languages L1 ⊗ L2 is the set of the words formed by the
concatenation of a word m1 of L1 and a word m2 of L2 (in this order).
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We easily verify:

– that (L,⊕) is a commutative idempotent monoid for ⊕ with neutral element ∅
the empty language (i.e. not containing any word of A∗);

– that (L,⊗) is a (non commutative) cancellative monoid with neutral element L∅,
the language formed by the empty word;

– that ⊗ is right and left distributive with respect to ⊕.

(L,⊕,⊗) defined above is therefore an idempotent-cancellative dioid: this is the
algebraic structure underlying the theory of regular languages (see e.g. Salomaa
1969, Eilenberg, 1974). (Let us observe however that the axioms of regular languages
include, in addition to the above, the closure operation denoted ∗). ||
An interesting special case of an idempotent-cancellative dioid is one where the
operation ⊕ is not only idempotent but also selective.

Definition 6.6.3. We call selective-cancellative dioid a dioid which has a selective
monoid structure for ⊕ and a cancellative monoid structure for ⊗.

Example 6.6.4. Let us take for E the set of nonnegative reals R+ ∪ {+∞} and let us
define the operations ⊕ and ⊗ as:

∀a, b ∈ E: a ⊕ b = Min{a, b}
∀a, b ∈ E: a ⊗ b = a + b (addition of reals)

(E,⊕) is a selective monoid with neutral element ε = +∞, and (E,⊗) is a
cancellative monoid with neutral element e = 0.

The structure (E,⊕,⊗) above is therefore a selective-cancellative dioid. ||
Remark. A special case of idempotent-cancellative dioids is one where (E,⊗) is,
not only a cancellative monoid but a hemi-group (see Sect. 3.5). This is the situation
encountered in Example 6.6.4 above where (R+∪{+∞},+) is a cancellative monoid
canonically ordered by +, and therefore a hemi-group. ||

6.7. Idempotent-Invertible Dioids. Selective-Invertible Dioids

Definition 6.7.1. We call idempotent-invertible dioid a dioid (E,⊕,⊗) which has a
commutative idempotent monoid structure for⊕ and a group structure for⊗ (every
element of E\{ε} having an inverse for ⊗).

To insist on the fact that the set has a group structure relative to the second law,
we can also refer to such a dioid as an idempotent-group dioid. This terminology
will be preferred to that of semi-field (see Sect. 5.2).

An important special case for applications is when the ⊕ law is selective.

Definition 6.7.2. We call selective-invertible-dioid a dioid (E,⊕,⊗) which has a
selective monoid structure for⊕ and a group structure for⊗ (every element of E\{ε}
having an inverse for ⊗).
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Example 6.7.3. “Min-Plus” Dioid
Let us take for E the set of reals R̂ = R ∪ {+∞} and let us define the operations

⊕ and ⊗ as:

∀a, b ∈ E: a ⊕ b = Min{a, b}
∀a, b ∈ E: a ⊗ b = a + b (addition of reals)

(E,⊕) is a selective monoid with neutral element ε = +∞, and (E,⊗) is a group
with neutral element e = 0.

The structure (E,⊕,⊗) above is therefore a selective-invertible-dioid. ||
Note that, in the terminology of the theory of languages and automata, selective-
invertible dioids such as Min-Plus or Max-Plus dioids are sometimes referred to as
Tropical semirings (see for example Simon 1994).

6.8. Product of Dioids

Given p dioids (Ei,⊕i,⊗i), the product dioid is defined as the set E = E1 ×
E2x · · · x Ep endowed with the “product” laws ⊕ and ⊗ defined as:

∀x =
⎛

⎝
x1
:

xp

⎞

⎠ ∈ E, ∀y =
⎛

⎝
y1
:

yp

⎞

⎠ ∈ E: x⊕ y =

⎛

⎜⎜
⎝

x1 ⊕1 y1
x2 ⊕2 y2:
xp ⊕p yp

⎞

⎟⎟
⎠

and:

x⊗ y =

⎛

⎜⎜
⎝

x1 ⊗1 y1
x2 ⊗2 y2

:
xp ⊗p yp

⎞

⎟⎟
⎠

We already know (see Sect. 5.4) that (E,⊕,⊗) is a semiring. It is moreover canon-
ically ordered by ⊕ in view of the fact that the monoids (Ei,⊕i) are canonically
ordered.

We easily check the following:

Proposition 6.8.1. The product of p dioids is a dioid.

Example 6.8.2. Dioids of signed non standard numbers
Let us consider the pair (a, s) ∈ R+×S where S = {+,−, 0, ?} is the set of signs of

qualitative algebra (see Example 6.1.3). With every real number x, we thus associate
four non standard numbers x+, x−, x◦, x? corresponding respectively to: x obtained
as the limit of a sequence of numbers >x(x+); of a sequence of numbers <x(x−);
of a sequence of numbers all equal to x(x◦); of a sequence of numbers convergent
towards x(x?).
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We define the addition⊕ of two signed non standard numbers (a, s) and (b, σ) as

(a, s)⊕ (b, σ) = (a + b, s +̇ σ)

and the multiplication ⊗ as

(a, s)⊗ (b, σ) = (ab, s ×̇ σ)

where +̇ and ×̇ are the addition and multiplication of qualitative algebra (see
Example 6.1.3).

(R+×S,⊕,⊗) is then a dioid, as a product of the dioids (R+,+,×) and (S, +̇, ×̇).
In the case where we consider the non standard numbers on R× S, we no longer

obtain a dioid, but a semiring, see Chap. 8 Sect. 3.1.2. ||
Observe that, as a general rule, the product of a dioid and a ring is neither a dioid
nor a ring but a semiring (see Chap. 8 Sect. 3.1).

6.9. Dioid Canonically Associated with a Semiring

Proposition 6.9.1. Let (E,⊕,⊗) be a semiring in which the canonical preorder
relation ≤ is not an order relation. Let R be the equivalence relation defined on E
as: ∀a, b ∈ E:

aRb ⇔ a ≤ b and b ≤ a.

Then the set E′ = E/R, endowed with the laws induced by⊕ and⊗ is a dioid, which
we call dioid canonically associated with (E,⊕,⊗).

Proof. The relation R, defined above is clearly reflexive, transitive and symmetric. It
is therefore an equivalence relation. The elements of E′ are the equivalence classes
relative to R on E and we still denote ⊕ and ⊗ the operations induced on E′ by
the operations ⊕ and ⊗ on E. The neutral elements are the equivalence classes
corresponding to the neutral elements ε and e. Clearly (E′,⊕,⊗) is a semiring.

Furthermore, the preorder relation≤ on E induces on E′ an antisymmetric preorder
relation, that is to say an order relation.

Finally, as (E,⊕,⊗) is a semiring, ε is absorbing by ⊗. It follows that in E′ =
E/R, the class of the element ε is absorbing for the law induced by⊗. (E′,⊕,⊗) is
therefore a dioid. "#
Example 6.9.2. Let E be the semiring product of the dioids E1 = (N ∪ {+∞},
Min,+), and E2 = (N,+,×) and of the ring: E3 = (Z,+,×)

The elements of E are therefore ordered triples

⎛

⎝
x1
x2
x3

⎞

⎠.
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We easily verify that the dioid canonically associated with (E,⊕,⊗) is, in this
example, isomorphic to the product dioid E1 × E2 (see Sect. 6.8). ||

6.10. Classification of Dioids

Table 3 sums up the main properties of the various types of dioids. The first line
indicates the basic properties common to all dioids, the following lines only show
the additional properties corresponding to the sub-classes under consideration.

Figure 3 provides a graphic representation of the classification.

Table 3 The main types of dioids and their basic properties

Properties of
(E,⊕)

Properties of
(E,⊗)

Relation
≤

Additional properties
comments

Dioid
Commutative
monoid, neutral
elem. ε

Monoid
neutral
elem. e

Order
⊗ right and left distributive
with respect to ⊕
ε absorbing for ⊗

Symmetrizable
dioid

Hemi-group

Idempotent
dioid

Idempotent
monoid

Doubly –
idempotent dioid

Idempotent
monoid

Idempotent
monoid

Distributive
lattice

Idempotent
monoid

Idempotent
monoid

Doubly idempotent - dioid
with the additional property:
x ≤ y ⇔ x⊗ y = x where ≤
is the canonical order relation
with respect to ⊕

Idempotent-
cancellative
dioid

Idempotent
monoid

Cancellative
monoid

Idempotent dioid and ⊗
cancellative

Idempotent-
invertible
dioid

Idempotent
Monoid

Group
Idempotent dioid and ⊗
invertible

Selective dioid Selective monoid Total order
Selective-
cancellative
dioid

Selective
monoid

Cancellative
monoid

Total order
Selective dioid and ⊗
cancellative

Selective-
invertible
dioid

Selective
monoid

Group
Total
order

Selective dioid and ⊗
invertible

Doubly selective
dioid

Selective
monoid

Selective
monoid

Total order
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DOUBLY-
IDEMPOTENT

DIOIDS

IDEMPOTENT
DIOIDS

OTHER DIOIDS

RIGHT
AND/OR LEFT

DIOIDS

SYMMETRIZABLE
DIOIDS

IDEMPOTENT-
CANCELLATIVE

DIOIDS

IDEMPOTENT-
INVERTIBLE

DIOIDS

OTHER
IDEMPOTENT DIOIDS

DISTRIBUTIVE
LATTICES

SELECTIVE-
INVERTIBLE

DIOIDS

SELECTIVE-
 CANCELLATIVE

DIOIDS

Fig. 3 Classification of dioids

Exercises

Exercise 1. We consider R+ endowed with the law ⊕ defined as:

a ⊕ b = a(1+ b2)1/2 + b(1+ a2)1/2

(1) Show that (R+,⊕) is a semigroup by establishing the formula of associativity:

(a ⊕ b)⊕ c = a(1+ b2)1/2(1+ c2)1/2 + b(1+ a2)1/2(1+ c2)1/2

+ c(1+ a2)1/2(1+ b2)1/2 + abc

(2) Find the same result by carrying out the change of variable a = sh(α) and
b = sh(β) and observing that a ⊕ b = sh(α+ β).

(3) Show that [0, 1] endowed with the law ⊕ defined as a ⊕ b = a(1 − b2)1/2 +
b(1− a2)1/2 is also a semigroup.
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Exercise 2. Study of t-norms and t-conorms
Boolean algebra provides a very natural model of binary logic. To generalize

the logical AND and OR, a great variety of operations on the interval [0, 1] have
been proposed in the literature, in particular in the context of so-called “fuzzy”
logic. The most classical ones are the operations referred to as triangular norms
(or t-norms) which generalize logical AND and triangular conorms (or t-conorms)
which generalize logical OR. They were introduced by Menger in 1942, to define a
triangular inequality in stochastic geometry.

A binary law * on [0, 1] is a triangular norm (t-norm) if ([0, 1], *) is an ordered
commutative monoid having 1 as neutral element and 0 as absorbing element. It is
Archimedean if and only if * is continuous and a ∗ a < a ∀a ∈]0, 1[.
(1) Consider a function ϕ: [0, 1] → [0,+∞ [continuous and decreasing, satisfying

ϕ(1) = 0. If ϕ(0) = +∞, we set:

a ∗ b = ϕ−1[ϕ(a)+ ϕ(b)].
If ϕ(0) < +∞, we call pseudo-inverse of ϕ the function ϕ(−1) defined as:

ϕ(1)(x) =
{

ϕ−1(x) if x ∈ [0, ϕ(0)]
0 if x ∈ ]ϕ(0),+∞[

and we set a ∗ b = ϕ(−1)[ϕ(a)+ ϕ(b)] (see illustration in Fig. 4).
Show that the binary law ∗ is an Archimedean t-norm. ϕ is called the additive

generator of the t-norm. Possible examples are: ϕ(x) = −lnx, ϕ(x) = 1− x

x
.

(2) A binary law ⊕ on [0, 1] is a triangular conorm (t-conorm) if ([0, 1], ⊕) is an
ordered commutative monoid having 0 as neutral element and 1 as absorbing ele-
ment. It is Archimedean if and only if⊕ is continuous and a ⊕ a > a ∀a ∈]0, 1[.

Consider a function g: [0, 1] → [0,+∞[ continuous and increasing satisfying
g(0) = 0. If g(1) = +∞, we set:

a ⊕ b = g−1[g(a)+ g(b)]

a  b a b 1
x

ϕ(0)

ϕ(a) + ϕ(b)

ϕ

ϕ

(a)

(b)

0 *

Fig. 4
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If g(1) < +∞, we call pseudo-inverse of g the function g(−1) defined as:

g(−1)(x) =
{

g−1(x) if x ∈ [0, g(1)]
0 if x ∈ ]g(1),+∞[

and we set
a ⊕ b = g(−1) [g(a)+ g(b)]

Show that the binary law⊕ is an Archimedean t-conorm. g is called the additive
generator of the t-conorm. Possible examples are: g(x) = xα, g(x) = −ln(1−x),

g(x) = ex/h − 1(h > 0).
Show that, through duality, every t-norm ∗ generates a t-conorm ⊕ and

conversely according to:

a ⊕ b = 1− [(1− a) ∗ (1− b)]
a ∗ b = 1− [(1− a)⊕ (1− b)].

In the literature on fuzzy sets, the triangular conorms ⊕ are considered as
generalizations of the set union and the triangular norms ∗ are considered as
generalizations of set intersection.

(3) Show that all the continuous triangular norms are constructed through isomor-
phism (or ordinal sum) from one of the three fundamental norms:

∗ = product (strictly monotone triangular norms)

a ∗ b = Max(0, a + b− 1) (nilpotent norms)

a ∗ b = Min(a, b) (this is the largest of the triangular norms,

and the only one that is idempotent).

[Indications: (1) and (2) see Dubois (1987), (3) Schweizer and Sklar (1983). For the
study of pseudo-inverses, refer to Chap. 3, Sect. 8 where residuable functions are
discussed.]

Exercise 3. Passing to the limit in the monoid (R,⊕p)

(1) Show that the operation ⊕p (p integer) defined on R+ as

a ⊕p b = (
ap + bp)1/p endows R with a regular monoïd structure.

Show that ⊕p “tends” towards the max operation when p →+∞.
(2) Show that the operation ⊕p (p odd integer) endows R with a group structure.

Show that lim
p→+∞ a ⊕p b =

⎧
⎪⎨

⎪⎩

b if |a| < |b|
b if a = b

0 if a = −b

Show that this limit operation is not associative.

[Answers: (2◦) Counter-example: (a ⊕p b) ⊕p c �= a ⊕p (b ⊕p c) with b = −a,
|a| > |c| ].
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Exercise 4. Left semiring and lattice
We consider a left semiring S = (E,⊕,⊗), therefore only satisfying left distribu-

tivity a ⊗ (b⊕ c) = a ⊗ b⊕ a ⊗ c (see Sect. 5.1).

(1) We assume that S satisfies the following relation:

(i) a ⊗ b⊕ c = (a ⊕ c)⊗ (b⊕ c) ∀a, b, c ∈ S
Show that ⊕ and ⊗ are idempotent.
Deduce that the semiring is a distributive lattice.

(2) We assume that S satisfies the relation (ii):

(ii) a ⊕ e = e ∀a ∈ S
Show that if S satisfies (ii) and ⊗ is idempotent, (i) holds.

(3) Show that (i) implies (ii).

[Indications:

(1) a = b = ε in (i) implies c = c2 and a = ε, b = ε implies c = c⊕ c.
According to Proposition 6.5.7, it suffices to show that a ≤ b ⇒ a ⊗ b = a.
From (i), with a = ε, we derive c = c⊗ b⊕ c.]

Exercise 5. Positive semiring and positive dioid
A semiring is said to be positive (see Eilenberg) if and only if it satisfies:

(i) a ⊕ b = ε ⇒ a = ε and b = ε

(ii) a ⊗ b = ε ⇒ a = ε or b = ε

(1) Show that a dioid always satisfies (i).
A dioid is therefore positive if and only if it satisfies (ii) (such dioids are also
referred to as “entire dioids”).

(2) Show that a dioid which is a group for the second law is a positive dioid. Positive
semirings (and consequently positive dioids) are often referred to as semi-fields
(see Exercise 8).

[Answer: (1) see Proposition 3.4.8].

Exercise 6. Show that a complete sup-semi-lattice having a smallest element is a
complete lattice.
[Indications: see (Dubreil and Dubreil-Jacotin 1964, pp. 175–176).

For a subset A of the sup-semi-lattice (E,≤), consider the set T of lower bounds
of A and show that the upper bound of T belongs to T].

Exercise 7. Ideals and filters

(1) Show that the descending sets of an ordered set (E,≤), endowed with set union
and set intersection, form a complete lattice.
(We recall, see Sect. 3.1, that a set S⊂ E is called descending if x ∈ S and y ≤ x
imply y ∈ S).



6 Dioids 45

(2) Show that the set of ideals of an ordered set, endowed with the two laws I∧ J =
I ∩ J, I ∨ J = ∩ K

K ideal,K⊂I∪J
is a complete lattice. (We recall, see Sect. 3.1, that an

ideal S is a descending set such that for all a, b ∈ S, a ∨ b ∈ S).

Exercise 8. Idempotent semi-field and inf-dioid
We call inf-dioid (Gaubert 1992) an idempotent dioid (E,⊕,⊗) such that every

pair of elements (a, b) ∈ E2 has a lower-bound (denoted a ∧ b) with respect to the
canonical order.

(1) Show that an idempotent-cancellative dioid (idempotent semi-field) is an inf-
dioid and that a ∧ b = b (a ⊕ b)−1 a.

Show in addition that the lower bound distributes with respect to the product:
(a ∧ b) ⊗ c = (a ⊗ c) ∧ (b ⊗ c), c ⊗ (a ∧ b) = (c ⊗ a) ∧ (c ⊗ b) (the group
(E\{ε},⊗) is therefore reticulated).

(2) Show that a complete idempotent dioid is a inf-dioid and that the law ∧, defined
as: a ∧b = ⊕{x|x ≤ a and x ≤ b} makes (E,⊕,∧) a complete lattice.

(3) Show that the dioid B [X] of the polynomials with Boolean coefficients in an
indeterminate X is an example of an inf-dioid which is neither complete, nor an
idempotent semi-field.

(4) Show that a non-trivial idempotent semi-field (i.e. non reducible to {ε, e}) does
not have a largest element, and in particular that it is not complete.

[Answers: (1) see Gaubert (1992). Complete counter-example

(
⊕

k∈N
Xk /∈ B [X]

)
,

idempotent ((e ⊕ X) ⊗ (e ⊕ X2) = (e ⊕ X) ⊗ (e ⊕ X ⊕ X2), therefore ⊗ is not
cancellative)].

Exercise 9. Interval algebras
We consider the set Int(R) of the intervals of R of the form a = [a, ā] with a ≤ ā.

(1) On Int(R), let us consider the addition of intervals ⊕ defined as:

a ⊕ b = [a + b, ā + b̄].
Show that (Int(R),⊕) is a commutative monoid with neutral element [0, 0] non
canonically ordered. Let Int(R+), the set of the intervals on R+ (0 ≤ a ≤
ā). Show that (Int(R+),⊕) is canonically ordered and that each interval is a
cancellative element of Int(R+).

On Int(R), we now consider the multiplication ⊗ defined as:

a ⊗ b = {x|x = α · β, α ∈ a, β ∈ b}.
Show that a ⊗ b = [min (a · b, a · b̄, ā · b, ā · b̄), max (a · b, a · b̄, ā · b, ā · b̄)] and
that ⊕ is not distributive with respect to ⊗.

Show on the other hand that (Int (R+),⊕,⊗) is a symmetrizable dioid.
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(2) On Int(R), consider the operations ⊕ and ⊗ defined as

a ⊕ b = [min(a, b), max(ā, b̄)],
a ⊗ b = [a + b, ā + b̄].

Show that (Int(R), ⊕, ⊗) is an idempotent dioid.
(3) On Int(R), consider the operations ⊕ and ⊗ defined as

a ⊕ b = [min(a, b), max(ā, b̄)],
a ⊗ b = a ∩ b.

Show that (Int (R), ⊕, ⊗) is a nondistributive lattice.
(4) On Int(R), consider the operations ⊕ and ⊗ defined as

a ⊕ b = a ∩ b,

a ⊗ b = [a + b, ā + b̄].
Show that ⊗ is not distributive with respect to ⊕.

[Indications:
(1) Chapter 8, Sects. 1.1.1, 1.4.6, 4.2.2. (2) Chap. 8, Sect. 4.3.4. (3) nondistributive:

a = [−3,−2], b = [2, 3], c = [−1, 1]; (a ⊕ b) ⊗ c = c, (a ⊗ c) ⊕ (b ⊗ c) = d].

Exercise 10. Newton polygon of an algebraic equation

(1) Let us consider the algebraic equation on the reals:

ε2 + εy − y3 = 0

When ε→ 0+, I. Newton seeks solutions in the form

y(ε) = b1ε
μ1 + b2ε

μ2 + · · ·
with 0 < μ1 < μ2 < · · ·

Show that the μi are the nondifferentiability points (corners) of the concave
function

f (μ) = min{2, 1+ μ, 3 μ}.
Deduce the solutions.

(2) In a more general way, consider the algebraic equation

P(ε, y) =
n∑

j=0

⎛

⎝
Nj∑

i=0

aij ε
νij

⎞

⎠ yj = 0.

When ε→ 0+, we seek the n solutions in the form:

y(ε) = b1ε
μ1 + b2ε

μ2 + · · ·
with 0 < μ1 < μ2 < · · ·
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Show that the μi are the nondifferentiability points (corners) of the concave
function

f (μ) = Min
i, j
{νij + iμ}.

[Indications:

(1) y(ε) = −√ε− ε, y(ε) = +√ε− ε.
(2) Newton–Puiseux theorem (after Gaubert 1998).

See also Dieudonné 1980. pp. 106–112]

Exercise 11. Pap’s g-calculus
Let us consider a strictly monotone function defined on the finite interval

[a, b] ⊂ R with values in [0,+∞], such that either g(a) = 0 and g(b) = +∞,
or g(b) = 0 and g(a) = +∞.

We set

u ⊕ v = g−1(g(u)+ g(v))

u ⊗ v = g−1(g(u) . g(v))

(1) Show that ([a, b],⊕,⊗) is a dioid with ε = g−1(0) and e = g−1 (1).
(2) Now, we assume g to be continuously differentiable on [a, b].

Let f: [c, d] → [a, b]. If the function f is differentiable on [c, d] and has the
same monotony as the function g, then we define the g-derivative of f at the point
x ∈ [c, d] as:

d⊕f (x)

dx
= g−1

(
d

dx
g(f (x))

)
.

Let f1 and f2 be two g-differentiable functions on [c, d] with values in [a, b].
Show that for every λ ∈ [a, b] we have

(i)
d⊕ (f1 ⊕ f2)

dx
= d⊕f1

dx
⊕ d⊕f2

dx

(ii)
d⊕(λ⊗ f )

dx
= λ⊗ d⊕f

dx

(iii)
d⊕x

dx
= g−1(1) = e

(iv)
d⊕(f1 ⊗ f )

dx
=

(
d⊕f1

dx
⊗ f2

)
⊕

(
f1 ⊗ d⊕f2

dx

)

Calculate
d⊕f (x)

dx
for g(u) = e−u and g(u) = ln

1+ u

1− u
.

(3) We define recursively the n-g-derivative of f : [c, d] → [a, b] (if it exists) from
the (n − 1)-g-derivative as

d(n)⊕f

dxn = d⊕

dx

(
d(n−1)⊕f

dxn−1

)

.
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(3a) If the n-g-derivative of f exists, show that we have:

d(n)⊕f

dx
= g−1

(
dn

dxn g (f (x))

)

(3b) Let h be a function defined on [a, b] ⊂ [0,∞] and f : [c, d] → [a, b] and
F(x) = h(f (x)). We assume that f is derivable at x0 ∈ [c, d] and that h has a
derivative at f (x0).

Show that
d⊕F(x0)

dx
exists and that

d⊕F(x0)

dx
= d⊕ [h (f (x0))]

dx
⊗ d⊕

dx
g−1(h(f (x0))⊗ d⊕g−1(f (x0))

dx
.

(4) For a measurable function f : [c, d] → [a, b], we define the g-integral

⊕∫

[c,d]
fdx = g−1

⎛

⎝
d∫

c

g(f )dx

⎞

⎠.

(4a) Show that the g-integral is linear with respect to (⊕,⊗).
(4b) Show that

f1 ≤ f2 ⇒
⊕∫

[c,d]
f1dx ≤

⊕∫

[c,d]
f2dx,

∫

[c,d]∪[e,f ]
fdx =

⊕∫

[c,d]
f dx⊕

⊕∫

[e,f ]
fdx.

(4c) If f is continuous on [c, d], then

d⊗

dx

⊕∫

[c,x]
fdx = f (x)

(4d) If f has a continuous g-derivative on [c, d], then

⊕∫

[c,x]

d⊕f

dx
⊕ f (c) = f (x) for all x ∈ [c, d].

(4e) Calculate
⊕∫

[x,+∞]
xdx for g(u) = e−u.

(5) Let us assume that f : [c, d]× [a, b] → [a, b] is continuous, that ψ is defined and
continuous on J = {x: x0 − h < x < x0 + h} ⊂ [c, d] with values in [a, b] and
that (x0, y0) ∈ [c, d] × [a, b] with ψ(x0) = y0.
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(5a) Show that a necessary and sufficient condition for ψ to be the solution of:

d⊕ψ

dx
= f (x, ψ(x))

on J is that ψ satisfies the g-integral equation

ψ(x) = y0 ⊕
⊕∫

(x0,x)

f (t, ψ(t)) dt for x ∈ J.

(5b) We consider the second order ordinary differential equation for p > 0 and
n ∈ R+:

y′′ +(p−1)y−1(y′)2+(2 n p x−1−x−npyp) y′ +n(n p−1) x−2 y′ = 0 (1)

Show that this equation can be expressed successively in the following forms:

y · (yp)′ = (xnpyp)′′

y ⊗ d⊕

dx
(y) = d(2)⊕

dx
(xn ⊗ y)

(2)

where the generator g(x) is equal to xp.

(5c) Show that the inverse x∗ of an element x ∈ [a, b] is equal to x∗ = g−1
(

1
g(x)

)

and that, for every n ∈ N,

x⊕ x⊕ · · ·⊕︸ ︷︷ ︸
n times

x = g−1 (n) ⊗ x.

(5d) Show that for a g-derivable function f(x), we have

f ⊗ d⊕f

dx
= g−1

(
1

2

)
⊗ d⊗

dx
(f ⊗ f ).

(5e) Show that equation (2) can be solved and yields

1

2
g(y)2 + c = d

dx
g(xn y) (3)

where c is a constant.

By setting t = yp, show that (t, x) satisfies the Riccati equation:

t′ = 1

2
x−npt2 − np x−1t + c x−np.

Investigate the case where np = 1.

[Indications:
see Pap (1995), Sects. 8.3 and 8.4.
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(2) For g(u) = e−u, u ⊕ v = − ln(e−u + e−v), u ⊗ v = u + v and

d⊗f (x)

dx
= f (x)− ln(−f ′(x)) for f ′(x) < 0.

For g(u) = ln
1+ u

1− u
, g−1(u) = eu − 1

eu + 1
and

d⊗f (x)

dx
=

exp
(

2f ′(x)

1−f 2(x)

)
− 1

exp
(

2f ′(x)

1−f 2(x)

)
+ 1

.

(4)
⊗∫

[x,+∞]
x dx = x.

(5b) We multiply (1) by p xnp yp−1 and we integrate.
If g(x) = xp for p > 0, u ⊕ v = (up + vp)1/p and u ⊗ v = u · v.

(5e) We apply 5d to (2) to obtain

g−1
(

1

2

)
⊗ y ⊗ y ⊕ c1 = d⊗

dx
(xn ⊗ y)

where c1 is a constant.

For n p = 1, we have t′ = x−1
(

1

2
t2 − t + c

)
.

This corresponds to the equation initially considered:

y′′ + (p− 1) y−1 (y′)2 + x−1(2− yp) y′ = 0. ]



Chapter 2
Combinatorial Properties of (Pre)-Semirings

1. Introduction

Many results of classical linear algebra, such as the well-known Cayley–Hamilton
theorem, first established in the context of vector spaces on fields, do not actually
require all the properties of these structures. We show in this chapter that many known
results of this type are deduced from purely combinatorial properties which are valid
in more elementary algebraic structures such as semirings and pre-semirings. We will
not even require the dioid structure since there is no need to assume the presence of
a canonical order relation.

In the present chapter we will thus consider matrices, polynomials and formal
series with elements or coefficients in a pre-semiring or in a semiring.

The basic definitions concerning matrices, polynomials and formal series are
introduced in Sects. 2 and 3.

Definitions and basic properties for permutations are recalled in Sect. 4.1, and the
concepts of a bideterminant and of the characteristic bipolynomial of a matrix are
introduced in Sects. 4.2 and 4.3.

Section 5 presents a combinatorial proof of the extended version of the classical
identity for the determinant of the product of two matrices. Section 6 provides a
combinatorial proof of the Cayley–Hamilton theorem generalized to commutative
pre-semirings.

In Sect. 7, we focus on the links between the bideterminant of a matrix and the
arborescences of the associated directed graph. An extension to semirings of the
classical “Matrix Tree Theorem” is first established in Sects. 7.1 and 7.2. A more
general form of this result is then studied in Sect. 7.4, which may be considered as
an extension to semirings, of the so-called “All Minors Matrix Tree Theorem”.

Finally, a version of the well-known Mac Mahon identity, generalized to commu-
tative pre-semirings, is presented in Sect. 8.

In order to derive each of the identities discussed in this chapter, a superficial
analysis might lead one to believe that it is enough to start from the corresponding
classical result (usually stated in the field of real numbers) and to simply rewrite it
by moving all the negative terms to the other side to make them appear positively.

51
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The result of Sect. 5 (about the bideterminant of the product of two matrices), as well
as the generalization of the classical “All-Minors Matrix Tree Theorem”, which is
studied in Sect. 7.4, provide concrete examples where such an approach would lead
to a wrong result; this indeed confirms the necessity of new direct proofs, different
from those previously known for the standard case.

2. Polynomials and Formal Series with Coefficients
in a (Pre-) Semiring

2.1. Polynomials

Let (E,⊕,⊗) be a pre-semiring or a semiring with neutral elements ε and e (for ⊕
and ⊗ respectively).

Definition 2.1.1. A polynomial P of degree n in the variable x is defined by specifying
a mapping f : {0, 1, . . . . n} → E where, ∀k, 0 ≤ k ≤ n, f (k) ∈ E is called the
coefficient of xk in the polynomial P. P can thus be represented by the sum:

P(x) =
n∑

k=0

f (k)⊗ xk

where the sum is to be understood in the sense of the operation ⊕ (by convention
x0 = e and, ∀k: ε⊗ xk = ε).

In accordance with classical notation, we denote E[x] the set of polynomials in x
with coefficients in E.

Let P and Q be two polynomials of E [x] defined as:

P(x) =
p∑

k=0

f (k)⊗ xk

Q(x) =
q∑

k=0

g(k)⊗ xk

The sum of P and Q, denoted S = P ⊕ Q, is the polynomial of degree at most
s = Max{p, q} defined as:

S(x) =
s∑

k=0

(f (k)⊕ g(k))⊗ xk

(we agree to set f (j) = ε for j > p and g(j) = ε for j > q).
The product of P and Q, denoted T = P⊗Q is the polynomial of degree r = p+q

defined as:
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T(x) =
r∑

k=0

t(k)⊗ xk

with, ∀k = 0 . . . . r:
t(k) =

∑

0 ≤ i ≤ p
0 ≤ j ≤ q
i+ j = k

f (i)⊗ g(j)

ε being the neutral element of⊕, E[x] has, as neutral element for⊕, the polynomial
denoted ε(x), of degree 0, defined as: ε(x) = ε ⊗ x0 = ε. Likewise, e being the
neutral element of⊗, E[x] has as neutral element for⊗, the polynomial denoted e(x)
of degree 0 defined as: e(x) = e⊗ x0 = e.

Proposition 2.1.2. (i) If (E,⊕,⊗) is a pre-semiring, then (E[x],⊕,⊗) is a pre-
semiring

(ii) If (E,⊕,⊗) is a semiring, then (E[x],⊕,⊗) is a semiring
(iii) If (E,⊕,⊗) is a dioid, then (E[x],⊕,⊗) is a dioid.

Proof. It follows from the fact that the elementary properties of⊕ and⊗ on E induce
the same properties on E[x]. Let us just show that, in case (iii), the canonical preorder
relation on E[x] defined as:

P ≤ Q ⇔ ∃ R ∈ E[x] such that: Q = P⊕ R

is an order relation.

If P(x) =
p∑

k=0

f (k)⊗ xk

Q(x) =
q∑

k=0

g(k)⊗ xk

then P ≤ Q ⇒ ∃ R with: R(x) =
r∑

k=0
h(k)⊗ xk, such that: Q = P⊕ R

Similarly Q ≤ P ⇒ ∃ R′ with: R′(x) =
r′∑

k=0
h′(k)⊗ xk such that: P = Q⊕ R′

Set K = Max{p, q, r, r′} and let us agree that:

If K > p, f (j) = ε for every j ∈ [p+ 1, K]
If K > q, g(j) = ε for every j ∈ [q + 1, K]
If K > r, h(j) = ε for every j ∈ [r + 1, K]
If K > r′, h′(j) = ε for every j ∈ [r′ + 1, K]
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We deduce ∀k = 0, . . . . K:

∃ r(k): g(k) = f (k) ⊕ r(k)

∃ r′(k): f (k) = g(k) ⊕ r′(k)

in other words:
f (k) ≤ g(k), and g(k) ≤ f (k)

Since (E,⊕,⊗) is a dioid, we deduce ∀k: f (k) = g(k) and therefore P = Q.
(E[x],⊕,⊗) is thus clearly a dioid in this case. "#
The above is easily generalized to multivariate polynomials in several commu-
tative indeterminates x1, x2, . . . . xm, the set of these polynomials being denoted
E[x1, x2, . . . . xm].

2.2. Formal Series

Let (E,⊕,⊗) be a pre-semiring or a semiring with neutral elements ε and e (for ⊕
and ⊗, respectively).

Definition 2.2.1. A formal series F in m commutative indeterminates x1, x2, . . . xm
is defined by specifying a mapping f : Nm → E, where: ∀(k1, k2, . . . . km) ∈ Nm,
f (k1, k2, . . . . km) is the coefficient of the term xk1

1 ⊗ xk2
2 ⊗ · · · ⊗ xkm

m
Formally, we represent F by the (infinite) sum:

F =
∑

(k1, k2, . . . , km)

∈Nm

f (k1, k2, . . . km)⊗ xk1
1 ⊗ · · · ⊗ xkm

m

Let us consider two formal series with coefficients f (k1, k2 · · · km) and
g(k1, . . . , km). The sum is the formal series of coefficients s(k1, . . . km) defined as:

∀(k1, k2 · · · km) ∈ Nm: s(k1 · · · . km) = f (k1 · · · km)⊕ g(k1 · · · . km).

The product is the formal series of coefficients t(k1 · · · km) defined as:
∀(k1 . . . , km) ∈ Nm: t(k1, k2 . . . , km) = Σf (i1, i2 . . . im) ⊗ g(j1, . . . jm) where the
sum extends to all the pairs of m-tuples (i1, . . . im) ∈ Nm, (j1, j2, . . . jm) ∈ Nm

such that:

i1 + j1 = k1, i2 + j2 = k2, . . . , im + jm = km.

Proposition 2.1.2 of Sect. 2.1 easily extends to formal series as defined above.

3. Square Matrices with Coefficients in a (Pre)-Semiring

Let (E,⊕,⊗) be a pre-semiring or a semiring. We denote Mn(E) the set of square
n × n matrices with elements in E.
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Given two matrices A = (aij) and B = (bij) of Mn(E)

• The sum, denoted A ⊕ B, is the matrix S = (sij) defined as:

∀i, j: sij = aij ⊕ bij

• The product, denoted A ⊗ B, is the matrix T = (tij) defined as:

∀i, j: tij =
n∑

k=1

aik ⊗ bkj (sum in the sense of ⊕).

If E has a neutral element ε for ⊕, the matrix:

∑
=

⎡

⎣
ε, ε, . . . , ε

:
ε, ε, . . . , ε

⎤

⎦

is the neutral element of Mn(E) for ⊕.
If, moreover, E has unit element e, and ε is absorbing for ⊗, then the matrix:

I =

⎡

⎢⎢⎢
⎣

e
e ε

ε
. . .

e

⎤

⎥⎥⎥
⎦

is the unit element of Mn(E) for ⊗.
It is then easy to prove the following:

Proposition 3.1. (i) If (E,⊕,⊗) is a pre-semiring then (Mn(E),⊕,⊗) is a pre-
semiring

(ii) If (E,⊕,⊗) is a semiring, then (Mn(E),⊕,⊗) is a semiring (in general
noncommutative)

(iii) If (E,⊕,⊗) is a dioid, then (Mn(E),⊕,⊗) is a dioid (in general noncommuta-
tive)

In the subsequent sections, we study properties of square n×n matrices with elements
in a commutative pre-semiring (E,⊕,⊗). For some of the properties considered, we
will have to assume that (E,⊕,⊗) has a semiring structure.

4. Bideterminant of a Square Matrix. Characteristic
Bipolynomial

In this section we introduce the concept of bideterminant for matrices with coeffi-
cients in a pre-semiring.
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4.1. Reminder About Permutations

Let π be a permutation of X = {1, 2, . . . , n} where, ∀i ∈ X, π(i) ∈ X denotes the
element corresponding to i through π. The graph associated with π is the directed
graph Gπ having X as set of vertices and n arcs of the form (i, π(i)). This graph can
contain loops (when π(i) = i).

It is well-known that the permutation graph decomposes into disjoint elemen-
tary circuits (each connected component is an elementary circuit). If a connected
component is reduced to a single vertex i, the corresponding circuit is the loop (i, i).

Figure 1 below represents the permutation graph of {1, . . . 7} defined as:

π(1) = 7, π(2) = 4, π(3) = 5, π(4) = 2, π(5) = 1, π(6) = 6, π(7) = 3.

The parity of a permutation π, is defined as the parity of the number of transpositions
necessary to transform the permutation π into the identity permutation.

Thus, in the above example, a possible sequence of transpositions would be:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

7
4
5
2
1
6
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
4
5
2
7
6
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2
5
4
7
6
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2
3
4
7
6
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2
3
4
5
6
7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The permutation of Fig. 1 is therefore even.
More generally, we can prove:

Property 4.1.1. The parity of a permutation π is equal to the parity of the number
of circuits of even length of the graph Gπ associated with the permutation.

1

7

6

5

4

2
3

Fig. 1 Permutation graph
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Example. The graph of Fig. 1 contains two circuits of even length (1, 7, 3, 5) and
(2, 4), the corresponding permutation is therefore even. ||

We call signature of a permutation π, the quantity sign (π) defined as:

sign(π) = +1 if π is even

sign(π) = −1 if π is odd

It is easy to see that the signature of a permutation π can be calculated as:

sign(π) =
∏

C circuit of Gπ

(−1)|C|−1

(where |C| is the cardinality of the circuit, and where the product extends to the set
of the circuits of Gπ).

In the example of Fig. 1 we have three circuits: C1 = (6) of odd length and
C2 = (2, 4); C3 = (1, 3, 5, 7) of even length. We clearly have:

sign(π) = (−)|C1|−1 × (−1)|C2|−1 × (−1)|C3|−1

= +1

Hereafter we denote:

Per(n) the set of all the permutations of {1, 2, . . . , n}
Per+(n) the set of all the even permutations of {1, 2, . . . , n} (the set of the
permutations of signature +1)
Per−(n) the set of odd permutations of {1, 2 . . . , n} (of signature − 1)

We will also make use of the concept of partial permutation: a partial permutation
of X = {1, . . . , n} is simply a permutation of a subset S of X.

Example. If X = {1, . . . , 7} S = {2, 3, 5, 7} then σ defined as:

σ(2) = 3; σ(3) = 7; σ(5) = 5; σ(7) = 2.

is a permutation of S and a partial permutation of X. The domain of definition of σ,
denoted dom (σ), is S = {2, 3, 5, 7}

With every partial permutation σ of X = {1, . . . , n} we can associate the
permutation σ̂ of {1, . . . , n} defined as:

{
σ̂(i) = σ(i) if i ∈ dom(σ)

σ̂(i) = i if i ∈ X\(dom(σ))

σ̂ will be referred to as the extension of σ.
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1

7

2

3

4

5

66

Fig. 2 Graph associated with a partial permutation σ of characteristic +1: σ ∈ Part+(7)

The parity (resp. signature) of a partial permutation σ is the parity (resp. signature)
of its extension σ̂.

The characteristic of a partial permutation σ, denoted char (σ), is defined as:

char(σ) = sign(σ)× (−1)|σ|

|σ| denoting the cardinality of dom(σ).
We observe that, if σ is a partial permutation of order k (i.e. |σ| = |dom(σ)| = k)

and cyclic (i.e. such that the associated graph contains a single circuit covering all
the vertices of dom (σ)) then: sign(σ) = sign(σ̂) = (−1)k−1, hence:

char(σ) = (−1)2k+1 = −1.

From the above, we deduce:

Property 4.1.2. For every partial permutation σ, char(σ) = (−1)r where r is the
number of circuits in the graph associated with σ.

Example. For the partial permutation of {1, . . . , 7} defined as:

σ(2) = 3; σ(3) = 7; σ(5) = 5; σ(7) = 2.

the associated graph (see Fig. 2) contains two circuits, therefore: char(σ) = +1. ||
Hereafter, we denote Part(n) the set of all the partial permutations of {1, . . . , n}

(Observe that Per(n) ⊂ Part(n)).
The set of partial permutations of characteristic +1, (resp. of characteristic −1),

will be denoted Part+(n) (resp. Part−(n)).

4.2. Bideterminant of a Matrix

For a square matrix of order n, A = (aij) with elements in R endowed with the
standard operations, the determinant det (A) is classically defined as:
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det(A) =
∑

π∈Per(n)

sign(π)

(
n∏

i=1

ai,π(i)

)

(1)

or equivalently, with the notation of Sect. 4.1., as:

det(A) =
∑

π∈Per+(n)

(
n∏

i=1

ai,π(i)

)

−
∑

π∈Per−(n)

(
n∏

i=1

ai,π(i)

)

(2)

(the above sums should be understood in the sense of the addition of reals). This
notation is possible given that (R,+) is a group.

If one wishes to generalize the concept of determinant to algebraic structures
featuring fewer properties, where addition does not induce a group structure, one
must introduce the concept of bideterminant.

Definition 4.2.1. (Bideterminant)
Let A = (aij) be a square n × n matrix with elements in a commutative pre-

semiring (E,⊕,⊗). We call bideterminant of A the pair (det+(A), det−(A)) where
the values det+(A) ∈ E and det−(A) ∈ E are defined as:

det+(A) =
∑

π∈Per+(n)

(
n∏

i=1

ai,π(i)

)

(3)

det−(A) =
∑

π∈Per−(n)

(
n∏

i=1

ai,π(i)

)

(4)

(the above sums and products should be understood in the sense of the operations⊕
and ⊗ of the pre-semiring).

4.3. Characteristic Bipolynomial

In the case of a real n × n matrix A, the characteristic polynomial is defined as the
polynomial in the variable λ equal to the determinant of the matrix λI – A where I is
the n × n unit matrix:

PA(λ) = det(λI− A)

=
∑

π∈Per(n)

sign(π)

(
n∏

i=1

bi,π(i)

)

where, ∀i, j:
{

bij = −aij
bij = λ− aij

if i �= j
if i = j
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We observe that, for every q, 1 ≤ q ≤ n, the coefficient of the term involving λn−q

in the above expression can be expressed as:

∑

σ∈Part(n)
|σ|=q

sign(σ)

⎛

⎝
∏

i∈dom(σ)

(−ai,σ(i))

⎞

⎠

=
∑

σ∈Part (n)
|σ|=q

(−1)|σ| · sign(σ)

⎛

⎝
n∏

i∈dom(σ)

(ai,σ(i))

⎞

⎠

(5)

For q = 0, the λn term has coefficient equal to 1. Observing that (−1)|σ| sign(σ) is
none other than the characteristic char(σ) (see Sect. 4.1), (5) is rewritten:

∑

σ∈Part(n)
|σ|=q

car(σ)

⎛

⎝
n∏

i∈dom(σ)

(ai,σ(i))

⎞

⎠ (6)

By denoting (see Sect. 4.1) Part+(n) (resp. Part−(n)) the set of partial permutations
of {1, . . . , n} with characteristic +1 (resp. with characteristic −1) then the above
sum becomes:

∑

σ∈Part+(n)
|σ|=q

⎛

⎝
n∏

i∈dom(σ)

(ai,σ(i))

⎞

⎠−
∑

σ∈Part−(n)
|σ|=q

⎛

⎝
n∏

i∈dom(σ)

(ai,σ(i))

⎞

⎠ (7)

Now, when A = (aij) is a matrix with coefficients in a pre-semiring (E,⊕,⊗), one
is then naturally lead to define the characteristic bipolynomial as follows.

Definition 4.3.1. (characteristic bipolynomial) Let A = (aij ) be a square n × n
matrix with elements in a commutative pre-semiring (E,⊕,⊗). We call characteristic
bipolynomial the pair (P+A(λ), P−A(λ)) where P+A(λ) and P−A(λ) are two polynomials
of degree n in the variable λ, defined as:

P+A(λ) =
n∑

q=1

⎛

⎜⎜
⎝

∑

σ∈Part+(n)
|σ|=q

⎛

⎝
n∏

i∈dom(σ)

(ai,σ(i))

⎞

⎠

⎞

⎟⎟
⎠⊗ λn−q ⊕ λn (8)

and:

P−A(λ) =
n∑

q=1

⎛

⎜⎜
⎝

∑

σ∈Part−(n)
|σ|=q

⎛

⎝
n∏

i∈dom(σ)

(ai,σ(i))

⎞

⎠

⎞

⎟⎟
⎠⊗ λn−q (9)

(the sums and the products above are to be understood in the sense of the addition
⊕ and the multiplication ⊗ of the pre-semiring (E,⊕,⊗)).
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We observe that, in the case where (E,⊕,⊗) is a semiring, ε the neutral element
of ⊕, is absorbing and the formulae (8)–(9) give:

P+A(ε) =
∑

σ∈Part+(n)
|σ|=n

(
∏

i

ai,σ(i)

)

P−A(ε) =
∑

σ∈Part−(n)
|σ|=n

(
∏

i

ai,σ(i)

)

Since, for |σ| = n, char(σ) = (−1)n sign(σ), we see that for even n, Part+(n) =
Per+(n) and consequently:

P+A(ε) = det+(A), P−A(ε) = det−(A)

For odd n, we have Part+(n) = Per−(n) and consequently:

P+A(ε) = det−(A), P−A(ε) = det+(A).

We thus find again the analogue of the classical property for the characteristic
polynomial:

PA(0) = det(−A) = (−1)n det(A).

5. Bideterminant of a Matrix Product as a Combinatorial
Property of Pre-Semirings

Given two square n × n real matrices, a classical result of linear algebra is the
identity:

det(A × B) = det(A)× det(B)

In the present section we study the generalization of this result to square matrices
with elements in a commutative pre-semiring (E,⊕,⊗).

If A = (aij) B = (bij) and C = A ⊗ B = (cij)

with:

cij =
n∑

k=1

aik ⊗ bkj (sum in the sense of the operation ⊕)

Then, by definition (see Sect. 4.2):

det+(A ⊗ B) =
∑

π∈Per+(n)

(
n∏

i=1

ci,π(i)

)

(10)
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For π ∈ Per+(n) fixed, we can write:

n∏

i=1

ci,π(i) =
n∏

i=1

(
n∑

k=1

aik ⊗ bk,π(i)

)

(11)

By using distributivity, each term in the expansion of expression (11) is obtained by
choosing, for each value of i(1 ≤ i ≤ n), a value of k ∈ {1, . . . , n}. In other words,
each term in the expanded expression is associated with a mapping f :{1, . . . , n} →
{1, . . . , n}, and the value of the corresponding term in (11) is:

n∏

i=1

(
ai,f (i) ⊗ bf (i),π(i)

)

By denoting F(n) the set of mappings: {1, . . . , n} → {1, . . . , n}, (10) can therefore
be rewritten:

det+(A ⊗ B) =
∑

f∈F(n)

∑

π∈Per+(n)

n∏

i=1

(ai,f (i) ⊗ bf (i),π(i)) (12)

We would similarly obtain:

det−(A ⊗ B) =
∑

f∈F(n)

∑

π∈Per−(n)

n∏

i=1

(ai,f (i) ⊗ bf (i),π(i)) (13)

Among the mappings of F(n), we find (even and odd) permutations, i.e.:

F(n) = Per+(n) ∪ Per−(n) ∪ F′(n)

where F′(n) denotes the set of all the mappings of F(n) which are not permutations.
Expression (12) therefore decomposes into the sum of three sub-expressions:

α+ =
∑

f∈Per+(n)

∑

π∈Per+(n)

n∏

i=1

(ai,f (i) ⊗ bf (i),π(i)) (14)

β+ =
∑

f∈Per−(n)

∑

π∈Per+(n)

n∏

i=1

(ai,f (i) ⊗ bf (i),π(i)) (15)

γ+ =
∑

f∈F′(n)

∑

π∈Per+(n)

n∏

i=1

(ai,f (i) ⊗ bf (i),π(i)) (16)

In cases where f is a permutation, let g be the permutation π ◦ f−1. In the
expressions (14) and (15) above, we can rewrite the term:

(
n∏

i=1

ai,f (i)

)

⊗
(

n∏

i=1

bf (i),π(i)

)

as:
(

n∏

i=1

ai,f (i)

)

⊗
(

n∏

i=1

bi,g(i)

)

Let us then consider the expression α+.
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f being an even permutation, f−1 is even and g, as the product of two even
permutations is even. Then α+ can be rewritten:

α+ =
⎛

⎝
∑

f∈Per+(n)

n∏

i=1

ai,f (i)

⎞

⎠⊗
⎛

⎝
∑

g∈Per+(n)

n∏

i=1

bi,g(i)

⎞

⎠

= det+(A)⊗ det+(B)

(17)

Let us now consider the expression β+.
f being odd, f−1 is odd and g, as the product of an even permutation and an odd

permutation, is odd. Then β+ can be rewritten:

β+ =
⎛

⎝
∑

f∈Per−(n)

n∏

i=1

ai,f (i)

⎞

⎠⊗
⎛

⎝
∑

g∈Per−(n)

n∏

i=1

bi,g(i)

⎞

⎠

= det−(A)⊗ det−(B)

(18)

From the above, we deduce:

det+(A ⊗ B) = det+(A)⊗ det+(B)⊕ det−(A)⊗ det−(B)⊕ γ+ (19)

Through similar reasoning, we would prove that:

det−(A ⊗ B) = det+(A)⊗ det−(B)⊕ det−(A)⊗ det+(B)⊕ γ− (20)

with:

γ− =
∑

f∈F′(n)

∑

π∈Per−(n)

n∏

i=1

(ai,f (i) ⊗ bf (i),π(i)) (21)

Now we prove:

Lemma 5.1. The two expressions γ+, given by (16), and γ−, given by (21), take the
same value.

Proof. Let us consider an arbitrary term of the sum (16) whose value is:

θ =
n∏

i=1

ai,f (i) ⊗ bf (i),π(i)

with f ∈ F′(n) and π ∈ Per+(n).
We are going to show that we associate it with a term θ′ of expression (21) such

that θ′ = θ.
Since f ∈ F′(n), f is not a permutation of X = {1, . . . , n}, which therefore implies

that there exists i0 ∈ X, i′0 ∈ X, i′0 �= i0, k ∈ X such that:

f (i0) = k = f (i′0) (22)
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If there exist several ordered triples (i0, i′0, k) satisfying (22) we choose the smallest
possible value of k and, for this value of k, the two smallest possible values for i0
and i′0.

From the permutation π, let us define the following permutation π′:
⎧
⎪⎨

⎪⎩

π′(j) = π(j)∀j ∈ X\{i0, i′0
}
,

π′(i0) = π(i′0),
π′(i′0) = π(i0)

We observe that π′ is deduced from π by transposition of the elements i0 and i′0,
consequently π′ ∈ Per−(n). Furthermore, we observe that the same construction
that obtains (f , π′) from (f , π) enables one to obtain (f , π) from (f , π′).

Finally, we have:

θ′ =
n∏

i=1

(
ai,f (i) ⊗ bf (i),π′(i)

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∏

i = 1
i �= i0
i �= i′0

ai,f (i) ⊗ bf (i),π′(i)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊗ ai0,k ⊗ bk,π′(i0) ⊗ ai′0,k
⊗ bk,π′(i′0)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∏

i = 1
i �= i0
i �= i′0

ai,f (i) ⊗ bf (i),π (i)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊗ ai0,k ⊗ bk,π(i0) ⊗ ai′0,k
⊗ bk,π(i′0)

= θ

which completes the proof. "#
We have therefore obtained:

Theorem 1. Let A and B be two square n × n matrices with coefficients in a com-
mutative pre-semiring (E,⊕,⊗).

Then:

det+(A ⊗ B) = det+(A)⊗ det+(B)⊕ det−(A)⊗ det−(B)⊕ γ

and:
det−(A ⊗ g) = det+(A)⊗ det−(B)⊕ det−(A)⊗ det+(B)⊕ γ
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where:

γ = ∑

f∈F′(n)

∑

π∈Per+(n)

(
n∏

i=1
ai,f (i) ⊗ bf (i),π(i)

)

= ∑

f∈F′(n)

∑

π∈Per−(n)

(
n∏

i=1
ai,f (i) ⊗ bf (i),π(i)

)

F′(n), in the above expressions, denoting the set of the mappings
f : {1, . . . n} → {1, . . . n} which are not permutations. �

As an immediate consequence of the above, we find again the well-known result:

Corollary 5.2. If (E,⊕) is a group, then:

det(A ⊗ B) = det(A)⊗ det(B)

As already pointed out in the introduction, Theorem 1 above clearly does not directly
follow from the classical result (on the real field). Indeed a different proof is needed
for the case of pre-semirings to get the exact expression of the additional term γ

arising in both expressions of det+(A ⊗ B) and det−(A ⊗ B).

6. Cayley–Hamilton Theorem in Pre-Semirings

The Cayley–Hamilton theorem is a classical result of linear algebra (on the field of
real numbers) according to which a matrix satisfies its own characteristic equation.

Combinatorial proofs of this theorem have been provided by Straubing (1983)
and previously by Rutherford (1964). Rutherford’s result constituted, moreover, a
generalization of the theorem to the case of semirings.

Below we give a combinatorial proof inspired from Straubing (1983) and
Zeilberger (1985), but which further generalizes the theorem to the case of commu-
tative pre-semirings (indeed, it does not need to assume that ε, the neutral element
of ⊕, is absorbing for ⊗).

Theorem 2. Let (E,⊕,⊗) be a commutative pre-semiring with neutral elements ε

and e.
Let A be a square n × n matrix with coefficients in (E,⊕,⊗), and let (P+A(λ),

P−A(λ)) be the characteristic bipolynomial of A.

Then we have: P+A(A) = P−A(A) (23)

where:
P+A(A) and P−A(A) are matrices obtained by replacing λn−q by the matrix An−q in

the expression of P+A(λ) and P−A(λ), and where the following conventional notation
is used: Ao denotes the matrix with diagonal terms equal to e and nondiagonal terms
equal to ε; for every α ∈ E, α⊗Ao denotes the matrix with diagonal terms equal to
α and nondiagonal terms equal to ε.
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Proof. We show that each entry (i, j) of the matrix P+A(A) is equal to the entry (i, j)
of the matrix P−A(A).

Let us therefore consider i and j as fixed.
For q = 0, 1, . . . , n − 1, the value of term (i, j) of the matrix An−q is:

(An−q)ij =
∑

p∈Pij
|p|=n−q

⎛

⎝
∏

(k,1)∈ p

ak,1

⎞

⎠

where Pij is the set of (nonnecessarily elementary) paths joining i to j in the complete
directed graph on the set of vertices {1, . . . , n}, and where |p| denotes the cardinality
(number of arcs) of the path p ∈ Pij.

For q = n, consistently with the adopted notational convention, (An−q)i,j =
(A0)ij is equal to ε for i �= j, and to e for i = j.

Furthermore, the coefficient of An−q in P+A(A) is:

∑

σ∈Part+(n)
|σ|=q

⎛

⎝
∏

i∈dom(σ)

ai,σ(i)

⎞

⎠

and, consequently, the term (i, j) of the matrix P+A(A) (by using the distributivity of
⊗ with respect to ⊕) is given by the following formulae. For i �= j:

n−1∑

q=1

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝

∑

p∈Pij
|p|=n−q

∏

(k,1)∈p

ak,1

⎞

⎟⎟
⎠⊗

⎛

⎜⎜
⎝

∑

σ∈Part+(n)
|σ|=q

∏

i∈dom(σ)

ai,σ(i)

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦⊕

⎡

⎢⎢
⎣

∑

p∈Pij
|p|=n

∏

(k,1)∈p

ak,1

⎤

⎥⎥
⎦

(24)
For i = j, we must add to expression (24) the extra term:

∑

σ∈Part+(n)
|σ|=n

⎛

⎝
∏

i∈dom(σ)

ai,σ(i)

⎞

⎠

(which may be viewed as corresponding to the value q = n).
Let us denote F+ij (resp. F−ij ) the family of graphs having X = {1, 2, . . . , n} as

vertex set and whose set of arcs U decomposes into: U = P ∪ C where:

• P is a set of arcs forming a path from i to j;
• C is a set of arcs such that the graph G = [X, C] is the graph associated with a

partial permutation σ of X with σ ∈ Part+(n) (resp. σ ∈ Part−(n)).
In other words, [X, C] is a union of an even (resp. odd) number of disjoint circuits
(loops are allowed) not necessarily covering all the vertices.

• |U| = |P| + |C| = n.
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The weight w(G) of a graph G = [X, U] belonging to F+ij or to F−ij is defined as:

w(G) =
∏

(k,1)∈U

ak,1

In the case where i �= j, by expanding (24) (distributivity) we then observe that entry
(i, j) of P+A(A) is: ∑

G∈F+
ij

w(G) (25)

In the case where i = j, by considering that the path P can be empty in the decom-
position U = P∪C, the additional term corresponding to q = n is clearly taken into
account in expression (25).

Similarly, it is easy to see that the entry (i, j) of P−A(A) is, in all cases, (i = j and
i �= j), equal to: ∑

G∈F−
ij

w(G) (26)

It therefore remains to show that the two expressions (25) and (26) are equal. To do
so, let us show that, with any graph G of F+ij , we can associate a graph G′ of F−ij
of the same weight, w(G′) = w(G), the correspondence thus exhibited between F+ij
and F−ij being one-to-one.

Let us therefore consider G = [X, P ∪ C] ∈ F+ij . [X, C] is a union of an even
number (possibly zero) of vertex-disjoint circuits (Fig. 3 shows an example where
n = 8, i = 1, j = 4).

Since |P| + |C| = n, we observe that the sets of vertices covered by P and C nec-
essarily have at least one common element. Furthermore, the path P not necessarily
being elementary, P can contain one (or several) circuit(s).

2 3

1

8

7

6

5

4

Fig. 3 Example illustrating the proof of the Cayley–Hamilton theorem. A graph G ∈ F+ij for
n = 8, with i = 1 and j = 4. The path P is indicated in full lines and the partial permutation σ of
characteristic +1 (as it contains two vertex-disjoint circuits) is indicated with dotted lines
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Let us follow the path P starting from i until one of the following two situations
occurs:

Case 1. We arrive at a vertex of P already traversed without meeting a vertex
covered by C;
Case 2. We arrive at a vertex k covered by C.

In case 1 we have identified a circuit Γ of P which does not contain any vertex
covered by C. In this case, we construct G′ = [X, P′ ∪ C′] where:

• P′ is deduced from P by eliminating the circuit Γ;
• C′ is deduced from C by adding the circuit Γ.

We observe that C′ now contains an odd number of disjoint circuits, therefore G′ ∈
F−ij .

In case 2, let Γ be the circuit of C containing the vertex k. We construct G′ =
[X, P′ ∪ C′] where:

• P′ is deduced from P by adding the circuit Γ;
• C′ is deduced from C by eliminating the circuit Γ.

Here again, C′ contains an odd number of disjoint circuits, therefore G′ ∈ F−ij .
Furthermore, we observe that in the two cases, G and G′ have the same set of

arcs, therefore w(G′) = w(G).
Finally, it is easy to see that, the same construction by which G is transformed

into G′ can be used to transform G′ back into G: there is therefore a one-to-one
correspondence between F+ij and F−ij . (see illustration in Fig. 4)

From the above we deduce:
∑

G∈F+
ij

w(G) =
∑

G∈F−
ij

w(G)

which completes the proof of Theorem 2. "#
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Fig. 4 The graph G′ obtained by including the circuit (3, 6, 8) in P is an element of F−ij and it has
the same weight as G
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7. Semirings, Bideterminants and Arborescences

In the present section we consider a square n× n matrix, A = (aij) with elements in
a commutative semiring (E,⊕,⊗). We assume therefore:

• That ⊕ has a neutral element ε

• That ⊗ has a neutral element e.
• That ε is absorbing for ⊗ that is to say,

∀x ∈ E: ε⊗ x = x⊗ ε = ε

For r ∈ [1, n] we denote Ā the (n− 1)× (n− 1) matrix deduced from A by deleting
row r and column r.

We denote I the (n − 1)× (n − 1) identity matrix of Mn−1(E) with all diagonal
terms equal to e and all other terms equal to ε.

7.1. An Extension to Semirings of the Matrix-Tree Theorem

Let us begin by stating below the result which will be proved in Sect. 7.2, and
which may be viewed as a generalization, to semirings, of the classical “Matrix-
Tree-Theorem” by Borchardt (1860) and Tutte (1948).

Theorem 3. (Minoux, 1997)
Let A be a square n × n matrix with coefficients in a commutative semiring

(E,⊕,⊗). Let Ā be the matrix deduced from A by deleting row r and column r(r ∈
[1, n]) and let B be the (2n − 2)× (2n − 2) matrix of the form:

B =
[

D Ā
. . . . .
I ..

..
..

.

I

]

where I is the identity matrix of Mn−1(E) and D the diagonal matrix whose diagonal
terms are:

dii =
n∑

j=1

aij ∀i ∈ {1, . . . , n}\{r}

(sum in the sense of ⊕).
Let us denote by G the complete directed 1-graph on the vertex set X =

{1, 2, . . . , n} and by Tr the set of the arborescences rooted at r in G. For an arbitrary
partial graph G of G, the weight of G, denoted w (G), is the product (in the sense of
⊗) of the values aij for all the arcs (i, j) of G.

Then we have the identity:

det+(B) = det−(B)⊕
∑

G∈Tr

w(G) �
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7.2. Proof of Extended Theorem

To prove Theorem 3, let us consider the following (2n−2)× (2n−2) square matrix:

B′ =
[

Ā D
. . . .
I ..

..
..

.

I

]

We observe that the permutation applied to the columns of B to obtain B′ is even
if n − 1 is even, and odd if n − 1 is odd. Consequently, if n − 1 is even we have
det+(B) = det+(B′) and det−(B) = det−(B′). If n− 1 is odd, we have: det+(B) =
det−(B′) and det−(B) = det+(B′).

Let us begin by studying the properties of the bideterminant of B′ = (b′ij).We have:

det+(B′) =
∑

π∈Per+(2n−2)

(
2n−2∏

i=1

b′i,π(i)

)

(27)

In the above expression, all the terms corresponding to permutations π of {1, . . . ,

2n − 2} such that b′i,π(i) = ε for some i ∈ [1, 2n − 2] disappear because of the
absorption property.

Consequently, in (27), we only have to take into account the permutations π of
Per+(2n − 2) such that, for 1 ≤ i ≤ n − 1:

π(i+ n − 1) = i or π(i+ n − 1) = i+ n − 1

Each admissible permutation π can therefore be associated with a partition of X =
{1, . . . , n − 1} in two subsets U and V where:

U = {i/i ∈ X; π(i+ n − 1) = i}
V = {i/i ∈ X; π(i+ n − 1) = i+ n − 1}

Furthermore, we observe that the columns of B′ indexed i + n − 1 with i ∈ U
can only be covered by rows with index i ∈ U. Given that D is diagonal, we must
therefore have:

∀i ∈ U: π(i) = i+ n − 1

Each admissible permutation π can therefore be considered as derived from a
permutation σ of V (a partial permutation of X = {1, . . . , n}) as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀i ∈ V:
{

π(i) = σ(i)

π(i+ n − 1) = i+ n − 1

∀i ∈ U:
{

π(i) = i+ n − 1

π(i+ n − 1) = i
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The graph representing π on the set of vertices {1, . . . , 2n−2} therefore consists of:

• Elementary circuits representing the partial permutation σ;
• |V| loops on the vertices i+ n − 1 (i ∈ V);
• |U| circuits of length 2 (therefore even) of the form (i, i+ n − 1), i ∈ U.

The signature of π is therefore equal to

sign(π) = sign(σ)× (−1)|U|

hence:

sign(π) = sign(π)× (−1)2×|V|

= sign(σ)× (−1)|V| × (−1)|U|+|V|

= char(σ)× (−1)n−1

(since V = dom(σ)).
Let us first assume that n − 1 is even. In this case, sign(π) is none other than the

characteristic of σ as a partial permutation of X, and π ∈ Per+(2n − 2) if and only
if σ ∈ Part+(n − 1). Then, (27) can be rewritten:

det+(B′) =
∑

σ∈Part+(n−1)

(
∏

i∈V

ai,σ(i)

)

⊗
(
∏

i∈U

dii

)

(28)

= det+(B)

We would obtain a similar expression for det−(B′) = det−(B) simply by replacing
σ ∈ Part+(n − 1) in (28) with σ ∈ Part−(n − 1). (Fig. 5)

Let us now consider the case where n − 1 is odd. We then have sign(π) =
−char(σ), and, consequently, we have:

det+(B′) =
∑

σ∈Part−(n−1)

(
∏

i∈V

ai,σ(i)

)

⊗
(
∏

i∈U

dii

)

(29)

= det−(B)

(we obtain the expression of det−(B′) = det+(B) by replacing σ ∈ Part−(n − 1) in
(29) with σ ∈ Part+(n − 1)).

Thus it is seen that, in both cases (n − 1 even or odd), the expression giving
det+(B) is:

det+(B) =
∑

σ∈Part+(n−1)

(
∏

i∈V

ai,σ(i)

)

⊗
(
∏

i∈U

dii

)

(30)

(where V = dom(σ) and U = X\V). The expression giving det−(B) is simply
deduced from the above by replacing σ ∈ Part+(n − 1) with σ ∈ Part−(n − 1).
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U

V

U'

V'

1-n1-n

n-1

n-1

DA
VU

Fig. 5 The matrix B′ and a partition of X = {1, . . . , n−1} into two subsets U and V corresponding
to an admissible permutation π of {1, . . . , 2 n− 2}. Only the terms distinct from ε (neutral element
of ⊕) are represented (by circles). The terms indicated in black are those corresponding to the
permutation π. The partial permutation σ is the one induced by π on the sub-matrix of Ā restricted
to the rows and columns of V

Let us denote F+ (resp. F−) the family of all directed graphs constructed on the
vertex set X = {1, 2, . . . , n}, of the form G = [X, C ∪ Y] where:

• C is a set of arcs constituting vertex-disjoint circuits and containing an even (resp.
odd) number of circuits;

• Y is a set of arcs such that, for every i ∈ X\{r} not covered by C, Y contains a
single arc of the form (i, j) (the possibility j = i being authorized, as well as the
possibility j = r).

By expanding expression (30), that is to say by replacing each term dii by
n∑

j=1
aij and

by using distributivity, we then observe that det+(B) can be expressed in the form:

det+(B)=
∑

G∈F+
w(G) (31)
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where the “weight” w(G) of the graph G = [X, C ∪ Y] is:

w(G) =
∏

(k,1)∈C∪Y

ak,1

We would prove similarly that:

det−(B) =
∑

G∈F−
w(G) (32)

Among the graphs of F+∪F−, those which do not contain a cycle play a special role.
Indeed, in this case, C = ∅, and the set Y does not contain a cycle and is composed
of n − 1 arcs (an arc originating at each vertex i ∈ X\{r}). Y therefore forms an
arborescence rooted at r.

Since C = ∅, the subclass Tr (the set of arborescences rooted at r) is necessarily
included in F+.

If we denote F+ = Tr∪F+c

we can therefore write:

det+(B) =
∑

G∈Tr

w(G)⊕
∑

G∈F+
c

w(G) (33)

The end of the proof uses the following result (Zeilberger, 1985):

Lemma 7.2.1. ∑

G∈F+
c

w(G) =
∑

G∈F−
w(G) (34)

Proof. It proceeds by showing that, with each graph G ∈ F+c we can associate a
graph G′ of F− with w(G′) = w(G), and that the correspondence is one-to-one.

Let us therefore consider a graph G of F+c of the form G = [X, C ∪ Y].
This graph contains at least one circuit and [X, C] contains an even number

(possibly zero) of circuits. Among all the circuits of G, let us consider the one which
meets the vertex with the smallest index number and let Γ be the set of its arcs.

If Γ ⊂ Y then let us define G′ = [X, C′ ∪ Y′] with

C′ = C ∪ Γ

Y′ = Y\Γ
If Γ ⊂ C then let us define C′ and Y′ as:

C′ = C\Γ
Y′ = Y ∪ Γ
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In both cases, C′ contains an odd number of circuits, therefore G′ ∈ F−, and as G
and G′ have the same sets of arcs:

w(G′) = w(G).

Furthermore, we observe that the same construction which transforms G to G′ enables
one to transform G′ back to G.

We would prove in the same way that, with every G ∈ F− we can associate
G′ ∈ F+c such that w(G′) = w(G).

This completes the proof of Lemma 7.2.1. "#
By using Lemma 7.2.1, (33) is then rewritten:

det+(B) =
∑

G∈Tr

w(G)⊕ det−(B), which establishes Theorem 3. "#

7.3. The Classical Matrix-Tree Theorem as a Special Case

In the special case where A is a real matrix on the field of real numbers, we see that

∑

G∈Tr

w(G) = det+(B)− det−(B) = det(B)

where det(B) is the determinant of B in the usual sense and:

det(B) = det

[
D Ā
. . . . .
I ..

..
..

.

I

]

= det

[
D− Ā Ā
. . . . . . . . . .

0 ..
..

..
.

I

]

= det(D− Ā)

From the above, we deduce the following corollary, known as the “Matrix Tree
Theorem”, due independently to Borchardt (1860) and Tutte (1948):

Corollary 7.3.1. Let A = (aij) be a square n × n matrix with real coefficients; D

the diagonal matrix whose ith diagonal term is dii =
n∑

j=1
aij; Ā and D the matrices

deduced from A and D by eliminating the rth row and the rth column (for any fixed r,
1 ≤ r ≤ n). Then det (D− Ā) is equal to the sum of the weights of the arborescences
rooted at r in the graph associated with matrix A.

Theorem 3 can thus be considered as an extension to semirings of the “Matrix-Tree
Theorem”.
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7.4. A Still More General Version of the Theorem

A more general version of the “Matrix Tree Theorem”, known as the “All Minors
Matrix Tree Theorem” (see Chen (1976), Chaiken (1982)) can also be extended to
semirings. We present this extension below (Theorem 4).

Let A = (aij)be a square n×n matrix with coefficients in a commutative semi-ring
(E,⊕,⊗), such that ∀i = 1, . . . , n: aii = ε (the neutral element of ⊕ in E).

For every i ∈ X = {1, 2, . . . , n} set:

dii =
n∑

k=1
k �=i

aik

Let L ⊂ X be a subset of rows of A and K ⊂ X a subset of columns of A with
|L| = |K|.

Let Ā be the sub-matrix of A obtained by eliminating the rows of L and the
columns of K. The rows and the columns of Ā are therefore indexed by L = X\L
and K = X\K.

By setting m = |L| = |K| and p = |L∩K| let us consider the (m+ p)× (m+ p)

square matrix B having the block structure:

B =
[

Ā Q
. . . . .
R ..

..
..

.

Ip

]

where:
Ip is the p× p identity matrix of the semiring (E,⊕,⊗).
Q is a m×p matrix whose rows are indexed by L and whose columns are indexed

by L∩K; all its terms are equal to ε except those indexed (i, i) with i ∈ L∩K which
are equal to dii.

R is a p × m matrix whose lines are indexed by L ∩ K and whose columns are
indexed by K; all its terms are equal to ε except those indexed (i, i) with i ∈ L ∩ K
which are equal to e (the neutral element of ⊗ in E).

For every subset Y ⊂ X = {1, 2, . . . , n} let us denote sign (Y, X) = (−1)ν(Y,X)

where:
ν(Y, X) = |{(i, j)/i ∈ X\Y, j ∈ Y, i < j}|

and s(L, K) = sign(L, X)× sign(K, X)× (−1)m.
Let us also consider the set T = T + ∪ T − of all the directed forests H on the

vertex set X satisfying the following three properties:

(i) H contains exactly |L| = |K| trees;
(ii) Each tree of H contains exactly a vertex of L and a vertex of K;

(iii) Each tree of H is an arborescence, the root of which is the unique vertex of K
which it contains.

The subsets T + and T − are then defined as follows.
With each H ∈ T we can associate a one-to-one correspondence π∗: L → K

defined as: π∗(j) = i if and only if i ∈ K and j ∈ L belong to the same tree of H.
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Then T + (resp. T −) is the set of the directed forests of T such that sign (π∗) = +1
(resp. sign (π∗) = −1).
We can then state:

Theorem 4. (Minoux, 1998a)
If s(L, K) = +1 then there exists Δ ∈ E
such that:

⎧
⎨

⎩

det+(B) = ∑

H∈T +
w(H)⊕Δ

det−(B) = ∑

H∈T −
w(H)⊕Δ

If s(L, K) = −1 then there exists Δ ∈ E such that:

⎧
⎨

⎩

det+(B) = ∑

H∈T −
w(H)⊕Δ

det−(B) = ∑

H∈T +
w(H)⊕Δ

Proof. Refer to Exercise 1 at the end of the chapter where the exact expression of Δ

is specified. "#
The above result suggests, once again, an essential remark concerning the general
approach followed in the present chapter. In fact, suppose that we apply the simple
trick which consists in formally deducing the generalized result from the classical
result. The reader will easily be convinced that we can reformulate the classical
“All-Minors Matrix-Tree Theorem” as:

det(B) =
∑

H∈T +
w(H)−

∑

H∈T −
w(H)

If one thinks that it then suffices to rewrite the classical result by switching each
term appearing negatively to the other side of the equation, one is led to propose a
generalized version of the form:

det+(B)⊕
∑

H∈T −
w(H) = det−(B)⊕

∑

H∈T +
w(H)

which is not correct. Indeed, the above formula does not take into account the
additional term Δ which cancels itself in the classical result.

Only a direct proof, specialized to the semiring structure, can exhibit this term
and provide the exact expression (see Exercise 1 at the end of the chapter).

8. A Generalization of the Mac Mahon Identity to Commutative
Pre-Semirings

Let us consider a square n × n matrix, A = (aij) with coefficients in a commutative
pre-semiring (E,⊕,⊗).
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x1, x2, . . . , xn being indeterminates and m1, m2, . . . , mn natural integers, we
consider the expression:

(a11 ⊗ x1 ⊕ a12 ⊗ x2 ⊕ · · · a1n ⊗ xn)
m1

⊗ (a21 ⊗ x1 ⊕ · · · ⊕ a2n ⊗ xn)
m2

.

.

.

⊗ (an1 ⊗ x1 ⊕ · · · ⊕ ann ⊗ xn)
mn

(35)

and we denote K(m1, m2, . . . , mn) the coefficient of the term involving xm1
1 ⊗xm2

2 ⊗
· · · ⊗ xmn

n in the expansion of expression (35).
The Mac Mahon identity (1915) (recalled in Sect. 8.2 below) establishes a link

between the formal series S in x1, x2, . . . , xn, with coefficients K(m1, m2, . . . , mn),
and the expansion of the inverse of the determinant of the matrix I−A Dx, where Dx
is the diagonal matrix whose diagonal terms are the indeterminates x1, x2, . . . , xn.

In Sect. 8.1, we establish a more general version of this result for commutative
pre-semirings by giving a combinatorial proof generalizing that of Foata (1965),
Cartier and Foata (1969) (see also Zeilberger, 1985). In Sect. 8.2 we show that the
classical identity can be found again as a special case.

8.1. The Generalized Mac Mahon Identity

Theorem 5. (Minoux 1998b, 2001)
Let (E,⊕,⊗) be a commutative pre-semiring and A = (aij) ∈ Mn(E).
Let S denote the formal series:

S =
∑

(m1,...mn)

K(m1, . . . , mn)⊗ xm1
1 ⊗ xm2

2 ⊗ · · · ⊗ xmn
n (36)

where the sum extends to all distinct n-tuples of natural integers.
Then we have the following generalized Mac Mahon identity:

S⊗
⎛

⎝
∑

σ∈Part+(n)

∏

i∈dom(σ)

ai,σ(i) ⊗ xσ(i)

⎞

⎠

= e⊕ S⊗
⎛

⎝
∑

σ∈Part−(n)

∏

i∈dom(σ)

ai,σ(i) ⊗ xσ(i)

⎞

⎠

(37)

Proof. Let us consider the family G(m1, . . . , mn) of all the directed multigraphs of
the form G = [X, Y] where X = {1, 2, . . . , n} is the vertex set and where the set of
arcs Y satisfies the two conditions:

(1) ∀i ∈ X, Y contains exactly mi arcs origining at i
(2) ∀i ∈ X, Y contains exactly mi arcs terminating at i

(observe that the graphs of the family G(m1, . . . , mn) can obviously contain loops).
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The weight of G = [X, Y] is defined as the formal expression:

w(G) =
∏

(k,1)∈Y

(ak1 ⊗ x1)

(product in the sense of ⊗) with the convention w(G) = e if Y = ∅.
We then verify that:

K(m1, . . . . , mn)x
m1
1 ⊗ xm2

2 ⊗ · · · ⊗ xmn
n

=
∑

G∈G(m1,...,mn)

w(G)

Consequently, the expression S given by (36) can be rewritten:

S =
∑

(m1,....,mn)

∑

G∈G(m1,...,mn)

w(G) =
∑

G∈G
w(G)

with G =
⋃

(m1,...,mn)

G(m1, . . . , mn)

(union extended to all distinct n-tuples of natural integers).
Let us now consider the family F+ (resp. F−) of all the graphs of the form

G = [X, Y ∪ C] where:

• [X, Y] ∈ G
• [X, C] is the graph representative of a partial permutation σ ∈ Part+(n) (resp.

σ ∈ Part−(n)). It is therefore a set of arcs forming an even number (resp. odd
number) of elementary vertex-disjoint circuits (some of these circuits may
be loops).

We then observe that the left-hand side of (37) is equal to:
∑

G∈F+
w(G) and the

right-hand side of (37) is equal to: e⊕ ∑

G∈F−
w(G).

Among all the graphs of the family F+ ∪ F−, let us consider G0 = [X, Y ∪ C]
with Y = ∅ and C = ∅. In this case, the graph [X, Y] corresponds to m1 =
0, m2 = 0, . . . mn = 0, it is therefore the unique element of the family G(0, 0, . . . 0).
Furthermore, G0 ∈ F+ since C = ∅ corresponds to an even number of circuits, and
w(G0) = e.

Consequently, it suffices to establish that:
∑

G∈F+\G0

w(G) =
∑

G∈F−
w(G) (38)

To do so, we are going to exhibit a one-to-one correspondence between F+\G0 and
F− such that, if G ∈ F+\G0 and G′ ∈ F− are images through this one-to-one
correspondence, then w(G′) = w(G).

All the graphs of the form [X, Y ∪ C] in (F+\Go) ∪ F− are assumed to be
represented by adjacency lists with the following convention: for every i ∈ X, if i
belongs to a circuit in [X, C], then the arc of origin i in C is placed in the first position
of the list of the arcs of origin i.
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Now, let us consider G = [X, Y ∪ C] ∈ F+\G0. Since G �= G0, there exists at
least one vertex of nonzero degree in G. Among these, let i0 be the vertex having
minimum index number.

Observe that C consists of an even number of vertex-disjoint circuits (this number
may possibly be zero).

Let us traverse the partial graph [X, Y] starting from vertex i0 by using the arcs
of Y as follows: from every intermediate vertex i encountered that is not covered
by C, we take the arc (i, j) which appears first in the adjacency list of vertex i. The
traversal stops when one of the two following situations arises:

Case 1. We arrive at a vertex already encountered in the pathway before having
encountered a vertex covered by C;
Case 2. We arrive at a vertex k covered by C.

In the first case, we have exhibited a circuit of the partial graph [X, Y], which does
not have a common vertex with C. Let Γ ⊂ Y be the set of its arcs.

We then form G′ = [X, Y′ ∪ C′]
with Y′ = Y\Γ

C′ = C ∪ Γ

In the second case, C contains a circuit passing through k and let Γ be the set of its
arcs. Then we form G′ = [X, Y′ ∪ C′] with:

Y′ = Y ∪ Γ

C′ = C\Γ
Moreover, the adjacency list of each node i covered by the circuit Γ is modified in such
a way that the arc of Γ which originates at i becomes the first in the adjacency list for i.

In both cases, C′ contains an odd number of vertex-disjoint circuits. Furthermore,
the sets of arcs of G and G′ being the same, we have w(G′) = w(G).

Finally, we observe that, thanks to the convention established concerning the
order of arcs in the adjacency lists, the same construction which transforms G into
G′ enables one to transform G into G′. This is therefore a one-to-one correspondence
between F+\G0 and F−, which completes the proof of Theorem 5. "#

8.2. The Classical Mac Mahon Identity as a Special Case

It is interesting to verify that the generalized form (37) of the Mac Mahon identity
includes, as a special case, the usual form on the field of real numbers, which is
expressed by the following corollary:

Corollary 8.2.1. S being defined as in expression (36), and B denoting the matrix
B = (bij)i=1,...n

j=1,...n
= (aijxj)i=1,...n

j=1,...n
, we have:

S× det(I− B) = 1 (39)

Proof. See Exercise 2 at the end of the chapter and Minoux (1998b, 2001). "#
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Exercises

Exercise 1. We consider the real matrix:

A =

⎡

⎢⎢
⎣

4 2 0 1
0 3 −1 2
2 0 5 −3
−2 1 6 0

⎤

⎥⎥
⎦

on a dioid (R,⊕,⊗).

(1) Give the formal expression of the bideterminant ofA, by formally stating det+(A)

and det−(A).
(2) Compute the value of the bideterminant when the dioid under consideration

is (R, Max, Min). Check that Max{det+(A); det−(A)} is indeed equal to the
optimal value of the « bottleneck » (Max-Min) assignment problem.

(3) Compute the value of the bideterminant when the dioid under consideration is
(R, Max,+). Check that Max{det+(A); det−(A)} is indeed equal to the optimal
value of the assignment problem (where the objective is to maximize the sum of
the selected entries).

(4) Check the Cayley–Hamilton theorem for A in both cases ((R, Max, Min) and
(R, Max,+)).

Exercise 2. We consider the real 4 × 4 matrix with entries in the dioid
(R, Min,+):

A =

⎡

⎢⎢
⎣

∞ 4 0 1
0 ∞ −1 2
3 5 ∞ −3
−2 1 6 ∞

⎤

⎥⎥
⎦

which is a generalized adjacency matrix corresponding to the complete oriented
graph.

(1) Set up the list of all arborescences with root r = 1 in the above graph, and
calculate the sum S (in the sense of ⊕ = Min) of the weights of these arbores-
cences. We recall that, in the Matrix-Tree Theorem (see Theorem 3, Sect. 7.1), the
arborescences involved are those having arcs oriented from the pending vertices
to the root. The vertex r = 1 has thus zero out-degree.

(2) Check the generalized version of the « matrix tree theorem » on this example, in
other words that det+(B) = Min {det−(B); S}
where B is the 6× 6 matrix:

[
D Ā
. . . .
I ..

..
..

.

I

]

where:
Ā is deduced from A by deleting the first row and the first column of A; D is the
diagonal matrix with diagonal entries:

dii = Min
j=1,...,n

{
aij

} ∀i = 2, 3, 4.
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[Answers:

(1) There are 16 distinct arborescences rooted at r = 1 in this example. For instance
the arborescence composed of the arcs (2,1) (3,1) (4,1) with weight 1 (= 0 +
3 − 2); the arborescence composed of the arcs (2, 1) (3, 1) (4, 2) with weight
4, etc. The minimum of the weights of these 16 arborescences is S = −6, and
corresponds to the arborescence (4, 1)(2, 3)(3, 4).

(2) We have Ā =
⎡

⎣
∞ −1 2
5 ∞ −3
1 6 ∞

⎤

⎦ and D =
⎡

⎣
−1 ∞ ∞
∞ −3 ∞
∞ ∞ −2

⎤

⎦

and it can be checked that:

det+(B) = −6, det−(B) = −3

and that the extended Matrix-Tree Theorem holds since:

det+(B) = Min{det−(B), S} = Min{−3,−6}.]
Exercise 3. (Proof of Theorem 4: generalized “All Minors Matrix Tree Theorem”)

In this exercise, we refer to the concepts and notation used in Sect. 7.4.
Given two subsets U and V of X of equal cardinality (|U| = |V|), we refer to as

matching every one-to-one correspondence π:U → V. The signature of a matching
π: U → V, denoted sign(π), is defined as follows. A pair (i, j) of elements of U is
said to be in inversion relatively to π if i < j and π(i) > π(j). By denoting ν(π) the
number of pairs (i, j) i ∈ U, j ∈ U, which are in inversion relatively to π, then sign
(π) = (−1)ν(π). We observe that, in the special case where U = V = X, a matching
is none other than a permutation of X, and we verify that in this case the definition
of the matching signature is consistent with that of the permutation signature.

The characteristic of a matching π: U → V is defined as:

char(π) = sign(π)× (− 1)|W|

where W = {i/i ∈ U, π(i) = i}
We now denote by F+ (resp. F−) the set of all the directed graphs on X having as
set of arcs S ∪ T where:

– S is the set of arcs of the form (i, π(i)) for every i ∈ L such that i �= π(i), where
π: L → K is a matching of characteristic +1 (resp. of characteristic −1).

– T is a set of arcs such that, for every i ∈ L satisfying π(i) = i, there is exactly one
arc in T of the form (k, i) with k ∈ X, k �= i (note that π(i) = i implies i ∈ L∩K).

Among the graphs H of the family F+ (resp. F−) those which are circuitless are
exactly those of T + (resp. T −) (see Sect. 7.4). We can therefore write:

F+ = T + ∪F+c and F− = T − ∪F−c where F+c (resp. F−c ) denotes the family
of sub-graphs H ∈ F+ (resp. H ∈ F−) which contain nontrivial circuits (i.e. circuits
which are not loops).
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(1) Prove that we have:

det+(B) =
∑

H∈F+
w(H) and det−(B) =

∑

H∈F−
w(H)

where B is the matrix

[
Ā Q
. . . . .
R ..

..
..

.

Ip

]

defined in Sect. 7.4.

