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Preface

During the last two or three centuries, most of the developments in science (in par-
ticular in Physicsand Applied M athematics) have been founded onthe use of classical
algebraic structures, namely groups, rings and fields. However many situations can
be found for which those usual algebraic structures do not necessarily provide the
most appropriate tools for modeling and problem solving. The case of arithmetic
provides atypical example: the set of nonnegative integers endowed with ordinary
addition and multiplication does not enjoy the properties of afield, nor even those
of aring.

A moreinvolved example concerns Hamilton—Jacobi equationsin Physics, which
may be interpreted as optimality conditions associated with a variational principle
(forinstance, the Fermat principlein Optics, the MinimumAction’ principle of Mau-
pertuis, etc.). Thediscretized version of thistypeof variational problemscorresponds
to thewell-known shortest path problem in a graph. By using Bellmann’s optimality
principle, the equations which define a solution to the shortest path problem, which
are nonlinear in usua algebra, may be written as a linear system in the algebraic
structure (R U {+o00}, Min, +), i.e. the set of reals endowed with the operation Min
(minimum of two numbers) in place of addition, and the operation + (sum of two
numbers) in place of multiplication.

Such an algebraic structure has properties quite different from those of the field
of real numbers. Indeed, since the elements of E = R U { + oo} do not haveinverses
for @ = Min, thisinternal operation does not induce the structure of agroup onE. In
that respect (E, @, ®) will have to be considered as an example of amore primitive
algebraic structure as compared with fields, or even rings, and will be referred to as
asemiring.

But thisexampleisalso representative of aparticular classof semirings, for which
the monoid (E, @) is ordered by the order relation o (referred to as ‘canonical’)
defined as:

axb< 3IceE suchthaa b=adc

In view of this, (E, @, ®) has the structure of a canonically ordered semiring
which will be called, throughout this book, a dioid.
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More generally, it isto be observed here that the operations Max and Min, which
givethe set of the realsastructure of canonically ordered monoid, come rather natu-
rally into play in connection with algebraic models for many problems, thusleading
to as many applications of dioid structures. Among some of the most characteristic
exampl es, we mention:

— Thedioids (R, Min, +) and (R, Max, Min) which provide natural modelsfor the
shortest path problem and for the maximum capacity path problem respectively
(the latter being closely related to the maximum weight spanning tree problem).
Many other path-finding problems in graphs, corresponding to other types of
dioids, will be studied throughout the book;

— Thedioid ({0,1}, Max, Min) or Boolean Algebra, which isthe algebraic structure
underlying logic, and which, among other things, is the basis for modeling and
solving connectivity problems in graphs;

— Thedioid (P(A™), U, 0), where P(A*) is the set of all languages on the al phabet
A, endowed with the operations of union U and concatenation o, which is at the
basis of the theory of languages and automata.

One of the primary objectives of this volume is precisely, on the one hand, to
emphasize the deep relations existing between the semiring and dioid structures
with graphs and their combinatorial properties; and, on the other hand, to show
the capability and flexibility of these structures from the point of view of modeling
and solving problems in extremely diverse situations. If one considers the many
possihilities of constructing new dioids starting from afew reference dioids (vectors,
matrices, polynomials, formal series, etc.), itistrueto say that the reader will find here
an amost unlimited source of examples, many of which being related to applications
of major importance:

— Solution of awide variety of optimal path problems in graphs (Chap. 4, Sect. 6);

— Extensions of classical algorithms for shortest path problems to a whole class of
nonclassical path-finding problems (such as: shortest paths with time constraints,
shortest pathswith time-dependent lengthsonthearcs, etc.), cf. Chap. 4, Sect. 4.4;

— Data Analysis techniques, hierarchical clustering and preference analysis (cf.
Chap. 6, Sect. 6);

— Algebraic modeling of fuzziness and uncertainty (Chap. 1, Sect. 3.2 and
Exercise 2);

— Discrete event systems in automation (Chap. 6, Sect. 7);

— Solution of various nonlinear partial differential equations, such as: Hamilton—
Jacobi, and Birgers equations, the importance of which iswell-known in Physics
(Chap. 7).

And, among all these examples, the alert reader will recognize the most widely
known, and the most elementary mathematical object, the dioid of natural numbers:
At the start, was the dioid N!

Besides its emphasis on models and illustration by examples, the present book is
also intended as an extensive overview of the mathematical properties enjoyed by
these “nonclassical” algebraic structures, which either extend usual algebra (as for
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the case of pre-semirings or semirings), or (as for the case of dioids) correspond to
a new branch of algebra, clearly distinct from the one concerned with the classical
structures of groups, rings and fields.

Indeed, a simple, though essential, result (which will be discussed in the first
chapter) states that a monoid cannot simultaneously enjoy the properties of being a
group and of being canonically ordered. Hence the algebra for sets endowed with
two internal operations turns out to split into two digoint branches, according to
which of the following two (incompatible) assumptions holds:

— The“additive group” property, which leads to the structures of ring and of field;
— The “canonical order” property, which leads to the structures of dioid and of
lattice.

For dioids, one of the immediate consequences of dropping the property of
invertibility of addition to replace it by the canonical order property, is the need
of considering pairs of elements instead of individual elements, to avoid the use of
“negative” elements. Modulo this change in perspective, it will be seen how many
basi c results of usual algebracan betransposed. Consider, for instance, the properties
involving the determinant of asquare n x n matrix. In dioids (aswell asin genera
semirings), the standard definition of the determinant cannot be used anymore, but
we can define the bideterminant of A = (& j) asthe pair (det™ (A), det™ (A)), where
det™ (A) denotes the sum of the weights of even permutations, and det™ (A) the sum
of theweights of odd permutations of the elements of the matrix. For amatrix with a
set of linearly dependent columns, the condition of zero determinant isthen replaced
by equality of the two terms of the bideterminant:

det™(A) = det™ (A).

Inasimilar way, the concept of characteristic polynomial Pa (\) of agiven matrix
A, has to be replaced by the characteristic bipolynomial, in other words, by a pair
of polynomials (Pa™*(\), Pa~())). Among other remarkable properties, it is then
possible to transpose and generalize in dioids and in semirings, the famous Cayley—
Hamilton theorem, Pa (A) = 0, by the matrix identity:

PaT(A) = PA™(A).

Another interesting example concerns the classical Perron—Frobenius theorem.
Thisresult, which statesthe existence on R ;. of an eigenvalue and an eigenvector for
anonnegative square matrix, may be viewed as a property of the dioid (R, +, x),
thus opening theway to extensionsto many other dioids. Incidentally we observethat
it is precisely this dioid (R4, +, x) which forms the truly appropriate underlying
structure for measure theory and probability theory, rather than the field of real
numbers (R, +, x).

One of the ambitions of this book is thus to show that, as complements to usual
algebra, based on the construct “ Group-Ring-Field”, other algebraic structures based
on alternative constructs, such as “Canonically ordered monoid- dioid- distributive
lattice” are equally interesting and rich, both in terms of mathematical propertiesand
of applications.



viii Preface
Acknowledgements

Many people have contributed in some way to the “making of” the present volume.
We gratefully acknowledge the kind and professional help received from Springer’s
staff, and in particular, from Gary Folven and Concetta Seminara-K ennedy.

Many thanks are due to Patricia and the company Katex for the huge text-
processing work in setting-up the initial manuscript. We also appreciate the con-
tribution of Sundardevadoss Dharmendra and his team in India in working out the
final manuscript.

We are indebted to Garry White for his most careful and professional help in the
huge translation work from French to English language.

We want to express our gratitude to Prof. Didier Dubois and to Prof. Michel
Gabisch for their comments and encouragements, and also for pointing out fruitful
links with fuzzy set theory and decision making under uncertainty.

The*MAX-PLUS’ groupinINRIA, France, has provided us along the yearswith
astimulating research environment, and we thank J.P. Quadrat, M. Akian, S. Gaubert
and G. Cohen for their participation in many fruitful exchanges. Also we acknowl-
edgethework of PL. Lionson the viscosity solutionsto Hamilton—Jacobi equations
as a major source of inspiration for our research on MINPLUS and MINMAX
analyses. And, last but not least, special thanks are due to Professor Stefan Vol3
from Hamburg University, Germany, for his friendly encouragements and help
in publishing our work in this, by now famous, series dedicated to Operations
Research/Computer Science Interfaces.

Paris, M. Gondran
January 151 2008 M. Minoux



Contents

Preface. ... ... v
NOLAIONS . e XV
1 Pre-Semirings, Semiringsand Dioids . ..., 1
1 Founding Examples ............ i 1

2 Semigroupsand Monoids. . ... 3

21 Définitionsand Examples ..., 3

2.2  Combinatorial Properties of Finite Semigroups ........... 6

23  Cancellative Monoidsand Groups . .. .....coovveeninnn.. 7

3 Ordered MONOIdS. . .....oii i 9

31 Ordered SES . ..o 9

3.2  Ordered Monoids: Examples. . .......coovviiiiinnnnnn. 11

3.3  Canonicd Preorder in a Commutative Monoid . ........... 12

34  Canonicaly Ordered MoONnoIdS . ........ccovvvnnnnnnn. 13

35  Hemi-Groups . ...... ...t 17

3.6  Idempotent Monoids and Semi-Lattices ................. 17

3.7  Classificationof MOnoidS . ... 20

4 Pre-Semiringsand Pre-Dioids .. ... 20

41  Right, Left Pre-Semirings . ... 20

42 Pre-SemiringS .. ...oou e 22

4.3 Pre-DioidS . . ... 22

D SEMININGS . oot 23

51  Deéfinitionand Examples . ... 23

52 RingsandFieds. ... 24

5.3  TheAbsorption Property in Pre-Semi-Rings. ............. 25

54  Product of Semirings . ..........c.uiiiiiiiiiiii 26

55  Classification of Pre-Semirings and Semirings............ 26

B DIOIOS . ..t e 28

6.1  Definitionand Examples . ... 28



Contents

6.2 Dioid of Endomorphisms of a Canonically Ordered
Commutative Monoid ...
6.3 SymmetrizableDioids ............ ... i
6.4  ldempotent and SelectiveDioids .......................
6.5  Doubly-ldempotent Dioids and Distributive Lattices.
Doubly-SelectiveDioids . ... ...
6.6 I dempotent-Cancellative Dioids. Selective-Cancellative
DIiOIdS ..\ttt
6.7  ldempotent-Invertible Dioids. Selective-Invertible Dioids . .
6.8 Productof DioidS..........cciiiiiiii
6.9  Dioid Canonically Associated with a Semiring............
6.10 Classificationof DioidS ...,

Combinatorial Propertiesof (Pre)-Semirings......................

1
2

()]

Introduction . ... ...
Polynomials and Formal Series with Coefficients

ina(Pre-) SEmMiring. . ....oovviv e
21 Polynomials ...
22 Formal SEres .. ...
Square Matrices with Coefficientsin a (Pre)-Semiring............
Bideterminant of a Square Matrix. Characteristic Bipolynomial . . ..
41  Reminder About Permutations .........................
4.2 Bideterminant of aMatrix . ...,
4.3  Characteristic Bipolynomial ............... ... ...,
Bideterminant of a Matrix Product as a Combinatorial Property

Of Pre-Semirings .. ..ooovee
Cayley—Hamilton Theoremin Pre-Semirings ...................
Semirings, Bideterminants and Arborescences ..................
7.1  AnExtension to Semirings of the Matrix-Tree Theorem .. ..
7.2 Proof of Extended Theorem ..............cccoiiinnn.
7.3  TheClassical Matrix-Tree Theorem as a Special Case .....
74 A Still More General Version of theTheorem .............
A Generalization of the Mac Mahon Identity to Commutative
Pre-Semirings .. ...
81  TheGeneralized Mac Mahon Identity ...................
8.2  TheClassical Mac Mahon Identity asa Special Case ......

Topology on Ordered Sets. Topological Dioids . ....................

1
2

Introduction . .......... .
Sup-Topology and Inf-Topology in Partially Ordered Sets. . .. ... ..
21  TheSup-Topology .......coviiiiiiiii it
22 Thelnf-Topology .......ovviii i
Convergence in the Sup-Topology and Upper Bound .. ...........
3.1  Definition (Sup-Convergence) ...........ovvveeeeeannn.
3.2 Conceptsof Limit-sup and Limit-inf ....................



Contents Xi
4 Continuity of Functions, Semi-Continuity ...................... 89
5  TheFixed-Point TheoreminanOrdered Set .................... 90
6  Topological DioidS . .......covi 91

6.1 Definition .. ........ e 91
6.2  Fixed-Point Type Linear Equationsin a Topological Dioid:
QUaSI-INVErSE ..ot 93
7 P-StableElementsinaDioid ...............ooi i 97
71 EXaMPleS. ... 98
7.2  SolvingLinear EQUatioNS . ...t 100
7.3  Solving “Nonlinear” Equations ........................ 103
8  Residuation and Generalized Solutions. . ....................... 107

4  SolvingLinear SystemsinDioids ... 115
1 Introduction ........ ... 115
2 The Shortest Path Problem as a Solution to a Linear System

INADIoId . ... 116
21 TheLinear System Associated with the Shortest Path
Problem .. ... 116
2.2 Bellman'sAlgorithm and Connection with Jacobi’s Method. 118
2.3 Quasi-Inverse of aMatrix with Elementsin a Semiring .... 118
24 Minimality of Bellman—Jacobi Solution ................. 119
3 Quasi-Inverse of a Matrix with Elementsin a Semiring Existence
and Properties .. ... 120
31 Definitions. .. ... 120
3.2 Graph Associated with a Matrix. Generalized Adjacency
Matrix and Associated Properties....................... 121
3.3  Conditionsfor Existence of the Quasi-Inverse A* ......... 125
34  Quasi-Inverse and Solutions of Linear Systems Minimality
forDIioidS . ..o 127
4  Iterative Algorithmsfor Solving Linear Systems. ................ 129
41  Generalized Jacobi Algorithm.............. ... ... ..... 129
42  Generalized Gauss-Seidel Algorithm.................... 130
4.3  Generalized Dijkstra Algorithm (“ Greedy Algorithm™)
in Some Selective Dioids. ...................ooo L 133
4.4  Extensionsof Iterative Algorithmsto Algebras
of Endomorphisms............o o i 136
5  Direct Algorithms: Generalized Gauss—-Jordan Method
and VariationS ... ... 145
5.1  Generalized Gauss-Jordan Method: Principle............. 145
52  Generalized Gauss-Jordan Method: Algorithms. .......... 151
5.3  Generalized “Escalator” Method ....................... 152
6  Examplesof Application: An Overview of Path-finding Problems
INGrapNs . ... 156
6.1  Problemsof Existence and Connectivity ................. 158

6.2 Path Enumeration Problems ............... ... ... ... 158



Xii

Contents

6.3  The Maximum Capacity Path Problem and the Minimum

Spanning TreeProblem ............. ... ... ... .. ... .. 159
6.4  Minimum Cardinality Paths ........................... 159
6.5  The Shortest PathProblem ............................ 160
6.6 Maximum Reliability Path ......................... ... 160
6.7 MulticriteriaPath Problems. . ...t 160
6.8  TheK'” Shortest PathProblem......................... 161
6.9  TheNetwork Reliability Problem....................... 163
6.10 Then-Optima PathProblem .......................... 164
6.11 The Multiplier Effectin Economy ...................... 165
6.12 Markov Chains and the Theory of Potential .............. 165
6.13 Fuzzy GraphsandRelations ........................... 166
6.14 TheAlgebraic Structure of Hierarchical Clustering ........ 167
Linear Dependence and Independence in Semi-Modules
and Moduloids. . ... 173
1 INtroduction . ... e 173
2  Semi-Modulesand Moduloids. ........... ... 173
21 Definitions. .. ... 173
2.2 Morphisms of Semi-Modules or Moduloids.
Endomorphisms . ... 175
2.3  Sub-Semi-Module. Quotient Semi-Module............... 176
2.4  Generated Sub-Semi-Module. Generating Family
of a(Sub-) Semi-Module. .......... ... o s 176
25  Concept of Linear Dependence and Independence
inSemi-Modules ............ ... 177
3  Bideterminant and Linear Independence ....................... 181
3.1  Permanent, Bideterminant and Alternating
Linear Mappings. . .. ..vvve i 182
3.2  Bideterminant of Matrices with Linearly Dependent Rows
or Columns; General Results. . ............. ..ot 184
33 Bideterminant of Matrices with Linearly Dependent Rows
or Columns. The Case of SelectiveDioids ............... 187
34  Bideterminant and Linear Independence
in Selective-Invertible Dioids . ......................... 192
3.5  Bideterminant and Linear Independence in Max-Min
or Min-Max Dioids ... 200
Eigenvalues and Eigenvectors of Endomorphisms.................. 207
1 Introduction ...... ... o 207
2  Existence of Eigenvalues and Eigenvectors. General Results .. .... 208
3 Eigenvalues and Eigenvectorsin Idempotent Dioids ............. 212
4  Eigenvaluesand Eigenvectorsin Dioidswith Multiplicative Group
SUCIUNE . o 220

4.1  Eigenvaues and Eigenvectors: General Properties. ... ..... 220



Contents Xiii

4.2 The Perron—Frobenius Theorem for Some

Selective-InvertibleDioids . ... 227
5  Eigenvalues, Bideterminant and Characteristic Bipolynomiad ... ... 231
6  Applicationsin DataAnalysis ... 233
6.1  Applicationsin Hierarchical Clustering.................. 234
6.2  Applicationsin Preference Analysis. A Few Answers
to the Condorcet Paradox . ............c.c.covuiiinnnnnnn. 238
7  Applications to Automatic Systems: Dynamic Linear
SYSEEM TREOIY . . v 242
7.1  Classical Linear Dynamic Systemsin Automation. ... ..... 243
7.2 Dynamic Scheduling Problems. ........................ 244
7.3 Modeling Discrete Event Systems Using Petri Nets. .. .. ... 244
7.4  Timed Event Graphs and Their Linear Representation
in(RU{—o0},Max, +) and (R U {+oc}, min,+) ........ 247
7.5  Eigenvauesand Maximum Throughput of an Autonomous
S SO L oot 251
7 Dioidsand Nonlinear AnalysiS. .......oviiiiiii e 257
1 Introduction ...... ... 257
2 MINPLUSARNAYSIS ..ttt i 261
3 Waveletsin MINPLUSANaYSIS . ... 268
4  Inf-Convergencein MINPLUSANalYSIS ......coovviiiinnnnn. 271
5  Weak Solutionsin MINPLUS Analysis, Viscosity Solutions . ... . .. 278
6  Explicit Solutionsto Nonlinear PDEsin MINPLUSAnalysis.... ... 283
6.1  TheDirichlet Problem for Hamilton-Jacobi .............. 283
6.2  The Cauchy Problem for Hamilton—Jacobi: The Hopf—L ax
Formula. . ... 288
7 MINMAX ANalySiS. .. ..o e 291
7.1 Inf-Solutions and Inf-Waveletsin MINMAX Analysis ... .. 291
7.2  Inf-Convergencein MINMAX Analysis ................. 293
7.3  Explicit Solutions to Nonlinear PDEs
INMINMAX ANalySiS . ..ot 294
7.4  Eigenvalues and Eigenfunctions for Endomorphisms
INMINMAX ANalySiS . ... 295
8 TheCramer Transform ...t 298
8 Collected Examples of Monoids, (Pre)-Semiringsand Dioids ........ 313
1 MONOIAS . ..o 313
11  Gengra MONOIds .......... i 314
12 GrOUPS . ..ttt et e e e 318
1.3  Canonically Ordered Monoids ......................... 319
14 Hemi-Groups .......ooviiiii e 323
15  Idempotent Monoids (Semi-Lattices).................... 325
16  SelectiveMonoids ........... ... i 328

2  Pre-Semiringsand Pre-Dioids ............. ..., 331



Xiv Contents
21 Right or Left Pre-Semirings and Pre-Dioids . ............. 332
2.2  Pre-Semiring of Endomorphisms

of aCommutative Monoid. ....................ccoo... 335
2.3  Pre-Semiring, Product of aPre-Dioidand aRing.......... 336
24 Pre-DioidS . ... ... 337
3 Semiringsand RiNGS. ... 338
31 Genera SEMIriNgS ..ot 339
32 RINGS .ttt e 340
4 DIOIOS . . .ttt 341
41  Rightor LeftDioids. ........cvvviiii et 341

4.2  Dioid of Endomorphisms of a Canonically Ordered
Commutative Monoid. Examples. ...................... 345
43  Generd DioidS .. ...oii 348
44  SymmetrizableDioidS .. ...t 351
45  ldempotent Dioids ... 353
4.6  Doubly Idempotent Dioids, Distributive Lattices . ......... 357

4.7 | dempotent-Cancellative and Selective-Cancellative
DIiOIdS ..ttt 358
4.8  ldempotent-Invertible and Selective-Invertible Dioids . . ... 361
ReEfErenCes. ... ..o 367
INAEX 377



List of Notation

g

1@< %>GENZ%

==

, D)
, D, ®)

IN® T T

SURgES)
Sx

{abc}
xeX
X ¢ X
AcX
AcCX
A ¢ X
Al
X\A
AL1UA>
AU (e}

Set of redls.

Set of natural numbers.
Set of integers.

Set of nonnegative reals.
Set of complex numbers.

The set R U {4o0}.

Theset R U {—o0}.

Theset R U {+o0} U {—o00}.

The set of nonzero real numbers: R\ {0}.

Set E endowed with the internal operation @.

Set E endowed with two internal operations @ and ®.

The canonical order relation of acanonically ordered monoid
(E, @) (often simply denoted < when there is no ambiguity).
ForkeN,ae (E, ®,®),d& =a®a® - - ®a(ktimes).
ak =epapa?d---®a, whereeisthe neutral element
for ®.

Quasi-inverse of a € (E, ®, ®) (when it exists): limit of a®
fork — +o0.

The empty set.

The set formed by the three elements, &, b, c.

x belongs to the set X.

x does not belong to the set X.

A isdtrictly included in X.

A isincluded in X, and possibly A = X.

A isnot includedin X.

Cardinal of A, number of elements of A.

The set of elementsin X which do not belong to A.

Union of the two subsets A1 and Ao.

The set obtained by adding element eto A.

XV



XVi

U Aj
i€l
A1NA2
NA;

iel

A1 AAS

{x:xsuchthat...}

3Ix:
VX € X
A xB

P(A)

(6 = gp—ar
1x]

IX]

P = (Q

$ X

P

X
1P

XVy
XAY

Per(n)

Pertn, Per—(n)
sign(o)

char(o)

Part(n)
Dom(o)

Part™ (n), Part™(n)

Matrices and vectors

En
X1
X2
X = .
Xn
XT
XYy
A = (&)
Ak

List of Notation

Union of the family of subsets A; for al i in the subset of
indicesl|.

Intersection of the two subsets A1 and A».

Intersection of the family of subsets A, foraliinl.

Symmetricdifferenceof A1 and Az (= (A1UA2)\(A1NA2)).
The set of elements x such that . . .

There existsx such that . . .

For al x in X.

The Cartesian product of A and B (i.e. the set of pairs (a, b)
witha e A and b € B).

The power set of A (the set of all subsets of A).

The binomial coefficient p choose g.

The greatest integer less than or equa to x € R.

The smallest integer greater than or equal to x € R.
Property (P) implies property (Q).

In an ordered set E: theset of y € Esuchthaty < x (ideal).
Inanordered set E, and for PC E: | (| %).

xeP

In an ordered set E, the set of y € E such that x <y (filter).
Inanordered set E, and for PC E: | (1 %).

xeP
In an ordered set E, least upper bound of x and y.

In an ordered set E, greatest lower bound of x and y.

The set of permutations of theset {1,2,...,n},n e N.
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set of vectors with n componentsin E.

A vector x € E".
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The k-th power of matrix A.
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Chapter 1
Pre-Semirings, Semirings and Dioids

As an introduction to this first chapter, we show, by discussing four characteristic
examples, that even with internal operations with limited properties — in particular
those are not invertible — there exist nonetheless algebraic structures in which it is
possible to solve fixed-point type equations and obtain eigenval ues and eigenvectors
of matrices. It will be seen throughout this book that it is possible to reconstruct, in
such structures, amajor part of classical algebra.

This first chapter is composed of two parts. The first is devoted to some basic
properties and to a typology of agebraic structures formed by a set endowed with
asingleinternal operation: semigroups and monoids in Sect. 2, ordered monoidsin
Sect. 3.

The second part is devoted to the basic properties and typology of algebraic
structures formed by a set endowed with two internal operations: pre-semirings in
Sect. 4, semiringsin Sect. 5 and dioids in Sect. 6.

For each of these structures, the most important subclasses are pointed out and
the basic terminology to be used in the following chapters is introduced.

1. Founding Examples

Example 1.1. Let usdenoteby R the set of realsto which wehave added the elements
—oo and +o0. In the algebraic structure (R, Max, Min), composed of the set R
endowed with operations Max (denoted @) and Min (denoted ®), the equations:

adx=Dhb
a®x=>b

do not have solutionsif a> b (resp. b > a).
On the other hand, the equation:

X=@Xx)®db
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has solutions for al the values of a and b: infinitely many solutions, including a
minimal solution b (minimality being understood in the sense of the usual order
relation onR) if b < a A unique solution x = b if a < b. Thus, even if the operations
@ and ® are not invertible (nor symmetrizable), it is possible to solve equations of
the fixed-point type as above.

The algebraic structure (R, Max, Min) is adistributive lattice which appears as
aspecial case of the more general dioid structure studied in the present work. ||

Example 1.2. In the algebraic structure (R, Min, +), that is to say in the set
of positive real numbers to which we have added +oo, endowed with operations
Min (denoted @) and + (denoted ®), the equations:

adx=Db
a®x=>b

do not have solutionsif a < b (resp. a> b).
On the other hand, the equation

X=@Xx)®db

has, here again, solutions for any a and b: infinitely many solutions (the whole
segment [0, b]), including a maximum solution x = b if a = 0; a unique solution
x = bif a> 0. The structure (R, Min, +) isadioid. ||

Example 1.3. In the algebraic structure (R, +, x), that is to say the set of posi-
tive real numbers endowed with ordinary addition and multiplication, the equation
a+x = bonly hasasolutioninR; ifa<b.

On the other hand, for any value of b, the equation x = ax + b, hasa solution in

1
R+,x=nb=(1+a+a2+---)bassoonasa< 1.

The Perron—Frobenius theorem (see Chap. 6, Sect. 4 and Exercise 1) also ensures
that a square matrix A with elements in R has an eigenvalue in R\ {0} and an
eigenvector with coordinatesin R\ {0}.

We will seein Chap. 6 that this theorem extends to a great number of dioids, and
in particular to the above two dioids (R, Max, Min) and (R.., Min, +).

Thealgebraic structure (R, +, x) aso appearsfundamental, becauseit is subja-
cent to measuretheory and probability theory. Ontheonehand, measures, or densities
of probability, are functions (or distributions) with valuesin R.. On the other hand,
to define the measurability of afunction f with valuesin R, one must decompose f
intheformf =f+ —f~, wheref ™ and f ~ are positive and measurable functions.
The basic mathematical object corresponding to the concept of measurable function
is therefore the pair (f+, f ~), made up of two functions with values in the dioid
(R+ , +, X ) .

Theintegral of afunction (of adistribution) may beviewed asalinear form onthe
dioid (R, +, x). We will seein Chap. 7 that by substituting the dioid (R, +, x)
with other dioids (suchas (R, Max, Min) or (R, Min, +) we can define new linear
forms on these dioids. These forms are nonlinear with respect to ordinary addition
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and multiplication and thuslead to nonlinear analyses which therefore can be studied
with tools of “linear analysis’. ||

Example 1.4. Let A be afinite set, referred to as an alphabet, whose elements are
referred to as letters. Any finite sequence of lettersis called aword. The set of words,
denoted A*, iscalled thefree monoid (see Sect. 2, Example2.1.13). Wecall language
on A any subset of A*. We can endow the set E = P(A*) of languages on A with
two operations: union, denoted by the sign +, and the Cauchy product, denoted -:

Li-Lo={m my/mg €L, mpe Ly}
In this algebraic structure (P(A*), +, -), the equations

L1+X =1L
L1-X =Ly

generally do not have a solution.
On the other hand the system of equations:

X=L1-X+L

has, for any L1 and L, an infinity of solutionsincluding a minimal solution:
X =L Ly=Lo+Li-Lo+L% Lo+--- . Theagebraicstructure (P(A%), +, )
isthe basis of Kleene's theory of regular languages. (see e.g. Eilenberg, 1974) ||

2. Semigroups and M onoids

After having presented semigroups and monoids through a number of examples, we
recall some combinatorial properties of finite semigroups before introducing regular
monoids and groups.

2.1. Definitions and Examples

Definition 2.1.1. We call semigroup a set E endowed with an internal associative
(binary) law denoted &:

adbeE VabeE
(adbydc=ad(bdc) VabcekE.

Example 2.1.2. (R, Min), the set of reals endowed with the operation Min is a
semigroup. The same appliesto (Z, Min), (N, Min), (R, Max), (Z, Max), (N, Max). ||

Example 2.1.3. R, \{0} the set of strictly positive reals, endowed with addition or
multiplication is a semigroup. The same applies to N,., the set of strictly positive
integers. ||
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Example 2.1.4. R \{0} endowed with the law & defined as:

a@b— a+b
~1+ab
_ _ o a+b+c+abc
for th aivity, note th b&c=——7———).
isasemigroup (for the associétivity, notethea® b @ ¢ 1-|-ab—|-ac+bc)

The same appliesto R, endowed with the law
a@gb=all+ b2)1/2 +b(1+ a2)1/2.

(for the associativity, notethat (ad® b) & ¢ = a(1+bA)Y2(1+c?)Y2 4 b(1+ a?)1/?
1+ AY? + ¢(1 + @Y1 + b®)Y? + abc). (see Exercise 1 a the end of the
chapter.) ||

Example 2.1.5. C,, the set of complex numbers z with strictly positive real compo-
nent {z € C, Re(z) > 0}, endowed with addition is a semigroup. ||

Example 2.1.6. C,., endowed with the law & defined as

a+b
1+ab

adb=

isasemigroup. ||

Example 2.1.7. The complex numbersof theformx + iy withx > |y|?, 0 < p <1,
endowed with addition, form a semigroup (indeed a sub-semigroup of (C4, +)). ||

Example 2.1.8. If we consider for a set E, the set of mappings F of E onto itself, the
set F endowed with the law of composition of mappingsis a semigroup. ||

Example 2.1.9. Let E = CJ[0, o], the Banach space of continuous functions defined
on the closed interval [0, +o0] with the norm ||f || = sup|f (t)|. We define for
every o > O: t

T[f]=ft+a)

The family T(a) is a semigroup with one parameter of linear transformations in
C[0, oo] with || T(w]|| = 1.