(2) Show, by using an argument similar to the one used by Chaiken (1982), that

∑

H∈F+
c

w(H) =
∑

H∈F−
c

w(H)

(3) Then show that Theorem 4 is deduced from the above by taking:

Δ =
∑

H∈F+
c

w(H) =
∑

H∈F−
c

w(H)

[Answers: refer to Minoux (1998a)].

Exercise 4. Where we recover the classical Mac Mahon identity
Here we take the field of real numbers as the basic algebraic structure.

(1) Let B be a n×n matrix with coefficients in R, and I the identity matrix of Mn(R).
Prove that:

det(I− B) =
∑

σ∈Part+(n)

(
Π

j∈dom(σ)
bi,σ(i)

)
−

∑

σ∈Part−(n)

(
Π

i∈dom(σ)
bi,σ(i)

)
.

(2) By using the above relation, deduce from Theorem 5 (see Sect. 8.1) the classical
Mac Mahon identity:

S× det(I− B) = 1

with B = (bij)i=1···n
j=1···n

= (aijxj)i=1···n
j=1···n

.

[Answers: refer to Minoux (1998b, 2001)]



Chapter 3
Topology on Ordered Sets: Topological Dioids

1. Introduction

This chapter is devoted to the study of topological properties, first in general ordered
sets, then in dioids (this will eventually lead to the concept of topological dioids)
and to the solution of equations of the fixed-point type.

Various types of topologies may be introduced, depending on the nature of the
ordered sets considered. The simplest cases correspond to a totally ordered set, or to
a product of totally ordered sets (e.g. R

n with the partial order induced by the usual
order on R). The relevant topologies on such sets are extensions of usual topologies.
We will concentrate here on the more general case of partially ordered sets (or
“posets”). In relation to these sets, we introduce in Sect. 2 two basic topologies: the
sup-topology and the inf-topology.

Then we show in Sect. 3 that the sup-topology may be interpreted in terms of limit
sup of increasing sequences; and likewise that the inf-topology may be interpreted
in terms of the limit inf of decreasing sequences. The notions of continuity and
semi-continuity for functions on partially ordered sets are introduced in Sect. 4.

We then discuss the fixed-point theorem, first in the context of general ordered
sets (Sect. 5), and next in the context of topological dioids, in view of solving linear
equations of the fixed-point type. Section 7 is devoted to the concept of p-stable
element in a dioid which guarantees the existence of a quasi-inverse, and which
turns out to be useful in the solution of various types of equations, whether linear
(Sect. 7.2) or nonlinear (Sect. 7.3).

Finally, Sect. 8 introduces and discusses the concepts of residuation and of
generalized solutions.

2. Sup-Topology and Inf-Topology in Partially Ordered Sets

Let (E,≤) be an ordered set, where ≤ is a reflexive, transitive and antisymmetric
binary relation. To define a topology on E, it is known that it suffices to provide a
fundamental system of neighborhoods. This can be achieved in various ways.

83
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For example, if we choose as the system of fundamental neighborhoods the set of
subsets of E (ideals) of the form ↓ a = {x/x ≤ a} for a running through E, we obtain
a so-called (left) Alexandrov topology. We could similarly, choose as fundamental
neighborhoods filters of the form ↑ a = {x/a ≤ x}. We would then obtain the right
Alexandrov topology.

The Alexandrov topologies are not separated (see Example 2.1.3. below). We
recall that a topology is separated if and only if, given two arbitrary distinct elements
a ∈ E, a′ ∈ E, we can find a neighborhood of a and a neighborhood of a′ that
are disjoint. It is an essential property to guarantee uniqueness for the limit of a
sequence.

In this chapter, we study separated topologies finer than the Alexandrov topolo-
gies: the Sup-topology and the Inf-topology. We will see that the Sup-topology
corresponds to the concept of upper limit of sequences and that the Inf-topology
corresponds to the concept of lower limit of sequences.

2.1. The Sup-Topology

For every a ∈ E introduce the ideal:
↓ a = {x ∈ E/x ≤ a} and the anti-ideal:
↓− a = {x ∈ E/x � a}.

Definition 2.1.1. E being an ordered set with respect to the relation ≤, we call Sup-
topology on E the topology for which the system of fundamental neighborhoods for
any element a ∈ E consists of all the sets of the form:

V =↓ a ∩ ↓− b1 ∩ ↓− b2. . . ∩ ↓− bk (1)

where (b1, b2, . . . bk) is a finite (possibly empty) family of elements of E such that,
∀i = 1, 2, . . . k: a � bi (that is to say, bi belongs to ↑− a) (see Betrema 1982).

A neighborhood of a ∈ E, in the sense of the Sup-topology, is therefore formed by
every subset of E containing a subset of the form V defined as (1).

The set of the neighborhoods of a ∈ E for the Sup-topology will be denoted Vs (a).
With the above definitions, we easily check the properties:

(i) If V ∈ Vs (a) and V′ ∈ Vs (a) then V ∩ V′ ∈ Vs (a)
(ii) If V ∈ Vs (a) and U ⊃ V then U ∈ Vs (a)

(iii) If Vi ∈ Vs (a) for i ∈ I ⊂ N, then ∪
i∈I

Vi ∈ Vs (a).

Since every neighborhood in the (left) Alexandrov topology is a neighborhood in the
Sup-topology (but not the converse), we see that the Sup-topology is finer than the
left Alexandrov topology.
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We can state:

Property 2.1.2. The Sup-topology is separated.

Proof. Let a ∈ E, a′ ∈ E, a �= a′. We distinguish two cases.

Case 1: a′ ≤ a
In this case: a � a′ (since a �= a′).
Then V(a) = ↓ a ∩ ↓− a′ and V(a′) = ↓ a′
are two neighborhoods of a and a′ respectively, and they are disjoint.
Case 2: a′ � a
Then V(a) = ↓ a and V(a′) = ↓ a′ ∩ ↓− a
are two neighborhoods of a and a′ respectively, and they are disjoint. "#

Contrary to the Sup-topology, the left Alexandrov topology is not separated, as seen
in the following example.

Example 2.1.3. We consider E = R
2 endowed with the order relation

(
a
a′
)
∝

(
b
b′
)
⇔ a ≤ b and a′ ≤ b′ (where ≤ denotes the standard order relation on R). The

two elements

(
1
1

)
and

(
3
2

)
are distinct, but every neighborhood of

(
3
2

)
in the sense

of the left Alexandrov topology contains ↓
(

1
1

)
. Therefore, in the left Alexandrov

topology, every neighborhood of

(
3
2

)
intersects an arbitrary neighborhood of

(
1
1

)
. ||

2.2. The Inf-Topology

The Inf-topology can be defined similarly to the above.
For arbitrary a ∈ E, let us introduce the filter:
↑ a = {x ∈ E/a ≤ x) and the anti-filter:
↑− a = {x ∈ E/a � x}.

Definition 2.2.1. We call Inf-topology on E the topology for which the system of
fundamental neighborhoods of an arbitrary element a ∈ E is composed of all the
sets of the form:

V =↑ a ∩ ↑− c1 ∩ ↑− c2. . . ∩ ↑− c� (2)

where c1, c2, . . . c� is a finite (possibly empty) family of elements of E such that:
∀i = 1, . . . �: ci � a, that is to say: ci ∈ ↓− a.

We denote Vi (a) the set of neighborhoods for the inf-topology.
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Remark 2.2.2. In the case of a totally ordered set or of a set defined as the product
of totally ordered sets, we can choose the system of fundamental neighborhoods of
an element a ∈ E as the family of sets of the form:

V = ∩
i ∈ I

(↓− bi) ∩
j∈ J

(↑− cj)

where (bi)i∈I and (cj)j∈J are finite (possibly empty) families of elements of E such
that, ∀i ∈ I : a � bi (that is to say: bi ∈ ↑− a) and, ∀j ∈ J: cj � a (that is to say:
cj ∈ ↓− a). ||
The various topologies introduced above (Sup-topology, Inf-topology), endow E
with a structure of topological space. Let us briefly recall some definitions and basic
properties valid in every topological space.

– A subset A of E is called an open neighborhood if and only if A is a neighborhood
of each of its elements.

– Let A ⊂ E and x ∈ A. We say that x is interior to A if there exists a neighborhood
V of x such that V ⊂ A. The interior of A, denoted Å, is the set of the elements
interior to A.

– A subset A ⊂ E is open, if and only A = Å.
– A subset B ⊂ E is closed if B is the complement in E of an open subset A.
– Let A ⊂ E and x ∈ E. We say that x is adherent to A if every neighborhood of x

in E intersects A.
– The set of adherent points of A is called the closure of A and is denoted Ā.
– The closure Ā of A ⊂ E is the smallest closed subset of E containing A.
– A subset A of E such that Ā = E is said to be dense in E. A is dense in E if and

only if every non empty open subset of E intersects A.

3. Convergence in the Sup-Topology and Upper Bound

Let (E,≤) be an ordered set endowed with the Sup-topology.

3.1. Definition (Sup-Convergence)

An infinite sequence {xn}n∈N of elements of E is said to be convergent in the sense
of the Sup-topology, with limit x̄ ∈ E, if and only if, ∀V ∈ Vs(x̄), there exists K ∈ N

such that: k ≥ K ⇒ xk ∈ V. This convergence will be denoted xn ⇀ x̄.

Observe that, as the Sup-topology is separated, the limit of a sequence, when it
exists, is unique.

The following result (Betrema 1982) establishes the equivalence between the
limits (for the Sup-topology) of nondecreasing sequences and their least upper
bounds.
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Theorem 1. Let (E,≤) be an ordered set endowed with the Sup-topology.

(i) Let {xn}n∈N be a nondecreasing sequence bounded from above and having a
least upper bound x̄. Then the sequence {xn} is convergent for the Sup-topology
and has limit x̄.

(ii) Let {xn}n∈N be a convergent sequence in the sense of the Sup-topology (but
not necessarily nondecreasing) and with limit x̄(xn ⇀ x̄). Then there exists an
integer p ∈ N such that: x̄ = sup{xn: n ≥ p}

Proof. (i) By assumption, the set {xn: n ∈ N} has a least upper bound x̄ =
sup{xn: n ∈ N}

Let Vs(x̄) be an arbitrary neighborhood of x̄ in the sense of the Sup-topology.
It is of the form:

Vs(x̄) =↓ x̄ ∩ ↓− y1 ∩ . . . ∩ ↓− yk

where, ∀i = 1, . . . k: x̄ � yi, that is to say yi ∈ ↑− x̄. Consider any i, 1 ≤ i ≤ k;
yi is not an upper bound of the sequence {xn}. Consequently, ∀i = 1, . . . , k,
there exists an integer pi such that xpi � yi.

Since the sequence {xn} is nondecreasing, n ≥ pi ⇒ xn ≥ xpi , therefore
necessarily xn � yi. In other words:

n ≥ pi ⇒ xn ∈ ↓− yi

Thus:
n ≥ p = Max

i=1,...,k
{pi} ⇒ ∀i = 1, . . . , k: xn ∈ ↓− yi.

Since xn ≤ x̄, we have, ∀n ≥ p: xn ∈↓ x̄ ∩ ↓− y1 ∩ . . . ∩ ↓− yk.
This proves that the sequence {xn} is convergent in the sense of the Sup-

topology and that x̄ is its limit.
(ii) The sequence {xn} being convergent, let us choose ↓ x̄ as a neighborhood of x̄:

there exists an integer p ∈ N such that n ≥ p ⇒ xn ∈↓ x̄ ⇒ xn ≤ x̄.
Consequently x̄ is an upper bound of Xp = ∪

n≥p
{xn}. Let us assume that Xp

has another upper bound ȳ �= x̄ such that ȳ ≤ x̄. We necessarily have x̄ � ȳ
(otherwise we would have x̄ = ȳ, which would give rise to a contradiction).

Then ↓ x̄∩ ↓− ȳ is a neighborhood of x̄ which contains none of the xn(n ≥ p),
thus contradicting the convergence of {xn} towards x̄ (in the sense of the Sup-
topology). This clearly proves that:

x̄ = sup{xn : n ≥ p} "#
For the Inf-topology, we would obtain results similar to Theorem 1 by replacing
“nondecreasing sequences” with “nonincreasing sequences” and “least upper bound”
with “greatest lower bound.” The Inf-topology can thus be interpreted as the topology
corresponding to the lower limit of sequences.

Thus, for a sequence {xn}n∈N that converges in the sense of the Inf-topology and
with limit x̄ (this convergence will be denoted xn ⇁ x̄) there exists an integer p ∈ N

such that:
x̄ = inf {xn : n ≥ p}. (3)
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Remark 3.1.1. Sup-convergence, inf-convergence and finite convergence
If a sequence {xn} (not necessarily monotone) is convergent both in the sense of

the Sup-topology and in the sense of the Inf-topology towards the same limit, then
it converges finitely.

Indeed, if {xn} is convergent in the sense of the Sup-topology with limit x̄, then
there exists P ∈ N such that:

n ≥ P ⇒ xn ∈ ↓ x̄.

If, furthermore, {xn} is convergent in the sense of the Inf-topology with limit x̄, then
there exists Q ∈ N such that:

n ≥ Q ⇒ xn ∈ ↑ x̄.

We then deduce that for n ≥ Max{P, Q} we have: xn ∈↓ x̄∩ ↑ x̄ = {x̄}. ||

3.2. Concepts of Limit-sup and Limit-inf

Let us now discuss the case where the order relation≤ induces on the set E a complete
lattice structure. In other words, every subset of E with finite or infinite cardinality
bounded from above (resp. bounded from below) has a least upper bound (resp. a
greatest lower bound).

We can then introduce the concepts of upper limit (resp. lower limit) for arbitrary
(not necessarily monotone) sequences bounded from above (resp. bounded from
below).

Let us consider an arbitrary sequence {xn}n∈N assumed to be bounded, that is to
say such that there exists m ∈ E and M ∈ E such that: ∀n ∈ N:m ≤ xn and xn ≤ M.

For an arbitrary p, p ∈ N, let us consider the set Xp = {xn : n ≥ p}
This set is bounded from above. It has therefore a least upper bound σp: σp =

sup{xn : n ≥ p}. The sequence
{
σp

}
p∈N

is monotone nonincreasing and bounded
from below by m. It is therefore convergent in the sense of the Inf-topology, and its
limit σ̄ will be referred to as the upper limit of the sequence {xn}. Thus we have:
σ̄ = lim-sup{xn} = inf

p∈N

sup{xn: n ≥ p}
Similarly, we can define the sequence

{
θp
}

p∈N
as:

∀p ∈ N: θp = inf {xn : n ≥ p}.
This sequence is monotone nondecreasing, therefore convergent in the sense of the
Sup-topology, and its limit θ̄ will be referred to as the lower limit of the sequence
{xn}. Thus:

θ̄ = lim-inf{xn} = sup
p∈N

inf {xn : n ≥ p} .
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4. Continuity of Functions, Semi-Continuity

Let (E,
E≤) and (F,

F≤) be two ordered sets each of them endowed with the Sup-
topology.

A function f: E → F is nondecreasing if and only if:

∀x, y ∈ E x
E≤ y ⇒ f (x)

F≤ f (y).

Definition 4.1. A function f: E → F is said to be continuous in the sense of the Sup-
topology (resp. of the Inf-topology) if and only if, for every sequence {xn} convergent
in E of limit x̄, the sequence f (xn) is convergent in F in the sense of the Sup-topology
(resp. of the Inf-topology), its limit being ȳ = f (x̄).

Definition 4.2. A function f: E → F is said to be upper semi-continuous (u.s.c.)
in the sense of the Sup-topology (resp. lower semi-continuous (l.s.c.) in the sense of
the Inf-topology) if and only if, for every sequence {xn} convergent in E with limit x̄,
the sequence f (xn) is convergent in F in the sense of the Sup-topology (resp. in the

sense of the Inf-topology) and has limit ȳ
F≤ f (x̄) (resp. ȳ

F≥ f (x̄)).

The following result establishes upper semi-continuity in the sense of the Sup-
topology for nondecreasing functions.

Theorem 2. Let (E,
E≤) and (F,

F≤) be two ordered sets endowed with the Sup-
topology. We assume moreover that in F, every nondecreasing sequence bounded
from above has a least upper bound. Then every increasing function f: E → F is
upper semi-continuous in the sense of the Sup-topology.

Proof. Let us consider a nondecreasing sequence {xn} convergent in E in the sense
of the Sup-topology and let x̄ be its limit.

Since f is nondecreasing, the sequence {f (xn)} is nondecreasing in F. Let us show
that it is bounded from above by f (x̄).

According to Theorem 1: x̄ = sup{xn : n ∈ N}, therefore ∀n: xn
E≤ x̄,

hence: f (xn)
F≤ f (x̄).

Following from the assumptions of the theorem, the sequence {f (xn)} therefore
has a least upper bound ȳ ∈ F which is its limit in the sense of the Sup-topology:

f (xn) ⇀ ȳ = sup{f (xn) : n ∈ N}.
As f (x̄) is an upper bound of {f (xn) : n ∈ N}, we deduce: ȳ ≤ f (x̄), which proves
the upper semi-continuity of f. "#
Let us observe here that we could establish a similar result concerning the lower
semi-continuity (in the sense of the Inf-topology), of nonincreasing functions:
E → F.
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5. The Fixed-Point Theorem in an Ordered Set

Definition 5.1. (fixed point and lower fixed point)
Let (E,≤) be an ordered set and f: E → E a nondecreasing function. We call

lower fixed point of f every x ∈ E satisfying: x ≤ f (x).
We call fixed point of f every x ∈ E satisfying x = f (x).

For every x ∈ E, we denote:

f (2)(x) = f (f (x)) and, ∀k ∈ N: f (k)(x) = f (f (k−1)(x)).

Theorem 3. Let (E,≤) be an ordered set having a smaller element ε, and in which
every nondecreasing sequence bounded from above has a least upper bound. Let f:
E → E be a nondecreasing function. Then if the sequence {f (n)(ε)} is bounded from
above, the function f has a lower fixed point xf satisfying

xf = sup{f (n)(ε) : n ∈ N}. (4)

If, moreover, the function f is continuous for the Sup-topology, then:

• xf is a fixed point of f,
• xf is the smallest element of Xf = {y : y = f (y)} (smallest fixed point).

Proof. ε being the smallest element of E, we have: ε ≤ f (ε), and since f is
nondecreasing, we deduce:

ε ≤ f (ε) ≤ f (2)(ε) ≤ . . . ≤ f (n)(ε) ≤ . . .

The sequence {f (n)(ε)} being nondecreasing and bounded from above, it converges
(in the sense of the Sup-topology) towards a limit xf and:

xf = sup{f (n)(ε) : n ∈ N}
Thus ∀n: f (n)(ε) ≤ xf , and consequently:
∀n: f (n+1)(ε) ≤ f (xf ), which shows that f (xf ) is an upper bound of the sequence

{f (n)(ε)}.
Thus xf ≤ f (xf ), which shows that xf is a lower fixed point of f.
If we assume now that f is continuous for the Sup-topology, we have: f (xf ) = xf

therefore xf is a fixed point of f.
Let us then show that xf defined by (4) is the smallest element of Xf .
Let y be an arbitrary element of Xf = {y: f (y) = y}.
We have: ε ≤ y and, since f is nondecreasing: f (ε) ≤ f (y) = y.
By induction we obtain: ∀n: f (n)(ε) ≤ y which shows that y is an upper bound

of the sequence {f (n)(ε)}. Since xf is, by definition, the least upper bound of this
sequence, we deduce that xf ≤ y. This shows that xf is the smallest fixed point of f
on E. "#
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6. Topological Dioids

Let (E,⊕,⊗) be a dioid. E being an ordered set for the canonical order relation ≤
induced by ⊕, we can endow E with one of the topologies defined in Sect. 2. We
will consider in particular the Sup-topology. Moreover, in this section, we restrict
our attention to the topologies constructed directly from the canonical order relation
≤ relative to ⊕. Many other topologies could be constructed differently, even if
compatibility (“continuity”) with the ⊕ and ⊗ operations is required.

6.1. Definition

We call topological dioid relative to the Sup-topology, a dioid (E,⊕,⊗) endowed with
the Sup-topology associated with the canonical order ≤, and having the following
additional properties:

(i) Every nondecreasing sequence bounded from above has a least upper bound
(every nondecreasing sequence bounded from above is therefore convergent in
the sense of the Sup-topology, its limit being equal to its least upper bound).

(ii) Taking the limit is compatible with the two laws ⊕ and ⊗ of the dioid (in other
words the operations ⊕ and ⊗ are continuous w.r.t. the Sup-topology).

Example 6.1.1. The dioid (E,⊕,⊗), where E = (R∪{−∞})2 is endowed with the
operations ⊕ and ⊗ defined as:

(
x
x′
)
⊕

(
y
y′
)
=

(
Max{x, y}

Max{x′, y′}
)

(
x
x′
)
⊗

(
y
y′
)
=

(
x + x′
x′ + y′

)

is a topological dioid.
Indeed, the canonical order relation ≤ is defined as:

(
x
x′
)
≤

(
y
y′
)
⇔

⎧
⎨

⎩

x ≤ y
and

x′ ≤ y′

and every nondecreasing sequence bounded from above is formed by a sequence

of pairs

(
xn
x′n

)
(n ∈ N) where {xn} and {x′n} are nondecreasing sequences of reals

bounded from above. Such a sequence is therefore convergent in the sense of the
Sup-topology. Furthermore, it is easily seen that taking the limit is compatible with
the laws ⊕ and ⊗. ||
The following result shows that assumption (ii) for the⊕ law is automatically satisfied
in selective dioids.
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Property 6.1.2. If (E,⊕,⊗) is a selective dioid (⊕ selective), then taking the limit
for nondecreasing convergent sequences is compatible with the ⊕ law.

Proof. Let {xn} and {yn} be two nondecreasing sequences bounded from above
(therefore convergent for the Sup-topology), their limits being respectively x̄ and ȳ.

We have:

x̄ = lim{xn} = sup{xn : n ∈ N}
ȳ = lim{yn} = sup{yn : n ∈ N}

Since ≤ is compatible with ⊕, {xn ⊕ yn} is also a nondecreasing sequence bounded
from above by x̄⊕ ȳ. It is therefore convergent and its limit is z̄ ≤ x̄⊕ ȳ.

Let us show that z̄ = x̄⊕ ȳ.
Since ⊕ is selective, we have:

∀n: xn ⊕ yn = sup{xn, yn}
and:

x̄⊕ ȳ = sup{x̄, ȳ}
= sup{sup{xn : n ∈ N}; sup{yn : n ∈ N}} = sup

{
∪
n
{xn, yn}

}

= sup

{
∪
n

{
sup

{
xn,yn

}}} = sup{xn ⊕ yn : n ∈ N}

We therefore deduce:
x̄⊕ ȳ = lim{xn ⊕ yn} "#

Another direct consequence of the definition of a topological dioid is the existence
of a quasi-inverse (see Definition 6.2.1 below):

Property 6.1.3. Let (E,⊕,⊗) be a topological dioid where e, the neutral element
for ⊗, satisfies: e⊕ e = e. Then every element a ≤ e has a quasi-inverse a∗.

Proof. We have:

a ≤ e

hence, ∀k: ak ≤ e

and a(k) = e⊕ a ⊕ a2 ⊕ . . .⊕ ak ≤ e.

The sequence a(k) is thus nondecreasing and bounded from above. It therefore has a
limit a∗ referred to as the quasi-inverse of a. "#

Observe that the condition e⊕ e = e will be satisfied, in particular,

– when ⊕ is idempotent,
– when e is the largest element of E.
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6.2. Fixed-Point Type Linear Equations in a Topological Dioid:
Quasi-Inverse

In a topological dioid (E,⊕,⊗), let us consider solving equations of the type:

x = a ⊗ x⊕ e and x = x⊗ a ⊕ e (5)

where a ∈ E is a given element.
For k ∈ N set:

a(k) = e⊕ a ⊕ a2 ⊕ . . .⊕ ak

where ak = a ⊗ a ⊗ . . .⊗ a (k times)
Since: a(k+1) = a⊗a(k)⊕e, we have: a(k+1) = a(k)⊕ak+1, hence: a(k+1) ≥ a(k).
The sequence a(k) is therefore nondecreasing. If, moreover, it is bounded from

above, it is convergent; in this case, its limit sup
k≥0

{
a(k)

}
will be denoted a∗. This leads

to the following definition.

Definition 6.2.1. (quasi-inverse)
We call quasi-inverse of the element a ∈ E, denoted a∗, the limit, when it exists,

of the sequence a(k) where, for every k ∈ N.

a(k) = e⊕ a ⊕ a2 ⊕ . . .⊕ ak.

Proposition 6.2.2. If a∗ (quasi-inverse of a) exists, then it is the minimal solution of
the equations

x = a ⊗ x⊕ e

x = x⊗ a ⊕ e (5)

in other words, a∗ is the smallest element of the set of solutions.

Proof. We have: a(k+1) = a ⊗ a(k) ⊕ e.
As a consequence of the compatibility of ⊕ and ⊗ with taking the limit, a⊗ a(k)

is convergent and has limit a ⊗ a∗; similarly a ⊗ a(k) ⊕ e is convergent and has the
limit a ⊗ a∗ ⊕ e. We deduce the relation:

a∗ = a ⊗ a∗ ⊕ e

Similarly, we establish that: a∗ = a∗ ⊗ a ⊕ e

Furthermore, from equation x = a ⊗ x⊕ e
we easily deduce by induction: x = ak+1 ⊗ x⊕ a(k)

which proves that every solution of (5) is an upper bound of the sequence a(k).
a∗, least upper bound of the sequence a(k), is therefore the minimal solution
to (5). "#
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Remark. The above proposition could also be deduced directly from the fixed point
theorem (Theorem 3 Sect. 5) observing that, as a result of the properties of the
topological dioid (E,⊕,⊗), the function f: E → E defined as:

f (x) = a ⊗ x⊕ e

is continuous in the sense of the Sup-topology. ||
Proposition 6.2.3. If a ∈ E has a quasi-inverse a∗, then ∀b ∈ E, a∗⊗b (resp. b⊗a∗)
is the minimal solution to the equation:

y = a ⊗ y ⊕ b (resp. y = y ⊗ a ⊕ b).

Proof. a∗ ⊗ b is obviously a solution because, by using the above proposition,

a ⊗ a∗ ⊗ b⊕ b = (a ⊗ a∗ ⊕ e)⊗ b = a∗ ⊗ b

Let us show that this is the minimal solution. Let y be an arbitrary solution:

y = a ⊗ y ⊕ b

= a(a ⊗ y ⊕ b)⊕ b

= a2 ⊗ y ⊕ a ⊗ b⊕ b

= a3 ⊗ y ⊕ a2 ⊗ b⊕ a ⊗ b⊕ b

and in a general way: y = ak+1 ⊗ y ⊕ a(k) ⊗ b
Thus for every k ∈ N: y ≥ a(k) ⊗ b.
y is therefore an upper bound of the sequence {a(k)⊗ b}. This sequence is nonde-

creasing, convergent towards a∗⊗ b, the least upper bound of the sequence. Therefore
we clearly have: y ≥ a∗ ⊗ b. "#
Proposition 6.2.4. Let (E,⊕,⊗) be a topological dioid and two elements a ∈ E,

b ∈ E such that the quasi-inverses a∗ and (b⊗ a∗)∗ exist. Then (a ⊕ b)∗ exists and
we have the identity:

(a ⊕ b)∗ = a∗ ⊗ (b⊗ a∗)∗.

Similarly, if a∗ and (a∗ ⊗ b)∗ exist then (a ⊕ b)∗ exists and we have the identity

(a ⊕ b)∗ = (a∗ ⊗ b)∗ ⊗ a∗.

Proof. Let us first show that a∗ ⊗ (b⊗ a∗)∗ is a solution to the equation

x = (a ⊕ b)⊗ x⊕ e (6)

u = a∗ is the minimal solution to: u = a ⊗ u ⊕ e.
Likewise v = (b⊗ a∗)∗ is the minimal solution to:

v = (b⊗ a∗)⊗ v ⊕ e = (b⊗ u ⊗ v)⊕ e.
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We deduce:

u ⊗ v = a ⊗ u ⊗ v ⊕ v

= (a ⊗ u ⊗ v)⊕ (b⊗ u ⊗ v)⊕ e

hence we deduce that u ⊗ v = a∗ ⊗ (b⊗ a∗)∗ is a solution to (6).
In the same way as in the proof of 6.2.3, we have for every solution x of (6), ∀k:

x ≥ (a ⊕ b)(k)

From this we deduce that the nondecreasing sequence (a ⊕ b)(k) is bounded from
above. E being a topological dioid, it therefore has a limit in E, which proves the
existence of (a ⊕ b)∗ = x̄ minimal solution to (6).

We can then deduce from the above the inequality x̄ = (a⊕b)∗ ≤ a∗⊗ (b⊗a∗)∗.
Let us now prove the reverse inequality. To do so, it suffices to observe that x̄ is

the minimal solution in x of the equation:

x = x⊗ a ⊕ x̄⊗ b⊕ e

(indeed let x′ ≤ x̄ satisfying x′ = x′ ⊗ a ⊕ x̄ ⊗ b ⊕ e. By setting x̄ = x′ ⊕ h we
would have:

x′ = x′ ⊗ a ⊕ x′ ⊗ b⊕ h ⊗ b⊕ e which shows that:

x′ ≥ (h ⊗ b⊕ e)⊗ (a ⊕ b)∗ ≥ x̄

hence we deduce x′ = x̄).
Since a∗ exists we therefore have x̄ = (x̄ ⊗ b⊕ e)⊗ a∗ which shows that x̄ is a

solution to the equation:
x̄ = x̄⊗ (b⊗ a∗)⊕ a∗

Since (b⊗ a∗)∗ exists we therefore have

x̄ ≥ a∗ ⊗ (b⊗ a∗)∗.

The second part of the proposition is proved in a similar way, starting from the
equation x = x⊗ (a ⊕ b)⊕ e. "#
Proposition 6.2.5. Let (E,⊕,⊗) be a topological dioid and two elements a ∈ E,
b ∈ E such that the quasi-inverses a∗ and (a ⊕ b)∗ exist. Then (b ⊗ a∗)∗ and
(a∗ ⊗ b)∗ exist, and we have the identities:

(a ⊕ b)∗ = a∗ ⊗ (b⊗ a∗)∗ = (a∗ ⊗ b)∗ ⊗ a∗.

Proof. x̄ = (a ⊕ b)∗ is the minimal solution to the equation:

x = x⊗ a ⊕ x⊗ b⊕ e
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therefore (see proof of 6.2.4) x̄ is the minimal solution in x to the equation:

x = x⊗ a ⊕ x̄⊗ b⊕ e

and since a∗ exists, we have:

x̄ = (x̄⊗ b⊕ e)⊗ a∗

x̄ is therefore a solution in x to the equation

x = x⊗ (b⊗ a∗)⊕ a∗

For every integer k ≥ 1 we can therefore write:

x̄ = x̄⊗ (b⊗ a∗)k+1 ⊕ a∗ ⊗ (b⊗ a∗)(k)

and consequently, ∀k ≥ 1:

a∗ ⊗ (b⊗ a∗)(k) ≤ x̄

The sequence a∗ ⊗ (b ⊗ a∗)(k) is therefore nondecreasing and bounded from
above. Since E is a topological dioid, it therefore has a limit which is necessarily
a∗ ⊗ (b⊗ a∗)∗.

One would similarly prove the existence of (a∗ ⊗ b)∗. The claimed identities are
then deduced from Proposition 6.2.4. "#
The above result will be used, in particular, in Chap. 4 Sect. 4.2 to prove the
convergence of the generalized Gauss-Seidel algorithm.

Proposition 6.2.6. Let A = (aij) ∈ Mn (E) a n × n matrix with entries in a topo-
logical dioid (E,⊕,⊗). Assume the existence of the quasi-inverse A∗ of A defined
as the limit of A(k) = I⊕A⊕A2⊕ . . .⊕Ak as k →∞. Then each diagonal entry
aii of A has a quasi-inverse (aii)

∗.
More generally, each square principal submatrix of A has a quasi-inverse.

Proof. In Chap. 4 Sect. 3.2 it will be shown that (Ak)ii can be expressed as the sum of
the weights of all cardinality−k circuits through node i in the graph G(A) associated
with the A matrix. One of the circuits involved in this sum is the loop (i, i) taken k
times, the weight of which is (aii)

k. We can therefore write:
(

Ak
)

ii
= (aii)

k ⊕ δ(i, k)

(where the term δ (i, k) accounts for the sum of the weights of all other cardinality-k
circuits).

From this we can deduce that:

(A(k))ii = (aii)
(k) ⊕Δ(i, k)

where Δ (i, k) = δ (i, 1)⊕ δ (i, 2)⊕ . . .⊕ δ (i, k).
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Since A(k) is a nondecreasing sequence of matrices with limit A∗ we have,
∀k: (A(k)

)
ii ≤ (A∗)ii, and thus we can write:

(aii)
(k) ⊕Δ(i, k) ≤ (A∗)ii

which clearly implies:
(aii)

(k) ≤ (A∗)ii.

From this we conclude that (aii)
(k) is a nondecreasing sequence of elements of E,

bounded from above. Since (E,⊕,⊗) is a topological dioid, we deduce that this
sequence is convergent and has a limit (aii)

∗, the quasi-inverse of aii.
Consider now the more general case of a principal submatrix A[S] deduced from

A by considering only the rows and columns in a given subset of indices S ⊂
{1, 2, . . . , n}. Denote (A[S])k the kth power of A[S]. Then (A[S])

k
ij can be expressed

as the sum of the weights of all cardinality-k i-j paths in G(A) with the restriction of
using only nodes in S.

We therefore have, ∀k: (
A[S]

)k ≤ (Ak)[S]

and thus: (
A[S]

)(k) ≤ (A∗)[S]

From this it is seen that the nondecreasing sequence of matrices (A[S])
(k) is

bounded from above. Since Mn(E) is a topological dioid, the existence of (A[S])∗ is
deduced. "#

7. P-Stable Elements in a Dioid

In many applications involving dioids, it is not necessary to resort to Sup-topology
to study the convergence properties of sequences. It is enough to guarantee finite
convergence of some nondecreasing sequences (discrete topology).

Let (E,⊕,⊗) be a dioid. For a ∈ E we recall the notation introduced in Sect. 6.2:

a(k) = e⊕ a ⊕ a2 ⊕ . . .⊕ ak.

Definition 7.1. (p stable element)
For p ≥ 0 integer, an element a is said to be p-stable if and only if:

a(p+1) = a(p)

We then have a(p+2) = e⊕a⊗a(p+1) = e⊕a⊗a(p) = a(p+1), hence by induction

a(p+r) = a(p) ∀r ≥ 0, integer.

For each p-stable element a ∈ E, we therefore deduce the existence of a∗, quasi-
inverse of a, defined as:

a∗ = lim
k→+∞

a(k) = a(p)
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which satisfies the equations

a∗ = a ⊗ a∗ ⊕ e = a∗ ⊗ a ⊕ e. (7)

Let us study some examples of dioids with p-stable elements.

7.1. Examples

Example 7.1.1. Consider the dioid (R+ ∪ {+∞}, max, min), with neutral elements
ε = 0 and e = +∞. Since e⊕ a = max(+∞, a) = {+∞} = e, ∀a ∈ E, we deduce
that every element a is 0-stable and has as quasi-inverse a∗ = e.

This example is encountered, e.g. in the study of the maximum capacity path of
a graph (see Chap. 4 Sect. 6.3). ||
Example 7.1.2. In the case of the dioid (R∪ {+∞} , min,+), with neutral elements
ε = +∞ and e = 0, if the element a is nonnegative, e ⊕ a = min (0, a) = 0 = e
and it is 0-stable. Every nonnegative element therefore has a quasi-inverse a∗ = e.

If the element a is negative, then e ⊕ a = min(0, a) = a and a(k) =
min(0, a, 2a, . . . , ka) = ka. a(k) tends towards −∞ and a does not have a quasi-
inverse in R ∪ {+∞}.

This example can be extended to the case of a matrix, see Example 7.1.8 and
Chap. 4. It is encountered in the study of the shortest path problem in a graph (see
Chap. 4 Sects. 2 and 6.5). ||
Example 7.1.3. In the case of the dioid ([0, 1], max,×), with neutral elements ε = 0
and e = 1, e ⊕ a = max(1, a) = 1 ∀a ∈ E. We deduce that every element of a is
0-stable and has as quasi-inverse a∗ = e.

This example arises in the study of the maximum reliability path of a graph (see
Chap. 4 Sect. 6.6). ||
Example 7.1.4. Let E be the cone of R

2
defined as follows: a = (a1, a2) ∈ E if and

only if a1 ∈ (R, a2 ∈ (R and a1 ≤ a2.
We then define two operations ⊕ and ⊗ on E as follows:
If a ∈ E and b ∈ E, then

c = a ⊕ b = (c1, c2) with c1 = min1(a1, b1), c2 = min2(a1, b1, a2, b2)

c = a ⊗ b = (c1, c2) with c1 = min1(ai + bj) i=1,2
j=1,2

, c2 = min2(ai + bj) i=1,2
j=1,2

where min1 and min2 correspond respectively to the first minimum and second
minimum among the set of values under consideration.

We observe that ⊕ is not idempotent, for instance:

(2, 3)⊕ (2, 3) = (2, 2) �= (2, 3).

We easily check that these two laws endow E with a dioid structure where ε =
(+∞,+∞) and e = (0,+∞).
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Let us show that any a = (a1, a2) ∈ E such that a1 ≥ 0 is 1-stable.
We have e⊕ a = (0, a1), and since a2 = (2 a1, a1 + a2), e⊕ a ⊕ a2 = e⊕ a
Thus, every element a with nonnegative components is 1-stable and has a quasi-

inverse a∗ = e⊕ a.
This example can be extended to the case where E is the cone of (Rk defined as

a = (a1, a2, . . . , ak) with ai ∈ (R and a1 ≤ a2 ≤ . . . ≤ ak. The operations ⊕ and ⊗
on E are then defined as

a ⊕ b = a Min(k)b

a ⊗ b = a
(k)+ b

(where the laws Min(k) and
(k)+ are defined in Chap. 8 Sects. 1.3.1 and 1.1.5).

We verify that every element a with nonnegative components is (k − 1) stable
and has a quasi-inverse a∗ = a(k−1).

This example arises in the study of the kth shortest path problem in a graph (see
Chap. 4 Sect. 6.8). ||
Example 7.1.5. Let us consider a dioid for which ⊕ and ⊗ are idempotent. Then
every element is 1-stable. Indeed e⊕ a ⊕ a2 = e⊕ a ⊕ a = e⊕ a.

This example is linked to an important class of applications where the property of
1-stability is always satisfied: namely distributive lattices (see Chap. 8 Sect. 4.6). ||
Example 7.1.6. Let E be the set of the sequences a = (a1 ≤ a2 ≤ . . . ≤ aq) with
ai ∈ (R and aq ≤ a1+ η where η is a given positive real. The operations⊕ and⊗ on
E are then defined as:

a ⊕ b = a Min(≤η)b

a ⊗ b = a
(≤η)+ b

(where the laws Min(η) and
(≤η)+ are defined in Chap. 8 Sects. 1.3.2 and 1.1.6).

We verify that these two laws endow E with a dioid structure where ε = (+∞)

(the sequence formed by a single element equal to +∞) and e = (0) (the sequence
formed by a single element equal to 0).

Moreover, it can be shown that every a with strictly positive components is p-stable
with p = �η/a1� (where � � denotes the smallest integer greater than or equal to).

This example arises in the study of η-optimal paths of a graph (see Chap. 4
Sect. 6.10). ||
Example 7.1.7. Let us take for E the set of polynomials in several variables with
coefficients in Z, idempotent for ordinary multiplication (therefore in particular
with Boolean variables x2

i = xi). We take for addition ⊕ the symmetric differ-
ence (a⊕ b = a⊕ b− ab), for multiplication⊗ ordinary multiplication. Thus ε = 0
and e = 1.
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Let us show that ⊕ is an internal law: if a ∈ E and b ∈ E, we have a2 ∈ E and
b2 ∈ E; then:

(a ⊕ b)2 = (a + b− ab)2 = a2 + b2 + a2b2 + 2ab− 2ab2 − 2a2b

= a + b+ ab+ 2ab− 2ab = a + b− ab = a ⊕ b.

(E,⊕,⊗) is a dioid and it can be shown that every element is 0-stable.
This example arises in the study of the reliability of a network (see Chap. 4

Sect. 6.9). ||
Example 7.1.8. We consider here the dioid (Mn(E),⊕,⊗) of square matrices of
order n with elements in a given dioid (E,⊕,⊗).

In Chap. 4 (Theorems 1–3), a number of sufficient conditions for a matrix A to
be p-stable will be studied. It will be seen, in particular, that if the elements of E are
0-stable, then the elements of Mn(E) are n-1-stable (see Theorem 1 of Chap. 4). ||
Example 7.1.9. On the dioid (E,⊕,⊗), consider the set F of functions: N → E.
Given two functions f(x) and g(x) of F we define the sum f ⊕ g ∈ F as: ∀x ∈
N: f ⊕ g(x) = f (x)⊕ g(x). We also define the convolution product of two functions
f(x) and g(x) of F by:

(f∗g)(x) =
∑

k+l=x

f (k)⊗ g(�)

where Σ corresponds to the addition ⊕ on the dioid E and + to the addition in N.
We can check that (F,⊕, ∗) is a dioid. Moreover, if all the elements in E are

p-stable, then all the elements in F are p-stable. ||
In the following section, we show how the concept of p-stable element can be used
to solve fixed-point type equations in dioids.

7.2. Solving Linear Equations

Let us consider in (E,⊕,⊗) the linear equation:

x = a ⊗ x⊕ b (8)

Proposition 7.2.1. If the element a is p-stable, then a∗ ⊗ b is the minimum solution
to (8).

Proof. It follows directly from Proposition 6.2.3 of Sect. 6. "#
Observe that it is the canonical order relation ≤ of the dioid which guarantees the
unicity of the minimum solution to (8).

In the same way, if a is p-stable, b⊗ a∗ is the minimum solution to

x = x⊗ a ⊕ b. (9)

We deduce from the above that a∗ is the minimum solution to each of the equations

x = a ⊗ x⊕ e and x = x⊗ a ⊕ e (10)
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Example 7.2.2. In the case of Example 7.1.1 where (E,⊕,⊗) ≡ (R+, max, min),
(9) leads to:

x = max{min{a; x}; b} (11)

If a ≤ b, max{min{a; x}; b} = b(∀x) and x = b is the only solution to (11).
If a > b, the set of the solutions to (11) is the interval [b, a], and b is the smallest

of these solutions; this is consistent with Proposition 7.2.1. ||
Remark 7.2.3. Since Mn(E) is a dioid if E is a dioid, we will see in Chap. 4 Sect. 3
that Proposition 7.2.1 can also be applied to matrix equations of the form:

X = A ⊗ X⊕ B (12)

for A a p-stable matrix in Mn(E). ||
Definition 7.2.4. (stable element)

We say that an element is stable if there exists an integer p for which it is p-stable.

Thus, every stable element has a quasi-inverse which corresponds to the for-
mal expansion, in the sense of standard algebra, of (e − a)−1 if it is finite (finite
convergence).

This formal correspondence then enables one to obtain the following expressions
when the elements involved are stable (see Backhouse and Carré 1975, p. 165):

(ab)∗ = e⊕ a(ba)∗b (13)

(a ⊕ b)∗ = a∗(ba∗)∗ = (a∗b)∗a∗ (14)

(ba∗c)∗ = e⊕ b(a ⊕ cb)∗c (15)

(we have omitted the ⊗ signs for the sake of notational simplicity).
Thus (13) can be obtained from the formal correspondence with the identity:

(e− ab)−1 = e+ a(e− ba)−1b

Similarly (14) can be obtained from the identity:

(e− (a + b))−1 = [e− (e− a)−1b]−1(e− a)−1

and (15) from the identity:

(e− b(e− a)−1c)−1 = e+ b(e− (a + cb))−1c

We deduce (again omitting the ⊗ signs for the sake of notational simplicity):

Proposition 7.2.5.

(i) If ba is stable, ab is stable and its quasi-inverse is given by (13)
(ii) if a∗ exists and if ba∗ is stable, a⊕b is stable and its quasi-inverse satisfies (14)

(iii) if a∗ exists and if a ⊕ b is stable, then ba∗ (resp. a∗ b) is stable and its quasi-
inverse satisfies

(ba∗)∗ = e⊕ b(a ⊕ b)∗ (resp. (a∗b)∗ = e⊕ (a ⊕ b)∗b) (16)
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Proposition 7.2.6. (Gondran 1979)
If a and b are stable and if ⊗ is commutative, a ⊕ b and a∗ b are stable.

Proof. According to Proposition 7.2.5, we only have to show that a∗ b is stable. Let
us assume that a is p-stable and that b is q-stable.

To show that a∗ b is (q + 1)-stable, it suffices to show that (a∗ b)q+2 is absorbed

by (a∗ b)(q+1). To do so, it is enough to show that, for any k, ak b
q+2

is absorbed by
(a∗ b)(q+1).

But, since ⊗ is commutative, from the expression of (a∗ b)(q+1) = e⊕ (a∗ b)⊕
. . .⊕(a∗b)q+1, we can extract ak b⊕ ak b

2⊕ . . .⊕ak b
q+1 = ak b (e⊕b⊕ . . .⊕bq)

which clearly absorbs ak b
q+2

since b is q-stable. "#
The commutativity of ⊗ is essential for Proposition 7.2.6 except if a is 0-stable
(a∗ = e) or if b = e. Let us consider the latter case.

Proposition 7.2.7. (Gondran 1979)
If e is stable we have:

e∗ = e∗ ⊕ e∗ = e∗e∗ (17)

and for every stable a, a∗ is stable and:

(a∗)∗ = e∗a∗ = a∗e∗. (18)

Proof. If e is q-stable
e∗ = e⊕ e⊕ . . .⊕ e = qe

and (17) is obvious.
We observe that e∗ commutes with all the elements for the operation ⊗; let us

then consider (a∗)(k). It is a polynomial in the variable a:

(a∗)(k) =
kq∑

i=0

α�a�.

Let us show that for � ≤ q, its coefficients α� are larger than q as soon as
1

2
k(k−1) ≥

q. To do so, let us consider

(a∗)r =
( q∑

i=0

ai

)r

=
s=qr∑

s=0

βs,ra
s.

For s ≤ q, we have βs,r ≥ r. Then, since � ≤ q, we have α� =
k∑

r=1
β�,r; we deduce

α� ≥
k∑

r=1

r = 1

2
k(k − 1) ≥ q.
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This inequality therefore implies for � ≤ q, α� a� = e∗ a�. We deduce
q∑

�=0
α� a� =

e∗ a∗.
For � > q, the a� from (a∗)(k) are absorbed by

q∑

�=0
α� a� = e∗ a∗.

Thus (a∗)(k) = e∗ a∗ as soon as
1

2
k(k − 1) ≥ q, and (18) follows. "#

Set(E = {c/c = e∗ a, a ∈ E) = e∗ E
Then (17) imply:

c⊕ c = c ∀c ∈ (E
e∗c = c ∀c ∈ (E.

7.3. Solving “Nonlinear” Equations

Assuming p-stability of elements we now turn to investigate sufficient conditions for
the existence of solutions to some nonlinear equations.

7.3.1. Quasi-Square Root

For a ∈ E, let
a(k)2 = e⊕ a ⊕ 2a2 ⊕ 5a3 ⊕ · · · ⊕ αkak (19)

with

αn = 1

n

(
2 n
n− 1

)
∈ N (the so-called Catalan numbers)

Then, if a is p-stable, we have:

a(p)2 = a(p+1)2 = a(p+2)2 = · · ·
since the terms involving ap+1 are absorbed by a(p).

For each p-stable element a ∈ E, we then deduce the existence of a∗/2, quasi-
square root of a, defined as:

a∗/2 = lim
k→+∞

a(k)2 = a(p)2 = a(p+1)2 = · · · (20)

Observe that the quasi-square root corresponds to the formal expansion of:

e−√e− 4a

2a

and (omitting the⊗ signs for the sake of notational simplicity) satisfies the equations:

a∗/2 = a(a∗/2)2 ⊕ e = (a∗/2)2a ⊕ e = a∗/2a a∗/2 ⊕ e

a∗/2 is therefore a solution to the equations

y = ay2 ⊕ e = y2a ⊕ e = y a y ⊕ e (21)
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Still omitting the⊗ sign for the sake of notational simplicity, let us now consider for
integer n >0 the polynomial:

f (y) = ayn ⊕ e. (22)

Thus: f 2(y) = f (f (y)) = a (ayn ⊕ e)n ⊕ e.

Lemma 7.3.1.1. For every m ≥ 1, f m(y) can be expressed as:

f m(y) = f m(ε)⊕ amyngm(y) (23)

where the gm (y) are polynomials in y and in a such that gm (e) ≥ e.

Proof. Let us prove (23) by induction. The assumption is true for m = 1 (f (ε) =
e, g1 (y) = e). Let us therefore assume it to be true for m. We then have:

f m+1(y) = f m[f (y)] = f m(ε)⊕ am[f (y)]ngm[f (y)].
f m+1(y) = f m(ε)⊕ am(e⊕ ayn)ngm(e⊕ ayn).

Since gm is a polynomial, gm(e ⊕ ayn) = gm(e) ⊕ aynhm(y) where hm (y) is a
polynomial in y and in a. Similarly, (e ⊕ ayn)n = e ⊕ ayn�n (y) where �n (y) is a
polynomial in y and in a.

Observe, moreover, that �n(e) ≥ e. We therefore deduce:

f m+1(y) = f m(ε)⊕ amgm(e)⊕ am+1yn[hm(y)⊕ �n(y)gm(e)⊕ �n(y)aynhm(y)],
which yields (23) by setting:

f m+1(ε) = f m(ε)⊕ amgm(e) (24)

gm+1(y) = hm(y)⊕�n(y)gm(e)⊕�n(y)a ynhm(y). Since �n(e) ≥ e and gm (e) ≥ e,
we have �n(e)gm(e) ≥ e and we deduce that gm−1(e) ≥ e; this shows that f m(ε) is
a polynomial in a with degree at least m − 1. "#

Let us then consider the equation:

y = ayn ⊕ e. (25)

Proposition 7.3.1.2. (Gondran 1979)
If a is p-stable, f p+1 (ε) is the minimal solution to (25).

Proof. According to Lemma 7.3.1.1, f p+1(ε) is a polynomial in a where all the
coefficients indexed from 0 to p are ≥ e. We deduce that the subsequent terms are
absorbed by the first p+ 1 ones, since a is p-stable.

Thus:

f p+1(ε) =
p∑

k=0

βkaP.
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gm(e) being a polynomial in a, and a being p-stable, (24) therefore implies:

f p+2(ε) = f p+1(ε).

This shows that f p+1(ε) is a solution to (25). On the other hand, according to (23),
every solution y to (25) is expressed as:

y = f m(ε)⊕ amyngm(y)

which shows that f p+1(ε) is indeed the minimal solution to (25). "#
Let us consider now the case n = 2, that is to say the equation:

y = ay2 ⊕ e. (26)

Corollary 7.3.1.3. If a is p-stable, a∗/2 is the minimal solution to (26).

Proof. We proceed by induction by showing that f m(ε) is expressed as a(m−1)2 ⊕
amgm(a) where gm(a) is a polynomial in a.

The property is true for m = 1, with g1(a) = ε.
Let us therefore assume it to be true for m. We then have:

f m+1(ε) = f [f m(ε)] = a[f m(ε)]2 ⊕ e

[f m(ε)]2 = [a(m−1)2 ] ⊕ am[2a(m−1)2gm(a)⊕ gm(a)am(gm(a))2]
Let us then consider the sum of the first m terms of (a(m−1)2)2; it is equal to:

r=m−1∑

r=0

(
r∑

k=0

αkαr−k

)

ar.

However, as the first Catalan numbers satisfy the equality

r∑

k=0

αkαr−k = αr+1

the sum of the first m terms of (a(m−1)2)2 is therefore equal to
m−1∑

r=0
αr+1 ar.

We deduce that:

[f m(ε)]2 =
m∑

k=1

αkak−1 ⊕ am+1gm+1(a)

where gm+1(a) is a polynomial in a.
Finally, we obtain:

f m+1(ε) = e⊕
m∑

k=1

αkak ⊕ am+1gm+1(a)

= a(m)2 ⊕ am+1gm+1(a)

which proves correctness of the induction.
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The corollary then immediately follows by observing that if a is p-stable, the
recurrence implies:

f p+1(ε) = a(p)2 . "#
Corollary 7.3.1.4. If ac is stable, and if ⊗ is commutative, c (ac)∗/2 is a solution to

y = ay2 ⊕ c (27)

Proof. Since (ac)∗/2 = ac [(ac)∗/2]2⊕ e, we deduce: c (ac)∗/2 = a [c (ac)∗/2]2⊕ c,
and consequently c(ac)∗/2 is a solution to (27). "#
Corollary 7.3.1.5. If b and ac are stable and if ⊗ is commutative, b∗c(b∗2ac)∗/2

exists and is a solution to:
y = ay2 ⊕ by ⊕ c (28)

Proof. b and ac being stable, b∗ac is stable according to Proposition 7.2.5. b and
b∗ac being stable, we furthermore have that b∗2ac is stable, therefore b∗c(b∗2ac)∗/2

exists.

For y0 = b∗c(b∗2ac)∗/2, let us calculate f (y0) = a y2
0 ⊕ b y0 ⊕ c:

f (y0) = ab∗2c2[(b∗2ac)∗/2]2 ⊕ b b∗c(b∗2ac)∗/2 ⊕ c

= c(b∗2ac[(b∗2ac)∗/2]2 ⊕ e⊕ b b∗(b∗2ac)∗/2)

= c{(b∗2ac)∗/2 ⊕ b b∗(b∗2ac)∗/2} = c(e⊕ bb∗)(b∗2ac)∗/2

= cb∗(b∗2ac)∗/2 = y0. "#
Remark 7.3.1.6. If e is stable, e∗/2 = e∗. Moreover, if e∗ = e then: a∗/2 = a∗. ||

7.3.2. Quasi-nth-root

The above results are easily generalized to solving equations of the form:

y = P(y) (29)

where P (y) is a degree-n polynomial in y, thanks to the introduction of a quasi-nth-
root of an element a, denoted a∗/n, minimal solution to (25).

To define in a simple way the expansion of a∗/n, we use the Lagrange theorem on
generating series, recalled below:

Lagrange Theorem
If y = xϕ(y) where ϕ(y) = f0 + f1 y+ f2 y2 + . . ., then the coefficient of xk in y

(x) is equal to
1

k
times the coefficient of yk−1 in ϕk (y).

Thus, for the equation y = x (y + 1)n, the coefficient of xk in y(x) is equal to
1

k

(
nk

k − 1

)
.
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For a ∈ E, let

a(k)n = e⊕ a ⊕ na2 ⊕ n(3n − 1)

2
a3 ⊕ . . .⊕ 1

k

(
nk
k−1

)
ak (30)

Then, if a is p-stable, we have:

a(p)n = a(p+1)n = a(p+2)n = · · ·
since the terms involving ap+1 are absorbed by a(p).

For each p-stable element, we then deduce the existence of a∗/n, quasi-nth-root
of a, defined as

a∗/n = lim
k→+∞

a(k)n = a(p)n = a(p+1)n = · · · (31)

Examples making use of the quasi-nth-root will be found in Exercises 2 and 3 at the
end of this chapter.

8. Residuation and Generalized Solutions

In the two previous sections, we studied solutions for fixed-point type equations,
x = f (x). The theory of residuation, which we review here, enables one to introduce
the concept of generalized solutions for equations of the form:

f (x) = b (32)

in cases where f can be non-surjective (problem of existence) and/or non-injective
(problem of unicity).

The work by Blyth and Janowitz (1972) is a basic reference on the subject; see
also Gaubert (1992) and Baccelli et al. (1992).

The generalized solutions correspond to residuable mappings often referred to as
Galois correspondences.

Definition 8.1. (lower-solution, upper-solution)
Let E and F be two ordered sets, b ∈ F, and f a mapping: E → F. We say that x

is a lower-solution to (32) if we have f (x) ≤ b.
If the set {x ∈ E | f (x) ≤ b} has a least upper bound, then, if f is lsc,

f↑(b) = sup{x ∈ E | f (x) ≤ b}
is the largest lower-solution to (32).

We say that y is an upper-solution to (32) if we have

f (y) ≥ b.

If the set {x ∈ E | f (x) ≥ b} has a greatest lower bound, then, if f is usc,

f↓(b) = inf {x ∈ E | f (x) ≥ b}
is the smallest upper-solution to (32).
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To ensure the consistency of this definition, we must verify that f↑(b) (resp.
f↓(b)) is clearly a lower-solution (resp. an upper-solution) to (32). According to the
assumption, since {x ∈ E | f (x) ≤ b} has an upper bound, then for every sequence
xn of lower-solutions converging towards f↑(b), we have f (xn) ≤ b and since f is
l.s.c, f ◦ f↑(b) ≤ b.

f↑(b) is therefore clearly the largest lower-solution to (32).
f↑ will be referred to as the sup-pseudo-inverse of f and f↓ as the inf-pseudo-inverse
of f.

Thus f ◦ f↑(b) ≤ b and f ◦ f↓(b) ≥ b.
We moreover check that:

f↑ ◦ f (b) = sup{y ∈ E | f (x) ≤ f (b)} ≥ b

f↓ ◦ f (b) = inf {x ∈ E | f (x) ≥ f (b)} ≤ b

and that the functions f↑ and f↓, if they exist, are monotonic.

Proposition 8.2. Let E and F be two ordered sets, and f a mapping: E → F. Let
us denote IdE (resp. IdF) the identity mapping of E (resp. of F). The following
statements are equivalent:

(i) there exists g: F → E nondecreasing such that f ◦ g ≤ IdF and g ◦ f ≥ IdE,
(ii) for every y in F, the set {x ∈ E | f (x) ≤ y} has a largest element.

Proof. Let us assume (i). If f (x) ≤ y, x ≤ g ◦ f (x) ≤ g(y).
Moreover, f ◦ g(y) ≤ y which shows that g(y) is the largest element of {x ∈

E | f (x) ≤ y}. Conversely, under assumption (ii), the mapping g: y → sup{x ∈
E | f (x) ≤ y} satisfies (i). "#

Thus, f↑ (resp. f↓), if it exists, is the unique nondecreasing function (resp.
nonincreasing) satisfying:

f ◦ f↑ ≤ IdF and f↑◦ f ≥ IdE (33)

(resp. f↓◦ f ≤ IdE and f ◦ f↓ ≥ IdF)
Definition 8.1 is classically applied to the case of a nondecreasing function f.

In this case, if f↑(b) (resp. f↓(b)) exists for every b, we say that the function f is
residuable (resp. dually residuable) and f↑ is called the residue mapping of f (resp.
f↓, the dual residue mapping of f).

We denote Res↑(E, F) the set of residuable mappings: E → F.
We provide below a few examples of residuable mappings.

Example 1. (reciprocal image)
Given a mapping f: A→B, the associated mapping ϕf : (P(A), ⊂)→ (P(B),⊂),

defined, for every X ∈ P(A) as: ϕf (X) = f (X) is residuable and we have ϕ
↑
f (Y) =

f−1(Y) (reciprocal image of Y by f). ||

Example 2. (integer part)
The canonical injection (Z,≤) → (R,≤) is residuable and the residue mapping

is the “integer part” mapping. ||
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Example 3. (orthogonal subspace)
Let us endow R

d with the standard scalar product.
The mapping

ϕ: (P(Rd),⊂)→ (P(Rd),⊃)

which, with every set X associates its orthogonal X⊥ = {y ∈ R
d | ∀x ∈ X, x . y = 0}

is residuable (see Gaubert 1992). ||

Example 4. (convex conjugate)
The Fenchel transform:

F : (R
Rn

,≥) → (R
Rn

,≤), defined as F f (p) = sup
x∈Rn

{px − f (x)}, is residuable

(observe the reversal of the order between the start and end sets), and we have
F↑ = F . ||

Proposition 8.3. For every residuable function f, we have:

(i) f ◦ f↑ ◦ f = f
(ii) f↑ ◦ f ◦ f↑ = f↑

Proof. (i) f = f ◦ IdE ≤ f ◦ (f↑ ◦ f ) = (f ◦ f↑) ◦ f ≤ IdF ◦ f = f .
(ii) Similar proof. "#
The residue mapping f↑, or “sup-pseudo-inverse,” therefore plays a role formally
analogous to the classical pseudo-inverse A# for a matrixAin standard linear algebra,
which, is known to satisfy:

AA#A = A and A#AA# = A#.

Proposition 8.4. Let f: E → F be a residuated function (thus isotone) with residual
f↑. Then the equation f (x) = y for y ∈ F has a solution if and only if f (f↑(y)) = y.
Moreover in this case, f↑(y) is the maximum solution.

Proof. Suppose that f (x0) = y for some x0 ∈ E. Then from Definition 8.1 we
deduce:

f↑(y) = f↑(f (x0)) ≥ x0.

Now, using the monotonicity of f, we get:

f (f↑(y)) ≥ f (x0) = y

and, from Definition 8.1 again:
f (f↑(y)) ≤ y which proves that f↑(y) is indeed a solution. Moreover, f↑(y) ≥ x0

proves that this solution is indeed maximal. "#
Proposition 8.5. For any f , fi, g ∈ Res↑(E, F), we have:

(i) (f ◦ g)↑ = g↑ ◦ f↑
(ii) (f ∨ g)↑ = f↑ ∧ g↑

(iii) If E and F are complete lattices, we have for any finite subset of mappings
fi: (∨i fi)

↑ = ∧i fi
↑.
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Proof. (i) (f ◦ g) ◦ (g↑ ◦ f↑) = f ◦ (g ◦ g↑) ◦ f↑ ≤ f ◦ Id ◦ f↑ ≤ Id.
The other inequality is proved in the same way by using the other inequality of
Proposition 8.2.

(ii) We decompose t → f (t) ∨ g(t) as the product of the following mappings:

E
ϕ1−→ E2; E2 ϕ2−→ F2; F2 ϕ3−→ F

t → (t, t) (u, v)→ (f (u), g(v)) (x, y)→ x ∨ y

and we apply (i) observing that the associated residue mappings are given by:

ϕ
↑
3 ((x′, y′)) = x′ ∧ y′, ϕ

↑
2 (u′, v′) = (f↑(u′), g↑(v′), ), ϕ

↑
1 (t′) = (t′, t′).

We thus have: (f ∨ g)↑ = (ϕ3 ◦ ϕ2 ◦ ϕ1)
↑ = ϕ

↑
1 ◦ ϕ

↑
2 ◦ ϕ

↑
3 = f↑ ∧ g↑.

The proof of (iii) is similar to that of (ii). "#
Proposition 8.6. Let (E,≤) and (F,≤) be two complete ordered sets with smallest
elements εE and εF respectively. A nondecreasing mapping f: E → F is residuable if
and only if f is continuous and f (εE) = εF.

Proof. If f is residuable, the set {x ∈ E | f (x) ≤ εF} has a largest element x0 and
since f is nondecreasing, f (εE) ≤ f (x0) ≤ εF. Since, moreover, f (εE) ≥ εF we
have f (εE) = εF. Let us then show that f is continuous. E and F being complete
sets, let us denote ∨

x∈X
x the upper bounds of every set X ⊂ E or X ⊂ F. Since f

is nondecreasing, we have for every X ⊂ E: f ( ∨
x∈X

x) ≥ ∨
x∈X

f (x). Let f↑ be the

residue mapping associated with f. By using the inequalities (33) and the fact that f↑ is
nondecreasing:

f ( ∨
x∈X

x) ≤ f ( ∨
x∈X

f↑ ◦ f (x)) ≤ f ◦ f↑( ∨
x∈X

f (x)) ≤ ∨
x∈X

f (x)

which proves continuity.
Conversely, if f (εE) = εF, for every y ∈ F, the set X = {x | f (x) ≤ y} is non

empty. Furthermore, by continuity of f , f ( ∨
x∈X

x) = ∨
x∈X

f (x) and therefore X has a

largest element. "#
Definition 8.7. We call closure a nondecreasing mapping ϕ: E → E, such that
ϕ ◦ ϕ = ϕ and ϕ ≥ Id .

Proposition 8.8. A residuable closure ϕ satisfies

ϕ = ϕ↑ ◦ϕ = ϕ ◦ϕ↑.

Proof.

ϕ = Id ◦ ϕ ≥ ϕ ◦ ϕ↑ ◦ ϕ ≥ ϕ↑ ◦ ϕ = ϕ↑ ◦ ϕ ◦ ϕ ≥ Id ◦ ϕ. "#
Definition 8.9. (closed elements)

If f is residuable, f↑ ◦ f is a closure, and we refer to as closed the elements of the
form f↑◦ f (x).
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In the case of Examples 2–4, the closed elements are respectively the integers
(Example 2), the vector sub-spaces (Example 3), the convex functions (Example 4).

We can similarly define dual closure. We observe that f is a one-to-one correspon-
dence between the set of closed elements and the set of dually closed elements.

Proposition 8.10. (projection lemma)
Let E be an complete ordered set and F a complete subset of E containing ε, the

minimal element of E. The canonical injection i: F → E is residuable. The residue
mapping prF = i↑ satisfies:

(i) prF ◦ prF = prF
(ii) prF ≤ IdE

(iii) x ∈ F ⇔ prF (x) = x.

Proof. The residuability of i results from Proposition 8.5.

(i): i↑ ◦ i↑ = (i ◦ i)↑ = i↑.
(ii): prF = i ◦ prF = i ◦ i↑ ≤ Id.

(iii): if x ∈ F, then x = i (x), therefore prF(x) = prF ◦ i (x) ≥ x.

The other inequality is given by (ii). The converse is straightforward. "#
Properties (i) and (ii) assert that prF is a dual closure, property (iii) asserts that

the dually closed elements are elements of F.

Example. Let E = R
(R, F = Inc(R,(R) the complete subset of nondecreasing func-

tions: R → R. The projection lemma shows that for every u ∈ R
(R, there exists a

largest nondecreasing function ū smaller than or equal to u. One can then show that:

ū(t) = inf
τ≥ t
{u(τ)}

In a dual manner, there exists a smallest nondecreasing function u larger than or
equal to u, given by

u(t) = sup
τ≤ t
{u(τ)}.

Exercises

Exercise 1. Let us consider a dioid (E,⊕,⊗)

If the element a is p-stable, show that a∗/n given by (31) in Sect. 7 is the minimal
solution to:

y = ayn ⊕ e.

Exercise 2. Let us consider a dioid (E,⊕,⊗), and two elements a and c in E.
Show that if a cn−1 is stable, and if⊗ is commutative, c

(
a cn−1

)∗/n is a solution to:

y = ayn ⊕ c.
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Exercise 3. Let us consider a dioid (E,⊕,⊗) and three elements a, b, c in E.

Show that if b and a cn−1 are stable, and if⊗ is commutative, b∗ c
(
(b∗)n

a cn−1
)∗/n

exists and is a solution to y = a yn⊕ by ⊕ c.

Exercise 4. Let E denote the closed interval [0, 1] and ⊗ the operation: a ⊗ b =
Min{a, b}.

Also consider the operation ⊗′
defined as:

a ⊗′ b = 1 if a ≤ b,

= b otherwise.

For any ρ ∈ E, we now define the function r: E → E as: r(x) = ρ⊗ x (∀x ∈ E).
Show that r is residuable and that r↑ is expressed as: r↑ (x) = ρ⊗′ x.
Check that r↑ is l.s.c.

Exercise 5. E being a given partially ordered set, we denote En the set of n-vectors
with components in E. For any a, b ∈ E, a ∨ b (resp. a ∧ b) denotes the sup (resp.
inf ) in E.

Let r11, r12, . . . , rmn be residuated functions with respective residuals r↑11,

r↑12, . . . , r↑mn. Define R: En → Em and R̃: Em → En as:

[R(x)]i =
n⊕

j=1
rij(xj) (∀i = 1, . . ., m)

[
R̃(x)

]

j
= m⊕

i=1
r↑ij (yi) (∀j = 1, . . ., n)

Taking ⊕ = ∨, show that R is residuated with residual R↑ = R̃.
Show that the same property holds when considering ⊕ = ∧.

Exercise 6. Consider the dioid (E,⊕,⊗) where E = [0, 1],⊕ = Max,

⊗ = Min.
Let ⊕′ and ⊗′ be the two dual operations defined as:

a ⊕′ b = Min{a, b}

a ⊗′ b =
{

1 if a ≤ b

b otherwise

For any two n-vectors u ∈ En, v ∈ En, we denote u ≤ v iff ui ≤ vi for all i =
1, . . . , n.

Given two matrices P ∈ Mm,�(E) and Q ∈ M�,n(E) we define two “dual”
products:

P⊗ Q = R = (rij) with rij =
�⊕

k=1
pik ⊗ qkj

P⊗′ Q = T = (tij) with tij =
�

⊕′
k=1

pik ⊗′ qkj
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(1) By using the results of Exercises 4 and 5, show that for a given matrix R ∈
Mm,n(E) the function: R(x): En → Em defined as:
R(x) = R⊗ x, is residuable, with residual R∗(y): Em → En defined as:

R∗(y) = RT ⊗′ y.

(2) Let R ∈ Mm,n(E) and b ∈ Em be given.
Show that the equation R⊗x = b has a solution if and only if b = R⊗ (RT⊗′ b)

and that, in this case, x∗ (R, b) � RT ⊗′ b is the maximum solution.
(3) Show that d∗ = R⊗(RT⊗′b) is the maximum d such that the equation R ⊗ x = d

has a solution and d ≤ b.
(4) Consider the following numerical example:

R =

⎛

⎜⎜
⎝

1 0.2 0.4
0 0.2 0.2
0 0.6 0.6

0.5 0.3 0.4

⎞

⎟⎟
⎠ b =

⎛

⎜⎜
⎝

1
0.7
0.3
0.5

⎞

⎟⎟
⎠

Show that x∗ (R, b) = (1, 0.3, 0.3)T and that d∗ = (1, 0.2, 0.3, 0.5)T.
Show that the system R⊗x = b has no solution for all d = (1, α, 0.3, 0.5)T with
0.2 < α ≤ 0.7.

(5) Show that the results of questions 1, 2, 3 also apply to the various dioids (E, Max,
Min) with either E = R, E = R+, or E = [α, β]. Indicate, in each of these cases,
which is the dual law ⊗′ to be considered.

[Answers: refer to Cuninghame-Green and Cechlárová (1995)]



Chapter 4
Solving Linear Systems in Dioids

1. Introduction

How can we expect to solve a linear equality system in algebraic structures consisting
of a set with two internal laws ⊕ and ⊗ which are not a priori invertible, i.e. where
one cannot always solve a ⊕ x = b and a ⊗ x = b?

The key idea in the present chapter is to observe that the solution of a “fixed point”
type equation such as x = a⊗ x⊕ b only requires the existence of the quasi-inverse
a∗ of the element a, defined in the previous chapter as the “limit” of the series:
e⊕ a ⊕ a2 ⊕ · · ·

It is indeed remarkable that neither the additive inverse nor the multiplicative
inverse are needed to compute “(e− a)−1”!

However, in order to guarantee some form of uniqueness, it will be necessary to
work in canonically ordered semirings, i.e. in dioids.

The purpose of this chapter is thus to discuss how to solve linear systems of the
fixed point type, which will lead to generalizations of the main known algorithms
for solving linear systems in classical linear algebra.

This chapter does not address the problem of solving linear systems of the form
A x = b in dioids. This actually relates to residuation theory introduced in Chap. 3,
Sect. 8, and involves a concept of generalized pseudo-inverse.

Given a n × n matrix: A = (aij) with entries in a dioid (E,⊕,⊗) and b ∈ En a
given n-vector, we will focus here on the solution of linear systems of the form:

y = y ⊗ A ⊕ bT (1)

or
z = A ⊗ z⊕ b (2)

where we denote y ⊗ A the row-vector, the jth component of which is:

n∑

i=1

yi ⊗ aij

115
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and A ⊗ z the column-vector the ith component of which is:

n∑

j=1

aij ⊗ zj

(the above sums are to be understood in the sense of ⊕)
Section 2 illustrates the general perspective of the chapter by considering as an

introductory example the case of linear systems on the dioid (R̂, Min,+) which
corresponds to the shortest path problem in a graph.

By viewing the matrix A as the generalized incidence matrix of an associated
graph G(A), it is shown in Sect. 3 that the successive powers of A and the quasi-
inverse A∗ of A may be interpreted in terms of path weights of G(A). It will be shown
how the quasi-inverse A∗ can be used to compute the minimal solution to each of
the equations (1) or (2), and how minimal solutions can be interpreted as solutions
to associated path-finding problems in G(A).

The general algorithms for solving linear systems (1) or (2) are studied in Sect. 4
and 5: iterative methods in Sect. 4, together with an extension to algebras of endo-
morphisms in Sect. 4.4; then, the “direct” methods in Sect. 5. A broad overview
of applications to modeling and solving a huge variety of path-finding problems in
graphs is finally presented in Sect. 6.

2. The Shortest Path Problem as a Solution
to a Linear System in a Dioid

A typical example of a path-finding problem in graphs which can be formulated in
terms of solution to a linear system of type (1) or (2) is the determination of the
shortest paths of fixed origin in a valued directed graph.

Let us consider a directed graph G = [X, U] where the vertices are numbered
1, 2, . . . n, and in which each arc (i, j) is assigned a length aij ∈ R. Given a vertex
io ∈ X chosen as origin, we seek the lengths yj(j = 1 · · · n) of the shortest paths
between the vertex io and the other vertices j of the graph.

It is not restrictive to assume that G is a 1-graph, i.e. that, for any ordered pair of
vertices (i, j), there exists at most one arc of the form (i, j). (Indeed, if U contains
several arcs u1, u2, . . . up of the form (i, j) and of lengths �(u1), �(u2), . . . �(up), to
solve the shortest path problem, it is enough to consider that there exists a single arc
(i, j) of length aij = Min

k=1,...,p
{�(uk)} and to ignore all the other arcs).

2.1. The Linear System Associated with the Shortest Path Problem

According to the well known principle of dynamic programming (Bellman 1954,
1958), it is known that the values yi satisfy the following equations (referred to as
“optimality” conditions):
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⎧
⎨

⎩

yio = 0

∀j �= io: yj = Min
i∈Γ−1

j

{
yi + aij

}

where Γ−1
j = {i/(i, j) ∈ U} is the set of direct predecessors of vertex j in G.

By agreeing to set aij = +∞ if arc (i, j) does not exist and aii = 0 (∀i = 1, . . . n)

the previous relations can be rewritten as:
⎧
⎨

⎩

yio = 0

∀j �= io: yj = Min
i=1,...,n

{
yi + aij

}

Assuming, for the sake of simplification, that the lengths aij are all nonnegative,
we must have yj ≥ 0 (∀j = 1 · · · n) and consequently the previous relations can be
further rewritten:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yio = Min

{
Min

i=1,...,n
{yi + ai,io}; 0

}

and, ∀j �= io

yj = Min

{
Min

i=1,...,n
{yi + aij};+∞

}

Let us then consider the dioid (E,⊕,⊗) where E = R∪{+∞} and where the internal
laws ⊕ and ⊗ are defined as:

∀a ∈ E, ∀b ∈ E:
a ⊕ b = Min{a, b}
a ⊗ b = a + b

ε = +∞ is the neutral element of ⊕ and e = 0 is the neutral element of ⊗
(see Chap. 8, Sect. 4.7.1). It is then observed that the above relations can be written

in the form of the linear system:
⎧
⎪⎪⎨

⎪⎪⎩

yio =
n∑

i=1
yi ⊗ ai,io ⊕ e

yj =
n∑

i=1
yi ⊗ ai,j ⊕ ε for any j �= io

that is to say, in matrix notation:

y = y ⊗ A ⊕ bT (1)

where A denotes the matrix
(
aij

)
i=1...,n
j=1,...,n

and b the n-vector defined as:

bio = e and, ∀j �= io: bj = ε.

It is thus seen that determining the vector y where the components are the lengths of
the shortest paths of origin io amounts to solving the linear system (1) in the dioid
(E,⊕,⊗).



118 4 Solving Linear Systems in Dioids

2.2. Bellman’s Algorithm and Connection with Jacobi’s Method

As will be seen in Sects. 4 and 5 of the present chapter, most algorithms for solving
the shortest path problem can be interpreted as variants of known methods in classical
linear algebra.

This is the case, for example, of Bellman’s algorithm (1958) which consists in
starting from yo defined as:

yo
io = 0, yo

j = +∞ (∀j �= io)

and then in performing the following computations iteratively:

⎧
⎨

⎩

yt+1
io

= 0

yt+1
j = Min

i∈Γ−1
j

{
yt

i + aij
}

By using system (1) this algorithm can be expressed in the equivalent form:

yo = bT (3)

yt+1 = yt ⊗ A ⊕ bT (4)

{

where one can recognize the analog to Jacobi’s method in classical linear algebra.
From (3) and (4) we deduce, for an arbitrary integer t > 0:

yt = b⊗ (I⊕ A ⊕ A2 ⊕ · · · ⊕ At)

where I =
[

e e ε
.

ε . e

]

is the identity matrix of Mn(E).

The convergence of Bellman’s algorithm is therefore intimately related to the
convergence of the series I⊕ A ⊕ A2 ⊕ · · · ⊕ At ⊕ · · ·

2.3. Quasi-Inverse of a Matrix with Elements in a Semiring

It is well known that Bellman’s algorithm converges in at most n − 1 iterations,
in other words that yn−1 is the vector of shortest path lengths, if and only if the
graph does not contain a circuit of negative length. In these conditions, we will see
(see Theorem 1 Sect. 3.3) that the series A(k) = I⊕ A ⊕ A2 ⊕ · · · ⊕ Ak converges
in at most n − 1 steps, i.e. that A(n−1) = A(n) = A(n+1) = · · · and the limit of this
series, denoted A∗ will be referred to as the quasi-inverse of the matrix A.

Bellman’s algorithm then converges towards y = bT ⊗ A∗.
We verify that b⊗ A∗ clearly corresponds to a solution of (1) because:

bT ⊗ A∗ ⊗ A ⊕ bT = bT ⊗ (A∗ ⊗ A ⊕ I)
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Now, if A∗ = A(n−1), this yields:

A∗ ⊗ A ⊕ I = A(n) = A(n−1) = A∗

We therefore clearly deduce:

bT ⊗ A∗ = (b⊗ A∗)⊗ A ⊕ bT

We now turn to show that the solution b ⊗ A∗ provided by Bellman–Jacobi’s
Algorithm is by no means an arbitrary solution to (1).

2.4. Minimality of Bellman–Jacobi Solution

By using the fact that (R̂, Min,+) is a dioid (i.e. a canonically ordered semiring) let
us show that bT ⊗ A∗ is the minimal solution to linear system (1).

Let y then be an arbitrary solution of y = y ⊗ A ⊕ bT

We can write:

y = y ⊗ A ⊕ bT

= (y ⊗ A ⊕ bT)⊗ A ⊕ bT

= y ⊗ A2 ⊕ bT ⊗ (I⊕ A)

By transferring the above expression of y into (1) we similarly obtain:

y = y ⊗ A3 ⊕ bT ⊗ (I⊕ A ⊕ A2)

By reiterating the argument, we obtain for any k ≥ 2:

y = y ⊗ Ak ⊕ bT ⊗ A(k−1)

Thus for k ≥ n, this yields:

y = y ⊗ Ak ⊕ bT ⊗ A∗

By denoting≤ the canonical order relation of the dioid (R̂, Min,+) this result shows
that bT⊗A∗ ≤ y, and this holds for any solution y to (1). bT⊗A∗ is therefore clearly
the minimal solution to (1).

For the shortest path problem (as well as for many other path-finding problems in
graphs, see Sect. 6 below), the problem to be solved is not only a matter of finding
an arbitrary solution of (1) or (2) but the minimal solution.

The example in Fig. 1 illustrates the fact that a non minimal solution to (1) is not
relevant with respect to the shortest path problem (by convention the non represented
arcs of the complete graph have a length+∞).The vector y = (0, 1, 1, 1) is a solution
to system (1). Indeed, we verify that we clearly have:

y1 = Min{y1 + a11, y2 + a21, y3 + a31, y4 + a41, 0}
y2 = Min{y1 + a12, y2 + a22, y3 + a32, y4 + a42,+∞}
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Fig. 1 Example of an oriented graph for which we want to determine the lengths of the shortest
paths originating at vertex 1. The vector y = (0, 1, 1, 1) is a solution to system (1), but is not the
solution to the shortest path problem of origin 1 because it is not the minimal solution to (1)

y3 = Min{y1 + a13, y2 + a23, y3 + a33, y4 + a43,+∞}
y4 = Min{y1 + a14, y2 + a24, y3 + a34, y4 + a44,+∞}

However, it can be observed that the components of y have nothing to do with the
lengths of the shortest paths originating at vertex 1 in the graph of Fig. 1. Only the
minimal solution (0, 2, 3, 5) to system (1) has components equal to the desired
shortest path lengths. (Remember that 2 ≤ 1, 3 ≤ 1, 5 ≤ 1, in the sense of the
canonical order relation of the dioid (R̂, Min,+)).

3. Quasi-Inverse of a Matrix with Elements in a Semiring
Existence and Properties

3.1. Definitions

The concept of quasi-inverse of an element of E was introduced and studied in
Chap. 3, Sects. 6 and 7. Here, we generalize this concept to the case of matrices
A ∈ Mn(E), then we show that the minimal solutions to systems such as (1) or (2)
can be easily deduced from the quasi-inverse A∗ of A (when the latter exists).

Let A ∈ Mn(E) be a square n x n matrix with elements in a semiring (E,⊕,⊗).
For any k ∈ N, denote by Ak the kth power of A, i.e. A⊗A⊗ · · · ⊗A (k times)

and define the matrices A(k) by:

A(k) = I⊕ A ⊗ A2 ⊕ · · · ⊕ Ak
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where I =
⎡

⎢
⎣

e
e ε

.
ε .

e

⎤

⎥
⎦ is the identity matrix of Mn(E).

We observe that, in the special case where the operation ⊕ is idempotent,
the following result yields an alternative expression of A(k) involving the matrix
A′ = I⊕ A

Proposition 3.1.1. If the ⊕ laws is idempotent, then A(k) = (I⊕ A)k

Proof. The expansion of (I⊕A)k gives (I⊕A)k = I⊕
k∑

r=1
Cr

kAr where the sum is to be

understood in the sense of⊕ and where Cr
k Ar denotes the sum Ar⊕Ar⊕· · ·⊕ArCr

k

times

(
Cr

k =
k!

r! (k − r)!
)

. Since⊕ is idempotent we therefore have Cr
kAr = Ar and

the proposition is deduced. "#
Definition 3.1.2. (Quasi-inverse of a matrix)

We call quasi-inverse of A ∈ Mn(E), denoted A∗, the limit, when it exists, of the
sequence of matrices A(k) as k →∞:

A∗ = lim
k→∞

A(k)

We will now study sufficient conditions of existence for the matrix A∗. These condi-
tions involve the interpretation of the matrices Ak and A(k) in terms of paths of the
graph G(A) associated with the matrix A.

We distinguish between two cases:

– The case where (E,⊕,⊗) is a semiring without being a dioid, i.e. the case where
there is no canonical order relation on E. This means it will not be possible to
use the topologies on ordered sets introduced in Chap. 3 to define the convergence
of the sequence of the matrices A(k). In this situation, we will therefore have to
limit ourselves to cases of finite convergence of A(k) towards A∗.

– The case where (E,⊕,⊗) is a topological dioid i.e. where E is a (canoni-
cally) ordered set endowed with sup-topology (topology of the upper limit of
nondecreasing sequences, see Chap. 3 Sect. 3).

3.2. Graph Associated with a Matrix. Generalized Adjacency
Matrix and Associated Properties

Let A ∈ Mn(E) be a square n×n matrix with entries in E. We define the graph G(A)
associated with A as follows:

– The set of vertices of G(A) is {1, 2, . . . n} the set of indices of the rows (or columns)
of A;
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– The set of arcs of G(A) is the set of ordered pairs (i, j) corresponding to the terms
aij of A distinct from ε (the neutral element of ⊕). If A contains a diagonal term
aii �= ε, then G(A) contains an arc (i, i) also referred to as a loop.

We observe that the graph G(A) thus defined is a valued graph: each arc (i, j) is
endowed with the value aij ∈ E (aij �= ε) of the corresponding term of the matrix A.

Conversely, the matrix A can be considered as the (generalized) adjacency matrix
of the valued graph G(A).

Property 3.2.1 below is the basis for the developments to follow, enabling us to
interpret the coefficients of the matrices Ak and A(k) in terms of paths and circuits
of the associated graph G(A).

For any k ∈ N, let us denote:

• Pk
ij the set of paths of G(A) (not necessarily elementary) joining vertex i to vertex

j and containing exactly k arcs;
• P(k)

ij the set of paths of G(A) (not necessarily elementary) joining vertex i to vertex
j and containing at most k arcs.

Moreover, with any path μ ∈ Pk
ij, composed of the sequence of vertices io, i1,

i2, . . . ik−1, ik (with i0 = i and ik = j), we associate its weight w(μ) = aio,i1 ⊗
ai1,i2 ⊗ · · · .⊗ aik−1,ik

One can then state:

Property 3.2.1. (i) Each term (i, j) of matrix Ak is equal to the sum of the weights
of the paths of Pk

ij: (
Ak)

i,j =
∑

μ∈Pk
ij

w(μ) (5)

(ii) Each term (i, j) of matrix A(k) is equal to the sum of the weights of the paths of
P(k)

ij :
(
A(k)

)
i,j =

∑

μ∈P(k)
ij

w(μ) (6)

Proof. This is easily proved by induction on k, taking into account the fact that ε

is absorbing for multiplication ⊗, and that the latter is distributive with respect to
addition. "#
The paths belonging to Pk

ij or P(k)
ij are not necessarily elementary, i.e. can contain

circuits. In the general case where the multiplication⊗ is not commutative, the weight
of a circuit γ passing successively through the vertices i1, i2, . . . ik, i1 depends on
the way it is traversed. Thus, if the starting vertex is i1 the weight of the circuit is
defined as:

ai1i2 ⊗ ai2i3 ⊗ · · · ⊗ aik,i1

if the starting vertex is i2, the weight is defined as:

ai2i3 ⊗ ai3i4 ⊗ · · · ⊗ aik,i1 ⊗ ai1i2
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and these two quantities can be different. One is thus lead to introduce the concept
of pointed circuit.

Definition 3.2.2. (concept of pointed circuit)
We say that we have a pointed circuit of G(A) when we are given a circuit of G(A)

together with a special vertex of this circuit taken as the origin of the circuit. The
weight of the pointed circuit γ = {i1i2, . . . ik, i1} of origin i1 is:

w(γ) = ai1i2 ⊗ ai2i3 ⊗ · · · ⊗ aik,i1

Thus to a circuit of G composed of k vertices, we let correspond k pointed circuits.
Each of these pointed circuits can therefore have a different weight. In the case where
multiplication is commutative, all the pointed circuits corresponding to a given circuit
have the same weight and the concept of pointed circuit is not necessary.

We say that a graph G has no p-absorbing circuit if the weight of each pointed
circuit of the graph G is a p-stable element of E. (see Chap. 3 Sect. 7: a ∈ E is
said to be p-stable if and only if a(p) = a(p+1) = . . . , where, ∀k ∈ N: a(k) =
e⊕ a ⊕ a2 ⊕ · · · ⊕ ak).