It is the prototype of semigroups with one parameter upon which a great part
of functional analysis is based, see, e.g. Hille and Phillips (1957). For examples,
see Exercise 1. ||

The neutral element of a semigroup (E, &), denoted ¢, is defined by the property:
edBX=Xpe=X VxekE

If a semigroup has a neutral element ¢, then this neutral element is unique. Indeed,
if ¢ was another neutral element, we would have e @ ¢/ = ¢ = ¢. As aresult, if
the neutral element does not exist, we can add one to the set E. Thus, in the case
of the semigroup (R, Min) (Example 2.1.2), a neutral element in R does not exist.
However, we can add one, denoted +oo, which augments R to R = R U {4-oc}.



2 Semigroups and Monoids 5

Definition 2.1.10. We call monoid a set E endowed with an associative internal law
and a neutral element.

Examples 2.1.3, 2.1.4, 2.1.5 and 2.1.6 become monoids by adding the neutral
element 0.

Remark 2.1.11. Thetermssemigroup and monoid seem moreor lessstabilized today.
Bourbaki applied the term magma to what we have referred to as a semigroup and
restricted the term semigroup (which suggest that the set is “amost a group™), to
a monoid for which @ is simplifiable and which, consequently, is extendable to a
group viasymmetrization. Thisiswhat we will refer to henceforth as a cancellative
monoid (see Sect. 2-3). ||

If the operation @ iscommutative, then the monoid (E, &) issaid to be commutative.
An element aisidempotent if ad a= a
If al the elements of E areidempotent, themonoid (E, &) issaid to beidempotent.
An even more specia case is when the operation @ satisfies the property of
selectivity:
a®db=aorb VabeE

In this case, the monoid (E, &) is said to be selective.
Selectivity obviously impliesidempotency, but the converseis not true, as shown
by the operation below (mean-sum) defined on the set of real numbers

a+b
a@b:% Va,b e R.

This law is commutative and idempotent, but not selective (and not associative
either).

An element w € E issaid to be absorbing if and only if
Xew=wex=w VxekE

Example 2.1.12. (E, &), where E = P(X) isthe power set of aset X, endowed with
@ = union of sets, is a commutative monoid. It has a neutral element ¢ = ¢ (the
empty set) and an absorbing element w = X. ||
Example 2.1.13. (the free monoid)

Let A be aset (caled “aphabet”) whose elements are referred to as letters.

We take for E the set of finite sequences of elements of A which we call words,
and we define the operation @ as concatenation, that is to say:

If meE m=s%.%
mp € E: my=t1t2...1
meém=sS...91k...44
meém=ti.. . Ggs1...5
We see that, in general, m; & mp # my @ my, the operation & is therefore not

commutative. The set denoted A* of finite words on A endowed with the operation
of concatenation is called the free monoid on the alphabet A. ||
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Example2.1.14. R = R U {—o0} U {400} endowed with the operation & = Min
(a® b = Min {a, b}) is a commutative monoid. It has a neutral element ¢ = +oco
and an absorbing element w = —oo0. ||

Example 2.1.15. R and [0, 1] endowed with the operation @ defined asa® b =
a+ b — ab are commutative monoids. They have a neutral element ¢ = 0 and an
absorbing element w = 1. ||

Example 2.1.16. [0, 1] endowed withtheoperation @ definedasadb = Min(a+ b,1)
isa commutative monoid with neutral element ¢ = 0 and absorbing element w = 1.
Similarly, [0, 1] endowed with the operation @ definedasa® b= Max(0, a+b— 1)
is a commutative monoid with neutral element ¢ = 1 and absorbing element
w=0.]||

2.2. Combinatorial Properties of Finite Semigroups

We recall some classical properties of finite semigroups, see for example Lallement
(1979) and Perrin and Pin (1997). We present them by noting the associative internal
operation in a multiplicative form. x¥ denotes the kth power of x, that is to say the
product X - X - ... (k times).

Proposition 2.2.1. Any element of a finite semigroup (E, -) has an idempotent power.

Proof. Let S be the sub-semigroup generated by an element x. Since Sy is finite
there exist integersi, p > 0 such that:

x = x*P

If i and p are chosen to be minimal, we say that i is the index of x and p its period.
The semigroup Sy then hasi + p — 1 elements and its multiplicative structure is
represented on the figure below:

Xi +1
x x2 x Xi xi*2
- -~ -°-=-°--° N
Xi+p—l
The sub-semigroup {x', x*1, ... xITP~1} of S, then has an idempotent xI*" with
r>0andr=—i(modp). O

Corollary 2.2.2. Every non-empty finite semigroup contains at least one idempotent
element.
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Proposition 2.2.3. For every finite semigroup E, there exists an integer g such that,
for every x € E, xY is idempotent.

Proof. Following from Proposition 2.2.1, any element x of E has an idempotent
power x™. Let shetheleast common multiple of ny, for x € E. Thenx®isidempotent
for every x € E. Thesmallest integer q satisfying this property is called the exponent
of E. (snot being necessarily the smallestinteger k suchthat XX isidempotent vx). O

Proposition 2.2.4. Let E be afinite semigroup and n = |E|. For every finite sequence
X1, X2, ..., Xn Of elements of E, there exists an index i € {1,...,n} and an
idempotent e € E such that X1X2 - - - X; € = X1X2 - - - Xj.

Proof. Let us consider the sequence {X1}, {X1 - X2}, ..., {X1 - X2---Xp}. If @l the
elements of this sequence are distinct, all the elements of E show up in it and one of
them, let ussay X1X2 - - - Xj, isidempotent (Corollary 2.2.2). Theresult inthiscaseis
immediate. Otherwise, two elements of the sequenceareequal, let ussay X1 - X2 - - - Xj
and X1 - X2---x; withi < j. We then have X1 ---Xj = X1---Xj Xiy1---X)) =
X1+ Xi (Xi+1--- %)% where g is the exponent of E. The proposition follows from
this, since (41 - - - X)) isidempotent (Proposition 2.2.3). O

With every idempotent e of a semigroup E, we associate the set
eEe={exe/x e E}.

Thisis a sub-semigroup of E, referred to as the local semigroup associated with e,
and which has e as neutral element. It istherefore amonoid and we easily verify that
e E eisthe set of elements x of E which have e as a neutral element, that isto say
suchthatex =xe=e

2.3. Cancellative Monoids and Groups

L et uscomplete this section with the definition of cancellative elements, cancellative
monoids and groups.
Let (E, ®) be amonoid. We say that a € E is a cancellative element if and only
if:
VX,y e E: xXda=yda=x=y
and a@px=adpy=x=Yy
When aonly satisfiesthe first (resp. the second) of these conditions, we say that it is

only right-cancellative (resp. left-cancellative). When the monoid is commutative,
the two concepts coincide.

Definition 2.3.1. (cancellative monoid)
We call cancellative monoid a monoid (E, @) endowed with a neutral element ¢
and in which all elements are cancellative.
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In a cancellative monoid, the internal law @ is said to be cancellative.

Example 2.3.2. (free monoid for concatenation)

Let us return to the example of the free monoid A* on an aphabet A (see
Example 2.1.13).

It is easy to verify that every word m € A* is right-cancellative and left-
cancellativefor the operation of concatenation. Itisthereforeacancellativemonoid. ||

a+b
1+ab’

We verify that (R, @) is a commutative monoid (see Example 2.1.4) with a
neutral element O, that 1 is an absorbing element and that every element different
from 1is cancellative. It then follows that (R \{1}, &} isacancellative monoid. ||

Example 2.3.3. On R, we consider the law @ definedasa® b =

We say that an element a of amonoid E with neutral element ¢ has aleft inverse
(resp. right inverse) if there exists an element & (resp. &”) such that

dPpa=¢
(resp.a@ a’ =¢)
An element ahas an inverseif there exists an element & such that
apd =d pa=c¢

Definition 2.3.4. (group)
A monoid (E, &) in which every element x has an inverse is called a group.

Proposition 2.3.5. Every cancellative commutative monoid is isomorphic to the
“nonnegative” elements of a commutative group.

Proof. From the cancellative commutative monoid (E, &), endowed with the neutral
element ¢, construct the set S whose elements are ordered pairs of elements of E:

S={(a,b)/acE,beE}

By definition, the elements of S of the form (a, ¢) are referred to as the nonnega-
tive elements of S, and the elements of the form (g, b) the nonpositive elements.
We observe that there is a one-to-one correspondence between E and ST, the set of
nonnegative elements of S.

By defining on S the following equivalence relation R:

(a1, 8) R(b1, ) & a1 by =a ® by
and by endowing G = S/R with the law & defined as:
(a1, @) @ (b1, bp) = (c1, C2)

where (c1, C2) R(ay @ by, a @ by).
We easily verify that G = S/R isacommutative group and that E isisomorphic
to the nonnegative elementsof G. O
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We observe that the concept of nonnegative element used in the above proof did not
require the existence of an order relation on E (for the study of ordered monoids, see
Sect. 3.2).

Remark 2.3.6. Even in the case where the commutative monoid (E, &) is not can-
cellative, we can construct the set S whose elements are ordered pairs of elements
of E: S= {(a, b)/a € E, b € E}, and define the following equivalence relation R

aq#Ab,a#Ab and agdbr=bida

,a) R(by, b i
(a1, &) R(by, b2) < (a1, &) = (by, bp) otherwise

We then distinguish between three types of equivalence classes. the “nonneg-
ative” elements corresponding to the classes (&, ¢), the “nonpositive” elements
corresponding to the classes (g, @) and the “balanced” elements corresponding to
the classes (a, a). ||

3. Ordered Monoids

The aim of this section is to study the monoids endowed with an order relation
compatible with the monoid’'s internal law.

In Sect. 3.1, we recall some basic definitions concerning ordered sets. Then,
in Sect. 3.2, we introduce the concept of ordered monoid, illustrating it through
some examples. We next introduce, in Sect. 3.3, the canonical preorder relationina
monoid, followed by canonically ordered monoids in Sect. 3.4. Theorem 1 (stating
that a monoid cannot both be a group and be canonically ordered) introduces an
initial typology of monoids. The subsequent sections further expand the typology
of canonically ordered monoids which may be divided into semi-groups (Sect. 3.5)
idempotent monoids and semi-lattices (Sect. 3.6).

3.1. Ordered Sets

We recall that an order relation on E, denoted <, isabinary relation featuring:

reflexivity (Vae E:a< a),
transitivity (a<b and b<c=a=<o),
antisymmetry (a<b and b<a= a=b).

Let E be an ordered set, that is to say a set endowed with an order relation <.

Two elementsa € E, b € E are said to be non-comparable if neither of the two
relationsa < band b < aare satisfied.

If there exist non-comparable elements, we say that E is a partially ordered set
or aposet.

Onthe other hand, if for any pair a, b € E, either a< b or b < aholds, we say that
we have atotal order and E is called atotally ordered set.
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Remark. Sincetherelation < isreflexive, the set of the elements x € E satisfying
X < acontains the element aitself, we say that it is an order relation in the wide
sense.

With every order relation < in the wide sense it is possible to associate a strict
order relation < defined as:

a<bsa<b and a#bh.

Observe that this relation is irreflexive (a < a is not satisfied), asymmetric and
transitive.

Conversely, with every strict order relation < that isirreflexive, asymmetric and
transitive, we can associate a symmetric, transitive and antisymmetric order relation
< defined as:

a<bsa<b o a=b |

For asubset A C E, an element a € E satisfying
VYxeA:x<a

iscalled an upper bound of A.
An upper bound of A which belongsto A is called the largest element of A.

When A C E hasalargest element a, itisnecessarily unique. Let usin fact assume
that aand & are two upper bounds of A belonging to A.

Wehave: Vxe A, x<a andinpaticular:ad <a
Similarly: Vx e A, x <4d, and,inparticular:a<d.

Through the antisymmetry of < we then deducea = 4.
Similarly b € Eisalower bound of A if and only if:
YxeA b=<x

A lower bound of A which belongsto A is called the smallest element of A. If A has
asmallest element, it is unique.

A subset A C Eissaid to bebounded if it hasan upper bound and alower bound.

When the set of the upper bounds of A C E has asmallest element, this smallest
element is called the supremum of A. It is denoted sup (A). Similarly, when the set
of the lower bounds of A has alargest element, we call it the infimum of A (denoted
inf (A)).

We say that the ordered set (E, <) is complete if every subset A of E has a
supremum, which can be denoted VA or v a

acA
Itissaid to be complete for the dual order if every subset A of E has an infimum,
which can be denoted AA or /\A a

ac
We say that aset S Eisalower setif x € Sandy < ximpliesy € S. Givena
subset P, we denote:

P ={xeE|dpeP x=p}.
Thisisthe smallest lower set containing P.
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Furthermore, if alower set S satisfies, forall 3, be S,av b € S, then Siscalled
anideal. If it satisfies, for every a, b e S, an b € S, then Siscalled afilter.

We observethat for x € E, | ({x}) isaidea. Theidealsof thisform arereferred to
asprincipal ideals and denoted | (x). Exercise 7 at theend of the chapter isconcerned
with the properties of ideals and filters.

We call maximal element of A C E every a € A satisfying:

AxeA x#a suchthat: a<x.
Similarly, we call minimal element of A C E every a € A satisfying:
#xeA x#a suchtha: x<a

When a subset A C E has a maximal (resp. minimal) element, the latter is not
necessarily unique.

It iseasy to show that every finite subset of a (partially) ordered set E has at |east
one maximal element (resp. one minimal element).

3.2. Ordered Monoids. Examples

Definition 3.2.1. (ordered monoid)
We say that a monoid (E, @) is ordered when we can define on E an order relation
< compatible with the internal law @, that is to say such that:

Vab,ceE a<b= (a®c)<(b®o).

Example 3.2.2. The monoid (R, +) is ordered for the order relation “less than or
equal to” (<) onR,. ||

Example 3.2.3. The monoid (]ﬁi, Min) is ordered for the order relation “less than or
equal to” (<) on R = R U {+o00}. ||

Example 3.2.4. The monoid (R, +) is ordered for the order relation “less than or
equal to” (<) onR. ||

Example 3.2.5. (afew algebraic models useful in fuzzy set theory)

Aninfinite class of ordered monoids can be deduced through isomorphisms from
(R4, +). More precisely, for every one-to-one correspondence ¢ between M C R
and R, we can associate with every a€ M, b € M, thereal value:

adb= ¢ p@ + o).

This class of ordered monoids arises in connection with many algebraic modelsin
fuzzy set theory (see e.g. Dubois and Prade 1980, 1987).
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For instance, considering the parameter h € R, we obtain a family of ordered
monoids associated with the following functions:

op 0 =x" (xeRy)
op () =x" (xeRy)
op () =€ h (xeR)
gh() =€ (XxeR)

Observe that the operation &" defined as
a®" b=hn (eﬁ +eg)

“tends’ towards Max{ a, b} when h “tends’ towards 0", and that the operation @y,
definedasa®n b= —h In (e‘%l + e‘%) “tends’ towardsMin{ a, b} when h*“tends’

towards O™

In the same way, the operation ®" defined asa @" b = (a +b")™" “tends’
towards Max{ a, b} when h “tends’ towards +oo and the operation @, defined as a
Onb=(a"+ b‘h)_l/ " “tends’ towards Min(a, b) when h “tends” towards +oc.

Similarly, we can consider a one-to-one correspondence ¢ relative to the multi-
plication (on R) by setting: a® b= ¢~ [¢ (a) - ¢ (b)].

For a detailed study of some of these ordered monoids, refer to Exercise 2 at the
end of the chapter. For the study of the asymptotic behavior of the operations &y,
and @", refer to Exercise 3. ||

1/h “

3.3. Canonical Preorder in a Commutative Monoid

Given a commutative monoid (E, &) with neutral element ¢, it is always possible,
thanks to the internal law @, to define a reflexive and transitive binary relation,
denoted <, as:

a<b&3dceE suchthat b=adec.

The reflexivity (Vva € E: a < a) follows from the existence of a neutral element
¢ (@a= a® ¢) and the transitivity isimmediate because:

a<bsdchb=a®c

b<de3id:d=boc
hence:d = a® c® ¢/, whichimpliesa < d.

Since the antisymmetry of < is not automatically satisfied, we can see that < is
only apreorder relation. We call it the canonical preorder relation of (E, &).
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We observe that & being assumed to be commutative, the canonical preorder
relation of (E, ®) iscompatible with the law @& because:

a<b=3cb=adc
therefore, vd € E:

bed=adced=a@ddc
= a@d<bod.

When (E, @) isanoncommutative monoid having aneutral element e, we can define
two canonical preorder relations, denoted < (right canonical preorder relation) and
R

< (left canonical preorder relation) as follows:
L

a<b&e dceE suchthat: b=adc
R

a<b& 3cd €eE suchthat: b=c @a
L
Here again, the properties of reflexivity (e being a neutral element on the right and
on the left) and transitivity are easily checked.

Example 3.3.1. The free monoid A* on an alphabet A is not acommutative monoid
(see Example 2.1.13). Two words mg € A*, mp € A* satisfy my < my if and only
R

if there exists aword mz such that: my = my - mg, in other wordsif and only if my
isaprefix of my. Similarly: my < my if and only if there exists aword mg such that:
L

my = M3 - My, in other wordsif and only if my isasuffix of my. ||

3.4. Canonically Ordered Monoids

Definition 3.4.1. A commutative monoid (E, @) is said to be canonically ordered
when the canonical preorder relation < of (E, @) is an order relation, that is to say
also satisfies the property of antisymmetry: a<bandb<a= a=nbh.

The Examples3.2.2 (R;, +),3.2.3 (R, Min) and 3.2.5 correspond to canonically
ordered monoids. The monoid (R, +) in Example 3.2.4 is not canonically ordered.

This property of canonical order with respect to the internal law @ is precisely
the one which will be involved in the basic definition of dioidsin Sect. 6.

The following is an important property on which the typology of monoids
(see Sect. 3.9) and the distinction between dioids and rings (see Sect. 6) will be
based:

Theorem 1. A monoid cannot both be a group and canonically ordered.

Proof. Let us assume that (E, @) is a group (we denote a~* the inverse of a € E)
and is canonically ordered. Let aand b be two arbitrary elementsa = b.
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Since (E, &) isagroup:

thereexistscsuchthat a=b@®c= a>b (takec=b1@a)
thereexistsdsuchthat b=a@®d=b>a (taked=al@bh)

If (E, ®) is canonically ordered, we deduce a = b, which gives rise to a
contradiction. O

Thus the group (R, +) is not canonically ordered, and the canonically ordered
monoid (R, +) is not a group. Let us give some further examples of canonically
ordered monoids.

Example 3.4.2. (qualitative addition)
On the set of the signs, together with the indeterminate ?, E = {+, —, 0, 7}, we
consider the operation denoted & defined by the table:

(E, ®) is a canonically ordered idempotent monoid with O as neutral element.
Wehave: ?> + > 0and ? > — > 0, which may be represented by the following
diagram:

N
N

Example 3.4.3. (qualitative multiplication)

Onthesetof signsk = {+, —, 0}, weconsider theproduct of Signs@(+® — = —,
+®+=4+,—-Q®—=+4+,0@ a=0VvVac E). (E, ®) isnot acanonicaly ordered
monoid.

We can add to the set E the indeterminate sign (denoted: ?) satisfying: ?® + =7,
7?70 — =27 0 = 0, ?@? =2 Still, the resulting monoid is not canonically
ordered. ||

Examples 3.4.2 and 3.4.3 define a qualitative physics where the various signs of
E can have the following interpretation: + correspondsto the set ] 0, +o0o[, — to the
set |—oo, O[, ?to the set 1— o0, +o0[ and 0 to the set {0}.
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Example 3.4.4. (order of magnitude monoid)

We consider the set E formed of the pairs (a, o) withae R, \{0} and o € R, to
which we add the pair (0, +00).

We then define the & operation as:

(a,a) ® (b,B) = (c,min(a,B)) with c=aif a<p, c=bif a>p,
c=a+bif a=8.

Weverify that (E, @) isacanonically ordered monoid with neutral element (0, +00).
The elements (a, ) of this monoid correspond to the numbers of the form a e*
when e > 0 tendsto O™
By settingp = — In(e) and A = e %, we have ¢* = AP. We can therefore define
anew set F formed by the pairs (a, A) € (R, \{0})2 to which we add the pair (0, 0).
F is endowed with the law @ defined as (a, A) & (b, B) = (¢, max(A, B)) with
c=aifA>B,c=bifA<B,c=a+bifA=B.
The elements (a, A) of this monoid correspond to the numbers of the form a AP
when p tends to +o0. ||

An important specia case arises when the @ law is commutative and idempotent
(i.e.Va € E, a® a = a); theantisymmetry of < canthen bedirectly deduced, without
further assumption.

Proposition 3.4.5. If @ is commutative and idempotent, then the canonical preorder
relation < is an order relation.

Proof.

a<b=3cb=adc
b<a=3c:a=bac
hencewe deduce: a=adcd ¢

and
b=apc=adcpdpc=adcpd =a

which proves antisymmetry. 0O

A dlightly more general case of Proposition 3.4.5 arises when the & law is commu-
tative and m-idempotent,

iee adad---da=adad---da

m+1 times m times

here again, the anti-symmetry of < isdirectly deduced.

Wedenotem x athesuma® ad --- @ a
—— ———

m times
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An example of 2-idempotency corresponds to the following law &, defined for
glementsa = (Z;) e R?witha; < & as.

(al> o (b1> _ ( min(ay, by) >

® bz — \minz(a, &, b1, by)

where miny(A) corresponds to the second smallest element of the set A.
We verify that @ is 2-idempotent; indeed

< (2)o (@)= (a) = 3 (Q)=2+(3)

Proposition 3.4.6. If @ is commutative and m-idempotent, then the canonical pre-
order relation < is an order relation.

Proof.
a<b=3c:b=a&c
b<a=3ic:a=baoc
hence we deduce:
a=adchdcd=be2dpc=ap2cp2c=---=admcdmc,

b=b®dcpd=bdmcoemcd=admM+l)cdmc =admcdmc.no
Observe that, in a canonically ordered monoid, the relation:
Vac E:ad®e=a impliese<a
which shows that ¢ is (the unique) smallest element of E.

Proposition 3.4.7. If @ is selective and commutative (a@® b = aor b) then <isa
total order relation.

Proof. Selectivity impliesidempotency, therefore < isan order relation.
Furthermore, a® b = aor bimpliesfor every a, b € E:

either a<b
or b<a
which provesthat < isatotal order. O

A selective operation isnot necessarily commutative. Asan example, the & operation
defined as:

Va,b € E: a® b = a(theresult isthefirst of the two elements added) is clearly
selective but not commutative (becausea® b = aandb @ a=h).

Proposition 3.4.8. In a canonically ordered monoid, the following so-called posi-
tivity condition is satisfied:

acEbeE and adb=c¢= a=¢ and b=c.

Proof. a® b =c¢impliesa<eandb <cbhutsince e@a=aande®db =bwe
asohave ¢ <aande < b.
From the antisymmetry of < wethendeducea=c¢andb=¢. O
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3.5. Hemi-Groups

Definition 3.5.1. (hemi-group)
We call hemi-group a monoid which is both canonically ordered and cancellative.

Theset (N, +) isacanonically ordered monoidinwhich every element iscancella-
tive. It istherefore a hemi-group. The same appliesto (R4, +), see Example 3.2.2.
Ontheother hand, the set of realsR endowed with addition and the usual (total) order
relation (see Example 3.2.4) is a cancellative ordered monoid but not a canonically
ordered one. It is therefore not a hemi-group.

Property 3.5.2. A cancellative commutative monoid (E, @) is a hemi-group if it
satisfies the so-called zero-sum-free condition: a®b=¢ = a=c¢andb =«.

Proof. It sufficesto show that (E, @) is canonically ordered.
Let usthen assumethat: a< band b < a, So:
Jdc suchthat: b=adc
3d suchthat: a=bod
hence:
adbb=adbdec=apbpceod.
Sincea® b isacancellative element, wededucec® d = ¢
The condition of positivity then implies
c=d=¢ hence a=h.

The canonical preorder relation is therefore clearly an order relation. O

The zero-sum-free condition involved in the previous result is satisfied by many
algebraic structures investigated in the present work, e.g. the boolean algebra,
distributive lattices, and inclines (see Cao, Kim & Roush, 1984).

3.6. Idempotent Monoids and Semi-L attices

The concepts of semi-lattice (sup-semi-lattice, inf-semi-lattice) may be defined,
either intermsof setsendowed with (partial) order relations, or in algebraicterms. We
recall the set-based definitions below, then we show that algebraically, semi-lattices
are in fact idempotent monoids.

Definition 3.6.1. (idempotent monoid)
A monoid (E, @) is said to be idempotent if the law & is commutative, associative
and idempotent, that is to say satisfies:

VaeE, ada=a
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Observe herethat acancellative monoid not reduced to itsneutral element e cannot
beidempotent. Indeed, for every a £ ¢, a®a = a= ad®eimplies, sinceaisregular,
a = ¢, which gives rise to a contradiction. Hemi-groups and idempotent monoids
therefore correspond to two disjoint sub-classes of canonically ordered monoids
(seeFig. 1 Sect. 3.7).

Proposition 3.6.2. If (E, @) is an idempotent monoid, then the canonical order
relation < can be characterized as:

a<b & adb=h
Proof. a < bisby definition equivalent to:
dceE suchthat a@c=h.

We can then write:
adb= a®adc= adc=h

Wethereforeclearly havea<b < a®db=Db. O

Definition 3.6.3. (sup- and inf-semi-lattices)

We call sup-semi-latticea set E, endowed with an order relation <, in which every
pair of elements (X, y) has a least upper bound denoted x Vv y.

Similarly, we call inf-semi-lattice a set E, endowed with an order relation, in
which every pair of elements (X, y) has a greatest lower bound denoted x A y.

A sup-semi-lattice (resp. inf-semi-lattice) is said to be complete if every finite or
infinite set of elements has a least upper bound (resp. a greatest lower bound).

Theorem 2. Every sup-semi-lattice (resp. inf-semi-lattice) E is an idempotent
monoid for the internal law & defined as:

VX, y e EEX®Yy=XVYy (resp.Xx@y=XAY).

Conversely if (E, @) is an idempotent monoid, then E is a sup-semi-lattice for the
canonical order relation <.

Proof. Let E be a sup-semi-lattice, where VX, y € E, X vV y denotes the least upper
bound of x and y; then (E, V) is an idempotent monoid.

Conversely, let (E, @) be anidempotent monoid, and et < be the canonical order
relation. Wehavea® b > aanda@® b > b. Thisisalso the least upper bound of the
set {a, b} because for every other upper bound x of aand of b, a < x and b < x, we
have:

adb<x@x=x. O
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Table 1 The various types of monoids and their basic properties

Properties of ® Canonical preorder |Additional properties
relation < and comments
Monoid Associative Preorder
Commutatlve Commutative Preorder
monoid
Commuitative, neutral
Cancellative monoid |element, every element |Preorder
is cancellative
Monoid endowed with an
Ordered monoid Preorder order relation d_ifferent
from the canonical
preorder relation
Group Neutral eIemenF g, every
element has an inverse
Commutative group |Invertible commutative
Canonically Mono?d inwhich the
! Order canonical preorder
ordered monoid L .
relation isan isan order
I(gﬂ??;?ée?ono'd | dempotent Order
Selective monoid Selective Total order
Cancellative monoid The zero-sum-free
Hemi-Group (every element is Order condition is satisfied

cancellative)

(see Sect. 3.5)




20 1 Pre-Semirings, Semirings and Dioids

3.7. Classification of Monoids

Table 1 sums up the main properties of the various types of monoids.

Figure 1 provides a graphic representation of the classification of monoids.
Observe on the first level the digunction between the class of groups and that
of canonically ordered monoids and, on the second level, the disjunction between
idempotent monoids and hemi-groups.

4. Pre-Semirings and Pre-Dioids

The term of dioid was initially suggested by Kuntzmann (1972) to denote the alge-
braic structure composed of a set E endowed with two internal laws @ and ® such
that (E, @) is a commutative monoid, (E, ®) isamonoid (which is not necessarily
commutative) with a property of right and left distributivity of ® with respect to &.
In the absence of additional propertiesfor thelaws @ and ®, such astructureisquite
limited and here we refer to it as apre-semiring, thus keeping the name of semi-ring
and of dioid for structures with two laws endowed with a few additional properties
asexplained in Sects. 5 and 6.

4.1. Right, Left Pre-Semirings

Definition 4.1.1. We call left pre-semiring an algebraic structure (E, @, ®) formed
of a ground set E and two internal laws & and ® with the following properties:

(ladb=boa Va,b € E (commutativity of &)
(ii) (@ bydc=ad (bdo) Va, b, c e E (associativity of @)
(i) (a® by ®c=a® (b®c) Va, b,c e E (associativity of ®)

(ivyag (bdc)=(@a®b ®(@®c) VabcecE
(left distributivity of ® relative to &)
The concept of right pre-semiring is defined similarly, by replacing left distributivity
with right distributivity:
(iv) @dby®c=@®Rc®(b®c) VabcecE.

We observe that in the above definitions, we do not assume the existence of neutral
elements. If they do not exist (neither on the right nor on the left), we can easily add
them. In the case where ¢, the neutral element added for &, is absorbing for ®, we
have a semiring structure, see Sect. 5.

Example 4.1.2. There exist many cases where there is neither right distributivity
nor left distributivity. As an example, the structure (E, @, ®) with E = [0, 1],
adb=a+b—-—aada®hb = ab does not enjoy distributivity and is
therefore not a pre-semiring. The same applies to the structure (E, ®, ®) with
E=1[01,a®b=Min(l,a+b),a® b=Max(0,a+b—1).]|
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The reason why it is of interest not to assume both right and |eft distributivity in
the most basic structure (the pre-semiring structure) is that there exist interesting
applications which do not enjoy both properties. This is the case, in particular, of
Example 4.1.3 below.

Example 4.1.3. Left pre-semiring of the set of mappings of amonoid onto itself.
Let (E, —T—) be a commutative monoid, and H the set of mappings: E — E.
We define on H the following operations @ and ®:
Foreveryf € H, g € Hwedenotef & g the mapping which associateswith every
a € Ethevauef (a) 7 g ().
The properties of the :L operation on E induce similar properties for & on H.

If j.r has aneutral element ¢ in E, then we can define the neutral element of @ on
H as the mapping h® (E — E) given by:

h°(a) = ¢, VacE.

(H, &) istherefore a commutative monoid with neutral element he.

Forevery f, g € Hwedenotef ®gthemappingwhich, with every a € E associates
gof (8) = g (f(a)) (® istherefore directly deduced from the law of composition for
mappings).

We observe that ® is associative and has a neutral element which is the identity
mapping h€ defined as:

h®@) =a, Vaec E.

We check the property of left distributivity because Vf, g, h € H, and Va € E:

felgehl@ = (g®h]of)(@
=[g®h] (f@)
=gf@ @h @)
=[gof ®hofl(@
=[f®9 & (f ®@h]l@).

On the other hand, the property of right distributivity is not satisfied without addi-
tional assumptions (see Sect. 4.2, Example 4.2.2). The structure (H, &, ®) aboveis
therefore a left pre-semiring. ||

Particular instances of the above structure have been proposed and studied by many
authors in the area of computer program analysis, specificaly through data flow
analysis. For example, in the case of the data flow analysis models referred to
as monotone (see e.g. Kam and Ullman 1977), E is taken as an idempotent monoid
(= sup semi-lattice) and H is the set of monotone functions: E — E. For further
detail, refer to Chap. 8, Sects. 2.1 and 2.2.
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4.2. Pre-Semirings

Definition 4.2.1. We call pre-semiring an algebraic structure (E, ®, ®) which is
both a right pre-semiring and a left pre-semiring.

Example 4.2.2. Pre-semiring of the endomorphisms of a commutative monoid.
Let us return to Example 4.1.3 above, but now we assume that we are studying a
particular subset of mappings H' C H satisfying:

ha+ b) = h@@ +h) VheH, vabeE

in other words, we are dealing with endomorphisms of E (it iseasily checked that H’'
isclosed for @ and for ®).

Inadditiontoleft distributivity, whichisalways present (see Example4.1.3), right
distributivity is now satisfied because:

VacE (gog)ef(@=f(gad@)
=f@g@+ g(@)
= f(g@) + f(g@)
—gef@+ d®f(@
From this we deduce that (H’, &, ®) defined above is a pre-semiring. ||

A structure of this kind has interesting applications in the area of program analysis
(problems of continuous data flow, see Kildall 1973) and the study of non-classical
path-finding problemsin graphs (see Minoux 1976). Examples of such pre-semirings
are described in Chap. 8, Sect. 2.2.

4.3. Pre-Dioids

Definition 4.3.1. We call right pre-dioid (resp. left pre-dioid) a right pre-semiring
(resp. left pre-semiring) canonically ordered with respect to &.
We call pre-dioid a canonically ordered pre-semiring.

Example 4.3.2. Theset R endowed with theinternal laws Max and + isapre-dioid
(see Chap. 8 Sect. 2.4). ||

Inapre-dioid, the neutral element ¢ isnot necessarily absorbing (see Example5.3.1).
On the other hand, the following result shows that ¢ is always nilpotent.

Proposition 4.3.3. Let (E, &, ®) be a pre-dioid in which ¢ and e are the neutral
elements of @ and ® respectively. Then ¢ is nilpotent (eK = ¢, Vk € N).

Proof. It suffices to show that €2 = «.

Let < be the canonical order relation of (E, ®). Wehave, Vac E:eda = a
hence e < a.

Wededuces < £2 = s ® ¢, thens < &2 < ¢3.
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By using right and left distributivity, we can also write:
e=eRe=(ede)Q(ede) =(ede)Red (ede) Q¢
—e@c@ecde’
—ede’

We deduce: €2 < e, then ¢3 < s.
From the above it follows:

Proposition 4.3.4. Let (E, @, ®) be a pre-dioid where ¢, the neutral element for &,
is non-absorbing. Then ¢ E is an idempotent pre-dioid.

Proof. For every a € E we have:
a=(ede)®@ds) =aded(e®a) D’ =ad (:®a)
(2 = ¢ from Proposition 4.3.3).
By multiplying on the left by ¢, we obtain: e @ a = (@ a) ® (2 ® @) =

(e ®a) @ (e ® @), which shows that & is idempotent for al elements of the form
¢ ® aand thus e E isan idempotent pre-dioid. O

5. Semirings
5.1. Definition and Examples

Definition 5.1.1. (semiring, right semiring, left semiring)
A semiring is a pre-semiring (E, &, ®) which satisfies the following additional
properties:

(i) & has a neutral element ¢
(if) ® has a neutral element e
(iii) € is absorbing for ®, that is to say:

VacE aQe=¢c¢t®a=c=c.

A right semiring (resp. left) is a right pre-semiring (resp. left) satisfying property (i)
and properties (ii)’ and (iii)" below.

(i)’ ® has e as a right neutral element (a® e = a, Va) (resp. left: e® a= a, Va)
(i) ¢ is a right absorbing element (a® ¢ = ¢, Va) (resp. left: e @ a=¢, Va)
A semiring in which the operation ® is commutative is said to be commutative.
Example 5.1.2. Let us return to Example 4.2.2 where (E, @) is a commutative
monoid and H the set of endomorphisms of E. We have seen that (H, @, ®) isa

pre-semiring. The neutral element h® of H for & does not satisfy the absorption
property in general.



24 1 Pre-Semirings, Semirings and Dioids

On the other hand, if we consider the subset H' € H of endomorphisms having
the additional property:

heH & heH and h()=c¢

then the absorption property:
vh e H: h* @ h = h® h* = h® is satisfied and the structure (H', @, ®) isa
semiring. ||

Example 5.1.3. Let usreturn to Example 4.1.3 of Sect. 4.1 relativeto the set H of the
mappings of a commutative monoid E onto itself. The neutral element h® of H for
@ does not satisfy the absorption property in general. On the other hand, if we limit
ourselvesto the subset H' € H of mappings: E — E having the additional property:

heH heH and h() =c¢

then the absorption property is satisfied and the structure (H', @, ®) is a left
semiring. ||

The class of semirings can be naturally subdivided into two digjoint sub-classes
depending on whether the law @ satisfies one of the following two properties:

(1) Thelaw & endowsthe set E with a group structure;
(2) Thelaw ¢ endows the set E with a canonically ordered monoid structure.

In view of Theorem 1 of Sect. 3.4, (1) and (2) cannot be satisfied simultaneously. In
case (1), we are led to the well-known Ring structure, whose definition is recalled
in Sect. 5.2; in case (2) we are lead to the Dioid structure, (see Sect. 6 below) the
in-depth study of which is one of the main objectives of the present volume.

Apart from Dioids and Rings, the other classes of semirings appear to have less
potential interest. For example, we can mention the semirings obtained as products
of aring and adioid. Some other examples are given in Chap. 8, Sect. 2.

5.2. Ringsand Fields

Definition 5.2.1. (ring)

We call ringa semiring in which the basic set E has a commutative group structure
for the addition &. A ring (E, &, ®) is said to be commutative if the operation ® is
commutative.

Example5.2.2. The set (Z, +, x) of signed integers endowed with the standard
operations+ and x isacommutativering. Similarly, the set of square n x n matrices
with real entriesis a (non commutative) ring. ||

An important special case of the ring structure is obviously the field structure in
which the basic set E has a group structure (not necessarily acommutative one) with
respect to the law ®. When ® is commutative, we refer to a commutative field.
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Definition 5.2.3. (semi-field)
We call semi-field a semiring in which every element other than ¢ has an inverse
for the multiplication ®.

We will see that many dioids, in particular idempotent-invertible dioids such as
(R, Min, +) and (R, Max, +) are semi-fields (see Sect. 6.7 and Exercise 8).

Hereafter, we will use rarely the term of semi-field, because the resulting
classification (based on the properties of “multiplication”) would not be directly
comparable to that of semirings (based on the properties of “addition”). Classifying
with respect to the properties of thefirst law appearsto be more fundamental insofar,
in that it is with respect to the first law that the distributivity of the second law is
defined.

5.3. The Absorption Property in Pre-Semi-Rings

In order for a pre-semiring to be a semiring, ¢ (the neutral element for &) must be
absorbing for ®. Thisis not always the case as seen in the following example.

Example 5.3.1. Let us take for E the set of intervals of the real line R of the form
[a, @l witha<Oanda=> 0.
Let usdefinethe & law as:

[a,a @ [b, b] = [Min{a, b}, Max(a, b}]

@ is commutative and idempotent with the interval [0, O] as a neutral element
Furthermore, let us define the ® law as:

[aal®[b bl =[a+ba+b].

The ® law has as neutral element [0, 0].
The distributivity of ® with respect to @ follows from the immediate properties:

Min{a, b} + ¢ = Min{a+c,b+c}
Max{a, b} + T = Max{a+¢,b+T¢T}.

Finally, the canonical preorder relation is an order relation because of the idempo-
tency of &.

On the other hand, (E, @, ®) is not a semiring because ¢ is not absorbing
for ®. Indeed, for an arbitrary element [a,3] # ¢ we have [a,3] ® [0,0] =
[a, 3] # &. The structure (E, &, ®) defined above is therefore a pre-semiring (in
fact a pre-dioid, due to the canonical order relation, see. Sect. 4.3) but it is not a
semiring. ||

The above example shows, moreover, that assuming that < isan order relation isnot
sufficient to guarantee the absorption property.

The following result provides a sufficient condition to guarantee this property in
acanonically ordered pre-semiring, that isto say, in a pre-dioid.
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Proposition 5.3.2. If < (the canonical preorder) is an order relation and if, Va €
E: a® ¢ < ¢, then we have the absorption property:

VaeE a®e=c¢.

Proof. For every b € Ewehave: b = ¢ & b, thereforee < b.
In particular, if we consider an arbitrary element a € E and we apply the above
property tob = a® ¢, we obtain:

VaecEe<a®e.
With the assumption of the proposition, we thereforehavevVae E:a® e =¢. O

Observe that the above proposition appliesin particular when e, the neutral element
for ®, isthe largest element of E, that isto say when, for every g, a < e.

5.4. Product of Semirings

Given p semirings (Ej, @i, ®;) the product semiring is defined as the set E =
E1 X Ex X - - X Ep endowed with the “product” laws @ and ® defined as:

X1 Vi X1 @1 Y1
VX:(:)EE, Vyz()eE X@yz X26?2y2

X Ye Xp ©p Yp

X1 ®1 Y1
XY = X2 @2 Y2
Xp ®p Yp
We easily verify that the laws @ and ® enjoy the same basic properties as the laws
@i and ®;, and that, consequently, (E, ®, ®) clearly has a semiring structure.
In particular, we verify that the product of aring and adioidisasemiring (seealso
Chap. 8, Sect. 3.1).

5.5. Classification of Pre-Semirings and Semirings

Table 2 below sums up the main properties of the various types of pre-semirings and
semirings.

Figure 2 provides a graphic representation of the classification. In the semiring
class, it shows two main digjoint sub-classes, rings (see Sect. 5.2) and dioids which
are studied in Sect. 6. In thefirst case, (E, ®) isagroup, in the second case (E, @) is
canonically ordered, these two properties being incompatible in view of Theorem 1
(Sect. 3.4).



5 Semirings

Table 2 Pre-semirings, semirings and dioids and their basic properties

27

Properties of Properties of Relation <|Additional properties and
(E, ®) (E, ®) comments
) . Right (resp. left)
Right (resp. left) | Commutative |, Preorder | distributivity of @ with
pre-semiring monoid
respect to @
Pre-semirin Commutative Monoid Right and left distributivity
9 Imonoid of ® with respect to @
Commutative Monoid, Right and left distributivity
Semiring monoid, neutral  |neutral of ® with respect to
element ¢ element e @, ¢ absorbing for ®
) Commutative Monoid, neutral
Ring
group element e
. Canonically Monoid, neutral
Dioid ordered monoid |element e Order

@
FIELDS

Fig. 2 Classification of pre-semirings, semirings and dioids

RIGHT (LEFT)
PRE-SEMI-RINGS

PRE-SEMI-RINGS

SEMI-RINGS

DIOIDS
(cf. figure 3)
§6-10

PRE-DIOIDS

OTHER
SEMI-RINGS
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6. Dioids

6.1. Definition and Examples

Definition 6.1.1. (dioid, right dioid, left dioid)
We call dioid a set (E, &, ®) endowed with two internal laws & and ® satisfying
the following properties:

(i) (E, &) is a commutative monoid with neutral element ¢;
(i) (E, ®) is a monoid with neutral element e;
(iif) The canonical preorder relation relative to & (defined as: a < b & I ¢
b =a & c)isan order relation, i.e. satisfies: a<bandb <a= a=b;
(iv) e is absorbing for ®, i.e.:Vae E:a®Qe =c Q@ a=r¢;
(V) ® is right and left distributive with respect to .

Wecall right dioid (resp. left dioid) aset (E, @, ®) satisfying the properties (i) to (iv)
aboveand where ® isonly right distributive (resp. only left distributive) with respect
to ®. (We observe that for aright dioid, it in fact suffices for e to be aright neutral
element (a ® e = a, Va) and for ¢ to be right-absorbing only (a ® ¢ = ¢, Va)).

The fundamental difference between a ring and a dioid lies in property (iii).
In a ring, addition induces a group structure, whereas in a dioid, it induces a
canonically ordered monoid structure. From Theorem 1 (Sect. 3.4) thisimpliesa
disunction between the class of rings and the class of dioids.

Example 6.1.2. Z endowed with the standard operations + and x, isaring but itis
not adioid.

Indeed, in this structure, we always have, for every pair of signed integers a, b:
a < bandb < afor the canonical preorder relation (a<b < 3c:b=a+ c).

It is therefore not an order relation. On the other hand, the semiring N (the set
of natural integers) isadioid because the canonical preorder relation coincides with
the standard (total) order relation. ||

It istherefore the presence of an order relation intrinsically linked to the addi-
tion @ which constitutesthe main distinction between rings and dioids. This order
relation will naturally lead to define topological properties. These will be studied in
Chap. 3.

Remark. In the Definition 6.1.1, we can replace (iv) by the weaker assumption:
¢ > a ® ¢ whichsufficesto guaranteea ® ¢ = ¢, according to Proposition 5.3.2. ||

Apart from the well-known dioids (N, +, x) and (R, Min, +) let usgive afew other
examples of interesting dioids.

Example 6.1.3. Qualitative algebra

Ontheset of SignskE = {4, —, 0, ?}, we consider the law & (qualitative addition,
see Example 3.4.2) and the law ® (qualitative multiplication, see Example 3.4.3).
We verify that (E, @, ®) isadioid. (see Chap. 8, Sect. 4.5.3) ||
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Example 6.1.4. Right dioid and shortest path with gains or losses
Ontheset E = R x (R \{0}) we define the following operations & and ®:

ay .. a 4a .
(k) if E<W orif

=— and k= max{k,k'}

a
k

a . a 4d .
(—/) if E>P or if
a

=— and kK = max{k, k'}

(6)e () = (")

@ has as neutral element ¢ any element of the form (>°) withk € R, \{0} and ®
has as neutral element e = (9).

We easily verify all of the properties (i)—(iv) as well as the right distributivity of
® with respect to . On the other hand, ® is not left distributive as shown in the
following example:

() e[()e )] =)o) =()
(Be@)]e[@e@)]=(E)eE)=()

underlying the resolution of the shortest path problem with gains or losses (see
Chap. 4, Exercise 4). ||

(6)° (%)=

Example 6.1.5. Order of magnitude dioid
Ontheset E of pairs (a, o) witha € R \{0} and a € R, to which we add the pair
(0, +00), we define the two laws @ and ® as:

(& o) @ (b, p) = (c, min(a, B))
withc=aifa <p,c=bifa > B,c=a+bif a =, (see Example 3.4.4)

(@ 0) ® (b,p) = (@b, a+p).

We check that (E, @, ®) isanon idempotent dioid.

This dioid is isomorphic to the set of elements of the form a ¢* endowed with
ordinary addition and multiplication when ¢ > 0 tends towards 0™.

We obtain a dioid that is isomorphic to the above by setting A = ™%, and by
taking for E the set of pairs (a, A) € (R, \{0})? to which we add the pair (0, 0),
endowed with the operations @ and ® defined as:

(& A) & (b, B) = (c, Max(A, B))
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withc=aifA>B,c=bifA <B,c=a+bifA =B,
(@ A) ® (b, B) = (ab, AB).

Moreover, the elements (a, A) of thisdioid can be interpreted as the set of elements
of the form a AP endowed with ordinary addition and multiplication when p tends
towards +o0.

We can interpret (a, A) as the coding of an asymptotic expansion of the form
aAP + o (AP) when p — +oo.

The latter dioid was introduced by Finkelstein and Roytberg (1993) to calculate
the asymptotic expansion of distribution functions in the study of biopolymers. It
was aso used by Akian et a. (1998) to calculate the eigenvalues of a matrix with
coefficients of the form exp(—a;j /¢) where e is asmall positive parameter. ||

Example 6.1.6. Non standard number dioid
Onthe set E of ordered triples (a, b, ) € (R4 \{0})® to which we add the ordered
triples (0, 0, +00) and (1, 0, +00), we define the two laws @ and ® by:

(a1, b1, 1) @ (&, bz, a2) = (&1 + &, b, min(ay, o))
withb=Dbifa; <o, b=boifag > as, b=by +byif a1 = ap,
(a1, b1, 1) ® (8, b2, 02) = (a1 &, b, min(a, a2))
withb=a bif a1 < ag, b=a by if a1 > ap,
b=a by +abiif ag = an.

Weverify that (E, @, ®) isadioid. Thisdioidisisomorphic to the set of non standard
numbers of theforma + b €%, (a > 0, b > 0), endowed with ordinary addition and
multiplication, when e > 0 tends towards 0™ ||

The concept of positive semiring and positive dioid is studied in Exercise 5.

Proposition 6.1.7. Inadioid (E, @, ®), the canonical order relation < iscompatible
with the laws & and ®.

Proof. Thefact that < is compatible with & was already proved in Sect. 3.3. Let us
show that < iscompatiblewith ®. Wehave:a<b < 3ce E:a @ ¢ = b, hence

@adoRX=b®Xx
thus, using distributivity:
aRxXdcRX=hb®x

hencewe deducea® x < b® x.
We would similarly provethat x ® a<x®b. O
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Definition 6.1.8. (complete dioid)

Adioid (E, &, ®) is said to be completeif it is complete as an ordered set for the
canonical order relation, and if, moreover, it satisfies the two properties of “infinite
distributivity”:

VA CE,VbeE <@a)®b: ® (a®b)
acA

acA
b®<€B a) =0 (b®a
acA acA

From this definition it follows that, for every A c EandB C E:

(@ a)@(ea b) = & (a®b
acA beB (a,b)eAxB

In a complete dioid, we define the top-element T as the sum of all the elements of
the dioid
T=¢®a

acE

We observethat T satisfies, Yx € E:
Teox=T and TRe=c.

Asanillustrationthedioids (R, Max, +) and (R, Min, +) are not complete. To make
them complete, atop-element must be added:

T=+4+0c0 for (R,Max,+)
T=-o00 for (R,Min,+).

In the same way as for other algebraic structures, we say that asubset F C Eisa
sub-dioid of (E, @, ®) if andonly if: ¢ € F, e € F, and Fisclosed with respect to the
laws @ and ®. Thus for instance the dioid (N, Max, +) is a sub-dioid of the dioid
(R4, Max, +).

In the following sections, we discuss some particularly important sub-classes of
dioids.

6.2. Dioid of Endomorphisms of a Canonically Ordered
Commutative Monoid

Let (E, @) beacanonically ordered commutative monoid with neutral element €. As
in the Examples 4.2.2. and 5.1.2., we then consider the set H of endomorphisms on
E satisfying, Vh € H:

h@adb)=h@ ®h(b) VabekE

h(e) = ¢
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endowed with the laws @ and ® defined as: Yh, g € H:

(hog (@ =h@@g(@ VYacE
(h®9g) (8 =goh(a VacE

where o isthe law of composition of mappings.

We verify that (H, @, ®) isadioid.

Thisis avery important class of dioids underlying a wide variety of problems,
in particular many non classical path-finding problemsin graphs (see Minoux 1976,
the two following examples and Example 4.2.3 in Chap. 8). Solution algorithms will
be discussed in Chap. 4, Sect. 4.4.

Example 6.2.1. Shortest path with time-dependent lengths on the arcs

Let us consider the following problem. With each arc (i, j) of a graph G we
associate afunction hjj giving thetimet; of arrival inj when weleavei at the instant
ti: § = hij ().

Leaving vertex 1 at the instant t;, we seek the earliest time to reach vertex i.

For this problem, we take

E:R:RU{—}—OO},@:min,s:—i—oo.

The set H is taken to be the set of nondecreasing functions h: E — E such that
h(t) — 400 whent tends towards +oc.
These functions are indeed endomorphisms because we have:

h(min(t, t')) = min(h(t), ht))
h(+00) = +00

(H, ®, ®) istherefore adioid.
For adetailed study of thisproblem and sol ution a gorithms, see Cookeand Hal sey
(1966) and Minoux (1976). ||

Example 6.2.2. Shortest path with discounting (Minoux 1976)

With each arc (i, j) of agraph G, we associate alength which depends, in a path,
on the number of arcs taken previously. If we interpret, for example, the path along
the arc (i, j) as the realization of an annual investment program, the cost of the arc
(i,])isGjj/(A+ )t if tisthe number of arcs previously taken by the path, that isto
say the year of the expenditure ¢jj (t being the discounting rate).

We seek the shortest path in terms of discounted value from vertex 1 to the other
vertices.

If T isthe final time period, we take for S the set of (T + 1) - vectors with
componentsin Ry U {+oo}. If a= (ag, &, ...,ar) andb = (bg, by, ..., br), we
defined = a® b = (do, dy, ..., dr) by setting d; = min(a, by), t fromO0to T.
e = (+00, ..., +00). Then we define the endomorphism h;; as:

hij @=b

. Gij
with: = =aq1+———fort=1,...,T.
bop = +oo by = & l+(1+r)t—1
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We observe that such endomorphisms are T-nilpotent (see. Chap. 4, Sect. 3.3).

After obtaining the optimal label a € S of a vertex, it is possible to deduce the
shortest path with discounted value from vertex 1 to this vertex, the value of which
isequal to Or<nti£lT @). |

Many other examples can be constructed on thismodel (see Chap. 4 Sect. 4.4 and
Chap. 8, Sect. 4.2).

6.3. Symmetrizable Dioids

Definition 6.3.1. We call symmetrizable dioid a dioid (E, @, ®) for which the oper-
ation @ is cancellative, that is to say such that (E, &) is a hemi-group. (see
Sect. 3.5).

Example 6.3.2. The set N of natural numbers endowed with the ordinary operations
+ and x isasymmetrizable dioid. Indeed, (N, +) is a hemi-group (see Sect. 3.5).
Similarly, the set R, endowed with operations + and x is a symmetrizable dioid.
On the other hand (]fh, -+, Min) is not adioid because Min is not distributive with
respect to +: Min{2, 1 + 5} # Min{2, 1} + Min{2, 5}. ||

Thesymmetrization of asymmetrizable dioid producesaring. A symmetrizabledioid
could therefore be referred to as a hemi-ring.

Remark 6.3.3. In the literature on the subject, a different type of symmetrization of
a dioid has aso been investigated; it is called weak symmetrization (see Gaubert
1992). Asin Remark 2.3.6, from the equivalence relation R on the ordered pairs of
elements of E? defined as:

aFb,a#Eb and aa@bh=bhda

5 R b k b i
(a1, 8) R (b1, b2) & (a1, &) = (b1, bp) otherwise

weak symmetrization consists in defining three types of elements. “positive” ele-
ments isomorphic to the elements of E and corresponding to the classes (a, €), the
“negative’ elements corresponding totheclasses (¢, a), and the“balanced” elements
corresponding to the classes (a, a).

These weakly symmetrizable dioids can be useful for instance to express in
algebraic form combinatorial properties of dioids (see Chap. 2); they can aso
be used in the framework of studying solutions of linear equations of the form:
Ax®b = Cx@d (seeChap. 4).

Refer to Gaubert (1992) for a detailed study of weak symmetrization. ||

6.4. |dempotent and Selective Dioids

Definition 6.4.1. (idempotent dioid)
We call idempotent dioid a dioid in which the addition & is commutative and
idempotent.



34 1 Pre-Semirings, Semirings and Dioids

A frequently encountered specia case is one where addition @ is not only
idempotent, but selective (i.e.: Va,b e E:ad®d b =aor b).

Definition 6.4.2. (selective dioid)
We call selective dioid a dioid in which the addition & is commutative and
selective.

Idempotent dioids form a particularly rich class of dioids which contains many
sub-classes, in particular:

Doubly-idempotent dioids and distributive lattices (see Sect. 6.5);

Doubly selective dioids (see Sect. 6.5);

| dempotent-cancellative dioids and selective-cancellative dioids (see Sect. 6.6);
|dempotent-invertible dioids and selective-invertible dioids (see Sect. 6.7).

6.5. Doubly-1dempotent Dioids and Distributive L attices.
Doubly-Selective Dioids

Definition 6.5.1. We call doubly-idempotent dioid a dioid which has a commutative
idempotent monoid structure for @ and an idempotent monoid structure for ®.

Definition 6.5.2. We call doubly selective dioid a dioid which has commutative and
selective monoid structure for & and for ®.

Example 6.5.3. Let ustake for E the set of realsR = R U {+o0} U {—o0} and let us
define the operations @ and ® as.

Vabe E: a®b=Min{a b}
VabeE a®b=Max{a b}

(E, ®) and (E, ®) are commutative and selective monoids having neutral elements
¢ = {+o00} and e = {—o0} respectively.
(E, ®, ®) istherefore a doubly-selective dioid. ||

Aswe are going to show, doubly-idempotent dioids are algebraic structureswhich
are very closeto distributive lattices.

Definition 6.5.4. We call lattice a set E ordered by an order relation o« and which,
for this relation, is at the same time a sup-semi-lattice and an inf-semi-lattice (see
Sect. 3.6).

Consequently, in alattice E, to every pair of elementsa, b € E, we can let corre-
spond:
— anupper boundav b
— alower bound a A b.

A lattice is said to be complete if every subset of E (of finite or infinite cardinality)
has an upper bound and a lower bound.
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A lattice is said to be distributive if and only if the operation A isright and left
distributive with respect to the operation v, that is to say:

VX, Y, ZEE:XA(YVZ) =XAY)V(XAZ
XVYAZ=XAZ)V(YAZ

(N.B.: it can be shown that the distributivity of v with respect to A isaconsequence
of the above, see e.g. Dubreil and Dubreil-Jacotin 1964, p. 288).

Example 6.5.5. R endowed with the usual order relationisadistributivelattice with,
Va,be R:av b= Max{a b};an b= Min{a, b}. ||

Example 6.5.6. If Sisaset, P(S), the power set of S ordered by the inclusionis a
distributive latticewith, VA ¢ S, VBC SSAvB=AUBandAAB=ANB. ||

Distributive lattices form a particular family of interesting dioids as the following
proposition shows.

Proposition 6.5.7. If E is a distributive lattice, then (E, v, A) is a doubly-
idempotent dioid, the order relation (canonical) of the dioid being defined as:

a<b &avb=h

Conversely, let (E, &, ®) be a doubly-idempotent dioid for which <, the canonical
order relation relative to the law @ is also a canonical order relation for ®:

X<y &XQY =X
Then E is a distributive lattice.

Proof. Theif part of the propositioniseasy to verify. In particular, we observethat ¢,
theneutral element of (E, V) isthesmallest element of E (in the sense of the canonical
order relation) which implies the property of absorption: Vx € E: X A ¢ = ¢. Let us
now prove the converse.

Following Proposition 3.6.2 in Sect. 3, (E, @) is a sup-semi-lattice for the
canonical order relation relative to the law @ and which is defined as:

a<b s adb=h

Similarly (E, ®) isasup. semi-lattice for the order relation <’ defined as:
a<'b & a®b=h.

It is therefore an inf-semi-lattice relative to the order relation <” below:
a<'b & a®b=a

It is thus seen that the order relations < and <” coincide and consequently E is a
lattice with:

sup(a, by =adb
inf(a,b)=a®h.

Finally, thislatticeisdistributive because of the property of distributivity of thedioid
(E,®,®). O
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Example 6.5.8. (N, Icm, gcd) whereVa,b € N,a @ b= lcm(a b)anda ® b =
gcd(a, b) is a doubly idempotent dioid. According to the canonical order relation,
a < bif and only adivides b. In this case, we clearly havea® b = gcd(a, b) = a,
which proves, following Proposition 6.5.7 that (N, lcm, ged) isadistributive lattice
(see also Chap. 8 Sect. 4.6.2). ||

Let usalso observethat adioid defined fromtwoidempotent lawsisnot necessarily
alattice as seen in the following example:

Example 6.5.9. Let ustake for E the set of reals endowed with the @ law defined as:
Va,be R: a® b= Min{a b}
and multiplication ® defined as:
Va,beR: a® b =a(theresultisawaysthefirst operand)

(we easily check the idempotency and associativity of ®, as well as right and left
distributivity of ® with respect to @).

(E, ®, ®) isthereforeclearly adioid. Tobeconvinceditisnot alatticejust observe
that ® isnot commutative. ||

A lattice (E, @, ®) is said to be complemented if, Va € E: e < a < ¢ and, Va € E,
thereexistsa € Esuchthat: aa=eanda® a—=-=«.

A distributive and complemented latticeis called a Boolean lattice.

Examples 6.5.5 and 6.5.6 correspond to Boolean lattices. Example 6.5.8 isnot a
complemented lattice.

Lattices are fundamental structures which have been extensively studied in the
literature, see e.g. Birkhoff (1979), Mc Lane and Birkhoff (1970), and Dubreil and
Dubreil-Jacotin (1964). See also Exercises 4, 6-9 at the end of the chapter.

6.6. | dempotent-Cancellative Dioids. Selective-Cancellative Dioids

Definition 6.6.1. We call idempotent-cancellative dioid a dioid which has a com-
mutative idempotent monoid structure for @ and a cancellative monoid structure
for ®.

Example 6.6.2. Let us return to Example 2.1.13 in Sect. 2.

A being a set of letters (“alphabet”), the set of words on A (the so-called free
monoid on A) is denoted A*. Every subset (whether finite or infinite) of A*,L €
P(A*), iscaled alanguage onA. We denote £ the set of all thelanguagesonA. The
sum of two languages L1 & L is defined as the set union of the words of L1 and the
words of L.

The product of two languages L1 ® L2 is the set of the words formed by the
concatenation of aword my of L1 and aword my of Ly (in this order).
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We easily verify:

that (£, @) is a commutative idempotent monoid for & with neutral element ¢
the empty language (i.e. not containing any word of A*);

that (£, ®) isa(non commutative) cancellative monoid with neutral element Ly,
the language formed by the empty word,;

that ® isright and left distributive with respect to ®.

(L, ®, ®) defined above is therefore an idempotent-cancellative dioid: this is the
algebraic structure underlying the theory of regular languages (see e.g. Salomaa
19609, Eilenberg, 1974). (L et usobserve however that theaxioms of regular languages
include, in addition to the above, the closure operation denoted *). ||

An interesting special case of an idempotent-cancellative dioid is one where the
operation & is not only idempotent but also selective.

Definition 6.6.3. We call selective-cancellative dioid a dioid which has a selective
monoid structure for @ and a cancellative monoid structure for ®.

Example 6.6.4. Let ustake for E the set of nonnegativerealsR U {+o0} and let us
define the operations @ and ® as.