Property 3.2.1 then becomes:

Property 3.2.3. If G(A) has no p-absorbing circuit, then:
(

A(k)
)

ij
=

∑

μ

w(μ) (7)

where the sum extends to the set of paths from i to j containing at most k arcs and
traversing no more than p times successively each pointed circuit of G(A).

Proof. To prove the proposition, it is enough to show that any path traversing more
than p times successively a pointed circuit does not need to be taken into account
in (6). Let us therefore consider a path μ from i to j successively taking p+ q times
(q ≥ 1) some pointed circuit. Let γ�� be this pointed circuit of origin �. The path μ

may therefore be decomposed into a path μi� from i to �, in p+ q times the circuit
γi�, and then a path μ�j from � to j; we will denote:

μ = μi�(γ��)
p+qμ�j

If μ ∈ P(k)
ij then each path:

μr = μi�
(
γ��

)r+q−1
μ�j with r = 0, 1, . . . , p

also belongs to P(k)
ij .
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Let us show that the path μ can be absorbed in (6) by the set of paths μr (for
r = 0, 1, . . . , p). Indeed:

w(μ)⊕
∑

0≤r≤p

w(μr) = w(μi�)⊗ w(γ��)
p+q ⊗ w(μ�j

)

⊕
∑

0≤r≤p

w(μi�)⊕ w(γ��)
r+q−1 ⊕ w(μ�j)

hence, taking into account the right and left distributivity of ⊗:

w(μ)⊕
∑

0≤r≤p

w(μr)

= w(μi�)⊗ w(γ��)
q−1 ⊗

[
e⊕ w(γ��)⊕ · · · ⊕ w(γ��)

p ⊕ w(γ��)
p+1

]
⊗ w(μ�j)

Then, using the fact that G(A) has no p-absorbing circuit, this yields: w(γ��)
(p+1) =

w(γ��)
(p) and the previous equation becomes:

w(μ)⊕
∑

o≤r≤p

w(μr) =
∑

o≤r≤p

w(μt)

We deduce the proposition by applying this property of absorption to all the paths
successively taking more than p times a pointed circuit of G(A). "#
A special case, frequently encountered in the examples (see Sect. 6 below), is when
p = 0, i.e. the case where, for every pointed circuit γ, we have:

w(γ)⊕ e = e.

Let us denote:

• P(k)
ij (o) the set of elementary paths (not traversing the same vertex twice) in P(k)

ij .

• Pij(o) the set of all elementary paths from i to j.

In this case, we have the following corollary:

Corollary 3.2.4. If G(A) has no 0-absorbing circuit, then:
(

A(k)
)

ij
=

∑

μ∈P(k)
ij (0)

w(μ) (8)

(
A(n−1)

)

ij
=

∑

μ∈Pij(0)

w(μ) (9)
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Proof. (8) is an immediate consequence of (7) taking into account the fact that
p = 0. (9) is then deduced from (8) observing that an elementary path contains at
most n − 1 arcs. "#

3.3. Conditions for Existence of the Quasi-Inverse A∗

In the case where G(A) has no 0-absorbing circuit, one can immediately deduce from
Corollary 3.2.4 of Sect. 3.2:

Theorem 1. (Carré et al. 1971; Gondran 1973)
If G(A) has no 0-absorbing circuit, then the sequence of matrices A(k) has a limit

A∗ when k →∞, and this limit is reached for k ≤ n − 1:
A∗ = lim

k→∞
A(k) = A(n−1) = A(n) = · · · (10)

Furthermore, A∗ (quasi-inverse of A) satisfies the matrix equations:

A∗ = I⊕ A ⊗ A∗ = I⊕ A∗ ⊗ A (11)

Proof. The fact that the sequence A(k) has a limit which is certainly reached for
k = n − 1 follows directly from (8) and (9).

Moreover we have:

I⊕ A ⊗ A∗ = I+ A ⊗ (I⊕ A ⊕ · · · ⊕ An−1)

= A(n) = A(n−1) = A∗

which proves (11). "#
The previous result shows that if the weight of all the circuits of G(A) are 0-stable
elements of E, then the matrix A is (n − 1) stable in Mn(E).

Remark. Theorem 1 can be generalized to the case of right dioids (resp. left dioids)
where ⊗ is only right-distributive (resp. left-distributive) with respect to ⊕. In this
case, it must be assumed that G has no 0-absorbing circuit on the right (resp. on the
left), i.e. that, for any circuit γ, we must have, ∀a ∈ E: a ⊕ w(γ) ⊗ a = a (resp.
a ⊕ a ⊗ w(γ) = a).

Refer to Exercise 4 at the end of the chapter. ||
Let us now study the case where G(A) has no p-absorbing circuit with p ≥ 1. In this
situation, the assumptions of Property 3.2.3 alone are not sufficient to prove the finite
convergence of A(k), as the cardinality of the paths involved in (7) cannot be bounded.
We will therefore successively examine two types of additional assumptions:

– The commutativity of multiplication
– The p-nilpotency of the set of entries of matrix A.
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We first consider the case where the multiplication is supposed to be commutative.
Let us denote:

• P(k)
ij (p) the set of paths of P(k)

ij traversing no more than p times each elementary
circuit of G(A).

• Pij(p) the set of paths from i to j traversing no more than p times each elementary
circuit of G(A).

We observe that the cardinality (number of arcs) of the paths of Pij(p) is bounded
from above by n− 1+ pnt, where t denotes the total number of elementary circuits
of G(A).

We then have the following theorem:

Theorem 2. (Gondran, 1973)
If G has no p-absorbing circuit and if the multiplication is commutative, then:

(
A(k)

)

ij
=

∑

μ∈P(k)
ij (p)

w(μ) (12)

(
A(np)

)

ij
=

∑

μ∈Pij(p)

w(μ) (13)

where np is the maximum number of arcs of the paths of Pij (p) (np ≤ n − 1 + pnt
where t is the total number of elementary circuits of G(A)).

Furthermore, the sequence of matrices A(k) has a limit A∗ when k → ∞, and
this limit is reached for k ≤ np:

A∗ = lim
k→+∞

A(k) = A(np) = A(np+1) = · · · (14)

A∗ (quasi inverse of A) then satisfies the matrix equations (11).

Proof. (12) is deduced directly from Property 3.2.3 since, from the commutativity
of⊗, it is possible to consider any circuit as a product of elementary circuits, without
taking into account the order in which these circuits are traversed.

The rest of the theorem is proved in the same way as for Theorem 1. "#
The previous result shows that, if the multiplication is commutative and if the

weights of the circuits of G(A) are p-stable elements of E, then the matrix A is np-
stable in Mn(E) (with np ≤ n− 1+ pnt where t is the number of elementary circuits
of G(A)).

Let us consider now the case where ⊗ is not commutative, but where the set of
entries of matrix A is p-nilpotent.

Let F be a subset of E and p an integer > 0. We will say that F is p-nilpotent
if and only if, for any sequence of p + 1 elements (not necessarily all distinct)
a0, a1, a2, . . . ap taken in F, we have:

a0 ⊗ a1 ⊗ · · · ⊗ ap = ε (the neutral element of ⊕)

The following result shows then that, due to p-nilpotency, the commutativity of
multiplication is not required to establish the convergence of the sequence A(k).
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Theorem 3. (Minoux, 1976)
If the set F of entries aij of the matrix A is p-nilpotent, then the matrix A(k) has a

limit A∗ which is reached for k ≤ p:

A∗ = lim
k→+∞

A(k) = A(p) = A(p+1) = · · ·

A∗ then satisfies the matrix equations (11).

Proof. It suffices to observe that all the paths of more than p arcs do not need to be
taken into account in (6). (11) is proved as for Theorem 1. "#
Theorem 3 thus shows that, if the set of terms of A is p-nilpotent, then the A matrix
is p-stable. We observe that all the elements of a p-nilpotent set are p-stable: the p-
nilpotency assumption is therefore stronger than that of p-stability.An important class
of problems for which we will have to assume p-nilpotency concerns generalized
path algebras involving endomorphisms (see Sect. 4.4 below). Theorem 3 will be
used there to generalize iterative algorithms to compute quasi-inverses of matrices
of endomorphisms.

3.4. Quasi-Inverse and Solutions of Linear Systems.
Minimality for Dioids

Let us assume that the matrix A has a quasi-inverse A∗ which satisfies the rela-
tions (11).

The following result shows that A∗ determines solutions for systems (1) and (2)
of Sect. 1.

Property 3.4.1. Let A ∈ Mn(E) and let us assume that its quasi-inverse A∗ exists
and satisfies:

A∗ = I⊕ A ⊗ A∗ = I⊕ A∗ ⊗ A (11)

Then:

(i) For any matrix B ∈ Em×n

(m integer 1 ≤ m ≤ n)
Y = B⊗ A∗ ∈ Em×n is a solution to the linear system:

Y = Y⊗ A ⊕ B (15)

(ii) For any matrix B ∈ En×m (m integer 1 ≤ m ≤ n) Z = A∗ ⊗ B ∈ En×m is a
solution to the linear system:

Z = A ⊗ Z⊕ B (16)

Proof. We obtain (15) with Y = B⊗A∗ by left multiplying (11) by B and (16) with
Z = A∗ ⊗ B, by right multiplying (11) by B. "#
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In the special case where m = 1, the above property shows how to construct, using
A∗, solutions to systems of type (1) and (2) introduced in Sect. 1.

Let us consider now the case where (E,⊕,⊗) is a dioid, i.e. where the preorder
canonical relation ≤ is an order relation.

We have seen in Chap. 2, Sect. 3 that this order relation can be extended naturally
to the vectors of En and to the matrices of Em×n.

The following property then establishes minimality in the sense of this order
relation of the solutions constructed by means of the quasi-inverse.

Property 3.4.2. Let us assume that there exists K ∈ N such that A∗ = A(K) =
A(K+1) = · · · .

If (E,⊕,⊗) is a dioid endowed with the canonical order relation ≤, then Y =
B ⊗ A∗ (resp. Z = A∗ ⊗ B) is the minimal solution in the set of solutions to (15)
(resp. in the set of solutions to (16)) ordered by the order relation induced by ≤.

Proof. Let Y be an arbitrary solution of (15)
We can write:

Y = B⊕ (B⊕ Y⊗ A)⊗ A

= B⊗ (I⊕ A)⊕ Y⊗ A2

and, generally, for any k ∈ N:

Y = B⊗ (I⊕ A ⊕ · · · ⊕ Ak−1)⊕ Y⊗ Ak

We therefore have for k ≥ K:

Y = B⊗ A∗ ⊕ Y⊗ Ak

which shows that B⊗ A∗ ≤ Y
Consequently B⊗ A∗ is the minimal solution in the set of solutions to (15).
We would prove, similarly, that A∗ ⊗ B is the minimal solution to (16). "#
One thus again finds, in a generalized form, the property of minimality already

encountered in Sect. 2.4 in relation to the shortest path problem in a graph.
For example, taking for B the row-vector bT (viewed as a 1× n matrix) with all

components ε except the component of index io equal to e, it can be observed that
bT⊗A∗, which is none other than the row of index io of A∗, is the minimal solution
to the equation:

y = y ⊗ A ⊕ bT

Thus, when E is a dioid, it is equivalent to compute A∗ or to determine minimal
solutions for each of the n linear system of type (1) obtained successively taking b
equal to the n unitary vectors:

(e, ε, ε, . . . ε)T

(ε, e, ε . . . .ε)T

...

(ε, ε, . . . , e)T
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4. Iterative Algorithms for Solving Linear Systems

For a given A ∈ Mn(E), we have shown in Sect. 3 how solving linear systems of
the type:

y = y ⊗ A ⊕ bT (1)

or
z = A ⊗ z⊕ b (2)

(and more generally linear matrix systems of type (15) or (16)) reduces to determining
the quasi-inverse A∗ of A.

The computation of A∗ can be performed, depending on the case, rowwise,
columnwise or globally.

4.1. Generalized Jacobi Algorithm

Let us assume, to set the ideas, that we wish to determine the first row of the A∗
matrix. In other words, we are seeking y = bT ⊗ A∗ with bT = (e, ε, ε, . . . , ε).

From Sect. 3, we know that y solves the equation (of the “fixed point” type):

y = y ⊗ A ⊕ bT (1)

Algorithm 1 below can then be seen as the direct analogue to Jacobi’s method, in
classical linear algebra, to solve a system of type (1).

Algorithm 1 (Generalized Jacobi)
Determination of the first row of A∗, or proof that A(K) �= A∗

(a) set yo = bT = (e, ε, . . . ε); t ← 0;
(b) At iteration t, let yt be the current solution. Compute

yt+1 = yt ⊗ A ⊕ bT

If yt+1 = yt, the algorithm terminates and yt = bT ⊗ A∗ (the first row of A∗)
If yt+1 �= yt and t ≤ K then set t ← t + 1 and return to (b).
If yt+1 �= yt and t = K then interrupt the computation: A∗ �= A(K).

Theorem 4. (i) If there exists an integer K such that A∗ = A(K), then the generalized
Jacobi algorithm constructs, in at most K iterations, the first row of A∗. In the
opposite case, the algorithm proves in at most K iterations that A∗ �= A(K).

(ii) If A∗ exists and if (E,⊕,⊗) is a topological dioid, then the generalized Jacobi
algorithm generates a nondecreasing and convergent sequence (in the sense of
the sup-topology) towards the first row of A∗.
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Proof. Let us first prove (i), i.e. the case when finite convergence occurs.
We have yo = bT hence y1 = bT ⊗ (I⊕ A)
y2 = bT ⊗ (I⊕ A ⊕ A2) and, by induction, ∀t ∈ N:

yt = bT ⊗ (I⊕ A ⊕ A2 ⊕ · · · ⊕ At) = bt ⊗ A(t)

which shows that the sequence of the solutions generated by the algorithm is
monotone nondecreasing.

If there exists K ∈ N such that A(K) = A∗ then this yields: yK = bT ⊗ A∗ =
yK+1 = · · · .

Consequently, if yK+1 �= yK, it is because A∗ �= A(K).
Let us now prove (ii), i.e. convergence in topological dioids.
According to the above we have, ∀t: yt = bT⊗A(t). Since A∗ exists, the sequence

A(t) is nondecreasing and convergent towards A∗. Since taking the limit is compatible
with the laws ⊕ and ⊗ (since we are dealing with a topological dioid, see Chap. 3
Sect. 6), we deduce that yt converges to bT ⊗ A∗, the first row of A∗. "#

In practice, it is often possible to obtain an upper bound on the number K such
that A(K) = A∗ with additional assumptions. For example:

– In the absence of a 0-absorbing circuit (see Sect. 3, Theorem 1) then K ≤ n − 1;
– If the multiplication⊗ is commutative and in the absence of a p-absorbing circuit

(see Sect. 3, Theorem 2) then K ≤ n − 1 + pn t, where t is the total number of
elementary circuits of G(A);

– If the set F of the entries of A is p-nilpotent (see Sect. 3, Theorem 3) then K ≤ p.

In the case where the algorithm terminates at iteration t = K with yK+1 �= yK, we
end up at a situation which is inconsistent with the hypotheses. The Jacobi algorithm
can therefore also be considered as a means of algorithmically checking the relevance
of the assumptions used.

The following result states the complexity of Algorithm 1.

Proposition 4.1.1. Assuming that the complexity of each of the operations⊕ and⊗
is O (1) the generalized Jacobi algorithm has complexity O(Kn2) if all the entries
of the matrix A are distinct from ε, and O(KM) if M is the number of entries of A
different from ε.

Proof. Each iteration requires a matrix-vector product (n2 operations⊕ and⊗) and
a sum of two vectors (n operations ⊕). The complexity is therefore O(Kn2). If the
number of entries of A distinct from ε is M - n2, this complexity can be reduced to
O(K.M) by using a compact representation of A. "#
In the case of the shortest path problem (E = R ∪ {+∞},⊕ = Min,⊗ = +),
Algorithm 1 is recognized as Bellman’s algorithm (1958).

4.2. Generalized Gauss–Seidel Algorithm

By analogy with the classical version of the Gauss–Seidel algorithm, the idea is to
decompose matrix A by expressing it as the sum of a lower triangular matrix L and
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an upper triangular matrix U. To simplify the presentation, we will first assume that
the diagonal elements of A are all equal to ε. We therefore have:

A = U ⊕ L

The basic iteration of the generalized Jacobi algorithm (see Sect. 4.1) then takes
the form:

yt+1 = bT ⊕ yt ⊗ U ⊕ yt ⊗ L

Thus, for any component j = 1, . . . n, the computation of yt+1
j is achieved via the

relation:

yt+1
j = bj ⊕

j−1∑

i=1

yt
i ⊗ aij ⊕

n∑

i=j+1

yt
i ⊗ aij

During the computation of yj
t+1, all the terms y1

t+1, y2
t+1, . . . , yj−1

t+1 have already
been determined. The idea of the Gauss–Seidel algorithm is then to replace the values
yj

t in the first summation by the new values yj
t+1 already determined, which leads

to the recurrence:

yt+1
j = bj ⊕

j−1∑

i=1

yt+1
i ⊗ aij ⊕

n∑

i=j+1

yt
i ⊗ aij

or equivalently, in matrix notation:

yt+1 = bT ⊕ yt+1 ⊗ U ⊕ yt ⊗ L (17)

This gives rise to the following algorithm:

Algorithm 2 (Generalized Gauss–Seidel)
Determination of the first row of A∗ or proof that A(K) �= A∗

(a) Set bT = (e, ε, · · · ε)T and yo = (ε, ε, ε, · · · ε); t ← 0;
(b) At iteration t, let yt be the current solution. Compute: yt+1 satisfying:

yt+1 = bT ⊕ yt+1 ⊗ U ⊕ yt ⊗ L

If yt+1 = yt, the algorithm terminates and yt = bT ⊗ A∗ (the first row of A∗)
If yt+1 �= yt and t ≤ K then, set t ← t + 1 and return to (b)
If yt+1 �= yt and t = K then terminate the computations: A∗ �= A(K).

Theorem 5. (i) If there exists K ∈ N such that A(K) = A∗, then the generalized
Gauss–Seidel algorithm constructs, in at most K iterations, the first row of A∗. In
the opposite case, the algorithm proves, in at most K iterations, that A∗ �= A(K).

(ii) If A∗ exists and if (E,⊕,⊗) is a topological dioid, then the generalized Gauss–
Seidel algorithm generates a nondecreasing and convergent (in the sense of the
Sup-Topology) sequence towards the first row of A∗.
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Proof. Let us first prove (i), i.e. the case where finite convergence occurs.
In order to do so, let us consider ŷt to be the solution obtained from ŷ0 =

(ε, ε, . . . ε) at the tth iteration of Jacobi’s method, i.e. by:

ŷt+1
j = bj ⊕

j−1∑

i=1

ŷt
i ⊗ aij ⊕

n∑

i=j+1

ŷt
i ⊗ aij

Let us recall that, by construction ŷt+1 ≥ ŷt .
Let us prove then by induction that, ∀t: and ∀ j = 1, . . . , n: ŷt

j ≤ yt

This relation is true for t = 0. Let us therefore assume it to be true for an arbitrary
t ∈ N and assume that for an arbitrary given j(2 ≤ j ≤ n), for any i ≤ j− 1, we have
yi

t+1 ≥ ŷt+1
i .

Then we can write, ∀j = 1, . . . , n:

yt+1
j = bj ⊕

j−1∑

i=1

yt+1
i ⊗ aij ⊕

n∑

i=j+1

yt
i ⊗ aij

≥ bj ⊕
j−1∑

i=1

ŷt+1
i ⊗ aij ⊕

n∑

i=j+1

ŷt
i ⊗ aij

≥ bj ⊕
j−1∑

i=1

ŷt
i ⊗ aij ⊕

n∑

i=j+1

ŷt
i ⊗ aij

hence the we deduce yj
t+1 ≥ ŷt+1

j . By induction on j we therefore deduce yt+1 ≥
ŷt+1 which proves the property for t + 1.

Therefore, in the case where the Jacobi algorithm converges finitely, the general-
ized Gauss–Seidel algorithm cannot require more iterations. We deduce (i).

Let us now prove (ii), i.e. convergence in topological dioids. The matrix U being
upper triangular, it is n-nilpotent, i.e. Un = Un+1 = Un+2 = · · · = Σ (n× n matrix
where all the entries are equal to ε). Then, the quasi-inverse U∗ of U exists, and is
equal to U(n−1).

Moreover, because of the form of the iteration (17), we observe that yt+1 is a
minimal solution in y of the equation:

y = y ⊗ U ⊕ bT ⊕ yt ⊗ L

We therefore have:
yt+1 = (bT ⊕ yt ⊗ L)⊗ U∗ (18)

which provides the expression of yt+1 in terms of yt only.
One can then interpret (18) as an iteration of the Jacobi type applied to the

equation:
y = bT ⊗ U∗ ⊕ y ⊗ (L⊗ U∗) (19)
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By using the proof of Theorem 4, and since y◦ = (ε, ε, . . . , ε), we can write, ∀t:

yt = (bT ⊗ U∗)⊗ [I⊕ (L⊗ U∗)⊕ (L⊗ U∗)2 ⊕ · · · ⊕ (L⊗ U∗)t]
Since A∗ = (U⊕ L)∗ exists, according to Proposition 6.2.5 of Chap. 3, (L⊗ U∗)∗
exists and this yields:

(U ⊕ L)∗ = U∗ ⊗ (L⊗ U∗)∗.

The sequence yt generated by the generalized Gauss–Seidel algorithm is therefore
nondecreasing and bounded from above with limit:

bT ⊗ U∗ ⊗ (L⊗ U∗)∗

= bT ⊗ (U ⊕ L)∗ = bT ⊗ A∗

which is recognized as the minimal solution to the equation y = y ⊗ A ⊕ bT. "#
Applied to the shortest path problem in a graph,Algorithm 2 is none other than Ford’s
algorithm (1956). In this case, we have finite convergence.

Remark. In the case where the diagonal elements of A are not all equal to ε but are
quasi-invertible, the computation of yt+1 from yt at each iteration must be modified,
and be carried out according to the following procedure:

for j = 1, 2, . . . , n

yt+1
j =

⎛

⎝bj ⊕
j−1∑

i=1

yt+1
i ⊗ aij ⊕

n∑

i=j+1

yt
i ⊗ aij

⎞

⎠⊗ a∗jj

(where a∗jj denotes the quasi inverse of the diagonal term ajj). ||

4.3. Generalized Dijkstra Algorithm (“Greedy Algorithm”)
in Some Selective Dioids

We are going to show now that one can obtain an algorithm generally more efficient
than those described in the previous paragraphs by restricting to a special class of
dioids.

We will thus assume, throughout this section, that (E,⊕,⊗) is a selective dioid
in which e (the neutral element of⊗) is the largest element (in the sense of the order
relation of the dioid), in other words: ∀a ∈ E: e ⊕ a = e. The order relation being
compatible with multiplication, we therefore have, in such a dioid:

∀a ∈ E, b ≥ c ⇒ b⊗ e ≥ c⊗ a ⇒ b ≥ c⊗ a (20)

(R+ ∪ {+∞}, Min,+), ([0, 1], Max,×) ({0, 1}, Max, Min), (R+∪ {+∞}, Max, Min)

are examples of selective dioids in which e is the largest element.
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Let us recall that, in a dioid where e is the largest element, any element of E is
0-stable. Any matrix A ∈ Mn(E) is therefore quasi-invertible since G(A) then has
no 0-absorbing circuit (see Theorem 1, Sect. 3.3).

Algorithm 3, described hereafter, uses the following result.

Theorem 6. (Gondran, 1975b)
Let (E,⊕,⊗) be a selective dioid in which e is the largest element.
Given A ∈ Mn(E), let us consider the linear system:

z = z⊗ A ⊕ b (21)

where b is a given row-vector with n components and let z̄ = b⊗A∗ be the minimal
solution to this system. Then there exists io ∈ [1, n] such that z̄io = bio and this index
io satisfies:

bio =
n∑

i=1

bi (22)

Proof. (a) Let io be defined as satisfying (22). Let us show first of all that there
exists a solution ẑ to (21) such that ẑio = bio
By setting zio = bio the equations (21) are written, for i �= io:

zi =
n∑

j=1
j�=io

zj ⊗ aji ⊕
(
bi ⊕ bio ⊗ aioi

)
(23)

and for i = io:

zio =
n∑

j=1

zj ⊗ ajio ⊕ bio (24)

By denoting Ã the matrix deduced from A by deleting the row io and the column
io, z̃ the vector deduced from z by deleting the component io, the relations (23)
are written in the form of the system:

z̃ = z̃⊗ Ã ⊕ b̃ (25)

where b̃ is the vector with components (bi ⊕ bio ⊗ aioi) for i �= io. This system
has z̃ = b̃ ⊗ Ã∗ as minimal solution. Then let ẑ be the n- vector such that
ẑio = bio and where the components ẑi(i �= io) are those of z̃ = b̃⊗ Ã∗.

By construction, ẑ satisfies (23). Let us show that it also satisfies (24).
In order to do so, and due to the idempotency of⊕, it is enough to show that:

∀j �= io: bio ≥ ẑj ⊗ ajio (26)

According to (22): bio ≥ bi, hence, it follows from (20): bio ≥ bi ⊗
(
Ã∗

)
ij.

Still using (20), one can also write:

bio ≥ bio ⊗ aioi ⊗
(

Ã∗
)

ij
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Then, ẑj being defined, ∀j �= io, by the relation:

ẑj =
n∑

i=1
i �=io

(
bi ⊕ bio ⊗ aioi

)⊗
(

Ã∗
)

ij

we deduce from the above: bio ≥ ẑj
which, by (20), implies (26). Thus, ẑ defined above solves (21).

(b) It remains to show that ẑ is the minimal solution to (21).
For any solution z to (21) we have (24) therefore zio ≥ bio = ẑio .
Moreover, ˜̃z (deduced from z by deleting the component io) solves

˜̃z = ˜̃z⊗ Ã ⊕ ˜̃b (27)

where ˜̃b is the vector with components (bi ⊕ zio ⊗ aioi) for i �= io.

Since ˜̃b ≥ ˜̃z, and since ˜̃b⊗ Ã∗ is the minimal solution to (27) this yields:

˜̃z ≥ ˜̃b⊗ z̃∗ ≥ b̃⊗ Ã∗ = z̃

We deduce z ≥ ẑ, i.e. the minimality of ẑ. "#
The previous result can be used to determine the matrix A∗ row by row. For

example, to determine the first row of A∗, we will choose b = (e, ε, ε, . . . , ε). The

computation of z̄ =
(

A∗1,1, A∗1,2 · · · .A∗1,n

)
can then be carried out step by step, as

follows.
We determine an index io ∈ [1, n] such that:

bio =
n∑

i=1

bi (sum to be understood in the sense of ⊕).

By Theorem 6, we deduce the component io of the desired solution: z̄io = bio.
With this information, one can then reduce the problem to the determination of

the minimal solution to the reduced linear system:

z̃ = z̃⊗ Ã ⊕ b̃ (25)

with, ∀i �= io: b̃i = bi ⊕ bio ⊗ aioi, and where Ã is the matrix deduced from A by
deletion of row io and column io.

By again applying Theorem 6 to the latter problem, we determine an index i1 ∈
[1, n]\{io} satisfying:

b̃i1 =
∑

i∈[1,n]\{io}
b̃i

and we obtain z̄i1 = b̃i1 , and so on.
At each step, we obtain the value of a new component of the solution z̄ and the

dimension of the problem is decreased by one unit. After n steps, the solution vector
is therefore obtained.
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One is thus lead to the following algorithm:

Algorithm 3 (generalized Dijkstra)
Determination of a row of A∗ corresponding a chosen index r(r ∈ [1, n])

(a) Initialization:

Set:
{

π(r)← e

π(i)← ε for i ∈ [1, n]\{r}
T = {1, 2, . . . , n}

(b) Current step:

(b1) Determine an index i ∈ T satisfying:

π(i) =
∑

j∈T

π(j) (sum to be understood in the sense of ⊕)

then set: T ← T\{i}
If T = ∅, end of algorithm: the vector (π(1), π(2), . . . π(n)) is the row r
of A∗.
If T �= ∅ go to (b2).

(b2) For all j ∈ T set:
π(j)← π(j)⊕ π(i)⊗ aij

and return to (b).

The following result states the complexity of Algorithm 3.

Proposition 4.3.1. Algorithm 3 requires O(n2) operations ⊕ and O(n2) opera-
tions ⊗.

Proof. For iteration k where |T| = n− k+ 1, the computation of the index i in step
(b1) requires n − k + 1 operations ⊕ and the updating of the π(j) values in step
(b2) requires n − k operations ⊕ and n − k operations ⊗. The result is deduced by
summing up for k from 1 to n. "#

In the special case of the shortest path problem in a graph with all nonnegative
lengths, we find again DIJKSTRA’s classical algorithm (1959).

4.4. Extensions of Iterative Algorithms to Algebras
of Endomorphisms

We are going to show in this section that the iterative algorithms of Sects. 4.1 and 4.2
as well as the generalized Dijkstra Algorithm of Sect. 4.3 (“greedy” algorithm) can
(under appropriate assumptions to be specified) be generalized for the “point wise”
computation of the quasi-inverse Φ∗ of a matrix Φ = (ϕij)i=1,...,n

j=1,...,n
where the entries
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are endomorphisms of a monoid (S,⊕). As will be seen, this extension opens up the
way to solving new problems, among which a huge variety of “non classical” path-
finding problems in graphs. A typical example concerns the shortest path problem
with time dependent lengths on the arcs, which can be stated as follows. With each
arc (i, j) of a graph G we associate a function ϕij giving the time tj = ϕij(ti) of arrival
in j when starting at i at the instant ti.

Starting from vertex 1 at a given instant t1, we want to determine a path reaching
vertex i in minimum time. Without special assumptions on the form of the functions
ϕij, such a problem does not fit into the framework of the classical model introduced
in Sect. 2. If one analyzes the causes of the difficulty, it can be observed that, in the
classical shortest path problem, the information attached to the vertices and the infor-
mation attached to the arcs of the graph are of the same nature: these are elements of a
same basic set, the dioid (R̂, Min,+). On the contrary, in the shortest path with time
dependent lengths on the arcs, the information attached to the vertices i ∈ X are times,
i.e. real numbers, whereas the information attached to the arcs are functions: R → R.

Starting then from the idea that a good algebraic model for this type of problem
must take this distinction into account, Minoux (1976, 1977) introduced very general
algebraic structures which will be called algebras of endomorphisms.

Clearly, when such an algebra has the properties of a semiring (resp. of a dioid),
we will refer to of a semiring of endomorphisms (resp. to a dioid of endomorphisms).

4.4.1. Endomorphism Algebra – Definition

An algebra of endomorphisms (of a monoid) is defined as a given quadruple:
(S, H, ⊕, ∗), where:

– S is the ground set, endowed with an internal law⊕which induces a commutative
monoid structure with neutral element ε (in the case of a path-finding problem,
its elements correspond to the information attached to the vertices of the graph).

– H is the set of mappings: S → S, satisfying:

h(a ⊕ b) = h(a)⊕ h(b) ∀h ∈ H, a ∈ S, b ∈ S.

h(ε) = ε ∀h ∈ H.

H is therefore the set of endomorphisms of (S,⊕) satisfying h(ε) = ε. The unit
endomorphism will be denoted e: e(a) = a, ∀a ∈ S.

– The ⊕ law on S induces on H an operation also denoted ⊕, defined as:

(h ⊕ g)(a) = h(a)⊕ g(a) ∀h ∈ H, g ∈ H, a ∈ S.

Observe that⊕ is an internal law on H. The neutral element of⊕ in H is the endo-
morphism denoted hε which, with any a ∈ S, associates ε ∈ S; we clearly have:

hε ⊕ h = h ⊕ hε = h ∀h ∈ H.

– H is moreover endowed with a second law, denoted ∗ defined as:

h ∈ H, g ∈ H, h ∗ g = g ◦ h

where ◦ is the classical product mapping.
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∗ is therefore an internal, associative law on H which has the unit endomor-
phism e as neutral element.

Furthermore, ∗ is right and left distributive with respect to the⊕ law. It has hε as
absorbing element because:

(g ∗ hε)(a) = hε(g(a)) = ε ∀a ∈ S, ∀g ∈ H.

(hε ∗ g)(a) = g[hε(a)] = g(ε) = ε ∀a ∈ S, ∀g ∈ H.

We deduce that (H,⊕, ∗) is a semiring.

4.4.2. Quasi-Inverse of a Matrix of Endomorphisms

Given a semiring of endomorphisms (S, H,⊕, ∗), let us consider now a n×n matrix:
Φ = (ϕij)i=1,...,n

j=1,...,n
with elements in H.

We now focus on the existence and computation of the quasi-inverse Φ∗. Since
Φ is a matrix of endomorphisms, we will have to make it clear in what sense one
can speak of the computation of Φ∗.

Let us first of all address the question of existence.
If it is assumed, for example, that all the endomorphisms ϕij corresponding to the

entries of Φ satisfy:
∀a ∈ S: a ⊕ ϕij(a) = a

in other words that, ∀i, j:
e⊕ ϕij = e

it is then easy to see that the graph G associated with Φ has no 0-absorbing circuit,
which implies the existence of the matrix Φ∗ = (ϕ∗ij)i=1,...,n

j=1,...,n
quasi-inverse of Φ (see

Theorem 1 Sect. 3.3).
Let us observe, however, that, as opposed to the classical case dealt with above,

the fact that Φ∗ exists does not necessarily guarantee that the computation of Φ∗ can
be performed explicitly and efficiently. Indeed, the entries ϕ∗ij are endomorphisms,
therefore mappings: S → S, which, apart from special cases, can only be exactly
known through the set of images of all the elements of S. Thus, from the point of
view of computation and information storage this poses a problem whenever (and
this is the most frequent case) |S| = +∞.

Moreover, in many applications:

– Either each endomorphism ϕij (each entry of the Φ matrix) is only known by its
effect on each element of S;

– Or the product of two endomorphisms ϕij ∗ ϕjk is known only by its effect on
each element of S.

Indeed, the algorithms to be described in Sect. 4.4.4 will be limited to efficiently
computing each endomorphism ϕ∗ij point-wise, i.e. they will compute ϕ∗ij(a) for a
given arbitrary a ∈ S.
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We first provide below a few typical examples of problems that can be modeled
as the point-wise computation of the elements of Φ∗, quasi-inverse of a matrix of
endomorphisms Φ.

4.4.3. Some Examples

Example 1. Shortest path with time dependent lengths on the arcs (see Chap. 1,
Sect. 6.2.)

We will take here S = R̂,⊕ = Min, ε = +∞. The set H will be the set of
endomorphisms h of S satisfying h(+∞) = +∞. Since here⊕ = Min, the condition
of endomorphism amounts to:

h(Min{t, t′}) = Min{h(t), h(t′)}
which is equivalent to requiring that the functions h: R → R be nondecreasing.

With each arc (i, j) of the graph we associate ϕij ∈ H having the following
meaning:

tj = ϕij(ti) is the instant of arrival at the vertex j when starting from i at the instant
ti through arc (i, j).

If one starts from vertex i0 chosen as the origin at the instant t0, one wishes to
determine, for every vertex j �= i0, an optimum path in order to arrive in j as early as
possible. The aim therefore is to determine all the values ϕ∗io,j(t0) which correspond
to the row i0 of the quasi-inverse Φ∗.
Example 2. Shortest path with discounting (see Chap. 1, Sect. 6.2.)

With each arc (i, j) of a graph G, we associate a length which depends, in a path,
on the number of arcs previously taken. If we interpret, for example, the transversal
of the arc (i, j) as corresponding to an annual investment program, the cost of the arc
(i, j) is cij/(1+ τ)t if t is the number of arcs previously taken by the path, that is to
say, the year of the expenditure cij (τ is a given parameter referred to as the discount
rate). For every arc (i, j) the value Cij, assumed to be given, therefore represents the
amount of the investment corresponding to the arc (i, j) assuming that this is the first
arc of the path to be determined.

We seek the shortest path with discounting from a given vertex 1 to each of the
other vertices.

If T is the number of time intervals under consideration, we will take for S the
set of (T + 1)-vectors with components in R+ ∪ {+∞}. If a = (a0, a1, . . . , aT)

and b = (b0, b1, . . . , bT), we define d = a ⊕ b = (d0, d1, . . . , dT) by setting
dt = min (at, bt), for all t from 0 to T. ε = (+∞, . . . ,+∞). Then we define the
endomorphism ϕij as:

ϕij(a) = b

with

⎧
⎨

⎩

bo = +∞
bt = at−1 + cij

(1+ τ)t−1
(t = 1, . . . , T)



140 4 Solving Linear Systems in Dioids

We observe that such endomorphisms are T-nilpotent (see Sect. 3.3) and the matrix
Φ∗ therefore exists (as a consequence of Theorem 3, Sect. 3.3).

The initial state of the vertex 1 being taken as equal to α = (0,+∞,+∞, . . . ,

+∞), the problem is reduced to the determination of ϕ∗1j (α) for j = 2, 3, . . . , n.
The shortest path with discounting between 1 and j has the value

Min
t=0,...,T

{[
ϕ∗1,j(α)

]

t

}

Example 3. Shortest path with time constraints

With each arc (i, j) of a graph G, we associate:

– a duration dij > 0 measuring the transit time on arc (i, j),
– a set of intervals Vij ⊂ [0,+∞[ representing the set of instants of possible

departure from vertex i towards vertex j using arc (i, j).

With each vertex i, we associate a set of intervals Wi ⊂ [0,+∞[ representing the
set of instants where parking is authorized in vertex i.

The problem is to determine the shortest path joining two specified vertices x and
y (in the sense of the transit time) compatible with the time constraints specified by
the Vij (on the arcs) and the Wi (on the vertices).

The information associated with a vertex i is the set Ei of the instants of possible
arrival in i from the origin x. An element of S will therefore be a set of intervals
⊂ [0,+∞[. We define on S the operation ⊕ (union of two sets of intervals) by:

a ⊕ b = {t/t ∈ a or t ∈ b} ∀a, b ∈ S.

The empty set ∅ is the neutral element of ⊕. To define the endomorphisms ϕij, we
define the transition between i and j in several steps:

– If Ei corresponds to the set of instants of possible arrival in i, then the set Di of
the instants of possible departure from i will be:

Di = Ei ⊥Wi

where the operation ⊥ is defined as follows:

If Ei =
{[

α1, α
′
1

]
,
[
α2, α

′
2

]
, . . . .,

[
αp, α

′
p

]}

Wi =
{[

β1, β
′
1

]
,
[
β2, β

′
2

]
, . . . .,

[
βq, β

′
q

]}

then:
Di =

[
γ1, γ

′
1

]⊕ [
γ2, γ

′
2

]⊕
[
γp, γ

′
p

]

where, for k from 1 to p:

[
γk,γ

′
k

] =
[
αk, α

′
k

]
if α′k /∈ Wi

[
αk, β

′
j

]
if α′k ∈

[
βj, β

′
j

]
for some j;
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– The set of instants of possible departure from i towards j using arc (i, j) will
be then:

Di ∩ Vij

– Let us define on S an external operation . (translation) as:

a ∈ S, τ ∈ R+, τ.a = {t + τ/t ∈ a}.
The set of instants of possible arrival in j from i through arc (i, j) will therefore be:

dij.(Di ∩ Vij).

Finally we define ϕij as:

ϕij(Ei) = dij.[(Ei⊥Wi) ∩ Vij].
It is easily checked that ϕij is an endomorphism of (S, ⊕).
We observe that the endomorphism ϕij is entirely determined by the triple

(Wi, Vij, dij) but the product of two such endomorphisms will not generally cor-
respond to such a triple.

One can then show that for some p ∈ N deduced from the problem data, the set
of endomorphisms ϕij is a p-nilpotent set (see Exercise 1 at the end of the chapter),
which implies the existence of A∗ (Theorem 3, Sect. 3.3).

The minimum time to reach y will be then the minimum element of Ey = ϕ∗x,y(Ex).

4.4.4. A Few Solution Algorithms (Minoux, 1976)

We now turn to show how the classical Jacobi, Gauss–Seidel (see Sects. 4.1 and 4.2)
and Greedy algorithms (Sect. 4.3) can be generalized to the problem of (point-wise)
computation of the quasi-inverse Φ∗ of a matrix of endomorphisms Φ. Here we will
focus on paths of origin 1 for example, i.e. on the (point-wise) computation of the
first row of Φ∗.

The generalization of the Jacobi algorithm readily leads to the following.

Algorithm 1′ (Generalized Jacobi algorithm)

(a) Initialization of the states of the various vertices. E0
1 is the initial state of vertex 1.

E0
j ← ε, ∀j = 2, . . . , n. k ← 0.

(b) Repeat (current iteration)

k ← k + 1;
⎧
⎪⎪⎨

⎪⎪⎩

Ek
1 =

n∑

i=1
ϕi1

(
Ek−1

i

)
⊕ E0

1

Ek
j =

n∑

i=1
ϕij(E

k−1
i )

While (∃ i such that: Ek
i �= Ei

k−1)
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(c) When the iterations terminate, the current state of each vertex i is the desired
result: Ei = ϕ∗1,i(E

0
1)

If we have Φ(K) = Φ∗ (Theorem 1, 2 or 3), then the previous algorithm converges
in at most K steps.

When⊕ is idempotent, the previous algorithm can be improved by transforming
it into an algorithm of the Gauss–Seidel type to obtain Algorithm 2′ below.

Algorithm 2′ (Generalized Gauss–Seidel algorithm)
(Case where ⊕ is idempotent)

(a) Initialization of the states of the various vertices: E1 = E0
1 initial state of vertex 1.

Ei ← ε for i = 2, . . . , n; k ← 0.

Test← FALSE.
(b) Repeat (current iteration)

k ← k + 1; Test ← FALSE;
For (any arc u = (i, j) ∈ U such that Ei �= ε) proceed as follows:

Compute Ej
′ = Ej ⊕ ϕij (Ei);

If (Ej
′ �= Ej) then

Test← TRUE;
Endif
Ej ← E′j;

Endfor
While (Test = TRUE)

(c) When the iterations terminate, the state of each vertex i is the desired result
Ei = ϕ∗1,i(E

0
1).

Just as in algorithm 1′, if A(K) = A∗, then algorithm 2′ converges in at most K
iterations.

We are now going to make an improvement to algorithm 2′, still in the case where
⊕ is idempotent. A vertex i will be referred to as labelled at iteration k if its state Ei
was modified by this iteration. A vertex i will be referred to as examined at iteration
k if for all the vertices j ∈ Γi, we have carried out the transformations:

{
E′j ← Ej ⊕ ϕij(Ei)

Ej ← E′j

We then observe that it is unnecessary in algorithm 2′ to examine, at iteration k, a
vertex i examined at some iteration � ≤ k and not labelled since then.

Indeed, at iteration �, we calculated:

E2
j = E1

j ⊕ ϕij(E
1
i )

for all j ∈ Γi, and thus at iteration k, the state of j can be written in full generality:

E3
j = E1

j ⊕ ϕij(E
1
i )⊕ Fi
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(Fi is the contribution of the new labellings which have taken place between iteration
l and iteration k from vertices other than i).

Since, in iteration k, the state of i is still Ei
1, the labelling of j will give:

E4
j = E3

j ⊕ ϕij(E
1
i ) = E1

j ⊕ ϕij(E
1
i )⊕ Fj ⊕ ϕij(E

1
i ) = E3

j

since ⊕ is idempotent. This is true ∀j ∈ Γi and the property thus follows.
Taking this remark into account, and denoting at the current step, the set of labelled

vertices by X2, we obtain the generalized Moore algorithm.

Algorithm 2′′ (Generalized Moore algorithm)
(Case where ⊕ is idempotent)

(a) Initialization: E1 ← E0
1

Ei ← ε for i = 2, . . . n

X2 ← {1}; k ← 0;
(b) Repeat (current iteration)

k ← k + 1;
Select an arbitrary vertex i ∈ X2.
Set: X2 ← X2\{i};
For (j running through Γi) do:

compute E′j = Ej ⊕ ϕij(Ei)

If (E′j �= Ej), then:
X2 ← X2 ∪ {j}

Endif
Ej ← E′j

Endfor
While (X2 �= ∅)

(c) When the iterations terminate, the state of each vertex i is the desired result:
Ei = ϕ∗1,i (E0

1).

Let us now assume that there exists on S a total preorder relation1 denoted ∝,
compatible with ⊕, and such that:

ϕij(a) ∝ a ∀i, j (26)

We observe that a relation of this kind is not necessarily antisymmetrical: a ∝ b and
b ∝ a does not necessarily imply a = b.

In the case of the shortest path with discounting (see Sect. 4.4.3 above), the
preorder relation will be defined as:

a = (a0, a1, . . . , aT) ∝ b = (b0, b1, . . . , bT) if and only if: Min
i=0,...,T

{ai} ≤
Min

i=0,...,T
{bi}

1 Let us recall that a total preorder relation is a binary relation ∝ reflexive (a ∝ a), transitive
(a ∝ b, b ∝ c ⇒ a ∝ c) and such that: ∀a, b ∈ S ⇒ a ∝ b or b ∝ a. It is compatible with ⊕ if,
∀a, b, c ∈ S, we have: a ∝ b ⇒ a ⊕ c ∝ b⊕ c.
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In the case of the shortest path with time constraints (see Sect. 4.4.3 above), the
preorder relation will be:

E ∝ F ⇔ min{t/t ∈ E} ≤ min{t/t ∈ F}.
It is clear that these two relations are not antisymmetrical.
In the case of the shortest path with time dependent lengths on the arcs, the

preorder relation will be the usual order relation defined on R.
Now, the total preorder relation together with (26) will be used to remove the

indetermination existing with regard to which vertex of X2 should be selected in
algorithm 2′′. This leads to the following algorithm which generalizes Algorithm 3
of Sect. 4.3 (“greedy” algorithm).

Algorithm 3′ (Generalized Dijkstra Algorithm)
(Case where ⊕ is idempotent and where there exists a total preorder relation ∝

on S).

(a) Initialization: E1 ← E0
1,

Ei ← ε for i = 2, . . . , n.

X1 ← ∅; X2 ← {1}; k ← 0.

(b) Repeat (current iteration)
k ← k + 1;
Select r ∈ X2 such that:
Er ∝ Ei, ∀i ∈ X2.
If (r /∈ X1) then

X1 ← X1 ∪ {r}
X2 ← X2\{r}

Endif
If (X1 �= X) then

For (j running through Γr) do:
Compute Ej

′ �= Ej ⊕ ϕrj (Er)

If (Ej
′ �= Ej) then:

X2 ← X2 ∪ {j}
Endif
Ej ← E′j

Endfor
Endif

While ((X2 �= ∅) or (X1 �= X))

(c) When the iterations terminate, the state of each vertex i is the desired result:
Ei = ϕ∗1,i(E

0
1).

The finite convergence of Algorithm 3′ follows from that of Algorithm 2′′. Indeed,
it only differs from the previous one by:

– A selection rule for the node to be examined;
– An additional stopping criterion.
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Clearly, the selection rule of r does not influence the convergence. Moreover, an addi-
tional stopping criterion can only reduce the number of iterations; henceAlgorithm 3′
will be preferred whenever the required properties are present.

To show that Algorithm 3′ indeed achieves a minimal label Ej for every vertex j,
it is enough to check that Er is minimal in S when r is transferred for the first time to
X1 (see proof in Exercise 2).

In the special case where ∝ is a total order relation (this is the case for example
for the shortest path problem with time dependent lengths on the arcs), it will always
hold true that X1 ∩ X2 = ∅ (see proof in Exercise 2).

Each vertex is then examined once at step (b) and the maximum time taken by
Algorithm 3′ is then O (N2) assuming that each computation of Ej ⊕ ϕij (Ei) takes
place in time O (1). Algorithm 3′ then appears as a generalization of Dijkstra’s
Algorithm or of algorithm 3 of Sect. 4.3 (greedy algorithm).

5. Direct Algorithms: Generalized Gauss–Jordan Method
and Variations

In this section, we generalize the classical computation of the inverse of a matrix via
Gaussian elimination to the computation of the quasi-inverse of a matrix A ∈ Mn(E)
in a semiring or in a dioid, when this quasi-inverse exists.

We know then (see Sect. 3.4) that the quasi-inverse A∗ satisfies the linear system
(11) and that, moreover, if (E,⊕,⊗) is a dioid, A∗ is the minimal solution to the
matrix systems:

Y = Y⊗ A ⊕ I (28)

and
Z = A ⊗ Z⊕ I (29)

where Y = (yij) ∈ Mn(E) and Z = (zij) ∈ Mn(E) denote, in each case, the (unknown)
matrix to be determined. I denotes the identity matrix of Mn(E).

5.1. Generalized Gauss–Jordan Method: Principle

We will describe the generalized Gauss–Jordan method by considering system (28)′:

Y = Y⊗ A ⊕ B (28)′

where B = (bij) ∈ Mn(E) is a given arbitrary matrix.
We will assume that A∗ exists, therefore, implying that (28)′ has a minimal

solution B⊗ A∗
Note that we will be able to obtain similar formulas to solve the system:

Z = A ⊗ Z⊕ B (29)′
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In the sequel, it will be assumed that (E,⊕,⊗) is a topological dioid; we recall
that in such a dioid, any nondecreasing sequence bounded from above has a limit
(see Chap. 3, Sect. 6).

As will be seen, this assumption will enable to show that at each step, the method
calculates expressions leading to minimal solutions. In the case where (E,⊕,⊗) is
not a dioid, but only a semiring, the method will possibly yield a solution to (28)′
which does not necessarily have the property of minimality.

In the special case where B = I (the identity matrix of Mn(E)) and where
(E,⊕,⊗) is a dioid, the generalized Gauss–Jordan method therefore yields the
minimal solution to (28) i.e. the quasi-inverse A∗ of A.

The first equation of (28)′ is written:

y11 = y11 ⊗ a11 ⊕
n∑

j=2

y1j ⊗ aj1 ⊕ b11 (30)

Since (E,⊕,⊗) is a topological dioid we deduce that the entry a11 has a quasi-
inverse a∗11 (see Chap. 3, Proposition 6.2.6) and consequently from (30) we obtain
the expression of y11 in terms of the other variables y1j (j = 2, . . . n):

y11 =
n∑

j=2

y1j ⊗ aj1 ⊗ a∗11 ⊕ b11 ⊗ a∗11

We proceed similarly with all the other equations of (28)′ corresponding to the first
column of Y. We therefore have, for any i = 1, . . . , n:

yi1 = yi1 ⊗ a11 ⊕
n∑

j=2

yij ⊗ aj1 ⊕ bi1

which, by using a∗11, enables one to express yi1 in terms of the other variables yij (j =
2, . . . . n):

yi1 =
n∑

j=2

yij ⊗ aj1 ⊗ a∗11 ⊕ bi1 ⊗ a∗11 (31)

Once the expressions of yi1 (i = 1 . . . n) given by (31) are obtained, one can substitute
them in the other equations of system (28)′, which gives, for i arbitrary and k ≥ 2:

yik =
n∑

j=1

yij ⊗ ajk ⊕ bik

= yil ⊗ alk ⊕
n∑

j=2

yij ⊗ ajk ⊕ bik
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By using (31), the above expression takes the form:

yik =
n∑

j=2

yij ⊗ (aj1 ⊗ a∗11 ⊗ a1k ⊕ ajk)⊕ bi1 ⊗ a∗11 ⊗ alk ⊕ bik (32)

Let us denote Y[1] the matrix deduced from Y by replacing all the entries in the first
column by ε and let us introduce the square n × n matrices

A[1] =
(

a[1]
ij

)
and B[1] =

(
b[1]

ij

)

defined for any j = 1 · · · n and k = 1 · · · n as:

a[1]
jk = ajk ⊕ aj1 ⊗ a∗11 ⊗ a1k (33)

and
b[1]

jk = bjk ⊕ bj1 ⊗ a∗11 ⊗ a1k (34)

It can be observed that the equations (31), which define the first column of Y can
also be written: ⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

y11

y21

.

.

.

yn1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

= Y[1] ⊗

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a[1]
11

a[1]
21

.

.

a[1]
n1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

⊕

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

b[1]
11

b[1]
21

.

.

b[1]
n1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(35)

Indeed, for i = 1, . . . n, the expression of yi1 given by (35) reads:

yi1 =
n∑

j=2

yij ⊗ a[1]
j1 ⊕ b[1]

i1

=
n∑

j=2

yij ⊗ (aj1 ⊕ aj1 ⊗ a∗11 ⊗ a11)⊕ bi1 ⊕ bi1 ⊗ a∗11 ⊗ a11

Now, since a∗11 is the quasi-inverse of a11, we have that:

aj1 ⊕ aj1 ⊗ a∗11 ⊗ a11 = aj1 ⊗ (e⊕ a∗11 ⊗ a11) = aj1 ⊗ a∗11

and similarly:
bi1 ⊕ bi1 ⊗ a∗11 ⊗ a11 = bi1 ⊗ a∗11

from which we can write:

yi1 =
n∑

j=2

yij ⊗ aj1 ⊗ a∗11 ⊕ bi1 ⊗ a∗11

which is exactly expression (31).
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The relations (32) and (35) therefore show that after elimination of the variables
yi1 (i = 1 · · · n), system (28)′ takes the form:

Y = Y[1] ⊗ A[1] ⊕ B[1] (36)

Moreover (33) and (34) can be written in matrix terms:

A[1] = A ⊗M[1] (37)

and
B[1] = B⊗M[1] (38)

where the matrix M[1] ∈ Mn(E) is the transformation matrix defined as:

M[1] =

⎡

⎢⎢⎢
⎢
⎢
⎢
⎣

a∗11 a∗11 ⊗ a12 a∗11 ⊗ a13 . . . a∗11 ⊗ a1n
ε e ε . . . ε

ε ε e . . . .

. . . . . .

. . . . . .

ε ε . . . . e

⎤

⎥⎥⎥
⎥
⎥
⎥
⎦

i.e. the matrix deduced from the identity matrix of Mn(E) by replacing the entries in
the first row by: ⎧

⎨

⎩

m[1]
11 = a∗11

m[1]
1j = a∗11 ⊗ a1j (j = 2, . . . , n)

(for the entries in the first column of A[1], (33) yields: a[1]j1 = aj1⊗ (e⊕ a∗11⊗ a11) =
aj1 ⊗ a∗11; in the same way (34) yields b[1]j1 = bj1 ⊗ a∗11)

By analogy with the classical Gauss–Jordan method, we will say that (36) is
deduced from (28)′ via a pivot operation on the first row and the first column (the
entry a11 is referred to as the pivot element).

It is now easy to see that the elimination technique explained above can be iterated:
since A∗ exists, a[1]

22 is quasi-invertible (see remark below) and the element a[1]
22 can

be used as a pivot element to eliminate all the variables of the second column of Y.
By denoting Y[2] the matrix deduced from Y[1] by replacing all the terms of the
second column with ε, the system obtained at the second iteration reads:

Y = Y[2] ⊗ A[2] ⊕ B[2]

where

A[2] = A[1] ⊗M[2]

B[2] = B[1] ⊗M[2]
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M[2] being the matrix deduced from the identity matrix I by replacing the second
row by: ⎧

⎨

⎩

m[2]
22 = (a[1]

22 )∗

m[2]
2j = (a[1]

22 )∗ ⊗ a[1]
2j (j �= 2)

Remark. The fact that the existence of A∗ implies that a[1]22 has a quasi-inverse can
be derived as follows.

Consider Ã =
[

a11 a12
a21 a22

]
corresponding to the first two rows and columns. Since

A∗ exists, we know (from Proposition 6.2.6 in Chapter 3) that Ã has a quasi-inverse
Ã∗ which solves the 2× 2 system:

[
u11 u12
u21 u22

]
=

[
u11 u12
u21 u22

]
⊗ Ã ⊕

[
e ε

ε e

]

carrying out on the above system a pivot operation with pivot element a11 yields the
relation

u22 = u22 ⊗
(
a21 ⊗ a∗11 ⊗ a12 ⊕ a22

)⊕ e

= u22 ⊗ a[1]22 ⊕ e

For the solution u22 =
(
Ã∗

)
22, the above implies, ∀k ∈ N:

u22 = u22 ⊗
(

a[1]
22

)k ⊕
(

a[1]
22

)(k)

hence: (
a[1]

22

)(k) ≤ u22.

Thus the sequence
(

a[1]
22

)(k)

is nondecreasing and bounded from above in a topolog-

ical dioid, hence the existence of
(

a[1]
22

)∗
follows. ||

In a general way, the matrices A[k] and B[k] are defined recursively as:

A[0] = A B[0] = B (39)

and, ∀k = 1, 2, . . . . n:

A[k] = A[k−1] ⊗M[k] (40)

B[k] = B[k−1] ⊗M[k] (41)

with M[k] deduced from I by replacing the row k by:
⎧
⎪⎨

⎪⎩
m[k]

kk = (a[k−1]
kk )∗ (42)

m[k]
kj = (a[k−1]

kk )∗ ⊗ a[k−1]
kj (j �= k) (43)
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(The fact that
(

a[k−1]
kk

)∗
exists is obtained along the same line as in the above remark,

considering the principal submatrix induced by the first k rows and columns and
carrying out k−1 pivot operations).
We then have:

Theorem 7. Let A ∈ Mn(E) where (E,⊕,⊗) is a topological dioid. It is assumed
that A has a quasi-inverse A∗.

Then Y = B[n] obtained by (39)–(43) is the minimal solution to the system

Y = Y⊗ A ⊕ B (28′)

In the special case where B = B[0] = I, then B[n] is the quasi-inverse A∗ of A.

Proof. All the intermediate operations performed in applying the recurrence relations
(39)–(43) comply with each equation of ((28)′). The matrix Y = B[n] obtained at the
nth iteration is therefore clearly a solution.

The fact that it is indeed a minimal solution can be easily proved by induction as
follows.

Let Y = (ȳij) be an arbitrary solution to (28′). At iteration 1, Y therefore satisfies:
∀i = 1 . . . n:

yi1 = yi1 ⊗ a11 ⊕
n∑

j=2

yij ⊗ aj1 ⊕ bi1 (44)

Y is therefore a solution to (44)
Thus ȳi1 solves:

yi1 = yi1 ⊗ a11 ⊕
n∑

j=2

ȳij ⊗ aj1 ⊕ bi1

and consequently:

ȳi1 ≥
⎛

⎝
n∑

j=2

ȳij ⊗ aj1 ⊕ bi1

⎞

⎠⊗ a∗11

This shows that Y satisfies system (36) obtained at the end of the first iteration with
the inequality, in other words that:

Y ≥ Y
[1] ⊗ A[1] ⊕ B[1] = Y

[1] ⊗ A[1] ⊕ B⊗M[1]

There therefore exists a matrix H[1] ∈ Mn(E) such that Y satisfies

Y = Y
[1] ⊗ A[1] ⊕ B⊗M[1] ⊕ H[1] (45)

The second iteration, corresponding to the elimination of all the variables yi2,
performed on system (45) would lead, similarly, to showing that Y satisfies:

Y ≥ Y
[2] ⊗ A[2] ⊕

(
B⊗M[1] ⊕ H[1]

)
⊗M[2]
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There therefore exists a matrix H[2] ∈ Mn(E) such that:

Y = Y
[2] ⊗ A[2] ⊕

(
B⊗M[1] ⊕ H[1]

)
⊗M[2] ⊕ H[2]

One can therefore deduce, by induction, the existence of matrices H[1] H[2] · · ·H[n]
such that: Y = Y[n] ⊗ A[n] ⊕ (((· · · (B⊗M[1] ⊕ H[1]

) · · · ⊗M[2] ⊕ H[2]
)⊗ · · · )

M[n] ⊕ H[n]
)

Since Y[n] =

⎡

⎢⎢⎢⎢
⎣

ε ε ε

ε

ε ε

⎤

⎥⎥⎥⎥
⎦

we deduce

Y ≥ B⊗M[1] ⊗M[2] ⊗ · · · ⊗M[n] = B[n]

This proves that B[n] is a minimal solution to (28)′. "#

5.2. Generalized Gauss–Jordan Method: Algorithms

Let us consider here the case where B = I.Applying the induction formulae (39)–(43)
we then construct the quasi-inverse A∗ of A.

We have, in this case:

B[n] = A∗ = M[1] ⊗M[2] ⊗ · · · ⊗M[n]

and:

A[n] = A ⊗M[1] ⊗M[2] ⊗ · · · ⊗M[n]

= A ⊗ B[n]

= A ⊗ A∗

= A+

It is seen that to compute A[n] = A+ we just have to use the induction formula (40).
A∗ is then directly deduced from A+ by: A∗ = I⊕ A+.

Since M[k] only depends on A[k−1], this remark shows that one can compute A∗
by only working on each iteration with a single matrix A[k].

We then have:

Algorithm 4 (Generalized Gauss–Jordan)
Computation of the matrices A+ and A∗

(a) Set A[0] = A
(b) For k = 1, 2, . . . n successively do:

a[k]
kk =

(
a

[k−1]
kk

)∗ ;
For i = 1 . . . n
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For j = 1 . . . n
If (i �= k or j �= k) do:
a[k]

ij ← a[k−1]
ij ⊕ a[k−1]

ik ⊗ a[k]
kk ⊗ a[k−1]

kj
Endfor

Endfor
Endfor

(c) At the end of step (b) we obtain A+ = A[n]. A∗ is then deduced by:

A∗ = A[n] ⊕ I.

The following result states the complexity of Algorithm 4.

Proposition 5.2.1. Algorithm 4 requires n computations of the quasi-inverse of an
element, and O(n3) operations ⊕ and ⊗.

Proof. Each iteration requires the computation of
(

a[k−1]
kk

)∗
(quasi-inverse of the

pivot element) and O(n2) operations ⊕ and ⊗. From this the result follows. "#
A special case of interest is the one where the graph G(A) does not contain a

0-absorbing circuit. In this case, a[k−1]
kk is a 0-stable element (see chap. 3 Sect. 7)

therefore
a[k]

kk =
(
a

[k−1]
kk

)∗ = e

Algorithm 4 then specializes as follows:

Algorithm 4′ Computation of A+ and A∗ in the case where G(A) does not contain
a 0-absorbing circuit

(a) A[0] = A
(b) For k = 1 . . . n

For i = 1 . . . n
For j = 1 . . . n

a[k]
ij ← a[k−1]

ij ⊕ a[k−1]
ik ⊗ a[k−1]

kj ;
Endfor

Endfor
Endfor

(c) A+ = A[n] and A∗ = I⊕ A[n]

In the case of the shortest path problem in a graph without negative length circuits
(⊕ = Min,⊗ = +) algorithm 4′ is none other than Floyd’s algorithm (1962).

5.3. Generalized “Escalator” Method

A being a n × n matrix with elements in a dioid E, for any k ∈ [1, . . . , n] let us
denote A{k} the sub-matrix of A formed by the first k rows and the first k columns of
A. With this notation this yields: A = A{n}



5 Direct Algorithms: Generalized Gauss–Jordan Method and Variations 153

The principle of the “escalator” method is to determine (A{2})∗ from (A{1})∗ =
a∗11; then (A{3})∗ from (A{2})∗, and so on, until one obtains A∗ = (A{n})∗ from
(A{n−1})∗.

To implement this recursion in the form of an algorithm, we will use the formula
of quasi-inversion by blocks given by the following result.

Proposition 5.3.1. Let (E,⊕,⊗) be a dioid and U ∈ Mk(E)(k ≥ 2) a k × k matrix
assumed to be partitioned into blocks in the form:

U =
[

U11 U12
U21 U22

]

with U11 ∈ Mk−1(E) and where:
U12 has dimensions (k−1)×1, U21 has dimensions 1×(k−1) and U22 ∈ E. It is

assumed that the sub-matrix U11 is quasi-invertible with quasi-inverse U∗11, that the
entry U22 is quasi-invertible in E, and that the element μ = U21⊗U∗11⊗U12⊕U22
is quasi-invertible in E.

Then U is quasi-invertible in Mk(E) and U∗ =
[

X11 X12
X21 X22

]
is given by the

formulae:

X11 = U∗11 ⊕ U∗11 ⊗ U12 ⊗ μ∗ ⊗ U21 ⊗ U∗11 (46)

X12 = U∗11 ⊗ U12 ⊗ μ∗ (47)

X21 = μ∗ ⊗ U21 ⊗ U∗11 (48)

X22 = μ∗ = (U21 ⊗ U∗11 ⊗ U12 ⊕ U22)
∗ (49)

Proof. Let us show the existence of a minimal solution to the matrix equations:

X = U ⊗ X⊕ Ik (50)

X = X⊗ U ⊕ Ik (51)

where X ∈ Mk(E) can be partitioned into blocks:

X =
[

X11 X12
X21 X22

]

(50) implies, in particular:

X12 = U11 ⊗ X12 ⊕ U12 ⊗ X22 (52)

X22 = U21 ⊗ X12 ⊕ U22 ⊗ X22 ⊕ e (53)

Since U11 is quasi-invertible, (52) has a minimal solution in X12 for any value of
X22, which reads:

X12 = U∗11 ⊗ U12 ⊗ X22
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By using this relation, (53) is written:

X22 = (U21 ⊗ U∗11 ⊗ U12 ⊕ U22)⊗ X22 ⊕ e

or, equivalently:
X22 = μ ⊗ X22 ⊕ e

μ being assumed to be quasi-invertible, the equation above has a minimal solution
which reads:

X22 = μ∗ (49)

from which we deduce:
X12 = U∗11 ⊗ U12 ⊗ μ∗ (47)

Similarly (51) leads to the four relations:

X11 = X11 ⊗ U11 ⊕ X12 ⊗ U21 ⊕ Ik−1 (54)

X21 = X21 ⊗ U11 ⊕ X22 ⊗ U21 (55)

X12 = X11 ⊗ U12 ⊕ X12 ⊗ U22 (56)

X22 = X21 ⊗ U12 ⊕ X22 ⊗ U22 ⊕ e (57)

By using (47), (54) is rewritten:

X11 = X11 ⊗ U11 ⊕ U∗11 ⊗ U12 ⊗ μ∗ ⊗ U21 ⊕ Ik−1

and, since U11 is quasi-invertible, the latter equation has a minimal solution in X11,
which is written:

X11 = (U∗11 ⊗ U12 ⊗ μ∗ ⊗ U21 ⊕ Ik−1)⊗ U∗11

= U∗11 ⊕ U∗11 ⊗ U12 ⊗ μ∗ ⊗ U21 ⊗ U∗11 (46)

Finally, by using (49) and the quasi-invertibility of U11, through (55) one obtains the
minimal solution in X21:

X21 = μ∗ ⊗ U21 ⊗ U∗11 (48)

We have thus obtained the expressions (46)–(49) by exploiting two of the relations
resulting from (50) and two of the relations resulting from (51). It remains to verify
that X thus obtained satisfies for example the two other relations (56) and (57)
deduced from (51). The expression X11 ⊗ U12 ⊕ X12 ⊗ U22 is written:

(U∗11 ⊕ U∗11 ⊗ U12 ⊗ μ∗ ⊗ U21 ⊗ U∗11)⊗ U12 ⊕ U∗11 ⊗ U12 ⊗ μ∗ ⊗ U22

= U∗11 ⊗ U12 ⊕ (U∗11 ⊗ U12 ⊗ μ∗)⊗ (U21 ⊗ U∗11 ⊗ U12 ⊕ U22)

= U∗11 ⊗ U12 ⊗ (e⊕ μ∗ ⊗ μ)

= U∗11 ⊗ U12 ⊗ μ∗

= X12 according to (47)



5 Direct Algorithms: Generalized Gauss–Jordan Method and Variations 155

The expression X21 ⊗ U12 ⊕ X22 ⊗ U22 ⊕ e is written

μ∗ ⊗ U21 ⊗ U∗11 ⊗ U12 ⊕ μ∗ ⊗ U22 ⊕ e

= μ∗ ⊗ (U21 ⊗ U∗11 ⊗ U12 ⊕ U22) ⊕ e

= μ∗ ⊗ μ ⊕ e = μ∗ = X22 according to (49).

X given by (46)–(49) therefore clearly satisfies (51).
Furthermore, by construction, it is clearly a minimal solution. We deduce that U

is quasi-invertible with U∗ = X. "#
To determine the quasi-inverse of a matrix A (assumed to be quasi-invertible) one

can then deduce directly from Proposition 5.3.1 the following general algorithm.

Algorithm 5 (generalized “escalator” method)
Determination of A∗ for A ∈ Mn(E) assumed to be quasi-invertible.
Set A∗{1} = a∗11
For k = 2, . . . , n do:

A{k} =
⎡

⎢
⎣

A{k−1}
�

� vk−1
−−−−−−
wk−1

�

� akk

⎤

⎥
⎦

where:

• vk−1 is the column-vector formed by the k − 1 first entries of the kth

column of A.
• wk−1 is the row-vector formed by the k − 1 first entries of the kth row

of A.

Compute:

μ∗ = (wk−1 ⊗ A∗{k−1} ⊗ vk−1 ⊕ akk)
∗

vk−1 = A∗{k−1} ⊗ vk−1 (58)

wk−1 = wk−1 ⊗ A∗{k−1} (59)

then deduce:

A∗{k} =
⎡

⎢
⎣

A∗[k−1] ⊕ v̄k−1 ⊗ μ∗ ⊗ w̄k−1
�

� v̄k−1 ⊗ μ∗
− − −−−−−−−−−−− −−− −−−−−

μ∗ ⊗ w̄k−1
�

� μ∗

⎤

⎥
⎦

Endfor
At the end of the iterations, we obtain A∗ = A∗{n}.

Let us observe that in the expression of A∗{k} the vectors v̄k−1⊗μ∗ and μ∗⊗w̄k−1
deduced from (58) and (59) correspond to (47) and (48) respectively. Moreover, the
expression A∗{k−1} ⊕ v̄k−1 ⊗ μ∗ ⊗ w̄k−1 can be rewritten:

A∗{k−1} ⊕ A∗{k−1} ⊗ vk−1 ⊗ μ∗ ⊗ wk−1 ⊗ A∗{k−1}
which is none other than relation (46).
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Proposition 5.3.2. Algorithm 5 requires O(n3) operations ⊕ and ⊗, as well as n
computations of the quasi-inverse of an element of E.

Proof. On the whole, the algorithm performs a total of n computations of the quasi-
inverse of an element of E. Moreover, at each iteration k the algorithm performs on
matrices of order k − 1 and vectors of dimension k − 1:

– Three matrix-vector multiplications requiring O (k2) operations ⊕ and ⊗;
– A scalar product of two vectors requiring O (k) operations ⊕ and ⊗;
– A product of a column-vector- (v̄k−1) by a row-vector (μ∗ ⊗ w̄k−1) followed by

a sum of two matrices, which requires O(k2) operations ⊕ and ⊗.

The result is deduced by summation on k from 2 to n. "#
A interesting special case is the one where the graph G(A), associated with matrix
A, has no 0-absorbing circuit.

In this case at each iteration of Algorithm 5, we have μ∗ = e, and Algorithm 5
can be reformulated in the following simplified form:

Algorithm 5′ Computation of A∗ starting from A by the generalized “escalator”
method (case where G(A) has no 0-absorbing circuit).

a11 ← e;
For k = 2 to n do:

(a) akk ← e
(b) For i = 1, . . . , k − 1:

ai,k ←
k−1∑

j=1

ai,j ⊗ aj,k;

ak,i ←
k−1∑

j=1

ak,j ⊗ aj,i;

Endfor
(c) For i = 1, . . . , k − 1

For j = 1, . . . , k − 1
aij ← aij ⊕ aik ⊗ akj;
Endfor

Endfor
Endfor

In the case of the shortest path problem (⊕ = Min,⊗ = +) algorithm 5′ is
recognized as Dantzig’s algorithm (1966).

6. Examples of Application: An Overview of Path-finding
Problems in Graphs

In this section we discuss some interesting examples of applications of the compu-
tation of the quasi-inverse of a matrix related to path-finding problems in graphs.

Table 1 on the following page summarizes the main features of these examples.
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Table 1 Main features of path-finding problems in graphs

Problem types Problems solved E ⊕ ⊗ ε e

Existence Problems of connectivity {0,1} Max Min 0 1

Enumeration of elementary
paths

P(X∗) Union Latin multiplication ∅ X

Enumeration

Multicriteria problems P(Rp) Set of efficient paths
of the union

Set of efficient paths
of the sum

(+∞)P (0)P

Generation of regular
languages (Kleene)

Set of words Union Concatenation ∅ The empty word

Maximum capacity path R+ ∪ {+∞} Max Min 0 +∞
Minimum spanning tree,
Hierarchical classification

R, R+ Min Max +∞ −∞, 0

Minimum cardinality path N ∪ {+∞} Min + +∞ 0

Optimization

Shortest path R ∪ {+∞} Min + +∞ 0

Longest path R ∪ (+∞} Max + −∞ 0

Maximum reliability path {a|0 ≤ a ≤ 1} Max × 0 1

Reliability of a network Idempotent polynomials symmetrical difference × 0 1

Counting Path counting N + × 0 1

Markov chains {a|0 ≤ a ≤ 1} + × 0 1

Optimization
and

kth-shortest path problem Cone of R
k

k smallest terms of the 2
vectors

k smallest terms of the
sums of pairs

(+∞)k (0,+∞, . . . ,+∞)

Post-
optimization

η-optimal paths Ordered sequence of
terms of R of amplitude η

Sequence formed by the
η-smallest terms of the
two sequences

Sequence formed by the
η-smallest sums of pairs
of elements of the two
sequences

(+∞) (0)
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6.1. Problems of Existence and Connectivity

To solve existence problems, we will use classical Boolean algebra, i.e. the structure:

E = {0, 1}, ⊕ = max, ⊗ = min, ε = 0 and e = 1.

For a given graph G = [X, U], the matrix A is defined as:

aij = 1 if (i, j) ∈ U, aij = 0 otherwise.

By interpreting the results of Sect. 3, we then obtain the following properties:

– There exists a path containing k arcs between i and j, if and only if (Ak)ij = 1.
– There exists a path taking at most k arcs between i and j, if and only if (A(k))ij = 1.
– For any a ∈ E, e⊕ a = max(1, a) = 1 = e, therefore any circuit is 0-stable; from

this we deduce (theorem l) the existence of A∗, which can be interpreted as the
incidence matrix of the transitive closure of the graph G.

6.2. Path Enumeration Problems

To solve enumeration problems, we typically have to take for E the power set of
some associated set, with set union as addition ⊕.

To be more specific, suppose we want to enumerate all the elementary paths of a
graph (Kaufmann and Malgrange, 1963).

Given a graph G = [X, U], let X∗ be the set of ordered sequences of elements of
X = {1, 2 . . . , n} satisfying a given property P. Each element of X∗ will be referred
to as a path. Here we require that the paths be elementary (property P).

The empty set ∅ will be considered as an element of X∗. We will take as ground
set E the power set of X∗, i.e. E = P(X∗).

The⊕ law is taken as the set union, hence ε = ∅. The⊗ law will be the so-called
Latin multiplication defined as:

• u ⊗ ∅ = ∅ ⊗ u ∀u ∈ S
• if uα = (uαi) with uαi ∈ X∗

uß = (uβj) with uβj ∈ X∗

then:
uα ⊗ uß = {(uαi ⊗ uβj)}

with:

if uαi = (i1i2, . . . ik)

and uβj = (j1j2, . . . jl )

uαi ⊗ uβj =

⎧
⎪⎨

⎪⎩

. (i1, i2, . . . , ik, j2, j3, ; . . . , jk) if ik = j1
and if this sequence satisfies property P
. ∅ otherwise
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The neutral element for ⊗ is the set formed of all the individual elements of X,
i.e. e = X.

With each arc (i, j) we associate aij = {i, j} ∈ E.
By interpreting the results of Sect. 3, we deduce the following properties:

– (Ak)ij represents the set of elementary paths between i and j containing exactly
k arcs.

– The weight of any circuit is equal to ∅, therefore there is no zero-absorbing circuit.
We deduce (Theorem l) the existence of A∗ = A(n−1)

– (An−1)ij represents the set of all Hamiltonian paths between i and j.

6.3. The Maximum Capacity Path Problem and the Minimum
Spanning Tree Problem

Here we consider the following lattice (doubly idempotent dioid):

E = R+ ∪ {+∞}, ⊕ = max, ⊗ = min, ε = 0 and e = +∞.

With each arc (i, j), we associate its capacity aij ≥ 0. The capacity represents
the maximum flow which can be sent on arc (i, j). The problem is to find a path μ

from i to j: (i, i1, i2, . . . , ik, j), say such that σ(μ) = Min{ai,i1 , ai1,i2 , . . . , aik,j} is
maximized. The quantity σ(μ) is also referred to as the inf-section of the path μ. By
interpreting the results of Sect. 3, we deduce the following properties:

– The maximum capacity of a path containing k arcs between i and j is (Ak)ij.
– For any a ∈ E, e ⊕ a = max(+∞, a) = +∞ = e, therefore there is no zero-

absorbing circuit. We deduce (Theorem l) the existence of A∗ = A(n−1).
– The maximum capacity of a path between i and j is (A∗)ij.

A problem closely related to the above concerns the search of a path μ minimizing
the sup-section σ̄(μ) = Max{ai,i1 , ai1,i2 , aikj}. In the search for a path minimizing
σ̄(μ), the dioid (R, Min, Max) will be considered.

From a classical result (Hu, 1961) in the symmetric case (i.e.: aij = aji for all i, j),
the minimum spanning tree of a graph provides the set of optimal paths minimizing
the sup-section for all pairs of nodes.

6.4. Minimum Cardinality Paths

Here we consider the following structure:

E = N ∪ {+∞}, ⊕ = min, ⊗ = +, ε = +∞ and e = 0.

With each arc (i, j), we associate aij = 1.
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By interpreting the results of Sect. 3, we obtain the following properties:

–
(
Ak

)
ij = k if there exists a path taking k arcs from i to j,

(
Ak

)
ij = +∞ otherwise.

– For any a ∈ E, e⊕ a = min(0, a) = 0 = e, therefore there is no zero-absorbing
circuit. We deduce (Theorem l) the existence of A∗ = A(n−1).

– (A∗)ij represents the number of arcs in the minimum cardinality path between i
and j.

We observe that the resulting matrix A∗ contains the relevant information required
to determine the centre, radius, diameter, etc. of a graph.

6.5. The Shortest Path Problem

For this example, which has already been extensively discussed (see Sect. 2 above),
we take:

E = R ∪ {+∞}, ⊕ = min, ⊗ = +, ε = +∞ and e = 0.

With each arc (i, j), we associate its length aij.
By interpreting the results of Sect. 3, we obtain the following properties:

–
(
Ak

)
ij represents the length of the shortest path between i and j taking k arcs.

– If a is nonnegative, e ⊕ a = min(0, a) = 0 = e and a is 0-regular. Therefore if
there does not exist a negative length circuit, A∗ exists (Theorem l) and (A∗)ij
correspond to the length of the shortest path between i and j.

6.6. Maximum Reliability Path

E = {a/0 ≤ a ≤ 1}, ⊕ = max, ⊗ = ×, ε = 0 and e = 1.

With each arc (i, j) we associate the probability 0 ≤ pij ≤ 1 of being able to pass from
i to j. The problem is, given two arbitrary vertices io and jo, to find the probability
of the path from io to jo which is the most likely to exist. (We assume independence
of the random events attached to the various arcs).

By interpreting the results of Sect. 3, we obtain the following properties:

– The maximum reliability of a path taking k arcs between i and j is (Ak)ij.
– For any a ∈ E, e⊕ a = max(1, a) = 1 = e, therefore there is no zero-absorbing

circuit. We deduce (Theorem 1) the existence of A∗ = A(n−1).
– The maximum reliability of a path between i and j is (A∗)ij.

6.7. Multicriteria Path Problems

For the various optimization problems addressed in the previous sub-sections
(6.3–6.6) one can define a multicriteria version of the problem which we formulate
here in the case of the shortest path problem (one can define an equivalent formulation
for the other optimization problems of Sects. 6.3–6.6).
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Given a directed graph G = [X, U], with each arc (i, j), we associate p lengths
v1

ij, v2
ij, . . . , vk

ij, . . . vp
ij, with, ∀k = 1, . . . , p:

vk
ij ∈ R̂ = R ∪ {+∞}.

A vector v ∈ R̂
p is said to be efficient with respect to a subset F of R̂

p if there does
not exist in F a vector v′ �= v which has all its components smaller than or equal
to the corresponding components of v. The problem is then to find all the efficient
paths between two arbitrarily fixed vertices i and j, of G. We will therefore take for
E: P(R̂p), the power set of R̂

p. The operations ⊕ and ⊗ will be defined as follows:

if uα = {uαi} with uαi ∈ R̂
p and uβ = {ußj} with ußj ∈ R̂

p

then:

uα ⊕ uß = set of efficient vectors of uα ∪ uß

uα ⊗ uß = set of efficient vectors in the set of vectors of the form uαi + ußj.

It is easily verified that these two laws endow E with a dioid structure having
neutral elements:

ε = (+∞)p and e = (0)p.

By interpreting the results of Sect. 3, we then obtain the following properties:

– (Ak)ij represents the set of values of the efficient paths from i to j taking exactly
k arcs.

– For any v ∈ R̂
p where all the components are positive, we have e ⊕ v = e and

v is 0-regular. Therefore, if there does not exist a circuit of negative length with
respect to each of the p valuations of the graph, we deduce from Theorem 1 the
existence of A∗ = A(n−1).

– In this case, (A∗)ij represents the set of values of the efficient paths between i and
j in G.

One can generalize the multicriteria problems thus defined in many ways. For exam-
ple, one can consider multicriteria problems mixing various criteria such as capacity,
length, reliability of a path, etc.

More generally, considering a partial order relation on a set T and an operation
endowing T with a commutative monoid structure compatible with the order relation,
one will be able to determine in E = P(T) the efficient paths which correspond to
the minimal paths in the sense of the order relation.

6.8. The Kth Shortest Path Problem

For the various optimization problems discussed in Sects. 6.3–6.6., one can also seek
to determine the k best paths between two given vertices i and j.

We consider here the case of the search for the k shortest paths (similar models
for the other optimization problems of Sects. 6.3–6.6 could easily be defined).
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Let us denote R̂ = R ∪ {+∞} and let E be the cone of R̂
k defined as follows:

u = (u1, u2, . . . , ui, . . . , uk) ∈ E

if and only if, for any i, ui ∈ R and: u1 ≤ u2 . . . ≤ uk.
With each arc (i, j), we associate the k-tuple vij = (lij,+∞,+∞, . . . ,+∞) ∈ E

where lij represents the length of the arc (i, j).
In the case where a multigraph is being considered, there could exist several arcs

from i to j. One then associates with arc (i, j) the vector vij where the components
correspond to the lengths of the k smallest lengths of the arcs from i to j ordered
according to nondecreasing values (and completed if necessary by components equal
to +∞).

The operation ⊕ is the operation Min(k) (see Chap. 8, Sect. 1.3.1) defined as
follows

if uα = (uα1 , uα2 , . . . , uαk ) with uαi ∈ R̂

uβ = (uβ1, uβ2
, . . . , uβk ) with uβi ∈ R̂

then:
uα ⊕ uβ = uγ = (uγ1

, uγ2
, . . . , uγk

)

where the components of uγ are the k smallest terms of (uα1 , uα2 , . . . , uαk , uβ1 ,

uβ2 , . . . , uβk )) ordered according to non-decreasing values.

The operation ⊗ is the operation (k)
+ (see Chap. 8, Sect. 1.1.5) defined as:

uα ⊗ uβ = uγ = (uγ1
, uγ2

, . . . , uγk
)

where the components of uγ are the k smallest terms of the form uαi + uβj with
i = 1, . . . , k and j = 1, . . . , k

These two laws endow E with a dioid structure with neutral elements: ε = (+∞)k

and e = (0,+∞,+∞, . . . ,+∞, ) (see Chap. 8, Sect. 4.3.1).
Note that the operation ⊕ is not idempotent. For example if u = (2, 3, 4, 4) then

u ⊕ u = (2, 2, 3, 3) �= u.
Concerning computational complexity issues, it is easy to show that the operation

⊕ requires k comparisons and that the operation⊗ can be implemented with k log2 k
comparisons and ordinary additions.

By interpreting the results of Sect. 3, we then deduce the following properties:

– (Ap)ij represents the values of the k shortest paths from i to j traversing exactly
p arcs.

– (A(p))i,j represents the values of the k shortest paths between i and j traversing at
most p arcs.

(Observe that the k shortest paths thus obtained are not all necessarily
elementary).

– If u ∈ E has all its components nonnegative, then u is (k − l) stable (see Chap. 3
Sect. 7). Therefore if the graph does not contain a circuit of negative length,
the weight of each circuit is (k − 1) stable and since the multiplication ⊗ is
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commutative, we deduce from Theorem 2 of the present chapter the existence
of A∗ = A(nk−1). Here nk−1 denotes the maximum number of arcs in a path
traversing each elementary circuit of G(A) no more than k-1 times (see Sect. 3.3,
Theorem 2).

– (A∗)ij represents the values of the k best paths from i to j if there is no negative
length circuit in the graph.

6.9. The Network Reliability Problem

Let G= [X, U] be a directed graph. With each arc (i, j) ∈ U, we associate the
Boolean variable yij, and the probability pij of the existence of arc (i, j). Assuming
that the random variables associated with the various arcs are independent, we wish
to determine the probability that two arbitrary given vertices io and jo are linked by
a path.

We will take for E the set of polynomials with entries in Z, idempotent for ordinary
multiplication (therefore these are polynomials in Boolean variables); addition is
taken as the symmetrical difference (a⊕ b = a+ b− ab), and multiplication is just
ordinary multiplication. We therefore have ε = 0 and e = 1.

Let us quickly verify that these two laws endow E with a dioid structure. Two
properties are not straight forward: the closure of ⊕ and the distributivity of ⊗ with
respect to⊕. Let us first check the closure of⊕: if P ∈ E and Q ∈ E, we have P2 = P
and Q2 = Q; then:

(P⊕ Q)2 = (P+ Q− P · Q)2 = P2 + Q2 + P2Q2 + 2PQ− 2P2Q− 2PQ2

= P+ Q+ PQ+ 2PQ− 2PQ− 2PQ = P+ Q− PQ = P⊕ Q.

Let us then check the distributivity of ⊗:

P⊗ (Q⊕ R) = P(Q+ R − QR) = PQ+ PR − PQR = PQ+ PR − PQ · PR

= PQ⊕ PR.

Each polynomial P in E will be represented by its reduced form, i.e. such that each
monomial of P be of degree at most 1 with respect to each Boolean variable yij.

By interpreting the results of Sect. 3, we then obtain:

– (Ak)ij is a polynomial in y, denoted (Ak)ij(y), such that (Ak)ij(p) represents the
probability that j is linked to i by a path of length k;

– (A(k))ij(p) is a polynomial representing the probability that j is linked to i by a
path of length at most k;

– For any P ∈ E, e ⊕ P = 1 + P − P = e, therefore there is no zero-absorbing
circuit. We deduce (Theorem l) the existence of A∗ = A(n−1);

– (A∗)ij is a polynomial in p such that (A∗)ij(p) represents the probability that j is
linked to i.
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6.10. The η-Optimal Path Problem

For all optimization problems in Sects. 6.3–6.6 one can search for the set of η-optimal
paths (i.e. optimal to within η) between two given vertices i and j.

We consider here the case of the search for the η-shortest path, leaving it to
the reader to extend this model to the other optimization problems addressed in
Sects. 6.3–6.6.