Vabe E: a®b=Min{a b}
VabeE: a®®b=a+b (addition of reals)

(E, ®) is a selective monoid with neutral element ¢ = +o0, and (E, ®) is a
cancellative monoid with neutral element e = 0.
The structure (E, @, ®) above istherefore a selective-cancellative dioid. ||

Remark. A specia case of idempotent-cancellative dioids is one where (E, ®) is,
not only acancellative monoid but a hemi-group (see Sect. 3.5). Thisisthe situation
encountered in Example6.6.4 abovewhere (R, U{+o0}, +) isacancellativemonoid
canonically ordered by +, and therefore a hemi-group. ||

6.7. |dempotent-I nvertible Dioids. Selective-l nvertible Dioids

Definition 6.7.1. We call idempotent-invertible dioid a dioid (E, @, ®) which has a
commutative idempotent monoid structure for @ and a group structure for ® (every
element of E\ {e} having an inverse for ®).

To insist on the fact that the set has a group structure relative to the second law,
we can aso refer to such a dioid as an idempotent-group dioid. This terminology
will be preferred to that of semi-field (see Sect. 5.2).

An important special case for applicationsis when the & law is selective.

Definition 6.7.2. We call selective-invertible-dioid a dioid (E, @, ®) which has a
selective monoid structure for @ and a group structure for ® (every element of E\ {¢}
having an inverse for ®).
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Example 6.7.3. “Min-Plus’ Dioid
Let ustake for E the set of realsR = R U {+o00} and let us define the operations
@ and ® as:

VabeE: a®b=Min{a b}
VaabeE: a@b=a+b (addition of reals)

(E, ®) is a selective monoid with neutral element ¢ = 400, and (E, ®) is agroup
with neutral element e = 0.
The structure (E, &, ®) above istherefore a selective-invertible-dioid. ||

Note that, in the terminology of the theory of languages and automata, selective-
invertible dioids such as Min-Plus or Max-Plus dioids are sometimes referred to as
Tropical semirings (see for example Simon 1994).

6.8. Product of Dioids

Given p dioids (Ej, @i, ®i), the product dioid is defined as the set E=E; x
Eox - - - x Ep endowed with the “ product” laws & and ® defined as:

X1@1Y1
()= ()
Vx=|:]1€E Vy=|:]|eE xoy= ]

* Yo Xp ©p Yp

X1 ®1Y1
X®Y = X2 @2 Y2
Xp ®p Yp
We already know (see Sect. 5.4) that (E, @, ®) isasemiring. It is moreover canon-
ically ordered by @ in view of the fact that the monoids (E;, @;) are canonicaly
ordered.
We easily check the following:

Proposition 6.8.1. The product of p dioids is a dioid.

Example 6.8.2. Dioids of signed non standard numbers

Letusconsider thepair (a, 5) € Ry xSwhereS = {+, —, 0, ?} istheset of signsof
qualitative algebra (see Example 6.1.3). With every real number x, we thus associate
four non standard numbers x*, x—, x°, x? corresponding respectively to: x obtained
as the limit of a sequence of numbers >x(x™); of a sequence of numbers <x(x™);
of a sequence of numbers all equal to x(x°); of a sequence of numbers convergent
towards x(x?).
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We define the addition & of two signed non standard numbers (a, s) and (b, o) as
(@9 ® (b,0) = (a+ b, s+0)
and the multiplication ® as
@9 ® (b,0) = (&b, sx0)

where + and x are the addition and multiplication of qualitative algebra (see
Example 6.1.3).
(R, xS, ®, ®) isthenadioid, asaproduct of thedioids (R, +, x) and (S, +, x).
In the case where we consider the non standard numberson R x S, we no longer
obtain adioid, but a semiring, see Chap. 8 Sect. 3.1.2. ||

Observe that, as a general rule, the product of adioid and aring is neither a dioid
nor aring but a semiring (see Chap. 8 Sect. 3.1).

6.9. Dioid Canonically Associated with a Semiring

Proposition 6.9.1. Let (E, @, ®) be a semiring in which the canonical preorder
relation < is not an order relation. Let R be the equivalence relation defined on E
as:Va,be E:

aRb&s a<b and b<a

Then the set E' = E/R, endowed with the laws induced by & and ® is a dioid, which
we call dioid canonically associated with (E, &, ®).

Proof. TherelationR, defined aboveisclearly reflexive, transitiveand symmetric. It
is therefore an equivalence relation. The elements of E’ are the equivalence classes
relative to R on E and we still denote @ and ® the operations induced on E' by
the operations @ and ® on E. The neutral elements are the equivalence classes
corresponding to the neutral elementse and e. Clearly (E, @, ®) isasemiring.

Furthermore, the preorder relation < on Einduceson E’ an antisymmetric preorder
relation, that isto say an order relation.

Finaly, as (E, ®, ®) isasemiring, ¢ is absorbing by ®. It follows that in E' =
E/R, the class of the element ¢ is absorbing for the law induced by ®. (E/, &, ®) is
thereforeadioid. O

Example 6.9.2. Let E be the semiring product of the dioids E; = (N U {400},
Min, +), and E; = (N, +, x) and of thering: E3 = (Z, +, x)

X1
The elements of E are therefore ordered triples | x2 |.

X3
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We easily verify that the dioid canonically associated with (E, @, ®) is, in this
example, isomorphic to the product dioid E; x E (see Sect. 6.8). ||

6.10. Classification of Dioids

Table 3 sums up the main properties of the various types of dioids. The first line

indicates the basic properties common to all dioids, the following lines only show

the additional properties corresponding to the sub-classes under consideration.
Figure 3 provides a graphic representation of the classification.

Table 3 The main types of dioids and their basic properties

Properties of Propertiesof |Relation Additional properties
(E, ®) (E, ®) < comments
Commutative Monoid ® right and left distributive
Dioid monoid, neutral neutral Order with respect to @
elem. ¢ elem. e ¢ absorbing for ®
Symmetrizable .
dioid Hemi-group
Idempotent | dempotent
dioid monoid
Doubly — | dempotent |dempotent
idempotent dioid | monoid monoid
Doubly idempotent - dioid
Distributive | dempotent |dempotent with the aditional progerty:
|attice monoid monoid XSy & XQy=xwhere=
isthe canonical order relation
with respect to @
Idempotgnt- | dempotent Cancellative Idempotent dioid and ®
cancellative - : -
- monoid monoid cancellative
dioid
|dempotent- -
invertible Idempotent Group _Idempotent dioid and ®
o Monoid invertible
dioid
Selectivedioid | Selective monoid Total order
Selective- . . ) L
cancellative Selec’glc\j/e Cancgl(;atlve Total order Selec;ltllvg dioidand ®
dioid monoi monoi cancellative
Selective- Selective Total Selective dioid and ®
invertible ] Group ; -
o monoid order invertible
dioid
D_Ol_Jny selective Select_lve Select_lve Total order
dioid monoid monoid
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RIGHT
AND/OR LEFT
DIOIDS

IDEMPOTENT
DIOIDS

SYMMETRIZABLE OTHER DIOIDS
DIOIDS

DOUBLY-
IDEMPOTENT
DIOIDS

DISTRIBUTIVE
LATTICES

IDEMPOTENT-
CANCELLATIVE
DIOIDS

SELECTIVE-
CANCELLATIVE
DIOIDS

OTHER
IDEMPOTENT DIOIDS

IDEMPOTENT-
INVERTIBLE
DIOIDS

SELECTIVE-
INVERTIBLE
DIOIDS

Fig. 3 Classification of dioids

Exercises

Exercise 1. We consider R endowed with the law & defined as:
a®b=al+b)Y2 4+ b1+ DY
(1) Show that (R, @) isasemigroup by establishing the formula of associativity:

@@ b) dc=al+b)Y2(1+AY2 4+ b1+ ad)Y?(1+ A2
+cl+ Y21+ H)Y2 1+ apbe

(2) Find the same result by carrying out the change of variable a = sh(a) and
b = sh(B) and observing that a® b = sh(a + B).

(3) Show that [0, 1] endowed with the law & defined asa@® b = a(1 — b?)1/2 +
b(1 — a?)%/2 is aso asemigroup.
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Exercise 2. Study of t-norms and t-conorms

Boolean algebra provides a very natural model of binary logic. To generaize
the logical AND and OR, a great variety of operations on the interval [0, 1] have
been proposed in the literature, in particular in the context of so-called “fuzzy”
logic. The most classical ones are the operations referred to as triangular norms
(or t-norms) which generalize logical AND and triangular conorms (or t-conorms)
which generalize logical OR. They were introduced by Menger in 1942, to define a
triangular inequality in stochastic geometry.

A binary law = on [0, 1] isatriangular norm (t-norm) if ([0, 1], *) is an ordered
commutative monoid having 1 as neutral element and O as absorbing element. It is
Archimedean if and only if * iscontinuousand ax a < ava €]0, 1J.

(1) Consider afunction ¢: [0, 1] — [0, +oc0o [continuous and decreasing, satisfying
@) = 0. If (0) = +o00, we set:
axb= ¢ o@ + ¢(D)].
If ¢(0) < 400, we call pseudo-inverse of ¢ the function ¢~ defined as:

WD = 1970 i x€0.0(0)
0 if X e]e(0), +oo[
andweset axb = ¢ D[p(a) + ¢(b)] (seeillustration in Fig. 4).

Show that the binary law * is an Archimedean t-norm. ¢ is called the additive
—X

. 1
generator of the t-norm. Possible examples are: ¢(x) = —Inx, ¢(X) =

(2) A binary law @ on [0, 1] is atriangular conorm (t-conorm) if ([0, 1], @) isan
ordered commutative monoid having 0 asneutral element and 1 asabsorbing ele-
ment. ItisArchimedean if and only if @ iscontinuousanda @ a > aVva €10, 1J.

Consider afunctiong: [0, 1] — [0, +oo[ continuousand increasing satisfying
g(0) = 0. If g(1) = 400, we set:

a®b =g 'g@ + gb)]

®(0)

@@) + @) [eeerene

¢(a)

@(b)

0 axb a b 1

Fig. 4
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If g(1) < 400, we call pseudo-inverse of g the function g"~2 defined as:

gl if xel0,g(1)]

(G) _
g 0=1, it x e]g(1), ool

and we set
a@b=g""[g@ +gb)
Show that the binary law & is an Archimedean t-conorm. g is called the additive
generator of thet-conorm. Possibleexamplesare: g(x) = x%, g(x) = —In(1—x),
g(x) = e/M —1(h > 0).
Show that, through duality, every t-norm = generates a t-conorm @ and
conversely according to:

agb=1-[1-a*(1-Db)]
axb=1-[1-a @ (1-b)].
In the literature on fuzzy sets, the triangular conorms @ are considered as
generalizations of the set union and the triangular norms * are considered as
generalizations of set intersection.
(3) Show that al the continuous triangular norms are constructed through isomor-
phism (or ordina sum) from one of the three fundamental norms:
* = product  (strictly monotone triangular norms)
axb=Max(0,a+b—1) (nilpotent norms)
axb = Min(a, b) (thisisthelargest of the triangular norms,
and the only one that isidempotent).
[Indications: (1) and (2) see Dubois (1987), (3) Schweizer and Sklar (1983). For the

study of pseudo-inverses, refer to Chap. 3, Sect. 8 where residuable functions are
discussed.]

Exercise 3. Passing to the limit in the monoid (R, @©p)
(1) Show that the operation @y (p integer) defined on R, as

1/p

a®pb = (a” + bP)”" endowsR with aregular monoid structure.

Show that @) “tends” towards the max operation when p — +oo.
(2) Show that the operation @ (p odd integer) endows R with agroup structure.

b if |a < b
Showthat lim a@pb= b if a=b
p—>+oo .
0 if a=-b

Show that this limit operation is not associative.

[Answers: (2°) Counter-example: (a@®p b) ®p ¢ # adp (b Gp ¢) withb = —a,
lal > [cl].
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Exercise 4. L eft semiring and lattice
We consider aleft semiring S = (E, @, ®), therefore only satisfying left distribu-
tivitya® (b c) =a® bd a® c(see Sect. 5.1).

(1) We assume that S satisfies the following relation:

Ya®boc=(@dc)®bedc) VabceS
Show that @ and ® are idempotent.
Deduce that the semiring is adistributive lattice.

(2) We assume that S satisfies the relation (ii):

(i)ae=e Vae$S
Show that if Ssatisfies (i) and ® isidempotent, (i) holds.

(3) Show that (i) implies (ii).
[Indications:

(1) a=b=c¢in(i)impliesc=c?anda=¢,b=c¢impliesc=c®c.
According to Proposition 6.5.7, it sufficesto show thata < b = a®@ b = a
From (i), witha= ¢, wederivec=c® b® c/]

Exercise 5. Positive semiring and positive dioid
A semiring is said to be positive (see Eilenberg) if and only if it satisfies:

(adb=¢ =>a=¢ and b=c¢
(ila®@b=¢ =a=¢ or b=¢

(1) Show that adioid always satisfies (i).
A dioid is therefore positive if and only if it satisfies (ii) (such dioids are also
referred to as “entire dioids”).

(2) Show that adioid whichisagroup for the second law isapositive dioid. Positive
semirings (and consequently positive dioids) are often referred to as semi-fields
(see Exercise 8).

[Answer: (1) see Proposition 3.4.8].

Exercise 6. Show that a complete sup-semi-lattice having a smallest element is a
complete lattice.
[Indications: see (Dubreil and Dubreil-Jacotin 1964, pp. 175-176).

For a subset A of the sup-semi-lattice (E, <), consider the set T of lower bounds
of A and show that the upper bound of T belongsto T].

Exercise 7. Idealsand filters

(1) Show that the descending sets of an ordered set (E, <), endowed with set union
and set intersection, form a complete lattice.
(Werecall, see Sect. 3.1, that aset S ¢ Eiscalled descendingif x € Sandy < x

implyy € 5).
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(2) Show that the set of ideals of an ordered set, endowed with thetwo laws| A J =

INnJIivi= nK isacomplete lattice. (We recall, see Sect. 3.1, that an
K ideal,KclUJ

ideal Sisadescending set suchthat forala,be S,avbe S).

Exercise 8. |dempotent semi-field and inf-dioid

We call inf-dioid (Gaubert 1992) an idempotent dioid (E, @, ®) such that every
pair of elements (a, b) € E? has alower-bound (denoted a A b) with respect to the
canonical order.

(1) Show that an idempotent-cancellative dioid (idempotent semi-field) is an inf-

dicidandthaaarnb=b@®b)~la

Show in addition that the lower bound distributes with respect to the product:
(@arbec=@®c)Ab®c),c® (arb) = (c® a A (c® b) (the group
(E\{e}, ®) istherefore reticulated).

(2) Show that acomplete idempotent dioid isainf-dioid and that the law A, defined
as:aAb = @{x|x < aand x < b} makes (E, ®, A) acomplete |attice.

(3) Show that the dioid B [X] of the polynomials with Boolean coefficients in an
indeterminate X is an example of an inf-dioid which is neither complete, nor an
idempotent semi-field.

(4) Show that a non-trivial idempotent semi-field (i.e. non reducible to {e, e}) does
not have alargest element, and in particular that it is not complete.

[Answers: (1) see Gaubert (1992). Complete counter-example ( ® xk¢B [X]),
keN

idempotent (e@® X) ® (e® X?) = (ed X) ® (e® X @ X?), therefore ® is not
cancellative)].

Exercise 9. Interval algebras
We consider the set Int(R) of theintervalsof R of theforma = [a, al witha < a

(2) On Int(R), let us consider the addition of intervals & defined as:
a®b=[a+b a+b]

Show that (Int(R), @) is a commutative monoid with neutral element [0, O] non
canonically ordered. Let Int(R), the set of the intervalson Ry (0 < a <
a). Show that (Int(Ry.), @) is canonically ordered and that each interval is a
cancellative element of Int(R..).

On Int(R), we now consider the multiplication ® defined as:

ab={X|x=a-B,acapecbh}
Showthata ® b= [min(a-b,a-b,a-b,a-b), max (a-b,a-b,a-b,a-b)]and

that @ is not distributive with respect to ®.
Show on the other hand that (Int (R.), &, ®) isasymmetrizable dioid.
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(2) OnInt(R), consider the operations & and ® defined as

a® b = [min(a b), max(, b)],
a®b=[a+b,a+b].

Show that (Int(R), @, ®) is an idempotent dioid.
(3) On Int(R), consider the operations & and ® defined as

a® b = [min(a, b), max(a b)],
a®b=anh.

Show that (Int (R), @, ®) isanondistributive lattice.
(4) On Int(R), consider the operations @ and ® defined as

a®b=anhb,
a®b=[a+b a+bl.

Show that ® is not distributive with respect to &.

[Indications:
(1) Chapter 8, Sects. 1.1.1,1.4.6,4.2.2. (2) Chap. 8, Sect. 4.3.4. (3) nondistributive:
a=[-3,-2,b=[23,c=[-11]; @dby®c=c,(a®c & (b®c) =d].

Exercise 10. Newton polygon of an algebraic equation

(1) Let us consider the algebraic equation on the reals:
£2 +ey — y3 =0
When e — 07, I. Newton seeks solutions in the form
y(e) = bie"t + boeh2 4 ...

withO < pg < pp < - -+
Show that the j; are the nondifferentiability points (corners) of the concave
function

f(w)=min{2, 1+, 3pn}.

Deduce the solutions.
(2) In amore genera way, consider the algebraic equation

n Nj .
Pe.y)=) [ aje" |y =0
j:O i=0
When ¢ — 01, we seek the n solutions in the form:

y(e) = bpe"t 4 bpet2 4 ..

withO < pg < pp < - -+
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Show that the v, are the nondifferentiability points (corners) of the concave
function
f(n) = I\{”jn{\)ij +ip}.

[Indications:

(D y(e) =—Ve—eyE) =+/e—e.
(2) Newton—Puiseux theorem (after Gaubert 1998).

See also Dieudonné 1980. pp. 106-112]

Exercise 11. Pap’s g-calculus

Let us consider a strictly monotone function defined on the finite interval
[a, b] ¢ R with values in [0, +o¢], such that either g(@) = 0 and g(b) = +o0,
org(b) = 0and g(a) = +oo.

We set

udv =g g +gw)
uU® V=g HgU) - gv))

(1) Show that ([a, b], @, ®) isadioid withe = g~1(0) ande = g~ (1).

(2) Now, we assume g to be continuously differentiable on [a, b].
Let f: [c,d] — [a b]. If the function f is differentiable on [c, d] and has the
same monotony as the function g, then we define the g-derivative of f at the point

X € [c,d] as. o
d f(x)_ _1 i
=g (dxg(f(X))>.

dx

Let f1 and f2 be two g-differentiable functions on [c, d] with valuesin [a, b].
Show that for every '\ € [a, b] we have

d® (f1 @ o) . d®f, o d®f,

® dx dx dx
@ @
iy LD (Zx®f) =@ (L—Xf
(iii) d;% =gl =e
2D (Shon) e (ne 2
Calculate dof () forg(uy=eYandg(u) =In 1+ -

(3) We define recursively the n-g-derivative of f: [c, d]_—> [a, b] (if it exists) from
the (n — 1)-g-derivative as

dMmef d® [dm-Def
dxn Z& dxn—1
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(3a) If the n-g-derivative of f exists, show that we have:
dWef 1 d
=g | —qg(f
ax g (dx"g( (X)))

(3b) Let h be afunction defined on [a, b] C [0, co] and f: [c,d] — [a b] and
F(x) = h(f (x)). We assume that f isderivable at xg € [c, d] and that h hasa

derivative at f (xp).
%]
Show that z)((XO) exists and that
d®F(xo)  d®[h(f(xon] _ d® d®gL(f (x0))
v i ®&g (h(f(Xo))®T.

(4) For ameasurable function f: [c, d] — [a, b], we define the g-integral

@ d
/ fax = gt ( g(f)dx).
C

[c.d]

(4a) Show that the g-integral is linear with respect to (@, ®).
(4b) Show that

® @ @ ®
fi<fo= /fldxs /fzdx, / fdx = /fdx@ / fdx.
1 [ [ef]

[c,d] [c,d] [c,d]Ule,f c,d]

(4c) If fiscontinuouson [c, d], then

(4d) If f has a continuous g-derivative on [c, d], then

®
d®f
v @f(c)=f(x) foralxelcd].

[e.x]

@
(4e) Calculate [ xdx for g(u) = Y.
[X,+00]
(5) Letusassumethat f: [c, d] x [a b] — [a&, b] iscontinuous, that {s is defined and
continuouson J = {X: Xo — h < X < Xg + h} C [c, d] with valuesin [a, b] and
that (xo, Yo) € [c, d] x [a, b] with y(xo) = Yo.
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(5a) Show that a necessary and sufficient condition for s to be the solution of:

d® B
x f(x, P (X))

on Jisthat | satisfies the g-integral equation

®
Y(X) =Yo @ / f@,g@)d forxeld

(X0,X)

(5b) We consider the second order ordinary differential equation for p > 0 and
neR*:

Yy +(@-Dy )+ @npx T —x"PyP) y'+n(np—1)x 2y =0 (1)
Show that thisequation can beexpressed successively inthefollowing forms:

y - (yP) = (x"PyPy”
d® d@e N 2
y® &(y) = F(X ®Y)

where the generator g(x) is equal to xP.
(5¢) Show that theinversex* of an element x € [a, b] isequal tox* = g~* (g(_lx))
and that, for every n € N,

XBXP--®X=0g L (n) ®x.
[N ——

n times

(5d) Show that for a g-derivable function f(x), we have

dof 1 da®
f@o — =—gi(=  fRf).
®dx g (2)®dx(®)

(5€) Show that equation (2) can be solved and yields

1 2 d n

- = — 3

SIWFe= 2 gxy) ©)

where c is a constant.
By setting t = yP, show that (t, x) satisfies the Riccati equation:
1
t = Ex*””t2 —npx~tt+cx ™.

Investigate the case where np = 1.

[Indications:
see Pap (1995), Sects. 8.3 and 8.4.
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@ Forgluy=e Y upv=—IneY+e V) ,u®v=u+vad
®
d ;fx) =f(x) —In(—f'(x)) for f'(x) <O.
2 (x)
_ ® exp | = -1
For g(u) =In —1+ E g‘l(u) = —zuu +i and d ;X(X) = <12ff/ff)()> .
exp <17f2(><)> +1
®
4 [ xdx=x.
[X,+o0]

(5b) We multiply (1) by p x™ yP~1 and we integrate.
Ifgx) =xPforp>0,udv=@W+vP)’Pandu@v=u-v.
(5e) We apply 5d to (2) to obtain

-1 (L QY ® @c—f(xr‘@)
g (3)eyeyda=o y

where ¢, is aconstant.
/ -1 1 2
Fornp= 1, wehavet =X §t —t+c).

This corresponds to the equation initially considered:

Y+ -y ty)+xt2-yP)y =0.1]



Chapter 2
Combinatorial Properties of (Pre)-Semirings

1. Introduction

Many results of classical linear algebra, such as the well-known Cayley—Hamilton
theorem, first established in the context of vector spaces on fields, do not actually
requireall the propertiesof these structures. We show in thischapter that many known
results of thistype are deduced from purely combinatorial propertieswhich arevalid
in more elementary a gebraic structures such as semiringsand pre-semirings. Wewill
not even require the dioid structure since there is no need to assume the presence of
acanonical order relation.

In the present chapter we will thus consider matrices, polynomials and formal
series with elements or coefficients in a pre-semiring or in a semiring.

The basic definitions concerning matrices, polynomials and formal series are
introduced in Sects. 2 and 3.

Definitions and basic propertiesfor permutations are recalled in Sect. 4.1, and the
concepts of a bideterminant and of the characteristic bipolynomial of a matrix are
introduced in Sects. 4.2 and 4.3.

Section 5 presents a combinatorial proof of the extended version of the classical
identity for the determinant of the product of two matrices. Section 6 provides a
combinatorial proof of the Cayley—Hamilton theorem generalized to commutative
pre-semirings.

In Sect. 7, we focus on the links between the bideterminant of a matrix and the
arborescences of the associated directed graph. An extension to semirings of the
classical “Matrix Tree Theorem” is first established in Sects. 7.1 and 7.2. A more
general form of thisresult is then studied in Sect. 7.4, which may be considered as
an extension to semirings, of the so-called “ All Minors Matrix Tree Theorem”.

Finally, aversion of the well-known Mac Mahon identity, generalized to commu-
tative pre-semirings, is presented in Sect. 8.

In order to derive each of the identities discussed in this chapter, a superficial
analysis might lead one to believe that it is enough to start from the corresponding
classical result (usually stated in the field of real numbers) and to simply rewrite it
by moving all the negative terms to the other side to make them appear positively.

51
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Theresult of Sect. 5 (about the bideterminant of the product of two matrices), aswell
as the generalization of the classical “All-Minors Matrix Tree Theorem”, which is
studied in Sect. 7.4, provide concrete examples where such an approach would lead
to awrong result; this indeed confirms the necessity of new direct proofs, different
from those previously known for the standard case.

2. Polynomials and Formal Serieswith Coefficients
ina(Pre-) Semiring

2.1. Polynomials

Let (E, ®, ®) be apre-semiring or a semiring with neutral elements e and e (for &
and ® respectively).

Definition 2.1.1. A polynomial Pof degree nin the variable x is defined by specifying
a mapping f: {0,1,.... n} — E where, Vk,0 < k < n,f(k) € E is called the
coefficient of x¥ in the polynomial P. P can thus be represented by the sum:

n
PO =) f® xK
k=0

where the sum is to be understood in the sense of the operation & (by convention
x0 = eand, VYk: e ® xK = £).

In accordance with classical notation, we denote E[x] the set of polynomialsin x
with coefficientsin E.
Let P and Q be two polynomials of E [x] defined as:

p
P) =) f® xK
k=0

q
QM) =) gk) @ x¥

k=0

The sum of P and Q, denoted S = P & Q, is the polynomial of degree at most
s = Max{p, q} defined as:

S
Se0 = Y () & g(k) @ X
k=0

(weagreetosetf(j) =eforj > pandg(j) = ¢forj > Q).
The product of Pand Q, denoted T = P® Q isthe polynomial of degreer = p+q
defined as:
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.
Te) =) tk) @ x*
k=0

with,Vk =0....r1:
thy= > fiHegj

0<i<p

0<j=q

i+j=k
¢ being the neutral element of @, E[X] has, as neutral element for &, the polynomial
denoted ¢(x), of degree O, defined as: e(x) = ¢ ® X0 = ¢. Likewise, e being the
neutral element of ®, E[X] hasas neutral element for ®, the polynomial denoted e(x)
of degree O defined as. e(x) = e® x° = e.

Proposition 2.1.2. (i) If (E, @, ®) is a pre-semiring, then (E[x], ®, ®) is a pre-
semiring

(i) If (E, @, ®) is a semiring, then (E[x], &, ®) is a semiring

(i) If (E, ®, ®) is a dioid, then (E[X], &, ®) is a dioid.

Proof. It followsfromthefact that the elementary properties of @ and ® on Einduce
the same propertieson E[X]. Let usjust show that, in case (iii), the canonical preorder
relation on E[x] defined as:

P<Q<« 3ReE[X] suchthat: Q=P®R

is an order relation.

p
If PO =) f(k)® xK
k=0
q
Q) =Y g(k) & x*
k=0

r
then P < Q = IR with: R(x) = Y_ h(k) ® x¥, suchthat: Q = P® R
k=0

r/
Similarly Q < P= 3R with: R'(x) = Y_ (k) @ XX suchthat: P= Q@ R’
k=0
Set K = Max{p, g, r, r'} and let us agree that:
If K>p, f(G =¢ forevery je[p+1,K]
If K>gq, g()=¢ forevery je[g+1K]
If K>r, h(j)=¢ forevery je[r+1 K]
If K>r, h({=¢ forevery jel[r+1K]
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WededuceVk =0, .... K:
3rk): gk) =fk) @ rk)
Irk): fk) =gk & rk
in other words:
fk) <gk), and gk) <f(k)

Since (E, @, ®) is a dioid, we deduce Vk: f (k) = g(k) and therefore P = Q.
(E[X], ®, ®) isthusclearly adioid inthiscase. O

The above is easily generalized to multivariate polynomials in several commu-
tative indeterminates X1, Xo, .. .. Xm, the set of these polynomials being denoted
E[X1, X2, . ... Xm].

2.2. Formal Series
Let (E, @, ®) be apre-semiring or a semiring with neutral elements e and e (for &
and ®, respectively).

Definition 2.2.1. A formal series F in m commutative indeterminates X1, X2, ... Xm
is defined by specifying a mapping f: N™ — E, where: V(k1, Ko, .... km) € N™,

f (kq, ko, . ... km) is the coefficient of the term x'f ® xgz Q- ® ernm
Formally, we represent F by the (infinite) sum:
F= 3 fke ka, ... km) @ XK @ - @ xkm
(kla k27 LI km)
eNm

Let us consider two forma series with coefficients f(ky, ko---km) and
g(K1, ..., km). Thesumisthe formal series of coefficients s(ky, . . . ky) defined as:

V(ky, ko« km) € N™:s(ky -« . km) =f (kg -km) @ g(ky - -« . km).

The product is the formal series of coefficients t(ky---kyn) defined as:
V(Ky...,km) € N™:t(ky, ko. .., km) = Xf(i1,i2...im) ® 9(j1, . . .jm) Where the
sum extends to al the pairs of m-tuples (i1, ...im) € N™, (j1,j2,...jm) € N™
such that:

i1 +j1 =K, iz+j2=Kkz, ....im+]jm = Km.
Proposition 2.1.2 of Sect. 2.1 easily extends to formal series as defined above.

3. Square Matriceswith Coefficientsin a (Pre)-Semiring

Let (E, @, ®) be apre-semiring or a semiring. We denote M, (E) the set of square
n x n matriceswith elementsin E.
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Given two matrices A = (a;) and B = (bjj) of M (E)
* Thesum, denoted A @ B, isthe matrix S = (sjj) defined as:

Vi, j:sj =& @by

» The product, denoted A ® B, isthe matrix T = (tjj) defined as:

n
Vi.jitj =) ak®bg (suminthe senseof @).
k=1

If E has aneutral element ¢ for @, the matrix:

isthe neutral element of M, (E) for @.
If, moreover, E has unit element e, and ¢ is absorbing for ®, then the matrix:

isthe unit element of Mp(E) for ®.
It isthen easy to prove the following:

Proposition 3.1. (i) If (E, ®, ®) is a pre-semiring then (Mh(E), P, ®) is a pre-
semiring

(i) If (E, ®, ®) is a semiring, then (Mp(E), d, ®) is a semiring (in general
noncommutative)

(iii) If (E, &, ®) is a dioid, then (Mp(E), @, ®) is a dioid (in general noncommuta-
tive)

Inthe subsequent sections, we study propertiesof squaren x n matriceswith elements
in acommutative pre-semiring (E, @, ®). For some of the properties considered, we
will have to assumethat (E, @, ®) has a semiring structure.