Let us denote R̂ = R∪ {+∞} and let E be the set of nondecreasing sequences of
elements of R̂ defined as follows:

u = (u1, . . . , ui . . . , uq) ∈ E if and only if:

q ≥ 1, ui ∈ R̂ and u1 ≤ u2 ≤ . . . ≤ ui ≤ · · · ≤ uq and uq ≤ u1 + η where η is a
given positive constant.

η = 0 will correspond to the problem of determining the set of optimal paths.
With each arc (i, j), we associate the sequence (consisting of a single term) vij =

(lij) ∈ E, where lij represents the length of arc (i, j).
In the case where the graph under consideration is a multigraph, several arcs from

i to j could exist. We then associate with the pair (i, j) the sequence vij of the lengths
of the arcs from i to j with length deviating by at most η from the length of the
shortest arc from i to j.

The operation ⊕ is the operation Min(≤η) (see Chap. 8, Sect. 1.3.2) defined as
follows:

if uα = (uαi) ∈ E

uβ = (uβj) ∈ E

then: uα ⊕ uß = uγ where uγ, represents the ordered sequence of the terms of the
sequences (uαi) and (uβj) smaller than or equal to min (uα1 , uβ1)+ η.

The operation ⊗ is the operation
(≤η)+ (see Chap. 8, Sect. 1.1.6) defined as: uα ⊗

uß = uγ, where uγ represents the ordered sequence of the terms of the form uαi +uβj

smaller than or equal to uα1 + uβ1 + η.
We verify (see Chap. 8, Sect. 4.3.2) that these two laws endow E with a dioid

structure with ε = (+∞) (the sequence formed of a single term equal to +∞) and
e = (0) (the sequence formed of a single term equal to 0).

By interpreting the results of Sect. 3, we obtain the following properties:

– (Ak)ij represents the lengths of the paths from i to j taking k arcs and having a
length deviating by at most η from that of the shortest path from i to j taking k
arcs. (Let us observe, as previously, that the paths thus obtained are not necessarily
elementary).

If u ∈ E is such that u1 > 0, then u is p-stable with p = �η/u1�, see Chap. 3
Sect. 7.
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Therefore if the graph does not contain a circuit of length negative or zero, the
value of each circuit is p-stable (with p = integer rounding of [η/the length of the
shortest circuit]) and since the multiplication⊗ is commutative, we deduce from
Theorem 2 the existence of A∗ = A(np).

– (A∗)ij represents the lengths of the η-shortest paths from i to j if there does not
exist a circuit of negative or zero length in the graph.

Let us finally discuss a few additional examples related to specific applications.

6.11. The Multiplier Effect in Economy

Let us consider Leontief’s model of global balance by sectors (Leontief 1963). Each
of the industrial sectors j = 1, 2, . . . , n of an economy is associated with a type of
product.

Let A = (aij) be the matrix of the technical coefficients (or “input-output” coef-
ficients): aij units of product i are required to manufacture a unit quantity of product
in sector j.

If d = (di) is the vector representing the final demand, the production x must
satisfy the equation:

x = Ax + d

therefore
x = (I− A)−1d = (I+ A + A2 + · · · )d = A∗d

A∗ is the quasi-inverse of the matrix A (transitive closure). A similar regularization
is observed in the multiplier effect of investment according to Keynes.

The underlying algebraic structure in this example here is (R,+,×), the field of
real numbers endowed with the standard operations of addition and multiplication.

6.12. Markov Chains and the Theory of Potential

Let us consider a Markov chain having transient states T and a recurrent class Ca.
Then if xj is the probability of being absorbed in the class Ca, when starting from
state j, the vector x = (xj)j∈T must verify the equation:

x = Qx + r

where Q is the restriction of the transition matrix P of the Markov chain to transient
states T and where, ∀j ∈ T:

rj =
∑

k∈Ca

pjk

Then x = Q∗r where Q∗ is the so-called matrix of potentials.
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The underlying algebraic structure here is ([0, 1],+,×).
A more complex case is that of semi-Markovian processes. If xij(t) is the prob-

ability of being in state i at time t knowing that we were in state j at time 0, the
matrix

x(t) = (xij(t)) satisfies the equations.

xij(t) =
n∑

k=1

akj(t) ∗ xik(t)+ δijbi(t)

where ∗ corresponds to the convolution product of two functions, aij (t) corresponds
to the joint probability of leaving state j in the interval [0, t] and of passing to state
i in a single transition, l-bi(t) corresponds to the unconditional distribution function
of the time in state i.

Therefore:

x(t) = b(t) ∗ (I+ A(t)+ A2(t)+ · · · ) = b(t) ∗A∗(t).

The underlying algebraic structure here is ((L1(R))+,+, ∗) and the matrix A∗(t) is
the so-called potential function.

6.13. Fuzzy Graphs and Relations

It is said that we have the graph of a fuzzy relation whenever we are given a graph
G valued on a set E, set on which we have defined two laws⊕ and⊗ corresponding
respectively to set union and to set intersection. We associate with each arc (i, j) of G
a value represented by a given element aij ∈ E. In many cases (see Table 2) (E,⊕,⊗)

is a dioid, and the closure of the fuzzy relation is the matrix A∗, the quasi-inverse of
the matrix A = (aij).

For an extensive presentation of fuzzy systems and possibility theory, see for
example Dubois and Prade (1980, 1987). For the extension to fuzzy integrals, see
Sugeno (1977) who extends Choquet’s capacity theory (1953). A survey of connec-
tions between dioids and fuzzy set theory can be found in Gondran and Minoux
(2007).

Table 2 Examples of dioids associated with fuzzy relations

E ⊕ ⊗ ε e

[0, 1] Max Min 0 1
[0, 1] Max × 0 1
Distributive lattice Sup Inf Smallest element Largest element
P([0, 1]) ∪ ∩ ∅ [0, 1]
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6.14. The Algebraic Structure of Hierarchical Clustering

Let us consider n objects. It is said that we have a dissimilarity index on these objects
if we have assigned to each pair (i, j) a number dij ∈ R+ which will be all the larger
that the objects i and j are dissimilar (dij = 0 if and only if i is identical to j).

This index is referred to as an ultrametric distance if it satisfies the triangular
ultrametric inequality, i.e. if and only if, ∀i, j, k:

dij ≤ max{dik, dkj}

Considering the dioid (E,⊕,⊗) = (R+, min, max), we can state:

Proposition 6.14.1. A matrix A ≥ 0 with zero diagonal corresponds to an ultramet-
ric distance distance if and only if we have, in the dioid (R+, min, max):

A = A2

Proof. Indeed, A will represent an ultrametric distance if and only if ∀i, j, k:

aij ≤ aik ⊗ akj

therefore, since aii = 0, if and only if ∀i, j:

aij = min
k

(aik ⊗ akj) =
⊕∑

k

ajk ⊗ akj. "#

A classification tree corresponds to a nested set of partitions of the set of objects (for
an example, refer to Chap. 6, Sect. 6.1).

One can then show (see for example Benzecri (1974)) that there in a one-to-one
correspondence between ultrametrics and their associated indexed classification trees
(or indexed hierarchical clustering).

To construct a classification tree of n objects from a given dissimilarity matrix D,
we therefore have to approximate the dissimilarity index by an ultrametric distance.
There are many ways of constructing such an approximation. Let us consider lower
ultrametric distances, i.e. such that:

A ≤ D

where A is a matrix corresponding to an ultrametric. We will say that A is the matrix
associated with a lower ultrametric distance.

Proposition 6.14.2. (Gondran, 1976a,b)
The set of lower ultrametric distances has a largest element D∗, called sub-

dominant ultrametric distance, which satisfies:

D∗ = Dn−1 = Dn = Dn+1 = · · ·
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Proof. Any lower ultrametric distance A satisfies, by definition, A ≤ D, hence we
deduce Ak ≤ Dk for any k.

Now according to Theorem 1, in the dioid (R+, Min, Max), the sequence Dk

converges as soon as k = n − 1 towards:

D∗ = Dn−1 = Dn = Dn+1 = · · ·
Abeing an ultrametric distance, this yields, according to Proposition 6.14.1: Ak = A.
We deduce for any A, A ≤ D∗.

Since:
(D∗)2 = D2n−2 = Dn−1 = D∗

D∗ corresponds to an ultrametric which is therefore larger than any other
ultrametric. "#
Thus, through algebraic means, we find again a property well known in classification
theory (see for example Benzecri, 1974).

Further properties of this algebraic structure in clustering, will be investigated
in Chap. 6 Sect. 6.1, where the levels of a hierarchical clustering are interpreted in
terms of eigenvalues and eigenvectors of the dissimilarity matrix on the dioid (R+,
Min, Max).

Exercises

Exercise 1. p-nilpotency for the shortest path problem with time constraints
Consider again the definitions in Example 3 of Sect. 4.4.3.
Let us define on S the following total preorder relation:

E ≤ F ⇔ min{t/t ∈ E) ≤ min{t/t ∈ F).

We will denote H′ the set of given endomorphisms, i.e.:

H′ = {
ϕij/(i, j) ∈ U

}

and we set: dmin = min{dij/(i, j) ∈ U}.
(1) Show that for any ϕij ∈ H′ and for any E ∈ S, the following holds:

ϕij(E) ≥ dmin.E.

(2) Let tmax be the largest of the coefficients involved in Vij and Wi.
Show that one can always assume tmax < +∞.

Let p = �tmax/dmin�
Show then that ∀h1, h2, . . . , hp ∈ H′:

h̄(E) = (h1 ◦ h2 ◦ · · · ◦ hp)(E) ≥ tmax.E.

Deduce the p-nilpotency of the endomorphisms of H′.
[Answers: see Minoux (1976)].
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Exercise 2. Convergence of Algorithm 3′ of Sect. 4.4.4

(1) Show that E is minimal as soon as r is transferred into X1.
(2) Show that in the case where the total preorder relation is a total order relation,

we always have X1 ∩ X2 = ∅.

[Answers: see Minoux (1976)].

Exercise 3. Constrained shortest path problem
Let G = [X, U] be a directed graph where each arc u ∈ U is endowed with two

numbers lu and αu (e.g. lu will be a distance, and αu a transit time). Let Q be the set
of all the elementary paths between two particular vertices s and t. For β, a given real
number, let Q′ ⊂ Q be the subset of paths π satisfying the additional constraint:

α(π) =
∑

u∈π

αu ≤ β.

We wish to solve the shortest path problem with constraint between s and t:

(P): Min
π∈Q′

{

�(π) =
∑

u∈π

�u

}

.

It is assumed that for any circuit μ of G we have:

l(μ) > 0 and α(μ) > 0.

(1) Provide an algorithm to test whether Q′ �= ∅. Assuming this condition fulfilled,
show that an optimal solution to (P) is necessarily an elementary path.

(2) A possible approach to problem (P) consists in associating with each vertex j ∈ X
a list Li of ν̄j pairs of real numbers

ρν
j = �(πν), σ

ν
j = α(πν), for ν = 1, . . . , ν̄j

Clearly, all the σν
j satisfy: σν

j ≤ β

If ν1 dominates ν2, i.e. if

ρ
ν1
j ≤ ρ

ν2
j and σ

ν1
j ≤ σ

ν2
j

then ν2 can be eliminated from the list: we obtain a reduced list. A list that can
no longer be reduced is said to be irreducible.

Let L be the set of all the finite irreducible lists endowed with the law of
internal composition ⊕ defined as:

L1 ∈ L, L2 ∈ L⇒ L1 ⊕ L2 = reduced union of the lists L1 and L2.
This law is idempotent, and the zero element is the empty list: ε = ∅.
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With each arc u = (i, j) of G we associate the endomorphism ϕij of (L,⊕)

where Lj = ϕij(Li) is defined as:

Lj =
(
ρν

j , σ
ν
j

)
ν = 1, . . . , ν̄j

Li is the reduced list formed by all the pairs
(
ρν

i + �u, σ
ν
i + αu

)
such that

σν
i + αu ≤ β.

If F is the set of endomorphisms of L, show that (L, F,⊕, ◦) is an algebra
of endomorphisms on L. Show next that one can use a Generalized Dijkstra’s
Algorithm on this structure to solve the problem (P).

State precisely this algorithm, and show that one can deduce (by limiting the
size of the lists) a family of approximate methods.

[Answers: see Minoux (1975, 1976)].

Exercise 4. Right dioid and shortest path with gains or losses
Let G = [X, U] be a directed graph on which a given type of product circulates.

With each arc u = (i, j) ∈ U two numbers are associated:

• cij representing the unit transportation cost of the product between i and j.
• mij > 0 representing the loss coefficient (if mij < 1) or gain (if mij > 1) of the

product during transport from i to j; in other words, if qi is the quantity of product
available in i, the quantity available in j after traversing arc (i, j) is mij qi.

Let us consider two arbitrary vertices i ∈ X and j ∈ X and μ ∈ Pij a path joining
these two vertices:

μ = {(i0, i1)(i1, i2), . . . (ip−1, ip)} (with i = i0 and j = ip).

Let us denote c (μ) the transport cost of a product unit between i and j via the path
μ, and m (μ) the overall gain (or loss) coefficient along the path μ.

These quantities are defined by induction as follows:
If μ = ∅ : c (μ) = 0; m (μ) = 1.
If μ is a path between i and j and μ′ = μ ∪ {(j, k)} a path between i and k, then

c(μ′) = c(μ)+m(μ)cjk
m(μ′) = m(μ) . mjk

The shortest path problem with gains (or losses) is to determine the path of min-
imum unit cost between two given vertices i and j, in other words to minimize the
ratio c(μ)

m(μ)
on the set Pij of paths μ from i to j.

(1) We consider the set E = R × (R+\{0}) endowed with the operations ⊕ and ⊗
defined as follows:
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(
c
m

)
⊕

(
c′
m′

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
c
m

)
if c

m < c′
m′ , or if c

m = c′
m′ and m = Max{m, m′}

(
c′
m

)
if c

m > c′
m′ , or if c

m = c′
m′ and m′ = Max{m, m′}

(
c
m

)
⊗

(
c′
m′

)
=

(
c+mc′

mm′
)

It will be observed that ⊗ is not commutative and only right distributive with
respect to ⊕.

Verify that (E,⊕,⊗) is a right dioid. We will denote ε and e the neutral
elements of ⊕ and ⊗, respectively.

(2) The incidence matrix A of G is the N × N matrix (N = |X|) defined as:
⎧
⎪⎪⎨

⎪⎪⎩

aij =
(

cij
mij

)
if (i, j) ∈ U

aij = ε if (i, j) /∈ U

aii = e ∀i ∈ X

The weight w (μ) of an arbitrary path μ ∈ Pij, μ = {(i0, i1), (i1, i2) . . .

(ip−1, ip)} is defined as the product (in this order):

w(μ) = ai0,i1 ⊗ ai1,i2 ⊗ · · · ⊗ aip−1,ip

By using only right distributivity of ⊗ with respect to ⊕, show that we
indeed have: (

Ak
)

i,j
=

∑

μ∈pk
ij

w(μ)

and: (
A(k)

)

i,j
=

∑

μ∈p(k)
ij

w(μ)

(3) G is said to have no right 0-absorbing circuit if, for every elementary circuit γ of
G, we have, ∀a ∈ E: a ⊕ a ⊗ w (γ) = a.

G being assumed to have no right 0-absorbing circuit, show that the following
holds: (

Ak
)

i,j
=

∑

μ∈pk
ij(0)

w(μ)

and (
A(n−1)

)

i,j
=

∑

μ∈pij(0)

w(μ)

(where Pk
ij (0) is the set of elementary paths with exactly k arcs and Pij (0) the

set of elementary paths between i and j).
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Deduce from the above:

A(n−1) = lim
k→∞

A(k) = A∗

where A∗ satisfies:
A∗ = A∗ ⊗ A ⊕ I

(4) Show that, when some cij can be < 0, G has no right 0-absorbing circuit if and
only if any circuit γ satisfies c (γ) ≥ 0 and m (γ) = 1.

When all the cij are ≥ 0, show that G has no right 0-absorbing circuit, if and
only any circuit γ satisfies m (γ) ≤ 1.

(5) Verify then that the generalized algorithms of Jacobi, Gauss–Seidel and Gauss
Jordan (see Sect. 4.1, 4.2 and 5 of Chap. 4) can be used to solve the shortest path
problem with gains (or losses) in a graph without right 0-absorbing circuit.

(6) Taking into account the fact that⊕ is selective and, under the additional assump-
tion that e = (

0
1

)
is the largest element of E (∀a ∈ E: a ⊕ e = e), show that the

generalized Dijkstra Algorithm (see Sect. 4.3) also applies.
Verify that the above assumptions are satisfied when, for every arc (i, j) of G:

cij ≥ 0

0 < mij ≤ 1.

[Answers: see Charnes and Raike (1966), Bako (1974), Gondran (1976b)].



Chapter 5
Linear Dependence and Independence
in Semi-Modules and Moduloids

1. Introduction

The present chapter is devoted to problems of linear dependence and independence
in semi-modules (and moduloids). The semi-module structure (resp. the moduloid
structure) is the one which arises naturally in the properties of sets of vectors with
entries in a semiring (resp. in a dioid). Thus, they turn out to be analogues for algebraic
structures on semirings and dioids to the concept of a module for rings.

Section 2 introduces the main basic notions such as morphisms of semi-modules,
definitions of linear dependence and independence, generating families and bases in
semi-modules. As opposed to the classical case, it will be shown that, in many cases,
when a semi-module has a basis, it is unique.

Section 3 is then devoted to studying the links between the bideterminant of a
matrix and the concepts of linear dependence and independence previously intro-
duced. Several classical results of linear algebra over vector fields are generalized
here to semi-modules and moduloids, in particular those related to selective-invertible
dioids and MAX-MIN dioids.

2. Semi-Modules and Moduloids

The concept of semi-module generalizes that of module when the reference set is a
semiring instead of a ring.

2.1. Definitions

Definition 2.1.1. (semi-module)
Let (E,⊕,⊗) be a commutative semiring where ε and e denote the neutral

elements of ⊕ and ⊗, respectively. We refer to as a semi-module on E a set M

173
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endowed with an internal law � and an external law ⊥ satisfying the following
conditions:

(a) (M, �) is a commutative monoid where the neutral element is denoted 0;
(b) ⊥ is an external law on M which, with any λ ∈ E, x ∈ M associates λ⊥ x ∈ M

satisfying:

(b1) ∀λ ∈ E, ∀(x, y) ∈ M2:

λ⊥ (x � y) = (λ⊥ x) � (λ⊥ y)

(b2) ∀(λ, μ) ∈ E2, ∀, x ∈ M:

(λ ⊕ μ)⊥ x = (λ⊥ x) � (μ⊥ x)

(b3) ∀(λ, μ) ∈ E2, ∀, x ∈ M

λ⊥ (μ⊥ x) = (λ ⊗ μ)⊥ x

(b4) ∀x ∈ M,

e⊥ x = x

ε⊥ x = 0

(b5) ∀λ ∈ E λ⊥ 0 = 0

When the reference set (E,⊕,⊗) is a non-commutative semiring, it is necessary to
distinguish between the concept of left semi-module (where the operation ⊥ repre-
sents the multiplication on the left of a vector by a scalar) and the concept of right
semi-module (where the operation ⊥ represents the multiplication on the right of a
vector by a scalar). When ⊗ is commutative, the concepts of left semi-module and
right semi-module coincide.

The following definition corresponds to the generalization of the concept of
module when the reference set is a dioid instead of a ring.

Definition 2.1.2. (moduloid)
A semi-module on E is referred to as a moduloid when (E,⊕,⊗) is a dioid and

(M, �) is a canonically ordered commutative monoid.

Example 2.1.3. (E,⊕,⊗) being a semiring, let us consider En, the set of n-vectors
with components on E endowed with the operations � and ⊥ defined as:

x = (xi)i=1,...,n y = (yi)i=1,...,n

x � y = z = (zi)i=1,...,n where ∀i: zi = xi ⊕ yi

λ ∈ E λ⊥ x = u = (ui)i=1,...,n

where, ∀i: ui = λ⊗ xi.

It is easily verified that the set (En, �,⊥) thus defined is a semi-module.
According to common practice regarding modules on Z and vector fields on R,
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the law � (addition of vectors) introduced above, will be denoted⊕ and the external
law ⊥ (left multiplication of a vector by a scalar) will be denoted ⊗.

Let us also observe that, in reference to this classical example, the elements of a
semi-module M are referred to as vectors. ||
Example 2.1.4. Let us consider again Example 2.1.3. above, but now assuming that
(E,⊕) is a dioid. Then (En, �) is canonically ordered and (En, �,⊥) is a moduloid. ||
Example 2.1.5. Let (M,⊕) be a commutative monoid, with neutral element ε, and
let us consider the dioid (N,+,×) (see Chap. 8, Sect. 4.4.1).

Let us define the external law ⊥ operating on the elements of N by:
∀n ∈ N, ∀x ∈ M, n⊥ x = x ⊕ x ⊕ . . . ⊕ x (n times) with the convention that

0⊥ x = ε.
It is easily verified that (M,⊕,⊥) is a semi-module on (N,+,×). If (M,⊕) is

canonically ordered, it is recognized as a moduloid. ||
Example 2.1.6. Let (E,⊕,⊗) be a commutative semiring, and A ∈ Mn(E) a square
n × n matrix with entries in E. Let λ ∈ E and V ∈ En such that:

A ⊗ V = λ⊗ V

(V is said to be an eigenvector of A for the eigenvalue λ).
The set Vλ of all the eigenvectors of A for the eigenvalue λ ∈ E is a semi-module.

Indeed, ∀V ∈ Vλ, W ∈ Vλ, (α, β) ∈ E2:

A ⊗ (α⊗ V⊕ β⊗W) = (α⊗ λ)⊗ V⊕ (β⊗ λ)⊗W

= λ⊗ (α⊗ V⊕ β⊗W)

Hence we deduce that α⊗ V⊕ β⊗W ∈ Vλ.
Chapter 6 will be devoted to the detailed study of eigen-semi-modules or eigen-

moduloids associated with matrices. ||

2.2. Morphisms of Semi-Modules or Moduloids. Endomorphisms

Definition 2.2.1. Let U and V be two semi-modules on the same semiring (E,⊕,⊗).
The internal laws are denoted � and �′ respectively and the external laws⊥ and⊥′
respectively. We call morphism of semi-modules from U to V any mapping ϕ:U → V
satisfying the following conditions:

(i) ∀(x, y) ∈ U2 ϕ(x � y) = ϕ(x) �′ ϕy)

(ii) ∀(λ, x) ∈ E× U: ϕ(λ⊥ x) = λ⊥′ ϕ(x)

A morphism of semi-modules from U to itself is referred to as an endomorphism
(of a semi-module).

When the reference set is a dioid we refer to morphisms or endomorphisms of
moduloids.

According to common practice, morphisms of semi-modules can also be referred
to as linear mappings.
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2.3. Sub-Semi-Module. Quotient Semi-Module

Definition 2.3.1. (sub-semi-module)
Let (M, �,⊥) be a semi-module on a semiring (E,⊕,⊗). We refer to as a sub-

semi-module of M any subset M′ ⊂ M containing 0 and stable for the laws induced
by � and ⊥.

Definition 2.3.2. (quotient semi-module)
Let (M, �,⊥) be a semi-module on E, (M′, �,⊥) a sub-semi-module of M and

M/M′ the quotient set of M with respect to the equivalence relation / defined as:

x / y ⇔ ∃(u, v) ∈ M′2

such that: x � u = y � v

M/M′ is referred to as the quotient semi-module of M by M′.

It is easily verified that the equivalence relation / is compatible with the laws �
and ⊥ of M. Indeed:

x1/ y1 ⇔ x1 � u1 = y1 � v1 with u1 ∈ M′, v1 ∈ M′

x2/ y2 ⇔ x2 � u2 = y2 � v2 with u2 ∈ M′, v2 ∈ M′

hence we deduce (x1 � x2)/ (y1 � y2) since u1 � u2 ∈ M′ and v1 � v2 ∈ M′.
Moreover, for λ ∈ E,

x / y ⇔ x � u = y � v with u ∈ M′, v ∈ M′

hence we deduce:

(λ⊥ x) � (λ⊥ u) = (λ⊥ y) � (λ⊥ v)

which shows that (λ⊥ x) / (λ⊥ y) since λ⊥ u ∈ M′ and λ⊥ v ∈ M′
It follows from the above that the canonical surjection ϕ (which, to any element x

of M, lets correspond its equivalence class in M/M′) is a morphism of semi-modules
(or: linear mapping).

2.4. Generated Sub-Semi-Module. Generating Family
of a (Sub-) Semi-Module

Definition 2.4.1. (sub-semi-module generated by a family of elements)
Let (M, �,⊥) be a semi-module on E and X = (xi)i∈I an arbitrary non-empty

family (whether finite or infinite) of elements of M. We call a sub-semi-module
generated by X, denoted Sp(X), the smallest sub-semi-module of M containing X.
If Sp(X) = M, X is said to be a generating family (or: generator) of M.
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We easily prove:

Proposition 2.4.2. Let (M, �,⊥) be a semi-module on E and X = (xi)i∈I an
arbitrary non-empty family (whether finite or infinite) of elements of M.

Then Sp(X) is the set Y of all the elements y ∈ M of the form:

y =
∑

j∈J

λj⊥ xj (1)

(summation in the sense of �) where J ⊂ I is a finite subset of indices and, ∀, j ∈ J,
λj ∈ E.

Proof. Clearly Y, the set of y’s obtained by (1), is a semi-module, the axioms (a)
and (b1) — (b5) being satisfied. This set contains X (to obtain xi it suffices to take
J = {i} and λi = e) and 0 the neutral element of M (for that it suffices to take arbitrary
i ∈ I and J = {i} λi = ε). Y is therefore a sub-semi-module of M containing X and
consequently Sp(X) ⊆ Y.

Moreover, it can be observed that any sub-semi-module of M containing X =
(xi)i∈I contains all the linear combinations of the xi’s. Therefore

Y ⊆ Sp(X)

We deduce that Y = Sp(X) and Y is the smallest sub-semi-module of M contain-
ing X. "#

2.5. Concept of Linear Dependence and Independence
in Semi-Modules

In this section we propose a definition of the concepts of linear dependence and
independence in semi-modules, which constitutes an extension of the corresponding
concepts in standard linear algebra. Links with alternative definitions suggested by
other authors, will also be mentioned.

Let us consider an arbitrary non-empty family (whether finite or infinite) X =
(xi)i∈I of elements in a semi-module (M, �,⊥).

For any subset of indices J ⊂ I we will denote XJ the sub-family of X restricted
to the elements xj, j ∈ J, and Sp(XJ) the sub-semi-module generated by XJ.

Definition 2.5.1. The family X = (xi)i∈I is said to be dependent if and only if, there
exist two finite disjoint subsets of indices I1 ⊂ I and I2 ⊂ I together with values
λi ∈ E\{ε} (i ∈ I1 ∪ I2), such that:

∑

i∈I1

λi ⊥ xi =
∑

i∈I2

λi ⊥ xi (2)
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A family which is not dependent will be said to be independent, this property being
expressed by the condition:

∀I1 ⊂ I, ∀, I2 ⊂ I, I1 ∩ I2 = ∅:
Sp(XI1) ∩ Sp(XI2) = {0}

(3)

It follows directly from the previous definition that any sub-family of an independent
family is independent.

The concept of dependence in semi-modules as defined by (2) was introduced and
studied by Gondran and Minoux (1977, 1978, 1984).

Remark: concepts of redundant and quasi-redundant families

Alternative concepts related to dependence and independence in semi-modules
have been studied by other authors (Cuninghame-Green 1979; Cohen et al. 1985;
Moller 1987; Wagneur 1991) who proposed them as possible definitions of depen-
dence and independence. Nonetheless, these concepts correspond to much stronger
notions of dependence than (2), which limits the range of applications (e.g. they would
not make it possible to obtain the equivalent of our Theorem 2 Sect. 3.4 below). This
is why, in what follows, we have chosen to give these concepts different names.

We will say that the family X = (xi)i∈I is redundant if and only if there exists
i ∈ I and I1 ⊂ I (i /∈ I1) such that:

xi ∈ Sp(XI1) (4)

In the opposite case, the family X will be said to be non-redundant.
We will say that the family X = (xi)i∈I is quasi-redundant if and only if there

exists i ∈ I, λ ∈ E\{ε} and I1 ⊂ I (i /∈ I1) such that:

λ⊥ xi ∈ Sp(XI1) (5)

In the opposite case, X will be said to be non-quasi-redundant.
The concept of quasi-redundancy (corresponding to (5)) was proposed as a

definition of dependence by Wagneur (1991) and the concepts of redundancy and non-
redundancy corresponding to (4) were introduced and studied first by Cuninghame-
Green (1979), then by Cohen et al. (1985), Moller (1987) and Wagneur (1991).

It is easy to see that for a family X = (xi)i∈I of elements in a semi-module,
independence in the sense of Definition 2.5.1. implies non-quasi-redundancy, which
implies non-redundancy (see Exercise 1). Moreover, when (E,⊗) has a group
structure, then the concepts of redundancy and quasi-redundancy coincide. ||
Definition 2.5.2. We refer to as a basis of a semi-module (M, �,⊥) an independent
generating family.

We are going to show that, under specific conditions, if a semi-module (M, �,⊥)

has a basis, the latter is unique.
In order to do so let us first introduce the concept of reducibility.
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Definition 2.5.3. Let (M, �,⊥) be a semi-module on (E,⊕,⊗).
Given a set of vectors V = (Vk), k ∈ K, with Vk ∈ M(∀k), it is said that a

vector x ∈ M is reducible on Sp(V) if and only if there exists y �= x and z �= x, y ∈
Sp(V), z ∈ Sp(V) such that: x = y � z.

In the opposite case, x will be said to be irreducible.

Remark: x reducible on Sp(V)⇒ x ∈ Sp(V) ||
As an immediate consequence of this definition, we have the following property.

Property 2.5.4. If x is irreducible on Sp(V) then one (and only one) of the two fol-
lowing conditions is satisfied:

(i) x /∈ Sp(V)

(ii) x = y � z with y ∈ Sp(V) and z ∈ Sp(V)

⇒ y = x or z = x

We can now establish:

Proposition 2.5.5. Let (E,⊕,⊗) be a dioid. ε and e denoting the neutral elements
for ⊕ and ⊗ respectively, it is assumed that a ⊕ b = e ⇒ a = e or b = e (observe
that this assumption holds in selective dioids).

Let (M, �,⊥) be a moduloid on E, canonically ordered by �. We denote ∝ the
canonical order relation on M.

It is assumed moreover that for u ∈ M, v ∈ M, λ ∈ E with v �= u and v �= 0

v = λ⊥ v � u ⇒ λ = e (see remark 2.5.6 below)

Under the above assumptions, if X = (xi)i∈I is an independent family of elements of
M (with xi �= 0, ∀, i ∈ I), then ∀j ∈ I, xj is irreducible on Sp(X).

Proof. Clearly, for all j ∈ I, xj ∈ Sp(X). We thus have to prove 2.5.4 (ii).
Let us assume that xj = y � z with y ∈ Sp(X) and z ∈ Sp(X). Observe that this

implies:

y ∝ xj and z ∝ xj. Now:
y ∈ Sp(X)⇒
∃ λi ∈ E\{ε}, ∃ I1 ⊂ I: y =

∑

i∈I1

λi ⊥ xi (summation in the sense of �).

Similarly

z ∈ Sp(X)⇒
∃ μi ∈ E\{ε}, ∃ I2 ⊂ I: z =

∑

i∈I2

μi ⊥ xi

By agreeing to set λi = ε for i ∈ I2\I1 and μi = ε for i ∈ I1\I2 we therefore have:

xj =
∑

i∈I1∪I2

(
λi ⊕ μi

)⊥ xi
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Let us observe that, necessarily, j ∈ I1 ∪ I2 (otherwise the hypothesis of independence
would be contradicted). Consequently:

xj = (λj ⊕ μj)⊥ xj �
∑

i∈I1∪I2
i �=j

(
λi ⊕ μi

) ⊥ xi

with λj ⊕ μj �= ε. By setting λ = λj ⊕ μj and u = ∑

i∈I1∪I2
i �=j

(
λi ⊕ μi

) ⊥ xi ∈

Sp(X\{xj}), we obtain:
xj = λ⊥ xj � u (6)

with u ∈ Sp(X\{xj}).
We have xj �= 0, and, because of the independence, we must have xj �= u, hence

λ �= ε follows. The hypotheses of Proposition 2.5.5 then imply λ = e.
Since λ = λj ⊕ μj, we must have either λj = e, or μj = e.
Let us assume for example λj = e.
Then y is rewritten:

y = xj �
∑

i∈I1\{j}
λi ⊥ xi

hence one can deduce: xj ∝ y and, given that ∝ is an order relation, this implies
y = xj.

In the case where μj = e, we would similarly deduce that z = xj.
We deduce the irreducibility of xj �.

Remark 2.5.6. The assumption:

v = λ⊥ v � u
v �= u, v �= 0

}
⇒ λ = e

is satisfied in many moduloids, in particular those associated with selective-invertible
or selective-cancellative dioids.

For instance, let us consider a moduloid in which the elements are n-component
vectors on (E,⊕,⊗) with the usual laws.

(xi)i=1...n � (yi)i=1...n = (xi ⊕ yi)i=1...n

λ⊥ (xi)i=1...n = (λ⊗ xi)i=1...n

0 =

⎛

⎜⎜
⎝

ε

ε

:
ε

⎞

⎟⎟
⎠

The hypothesis v �= u implies that there exists i such that vi �= ui, and the relation
v = λ⊥ v � u implies: vi = λ⊗ vi ⊕ ui.

Necessarily in this case vi �= ε. (vi = ε would imply ui = ε and contradict
vi �= ui).
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Similarly, λ �= ε. If ⊕ is selective, then we have vi = λ⊗ vi with vi �= ε.
Consequently, if (E,⊗) is a group or a cancellative monoid, one can simplify with

vi �= ε, which implies λ = e. ||
Proposition 2.5.7. Assume that the assumptions of Proposition 2.5.5 hold and, more-
over, that: a ∈ E, b ∈ E a ⊗ b = e ⇒ a = e and b = e (see Remark 2.5.8 below)
Then, if (M, �,⊥) has a basis, it is unique.

Proof. We use the property of irreducibility of the elements of a basis (Proposi-
tion 2.5.5).

Consider X = (xi)i∈I and Y = (
yj
)

j∈J two bases of M.
∀xi ∈ X this yields:

xi =
∑

j ∈ J

μi
j⊥ yj

But Sp(X) = Sp(Y) = M.
The independence of X implies that, ∀i ∈ I, xi is irreducible on Sp(X), therefore

irreducible on Sp(Y). Consequently: there exists j ∈ J such that:

xi = μi
j⊥ yj for μi

j ∈ E and yj ∈ Y.

In the same way, we prove that yj = θ
j
k ⊥ xk for θ

j
k ∈ E and xk ∈ X.

Hence xi = μi
j⊗ θ

j
k ⊥ xk and since X is an independent family, necessarily i = k

and (in view of the assumptions of Proposition 2.5.5) μi
j ⊗ θ

j
k = e.

We deduce μi
j = e and θ

j
k = e, which shows that: xi = yj.

Thus, for any xi ∈ X, one can find yj ∈ Y such that xi = yj. We deduce X = Y,
which proves uniqueness. �

Remark 2.5.8. The assumption a ⊗ b = e ⇒ a = e and b = e is satisfied in
particular: (1) in dioids for which e is the greatest element and where: a⊗ b ≤ a and
a ⊗ b ≤ b; (2) when ⊗ is selective (a ⊗ b = e ⇒ a = e or b = e ⇒ a = e and
b = e). ||

3. Bideterminant and Linear Independence

In this section we discuss links between linear dependence and independence, and
the concept of bideterminant for square matrices with elements in a semiring or a
dioid. Thus, in a much more general framework, extensions to various known results
of classical linear algebra will be obtained.

It is interesting to observe that, given that (E,⊕) is not a group, the proofs are
very different from those known in classical linear algebra and generally require the
use of combinatorial arguments and graph theoretical properties. In particular, the
graph G(A) associated with a matrix A ∈ Mn(E) will play an essential role.
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3.1. Permanent, Bideterminant and Alternating Linear Mappings

Given a matrix A ∈ Mn(E), A = (aij)i=1...n
j=1...n

, and σ a permutation of {1, . . . , n}, we

refer to as the weight of σ, denoted w(σ), the element of E defined as:

w(σ) = a1,σ(1) ⊗ a2,σ(2) ⊗ . . .⊗ an,σ(n)

We recall (see Chap. 2, Sect. 4.2) that the bideterminant of A is the pair

Δ(A) =
(

det+(A)

det−(A)

)

where: det+(A) =
⊕∑

σ∈Per+(n)

w(σ)

det−(A) =
⊕∑

σ∈Per−(n)

w(σ)

Per+(n) (resp. Per−(n)) denoting the set of permutations of {1, . . . , n}with signature
+1 (resp. with signature −1). Since sign(σ−1) = sign (σ), it can be observed that A
and AT (the transposed matrix of A) have the same bideterminant: Δ(AT) = Δ(A)

The permanent of A is defined as:

Perm(A) = det+(A)⊕ det−(A) =
⊕∑

σ∈Per(n)

w(σ)

Observe that if one multiplies a column (a row) j by λj ∈ E (λj �= ε), the permanent
is then multiplied by λj.

As opposed to the case of standard linear algebra, the permanent of a matrix
in a semiring or a dioid can often be efficiently computed and have interesting
combinatorial interpretations, as the following examples show:

Example 3.1.1. (The permanent and the assignment problem)

E = R ∪ {+∞},⊕ = min,⊗ = +.

The permanent of a matrix A ∈ Mn(E) can be obtained in this case by solving the
classical assignment problem.

Indeed, the weight of an arbitrary permutation σ is the sum (in the sense of ordinary
addition on the reals) of the terms of the matrix A corresponding to the permutation
σ and, since ⊕ = Min, the value of the permanent corresponds to the weight of
the permutation of minimum weight, i.e. to the optimal solution of the assignment
problem: how to select one and only one term of the matrix in each row and in each
column while minimizing the sum of the selected terms. The assignment problem is
a classical problem of graph theory which is solved efficiently (in polynomial time)
by the so-called “Hungarian algorithm” or network flow algorithms (see for example
Gondran and Minoux 1995, chap. 5; Ahuja, Magnanti and Orlin, 1993). ||
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Example 3.1.2. (Permanent and bottleneck assignment)

E = R ∪ {+∞},⊕ = min,⊗ = max.

The permanent of a matrix A ∈ Mn(E) can be obtained in this case by solving a
“bottleneck” assignment problem.

Indeed, the weight of an arbitrary permutation σ is then the largest value of the
terms of the matrix A corresponding to the permutation. The value of the permanent
therefore corresponds to the permutation for which the largest of the terms covered
by the permutation is the smallest possible. Like the classical assignment problem,
the “bottleneck” assignment problem is solved efficiently (in polynomial time) by
network flow algorithms (see for example Gondran and Minoux 1995, chap. 5;Ahuja,
Magnanti and Orlin 1993). ||
Definition 3.1.3. (Alternating linear mapping)

Given x1, x2, . . . xn, n vectors of En, an application f: En2 → E2 is said to be an
alternating linear mapping if and only if the mapping:

f
(

x1, x2, . . . , xn
)
=

⎛

⎝
f1

(
x1, x2, . . . ., xn

)

f2
(
x1, x2, . . . , xn

)

⎞

⎠

is such that:

• f1 and f2 are linear mappings: En2 → E

• f
(
x1, . . . , xi, . . . , xj, . . . , xn

) =
(

f1
f2

)

implies: f
(
x1, . . . , xj, . . . , xi, . . . , xn

) =
(

f2
f1

)
.

Proposition 3.1.4. The bideterminant Δ(A) =
(

det+(A)

det−(A)

)
is an alternating linear

mapping.

Proof. It readily follows from the fact that one transposition changes the sign of a
permutation. "#
As for the determinant in standard linear algebra, one can establish a formula of
expansion of the bideterminant with respect to a row or a column of the matrix.

For a matrix A ∈ Mn(E) let us denote Ā
j
i the n × n matrix obtained (from A) by

replacing all the terms of the ith row and the jth column by ε (neutral element of ⊕)
except the term aij which is replaced by e (neutral element of ⊗)
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Given the linearity of the mappings det+(A) and det−(A), one can then write
(expansion with respect to the ith row):

det+(A) =
n∑

j=1

aij ⊗ det+(Āj
i)

det−(A) =
n∑

j=1

aij ⊗ det−(Āj
i)

or equivalently, in vector notation:

Δ(A) =
n∑

j=1

aij ⊗Δ(Āj
i)

An analogous formula would clearly be obtained by expanding with respect to a
given column.

From the above, we easily deduce:

Property 3.1.5. If the matrix A ∈ Mn(E) has a column (or a row) with all entries
equal to ε (neutral element of ⊕) then det+(A) = det−(A) = ε.

Proof. Perform the expansion of the bideterminant with respect to the column (with
respect to the row) and use the fact that ε is absorbing for ⊗. "#

The converse of Property 3.1.5, is false as can be clearly seen from the following
example:

A ∈ M4(S) (n= 4)

 1 2 3 4 
1 × ε ε ε
2 × ε ε ε
3 ε × ε ε
4 ε ε × ×

Only the terms marked by a cross are different from ε. We clearly have: Δ1(A) =
Δ2(A) = ε, but there exists an entry different from ε in each row and each column.

3.2. Bideterminant of Matrices with Linearly Dependent Rows
or Columns: General Results

In this section, we study generalizations of the property, well known in standard
linear algebra, stating that if the columns of a matrix are linearly dependent, then its
determinant is zero. For the various concepts of independence introduced in Sect. 2.5,
a generalized version of this property will be shown to hold, expressed here by the
equality of the two terms of the bideterminant.
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Let us state first the following elementary property:

Property 3.2.1. Let (E,⊕,⊗) be a semiring, and consider a matrix A ∈ Mn(E). If
the matrix A has two identical columns (or rows) then:

det+(A) = det−(A)

Proof. For j = 1 . . . n, let us denote Aj the jth column of A and let us assume for
example that Ai = Aj with i �= j. Given that the bideterminant Δ(A) is a alternating
linear mapping this yields:

Δ(A1, A2, . . . Ai, . . . Aj, . . . An) =
(

det+ (A)

det− (A)

)

and:

Δ(A1, A2, . . . Aj, . . . Ai, . . . An) =
(

det− (A)

det+ (A)

)

Since Ai = Aj, this implies clearly:

det+(A) = det−(A). �

Proposition 3.2.2. Let (E,⊕,⊗) be a semiring, A ∈ Mn(E) and let us assume that
the columns of A form a redundant family of En (see Sect. 2.5).

Then det+(A) = det−(A).

Proof. Since the columns A1, A2, . . . An form a redundant family, there exists a
column, A1 say, which is a linear combination of the others. We therefore have:

A1 =
n∑

j=2

λj ⊗ Aj

with λj ∈ E (j = 2 . . . n)

By using the linearity of the bideterminant:

Δ(A) =
n∑

j=2

λj ⊗Δ(Aj, A2, A3, . . . .Aj, . . . .An)

Using Property 3.2.1, for any j = 2, . . . n we obtain: det+(Aj, A2, . . . An) =
det−(Aj, A2, . . . An) from which we can deduce: det+(A) = det−(A). �

Proposition 3.2.3. Let (E,⊕,⊗) be a semiring, A ∈ Mn(E) and let us assume that
the columns (the rows) of A form a quasi-redundant family of elements of En.

Then:

(i) There exists α ∈ E, α �= ε, such that:

α⊗ det+(A) = α⊗ det−(A).
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(ii) If (E,⊕,⊗) is such that all the elements of E\{ε} are cancellative for ⊗, then
det+(A) = det−(A)

Proof. The quasi-redundancy of the family of columns A1, . . . An implies the
existence of a column ofA, e.g. A1, and of a subset of indices J ⊂ {2, . . . n} such that:

Sp(A1) ∩ Sp(AJ)

contains a vector different from 0 =

⎛

⎜⎜
⎝

ε

·
·
ε

⎞

⎟⎟
⎠

This vector is necessarily of the form α ⊗ A1 with α ∈ E\{ε} and there exists
λj ∈ E(j ∈ J) such that:

α⊗ A1 =
∑

j∈J

λj ⊗ Aj

The columns of matrix A′ = (α⊗A1, A2, . . . An) therefore form a redundant family,
thus, according to Proposition 3.2.2, we have: det+(A′) = det−(A′).

Hence: α ⊗ det+(A) = α ⊗ det−(A) which proves (i). (ii) is then immediately
deduced. "#

Let us now study the case where the columns of the matrixAare linearly dependent
in the sense of Definition 2.5.1.

We first establish an initial result modulo quite restrictive assumptions (regu-
larity of the elements of E for ⊕ and ⊗) to obtain the equality of the two terms
of the bideterminant. Thereafter, we will investigate other types of less restrictive
assumptions.

Proposition 3.2.4. Let us assume that (E,⊕,⊗) is a semiring such that all the
elements of E are cancellative for ⊕ and all the elements of E\{ε} are cancellative
for ⊗

If the columns of A ∈ Mn(E) are linearly dependent, then:

det+(A) = det−(A).

Proof. Since the columns of A are linearly dependent, there exist I1 ⊂ {1, . . . n} and
I2 ⊂ {1, . . . n}, I1 �= ∅, I2 �= ∅, I1 ∩ I2 = ∅ such that:

∑

j∈I1

λj ⊗ Aj =
∑

j∈I2

λj ⊗ Aj

with λj ∈ E\{ε} for j ∈ I1 ∪ I2
It is not restrictive to assume that 1 ∈ I1. Let A′ be the matrix deduced from A by

replacing the column A1 by
∑

j∈I1

λj ⊗ Aj.

The matrix A′ is such that its first column is a linear combination of other columns,
Aj for j ∈ I2. According to Proposition 3.2.2, we therefore have:
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det+(A′) = det−(A′)

Moreover, by using the linearity of the bideterminant, we can write:

det+(A′) = λ1 ⊗ det+(A)⊕
∑

j∈I1\{1}
λj ⊗ det+(Aj, A2, . . . Aj, . . . An)

and:

det−(A′) = λ1 ⊗ det−(A)⊕
∑

j∈I1\{1}
λj ⊗ det−(Aj, A2, . . . Aj, . . . An)

Since, ∀j ∈ J1\{1}, det+(Aj, A2, . . . Aj, . . . An) = det−(Aj, A2, . . . Aj, . . . An)

(see Property 3.2.1) and that any element is cancellative for ⊕, we deduce that:

λ1 ⊗ det+(A) = λ1 ⊗ det−(A)

Since λ1 �= ε is cancellative for ⊗, this implies: det+(A) = det−(A). "#
There exist however many examples of semirings and dioids for which the assump-
tions of Proposition 3.2.4 do not hold. We study in the following section the links
between linear dependence and bideterminant for the sub-class of selective dioids.

3.3. Bideterminant of Matrices with Linearly Dependent Rows
or Columns: The Case of Selective Dioids

In this section, it will be assumed that (E,⊕,⊗) is a selective dioid, i.e. that the
operation ⊕ is such that, ∀a ∈ E, ∀b ∈ E:

a ⊕ b = a or b

We recall that, in this case, the canonical preorder relation ≤ is a total order
relation. (see Chap. 1, Sect. 3.4).

Let A ∈ Mn(E), I = {1, 2, . . . n} be the set of indices of the rows, J = {1, 2, . . . n}
the set of indices of the columns, and let us consider a dependence relation among
the columns, of the form:

∑

j∈J1

Aj =
∑

j∈J2

Aj

with J1 �= ∅ J2 �= ∅ J1 ∩ J2 = ∅
We observe that one can always assume that A does not have a column (or a

row) with all entries equal to ε. (Indeed, if that was the case, one would immediately
deduce det+(A) = ε = det−(A), see Sect. 3.1, Property 3.1.5).
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Since a ⊕ b = a or b (∀a ∈ E, ∀b ∈ E), for any row i of A, we will have:

ai,j1(i) =
∑

j∈J1

aij for some index j1(i) ∈ J1

Similarly:
ai,j2(i) =

∑

j∈J2

aij for some index j2(i) ∈ J2

Let us consider now the bipartite graph G (equality graph) where the set of vertices
is: X ∪ Y with:

X = {x1, . . . ., xn} (corresponding to the set of rows)

Y = {y1, y2, . . . , yn} (corresponding to the set of columns)

and where there exists an edge (xi, yj) if and only if

j = j1(i) or j = j2(i).

Example 3.3.1. Let the following 5× 5 matrix (where we have marked with a cross
the terms j1(i) and j2(i) for every row i).

The corresponding equality graph G is shown in Fig. 1. ||

We observe that the graph G is not necessarily connected (as in Example 3.3.1
above where the vertex y4 is isolated).

We will denote: Y1 = {yj/j ∈ J1} and Y2 = {yj/j ∈ J2}.
Let us consider the complete bipartite graph G(A) constructed on the sets of

vertices X and Y. Each arc (xi, yj) of G(A) corresponds to a term aij of the matrix A,
and conversely.

With any permutation σ of {1, 2, . . . , n} one can associate one and only one perfect
matching (see Berge, 1970) of G(A) and conversely (one-to-one correspondence).

Given two permutations σ1, σ2 of {1, . . . , n}, K1 and K2 the corresponding (per-
fect) matchings of G(A), the set of edges (K1\K2)∪ (K2\K1) forms a partial graph
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x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

J1

J2

Fig. 1 Example of an equality graph associated with a dependence relation

of G(A) where each connected component is an even elementary cycle alternating
in K1 and K2 (see Berge 1970; Lemma p. 118).

Denote γ1, γ2, . . . , γr these connected components having cardinalities: |γ1| =
2q1, |γ2| = 2q2, . . . , |γr| = 2qr.

Now, consider the permutation σ = σ−1
2 ◦ σ1.

To each cycle γi(i = 1 . . . r) there corresponds a cycle μi of G(σ) (the graph
associated with the permutation σ, see Chap. 2 Sect. 4) of cardinality:

|μi| =
∣∣γi

∣∣

2
≥ 1

(the cycles of G(σ) which do not correspond to a cycle γi are loops, of cardinality 1).
The parity of σ is therefore the parity of:

r∑

i=1

(|μi| − 1) =
r∑

i=1

(∣∣γi

∣∣

2
− 1

)

σ1 and σ2 are of opposite parity if and only if the permutation σ is odd, i.e. if and only
if the associated graph G(σ) contains an odd number of circuits of even cardinality.
We deduce:

Lemma 3.3.2. A necessary and sufficient condition for σ = σ−1
2 o σ1 to be odd (i.e.

for σ1 and σ2 to have opposite parities) is that, in G(A), the partial graph generated
by (K1\K2) ∪ (K2\K1) contains an odd number of cycles of cardinality multiple
of 4.
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One can then state:

Theorem 1. (Gondran and Minoux, 1977)
Let (E,⊕,⊗) be a selective dioid (i.e. in which the ⊕ law satisfies a ⊕ b = a

or b, ∀a ∈ E, ∀b ∈ E) and let A ∈ Mn(E).
If the columns of A satisfy a dependence relation of the form:

∑

j∈J1

Aj =
∑

j∈J2

Aj

with: J1 �= ∅ and J2 �= ∅. J1 ∩ J2 = ∅,
then: det+(A) = det−(A).

Proof. Let σ be a permutation of {1, . . . , n} such that:

w(σ) = Π
i

ai,σ(i) = perm(A) = det+(A)⊕ det−(A)

(product in the sense of ⊗)
We observe that we have:

w(σ) = Max
π∈Per(n)

{w(π)}

where the maximum is taken in the sense of the (total) order relation of the dioid
(E,⊕,⊗). (In other words, σ is an optimal solution to a problem of the “assignment”
type. See Examples 3.1.1 and 3.1.2 above).

Let us consider the equality graph G and add to G the edges of the matching K of
G(A) associated with the permutation σ. We obtain the graph G′.

Let us consider in G′ the following path construction.
We start from a vertex yk1 in Y1(k1 ∈ J1); yk1 is the endpoint of an edge in K

and let xi1 be the other endpoint.

There exists an edge of G incident to xi1 and having as its other endpoint yk2 ∈
Y2(k2 = j2(i1)). Observe that, necessarily, the edge (xi1 , yk2) is not in K. (since
k1 ∈ J1 and k2 ∈ J2).

When one is in yk2 , there exists an edge of K incident to yk2 . Let xi2 be the other
endpoint. Necessarily xi2 �= xi1 . And so on. . .

At some stage, we have constructed a sequence of vertices of G′:

yk1 , xi1 , yk2 , xi2 , . . . xip−1 , ykp

We thus reach ykp right after visiting xip−1 using an edge /∈ K. Moreover, kp ∈ J1 if
p is odd, kp ∈ J2 if p is even.

Then there exists an edge of K incident to ykp and let xip be the other endpoint.
Necessarily xip �= xip−1 since (xip−1 , ykp) /∈ K.

From xip there exists an edge of G incident to xip and such that the other endpoint
is ykp+1 with ykp+1 ∈ Y2 if ykp ∈ Y1 and ykp+1 ∈ Y1 if ykp ∈ Y2. Necessarily,
(xip , ykp+1) /∈ K.

We can therefore see that this path construction can be pursued indefinitely. There-
fore, in a finite number of steps, one necessarily finds oneself back at a vertex already
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visited, and this vertex can only be one of the yki . One has then detected a cycle γ of
G′ and γ contains as many vertices of Y1 as of Y2. Let q be this number. It is seen
that:

|γ| = 4q.

Moreover, when one runs through the cycle γ, one alternatively traverses edges which
are in K and edges which are not in K.

Consider then the matching K′ obtained from K by replacing the edges of K ∩ γ

by the edges of γ\K: K′ = (K\γ) ∪ (γ\K).
Let σ′ be the permutation associated with K′. According to Lemma 3.3.2., σ and

σ′ have opposite parity.
Moreover, each term ai,σ(i) is replaced in the permutation σ′ by a term of greater

or equal weight: indeed: ai,σ′(i)= ai,σ(i) for any i such that σ(i) /∈ J1 ∪ J2 and
ai,σ′ (i) ≥ ai,σ(i) for σ(i) ∈ J1 ∪ J2 because: ai,σ′(i) = Max

j∈J1∪J2
{ai,j}

We therefore have:
w(σ′) ≥ w(σ).

But since σ was chosen as a permutation of maximum weight and since ≥ is a total
order relation, this necessarily yields:

w(σ′) = w(σ) and consequently, if one had for example: w(σ) = det+(A) then
w(σ′) = det−(A). From all this we can deduces det+(A) = det−(A).

(Observe that the cycle γ exhibited in the above proof is not necessarily unique)
"#

Corollary 3.3.3. (i) In a selective dioid (E,⊕,⊗), if A ∈ Mn(E) has linearly
dependent columns, then there exists α ∈ E\{ε} such that α ⊗ det+(A) =
α⊗ det−(A)

(ii) If, moreover, any element of E\{ε} is regular for ⊗ (case of selective-regular
dioids) then: det+(A) = det−(A).

Proof. By hypothesis, there exists J1 and J2 (J1 ∩ J2 = ∅) and λj �= ε (j ∈ J1 ∪ J2)

such that: ∑

j∈J1

λj ⊗ Aj =
∑

j∈J2

λj ⊗ Aj

Let us consider the matrix Ā = (Ā1, . . . , Ā
n
) such that:

Āj = λj ⊗ Aj, j ∈ J1 ∪ J2,

Āj = Aj, ∀j /∈ J1 ∪ J2.

Let us set: α = Π
j∈J1∪J2

λj

We obtain: det+(Ā) = α⊗ det+(A)

det−(Ā) = α⊗ det−(A)

Matrix Ā therefore satisfies the assumptions of Theorem 1, hence: det+(Ā) =
det−(Ā) and the first part of the corollary is deduced.

If α �= ε is regular, we deduce the second part of the corollary: det+(A) =
det−(A). "#
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3.4. Bideterminant and Linear Independence
in Selective-Invertible Dioids

Selective-invertible dioids form an interesting sub-class of dioids which Corol-
lary 3.3.3 of Sect. 3.3 applies to: for a matrix A with linearly dependent columns,
the two terms of the bideterminant are equal. In this paragraph, we prove a con-
verse of this result: if A is a matrix with entries in a commutative selective-invertible
dioid satisfying det+(A) = det−(A), then one can construct a linear dependence
relation involving the columns of A (see Theorem 2 below). Throughout this sec-
tion, we therefore consider that ⊕ is selective and that (E,⊗) is a commutative
group. Let us observe that, in this case, the canonical preorder on E is a total
order (this property is used in the sequel). As in Sect. 3.3, for a given matrix
A ∈ Mn(E), the weight w(σ) of a permutation of {1, 2, . . . , n} is defined as the
product w(σ) = a1,σ(1)⊗ a2,σ(2)⊗· · ·⊗ an,σ(n). We begin by establishing two useful
preliminary results.

Lemma 3.4.1. Let σ1 ∈ Per−(n) and σ2 ∈ Per+(n) be two permutations of
{1, 2, . . . , n} of opposite parities such that:

w(σ1) = w(σ2) =
∑

σ∈Per(n)

w(σ) = Max
σ∈Per(n)

{w(σ)}

(maximum taken in the sense of the total order relation of the dioid).
There exists then an even permutation σ̄2 ∈ Per+(n) such that:

(i) w(σ̄2) = w(σ2)

(ii) The permutations σ1 and σ̄2 only differ by a cycle in G(A), in other words the
graph associated with σ̄−1

2 ◦ σ1 only contains one even circuit of length ≥ 2
and loops.

Proof. Let us consider the complete bipartite graph G(A) and K1 and K2 the (perfect)
matchings of G(A) associated with the permutations σ1 and σ2. We recall that X
denotes the set of vertices of G(A) corresponding to the rows of A, and Y, the set of
vertices corresponding to the columns of A.

Since σ1 and σ2 are of opposite parities, the partial graph of G(A) induced by
(K1\K2) ∪ (K2\K1) contains at least one connected component which is a cycle μ

of cardinality multiple of 4: |μ| = 4 q.
Let X′ ⊂ X be the set of vertices xi (rows) belonging to μ, and Y′ ⊂ Y the set of

vertices yj (columns) belonging to μ. Let us set:

X′′ = X\X′ Y′′ = Y\Y′.
Observe that:

|X′| = 2q |Y′| = 2q and |μ| = |X′| + |Y′|
Let us consider the partial graph G of G(A) induced by K1 ∪ K2 (corresponding to
the set of elements of the matrix appearing in at least one of the two permutations
σ1 or σ2). μ is a connected component of G.
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The permutation σ1 may then be decomposed into two one-to-one correspon-
dences σ′1: X′ → Y′ and σ′′1: X′′ → Y′′.

We denote σ1 = (σ′1, σ′′1) and similarly σ2 = (σ′2, σ′′2)
According to Lemma 3.3.2., σ′1 and σ′2 have opposite parities.
Let us show that:

w(σ′1) = w(σ′2)

We can write: w(σ1) = w(σ′1)⊗ w(σ′′1)

w(σ2) = w(σ′2)⊗ w(σ′′2)

If one had, for example:
w(σ′1) < w(σ′2)

then the permutation:
σ̄ = (σ′2, σ′′1) would have a weight w(σ̄) > w(σ1), in contradiction with the fact

that σ1 is of maximum weight.
Similarly we cannot have: w(σ′1) > w(σ′2).
Consequently, w(σ′1) = w(σ′2) (because ≥ is a total order relation).
The desired permutation σ̄2 is thus

σ̄2 = (σ′2, σ′′1). "#
Lemma 3.4.2. Let σ1 ∈ Per−(n) and σ2 ∈ Per+(n) be two permutations of maximum
weight w(σ1) = w(σ2) and let us denote K1 and K2 the associated matchings of
G(A). We assume:

– That ai,σ1(i) = ai,σ2(i) for i = 1, 2, . . . , n

– That the partial graph G induced by (K1\K2)∪(K2\K1) is connected and formed
by a cycle μ of cardinality 4q (q integer) possibly with pendent arborescences of
even cardinality.

Then for any xi ∈ μ and for any yk ∈ μ:

ai,k ≤ ai,σ1(i) = ai,σ2(i)

Proof. The proof is given by contradiction, assuming that there exists xi ∈ μ and
yk ∈ μ such that:

ai,k > ai,σ1(i) = ai,σ2(i)

and then showing that we can exhibit a permutation σ∗ such that

w(σ∗) > w(σ1) = w(σ2).

It is easy to see (refer to Fig. 2) that there exists a perfect matching for the vertices
of μ using the edge (xi, yk) and such that the other edges all belong to μ (indeed,
the cardinalities of the two paths between a row i and a column k on the cycle μ

are odd).
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Fig. 2 Illustration of the proof of Lemma 3.4.2

There therefore exists a perfect matching for the vertices of G using the edge

(xi, yk) and such that the other edges all belong to G (the even pendent arborescences
do not create any problem).

Let σ∗ be the permutation corresponding to this perfect matching.
We then have:

aik = ai,σ∗(i) > ai,σ1(i) = ai,σ2(i)

and for any � = {1 . . . n}\{i}
a�,σ∗(�) = a�,σ1(�) = a�,σ2(�)

We deduce:
w(σ∗) > w(σ1) = w(σ2)

which contradicts the optimality of σ1 and of σ2. "#
(Remark: above we have used the fact that, in a selective-invertible dioid, for any

c �= ε one can write: a < b ⇒ a ⊗ c < b⊗ c.
Indeed, ≤ is compatible with the law ⊗ therefore: a < b ⇒ a ⊗ c ≤ b⊗ c.
But we cannot have equality because c �= ε being regular, a ⊗ c = b⊗ c ⇒ a = b

which is contrary to the hypothesis. Therefore: a ⊗ c < b ⊗ c).
We can then state:

Theorem 2. (Gondran and Minoux, 1977)
Let (E,⊕,⊗) be a commutative selective-invertible dioid and A ∈ Mn(E).

If det+(A) = det−(A)

then the columns of A (and similarly the rows of A) are linearly dependent. In other
words, there exist J1 and J2(J1 �= ∅, J2 �= ∅, J1∩ J2 = ∅) and coefficients λj ∈ E\{ε}
(for j ∈ J1 ∪ J2) such that:

∑

j∈J1

λj ⊗ Aj =
∑

j∈J2

λj ⊗ Aj (7)
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Proof. (1) Since⊕ is selective, there exist two permutations σ1 and σ2 with opposite
parities, such that:

w(σ1) = w(σ2) =
∑

σ∈Per(n)

w(σ) = Max
σ∈Per(n)

{w(σ)}

We observe that the permutations σ1 and σ2 remain optimal when one or several
columns Aj of A are multiplied by λj(λj �= ε).
From Lemma 3.4.1 one can assume that σ2 differs from σ1 only by one even cycle.

(2) If one uses a cross (×) to represent the elements aij of the matrix A such that
j = σ1(i) or j = σ2(i) and after a possible rearrangement of the rows and columns,
we obtain a configuration such as the one shown below:

x

x
x

x
x

x

x

x

x

x
x

x

x

X'

X"

A =

2q

Y' Y"

2q

x

Let us then consider the sub-matrix A′ of A formed by the 2q first lines (X′), the
2q first columns (Y′) and by the elements marked by a cross (the other elements
of A′ being ε). In the example below, the cycle μ of Lemma 3.4.1 successively
encounters x1, y1, x2, y2, x3, y3, x4, y4, x1 (its cardinality is |μ| = 8).

x1

x2

x3

x4

y1

y2

y3

y4

y1 y2 y3 y4

A'=

x1

x2

x3

x4

a11 ε ε a14

a21 a22 ε ε

ε a32 a33 ε

ε ε a43 a44
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Let us try and determine λ1, λ2, λ3, λ4 ∈ E\{ε} and the sets J1 and J2 ⊂
{1, 2, . . . , 2q} so that we have, for the matrix A′:

∑

j∈J1

λj ⊗ A′j =
∑

j∈J2

λj ⊗ A′j (8)

We can choose one of the λj values arbitrarily (since⊗ is invertible), e.g. λ1 = e.
We construct the sets J1 and J2, by running through the cycle μ while placing
the columns (vertices y) successively encountered alternatively in J1 and in J2.

Thus, in the example, starting from x1 we arrive at y1 which we assign to J1;
then from x2 we arrive at y2 which we assign to J2; then from x3 we arrive at y3
which we assign to J1; finally from x4 we arrive at y4 which we assign to J2. We
therefore obtain: J1 = {1, 3} J2 = {2, 4}. The λj values are then determined
so as to satisfy the relation (8). If λ1 = e, we must necessarily have:

λ1 ⊗ a11 = λ4 ⊗ a14 hence: λ4 = a11 ⊗ (a14)
−1

then λ4 ⊗ a44 = λ3 ⊗ a43 hence: λ3 = λ4 ⊗ a44 ⊗ (a43)
−1

then λ3 ⊗ a33 = λ2 ⊗ a32 hence: λ2 = λ3 ⊗ a33 ⊗ (a32)
−1

Since w(σ′1) = w(σ′2) we obtain a11 ⊗ a22 ⊗ a33 ⊗ a44 = a14 ⊗ a21 ⊗ a32 ⊗ a43
and we check that the second relation:

λ2 ⊗ a22 = λ1 ⊗ a21

is automatically satisfied.
The above readily generalizes to the case where μ has a cardinality |μ| = 4q

with arbitrary q(q > 1).
(3) Denote AY′

X′ the sub-matrix of A induced by the subset of rows X′ and the subset

of columns Y′. Now, let us multiply each column j of AY′
X′ by the value λj thus

determined. We obtain a matrix Ā = (āij) of dimensions (2q × 2q) such that:

∀i: āi,σ1(i) = āi,σ2(i) with σ1(i) ∈ J1 and σ2(i) ∈ J2.

By this transformation an optimal permutation remains optimal, σ1 and σ2
therefore remain permutations of maximum weight.
Let us now prove that we clearly have:

∑

j∈J1

Āj =
∑

j∈J2

Āj

In order to do so, it suffices to observe that in view of Lemma 3.4.2., any term
āij of Ā is less than or equal to āi,σ1(i) = āi,σ2(i) .

(4) Let us now return to the initial matrix A.
For every row xi ∈ X′′, therefore for i = 2q + 1, . . . , n, let:

bi = max
yj∈Y′

{
aij ⊗ λj

} =
∑

yj∈Y′
aij ⊗ λj
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Let us then show that there exists n − 2q coefficients λj associated with the
columns of Y′′ (and the rows of X′′) such that, ∀xi ∈ X′′:

aii ⊗ λi =
∑

yj∈Y′′
j�=i

aij ⊗ λj ⊕ bi (9)

System (9) is equivalent to the system:

λi =
∑

yj∈Y′′
j�=i

aij ⊗ a−1
ii ⊗ λj ⊕ a−1

ii ⊗ bi ∀xi ∈ X′′ (10)

Since the identity permutation is an optimal permutation for the matrix AY′′
X′′ it

follows that the graph associated with the matrix (aij⊗a−1
ii )i∈X′′

j∈Y′′
has all its circuits

of weight smaller than or equal to e. This property remains true if one replaces
all the diagonal terms of this matrix by ε, i.e. for the matrix of system (10).

Then, according to Theorem 1 of Chap. 4, the matrix of system (10) is quasi-
invertible and system (10) has a smallest solution λ.
With the values λ thus determined, we have, ∀xi ∈ X′′:

aii ⊗ λi =
∑

yj∈Y
j�=i

aij ⊗ λj (11)

For every i = 2q + 1, . . . n, there therefore exists an index ϕ(i) �= i such that:

aii ⊗ λi = ai,ϕ(i) ⊗ λϕ(i) =
∑

yj∈Y
j�=i

aij ⊗ λj (12)

(5) Let us denote G̃ the partial graph of G(A) defined as follows:

– ∀xi ∈ X′, G̃ contains the two edges of the cycle μ incident to xi.
– ∀xi ∈ X′′, G̃ contains the two edges (xi, yi) and (xi, yϕ(i)).

Since G̃ has as many edges as vertices, each of its connected components contains
exactly one elementary cycle and possibly pendent arborescences. Let us show
that it is not restrictive to assume that G̃ is connected.

If G̃ is not connected, it contains a connected component T having all its
vertices in X′′ ∪ Y′′.
For any xi ∈ T we cannot have the strict inequality.

aii ⊗ λi = ai,ϕ(i) ⊗ λϕ(i) >
∑

yj∈Y

yj �∈T

aij ⊗ λj (13)

Indeed, if (13) is satisfied ∀xi ∈ T , then it would be possible to reduce all the λj
values, for yj ∈ T , while satisfying (9), which would contradict the fact that λ

is the minimal solution to (9).
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Consequently, there exists xi ∈ T and yk /∈ T such that:

aii ⊗ λi = ai,ϕ(i) ⊗ λϕ(i) = aik ⊗ λk

One can then replace in G̃ the edge (xi, yϕ(i)) by (xi, yk), which reduces by one

unit the connectivity number of G̃. If necessary, the previous reasoning will be
repeated as long as the connectivity condition is not satisfied, to obtain in a finite
number of steps a connected graph G̃.

Figure 4b shows the (connected) graph G̃ corresponding to the matrix of
Fig. 4a where, in each row, the crosses correspond to the terms aii and ai,ϕ(i) of
relation (12).
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Fig. 4 An example illustrating equation (12) in the proof of Theorem 2



3 Bideterminant and Linear Independence 199

(6) Since each vertex of G̃ associated with a row has degree exactly 2, it can be
observed that:

– The pendent arborescences of G̃ are necessarily attached to μ in vertices
yj ∈ Y′ (columns);

– The pendent vertices (i.e. those having degree 1) of these pendent arbores-
cence are necessarily vertices yj ∈ Y′′ (columns).

The columns of Y′′ can then easily be assigned either to J1 or to J2 by proceeding
as follows.

Each pendent arborescence is run through starting from its vertex of attach-
ment to μ, which already belongs either to J1, or to J2. Between this vertex
and each pendent vertex, the vertices yj are alternatively assigned to J1 and J2.
Thus, for the example of Fig. 4b (where we already know that J1 = {1, 3} and
J2 = {2, 4}) running through the branch attached to y3, column 8 is added to J2
and columns 6 and 10 to J1.
We finally obtain:

J1 = {1, 3, 6, 7, 9, 10} J2 = {2, 4, 5, 8}
(7) With the values λj and the sets J1 and J2 resulting from the above, we satisfy the

relations:
∀i = 1, 2, . . . 2q:

∑

j∈J1∩Y′
aij ⊗ λj =

∑

j∈J2∩Y′
aij ⊗ λj (14)

and ∀i = 2q + 1 . . . n:

∑

j∈J1

aij ⊗ λj =
∑

j∈J2

aij ⊗ λj (15)

It remains to check that the relation:
∀i = 1, . . . 2q:

∑

j∈J1

aij ⊗ λj =
∑

j∈J2

aij ⊗ λj (16)

is satisfied and to do so, we are going to show that:
∀xi ∈ X′ and yk ∈ Y′′:

Max
j∈J1∩Y′

{
aij

} = Max
j∈J2∩Y′

{
aij

} ≥ aik

This will be obtained through an argument similar to the one used in the proof
of Lemma 3.4.2. Let us assume that for xi ∈ X′ and yk ∈ Y′′, we have that
āik > āiσ1(i) = āiσ2(i). The edge (xi, yk) joins a vertex xi ∈ μ to a vertex yk /∈ μ.
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Fig. 5 Illustration of part 7 of the proof of Theorem 2

Let yj ∈ μ be the point of attachment of the arborescent branch of G̃ containing
yk. We construct a perfect matching of G̃ ∪ {(xi, yk)} by selecting:

– All the edges of the maximum matching of μ leaving xi and yj unsaturated;
– The maximum matching of the chain L joining yj and yk leaving the vertex

yk unsaturated;
– The edge (xi, yk);
– All the edges of the form (xi, yi) for all the vertices i not belonging to μ, nor

to L.

Let σ∗ be the permutation corresponding to this perfect matching (Fig. 5 illus-
trates the matching obtained on the example of Fig. 4, taking xi = x3 and
yk = y6).

We then have āik = āi,σ∗(i) > āi,σ1(i) = āi,σ2 (i) and, ∀l ∈ {1, . . . , n}\{i}:
āl,σ∗(l) = āl,σ1(l) = āl,σ2(l)

hence we deduce w(σ∗) > w(σ1) = w(σ2), which contradicts the optimality of
σ1 and of σ2.
Thus relation (16) is deduced and the theorem is proven. "#

A direct consequence of this result and of Corollary 3.3.3 is the characterization
of singular matrices on commutative selective-invertible dioids:

Corollary 3.4.3. Let (E,⊕,⊗) be a commutative selective-invertible dioid.
A ∈ Mn(E) is singular if and only if det+(A) = det−(A).

3.5. Bideterminant and Linear Independence in Max-Min
or Min-Max Dioids

In this section we investigate properties of the bideterminant for another important
sub-class of dioids, namely MAX-MIN dioids (or MIN-MAX dioids). This sub-class
belongs to the intersection of doubly selective dioids and distributive lattices.
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A MAX-MIN dioid is therefore a selective dioid (E,⊕,⊗) with the additional
property:

∀a ∈ E, ∀b ∈ E: a ⊗ b = Min{a, b}
(the minimum above is to be understood in the sense of the total order relation
deriving from the law ⊕ on E).

It is therefore seen that a MAX-MIN dioid can be defined more directly from a
totally ordered set E endowed with the laws ⊕ and ⊗ as follows:

∀a ∈ E, b ∈ E: a ⊕ b = Max{a, b}
a ⊗ b = Min{a, b}

It is also observed that it is a special type of doubly selective dioid. The definition of
a MIN-MAX dioid is analogous, with the roles of MIN and MAX interchanged.
In the literature, MAX-MIN or MIN-MAX dioids have also been investigated
under the names of “Minimax algebras” (Cuninghame-Geene, 1979) or “Bottleneck
algebras” (see e.g. Cechlárová, 1992, Cechlárová & Plávka, 1996).

The following example shows that, for a matrix A with elements in a MAX-MIN
dioid (E,⊕,⊗), the existence of a relation of linear dependence of the form:

∑

j∈J1

λj ⊗ Aj =
∑

j∈J2

λj ⊗ Aj

(with J1 �= ∅, J2 �= ∅, J1 ∩ J2 = ∅ and λj �= ε for j ∈ J1 ∪ J2) does not necessarily
imply det+(A) = det−(A).

Example 3.5.1. On the dioid (R+, Max, Min) let us consider the matrix:

A =
⎡

⎣
4 1 1
1 3 2
1 3 4

⎤

⎦

For λ2 = 2 and λ3 = 2 we clearly have the dependence relation:

λ2 ⊗ A2 = λ3 ⊗ A3 =
⎛

⎝
1
2
2

⎞

⎠

However it can be observed that: det+(A) = 3 (the weight of the even permutation
σ of maximum weight defined as: σ(1) = 1; σ(2) = 2; σ(3) = 3), and: det−(A) = 2
(the weight of the odd permutation σ′ of maximum weight defined as: σ′(1) =
1; σ′(2) = 3; σ′(3) = 2).

We therefore have in this example, det+(A) �= det−(A), despite the linear
dependence of the columns. ||

It will be observed that the situation highlighted in the previous example can be
explained by the fact that the coefficients λ2 and λ3 were chosen too small.
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More generally, if Aj and Ak are two arbitrary distinct columns where all the
terms are > 0, by choosing λj and λk satisfying.

0 < λj = λk ≤ Min
i=1...n

{
Min

{
ai,j; ai,k

}}

then this yields: λj⊗Aj = λk⊗Ak, even for an arbitrary matrix such that det+(A) �=
det−(A).

The following result shows that choosing all the λj ≥ perm(A) in the dependence
relation is sufficient to guarantee the equality of the two terms of the bideterminant.

Property 3.5.2. Let (E,⊕,⊗) be a MAX-MIN dioid and A ∈ Mn(E).
If the columns of A satisfy a linear dependence relation of the form:

∑

j∈J1

λj ⊗ A
j =

∑

j∈J2

λj ⊗ Aj

with, ∀j: λj ≥ perm(A) = det+(A)⊕ det−(A) then det+(A) = det−(A).

Proof. Let Ā = (Ā1, Ā2, . . . Ān) be the matrix such that Āj = Aj if j /∈ J1 ∪ J2, and
Āj = λj ⊗ Aj if j ∈ J1 ∪ J2.

By using the Corollary 3.3.3. of Sect. 3.3, we obtain:

det+(Ā) = α⊗ det+(A)

det−(Ā) = α⊗ det−(A)

with det+(Ā) = det−(Ā) and α =
∏

j∈J1∪J2

λj (product in the sense of ⊗).

The condition:

α = Min
j∈J1∪J2

{
λj
} ≥ perm(A) = Max

{
det +(A), det −(A)

}

then implies:

α⊗ det+(A) = det+(A)

α⊗ det−(A) = det−(A)

which yields the desired result. "#
Let us now study the converse of the previous property.

The example below shows that, as opposed to the case of selective-invertible
dioids (see Sect. 3.4) det+(A) = det−(A) does not necessarily imply the existence
of a relation of linear dependence of the form

∑

j∈J1

λj ⊗ Aj =
∑

j∈J2

λj ⊗ Aj (17)

with, ∀j, λj ≥ perm(A) (18)
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Example 3.5.3. In the dioid (R+, Max, Min) let us consider the matrix

A =
⎡

⎣
2 1 0
1 2 2
1 2 2

⎤

⎦

which satisfies det+(A) = det−(A) = 2 and perm(A) = 2.
It can be observed that, for any j = 1, . . . , 3, if λj ≥ 2, then λj ⊗ Aj = Aj

Consequently, if there exists a dependence relation satisfying (17) and (18), it is
necessarily of the form ∑

j∈J1

Aj =
∑

j∈J2

Aj

with J1 �= ∅, J2 �= ∅, J1 ∩ J2 = ∅.
We easily observe for our example that this is impossible if |J1| = |J2| = 1

(because the three columns of A are distinct) and also impossible if |J1| = 1 and
|J2| = 2 (because, in the first row, none of the coefficients is equal to the maximum
of the two others). ||
From the previous example, it is seen that in a MAX-MIN dioid the singularity of a
matrix A ∈ Mn(E) cannot be characterized by the equality det+(A) = det−(A).

We now proceed to show that for matrices A ∈ Mn(E) satisfying an additional
condition, referred to as non-degeneracy, it is nonetheless possible to characterize
singularity of matrices in MAX-MIN dioids in terms of coloration of hypergraphs.

Definition 3.5.4. A ∈ Mn(E) is said to be non-degenerate if there does not exist a
row i containing two terms aij and aik such that aij = aik < perm(A)

Remark. We observe that the non-degeneracy of a matrix can be checked in poly-
nomial time since the computation of perm(A) can be reduced to a “Max-Min” or
“bottleneck” assignment problem. (refer to Example 3.1.2) ||
For non-degenerate matrices, we can state the following property.

Property 3.5.5. Let A ∈ Mn(E) be a non-degenerate matrix on a MAX-MIN dioid
(E,⊕,⊗).

If there exists a dependence relation implying a subset of columns of A, then
there exists a complete dependence relation, i.e. one in which all the columns of A
are involved.

Proof. Let us assume that there exists a dependence relation of the form

∑

j∈J1

λj ⊗ Aj =
∑

j∈J2

λj ⊗ Aj

with J1 �= ∅, J2 �= ∅ J1∩J2 = ∅, J1∪J2 �= J = {1, . . . , n}, and λj ≥ perm(A), ∀j ∈
J1 ∪ J2.
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By multiplying both sides of the above relation by λ̄ = perm(A) and by observing
that for λj ≥ perm(A) λ̄⊗ λj = λ̄ we obtain:

∀i ∈ I = {1, 2, . . . , n}
∑

j∈J1

λ̄⊗ aij =
∑

j∈J2

λ̄⊗ aij = vi

We necessarily have vi ≤ λ̄. Indeed, if for i ∈ I, we have that: vi < λ̄, this implies
that there exists j1 ∈ J1 and j2 ∈ J2 such that:

ai,j1 = ai,j2 = vi < λ̄

which implies a contradiction with the non degeneracy assumption.
We therefore have, ∀i ∈ I: vi = λ̄ and consequently by setting λ′j = λ̄ (for any

j ∈ J)

J′1 = J1 J′2 = J\J1 we have the relation:

∀i ∈ I:
∑

j∈J′1

λ′j ⊗ aij =
∑

j∈J′2

λ′j ⊗ aij

which is a complete dependence relation on the set of columns of A. "#
Let us now introduce the concept of the skeleton-hypergraph of a given matrix A:

Definition 3.5.6. Let A ∈ Mn(E) and λ̄ = perm(A).
We refer to as the skeleton-hypergraph of A the hypergraph H(A) = [J,S(A)]

having J = {1, . . . , n} as set of vertices and where the set of edges is:

S(A) = {S1(A), S2(A), . . . Sn(A)}
where, ∀i ∈ I, Si(A) = {j/λ̄⊗ aij = λ̄} = {j/aij ≥ perm(A)}.

In H(A), each edge corresponds to a row of A, and contains at least one vertex.
Indeed, since λ̄ = perm(A), there exists at least one permutation σ of {1, . . . , n}
such that:

w(σ) = a1,σ(1) ⊗ a2,σ(2) ⊗ . . .⊗ an,σ(n) = λ̄.

Which implies that, ∀i ∈ I: ai,σ(i) ≥ λ̄ hence λ̄ ⊗ ai,σ(i) = λ̄ which shows that
σ(i) ∈ Si(A).

The chromatic number of a hypergraph H (see Berge, 1970) is the minimum
number of colors required to color the vertices of H so that for every edge having
at least two vertices, all the vertices do not have the same color. A hypergraph with
chromatic number 2 is said to be bicolorable. One can then state the following
characterization of non-degenerate singular matrices in a MAX-MIN dioid:

Theorem 3. (Minoux, 1982)
Let (E,⊕,⊗) be a MAX-MIN dioid. A necessary and sufficient condition for a

non-degenerate matrix A ∈ Mn(E) to be singular is that the skeleton-hypergraph
H(A) satisfies the two conditions:
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(i) Each edge of H(A) has at least two vertices
(ii) H(A) is bicolorable.

Proof. (a) For A ∈ Mn(E) with λ̄ = perm(A), let us denote Ā = (āij) the matrix
where the coefficients are:

āij = λ̄⊗ aij

Clearly, A is non-degenerate if and only if Ā is non-degenerate.
Consequently, using Property 3.5.5 a non-degenerate matrix A ∈ Mn(E) is
singular (has a subset of dependent columns) if and only if there exists J1 and
J2, such that:

∑

j∈J1

A
j = ∑

j∈J2

A
j

with

J1 �= ∅; J2 �= ∅ : J1 ∩ J2 = ∅
J1 ∪ J2 = J

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(19)

(b) Let us now assume that A is singular. (19) then shows that each edge of H(A)
contains at least two vertices, one in J1 and one in J2. Moreover, by attributing
a color to the vertices of H(A) corresponding to the columns j ∈ J1 and another
color to the vertices of H(A) corresponding to the columns j ∈ J2 we obtain a
bicoloring of H(A).

Conversely, let us assume that H(A) is bicolorable and that each edge contains
at least two vertices. This means that J = {1, . . . , n} can be partitioned into
J1 �= ∅ (the set of vertices having color 1) and J2 �= ∅ (the set of vertices having
color 2), so that each row i of Ā contains at least two terms āij1 and āij2 equal to
λ̄ with j1 ∈ J1 and j2 ∈ J2.

We therefore have a complete dependence relation of the form (19) for the
columns of Ā, and this shows that A is singular. "#

The problem of 2-colorability of a hypergraph being NP-complete (see Garey and
Johnson, 1979, Appendix A3, p. 221), Theorem 3 therefore shows that testing the
singularity of a (non-degenerate) matrix in a MAX-MIN dioid is a difficult prob-
lem. If, moreover, we recall that the computation of the permanent in such a dioid
is easy (it reduces to solving a “bottleneck” assignment problem, see Sect. 3.1,
Example 3.1.2), one can observe a notable difference from the point of view of com-
putation, with standard algebra (where checking singularity of a matrix can be done
in polynomial time, whereas computing the permanent is difficult).

Exercises

Exercise 1. Let X = (xi)i∈I be a family of elements in a semi-module (M, �,⊥) on
(E,⊕,⊗).
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(a) Show that if X is independent, then it is non-quasi-redundant.
(b) Show that if X is non-quasi-redundant, then it is non-redundant.
(c) Show that if (E,⊗) has a group structure, the concepts of non-redundancy and

non-quasi-redundancy are equivalent.

Exercise 2. Let (E,⊕,⊗) be the dioid (N, Max,×) with ε = 0, e = 1, and M = E2,
the set of vectors with two components on E.

For λ > 1 integer, let us define:

x1 =
(

λ

0

)
x2 =

(
0
λ

)
and x3 =

(
1
0

)
⊕

(
0
1

)
=

(
1
1

)

Show that the family X = [x1, x2, x3] is non-redundant but that it is quasi-
redundant.

Exercise 3. Let M = E4, the set of vectors with four components on (R+, Max,×)

and let us consider X = [x1, x2, x3, x4] where:

x1 =

⎛

⎜⎜
⎝

1
1
0
0

⎞

⎟⎟
⎠ x2 =

⎛

⎜⎜
⎝

1
0
1
0

⎞

⎟⎟
⎠ x3 =

⎛

⎜⎜
⎝

0
1
0
1

⎞

⎟⎟
⎠ x4 =

⎛

⎜⎜
⎝

0
0
1
1

⎞

⎟⎟
⎠

Show that this family is non-quasi-redundant but not independent (in the sense of
Definition 2.5.1).

Exercise 4. Show that the result of Proposition 2.5.5 remains valid, under the same
assumptions, for non-redundant families X = (xi)i∈I or similarly for non-quasi-
redundant families.

Deduce that if (M, �,⊥) has a non-redundant generating family (resp. non-quasi-
redundant), then the latter is unique.

[Indication: verify that the proofs of Propositions 2.5.5 and 2.5.7 apply].



Chapter 6
Eigenvalues and Eigenvectors
of Endomorphisms

1. Introduction

The celebrated Perron–Frobenius theorem, which applies to real nonnegative matri-
ces, may be viewed as the first result stating the existence of an eigenvalue and
associated eigenvector on matrices with coefficients in the dioid (R+,+,×). Indeed,
it asserts that such a matrix has an eigenvalue in this dioid, with an associated eigen-
vector having all components in the dioid; moreover, it establishes a special property
for this eigenvalue, as compared with the other eigenvalues on the field of complex
numbers: it is actually the one having the largest modulus.

The importance of this largest eigenvalue is well-known as it is often related
to stability issues for dynamical systems (Lyapounov coefficient), or to asymptotic
behavior of systems (see, e.g. Exercise 2 at the end of this chapter).

The present chapter is devoted to the characterization of eigenvalues and eigen-
vectors for endomorphisms of semi-modules and of moduloids in finite dimensions.
Extension to functional operators in infinite dimensions will be studied in Exercise 3
of this chapter (for Max+ dioids) and in Chap. 7, Sect. 4 (for Min–Max dioids).

Conditions guaranteeing the existence of eigenvalues and eigenvectors are studied
in Sect. 2. These conditions involve the quasi-inverse A∗ of the matrix A associated
with the endomorphism under consideration.

In Sect. 3, we present for various classes of idempotent dioids, results character-
izing the eigen-semi-module associated with a given eigenvalue.