4. Bideterminant of a Square Matrix. Characteristic
Bipolynomial

In this section we introduce the concept of bideterminant for matrices with coeffi-
cientsin apre-semiring.



56 2 Combinatorial Properties of (Pre)-Semirings

4.1. Reminder About Permutations

Let © be apermutation of X = {1, 2, ..., n} where, Vi € X, n(i) € X denotes the
element corresponding to i through . The graph associated with 1 is the directed
graph G; having X as set of vertices and n arcs of the form (i, 7 (i)). Thisgraph can
contain loops (when (i) = i).

It is well-known that the permutation graph decomposes into disjoint elemen-
tary circuits (each connected component is an elementary circuit). If a connected
component is reduced to asingle vertex i, the corresponding circuit isthe loop (i, i).

Figure 1 below represents the permutation graph of {1, ... 7} defined as:

1) =7,712)=4,713) =5 7n4) =2, 15 =1 1(6) =6, n(7) = 3.

The parity of apermutation rt, isdefined asthe parity of the number of transpositions
necessary to transform the permutation t into the identity permutation.
Thus, in the above example, a possible sequence of transpositions would be:

WorNI A~
\
WOoONNO AR
¥
WOoONOINERE
¥
GQoOo~NPhwWNERE
\
~NOoO o~ wWNRE

The permutation of Fig. 1 istherefore even.
More generally, we can prove:

Property 4.1.1. The parity of a permutation rt is equal to the parity of the number
of circuits of even length of the graph G,; associated with the permutation.

Fig. 1 Permutation graph
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Example. The graph of Fig. 1 contains two circuits of even length (1, 7, 3, 5) and
(2, 4), the corresponding permutation is therefore even. ||

We call signature of a permutation =, the quantity sign () defined as:

sign(n) = +1 if miseven
sign(n) = —1 if misodd

It iseasy to seethat the signature of a permutation it can be calculated as:

sgnm = [[

C circuit of G,

(where |C| isthe cardinality of the circuit, and where the product extends to the set
of the circuits of Gy).

In the example of Fig. 1 we have three circuits: C; = (6) of odd length and
C,=(2,4); C3=(1,3,5,7) of even length. We clearly have:

sign(n) = (=)l x (—1)/Cl=1 5 (—1)ICsl-1
Hereafter we denote:

Per(n) the set of al the permutations of {1, 2, ..., n}

Per™(n) the set of all the even permutations of {1, 2,...,n} (the set of the
permutations of signature +1)

Per—(n) the set of odd permutations of {1, 2. .., n} (of signature — 1)

Wewill also make use of the concept of partial permutation: apartial permutation
of X = {1, ..., n}issimply apermutation of asubset S of X.

Example. If X ={1,...,7} S= {2, 3,5, 7} then o defined as:
02)=3;, @) =7, obB)=5 o7 =2
isapermutation of Sand a partial permutation of X. The domain of definition of o,
denoted dom (0),isS= {2, 3,5, 7}
With every partial permutation o of X = {1,...,n} we can associate the
permutation 6 of {1, ..., n} defined as:

5() = o) if iedom(o)
iy=i if i eX\(dom(o))

6 will be referred to as the extension of o.
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&

@

Fig. 2 Graph associated with a partial permutation o of characteristic +1: o € Part™(7)

Theparity (resp. signature) of apartial permutation o istheparity (resp. signature)
of itsextension 6.
The characteristic of apartial permutation o, denoted char (o), is defined as:

char(o) = sign(o) x (—=1)!

|o| denoting the cardinality of dom(o).

We observethat, if o isapartial permutation of order k (i.e. |o] = |dom(o)| = K)
and cyclic (i.e. such that the associated graph contains a single circuit covering all
the vertices of dom (o)) then: sign(c) = sign(é) = (—1)¥~1, hence:

char(o) = (—-1)&+1 = —1.
From the above, we deduce:

Property 4.1.2. For every partia permutation o, char(c) = (—1)" wherer is the
number of circuitsin the graph associated with o.

Example. For the partial permutation of {1, ..., 7} defined as:
02)=3;, @) =7, obB)=5 o7 =2
the associated graph (see Fig. 2) contains two circuits, therefore: char(o) = +1. ||

Hereafter, we denote Part(n) the set of al the partial permutations of {1, ..., n}
(Observe that Per(n) c Part(n)).

The set of partial permutations of characteristic +1, (resp. of characteristic —1),
will be denoted Part™ (n) (resp. Part™(n)).

4.2. Bideterminant of a Matrix

For a square matrix of order n, A = (gj) with elements in R endowed with the
standard operations, the determinant det (A) is classically defined as:
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det(A) = Z sign(m) (l—[ai,n(i)) 1)

nePer(n) i=1

or equivalently, with the notation of Sect. 4.1., as:

det(A) = ) (]ﬂ[a—,n(i))— > (]ﬂ[a,ﬂi)) @

nePert(n) \i=1 nePer—(n) \i=1

(the above sums should be understood in the sense of the addition of reals). This
notation is possible given that (R, +) isagroup.

If one wishes to generalize the concept of determinant to algebraic structures
featuring fewer properties, where addition does not induce a group structure, one
must introduce the concept of bideterminant.

Definition 4.2.1. (Bideterminant)

Let A = (&j) be a square n x n matrix with elements in a commutative pre-
semiring (E, @, ®). We call bideterminant of A the pair (det™ (A), det™ (A)) where
the values det™ (A) € E and det~(A) € E are defined as:

dett(A) = Z (Hai,n(i)) ©)

nePert(n) \i=1
n

det-(A)= > (1_[ ai,n(i)) 4
nePer—(n) \i=1

(the above sums and products should be understood in the sense of the operations ®
and ® of the pre-semiring).

4.3. Characterigtic Bipolynomial

In the case of areal n x n matrix A, the characteristic polynomial is defined as the
polynomial inthe variable '\ equal to the determinant of the matrix x| —A wherel is
then x n unit matrix:

Pa(h) = det(ul — A)
n
= Z sign(m) (H bi,n(i))
nePer(n) i=1

| bij = —a if i#]
where,‘v’l,].{bij=x_a{_j if =]



60 2 Combinatorial Properties of (Pre)-Semirings

We observe that, for every g, 1 < q < n, the coefficient of the term involving A"~
in the above expression can be expressed as:

Z sign(c)( l_[ (—a,o(i)))

celF’Iart(n) iedom(o)
ol=q
©®)
n
= Y (_1)c|,§gn(0)( I1 (a,o(i)))
ocPart (n) iedom(o)
lo|=q

For g = 0, the \." term has coefficient equal to 1. Observing that (—1)!°! sign(o) is
none other than the characteristic char(o) (see Sect. 4.1), (5) is rewritten:

> car(o)( I1 (a,cm)) (6)

oePart(n) iedom(o)
lo]=q

By denoting (see Sect. 4.1) Part™(n) (resp. Part™(n)) the set of partial permutations
of {1, ..., n} with characteristic +1 (resp. with characteristic —1) then the above
sum becomes:

n n
Z ( H (a,ca))) - Z ( l_[ (a,c(i))) (7)
oera?rt*'(n) iedom(o) oelpart—(n) iedom(o)
o|=q o|=

Now, when A = (aj) isamatrix with coefficientsin a pre-semiring (E, @, ®), one
isthen naturally lead to define the characteristic bipolynomial as follows.

Definition 4.3.1. (characteristic bipolynomial) Let A = (a;;) be a square n x n
matrix with elements in a commutative pre-semiring (E, @, ®). We call characteristic
bipolynomial the pair (PX(X), P, () where PJAF(X) and P, () are two polynomials
of degree n in the variable X, defined as:

n n
PA(M) = Z Z ( l_[ (ai,o(i))) @N"dp\" (8)
g=1 cel‘Da?rtJr(n) iedom(o)
ol=q

and:

PA = X (]_[ (a,oa))) ® "4 )

g=1 \ oePart—(n) \iedom(o)
lo]=q

(the sums and the products above are to be understood in the sense of the addition
@ and the multiplication ® of the pre-semiring (E, @, ®)).
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We observe that, in the case where (E, @, ®) isasemiring, e the neutral element
of @, isabsorbing and the formulae (8)—(9) give:

Pl = > (H a,m))

oePartt(n) \ i
lo]=n

NOEIY (1‘[ a,o(i>>

gePart—(n) \ i
lol=n

Since, for |o| = n, char(c) = (—1)" sign(o), we see that for even n, Part™(n) =
Per™(n) and consequently:

Pi(e) = det™ (A), Py (e) = det™ (A)
For odd n, we have Part™ (n) = Per—(n) and consequently:
Pi(e) = det™ (A), Py (e) = dett (A).

We thus find again the analogue of the classical property for the characteristic
polynomial:
Pa(0) = det(—A) = (=1)" det(A).

5. Bideterminant of a Matrix Product asa Combinatorial
Property of Pre-Semirings

Given two square n x n real matrices, a classical result of linear algebra is the
identity:
det(A x B) = det(A) x det(B)

In the present section we study the generalization of this result to square matrices
with elementsin acommutative pre-semiring (E, ®, ®).
If A=() B=(0bj ad C=A®B=(g)

with:
n
Gij = Z 8k ® b  (sumin the sense of the operation @)
k=1

Then, by definition (see Sect. 4.2):

dettfA@B) = > (HQ,HU)) (10)

nePert(n) \i=1
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For mt € Per™(n) fixed, we can write:

[Texi=]] (Z aik ® bk,n(i)) (11)
i=1

i=1 \k=1

By using distributivity, each term in the expansion of expression (11) is obtained by

choosing, for each value of i(1 < i < n),avaueof k € {1, ..., n}. In other words,
each term in the expanded expression is associated with amapping f:{1, ..., n} —

{1, ..., n}, and the value of the corresponding termin (11) is:

n
[ (@10 ®briy.xi)
i=1

By denoting F(n) the set of mappings: {1,...,n} — {1,...,n}, (10) can therefore
be rewritten:

n
det™(A®B) = Z Z H(ai,f(i) ® b iy, x i) (12)
feF(n) mePert(n) i=1
We would similarly obtain:
n
det"(A®B) = Z Z H(ai,f(i) ® b iy x i) (13)
feF(n) wePer—(n) i=1
Among the mappings of F(n), we find (even and odd) permutations, i.e.:
F(n) = Per™(n) U Per™(n) UF (n)

where F'(n) denotes the set of all the mappings of F(n) which are not permutations.
Expression (12) therefore decomposes into the sum of three sub-expressions:

at = Z Z ]_[(a,fm ® b iy, 7)) (14)

fePert(n) mePert(n) iﬁl

Bt = Z Z H(ai,f(i) ® bt i), (i) (15)

f ePer—(n) nePer+(n)ni=1

vyt = Z Z l_[ @iy ® br iy, n(i)) (16)

feF (n) mePert(n) i=1

In cases where f is a permutation, let g be the permutation 7 o f~1. In the
expressions (14) and (15) above, we can rewrite the term:

Let us then consider the expression o™
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f being an even permutation, f ~1 is even and g, as the product of two even
permutations is even. Then o™ can be rewritten:

a+=( > lﬂlam)@( 2. lﬂlbi’gm) (17)

fePert(n) i=1 gePert(n) i=1
= det™ (A) ® det™ (B)

Let us now consider the expression p+.
f being odd, f ~1 is odd and g, as the product of an even permutation and an odd
permutation, is odd. Then B+ can be rewritten:

B+=( Z ﬁa,f(i>)®( Z ﬁbi,g(i)) (18)

fePer—(n) i=1 gePer—(n) i=1
= det™(A) ® det™(B)

From the above, we deduce:

det"(A®B) =det™(A) @ det™ (B) @ det (A) @ det— (B) @ y"™  (19)
Through similar reasoning, we would prove that:

det” (A ® B) = dett(A) @ det~(B) @ det " (A) @ det" (B) @y~ (20)

with:

n
v =Y > Jl@si @bt (21)
feF (n) nePer—(n) i=1
Now we prove:

Lemma 5.1. The two expressions y*, given by (16), and y~, given by (21), take the
same value.

Proof. Let usconsider an arbitrary term of the sum (16) whose valueis:

n
0= Hai,f(i) ® bx iy, (i)
i—1

withf € F(n) and € Per™(n).

We are going to show that we associate it with aterm 6’ of expression (21) such
that 6’ = 0.

Sincef € F(n),fisnotapermutationof X = {1, ..., n}, whichthereforeimplies
that there existsip € X, iy € X, iy # o, k € X such that:

f(ip) = k = f (if) 22)
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If there exist several ordered triples (io, i, k) satisfying (22) we choose the smallest
possible value of k and, for this value of k, the two smallest possible values for ig

4
and iy,

2 Combinatorial Properties of (Pre)-Semirings

From the permutation rt, let us define the following permutation =’:

' (j) = n(i)¥j € X\{io. ip}.
' (i0) = n(ip).
7' (i) = m(io)

We observe that =’ is deduced from = by transposition of the elements ip and i,
consequently =’ € Per~(n). Furthermore, we observe that the same construction

that obtains (f, ") from (f, ) enables one to obtain (f, ) from (f, ).

Finally, we have:

6/

n
l_[ (a.t6) ® breiy. (i)
i=1

n
= 1_[ &) ® by iy, (i)
i=1
i #£ig
i £ )

n
= 1_[ ai.f (i) ® br iy, i
i=1
i #£ig
i £ )

=0
which completesthe proof. O

We have therefore obtai ned:

Theorem 1. Let A and B be two square n x n matrices with coefficients in a com-

mutative pre-semiring (E, @, ®).
Then:

® @iy ® brxiio) ® &y, ® by g

® 8oy ® br.n(io) ® &y, © By i

det™(A ® B) = det™ (A) ® detT (B) @ det  (A) @ det™ (B) @ y

and:

det " (A®Q) =det™(A) @ det” (B) @ det™ (A) @ det™ (B) ® y
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where:

y= > > (H 3 fi) ® bf<i),n<i)>

feF (n) nePert(n) \i=1

n
= > X (_H a.f(i) ® bf(i)JT(i))
feF (n) xePer—(n) \i=1
F'(n), in the above expressions, denoting the set of the mappings
f:{1,...n} — {1,...n} which are not permutations. O

As an immediate conseguence of the above, we find again the well-known resullt:
Corollary 5.2. If (E, &) is a group, then:
det(A ® B) = det(A) ® det(B)

Asalready pointed out in theintroduction, Theorem 1 above clearly does not directly
follow from the classical result (on thereal field). Indeed a different proof is needed
for the case of pre-semirings to get the exact expression of the additional term y
arising in both expressions of det™ (A ® B) and det™ (A ® B).

6. Cayley—Hamilton Theorem in Pre-Semirings

The Cayley—Hamilton theorem is a classical result of linear algebra (on the field of
real numbers) according to which a matrix satisfies its own characteristic equation.

Combinatorial proofs of this theorem have been provided by Straubing (1983)
and previously by Rutherford (1964). Rutherford’s result constituted, moreover, a
generalization of the theorem to the case of semirings.

Below we give a combinatorial proof inspired from Straubing (1983) and
Zeilberger (1985), but which further generalizes the theorem to the case of commu-
tative pre-semirings (indeed, it does not need to assume that ¢, the neutral element
of @, isabsorbing for ®).

Theorem 2. Let (E, ®, ®) be a commutative pre-semiring with neutral elements ¢
and e.

Let A be a square n x n matrix with coefficients in (E, ®, ®), and let (Pj{()\),
P, (1)) be the characteristic bipolynomial of A.

Then we have: P} (A) = P, (A) (23)

where:

PL(A) and P, (A) are matrices obtained by replacing »."~9 by the matrix A"~9in
the expression of Pjg()\) and P, (1), and where the following conventional notation
is used: A° denotes the matrix with diagonal terms equal to e and nondiagonal terms
equal to ¢; for every a € E, a ® A° denotes the matrix with diagonal terms equal to
a and nondiagonal terms equal to «.
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Proof. We show that each entry (i, j) of the matrix PX(A) isequal to the entry (i, j)
of the matrix P, (A).

Let ustherefore consider i and j as fixed.

Forq=0,1,..., n—1,thevaueof term (i, j) of the matrix A" Y is:

A= > | [T aa
pePij k.Dep
Ipl=n—q

where Pjj isthe set of (nonnecessarily elementary) pathsjoiningi toj inthe complete
directed graph on the set of vertices {1, . . ., n}, and where |p| denotesthe cardinality
(number of arcs) of the path p € Bjj.

For g = n, consistently with the adopted notational convention, (A"~9%);; =
(AY)jj isequal toe fori #j, andtoefori = j.

Furthermore, the coefficient of A"~ in PJAr (A) is:

Z ( l_[ a,o(i))

oePart™(n) \iedom(c)
lol=q

and, consequently, theterm (i, j) of the matrix PX(A) (by using the distributivity of
® with respect to &) is given by the following formulae. For i # j:

[y

n—

20 X ITaxfe] X 1 aeo||®] X Il au

g=1 pePyj  (k,Dep oePartt(n) iedom(o) pePj (k,1)ep
Ipl=n—q lo|=q Ipl=n
(24)
For i = j, we must add to expression (24) the extra term:

Z ( l_[ a,ca))

oePart(n) \iedom(o)
lo|=n

(which may be viewed as corresponding to the value g = n).
Let us denote ]—‘i}“ (resp. ]-'ij‘) the family of graphshaving X = {1,2,...,n} as
vertex set and whose set of arcs U decomposesinto: U = PU C where:

» Pisaset of arcsforming apath fromi toj;

e Cisaset of arcs such that the graph G = [X, C] is the graph associated with a
partiad permutation o of X with o € Part™(n) (resp. o € Part™(n)).
In other words, [X, C] isaunion of an even (resp. odd) number of digjoint circuits
(loops are alowed) not necessarily covering all the vertices.

* U =IP[+|C|=n.
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The weight w(G) of agraph G = [X, U] belonging to ]-'G“ or to ]—"-j‘ is defined as:

wG) = [] aau

(k,1)eU

Inthecasewherei # |, by expanding (24) (distributivity) we then observe that entry
(i,j) of PL(A)is:
Z w(G) (25)

Ge]—'ijfr

In the case where i = j, by considering that the path P can be empty in the decom-
position U = PU C, the additional term corresponding to q = nisclearly taken into
account in expression (25).
Similarly, it is easy to see that the entry (i, j) of P, (A) is, inall cases, (i = j and
i #]), equa to:
> w©G) (26)

Ge]—'ij_

It therefore remains to show that the two expressions (25) and (26) are equal. To do
s0, let us show that, with any graph G of ]—'IT we can associate a graph G’ of ‘7:ij7
of the same weight, w(G') = w(G), the correspondence thus exhibited between ]-‘i}“
and }‘ij‘ being one-to-one.

Let us therefore consider G = [X,PUC] € ]—"IT [X, C] isaunion of an even
number (possibly zero) of vertex-digoint circuits (Fig. 3 shows an example where
nN=2_8,i=1j=4).

Since |P| -: |C| )= n, we observe that the sets of vertices covered by Pand C nec-
essarily have at least one common element. Furthermore, the path P not necessarily
being elementary, P can contain one (or several) circuit(s).

Fig. 3 Example illustrating the proof of the Cayley—Hamilton theorem. A graph G < ]—‘ij+ for
n = 8, withi = 1andj = 4. The path Pisindicated in full lines and the partial permutation ¢ of
characteristic +1 (asit contains two vertex-digjoint circuits) isindicated with dotted lines
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Let us follow the path P starting from i until one of the following two situations
OCCUrs:

Case 1. We arrive at a vertex of P already traversed without meeting a vertex
covered by C;
Case 2. Wearrive at avertex k covered by C.

In case 1 we have identified a circuit I of P which does not contain any vertex
covered by C. In this case, we construct G’ = [X, P U C'] where:

e P isdeduced from P by eliminating the circuit T;
e C'isdeduced from C by adding thecircuit T.

We observe that C' now contains an odd number of disjoint circuits, therefore G’ €
Ty
j
In case 2, let I be the circuit of C containing the vertex k. We construct G' =
[X, P UC]where:
e P isdeduced from P by adding the circuit T;
e C'isdeduced from C by eliminating the circuit T.

Here again, C' contains an odd number of disjoint circuits, therefore G’ € Fij -

Furthermore, we observe that in the two cases, G and G’ have the same set of
arcs, thereforew(G') = w(G).

Finaly, it is easy to see that, the same construction by which G is transformed
into G’ can be used to transform G’ back into G: there is therefore a one-to-one
correspondence between ]-"”* and Fij - (seeillustration in Fig. 4)

From the above we deduce:

Y wG) = > wG)

Gefij+ GeF;;

which completes the proof of Theorem2. 0O

Fig. 4 The graph G’ obtained by including the circuit (3, 6, 8) in Pis an element of Ty and it has
the same weight as G
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7. Semirings, Bideterminants and Arborescences

In the present section we consider asquare n x nmatrix, A = (g;) with elementsin
a commutative semiring (E, &, ®). We assume therefore;

e That @ hasaneutral element ¢
e That ® hasaneutral element e.
e That ¢ isabsorbing for ® that isto say,

VX € E: ERX=XQ® e=¢

Forr € [1, n] wedenote A the (n — 1) x (n — 1) matrix deduced from A by deleting
row r and columnr.

We denote | the (n — 1) x (n — 1) identity matrix of M_1(E) with all diagonal
terms equal to e and al other terms equal to ¢.

7.1. An Extension to Semirings of the Matrix-Tree Theorem

Let us begin by stating below the result which will be proved in Sect. 7.2, and
which may be viewed as a generalization, to semirings, of the classical “Matrix-
Tree-Theorem” by Borchardt (1860) and Tutte (1948).

Theorem 3. (Minoux, 1997)

Let A be a square n x n matrix with coefficients in a commutative semiring
(E, ®, ®). Let A be the matrix deduced from A by deleting row r and column r(r €
[1, n]) and let B be the (2n — 2) x (2n — 2) matrix of the form:

B

where | is the identity matrix of M_1(E) and D the diagonal matrix whose diagonal
terms are:

di =Y a Vie({l...n\{r)
j=1

(sum in the sense of ®).

Let us denote by G the complete directed 1-graph on the vertex set X =
{1,2,...,n}and by 7, the set of the arborescences rooted at r in G. For an arbitrary
partial graph G of G, the weight of G, denoted w (G), is the product (in the sense of
®) of the values & for all the arcs (i, j) of G.

Then we have the identity:

dett(B) = det~ (B) & Z w(G) 0
GeTr
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7.2. Proof of Extended Theorem

To prove Theorem 3, let us consider thefollowing (2n — 2) x (2n— 2) square matrix:

[

We observe that the permutation applied to the columns of B to obtain B is even
if n — 1iseven, and odd if n — 1 is odd. Consequently, if n — 1 is even we have
det™(B) = det™ (B") and det™ (B) = det™ (B’). If n — 1isodd, we have: det* (B) =
det™ (B’) and det™ (B) = det™ (B").

L et ushegin by studying the propertiesof thebideterminant of B = (b ). We have:

2n—-2
dett®)= > (]_[ b{’n(i)) (27)

nePert(2n-2) \i=1

In the above expression, al the terms corresponding to permutations = of {1, ...,
2n — 2} such that b{’w(i) = ¢ for somei € [1, 2n — 2] disappear because of the
absorption property.

Conseguently, in (27), we only have to take into account the permutations m of
Pert(2n — 2) such that, for 1 <i <n—1:

ni+n—1=i o w(i+n—-1)=i+n-1

Each admissible permutation 7 can therefore be associated with a partition of X =
{1,..., n—1}intwo subsets U and V where:

U={i/ieX; ni+n-1) =i}

V={i/ieX; ni+n—-1)=i+n-1)
Furthermore, we observe that the columns of B’ indexed i_+ n—1withi € U
can only be covered by rows with index i € U. Given that D is diagonal, we must

therefore have:
VieU: n()=i+n-1

Each admissible permutation & can therefore be considered as derived from a
permutation ¢ of V (apartial permutation of X = {1, ..., n}) asfollows:

n(i) = o(i)
ni+n—1)=i+n-1
ni)=i+n-1
ni+n—-1 =i

VieV:

Vi e U:
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The graph representing 7t on the set of vertices {1, . .., 2n — 2} therefore consists of:

» Elementary circuits representing the partial permutation o;
e |V|loopsontheverticesi +n—1(i € V);
* |U] circuits of length 2 (therefore even) of the form (i,i +n—1),i € U.

The signature of T is therefore equal to
sign(m) = sign(o) x (—1)V!

hence:

sign(m) = sign(m) x (—1)2* VI

= sign(o) x (_1)|V| % (_1)\U|+\V|
= char(c) x (—1)"*
(sinceV = dom(o)).
Let usfirst assumethat n — 1iseven. Inthis case, sign() isnone other than the

characteristic of o asa partial permutation of X, and = € Per*(2n — 2) if and only
if o € Part™(n — 1). Then, (27) can be rewritten:

dett®)= > (]_[a,ca))@(]_[dn) (28)

oePartt(n—1) \ieV ieU
= det™(B)

We would obtain a similar expression for det ™ (B’) = det™ (B) simply by replacing
o € Part™(n — 1) in (28) with o € Part™(n — 1). (Fig. 5)

Let us now consider the case where n — 1 is odd. We then have sign(m) =
—char (o), and, consequently, we have:

det™B)= Y (Ha,o(i))@)(l_[dii) (29)

oePart—(n—1) \ieV ieU
= det™ (B)
(we obtain the expression of det™ (B’) = det™ (B) by replacing o € Part=(n — 1) in

(29) with ¢ € Part™(n — 1)).
Thus it is seen that, in both cases (n — 1 even or odd), the expression giving

det™(B) is:
dett® = > (H a,a(i)> ® (l_[ dii) (30)

oePartt(n—1) \ieV ieU

(where V. = dom(o) and U = X\V). The expression giving det™(B) is simply
deduced from the above by replacing o € Part™(n — 1) with o € Part=(n — 1).



72 2 Combinatorial Properties of (Pre)-Semirings
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Fig.5 Thematrix B’ and apartitionof X = {1, ..., n—1} intotwo subsets U and V corresponding
to an admissible permutation w of {1, ..., 2n—2}. Only thetermsdistinct from ¢ (neutral element
of @) are represented (by circles). The terms indicated in black are those corresponding to the
permutation 7. The partial permutation o isthe one induced by  on the sub-matrix of A restricted
to the rows and columns of V

Let usdenote £ (resp. ) the family of all directed graphs constructed on the
vertex set X = {1, 2, ..., n}, of theform G = [X, CU Y] where:

e Cisaset of arcsconstituting vertex-digjoint circuits and containing an even (resp.
odd) number of circuits;

* Y isaset of arcs such that, for every i € X\{r} not covered by C, Y contains a
single arc of the form (i, j) (the possibility j = i being authorized, as well as the
possibility j = ).

n
By expanding expression (30), that isto say by replacing each term d;; by ) &; and
j=1
by using distributivity, we then observe that det™ (B) can be expressed in the form:

det*(B)= Y w(G) (31)
GeF+
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where the “weight” w(G) of thegraph G = [X, CU Y] is:

wG =[] aa:

(k,1)eCuY
We would prove similarly that:
det”(B)= Y w(G) (32)
GeF—

Amongthegraphsof 7 U ~, thosewhich do not contain a cycle play aspecial role.
Indeed, inthiscase, C = ¢4, and the set Y does not contain a cycle and is composed
of n — 1 arcs (an arc originating at each vertex i € X\{r}). Y therefore forms an
arborescence rooted at r.

Since C = ¢, the subclass 7; (the set of arborescences rooted at r) is necessarily
included in F.

If we denote Ft=TuFr!

we can therefore write:

det*B) = Y WG & » WG (33)

GeTy GeFd
The end of the proof uses the following result (Zeilberger, 1985):

Lemma?7.2.1.

Y WG = ) w@ (34)

GeFd GeF~

Proof. It proceeds by showing that, with each graph G € FJ we can associate a
graph G’ of F~ withw(G") = w(G), and that the correspondence is one-to-one.

Let us therefore consider agraph G of 7 of theform G = [X, CUY].

This graph contains at least one circuit and [X, C] contains an even number
(possibly zero) of circuits. Among al the circuits of G, let us consider the one which
meets the vertex with the smallest index number and let I" be the set of its arcs.

If ' C Y thenlet usdefine G’ = [X, C' U Y'] with

C=cur
Y =Y\l

If I' c CthenletusdefineC’' and Y’ as;

C' =C\I'
Y =YUr
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In both cases, C’ contains an odd number of circuits, therefore G’ € 7, and as G
and G’ have the same sets of arcs:

w(G) = w(G).

Furthermore, we observethat the same construction whichtransforms G to G’ enables
oneto transform G’ back to G.

We would prove in the same way that, with every G € F~ we can associate
G € FF suchthat w(G') = w(G).

This completes the proof of Lemma7.2.1. O

By using Lemma 7.2.1, (33) is then rewritten:

det*(B) = )~ w(G) @ det™ (B). which establishes Theorem 3. O
Ge7T,

7.3. The Classical Matrix-Tree Theorem as a Special Case

In the special case where A isarea matrix on the field of real numbers, we see that

Z W(G) = dett(B) — det(B) = det(B)
Ge7y

where det(B) is the determinant of B in the usual sense and:

D:A
det(B)zdet[..;..}
5

=det(D — A)

From the above, we deduce the following corollary, known as the “Matrix Tree
Theorem”, due independently to Borchardt (1860) and Tutte (1948):

Corollary 7.3.1. Let A = (aj) be a square n x n matrix with real coefficients; D
n

the diagonal matrix whose ith diagonal term is dij = > _ &; A and D the matrices

=1
deduced from A and D by eliminating the rth row and the rth column (for any fixed r,
1 <r <n).Thendet (D — A) is equal to the sum of the weights of the arborescences

rooted at r in the graph associated with matrix A.

Theorem 3 can thusbe considered asan extension to semiringsof the* Matrix-Tree
Theorem”.
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7.4. A Still More General Version of the Theorem

A more general version of the “Matrix Tree Theorem”, known as the “All Minors
Matrix Tree Theorem” (see Chen (1976), Chaiken (1982)) can also be extended to
semirings. We present this extension below (Theorem 4).
LetA = (aj) beasquaren x nmatrix with coefficientsinacommutative semi-ring
(E, ®, ®),suchthatvi =1, ..., n: & = ¢ (the neutral element of & in E).
Foreveryie X ={1,2,...,n} set:

n

di = ax
k=1
K£i

Let L ¢ X be asubset of rows of A and K C X asubset of columns of A with
IL| = IK].

Let A be the sub-matrix of A obtained by eliminating the rows of L and the
columns of K. The rows and the columns of A are therefore indexed by L = X\L
and K = X\K.

By settingm = |L| = |K| and p = |L N K| let us consider the (m + p) x (M+p)
square matrix B having the block structure:

where:

Ip isthe p x pidentity matrix of the semiring (E, @, ®).

Qisam x p matrix whose rows areindexed by L and whose columns are indexed
by L NK; all itsterms are equal to e except thoseindexed (i, i) withi € L NK which
are equal to d;.