Section 4 focuses on the important special case of dioids with multiplicative
group structure. An analogue to the classical Perron–Frobenius theorem is obtained
for a subclass of selective-invertible dioids. Section 5 investigates the links between
eigenvalues and the characteristic bipolynomial of a matrix.

A number of noteworthy applications of eigenvalues and eigenvectors in dioids
are presented in detail in Sects. 6 and 7: hierarchical clustering, preference analysis,
theory of linear dynamical systems in the dioid (R∪{−∞}, Max,+). An interesting
application to the Ising model in statistical Physics is also presented in Exercise 2.

207
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2. Existence of Eigenvalues and Eigenvectors: General Results

Let (E,⊕,⊗) be a semiring (where ε is the zero element and e the unit element) and
denote M = En the semi-module formed by the set of vectors with n components in
E. The internal operation of M is the operation ⊕ defined as:

⎛

⎜⎜⎜⎜
⎝

x1
x2
.

.

xn

⎞

⎟⎟⎟⎟
⎠
⊕

⎛

⎜⎜⎜⎜
⎝

y1
y2
.

.

yn

⎞

⎟⎟⎟⎟
⎠
=

⎛

⎜⎜⎜⎜
⎝

x1 ⊕ y1
.

.

.

xn ⊕ yn

⎞

⎟⎟⎟⎟
⎠

and the external operation, denoted ⊗, is defined as:

∀λ ∈ E: λ⊗

⎛

⎜⎜
⎝

x1
x2
:

xn

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

λ⊗ x1
λ⊗ x2
:

λ⊗ xn

⎞

⎟⎟
⎠

Let h: M → M be an endomorphism of M. Since any vector x ∈ M can be written as:
x = x1 ⊗ e1 ⊕ x2 ⊗ e2 ⊕ . . .⊕ xn ⊗ en (where, ∀j = 1, . . . n, ej denotes the vector
whose jth component is e and all the other components ε) it is seen than h is perfectly
defined by specifying the n vectors h(e1), h(e2) . . . h(en), or, equivalently, by the
matrix A = (

aij
)

i=1...n
j=1...n

with columns h(e1), . . . h(en).

Thus we can write, ∀x =

⎛

⎜⎜
⎝

x1
.

.

xn

⎞

⎟⎟
⎠ ∈ M: h(x) = A ⊗ x

where the product of the matrix A ∈ Mn(E) by the vector x ∈ M is defined by:

∀i: (A ⊗ x)i =
n∑

j=1

aij ⊗ xj

(where the sum above is in terms of the operation⊕ of the semiring). Therefore, for
finite dimensional semi-modules, there is a one-to-one correspondence between the
endomorphisms and n × n square matrices with coefficients in E.

Now, given a matrix A ∈ Mn(E) (i.e. an endomorphism of En), we say that λ ∈ E

is an eigenvalue of A if there exists V ∈ En, V �=

⎛

⎜⎜⎜
⎜
⎝

ε

ε

·
·
ε

⎞

⎟⎟⎟
⎟
⎠

such that:

A ⊗ V = λ⊗ V

V is referred to as the eigenvector of A for the eigenvalue λ.
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If the operation⊗ is commutative, it is easily checked that the set of eigenvectors
of A for a given eigenvalue λ, denoted V(λ), is a sub-semi-module of En called
eigen-semi-module. If the operation ⊗ is not commutative, then V(λ) is a right
sub-semi-module, in other words, ∀α ∈ E, β ∈ E, V ∈ V(λ) W ∈ V(λ):

V⊗ α⊕W ⊗ β ∈ V(λ).

Property 2.1. Assuming that the operation ⊗ is idempotent and commutative, if V
is an eigenvector of A for the eigenvalue e, then λ⊗V is an eigenvector of A for the
eigenvalue λ.

Proof. We have A ⊗ V = V

thus: A ⊗ (λ⊗ V) = λ⊗ (A ⊗ V)

= λ⊗ V

= λ2 ⊗ V

= λ⊗ (λ⊗ V) "#
We recall (see Chap. 4, Sect. 3.2) that the graph G(A) associated with a matrix
A ∈ Mn(E) is the directed graph having X = {1, 2, . . . n} as its vertex set, and where
(i, j) is an arc if and only if aij �= ε. For every arc (i, j) in G(A), the coefficient aij is
called the weight of arc (i, j).

For k ∈ N, we will denote Ak the kth power of A and:

A[k] = A ⊕ A2 ⊕ . . .⊕ Ak

When the matrices A[k] have a limit as k → ∞, this limit will be denoted A+ and
we define A∗ = I ⊕ A+ (I denotes the identity matrix in Mn(E)). It is easily seen
that the matrices A∗ and A+ satisfy:

A ⊗ A∗ = A∗ ⊗ A = A+ (1)

We also recall that the term (i, i) of A+ can be expressed as:

[A+]i,i =
∑

γ∈Pii

w(γ) (2)

where Pii denotes the set of circuits of cardinality ≥1 containing node i in G(A) and
w(γ) the weight of circuit γ ∈ Pii (see Chap. 4, Property 3.2.1).

(if γ = {(i1, i2), (i2, i3), . . . (ik, i1)} then: w(γ) = ai1 ,i2 ⊗ai2 ,i3 ⊗ . . .⊗ aik ,i1)

We recall that, if ⊗ is not commutative, the weight of a circuit depends on which
node is chosen as the starting node to traverse the circuit and we need to refer to the
notion of pointed circuit (see Chap. 4, Sect. 3.2). In this case, Pii in (2) will denote
the set of pointed circuits having i as starting node.
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Below, we denote [A+]i and [A∗]i the ith column of matrices A+ and A∗
respectively. We can then state:

Theorem 1. (Gondran and Minoux 1977)
Assuming that A∗ exists (note that in this case the existence of A+ = A ⊗ A∗

follows) then the two following conditions are equivalent:

(i)

⎛

⎝
∑

γ∈Pii

w(γ)

⎞

⎠⊗ λ⊕ λ =
⎛

⎝
∑

γ∈Pii

w(γ)

⎞

⎠⊗ λ (3)

for some i ∈ [1, n] and λ ∈ E.
(ii) [A+]i ⊗ λ (together with [A∗]i ⊗ λ) is an eigenvector of A for the eigenvalue e.

Proof. Let us show that (i)⇒ (ii)
From (1) we get:

[A+]i = A ⊗ [A∗]i
= A ⊗ ([I]i ⊕ [A+]i)

where [I]i denotes the ith column of the identity matrix I.
From condition (3) we can write:

[A∗]i ⊗ λ = ([I]i ⊕ [A+]i)⊗ λ

= [A+]i ⊗ λ

from which (1) implies that [A+]i ⊗ λ = [A∗]i ⊗ λ is an eigenvector of A for the
eigenvalue e.

Now we show that (ii)⇒ (i).
Assume that [A∗]i ⊗ λ is an eigenvector of A for the eigenvalue e.
Thus:

A ⊗ [A∗]i ⊗ λ = [A∗]i ⊗ λ (4)

= ([I]i ⊕ [A+]i)⊗ λ

Since A ⊗ A∗ = A+ we deduce from (4):

[A∗]i ⊗ λ = [A+]i ⊗ λ

which then implies that:

[A+]i ⊗ λ = ([I]i ⊕ [A+]i)⊗ λ

For the ith component, the above equality implies:

[A+]i,i ⊗ λ = λ⊕ [A+]i,i ⊗ λ

which is none other than (3). "#
Several interesting results will now be deduced from this theorem.
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Corollary 2.2. If A∗ exists and if there exists μ ∈ E and a pointed circuit γ origina-
ting at i such that:

w(γ)⊗ μ⊕ μ = w(γ)⊗ μ

then [A∗]i ⊗ μ is an eigenvector of A for the eigenvalue e.

Proof. We need simply observe that in view of the assumptions of Corollary 2.2,
relation (3) is satisfied. "#
Theorem 1 and Corollary 2.2 will often be used in the special situation where λ = e
or μ = e.

Corollary 2.3. If A∗ exists and if I⊕A = A, then all columns of A∗ are eigenvectors
of A for the eigenvalue e.

Proof. It follows directly from Corollary 2.2 taking μ = e and w(γ) = aii. "#
Corollary 2.4 below is a consequence of Theorem 1 in the case where (E,⊗) is a
group (the inverse of an element λ ∈ E for ⊗ being denoted λ−1).

Corollary 2.4. (i) If (E,⊗) is a group, if (λ−1 ⊗ A)∗ exists and if:
(
λ−1 ⊗ A

)∗
i,i
⊕ e =

(
λ−1 ⊗ A

)∗
i,i

(5)

then [(λ−1 ⊗ A)∗]i is an eigenvector of A for the eigenvalue λ.
(ii) If, furthermore, ⊗ is commutative, then condition (5) can be replaced by:

∑

γ∈Pii

w(γ)⊗ (λ−1)
|γ| ⊕ e =

∑

γ∈Pii

w(γ)⊗ (λ−1)
|γ|

(6)

where |γ| denotes the number of arcs of circuit γ and where Pii denotes the set
of circuits of G(A) containing i.

Proof. (i) Relation (5) shows that Theorem 1 applies to the matrix λ−1 ⊗ A and
that, as a result, [(λ−1 ⊗A)∗]i is an eigenvector of λ−1 ⊗A for the eigenvalue
e. It follows that this vector is also an eigenvector of A for the eigenvalue λ.

(ii) In the case where ⊗ is commutative, the weight of a circuit γ of G(λ−1 ⊗ A)

is none other than w(γ) ⊗ (λ−1)|γ| where w(γ) is the weight of this circuit in
G(A). "#

The following result concerns another important special case, in which both opera-
tions ⊕ and ⊗ are idempotent.

Corollary 2.5. Assume that⊕ and⊗ are both idempotent, that A+ exists, and define
μ ∈ E as:

μ = [A+]i,i=
∑

γ∈Pii

w(γ) (7)

Then [A∗]i ⊗ μ is an eigenvector of A for the eigenvalue e.
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Proof. Since ⊕ and ⊗ are idempotent, we have μ2 ⊕ μ = μ2 and, μ being defined
by (7), we observe that relation (3) is satisfied with λ = μ; the result then follows
from Theorem 1. "#

In the case where, in addition to the idempotency of ⊕ and ⊗, we assume the
commutativity of ⊗, the existence of A+ is guaranteed and we obtain the following
corollary.

Corollary 2.6. If ⊕ is idempotent, ⊗ idempotent and commutative, then:

(i) A+ and A∗ exist:
(ii) by setting:

μ = [A+]i,i =
∑

γ∈Pii

w(γ)

for any λ ∈ E, λ⊗ μ⊗ [A∗]i is an eigenvector of A for the eigenvalue λ.

Proof. (i) In the case where⊕ and⊗ are idempotent, any element a ∈ E is 1-stable
and has a quasi-inverse a∗ = e⊕ a (see Sect. 7 in Chap. 3). If, furthermore, the
law⊗ is commutative, according to Theorem 2 of Chap. 4, any square matrix A
has a quasi-inverse A∗: the existence of A+ and A∗ is therefore guaranteed.

(ii) By applying Corollary 2.5 we immediately deduce that [A∗]i ⊗ μ = μ⊗ [A∗]i
is an eigenvector of A for the eigenvalue e. It then follows from Property 2.1,
that ∀λ ∈ E, λ⊗ μ⊗ [A∗]i is an eigenvector of A for the eigenvalue λ. "#

3. Eigenvalues and Eigenvectors in Idempotent Dioids:
Characterization of Eigenmoduloids

In this section we will present a number of results characterizing eigen-semi-modules
V(λ) associated with eigenvalues λ.

All these results will be obtained by assuming that ⊕ is either idempotent or
selective, in other words, correspond to cases where (E,⊕,⊗) are dioids (either
idempotent or selective). The eigen-semi-modules under consideration in this section
are therefore moduloids.

We start by studying V(e). Thereafter we will show how results for V(λ), for
arbitrary λ, can be deduced.

Lemma 3.1. Let (E,⊕,⊗) be an idempotent dioid and A ∈ Mn(E) having the eigen-
value e, and such that A∗ exists with A∗ = A(p) = I⊕A⊕ . . .⊕Ap for some integer
p ∈ N.

Then: V ∈ V(e)⇒ V = A∗ ⊗ V

Proof. We can write:
V = V

A ⊗ V = V

A2 ⊗ V = A ⊗ V = V
:
:

Ak ⊗ V = A ⊗ V = V
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for any k ∈ N. It follows that: (I ⊕ A ⊕ . . . ⊕ Ak) ⊗ V = A(k) ⊗ V = V and
consequently if A∗ = A(p) for p ∈ N, we deduce:

A∗ ⊗ V = V. "#
The previous result thus shows that, when the reference set is an idempotent dioid (and
even more so in the case of a selective dioid), any vector ofV(e) is a linear combination
of the columns of A∗. Nevertheless, the columns of A∗ do not necessarily belong to
V(e) themselves (see Theorem 1 of Sect. 2 and its corollaries).

With the stronger assumption of selectivity for ⊕, we now show that the set of
vectors of the form [A∗]i ⊗ μi which belong to V(e) form a generator for V(e).

Theorem 2. (Gondran and Minoux 1977)
Let (E,⊕,⊗) be a selective dioid and A ∈ Mn(E) having the eigenvalue e and

such that A∗ exists with A∗ = A(p), for some integer p ∈ N.
Then there exists a subset {i1, i2, . . . , iK} of {1, 2, . . . , n} and coefficients μik ∈

E(k = 1 . . . K) such that

V ∈ V(e)⇒ V =
K∑

k=1

[
A∗

]ik ⊗ μik

with, ∀k: [A∗]ik ⊗ μik ∈ V(e)

Proof. ⊕ is idempotent, thus V = A∗ ⊗ V from Lemma 3.1 and consequently:

V =
n∑

i=1

[
A∗

]i ⊗ Vi (8)

Moreover, since V ∈ V(e):

∀i = 1, . . . n:
n∑

j=1

aij ⊗ Vj = Vi

Since⊕ is selective, with every index i ∈ {1, . . . n}we can associate an index j = ϕ(i)
such that: ai,ϕ(i) ⊗ Vϕ(i) = Vi (if several indices j exist such that aij ⊗ Vj = Vi, we
arbitrarily choose one of these indices for ϕ(i)).

The partial graph H of G(A), formed by the subset of arcs of the form (i, ϕ(i))
for i = 1, . . . n, contains n vertices and n arcs. Its cyclomatic number is therefore
equal to its connectivity number. Moreover, as any vertex of H has an out-degree
exactly equal to 1, each connected component of H contains a unique circuit. Let us
denote H1, H2, . . . HK the connected components of H, and, for k ∈ {1, . . . K}, let
us denote γk the circuit contained in Hk. Any vertex i ∈ Hk either belongs to γk or
is connected to γk by a unique path originating at i and terminating at j ∈ γk.

Let us assume that γk has vertex set {i1, i2, . . . iq}.



214 6 Eigenvalues and Eigenvectors of Endomorphisms

We have:

ai1i2 ⊗ Vi2 = Vi1

ai2i3 ⊗ Vi3 = Vi2

:
:

aiqi1 ⊗ Vi1 = Viq

thus we deduce, for any vertex i of γk (for example i = i1):

w(γk)⊗ Vi = Vi

We can thus write:

w(γk)⊗ Vi ⊕ Vi = Vi = w(γk)⊗ Vi

We then observe that, as a result, the assumptions of Theorem 1 are satisfied with
λ = Vi, which implies:

[A∗]i ⊗ Vi ∈ V(e)

Let us now consider an arbitrary vertex j of Hk, j /∈ γk, and show that, in expression
(8), the term [A∗]j ⊗ Vj is absorbed by the term [A∗]i ⊗ Vi (i ∈ γk).

In Hk there exists a unique path πji joining j to i. On each arc (s, t) of this path
we have the relation:

ast ⊗ Vt = Vs

thus we deduce:
w(πji)⊗ Vi = Vj

We can thus write:

[A∗]j ⊗ Vj ⊕ [A∗]i ⊗ Vi = [[A∗]j ⊗ w(πji)⊕ [A∗]i] ⊗ Vi

w(πji) comes into play in the term (j, i) of the matrix Ar, where r is the number of
arcs of the path πji. From the elementary property: A∗ ⊕ A∗ ⊗ Ar = A∗ (which
follows from the idempotency of ⊕) we deduce that:

[A∗]j ⊗ w(πji)⊕ [A∗]i = [A∗]i

which shows that:

[A∗]i ⊗ Vi ⊕ [A∗]j ⊗ Vj = [A∗]i ⊗ Vi

As a result, it is enough in expression (8) to retain a unique term of the form [A∗]ik ⊗
Vik , with ik ∈ γk, for each connected component Hk of H, and we have:

V =
K∑

k=1

[A∗]ik ⊗ Vik

and [A∗]ik ⊗ Vik ∈ V(e) for k = 1 . . . K, which proves the theorem. "#
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We can deduce from Theorem 2 the following consequences.

Corollary 3.2. Let (E,⊕,⊗) be a selective-invertible dioid and A ∈ Mn(E) such
that A∗ exists with A∗ = A(p)(p ∈ N)

Then, if e is an eigenvalue of A, V(e) is the (right) moduloid generated by those
columns of A∗ which are eigenvectors of A for e.

Proof. According to Theorem 2, if V ∈ V(e), then V has the form:

V =
∑

[A∗]k ⊗ μk

with, ∀k, [A∗]k ⊗ μk ∈ V(e) (sum on a subset of indices from {1, 2, . . . , n}).
Since (E,⊗) is a group, μk �= ε has an inverse for ⊗ and:
A ⊗ [A∗]k ⊗ μk = [A∗]k ⊗ μk shows (via right-multiplication by (μk)

−1) that
we also have [A∗]k ∈ V(e)

Hence, Corollary 3.2 follows. "#
In Corollary 3.3 and Theorem 3 below, we will assume that ⊕ is selective, that ⊗ is
idempotent and that e is the greatest element of E. Then, we know that the set E is
totally ordered by the canonical order relation and it is easy to see that:

∀a ∈ E, b ∈ E, a ⊗ b = Min{a, b} (9)

Indeed, we have:

a ⊗ b⊕ a = a ⊗ (b⊕ e) = a

a ⊗ b⊕ b = (a ⊕ e)⊗ b = b

which implies a ⊗ b ≤ a and a ⊗ b ≤ b
If now we assume a ≥ b, we have:
a ⊕ b = a and we can write:

a ⊗ b = (a ⊕ b)⊗ b = a ⊗ b⊕ b

thus we deduce a ⊗ b ≥ b and (by the antisymmetry of ≥) a ⊗ b = b. Similarly:
a ≤ b ⇒ a ⊗ b = a.

Corollary 3.3. Let (E,⊕,⊗) be a selective dioid for which:

– the ⊗ law is idempotent;
– e is the greatest element (i.e. ∀a ∈ E, e⊕ a = e)

Let A ∈ Mn(E) having e as an eigenvalue. Then A∗ exists and V(e) is the (right)
moduloid generated by the set of vectors of the form [A+]i ⊗ μi (for i = 1 . . . n)
where, ∀i: μi =

∑

γ∈Pii

w(γ) = [A+]i,i
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Proof. In view of the assumptions, for any pointed circuit γ of G(A) we have:

w(γ)⊕ e = e

which shows that G(A) is without 0-absorbing circuit.
According to Theorem 1 of Chap. 4, we deduce the existence of A∗ (note that

here we do not assume the commutativity of ⊗). Furthermore, A∗ = A(n−1).
According to Corollary 2.5, the vectors [A]i⊗μi (with μi = [A+]i,i) are elements

of V(e).
Let us now apply Theorem 2: any vector V ∈ V(e) can be written as:

V =
∑

[A∗]k ⊗ αk (10)

with [A∗]k ⊗ αk ∈ V(e).
(Sum on a subset of indices from {1, 2, . . . , n}).
According to Theorem 1, αk satisfies (3) in other words:

μk ⊗ αk ⊕ αk = μk ⊗ αk

Moreover:

μk ⊗ αk ⊕ αk = (μk ⊕ e)⊗ αk

= αk (because μk ⊕ e = e)

Thus, we have: μk ⊗ αk = αk and (10) can be rewritten:

V =
∑

([A∗]k ⊗ μk)⊗ αk

This shows that the set of vectors of the form [A∗]i ⊗μi(i = 1, . . . n) is a generator
of V(e). "#

According to Corollary 3.3, the set of distinct vectors of the form [A∗]i⊗ [A+]i,i
is a generator of V(e). The following result is fundamental, because, under the same
assumptions, it shows that it is a minimal generator, and that it is unique.

Theorem 3. Let (E,⊕,⊗) be a selective dioid for which the ⊗ law is idempotent
and where e is the greatest element. Let A ∈ Mn(E) having e as eigenvalue.

Then A∗ exists and G = ∪
i=1...n

{
V

i
}

, the set of distinct vectors of the form V
i =

[A∗]i ⊗ [A+]i,i (for i = 1, . . . n), is the only minimal generator of V(e).

Proof. The existence of A∗ and the fact that V
i
(i = 1, . . . , n) form a generator of

V(e) follow from Corollary 3.3.
Let us show, therefore, that G is a minimal generator and that it is unique. Let

us proceed by contradiction and assume that there exists another minimal generator
G′ = ∪

k∈K

{
Wk

}
of V(e) composed of vectors Wk, k running through a finite set of
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indices K. Some vectors V
i
can coincide with vectors of G′, however there necessarily

exists at least one index i such as: V
i �= Wk for all k ∈ K. Since G′ is a generator of

V(e), there exist coefficients γk ∈ E such that:

V
i =

∑

k∈K

Wk ⊗ γk (11)

The component i of V
i

is
[
A+

]
i,i

(Indeed, we have:
[
A∗

]
i,i ⊗

[
A+

]
i,i =

(
e⊕ [A+]i,i

)⊗ [
A+

]
i,i =

[
A+

]
i,i

since e is the greatest element of E).
As ⊕ is selective, there exists an index k′ ∈ K such that:

V
i
i =

[
A+

]
i,i = Wk′

i ⊗ γk′ (12)

As Wk′ ∈ V(e), from Lemma 3.1, it can be expressed as:

Wk′ =
n∑

j=1

[
A∗

]j ⊗Wk′
j

thus we deduce:
Wk′ ≥ [

A∗
]i ⊗Wk′

i

Since, according to (12), Wk′
i ≥

[
A+

]
i,i,

we deduce:
Wk′ ≥ [

A∗
]i ⊗ [

A+
]

i,i = V
i

(13)

Furthermore, from relation (11) we can write:

V
i ≥ Wk′ ⊗ γk′

and furthermore, by noting that (from (12)) γk′ ≥ [A+]i,i:

V
i ≥ Wk′ ⊗ [

A+
]

i,i (14)

Now multiplying (13) by [A+]i,i and noting that, as a result of the idempotency of⊗:

V
i ⊗ [A+]i,i = V

i

we obtain:
Wk′ ⊗ [A+]i,i ≥ V

i
(15)

The inequalities (14) and (15) then imply:

V
i = Wk′ ⊗ [A+]i,i (16)
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The above reasoning shows that, for any vector V
i

not coinciding with one of the

vectors Wk, there exists an index k′ ∈ K such that the vectors V
i

and Wk′ satisfy
(16) (in other words are “colinear”).

Furthermore, as the set of Wk(k ∈ K) was assumed to be minimal, it cannot

contain any vector Wt(t ∈ K) which does not correspond to one of the V
i

(indeed,
in this case, a generator strictly smaller in the sense of inclusion would be obtained
by eliminating the vector Wt).

From the above we deduce that the sets G and G′ are in one-to-one correspondence.
For any k ∈ K, let us denote α(k) = i, the index of the vector V corresponding to
Wk. Thus we have, ∀k ∈ K:

Wk = V
α(k)

or Wk ⊗ [
A+

]
α(k),α(k)

= V
α(k)

.

In all cases, we thus have:

Wk ≥ V
α(k)

for any k.

This shows that, among all minimal generators (in the sense of inclusion) in one-

to-one correspondence with G = ∪
i=1...n

{
V

i
}

, G is the one which contains the least

vectors (in the sense of the order relation on the vectors of En). G is therefore the
unique minimal generator with this property. "#

Let us note that Theorem 3 above generalizes a result obtained by Gondran
(1976a,b) for the special case of the dioid (R, Min, Max).

In Chap. 7, Sect. 6.4, an extension of Theorem 3 to infinite dimensions (functional
semi-modules) will be found for the case where the basic dioid is (R, Min, Max)

(see also Gondran and Minoux 1997, 1998).
The following results characterize V(λ) for λ �= e in the case of selective dioids

with idempotent multiplication.

Lemma 3.4. Let (E,⊕,⊗) be a dioid with⊗ commutative and assuming e to be the
greatest element of E(∀a ∈ E: e⊕ a = e). Let A ∈ Mn(E).

Then A∗ exists, and if λ ∈ E is an eigenvalue of A:

V ∈ V(λ)⇒ V = A∗ ⊗ V

Proof. By using the commutativity of ⊗, A ⊗ V = λ⊗ V implies, ∀k ∈ N:

Ak ⊗ V = λk ⊗ V

Since e is the greatest element of E, we have: e⊕ λ⊕ λ2 ⊕ . . .⊕ λk = e thus, ∀k:

(I⊕ A ⊕ A2 ⊕ . . .⊕ Ak)⊗ V = V

As A(k) = A∗ as soon as k ≥ n − 1 (see Chap. 4, Theorem 1) we deduce the
result. "#



3 Eigenvalues and Eigenvectors in Idempotent Dioids 219

We can then state:

Corollary 3.5. (Gondran and Minoux 1977)
Let (E,⊕,⊗) be a selective dioid for which:

– the ⊗ law is idempotent and commutative;
– e is the greatest element (i.e. ∀a ∈ E: e⊕ a = e)

Let A ∈ Mn(E). Then:

(i) A∗ exists and any λ ∈ E is an eigenvalue of A;

(ii) V ∈ V(λ)⇒ V =
K∑

k=1
[A∗]ik ⊗ λ⊗ μik

with K ≤ n and ∀k: [A∗]ik ⊗ λ⊗ μik ∈ V(λ)

with μik = [A+]ik,ik

Proof. (i) follows directly from Corollary 2.6. Let us therefore prove (ii).
The assumptions of Lemma 3.1 being satisfied, we have: V = A∗ ⊗ V =

n∑

i=1
[A∗]i⊗Vi

On the other hand, we have:

∀i = 1, . . . n:
n∑

j=1

aij ⊗ Vj = λ⊗ Vi

As in the proof of Theorem 2, we can construct the partial graph H of G(A) whose
arcs have the form (i, ϕ(i)) where, ∀i = 1, . . . n:

ai,ϕ(i) ⊗ Vϕ(i) = λ⊗ Vi (13)

Each connected component Hk contains a circuit γk. By writing the relations (13)
along the circuit γk, and by taking into account the fact that ⊗ is idempotent, we
obtain for i ∈ γk:

w(γk)⊗ Vi = λ⊗ Vi

We can then write:

w(γk)⊗ λ⊗ Vi ⊕ λ⊗ Vi = w(γk)⊗ λ⊗ Vi

thus we deduce, from Corollary 1, that: [A∗]i ⊗ λ⊗ Vi ∈ V(e)
We then note that we also have [A∗]i⊗λ⊗Vi ∈ V(λ) (indeed,⊗ being idempotent

and commutative, A⊗U = U implies: A⊗(λ⊗U) = λ⊗A⊗U = λ⊗U = λ2⊗U,
which shows that U ∈ V(e)⇒ λ⊗ U ∈ V(λ)).

As in the proof of Theorem 2 we also show that any term of the form [A∗]j⊗λ⊗
Vj (j �= i, j ∈ Hk) is absorbed by [A∗]i ⊗ λ⊗ Vi.
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Then by choosing a vertex ik ∈ γk in each connected component Hk of H, we can
write, denoting by K the connectivity number of H:

V =
K∑

k=1

[
A∗

]ik ⊗ λ⊗ Vik

with, ∀k, [A∗]ik ⊗λ ⊗ Vik ∈ V(λ), which proves (ii). "#

4. Eigenvalues and Eigenvectors in Dioids with Multiplicative
Group Structure

In this section we will investigate the special case, which is important for applications,
of dioids (E,⊕,⊗) for which (E,⊗) is a group.

For matrices with entries in such dioids, we will see that well-known proper-
ties of irreducible matrices with positive entries in ordinary algebra will thus be
found again. We will then use these properties to establish an analogue to the classi-
cal Perron–Frobenius theorem for matrices with entries in some selective-invertible
dioids.

We recall that a matrix A ∈ Mn(R+) is said to be irreducible if and only if the
associated graph G(A) is strongly connected. In classical linear algebra, the Perron–
Frobenius theorem is stated as:

Theorem. (Perron, Frobenius) Let A ∈ Mn(R+) be an irreducible matrix and ρ(A)
its spectral radius (the modulus of the eigenvalue having the largest modulus). Then
ρ(A) is an eigenvalue of A, and the associated eigenspace is generated by an eigen-
vector whose components are all positive.

For a proof and further discussion of this theorem, see Exercise 1.
In the case of dioids featuring multiplicative group structure we start Sect. 4.1 by

establishing a few preliminary results.

4.1. Eigenvalues and Eigenvectors: General Properties

Lemma 4.1.1. Let (E,⊕,⊗) be a dioid. Then:

a ⊕ b = ε⇒ a = b = ε (14)

If furthermore, (E,⊗) is a group, then:

a ⊗ b = ε⇒ a = ε or b = ε (15)
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Proof. Equation (14) follows from Proposition 3.4.8 of Chap. 1.
Let us now assume that (E,⊗) is a group and that a ⊗ b = ε.
Let us show that a �= ε and b �= ε is impossible. If a �= ε, then a−1, the inverse of

a for ⊗ exists, from which we deduce b = a−1 ⊗ ε = ε (because of the property of
absorption), which exhibits a contradiction. From the above (15) is deduced. "#
Lemma 4.1.2. (Gondran and Minoux 1977)

Let (E,⊕,⊗) be a dioid such that (E,⊗) is a group, and A ∈ Mn(E) be an
irreducible matrix (G(A) strongly connected). Then, if V = (Vi)i=1...n is an
eigenvector of A for the eigenvalue λ we have:

λ > ε (16)

and:
∀i = 1, . . . n: Vi > ε (17)

Proof. Let us first prove (16). We necessarily have ε ≤ λ (ε is the least element in
the sense of the order relation). If λ = ε then we have:

A ⊗ V =

⎛

⎜⎜
⎝

ε

ε

:
ε

⎞

⎟⎟
⎠

therefore, ∀i = 1 . . . n:
n∑

j=1

aij ⊗ Vj = ε

According to Lemma 4.1.1, this implies:

∀i, ∀j: aij ⊗ Vj = ε

and therefore:
aij = ε or Vj = ε.

Since V is an eigenvector, V �=

⎛

⎜⎜
⎝

ε

ε

:
ε

⎞

⎟⎟
⎠ there hence exists jo such that Vjo �= ε.

Then the relation aijo ⊗Vjo = ε implies aijo = ε, and this is so for all i. This leads
to a contradiction with the strong connectivity of G(A). Consequently, we cannot
have λ = ε, and (16) is proven.

To prove (17) let us again proceed by contradiction. Let us assume that V has
some components Vj = ε. The set X = {1, 2, . . . n} can then be partitioned into:

X1 = {j/Vj = ε} and X2 = X\X1 and we have that X1 �= ∅ X2 �= ∅.
By reordering the rows and columns of A and the components of V if nec-

essary, we can put V into the form V =
(

V1
V2

)
(where V1 corresponds to the
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components of V equal to ε and V2 to the components of V different from ε) and A in
the form:

A =
(

A11 A12
A21 A22

)

where ∀l ∈ {1, 2} and ∀k ∈ {1, 2} Alk is the submatrix induced by the subset of
rows Xl and the subset of columns Xk. The relation A ⊗ V = λ ⊗ V then implies

A12⊗V2 =

⎛

⎜⎜
⎝

ε

ε

:
ε

⎞

⎟⎟
⎠. V2 having all its components �= ε, we can deduce, in a way similar

to the above, that all the terms of the submatrix A12 are equal to ε. This contradicts
the irreducibility of the matrix A, and proves (17). "#
This result will now be used to study the properties of the eigenvalues of matrices
with entries in dioids featuring multiplicative group structure.

Lemma 4.1.3. (Gondran and Minoux 1977)
Let (E,⊕,⊗) be a dioid where (E,⊗) is a commutative group, A ∈ Mn(E) an

irreducible matrix and λ ∈ E an eigenvalue of A. Then:

(i) For any circuit γ of G(A) we have:

w(γ) ≤ λ|γ| (18)

(where |γ| denotes the cardinality of circuit γ).
(ii) If ⊕ is selective, there exists an elementary circuit γ of G(A) such that:

w(γ) = λ|γ| (19)

(iii) If ⊕ is idempotent, the matrix (λ−1 ⊗ A)∗ exists.

Proof. (i) Let us consider an arbitrary circuit γ = {i1, i2, . . . ik, i1} of G(A) where
|γ| = k.
If V = (Vj)j=1...n is an eigenvector associated with the eigenvalue λ, we have:

∑

j

ai1j ⊗ Vj = λ⊗ Vi1

∑

j

ai2j ⊗ Vj = λ⊗ Vi2

:
:

∑

j

aikj ⊗ Vj = λ⊗ Vik
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This implies:
ai1i2 ⊗ Vi2 ≤ λ⊗ Vi1
ai2i3 ⊗ Vi3 ≤ λ⊗ Vi2· · ·
aikil ⊗ Vi1 ≤ λ⊗ Vik

⎫
⎪⎪⎬

⎪⎪⎭
(20)

By multiplying the first inequality by λ (and by using the compatibility of ≤
with ⊗) we obtain:

ai1 i2 ⊗ ai2 i3 ⊗ Vi3 ≤ ai1 i2 ⊗ λ⊗ Vi2 ≤ λ2 ⊗ Vi1

Similarly, by multiplying the latter inequality by λ and by using the relation:
ai3 i4 ⊗ Vi4 ≤ λ⊗ Vi3 we obtain:

ai1 i2 ⊗ ai2 i3 ⊗ ai3 i4 ⊗ Vi4 ≤ λ3 ⊗ Vi1

and by iterating this process k times:

ai1 i2 ⊗ . . .⊗ aik i1 ⊗ Vi1 ≤ λ|γ| ⊗ Vi1 (21)

SinceAis irreducible we have λ �= ε and Vj �= ε (j = 1 . . . n) (see Lemma 4.1.2)
therefore Vi1 �= ε. Then by multiplying the two sides of the above inequality

by
(
Vi1

)−1 we obtain:

ai1 i2 ⊗ ai2 i3 ⊗ . . .⊗ aik i1 ≤ λ|γ|

which proves (18).
(ii) If V = (Vj)j=1...n is an eigenvector of A for the eigenvalue λ, we have,

∀i = 1 . . . n:
∑

j

aij ⊗ Vj = λ⊗ Vi

Since ⊕ is assumed to be selective, with each index i ∈ {1, . . . n} we can
associate an index ϕ(i) such as:

ai,ϕ(i) ⊗ Vϕ(i) = λ⊗ Vi

(if there exist several indices j such that ai,j⊗Vj = λ⊗Vi, we arbitrarily choose
one of these indices for ϕ (i)).

The partial graph H of G(A) formed by the subset of arcs in the form (i,ϕ(i))
contains n vertices and n arcs. In H, each vertex has an out-degree equal to 1,
hence there exists an elementary circuit γ. Along this circuit, relations (20) are
satisfied with equality, and relation (21) reads:

w(γ)⊗ Vi1 = λ|γ| ⊗ Vi1

Since Vi1 is invertible (Vi1 �= ε in view of Lemma 4.1.2) we can deduce from
this relation (19).
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(iii) The existence of (λ−1 ⊗ A)∗ follows directly from (18). Indeed, let γ be an
arbitrary circuit of G(A). Its weight with respect to λ−1 ⊗ A is:

θ(γ) = w(γ)⊗ (λ−1)|γ|

(18) then implies that θ (γ) ≤ e and, consequently, for any circuit γ of G(A)
we have:

θ(γ)⊕ e ≤ e⊕ e = e. As θ(γ)⊕ e ≥ e we deduce θ(γ)⊕ e = e

which shows that θ(γ) is 0-stable. The existence of (λ−1 ⊗ A)∗ can then be
directly deduced from Theorem 1 of Chap. 4. "#

From Lemma 4.1.3 above we can then deduce:

Corollary 4.1.4. Let (E,⊕,⊗) be a selective-invertible dioid with ⊗ commutative,
and A ∈ Mn(E) an irreducible matrix. Then if A has an eigenvalue λ, this eigenvalue
is unique.

Proof. Let λ1 and λ2 be two distinct eigenvalues of A.
From Lemma 4.1.3 there exist two elementary circuits γ1 and γ2 in G(A) such that:

w(γ1) = λ1
| γ1 |

w(γ2) = λ2
| γ2 |

In addition, again from Lemma 4.1.3, we can write:

w(γ2) ≤ λ1
| γ2 |

and
w(γ1) ≤ λ2

| γ1 |

which leads to:
λ1
| γ1 | ≤ λ2

| γ1 | (22)

and:
λ2
| γ2 | ≤ λ1

| γ2 | (23)

Since⊕ is selective, ≤ is a total order relation, therefore if λ1 �= λ2 we have, either
λ1 < λ2 or λ2 < λ1.

If, for example, we have λ1 < λ2 then we can deduce:

λ1
| γ2 | < λ2

| γ2 |

which is incompatible with (23).
Similarly, if λ2 < λ1 it follows:

λ2
| γ1 | < λ1

| γ1 |

which is incompatible with (22).
λ2 �= λ1 therefore leads to a contradiction, which proves the property. "#
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For a matrix A with entries in a selective-invertible dioid having a unique eigenvalue
λ, the following result characterizes the minimal generators of the eigenmoduloid
V(λ).

Theorem 4. Let (E,⊕,⊗) be a selective-invertible-dioid with ⊗ commutative, and
A ∈ Mn(E) be an irreducible matrix having λ as unique eigenvalue. Let us denote
Gc(A) (critical graph) the partial subgraph of G(A) induced by the set of vertices and
arcs belonging to at least one circuit γ of weight w(γ) = λ|γ| (critical circuit). Let
H1, H2, . . . Hp be the strongly connected components of Gc(A) and in each compo-
nent let us choose a particular vertex j1 ∈ H1, j2 ∈ H2, . . . jp ∈ Hp. Then denoting
Ã = (λ−1)⊗ A, the family of vectors F = {[Ã∗]j1 , [Ã∗]j2 , . . . [Ã∗]jp} is a minimal
generator of the eigenmoduloid V(λ).

Proof. We will provide the proof for the case λ = e. The general case of a matrix A
with a unique eigenvalue λ ∈ E, λ �= e, is easily deduced by considering the matrix
Ã = (λ−1) ⊗ A. Let us also observe that, according to Lemma 4.1.3, there exists
at least one critical circuit, therefore Gc contains at least one non empty strongly
connected component.

(a) First let us show that F is a generator of V(e).
Let us denote γ1 a critical circuit of H1 containing vertex j1, γ2 a critical

circuit of H2 containing vertex j2, etc.
Let V = (Vj)j =1...n, be an eigenvector corresponding to the eigenvalue e.
Let us note that, A being irreducible, according to Lemma 4.1.2: ∀j = 1, . . . n

Vj > ε.
By using the proof of Lemma 4.1.3 we have, along each of the circuits

γ1, . . . γp: ⎧
⎪⎪⎨

⎪⎪⎩

ai1 i2 ⊗ Vi2 ≤ Vi1
ai2 i3 ⊗ Vi3 ≤ Vi2:
aik i1 ⊗ Vi1 ≤ Vik

(24)

(i1, i2, . . . ik, i1 denoting the succession of vertices visited along the circuit). If
we had strict inequality in at least one of the relations above, this would imply:

ai1 i2 ⊗ ai2 i3 ⊗ . . .⊗ aik i1 �= e

thus a contradiction would result with the fact that the circuits γ1, γ2 . . . γp are
critical (w(γ1) = w(γ2) = . . . w(γp) = e).

For each of the circuits γ1, γ2, . . . γp, the relations (24) are therefore all
equalities.
Then, by using the proof of Theorem 2 we first deduce:

[A∗]j1 ⊗ Vj1 ∈ V(e)

[A∗]j2 ⊗ Vj2 ∈ V(e)

:
:

[A∗]jp ⊗ Vjp ∈ V(e)
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and, since (E,⊗) is a group and each component of V is distinct from ε, this
implies:

[A∗]j1 ∈ V(e), [A∗]j2 ∈ V(e) . . . [A∗]jp ∈ V(e).

Furthermore, again according to the proof of Theorem 2, we know that relation

(8) is satisfied and that, in the expression
n∑

i=1
[A∗]i ⊗ Vi, it is enough to retain a

single term of the form [A∗]jk ⊗ Vjk for each circuit γk(k = 1, . . . , p).
From the above we deduce that V ∈ V(e) can be written as the expression:

V =
p∑

k=1

[A∗]jk ⊗ Vjk

which proves that F is a generator of V(e).
(b) Let us now check that F is a minimal generator of V(e).

To do so, we will show that for any α ∈ [1, . . . p], none of the vectors [A∗]i, i ∈
Hα, can be expressed as a linear combination of the vectors [A∗]j with j ∈ Hq, q �=
α.

Let us proceed by contradiction and let us assume that [A∗]i, i ∈ Hα, is a linear
combination of other columns of A∗ taken in strongly connected components dis-
tinct from one another and distinct from Hα, and let us denote K ⊂ {1, 2, . . . , n}
the set of indices of these columns.

Let us then consider the submatrix B deduced from A∗ by eliminating all the
rows and columns whose indices do not belong to K ∪ {i}.

It is clear that, by construction, the columns of submatrix B are linearly
dependent, so in view of Corollary 3.3.3 of Chap. 5 (Sect. 3.3):

det+(B) = det−(B) (25)

Moreover, each diagonal term of B corresponds to a diagonal term [A∗]j,j where
j is a vertex of the critical graph Gc(A). Consequently [A∗]j,j (the weight of the
maximum weight circuit through j) is equal to e and [A∗]j,j = e⊕ [A∗]j,j = e.
It follows that all the diagonal terms of B are equal to e and det+(B) = e.

From relation (25) we then deduce the existence of an odd permutation of the
indices of K ∪ {i} with weight equal to e. The decomposition into circuits of this
odd permutation then features at least one elementary circuit (which is not a loop)
and having weight e in G(B). This circuit would correspond to a critical circuit
(of weight e) in G(A) joining vertices belonging to distinct strongly connected
components of the critical graph. We are thus lead to a contradiction, which
proves the theorem. "#

We are now going to use the above properties to derive an analogue to the Perron–
Frobenius theorem in some selective-invertible dioids.
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4.2. The Perron–Frobenius Theorem for Some
Selective-Invertible Dioids

In this section we consider a special class of selective-invertible dioids: those in
which the calculation of the pth root of an element (for a natural number p) is always
possible.

We therefore assume, throughout this section, that (E,⊕,⊗) is a selective-
invertible-dioid with ⊗ commutative having the following additional property (π):

(π)

⎧
⎨

⎩

∀p ∈ N, ∀a ∈ E, the equation:
xp = a
has a unique solution in E, denoted a1/p

Example 4.2.1. A typical example of a selective invertible-dioid enjoying the above
property is the dioid (R, Max,+). The operation ⊗ being the addition of real num-
bers, for any a ∈ R the equation xp = a (p ∈ N, p �= 0) has a unique solution which
is the real number a/p (usual quotient of the real number a by the integer p). ||
We can now define the spectral radius ρ(A) of a matrix A ∈ Mn(E).

Definition 4.2.2. (spectral radius)
Let (E,⊕,⊗) be a selective invertible-dioid with the property (π). The spectral

radius of A ∈ Mn(E) is the quantity:

ρ(A) =
n∑

k=1

(
tr(Ak)

) 1
k

(26)

(sum in the sense of ⊕) where tr(Ak) denotes the trace of the matrix Ak , in other
words the sum (in the sense of ⊕) of its diagonal elements.

The following property shows that the spectral radius thus defined can be
re-expressed simply in terms of the weights of the elementary circuits of the graph
G(A).

Property 4.2.3. Let (E,⊕,⊗) be a selective-invertible-dioid with the property (π).
Let A ∈ Mn(E) and ρ(A) be its spectral radius. Then:

ρ(A) =
∑

γ∈Γ

(w(γ))

1
|γ|

(27)

where Γ denotes the set of elementary circuits of G(A).

Proof. The ith diagonal term of the matrix Ak is the sum of the weights of the circuits
of length k (whether elementary or not) through i in G(A). As⊕ is selective, (Ak)ii is
therefore the weight of the maximum weight circuit of length k through i (maximum
in the sense of the total order relation of the dioid).
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Consequently tr(Ak) is the weight of the maximum weight circuit of length k
in G(A).

We can therefore rewrite ρ(A) in the form:

ρ(A) =
∑

(w(γ))

1
|γ|

(28)

where the sum extends to all circuits γ of G(A) with cardinality between 1 and n.
Let us show that, in this sum, only the elementary circuits have to be taken into

account.
Let us assume that γ is a non-elementary circuit which can be decomposed into

two elementary circuits γ1 and γ2.
Since ≤ is a total order relation, we can always assume that

w(γ
2
)

1|γ
2
|
≤ w(γ1)

1|γ
1
|

Let us then show that:

w(γ)

1|γ| ≤ w(γ
1
)

1|γ
1
|

Let us denote a = w (γ)

1|γ|
a1 = w(γ1)

1|γ
1
|

a2 = w(γ2)

1|γ2|

Since:
w(γ) = w(γ1)⊗ w(γ2)

we have:
a|γ| = a1

|γ1| ⊗ a2
|γ2|

and as a2 ≤ a1, this implies:

a|γ| ≤ a1
|γ1| ⊗ a1

|γ2|

thus: a ≤ a1.

Consequently, in the expression (28), any term of the form w(γ)

1|γ|
where γ is a

non-elementary circuit is dominated by a term of the form w(γ1)

1|γ
1
|

where γ1 is an
elementary circuit. We thus deduce the desired property. "#
Remark 4.2.4. The definition given above for the spectral radius of a matrix of Mn(E)
is consistent with the usual definition for real matrices. Indeed, in standard algebra,
for a matrix A whose eigenvalues are positive reals, the spectral radius of A is equal

to lim
k→∞

(
tr Ak

) 1
k (as we can clearly see by putting A in diagonal form).

Furthermore, in expression (26) the sum can be extended from k = 1 to k = +∞
as demonstrated by the proof of Property 4.2.3 (the sum of the weights of the non-
elementary circuits thus added is absorbed by the sum of the weights of the elementary
circuits).
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Hence, we observe that expression (26) is clearly the analogue to the usual spectral
radius. ||

We can then state the following result which is an analogue to the Perron–
Frobenius theorem.

Theorem 5. Let (E,⊕,⊗) be a selective invertible-dioid with ⊗ commutative and
satisfying the property (π). If A ∈ Mn(E) is an irreducible matrix with spectral
radius

ρ(A) =
n∑

k=1

(
tr(Ak)

) 1
k

(i) ρ(A) is an eigenvalue of A
(ii) ρ(A) is the unique eigenvalue of A

(iii) if V = (Vi)i=1...n is an eigenvector of A for the eigenvalue ρ(A), then ρ(A) > ε

and ∀i = 1 . . . n: Vi > ε.

Proof. (i) According to Property 4.2.3 there exists an elementary circuit γo of G(A)
such that:

ρ(A) = (
w
(
γ0

)) 1|γ0|

and, for any circuit γ of G(A)

(w(γ))

1|γ| ≤ (
w(γ0)

) 1|γ0|
(29)

We are going to see that the Corollary 2.4 applies for λ = ρ(A).
Let us show first that (λ−1 ⊗ A)∗ exists, and, in order to do so, let us show

that in G(λ−1⊗A) the weight of any circuit is 0-stable (see Chap. 4, Sect. 3.3).
Let γ be an arbitrary circuit of G(A). Its weight with respect to λ−1 ⊗ A is:

θ(γ) = w(γ)⊗ (λ−1)|γ| = w(γ)⊗
[
w(γ

0
)−1

]
|γ|
|γ0|

According to inequality (29) we have:

w(γ) ≤ (w(γ
0
))

|γ|
|γ0|

and consequently θ(γ) ≤ (
w(γ0)

)
|γ|
|γ0| ⊗ [

w(γ0)
−1

]
|γ|
|γ0| = e

Therefore, for any circuit γ of G(λ−1 ⊗ A):

θ(γ)⊕ e = e

and consequently θ(γ) is 0-stable. From this we deduce that [λ−1 ⊗A]∗ exists
(see Theorem 1 in Chap. 4).

Now let us show that if i is a vertex of γ0, then relation (6) of Corollary 2.4
(Sect. 2) is satisfied.
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According to the above, the left hand side of (6) is equal to e and we have:

∑

γ∈Pii

w(γ)⊗ (λ
−1

)
|γ|
≤ e

Moreover, for circuit γ0 through i we have: w(γ0) ⊗ (λ−1)|γ0| = λ|γ0| ⊗
(λ−1)|γ0| = e which shows that the right hand side of (6) is also equal to e.

This shows that λ = ρ (A) is an eigenvalue of A and that, for any i ∈
γ0, [(λ−1 ⊗ A)∗]i is an associated eigenvector.

(ii) The uniqueness of the eigenvalue ρ(A) follows from Corollary 4.1.4.
(iii) This follows directly from Lemma 4.1.2. "#
Among the applications of Theorem 5, we can mention those which concern the dioid

(
∨
R, Max,+), which is at the basis of new models in automatic control for discrete

event systems (these will be discussed in more detail in Sect. 7 at the end of the
present chapter).

Example 4.2.1. (continued) Calculation of the eigenvalue in the dioid (
∨
R,Max,+)

In the dioid (
∨
R, Max,+), an irreducible matrix A = (aij) has thus a unique

eigenvalue λ = ρ(A) whose value, according to Property 4.2.3 can be written as:

λ = ρ(A) = Max
γ∈Γ

{
w(γ)

|γ|
}

where Γ is the set of elementary circuits of G(A), and where, for each elementary

circuit γ,
w(γ)

|γ| denotes the average weight of circuit γ (weight divided by the number

of arcs in the circuit, with division in the sense of ordinary algebra).
The calculation of the eigenvalue λ is therefore reduced to the determination in

G(A) of the (elementary) circuit of maximum average weight.
The problem of determining a circuit of average minimal length has been studied

by Dantzig et al. (1967) and by Karp (1978) who described a polynomial algorithm of
complexity O (mn). This algorithm can be directly adapted to the maximum average
weight circuit problem thus leading, for the calculation of the eigenvalue in the dioid

(
∨
R, Max,+), to the following algorithm.

Algorithm 1 Calculation of the eigenvalue of a matrix on the dioid (
∨
R, Max,+):

(a) Let A = (aij) be an irreducible matrix on (
∨
R, Max,+) and G(A) its (strongly

connected) associated graph.
Initialize the labels of the vertices i = 1 . . . n of G(A) by:

π◦(1) = 0

π◦(i) =
{

a1,i if i ∈ Γ1
−∞ otherwise



5 Eigenvalues, Bideterminant and Characteristic Bipolynomial 231

(b) For (k = 1, 2, . . . n) do:
Compute ∀j = 1, 2, . . . n:

πk(j) = Max
i∈Γ−1

j

{
πk−1(i)+ aij

}

End for
(c) Determine the eigenvalue λ by:

λ = Max
j=1... n

Min
0≤k≤n−1

{
πn(j)− πk(j)

n − k

}

The complexity of the above algorithm is O(m n), where m is the number of arcs of
the graph G(A) associated with matrix A.

The justification of this algorithm is based on the following result, due to
Karp (1978):

For any fixed i (1 ≤ i ≤ n):

λ = Max
j=1...n

Min
0≤k≤n−1

{
(An)i,j − (Ak)i,j

n − k

}

where Ak denotes the kth power of A in (
∨
R, Max,+) and where the division by n−k

is the ordinary division of real numbers.

5. Eigenvalues, Bideterminant and Characteristic Bipolynomial

In this section we investigate the links between the notions of eigenvalues/
eigenvectors and:

– the notion of dependence (in the sense of definition 2.5.1, Chap. 5);
– the concepts of bideterminant and of characteristic bipolynomial.

Let us begin by stating a general result valid in dioids:

Theorem 6. Let (E,⊕,⊗) be a dioid with ⊗ commutative and A ∈ Mn(E). I
denoting the n × n identity matrix, for any λ ∈ E, let Ā(λ) be the 2 n × 2 n matrix:

Ā(λ) =
⎡

⎢
⎣

A
�

� λ⊗ I
−−−−
I

�

� I

⎤

⎥
⎦

Then λ is an eigenvalue of A if and only if the columns of Ā(λ) are dependent.
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Proof. (i) If V = (V1, V2, . . . , Vn)
T ∈ En is an eigenvector of A for the eigen-

value λ, then by choosing J1 = [1, 2, . . . n}, J2 = {n + 1, . . . , 2 n} and the
coefficients:

μj = Vj (j = 1, . . . , n)

μj = Vj−n (j = n + 1, . . . , 2n)

the relation A⊗V = λ⊗V implies, on the columns of Ā(λ), the dependence
relation: ∑

j∈J1

μj ⊗
[
Ā(λ)

]j =
∑

j∈J2

μj ⊗
[
Ā(λ)

]j
(30)

(ii) Conversely, let us assume the columns of Ā(λ) to be linearly dependent (in the
sense of definition 2.5.1 in Chap. 5).

By denoting the weights associated with the columns of Ā(λ) as (μ1, μ2, . . . μn,

μn+1, . . . μ2n), we have a relation of type (30) with J1 �= ∅ J2 �= ∅ J1 ∩ J2 = ∅ and
μj �= ε for j ∈ J1 ∪ J2. (we agree to set, μj = ε for j /∈ J1 ∪ J2).

By using (30) on the components n+ 1 to 2n, we observe that, for any j ∈ [1, n],
the indices j and n + j cannot both belong to J1, nor both to J2 (indeed, assuming
the contrary, we would have μj⊕μn+j = ε; (E,⊕) being canonically ordered, from
Proposition 3.4.3 of Chap. 1 this would imply μj = μn+j = ε).

Consequently, if j ∈ J1 then necessarily n + j ∈ J2 and the dependence relation
(30) implies: μn+j = μj.

As a result, in the dependence relation (30), the indices j and n+ j are interchange-
able and we can therefore always assume J1 ⊂ {1, 2, . . . n}.

Then, by setting:

Vj = μj for j ∈ J1, 1 ≤ j ≤ n
Vj = ε for j ∈ [1, n]\J1

relation (30) on the first n components of the columns of Ā(λ) reads:

n∑

j=1

μj ⊗ Aj =
n∑

j=1

Aj ⊗ Vj =

⎡

⎢⎢
⎣

λ ⊗ V1
λ ⊗ V2

:
λ ⊗ Vn

⎤

⎥⎥
⎦

which shows that λ is an eigenvalue of A and V = [V1 . . . Vn]T an associated
eigenvector. "#
Remark 5.1. In the case of usual linear algebra where (E, ⊕) is a group:

det

⎡

⎢⎢
⎣

A
�

� λI
−− − −−
I

�

� I

⎤

⎥⎥
⎦ = det

⎡

⎢⎢
⎣

A − λI
�

� λI
−−−− − −−

0
�

� I

⎤

⎥⎥
⎦ = det(A − λI)
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the condition of Theorem 6 clearly yields the classical result: λ is an eigenvalue of
A if and only if det (A − λI) = 0 ||

Now, by considering λ as a variable, each term of the bideterminant of the
matrix Ā(λ) can be considered as a polynomial in λ. The characteristic bipoly-
nomial of A ∈ Mn (E) introduced in Sect. 4.3 in Chap. 2, is then defined as the pair:
(P+(λ), P−(λ)) where:

P+(λ) = det+(Ā(λ))

P−(λ) = det−(Ā(λ))

By using the characteristic bipolynomial, we can then state the following result,
which extends, to some classes of selective dioids, the classical characterization of
eigenvalues as roots of the characteristic polynomial.

Proposition 5.2. Let (E,⊕,⊗) be a selective dioid, with⊗ commutative, A ∈ Mn(E)

and (P+(λ), P−(λ)) its characteristic bipolynomial.

(i) If every element of E\{ε} is cancellative for ⊗, then any eigenvalue λ of A
satisfies the characteristic equation P+(λ) = P−(λ)

(ii) If (E,⊗) is a commutative group, then any λ satisfying the characteristic
equation:
P+(λ) = P−(λ) is an eigenvalue.

Proof. (i) If λ is an eigenvalue of A, in view of Theorem 6, the columns of Ā(λ)

are linearly dependent, and, according to Corollary 3.3.3 of Chap. 5 (Sect. 3.3)
we have:

det+(Ā(λ)) = det−(Ā(λ))

(ii) If (E,⊕,⊗) is a commutative selective-invertible dioid, then by using Theo-
rem 2 of Chap. 5, det+(Ā(λ)) = det−(Ā(λ)) implies the existence of a linear
dependence relation on the columns of Ā(λ); according to Theorem 6 we can
then deduce that λ is an eigenvalue of A. "#

6. Applications in Data Analysis

This section is devoted to the presentation of some important applications in Data
Analysis of the calculation of eigen-elements in dioids.

In hierarchical clustering the starting point is to assume that we are given a
dissimilarity matrix between objects. Then, considering the dioid (R+ ∪ {+∞},
Min, Max), we show in Sect. 6.1 that, with each level λ of the clustering, we
can associate a set of eigenvectors of the dissimilarity matrix associated with the
eigenvalue λ; furthermore, this set constitutes the (unique) minimal generator of
the eigen-semi-module V(λ). This exhibits an interesting link with another classical
approach to Data Analysis, namely Factor Analysis.
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In Preference Analysis the aim is to order a set of objects given a matrix of
preferences (deduced from pairwise comparisons). We show in Sect. 6.2. that several
approaches to this problem can then be interpreted, in a unifying framework, in terms
of the search for the eigenvalues and eigenvectors of the preference matrix in dioids
such as (R+,+,×) (R+ ∪ {+∞}, Max, Min), (R+ ∪ {+∞}, Max,×).

6.1. Applications in Hierarchical Clustering

Given a set of n objects X = {1, 2, . . . n}, let us assume that, for each pair of objects
(i, j), we can define an index or a measure of dissimilarity dij ∈ R+ (let us note that
this index does not necessarily satisfy the axioms of a distance). The dissimilarity
dij will take on small values if the two objects i and j are very similar (in particular,
dij = 0 if i and j are identical); conversely, dij will take on large values if the objects
i and j are very dissimilar.

Thus, with any set of objects X = {1, 2, . . . n}, we can associate a dissimilarity
matrix

D = (
dij

)
i=1,...,n
j=1,...,n

Observe that this matrix is symmetric with zero diagonal (∀i ∈ X: dii = 0).
A clustering of the n objects in X consists in determining a partition of X into

subsets (classes) so that within the same class, objects are as similar as possible, and
that on the contrary, objects belonging to distinct classes are strongly dissimilar.

As we can give many different meanings to the notion of the proximity or homo-
geneity of a subset of objects, there exists a very wide variety of clustering methods.
In hierarchical clustering one proceeds as follows. The matrix D = (dij) can be
considered as the adjacency matrix of an undirected complete graph G = [X, U]
whose vertices correspond to objects, and whose edges are assigned the dij values.

For any real number λ ≥ 0 we consider the partial graph of G at threshold λ,
denoted: Gλ = [X, Uλ] where Uλ = {(i, j) ∈ U/dij ≤ λ}.

The connected components of Gλ form a partition of the set of objects X. The
elements of this partition form the classes of the clustering of X at threshold λ.

In view of the above, two vertices i and j are in a same class at threshold λ if
and only if there exists in G a chain joining i and j with all edges having valuations
≤λ. Equivalently, i and j are in a same class at threshold λ if and only if there exists
in G a path of sup-section ≤λ from i to j, the sup-section of a path π = {io =
i, i1, i2, . . . ip = j} being defined as:

σ̄(π)= Max
k=0,...,p−1

{
dikik+1

}

(see Gondran and Minoux 1995 Chap. 4, Sect. 2.9).
Thus, for i and j to be in a same class at threshold λ, it is necessary and sufficient

that d∗ij = Min
π∈Pij

{σ̄(π)} ≤ λ

(where Pij denotes the set of paths between i and j in G).
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Since d∗ij can be written: d∗ij =
⊕∑

π∈Pij

(⊗
Π
k

dikik+1

)
(with ⊕ = Min and ⊗ = Max)

we observe that the matrix D∗ = (d∗ij) is none other than the quasi-inverse of D in
the dioid (R+ ∪ {+∞}, Min, Max).

According to a result due to Hu (1961), a chain of minimal sup-section between
two vertices in G corresponds to the chain of the minimum weight spanning tree
of G joining these two vertices. The matrix D∗ can therefore be efficiently deter-
mined using a minimum spanning tree algorithm (see for example Collomb and
Gondran 1977).

The clustering tree is then directly deduced by considering all possible values
of the threshold λ (at most n − 1 distinct values are to be considered, those which
correspond to the valuations of the n − 1 edges of the minimum spanning tree).

If we have p distinct values: λ1 > λ2 > . . . > λp (p ≤ n − 1), the classes
of the partition of level λi+1 are included in the classes of the partition of level
λi (i = 1, . . . , p− 1) (hence the name of hierarchical clustering).

Example 1. On the set of 7 objects X = {1, 2, 3, 4, 5, 6, 7}, let us consider the
following dissimilarity matrix:

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 7 5 8 10 8 10
7 0 2 10 9 9 10
5 2 0 7 11 10 9
8 10 7 0 8 4 11

10 9 11 8 0 9 5
8 9 10 4 9 0 10

10 10 9 11 5 10 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The corresponding minimum spanning tree is given in Fig. 1. The matrix D∗ is easily
deduced from this spanning tree.

For example, d∗27 is the sup-section of the unique chain of the tree joining the
vertices 2 and 7, therefore:

d∗27 = Max{d23, d34, d45, d57} = 8

2

1

3

4
6

5

7

2

5

7
4

8

5

Fig. 1 Minimum weight spanning tree corresponding to the dissimilarity matrix D



236 6 Eigenvalues and Eigenvectors of Endomorphisms

We obtain:

D∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 5 5 7 8 7 8
5 0 2 7 8 7 8
5 2 0 7 8 7 8
7 7 7 0 8 4 8
8 8 8 8 0 8 5
7 7 7 4 8 0 8
8 8 8 8 5 8 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(31)

At threshold λ = 5, we have, for example:

d∗23 ≤ λ d∗13 ≤ λ d∗46 ≤ λ

which shows that the vertices 1, 2, 3 belong to the same class; in the same way,
vertices 4 and 6 are in a same class.

By contrast, the vertices 3 and 5 are not in a same class because

d∗35 = 8 > 5

The hierarchical clustering tree for the above example is shown in Fig. 2.
To obtain the partition into classes corresponding to a given level λ, it is enough

to “cut” the clustering tree of Fig. 2 by a horizontal line with ordinate λ. Thus, for
example, the clustering on the level λ = 5 is the partition {1, 2, 3} {4, 6} {5, 7}; on
the level λ = 4: {1} (2, 3} {4, 6} {5} {7}. ||

λ

λ

λ

λ

λ

= 8

= 7

= 5

= 4

= 2

1 2 3 4 56 7

Fig. 2 Clustering tree corresponding to Example 1
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As all the diagonal terms of D are equal to e = 0 (the zero element of ⊗) this yields
D = I⊕ D and consequently:

D∗ = Dn−1

(see Chap. 4 Sect. 3 Proposition 1).
In the dioid (R+ ∪ {+∞}, Min, Max) this therefore yields: (D∗)2 = D∗ which

shows that D∗ is an ultrametric distance, i.e. that it satisfies, ∀i, j, k:

d∗ij ≤ Max
{
d∗ik , d∗kj

}

We recall that D∗ is the subdominant ultrametric distance, i.e. the greatest element
of the set of ultrametrics less than or equal to D (see Chap. 4, Sect. 6.14).

We are now going to see that there exist interesting links between hierarchical
clustering and the structure of the eigenvectors of the dissimilarity matrix D. The
dioid (R+ ∪ {+∞}, Min, Max) is selective with commutative and idempotent mul-
tiplication. Moreover, e = 0 is the greatest element (in the sense of the canonical
order relation) for, ∀a ∈ R+: e⊕ a = Min{0, a} = e.

The main results from Sect. 3 (Theorem 3 and Corollary 8) can thus be applied.
In particular (taking into account that, ∀i: d∗ii = e = 0):

– The set of distinct vectors of the form V̄i = [D∗]i constitutes the (unique) minimal
generator of V(e);

– Any λ ∈ R+ is an eigenvalue of D;
– For any λ ∈ R+, the set of distinct vectors of the form λ⊗ [D∗]i constitutes the

(unique) minimal generator of V(λ).

The following result shows that, for each level λ of the clustering, the set of eigen-
vectors for the eigenvalue λ contains all the information required to define the classes
at level λ.

Theorem 7. (Gondran 1976)
At each level λ of a hierarchical clustering w.r.t. a dissimilarity matrix D = (dij),

two objects i and j belong to a same class if and only if the two eigenvectors λ⊗[D∗]i

and λ⊗ [D∗]j are equal. The distinct vectors of the form λ⊗ [D∗]i for i = 1, . . . , n
form the unique minimal generator of V(λ).

Example 1. (continued)
Let us illustrate the above results on the matrix D∗ given by (31).
On the level λ = 5 for example, a first class is formed by the objects {1, 2, 3}.
We then check that we have:

λ⊗ [
D∗

]1 = λ⊗ [
D∗

]2 = λ⊗ [
D∗

]3 =

⎡

⎢
⎢⎢⎢
⎢⎢⎢⎢
⎣

5
5
5
7
8
7
8

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

(32)
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A second class is formed by the objects {4, 6}, and we check that:

λ⊗ [
D∗

]4 = λ⊗ [
D∗

]6 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

7
7
7
5
8
5
8

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

(33)

The third class is formed by {5, 7}, and this yields:

λ⊗ [
D∗

]5 = λ⊗ [
D∗

]7 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

8
8
8
8
5
8
5

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

(34)

The three vectors given by (32)–(34) constitute (the unique) minimal generator
of the eigenmoduloid V(5). ||

The interpretation of the classes on an arbitrary level λ in terms of generators
of the eigenmoduloid associated with the eigenvalue λ, establishes an interesting
analogy to another classical approach to Data Analysis, namely: Factor Analysis
(see Benzecri 1974, for example).

In both cases, the relevant information serving as the basis of the analysis is
provided by the eigen-elements of the dissimilarity matrix. Only the underlying
algebraic structures are different.

6.2. Applications in Preference Analysis:
A Few Answers to the Condorcet Paradox

Given n objects, we seek to establish a preference order on these objects through
pairwise comparisons of objects produced, for example, by referees or judges (the
case of a tournament) or by consumers (the case of a market analysis).

We therefore assume as given the matrix of preferences on the pairs of objects,
denoted A = (

aij
)

i=1,...,n
j=1,...,n

Thus, for any (ordered) pair of objects (i, j), aij is equal to the number of judges
(consumers) having preferred i to j. We agree that the weight of a judge is counted

as
1

2
in both aij and aji in the case of indifference between the objects i and j. In

the case of a tournament, aij will be equal to the number of games won on j during
meetings between i and j.
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Various approaches to ordering objects from a matrix of preferences have been
proposed, each constituting a possible answer to the Condorcet paradox. We are
going to see that, for each of them, the relevant information used to compare the
objects is provided by the eigenvalues and eigenvectors of the preference matrix in
a well chosen dioid.

The “Mean Order” Method and the Dioid (R+, +, ×)

This method, proposed in Berge (1958), consists in ordering the objects (the players in
a tournament, in the example studied by Berge) according to the values of the compo-
nents of the eigenvector associated with the (real) eigenvalue having greatest modulus
of the matrix A (this eigenvalue being simple, the associated eigen-subspace has
dimension 1 (see Berge 1958, Chap. 14). Since, according to the Perron–Frobenius
theorem, this eigenvector has components that are all positive, the proposed order –
also referred to as the mean order – simply corresponds to that of nonincreasing
values of the components.

Example 2. Let us consider, for a set of 4 objects, and 6 judges, the following matrix
of preferences:

A =

⎡

⎢⎢
⎣

0 3 4 3.5
3 0 4 1
2 2 0 5

2.5 5 1 0

⎤

⎥⎥
⎦

A being a real matrix whose coefficients are all nonnegative, its spectral radius ρ(A)
is equal to the largest real positive eigenvalue, here λ = 8.92.

We cheek that the associated eigenvector is:

V =

⎡

⎢⎢
⎣

0.56
0.46
0.50
0.47

⎤

⎥⎥
⎦

The resulting mean order on the objects is: 1, 3, 4, 2 (object 1 is the first, object 3 is
the second one, etc.). ||

The “mean order” method thus exploits the information provided by a particular
eigenvector (the one corresponding to the largest real nonnegative eigenvalue) in the
dioid (R+,+,×).

The Method of Partial Orders and the Dioid (R+ ∪ {+∞}, Max, Min)

A second method, proposed by Defays (1978) proceeds by determining a hierarchy
of (partial) order relations on the objects, whose equivalence classes are nested. More
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precisely, for any λ ∈ R, the classes of level λ are defined as the strongly connected
components of the graph:

Gλ = [X, Uλ], where X is the set of objects and where the set of arcs is:

Uλ = {(i, j)/aij ≥ λ}
If we denote Cλ(i) the class of level λ containing i, then for any λ′ ≤ λ,

Cλ′(i) ⊃ Cλ(i).

By denoting Rλ the equivalence relation: i Rλ j ⇔ i and j belong to the same
class of level λ then, for each level λ, the quotient graph Gλ/Rλ is a circuitless
graph, therefore the graph associated with a (partial) order relation. When λ takes
all possible real values we then obtain a set of partial orders on nested classes.

As in hierarchical clustering (see Sect. 6.1), the classes obtained on each level
λ (therefore the clustering tree) are deduced from the structure of the eigenvectors
associated with the eigenvalue λ in the dioid (R+ ∪ {+∞}, Max, Min).

The following example illustrates the method, and shows that the matrix A+
actually contains more useful information than required to construct the clustering
tree alone: it can be used to obtain in addition the quotient graphs, in other words the
partial orders on each level. This information may be quite useful for interpreting
the results of the analysis.

Example 3. Take the same matrix as in Example 2, this time considered in the dioid
(R+ ∪ {+∞}, Max, Min). The matrix A+ = A ⊕ A2 ⊕ A3 is:

A+ =

⎡

⎢⎢
⎣

0 4 4 4
3 0 4 4
3 5 0 5
3 5 4 0

⎤

⎥⎥
⎦

The clustering thus contains three levels λ1 = 5, λ2 = 4 and λ3 = 3.
Figure 3 displays the graphs Gλ1 Gλ2 and Gλ3 and the quotient graphs obtained

on the various levels of this clustering.
On the level λ1 = 5 we have four classes {1} {2} {3} {4}. On the level λ2 = 4,

we have the two classes {1} {2 3 4} and on the level λ3 = 3, we have a unique class
{1, 2, 3, 4,}.

Observe that on level λ3 = 3, the four objects appear as being equivalent. Never-
theless, examining level λ2 = 4 refines the analysis, with the quotient graph Gλ2/Rλ2

showing that on this level, object 1 is preferred to the other three. On level λ2, the
three objects 2, 3, 4 appear as being equivalent, but on the lowest level (λ1 = 5)

they can be further differentiated: 3 is preferred to 4, which itself is preferred to 2. ||

The “Circuit of Least Consensus” Method and the Dioid
(R+ ∪ {+∞}, Max, ×)

This method uses the information provided by the eigenvalue and the associated
eigenvectors of the matrix of preferences A in the dioid (R+ ∪ {+∞}, Max,×).



6 Applications in Data Analysis 241

λ1 = 5

1

4

2

3

1

4

2

3  
Graph Gλ1 Quotient graph Gλ1/   λ1

λ2 = 4 

1

4

2

3

1

2, 3, 4

Graph Gλ2

 Quotient graph Gλ3 /    λ3

λ3 = 3 
1

4 3

2

1, 2, 3, 4

Graph Gλ3

 Quotient graph Gλ2/     λ2

Fig. 3 The graphs Gλ and the quotient graphs Gλ/Rλ obtained on the different levels of clustering
in Example 3

According to Lemma 4.1.3 and Corollary 4.1.4 of Sect. 4, A has a unique eigenvalue
which corresponds to the circuit γo of G(A) such that:

λ = w(γo)

1|γo| = Max
γ

{
w(γ)

1|γ|}

(maximum taken on the set of elementary circuits of the graph) where, for each
circuit γ, |γ| denotes the number of arcs of the circuit and w(γ) the product of the
valuations aij of the arcs of γ.

The circuit γo is therefore the circuit of the graph G(A) for which the geometric
mean of the valuations is the largest. This circuit can be interpreted as the set of
objects for which the consensus is the worst (see Gondran 1995).
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Example 4. For the preference matrix in Example 1, now considered in the dioid
(R+ ∪ {+∞}, Max,×), we have:

A2 =

⎛

⎜⎜
⎝

9 17.5 12 20
8 9 12 20

12.5 25 8 7
15 7.5 20 8.75

⎞

⎟⎟
⎠

A3 =

⎛

⎜⎜
⎝

52.5 100 70 60
50 100 36 60
75 37.5 100 43.75
40 43.75 60 100

⎞

⎟⎟
⎠

A4 =

⎛

⎜⎜
⎝

300 300 400 350
300 300 400 180
200 225 300 500
250 500 175 300

⎞

⎟⎟
⎠

Consequently, the eigenvalue of A is:

λ = Max
{√

9; 3
√

100; 4
√

300
}
= 3
√

100 = 4.64

and this eigenvalue corresponds to the circuit

γ = {(2, 3)(3, 4)(4, 2)} of weight w(γ) = 4× 5× 5 = 100.

From the point of view of preference analysis, this circuit of least consensus
represents a subset of objects or individuals which appear to be difficult to distinguish.
We note on the example that this result is consistent with the one previously deduced
from Max-Min analysis (see Fig. 3, for the case λ2 = 4). ||

7. Applications to Automatic Systems: Dynamic Linear System
Theory in the Dioid (R ∪ {−∞}, Max, +)

Dynamic linear system theory is a classical and very active branch of the automation
field. Many problems of observability, controllability, stability and optimal control
are well-solved in this class of systems. This contrasts with the case of nonlinear
systems where theory is often lacking.

Nevertheless, one of the remarkable results obtained in recent years has been to
exhibit particular subclasses of non-linear problems (in the sense of classical theory)
that can be tackled by linear algebraic techniques, provided their state equations are
written in appropriate algebraic structures, other than standard algebra on R.

A characteristic example is that of the dioid (R ∪ {−∞}, Max,+) which has
turned out to be the basic algebraic structure for modeling some types of discrete event
systems. This has thus made possible to transpose many classical results concerning
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automatic systems into this new context and to set up a theoretical framework of
system theory in the dioid “(Max, +).”

After a brief reminder of classical models in linear system theory (Sect. 7.1) and
Petri nets (Sect. 7.3), we show in Sect. 7.4 how the dynamic behavior of a particular
class of Petri nets (more specifically: timed event graphs) can be modeled by linear
state equations in the dioids (R+, Max,+) or (R+, Min,+). In Sect. 7.5, we look at
the maximum possible performances that can be obtained from such systems when
operating in autonomous mode. We show that the maximum production rate is related
to the unique eigenvalue in the dioid (R∪ {−∞}, Max,+) of the matrix involved in
the explicit expression of the solution for the state equation.

7.1. Classical Linear Dynamic Systems in Automation

Dynamic linear system theory is concerned with systems whose behavior over time is
described (in the case of a discrete time model) by an evolution equation of the form:

{
x(t) = A · x(t − 1)+ B · u(t) (35)

y(t) = C · x(t) (36)

where:

x(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

x1(t)
x2(t)

.

.

.

xn(t)

⎤

⎥⎥⎥⎥⎥⎥
⎦

denotes the state vector of the system at the instant t;

y(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

y1(t)

y2(t)

.

.

.

ym(t)

⎤

⎥⎥⎥⎥⎥⎥
⎦

denotes the observation vector on the system at the instant t;

u(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

u1(t)

u2(t)

.

.

.

up(t)

⎤

⎥⎥⎥⎥⎥
⎥
⎦

denotes the control vector applied to the system at the instant t;

A, B, C are real matrices of dimensions n × n, n × p, m × n respectively (when
the coefficients of these matrices are varying over time, we have the case of a non-
stationary system. When they do not depend on time, we then say that the system is
stationary).
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The evolution equations (35) and (36), which use the operations of standard alge-
bra in R

n, constitute one of the basic models for the theory of dynamic systems, and
they have numerous applications: control of industrial processes, trajectory control
problems, signal processing, etc. (see for example Kwakernaak and Sivan 1972;
Kailath 1980).

There exist however many other applications which cannot be encompassed by
these classical linear models. This is the case, in particular, for “dynamic scheduling”
problems.

7.2. Dynamic Scheduling Problems

Dynamic scheduling problems appear in many applications, such as industrial
automation (optimization of flexible manufacturing processes, for example) or the
architecture of parallel or distributed computer systems (compilation of parallel
applications, task placement, etc.).

With such problems, the aim is typically to process a flow of input tasks, by
assigning these tasks to processing units (machines, manufacturing processes) under
various constraints (mutual exclusion, synchronization, maximum processing time,
etc.). Among all the possible solutions, we often consider:

– Particular solutions (cyclic scheduling, for example);
– Solutions optimizing a criterion such as production rate (number of units pro-

cessed per unit of time).

Problems of this kind cannot be reduced to linear equations of the form (35), (36) in
standard algebra. On the contrary, many studies such as those of Cuninghame-Green
(1962, 1979, 1991), Cuninghame-Green and Meijer (1988), Cohen and co-authors
(1983, 1985, 1989), Baccelli and co-authors (1992), Gaubert (1992, 1995a, b) have
shown that some dynamic scheduling problems could be represented by appropriate
linear models in dioids such that (R∪ {−∞}, Max,+) or (R∪ {+∞}, Min,+). As
will be seen in Sect. 7.4, these are essentially systems whose evolution over time
correspond to the behavior of Petri nets of a special kind, namely: timed event graphs.
We first recall below some basic notions concerning Petri nets.

7.3. Modeling Discrete Event Systems Using Petri Nets

We recall (see for instance Peterson 1981, Brams 1983) that a Petri net is an oriented
and valued bipartite graph R = [P ∪ T, U], where the set of vertices is formed by
a set of places P and a set of transitions T, and where the set of arcs U includes
arcs joining places to transitions and arcs joining transitions to places (the graph
being bipartite, there is no arc joining a place to another place, nor any arc joining
a transition to another transition). A valuation α (i, j) ∈ N is associated with each
arc u = (i, j) of R. Figure 4 gives an example of a Petri net where, according to
common practice, the places are indicated by circles and the transitions by elongated
rectangles.
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A Petri net R is said to be labeled when a natural number M(p), called label of p,
is associated with each place p ∈ P.

In applications, the label of a place typically corresponds to the amount of a
resource available at a certain point in the system. The label of a place is often
represented by tokens, we then say that the place p contains M(p) tokens.

The evolution over time of place labels in a Petri net occurs according to the
process of the activation (or firing) of the transitions.

A transition t ∈ T is said to be activable (or fireable) w.r.t. a given labeling M if
and only if:

∀p ∈ Γ−(t) = {i/i ∈ P, (i, t) ∈ U}, we have: M(p) ≥ α(p, t)

When this condition is satisfied, the activation (or firing) of transition t leads to a
new labeling M′ defined, ∀p ∈ P, by:

⎧
⎪⎨

⎪⎩

M′(p) = M(p) if p /∈ Γ−(t) ∪ Γ+(t)

M′(p) = M(p)− α(p, t) if p ∈ Γ−(t)

M′(p) = M(p)+ α(t, p) if p ∈ Γ+(t)

Thus, for example, in the case of the net in Fig. 4, starting from the labeling M =⎛

⎝
3
3
1

⎞

⎠ (where M(p1) = 3, M(p2) = 3, M(p3) = 1), we reach, through the firing of

transition t1 the labeling M′ =
⎛

⎝
2
4
0

⎞

⎠; then from M′, through the firing of transition

t2, we obtain the labeling M′′ =
⎛

⎝
1
2
2

⎞

⎠ and so on.

2
2t2

p2

p3

p1

t1

1

2

1

1
1

1

t3

Fig. 4 An example of a Petri net where P = {p1, p2, p3} is the set of places and T = {t1, t2, t3} is
the set of transitions. The valuations are indicated next to each arc
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t1 t2

p1

(a) (b)

p0 p2

S1 S2

Fig. 5 Two characteristic examples of behavior that can be modeled using a Petri net. Fig. 5(a)
shows a situation of conflict between two transitions t1 and t2: only one of these two transitions
can be activated. Fig. 5(b) shows an example of a situation of mutual exclusion where a common
resource has to be shared between two subsystems S1 and S2

The formalism of general Petri nets is very powerful, in the sense that it can
accurately and appropriately represent a huge variety of types of behavior in real
systems. Without being exhaustive, we mention:

– Conflict between two (or several) series of actions. Figure 5a provides an example:
from the indicated labeling, each of the two transitions t1 and t2 is activable, but
one and only one of the two transitions t1 and t2 can be activated.

– Mutual exclusion (sharing of resources, for example). Figure 5b provides an exam-
ple where the two subsystems S1 and S2 cannot evolve independently from each
other, given that they share the resource represented by the central place po. One
of the two subsystems starts operating and consumes the token initially present
in po; the other subsystem must therefore wait until a token has returned to po to
start operating.

– Synchronization between several processes (this will be explained into detail in
Sect. 7.4 below).

Obviously, the expressive power enjoyed by the formalism of general Petri nets
has one counterpart: the difficulty in solving many basic problems such as:

– Accessibility: does a sequence of transitions exist where the transitions can be
activated sequentially in order to reach some labeling M′ starting from a given
labeling M?

– Liveness: from any accessible labeling, is it possible, for any transition t, to reach
a state where t is activable?

– Boundedness: does a natural integer B exist such that, for any place p ∈ P and
any accessible labeling M, we have M(p) ≤ B?

For all these problems (and a few more), no practical, efficient algorithms exist,
except for particular subclasses of Petri nets such as: state machines, event graphs,
free choice and extended free choice networks (see for instance Peterson, 1981). We
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are going to see that, among these particular subclasses, the dynamic behavior of
timed event graphs can be represented by linear equations in dioids.

7.4. Timed Event Graphs and Their Linear Representation
in (R ∪ {−∞}, Max, +) and (R ∪ {+∞}, min, +)

We refer to an event graph as a Petri net having the special property that each place
has a single input arc and a single output arc (we are limiting ourselves to the case
where all the arcs have valuation 1).

Figure 6 shows an example of an event graph (drawn from Baccelli et al. 1992)
which will subsequently serve as an illustration.

Observe that event graphs cannot be used to model situations of conflict or
mutual exclusion such as those illustrated by Fig. 5a,b. Nevertheless, this subclass of
Petri nets is interesting for many applications where the aim is essentially to model
synchronization constraints between several processes.

We say that an event graph is timed if we associate with each place p ∈ P a time
θ(p) interpreted as the minimal time a token has to stay in the place. (We can also
associate with each transition t ∈ T a time θ(t) – the minimal activation duration
of the transition t – but it is easy to show that it is always possible to reduce this to
the case where only the places are timed). Figure 6 provides an example of a timed
event graph.

The dynamic behavior of a system such as the one in Fig. 6 can be represented
algebraically in different ways.

A natural way consists in associating with each transition t an increasing function
xt: N → R+ where, for any n ∈ N, xt(n) denotes the date on which the nth firing
of transition t occurs (date counted from the instant 0, considered as the instant the
system starts operating). We are going to see that the variables xt(n) must satisfy a
set of inequalities know as “equations of timers.”

Let us illustrate first the basic ideas for writing the state equations on the small
examples of Fig. 7, where we have three transitions and two places p1 and p2 timed
with θ(p1) = 2 and θ(p2) = 3.

In Fig. 7a, no token is present initially in the places. The earliest termination
date for the nth activation of transition t3 therefore depends on the date of the nth

activation of t1 and the date of the nth activation of t2. If we take into account the
minimal residence time of a token in p1 we must have:

x3(n) ≥ 2+ x1(n)

and in the same way, taking into account the time delay of p2:

x3(n) ≥ 3+ x2(n)

We obtain therefore for x3(n) the inequality x3(n) ≥ Max{2+ x1(n); 3+ x2(n)}.
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u1 u2

(5)(1) (3)

x2x1

(4)

(3)

(4)

(0)(2) x3

(2)

y

Fig. 6 Example of a (timed) event graph. The time delays indicated between brackets next to each
place, represent the minimal time a token has to stay in the place. We have also indicated the tokens
in the initial labeling considered

Figure 7b represents a more general situation where tokens can be present in
some places at the initial instant. In this case, the earliest termination date of the nth

activation of t3 depends on the earliest termination date of the (n − 1)th activation
of t1 (because a token is present initially in p1) and on the earliest termination date
of the (n − 2)th activation of t2 (because two tokens are initially present in p2). The
inequality on x3(n) can then be written:

x3(n) ≥ Max{2+ x1(n − 1); 3+ x2(n − 2)}
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t1 t2

(2) (3)p1 p2

t3

(a)

t1 t2

(2) (3)p1 p2

t3

(b)

Fig. 7 Writing the state equation of a timed event graph. (a) The state equation for this example
is x3(n) ≥ Max{2 + x1(n); 3 + x2(n)}. (b) The state equation for this example is: x3(n) ≥
Max{2+ x1(n − 1); 3+ x2(n − 2)}

Now, by applying this principle to the whole network of Fig. 6, we obtain the
system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(n) ≥ Max{4+ x2(n − 1); 1+ u1(n)}
x2(n) ≥ Max{3+ x1(n); 5+ u2(n)}
x3(n) ≥ Max{3+ x1(n); 4+ x2(n); 2+ x3(n − 1)}
y(n) ≥ Max{x2(n − 1); 2+ x3(n)}

(where the inequalities should be understood in the sense of the standard order relation
on R). Observe that, in the above set of relations, we obtain earliest termination dates
by ensuring that each inequality is satisfied with equality.
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In the dioid (R∪{−∞}, Max,+) where⊕ = Max and⊗ = +, ε = −∞, e = 0,
the above system takes the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(n) ≥ 4⊗ x2(n − 1)⊕ 1⊗ u1(n)

x2(n) ≥ 3⊗ x1(n)⊕ 5⊗ u2(n)

x3(n) ≥ 3⊗ x1(n)⊕ 4⊗ x2(n)⊕ 2⊗ x3(n − 1)

y(n) ≥ 2⊗ x3(n)⊕ e⊗ x2(n − 1)

or equivalently, expressed in matrix form:
{

x(n) ≥ Ao ⊗ x(n)⊕ A1 ⊗ x(n − 1)⊕ B⊗ u(n) (37)

y(n) ≥ Co ⊗ x(n)⊕ C1 ⊗ x(n − 1) (38)

with:

Ao =
⎡

⎣
ε ε ε

3 ε ε

3 4 ε

⎤

⎦ A1 =
⎡

⎣
ε 4 ε

ε ε ε

ε ε 2

⎤

⎦

B =
⎡

⎣
1 ε

ε 5
ε ε

⎤

⎦

Co =
[
ε ε 2

]
C1 =

[
ε e ε

]

By analogy to the classical case ((35) and (36) of Sect. 7.1) matrix equation (37) is the
state equation, (38) is the so-called equation of observation, x is the state vector (here
having three components), u the control vector (here having two components) and y
the vector of observations or output of the system (here having one component).

To solve the state equation (37), we can use the general results of Chap. 4 con-
cerning the resolution of linear systems of the form X = A ⊗ X ⊕ B, by applying
it to:

x(n) = A0 ⊗ x(n)⊕ A1 ⊗ x(n − 1)⊕ B⊗ u(n) (37)′

(in other words (37) in which all inequalities are replaced by equalities).
Modulo the existence of A∗0, quasi-inverse of A0 (in other words, by assuming the

absence of a positive circuit in G(Ao)) the minimal solution of (37)′ can be written:

x(n) = A∗0 ⊗ A1 ⊗ x(n − 1)⊕ A∗0 ⊗ B⊗ u(n) (39)

Since x(n) given by (39) also satisfies (37), we observe that it is also the mini-
mal solution to (37). In this solution, all the inequalities are satisfied at equality:
(39) therefore defines the set of earliest termination dates when running the system.
Therefore, given the sequence of control vectors u(1) u(2) . . . and the “initial state”
x(o), (39) successively determines all the values x(1), x(2), . . . of the state vector.

Each component i of the state vector corresponds to a transition ti of the system
and, in the solution expressed by (39), xi(1) represents the earliest termination date
of the first activation of transition ti, xi(2) the earliest termination date of the second
activation of ti, etc.
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Timed event graphs can also be represented as dynamic linear systems in the dioid
(R∪{+∞}, Min,+) by considering another form of state equation called “equation
of counters” instead of “the equation of timers” (37)–(38). Thus, for the example
of Fig. 6, by associating with each transition xi (resp. ui, y) a variable xi(τ) (resp.
ui(τ), y(τ)) representing the number of firings of the transition xi (resp. ui, y) up to
the instant τ, we obtain the following system of inequalities:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(τ) ≤ Min{1+ x2(τ− 4); u1(τ− 1)}
x2(τ) ≤ Min{x1(τ− 3); u2(τ− 5)}
x3(τ) ≤ Min{1+ x3(τ− 2); x1(τ− 3); x2(τ− 4)}
y(τ) ≤ Min{1+ x2(τ); x3(τ− 2)}

It is a linear system similar to (37)–(38), but in the dioid (R∪ {+∞}, Min,+).

7.5. Eigenvalues and Maximum Throughput
of an Autonomous System

Let us consider a timed event graph whose state equation is of the form (37)
and, consequently, whose minimal solution (earliest termination dates) is expressed
by (39):

x(n) = Ā1 ⊗ x(n − 1)⊕ B⊗ u(n)

with Ā1 = A∗o ⊗ A1 and B = A∗o ⊗ B.
Let us study the evolutions of this system operating in autonomous mode, in

other words with controls u (n) not constraining the evolutions of the system (this

corresponds to choosing for example ∀n: u(n) =

⎡

⎢⎢
⎣

−∞
−∞
:
−∞

⎤

⎥⎥
⎦).

Thus we can write, ∀n:

x(n) = Ā1 ⊗ x(n − 1) (40)

thus:
x(n) = (Ā1)

n ⊗ x(0) (41)

By assuming, for the sake of simplicity, that the matrix Ā1 is irreducible (G(Ā1)

strongly connected) we know from Theorem 4 (Sect. 4.1 of this chapter) that it
has a unique eigenvalue λ = ρ(Ā1) (spectral radius). Then, for any eigenvector w
associated with λ = ρ(Ā1), by choosing x(0) = w we obtain from (40):

x(n) = λ⊗ x(n − 1)
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We therefore have, for any transition i the network:

xi(n) = λ+ xi(n − 1) (42)

which shows that an additional activation of each transition of the network takes place
every λ units of time. If the system represents, for example, a production workshop,
(42) can then be interpreted as the production of a new unit every λ units of time; λ

is therefore the inverse of the production rate.
According to the results of Sect. 4, the eigenvalue λ = ρ(Ā1) corresponds, in the

graph G(Ā1), to the average weight of the circuit of maximum average weight (the
weight of a circuit being the sum of the weights of the arcs which compose it). By
analogy to the notion of critical path (for standard scheduling problems of the PERT
type), such a circuit is called a critical circuit of the system. Critical circuits are those

which limit the performances of the system and the value
1

λ
= 1

ρ(Ā1)
is the maximum

production rate which can be obtained. In addition, the eigenvectors associated with
the eigenvalue λ = ρ(Ā1) provide the various possible initial conditions enabling to
obtain these maximum performances from the system.

For the effective calculation of λ, we can use Karp’s algorithm (1978) to find the
circuit of maximum average weight in G(Ā1) (see above, Algorithm 1, Sect. 4.2).

For further details concerning the applications of the dioid (R∪ {−∞}, Max,+)

to discrete dynamic systems that can be represented by event graphs, we refer to
Baccelli and co-authors (1992) and to Gaubert (1992, 1994, 1995a,b).

Exercises

Exercise 1. Proof of the Perron–Frobenius Theorem
A real square matrix A = (aij) is said to be nonnegative (denoted A ≥ 0) or

positive (denoted A > 0) if all its entries are nonnegative (aij ≥ 0) or positive
(aij > 0).

(1) A n × n matrix A = (aij) is said to be reducible if there exists a permutation
matrix P such that:

PAPT =
[

B 0
C D

]

where B and D are square matrices. Otherwise A is said to be irreducible.

(a) Lemma 1
Show that A ≥ 0 is an irreducible n × n matrix if and only if we have:

(I+ A)n−1 > 0.

(b) Deduce from the above that if we denote Ap = (a(p)

ij ) the pth power of A,
A ≥ 0 is irreducible if and only if, for any i and j, there exists an integer
q ≤ n such as a(q)

ij > 0.
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(c) We denote G(A) the directed graph associated with the matrix A; this is a
graph having n vertices s1, s2, . . . , sn with an arc (si, sj) if and only if aij �= 0.

Show that A is irreducible if and only if G(A) is strongly connected.
(2) Perron Theorem (1907)

We define an order relation on the n×n matrices by A ≥ B if and only if aij ≥ bij
for any i and j. We denote A > B if and only if aij > bij for any i and j.

To study the spectrum of an irreducible matrix A ≥ 0, let us consider for any
vector x = (x1, . . . , xn) ≥ 0 (x �= 0), the number

rx = min
xi �=0

{
(Ax)i

xi

}

It is clear that rx ≥ 0 and that rx is the greatest real number ρ for which:

ρx ≤ Ax.

(a) Show that the function: x → rx has a maximum value r for at least one vector
z > 0.

(b) Let r = rz = Maxx>0 {rx}. Show that

r > 0, A z = r z and z > 0.

(c) Show that the modules of all the eigenvalues of A are not greater than r.

Deduce that there exists a unique eigenvector associated with r.
(3) Frobenius Theorem (1912)

For any complex matrix B, let |B| denote the matrix whose entries are |bij|.
(a) Lemma 2

If A is irreducible and A ≥ |B|, show that for any eigenvalue γ of B, we have

r ≥ |γ|.
Show that we have the equality r = |γ| if and only if,

B = eiϕ D A D
−1

where eiϕ = γ/r and D is a diagonal matrix whose diagonal elements have
modules equal to 1 (i.e. |D| = I).

(b) If a matrix A ≥ 0 is irreducible and has h eigenvalues of modulus ρ(A) = r,

show that these values are equal to λk = r ei 2k π
h (for k running from 0 to

h − 1).
These are the roots of the equation λh = rh.

(c) Finally, show that if h > 1, there exists a permutation matrix P such that

P A PT =

⎡

⎢
⎢⎢⎢
⎣

0 A12 0 . . . 0
0 0 A23 . . . 0
: :
0 . . . . . . 0 Ah−1,h
Ah1 0 . . . . . . 0

⎤

⎥
⎥⎥⎥
⎦
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[Answers: see Gantmacher (1966), Chap. 13.

(1) (a) A possible way is to show that, for any column vector y ≥ 0 (y �= 0), the
inequality (I + A)n−1 y > 0 is satisfied and that it is equivalent to the fact
that the vector z = (I+A) y always has a number of zero components lower
than the number of zero components of y.

(2) (a) Use the fact that while rx is not necessarily continuous on the set of x ≥ 0
and

∑
x2

i = 1, on the contrary, ry with y = (I+ A)n−1 x is continuous (see
Lemma 1) on this set.

(b) Just consider ru with u = (1, 1, . . . , 1).
(3) (a) Consider y such that B y = γ y. Then show successively that

|γ||y| ≤ |C||y| ≤ A|y|, |y| ≤ r, and when|γ| = r, |C| = A,

yj = |yj|eiϕj yields D = {eiϕ1 , . . . , e
iϕn }.

(b) Use Lemma 2 with A z = rz, z > 0 and y(k) = Dkz.]

Exercise 2. Asymptotics of the Perron Eigenvalues and Eigenvectors
Let Ap be a n× n real matrix with nonnegative entries dependent on a large real

parameter p.
We consider the spectral problem

(1) ApUp = λpUp, Up ∈ (R+)n\{0}, λp ∈ R+.

In the case where Ap is irreducible, the Perron Frobenius theorem shows that λp
is unique and that there exists a unique Up satisfying

∑
(Up)i = 1. The aim in this

exercise is to determine the asymptotic values of λp and Up from those of Ap.

(1) We assume that, when p tends to+∞, (Ap)
1/p
ij has for any i, j = 1, . . . , n, a limit

Aij and that A = (Aij) is irreducible.

(a) Show then that (λp)
1/p has as a limit ρMax(A), the eigenvalue of A in

(R+, Max,×), in other words the maximum value of the geometric mean of
the weights of the circuits of the graph G(A) associated with A.

(b) We call critical circuit, a circuit for which this weight is reached. The critical
graph CG(A) is the subgraph of G(A) restricted to the vertices and to the
arcs which belong to a critical circuit. We set Ã = (ρMax(A))−1 A.
Show that if the critical graph CG(A) is strongly connected, then

lim
p→+∞(Up)

1/p

i = (Ã)∗ij
Maxk(Ã)∗kj

where j is an arbitrary vertex of this critical class and where (Ã)∗ is the
quasi-inverse of Ã in (R+, Max,×).

(2) We consider now the case where the nonzero coefficients of Ap have an asymp-
totic expansion of the form

(2) (Ap)ij ∼ aijA
p

ij

where A is irreducible.
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(a) Show that we have

(3) λp ∼ ρ
(

a
CG(A)

)
(ρMax(A))

p

where ρMax(A) is the eigenvalue of A in (R+, Max,×), aCG(A) the matrix
obtained from the matrix a = (aij) by substituting 0 to the coefficients aij
such that the arc (i, j) is not in the critical graph CG(A), and where ρ(·)
denotes the Perron eigenvalue.

(b) Show on an example, that in general, (3) does not imply the convergence of(
Up

)1/p when p →+∞.
(c) Show that if aCG(A) has only one basic class, then

(4) (Up)i ∼ ui(Ui)
p

where U = (Ui) is a column of (Ã)∗ corresponding to a vertex of the critical
graph and where u = (ui) is the unique Perron eigenvector of aCG(A).

(3) Consider the transfer matrix of the simplest one-dimensional Ising model, (see
Baxter 1982, Chap. 2):

A1/T =
[

exp ((J + H)/T) exp(−J/T)

exp(−J/T) exp((J − H)/T)

]
, with J > 0, H ∈ R

where T is the temperature that we let decrease downwards to 0.
Show that:

λ1/T ∼ Max

{
exp

(
J + H

T

)
, exp

(
J − H

T

)}
.

When H > 0, show that

U1/T ∼
(

1

exp
(−2J−H

T

)
)

and when H < 0

U1/T ∼
(

exp
(−2J−H

T

)

1

)

.

[Answers: see Akian et al. (1998).

(1) From the spectral problem in (R+, Max,×).
(2) (a) From the spectral problem in the semi-field JMax.

(b) Ap =
[

1+ cos (p)e−p e−2p

e−2p 1

]
,

lim inf
(
(Up)2
(Up)1

)1/p = e−1

< lim sup
(

(Up)2
(Up)1

)1/p = e.
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(c) From the following theorem: an irreducible matrix A = (a, A) ∈ (JMax)
n×n

has a unique eigenvector (up to a given factor) if and only if it has a unique
basic class.

The generalization to the case of several basic classes can be found in the above
quoted reference.]

Exercise 3. Eigenvalues and Eigenvectors of Some Endomorphisms in Infinite
Dimensions

The aim of this exercise is to extend to infinite dimensions the characterization
of the eigenvalues and eigenvectors studied in this chapter for idempotent dioids
featuring multiplicative group structure, such as the dioids (R ∪ {−∞}, Max,+)

and {R ∪ {+∞}, Max, .}. We consider here the dioid D = (R ∪ {−∞}, Max,+).
Let X be a totally bounded metric space (in other words, for any ε > 0 there exists

a finite covering of X with balls with radius ε).
We consider then the semi-module C(X, D) of continuous and bounded functions

f: X → D, where the dioid D is endowed with the metric ρ(a, b) = |ea− eb|, as well
as an “integral operator of kernel a” by:

(Af )(x) = sup
y∈X

{a(x, y)+ f (y)}

where a: X × X → D is supposed to be given. In the case where the element
sup
y∈X

a(y, y) exists, it will be called trace of A and denoted Tr(A).

(1) Show that if the kernel a: X × X → D of the integral operator is a uniformly
continuous bounded function of the first argument and equicontinuous w.r.t. the
second argument, then A is a continuous endomorphism of the semi-module
C (X, D).

(2) Show that if we assume that X is a totally bounded metric space and that the
kernel a: X×X → D of the endomorphism A is a uniformly continuous bounded
function of the first argument and equicontinuous w.r.t. the second, then there
exists a sub-semi-module J of the semi-module C (X, D) (J �= 0) and an element
λ ∈ D such that:

(Af )(x) = λ+ f (x)

for any f ∈ J, and that the maximal element of the set of such λ is defined as

λ = Sup
i∈N

λ(i)

where λ(i) = (Tr Ai)
1
i .

[Answer: see Lesin and Samborskii (1992) (difficult).
For a similar study of eigenvalues and eigenvectors in infinite dimensions on

the dioid (R, Min, Max), see Gondran and Minoux (1997, 1998) and also Chap. 7,
Sect. 6.4.]



Chapter 7
Dioids and Nonlinear Analysis

1. Introduction

Most of the problems dealt with in the preceding chapters have concerned finite
dimensional or discrete problems. The aim of the present chapter is to show that
the structures of dioids lend themselves to defining, in the continuous domain, new
branches of nonlinear analysis.

The basic idea is to replace the classical field structure on the reals by a dioid struc-
ture. Thus, a new branch of nonlinear analysis will correspond to each type of dioid.
This approach was pioneered by Maslov (1987b), Maslov and Samborskii (1992),
under the name of idempotent analysis. (The underlying dioid structure considered
being (R ∪ {+∞}, Min,+), the so-called MINPLUS dioid).

From an historical point of view, the concept of capacity due to Choquet (1953)
may also be viewed as a starting point. We recall the definition of the Choquet
capacity of a function f: E → R on a subset A ⊂ E:

CA(f ) = inf
x∈A

{f (x)}.
Now, we observe that the above may be considered as an analogue to the Rieman

integral, when the operation inf is taken in place of addition and the operation + is
taken in place of multiplication. Indeed, the Rieman integral

∫

A
f (x) dx on an interval

A = [α, β] of R, may be viewed as the limit of finite sums of the form
n∑

i=1
f (xi) Δ(xi)

(with x0 = α, xn = β, Δ(xi) = xi − xi−1) when n tends to infinity and Δ(xi) tends
to 0.

In the suggested substitution, the above expression becomes:

lim
Δxi→0

{
inf

i=1,...,n
{f (xi)+Δ(xi)}

}
= inf

x∈A
{f (x)} = CA(f ).

After Choquet this approach has been further developed in the context of fuzzy
set theory with the introduction of the concept of fuzzy measures and the Sugeno
integral (Sugeno 1977).

257



258 7 Dioids and Nonlinear Analysis

Special emphasis will be placed in the present chapter on the analyses related
to the dioids MIN-PLUS (R ∪ {+∞}, Min,+) and MIN-MAX (R ∪ {+∞,−∞},
Min, Max). It will be seen that, in a sense, the proposed approach bears a close
similarity to the theory of distributions for the nonlinear case; here, the operator is
“linear” and continuous with respect to the dioid structure, though nonlinear with
respect to the classical structure (R,+,×).

The main interest of such extensions lies in the fact that the structures of a dioid
and moduloid will turn out to play a role similar to the one played by fields and
vector fields when proceeding from linear to nonlinear problems. This idea can be
illustrated by considering three classical problems in Physics, namely:

– The heat transfer equation: find u(x, t) such that:
⎧
⎨

⎩

∂u

∂t
− ∂2u

∂x2
= 0 t > 0, x ∈ R

u(x, 0) = u0(x) x ∈ R

(1)

where u0(x) is supposed to be given for all x ∈ R.
– The Halmilton–Jacobi equation in classical mechanics: find u(x, t) such that:

⎧
⎨

⎩

∂u

∂t
+ 1

2

(
∂u

∂x

)2

= 0 t > 0, x ∈ R

u(x, 0) = u0(x) x ∈ R

(2)

where u0(x) is supposed to be given for all x ∈ R.
– The following variant of the Bürgers equation in fluid mechanics: find u(x, t)

such that:
⎧
⎨

⎩

∂u

∂t
+ 1

2
u

∣∣∣∣
∂u

∂x

∣∣∣∣ = 0 t > 0, x ∈ R

u(x, 0) = u0(x) x ∈ R

(3)

where u0(x) is given for all x ∈ R.

For all the above equations, it is easily checked that, if u1(x, t) and u2(x, t) are
any two solutions to (1) (resp. (2), (3)) and if λ and μ are two real constants, then:

λu1(x, t)+ μu2(x, t)

is a solution to the heat transfer equation (1);

Min{λ+ u1(x, t);μ+ u2(x, t)}
is a solution to the Hamilton–Jacobi equation (2);

Min{Max{λ; u1(x, t)};Max{μ; u2(x, t)}}
is a solution to the Bürgers equation (3).
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It is therefore realized that the solution sets for the Hamilton–Jacobi and Bürgers
equations are no longer vector (sub)fields (as in the case of the heat transfer equation)
but (sub) moduloids based on the MIN-PLUS and MIN-MAX dioids respectively.
This is further confirmed by considering the various explicit solutions corresponding
to (1)–(3), stated below:

u(x, t) =
∫

u0(y)
1

2
√

πt
e−

(x−y)
2

4t dy (4)

u(x, t) = inf
y

{
u0(y)+ (x − y)2

2t

}
(5)

u(x, t) = inf
y

{
Max

{
u0(y);

∣∣∣∣
(x − y)

t

∣∣∣∣

}}
(6)

(4) is the classical solution to the heat transfer equation (see e.g. Dautray and Lions
1985); (5) is the so-called Hopf solution to Hamilton–Jacobi (see e.g. Lions 1982).

In each case, it is observed that the general solution is the convolution product
of u0(x) with the so-called “elementary solution” to the corresponding equation(

1

2
√

πt
e−x2/4t for(1); x2

2t
for(2); |x|

t
for(3)

)
. Indeed, (5) is obtained by using the

MIN-PLUS convolution product:

f ⊗ g(x) = inf
y
{g(y)+ f (y − x)}

and (6) is obtained by using the MIN-MAX convolution product:

f ⊗ g(x) = inf
y
{Max{g(y); f (y − x)}}

More generally, taking ⊕ = Min and ⊗ as the ordinary addition for real numbers,
and considering the functional space R

X (the set of functions: X → R) (5) can be
seen as a special case of a mapping of the form:

(Ag)(x) = inf
y∈X

{k(x, y)+ g(y)} (7)

Such functional mappings are “linear” with respect to the MIN-PLUS dioid since,
in this case:

A(λ⊗ f ⊕ μ⊗ g) = λ⊗ Af ⊕ μ⊗ Ag

(∀λ, μ ∈ R, ∀f , g ∈ R
X).

Indeed, relation (7) may be viewed as the application to g of an integral operator
with kernel k, and could be formally denoted:

⊕∫

X

k(x, y)⊗ g(y)dy
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Going one step further, in the functional space R
×, we can define the MIN-PLUS

scalar product:

〈f , g〉 = inf
x∈X

{f (x)+ g(x)} def=
⊕∫

X

f (x)⊗ g(x)dx

which can be taken as a starting point to construct an analogue to Hilbert analysis,
derive analogues to the Riesz and Hahn-Banach theorems, to Fourier transforms, to
distributions and measure theory, etc.

In particular, an analogue to the Fourier transform in MIN-PLUS analysis is
recognized as the so-called Legendre–Fenchel transform:

f̂ (p) = sup
x
{〈p, x〉 − f (x)}.

This transform is known to have many applications in Physics: this is the one which
sets the correspondence between the Lagrangian and the Hamiltonian of a physical
system; which sets the correspondence between microscopic and macroscopic mod-
els; which is also at the basis of multifractal analysis relevant to modeling turbulence
in fluid mechanics, etc.

Another useful transform, called the Cramer transform (for details, see Sect. 8
below) has been investigated, in particular by Quadrat (1990) and later Quadrat et al.
(1994, 1995) who have exhibited the analogy between optimization and probability
(this issue is the subject of Exercise 5 at the end of the present chapter). This analogy
has its origin in the fact that the dioid (R+,+,×) is the one underlying measure and
probability theory.

In Sect. 2 based on the MINPLUS scalar product, a special concept of equiva-
lence among functions (the so-called inf-φ-equivalence) is introduced, which may
be viewed as an analogue to almost everywhere equality (a.e. equality) of measur-
able functions. It is shown that a new derivation of lower-semi-continuous (l.s.c.)
functions and convex analysis can be deduced.

In Sect. 3, we show how MINPLUS analysis turns out to provide an appropriate
framework for the development of nonlinear wavelet analysis. This generalizes the
classical linear wavelet analysis for L2 functions to “linear” (in the sense of the
MIN-PLUS dioid) wavelet analysis for l.s.c. and convex l.s.c. functions.

In Sect. 4, it is shown how the MINPLUS scalar product lends itself to defining
weak convergence concepts, and to exhibiting their links to the so-called epicon-
vergence (or Γ-convergence) which turn out to be increasingly used in Physics and
Applied Mathematics.

In Sect. 5, MINPLUS analysis is used to define weak solution concepts for first
and second order partial differential equations. Some explicit (weak) solutions to
first order nonlinear partial differential equations will then be derived in Sect. 6 in
the context of MINPLUS analysis through the use of the so-called inf-convolution.

MINMAX analysis is considered in Sect. 7, where it is shown how, by introducing
the MINMAX scalar product, the whole approach may be extended to account for
quasi-convex analysis. The Infmax-affine transform is introduced which plays a role
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in MINMAX analysis which is similar to the one played by the Legendre–Fenchel
transform in MINPLUS analysis.

Finally, relations between MINPLUS analysis, the Cramer transform and the
theory of large deviations are studied in Sect. 8.

2. MINPLUS Analysis

Our primary aim will be to show that, by taking (f , g) = inf
x
{f (x) + g(x)} as the

“scalar product” of two functions, one can reconstruct and synthesize an entire branch
of nonlinear analysis by means of a new formalism of the “variational” kind for
generalized functions, and, in particular, for lsc (lower semi-continuous) and usc
(upper semi-continuous) functions.

Let X be a Banach space having R as underlying set of scalars. We will denote |.|
the norm on X, X∗ the topological dual of X and < ., . > the product in the duality
X∗, X. When X is a Hilbert space, we will identify X∗ and X. We denote by Ω a
locally compact open set of X.

We consider functions f: Ω → R̂ = R∪ {+∞}. We will say that such a function
is proper if it is bounded from below (f (x) ≥ m, ∀x ∈ Ω) and not identically equal
to +∞.

Definition 2.1. (Maslov 1987a,b)
For two functions f and g: Ω → R̂, we define the “MINPLUS scalar product”

denoted (f, g) as:
(f , g) = inf

x∈Ω
{f (x)+ g(x)}.

Definition 2.2. For any family φ of functions: Ω → R (φ ⊂ R
Ω
), we define the

inf-φ- equivalence of two functions f and g as:

f
φ≈ g ⇔ (f , ϕ) = (g, ϕ) ∀ϕ ∈ φ

and the bi-conjugate of f with respect to φ, denoted Pφf , as:

Pφf (x) = sup
ϕ∈φ

[(f , ϕ)− ϕ(x)].

Our approach differs from that of Maslov in that we consider families φ of test-
functions not limited to continuous or usc functions.

Also note that Pφf can be considered as the bi-conjugate of f with respect to φ in
the sense of Moreau (1970).

Given a proper function f, we consider the solutions u of the equation:

u
φ≈ f

where
φ≈ denotes inf-φ-equivalence.
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For any family of test functions φ, we can state:

Theorem 1. (Gondran 1996)
The set of functions inf-Φ- equivalent to a given proper function f has a smallest

element which will be referred to as the inf-solution, equal to Pφf .

Proof. The proof will be given in three stages:

(a) The set of functions inf-φ- equivalent to f has a smallest element; (b) Pφf is
inf-φ- equivalent to f, (c) it is the smallest element.

(a) Let ui, i ∈ I, be the set of functions inf-φ- equivalent to f, in other words such
that (ui, ϕ) = (f , ϕ)∀ϕ ∈ φ.
Let us show that the function u defined for any x as:

u(x) = inf
i∈I

ui(x)

is also inf-φ- equivalent to f.
As u(x) ≤ ui(x)∀x, we have (u, ϕ) ≤ (ui, ϕ) = (f , ϕ), ∀ϕ ∈ φ. If u is not inf-φ-
equivalent to f, there exists ϕ0 ∈ φ and ε > 0 such that:

(u, ϕ0)+ ε = (f , ϕ0)

There then exists x0, such that:

u(x0)+ ϕ0(x0) ≤ (u, ϕ0)+
ε

3

and for this x0, there exists i0 ∈ I such that:

ui0(x0) ≤ u(x0)+ ε

3
.

Thus, finally, we have:

(f , ϕ0) = (ui0 , ϕ0) ≤ ui0(x0)+ ϕ0(x0) ≤ u(x0)+ ϕ0(x0)+ ε

3

≤ (u, ϕ0)+
2ε

3
≤ (f , ϕ0)−

ε

3

The inconsistency of the above shows that u is inf-φ- equivalent to f.
(b) For any ϕ ∈ φ, we have:

(f , ϕ)− ϕ(x) = inf
y∈Ω

{f (y)+ ϕ(y)} − ϕ(x) ≤ f (x)+ ϕ(x)− ϕ(x) = f (x),

therefore:
Pφf (x) = sup

ϕ∈φ

{(f , ϕ)− ϕ(x)} ≤ f (x),

from which we deduce:
(Pφf , ϕ) ≤ (f , ϕ).
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Conversely, we have:

(Pφf , ϕ) = inf
x∈Ω

{
Pφf (x)+ ϕ(x)

}

= inf
x∈Ω

{

sup
ϕ1∈φ

[
(f , ϕ1)− ϕ1(x)

]+ ϕ(x)

}

≤ inf
x∈Ω
{(f , ϕ)− ϕ(x)+ ϕ(x)} = inf

x∈Ω
(f , ϕ) = (f , ϕ),

which completes the proof that PΦf is inf-φ- equivalent to f.
(c) As PΦf is inf-φ- equivalent to f, to show that u = Pφf it suffices to show that

there cannot exist x0 ∈ Ω such that

u(x0) < Pφf (x0)

Let us assume that there exists such an x0 and let us set

ε = Pφf (x0)− u(x0) > 0

As u is inf-φ- equivalent to f, we have, as in (b), Pφu(x) ≤ u(x) and as u is the
smallest element of the set of functions inf-φ- equivalent to f, Pφu = u.

By definition of Pφf (x0) there then exists ϕ0 ∈ φ such that:

Pφf (x0) ≤ (f , ϕ0)− ϕ0(x0)+ ε

2

From the above we deduce:

(f , ϕ0)− ϕ0(x0)+ ε

2
≥ Pφf (x0) = u(x0)+ ε = Pφu(x0)+ ε

≥ (u, ϕ0)− ϕ0(x0)+ ε

= (f , ϕ0)− ϕ0(x0)+ ε

the inconsistency of the above implies that u = Pφf . "#
This smallest element of the equivalence class of proper functions inf-φ- equivalent

to f as defined by the equation u
φ≈ f , will be referred to as the inf-φ- representative.

Let us now study some particular classes of test functions.

Example 2.3. Let Δ be the set of Dirac inf-functions δx0 defined as:

δx0(x) =
{

0 if x = x0
+∞ otherwise

}

We then have:
(f , δx0) = inf

x

{
f (x)+ δx0(x)

}
= f (x0)

and the inf-Δ-equivalence corresponds to the classical pointwise equality between
functions.

The following examples concern lsc functions whose definition and some related
properties are recalled [see Berge (1959) for further developments on these lsc
functions].
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Definition 2.4. A function f is lower semi-continuous (lsc) at x if, for every sequence
xn converging towards x, we have:

lim inf
xn→x

f (xn) ≥ f (x)

We recall that the limit inferior (lim inf) of a sequence of reals corresponds to the
smallest accumulation point of this sequence.

Proposition 2.5. Let f be a function: X → R. The following conditions are equiva-
lent:

(i) f is lsc for all x ∈ X,
(ii) the set {x|f (x) ≤ α} is closed for any α ∈ R,

(iii) the epigraph of f, {(x, α)|f(x) ≤ α} is a closed set of X × R. "#
Definition 2.6. For any function f: X → R, there exists a largest lsc function with f
as upper bound.

We will refer to it as the lsc closure of f and we will denote it f∗:

f∗(x) = sup{g(x): g lsc and g ≤ f }
In the same way, there exists a smallest upper semi-continuous (usc) function with f
as lower bound; this is the usc closure of f, which we will denote f ∗ :

f ∗(x) = inf {g(x): g usc and g ≥ f }
Remark 2.7. We verify that f∗ is the lsc closure of f if and only if, for any x, we have
the two properties:

∀xn → x, lim inf f (xn) ≥ f∗(x).

∃x̄n → x such that lim inf f (x̄n) = f∗(x). ||
For ρ > 0, let us denote:

ρf (x) = inf {f (y): |y − x| < ρ},
ρf (x) = sup{f (y): |y − x| < ρ}.

Proposition 2.8. ρf (x) (resp. ρf (x)) is nonincreasing (resp. nondecreasing) with
respect to ρ, and for every ρ > 0 :

ρf (x) ≤ f∗(x) ≤ f (x) ≤ f ∗(x) ≤ ρf (x)

and

f∗(x) = lim
ρ→0+

ρf (x) = sup
ρ>0

ρf (x), f ∗(x) = lim
ρ→0+

ρf (x) = inf
ρ>0

ρf (x). "#
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Remark 2.9. The continuity of f in x can be expressed as:

∀ε > 0, ∃ρ(x, ε) such that ρf (x)− ε ≤ f (x) ≤ρ f (x)+ ε.

The lower semi-continuity of f in x can be expressed as:

∀ε > 0, ∃ρ(x, ε) such that f (x) ≤ρ f (x)+ ε.

Example 2.10. Let Δ̃ be the set of functions δy,ρ defined as:

δy,ρ(x) =
{

0 if |x − y| < ρ

+∞ otherwise

}

We then have

(f , δx0,ρ) = inf {f (x): |x − x0| < ρ} = ρf (x0).

Proposition 2.11. Two functions f and g are said to be inf-Δ̃-equivalent if for every x:

ρf (x) =ρ g(x)∀ρ > 0, ∀x

this then yields:
PΔ̃f = f∗ = g∗ = PΔ̃g.

Proof. For every ρ > 0, we have:

PΔ̃f (x) = sup
ρ,y

{
(f , δy,ρ)− δy,ρ(x)

}

= sup
ρ,y

{
ρf (y)− δy,ρ(x)

} = sup
y/|x−y|<ρ

ρf (y).

Since, if |x − y| < ρ:
2ρf (x) ≤ ρf (x)

and sup
ρ>0

2ρf (x) = f∗(x), we have:

f∗(x) ≤ PΔ̃f .

On the other hand,

PΔ̃f = sup
|x−y|<ρ

{ρf (y)} ≥ sup
ρ

ρf (x) = f∗(x)

from which we deduce:
PΔ̃f = f∗. "#

Example 2.12. Let C be the set of continuous functions on Ω. ||
Proposition 2.13. The smallest element inf-C-equivalent to a proper function f is f∗,
its lsc closure. We therefore have PCf = f∗.

From the above we deduce that two functions f and g are inf-C-equivalent if and
only if they have the same lsc closure: f∗ = g∗.
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Proof.
PCf (x) = sup

ϕ∈C
{(f , ϕ)− ϕ(x)}

Now (f , ϕ)− ϕ(x) is a continuous function bounded from above by f(x) and of the
form −ϕ(x)+ constant. From this we deduce that:

PC f (x) = sup
ψ

{ψ(x): ψ ∈ C and ψ(x) ≤ f (x)}

is the largest continuous function bounded from above by f, and therefore that PCf
is the lsc closure of f. "#
Remark 2.14. We obtain the same result by taking the lsc functions instead of the
continuous functions as the set of test functions.

Indeed, in this case (f , ϕ)− ϕ(x) is the largest lsc function of the form −ϕ(x)+
constant and bounded from above by f(x); see for example Moreau (1970).

Therefore, we have:
Plscf (x) = f∗.

Definition 2.15. For any function f: Ω→ R, we refer to as the inf and sup Moreau-
Yosida transforms the functions fλ and f λ defined for λ > 0 as:

fλ(x) = inf
y∈Ω

{
f (y)+ 1

2λ
|x − y|2

}
,

f λ(x) = sup
y∈Ω

{
f (y)− 1

2λ
|x − y|2

}
.

We have the following classical properties:

fλ(x) ≤ f∗(x) ≤ f (x) ≤ f ∗(x) ≤ f λ(x),

fλ(x) (resp. f λ(x)) is nonincreasing (resp. nondecreasing) with λ and

lim
λ→0+ fλ(x) = sup

λ>0
fλ(x) = f∗(x); lim

λ→0+ f λ(x) = inf
λ>0

f λ(x) = f ∗(x).

Let us recall another property of the Moreau-Yosida transform which is extensively
used in nondifferentiable optimization:

∀λ > 0: inf
x∈Ω

f (x) = inf
x∈Ω

fλ(x)

and, if f is lsc convex, fλ is differentiable in any x ∈ Ω with

∇fλ(x) = 1

λ
(x − ȳ(λ)) and ȳ(λ) = arg min

y

{
f (y)+ 1

2λ
|x − y|2

}

(see Exercise 3 at the end of the present chapter).
Thus, at least in theory, one can replace the minimization of f which is not every-

where differentiable with the minimization of fλ which is differentiable. This is the
basis of a new class of efficient optimization algorithms for lsc convex functions,
namely proximal algorithms, see Exercise 4.
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Example 2.16. Let Q be the set of quadratic (strictly) convex functions on Ω.

Proposition 2.17. The smallest element inf-Q-equivalent to a proper function f is f∗,
its lsc closure.

Proof. The functions ϕλ,y(x) = 1

2λ
|x − y|2 form a special class Q̃ of Q and:

(f , ϕλ,y) = inf
x∈Ω

{
f (x)+ 1

2λ
|x − y|2

}
= fλ(y).

According to Definition 2.2, if φ1 ⊂ φ2 then Pφ1 f ≤ Pφ2 f .
Since Q̃ ⊂ Q ⊂ C, this yields:

PQ̃ f (x) ≤ PQ f (x) ≤ PC f (x) = f∗(x)

(according to Proposition 2.13). Now:

PQ̃f (x) = sup
λ>0,y∈Ω

[
fλ(y)− 1

2λ
|x − y|2

]
≥ sup

λ>0
[fλ(x)] = f∗(x)

from which we deduce: PQ̃f = PQ f = f∗. "#
Example 2.18. Let C̃ be the set of continuous and inf-compact functions, i.e. such
that the level set {x|ϕ(x) ≤ λ} is compact for any finite λ.

This yields Q̃ ⊂ C̃ ⊂ C. We deduce PQ̃ f ≤ PC̃ f ≤ PC f and as

PQ̃f = PCf = f∗, this implies PC̃f = f∗.

In the above examples, we considered the functions of an open set Ω of X in R. For
the following example, we consider the case of functions: X → R.

Definition 2.19. For any proper function f: X → R, we refer to as the Legendre–
Fenchel transform the function f̂ = F(f ): X∗ → R defined as:

f̂ (y) = F(f )(y) = sup
x∈X

{〈x, y〉 − f (x)} .

This Legendre–Fenchel (or Fenchel) transform corresponds to the analogue of the
Fourier transform when one goes from the space of the functions L2(Rn) to the
space of the lsc convex proper functions. For more details on this transform, see
Rockafellar (1970), Attouch and Wets (1986) and Exercise 3.

The property to be highlighted here is that F(F(f)) is none other than the convex lsc
closure of f which we will denote f∗∗. The Legendre–Fenchel transform is therefore
an involution on the set of convex lsc proper functions.

Example 2.20. Let L be the set of continuous linear functions on X.

Proposition 2.21. Two functions are inf-L-equivalent if they have the same
Legendre–Fenchel transform and the smallest element inf-L-equivalent to a given
proper function f is f∗∗, its lsc convex closure, PLf = f∗∗.



268 7 Dioids and Nonlinear Analysis

Proof. If ϕ(x) ∈ L is written ϕ(x) = − 〈
pϕ, x

〉
with pϕ ∈ X∗, then:

(f , ϕ) = inf
x

(
f (x)− 〈

pϕ, x
〉) = − sup

x

(〈
pϕ, x

〉− f (x)
) = −f̂ (pϕ)

where f̂ is the Fenchel transform of f; this yields the first part of the proposition.

Furthermore, we have PLf (x) = sup
pϕ∈X∗

[
−f̂ (pϕ)+ 〈

pϕ, x
〉]

, an expression equal

to f∗∗, the lsc convex closure of f, f∗∗(x) = sup {ψ(x) : ψ(x) ≤ f (x), and
ψ(x) convex and lsc}, see for example Rockafellar (1970), Sect. 12. "#
Remark 2.22. By observing that the Hamiltonian of a physical system is equal to the
Legendre–Fenchel transform of its Lagrangian, one can say that two Lagrangians are
inf-L-equivalent if they have the same Hamiltonian. One can therefore understand
the importance of this inf-L-equivalence in Physics.

An interesting problem is to determine the set of various distinct equivalence
classes which one can define from MINPLUS analysis. We have highlighted three
of them: Example 2.3 with pointwise equality, the Examples 2.10, 2.12 and 2.16
corresponding to equality of lsc closures and Example 2.18 corresponding to the
equality of lsc convex closures.

3. Wavelets in MINPLUS Analysis

Through wavelet transform, as introduced by Morlet (1983), we can analyze signals
presenting several characteristic scales.

This wavelet transform of a function f : R → R is given for any a ∈ R+ and
b ∈ R by:

Tf (a, b) = 1√
a

+∞∫

−∞
f (x)Ψ

(
x − b

a

)
dx

where ψ is the mother “wavelet” function also referred to as “analyzing function”;
this is a function with zero mean and featuring some oscillations, see Grossmann
and Morlet (1984).

These wavelet transforms thus enable a multiresolution analysis of L2 functions,
see for example Mallat (1989) and Meyer (1992). We discuss below a multiresolution
analysis of lsc functions thanks to the introduction of new transforms analogous to
the wavelets, but in a nonlinear framework.

Definition 3.1. The MINPLUS-wavelet transform of a function f: R
n → R is given

for any a ∈ R+ and b ∈ R
n by:

Tf (a, b) = inf
x∈Rn

(
f (x)+ h

(
b− x

a

))

where h is an inf-compact usc function which, similarly to classical wavelet trans-
forms, will be referred to as an “analyzing” function.
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Remark 3.2. Examples 2.10 and 2.16 correspond to the cases where the set φ of test
functions is defined from an “analyzing” function h, equal respectively to

h(x) = δ0,1(x) and h(x) = 1

2
|x|2 .

Theorem 1 and Propositions 2.11 and 2.21 provide the reconstruction formula for an
lsc function f for Examples 2.10 and 2.16:

f (x) = sup
a∈R+,b∈Rn

(
Tf (a, b)− h

(
b− x

a

))
.

∣∣∣∣

Remark 3.3. We show that, in addition, we have for h(x) = δ0,1(x), h(x) = 1

2
|x|2

and h(x) = |x|,
f (x) = sup

a∈R+
Tf (a, x).

∣∣∣∣

In a way similar to the MINPLUS analysis, it is possible to introduce the
MAXPLUS analysis based on the MAXPLUS scalar product defined as:

(f , g)+ = sup
x∈Rn

(f (x)+ g(x)).

We then obtain analogous results, the lsc functions being replaced by usc functions
and the convex functions by concave functions.

Finally, by simultaneously using MINPLUS analysis and MAXPLUS analysis, we
now introduce new classes of generalized functions.

Definition 3.4. For two functions f and g: Rn → R, we introduce the scalar biproduct
by:

((f , g)) = {(f , g)−, (f , g)+} =
{

inf
x∈Rn

{f (x)+ g(x)} , sup
x∈Rn

{f (x)− g(x)}
}

Definition 3.5. For any family φ of functions: R
n → R, we define the φ-equivalence

of two functions bounded on R
n as:

f
φ≈ g ⇔ ((f , ϕ)) = ((g, ϕ)) ∀ϕ ∈ φ

We easily verify that the function f and g are C̃-equivalent if and only if f∗ = g∗ and
f ∗ = g∗, and are L-equivalent if and only if f∗∗ = g∗∗ and f ∗∗ = g∗∗.

The classes of φ-equivalent functions can be considered as distributions in
nonlinear analysis.

With every bounded function f and every usc inf-compact function h we can
associate, for every a ∈ R+ and b ∈ R

n a simultaneous analysis of the lower
envelopes of f represented as:

T
−
f (a, b) = inf

x∈Rn

{
f (x)+ h

(
b− x

a

)}
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and of the upper envelopes of f represented as:

T
+
f (a, b) = sup

x∈Rn

{
f (x)− h

(
b− x

a

)}
.

Thus for each of the analyzing functions

h(x) = 1

α
|x|α with α ≥ 1, and h(x) = δ0,1(x)

we verify that:

T
−
f (a, x) ≤ f∗(x) ≤ f (x) ≤ f ∗(x) ≤ T

+
f (a, x).

We can then define the Inf-Sup-Wavelets transform of a bounded function f: Rn → R,
for any a ∈ R+ and b ∈ R

n, by the scalar biproduct:

Tf (a, b) =
((

f (.), h

(
.− b

a

)))
=

{
T
−
f (a, b), T

+
f (a, b)

}
.

It is seen that the non invertibility of the MIN operator is compensated for by
considering the pair

{
T−f , T+f

}
.

Now, by considering Waf (x) = T+f (a, x)− T−f (a, x), we can analyze the global
and local regularity of the function f.

Proposition 3.6. (Gondran, 1997)
The function f is Hölderian of exponent H, 0 < H ≤ 1, if and only if there exists

a constant C such that for any a, we have one of the following conditions:

(i) Waf (x) ≤ CaH if h(x) = δ0,1(x)

(ii) Waf (x) ≤ Ca
H

α−H if h(x) = 1

α
|x|α and α > H.

Proof. Case (i) is dealt with in Tricot et al. (1988). It corresponds to the limit

of h(x) = 1

α
|x|α when α → +∞, Waf (x) = af (x) − af (x) corresponding to

the oscillation of f on {y: |y − x| < a}, named the a-oscillation and denoted osc
af (x). "#

We will denote Wα
a f (x) the value of Waf (x) for h(x) = 1

α
|x|α and α > 1.

The function f is said to be fractal if and only if we have:

lim
a→0+

oscaf (x)

2a
= +∞

uniformly with respect to x (see Tricot 1993) or if we have:

lim
a→0+

Wα
a f (x)

2a
α

α−1
= +∞

uniformly with respect to x.
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Proposition 3.7. The function f is Hölderian in the point x0, with exponent H,
0 < H < 1, if and only if there exists a constant C such that for any a, we have
one of the following conditions:

(iii) Waf (x) ≤ C
(
aH + |x − x0|H

)
if h(x) = δ0,1(x)

(iv) Waf (x) ≤ C
(

a
H

a−H + |x − x0|H
)

if h(x) = 1
α
|x|α and α > H.

Here we obtain a converse ((iii) or (iv) implies f Hölderian in x0) which does not
exactly hold with wavelets, see Jaffard (1989).

4. Inf-Convergence in MINPLUS Analysis

We shall see that thanks to the MINPLUS (resp. MAXPLUS) scalar product we can
define concepts of weak convergence, then show the equivalence of some of these
convergences with the epiconvergence (or Γ-convergence) introduced by De Giorgi
(1975) and increasingly used in continuum mechanics (small parameter problems,
homogenization of composite environments, thin films, phase transitions and so on)
stochastic optimization, theories of optimization and approximation, etc. See for
example Attouch (1984), Attouch et al. (1989), Attouch and Thera (1993), and Dal
Maso (1993).

Definition 4.1. For any family φ of functions: Ω → R, we define the semi-inf-φ-
convergence of a sequence of proper functions fn uniformly bounded from below
(fn ≥ m, ∀n) towards proper f as:

lim inf
n→+∞(fn, ϕ) = (f , ϕ) ∀ϕ ∈ φ

Definition 4.2. For any family φ of functions: Ω → R, we define the inf-φ-
convergence of a sequence of proper functions fn, uniformly bounded from below,
towards the proper function f as:

lim
n→+∞(fn, ϕ) = (f , ϕ) ∀ϕ ∈ φ

In the case of Example 2.3, where φ = Δ, the inf-Δ-convergence corresponds exactly
to the simple, classical convergence since we then have:

(fn, δy) = fn(y)→ f (y) = (f , δy) ∀y ∈ Ω.

Examples 2.10, 2.12, 2.16, 2.18 and 2.20 will lead us to retrieve two important classi-
cal convergence concepts in nonlinear analysis: epiconvergence (or Γ-convergence)
and the Mosco-epiconvergence.

Definition 4.3. Given a sequence of proper functions fn, uniformly bounded from
below, we call lsc envelope of fn, the function:

f (x) = lim inf
y→x
n→+∞

fn(y),
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the limit inf being taken when y and n tend simultaneously towards x and +∞
respectively. This lower limit will also be denoted liminf ∗fn.

Similarly, we call usc envelope of fn, assumed to be uniformly upper bounded, the
function:

f̄ (x) = lim sup
n→+∞

y→x

fn(y)

We then prove, see for example Barles (1994), that the following holds:

f (x) = lim
j→+∞

{
inf

{
fn(y) with n ≥ j and |x − y| ≤ 1

j

}}
.

Example 4.4. Consider the sequence of continuous functions fn(x) = e−n x2
.

We have:

lim inf
n→∞ fn(x) =

{
0 if x �= 0
1 if x = 0

However, the lsc envelope f (x) = liminf ∗fn is equal to 0 for any x. For this example
we have a different result for the usc envelope of fn:

f̄ (x) = lim sup∗f (x) =
{

0 if x �= 0
1 if x = 0

}
= lim sup

n→+∞
fn(x).

Example 4.5. On Ω = [0, 1] the sequence of continuous functions fn(x) = a(x) cos
n x, where a(x) is a continuous bounded function, has as lsc envelope:

f (x) = − |a(x)|
and as usc envelope:

f̄ (x) = |a(x)| .
Theorem 2. Every sequence of uniformly lower bounded proper functions fn semi-
inf-C̃ converges towards f , the lsc envelope of the fn, i.e. for any ϕ ∈ C̃,

lim inf (fn, ϕ) = (f , ϕ)

Proof. Refer to Maslov (1987a) and Gondran (1996). "#
Corollary 4.6. If the sequence {fn} inf-C̃-converges towards the lsc function f, then
f is the lsc envelope of {fn}, i.e. f ≡ f .

Proof. Theorem 2 leads to:

(f , ϕ) = lim inf (fn, ϕ) = lim(fn, ϕ) = (f , ϕ) ∀ϕ ∈ C̃

and Proposition 2.13 gives us the uniqueness f = f . "#
Corollary 4.7. If the sequence fn inf-C̃-converges towards f , then it inf-Q̃-converges
and also inf-Δ̃-converges towards f .
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Proof. This is straightforward, as Q̃ ⊂ C̃ and Theorem 2 is valid for the usc functions
and: Δ̃ ⊂ ŨSC, where ŨSC denotes the set of inf-compact usc functions on Ω.

The uniqueness is then deduced respectively from Propositions 2.11 and 2.17. "#
Definition 4.8. (De Giorgi and Attouch 1984; Dal Maso 1993)

A sequence {fn; n ∈ N} epiconverges towards f, lsc, if for any x we have the
following two properties:

(i) For any sequence {xn; n ∈ N} converging towards x, lim inf fn(xn) ≥ f (x),
(ii) There exists a sequence x̄n converging towards x such that f (x) ≥ lim sup fn(x̄n).

This definition can be again written, denoting {Sα} the set of sequences Sα = {xα
n}

converging towards x:

f (x) = inf{Sα}

(
lim inf

xα
n→x

fn(xn)

)

We then have the following theorem:

Theorem 3. (Gondran 1996,b)
In a Banach space, the epiconvergence implies the inf-C̃-convergence.

Proof. Given ϕ ∈ C̃, it must be shown that (fn, ϕ) tends towards (f , ϕ). Since f is
lsc and ϕ compact, there exists x0 such that:

(f , ϕ) = f (x0)+ ϕ(x0).

Since fn converges towards f, there exists x̄n → x0 such that:

lim sup fn(x̄n) ≤ f (x0).

Now:
(fn, ϕ) ≤ fn(x̄n)+ ϕ(x̄n)

and taking the lim sup of this inequality, we find:

lim sup (fn, ϕ) ≤ lim sup [fn(x̄n)+ lim ϕ(x̄n)] ≤ f (x0)+ ϕ(x0)

and consequently:
lim sup (fn, ϕ) ≤ (f , ϕ).

The hypothesis ∀xn → x, lim inf fn(xn) ≥ f (x) implies that f (x) = lim inf∗ fn(x) ≥
f (x).

Theorem 2 then implies that:

lim inf (fn, ϕ) = (f , ϕ) ≥ (f , ϕ).

Finally, we clearly have:
lim(fn, ϕ) = (f , ϕ). "#
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Theorem 4. (Gondran 1996,b)
In R

N, the inf-C̃-convergence, inf-Q̃-convergence, inf-Q-convergence, inf-Δ̃-
convergence coincide with the epiconvergence.

Proof. (a) First let us show that if fn inf -Q̃-converges towards f lsc then f = f .
Theorem 2 shows that lim inf (fn, ϕ) = (f , ϕ)∀ϕ ∈ C̃, hence ∀ϕ ⊂ Q̃ ⊂ C̃.
Therefore if fn inf-Q̃-converges towards f lsc, we have lim (fn, ϕ) = (f , ϕ) =
(f , ϕ) ∀ϕ ∈ Q̃ and according to Proposition 2.17 we have uniqueness, i.e. f = f .

(b) Corollary 2.67 by Attouch (1984) shows that if fn inf-Q̃-converges towards f ,
then fn epiconverges towards f . Theorem 3 then shows that fn inf -C̃-converges
towards f . We therefore clearly have the desired equivalence for Q̃ and Q.

(c) If fn inf-Δ̃-converges towards f lsc, then f = f (same proof as in a)). It
remains to be shown that if fn inf-Δ̃-converges towards f , then fn epiconverges
towards f .

Let us first show that for every sequence xn converging towards x0, lim inf
fn(xn) ≥ f (x0).

We know that ∀ε > 0, there exists ρ0 such that:

(f , δx0,ρ0) ≥ ρf (x0)− ε

2
.

Indeed, as
(f , δx0,ρ0) = ρf (x0) ∀ρ > 0

and as ρf (x0) converges towards f (x0) when ρ → 0+ (f being lsc), ∃ρ0 such that:
ρ > ρ0 implies:

ρf (x0) ≥ f (x0)− ε

2
.

We will denote δx0,ρ0 by ϕ0:
After Theorem 2, since:

lim inf (fn, ϕ0) = (f , ϕ0)

as soon as n ≥ N(ε) we have:

(fn, ϕ0) ≥ (f , ϕ0)−
ε

2

hence:
fn(xn)+ ϕ0(xn) ≥ (fn, ϕ0) ≥ (f , ϕ0)−

ε

2
≥ f (x0)− ε.

Taking the inf limit of the inequality we have:

lim inf fn(xn)+ ϕ0(x0) ≥ f (x0)− ε

in other words:
lim inf fn(xn) ≥ f (x0)− ε ∀ε > 0
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hence the desired inequality is obtained.

– Let us now show that for any x0, ∃ a sequence x̄n converging towards x0 and
satisfying:

lim sup fn(x̄n) ≤ f (x0)

If f (x0) = +∞, the result is true. If f (x0) < +∞, then for sufficiently large n the
fn(x) are bounded in a neighborhood of x0.

For all p ∈ N, consider δx
0, 1

p
. We have

(
fn, δx0,

1
p

)
which converges towards

(
f , δx

0, 1
p

)
.

For fixed p and ε > 0, ∃ therefore N(p, ε) such that for n ≥ N(p, ε), we have:
(

fn, δx0,
1
p

)
≤

(
f , δx0,

1
p

)
+ ε.

Let xnp = arg min
{

fn(x)+ δx0,
1
p (x)

}
. From this we deduce that:

∣∣xnp − x0
∣∣ <

1

p

so that
(

fn, δx0,
1
p

)
is not infinite, and therefore we have:

fn(xnp) =
(

fn, δx0,
1
p

)
≤

(
fn, δx0,

1
p

)
+ ε ≤ f (x0)+ ε.

By a diagonal method, we then extract from the double sequence xnp a sequence x̄n
converging towards x0 and such that

fn(x̄n) ≤ f (x0)+ ε

which yields the desired conclusion. "#
Closely related results can be found in Attouch (1984) and in Akian et al. (1995).

These theorems are very important because they form the link between the con-
cepts of inf-convergence and epiconvergence and play a key role in the transfer of
many properties studied in nonlinear analysis to MINPLUS analysis.

Conversely, let us demonstrate on an example how one can very simply derive
properties on epiconvergence by proofs in MINPLUS analysis.

Proposition 4.9. The inf-C̃-convergence is preserved in the Moreau-Yosida trans-
form, i.e.:

If fn inf-C̃-converges towards f, then (fn)λ inf-C̃-converges towards fλ. "#
Proof. First we verify that for every pair of functions g and ϕ we have ∀λ > 0,

(f , ϕλ) = (fλ, ϕ). From this we deduce that ∀ϕ, ((fn)λ, ϕ) = (fn, ϕλ) and that
according to the assumption (fn, ϕλ) converges towards (f , ϕλ) = (fλ, ϕ); from this
we deduce that ((fn)λ, ϕ) converges towards (fλ, ϕ). "#
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Let us now study the case φ = L, in other words the inf-L-convergence.

Proposition 4.10. The sequence {fn} inf-L-converges towards the function g if and

only if the sequence
{

f̂n

}
of the Legendre transforms of fn converges simply towards

ĝ, the Legendre transform of g.

Proof. Straightforward, since:

(fn,−〈p, x〉) = −f̂n(p). "#
Lemma 4.11. In a Hilbert space, for any proper function f, for any linear form
ϕ(x) = − 〈

pϕ, x
〉

and for any λ > 0, we have:

(fλ, ϕ) = (f , ϕ)− λ
∣∣pϕ

∣∣2

2
.

Proof.

(fλ, ϕ) = inf
x

[
inf

y

(
f (y)+ 1

2λ
|x − y|2

)
− 〈

pϕ, x
〉]

= inf
x,y

[
f (y)+ 1

2λ
|x − y|2 − 〈

pϕ, x
〉]

= inf
y

[
f (y)+ inf

x

(
1

2λ
|x − y|2 − 〈

pφ, x
〉)]

= inf
y

[
f (y)− 〈

pϕ, y
〉]− λ

∣∣pϕ

∣∣2

2
= (f , ϕ)− λ

∣∣pϕ

∣∣2

2
. "#

Proposition 4.12. In a Hilbert space, the inf-L-convergence of a sequence is equiv-
alent to the inf-L-convergence of the Moreau-Yosida transform, i.e.:

fn
inf −L−→ f ⇔ (fn)λ

inf −L−→ fλ

Proof. Straightforward in view of Lemma 4.11 because for any ϕ ∈ L, (fn, ϕ) →
(f , ϕ) if and only if ((fn)λ, ϕ)→ (fλ, ϕ). "#
Definition 4.13. (see Attouch 1984)

In a reflexive Banach space, a sequence fn of convex lsc proper functions Mosco-
epiconverges towards f if in all points x ∈ Ω, the following two properties are
satisfied:

(i) for any sequence xn weakly converging (in the Banach topology) towards
x, lim inf fn(xn) ≥ f (x);

(ii) there exists a sequence x̄n, strongly converging towards x, such that f (x) ≥
lim sup fn(x̄n).
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Definition 4.14. (Attouch 1984)
In a Hilbert space, we will say that a sequence fn of convex lsc proper functions

is equicoercive if it satisfies the following relation:

fn(x) ≥ c(|x|) with lim
r→∞

c(r)

r
= +∞.

From the above we deduce the following theorem which corresponds to a reformu-
lation of a theorem by Attouch (1984) in terms of inf-L-convergence.

Theorem 5. In a Hilbert space, the Mosco-epiconvergence implies the inf-L-
convergence. Conversely, if the functions fn∗ are equicovercive and inf-L-convergent
towards f, then the fn Mosco-epiconverge towards f.

Proof. See Attouch (1984) and Gondran (1996b). "#
Remark 4.15. One can generalize the MINPLUS analysis to point-to-set maps with
values in R.

Thus, with the point-to-set map x → H(x) we can associate the function H̃(x) =
inf {y : y ∈ H(x)} and we define the MINPLUS scalar product as:

(H, g) = inf
x

(
H̃(x)+ g(x)

) = (H̃, g).

Such a point-to-set map is lsc if and only if H̃ is lsc, in other words if for any sequence
xn converging towards x, we have:

lim inf
xn→x

H(xn) ≥ H̃(x). ||

The epiconvergence (and the Mosco-epiconvergence) towards an lsc function (resp.
convex lsc function) extends in the same way, as well as the inf-φ-convergences and
the equivalence Theorems 3–5.

In addition to the epiconvergence (inf-C̃-convergence) and the Mosco-
epiconvergence (inf-L-convergence), we can define a new type of convergence,
which we will call semi-continuous convergence (or semi-convergence) by simul-
taneously using the MINPLUS and MAXPLUS dioids, and therefore by using the
“scalar biproduct” (Definition 3.4).

Definition 4.16. For any family φ of test functions: Ω → R, we define the
φ-convergence towards f of a sequence of functions fn uniformly upper and lower
bounded by:

lim
n→∞((fn, ϕ)) = ((f , ϕ)) ∀ϕ ∈ φ

where, by definition, we set

lim
n→∞((fn, ϕ)) = {lim inf (fn, ϕ)− , lim sup(fn, ϕ)+}.
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Definition 4.17. A sequence of functions fn uniformly upper and lower bound semi-
converges towards f if for any x we have the following two properties:

(i) ∀xn → x, lim inf fn∗(xn) ≥ f∗(x),
(ii) ∀xn → x, lim sup f ∗n (xn) ≤ f ∗(x).

We can then deduce the following result from Theorem 4:

Proposition 4.18. In R
N, the Δ̃-convergence, the C̃-convergence, the Q̃-convergence

are equivalent to the semi-convergence.
In the case where the functions fn and f are continuous, then the semi-convergence

is reduced to the following property:

∀xn → x, lim
n→+∞ fn(n) = f (x).

5. Weak Solutions in MINPLUS Analysis, Viscosity Solutions

Let us consider an equation with partial derivatives in u: Ω̄ → R; for example the
following Dirichet problem of second order:

H(x, u, Du, D2u) = 0 in Ω

u = g on ∂Ω
(5)

where Ω is an open set of RN, Ω̄ = Ω∪ ∂Ω, H (x, u, p, M) a continuous function on
Ω̄×R×R

N × SN, where SN is the set of symmetric N×N matrices, Du the vector(
∂u

∂xi

)
and D2u the matrix

(
∂2u

∂xi∂xj

)
, and g a continuous function on ∂Ω.

Moreover, we assume that H satisfies the following conditions of monotony:

H(x, u1, p, M1) ≤ H(x, u2, p, M2)

when u1 ≤ u2 and M1 ≤ M2 where the order≤ on SN is the partial order correspond-
ing to the condition: M2−M1 positive definite. The first order equations correspond
to the case where H does not depend on D2u.

We will write the above system in the form:

G(x, u, Du, D2u) = 0 on Ω̄ (6)

where the function G is defined as:

G(x, u, p, M) =
{

H(x, u, p, M) in Ω

u(x)− g(x) on ∂Ω.

In the case of more general boundary condition of the form:

F(x, u, Du) = 0 on ∂Ω
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where F is a continuous function on ∂Ω× R× R
N and nondecreasing in u, we set:

G(x, u, p, M) =
{

H(x, u, p, M) in Ω

F(x, u, p) on ∂Ω.

When H is nonlinear (w.r.t. u, p, M), the solution to such a problem is not differen-
tiable and therefore it is necessary to consider a notion of generalized solution. The
solution in the sense of the distributions is not sufficient and not well suited since H
is nonlinear. Nor is the other classical answer considering solutions in W1

loc(Ω)

and satisfying (5) almost everywhere suitable here. We recall that W1,p(Ω) =
{υ ∈ Lp(Ω), Dυ ∈ Lp(Ω)}, and W1,p

loc (Ω) = {υ ∈ W1,p(θ), ∀θ open compact
set of Ω}.

We are going to define several notions of weak solutions to (6) and for one of them
we will show its connections with the viscosity solutions introduced by Crandall and
Lions (1983); see Crandall et al. (1992) and Barles (1994) for a summary on viscosity
solutions. For this link, we first introduce the sub and upper-differentials as well as
new functional spaces.

Let us begin by recalling the definition of generalized subdifferentials and upper-
differentials introduced by De Giorgi et al. (1980) and Lions (1985).

Definition 5.1. We refer to as the subdifferential of a function f: Ω̄→ R = R∪{+∞}
in the point x ∈ Ω̄, the set, denoted ∂

1,−
Ω̄

f (x), of all p ∈ R
N such that when n →+∞:

∀xn → x in Ω̄, lim inf
f (xn)− f (x)− (p, xn − x)

|xn − x| ≥ 0;

p ∈ ∂
1,−
Ω̄

f (x) is referred to as a subgradient.

We refer to as the upper-differential of a function f: Ω̄→ R∪ {−∞} in the point
x ∈ Ω̄, the set, denoted ∂

1,+
Ω̄

f (x), of all p ∈ R
N such that when n →+∞:

∀xn → x in Ω̄, lim sup
f (xn)− f (x)− (p, xn − x)

|xn − x| ≤ 0;

p ∈ ∂
1,+
Ω̄

f (x) is referred to as an upper-gradient.

We observe that the sub and upper-differentials depend only on the function f
for the interior points (x ∈ Ω) but also depend on Ω̄ for the points of the border
(x ∈ ∂Ω).

We observe that if a function has a subgradient (resp. an upper-gradient) in x, it
is lsc (resp. usc) in x.

In the case where f is convex, the above definition of the subdifferential coincides
with the standard one defined in convex analysis, see for example Rockafellar (1970)
and Aubin and Frankowska (1990), as:

∂f (x) =
{

p ∈ R
N/∀y: f (y) ≥ f (x)+ 〈p, y − x〉

}

Finally, let us note that a continuous function can have neither a subgradient nor an

upper-gradient as in the case of the function x →√|x| sin

(
1

x2

)
extended in 0 by 0.
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Definition 5.2. We will say that an lsc function f: θ → R̂ is order 1 lower semi-
differentiable, denoted LSD1(θ), if the function f has a non empty subdifferential in
any point x ∈ θ.

We will say that an usc function f: θ → R ∪ {−∞} is order 1 upper semi-
differentiable, denoted USD1(θ), if the function f has a non empty super-differential
in any point x ∈ θ.

We will say that a continuous function f: θ → R is order 1 semi-differentiable,
denoted SD1(θ), if for any x ∈ θ the function f has an super-gradient or a subgradient,
i.e. if ∂

1,+
θ f (x) ∪ ∂

1,−
θ f (x) �= ∅.

If the function f is not continuous, we will say that it is order 1 semi-differentiable
denoted SD1(θ), if for any x the l.s.c. function f∗ has a subgradient or the usc closure
f ∗ has a super-gradient, in other words if:

∂
1,−
θ f∗(x) ∪ ∂

1,+
θ f ∗(x) �= ∅.

The class of LSD1 functions is important. It of course contains the convex lsc
functions and functions such as f (x) = x − �x� (�x� = the integer part of x). and

f (x) =
{−x if x ≤ 0

1 if x > 0.

We easily verify that it also contains semi-convex functions, i.e. the functions f for
which there exists k > 0 such that f (x)+ k |x|2 is convex.

More generally, LSD1 contains functions of the form sup
b∈B

g(x, b) where g (x, b)

is continuous w.r.t. b and LSD w.r.t. x (and, in particular, differentiable in x); other
examples will be discussed in Exercise 8.

Definition 5.3. We refer to as the order 2 subdifferential of a function f: Ω̄ → R in
the point x ∈ Ω̄, the set, denoted ∂

2,+
Ω̄

f (x), of the pairs (p, Y) with p ∈ R
N and

Y ∈ SN, the set of symmetrical N × N matrices, such that:

∀xn → x in Ω̄,

lim inf
f (xn)− f (x)− 〈p, xn − x〉 − 1

2 〈Y(sn − x), xn − x〉
|x − xn|2

≥ 0;

(p, Y) is called the order 2 subgradient.
We refer to as the order 2 upper-differential of a function f: Ω̄ → R ∪ {−∞}

in the point x ∈ Ω̄, the set, denoted ∂
2,+
Ω̄

(x), of the pairs (p, Y) with p ∈ R
N and

Y ∈ SN such that:

lim sup
f (xn)− f (x)− 〈p, xn − x〉 − 1

2 〈Y(sn − x), xn − x〉
|x − xn|2

≤ 0;

(p, Y) is called the order 2 super-gradient.

As previously, the order 2 sub and upper-differentials only depend on the function
f for the interior points (x ∈ Ω) but also depend on Ω for the border points (x ∈ ∂Ω),
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see for example Crandall et al. (1992) who call them sub and upper “jets” of second
order and denoted them J2,+

Ω and J2,−
Ω . To make the notation easier to use, one can

delete the index θ when θ is an open set and the upper index. Thus we will replace
∂

1,+
θ f (x) with ∂+f (x) if θ is an open set, and we clearly return, in this case, to the

standard notation.

Definition 5.4. We will say that a function f: θ→ R (resp. θ→ R ∪ {−∞}) is order
2 lower semi-differentiable, denoted LSD2(θ), (order 2 upper semi-differentiable,
denoted USD2(θ)) if the function f has a nonempty order 2 subdifferential (resp.
upper-differential) in any point x ∈ θ.

We have of course the inclusions:

LSD2(θ) ⊆ LSD1(θ) ⊆ LSC(θ) and USD2(θ) ⊆ USD1(θ) ⊆ USC(θ).

We will say that a bounded function is order 2 semi-differentiable, denoted SD2(θ),
if for any x, either the lsc closure f∗ has an order 2 subgradient, or the usc closure
f ∗ has an order 2 upper-gradient, i.e. if ∂

2,−
θ f∗(x) ∪ ∂

2,+
θ f ∗(x) �= ∅.

Proposition 5.5. If f1 and f2 ∈ LSD1(θ) (resp. ∈ LSD2(θ)) then f = sup{f1, f2},
∈ LSD1(θ) (resp. sup{f1, f2} ∈ LSD2(θ)).

Proof. In the point x ∈ R
N we have either f (x) = f1(x) or f (x) = f2(x). Let us

consider the first case. We then have for any p1 ∈ ∂1,−f1(x) and for any y �= x,

f (y)− f (x)− 〈p1, y − x〉
|y − x| ≥ f1(y)− f1(x)− 〈p1, y − x〉

|y − x|
and therefore

lim inf
y→x

f (y)− f (x)− 〈p1, y − x〉
|y − x| ≥ lim inf

y→x

f1(y)− f1(x)− 〈p1, y − x〉
|y − x| ≥ 0

which shows that p1 ∈ ∂1,− f (x) and thus that ∂1,− f (x) is not empty. "#
LSD(θ), LSD1(θ) and LSD2(θ) (resp. USD(θ), USD1(θ), USD2(θ)) will con-

sequently play a similar role to the spaces L2(θ), H1(θ) and H2(θ) of Hilbertian
analysis.

We will use the semi-inf-Φ-convergence defined in §4, Definition 4.1 and the set
C̃ of inf-compact continuous functions.

Definition 5.6. We will say that a function u is a semi-inf-C̃-solution (resp. semi-
sup-C̃-solution) of (6) if there exists a sequence of functions un ∈ LSD2 (Ω̄) (resp.
un ∈ USD2 (Ω̄)) such that un inf-C̃-converges (resp. un sup-C̃-converges) towards u
and such that the point-to-set map H(x, un(x), pn, |rmY n) (resp. H(x, un(x), pn, Yn)

with (pn, Yn) ∈ ∂
2,+
Ω̄

un(x)) (resp. (pn, Yn) ∈ ∂
2,−
Ω̄

un(x)) semi-inf-C̃-converges

(resp. semi-sup-C̃-converges) towards 0.
A C̃-solution is at the same time a semi-inf-C̃-solution and a semi-sup-C̃-solution.
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Theorem 6 will link the various classes of solutions to the viscosity solutions
whose definition is recalled in the general case of discontinuous viscosity solutions.

We denote G∗ and G∗ the lsc and usc closures of G(x, u, p, M) with respect to the
variables x, u, p, M and we will assume that G∗ and G∗ are continuous w.r.t. M.

For the case of (5) we have:

G∗(x, u, p, M) =
{

H(x, u, p, M) in Ω

min (H(x, u, p, M), u − g) on ∂Ω

G∗(x, u, p, M) =
{

H(x, u, p, M) in Ω

max (H(x, u, p, M), u − g) on ∂Ω

Definition 5.7. (Crandall et al. 1992)
A viscosity subsolution to

G(x, u, Du, D2u) = 0 on Ω̄

is a locally bounded function u such that:

G∗(u, u∗(x), p, M) ≤ 0 ∀x ∈ Ω̄ and (p, M) ∈ ∂
2,+
Ω̄

u∗(x)

where ∂
2,+
Ω̄

u∗(x) is the order 2 upper-differential of u∗ (the usc closure of u) in x.
A viscosity upper-solution to (6) is a locally bounded function u such that:

G∗(u, u∗(x), p, M) ≥ 0 ∀x ∈ Ω̄ and (p, M) ∈ ∂
2,−
Ω̄

u∗(x).

Finally, a viscosity solution to (6) is both a viscosity subsolution and upper-solution
to (6).

Theorem 6. If u is a semi-inf-C̃-solution (resp. semi-sup-C̃-solution, C̃-solution) of
(6), then u is a viscosity upper-solution (resp. subsolution, viscosity solution) of (6).
Conversely, if u is a viscosity upper-solution (resp. subsolution, viscosity solution)
of (6) and if G is continuous w.r.t. u, p, M and uniformly continuous w.r.t. x, then u
is a semi-inf-C̃-solution (resp. semi-sup-C̃-solution, C̃-solution).

Proof. (see Gondran 1998) "#
We will now study a few special viscosity solutions, the inf-φ-solutions and the

episolutions.

Definition 5.8. For any family φ of function: Ω̄ → R, we will say that u is an
inf-φ-solution (resp. sup-φ-solution) of (6) if, for the sequence of functions un(x) =
inf

y

(
u(y)+ n

2
|y − x|2

)
(resp. un(x) = sup

y

(
u(y)− n

2
|y − x|2

)
, the point-to-set map

G(x, un(x), pn, Yn) (resp. G(x, un(x), pn, Yn) with (pn, Yn) ∈ ∂
2,−
Ω̄

un(x) (resp.

(pn, Yn) ∈ ∂
2,+
Ω̄

un(x)) inf-Φ-converges (resp. sup-Φ-converges) towards 0.
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Definition 5.9. A proper function u ∈ LSD2 (Ω̄) is an episolution to (6) if and only
if, for every x ∈ Ω̄:

∀(p, Y) ∈ ∂
2,−
Ω̄

u(x), G(x, u, p, Y) ≥ 0

∃(p, Y) ∈ ∂
2,−
Ω̄

u(x) such that G(x, u, p, Y) = 0.

An upper-bounded function u ∈ USD2 (Ω̄) is a hyposolution to (6) if and only if for
every x ∈ Ω̄:

∀(p, Y) ∈ ∂
2,+
Ω̄

u(x), G(x, u, p, Y) ≤ 0

∃(p, Y) ∈ ∂
2,+
Ω̄

u(x) such that G(x, u, p, Y) = 0.

We verify that an episolution (resp. hyposolution) is a viscosity solution.

Proposition 5.10. u ∈ LSD2 (Ω) is an inf-C̃-solution to (6) if and only if u is an
episolution to (6).

Proof. See Gondran (1998). "#

6. Explicit Solutions to Nonlinear PDEs in MINPLUS Analysis

We recall a few classical results for explicit solutions to the first order Hamilton-
Jacobi equation. For a summary and the proofs of these results, one can refer to Lions
(1982).

The objective is to show that such solutions can be naturally expressed with
MINPLUS and MAXPLUS scalar products and the solutions belong to the
LSD1, USD1, LSD2 and USD2 spaces which we have just defined in Sect. 5.

These spaces will play a similar role to the L2, H1 and H2 spaces in Hilbertian
analysis.

This will be illustrated successively on the Dirichlet problem and then on the
Cauchy problem of the Hamilton–Jacobi equation.

6.1. The Dirichlet Problem for Hamilton–Jacobi

The aim is to find a function u: Ω̄→ R̄ satisfying the equations:
{

H(x, u, Du) = f in Ω

u = g on ∂Ω
(7)

where Ω is a regular open set of R
N, H is a continuous numerical function on

Ω× R× R
N, generally referred to as the Hamiltonian, Du =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
is

the gradient u, f a function defined on Ω̄ (closure of Ω) and g a function defined on
∂Ω (boundary of Ω). In general f ∈ (Ω̄) and g ∈ (∂Ω).
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We will consider several special cases.
In each case, we will define a class of elementary solutions, then we will define

the general solution from these special solutions.
Case 1. Solving the problem

{ |Du| = f (x) in (Ω)

u = g(x) on (∂Ω)
(8)

where f ∈ C(Ω̄) and f ≥ 0 in Ω̄.

Let us define L(x, y) on Ω̄× Ω̄ as L(x, y) = inf
{∫ T

0 f (ϕ(s)) ds
}

, the inf being

taken on all the ϕ and T such that ϕ is almost everywhere (a.e.) differentiable and
such that

ϕ(0) = x, ϕ(T) = y,

∣∣∣∣
dϕ

dt

∣∣∣∣ ≤ 1 a.e. in [0, T] , ϕ(t) ∈ Ω̄ ∀t ∈ [0, T]

Proposition 6.1.1. L defined above satisfies the following properties:

(i) L is a semi-distance on Ω̄: L(x, x) = 0.

L(x, y) = L(y, x) and L(x, y) ≤ L(x, r)+ L(r, y) ∀x, y, r ∈ Ω̄

(ii) L(., z) is a solution to the problem
{ |Du| = f in Ω\ {z}

u(z) = 0

L (., z) is a special solution to (8). We now turn to show the solutions to (8) can
be expressed in terms of the special solutions L(., z).

Proposition 6.1.2. If the condition:

g(x)− g(y) ≤ L(x, y) ∀x, y ∈ ∂Ω

is satisfied, then:

u(x) = inf
y∈∂Ω

{g(y)+ L(x, y)}
v(x) = sup

y∈∂Ω

{g(y)− L(y, x)}

are respectively the USD1 and LSD1 solutions to (8). Furthermore, u (resp. v) is the
maximum element (resp. minimal element) of the set U (resp. V) of the subsolutions
(resp. upper-solutions) to (8):

U = {w ∈ W1,∞(Ω), |Dw| ≤ f , a.e. in Ω, w ≤ g on ∂Ω}
V = {w ∈ W1,∞(Ω), |Dw| ≥ f , a.e. in Ω, w ≥ g on ∂Ω}

We recall that W1,∞ (Ω) is the set of functions u, bounded and Lipschitzian.
For a proof of Propositions 6.1.1 and 6.1.2 see Lions (1982).
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Remark 6.1.3. If Ω is convex and if f ≡ 1, we have L(x, y) = |x−y|. L is therefore
the distance between x and y and this yields:

u(x) = inf
y∈∂Ω

{g(y)+ |x − y|}
v(x) = sup

y∈∂Ω

{g(y)− |x − y|} .

In dimension 1, problem (8) becomes:
{ ∣∣u′(x)

∣∣ = 1 on ]−1, 1[
u(−1) = u(1) = 0

and we have the USD1 and LSD1 solutions:

u(x) = 1− |x| and v(x) = |x| − 1.

Case 2. Solving the problem
{

H(Du) = f in Ω

u = g on ∂Ω
(9)

where H is convex, continuous and satisfies H(p)→+∞ when p →+∞ (H(p) ≥
α|p| − C with α, C positive constants).

In addition, we assume that f (x) ≥ inf
p∈ RN

H(p) for any x ∈ Ω̄.

Let us define L(x,y) on Ω̄× Ω̄ as:

L(x, y) = inf

{∫ T

0

{
f (ϕ(s))+ Ĥ

(
−dϕ

ds

)}
ds

}

the inf being taken on the set of all the a.e. differentiable ϕ and T such that:

ϕ(0) = x, ϕ(T) = y, H
(
− dϕ

ds

)
≤ +∞ a.e. in [0, T], ϕ(t) ∈ Ω̄ ∀t ∈ [0, T] and

where Ĥ is the Legendre–Fenchel transform of H (see Definition 2.19).
Another equivalent definition of L can be:

L(x, y) = inf

{∫ 1

0
max

H(p)=f (ϕ(t))

〈
−dϕ

dt
, p

〉
dt

}

the inf being taken on the set of all the a.e. differentiable ϕ such that:

ϕ(0) = x, ϕ(1) = y, ϕ(t) ∈ Ω̄ ∀t ∈ [0, 1] ,
dϕ

dt
∈ L∞(0, 1).

Proposition 6.1.4. L defined above satisfies:

L(x, x) = 0 and L(x, y) ≤ L(y, r)+ L(r, y) ∀x, y, r ∈ Ω̄
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and L(·, z) (resp. L(z, ·)) is a solution to the problem
{

H(Du) = f in Ω\{z}
u(z) = 0

(resp. H(−Du) = f in Ω\{z}, u(z) = 0).
If the condition

g(x)− g(y) ≤ L(x, y) ∀x, y ∈ ∂Ω

is satisfied, then

u(x) = inf
y∈∂Ω

[g(y)+ L(x, y)]

v(x) = sup
y∈∂Ω

[g(y)− L(y, x)]

are respectively USD1 and LSD1 solutions to (9).
(see Lions (1982) for a proof).

Case 3. Solving the problem
{

H(x, Du) = 0 in Ω

u = g on ∂Ω
(10)

where H(x, p) ∈ C (Ω̄× R
N) is convex in p, satisfies H(x, p) ≥ α|p| − C where α

and C are positive constants and where inf
p∈RN

H(x, p) ≤ 0 in Ω̄.

Let us denote Ĥ(x, p) the Lagrangian of H(x, p), i.e. the Fenchel transform in p
of H:

Ĥ(x, q) = sup
p∈RN

{〈p, q〉 − H(x, p)} .

We define a new function L (x, y) for x, y ∈ Ω̄:

L(x, y) =
{

inf
∫ T

0
Ĥ

(
ξ,

dξ

ds

)
ds

}

the inf being taken on all the pairs (T, ξ) such that ξ(0) = x, ξ(T) = y, ξ(t) ∈
Ω̄ ∀t ∈ [0, T], dξ

dt
∈ L∞ (0, T) or, equivalently:

L(x, y) = inf

{∫ 1

0
max

H(ξ(t),p)=0

{
−

〈
dξ

dt
, p

〉}
dt

}

the inf being taken on the ξ such that ξ(0) = x, ξ(1) = y, ξ(t) ∈ Ω̄, ∀t ∈ [0, 1], dξ

dt
∈

L∞ (0, 1).
Proposition 6.4 is still valid and for (10) we have the two following USD1 and

LSD1 solutions:

u(x) = inf
y∈∂Ω

{g(y)+ L(x, y)}
v(x) = sup

y∈∂Ω

{g(y)− L(y, x)} .
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Case 4. Solving the problem
{

H(x, u, Du) = 0 in Ω

u = g on ∂Ω
(11)

where H(x, u, p) ∈ C(Ω̄ × R × R
N) is convex in u and p, satisfies the following

properties:
H(x, u, p)→+∞ when |p| → +∞ uniformly for x ∈ Ω̄ and bounded u,
H(x, u, p) is nondecreasing in u, for any x ∈ Ω̄, p ∈ R

N.
We introduce the Lagrangian Ĥ(x, s, q), Fenchel transform in u and p of H:

Ĥ(x, s, q) = sup
u∈R

p∈R
N

{su + 〈p, q〉 − H(x, u, p)}

and we define for x ∈ Ω̄, y = ∂Ω a function:

L(x, y) = inf

{∫ T

0
Ĥ

(
ξ(t), v(t),−dξ

dt
(t)

)
exp

{
−

∫ t

0
v(s)ds

}
dt

+g(y) exp

{
−

∫ T

0
v(s)ds

}}

the inf being taken on all the triples (T, v, ξ) such that ξ(0) = x, ξ(T) = y,

ξ(t) ∈ Ω̄ ∀t ∈ [0, T], dξ

dt
∈ L∞(0, T), v ∈ L∞(0, T).

Example 6.1.5. If H(x, u, p) = H(x, p) = λu (λ > 0), then Ĥ(x, u, p) = Ĥ(x, p) if
u = λ, Ĥ(x, u, p) = +∞ if u �= λ.

In this case we then obtain:

L(x, y) = inf
(T,ξ)

{∫ T

0
Ĥ

(
ξ(t),−dξ

dt
(t)

)
e−λtdt + g(y) e−λT

}
.

Proposition 6.1.6. Under the conditions of Case 4 on H, L(·, z) is a solution to the
problem: {

H(x, u, Du) = 0 in Ω\{z}
u(z) = 0

If the condition
g(x) ≤ L(x, y) ∀x, y ∈ ∂Ω

is satisfied, then

u(x) = inf
y∈∂Ω

L(x, y)

v(x) = sup
y∈∂Ω

L(x, y)

are respectively the USD1 and LSD1 solutions to (11). In addition, u (resp. v) is
the maximum element (resp. minimum element) of the set of subsolutions (resp.
upper-solutions) to (8).
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6.2. The Cauchy Problem for Hamilton–Jacobi:
The Hopf–Lax Formula

The aim is to find a scalar solution u(x, t) ((x, t) ∈ Ω̄×]0, T[) satisfying the
equations: ⎧

⎪⎪⎨

⎪⎪⎩

∂u

∂t
+ H(x, t, u, Du) = 0 in Ω× ]0, T[

u(x, t) = g(x, t) on ∂Ω× ]0, T[
u(x, 0) = u0(x) in Ω

(12)

If H does not depend exclusively on Du, we will see in this section how to obtain
explicit “linear” solutions in the MINPLUS dioid. Other solutions will be given in
Sect. 8.

In the case where H depends on u and on Du, we will see in Sect. 7.3 how to
obtain explicit “linear” solutions in the MINMAX dioid.

Let us consider the following problem:
⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
+ H(Du) = f (x) in Ω× [0, T]

u(x, t) = g(x, t) on ∂Ω× [0, T]
u(x, 0) = u0(x) in Ω

(13)

where Ω is a regular, bounded, convex open set, f ∈ W1,∞(Ω), g ∈ C (∂Ω x[T, 0]),
u0 ∈ C (Ω̄), u0(x) = g(x, 0) on ∂Ω, H ∈ C (RN), H convex on R

N and verifying
(H(p) ≥ α|p| − C(α > 0).

For any s, t such that 0 ≤ s < t ≤ T and x, y ∈ Ω̄, let us define:

L(x, t; y, s) = inf

{∫ 1

s

{
f (ξ(λ))+ Ĥ

(
dξ

d
λ(λ)

)}
dλ

}

the inf being taken on the ξ such that:

ξ(s) = y, ξ(t) = x, ξ(λ) ∈ Ω̄ ∀λ ∈ [s, t], dξ

dλ
∈ L∞(s, t)

and where Ĥ, the Lagrangian, is the Fenchel transform of H:

Ĥ(q) = sup
p∈RN

{〈p, q〉 − H(p)} .

Formally, we have for any solution to (16):

u(x, t)− u(y, s) =
∫ t

s

d

dλ
{u(ξ(λ), λ)} dλ

=
∫ t

s
Dxu(ξ(λ), λ).

dξ

dλ
+ ∂u

∂t
(ξ(λ), λ)dλ

≤
∫ t

s

{(
∂u

∂t
+ H(Dxu)

)
(ξ(λ), λ)+ Ĥ

(
dξ

dλ

)}
dλ

≤ L(x, t; y, s).
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Theorem 7. Under the above conditions, we have:

(i) for any x ∈ Ω̄, t > 0: L(x, t; y, s)→ 0 if s ↑ t, y → x,

L(x, t; y, s) ≤ L(x, t; z, τ)+ L(z, τ; y, s) ∀x, y, z ∈ Ω̄, ∀0 < s < τ < t ≤ T,

(ii) L(·, ·; y, s) (resp. L(x, t;·, ·) is a solution to

∂u

∂t
+ H(Du) = f in Ω× [s, t] and lim

t↓s
u(y, t) = 0

(resp. − ∂u

∂t
+ H(−Du) = f in Ω× [0, t] and lim

s↑t
u(x, s) = 0),

(iii) if the following conditions are satisfied:

g(x, t)− g(y, s) ≤ L(x, t; y, s) ∀(x, t), (y, s) ∈ ∂Ω× [0, T], s < t

g(x, t)− u0(y) ≤ L(x, t; y, 0) ∀(x, t) ∈ ∂Ω× [0, T], y ∈ Ω̄

then, for (x, t) ∈ Ω̄× [0, T]:

u(x, t) = inf

⎧
⎨

⎩
inf
y∈Ω̄

{u0(y)+ L(x, t; y, 0)} , inf
y∈∂Ω
0≤s<t

{g(y, s)+ L(x, t; y, s)}
⎫
⎬

⎭

(14)
is the USD1 solution to the problem,

(iv) if the following conditions are satisfied:

g(x, t)− g(y, s) ≤ L(x, t; y, s) ∀(x, t), (y, s) ∈ ∂Ω× [0, T], s > t

u0(x)− g(y, s) ≤ L(x, 0; y, s) ∀(y, s) ∈ ∂Ω× [0, T], y ∈ Ω̄

then, for (x, t) ∈ Ω̄× [0, T]

v(x, t) = inf

⎧
⎪⎨

⎪⎩
sup
y∈Ω̄

{u0(y)− L(y, 0; x, t)} , sup
y∈∂Ω
0≤s<t

{g(y, s)− L(y, s; x, t)}

⎫
⎪⎬

⎪⎭

is the LSD1 solution to the problem
⎧
⎨

⎩

− ∂u
∂t + H(−Du) = f (x) in Ω× [0, T]

u(x, t) = g(x, t) on ∂Ω× [0, T]
u(x, 0) = u0(x) in Ω̄.