Risap x m matrix whose lines are indexed by L N K and whose columns are
indexed by K all its terms are equal to & except those indexed (i, i) withi e LN K
which are equal to e (the neutral element of ® in E).

For every subset Y ¢ X = {1,2, ..., n} let usdenotesign (Y, X) = (=1)*¥V-X)

where;

(Y, X) = [{(.])/i e X\Y,jeY.i<j}
and s(L, K) = sign(L, X) x sign(K, X) x (=DM,

Let us also consider theset 7 = 7+ U 7~ of all the directed forests H on the
vertex set X satisfying the following three properties:

(i) Hcontainsexactly |[L| = |K] trees;
(ii) Eachtree of H contains exactly avertex of L and a vertex of K;
(iii) Each tree of H is an arborescence, the root of which is the unique vertex of K
which it contains.

The subsets 7+ and 7~ are then defined as follows.
With each H € 7 we can associate a one-to-one correspondence n*: L — K
defined as: n*(j) = i if andonly if i € K and ] € L belong to the same tree of H.
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Then 7™ (resp. 7 ) isthe set of the directed forests of 7 such that sign (n*) = +1
(resp. sign (t*) = —1).
We can then state:

Theorem 4. (Minoux, 1998a)
If s(L, K) = +1then there exists A € E
such that:

He7T+
det=-B)= > wH)Y®A
HeT -~

[det+(B)= S wH) ® A

If s(L, K) = —1then there exists A € E such that:

dett*B)= Y wH)® A
He7T -
{det(B): Y wH) e A
HeT+

Proof. Refer to Exercise 1 at the end of the chapter where the exact expression of A
isspecified. O

The above result suggests, once again, an essential remark concerning the general
approach followed in the present chapter. In fact, suppose that we apply the simple
trick which consists in formally deducing the generalized result from the classical
result. The reader will easily be convinced that we can reformulate the classical
“All-Minors Matrix-Tree Theorem” as:

det(B) = Z w(H) — Z w(H)

HeT+ He7 —

If one thinks that it then suffices to rewrite the classical result by switching each
term appearing negatively to the other side of the equation, oneis led to propose a
generalized version of the form:

det"B)® Y wH)=det"(B)® Y w(H)

HeT - HeT+

which is not correct. Indeed, the above formula does not take into account the
additional term A which cancelsitself in the classical result.

Only adirect proof, specialized to the semiring structure, can exhibit this term
and provide the exact expression (see Exercise 1 at the end of the chapter).

8. A Generalization of the Mac Mahon Identity to Commutative
Pre-Semirings

Let usconsider asquare n x n matrix, A = (aj) with coefficients in acommutative
pre-semiring (E, @, ®).
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X1, X2, ..., Xn being indeterminates and my, mp, ..., my natura integers, we
consider the expression:
(a1 @ X1 D ap X2 ® -+ a1y @ Xn) ™
® (31 @ X1 D -+ @ apn ® Xn)2

(39

® (B @ X1 D -+ D am ®Xn)™
and wedenote K(my, my, ..., mp) the coefficient of theterminvolving le ®x212 ®

..~ ®Xn" in the expansion of expression (35).
The Mac Mahon identity (1915) (recalled in Sect. 8.2 below) establishes a link

between theformal seriesSin Xy, Xo, ..., Xn, With coefficientsK(my, my, ..., mp),
and the expansion of theinverse of the determinant of the matrix | — A Dy, where Dy
isthe diagonal matrix whose diagonal terms are the indeterminates X1, X2, . .., Xp.

In Sect. 8.1, we establish a more genera version of this result for commutative
pre-semirings by giving a combinatorial proof generalizing that of Foata (1965),
Cartier and Foata (1969) (see also Zeilberger, 1985). In Sect. 8.2 we show that the
classical identity can be found again as a specia case.

8.1. The Generalized Mac Mahon | dentity

Theorem 5. (Minoux 1998b, 2001)
Let (E, @, ®) be a commutative pre-semiring and A = (aj) € Mn(E).
Let S denote the formal series:

S= Z KMy, ..., M) ® X[t @ X2 @ - - @ X" (36)
(Mg,...Mn)

where the sum extends to all distinct n-tuples of natural integers.
Then we have the following generalized Mac Mahon identity:

S® Z l—[ i o) ® Xo(i)

oePart™ (n) iedom(o)

(37)
=edS® Z l_[ 3 o) ® Xs(i)
oePart™ (n) iedom(o)

Proof. Let us consider the family G(my, ..., mp) of al the directed multigraphs of
theform G = [X, Y] where X = {1, 2, ..., n} isthe vertex set and where the set of
arcsY satisfies the two conditions:

(1) Vi e X, Y contains exactly m; arcsorigining at i

(2) Vi € X, Y contains exactly m; arcsterminating at i

(observe that the graphs of the family G(mg, ..., mp) can obviously contain loops).
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Theweight of G = [X, Y] is defined as the formal expression:

wG) = [] @ ex)
k,DHeY

(product in the sense of ®) with the convention w(G) = eif Y = #.
We then verify that:

KM, ....,m)X 2 @ X2 @ -+ ®@ X"
= ). WO
Geg(mq,...,mp)

Consequently, the expression S given by (36) can be rewritten:

> Y wG) =) wO)

(mq,...., mp) GeG(my,....mp) Geg

with 6= |J G, ...,mp
Mp)

(mg, ...,

(union extended to all distinct n-tuples of natural integers).
Let us now consider the family F* (resp. F~) of all the graphs of the form
G =[X,Y UC]where:

c [X,Y]eg

« [X, C] isthe graph representative of a partial permutation o € Part™(n) (resp.
o € Part™(n)). It is therefore a set of arcs forming an even number (resp. odd
number) of elementary vertex-digoint circuits (some of these circuits may
be loops).

We then observe that the left-hand side of (37) is equa to: > w(G) and the
GeF+
right-hand side of (37) isequal to: e® > w(G).
GeF~

Among all the graphs of the family 7+ U F~, let us consider Gg = [X,Y U C]
with Y = ¢ and C = ¢. In this case, the graph [X, Y] corresponds to m; =
0,mz =0, ... mp = 0, itisthereforethe unique element of thefamily G(0, O, ... 0).
Furthermore, Gg € F* since C = ) corresponds to an even number of circuits, and
w(Gg) = e.

Consequently, it suffices to establish that:

Y wG) = ) w©G) (38)

GeF+\Gy GeF~

To do so, we are going to exhibit a one-to-one correspondence between F1\Gg and
F~ such that, if G € FT\Gg and G’ € F~ are images through this one-to-one
correspondence, then w(G') = w(G).

All the graphs of the form [X,Y U C] in (FT\Go) U F~ are assumed to be
represented by adjacency lists with the following convention: for every i € X, if i
belongstoacircuitin[X, C], thenthearc of origini in Cisplaced inthefirst position
of thelist of the arcs of origini.
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Now, let us consider G = [X, Y UC] € F\Gg. Since G # Go, there exists at
least one vertex of nonzero degree in G. Among these, let ig be the vertex having
minimum index number.

Observethat C consists of an even number of vertex-disjoint circuits (this number
may possibly be zero).

Let us traverse the partial graph [X, Y] starting from vertex ig by using the arcs
of Y as follows: from every intermediate vertex i encountered that is not covered
by C, we take the arc (i, j) which appears first in the adjacency list of vertex i. The
traversal stops when one of the two following situations arises:

Case 1. We arrive at a vertex already encountered in the pathway before having
encountered a vertex covered by C;
Case 2. We arrive at avertex k covered by C.

In the first case, we have exhibited a circuit of the partial graph [X, Y], which does
not have acommon vertex with C. Let ' C Y bethe set of itsarcs.
Wethenform G =[X,Y' uC]
with Y =Y\
C=Cur
In the second case, C contains a circuit passing through k and let T be the set of its
arcs. Thenweform G’ = [X, Y’ U C'] with:
Y =Yur
C =C\I'
Moreover, theadjacency list of each nodei covered by thecircuit I'ismodified insuch
away that thearc of I which originatesat i becomesthefirst in theadjacency list fori.
In both cases, C' contains an odd number of vertex-disjoint circuits. Furthermore,
the sets of arcs of G and G’ being the same, we have w(G') = w(G).
Finaly, we observe that, thanks to the convention established concerning the
order of arcsin the adjacency lists, the same construction which transforms G into

G’ enablesonetotransform Ginto G'. Thisistherefore a one-to-one correspondence
between F+\Gg and F~, which completes the proof of Theorem5. O

8.2. The Classical Mac Mahon | dentity as a Special Case

It isinteresting to verify that the generalized form (37) of the Mac Mahon identity
includes, as a special case, the usual form on the field of real numbers, which is
expressed by the following corollary:

Corollary 8.2.1. S being defined as in expression (36), and B denoting the matrix
B = (bij)i=1,...n = (§jXj)i=t1..n, We have:
j=1,..n j=1,..n
Sxdet(l-B)=1 (39)
Proof. See Exercise 2 at the end of the chapter and Minoux (1998b, 2001). O
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Exercises

Exercise 1. We consider the real matrix:

4

0
A= >
-2

POWN
NG NN
|
o wN P

onadioid (R, &, ®).

(1) Givetheformal expression of thebideterminant of A, by formally stating det™ (A)
and det~(A).

(2) Compute the value of the bideterminant when the dioid under consideration
is (R, Max, Min). Check that Max{det™ (A); det™(A)} is indeed equal to the
optimal value of the «bottleneck » (Max-Min) assignment problem.

(3) Compute the value of the bideterminant when the dioid under consideration is
(R, Max, +). Check that Max{det™(A); det™(A)} isindeed equal to the optimal
value of the assignment problem (where the objective isto maximize the sum of
the selected entries).

(4) Check the Cayley—Hamilton theorem for A in both cases ((R, Max, Min) and
(R, Max, +)).

E_xercisez. We consider the real 4 x 4 matrix with entries in the dioid
(R, Min, +):

© 4 0 1
0 co-1 2
3 500 -3
-21 6 o©

A=

which is a generalized adjacency matrix corresponding to the complete oriented

graph.

(1) Set up the list of all arborescences with root r = 1 in the above graph, and
calculate the sum S (in the sense of @ = Min) of the weights of these arbores-
cences. Werecall that, inthe Matrix-Tree Theorem (see Theorem 3, Sect. 7.1), the
arborescences involved are those having arcs oriented from the pending vertices
to theroot. The vertex r = 1 has thus zero out-degree.

(2) Check the generalized version of the « matrix tree theorem » on this example, in
other words that det™ (B) = Min {det™ (B); S}

DA
where B isthe 6 x 6 matrix: | - -

-1
where: _
A isdeduced from A by deleting the first row and the first column of A; D isthe
diagonal matrix with diagonal entries:

di = Min {aj} Vvi=234
1,...n

.....
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[Answers:

(1) Thereare 16 distinct arborescencesrooted at r = 1 inthisexample. For instance
the arborescence composed of the arcs (2,1) (3,1) (4,1) with weight 1 (= 0+
3 — 2); the arborescence composed of the arcs (2, 1) (3, 1) (4, 2) with weight
4, etc. The minimum of the weights of these 16 arborescencesis S = —6, and
corresponds to the arborescence (4, 1) (2, 3)(3, 4).

) oo -1 2 _ -1 00 o
(2) Wehave A=|5 00 —-3| and D=| o0 -3 >
1 6 o0 oo —2

and it can be checked that:
det™(B) = —6, det™(B) = —3
and that the extended Matrix-Tree Theorem holds since:
det™ (B) = Min{det~(B), S} = Min{—3, —6}.]

Exercise 3. (Proof of Theorem 4: generalized “ All Minors Matrix Tree Theorem™)

In this exercise, we refer to the concepts and notation used in Sect. 7.4.

Given two subsets U and V of X of equal cardinality (JU] = |V]), werefer to as
matching every one-to-one correspondence nt: U — V. Thesignature of a matching
m: U — V, denoted sign(n), is defined as follows. A pair (i, j) of elements of U is
said to bein inversion relatively to w if i < j and w(i) > w(j). By denoting v(x) the
number of pairs (i, ) i € U, € U, which are in inversion relatively to =, then sign
() = (=1)", We observe that, in the special casewhereU = V = X, amatching
is none other than a permutation of X, and we verify that in this case the definition
of the matching signature is consistent with that of the permutation signature.

The characteristic of amatching t: U — V isdefined as:

char () = sign(m) x (— 1)V
where W ={i/i e U, nt(i) =i}

We now denote by F* (resp. F~) the set of al the directed graphs on X having as
set of arcs SU T where:

— Sisthe set of arcs of the form (i, nt(i)) for every i € L suchthati # =(i), where
n: L — K isamatching of characteristic +1 (resp. of characteristic —1).

— Tisasetof arcssuchthat, for every i e L satisfying mt(i) = i, thereis exactly one
arcinT of theform (k, i) withk € X, k # i (notethat mt(i) = i impliesi € L NK).

Among the graphs H of the family F* (resp. F~) those which are circuitless are
exactly those of 7+ (resp. 7 ) (see Sect. 7.4). We can therefore write:

Ft=TTUFSandF~ =T UF; where S (resp. F; ) denotesthe family
of sub-graphsH e F+ (resp. H € F~) which contain nontrivial circuits (i.e. circuits
which are not 1oops).
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(1) Provethat we have:

det™(B) = Z w(H) and det™(B) = Z w(H)

HeF+ HeF~

A:Q
where B is the matrix [ e } defined in Sect. 7.4.
R N |p
(2) Show, by using an argument similar to the one used by Chaiken (1982), that

doowH = ) wH)
HeFd HeFe
(3) Then show that Theorem 4 is deduced from the above by taking:
A= Z W(H) = Z w(H)
HeFd HeFs
[Answers: refer to Minoux (1998a)].

Exercise 4. Where we recover the classical Mac Mahon identity
Here we take the field of real numbers as the basic algebraic structure.

(1) Let B bean x n matrix with coefficientsin R, and | theidentity matrix of Mp(IR).
Prove that:

det(l — B) = Z (A_H bi,o(i))— Z ( I1 bi,od))-

sePat+(n) NEIOM© sePat-(n) \€Iom©

(2) By using the above relation, deduce from Theorem 5 (see Sect. 8.1) the classical
Mac Mahon identity:

Sxdet(l -B)=1
with B = (jj)i=1-n = (&jXj)i=1-n.
j=1-n j=L.n

[Answers: refer to Minoux (1998b, 2001)]



Chapter 3
Topology on Ordered Sets: Topological Dioids

1. Introduction

This chapter isdevoted to the study of topological properties, firstin general ordered
sets, then in dioids (this will eventually lead to the concept of topological dioids)
and to the solution of equations of the fixed-point type.

Various types of topologies may be introduced, depending on the nature of the
ordered sets considered. The simplest cases correspond to atotally ordered set, or to
aproduct of totally ordered sets (e.g. R" with the partial order induced by the usual
order on R). The relevant topol ogies on such sets are extensions of usual topologies.
We will concentrate here on the more general case of partially ordered sets (or
“posets’). In relation to these sets, we introduce in Sect. 2 two basic topologies: the
sup-topology and the inf-topology.

Then we show in Sect. 3 that the sup-topology may beinterpreted in terms of limit
sup of increasing sequences; and likewise that the inf-topology may be interpreted
in terms of the limit inf of decreasing sequences. The notions of continuity and
semi-continuity for functions on partially ordered sets are introduced in Sect. 4.

We then discuss the fixed-point theorem, first in the context of general ordered
sets (Sect. 5), and next in the context of topological dioids, in view of solving linear
equations of the fixed-point type. Section 7 is devoted to the concept of p-stable
element in a dioid which guarantees the existence of a quasi-inverse, and which
turns out to be useful in the solution of various types of equations, whether linear
(Sect. 7.2) or nonlinear (Sect. 7.3).

Finally, Sect. 8 introduces and discusses the concepts of residuation and of
generalized solutions.

2. Sup-Topology and Inf-Topology in Partially Ordered Sets

Let (E, <) be an ordered set, where < is areflexive, transitive and antisymmetric
binary relation. To define a topology on E, it is known that it suffices to provide a
fundamental system of neighborhoods. This can be achieved in various ways.

83
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For example, if we choose as the system of fundamental neighborhoods the set of
subsets of E (ideals) of theform | a = {x/x < a} for arunning through E, we obtain
a so-called (left) Alexandrov topology. We could similarly, choose as fundamental
neighborhoods filters of the form 1 a = {x/a < x}. We would then obtain the right
Alexandrov topology.

The Alexandrov topologies are not separated (see Example 2.1.3. below). We
recall that atopology isseparated if and only if, given two arbitrary distinct elements
a € E, a@ € E, we can find a neighborhood of a and a neighborhood of & that
are disjoint. It is an essential property to guarantee uniqueness for the limit of a
sequence.

In this chapter, we study separated topologies finer than the Alexandrov topolo-
gies. the Sup-topology and the Inf-topology. We will see that the Sup-topology
corresponds to the concept of upper limit of sequences and that the Inf-topology
corresponds to the concept of lower limit of sequences.

2.1. The Sup-Topology

For every a € E introduce the ideal:
} a={x € E/x < a} and the anti-ideal:

Ta={xeE/x«a}.

Definition 2.1.1. E being an ordered set with respect to the relation <, we call Sup-
topology on E the topology for which the system of fundamental neighborhoods for
any element a € E consists of all the sets of the form:

V=lan $binN $ho..Nn 3 by (@D}

where (b1, by, ... by) is a finite (possibly empty) family of elements of E such that,
Vi=1,2,...k:a £ b (that is to say, bj belongs to 4 a) (see Betrema 1982).

A neighborhood of a € E, in the sense of the Sup-topology, is therefore formed by
every subset of E containing a subset of the form V defined as (1).

The set of the neighborhoods of a € E for the Sup-topology will be denoted Vs (a).
With the above definitions, we easily check the properties:

() f VeVs@andV' € Vs(@thenV NV € Vs(a)
(i) If VeVs@andU DV thenU e Vs (a)
(iii) If V; e Vs(@fori el C N, then .ul Vi € Vs (a).
le

Since every neighborhood in the (left) Alexandrov topology isaneighborhood in the
Sup-topology (but not the converse), we see that the Sup-topology is finer than the
left Alexandrov topology.
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We can state:
Property 2.1.2. The Sup-topology is separated.

Proof. Letac E, a € E, a # &. Wedistinguish two cases.

Casel:d <a

Inthiscase: a £ & (sincea # &).

ThenV(@ = JantdandV@)= | d

are two neighborhoods of aand & respectively, and they are digjoint.
Case2:d £ a

ThenV(@ = |aandV@)= | aNta

are two neighborhoods of aand & respectively, and they aredisjoint. O

Contrary to the Sup-topology, the left Alexandrov topology is not separated, as seen
in the following example.

Example 2.1.3. We consider E = R? endowed with the order relation (:,) o

E/ < a<bandad < b (where < denotes the standard order relation on R). The
two elements G) and <§> aredistinct, but every neighborhood of <§> inthe sense

of the left Alexandrov topology contains | i . Therefore, in the left Alexandrov

topology, every neighborhood of (g) intersectsan arbitrary neighborhood of (i) Al

2.2. TheInf-Topology

The Inf-topology can be defined similarly to the above.
For arbitrary a € E, let usintroduce thefilter:
1 a= {x € E/a < x) and the anti-filter:
ta={xeE/agx}

Definition 2.2.1. We call Inf-topology on E the topology for which the system of
fundamental neighborhoods of an arbitrary element a € E is composed of all the
sets of the form:

V=tan4tcnNac...Nntc (2
where c1, Cp, ... Cg is a finite (possibly empty) family of elements of E such that:
Vi=1,...0:c £ athatistosay: c; e T a

We denote V) (@) the set of neighborhoods for the inf-topology.
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Remark 2.2.2. In the case of atotally ordered set or of a set defined as the product
of totally ordered sets, we can choose the system of fundamental neighborhoods of
an element a € E asthe family of sets of the form:

V=n GFhb)n &c
iel jed

where (bj)ie and (¢j)jey are finite (possibly empty) families of elements of E such
that, Vi € | : a £ by (that isto say: bj € 4 &) and, Vj € J: ¢ £ a(that is to say:
Ggeva.ll

The various topologies introduced above (Sup-topology, Inf-topology), endow E
with astructure of topological space. Let us briefly recall some definitions and basic
properties valid in every topological space.

— Asubset A of Eiscalled an open neighborhood if and only if A isaneighborhood
of each of its elements.

— LetA Cc Eandx € A.Wesay that x isinterior to A if there exists aneighborhood
V of x such that V c A. Theinterior of A, denoted A, is the set of the elements
interior toA.

— Asubset A C Eisopen, if andonly A = A.

— Asubset B C Eisclosed if B isthe complement in E of an open subset A.

— Let A ¢ Eand x € E. We say that x isadherent to A if every neighborhood of x
in E intersectsA.

— The set of adherent points of A is called the closure of A and is denoted A.

— Theclosure A of A  E isthe smallest closed subset of E containing A.

— A subset A of E such that A = E issaid to be dense in E. A isdense in E if and
only if every non empty open subset of E intersectsA.

3. Convergencein the Sup-Topology and Upper Bound

Let (E, <) be an ordered set endowed with the Sup-topology.

3.1. Definition (Sup-Convergence)

An infinite sequence {Xn}nen OF elements of E is said to be convergent in the sense
of the Sup-topology, with limit X € E, if and only if, YV € Vs(X), there exists K € N
such that: k > K = x¢ € V. This convergence will be denoted x,, — X.

Observe that, as the Sup-topology is separated, the limit of a sequence, when it
exists, isunique.

The following result (Betrema 1982) establishes the equivalence between the
limits (for the Sup-topology) of nondecreasing sequences and their least upper
bounds.
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Theorem 1. Let (E, <) be an ordered set endowed with the Sup-topology.

(i) Let {Xn}hen be a nondecreasing sequence bounded from above and having a
least upper bound X. Then the sequence {x,} is convergent for the Sup-topology
and has limit x.

(if) Let {Xn}neny be a convergent sequence in the sense of the Sup-topology (but
not necessarily nondecreasing) and with limit X(x, — X). Then there exists an
integer p € N such that: X = sup{Xp: n > p}

Proof. (i) By assumption, the set {x,: n € N} has a least upper bound x =

sup{Xn: n € N}

Let Vs(X) bean arbitrary neighborhood of X in the sense of the Sup-topol ogy.
It isof the form:

Vs(X) =L XN Fy1N...N0 Fyk

where Vi=1,... k:x £ y;, thatistosay y; € 4 . Consider any i, 1 <i < k;
y; is not an upper bound of the sequence {xn}. Consequently, Vi = 1,...,Kk,
there exists an integer p; such that X £ y;.

Since the sequence {xn} is nondecreasing, n > p; = Xn > Xy, therefore
necessarily Xn £ Vi. In other words:

N>p = Xpe 1Y
Thus:

Sincexp < X, wehave, Vn > p:xp €l XN $y1N...N 3 Yk.
This proves that the sequence {x,} is convergent in the sense of the Sup-
topology and that X isits limit.
(il) The sequence {xn} being convergent, let us choose | X as aneighborhood of X:
thereexistsaninteger p € Nsuchthatn > p = x, €} X = X < X.
Consequently X is an upper bound of X, = nL>Jp{Xn}. Let us assume that Xp

has another upper bound ¥ # X such that § < X. We necessarily have X £ y
(otherwise we would have X = ¥, which would give rise to a contradiction).

Then | XN ¢y isaneighborhood of X which contains none of thex,(n > p),
thus contradicting the convergence of {x,} towards X (in the sense of the Sup-
topology). This clearly proves that:

X=splxa:n>pl O

For the Inf-topology, we would obtain results similar to Theorem 1 by replacing
“nondecreasing sequences’ with “ nonincreasing sequences’ and “least upper bound”
with*greatest lower bound.” Thelnf-topology canthusbeinterpreted asthetopology
corresponding to the lower limit of sequences.

Thus, for asequence {Xn}nen that convergesin the sense of the Inf-topology and
with limit X (this convergence will be denoted x,, — X) thereexistsaninteger p € N
such that:

X =inf{x,:n>p}. (©))
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Remark 3.1.1. Sup-convergence, inf-convergence and finite convergence

If asequence {xn} (not necessarily monotone) is convergent both in the sense of
the Sup-topology and in the sense of the Inf-topology towards the same limit, then
it converges finitely.

Indeed, if {xn} is convergent in the sense of the Sup-topology with limit X, then
there exists P € N such that:

n>P=xhelX

If, furthermore, {xn} isconvergent in the sense of the Inf-topology with limit X, then
there exists Q € N such that:

n>Q= X,etX

We then deduce that for n > Max{P, Q} wehave: x, €] XN 4+ X = {X}. ||

3.2. Concepts of Limit-sup and Limit-inf

L et usnow discussthe casewherethe order relation < induceson the set Eacomplete
lattice structure. In other words, every subset of E with finite or infinite cardinality
bounded from above (resp. bounded from below) has a least upper bound (resp. a
greatest lower bound).

We can then introduce the concepts of upper limit (resp. lower limit) for arbitrary
(not necessarily monotone) sequences bounded from above (resp. bounded from
below).

Let us consider an arbitrary sequence {Xn}nen assumed to be bounded, that isto
say such that thereexistsm € Eand M € E suchthat: Vn € N: m < xp andx, < M.

For an arbitrary p, p € N, let us consider the set Xp = {Xp : n > p}

This set is bounded from above. It has therefore a least upper bound op: op =
sup{xn : n > p}. The sequence {op}p <y 1S monotone nonincreasing and bounded
from below by m. It is therefore convergent in the sense of the Inf-topology, and its
limit & will be referred to as the upper limit of the sequence {xn}. Thus we have:
6 = lim-sup{xp} = in&wp{xn: n > p}

pe

Similarly, we can define the sequence {ep}peN as.
Vpe N:6p =inf{xn:n=>p}.

This sequence is monotone nondecreasing, therefore convergent in the sense of the
Sup-topology, and its limit 6 will be referred to as the lower limit of the sequence
{Xn}. Thus:
6 = lim-inf{xn} = supinf {X, : n > p}.
peN
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4. Continuity of Functions, Semi-Continuity

E F
Let (E, <) and (F, <) be two ordered sets each of them endowed with the Sup-

topology.
A function f: E — Fisnondecreasing if and only if:

E F
Vx,y e E x=<y=fx <f(y).

Definition 4.1. A function f: E — Fis said to be continuous in the sense of the Sup-
topology (resp. of the Inf-topology) if and only if, for every sequence {x,} convergent
in E of limit X, the sequence f (xp) is convergent in F in the sense of the Sup-topology
(resp. of the Inf-topology), its limit being y = f (X).

Definition 4.2. A function f: E — F is said to be upper semi-continuous (u.s.c.)
in the sense of the Sup-topology (resp. lower semi-continuous (1.s.c.) in the sense of
the Inf-topology) if and only if, for every sequence {x,} convergent in E with limit X,
the sequence f (xp) is convergent in F in the sense of the Sup-topology (resp. in the

F F
sense of the Inf-topology) and has limit y <f (X) (resp. y > f (X)).

The following result establishes upper semi-continuity in the sense of the Sup-
topology for nondecreasing functions.

Theorem 2. Let (E, é) and (F, 2) be two ordered sets endowed with the Sup-
topology. We assume moreover that in F, every nondecreasing sequence bounded
from above has a least upper bound. Then every increasing function f: E — Fis
upper semi-continuous in the sense of the Sup-topology.

Proof. Let us consider a nondecreasing sequence {xn} convergent in E in the sense
of the Sup-topology and let X beitslimit.

Sincef isnondecreasing, the sequence {f (x)} isnondecreasing in F. Let us show
that it is bounded from above by f (X).

E
According to Theorem 1: X = sup{Xp : h € N}, therefore vVn: xp <X,

F
hence: f (x,) < f (X).
Following from the assumptions of the theorem, the sequence {f (xn)} therefore
has aleast upper bound y € F which isitslimit in the sense of the Sup-topology:

f(Xn) = ¥ = sup{f (xn) : n € N}.

Asf (X) isan upper bound of {f (x,) : n € N}, we deduce: y < f(X), which proves
the upper semi-continuity of f. O

Let us observe here that we could establish a similar result concerning the lower
semi-continuity (in the sense of the Inf-topology), of nonincreasing functions:
E— F
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5. The Fixed-Point Theorem in an Ordered Set

Definition 5.1. (fixed point and lower fixed point)

Let (E, <) be an ordered set and f: E — E a nondecreasing function. We call
lower fixed point of f every x € E satisfying: x < f (x).

We call fixed point of f every x € E satisfying x = f (x).

For every x € E, we denote:
f@x)=fFx) and, VkeN: f®x) =fdF*Dx)).

Theorem 3. Let (E, <) be an ordered set having a smaller element ¢, and in which
every nondecreasing sequence bounded from above has a least upper bound. Let f:
E — E be a nondecreasing function. Then if the sequence {f (V' (¢)} is bounded from
above, the function f has a lower fixed point x; satisfying

x¢ = sup{f ™ (e) : n € N}. 4

If, moreover, the function f is continuous for the Sup-topology, then:

e X is a fixed point of f,
» Xs isthe smallest element of X; = {y : y = f(y)} (smallest fixed point).

Proof. ¢ being the smallest element of E, we have: ¢ < f(g), and since f is
nondecreasing, we deduce:

e<fe)<fPe <...<fM@E) <...

The sequence {f ™ (¢)} being nondecreasing and bounded from above, it converges
(in the sense of the Sup-topology) towards alimit x; and:

xi = sup{f ™ (e) : n € N}

ThusVn: f ™ (e) < x¢, and consequently:

vn: f "D (&) < f(x¢), which showsthat f (x; ) isan upper bound of the sequence
{f™(e).

Thusxs < f(x;), which showsthat x; isalower fixed point of f.

If we assume now that f is continuous for the Sup-topology, we have: f (x;) = Xt
therefore x; isafixed point of f.

Let usthen show that x; defined by (4) isthe smallest element of X;.

Lety be an arbitrary element of X = {y: f(y) = y}.

We have: ¢ <y and, sincef isnondecreasing: f (¢) < f(y) =Y.

By induction we obtain: vn: f ™ () < y which shows that y is an upper bound
of the sequence {f ™ (e)}. Since x¢ is, by definition, the least upper bound of this
sequence, we deduce that X < 'y. Thisshowsthat x; isthe smallest fixed point of f
onE. O
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6. Topological Dioids

Let (E, ®, ®) beadioid. E being an ordered set for the canonical order relation <
induced by @, we can endow E with one of the topologies defined in Sect. 2. We
will consider in particular the Sup-topology. Moreover, in this section, we restrict
our attention to the topol ogies constructed directly from the canonical order relation
< relative to @. Many other topologies could be constructed differently, even if
compatibility (“continuity”) with the @ and ® operationsis required.