Formula (14) is interesting because it generalizes to the MINPLUS case the
following formula related to the heat transfer equation, see Quadrat (1995):

u(x, t) =
∫

Ω̄

u0(y) L(x, t; y, 0) dy +
t∫

0

∫

∂Ω

g(y, s) L(x, t; y, s) ds dy
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Remark. In the special case where f ≡ f0 constant and where Ω is convex, the
following holds:

L(x, t; y, s) = f0(t − s)+ (t − s)Ĥ

(
x − y

t − s

)
.

If one considers the case where Ω = R
N and f ≡ 0, then (14) becomes the Hopf

(1965) and Lax (1957) formula:

u(x, t) = Inf
y∈RN

(
u0(y)+ t Ĥ(

x − y

t

)
.

Let us recall a few special cases of this formula.
The equation: ⎧

⎨

⎩

∂u

∂t
+ |Du| = 0 in R

N × [0, T]

u(x, 0) = u0(x) in R
N

has the usc solution:
u(x, t) = inf|y−x|<t

u0(y).

The equation: ⎧
⎨

⎩
−∂u

∂t
+ |Du| = 0 in R

N × [0, T]

u(x, 0) = u0(x) in R
N

has the lsc solution:
v(x, t) = sup

|y−x|<t
u0(y).

For any real p > 0, the equation:
⎧
⎨

⎩

∂u

∂t
+ 1

p
|Du|p = 0 in R

N × [0, T]

u(x, 0) = u0(x) in R
N

has the solution:

v(x, t) = inf
y

{
u0(y)+ |x − y|p

p t1/p

}
.

In the case where p = 2, then the equation:
⎧
⎨

⎩

∂u

∂t
+ 1

2
|Du|2 = 0 in R

N × [0, T]

u(x, 0) = u0(x) in R
N

has the USD1 solution:

u(x, t) = inf
y

{

u0(y)+ |x − y|2
2t

}

.
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and the equation:
⎧
⎨

⎩
−∂u

∂t
+ 1

2
|Du|2 = 0 in R

N × [0, T]

u(x, 0) = u0(x) in R
N

has the LSD1 solution:

v(x, t) = sup
y

{

u0(y)− |x − y|2
2t

}

.

7. MINMAX Analysis

We have shown in the previous sections how MINPLUS analysis, based on the
“scalar product” inf

x
(f (x) + g(x)), is used to synthesize and extend a branch of

nonlinear analysis (lsc analysis and convex analysis, epiconvergence and Mosco-
epiconvergence, viscosity solutions). In this section we will show that in a similar
way one can construct a MINMAX analysis based on the “scalar product” inf

x
(max

(f(x), g(x)) and thus extend the previous method to quasi-convex analysis, developed
in particular by Crouzeix (1977), Volle (1985), and Elquortobi (1992).

In particular, we introduce the infmax linear transform (see Gondran 1996b) which
plays a role analogous in MINMAX analysis to the Legendre–Fenchel transform
in MINPLUS analysis. Except for Theorem 9, the proofs are similar to those of
MINPLUS analysis.

7.1. Inf-Solutions and Inf-Wavelets in MINMAX Analysis

Let X be a Banach space. We will denote |.| is norm, X∗ its topological dual and
< . , . > the scalar product in the duality X∗, X.

When X is a Hilbert Space, we identify X and X∗.
We refer to as a proper function a function f: X → R ∪ {+∞}, lower bounded

and non identical to +∞.

Definition 7.1.1. For two proper functions f and g, the “MINMAX scalar product”
(f, g) is defined as:

(f , g) = inf
x∈X

{max (f (x), g(x))}
In this whole section, we will denote (. , .) the Minmax scalar product.

Definition 7.1.2. For any family φ of functions: X → R (test functions), we define
the infmax-φ-equivalence of two functions f and g by the equalities:

(f , ϕ) = (g, ϕ) ∀ϕ ∈ φ
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and the infmax-bi-conjugate of f with respect to φ, denoted Pφf , as:

Pφf (x) = sup
ϕ∈φ

{(f , ϕ)/under the condition ϕ(x) < (f , ϕ)} .

Theorem 8. The set of functions infmax-φ-equivalent to a proper function f has a
smallest element (inf-solution) equal to Pφf .

Proof. (see Gondran 1997) "#
Consider a few interesting examples of test functions.

Example 7.1.3. If φ = Δ, the set of Dirac δy inf-functions, defined as δy(x) = −∞ if
x = y,+∞ otherwise, the infmax-Δ-equivalence corresponds to pointwise equality.

Example 7.1.4. If φ = Δ̃, the set of δyε functions, defined as:

δy,ε(x) = −∞ if |x − y| < ε,+∞ otherwise,

then PΔ̃f = f∗, the lsc closure of f, and two functions are infmax-Δ̃-equivalent if
and only if:

∀ε > 0, ∀x ∈ X: εf (x) = εg(x).

where we recall that εf (x) = inf {f (y): |y − x| < ε}
Example 7.1.5. If φ = C̃, the set of continuous and infcompact functions, then
PC̃f = f∗, and two functions are infmax-C̃-equivalent if and only if they have the
same lsc closure.

We obtain the same result by taking the infcompact usc functions on X.
For any eigenfunction f, we refer to as infmax-regularized the function:

fλ,q = inf
y∈X

(
max

(
f (y),

1

2λ
|y − x|2 + q

))

Example 7.1.6. If φ = Q, the set of quadratic functions of the form ϕλ,y,q(x) =
1

2λ
|y − x|2 + q, then for any function f, PQf = f∗, and two functions f and

g are infmax-Q-equivalent if and only if all the infmax-regularized functions are
pointwise equal.

fλ,q(x) = gλ,q(x) ∀λ > 0, ∀q ∈ R; ∀x ∈ X.

Definition 7.1.7. For any proper function f, we refer to as infmax linear transform

the function
◦
f (p, q) defined for any p ∈ X and any q ∈ R as:

◦
f (p, q) = (f (x), 〈p, x〉 + q).

This transform will play the same role in MINMAX analysis as the Legendre–Fenchel
transform in MINPLUS analysis.
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Theorem 9. The quasi convex lsc closure of a function f, denoted f� is equal to:

f�(x) = sup
p∈X∗

◦
f (p,−〈p, x〉 +m)

or again to:

f�(x) = sup
p∈X,q∈R

{(f , 〈p, .〉 + q with 〈p, x〉 + q < (f , 〈p, .〉 + q)}.

where m is a lower bound of f.

The proof (see Gondran 1997) is provided by using the Hahn-Banach theorem
and by following a proof by Elquortobi (1992). It is shown that the result does not
depend on m.

Example 7.1.8. If A is the set of continuous linear functions on X of the form
〈p, x〉 + q, then for any proper function f, PAf = f� and two proper functions f
a g are infmax-A-equivalent if they have the same infmax linear transform.

Now we have introduced in Sect. 3 the MINPLUS wavelet transforms: likewise
we define the MINMAX wavelet transforms for the multi-resolution analysis of lsc
functions as:

Definition 7.1.9. The MINMAX wavelet transform of a function f is provided for any
a ∈ R+, b ∈ R

n by:

Tf (h; a, b) = inf
x∈Rn

(
max

(
f (x), h

(
b− x

a

)))
=

(
f (.), h

(
b−.

a

))

where h is an inf-compact usc function which will be referred to as an “analyzing”
function.
Examples 7.1.4 and 7.1.6 correspond respectively to h(x) = δ0,1(x) and

h(x) = 1

2
|x|2 + q.

Theorem 8 ensures the reconstruction formula of lsc f through the formula:

f (x) = sup
a∈R+,b∈Rn

{
Tf (h; a, b)/under the condition h

(
b− x

a

)
< Tf (a, b)

}
.

7.2. Inf-Convergence in MINMAX Analysis

Definition 7.2.1. For any family φ of test functions, we will say that a sequence of
proper functions fn semi infmax-φ-converges towards f if

lim inf (fn, ϕ) = (f , ϕ) ∀ϕ ∈ φ.
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Definition 7.2.2. A sequence of proper functions fn infmax-φ-converges towards f if

lim(fn, ϕ) = (f , ϕ) ∀ϕ ∈ φ.

In the case of Example 7.1.3, φ = Δ and the infmax-Δ-convergence corresponds
exactly to the simple convergence and fn semi infmax-Δ-converges towards f if
f (x) = lim inf fn(x).

Examples 7.1.4–7.1.6 correspond to one of the main convergences in nonlinear
analysis, epiconvergence, and Example 7.1.8 corresponds to a new convergence in
nonlinear analysis, comparable to the Mosco-epiconvergence, but for quasi-convex
functions.

We will next take into consideration that the fn sequences are uniformly locally
bounded.

Theorem 10. Any sequence of proper functions fn semi infmax-C̃-converges towards
f , the lsc envelope of fn being defined by fn(x) = lim inf fn(y) for y → x and
n →∞. For any sequence fn converging towards x, we have liminf fn(xn) ≥ f (x).

If a sequence of proper functions fn infmax-C̃-converges towards f, then f∗ = f .

Theorem 11. In a Banach space, the epiconvergence implies the infmax-C̃-
convergence.

Definition 7.2.3. A sequence of lsc quasi convex proper functions fn Mosco-
epiconverges towards f, a quasi convex proper function if, in all points x ∈ X,
we have:

– for any sequence xn converging weakly towards x, lim inf fn(xn) ≥ f (x);
– there exists a sequence xn converging strongly towards x such that limsup

fn(x̄n) ≤ f (x).

Theorem 12. In a Hilbert space, the Mosco-epiconvergence implies the infmax-A-
convergence and we have the converse if the fn∗ functions are equicoercive.

Theorem 13. In R
N, the infmax-Δ̃-convergence, the infmax-C̃-convergence and the

infmax-Q-convergence are identical to the epiconvergence.

Theorems 12 and 13 are adaptations of results by Attouch (1984). Results closely
related to these theorems can be found in Akian et al. (1994).

Remark 7.2.4. All of the above results also apply to the dioid (R, max, min) by
replacing lsc with usc, quasi-convex with quasi-concave, inf with sup.

7.3. Explicit Solutions to Nonlinear PDEs in MINMAX Analysis

Let us consider the following Hamilton–Jacobi problem:
{

∂u
∂t + H(u, Du) = 0 in Ω = ]0,+∞[× R

N

u(x, 0) = g(x) on R
N (15)
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where the Hamiltonian H(r, p) is continuous in r and p, nondecreasing in r for any
y ∈ R

N, sublinear in p for any r ∈ R, and where g is Lipschitzian and bounded.
We then show, see Barron et al. (1996) that the only viscosity solution to problem

(15) is the function u(x, t) ∈ USD1 defined as:

u(x, t) = min
y∈RN

(
max

(
g(y), h

(
x − y

t

)))
(16)

where, for any x ∈ R
N, h(x) = inf (r ∈ R/∀y ∈ R

N, we have H(r, y) ≥ 〈x, y〉)
is the conjugated function of H. We verify that h is quasi-convex and lsc on R

N

and that:
H(r, p) = sup(〈p, q〉 such that h(q) � r).

In the case where g is quasi-convex continuous (instead of Lipschitzian and bounded),
solution (16) is, in addition, quasi-convex, see Volle (1997).

Let us give a few examples of formula (16).

Definition 7.3.1. Let us consider the problem:

∂u

∂t
+ eu |Du| = 0 in Ω = ]0,+∞[× R

u(x, 0) = |x| on R.

We verify that h(x) = log |x|, then that the problem has the solution:

u(x, t) = 0 if |x| ≤ t

u(x, t) = y if |x| > t

where y > 0 is the only solution to
x

t
= ey + y

t .

Definition 7.3.2. Let us consider the problem:
⎧
⎨

⎩

∂u

∂t
+ u |Du| = 0 in Ω = ]0,+∞[× R

u(x, 0) = g(x) on R

We have h(x) = |x| and the problem allows the solution:

u(x, t) = min
y∈R

(
max g(y),

∣∣∣∣
x − y

t

∣∣∣∣

)
.

7.4. Eigenvalues and Eigenfunctions for Endomorphisms
in MINMAX Analysis

An extension into the continuous field of results on eigenvalues and eigenvectors from
the discrete case for the dioid (R ∪ {+∞}, Min,+) was carried out by Dudnikov
and Samborskii (1989), see Exercise 3 of Chap. 6.
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Here we will present the extension into the continuous field of results obtained
on eigenvalues and eigenvectors from the discrete case for the dioid (R, Min, Max),
see Gondran and Minoux (1997, 1998).

It will be seen (Theorem 14) that in this case one obtains a complete explicit
characterization of the eigenvalues and eigenvectors of endomorphisms based on
the dioid (R, Min, Max).

Let X be a real, reflexive Banach space. Let F be the set of functions: X → R,
bounded from below and inf-compact.

By endowing F with the laws ⊕ and ⊗ defined as:

(f ⊕ g)(x) = Min(f (x), g(x)) ∀f , g ∈ F, ∀x ∈ X

α⊗ f (x) = Max(α, f (x)) ∀f ∈ F, ∀α ∈ R, ∀x ∈ X

F has the structure of a semi-module, called a MinMax functional semi-module, on
the dioid (R, Min, Max) with as neutral element the function hε defined as:

hε(x) = +∞ ∀x ∈ X.

We then define the “scalar product” 〈f , g〉 of two functions f and g in the MinMax
functional semi-module as:

〈f , g〉 = Min
x∈X

{Max (f (x), g(x))} .

Let Δ be the set of inf-compact functions A: X×X → R, satisfying the following
conditions:

(i) there exists θA > −∞ such that A(x, x) = θA ∀x ∈ X;
(ii) A(x, y) ≥ θA ∀x, y ∈ X × X.

Conditions (i) and (ii) correspond in MinMax analysis to the classical concept
of diagonal dominance in the sense of the order relation of the dioid( ∑

y �=x
A(x, y) ≤ A(x, x)

)
.

We then define the image of f ∈ F, denoted Af, as:

Af (x) = Min
y∈X

{Max {A(x, y), f (y)}} ∀x ∈ X.

We easily verify that the functional Af is bounded from below and inf-compact and
that the mapping f → Af is “linear” in the dioid (R, Min, Max):

A(α⊗ f ⊕ β⊗ g) = α⊗ Af ⊕ β⊗ Ag ∀f , g ∈ F, ∀α, β ∈ R.

Δ therefore corresponds to a set of endomorphisms on the MinMax functional semi-
module. The product of two endomorphisms A and B of Δ is the endomorphism C,
denoted AB, defined as:

C(x, y) = Min
z∈X

{Max {A(x, z), B(z, y)}} ∀(x, y) ∈ X × X.
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One easily verifies that C ∈ Δ and that the product is associative.
As A2(x, y) ≤ A(x, y), the sequence A(x, y), A2(x, y), . . . , An(x, y) is bounded

is monotone nonincreasing and bounded from below, and the endomorphism A∗ can
be defined as:

A∗(x, y) = lim An(x, y).

We can then state:

Proposition 7.4.1.
(A∗)2 = A∗ = AA∗ = A∗A.

Given a sub-semi-module H of F, we refer to as generator of H any mapping G ∈ HX

(which with every z ∈ X associates Gz ∈ H ⊂ F), such that, for every ψ ∈ H, there
exists ϕ ∈ F, such that for any x ∈ X,

ψ(x) = 〈ϕ(.), G.(x)〉 = Min
z∈X

{
Max

(
ϕ(z), Gz(x)

)}
.

The following theorem provides a complete characterization of eigenvalues and
eigenvectors for endomorphisms with a “dominant diagonal” in MinMax analysis.

Theorem 14. (Gondran and Minoux (2007)
Let A ∈ Δ be an endomorphism with a “dominant diagonal.” Then any λ > θA

is an eigenvalue of A, and for any y ∈ X, ϕ
y
λ defined as:

ϕ
y
λ(x) = λ⊗ A∗(x, y) ∀x ∈ X is a proper function for the eigenvalue λ.

Let Gλ = ⋃

y∈X

{
ϕ

y
λ

}
be the set of distinct elements of

{
ϕ

y
λ/y ∈ X

}
, then Gλ is a

generator of the MinMax functional semi-module of the set of eigenfunctions Fλ

(eigen-semi-module) corresponding to the eigenvalue λ, i.e. every eigenfunction f ∈
Fλ is written:

f (x) = 〈
h(.), ϕ.

λ(x)
〉

with h ∈ F.

Moreover, Gλ is the unique minimal generator of Fλ.

Proof. Here we only provide a sketch of proof, see Gondran and Minoux (2007) for
a more detailed proof.

– First we show that for any λ, ϕ
y
λ is an eigenfunction.

Indeed, A ϕ
y
λ (x) = A(λ⊗A∗(x, y)) = λ⊗AA∗ (x) = λ⊗A∗ (x, y) = λ ϕ

y
λ(x)

taking into account Proposition 7.4.1 and the idempotency of ⊗.
– Then we show that for any λ > θA and f ∈ F, we have f = λ⊗ f = Af = A∗f .

Indeed, Af = λ⊗ f implies Max(A(x, x), f (x)) ≥ Max(f (x), λ) which, together
with λ > θA, makes it possible to conclude f (x) ≥ λ and therefore f = λ⊗ f =
Af ≥ A∗f . The reverse inequality A∗f ≥ f is obtained by showing that for any
x̄ and any ε > 0, we can obtain the inequality A∗f (x̄)+ ε > f (x̄).
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– We deduce from the above result that for any f ∈ Fλ with λ > θA we have
f = A∗(λ⊗ f ) = (λ⊗ A∗) f, i.e.:

f (x) = Min
y∈X

{
Max

{
ϕ

y
λ(x), f (y)

}} = 〈
f (.), ϕ.

λ(x)
〉
.

– The proof of the minimality and the uniqueness of Gλ is shown through contradic-
tion by assuming that ϕ

y
λ(x) decomposes into the form ϕ

y
λ(x) = Min

z∈Z
{Max{h(z),

Ψz(x)}} with Ψz ∈ Fλ and Ψz �= ϕ
y
λ.

First one has to show that there exists z′ ∈ Z such that ϕ
y
λ ≤ Ψz′ . It is the one

for which ϕ
y
λ = Max {A∗(y, y), λ} = Max {θA, λ} = λ = Max

{
h(z′), Ψz′(x)

}
;

indeed, we then have h(z′) ≤ λ, Ψz′ = λ⊗Ψz′ and therefore:

ϕ
y
λ(x) ≤ Max(h(z′), Ψz′(x)) ≤ Max(λ, Ψz′(x)) = Ψz′(x).

Now, it just remains to show that Ψz′ ≤ ϕ
y
λ; indeed, we have:

Ψz′(x) = Min
u∈X

{
Max

{
ϕu

λ(x), Ψz′(u)
}}
≤ Max

{
ϕ

y
λ(x), Ψz′(y)

}
≤ Max

{
ϕ

y
λ(x), λ

}

= ϕ
y
λ(x) "#

The uniqueness of the minimal generator is an interesting property because it will
enable one to provide interpretations to the eigenfunctions of this generator, as was
the case with matrices in Chap. 6, Sect. 6: see for example Gondran and Minoux
(1998) where generating proper functions Gλ are identified with the aggregates of a
of percolation process at threshold λ.

8. The Cramer Transform

Historically, the Cramer transform was introduced to study the theory of large
deviations. Let us recall the principle.

Let Xi (i = 1, 2, . . .) be random independent variables of the same law and uni-

formly distributed. Then the sequence Sn = 1

n

∑
i=1,n Xi converges almost definitely

towards the mean X of the Xi by the strong law of large numbers. The theory of large
deviations will give us an estimation of the probability that Sn is close to x, for x
different from X in O(1) in relation to n.

Let h(n; a, b) ≡ −ln Prob {a < Sn < b}.
The function h(n + n′; a, b) is nonnegative and subadditive, i.e.:

h(n + n′; a, b) ≤ h(n; a, b)+ h(n′; a, b).
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Indeed, the independence of the X1 entails:

Prob

⎧
⎨

⎩
a <

1

n + n′
∑

i=1,n+n′
xi < b

⎫
⎬

⎭

≥ Prob

⎧
⎨

⎩
a <

1

n

∑

i=1,n

Xi < b

⎫
⎬

⎭
. Prob

⎧
⎨

⎩
a <

1

n′
∑

i=n+1,n+n′
Xi < b

⎫
⎬

⎭

hence the announced relation.
A consequence of the subadditivity is that the limit

s(a, b) ≡ lim
n→+∞

h(n; a, b)

n
= inf

n

h(n; a, b)

n

exists. Just take two integers n and n0, do the Euclidian division n = n0q+ r, apply
the subadditvity and successively extend n and n0 towards +∞. We then set:

S(x) ≡ inf
a<x<b

s(a, b).

The function S(x) is positive or zero and it is easy to show that it is convex. The
theorem of large deviations is then written:

Prob

⎧
⎨

⎩
x ≤ 1

n

∑

i=1,n

Xi < x + dx

⎫
⎬

⎭
= e−nS(x) dx. (17)

As we will again see through heuristic reasoning, this theorem is used in statistical
mechanics to reach the thermodynamic limit. In this context, S(x) is identified with
entropy. For a precise proof, see for example Lanfort (1973).

Let Z(β) be the Laplace transform of X.

Z(β) ≡
〈
e+βX

〉
=

∫
e+βXp(x) dx

where p(x) is the density of the probability of X.
We have Zn(β) = 〈

e+β(X1+...+Xn
〉
. Through the theorem of large deviations, for

large n, the sum X1 + X2 + . . . Xn is near nx with the probability ∼e−nS(x). Thus
the contribution to Zn(β) from the sums of nx is ∼en[βx−S(x)]. When one integrates
with respect to all the x variables, the dominant contribution comes from the x which
maximizes βx − S(x), hence

Zn(β) ∼ en(βx−S(x)).

and
ln Z(β) = sup

β

(βx − ln Z(β)). (18)

We obtain S(x) through the inverted Legendre transform

S(x) = sup
β

(βx − ln Z(β)) (19)
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Definition 8.1. The Cramer transform C is a function of M, the set of positive
measures on E = R

n, in Cx, the set of convex lsc proper functions, defined by
C ≡ F ◦ log ◦L where L is the Laplace transform and F the Fenchel transform.

The Cramer transform possesses a large number of properties such as the transfor-
mation of the product of convolution into inf-convolution, see for example Azencott
et al. (1978) and Akian (1995).

The use of this transformation in the field of partial differential equations (PDE’s)
is particularly interesting as the following theorem shows:

Theorem 15. (Akian et al. (1995)
The Cramer transform v of the solution u to the PDE on E = R

−∂u

∂t
+ ĉ

(
− ∂

∂x

)
(u) = 0, u(0, .) = δ (20)

(with ĉ ∈ Cx) satisfies the Hamilton–Jacobi equation:

+∂v

∂t
+ ĉ

(
∂v

∂x

)
(u) = 0, v(0, .) = χ. (21)

The latter equation is the HJB equation of a problem of dynamic control x′ = u, of
instantaneous cost c(u) and of initial cost χ.

Proof. The Laplace transform of u, denoted q, satisfies:

−∂w

∂t
(t, θ)+ ĉ (θ) q(t, θ) = 0, q(0, .) = 1.

So w = log(q) satisfies:

−∂w

∂t
(t, θ)+ ĉ(θ) = 0, w(0, .) = 0

which yields w(t, θ) = ĉ(θ) t. As ĉ is lsc convex, w is usc convex and can be
considered as the Fenchel transform of a function v:

w(t, θ) = sup
x

(θx − v(t, x)).

We deduce from the above θ = ∂v

∂x
and

∂w

∂t
= −∂v

∂t
.

So v satisfies (21).
This equation is the HJB equation of a problem of control with the dynamic x′ = u,

of instantaneous cost c(u) and of initial cost χ, since ĉ is the Fenchel transform of c
and the HJB equation of the problem of control is:

−∂v

∂t
+min

u

{
c(u)− u

∂v

∂x

}
= 0, v(0, .) = x. �
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If ĉ is time-independent, the optimal trajectories are straight lines with v(x) =
tc(x/t).

The solution to a linear PDE with constant coefficients is classically calculated
with the Fourier transform: this is the case of (20) if ĉ is a polynomial. The pre-
vious theorem shows that a first order nonlinear PDE with constant coefficients is
isomorphic to a linear PDE with constant coefficients and therefore can be calculated
explicitly. Such explicit solutions are known by the name of Hopf, Bardi and Evans
formulas (1984), see also Sects. 6.2 and 7.3.

Example 8.2. Let us consider the HJB equation

∂v

∂t
+ 1

p

∣∣∣∣
∂v

∂x

∣∣∣∣

p

= 0, v(0, x) = v0(x).

We deduce from the above w(t, θ) = t
1

p
|θ|p, then v(x, t) = |x|p

p t1/p
, and finally

v(x, t) = v0(x) �
|xp|

p t1/p = inf
y

(
v0(y)+ |x − y|p

p t1/p

)

where � corresponds to the inf-convolution on x.

Example 8.3. Let us consider the HJB equation

∂v

∂t
+ 1

2

(
∂v

∂x

)2

+ 2

3

(
∂v

∂x

)3/2

= 0, v(0, .) = v0(x).

We deduce from the above w(t, θ) = t

(
1

2
θ2 + 2

3
|θ|3/2

)
and finally v(t, x) =

v0(x) � x2

2t
� |x| 3

3t2
where � corresponds to the inf-convolution on x.

Exercises

Exercise 1. Proximity and duality in a Hilbert space
Let H be a real Hilbert space and Γ0(H) the set of functions with values in

]−∞,+∞] defined everywhere on H, convex, lower semi-continuous, not every-
where equal to +∞.

(1) Show that for any f ∈ Γ0(H), x ∈ H, the function

z → f (z)+ 1

2
‖z − x‖2

has a strict minimum.
We will denote f̃ (x) this minimum and z∗ = proxf z (“proximal point”) the

unique point where the minimum is reached:

f̃ (x) = min
z

(
f (z)+ 1

2
‖z − x‖2

)
, z∗ = arg min

z

(
f (z)+ 1

2
‖z − x‖2

)
.
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(2) Determine the proximal point for an affine function f (z) = (a, z) − β (where
a ∈ H, β ∈ R); for the characteristic function of a closed convex set C, f (z) =
Ψc (z) = 0 if z ∈ C,+∞ if x /∈ C; for f (z) = (a, z) − β + Ψc (z); for a
quadratic function f (z) = k||z||2.

(3) For any function f ∈ Γ0(H), we define its dual function

g(y) = sup
x∈H

{(x, y)− f (x)} ∀y ∈ H

Show that g ∈ Γ0(H) and that

f (x) = sup
x∈H

{(x, y)− g(x)} .

If two points x and y are such that we have the equality

f (x)+ g(x) = (x, y)

we say that they are conjugated with respect to the pair of dual function f and g.
Show that y is a subgradient of f at the point x, i.e.:

f (u) ≥ f (x)+ (y, u − x)

and that the subdifferential (set of the subgradients) ∂f (x) is a closed convex set.
Show that inf

x∈H
f (x) = −g(0) and arg min

x∈H
f (x) = ∂g(0).

(4) If f ∈ Γ0(H) and g ∈ Γ0(H) are two dual functions of each other; let x, y, z be
three elements of H. Show that the following properties are equivalent:

(i) z = x + y, f (x)+ g(y) = (x, y)

(ii) x = proxf z, y = proxg x

Deduce that for every z and z′ in H, we have:

||proxf z − proxf z
′|| ≤ ||z − z′||

so that the application proxf is continuou: H → H in the strong sense.
(5) Show that f̃ is convex differentiable (in the Fréchet sense) and that

∀f̃ (x) = x − z∗ = x − proxf x

[Indications: Moreau (1965)].

Exercise 2. Properties of the Moreau-Yosida transform
Let f : Rn → R∪ {+∞} be a convex, lsc function, finite in at least one point. We

denote 〈. , .〉 the scalar product and |.| the associated norm.

(1) For any λ > 0, we consider the function fλ, the so-called Moreau-Yosida
transform, defined on R

n by: fλ(x) = inf
y∈Rn

{
f (y)+ λ

2 |x − y|2} .

(a) Show that the inf of the previous definition is reached in a unique point xλ.
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(b) Write fλ as the inf-convolution of two convex functions. Verify that the inf-
convolution is exact and that fλ is differentiable in any x ∈ R

n with

∇fλ(x) = λ(x − xλ) ∈ ∂f (xλ).

(c) Show that:

I+ 1

λ
∂f is a surjective multi valued mapping: Rn → R

n;

∀x ∈ R
n,

(
I+ 1

λ
∂ f

)−1

(x) = xλ

(2) Determine fλ(x) and xλ for any x ∈ R
n in each of the following special cases:

(a) f (x) = 〈a, x〉 + b, where a ∈ R
n, b ∈ R.

(b) f indicator function of a closed non empty convex set C of R
n.

(c) f (x) = 1

2
〈Ax, x〉 with A self-adjoint.

(3) Show that xλ can be characterized by one or the other of the following conditions:

f (y)− f (xλ)+ λ 〈xλ − x, y − xλ〉 ≥ 0 ∀y ∈ R
n

f (y)− f (xλ)+ λ 〈y − x, y − xλ〉 ≥ 0 ∀y ∈ R
n

(4) (a) Show that the mapping x → xλ is Lipschitzian with Lipschitz constant 1.
(b) Show that the mapping x → ∇ fλ(x) = λ(x − xλ) is Lipschitzian with

Lipschitz constant λ.
(c) Prove the inequality:

0 ≤ fλ(y)− fλ(x)− λ 〈x − xλ, y − x〉 ≤ λ|x − y|2.
(5) What is the (Legendre–Fenchel) conjugate of

Nλ(x) = λ

2
|x|2?

Deduce the expression of the conjugate f̂λ of fλ.

Compare inf
x∈Rn

{f (x)} with inf
x∈Rn

{fλ(x)}.

(6) (a) Show that f (xλ) ≤ fλ(x) ≤ f (x).
(b) Establish the equivalence of the following statements:

(i) x minimizes f on R
n

(ii) x minimizes fλ on R
n

(iii) x = xλ

(iv) f (x) = f (xλ)

(v) f (x) = fλ(xλ)
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(7) (a) Let x ∈ dom f : = {x|f (x) < +∞}. Show that xλ → x when λ→+∞.
Deduce that {x ∈ R

n|∂f (x) �= ∅} is dense in dom f and that fλ(x) → f (x)

when λ = +∞.
(b) Let x /∈ dom f . Show that fλ(x)→+∞ when λ→+∞.

[Indications: see for example Hiriart-Urruty (1998).

(1) (b) One can use the classical result: if the inf-convolution (f1 � f2) of two lsc
convex proper functions f1 and f2 is exact in x (i.e. if there exists x1 and x2
with x = x1 + x2 such that (f1 � f2)(x) = f1(x1)+ f2(x2) then

∂(f1 � f2)(x) = ∂f1(x1) ∩ ∂f2(x2).

(c) from the characterization of the point xλ:

0 ∈ ∂(f + λ

2
|.− x|2)(xλ).

(2) (a) fλ(x) = 〈a, x〉 + b− |a|
2

λ
, xλ = x − a

λ
.

(b) fλ(x) = λ

2
d2

c (x) where dc is the functional distance to C.

(c) xλ =
(

I+ A

λ

)−1

(x), fλ (x) = 1

2
〈Aλx, x〉 with Aλ = A

(
I+ A

λ

)−1

.

(3) Optimality conditions for an objective function of the form f + g, f convex lsc
and g convex differentiable.

(5) N̂λ(p) = 1

2λ
|p|2.

Since fλ = f � Nλ, f̂λ = f̂ + N̂λ and f̂λ(p) = f̂ (p)+ 1

2λ
|p|2.

In particular f̂λ(0)(= − inf
x∈Rn

fλ(x)) ≡ f̂ (0)(= − inf
x∈Rn

f (x)).

(7) (a) First use an affine lower bound of f to prove that |xλ − x| → 0, then that
xλ ∈ dom ∂f = {x|∂f (x) �= ∅} to prove the density of dom ∂f in dom f.

(b) Can be proved by contradiction assuming “{fλ (x)}λ bounded from above.”]

Exercise 3. A few Legendre–Fenchel transforms
With every proper function f: R

n → R ∪ {+∞}, we associate its Legendre–
Fenchel transform f̂ : Rn → R ∪ {+∞} defined as:

y ∈ R
n, f̂ (y) = sup

x∈Rn
{〈x, y〉 − f (x)} .

(1) Check that f̂ is convex lsc, and that the Fenchel inequality

f̂ (y)+ f (x) ≥ 〈x, y〉 ∀(x, y) ∈ R
n × R

n

is satisfied with equality if and only if y ∈ ∂f (x), where ∂f (x) is the sub-
differential of f in x.
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Show that if f is 1-coercive on R
n (i.e. if f (x)/||x|| → +∞ when ||x|| →

+∞), then f̂ is finite everywhere on R
n. Show that if f is strictly convex, differ-

entiable and 1-coercive on R
n, then f̂ is also finite everywhere, strictly convex,

differentiable and 1-coercive on R
n.

(2) Calculus of some Fenchel transforms.

• If IA is the indicator function of a non empty subset A of R
n (IA(x) = 0 if

x ∈ A,+∞ otherwise), show that

ÎA(y) = sup
x∈A
〈y, x〉 (support function A)

• IfAis a closed non empty subset of R
n and fA the function defined as fA (x) =

1

2
||x||2 if x ∈ A,+∞ otherwise, show that f̂A(y) = 1

2

(||y||2 − d2
A (y)

)

where dA designates the function distance to A.
• For a > 0 and c ≥ 0, let us set

fa,c: x ∈ R → fa,c(x) = −√
a2 − (x − c)2 if |x − c| ≤ a,+∞ therwise.

Calculate f̂a,c, then fa1,c1 � fa2,c2 where � corresponds to the inf-convolution.
• For given reals m and σ, let us set:

qm,σ: x ∈ R → qm,σ(x) = 1

2

(
x −m

σ

)2

if σ �= 0, qm,0(x) = δm(x)

(function of Dirac type centered in m)
Calculate q̂m,σ, then qm1,σ1� qm2,σ2 .

f (x) = 1

2
x2 = q0,1(x) is its own Fenchel transform. Show that it is the only

function with this property.

[Indications:

(1) See Exercise 1, question 3.
(2) f̂a,c(y) = a

√
1+ y2 + cy, f a1,c1

� fa2,c2 = fa1+a2,c1+c2 .

q̂m,σ(y) = 1

2
σ2 y2 +my, qm1,σ1

� qm2,σ2 = q
m1+m2,

√
σ2

1+σ2
2

.

f (x)+ f̂ (y) ≥ 〈x, y〉 with x = y, therefore if f (x) ≥ 1

2
||x||2, f̂ (y) ≤ 1

2
||y||2.]

Exercise 4. “Proximal” algorithm
The task is to solve the problem

(P) Minimize f (x) with x ∈ C = {y/y ∈ R
n; Ax ≤ b}

where f: R
n → R is a convex nonsmooth function, where A is a m × n real matrix,

and b ∈ R
m.

We assume that C �= ∅ and that we either have bounded C (condition c1) or
f (x)→+∞ when |x| → +∞ (condition c2).

Under each of these conditions, the problem (P) has a finite optimal solution.
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We recall that the Moreau-Yosida regularization

fλ(x) = Min
z∈Rn

(
f (z)+ λ

2
|z − x|2

)
, defined for any λ > 0 (see Exercise 2), is

convex and continuously differentiable with gradient:

∇fλ(x) = −λ(xλ − x)

where

xλ = argmin
z∈Rn

{
f (z)+ λ

2
|z − x|2

}

(1) Consider the problem

(Pλ) Minimize fλ(x) with x ∈ R
n.

Show that the values of the objective optimal function and that the optimal
solutions of (P) and (Pλ) are the same.

The proximal point algorithm (Martinet 1970; Rockafellar 1976a,b) then
consists in using (Pλ) to solve (P).
Proximal point Algorithm

Let xk be the current point and λk > 0. Solve (exactly or approximately)
the sub-problem

SP(xk): Minimiser
z∈C

(
f (z)+ λk

2
|z − xk|2

)

Take xk+1 as the (exact or approximate) solution to SP(xk).

Prove that if λk is chosen at each iteration such that λκ ∈ [λmin, λmax] with
0 < λmin < λmax < +∞ and 0 < λk < +∞ and xk+1 is taken to be the exact
solution to SP(xk), then the sequence {xk} converges toward an optimal solution
to (P).

(2) SP (xk) will be solved iteratively using tangential approximation of f based on the
sub-gradients of f which are generated during the calculations. Thus tangential
approximations w0(z), w1(z), . . . , wi(z) of f will be successively constructed.
The ith approximation wi (z) is constructed from the values of the function f
and the sub-gradients obtained in the previous iterations at the points z0 =
xk, z

1
, . . . , zi by:

wi(z) = Max
0≤j≤i−1

{
f (zj)+

〈
gj, z − zj

〉}

where zj ∈ C, gj ∈ ∂f (zj).
For each stage i, the sub-problem SP(xk) is replaced with the following approx-
imated sub-problem:

SPi(x
k) = Min

z∈C

{
ψi(z, xk) = wi(z)+ λk

2
|z − xk|2

}
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SPi(xk) can be reformulated as the following quadratic problem with linear
constraints:

Qi(x
k) =

⎧
⎪⎨

⎪⎩

Min
z,η

η+ λk
2 |z − xk|2 under the contraintes

η ≥ f (zj)+ 〈
gj, z − zj

〉
(j = 0, 1, . . . , i− 1)

z ∈ C.

Let (zi, ηi) be the unique optimal solution to Qi(xk).
It is this zi which is used to construct the next approximation:

wi+1(z) = max

{
wi(z), f (zi)+

〈
gi, z − zi

〉 }

Let z∗ be the only optimal solution to SP(xk) and Φ∗ = Φ(z∗, xk), where,

∀z, Φ(z, xk) = f (z)+ λk
2

∣∣z − xk
∣∣2.

Show that:

(i) zi → z∗
(ii) Φ(zi, xk)→ Φ∗ and furthermore:

∀i: Φ(zi, xk) ≥ Φ∗ + λk

2
|zi − z∗|2.

(iii) ψi (zi, xk)→ Φ∗ and furthermore:

∀i: ψi(z
i, xk) ≤ ψi+1(z

i+1, xk) ≤ Φ∗ ≤ Φ(zi, xk).

(3) The procedure of approximate solution to SP(xk) will be stopped as soon as
εi = Φ(zi, xk)−ψi(z

i, xk) = f (zi)−wi(zi) becomes sufficiently small (therefore
when Φ∗ −ψi+1 (zi+1, xk) is small, see question 2 iii).

For ε, ε′ two positive reals, we propose the proximal algorithm (see Dodu et al.
1994) whose current step k is the following:

Let xk be the current point.

(a) Initialization.

Q0(x
k) has solution z0 = xk. Take g0 ∈ ∂f (z0) and set i = 1.

(b) Solve the problem Qi(xk). Let (zi, ηi) be the optimal solution, calculate f (zi)

and gi ∈ ∂f (zi).
Calculate wi(zi) = Max

0≤j≤i−1

{
f (zj)+ 〈

gj, zi − zj
〉}

and εi = f (zi)− wi(zi)

If εi ≤ λk
2 |zi − xk|2, go to c)

If λk
2 |zi−xk|2 < εi ≤ ε, END of iteration k and end of the proximal iterations.

If λk
2 |zi − xk|2 < εi and εi > ε, then add to Qi(xk) the new constraint η ≥

f (zi)+ 〈
gi, z − zi

〉
, set i ← i+ 1 and go into b).

(c) If |zi − xk| ≤ ε′, END of the proximal iterations. Otherwise terminate the
current stage k by setting xk+1 ← zi.
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Show that:

(i) f (zi) ≤ f (xk)+ εi − λk|zi − xk|2.
(ii) If ε > 0, ε′ > 0 and ∀k: λk ∈ [λmin, λmax] with λmin > 0, then the algorithm

ends in a finite number of proximal iterations by satisfying one of the following
two conditions (C1) or (C2):

(C1)
λk

2
|zi − xk|2 < εi ≤ ε

(C2) |zi − xk| ≤ ε′.

In the case (C1), we have |∇fλk (x
k)| ≤ 2

√
2λkε;

In the case (C2), we have |∇fλk (x
k)| ≤ 2λk ε′.

which shows that xk is, in both cases, an approximate solution to
(
Pλk

)
and therefore

to (P).
[Indications:

(1) See Martinet (1970) and Rockafellar (1976a,b). For further discussion concerning
the case where xk+1 is not the exact optimal solution to SP(xk), see Auslender
(1984).

(2) (ii) follows from the strong convexity of Φ(z, xk) (see Dodu et al. 1994); (i) and
(iii) are well-known sproperties of the “cutting-plane method” Kelley (1960).

(3) See Dodu et al. (1994). One will also find there stopping rules to further improve
the efficiency of this algorithm (the computational results reported show that it is
one of the most efficient algorithms available for convex nonsmooth optimization
to linear constraints).]

Exercise 5. Duality between probability and optimization
We refer to as decision space the triple (U, A, K) where U is a topological space,

A the set of open subsets of U and K a functional: A → R+ such that:

(i) K(U) = 0
(ii) K(∅) = +∞

(iii) K(∪An) = inf n K(An) for any An ∈ A.

The mapping K is called a cost measure.
A function c: u ∈ U → c(u) ∈ R+ such that K(A) = inf

u∈A
c(u) ∀A ⊂ U is called

a cost density of the cost measure K.

(1) Let a real positive lsc function c such that inf
u

c(u) = 0, then K(A) = inf
u∈A

c(u)

for any open set of U defines a cost measure. Show that, conversely, each cost
measure defined on an open set of a Polish space (topological space with a
countable base of open sets) has a unique minimal extension K∗ to P(U) (the
power set of U) having an lsc density c on U such that inf

u
c(u) = 0. The most

classical cost densities will be:

Xm(x) ≡ +∞ if x �= m, 0 if x = m;
Mp

m,σ ≡ 1

p

∥∥∥σ−1(x −m)

∥
∥∥

p
with p ≥ 1 and Mp

m,0 ≡ Xm.
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(2) By analogy with the random variables, we define a decision vector X on (U, A, K)

as a functional: U → R
n. We use the term decision variable (DV).

This decision vector induces a cost measure KX on (Rn, B) (B being the set of
open set of R

n) defined by KX(A) = K∗(X−1 (A)), ∀A ∈ B. This cost measure
KX has an lsc density CX.

We then define the characteristic function F(X) of a decision variable X as
the Fenchel transform of the cost density CX, F(X) ≡ F(CX), and the optimum
O(X) of the DV of X by O(X) ≡ arg minX CX(x) if the minimum exists. When
the optimality is unique and in the vicinity of the optimum, this yields:

CX(x) = 1

p

∣∣∣∣
x −O(X)

σ

∣∣∣∣

p

+ o(|x −O(X)|p).

Prove that if CX is convex and has a unique minimum of order p, then we have:

(F(X)′(0) = O(X), F(X −O(X)p(0) = Γ(q)[Sp(X)]q

with
1

p
+ 1

q
= 1.

(3) By analogy with conditional probabilities, we define the conditional excess cost
of taking the best decision in A knowing the best one taken in B by:

K(A/B) ≡ K(A ∩ B)− K(B).

Two decision variables X and Y are said to be independent if:

CX,Y(x, y) = CX(x)+ CY(y).

The conditional excess cost of X knowing Y is defined as:

CX,Y(x, y) ≡ K∗(X = x/Y = y) = CX,Y(x, y)− CY(y).

For two independent decision variables X and Y of order p and for every real k, show
that we have:

CX+Y = CX ⊗ CY, F(X + Y) = F(X)+ F(Y), [F(kX)](θ) = [F(X)](kθ),

O(X + Y) = O(X)+O(Y), O(kX) = kO(X), S
p(kX) = |k| S

p(X),

S
p(X + Y)q + [Sp(X)]q + [Sp(Y)]q

where CX ⊗ CY is the inf-convolution of CX and CY:

CX ⊗ CY(z) = inf
x,y
[CX(x)+ CY(y) with x + y = z] and

1

p
+ 1

q
= 1.

[Indications: see Akian et al. (1992).]
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Exercise 6. Characterization of the super and subdifferentials of a function
on R

Let Ω be an open set of R
n and u ∈ C (Ω). Show that:

(a) p ∈ ∂+u(x) (resp. p ∈ ∂−u(x)) if and only if there exists ϕ ∈ C1 (Ω) such that
Dϕ(x) = p and that u − ϕ has a local maximum (resp. minimum) in x;

(b) ∂+u(x) and ∂−u(x) are convex closed (possibly empty) subsets of R
n;

(c) If u is differentiable in x, then {Du(x)} = ∂+u(x) = ∂−u(x);
(d) If for a x, we have both non empty ∂+u(x) and ∂−u(x), then ∂+u(x) = ∂−u(x) =
{Du(x)}

(e) The sets A+ = {x ∈ Ω: ∂+u(x) �= ∅}, A− = {x ∈ Ω: ∂−u(x) �= ∅} are dense.

[Indications: See Crandall et al. (1984) and Barles (1994).

(a) Let p ∈ ∂+u(x). Then there exists δ > 0 and a continuous increasing function σ

on [0,+∞[with σ(0) = 0 such that

u(y) ≤ u(x)+ 〈p, y − x〉 + σ(|y − x|)|y − x| ∀y ∈ B(x, δ)

where B (x, δ) is the ball of radius δ centered in x.
Then ρ, the function C1 defined as

ρ(r) =
r∫

0

σ(t)dt

verifies ρ(0) = ρ′(0) = 0 and ρ(2r) ≥ σ(r) r.
We deduce from the above that the function

ϕ(y) = u(x)+ 〈p, y − x〉 + ρ(2|y − x|)
belongs to C1(Rn), verifies Dϕ(x) = p and that u − ϕ has a maximum in x in B
(x, δ).

(b) Let x̄ ∈ Ω and let us consider the functionϕε(x) = 1

ε
|x−x̄|2. For any ε > 0, u−ϕε

has a maximum on B = B(x̄, R) at the point xε. We deduce

|xε − x̄|2 ≤ 2ε sup
x∈B

|u(x)|.

If ε is sufficiently small, xε is not on the boundary of B and, according to a)
Dϕε(uε) = 2(xε − x̄)/ε ∈ ∂+u (xε). A+ is therefore dense.]

Exercise 7. Marginal functions
Let us consider the function u(x) defined as:

u(x) = inf
b∈B

g(x, b)

where g: Ω×B → R, Ω ⊂ Rn is an open set and B is a topological space. Functions
of this type are often referred to as marginal functions.
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The most classical example is the distance function to a set S ⊂ Rn,

d(x, S) = inf
s∈S
|x − s|.

Another example is the “regularized Yosida function.”

fλ(x) = inf
y∈Ω

(u(y)+ 1

2λ
|x − y|2).

(1) It is assumed that g (x, B) is bounded for any x ∈ Ω and that x → g(x, b) is
continuous in x uniformly with respect to b ∈ B; i.e. that

(a) |g(x, b)− g(y, b) ≤ w(|x − y|, R), for |x|, |y| ≤ R, b ∈ B, for a module w.
We denote M(x) the set (which may be empty):

M(x) = arg min
b∈B

g(x, b): = {b ∈ B:u(x) = g(x, b)}.

It is non empty if B is compact.
Show that under the hypothesis (1), we have u ∈ C (Ω) and

∂+u(x) ⊇ ∂+x g(x, b) for any b ∈ M(x), and

∂−x g(x, b) ⊇ ∂−u(x).

(2) Assume now that g (·, b) is differentiable in x uniformly for b i.e. there exists for
a module w1 such that:

(b) |g(x + h, b) − g(x, b) − 〈Dx g(x, b), b〉 | ≤ |h|w1(|h|) for any b ∈ B and
small h.
We also assume that:

(c) b → Dx g(x, b) is continuous,
(d) b → g(x, b) is lsc. We further denote Y(x): = {Dx g(x, b): b ∈ M (x)}.

Show that under the hypotheses (1), (2), (3), (4) and B compact, we have:
(e) Y(x) �= ∅
(f) ∂+u(x) = C0Y(x)

(g) ∂− u (x) =
{
{y} if Y(x) = y

∅ if Y(x) is not singleton

and therefore that u ∈ SDS1.

(3) It is now assumed that B is compact, g continuous on Ω×B, differentiable with
respect to x with Dx g continuous on Ω × B. Show that u is SDS1 and locally
Lipschitz (u ∈ Liploc (Ω)) and that we still have (e), (f) and (g).

[Indications: see Bardi and Capuzzo-Dolcetta (1997), Chap. 2. (1) Lemma 2.11. (2)
Proposition 2.13. (3) Proposition 4.4.]
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Exercise 8. Crandall, Ishii and Lions lemma
Let θ ⊂ Rn be locally compact, u ∈ LSC (θ), z ∈ θ and (p, x) ∈ ∂−2 v(z).
Show that for any sequence un ∈ LSC(θ) which epiconverges toward u, there

exists for any δ > 0
x̂m ∈ θ, (pm, xm) ∈ ∂−2 um (x̂n) such that
(x̂n, un(x̂n), pn, Xn) converge toward (z, u(z), p, X − 4δI).

[Indications:

Taking z = 0, we will seek to minimize the function a(x)− 〈p, x〉 − 1

2
〈Xx, x〉 +

2δ|x|2 in the compact Br = {x ∈ θ: |x| ≤ r} where r > 0 is chosen in relation to
z = 0 and δ. x̂n will be the argument of this minimum. see Crandall et al. (1992).]

Exercise 9. Solutions of nonlinear PDE by separation of variables

(1) Consider the following HJB problem:

∂u

∂t
+ 1

2
|∇u|2 = 0 in]0,+[×R

N

u(x, 0) = max
i∈I
{aix + bi} on R

N

where ai ∈ R
N, bi ∈ R.

Show that the solution SDI1 (and convex) is equal to

u(x, t) = max
i∈I
{aix − 1

2
|ai|2t + bi}

(2) What happens to this solution if we now consider the HJB problem:

∂u
∂t + H(|∇u|) = f (t) in ]0,+∞[×R

N

u(x, 0) = max
i∈I
{aix + bi} on R

N

where ai ∈ R
N, bi ∈ R, f (t) increasing in t and H(p) convex.

[Indications: (2) u(x, t) = max
i∈I
{ai x + ∫ t

0 f (s)ds− H(ai) t + bi}.]



Chapter 8
Collected Examples of Monoids,
(Pre)-Semirings and Dioids

The present chapter is intended as a catalogue of examples covering the various
algebraic structures studied throughout this book.

The successive items to be found in this chapter are: in Sect. 1, examples of
monoids with emphasis on canonically ordered monoids; in Sect. 2, examples of pre-
semirings and pre-dioids which are not semirings; in Sect. 3, examples of semirings
(and rings) which are not dioids; and in Sect. 4, examples of dioids.

Using the many examples stated in this chapter, a virtually unlimited number of
other examples may, of course, be derived by homomorphism, but also by considering
matrices, polynomials, formal series on these algebraic structures. Verification of the
main properties enjoyed by the various examples stated here is either explicitly stated
in the text of the chapter, or can be found in the previous chapters.

Throughout this chapter, for most of the examples considered, we provide ref-
erences to the chapters (in bold character) and sections or subsections dealing with
each particular example.

1. Monoids

The typology of monoids is recalled in Fig. 1 below.
The first level of the classification contains:

– Groups (see Sect. 1.2);
– Canonically ordered monoids (see Sect. 1.3–1.6);
– “General” monoids which belong to none of the previous categories (see

Sect. 1.1).

We recall that, by virtue of Theorem 1 of chapter 1 (Sect. 3.4), a monoid cannot both
be a group and be canonically ordered, the corresponding subclasses are therefore
disjoint.

Table 1 recalls the main definitions concerning monoids.

313
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MONOIDS

GROUPS
§ 1.2

CANONICALLY
ORDERED
MONOIDS

OTHER
MONOIDS

§ 1.1

HEMI-GROUPS
§ 1.4

IDEMPOTENT
MONOIDS

= SEMI-LATTICE

SELECTIVE
MONOIDS

§ 1.6

OTHER CANONICALLY
ORDERED
MONOIDS

§ 1.3

NON SELECTIVE
IDEMPOTENT

MONOIDS
§ 1.5 

Fig. 1 Typology of monoids

Table 1 Basic terminology concerning monoids

Monoid Set E endowed with an associative internal law ⊕
Cancellative monoid Monoid in which ⊕ is cancellative every element is cancellative

Group There exists a neutral element ε and every element of E has an inverse
for ⊕

Canonically ordered
monoid

The canonical preorder relation ≤ (defined as a ≤ b ⇔ ∃c such that
b = a ⊕ c) is an order relation

Idempotent monoid ⊕ is idempotent (∀a ∈ E a ⊕ a = a)

Selective monoid ⊕ is selective (∀a ∈ E, b ∈ E : a ⊕ b = a or b)

Hemi-group Every element is cancellative (property of hemi-group) and the
canonical preorder relation is an order relation

1.1. General Monoids

The examples presented in this section are monoids which are neither groups (see
Sect. 1.2), nor canonically ordered monoids (see Sects. 1.3–1.6).

After the presentation of each example, we indicate, whenever appropriate, the
chapters and sections where the example is discussed (chapter number in bold
followed by section numbers). If opportune, additional references are pointed out.
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1.1.1. (Int(R), +)

We consider the set Int (R) of the intervals of R of the form a = [a, ā] with a, ā ∈ R

and a ≤ ā. This set is endowed with the addition of intervals:

a ⊕ b = [a + b, ā + b̄]
The operation ⊕ is associative, commutative and has [0, 0] as neutral element.

If �(a) = ā − a is the length of the interval, this yields �(a ⊕ b) = �(a) + �(b).
Since �([0, 0]) = 0, the only invertible elements are the intervals of length 0.

(Int(R),⊕) is not canonically ordered because a ≤ b and b ≤ a implies
�(a) = �(b), but not a = b; thus for example: [1, 3]⊕ [1, 1] = [2, 4] and
[2, 4]⊕ [−1,−1] = [1, 3].

1.1.2. (P(Rk), +), (Conv (Rk), +), (Convc (Rk), +)

These are more general cases than Example 1.1.1. P(Rk) is the power set of R
k

(k integer ≥ 1).
The addition+ of two subsets A and B of R

k (Minkowski addition) is defined as:
C = A + B with

C = {x/x ∈ R
k and x = a + b with a ∈ A, b ∈ B}

This operation is associative, commutative and has neutral element {(0)k}, the subset
reduced to the zero vector of R

k.
The set of convex subsets of R

k, Conv(Rk), is a submonoid of P(Rk) for the
above-defined addition. To be convinced of this, just check that the addition operation
on subsets is internal in Conv (Rk).

The same is true for all the subsets of P(Rk) for which addition is an internal
operation. A typical example is Convc (Rk), the set of compact convex subsets of R

k.

1.1.3. (P(R), .)

The set P(R) is the power set of the real line.
The law ⊕ is the product of two subsets of R defined as:

C = A . B = {x/x = a . b with a ∈ A and b ∈ B}
This operation is associative, commutative and has neutral element {1}, the subset
reduced to the real number 1.
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1.1.4. (Conv (Rn+k), ⊕)

We consider the set of the convex subsets of R
n+k endowed with the generalized

sum ⊕ defined for any A and B ∈ Conv (Rn+k) by:

A ⊕ B = {(y, z1 + z2) ∈ R
n × R

k/(y, z1) ∈ A, (y, z2) ∈ B}.
One verifies that⊕ is an internal associative, commutative operation having neutral
element P(Rn)× {(0)k}.

[Reference: Rockafellar (1970), Chap. 3.]

1.1.5.
(

R̂
k,

(k)+
)

The elements of R̂
k are ordered k-tuples of real numbers of the form:

a =

⎛

⎜⎜
⎝

a(1)

a(2)

:
a(k)

⎞

⎟⎟
⎠

with ∀i: a(i) ∈ R̂ = R ∪ {+∞} and a(1) ≤ a(2) ≤ · · · ≤ a(k)

The operation
(k)+ is defined as:

c =

⎛

⎜⎜
⎝

c(1)

c(2)

:
c(k)

⎞

⎟⎟
⎠ = a

(k)+ b

where c(1), c(2), . . . c(k) are the k smallest values considered in nondecreasing order
out of the set:

Z = {z/z = a(i) + b(j), 1 ≤ i ≤ k, 1 ≤ j ≤ k}

This operation is commutative, associative and has neutral element

⎛

⎜⎜
⎝

0
0
:
0

⎞

⎟⎟
⎠.

This monoid is not canonically ordered, as illustrated by the following example:

Let us take k = 2, a =
(

1
3

)
b =

(
3
5

)

This yields: (
1
3

)
(2)+

(
2
6

)
=

(
3
5

)
therefore a ≤ b
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and (
3
5

)
(2)+

(−2
2

)
=

(
1
3

)
therefore b ≤ a

and yet a �= b
[References: 4 (Sect. 6.8), 8 (Sect. 4.3.1)]

1.1.6.
(

R̂ + [0, η](N) ,
(≤η)+

)

Let η > 0 be a given positive real number.
We consider the set E of sequences of real numbers of R̂ = R ∪ {+∞} having

variable finite length, and with extreme values differing by at most η.
For a ∈ E we denote ν(a) the number of terms of the sequence a, and a can be

written:

a =
(

a(1), a(2), . . . aν(a)
)

with a(1) = Min
i=1...ν(a)

{
a(i)

}
aν(a) = Max

i=1...ν(a)

{
a(i)

}

and aν(a) − a(1) ≤ η

Thus E can be considered as a subset of R̂ + [o, η](N) where [0, η](N) denotes the
set of finite sequences of elements in the real interval [0, η].

We consider on E the law
(≤η)+ defined as follows:

a =
(

a(1), a(2), . . . ., aν(a)
)

b =
(

b(1), b(2), . . . ., bν(b)
)

then c = a
(≤η)+ b =

(
c(1), c(2), . . . ., cν(c)

)

with:
c(1) = a(1) + b(1) = Min

i=1...ν(a)

{
a(i)

}
+ Min

i=1...ν(b)

{
b(i)

}

and where c is the sequence formed by all the values of the form a(i) + b(j) (i =
1, . . . ν(a); j = 1, . . . ν(b)) such that:

c(1) ≤ a(i) + b(j) ≤ c(1) + η

This therefore implies ν(c) ≤ ν(a) . ν(b).

Example. For η = 3: (2, 3, 5)
(≤η)+ (1, 4) = (3, 4, 6, 6)

One verifies that
(≤η)+ is commutative, associative and has neutral element ε = (0)

(the sequence formed by a single term equal to 0).
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However
(≤η)+ is not idempotent as shown by the following example where η = 2:

(1, 2, 3)
(≤η)+ (1, 2, 3) = (2, 3, 3, 4, 4, 4).

[References: 4 (Sect. 6;10), 8 (Sect. 4.3.2)]

1.1.7. Qualitative Multiplication

On the set of signs E = {+,−, 0}, we consider the product of signs ⊗ defined by
the table:

⊗ + − 0
+ + − 0
− − + 0
0 0 0 0

It is readily checked that (E,⊗) is a monoid with neutral element +.
E can be augmented with the indeterminate sign (denoted: ?) such that: ?⊗+ =

?, ?⊗− =?, ? ⊗ 0 = 0, ?⊗ ? =?.
We still have a monoid structure with neutral element +. The element denoted

+ can be interpreted as representing the real interval ]0,+∞[, – as representing
]−∞, 0[, ? as representing ]−∞,+∞[, and 0 as representing the set {0}.

Observe that, contrary to qualitative addition (see Sect. 1.5.5),⊗ is not idempotent
and the monoid (E,⊗) is not canonically ordered.

[References: 1 (Sect. 3.4), 1 (Sect. 6.1.3)]

1.2. Groups

1.2.1. (R, +), (Z, +), (C, +)

The set of real numbers (the set of signed integers, of complex numbers) endowed
with ordinary addition. + is commutative, associative and has as neutral element 0.
Every element has an inverse for +.

1.2.2. (R∗, ×), (Q∗, ×), (C∗, ×)

The set of nonzero real numbers (the set of nonzero rational numbers, nonzero
complex numbers) endowed with ordinary multiplication × which is commutative,
associative with neutral element 1. Every element has an inverse for ×.

1.2.3. (R\{1}, a ⊕ b = a + b − ab)

The set R\{1} endowed with the operation ⊕ defined as: a ⊕ b = a + b − ab is
associative, commutative and has 0 as neutral element. Every element a is invertible:

a−1 = a

a − 1
.

[Reference: 1 (Sect. 2.1)]
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1.3. Canonically Ordered Monoids

The subclass of canonically ordered monoids includes:

– Hemi-groups (see Sect. 1.4);
– Idempotent monoids and selective monoids (see Sects. 1.5 and 1.6);
– Other canonically ordered monoids which are neither semi-groups nor idempotent

monoids, which we introduce in the present section.

1.3.1.
(
R̂

k, Min(k)

)

The elements of R̂
k are ordered k-tuples of real numbers ∈ R̂.

If a =

⎛

⎜⎜
⎝

a(1)

a(2)

:
a(k)

⎞

⎟⎟
⎠ ∈ E this implies: a(1) ≤ a(2) ≤ · · · ≤ a(k)

The law ⊕ on E is the operation Min(k) defined for:

a =

⎛

⎜⎜
⎝

a(1)

a(2)

:
a(k)

⎞

⎟⎟
⎠ b =

⎛

⎜⎜
⎝

b(1)

b(2)

:
b(k)

⎞

⎟⎟
⎠

as c =

⎛

⎜⎜
⎝

c(1)

c(2)

:
c(k)

⎞

⎟⎟
⎠ = a Min(k) b

where c(1) c(2) · · · c(k) are the k smallest values taken in the set
{
a(1), a(2), . . . a(k), b(1), b(2), . . . , b(k)

}

⊕ is commutative, associative and has a neutral element ε =
⎛

⎜
⎝

+∞
+∞
:
+∞

⎞

⎟
⎠

We observe that ⊕ is not idempotent but is “k-idempotent,” that is to say:
⎛

⎝
a(1)

:
a(k)

⎞

⎠⊕ · · · ⊕
⎛

⎝
a(1)

:
a(k)

⎞

⎠

︸ ︷︷ ︸

=
⎛

⎝
a(1)

:
a(1)

⎞

⎠ =
⎛

⎝
a(1)

:
a(k)

⎞

⎠⊕ · · · ⊕
⎛

⎝
a(1)

:
a(k)

⎞

⎠

︸ ︷︷ ︸

k times k+1 times

We deduce from the above that the canonical preorder relation ∝ is an order (see
Chap. 1, Proposition 3.4.6).

[References: 4 (Sect. 4.6.8), 8 (Sect. 4.3.1)]
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1.3.2. (R̂ + [0, η](N), Min(≤η))

Let η > 0 be a given positive real number. As in Example 1.1.6, we consider the
set E = R̂ + [0, η](N) whose elements are sequences of real numbers ∈ R̂ of finite
(variable) length with extreme values which differ by η at most.

The law ⊕ on E is the operation Min(≤η) defined as:

a =
(

a(1), a(2), . . . aν(a)
)
, b =

(
b(1), b(2), . . . b(ν(b))

)

then:
c = a Min(≤η)b =

(
c(1), c(2), . . . cν(c)

)

where c is the sequence formed by all the terms a(i) and b(j) satisfying:

a(i) ≤ z + η and b(j) ≤ z + η

with

z = Min

{
Min

i= 1...ν(a)

{
a(i)

}
; Min

j= 1...ν(b)

{
b(j)

}}

Observe that: ν(c) ≤ ν(a)+ ν(b)

Example:

let η = 3 and a = (4, 6, 7), b = (2, 3, 5)

so c(1) = 2 and c = (2, 3, 4, 5)

⊕ is commutative, associative and has a neutral element ε which is the element (+∞)

(sequence formed by a single term equal to +∞).
Observe that ⊕ is neither idempotent nor cancellative. Thus for example, for

η = 2: (1, 2, 3)⊕ (1, 2, 3) = (1, 1, 2, 2, 3, 3) (non idempotent)
and:

(1)⊕ (2) = (1, 2)

(1)⊕ (2, 4) = (1, 2)

(non cancellative).
Let us show that the canonical preorder relation is an order relation. Therefore

consider two elements a ∈ E, b ∈ E such that there exists u ∈ E and v ∈ E satisfying:

a ⊕ u = b and a = b⊕ v

as b(1) = Min
{

a(1), u(1)
}

we have: b(1) ≤ a(1)

As a(1) = Min
{

b(1), v(1)
}

we have: a(1) ≤ b(1)

hence we deduce a(1) = b(1).
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Now, given the equality a(1) = b(1):

b = a ⊕ u ⇒ ν(b) ≥ ν(a)

and a = b⊕ v ⇒ ν(a) ≥ ν(b)

which implies: ν(a) = ν(b) = k
For the latter relation to be satisfied, it is then necessary that: u(1) > a(1)+η from

which we deduce that: b = a ⊕ u = a. (E,⊕) is therefore a canonically ordered
monoid. "#
[References: 4 (Sect. 6.10), 8 (Sect. 4.3.2)]

1.3.3. Nilpotent t-Norm: ([0, 1], Max{0, a + b − 1})

On the set [0, 1], we define the operation ⊗ by: a ⊗ b = max{0, a + b− 1}.
⊗ is associative, commutative and has 1 as neutral element. One verifies that it

induces a structure of canonically ordered monoid. Indeed, a ≤ b and b ≤ a imply
that there exists c ∈ [0, 1] and d ∈ [0, 1] such that:

max{0, a + c− 1} = b and max{0, b+ d − 1} = a

and if a �= 0 and b �= 0, this yields a+ c−1 = b and b+d−1 = a, hence c+d = 2
and therefore c = d = 1, hence a = b.

One verifies that every element a �= 1 is nilpotent: a ⊗ a ⊗ · · · ⊗ a︸ ︷︷ ︸
n times

= 0 as soon

as n ≥ 1

1− a
. This law ⊗ is referred to as a t-norm, (see Exercise 2, Chap. 1).

[References: 1 (Sect. 3.2.5), 1 (Exercise 2)]

1.3.4. Nilpotent t-conorm: ([0, 1], Min {a + b, 1})

On the set [0, 1], we define the operation a ⊕ b = Min{a + b, 1}.
⊕ is associative, commutative and has 0 as neutral element. One easily checks that

it induces a canonically ordered structure. One verifies that every element a �= 0 is
nilpotent: n a = 1 as soon as n > 1

a . This is referred to as a t-conorm, (see Exercise 2,
Chap. 1).

[References: 1 (Sect. 3.2.5), 1 (Exercise 2)]

1.3.5. ([0, 1], a ⊕ b = a + b − ab)

On the set [0, 1], we define the operation a ⊕ b = a + b− ab.
⊕ is associative, commutative and has 0 as neutral element. One easily checks

that it induces the structure of a canonically ordered monoid.
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The antisymmetry of the canonical preorder relation is proved as follows. Assum-
ing that both a ≥ b and a ≤ b hold, there exist c ∈ [0, 1] and d ∈ [0, 1] such
that

a = b+ c− bc and b = a + d − ad.

Eliminating b from these two relations yields:

(1− a)[d(1− c)+ c] = 0

If a �= 1, d(1− c)+ c = 0 implies c = 0 and d = 0, hence a = b.
If a = 1, then b = 1 and in this case, too, a = b.

1.3.6. Order of Magnitude Monoid

On the set E of pairs (a, α) ∈ (R+\{0})×R, to which we add the pair (0,+∞), we
define the operation ⊕ by:

(a, α)⊕ (b, β) = (c, min(α, β))

with c = a if α < β, c = b if β < α, c = a + b if α = β.
⊕ is associative, commutative and has (0,+∞) as neutral element and induces

the structure of a canonically ordered monoid.
The elements (a, α) are in 1− 1 correspondence with the numbers of the form a

εα when ε tends towards 0+.
[Reference: 1 (Sect. 3.4)]

1.3.7. Nonstandard Number Monoid

On the set E of triples (a, b, α) ∈ (R+\{0})3 to which we add the triple (0, 0,+∞),
we define the operation ⊕ by:

(a1, b1, α1)⊕ (a2, b2, α2) = (a1 + a2, b, min{α1, α2})
with b = b1 if α1 < α2, b = b2 if α2 < α1, b = b1 + b2 if α1 = α2.

This is a canonically ordered monoid, product of (R+,+) with the order of mag-
nitude monoid (Sect. 1.3.6). It is isomorphic to the set of nonstandard numbers of
the form a + bεα endowed with ordinary addition when ε tends to 0+.

[Reference: 1 (Sect. 6.1.6)]

1.3.8. Power Monoid

On the set E of pairs (a, A) ∈ (R+\{0})2 to which we add the pair (0, 0), we define
the operation ⊕ as

(a, A)⊕ (b, B) = (c, max{A, B})
with c = a if A > B, c = b if A < B, c = a + b if A = B.

This monoid is isomorphic to the one in Sect. 1.3.7 by setting A = e−α.
This canonically ordered monoid is, moreover, isomorphic to the set of numbers

of the form a Ap when p tends to +∞, endowed with ordinary addition.
[Reference: 1 (Sect. 3.4.4)]
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1.4. Hemi-Groups

Such monoids are both canonically ordered and cancellative (see Chap. 1, Sect. 3.5).

1.4.1. (R+, +), (N, +)

The set of nonnegative real numbers (resp. set of natural numbers) endowed with
ordinary addition +.
+ is associative, commutative and has neutral element 0. Every element is

cancellative and the canonical preorder relation is an order.
A virtually unlimited number of hemi-groups can be deduced by isomorphism

from (R+,+). Thus, with every one-to-one correspondence ϕ of M ⊂ R in R+, one
can associate the hemi-group (M,⊕), where ⊕ is defined as: a ⊕ b = ϕ−1 (ϕ(a)+
ϕ(b)).

Examples will be found in sections 1.4.5, 1.4.7, 1.4.8 below.

1.4.2. (]0, 1] , ×)

The set of real numbers of the interval]0, 1] endowed with ordinary multiplication.
× is associative, commutative and has neutral element 1. Every element is

cancellative and the canonical preorder relation is an order.
Note that (]0, 1],×) and (R+,+) are isomorphic through ϕ defined as: ϕ(x) =

− ln(x).

1.4.3. (R+\{0}, ×), (N∗, ×)

The set of strictly positive real numbers (resp. strictly positive natural numbers)
endowed with ordinary multiplication. × is associative, commutative and has neu-
tral element 1. Every element is cancellative and the canonical preorder relation is
an order.

1.4.4. The Free Monoid

Let A be a set (called “alphabet”) whose elements are called letters.
We take for E the set of finite sequences of elements of A which we call words,

and we define the operation ⊗ as concatenation i.e.:

if m1 ∈ E : m1 = s1s2 . . . sp

m2 ∈ E : m2 = t1t2 . . . tq
m1 ⊗m2 = s1s2 . . . spt1t2 . . . tq
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The set of words on A endowed with the operation of concatenation, denoted A∗, is
called the free monoid on A.

The canonical preorder relation is an order:

m1 ≤ m2 ⇔ m1is a prefix of m2.

The operation⊗ is not commutative. Finally, we observe that in E, every element
is right-cancellative and left-cancellative. Indeed:

m ⊗m′ = m ⊗m′′ ⇒ m′ = m′′

and
m′ ⊗m = m′′ ⊗m ⇒ m′ = m′′.

[References: 1 (Sect. 2.1.13), 1 (Sect. 2.3.2)]

1.4.5. (R+\{1}, a ⊕ b = a + b
1 + ab

), (R+, a ⊕ b = a (1 + b2)1/2 + b (1 + a2)1/2)

The set R+\{1} endowed with the operation ⊕ defined as a ⊕ b = a + b

1+ ab
is a

hemi-group (see Example 2.3.3, Chap. 1), because it is isomorphic to (R+,+) by
the hyperbolic tangent transform; we have indeed:

th(w1 + w2) = th(w1)+ th(w2)

1+ th(w1) · th(w2)
.

The same is true for R+ endowed with the operation ⊕ defined as a ⊕ b = a (1 +
b2)1/2 + b (1 + a2)1/2 because it is isomorphic to (R+,+) by the hyperbolic sine
transform.

[Reference: 1 (Exercise 1)]

1.4.6. (Int (R+), +)

This is the set of intervals on R+, that is to say elements a of the form a = [a, ā]
with 0 ≤ a ≤ ā and endowed with the addition of intervals:

a ⊕ b = [a + b, ā + b̄].
As for Int (R) (see Example 1.1.1), the operation ⊕ is associative, commutative
and has [0, 0] as neutral element. But one easily checks that Int (R+) is moreover
canonically ordered by ⊕ and that each element (interval) is cancellative.

1.4.7. (R+, a ⊕p b = (ap + bp)1/p)

This is the set of nonnegative reals endowed with the operation ⊕p (with p ∈ R∗),
defined as: a ⊕p b = (ap + bp)1/p.

This is a hemi-group which is isomorphic to (R+,+). Moreover, it is observed
that: lim

p→+∞
(
a ⊕p b

) = max {a, b}.
[Reference: 1 (Sect. 3.2.5)]
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1.4.8. (R, a ⊕h b = h ln (ea/h + eb/h))

For any real number h �= 0, R endowed with the operation a⊕h b = h ln (ea/h+eb/h)

is a hemi-group which is isomorphic to (R+,+).
When h tends to 0+, this yields lim(a ⊕h b) = max{a, b}, and when h tends to

0−, we have lim(a ⊕h b) = min{a, b}.
[Reference: 1 (Sect. 3.2.5)]

1.5. Idempotent Monoids (Semi-Lattices)

The subclass of idempotent monoids includes:

– Selective monoids (see Sect. 1.6);
– Other idempotent monoids which are not selective monoids and which we

introduce in the present section.

We observe that, for all these examples, the operation ⊕ being idempotent, the
canonical preorder relation is an order.

1.5.1. (N, gcd)

The set of natural numbers endowed with the gcd operation (“greatest common
divisor”) which associates gcd (a, b) with every pair of integers a, b.

This operation is associative, commutative, idempotent and has neutral element
ε = +∞, by viewing ε as the (infinite) product of all the prime numbers raised to
the power +∞.

1.5.2. (N, lcm)

The set of natural numbers endowed with the lcm operation (“least common
multiple”) which associates lcm(a, b) with every pair of integers a, b.

This operation is associative, commutative, idempotent and has as neutral
element 1.

1.5.3. (P (X), ∪)

The power set of a given set X endowed with the union operation.
This operation is associative, commutative, idempotent and has as neutral element

the empty subset ∅.

1.5.4. (P (X), ∩)

The power set of a given set X endowed with the operation intersection. This oper-
ation is associative, commutative, idempotent and has as neutral element the set X
itself.
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1.5.5. Qualitative Addition

The set E = {+,−, 0, ?} endowed with the idempotent operation ⊕ defined as

⊕ + − 0 ?
+ + ? + ?
− ? − − ?
0 + − 0 ?
? ? ? ? ?

is a canonically ordered monoid, with neutral element 0 and absorbing element ?.
The following relations hold: ? ≥ + ≥ 0 and ? ≥ − ≥ 0, which can be illustrated

by the following graphic representation:

?

+ –

0

By identifying E, with {0, 1}2, ? ≡ (1, 1),+ ≡ (1, 0),− ≡ (0, 1) and 0 ≡ (0, 0),
it is observed that (E,⊕) is isomorphic to the square of the monoid ({ 0, 1}, max).

[Reference: 1 (Sect. 3.4.2)]

1.5.6. (Conv (Rn), A⊕B = Conv (A∪B)), (Convc (Rn), A⊕B = Conv (A∪B))

We consider the set of the convex subsets of R
n, conv (Rn), endowed with the

operation ⊕ defined as:
A ⊕ B = conv(A ∪ B)

where conv (X) denotes the convex hull of a subset X.
This operation is associative, commutative, idempotent and has as neutral element

the empty subset ∅.
The set of compact convex sets of R

n, Convc (Rn), is an idempotent sub-monoid
of Conv (Rn) for ⊕.

1.5.7. (Conv (Rn), ∩), (Convc (Rn), ∩)

Here we consider the set of the convex subsets of R
n, Conv (Rn), endowed with the

operation intersection. This operation is associative, commutative, idempotent and
has as neutral element, the set R

n itself.
The set of compact convex sets of R

n, Convc (Rn), is a idempotent sub-monoid
of Conv (Rn) for intersection.
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1.5.8. (Int (R), ∩)

This is the special case of (conv (Rn),∩) with n = 1, (see Sect. 1.5.7 above).

1.5.9. (Int (R), Conv (A ∪ B))

This is the special case of (conv (Rn), A ⊕ B = conv (A ∪ B)) with n = 1, (see
Sect. 1.5.6).

Let us complete this presentation of idempotent monoids with examples involving
vectors “monitored” by the first component.

1.5.10. (R̂ × P(R), Min)

P(R) denoting the power set of R, we consider the set R̂ × P(R) of elements
a = (a1, a2) such that a1 ∈ R̂ and a2 ∈ P(R), endowed with the Min operation
defined as follows:

Min(a, b) =

⎧
⎪⎨

⎪⎩

a if a1 < b1

b if b1 < a1

(a1, a2 ∪ b2) if a1 = b1

This operation is associative, commutative, idempotent and has (+∞, ∅) as neutral
element.

This type of monoid can be used to define a minimum operation for complex
numbers.

Case 1. if z1 = x1+ iy1 and z2 = x2+ iy2 are two complex numbers, we will take

Min(z1, z2) =

⎧
⎪⎨

⎪⎩

z1 if x1 < x2

z2 if x2 < x1

{z1, z2} if x1 = x2

where {z1, z2} denotes the set of complex numbers with real component x1 = x2 and
y1 ∪ y2 as imaginary component.

Observe that we only keep a single value for the real component, but that the
imaginary component can take multiple values.

Case 2. If z1 and z2 are two complex numbers (| . | denoting the modulus), we
will take:

Min(z1, z2) =

⎧
⎪⎨

⎪⎩

z1 if |z1| < |z2|
z2 if |z2| < |z1|
{z1, z2} if |z1| = |z2|

Observe that we only keep a single value for the modulus, but that the argument can
take multiple values.

[References: this type of monoid appears to be useful for studying complex
Hamilton–Jacobi equations arising in quantum mechanics (see Gondran 1999b,
2001a,b)].
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1.6. Selective Monoids

For all the examples in this section, the operation ⊕ being selective, the canonical
preorder relation is a total order (see Chap. 1, Proposition 3.4.7).

1.6.1. (R̂, Min), (Ẑ, Min)

The set of real numbers (resp. signed integers) endowed with the operation Minimum
of two numbers.

This operation is associative, commutative, selective and has neutral element+∞.

1.6.2. (Ř, Max), (Ž, Max)

The set of real numbers (resp. signed integers) endowed with the operation Maximum
of two numbers.

This operation is associative, commutative, selective and has neutral element−∞.

1.6.3. (R+, Max), (N, Max)

The set of nonnegative reals (resp. natural numbers) endowed with the operation
“maximum of two numbers.”

This operation is associative, commutative, selective and has neutral element 0.

1.6.4. (R̂+, Min), (N̂, Min)

The set of nonnegative reals (resp. of natural numbers) endowed with the operation
“Minimum of two numbers.” This operation is associative, commutative, selective
and has as neutral element +∞.

1.6.5. (R̂n, Min-Lexicographic)

We consider the set of vectors of R̂
n (totally) ordered by the lexicographic order:

a∝ b if a1 < b1

or a1 = b1 and a2 < b2

. . . . .

or a1 = b1 and a2 = b2, . . . , an−1 = bn−1, and an < bn

The operation Min-lexicographic is associative, commutative and selective and has
(+∞)n neutral element.

This type of monoid can be used for example to define the minimum of complex
numbers: z1 = x1 + iy1, z2 = x2 + iy2.

Min(z1, z2) =
{

z1 if x1 < x2 or if x1 = x2 and y1 < y2
z2 if x2 < x1 or if x1 = x2 and y2 < y1
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Table 2 Recapitulatory list of monoids

Properties of ⊕ Neutral Canonical Additional
General Monoids element preorder ≤ properties and

comments

(P(Rk),+) Associative
Commutative

{(0)k} Preorder

(Int(R),+) Associative
Commutative

[0, 0] Preorder

(Conv(Rk),+) Associative
Commutative

{(0)k} Preorder

(Conv(Rn+k),⊕) Associative
Commutative

P(Rn)×
{(0)k}

Preorder

(P(R), ·) Associative
Commutative

{1} Preorder

((R̂k,
(k)+) Associative

Commutative
(0)k Preorder

(
R̂+ [0, η](N),

(η)+
)

Associative
Commutative

(0) Preorder

Qualitative multiplication Associative
Commutative

+ Preorder

Groups

(R,+), (Q,+), (C,+) Associative
Commutative

0 Preorder

(R∗,×), (Q∗,×), (C∗,×) Associative
Commutative

1 Preorder

(R\{1}, a + b− ab) Associative
Commutative

0 Preorder

Canonically Ordered Monoids
(
R̂

k, Min(k)

)
Associative
Commutative

(+∞)k Order

(
R̂+ [0, η](N), Min(η)

)
Associative
Commutative

(+∞) Order

([0, 1], min (a + b; 1)) Associative
Commutative

0 Order Every element is
nilpotent

([0, 1], max (0; a + b− 1)) Associative
Commutative

1 Order Every element is
nilpotent

([0, 1], a + b− ab) Associative
Commutative

0 Order

Order of magnitude monoid Associative
Commutative

(0,+∞) Order

Nonstandard number
monoid

Associative
Commutative

(0, 0,+∞) Order

Power monoid Associative
Commutative

(0, 0) Order
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Table 2 (continued)

Hemi-groups Properties of ⊕ Neutral
element

Canonical
preorder ≤

Additional
properties and
comments

(R+,+) Associative
Commutative

0 Total order

(N,+) Every element is
cancellative

(]0, 1],×) Associative
Commutative

1 Total order

Every element is
cancellative

(N∗,×) Associative
Commutative

1 Total order

(R+\{0},×) Every element is
cancellative

Free monoid Concatenation
Associative

∅
(empty word)

Order Concatenation is
not commutative

Every element is
cancellative

(R+\{1}, a + b

1+ ab
)

Associative
Commutative

0 Total order

Every element is
cancellative

(R+, a(1+ b2)1/2 +
b(1+ a2)1/2)

Associative
Commutative

0 Total order

Every element is
cancellative

(Int (R+),+) Associative
Commutative

[0, 0] Order

Every element is
cancellative

(R+,⊕p)

a ⊕p b = (ap + bp)1/p
Associative
Commutative

0 Total order

Every element is
cancellative

(R+,⊕h)
a ⊕h b = hln (ea/h + eb/h)

Associative
Commutative

−∞ (if h > 0)

+∞ (if h < 0)

Total order

Every element is
cancellative

Idempotent Monoids

(N, gcd) Associative +∞ Order
Commutative
Idempotent

(N, lcm) Associative 1 Order
Commutative
Idempotent

(P (X),∪) Associative ∅ Order Sup-semi lattice
Commutative
Idempotent
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Table 2 (continued)

Idempotent Monoids Properties of ⊕ Neutral Canonical Additional
(continued) element preorder ≤ properties and

comments
(P (X),∩) Associative X Order Inf-semi-lattice

Commutative
Idempotent

Qualititative addition Associative 0 Order
Commutative
Idempotent

(Conv(Rn), Conv (A ∪ B)) Associative ∅ Order
Commutative
Idempotent

(Conv(Rn),∩) Associative R
n Total order

Commutative
Idempotent

(Int(R),∩) Associative R Total order
Commutative
Idempotent

(Int(R), Conv(A ∪ B)) Associative ∅ Total order
Commutative
Idempotent

(R̂× P (R), Min) Associative {+∞, ∅} Order
Commutative
Idempotent

Selective Monoids

(R̂, Min) (Ẑ, Min) Associative
Commutative
Selective

+∞ Total order

(
∨
R, Max) (

∨
Z, Max) Associative

Commutative
Selective

−∞ Total order

(R+, Max) (N, Max) Associative
Commutative
Selective

0 Total order

(R̂+, Min) (N̂, Min) Associative
Commutative
Selective

+∞ Total order

(R̂n, Min-lexico) Associative
Commutative
Selective

(+∞)n Total order

2. Pre-Semirings and Pre-Dioids

Pre-semirings and pre-dioids are algebraic structures with two operations which do
not enjoy all the properties of semirings and dioids. In this section we present a few
typical examples of such structures. Table 3 recalls the basic definitions. Figure 2
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Table 3 Definition of pre-semirings and pre-dioids

Pre-semiring A set E endowed with two internal laws of ⊕ and ⊗ where

(E,⊕,⊗) ⊕ is associative

⊗ is associative and right and/or left distributive with respect to ⊕
Pre-dioid Pre-semiring for which (E,⊕) is a canonically ordered monoid

(E,⊕,⊗)

shows the place of pre-semirings and pre-dioids in the typology. We limit ourselves
to the case where there is at least right or left distributivity of ⊗ with respect to ⊕,
see Sect. 4.1.2, Chap. 1.

2.1. Right or Left Pre-Semirings and Pre-Dioids

2.1.1. The Set of Mappings of a Commutative Monoid onto Itself

Let (E,
•+) be a commutative monoid, and H the set of mappings E → E. One endows

H with the operations ⊕ and ⊗ defined as:

(f ⊕ g)(a) = f (a)
•+ g(a)

(f ⊗ g)(a) = g ◦ f (a)

where ◦ denotes the usual composition of mappings. One verifies (see Example 4.1.3
of Chap. 1) that (H,⊕,⊗) is a left pre-semiring.

[Reference: 1 (Sect. 4.1.3)]

2.1.2. Monotone Data Flow Algebra (Left Pre-Dioid)

Let (L,∧) be an idempotent monoid. A data flow algebra is formed by a set F of
functions defined on L and with value in L.

L being idempotent, we know (see Chap. 1 Sect. 3.4) that the canonical preorder
relation≤ is an order relation, and that, in this case, an equivalent definition of ≤ is:

a ≤ b ⇔ a ∧ b = b

(see Chap. 1 Proposition 3.6.2).
We do not assume the existence of a neutral element for ∧ but only the existence

of a largest element Ω (necessarily unique), i.e. of an element such that:

∀a ∈ L: a ∧Ω = Ω

Observe that the monoid L endowed with ∧ has the structure of a sup-semi-lattice.
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Table 4 Recapitulatory list of main pre-semirings and pre-dioids

Right and left
pre-semirings

Property of the
monoid (E,⊕)

Property of the
monoid (E,⊗)

Distributivity of
⊗ with respect to
⊕

Comments,
additional
properties

Endomorphisms of
a commutative
monoid (S,⊕)

Commutative,
neutral element:
hε

Non commutative,
neutral element =
identity
endomorphism

Right and left Pre-semiring

Mappings of a
monoid onto itself
(S,⊕)

Commutative,
neutral element:
hε

Non commutative
neutral element =
identity
endomorphism

Left only Pre-semiring

Product of a
pre-dioid and a
ring

Commutative Right and left Pre-semiring
(neither pre-dioid
nor semiring)

Monotone data
flow algebra

Commutative
idempotent

Non commutative
e = he

Left only Left pre-dioid (the
canonical preorder
is an order)

Pre-dioids

(R+, Max,+) Commutative
selective ε = 0

Commutative
hemi-group

Right and left The canonical
preorder is a total
order

(N, lcm,×) Commutative
idempotent
ε = 1

Commutative
e = 1. Every
element of E\{0} is
cancellative

Right and left The canonical
preorder is an
order. ε non
absorbing for ⊗

(Int (R), Conv
(A ∪ B),+)

Commutative
idempotent
ε = [0, 0]

Commutative
e = [0, 0]

Right and left The canonical
preorder is an
order. ε

non-absorbing
for ⊗

We now consider the set F of functions: L → L, endowed with the internal laws
⊕ and ⊗ defined as follows:

∀f , g ∈ F, ∀a ∈ L:
(f ⊕ g)(a) = f (a) ∧ g(a)

(f ⊗ g)(a) = g ◦ f (a)

where ◦ is the usual law of composition of mappings.
One verifies that ⊕ is commutative, associative and idempotent.
One verifies that ⊗ is associative, in general non commutative, and has a neutral

element which is the identity mapping he (defined as: ∀a: he (a) = a).
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PRE-SEMIRINGS
§§ 2.2 to 2.3

SEMIRINGS
§ 3.1

PRE-DIOIDS
§ 2.4

DIOIDS
§ 4

OTHER
SEMIRINGS

§ 3.1

RINGS
§ 3.2 

RIGHT (LEFT)
PRE-SEMIRINGS

§ 2.1

RIGHT (LEFT)
PRE-DIOIDS

§ 2.1

Fig. 2 Typology of pre-semirings and semirings

Moreover, the law ⊗ is left distributive with respect to ⊕ because:

∀a ∈ L: h ⊗ (f ⊕ g)(a) = ((f ⊕ g) ◦ h)(a) = (f ⊕ g)(h(a))

= f ◦ h(a)⊕ g ◦ h(a)

= (h ⊗ f ⊕ h ⊗ g)(a)

(F,⊕,⊗) is therefore a left pre-dioid.
In the so-called monotone data flow problems (see for example Kam and Ullman

1977), we assume moreover that F is the subset of monotone functions: L → L,
i.e. satisfying:

∀a, b ∈ L, a ≤ b ⇒ f (a) ≤ f (b)



2 Pre-Semirings and Pre-Dioids 335

In this case, only the property of left distributivity of⊗ with respect to⊕ is satisfied
and consequently the algebraic structure (F,⊕,⊗) is only a left pre-dioid.

Remark. In the so-called continuous data flow problems (Kildall 1973), F is assumed
to be the subset of functions satisfying the property of endomorphism on L:

∀a, b ∈ L: f (a ∧ b) = f (a) ∧ f (b)

(this property is known under the name of continuity in the literature devoted to
data flow problems). In this case, the structure obtained corresponds to an algebra of
endomorphisms of a monoid (see Sect. 2.2 below). ||

[References: The algebra of monotone data flow has been studied by many authors
in the framework of Data Flow Analysis models of computer programs, and finds
applications in the optimization of compilers, the verification of programs, and the
transformation of programs (in particular, cancellation through the elimination of
common subexpressions). Refer for example to Graham and Wegman (1976), Kam
and Ullman (1976, 1977), and Tarjan (1981)].

2.2. Pre-Semiring of Endomorphisms of a Commutative Monoid

Let (E, +̇) be a commutative monoid with neutral element ε and H the set of
endomorphisms of E, that is to say the set of mappings: h: E → E such that:

∀a, b ∈ E h(a +̇ b) = h(a) +̇ h(b)

On H we define the operation ⊕ by:

∀h, f ∈ H, g = h ⊕ f is such that g(a) = h(a) +̇ f (a) (for all a)

Moreover, H is endowed with the law ⊗ defined as:

∀h, f ∈ H: h ⊗ f = f ◦ h

where ◦ denotes the usual law of composition for mappings.
One verifies that ⊕ has a neutral element, namely the endomorphism hε: E → E

defined as:
∀a ∈ E hε(a) = ε

One also verifies that ⊗ is right and left distributive with respect to ⊕ and with
neutral element the identity endomorphism he defined as:

∀a ∈ E: he(a) = a

Note that the property of right distributivity follows from the property of endomor-
phism:

[f ⊕ g] ⊗ h(a) = h[f (a)⊕ g(a)] = h(f (a)) +̇ h(g(a)) = [f ⊗ h ⊕ g⊗ h](a)
Also observe that the multiplication⊗ defined above is not commutative in general.
Moreover, without further assumption, the element hε is not absorbing for ⊗.
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Indeed, we have that:
∀h ∈ H h ⊗ hε = hε

(because, ∀a ∈ E: hε (h(a)) = ε) but we do not necessarily have hε⊗h = hε (indeed,
h (hε (a)) = h (ε) which, without an explicit assumption, has no reason to be equal
to ε).

The structure (H,⊕,⊗) is therefore a pre-semiring.

Remark. The above example can easily be generalized by no longer considering a
single monoid (E, +̇) but two monoids (E, +̇) and (F, �) and taking for H the set of
homomorphisms: E → F. ||

[References: 1 (Sect. 4.2.2), 4 (Sect. 4.4)
This algebraic structure was suggested independently by Kildall (1973) in the con-

text of data flow analysis of programs (so-called “continuous” data flow problems)
and by Minoux (1976) as a generalization of the path algebras of Carré et al. (1971)
and Gondran (1974, 1975) in order to model complex and non-standard path-finding
problems in graphs (for example finding the shortest path with time constraints, refer
to Chap. 4 Sect. 4.4 of the present book).]

2.3. Pre-Semiring, Product of a Pre-Dioid and a Ring

We consider E = E1 × E2 where: E1, endowed with the operations ⊕1 and ⊗1 is a
pre-dioid; and E2, endowed with the operations ⊕2 and ⊗2 is a ring.

(E1,⊕1) is therefore a canonically ordered monoid whereas (E2,⊕2) is not
canonically ordered.

The operations ⊕ and ⊗ on E are defined as the product operations:

∀
(

x1
x2

)
∈ E

(
y1
y2

)
∈ E :

(
x1
x2

)
⊕

(
y1
y2

)
=

(
x1 ⊕1 y1
x2 ⊕2 y2

)

and: (
x1
x2

)
⊗

(
y1
y2

)
=

(
x1 ⊗1 y1
x2 ⊗2 y2

)

As the operations⊕ and⊗ inherit basic properties of (E1,⊕1,⊗1) and (E2,⊕2,⊗2)

one easily sees that:

⊕ is commutative, associative
⊗ is associative and right and left distributive with respect to ⊕.

However (E,⊕) is neither a canonically ordered monoid, nor a group.
The structure (E,⊕,⊗), a product of a pre-dioid and a ring, is therefore the

example of a pre-semiring which is neither a pre-dioid nor a ring.
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A typical example of such a structure is the product of the pre-dioid (R+, Max,+)

(see Sect. 2.4) and the ring (Z,+,×).
Another closely related example is that of the product of the pre-dioid

(R+, Max,+) by (R,+,×) which is a field (therefore also a ring).

In the latter case, E is the set of pairs

(
x
x′
)

with x ∈ R+ and x′ ∈ R endowed

with the laws ⊕ and ⊗ defined as:
(

x
x′
)
⊕

(
y
y′
)
=

(
Max{x, y}

x′ + y′
)

and (
x
x′
)
⊗

(
y
y′
)
=

(
x + y

x′ × y′
)

2.4. Pre-Dioids

2.4.1. Pre-Dioid (R+, Max, +)

E is the set R+ of nonnegative reals.

⊕ is the operation Max (maximum of two real numbers) with neutral element ε = 0
⊗ is the operation + (sum of two real numbers) with unit element e = 0

One easily verifies the distributivity of ⊗ with respect to ⊕.
However, ε is not absorbing for ⊗ because:

∀a ∈ E: a ⊗ ε = ε⊗ a = a

(R+, Max,+) is therefore a pre-semiring. As (R+, Max) is a canonically ordered
monoid, it is a pre-dioid.

2.4.2. Pre-Dioid of the Natural Numbers Endowed with lcm and Product
(N, lcm, ×)

We take for E the set of natural numbers.
The law ⊕ is defined as:

a ⊕ b = lcm(a, b) (least common multiple)

This law is associative, commutative and idempotent, has neutral element ε = 1, and
endows N with a structure of canonically ordered monoid.

The law⊗ is associative, commutative, has unit element e = 1, and is distributive
with respect to ⊕.

(N, lcm, ×) is therefore a pre-dioid.
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However, observe that ε = 1 is not absorbing for ⊗ (indeed, for a ∈ E, a �= 1,
a × 1 = a �= 1). (N, lcm, ×) is therefore neither a semiring nor a dioid.

Let us observe that, if one replaces the lcm operation by the gcd operation we
obtain (N, gcd, ×) which is a dioid (an idempotent-cancellative dioid actually) (see
Sect. 4.7.4).

2.4.3. Pre-Dioid of Intervals (Int (R), Conv (A ∪ B), +)

Let us take for E the set Int (R) of the intervals of the real line R of the form [a, ā]
with a ≤ 0 and ā ≥ 0.

Let us define the operation ⊕ as the union of two intervals, in other words:

[a, ā] ⊕ [b, b̄] = [Min[a, b], Max[ā, b̄]]
⊕ is commutative and idempotent and has for neutral element the interval [0, 0]. It
endows Int (R) with a structure of canonically ordered monoid.

Moreover, let us define the operation ⊗ by:

[a, ā] ⊗ [b, b̄] = [a + b, ā + b̄]
The operation ⊗ has for neutral element [0, 0].

The distributivity of⊗ with respect to⊕ is deduced from the obvious properties:

Min[a, b] + c = Min[a + c, b+ c]
Max[ā, b̄] + c̄ = Max[ā + c̄, b̄+ c̄]

Remark. This example is one of the few cases where distributivity holds with
intervals. This is not the case for (int (R), Conv (A∪B),∩) nor for (Int (R),∩,+). ||

However, (E,⊕,⊗) is not a semiring because ε is not absorbing for ⊗. Indeed,
for an arbitrary element [a, ā] �= ε we have that [a, ā] ⊗ [0, 0] = [a, ā] �= ε.

The structure [E,⊕,⊗] defined above is therefore a pre-dioid but it is not a
semiring.

Note that this example illustrates the fact that assuming ≤ to be an order relation
is not sufficient to guarantee the absorption property.

3. Semirings and Rings

The class of semirings includes:

– Rings (see the examples of Sect. 3.2);
– Dioids (dealt with in Sect. 4);
– Other semirings (see the examples of Sect. 3.1).

We recall that, since a monoid cannot both be a group and be canonically ordered,
the subclass of rings and the subclass of dioids are disjoint.

Figure 2 indicates the place of semirings and rings in the typology.
Table 5 recalls the basic definitions concerning semirings and rings.
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Table 5 Definitions of semirings and rings

Semiring (E,⊕) monoid with neutral element ε; (E,⊗) monoid with neutral element e
(E,⊕,⊗) ⊗ right and/or left distributive with respect to ⊕; ε is absorbing for ⊗

(i.e.: ∀a ∈ E, a ⊗ ε = ε⊗ a = ε)

Ring (E,⊕,⊗) Semiring such that (E,⊗) is a group

3.1. General Semirings

These are semirings which are neither rings nor dioids.

3.1.1. Semiring, Product of a Dioid and of a Ring

We consider E = E1 × E2 where:
E1 endowed with the laws ⊕1 and ⊗1 is a dioid.
E2 endowed with the laws ⊕2 and ⊗2 is a ring.
The laws ⊕ and ⊗ on E are defined as the product laws:

∀
(

x1
x2

)
∈ E

(
y1
y2

)
∈ E :

(
x1
x2

)
⊕

(
y1
y2

)
=

(
x1 ⊕1 y1
x2 ⊕2 y2

)

(
x1
x2

)
⊗

(
y1
y2

)
=

(
x1 ⊗1 y1
x2 ⊗2 y2

)

The laws⊕ and⊗ inherit the basic properties of (E1,⊕1,⊗1) and (E2,⊕2,⊗2),
one therefore easily checks that:

⊕ is communicative, associative and has neutral element ε =
(

ε1
ε2

)
where ε1

(resp. ε2) is the neutral element of E1 for ⊕1 (resp. E2 for ⊕2).
⊗ is associative and distributive (on the right and on the left) with respect to ⊕.

ε =
(

ε1
ε2

)
is absorbing for ⊗ .

We deduce from the above that the product structure (E,⊕,⊗) is a semiring.
However, it is neither a dioid, nor a ring.

A typical example of the above is the product of the dioid (R+ ∪ {+∞}, Min,+}
and the ring (Z,+,×) with the laws ⊕ and ⊗ defined as:

(
x1
x2

)
⊕

(
y1
y2

)
=

(
Min{x1, y1}

x2 + y2

)

(
x1
x2

)
⊗

(
y1
y2

)
=

(
x1 + y1
x2 × y2

)

One verifies that ε = (+∞
0

)
is absorbing for ⊗.

[Reference: 1 (Sect. 5.4)]
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3.1.2. Semiring of Signed Numbers

Let us consider the pair (a, s) ∈ R × S where S = {+,−, 0, ?} is the set of signs
of qualitative algebra (see Chap. 1, Example 6.1.3 and Chap. 8, Sect. 4.5.3 for the
presentation of this dioid).

With every real number a, we thus associate four signed numbers a+, a−, a◦ and
a? corresponding respectively to: a obtained as the limit of a sequence of numbers
> a (a+); of a sequence of numbers < a (a−); of a sequence of numbers all equal to
a (a◦); of a sequence of numbers only convergent towards a (a?).

We define the addition ⊕ of two signed numbers (a, s) and (b, σ) as: (a, s) ⊕
(b, σ) = (a + b, s+̇σ) and the multiplication ⊗ by:

(a, s)⊗(b, σ) = (ab, (sg (a)×̇σ) +̇ (sg (b)×̇s) +̇ (s×̇σ)) where +̇ and ×̇ are addi-
tion and the multiplication of qualitative algebra (see below Sect. 4.5.3) and sg (a)
the sign of a (with the convention sg (0) = 0).

One verifies that (R× S,⊕,⊗) is a semiring. It is not a dioid however, because
the set R× S is not canonically ordered by ⊕.

[References: 1 (Sect. 6.1.3), 8 (Sect. 4.5.3)]

3.2. Rings

3.2.1. Ring (Z, +, ×)

The set of signed integers endowed with standard addition and multiplication.

3.2.2. Ring (R [X], +, ×)

The set of polynomials with real coefficients of a real variable x endowed with the
sum and the product of polynomials.

3.2.3. Ring (Mn (R), +, ×)

The set of square n×n matrices with real entries endowed with the sum and product
of matrices.

3.2.4. Ring (P (E), Δ, ∩)

The power set of a set E, endowed with the symmetric difference Δ (AΔB = (A∪B)\
(A ∩ B) and the intersection ∩.
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Table 6 Recapitulatory list of semirings and rings

Property of the Property of the Distributivity of Comments,
monoid (E,⊕) monoid (E,⊗) ⊗ with respect additional

to ⊕ properties

Semiring product
of a dioid and a
ring (E1 × E2,

⊕,⊗)

Commutative
neutral element

ε =
(

ε1
ε2

)
Neutral element

e =
(

e1
e2

) Right and left ε =
(

ε1
ε2

)

absorbing for ⊗

Ring (Z,+,×) Group ε = 0 Commutative
e = 1

Right and left ε absorbing for ⊗

Ring of
polynomials
(R[X],+,×)

Group
ε = 0 (zero
polynomial)

Commutative
e = 1

Right and left ε absorbing for ⊗

Ring of matrices
n × n (Mn(R),

+,×)

Group
ε = 0 (zero
matrix)

e = In (n × n
identity matrix)

Right and left ε absorbing for ⊗

(P(E), Δ,∩) Commutative
group, ε = ∅

Commutative
idempotent

Right and left ε absorbing for ⊗

4. Dioids

The typology of dioids is recalled in Fig. 3 below. The second level of the
classification contains:

– Symmetrizable dioids (see Sect. 4.4);
– Idempotent dioids (see Sect. 4.5–4.8);
– “General” dioids which do not belong to any of the previous categories (see

Sect. 4.3);

Table 7 recalls the main definitions concerning dioids.
Before presenting examples of each of these classes, we first provide a few exam-

ples of right or left dioids (Sect. 4.1), then examples of the general class formed by
the endomorphisms of a canonically ordered commutative monoid (Sect. 4.2).

4.1. Right or Left Dioids

4.1.1. Right Dioid and Shortest Path with Gains or Losses

On the set E = R× R+\{0}, we define the following operations ⊕ and ⊗:

(a, k)⊕ (a′, k′) =

⎧
⎪⎨

⎪⎩

(a, k) if a
k < a′

k′ or if a
k = a′

k′ and k ≥ k′

(a′, k′) otherwise

(a, k)⊗ (a′, k′) = (a + ka′, kk′)



342 8 Collected Examples of Monoids, (Pre)-Semirings and Dioids

DIOIDS

SYMMETRI-
ZABLE

DIOIDS § 4.4

IDEMPOTENT
DIOIDS

§§ 4.5 to 4.8

OTHER DIOIDS
§§ 4.2 and 4.3

DOUBLY-IDEMPOTENT
DIOIDS § 4.6

IDEMPOTENT-
CANCELLATIVE DIOIDS 

§ 4.7

IDEMPOTENT-
INVERTIBLE

DIOIDS
§ 4.8

OTHER IDEMPOTENT
DIOIDS

§ 4.5

DISTRIBUTIVE
LATTICES

SELECTIVE-
CANCELLATIVE DIOIDS

SELECTIVE-
INVERTIBLE

DIOIDS

RIGHT OR LEFT
DIOIDS

§ 4.1 

Fig. 3 Classification of dioids

⊕ has for neutral element ε any element of the form (+∞, k) and ⊗ has neutral
element e = (0, 1).

One verifies (see Example 6.1.4 Chap. 1), that (E,⊕,⊗) is a right dioid. This is the
algebraic structure required to solve the shortest path problem with gains or losses.

[Reference: 4 (Exercise 4)]
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Table 7 Basic terminology relating to dioids

Dioid (E,⊕,⊗) (E,⊕) is a canonically ordered monoid with neutral element ε.
(E,⊗) is a monoid with neutral element e
⊗ is right and/or left distributive with respect to ⊕
ε is absorbing for ⊗

Symmetrizable dioid Dioid for which (E,⊕) is a hemi-group

Idempotent dioid Dioid with an idempotent law ⊕
Doubly idempotent dioid
(distributive lattices)

Dioid with two idempotent laws ⊕ and ⊗

Idempotent-cancellative dioid Idempotent dioid for which (E,⊗) is a cancellative monoid

Selective-cancellative dioid Idempotent-cancellative dioid with the ⊕ law selective

Idempotent-invertible dioid Idempotent dioid for which (E,⊗) is a group

Selective-invertible dioid Idempotent-invertible dioid with the ⊕ law selective

4.1.2. A Right Dioid

On the set E = R× R+, we define the following operations ⊕ and ⊗:

(a, k)⊕ (a′, k′) =

⎧
⎪⎨

⎪⎩

(a, k) if a < a′, or if a = a′ and k > k′

(a′, k′) otherwise

(a, k)⊗ (a′, k′) = (a + ka′, kk′)

⊕ has for neutral element ε any element of the form (+∞, k) and ⊗ has neutral
element e = (0, 1).

4.1.3. Left Dioid of Semi-Cancellative Fractions

In automatic control, the study of the stability of a system through the analysis of
transfer functions (Laplace transform of the input-output function) presents inconsis-

tencies when the (rational) transfer function
b(s)

a(s)
is simplified through polynomials

with unstable poles (roots lying in the right half-plane, Re (s) > 0). To illustrate

this, if we consider the example where
b(s)

a(s)
= s− 1

(s− 1) (s+ 1)
, the system is unsta-

bilizable; but since, on the ring of rational fractions,
s− 1

(s− 1)(s+ 1)
= 1

s+ 1
, one

can rewrite
b(s)

a(s)
= 1

s+ 1
and the system would be (incorrectly) considered as

stabilizable if it were impossible to distinguish these two fractions.
To eliminate this risk of inconsistency, one must therefore prevent cancellation

using unstable zeros and thus instead of the ring of rational fractions we have to
consider the left dioid of semi-cancellative fractions (SCF) introduced by Bourlès
(1994).
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To obtain this, we consider the set of pairs (b(s), a(s)) where b(s) (resp. a(s)) is a
polynomial in the ring R[s] of polynomials with real coefficients (resp. a polynomial
in R

∗[s] = R[s]\{0}).
Let P(C+) (resp. P(C−) be the subset of R

∗[s] formed by the polynomials having
roots in the closed right half-plane C+ (resp. open left half-plane C−).

Any polynomial a (s) may be decomposed (in a unique way) into the form

a(s) = a+ (s) a− (s) with a+ (s) ∈ P(C+), a− (s) ∈ P (C−).

On the pairs of R[s] × R
∗[s], we define the equivalence relation (b, a)∼ (b′, a′)

if and only if we have: b (s) a′ (s) = a (s) b′ (s) and a+(s) = a′+ (s).
The set of semi-cancellative fractions (SCF) will be the quotient set of the set of

pairs R[s] × R
∗ [s] by this equivalence relation.

We denote [b, a] the class of (b, a) modulo ∼ ([b, a] is therefore a SCF).
We then define on R[s] × R

∗ [s] the operations ⊕ and ⊗ by:

(1) (b, a)⊕ (b′, a′) = (bα′ + b′α, pαα′)
where p = gcd (a, a′), a = pα, a′ = pα′ (hence p α α′ = lcm (a, a′))

(2) (b, a)⊗ (b′, a′) = (βb′, aα′)
where π = gcd(b, a′) ∩ P (C+), b = πβ, a′ = πα′.

Proposition 1. The operations (1) and (2) are compatible with the equivalence
relation ∼.

Proof. It is enough to check that if (b1, a1)∼ (b′1, a′1) and (b2, a2)∼ (b′2, a′2) we
have:

(b1, a1)⊕ (b2, a2) ∼ (b′1, a′1)⊕ (b′2, a′2)
(b1, a1)⊗ (b2, a2) ∼ (b′1, a′1)⊗ (b′2, a′2). �

One can therefore define on the set SCF an addition and a multiplication by setting:

[b1, a1] ⊕ [b2, a2] = [(b1, a1)⊕ (b2, a2)]
[b1, a1] ⊗ [b2, a2] = [(b1, a1)⊗ (b1, a2)].

Proposition 2. The set SCF endowed with the laws ⊕ and ⊗ is a left dioid.

Proof. One verifies first of all that the addition ⊕ is associative and commutative
(it corresponds to the connection of two systems in parallel). [0, 1] is the neutral
element for the addition because [b, a] ⊕ [0, 1] = [b, a].

The multiplication ⊗ is associative (it corresponds to the connection of two
systems in sequence). [1, 1] is the neutral element for the multiplication. But the
multiplication is not commutative.

We observe that [0, 1], the neutral element of ⊕, is left-absorbing but not right-
absorbing ⊗; indeed, we clearly have:

[0, 1] ⊗ [b, a] = [0, a−] = [0, 1] and

[b, a] ⊗ [0, 1] = [0, a] �= [0, 1] if a /∈ P (C+).
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The multiplication is left distributive, because:

[b1, a1] ⊗ ([b2, a2] ⊕ [b3, a3]) = ([b1, a1] ⊗ [b2, a2])⊕ ([b1, a1] ⊗ [b3, a3])
but not right distributive, as shown by the following example:

[(1, 1)− (1, s)][1, s− 1] = [1, s], but

[1, 1][1, s− 1] − [1, s][1, s− 1] = [s− 1, s (s− 1)].
SCF is therefore clearly a left dioid. "#

One can refer to Bourlès (1994) for a generalization of semi-cancellative fractions
to general unitary commutative rings.

The following results then show that these SCF can indeed be used to rigorously
study the stability of a system described by its transfer function.

Indeed, considering (b, a) and (r, s) two elements of R [s] × R
∗[s], such that a

s+ b r �= 0, then the SCF [c, d] where (c, d) = (b s, a s+ b r) only depends on the
SCF [b, a] and [r, s] (and not on the particular pairs (b, a) and (r, s)).

We will refer to as a negative feedback operator the operator Γ : SCF× SCF →
SCF defined as:

Γ ([b, a], [r, s]) = [b s, a s+ b r]
for all SCF [b, a] and [r, s] such that a s+ b r �= 0.

Then one can state:

Proposition 3. (Bourlès 1994)
Consider a SCF [b, a]; then there exists a SCF [r, s] such that Γ ([b, a], [r, s]) is

stable, if and only if [b, a] is stabilizable.
[Reference: for more detail, see Bourlès 1994]

4.2. Dioid of Endomorphisms of a Canonically Ordered
Commutative Monoid. Examples.

Let (E,⊕) be a canonically ordered commutative monoid with neutral element ε.
As in Sect. 2.2. of this chapter, we consider the set H of endomorphisms on E

verifying, ∀h ∈ H:

h (a ⊕ b) = h (a)⊕ h (b) ∀a, b ∈ E

h (ε) = ε

endowed with the laws ⊕ and ⊗ defined as: ∀h, g ∈ H

(h ⊕ g)(a) = h (a)⊕ g (a) ∀a ∈ E

(h ⊗ g)(a) = g ◦ h (a) ∀a ∈ E

where ◦ is the law of composition of mappings. One verifies that (H,⊕,⊗) is a dioid
(pre-semiring of Sect. 2.2 with the extra property h (ε) = ε, which guarantees that
hε is absorbing).

This is a very important class of dioids, in particular for studying complex path-
finding problems in graphs such as those corresponding to the following examples.
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4.2.1. Dioid of Nondecreasing Functions

On the monoid (E,⊕) with E = R̂ = R ∪ {+∞},⊕ = min and ε = +∞, we
consider the set H of nondecreasing functions h: E → E, with h(t) tending to +∞
when t tends to +∞.

These functions satisfy the equations

h (min(t, t′)) = min(h (t), h (t′))
h (+∞) = +∞

and the set (H,⊕,⊗) is a dioid.
This dioid is the algebraic structure required to solve the shortest path problem

with time dependent lengths on the arcs, see Example 6.2.1 of Chap. 1 and the
generalized algorithms 1′, 2′, 2′′, 3′ of Chap. 4, Sect. 4.4.

[References: Minoux (1976), 1 (Sect. 6.2), 4 (Sect. 4.4)]

4.2.2. A Dioid for the Shortest Path with Discounting Problem (Minoux 1976)

With each arc (i, j) of a graph G, we associate a length which will depend, in a
path, on the number of arcs taken previously. For example, if we interpret the path-
traversal along the arc (i, j) as the completion of an annual investment program,
the cost of the arc (i, j) is Cij/(1 + τ)t if t is the number of arcs previously tra-
versed along by the path, that is to say the year of the expenditure Cij (τ being the
discounting rate).

We seek the shortest path with discounting from vertex 1 to the other vertices.
If T is the final period, we will take for S the set of vectors with (T+1) components

in R+ ∪ {+∞}. If a = (a0, a1, . . . , aT) and b = (b0, b1, . . . , bT), we will define
d = a ⊕ b = (d0, d1, . . . , dT) by setting dt = min(at, bt), for t = 0, 1, . . . , T.
ε = (+∞, . . . ,+∞). Thus to each arc (i, j) in G we let correspond the function
hij: S → S defined as:

hij(a) = b with: b0 = +∞

bt = at−1 + Cij

(1+ τ)t−1
for t = 1, . . . , T.

We observe that such endomorphisms are T-nilpotent (which guarantees the existence
of the quasi-inverse (hij

∗) of the matrix of endomorphisms (hij)).
Knowing the “state” a = h∗1j (0) of a vertex j, we can deduce the shortest path

with discounting from vertex 1 to this vertex, whose value is equal to min
0≤t≤T

(at).

The various generalized algorithms of Chap. 4, Sect. 4.4 can be applied to solve
this problem.

[References: Minoux (1976), 1 (Sect. 6.2), 4 (Sect. 4.4)]
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4.2.3. A Dioid for the Shortest Path Problem with Time Constraints

(Halpern and Priess 1974; Minoux 1976)
With each arc (i, j) of a graph G, we associate:

– A duration dij > 0 measuring the traversal time on arc (i, j),
– Aset of intervals Vij ⊂ [0,+∞[ representing the set of instants at which departure

is possible from i to j via arc (i, j);

With each node i we associate a set of intervals denoted Wi ⊂ [0,+∞[
representing the set of instants at which parking at node i is allowed.

The problem is to find between two given vertices x and y the shortest path (in
the sense of the traversal time) compatible with the temporal constraints induced by
Vij (on the arcs) and Wi (on the vertices).

We define the state Ei, of a vertex i as the set of possible instants of arrival at i
when starting from the origin x. We denote S the set of states. An element of S will
therefore be a set of intervals ⊂ [0,+∞[. We define in S the operation⊕ (union of
two sets of intervals) as:

a ⊕ b = {t/t ∈ a or t ∈ b} ∀a, b ∈ S.

The empty set ∅ is the neutral element of ⊕. We define the transition between i and
j (i.e. the endomorphism hij) in several stages.

– If Ei corresponds to the set of possible time instants of arrival at i, then the set Di
of the possible instants of departure from i will be:

Di = Ei⊥Wi

where the operation ⊥ is defined as follows:

if Ei =
{
[α1, α

′
1], [α2, α

′
2], . . . , [αp, α

′
p]
}

Wi =
{
[β1, β

′
1], [β2, β

′
2], . . . , [βp, β

′
p]
}

then:
Di = [γ1, γ

′
1] ⊕ [γ2, γ

′
2] ⊕ · · · ⊕ [γp, γ

′
p]

with, for k from 1 to p:

[γk, γ
′
k] =

{
[αk, α

′
k] if α′k /∈ Wi

[αk, β
′
j] if α′k ∈ [βj, β

′
j]

– The set of possible instants of departure from i towards j using arc (i, j) will
then be:

Di ∩ Vij
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– Let us define on S an external operation T (“translation”) by:

a ∈ S, τ ∈ R+, τ Ta = {t + τ/t ∈ a}.
The set of possible instants of arrival at j from i using arc (i, j) will therefore be:

dij T (Di ∩ Vij).

– Thus, with each arc (i, j) of the graph, we associate an endomorphism ϕij:
(S,⊕)→ (S,⊕):

ϕij(Ei) = dij T[(Ei⊥Wi) ∩ Vij].
Let us observe that ϕij is entirely determined by the triple (Wi, Vij, dij) but that
the product of two such endomorphisms cannot be described by such a triple.

One can then show that the set of endomorphisms ϕij is a p-nilpotent set which
implies the existence of Φ∗, the quasi-inverse of the matrix of endomorphisms Φ =
(ϕij).

The earliest time to reach y will then be the minimum element of Ey = Φ∗xy (Ex).
This problem can be solved by applying one of the generalized algorithms from

Chap. 4, Sect. 4.4, e.g. algorithm 3′ (generalized Dijkstra’s algorithm).
[References: Minoux (1976), Halpern and Priess (1974), 4 (Sect. 4.4)]

4.3. General Dioids

4.3.1. K Shortest Path Dioid (R̂k, Min(k),
(k)+ )

The elements of E are ordered k-tuples of real numbers chosen in R̂ = R ∪ {+∞}.
The ⊕ law is the operation Min(k) introduced in Sect. 1.3.1. It endows E with a

structure of canonically ordered monoid, with neutral element ε =

⎛

⎜⎜
⎝

+∞
+∞
:
+∞

⎞

⎟⎟
⎠.

The ⊗ law is the operation
(k)+ introduced in Sect. 1.1.5. It has unit element

e =

⎛

⎜⎜
⎝

0
+∞
:
+∞

⎞

⎟⎟
⎠.

One verifies the distributivity of⊗with respect to⊕, and the absorption property
for ε.

(E,⊕,⊗) thus defined is therefore clearly a dioid.
The use of this dioid as a model to state and solve the kth shortest path problem

in a graph is discussed in Chap. 4 Sect. 6.8.
[References: 4 (Sect. 6.8), 8 (Sect. 1.1.5), 8 (Sect. 1.3.1)]
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4.3.2. η-Optimal Path Dioid
(

R̂ + [0, η](N), Min(≤η),
(≤η)+

)

η > 0 being a given nonnegative real number, the elements of E are finite (variable
length) sequences of real numbers in R̂ = R∪ {+∞}, with extreme values differing
by η at most.

If a ∈ E, we denote ν (a) the number of terms of the sequence corresponding to
a, and a can be written:

a =
(

a(1), a(2), . . . a(ν(a))
)

with a(1) = Min
i=1...ν(a)

{
a(i)

}

aν(a) = Max
i=1...ν(a)

{
a(i)

}

and: aν(a) − a(1) ≤ η

The⊕ law is the operation Min(≤η) introduced in Sect. 1.3.2. It endows E with a
structure of canonically ordered monoid, with neutral element ε = (+∞) (sequence
formed by a single term equal to +∞).

The ⊗ law is the operation
(≤η)+ introduced in Sect. 1.1.6. It has unit element

e = (0) (the sequence formed by a single term equal to 0).
The distributivity of ⊗ with respect to ⊕ is verified by observing that if

(a ⊕ b)⊗ c = u =
(

u(1), u(2), . . . uν(u)
)

u(1) = Min
{

a(1), b(1)
}
+ c(1)

and u is the sequence of all the terms of the form:
a(i) + c(k) and b(j) + c(k) (for i = 1, . . . ν(a); j = 1, . . . ν(b); k = 1, . . . ν(c))

which do not exceed u(1)+η. On the other hand, evaluating the expression (a⊗c)⊕
(b⊗ c) yields the same result.

Finally, if we agree to identify ε with any finite sequence of the form
(+∞,+∞, . . .+∞), the element ε is absorbing for ⊗ since

∀a ∈ E, a ⊗ ε = ε⊗ a = ε

Thus this yields, for example:
⎛

⎝
2
3
5

⎞

⎠⊗ (+∞) =
⎛

⎝
+∞
+∞
+∞

⎞

⎠ = ε

The structure (E,⊕,⊗) thus defined is therefore a dioid.
The use of this dioid as a model to represent and solve η-optimal path problems

in graphs is discussed in Chap. 4 Sect. 6.10.
[References: 4 (Sect. 6.10), 8 (Sect. 1.1.6), 8 (Sect. 1.3.2)]
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4.3.3. Order of Magnitude Dioid (Semi-Field)

On the set E of pairs (a, α) with a ∈ R+\{0} and α ∈ R, to which we add the pair
(0,+∞), we define the two laws ⊕ and ⊗ as:

(a, α)⊕ (b, β) = (c, min(α, β))

with c = a if α < β, c = b if α > β, c = a + b if α = β,

(a, α)⊗ (b, β) = (a b, α+ β).

One verifies that (E,⊕,⊗) is a (non idempotent) dioid.
This dioid is isomorphic to the set of elements of the form a εα endowed with

ordinary addition and multiplication when ε > 0 tends towards 0+.
We obtain a dioid isomorphic to the previous one by setting A = e−α and by

considering the set E of pairs (a, A) ∈ (R+\{0})2 to which we append the pair
(0, 0); this set is endowed with the laws ⊕ and ⊗ defined as:

(a, A)⊕ (b, B) = (c, Max(A, B))

with c = a if A > B, c = b if A < B, c = a + b if A = B,

(a, A)⊗ (b, B) = (ab, AB)

Moreover, the elements (a, A) of this dioid are in 1 − 1 correspondence with the
elements of the form a Ap endowed with ordinary addition and multiplication when
p tends towards +∞.

One can interpret (a, A) as the coding of an asymptotic expansion of the form
a Ap + 0(Ap) when p →+∞.

The latter dioid was introduced by Finkelstein and Roytberg (1993) to calculate
the asymptotic expansion of probability distribution functions in the study of biopoly-
mers. It was also used by Akian et al. (1998) for the calculus of the eigenvalues of a
matrix with entries of the form exp(−aij/ε) where ε is a small positive parameter.

[References: 1 (Sect. 6.1.5), 8 (Sect. 1.3.6)]

4.3.4. Nonstandard Number Dioid (Semi-Field)

On the set E of triples (a, b, α) ∈ (R+\{0})3 to which we add the triples (0, 0,+∞)

and (1, 0,+∞), we define the two laws ⊕ and ⊗ by:

(a1, b1, α1)⊕ (a2, b2, α2) = (a1 + a2, b, min(α1, α2))

with b = b1 if α1 < α2, b = b2 if α1 > α2, b = b1 + b2 if α1 = α2,

(a1, b1, α1)⊗ (a2, b2, α2) = (a1 a2, b, min(α1, α2))

with b = a2 b1 if α1 < α2, b = a1 b2 if α1 > α2,

b = a1 b2 + a2 b1 if α1 = α2.
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One verifies that (E,⊕,⊗) is a dioid. This dioid is isomorphic to the set of nonstan-
dard numbers of the form a+ b εα, (a > 0, b > 0), endowed with ordinary addition
and multiplication, when ε > 0 tends towards 0+.

This nonstandard number dioid can be related to the field ρ
R of nonstandard

numbers introduced by Robinson (1973).
These are the numbers one can represent by the series

x = a0 + a1 ρν1 + a2 ρν2 + · · · (0 < ν1 < ν2 < · · · )
where a0, a1, a2 . . . are classical real numbers and where ρ is an infinitesimal.

x represents the sequence of the real numbers

xε = a0 + a1 εν1 + a2 εν2 + · · · (0 < ν1 < ν2 < · · · )
when ε > 0 tends towards 0+ (one can thus identify ρ with 0+).

[References: 1 (Sect. 6.1.6), 8 (Sect. 1.3.7)]

4.4. Symmetrizable Dioids

4.4.1. Dioid (R+, +, ×)

The set E is R+, the set of nonnegative reals.

⊕ is ordinary addition with neutral element 0;
⊗ is ordinary multiplication with unit element 1.
(R+,+) is a hemi-group (see Chap. 1, Sect. 3.5)
(R+\{0},×) is a hemi-group.

The canonical preorder relation is a (total) order: it is the usual order on the
nonnegative real numbers.

[Reference: 1 (Sect. 6.3.2)]

4.4.2. Dioid of Intervals of R+ with the Operations Sum and Product
(Int (R+), +, ×)

Consider the set E of all the real intervals of the form [a, ā] with 0 ≤ a ≤ ā.
The operation ⊕ is defined as:

[a, ā] ⊕ [b, b̄] = [a + b, ā + b̄]
which has neutral element ε = [0, 0]. In E, every element is regular for ⊕.

The operation ⊗ is defined as:

[a, ā] ⊗ [b, b̄] = [a b, ā b̄]
which has neutral element e = [1, 1].
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One easily verifies:

– The commutativity and the associativity of ⊕
– The commutativity and the associativity of ⊗
– The right and left distributivity of ⊗ with respect to ⊕.

ε is absorbing for ⊗ because, ∀[a, ā]:
[a, ā] ⊗ [0, 0] = [0, 0] = ε.

The canonical preorder relation is defined as:

[a, ā] ≤ [b, b̄] ⇔ there exists [c, c̄] such that: [b, b̄] = [a + c, ā + c̄]
which is equivalent to the conditions:

⎧
⎪⎨

⎪⎩

a ≤ b

ā ≤ b̄

b̄− ā ≥ b− a

To verify that it is an order relation, let us assume that [a, ā] ≤ [b, b̄] and [b, b̄] ≤
[a, ā].

From the above we deduce:
⎧
⎪⎨

⎪⎩

b ≥ a

b̄ ≤ ā

b̄− ā ≥ b− a

and

⎧
⎪⎨

⎪⎩

a ≥ b

ā ≥ b̄

ā − b̄ ≥ a − b

This implies: a = b and ā = b̄ therefore [a, ā] = [b, b̄] which proves the property
and [E,⊕,⊗] is indeed a dioid.

4.4.3. (R+, ⊕p, ⊗p)

This is the set of nonnegative reals endowed with the operation ⊕p (with p ∈ R∗)
defined as a ⊕p b = (ap + bp)1/p and the operation ⊗p defined as a ⊗p b =
(ap · bp)1/p = a · b (⊗p is therefore the standard multiplication).

When p tends towards+∞ (resp.−∞), (R+,⊕p,⊗p) “tends” towards the dioid
(R+, Max,×) (resp. R+, Min,×). (see Sect. 4.8.2).

[References: 1 (Sect. 3.2.5) 8 (Sect. 1.4.7)]

4.4.4. (R+, ⊕h, ⊗h)

This is the set of nonnegative reals endowed with the operation ⊕h (with h ∈ R∗)
defined as a ⊕h b = h ln (ea/h + eb/h) and the operation ⊗h defined as a ⊗h b =
h ln (ea/h. eb/h) = a + b (⊗h is thus the usual addition).

When h tends to 0+ (resp. 0−), (R+,⊕h,⊗h) “tends” towards the dioid
(R+, Max,+) (resp. R+, Min,+)

[References: 1 (Sect. 3.2.5) 8 (Sect. 1.4.8)]
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4.4.5. (L2 (Rn)+, +,∗ )

We consider the set of functions: R
n → R+, square integrable, endowed with the

addition of functions and the convolution product. This is a symmetrizable dioid.

4.5. Idempotent Dioids

The subclass of idempotent dioids includes (see Fig. 3):

– Doubly idempotent dioids (see Sect. 4.6);
– Idempotent-cancellative dioids (see Sect. 4.7);
– Idempotent-invertible dioids (see Sect. 4.8);
– Other idempotent dioids which do not belong to any of the previous categories,

and which are dealt with in the present section.

4.5.1. Dioid (P(Rn), ∪, +)

n ∈ N being a given integer, we consider E = P(Rn) the power set of R
n. The law

⊕ is defined as the union of two subsets of R
n (neutral element ∅).

The law ⊗ is taken as the sum of two subsets of R
n defined as:

A ⊂ R
n, B ⊂ R

n

A + B = {z/z ∈ R
n, z = x + y with x ∈ A, y ∈ B}

The neutral element of⊗ is the subset reduced to the zero vector (0, 0, . . . 0) of R
n.

One easily verifies that (P(Rn),∪,+) possesses all the properties of an idempo-
tent dioid.

4.5.2. Dioid P(R) Endowed with the Union and the Product (P(R), ∪, .)

The set E is the power set of R.
The law ⊕ is the union of two subsets of R (neutral element ∅).
The law ⊗ is the product of two subsets of R defined as:

A ⊂ R, B ⊂ R :
A . B = {z/z ∈ R, z = x . y with x ∈ A, y ∈ B}

The neutral element of ⊗ is the subset { 1} .
One easily verifies that (P(R),∪, .) possesses all the properties of an idempotent

dioid.
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4.5.3. Qualitative Algebra

On the set of signs, augmented with the indeterminate ?, S = {+,−, 0, ?}, we
consider the qualitative addition ⊕ and qualitative multiplication ⊗ defined in the
following tables (see Sects. 1.5.5 and 1.1.7):

⊕ + − 0 ?
+ + ? + ?
− ? − − ?
0 + − 0 ?
? ? ? ? ?

⊗ + − 0 ?
+ + − 0 ?
− − + 0 ?
0 0 0 0 0
? ? ? 0 ?

As a result, an idempotent dioid is obtained.
[References: 1 (Sect. 3.4.2), 1 (Sect. 3.4.3), 1 (Sect. 6.1.3)]

4.5.4. (Conv(Rk), Conv(A ∪ B), +), (Convc(R
k), Conv(A ∪ B), +)

We consider Conv(Rk), the set of convex subsets of R
k, endowed with the two

following operations (see Sects. 1.5.6 and 1.1.2):

A ⊕ B = Conv(A ∪ B)

A ⊗ B = A + B

where conv(X) denotes the convex hull of X and A + B the vector sum of A and B.
(see Sect. 1.1.2).

To show that this is a dioid, the non trivial property of the distributivity of⊗ with
respect to ⊕ remains to be proven, i.e.:

conv(A ∪ B)+ C = Conv[(A + C) ∪ (B+ C)].
Let us first of all check the following property:

V convex⇒ for any subset U, Conv(U + V) = Conv(U)+ V.
Indeed, Conv(U)+V is a convex set containing U+V, therefore Conv(U+V) ⊂

Conv(U)+ V.

Conversely, every element w of Conv(U)+ V is written w =
n∑

i=1
αi ui + v with

αi ≥ 0,
n∑

i=1
αi = 1, ui ∈ U, v ∈ V, hence w =

n∑

i=1
αi (ui + v) ∈ Conv (U + V),

which proves the expected property.
This therefore yields Conv(A ∪ B) + C = Conv((A ∪ B) + C) = Conv[(A +

C) ∪ (B+ C)], which proves distributivity.
Conv(Rk) the set formed by all convex subsets of R

k, is therefore an idempotent
dioid.

The set Convc(R
k) of compact convex subsets of R

k forms a subdioid of
Conv(Rk).
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Let us show that this dioid is idempotent-cancellative. Indeed, let the support
mapping, which characterizes a closed convex subset, be defined as:

δA (p) = sup
x ∈ A

< p, x > for p ∈ R
k

and which, in view of the compactness of A, is finite. One verifies that δA+B =
δA + δB. If A + B = C, B is the unique convex subset having support function
δB = δC− δA. It follows that the application B → A+B is injective, and therefore
the dioid Convc(R

k) is idempotent-cancellative.
[References: Rockafellar (1970), and 8 (Sect. 1.1.2), 8 (Sect. 1.5.6)]

4.5.5. Dioid of Relations

Let E be a set and R (E) the set of binary relations on E. One verifies that R (E),
endowed with the two following laws:

R ⊕ R′: x (R ⊕ R′) y iff x R y or xR′y,

R ⊗ R′: x (R ⊗ R′) y iff ∃ z ∈ E with x R z and z R′ y

is an idempotent dioid.
The canonical order relation corresponds to: R ≤ R′ if and only if x Ry implies

x R′ y, i.e. iff R is finer than R′.

4.5.6. Dioid of Mappings with Max and Convolution
(

R
Rn

max

)

The set of mappings: R
n → R, endowed with the operation “pointwise maximum”

((h⊕g) (x) = max {(h(x), g (x))}) and with the sup-convolution product defined as:

(f ⊗ g)(x) = sup
y∈Rn

{f (x − y)+ g(y)}

(where we agree to set (+∞)+ (−∞) = −∞) is a complete idempotent dioid (refer
to Chap. 1 Sect. 6.1.8 for the definition of a complete dioid). The neutral element for
the product is the function e defined as: e(x) = +∞ if x �= 0 and e(0) = 0.

4.5.7. Dioid (R̂ × P(R), Min, +)

This is an extension of the “Min-Plus” dioid (see Sect. 4.8.3 below) to sets of vectors
“monitored” by the first component.

E is the set R̂× P(R); its elements are in the form a = (a1, a2) with a1 ∈ R̂ and
a2 ∈ P(R).
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⊕ is the Min operation defined on R̂× P(R) in Sect. 1.5.10:

Min(a, b) =

⎧
⎪⎨

⎪⎩

a if a1 < b1

b if a1 > b1

(a1, a2 ∪ b2) if a1 = b1

⊗ is the operation defined as:

a ⊗ b =
{

a1 + b1

a2 + b2

(a2 + b2 denotes the set of reals in the form α+ β, for all values of α ∈ a2, β ∈ b2)
⊗ is associative, commutative and endows E with a monoid structure with unit

element e = (0, 0). One also verifies the right and left distributivity of⊗with respect
to ⊕.

Finally, ε = (+∞, ∅) is absorbing (∀a ∈ E: a ⊗ ε = ε⊗ a = ε).
(E,⊕,⊗) thus defined is an idempotent dioid. This is an extension to dimension

2 of the “Min-Plus” dioid.
Finally, let us mention two interesting specializations of the above in connection

with complex numbers.

4.5.8. Dioid (CR, Min, +)

E is the set of elements of the form a = a1 + i a2 with a1 ∈ R̂ and a2 ∈ P(R).
An element a of E is therefore a set of complex numbers all having the same real
component a1. ⊕ and ⊗ are then defined as in Sect. 4.5.7.

4.5.9. Dioid (Cρ, Min, ×)

E is the set of elements of the form a = ρ(a) ei θ(a) with ρ(a) ∈ R̂+ and θ(a) ∈
P(R). An element a of E is therefore a set of complex numbers all having the same
modulus ρ.
⊕ is the Min operation defined on R̂+ × P(R) by:

Min(a, b) =

⎧
⎪⎨

⎪⎩

a if ρ(a) < ρ(b)

b if ρ(b) < ρ(a)

(ρ(a), θ(a) ∪ θ(b)) if ρ(a) = ρ(b)

⊗ is the “multiplication” operation defined on R̂+ × P(R) by:

ρ(a ⊗ b) = ρ(a) ρ(b)

θ(a ⊗ b) = θ(a)+ θ(b) (Minkowski sum of the sets θ(a) and θ(b)).
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(θ(a)+ θ(b) is the set of real numbers of the form α+ β, α running through θ(a) and
β running through θ(b)).

[The two previous idempotent dioids appear to be relevant to the so-called
complex Min-Plus analysis which has application in the study of complex Hamilton–
Jacobi equations in quantum mechanics (see Gondran 1999b).]

4.6. Doubly Idempotent Dioids, Distributive Lattices

4.6.1. Dioid ({0, 1} , Max, Min): Boole Algebra

E is the set {0, 1} endowed with the operations ⊕ and ⊗ defined as:

a ⊕ b = Max{a, b}
a ⊗ b = Min{a, b}

ε = 1 is the neutral element of ⊕ and e = 0 the neutral element of ⊗.
We thus have that E = {ε, e}.
One easily checks all the properties necessary for (E,⊕,⊗) to enjoy a dioid

structure. In particular, the canonical preorder relation is an order relation because
⊕ is idempotent (see Chap. 1, Sect. 3.4).

Observe that the Boole algebra (E,⊕,⊗) as defined above is an ordered set in
which any pair a, b of elements has an upper bound given by:

sup(a, b) = a ⊕ b

and a lower bound given by
inf (a, b) = a ⊗ b

This is therefore a distributive lattice. As, moreover, there is a finite number of
elements, this is a complete lattice.

[Reference: see e.g. Birkhoff, 1979]

4.6.2. Dioids (N, lcm, gcd) and (N, gcd, lcm)

Here we take E = N, the set of natural numbers.
The lcm operation on N is associative, commutative, idempotent and has as neu-

tral element 1. Similarly, the gcd operation on N is associative, commutative and
idempotent. It has as neutral element +∞ by viewing this element as the infinite
product of all the prime numbers raised to the power +∞. One easily verifies the
distributivity of lcm with respect to gcd and of gcd with respect to lcm.

Finally, 1 is absorbing for gcd in the structure (N, lcm, gcd) and+∞ is absorbing
for lcm in the structure (N, gcd, lcm).

Each of these structures is therefore a doubly idempotent dioid. Moreover, since,
Proposition 6.5.7 of Chap. 1 holds, these are distributive lattices.
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4.6.3. Dioids
(
R, Max, Min

)
,
(
R, Min, Max

)

We take as our basic set E the set R of real numbers augmented with the elements
ε = −∞ and e = +∞, the operations ⊕ and ⊗ being defined as:

a ⊕ b = Max{a, b}
a ⊗ b = Min{a, b}

The element ε is absorbing because, ∀a ∈ E, a ⊗ ε = Min{a,−∞) = −∞ = ε.
One easily verifies that (E,⊕,⊗) enjoys all the properties of a dioid. In particular

the operation ⊕ being idempotent, the canonical preorder relation is an order (it is
the usual total order on the set of real numbers).

Moreover, E can also be considered as a lattice taking as the upper bound of two
arbitrary elements a and b sup (a, b) = a ⊕ b = Max{a, b} and as the lower bound
of two arbitrary elements a and b

inf (a, b) = a ⊗ b = Min{a, b}
One indeed verifies that all the axioms of the algebraic definition of a distribu-
tive lattice are satisfied: idempotence, commutativity, the associativity of each law,
distributivity, as well as the absorption properties:

a ⊕ (a ⊗ b) = a

a ⊗ (a ⊕ b) = a

One recognizes a doubly idempotent dioid structure. By exchanging the Max and Min

operations, we obtain the lattice-dioid
(
R, Min, Max

)
which has similar properties.

The (R, Max, Min) structure defined above is the one underlying the algebraic
formulation of the maximal capacity path problem in a graph or equivalently (see
Gondran and Minoux 1995) the problem of finding a path with maximal inf-section.

Similarly, the structure (R, Min, Max) is the one underlying the algebraic formu-
lation of the minimal sup-section path problem.

[References: 1 (Sect. 6.5), 4 (Sect. 6.3)]

4.6.4. Lattice of the Power Set of a Given Set (P(X), ∪, ∩), (P(X), ∩, ∪)

X being a given set, we take E = P(X), the power set of X. The law ⊕ is the union
of two subsets (neutral element: ∅) and the law ⊗ is the intersection of two subsets
(neutral element: X). One easily verifies that (P(X),∪,∩) satisfies all the properties
of a distributive lattice. The same is true for (P(X),∩,∪).

4.7. Idempotent-Cancellative and Selective-Cancellative Dioids

4.7.1. Dioids (R̂+, Min, +), (N̂, Min, +)

The set E is the set of nonnegative reals augmented with +∞.
⊕ is the Min operation (minimum of two real numbers). It is associative,

commutative, selective, and has neutral element ε = +∞.
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⊗ is the operation + (sum of two real numbers). It is associative, commutative,
and has unit element e = 0. It endows the set E with a hemi-group structure (see
Sect. 1.4.1.).

One easily verifies the right and left distributivity of⊗ with respect to⊕. Finally
ε = +∞ is absorbing for ⊗ (∀a ∈ E, a ⊗ ε = ε⊗ a = ε).

(R+ ∪ {+∞}, Min,+) is therefore a selective-cancellative dioid.
(N̂, Min,+) is a subdioid of (R̂, Min,+). It is sometimes referred to as the “trop-

ical dioid” and has been used to solve some problems of enumeration in language
theory (see for example Simon 1994).

[Reference: 1 (Sect. 6.6.4)]

4.7.2. Regular Language Dioid

A being a set of letters (“alphabet”), the free monoid (sets of words formed by a finite
number of letters on A) is denoted A∗ (see Sect. 1.4.4). It includes the empty word,
denoted ε.

Every subset (whether finite or infinite) of A∗, L ⊂ A∗, is called a language on
A. We denote L = P(A∗) the set of all the languages on A.

The sum of two languages L1 ⊕ L2 is defined as the set union of the words of L1
and the words of L2.

The product of two languages L1 ⊗ L2 is the set of words formed by the
concatenation of a word m1 of L1 and a word m2 of L2 (in this order).

The two following dioids are relevant to language theory:
(Pfinite (A∗),⊕,⊗), the dioid of finite languages (finite subsets of A∗) formed on

the alphabet A.
(P(A∗),⊕,⊗) the dioid of arbitrary languages formed on the alphabet A.
(P(A∗),⊕,⊗) has the empty language∅ as neutral element of⊕ and {ε} as neutral

element for ⊗. It has (Pfinite (A∗),⊕,⊗) as subdioid.
In the case where the alphabet is finite, (Pfinite (A∗),⊕,⊗) corresponds to the

dioid of the polynomials on A, and (P(A∗),⊕,⊗) to the dioid of the formal series
on A.

The structure defined above is that of regular languages (see e.g. Salomaa 1969).
However, we observe that in addition to the dioid structure, the axioms of regular
languages include the so-called closure operation denoted ∗.

[Reference: 1 (Sect. 6.6.2)]

4.7.3. Dioid of Integer Sequences with Min and Sum Operations (NN, Min, +)

Here we take E = N
N as the set of (infinite) sequences of nonnegative integers.

The operation ⊕ is the term by term minimum operation of two sequences of
integers, in other words for two sequences a = (ai)i ∈ N and b = (bi)i ∈ N, we set:

a ⊕ b = c = (ci)i ∈ N with ci = Min{ai, bi} (∀i).
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The law⊕ is associative, commutative and idempotent and its neutral element is the
sequence ε = (εi)i ∈ N with, ∀i ∈ N: εi = +∞.

The operation⊗ is the term by term sum operation of two sequences of integers,
in other words for a = (ai)i ∈ N and b = (bi)i ∈ N, we set:

a ⊕ b = c = (ci)i ∈ N with ci = ai + bi(∀i).

The operation⊗ is associative, commutative and its unit element is the zero sequence
e = (ei)i ∈ N with ∀i : ei = 0.

We observe that every element of E is cancellative for ⊕. Moreover, one easily
verifies that ⊗ is distributive with respect to ⊕ and that ε is absorbing for ⊗.

Consequently (NN, Min,+) is an idempotent-cancellative dioid.

4.7.4. Dioid (N∗, gcd, ×)

We take E = N
∗ = N\{0} as the set of strictly positive integers.

The operation ⊕ is the gcd of two numbers. This operation is associative, com-
mutative and idempotent. The neutral element of ⊕ is ε = +∞, by viewing ε as the
(infinite) product of all the prime numbers, raised to the power +∞.

The operation ⊗ is the product of two integers (neutral element e = 1). We
observe that every element of N

∗ is cancellative for ⊗.
One also verifies that ⊗ is distributive with respect to ⊕ and that ε is absorbing

for ⊗.
(N∗, gcd, ×) is therefore an idempotent dioid.
The dioid (N∗, gcd, ×) is isomorphic to the dioid (NN, Min,+) (see Sect. 4.7.3)
Indeed, if we denote p1, p2 . . . the (infinite) sequence of prime numbers, every

integer n ∈ N may be decomposed into prime factors and expressed in the form:

n = q
Π
i=1

pi
ni (q is the rank of the largest prime number not greater than

√
n).

One therefore sees that with every integer n ∈ N one can associate a sequence:

(n) = (n1,n2, . . . n�) ∈ NN

If n ∈ N is defined as the sequence (n) and m ∈ N by the sequence (m), the gcd of n
and m is defined as the sequence (r) such that:

∀i ∈ N : ri = min{ni, mi}
We denote:

(r) = (n)⊕ (m)

Similarly, the product n ×m is defined as the sequence (s) such that:

∀i: si = ni +mi

The gcd and × operations on N therefore clearly correspond to the operations Min
and + of the dioid (NN, Min,+).

Finally, let us observe that, if one replaces the gcd operation with the lcm operation,
we obtain (N, lcm,×) which is only a pre-dioid (the property of absorption not being
satisfied) see Sect. 2.4.2.
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4.8. Idempotent-Invertible and Selective-Invertible Dioids

4.8.1. Dioid (R̂n, Min, +)

The set E is R̂
n and we take ⊕ as the Min operation (component-wise minimum,

of two vectors of R
n). It is associative, commutative, and has neutral element

ε =

⎛

⎜⎜
⎝

+∞
+∞
:
+∞

⎞

⎟⎟
⎠.

This operation is idempotent but not selective.
⊗ is the operation + (sum of two vectors of R

n). It is associative, commutative,

and has unit element e =

⎛

⎜⎜
⎝

0
0
:
0

⎞

⎟⎟
⎠. It endows E with a group structure.

One easily verifies the right and left distributivity of ⊗ with respect to ⊕ and the
absorption property of ε.

(R̂n, Min,+) is therefore an idempotent-invertible dioid.

4.8.2. Dioid (R+, Max, ×)

E is the set R+ of nonnegative reals.

⊕ is the operation Max (maximum of two real numbers) with neutral element
ε = 0.
⊗ is the operation × (product of two real numbers) with unit element e = 1.
⊕ is selective and ⊗ endows R+\{0} with a group structure.

It is therefore a selective-invertible dioid.
The dioid (R+, Max,×) is isomorphic to the dioid (R∪{−∞}, Max,+) through

the one-to-one correspondence: x → ex.
We observe that if we take ⊗ to be the addition of real numbers instead of the

multiplication of real numbers, we obtain the structure (R+, Max,+) which is a
pre-dioid (see Sect. 2.4.1).

4.8.3. “Min-Plus” Dioid (R̂, Min, +)

E is the set R̂ = R ∪ {+∞}
⊕ is the Min operation (minimum of two real numbers).
⊕ is associative, commutative, selective and has neutral element ε = +∞.
⊗ is the operation + (sum of two real numbers).
⊗ is associative, commutative and endows E with a group structure with unit

element e = 0.
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One also verifies the right and left distributivity of ⊗ with respect to ⊕.
Finally ε = +∞ is absorbing (∀a ∈ E: a ⊗ ε = ε⊗ a = ε).
(E,⊕,⊗) thus defined is therefore a selective-invertible dioid.
The MIN-PLUS dioid is the algebraic structure underlying the shortest path

problem in a graph (see for example Gondran and Minoux 1995, Chap. 3).
[References: 4 (Sect. 2), 4 (Sect. 6.5)]

4.8.4. “Max-Plus” dioid (
∨
R, Max, +)

E is the set
∨
R = R ∪ {−∞}

⊕ is the Min operation (minimum of two real numbers) with neutral element
ε = −∞.
⊗ is the operation + (sum of two real numbers).

This dioid is isomorphic to the MIN-PLUS dioid.
The MAX-PLUS dioid is the appropriate structure to express in algebraic terms

the behavior of some discrete event dynamic systems and thus generalize many
classical results in automatic control of linear systems.

[References: 6 (Sect. 7); Baccelli et al. 1992; Gaubert 1992, 1995a,b.]

4.8.5. Dioid (R̂2, Min-lexico, +), (R̂n, Min-lexico, +)

E is the set of vectors of R̂
2 (totally) ordered by the lexicographic order.

⊕ is the lexicographic minimum on R̂
2 defined as:

a ⊕ b =
{

a if a1 < b1 or if a1 = b1 and a2 < b2

b if b1 < a1 or if a1 = b1 and b2 ≤ a2

⊗ is the component-wise addition:

a ⊗ b =
(

a1 + b1
a2 + b2

)

One verifies that (E,⊕,⊗) is a selective-invertible dioid. This is another possible
extension to dimension 2 of the “Min-Plus” dioid.

More generally, for arbitrary n > 2 the dioid (R̂n, Min-lexico, +) would be
defined in a similar way.
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Property of the monoid
(E,⊕)

Property of the monoid
(E,⊗)

Distributivity of ⊗
with respect to ⊕

Comments, additional
properties

General dioids

Dioid of the k shortest paths (see
Sect. 4.3.1.)

Commutative, neutral
element ε

Commutative, unit element e Right and left

Dioid of the η-optimal path (see
Sect. 4.3.2)

Commutative, neutral
element ε

Commutative, unit element e Right and left

Order of magnitude dioid Commutative, neutral
element (0,+∞)

Commutative, unit element
(1, 0)

Right and left

Nonstandard number dioid Commutative, neutral
element (0, 0,+∞)

Commutative, unit element
(1, 0,+∞)

Right and left

Symmetrizable dioids

(R+,+,×) Commutative, neutral
element ε = 0

Commutative, unit element
e = 1

Right and left Every element is
cancellative for ⊕

Intervals in R+(Int (R+),+,×) Commutative, ε = [0, 0] Commutative, e = [1, 1] Right and left Every element is
cancellative for ⊕

Idempotent dioids

(P(Rn),∪,+) Commutative, idempotent,
ε = ∅

Commutative,

e =

⎛

⎜⎜⎜
⎝

+∞
+∞
:
+∞

⎞

⎟⎟⎟
⎠

Right and left

(P(R),∪, .) Commutative, idempotent,
ε = ∅

Commutative, e = {1} Right and left
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Property of the monoid
(E,⊕)

Property of the monoid
(E,⊗)

Distributivity of ⊗
with respect to ⊕

Comments, additional
properties

Qualitative algebra Commutative, idempotent,
ε = 0

Commutative, e = + Right and left

(Conv(Rk),∪,+) Commutative, neutral
element ∅

Commutative, unit element {0} Right and left

Dioid of relations Commutative Commutative Right and left

Doubly idempotent dioids

({0,1} , Max, Min)
Boole algebra

Commutative, idempotent,
ε = 0

Commutative, idempotent,
e = 1

Right and left (distributive lattice)

(N, lcm, gcd) (N, gcd, lcm) Commutative, idempotent,
ε = 1 (ε = +∞)

Commutative, idempotent,
e = +∞ (e = 1)

Right and left (distributive lattice)

(R
n
, Max, Min) (R

n
, Min, Max) Commutative, idempotent,

ε = −∞ (ε = +∞)

Commutative, idempotent,
e = +∞ (e = −∞)

Right and left (distributive lattice)

(P(X),∪,∩) Commutative, idempotent,
ε = ∅

Commutative, idempotent,
e = X

Right and left (distributive lattice)

Idempotent-cancellative and selective-cancellative dioids

(R
n
+, Min,+) Commutative, selective,

ε = +∞
Commutative, e = 0 Right and left Every element is

cancellative for ⊗
Regular languages Commutative, idempotent,

ε = ∅
e = L∅ Right and left Every element is

cancellative on the right and
on the left for ⊗
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Property of the monoid
(E,⊕)

Property of the monoid
(E,⊗)

Distributivity of ⊗
with respect to ⊕

Comments, additional
properties

(NN, Min,+) Commutative, idempotent,
ε = (+∞,+∞ . . .)

Commutative, e = 1 Right and left Every element is
cancellative for ⊗

(N∗, gcd,×) Commutative, idempotent,
ε = +∞

Commutative, e = 1 Right and left Every element is
cancellative for ⊗

Idempotent-invertible and selective-invertible dioids

(R+, Max,×) Commutative, selective,
ε = 0

Abelian group, e = 1 Right and left Every element has an
inverse for ⊗

(R̂, Min,+) Commutative, selective,
ε = +∞

Abelian group, e = 0 Right and left Every element has an
inverse for ⊗

“Max-Plus” dioid
(R ∪ {−∞}, Max,+)

Commutative, selective,
ε = −∞

Abelien group, e = 0 Right and left Every element has an
inverse for ⊗

(R
n
, Min,+) commutative, idempotent,

ε =

⎛

⎜
⎜⎜
⎝

+∞
+∞
:
+∞

⎞

⎟
⎟⎟
⎠

commutative,

e =

⎛

⎜
⎜⎜
⎝

0

0

:
0

⎞

⎟
⎟⎟
⎠

Right and left Every element has an
inverse for ⊗

(Rn, Min-lexico, +) Commutative, selective,

ε =

⎛

⎜⎜⎜
⎝

+∞
+∞
:
+∞

⎞

⎟⎟⎟
⎠

Group,

e =

⎛

⎜⎜⎜
⎝

0

0

:
0

⎞

⎟⎟⎟
⎠

Right and left Every element has an
inverse for ⊗
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Absorbing element, 5, 6, 8, 23, 42, 138, 326
Adjacency matrix, 80, 121, 122, 234
All minors matrix-tree theorem, 51, 52, 75, 76,

81
Alternating linear mapping, 182, 183, 185
Analyzing function, 268–270, 293
Anti-filter, 85
Anti-ideal, 84
Arborescence, 51, 69, 73–75, 80, 81, 193, 194,

197, 199
Assignment problem, 80, 182, 183, 203, 205

Basis, of semi-module, 3, 122, 173, 178, 181,
230, 238, 260, 266

Bellman’s algorithm, 118, 130
Bicolorable hypergraph, 204, 205
Bi-conjugate, 261, 292
Bideterminant, 51, 52, 55, 58, 59, 61–65, 69,

70, 80, 173, 181–187
Boole algebra, 357, 364
Boolean lattice, 36
Bottleneck assignment, 183, 203, 205
Bounded subset, 10, 88
Bürgers equation, 258

Cancellative
element, 45
monoid, 18, 43, 314

Canonical order, 13, 18, 19, 22, 25, 30, 31, 35,
36, 40, 45, 51, 91, 100, 119, 120, 128,
179, 215, 237, 355

Canonical preorder, 9, 12, 13, 15–17, 19,
25–28, 39, 53, 187, 192, 314

Canonically ordered
commutative monoid, 31, 174, 341, 345
monoid, 9, 13–20, 24, 27, 28, 313, 314, 319,

321, 322

Capacity of path, 159
Capacity theory, 166
Cauchy problem, 283, 288
Cayley-Hamilton, 51, 65, 67, 80
Centre of a graph, 160
Chain with minimal sup-section, 235
Characteristic bipolynomial, 51, 55, 59–61, 65,

207, 231, 233
Characteristic equation, 65, 233
Characteristic of permutation, 58, 81
Chromatic number of hypergraph, 204
Classification tree, 167
Closed, 4, 22, 31, 86, 110–112, 264, 302, 303,

305, 310, 344, 355
Closure, 37, 86, 110, 158, 163, 165, 166,

264–268, 280–283, 292, 293, 359
Commutative

group, 8, 19, 24, 27, 192, 222, 233, 341
monoid, 5, 6, 8, 9, 12, 13, 17, 20–24, 27, 28,

31, 40
Complemented lattice, 36
Complete dependence relation, 203-205
Complete dioid, 31, 355
Complete lattice, 44, 45, 88, 109, 357
Complete ordered set, 10, 31, 44, 45, 110, 111
Complete semi-lattice, 18, 44
Complexity, 130, 136, 152, 162, 230, 231
Concatenation, 5, 8, 36, 157, 323, 324, 330,

359
Condorcet’s paradox, 238, 239
Connectivity, 157, 158, 198, 213, 220, 221
Constrained shortest path, 169
Continuity, 83, 89, 91, 110, 265, 335
Continuous data-flow, 22, 335, 336
Control vector, 243, 250
Γ-Convergence, 260, 271
φ-Convergence, 271, 277, 281
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Convergent sequence, 87, 92, 129
Convex

analysis, 260, 279, 291
lsc closure, 267, 293

Convolution product, 100, 166, 259, 353, 355
Critical circuit, 225, 226, 252, 254
Critical class, 254
Critical graph, 225, 226, 254, 255
Critical path, 252

Data analysis, 233, 238
Dense subset, 86
Dependence, 173, 177, 178, 181, 187, 189,

190, 192, 201–205, 231
Dependent family, 177
Diameter of graph, 160
Dijkstra’s algorithm, 145, 170, 348
Dioid

canonically associated with, 39, 40
of endomorphisms, 31, 137, 345
of relations, 355, 364

Dirichlet problem, 283
Discrete event system, 230, 242, 244
Discrete topology, 97
Dissimilarity

index, 166, 167
matrix, 167, 168, 233–235, 237, 238

Distributive lattice, 2, 17, 34–36, 41, 44, 46,
99, 166, 200, 342, 343, 357, 358, 364

Dominating diagonal endomorphism in
Min-Max analysis, 297

Doubly idempotent dioid, 34–36, 159, 342,
343, 353, 357, 358, 364

Doubly selective dioid, 34, 40, 200, 201
Dual residual mapping, 107–113
Dually residuable function, 109
Dynamic programming, 116
Dynamic scheduling, 244
Dynamic system theory, 243, 244

Earliest termination date, 247, 248, 250
Efficient path, 157, 161
Eigenfunction, 292
Eigen-moduloid, 175, 212, 225, 238
Eigen semi-module, 207, 209, 233, 297
Eigenvalue, of endomorphism, 2, 175,

207–213, 215, 216, 218–225, 229–233
Eigenvector, 2, 175, 207–212, 220–223, 225,

229, 230, 232, 239, 251, 253, 255, 256
Elementary path, 125, 169

Endomorphism
algebra, 137, 138
of commutative monoid, 22, 31–33, 137,

138, 333–336, 341, 345–348
of moduloids, 175
of monoid, 137, 335
of semi-module, 207, 208

Epiconvergence (Γ-convergence), 260, 271,
273–275, 277, 291, 294

Epigraph, 264
Episolution, 283
Equality graph, 188–190
Equation of counters, 251
Equation of timers, 251
Escalator method, 152–156
Evolution equation, 243
Expansion of bideterminant, 183, 184
Extension of permutation, 57, 58

Factor analysis, 233, 238
Fenchel transform, 109, 260, 261, 267, 268,

285–288, 291, 292, 300, 304, 305, 309
Field, 24, 51, 65, 74, 79, 82, 165, 207, 242,

257, 295, 296, 300, 337, 351
Filter, 11, 85
Fireable transition, 245
Fixed point, 1, 2, 83, 90, 93, 94, 100, 107, 115,

129
equation, 93–97, 100, 115, 129
theorem, 83, 90

Floyd’s algorithm, 152
Ford’s algorithm, 133
Formal series, 51–54, 77, 313, 359
Free monoid, 3, 5, 8, 13, 36, 323, 324, 330, 359
Fundamental neighborhood, 84–86
Fuzzy

graph, 166–168
integral, 166
relation, 166–168
set, 11, 257

Galois correspondence, 107
Gauss-Jordan algorithm, 151–152
Gauss-Seidel algorithm, 130–133, 141–142,

172
g-Calculus, 47–50
g-Derivative, 47–49
g-Differentiability, 47
General dioid(s), 2, 341, 348–351, 363
Generalized Dijkstra’s algorithm, 170, 348
Generalized escalator method, 152–156
Generalized Gauss-Jordan algorithm, 145–152
Generalized Gauss-Seidel algorithm, 96,

130–133, 142
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Generalized Jacobi, 129–131
algorithm, 129, 130, 141

Generalized Moore algorithm, 143
Generating family, 176–178, 206
Generating series, 106
Generator, 42, 43, 49, 176, 213, 216–218, 225,

226, 233, 237, 238, 297, 298
g-Integral, 48, 49
Graph associated with matrix, 121–128
Greatest element, 181, 215–219, 237
Greedy algorithm, 133–136, 144, 145
Group, 24, 26–28, 33, 37, 38, 40, 43–45, 49,

59, 65, 181

Hamilton-Jacobi equation, 258, 283, 300
Heat transfer equation, 258, 259, 289
Hemi-group, 17–20, 33, 37, 40, 314, 323–325,

333, 343, 351, 359
Hierarchical clustering, 167, 168, 207,

233–237, 240
Hölderian function, 270, 271
Hopf-Lax formula, 288–291
Hopf solution, 259
Hyposolution, 283

Ideal, 11, 45, 84
Idempotent

analysis, 257
cancellative dioid, 212, 341, 353–355, 363
dioid, 33–36, 40, 45, 46, 159, 212, 213, 343,

353–358, 360
invertible dioid, 37, 343, 361
monoid, 17–19, 21, 34, 36, 37, 40, 314, 332
pre-dioid, 23
semi-field, 45

Increasing function, 89, 247, 310
Increasing sequence, 83
Independent family, 178, 179, 181
Inf-C-equivalence, 265
Inf-compact, 267–269, 273, 281, 293, 296
Inf-convergence, 88, 271–278, 293–294
Inf-convolution, 260, 300, 301, 303–305, 309
Inf-Δ̃-convergence, 273, 274
Inf-Δ-convergence, 271
Inf-Δ-equivalence, 263
Inf-dioid, 45
Inf-Dirac function, 263, 292
Inf-L-convergence, 276, 277
Inf-L-equivalence, 268
Inf-φ-convergence, 271
Inf-φ-equivalence, 260
Inf-φ-solution, 282
Infmax-A-equivalence, 293
Infmax biconjugate, 292

Infmax-C̃-convergence, 294
Infmax-C̃-equivalence, 292
Infmax-Δ-convergence, 293, 294
Infmax-Δ-equivalence, 292
Infmax linear transform, 291–293
Infmax-Q̃-convergence, 294
Infmax-Q-equivalence, 292
Infmax-φ-equivalence, 291–293
Inf-pseudo-inverse, 108
Inf-section of a path, 159, 358
Inf-semi-lattice, 17–19, 34, 35, 331
Inf-solution, 262, 291, 292
Inf-sup wavelet transform, 270
Inf-topology, 83–89
Input-output matrix, 165
Interior, 86, 279, 280
Interval

algebra, 45
dioid, 351
pre-dioid, 338

Irreducibility, 180, 181, 222
Irreducible matrix, 153, 220–222, 224, 225,

229, 230, 256

Jacobi’s algorithm, 119, 129–132, 141, 172

K shortest path dioid, 348, 363
Karp’s algorithm, 230, 231, 252
kth shortest path, 99, 157, 161, 162, 348

Label of place, 245, 246
Lagrange theorem, 106, 107
Language, 3, 36–38, 157, 359, 364
Latin multiplication, 25, 157, 158, 215, 216,

219, 348, 349
Lattice, 2, 9, 17–19, 21, 34–36, 40, 41, 44–46,

88, 99
Least consensus circuit, 240–242
Least element, 221
Left canonical preorder, 13
Left dioid, 28, 41, 125, 170, 341–345, 363, 364
Left inverse, 8
Left pre-semi-ring, 27, 334
Left-semi-module, 174
Left semiring, 23, 24, 44
Left topology of Alexandrov, 84, 85
Legendre-Fenchel transform, 260, 261, 267,

268, 285, 291, 292, 303–305
Legendre transform, 276, 299
Leontief model, 165
Level of hierarchical clustering, 168, 235–238,

240, 241
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Linear
dependence, 173–200, 202, 233
dynamic system, 207, 242–244, 251
equation, 33, 83–97, 100–103, 244, 247
independence, 173–206
mapping, 175, 176, 182–185
system, 115–172, 242–255, 362

Liveness, 246
Lower

bound, 10, 18, 34, 44, 45, 87, 88, 107, 264,
272, 277, 278, 291, 293, 304, 357, 358

fixed point, 90
limit, 84, 87, 88, 272
semi-continuous (lsc) function, 89, 260, 261,

264, 301
solution, 107, 108
ultrametric, 167, 168
viscosity solution, 278–283, 291, 295

Lower semi-continuity, 89, 265
closure, 264–268, 281, 292, 293

Lsc. See Lower semi-continuous

Mac Mahon identity, 51, 76–82
Magma, 5
Mapping of monoid onto itself, 21, 332, 333
Markov chain, 157, 165, 166
Matrix

of endomorphisms, 138, 139, 141, 346, 348
of preferences, 234, 238–240, 242

Matrix-tree theorem, 69, 74, 76, 80, 81
Maximal element, 11, 256
MAX-MIN dioid, 173, 200–205
Maximum

capacity path, 98, 157, 159
mean weight circuit, 226–228, 230
reliability path, 98, 157, 160

MAXPLUS, 269, 271, 277, 283
Max-Plus dioid, 38, 362, 365
Mean order method, 239
Mean weight circuit, 226–228, 230
m-idempotency, 15, 16
Minimum(al)

element, 11, 111, 284
generator, 216, 218, 225, 226, 233, 237, 238,

297, 298
spanning-tree, 157, 159, 235
solution, 2, 3, 93–96, 104–106, 111, 116,

119, 120, 128, 132–135, 145, 146,
150–155, 250, 251

weight spanning-tree, 235
MINMAX

analysis, 291–295
convolution, 259
functional semi-module, 296, 297

scalar product, 260, 291
wavelet transform, 293

MINPLUS
analysis, 260, 357
convolution, 259
dioid, 38, 258, 259, 355, 356, 361, 362
scalar product, 260, 261, 271, 291
wavelet transform, 268

Moduloid, 173, 174
Monoid of nonstandard numbers, 322
Monotone

data-flow, 334, 335
algebra, 332–335

Moreau-Yosida
regularization, 306
sup-transform, 266
transform, 266, 275, 276, 302–304

Morphism
of moduloids, 175
of semi-module, 175, 176

Mosco-epiconvergence, 271, 276, 277, 291,
294

Multicriteria
path finding problem, 160, 161
problem, 157, 161

Multiplier effect, 165,
Mutual exclusion, 244, 246, 247

Neighborhood, 83–87, 275
Neutral element, 4–8, 12–15, 18–29, 34–39,

42, 52–55, 61
Newton polygon, 46
Nilpotency, 125–127, 168
Nilpotent

t-conorm, 321
t-norm, 321

Nondecreasing function dioid, 346
Nondegenerate matrix, 203–205
Nonlinear

equation, 103–107
PDEs in MINMAX analysis, 294, 295

Nonstandard number dioid, 350, 351, 363

Observation equation, 250
Observation vector, 243
Open set, 261, 267, 278, 281, 283, 288,

308–310
η−Optimal path, 99, 157, 164, 349, 363
η−Optimal path dioid, 349
Order 1

lower semi-differentiable, 280
upper semi-differentiable, 280
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Order 2
lower semi-differentiable, 281
subdifferential, 280, 281
upper-differential, 280, 282
upper-gradient, 280, 281
upper semi-differentiable, 281

Ordered
monoid, 1, 9, 11–20, 24, 27, 28, 313, 314,

319, 321, 322, 326, 329, 332, 336–338,
343, 348, 349

set, 9–11, 31, 44, 45, 83–108, 110–112, 121,
201, 357

Orders
of magnitude dioid, 29, 350, 363
of magnitude monoid, 15, 322, 329

Oscillation, 268, 270

p-absorbing circuit, 123–126, 130
Parity of a permutation, 56
Partially ordered set, 9, 11, 83, 112
Partial order method, 239
Partial permutation, 57, 58, 60, 66, 67, 70–72,

78
Path enumeration, 158
Path with minimum number of arcs, 160
Perfect matching, 188, 192–194, 200
Permanent, 182, 183, 205
Permutation, 56–58, 62–64, 66, 67, 70–72, 78,

81, 182, 183
graph, 56

Perron-Frobenius theorem, 2, 207, 220, 226,
227, 229, 239, 252

Petri net, 243–247
Pivot, 148–150, 152
Place, 143, 145, 244–248, 252, 257, 332, 338
p-nilpotency, 125–127, 168
Pointed circuit, 123, 124, 209, 211, 216
Point-to-set map, 277
Polynomial, 52, 53, 61, 102, 104–106, 163,

182, 183, 203, 205, 230, 233, 301, 341,
344

Positive
dioid, 30, 44
element of commutative group, 9

Positivity condition, 16
Possibility theory, 166
Potential theory, 165, 166
Power

monoid, 322, 329
set lattice, 35, 358

Pre-dioid, 20, 22, 23, 25, 27, 313, 331–338,
360, 361

of natural numbers, 337
Preference analysis, 207, 234, 238, 242

Prefix, 13, 324
Preorder, 9, 12, 13, 15–17, 19, 25, 27, 28, 39
Pre-semiring, 25, 27, 334
Product

dioid, 38, 40
and ring, 39, 341

pre-dioid and ring, 333, 336
semiring, 26

Production rate, 243, 244, 252
Proximal

algorithm, 305, 307
point, 301, 302, 306

p-stable, 83, 97–107, 111, 123, 126, 127, 164
element, 83, 97, 100, 103, 107, 123

Qualitative
addition, 14, 28, 318, 326, 354
algebra, 28, 38, 39, 340, 354, 364
multiplication, 14, 28, 318, 326, 354

Quasi-convex
analysis, 260, 291
lsc closure, 293

Quasi-inverse, 83, 92–99, 101, 115, 116, 118,
120

of matrix, 118, 120–127, 138, 139, 145, 156
square root, 103

Quasi-nth-root, 106, 107
Quasi-redundant family, 185
Quotient semi-module, 176

Reachability, 32, 125–127, 137, 141, 190, 245,
246, 254, 299, 301, 302

Reducibility, 178
Reducible matrix, 252
Redundant family, 185, 186
Regular language dioid, 359
Reliability, of network, 100, 157
Residuable

closure, 110
function, 109
mapping, 107, 108, 110, 111

Residuation, 83, 107, 115
Residue mapping, 108–111
Right and left pre-semiring, 333
Right canonical preorder, 13
Right dioid, 28, 29, 341–343
Right inverse, 8
Right pre-dioid, 22, 335
Right pre-semiring, 20
Right-regular, 7
Right-semi-module, 174
Right semiring, 23
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Ring, 20, 24, 26–28, 33, 39, 75, 173, 174, 333,
336, 337, 339–341, 343, 344

of matrices, 341
of polynomials, 341

Scalar biproduct, 269, 270, 277
Selective

dioid, 33, 34, 40, 91, 92, 133, 134, 179, 187,
190, 191, 200, 201, 213, 215, 216, 218,
219, 233,

monoid, 18, 19, 34, 37, 38, 40, 314, 319,
325, 328, 331

Selective-invertible dioid, 34, 37, 38, 173,
192–200, 202, 207, 215, 220, 224–231,
233, 343, 361–365,

Selective-regular dioid, 191
Semi-cancellative fraction, 343–345
Semi-continuity, 83, 89, 265
Semi-continuous convergence, 277
Semi-convergence, 277, 278
Semi-field, 25, 37, 44, 45, 255, 350, 351
Semi-inf-C̃-solution, 281, 282
Semi-infmax-Δ-convergence, 294
Semi-inf-φ-convergence, 271, 281
Semi-infmax-φ-convergence, 293
Semi-lattice, 9, 17–19, 21, 34, 35, 44, 314,

325–327, 331, 332
Semi-module, 173–209, 212, 218, 233, 256,

296, 297
Semiring

of endomorphisms, 137, 138
of signed numbers, 340

Semi-sup-C̃-solution, 281, 282
Separated topology, 84–86
Set of natural numbers, 323, 325, 337, 357
Shortest path

with gains or losses, 29, 170, 341
with time constraint, 140, 144, 168, 336,

347, 348
dioid, 347, 348

with time dependent lengths on arcs, 32,
137, 139, 144, 145, 346

Signature of permutation, 57
Signed nonstandard number dioid, 350, 351,

363
Singular matrix, 200, 204
Spanned subsemi-module, 176, 177, 209, 256,

297
Spectral radius, 220, 227–229, 239, 251
Squeleton hypergraph, 204
Stable element, 83, 97–107, 123, 125, 126, 152
State

equation, 242, 243, 247, 249–251
vector, 243, 250

Strict order, 10
Strongly connected, 220, 221, 225, 226, 240,

251, 253, 254
component, 225, 226, 240

Subadditivity, 298, 299
Subdifferential, 279–281, 302, 304, 310
Subdioid, 354, 359
Subgradient, 279–281, 302
Sup section of path, 234
Sub semi-module, 176, 177, 209, 256, 297
Sup-convergence, 86–88
Sup-φ-solution, 282
Sup-pseudo-inverse, 108, 109
Sup-semi-lattice, 17–19, 34, 35, 44, 332
Sup-topology, 83–92, 94, 97, 121, 129, 131
Symmetrizable dioid, 33, 41, 45, 341–343,

351, 353, 363
Synchronization, 244, 246, 247

t-conorm, 42, 43, 321
Timed event graph, 243, 244, 247–251
T-nilpotent, endomorphism, 33, 140, 346
t-norm, 42, 43, 321
Token (in Petri net), 245–248
Top element, 31
Topological

dioid, 83–113, 121, 129–132, 146,
149, 150

space, 86, 308, 310
Totally ordered set, 9, 83, 86, 201
Total order, 9, 16, 17, 19, 28, 40, 145, 169, 187,

190–193
Transition, 140, 165, 166, 244–247, 250–252,

271, 347
Transitive closure of a graph, 158, 165
Tropical dioid, 359

Ultrametric
distance, 167, 168, 237
triangle inequality, 167

Upper
bound, 10, 18, 19, 34, 44, 86–91, 93, 94,

107–110, 130, 264, 272, 283, 357, 358
differential, 279–282
gradient, 279–281
limit, 84, 88, 121
semi-continuity (USC), 89, 107, 261, 264,

268, 269, 272, 273, 279–282, 290,
292–294, 300

viscosity solution, 279–283
USC closure, 264, 280–282

Viscosity solution, 278–283, 291, 295
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Wavelet
function, 268
transform, 268, 293

Weak
solution, 260, 278–283
symmetrization, 33

Weakly symmetrized dioid, 33
Weight

of circuit (or: circuit weight), 122, 209, 211,
252

of path (or: path weight), 116
of permutation, 182
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