6.1. Definition

We call topological dioid relative to the Sup-topology, adioid (E, @, ®) endowed with
the Sup-topology associated with the canonical order <, and having the following
additional properties:

(i) Every nondecreasing sequence bounded from above has a least upper bound
(every nondecreasing sequence bounded from above is therefore convergent in
the sense of the Sup-topology, its limit being equal to its least upper bound).

(if) Taking the limit is compatible with the two laws & and ® of the dioid (in other
words the operations @ and ® are continuous w.r.t. the Sup-topology).

Example 6.1.1. Thedioid (E, &, ®), whereE = (RU { — 00})2 isendowed with the
operations @ and ® defined as.

X o y\ [ Max{x,y}
X/ y/ - MaX{X/, y/}
X y\ [ x+X
(¢)e(7)-(3Y)
isatopological dioid.

Indeed, the canonical order relation < is defined as:

y X<y
()= () e, =
y X/ S y/

and every nondecreasing sequence bounded from above is formed by a sequence
of pairs i? (n € N) where {x,} and {x'p} are nondecreasing sequences of reals

n
bounded from above. Such a sequence is therefore convergent in the sense of the
Sup-topology. Furthermore, it is easily seen that taking the limit is compatible with
thelaws @ and ®. ||

Thefollowing result showsthat assumption (ii) for the ® law isautomatically satisfied
in selective dioids.
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Property 6.1.2. If (E, &, ®) is a selective dioid (& selective), then taking the limit
for nondecreasing convergent sequences is compatible with the & law.

Proof. Let {xn} and {yn} be two nondecreasing sequences bounded from above

(therefore convergent for the Sup-topology), their limits being respectively X and y.
We have:

X = lim{Xp} = sup{x, : n € N}

y = lim{yn} = sup{yn : n € N}

Since < is compatible with @, {x, ® yn} is aso anondecreasing sequence bounded
from above by X @ y. It istherefore convergent and itslimitisz < X @ V.
Letusshowthatz=Xxdy.
Since @ is selective, we have:

VN: Xn @ Yn = SUP{Xn, Yn}

and:
X®Y = sup{X, y}
= sup{sup{xn : n € N}; sup{yn : n € N}} = wp{g {Xn, Yn}}
= sup{tr{ {SUp{Xn,Yn}}} = SUP{Xn B yn : N € N}
We therefore deduce:

X@y=Ilimxy®yn} O

Another direct consequence of the definition of atopologica dioid is the existence
of aquasi-inverse (see Definition 6.2.1 below):

Property 6.1.3. Let (E, @, ®) be a topological dioid where e, the neutral element
for ®, satisfies: e ® e = e. Then every element a < e has a quasi-inverse a*.

Proof. We have:

a<e
hence, Yk: & <e
and a¥ =epapde..pad <e

The sequence a®) isthus nondecreasing and bounded from above. It therefore has a
limit a* referred to asthe quasi-inverse ofa. O

Observe that the condition e ® e = e will be satisfied, in particular,

— when @ isidempotent,
— when eisthelargest element of E.
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6.2. Fixed-Point Type Linear Equationsin a Topological Dioid:
Quasi-Inverse

In atopological dioid (E, @, ®), let us consider solving equations of the type:
X=axde and x=xQade (5)

wherea € E isagiven element.
Fork e N set:
ab —epapde.. o

whereak = a® a® ... ® a(k times)
Since: aktD = ag a® @ e wehave: aktD = a® g ak+l hence ak+D > gk,
The sequence a® is therefore nondecreasing. If, moreover, it is bounded from

above, it is convergent; in this case, itslimit sup{a®} will be denoted a*. Thisleads
k>0
to the following definition.

Definition 6.2.1. (quasi-inverse)
We call quasi-inverse of the element a € E, denoted a*, the limit, when it exists,
of the sequence a®) where, for every k € N.

ak —epasde.. o

Proposition 6.2.2. If a* (quasi-inverse of a) exists, then it is the minimal solution of
the equations

X=a@Xxade
X=X®ade ©)

in other words, a* is the smallest element of the set of solutions.

Proof. Wehave: akt) —aga® g e

As a consequence of the compatibility of @ and ® with taking the limit, a® a®
is convergent and has limit a® a*; similarly a® ak) @ eis convergent and has the
limit a® a* & e. We deduce the relation:

a'=aa ¢e
Similarly, we establish that: a* = a* @ ad® e

Furthermore, from equationx = aQ x @ e

we easily deduce by induction: x = a¥t1 @ x @ a®

which proves that every solution of (5) is an upper bound of the sequence a®.
a*, least upper bound of the sequence a), is therefore the minimal solution
to(5). O
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Remark. The above proposition could aso be deduced directly from the fixed point
theorem (Theorem 3 Sect. 5) observing that, as a result of the properties of the
topological dioid (E, @, ®), the function f: E — E defined as:

fX)=a@xde
is continuous in the sense of the Sup-topology. ||

Proposition 6.2.3. If a € E has a quasi-inverse a*, then Vb € E, a* ® b (resp. b® a*)
is the minimal solution to the equation:

y=a®yob (ep.y=y®asb).
Proof. a* ® bisobviously a solution because, by using the above proposition,
aga"@bdb=@a" ®e)b=aeb
Let us show that thisisthe minimal solution. Let y be an arbitrary solution:

y=a®yeob
—a@ydb eb
—a’@y®a®bab
—aydabdagbab
andinagenerd way:y = aloyda® @b
Thusforeveryk e N:y > a® @ b.
y istherefore an upper bound of the sequence {a*) ® b}. This sequence is nonde-

creasing, convergent towardsa*® b, theleast upper bound of the sequence. Therefore
weclearly havey > a*®b. O

Proposition 6.2.4. Let (E, &, ®) be a topological dioid and two elements a € E,
b € E such that the quasi-inverses a* and (b ® a*)* exist. Then (a @ b)* exists and
we have the identity:

@dh*=a"® (b a")*.

Similarly, if & and (a* ® b)* exist then (a & b)* exists and we have the identity
@@b'=@eb " ®a
Proof. Let usfirst show that a* ® (b ® a*)* isa solution to the equation
Xx=(@obexae (6)

u=a* istheminimal solutionto:u=a® u® e.
Likewisev = (b ® a*)* isthe minimal solution to:

v=ba)evde= bouav) de
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We deduce:
URV=a®ueVveyV
=@uUEeV)® bRuUV)de

hencewe deducethat u® v = a* ® (b ® a*)* isasolution to (6).
In the same way asin the proof of 6.2.3, we have for every solution x of (6), Vk:

x> (@@ hb®

From this we deduce that the nondecreasing sequence (a ® b)) is bounded from
above. E being a topological dioid, it therefore has a limit in E, which proves the
existence of (a® b)* = X minimal solution to (6).
We can then deduce from the above theinequality X = (a®@ b)* < a* ® (b®@ a*)*.
Let us now prove the reverse inequality. To do so, it suffices to observe that X is
the minimal solution in x of the equation:

X=XQadXbage
(indeed let X' < x satisfyingx’ = X' @ a®d X @ b® e. By setting X = x’ @ hwe
would have:
X =X ®adx ®b®dh®be ewhich showsthat:
X>hebode ®@dh*=>x

hence we deduce X’ = X).

Since a* exists we therefore have X = (X ® b @ €) ® a* which showsthat X isa
solution to the equation:

X=X® (bea)ea
Since (b ® a*)* exists we therefore have
X >a ® (b a")*.

The second part of the proposition is proved in a similar way, starting from the

equationx =x® (a® by de 0O

Proposition 6.2.5. Let (E, @, ®) be a topological dioid and two elements a € E,
b € E such that the quasi-inverses a* and (a @ b)* exist. Then (b ® a*)* and
(a* ® b)* exist, and we have the identities:

@agb*=a"@bga) =@ b*®a".
Proof. X = (a® b)* isthe minimal solution to the equation:

X=XQadxbage
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therefore (see proof of 6.2.4) X isthe minimal solution in X to the equation:

X=XxadxXxeboe
and since a* exists, we have:

X=XQbde ®a"
X istherefore a solution in X to the equation

X=Xx® (bxa)aoa*
For every integer k > 1 we can therefore write:

X=%® (bea)lea e bea)®

and consequently, Vk > 1.

a®beoa)® <x

The sequence a* ® (b ® a*)® is therefore nondecreasing and bounded from
above. Since E is atopological dioid, it therefore has a limit which is necessarily
a* ® (b a“)*.

One would similarly prove the existence of (a* ® b)*. The claimed identities are
then deduced from Proposition 6.2.4. O

The above result will be used, in particular, in Chap. 4 Sect. 4.2 to prove the
convergence of the generalized Gauss-Seidel agorithm.

Proposition 6.2.6. Let A = (aj) € Mp (E) an x n matrix with entries in a topo-
logical dioid (E, &, ®). Assume the existence of the quasi-inverse A* of A defined
asthe limitof A® = 1 ADAZ@ ... ® AXask — oo. Then each diagonal entry
g of A has a quasi-inverse (a;j)*.

More generally, each square principal submatrix of A has a quasi-inverse.

Proof. InChap. 4 Sect. 3.2itwill beshownthat (A¥);; can be expressed asthe sum of
theweights of al cardinality—k circuitsthrough nodei in the graph G(A) associated
with the A matrix. One of the circuits involved in this sum isthe loop (i, i) taken k
times, the weight of which is (a;i)X. We can therefore write:

(A). = @)@ 3.k
(wheretheterm d (i, k) accounts for the sum of the weights of all other cardinality-k
circuits).
From this we can deduce that:
AKi = @)™ @ A, k)
where A (i,k) =8 (, ) ®d(, 2®...®d (i, k).
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Since AK is a nondecreasing sequence of matrices with limit A* we have,
vk: (A®). < (A%, and thus we can write:

@)™ @ AG, k) < (A%

which clearly implies:
@)% < (A"

From this we conclude that (a;)® is a nondecreasi ng sequence of elements of E,
bounded from above. Since (E, &, ®) is a topological dioid, we deduce that this
sequence is convergent and has alimit (g;j)*, the quasi-inverse of &;.

Consider now the more general case of a principal submatrix As; deduced from
A by considering only the rows and columns in a given subset of indices S C
{1,2,...,n}. Denote (A[s)* the kth power of Ag). Then (A[s])ﬁ can be expressed
asthe sum of the weights of all cardinality-k i-j pathsin G(A) with the restriction of
using only nodesin S.

We therefore have, Vk:

(Ag)" = AYg
and thus:
(Ag)" = A
From this it is seen that the nondecreasing sequence of matrices (Aig)® is

bounded from above. Since M (E) isatopological dioid, the existence of (Arg))* is
deduced. O

7. P-Stable Elementsin a Dioid

In many applications involving dioids, it is not necessary to resort to Sup-topology
to study the convergence properties of sequences. It is enough to guarantee finite
convergence of some nondecreasing sequences (discrete topology).

Let (E, @, ®) beadioid. For a € E werecall the notation introduced in Sect. 6.2:

¥ —epapdla...pd

Definition 7.1. (p stable element)
For p > Ointeger, an element ais said to be p-stable if and only if:

aP+d — g®

Wethen haveaP+? = egpa@aPtl = epa®a® = aP*tD henceby induction
aPt =aP vr>0, integer.

For each p-stable element a € E, we therefore deduce the existence of a*, quasi-

inverse of a, defined as:

a* = lim a® =aP

k—-+o0
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which satisfies the equations
a*—aRa pe=a"@ade (7)

Let us study some examples of dioids with p-stable elements.

7.1. Examples

Example 7.1.1. Consider the dioid (R U {+o0}, max, min), with neutral elements
¢=0ande= +o00. Sinceed a = max(+oo, a) = {+o00} = €, Va € E, we deduce
that every element aiis O-stable and has as quasi-inverse a* = e.

This example is encountered, e.g. in the study of the maximum capacity path of
agraph (see Chap. 4 Sect. 6.3). ||

Example 7.1.2. Inthe case of thedioid (R U {+00} , min, +), with neutral elements
¢ = +o0 and e = 0, if the element ais nonnegative, e® a = min (0,a) = 0=e
and it is O-stable. Every nonnegative element therefore has a quasi-inverse a* = e.

If the element a is negative, then e ® a = min(0,a) = a and a® =
min(0, a, 2a, ..., ka) = ka. a tends towards —oo and a does not have a quasi-
inverse in R U {+o00}.

This example can be extended to the case of a matrix, see Example 7.1.8 and
Chap. 4. It is encountered in the study of the shortest path problem in a graph (see
Chap. 4 Sects. 2 and 6.5). ||

Example 7.1.3. Inthe case of the dioid ([0, 1], max, x), with neutral elementse = 0
ande=1,ed a= max(l, a = 1Va e E. We deduce that every element of ais
O-stable and has as quasi-inverse a* = e.

This example arises in the study of the maximum reliability path of a graph (see
Chap. 4 Sect. 6.6). ||

Example 7.1.4. Let E be the cone of R? defined asfollows: a = (a1, &) € Eif and
onlyifa; e R,ap e Randay < ap.

We then define two operations @ and ® on E asfollows:

Ifae Eandb € E, then

c=ad®b=(c;,c2) with ¢y =miny(ay, by), 2 = minz(ay, by, &, bp)
c=a®b=/(c,Cc) with ¢y =mini(a + by =12, C2 = mina(g + by)
j=1,

j=

1.2
2

where ming and miny correspond respectively to the first minimum and second
minimum among the set of values under consideration.
We observe that @ is not idempotent, for instance:

(2,38 (2,3) =(2,2) #(2,3).

We easily check that these two laws endow E with a dioid structure where ¢ =
(+00, +00) and e = (0, +00).
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Let us show that any a = (a1, &) € E such that a1 > 0 is 1-stable.

Wehaveed® a= (0,a), andsincea®? = 2a, a1 + &), edada =eda

Thus, every element a with nonnegative components is 1-stable and has a quasi-
inversea* =e@ a

This example can be extended to the case where E is the cone of R¥ defined as
a=(a, a,....,q)Withg e Randay <ap < ... < &. The operations ® and ®
on E are then defined as

a®b=aMingb

(k)
a®b=a+b

(where the laws Min, and (—kir) are defined in Chap. 8 Sects. 1.3.1 and 1.1.5).

We verify that every element a with nonnegative componentsis (k — 1) stable
and hasaquasi-inverse a* = ak—b,

This example arises in the study of the kth shortest path problem in a graph (see
Chap. 4 Sect. 6.8). ||

Example 7.1.5. Let us consider a dioid for which @ and ® are idempotent. Then

every element is 1-stable. Indeede@ ad & = e ada=eda
Thisexampleislinked to animportant class of applications where the property of

1-stability is always satisfied: namely distributive lattices (see Chap. 8 Sect. 4.6). ||

Example 7.1.6. Let E be the set of the sequencesa = (a1 < & < ... < &) Wwith
a € Rand aq < a1 +n wheren isagiven positive real. The operations @ and ® on
E are then defined as:

a®b=aMin<,b

(=n)
a®b=a—|I] b

(wherethe laws Min(,, and + are defined in Chap. 8 Sects. 1.3.2 and 1.16).

We verify that these two laws endow E with a dioid structure where ¢ = (+00)
(the sequence formed by a single element equal to +oc) and e = (0) (the sequence
formed by a single element equal to 0).

Moreover, it can beshownthat every awith strictly positivecomponentsisp-stable
with p = [n/a1] (where [ ] denotes the smallest integer greater than or equal to).

This example arises in the study of n-optimal paths of a graph (see Chap. 4
Sect. 6.10). ||

Example 7.1.7. Let us take for E the set of polynomials in several variables with
coefficients in Z, idempotent for ordinary multiplication (therefore in particular
with Boolean variables xi2 = Xj). We take for addition @ the symmetric differ-
ence (a® b = adb— ab), for multiplication ® ordinary multiplication. Thuse = 0
ande= 1.
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Let us show that @ isan interna law: if a € E and b € E, we have a2 € E and
b? € E; then:
(@a®b)? = (a+b—ab)? = a® + b? + a’b? + 2ab — 2ab? — 2a’b
=a+b+ab+2ab—-2ab=a+b—-—ab=adh.

(E, ®, ®) isadioid and it can be shown that every element is O-stable.
This example arises in the study of the reliability of a network (see Chap. 4
Sect. 6.9). ||

Example 7.1.8. We consider here the dioid (My(E), @, ®) of square matrices of
order n with elementsin agiven dioid (E, &, ®).

In Chap. 4 (Theorems 1-3), a number of sufficient conditions for a matrix A to
be p-stable will be studied. It will be seen, in particular, that if the elements of E are
0-stable, then the elements of M (E) are n-1-stable (see Theorem 1 of Chap. 4). ||

Example 7.1.9. On the dioid (E, @, ®), consider the set F of functions: N — E.
Given two functions f(x) and g(x) of F we definethesumf @ g € Fas Vx €
N: f @ g(x) = f(X) ® g(x). We also define the convolution product of two functions
f(x) and g(x) of F by:

fxg0 = > fk g

K+1=x
where X corresponds to the addition @ on the dioid E and + to the addition in N.
We can check that (F, @, %) is a dioid. Moreover, if al the elements in E are
p-stable, then all the elementsin F are p-stable. ||

In the following section, we show how the concept of p-stable element can be used
to solve fixed-point type equationsin dioids.

7.2. Solving Linear Equations

Let usconsider in (E, @, ®) the linear equation:
X=a®x®b 8

Proposition 7.2.1. If the element ais p-stable, then a* ® b is the minimum solution
to (8).

Proof. It follows directly from Proposition 6.2.3 of Sect. 6. O

Observe that it is the canonical order relation < of the dioid which guarantees the
unicity of the minimum solution to (8).
In the same way, if ais p-stable, b ® a* is the minimum solution to

Xx=x®adhb. 9)
We deduce from the above that a* is the minimum solution to each of the equations

X=axde ad x=xQade (20)
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Example 7.2.2. In the case of Example 7.1.1 where (E, ®, ®) = (R, max, min),
(9) leads to:
X = max{min{a; x}; b} (1)
If a< b, max{min{a; x}; b} = b(v¥x) and x = bistheonly solution to (11).
If a > b, the set of the solutions to (11) istheinterval [b, a, and b isthe smallest
of these solutions; thisis consistent with Proposition 7.2.1. ||

Remark 7.2.3. Since Mp(E) isadioid if E isadioid, we will seein Chap. 4 Sect. 3
that Proposition 7.2.1 can aso be applied to matrix equations of the form:

X=A@X®B (12)
for A ap-stable matrix in Mp(E). ||

Definition 7.2.4. (stable element)
We say that an element is stable if there exists an integer p for which it is p-stable.

Thus, every stable element has a quasi-inverse which corresponds to the for-
mal expansion, in the sense of standard algebra, of (e — a)~1 if it is finite (finite
convergence).

Thisformal correspondence then enables one to obtain the following expressions
when the elements involved are stable (see Backhouse and Carré 1975, p. 165):

(ab)* = e® a(ba)*b (13)
(a® b* = a*(ba")* = (a*b)*a* (14)
(ba"c)* = e® b(ad ch)*c (15)

(we have omitted the ® signs for the sake of notational simplicity).
Thus (13) can be obtained from the formal correspondence with the identity:

(e—ab)y t=e+ae—batb
Similarly (14) can be obtained from the identity:
e—(@+b)t=le—(e—a b ‘e—a*
and (15) from the identity:
(e—ble—alc)t=e+be— (a+ch)lc
We deduce (again omitting the ® signs for the sake of notational simplicity):

Proposition 7.2.5.

(i) If bais stable, ab is stable and its quasi-inverse is given by (13)
(i) if a* exists and if ba* is stable, a® b is stable and its quasi-inverse satisfies (14)
(i) if a* exists and if a @ b is stable, then ba* (resp. a* b) is stable and its quasi-
inverse satisfies

(ba")* = e® b(a® b)* (resp. (a*b)* = ed (a® b)*b) (16)
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Proposition 7.2.6. (Gondran 1979)
If aand b are stable and if ® is commutative, a® b and a* b are stable.

Proof. According to Proposition 7.2.5, we only have to show that a* bis stable. Let
us assumethat ais p-stable and that b is g-stable.

To show that a* bis (q + 1)-stable, it suffices to show that (a* b)4t2 is absorbed
by (a* b)@*+D . To do so, it is enough to show that, for any k, a b™ is absorbed by
(@ b)@+b,

But, since ® is commutative, from the expression of (a* b)Y = e (a* b) ®
@ (@b wecanextracta b & b’@...@a bT = & b(e@ba. .. @bl
which clearly absorbs & b™? sincebis g-stable. O

The commutativity of ® is essential for Proposition 7.2.6 except if a is O-stable
(a* =e) orif b= e Let usconsider the latter case.

Proposition 7.2.7. (Gondran 1979)
If eis stable we have:
e =e"pe =e¢e a7)

and for every stable a, a* is stable and:
@)* = e'a* = a'e". (18)
Proof. If eisg-stable
€=eded...de=0e

and (17) isobvious.
We observe that € commutes with all the elements for the operation ®; let us
then consider (a*)®. It isapolynomial in the variable a:

kq
@)® = Z agal.
i—0

1
Letusshow thatfor ¢ < q, itscoefficientsa, areIargerthanqassoonasz k(k—1) >
g. To do so, let us consider

s=qr

q r
@ = (Zai> S
i=0 s=0

k
For s < g, wehavepg, > r. Then, since¢ < q, wehaveo, = ) B, ; we deduce
r=1

K
1
oy zZr:Ek(k—l)zq.
r=1
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. . . . . q
Thisinequality therefore impliesfor ¢ < g, a, a° = e* a’. Wededuce ). oy & =
(=0

e* a*.
q
For ¢ > g, thea’ from (a*)® are absorbed by 3 o, a’ = e* a*

(=0
1
Thus (a*)® = e* a* as soon as > k(k — 1) > g, and (18) follows. O
SetE={c/c=€e"aacE)=¢€eE
Then (17) imply:
cec=c VceE
e‘c=c VceE

7.3. Solving “Nonlinear” Equations

Assuming p-stability of elementswe now turn to investigate sufficient conditionsfor
the existence of solutions to some nonlinear equations.

7.3.1. Quasi-Square Root
Forac E, let

a2 —epap 2 @588 @ - - @ ad (19)
with

an = % (ﬁ[ 1) e N (the so-called Catalan numbers)

Then, if ais p-stable, we have:
a(P)z — a(p+l)2 — a(p+2)2 = ...
since the terms involving aP** are absorbed by a® .

For each p-stable element a € E, we then deduce the existence of a*/2, quasi-
square root of a, defined as:

a*/z = |im a(k)Z — a(p)z — a(p+1)2 — ... (20)
k—+o0

Observe that the quasi-square root corresponds to the formal expansion of

e—+e—4a
2a
and (omitting the ® signsfor the sake of notational simplicity) satisfiesthe equations:

a2 = a@/??ee= (a/?ade=a’laa’’oe
a*/? istherefore a solution to the equations

y=ay’®e=y’ade=yayde (21)
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Still omitting the ® sign for the sake of notational simplicity, let us now consider for
integer n >0 the polynomial:

fyy=ay"@e (22)
Thus f2(y) =f(f(y) =a@"@e"@e
Lemma7.3.1.1. For every m > 1, f™M(y) can be expressed as:
fM(y) =1"(e) ® "y "gm(y) (23)
where the gm (y) are polynomials iny and in a such that gm, (e) > e.

Proof. Let us prove (23) by induction. The assumption istrueform = 1 (f (¢) =
e, 01 (Y) = e). Let ustherefore assume it to be true for m. We then have:

f™ L y) = FM[f (y)] = M) @ a"[F (y)1"gmlf (¥)].
f™ly) =1Me) @ a™e® ay™)"gm(e® ay").

Since gnm is a polynomial, gm(e @ ay™) = gm(e) ® ay"hm(y) where hy, (y) isa
polynomial iny and in a. Similarly, (e ® ay™)" = e ® ay"¢y (y) where ¢, (y) isa
polynomial iny and in a

Observe, moreover, that £,(e) > e. We therefore deduce:

f™ L (y) = M(e) ® a"gm(©) & A" Y [ (Y) @ £n(Y)Im(©) & Ln(y)ay " hm(Y)],
which yields (23) by setting:
f™ 1) = f™(e) @ a"gm(e) (24)

Im+1(Y) = hm(y) © €n(Y)Gm(€) ® Ln(y)ay"hm(y). Since¢n(e) > eand gm (€) > €,
we have £r(€)gm(e) > e and we deduce that gm_1(€) > € this shows that f M(¢) is
apolynomial inawith degreeatleassm—1. O

Let us then consider the equation:
y=a"de (25)

Proposition 7.3.1.2. (Gondran 1979)
If ais p-stable, Pt (¢) is the minimal solution to (25).

Proof. According to Lemma 7.3.1.1, fPt1(¢) is a polynomia in a where al the
coefficients indexed from 0 to p are > e. We deduce that the subsequent terms are
absorbed by thefirst p + 1 ones, since ais p-stable.

Thus:

p
fPHie) = > .

k=0
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Om(e) being apolynomial in a, and a being p-stable, (24) therefore implies:
fPH2(e) = fP1(e).

This shows that fP+1(e) is a solution to (25). On the other hand, according to (23),
every solution y to (25) is expressed as.

y =1"() @ a"y"gm(y)
which shows that fP1(¢) isindeed the minimal solutionto (25). O
Let us consider now the case n = 2, that is to say the equation:
y=a’de (26)
Corollary 7.3.1.3. If a is p-stable, a*/? is the minimal solution to (26).

Proof. We proceed by induction by showing that f™(e) is expressed as a™ V2 @
a"gm(a) where gm(a) isapolynomial in a.

The property istruefor m = 1, with g (a) = «.

Let us therefore assume it to be true for m. We then have:

fMle) = f[fMe)) =af™e) P ®e
[f™(e)1? = [@™ V2] @ aM[2a™V2gn(a) © gm(@)a™ (gm ()]

Let us then consider the sum of the first m terms of (a™~12)2; it isequal to:

r=m-1 r
( OLkOLr_k> a.
r=0 k=0

However, as the first Catalan numbers satisfy the equality
r
D okar k= a1
k=0

m—1
the sum of the first m terms of (a™~Y2)? isthereforeequal to Y~ oy g @'
r=0
We deduce that: o
[f™)7 =) wd ™ & a™ gmi1(a)
k=1

where gm+1(8) isapolynomial in a.
Finally, we obtain:

m
fm+1(8) =eo Z Ockak b am+1gm+1(a)
k=1

=a™2 @ d™gn,1(a)

which proves correctness of the induction.



106 3 Topology on Ordered Sets. Topological Dioids

The corollary then immediately follows by observing that if ais p-stable, the
recurrence implies:
fp+1(8) — a(P)z. m|

Corollary 7.3.1.4. If ac is stable, and if ® is commutative, c (ac)*/? is a solution to
y=a’ec (27)

Proof. Since (ac)*/2 = ac [(ac)*/%])%2 @ e, we deduce: ¢ (ac)*/2 = a[c (ac)*/?)? @ c,
and consequently c(ac)*/? isasolutionto (27). O

Corollary 7.3.1.5. If b and ac are stable and if ® is commutative, b*c(b*?ac)*/?
exists and is a solution to:
y=a’ebydc (28)

Proof. b and ac being stable, b*ac is stable according to Proposition 7.2.5. b and
b*ac being stable, we furthermore have that b*?ac is stable, therefore b*c(b*2ac)*/?
exists.
For yo = b*c(b*?ac)*/?, letuscaculate f(yo) =ay3@by,®c:
f (yo) = ab*2c?[(b*?ac)*/?]? ® b b*c(b*?a0)*/2 @ ¢

— c(b*zac[(b*zac)*/z]z dedb b* (b*ZaC)*/Z)

= c{(b*%ac)*/? @ b b*(b*?ac)*/?} = c(e @ bb*)(b*%ac)*/?

= cb*(b*%ac)*/? =yo. O

Remark 7.3.1.6. If eisstable, €/2 = e*. Moreover, if € = ethen: a*/2 = a*. ||

7.3.2. Quasi-nth-root

The above results are easily generalized to solving equations of the form:

y =P(y) (29)

where P (y) isadegree-n polynomial iny, thanks to the introduction of a quasi-nth-
root of an element a, denoted a*/", minimal solution to (25).

To definein asimple way the expansion of a*/", we use the Lagrange theorem on
generating series, recalled below:

Lagrange Theorem
Ify = xo(y) where o(y) = fo+ f1y + f2 y? + . . ., then the coefficient of xK in y

(x) is equal to ” times the coefficient of y*—1in ¢X (y).

Thus, for the equation y = x (y + 1)", the coefficient of xK in y(x) is equal to

1/ nk
k\k—-1)
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Forac E, let
n@Bn—-1 1
a¥n —egagnd @ %a%a...@ ” (rk“il) ak (30)
Then, if ais p-stable, we have:
since the terms involving aP** are absorbed by a®.

For each p-stable element, we then deduce the existence of a*/", quasi-nth-root
of a, defined as

a*/n = |im a(k)n — a(p)n — a(p+1)n — ... (31)
k—+o00

Examples making use of the quasi-nth-root will be found in Exercises 2 and 3 at the
end of this chapter.

8. Residuation and Generalized Solutions

In the two previous sections, we studied solutions for fixed-point type equations,
x = f (x). Thetheory of residuation, which we review here, enables one to introduce
the concept of generalized solutions for equations of the form:

fx) =b (32)

in cases where f can be non-surjective (problem of existence) and/or non-injective
(problem of unicity).

The work by Blyth and Janowitz (1972) is a basic reference on the subject; see
also Gaubert (1992) and Baccelli et a. (1992).

The generalized solutions correspond to residuable mappings often referred to as
Galois correspondences.

Definition 8.1. (lower-solution, upper-solution)

Let E and F be two ordered sets, b € F, and f a mapping: E — F. We say that x
is a lower-solution to (32) if we have f (x) < b.

If the set {x € E|f(X) < b} has a least upper bound, then, if f is Isc,

f1(b) = sup{x € E| f(x) < b}

is the largest lower-solution to (32).
We say that y is an upper-solution to (32) if we have

f(y) = b.
If the set {x € E|f(x) > b} has a greatest lower bound, then, if f is usc,
f¥(b) =inf{x € E|f(X) > b}

is the smallest upper-solution to (32).
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To ensure the consistency of this definition, we must verify that f1(b) (resp.
f¥(b)) is clearly alower-solution (resp. an upper-solution) to (32). According to the
assumption, since {x € E | f(x) < b} has an upper bound, then for every sequence
Xn Of lower-solutions converging towards f T(b), we have f (x,) < b and sincef is
l.sc,fof®(b) <h.

f1(b) istherefore clearly the largest lower-solution to (32).
f 1 will bereferred to as the sup-pseudo-inverse of f and f ¥ asthe inf-pseudo-inverse
of f.

Thusf ofT(b) <bandf of¥(b) > b.

We moreover check that:

flof(b)=suply cE[f(x) <f(b)}>b
fvof(b)=inf{x e E|f(x)>f(b)} <b

and that the functionsf ™ and f ¥, if they exist, are monotonic.

Proposition 8.2. Let E and F be two ordered sets, and f a mapping: E — F. Let
us denote Idg (resp. Idg) the identity mapping of E (resp. of F). The following
statements are equivalent:

(i) there exists g: F — E nondecreasing suchthatf og < Idrandgof > Idg,
(if) for every y in F, the set {x € E|f(x) <y} has a largest element.

Proof. Let usassume (i). If f(X) <y,x < gof(X) <g(y).

Moreover, f o g(y) < y which shows that g(y) is the largest element of {x €
E|f(X) < y}. Conversely, under assumption (ii), the mapping g:y — sup{x €
E|f(x) <y} sdisfies(i). O

Thus, f1 (resp. fV), if it exists, is the unique nondecreasing function (resp.
nonincreasing) satisfying:

fofl <lde and flof >Idge (33)

(resp.flof < Idz andf of ¥ > IdF)

Definition 8.1 is classically applied to the case of a nhondecreasing function f.
In this case, if f(b) (resp. f¥(b)) exists for every b, we say that the function f is
residuable (resp. dually residuable) and f T is called the residue mapping of f (resp.
f¥, the dual residue mapping of f).

We denote Res' (E, F) the set of residuable mappings. E — F.

We provide below afew examples of residuable mappings.

Example 1. (reciprocal image)

Givenamappingf: A — B, theassociated mapping ¢s: (P(A), C) — (P(B), ©),
defined, for every X € P(A) as. ¢; (X) = f(X) isresiduable and we have (pr(Y) =
f=1(Y) (reciprocal image of Y by f). ||
Example 2. (integer part)

The canonical injection (Z, <) — (R, <) isresiduable and the residue mapping
isthe“integer part” mapping. ||
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Example 3. (orthogonal subspace)
Let us endow RY with the standard scalar product.
The mapping
¢: (P(RY), ©) - (P(RY), )

which, with every set X associatesitsorthogonal X- = {y e R9|vx € X, x.y = 0}
isresiduable (see Gaubert 1992). ||

Example 4. (convex conjugate)
The Fencnhel transformé
F:® .2 > [R", <), definedas F f(p) = sup {px —  (x)}, is residuable
xeRN
(observe the reversa of the order between the start and end sets), and we have

Fr=F|
Proposition 8.3. For every residuable function f, we have:

(@)foftof =f
(i) frof oft =f1

Proof. (i) f =folg <f o(ftof)y=(Ffoft)of <lgeof =f.
(if) Similar proof. O

The residue mapping f 1, or “sup-pseudo-inverse,” therefore plays a role formally
anal ogousto the classical pseudo-inverse A* for amatrix A in standard linear algebra,
which, is known to satisfy:

AAPA =A and APAAT = AF

Proposition 8.4. Let f: E — F be a residuated function (thus isotone) with residual
f1. Then the equation f (x) = y for y € F has a solution if and only if f (f(y)) =y.
Moreover in this case, f T (y) is the maximum solution.

Proof. Suppose that f(xp) = y for some xg € E. Then from Definition 8.1 we
deduce:

f1y) = f1(f (x0) = xo.
Now, using the monotonicity of f, we get:

fET(y) >fxo) =y

and, from Definition 8.1 again:
f(f1(y)) <y whichprovesthat f *(y) isindeed asolution. Moreover, f T (y) > xo
proves that this solution isindeed maximal. O

Proposition 8.5. For any f, f;, g € Res' (E, F), we have:
() Fogt =g'of!
(i) f vgt =T Agl
(iii) If E and F are complete lattices, we have for any finite subset of mappings
fir (vi f)T = A il
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Proof. (i) fog o(gloff)=fo(goghofl <foldof? <Id.
The other inequality is proved in the same way by using the other inequality of
Proposition 8.2.

(if) We decomposet — f (t) v g(t) asthe product of the following mappings:

E-S B2 E2 2 F SIRENYS
t—> (@t Uv)—> FW,gv) &y —>xvy
and we apply (i) observing that the associated residue mappings are given by:
el (YN =X Ay, bW V)=(ETW).g'V).) o) =.1).
Wethus have: (f v @) = (¢30 90 9T =] 0 g o o =fT A gl
The proof of (iii) issimilar to that of (ii). O

Proposition 8.6. Let (E, <) and (F, <) be two complete ordered sets with smallest

elements eg and eg respectively. A nondecreasing mapping f: E — Fis residuable if
and only if f is continuous and f (eg) = ¢F.

Proof. If f isresiduable, the set {x € E | f(X) < eF} has alargest element xp and
since f is nondecreasing, f (eg) < f(Xp) < er. Since, moreover, f(sg) > e we
have f (eg) = ef. Let us then show that f is continuous. E and F being complete
sets, let us denote x;/x X the upper bounds of every set X ¢ Eor X c F. Since f

is nondecreasing, we have for every X C E: f ( vx X) > Vx f(x). Let {1 bethe
Xe Xe

residue mapping associated with f. By using theinequalities (33) andthefact that f T is

nondecreasing:

to of !
f(ngX)ff(xgxf fx) <f f(xgxf(X))sngf(X)

which proves continuity.
Conversely, if f(eg) = ¢, foreveryy € F, theset X = {x | f(X) < y} isnon
empty. Furthermore, by continuity of f, f ( vx X) = vx f (x) and therefore X hasa
Xe Xe

largest element. O

Definition 8.7. We call closure a nondecreasing mapping ¢: E — E, such that
pop=9pand¢>lq.

Proposition 8.8. A residuable closure ¢ satisfies

p=¢op=gool

Proof.

cp:IdO(pzgpogoTO(pchTo<p=(pT0(po<pzIdoq). O

Definition 8.9. (closed elements)
If f is residuable, f T o f is a closure, and we refer to as closed the elements of the
form f o f ().
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In the case of Examples 24, the closed elements are respectively the integers
(Example 2), the vector sub-spaces (Example 3), the convex functions (Example 4).

We can similarly define dual closure. We observethat f isaone-to-one correspon-
dence between the set of closed elements and the set of dually closed elements.

Proposition 8.10. (projection lemma)

Let E be an complete ordered set and F a complete subset of E containing ¢, the
minimal element of E. The canonical injection i: F — E is residuable. The residue
mapping pre = i " satisfies:

(i) pre o pre = pre
(if) pre < Ide
(i) x e F& prg (X) =X,
Proof. Theresiduability of i results from Proposition 8.5.
@): iToit=Goi)t =i,
(ii): pre=ioprp=ioil <Id.
(iii): if x € F, thenx =i (x), therefore pre(X) = pre o i (X) > X.
The other inequality is given by (ii). The converseis straightforward. 0O

Properties (i) and (ii) assert that prg is a dual closure, property (iii) asserts that
the dually closed elements are elements of F.

Example. LetE = RR, F = Inc(R, R) the complete subset of nondecreasing func-

tions: R — RR. The projection lemma shows that for every u € RE, there exists a
largest nondecreasing function @ smaller than or equal to u. One can then show that:

a) = inf {u(o)

In a dual manner, there exists a smallest nondecreasing function u larger than or
equal to u, given by
u) = SUB{U(T)}-
T<

Exercises

Exercise 1. Let usconsider adioid (E, ®, ®)
If the element ais p-stable, show that a*/" given by (31) in Sect. 7 isthe minimal
solution to:
y=a"@e

Exercise 2. Let us consider adioid (E, @, ®), and two elementsaand cin E.

Show that if ac™ L isstable, and if ® iscommutative, c(a ¢™~1) /" isasolution to:

y=ay"@c.
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Exercise 3. Let usconsider adioid (E, @, ®) and three elements a, b, cin E.

Showthatif banda ¢! arestable, andif ® iscommutative, b* ¢ ((b*)" ac™?)
existsandisasolutiontoy = ay"® by @ c.

/N

Exercise 4. Let E denote the closed interval [0, 1] and ® the operation: a® b =
Min{a, b}.
Also consider the operation ® defined as:

a®' b=1 ifa<h,
=b otherwise

For any p € E, we now define the functionr: E — Eas: r(x) = p ® X (¥x € E).
Show that r is residuable and that r' isexpressed as: rt (x) = p @’ x.
Check that rt isl.s.c.

Exercise 5. E being agiven partially ordered set, we denote E" the set of n-vectors
with componentsin E. For any a, b € E, aVv b (resp. a A b) denotes the sup (resp.
inf)inE.

Let rqq, ri2, ..., rmn be residuated functions with respective residuals rL,
rl ..., th. DefineR: E" - E™ and R: E™ — E" as

n .
RO = j@lrij x) (Vi=1....m)
~ m T A
[Rx0] = Brlon =1
J i=1
Taking @ = v, show that R is residuated with residual R = R.

Show that the same property holds when considering & = A.

Exercise 6. Consider the dioid (E, @, ®) where E = [0,1],® = Max,
® = Min.
Let ® and ®” be the two dual operations defined as:

a®’ b= Min{a, b}

1 ifa<hb

a®' b=
® b otherwise

For any two n-vectorsu € E",v € E", wedenoteu < viff uj < v; foral i =
1,....n

Given two matrices P € Mm(E) and Q € M, n(E) we define two “dua”
products:

, ¢
PRQ=R=(rj) with rj= kG_Blpik ® i

)2
PR Q=T=(j) with tj= E;pik ®' ay
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(1) By using the results of Exercises 4 and 5, show that for a given matrix R €
Mm.n(E) the function: R(x): E" — E™ defined as:
R(X) =R ® X, isresiduable, with residual R*(y): E™ — E" defined as:

R*y)=R'®'y.

(2) LetR € Mmn(E) and b € E™ be given.
Show that the equation R®@ x = b hasasolutionif and only if b = R® (RT @’ b)
and that, in this case, x* (R, b) £ RT ® b is the maximum solution.

(3) Showthat d* = R®(R' ®’b) isthemaximum d such that theequationR ® x = d
hasasolutionand d < b.

(4) Consider the following numerical example:

1 02 04 1
0 02 02 0.7
R=10 06 06 b=103
05 03 04 05

Show that x* (R, b) = (1, 0.3,0.3)T and that d* = (1, 0.2, 0.3,0.5).
Show that thesystem R® x = b hasno solution for all d = (1, «, 0.3, 0.5)T with
0.2 <a<0.7.

(5) Show that theresultsof questions 1, 2, 3 aso apply to thevariousdioids (E, Max,
Min) with either E = R, E = R, or E = [a, B]. Indicate, in each of these cases,
whichisthe dual law ®’ to be considered.

[Answers: refer to Cuninghame-Green and Cechlarova (1995)]



Chapter 4
Solving Linear Systemsin Dioids

1. Introduction

How canweexpect to solvealinear equality systemin algebraic structures consisting
of aset with two internal laws @ and ® which are not a priori invertible, i.e. where
one cannot always solvea® x = banda® x = b?

Thekey ideain the present chapter isto observe that the solution of a“fixed point”
type equation such asx = a® x @ b only requires the existence of the quasi-inverse
a* of the element a, defined in the previous chapter as the “limit” of the series:
eaga’g---

It is indeed remarkable that neither the additive inverse nor the multiplicative
inverse are needed to compute “ (e — a) 1"

However, in order to guarantee some form of uniqueness, it will be necessary to
work in canonically ordered semirings, i.e. in dioids.

The purpose of this chapter is thus to discuss how to solve linear systems of the
fixed point type, which will lead to generalizations of the main known algorithms
for solving linear systemsin classical linear algebra.

This chapter does not address the problem of solving linear systems of the form
A x = bindioids. This actualy relates to residuation theory introduced in Chap. 3,
Sect. 8, and involves a concept of generalized pseudo-inverse.

Givenan x nmatrix: A = (aj) with entriesin adioid (E, ®,®) andb € E" a
given n-vector, we will focus here on the solution of linear systems of the form:

y=y®A®b' 1)

or
z=A®z&b 2

where we denotey ® A the row-vector, thej” component of which is:
n
Z Vi ® &;j
i=1

115
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and A ® z the column-vector the i’ component of which is:
n
Z aj ® z
j=1

(the above sums are to be understood in the sense of @)

Section 2 illustrates the general perspective of the chapter by considering as an
introductory example the case of linear systems on the dioid (R, Min, +) which
corresponds to the shortest path problem in a graph.

By viewing the matrix A as the generalized incidence matrix of an associated
graph G(A), it is shown in Sect. 3 that the successive powers of A and the quasi-
inverse A* of A may beinterpreted in terms of path weightsof G(A). It will be shown
how the quasi-inverse A* can be used to compute the minimal solution to each of
the equations (1) or (2), and how minimal solutions can be interpreted as solutions
to associated path-finding problemsin G(A).

The general algorithms for solving linear systems (1) or (2) are studied in Sect. 4
and 5: iterative methods in Sect. 4, together with an extension to algebras of endo-
morphisms in Sect. 4.4; then, the “direct” methods in Sect. 5. A broad overview
of applications to modeling and solving a huge variety of path-finding problemsin
graphsisfinally presented in Sect. 6.

2. The Shortest Path Problem as a Solution
toaLinear System in aDioid

A typical example of a path-finding problem in graphs which can be formulated in
terms of solution to a linear system of type (1) or (2) is the determination of the
shortest paths of fixed origin in a valued directed graph.

Let us consider a directed graph G = [X, U] where the vertices are numbered
1,2,...n, and in which each arc (i, j) is assigned a length g; € R. Given a vertex
io € X chosen as origin, we seek the lengths yj(j = 1---n) of the shortest paths
between the vertex i, and the other vertices | of the graph.

It isnot restrictive to assumethat G isa 1-graph, i.e. that, for any ordered pair of
vertices (i, j), there exists at most one arc of the form (i, j). (Indeed, if U contains
several arcsug, Up, ... Up of theform (i, j) and of lengths £(uy), £(u), ... £(up), to
solve the shortest path problem, it is enough to consider that there existsasingle arc
(i, ]) of length &; = k_I\gin p{E(uk)} and to ignore all the other arcs).

2.1. TheLinear System Associated with the Shortest Path Problem

According to the well known principle of dynamic programming (Bellman 1954,
1958), it is known that the values y; satisfy the following equations (referred to as
“optimality” conditions):
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Yi, =0
Vi #iot yj = Min {yi +aj}
|eI‘j
where rj—l = {i/(i,]) € U} isthe set of direct predecessors of vertex j in G.
By agreeing to set gj = +oc if arc (i, j) doesnot existand gj =0 (Vi = 1,...n)
the previous relations can be rewritten as:

Yi, =0

Vil ¥ = Min {yi+aj)
Assuming, for the sake of simplification, that the lengths g; are all nonnegative,
we must havey; > 0(Vj = 1---n) and consequently the previous relations can be

further rewritten:

Yio = Min{ Min {y; +&.i,}; 0}
1,...,n

and, Vj # io

.....

yj = Min { I\{Iinn{yi +aij};+OO}
i=1,...,

Let usthen consider thedioid (E, @, ®) whereE = RU{+o00} and wheretheinternal
laws @ and ® are defined as:

Va e E,Vbe E:
ad b= Min{a b}
ab=a+b

¢ = +oo isthe neutral element of @ and e = 0 isthe neutral element of ®
(seeChap. 8, Sect. 4.7.1). It isthen observed that the aboverel ations can bewritten
in the form of the linear system:

n
Yie=2 YVi®aide
i—1

n
=2 yi®a;®e forany j#io
i=1
that isto say, in matrix notation:

y=y®Aab' 1)
_.n_and b the n-vector defined as:

i=1
j=1,...n

bi,=e and, Vj#iob =ce.

where A denotes the matrix (a;)

It isthus seen that determining the vector y where the components are the lengths of
the shortest paths of origin i, amounts to solving the linear system (1) in the dioid
(E, &, ®).
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2.2. Bellman’s Algorithm and Connection with Jacobi’s Method

Aswill be seen in Sects. 4 and 5 of the present chapter, most algorithms for solving
the shortest path problem can beinterpreted asvariants of known methodsin classical
linear algebra.

This is the case, for example, of Bellman’s algorithm (1958) which consists in
starting from y° defined as:

Yip =0.y) =400 (Y] #io)

and then in performing the following computations iteratively:

y.t+l =

lo

{y“l = Min {y +aj}
el

[
J
By using system (1) this algorithm can be expressed in the equivalent form:

{ y°=b' 3
yt+l=yt®A@bT (4)

where one can recognize the analog to Jacobi’s method in classical linear algebra.
From (3) and (4) we deduce, for an arbitrary integer t > O:

Vi=b(IBABA’D---dAY

e
wheel=| € . ¢ } is the identity matrix of M (E).
e
The convergence of Bellman's algorithm is therefore intimately related to the

convergence of theseries | A @A’ @ - A @ - -

2.3. Quasi-Inverse of a Matrix with Elementsin a Semiring

It is well known that Bellman's algorithm converges in at most n — 1 iterations,
in other words that y"~1 is the vector of shortest path lengths, if and only if the
graph does not contain a circuit of negative length. In these conditions, we will see
(see Theorem 1 Sect. 3.3) that the seriesA® = | § A § A2 @ - - - @ AKX converges
inat most n — 1 steps, i.e. that AM=D = AM = AD — ... gnd the limit of this
series, denoted A* will be referred to as the quasi-inverse of the matrix A.

Bellman’s algorithm then converges towardsy = b’ ® A*.

We verify that b ® A* clearly corresponds to a solution of (1) because:

b A*@A®b =b' @ (A* @A)
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Now, if A* = AM=D thisyields:
A*QADI =AM = AMD — Ax
We therefore clearly deduce:
b' @ A*= (b A" @A®b'

We now turn to show that the solution b ® A* provided by Bellman—Jacobi’'s
Algorithm is by no means an arbitrary solution to (1).

2.4. Minimality of Bellman—Jacobi Solution

By using the fact that (R, Min, +) isadioid (i.e. acanonically ordered semiring) let
us show that b" ® A* isthe minimal solution to linear system (1).

Let y then be an arbitrary solutionof y =y @ A @ b’

We can write:

y=y®Aahb'
=(yoA®b)®AGD
=yRA20b @ (QA)
By transferring the above expression of y into (1) we similarly obtain:
y=yeAlob e (laoAdA?
By reiterating the argument, we obtain for any k > 2:
y=y@Aka bl @ Ak-D
Thusfor k > n, thisyields:
y=yoAKpb' @ A*

By denoting < the canonical order relation of thedioid (R, Min, +) thisresult shows
thatbT ® A* <y, and thisholdsfor any solutiony to (1). bT ® A* isthereforeclearly
the minimal solution to (1).

For the shortest path problem (aswell asfor many other path-finding problemsin
graphs, see Sect. 6 below), the problem to be solved is not only a matter of finding
an arbitrary solution of (1) or (2) but the minimal solution.

The examplein Fig. 1illustrates the fact that anon minimal solution to (1) is not
relevant with respect to the shortest path problem (by convention the non represented
arcsof thecompletegraphhavealength +-o00). Thevectory = (0, 1, 1, 1) isasolution
to system (1). Indeed, we verify that we clearly have:

y1 = Minf{y1 + a1, Y2 + @1, Y3 + &1, Y4 + a1, 0}
y2 = Min{y1 + a2, Y2 + &2, Y3 + a2, Y4 + as2, +00}
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Fig. 1 Example of an oriented graph for which we want to determine the lengths of the shortest
paths originating at vertex 1. The vector y = (0, 1, 1, 1) isa solution to system (1), but is not the
solution to the shortest path problem of origin 1 becauseit is not the minimal solution to (1)

y3 = Min{y1 + a3, y2 + @3, Y3 + &3, Y4 + &3, +00}
ya = Min{y1 + &4, Y2 + &4, Y3 + 34, Y4 + aua, +00}

However, it can be observed that the components of y have nothing to do with the
lengths of the shortest paths originating at vertex 1 in the graph of Fig. 1. Only the
minimal solution (0, 2, 3, 5) to system (1) has components equal to the desired
shortest path lengths. (Remember that 2 < 1,3 < 1,5 < 1, in the sense of the
canonical order relation of the dioid (R, Min, +)).

3. Quasi-Inverse of aMatrix with Elementsin a Semiring
Existence and Properties

3.1. Definitions

The concept of quasi-inverse of an element of E was introduced and studied in
Chap. 3, Sects. 6 and 7. Here, we generalize this concept to the case of matrices
A € Mp(E), then we show that the minimal solutions to systems such as (1) or (2)
can be easily deduced from the quasi-inverse A* of A (when the latter exists).
Let A € My (E) beasguare n x n matrix with elementsin asemiring (E, ®, ®).
For any k € N, denote by AK the k™ power of A, ie A®A®--- QA (k times)
and define the matrices A by:

A(k):|@A®A2@...@Ak
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e
e . . . :
wherel = . ¢ isthe identity matrix of Mp(E).
e
We observe that, in the special case where the operation @ is idempotent,

the following result yields an alternative expression of AK) involving the matrix
Al=1dA

Proposition 3.1.1. If the @ laws is idempotent, then A® = (I @ A)K

k
Proof. Theexpansionof (I®A)X gives(IGA)K = @) C,A"wherethesumistobe

r=1
understood in the sense of @ andwhere C A" denotesthesumA'@A'@---dA'Cl
) k! . -

times (C’k = m).&nce@ isidempotent wethereforehave C; A" = A" and
the proposition‘isdeduc.:ed. O

Definition 3.1.2. (Quasi-inverse of a matrix)
We call quasi-inverse of A € Mp(E), denoted A*, the limit, when it exists, of the
sequence of matrices A% as k — oo:

A* = lim A®
k— o0
Wewill now study sufficient conditions of existence for the matrix A*. These condi-
tionsinvolve the interpretation of the matrices Ak and A® in terms of paths of the
graph G(A) associated with the matrix A.
We distinguish between two cases:

— Thecasewhere (E, @, ®) isasemiring without being adioid, i.e. the case where
there is no canonical order relation on E. This means it will not be possible to
usethetopologies on ordered setsintroduced in Chap. 3 to define the convergence
of the sequence of the matrices AK). In this situation, we will therefore have to
limit ourselves to cases of finite convergence of AK) towards A*.

— The case where (E, ®, ®) is a topological dioid i.e. where E is a (canoni-
cally) ordered set endowed with sup-topology (topology of the upper limit of
nondecreasing sequences, see Chap. 3 Sect. 3).

3.2. Graph Associated with a Matrix. Generalized Adjacency
Matrix and Associated Properties

Let A € Mp(E) beasquaren x n matrix with entriesin E. We define the graph G(A)
associated with A as follows:

— Thesetof verticesof G(A)is{1, 2, . .. n} theset of indicesof therows (or columns)
of A;
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— Theset of arcs of G(A) isthe set of ordered pairs (i, j) corresponding to the terms
aj of A distinct from ¢ (the neutral element of @). If A contains a diagonal term
ai # ¢, then G(A) containsan arc (i, i) also referred to as a loop.

We observe that the graph G(A) thus defined is a valued graph: each arc (i, j) is
endowed with the value &;j € E (a; # ¢) of the corresponding term of the matrix A.

Conversely, the matrix A can be considered asthe (generalized) adjacency matrix
of the valued graph G(A).

Property 3.2.1 below is the basis for the developments to follow, enabling us to
interpret the coefficients of the matrices AX and A®) in terms of paths and circuits
of the associated graph G(A).

For any k € N, let us denote:

. Filj the set of paths of G(A) (not necessarily elementary) joining vertex i to vertex

j and containing exactly k arcs;

. Pi(jk) the set of paths of G(A) (not necessarily elementary) joining vertex i to vertex

j and containing at most k arcs.

Moreover, with any path p € P:j composed of the sequence of vertices iy, i1,
i2,...lk—1, ik (Withip = i and ix = j), we associate its weight w(pn) = &,j; ®
ail,iz Q- .Q® ak—l,ik

One can then state:

Property 3.2.1. (i) Eachterm (i, j) of matrix A is equal to the sum of the weights

of the paths of P:j

(Ak)i,j =) W ®)
nePX

(i) Each term (i, j) of matrix A is equal to the sum of the weights of the paths of
Pl
i

(A(k))i,j = > w) (6)

k
uePi(j)

Proof. Thisis easily proved by induction on k, taking into account the fact that ¢
is absorbing for multiplication ®, and that the latter is distributive with respect to
addition. O

The paths belonging to Ijlj or Pi(jk) are not necessarily elementary, i.e. can contain
circuits. Inthegeneral casewherethe multiplication ® isnot commutative, theweight
of acircuit y passing successively through the verticesiiy, io, . . . Ik, i1 depends on
the way it is traversed. Thus, if the starting vertex is i1 the weight of the circuit is
defined as:

Ajip ® iy @ -+ @ Gy iy

if the starting vertex isio, the weight is defined as:

<’3‘2i3 ® ai3i4 ® e ® aik,i]_ ® ailiz



3 Quasi-Inverse of aMatrix with Elements in a Semiring Existence and Properties 123

and these two quantities can be different. One is thus lead to introduce the concept
of pointed circuit.

Definition 3.2.2. (concept of pointed circuit)

We say that we have a pointed circuit of G(A) when we are given a circuit of G(A)
together with a special vertex of this circuit taken as the origin of the circuit. The
weight of the pointed circuit y = {i1ip, ...Ik, i1} of originiq is:

W(Y) = aliz & ai2i3 Q- ® aik,il

Thusto acircuit of G composed of k vertices, we let correspond k pointed circuits.
Each of these pointed circuits can therefore have adifferent weight. Inthe casewhere
multiplicationiscommutative, all thepointed circuitscorresponding to agiven circuit
have the same weight and the concept of pointed circuit is not necessary.

We say that a graph G has no p-absorbing circuit if the weight of each pointed
circuit of the graph G is a p-stable element of E. (see Chap. 3 Sect. 7: a € E is
said to be p-stable if and only if a® = a®+tD = . . where, Vk € N:ak =
edapd o -0,

Property 3.2.1 then becomes:

Property 3.2.3. If G(A) has no p-absorbing circuit, then:
&) —
(A®), = ;wm) 7)

where the sum extends to the set of paths fromi to j containing at most k arcs and
traversing no more than p times successively each pointed circuit of G(A).

Proof. To prove the proposition, it is enough to show that any path traversing more
than p times successively a pointed circuit does not need to be taken into account
in (6). Let ustherefore consider a path . fromi toj successively taking p + g times
(g > 1) some pointed circuit. Let y,, be this pointed circuit of origin ¢. The path |
may therefore be decomposed into a path i, fromi to £, in p 4 q times the circuit
Yi¢» and then apath p; from £ to j; we will denote:

= ig(veo) P Iy
Ifue Pi(jk) then each path:

+g-1 .
W= pie (vee) g withr=0,1,....p

also belongs to Pi(jk).
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Let us show that the path . can be absorbed in (6) by the set of paths " (for
r=0,1,...,p). Indeed:

W) @ Y W) = W(iip) @ W(ye)PH @ W(iy)
O<r=<p

&) Z W(ig) @W(Yu)r+q_l@W(Mej)

O<r=<p

hence, taking into account the right and left distributivity of ®:

Wi @ Y wh)
O<r<p
= W(iLip) ® W(ye) 91 ® [e@ W(Yee) @ - @ W(ye)P @ W(Ya)pH] ® W(ing)

Then, using the fact that G(A) has no p-absorbing circuit, thisyields: w(y,, ) ®+Y =
w(y,,)® and the previous equation becomes:

Wi @ Y wh= Y wiph

o=r=p o=r=p

We deduce the proposition by applying this property of absorption to al the paths
successively taking more than p times a pointed circuit of G(A). O

A special case, frequently encountered in the examples (see Sect. 6 below), iswhen
p = 0, i.e. the case where, for every pointed circuit y, we have:

w(y) de=e

L et us denote:

. Pi(jk) (0) the set of elementary paths (not traversing the same vertex twice) in Pi(jk).
* Pij(0) the set of all elementary paths fromi toj.

In this case, we have the following corollary:

Corollary 3.2.4. If G(A) has no O-absorbing circuit, then:

(A®),= 2 wa ®)

ner(¥ 0

(AT) = > waw ©)

I
Y wemo
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Proof. (8) is an immediate consequence of (7) taking into account the fact that
p = 0. (9) is then deduced from (8) observing that an elementary path contains at
mostn—larcs. O

3.3. Conditionsfor Existence of the Quasi-Inverse A*

Inthe casewhere G(A) has no 0-absorbing circuit, one canimmediately deduce from
Corollary 3.2.4 of Sect. 3.2:

Theorem 1. (Carré et al. 1971; Gondran 1973)
If G(A) has no 0-absorbing circuit, then the sequence of matrices A®) has a limit
A* when k — o0, and this limit is reached for k < n — 1:

A* = lim A® = AO-D A _ . (10)

k— 00

Furthermore, A* (quasi-inverse of A) satisfies the matrix equations:
A= PAQA =1 DA ®A (12)

Proof. The fact that the sequence A®) has a limit which is certainly reached for
k = n— 1followsdirectly from (8) and (9).
Moreover we have:

I6AQA*=I+AR(BAG--- @A"Y
—AM _ A=D1 _ A*

which proves (11). O

The previous result shows that if the weight of all the circuits of G(A) are 0-stable
elements of E, then the matrix Ais (n — 1) stablein M (E).

Remark. Theorem 1 can be generalized to the case of right dioids (resp. |eft dioids)
where ® isonly right-distributive (resp. left-distributive) with respect to . In this
case, it must be assumed that G has no 0-absorbing circuit on the right (resp. on the
left), i.e. that, for any circuit y, we must have, Va € E: a® w(y) ® a = a (resp.
adaQ w(y) = a).

Refer to Exercise 4 at the end of the chapter. ||

Let us now study the case where G(A) has no p-absorbing circuit with p > 1. Inthis
situation, the assumptions of Property 3.2.3 alone are not sufficient to provethefinite
convergenceof A®), asthecardinality of the pathsinvolvedin (7) cannot be bounded.
We will therefore successively examine two types of additional assumptions:

— The commutativity of multiplication
— The p-nilpotency of the set of entries of matrix A.
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We first consider the case where the multiplication is supposed to be commutative.
Let us denote:

. Pi(jk)(p) the set of paths of Pi(jk) traversing no more than p times each elementary
circuit of G(A).

* Pjj(p) the set of pathsfromi toj traversing no more than p times each elementary
circuit of G(A).

We observe that the cardinality (number of arcs) of the paths of Pjj(p) is bounded
from above by n — 1 + pnt, where t denotes the total number of elementary circuits
of G(A).

We then have the following theorem:

Theorem 2. (Gondran, 1973)
If G has no p-absorbing circuit and if the multiplication is commutative, then:

(A<k>)ij = Y wmw (12)

uePi(jk)(m

(A™) = > wa (13

nePki(p)

where np is the maximum number of arcs of the paths of Pjj (p) (np < n — 1+ pnt
where t is the total number of elementary circuits of G(A)).
Furthermore, the sequence of matrices AK) has a limit A* when k — oo, and
this limit is reached for k < np:
A* = lim A® =AM — AMp+D — . (14)

k—+o00
A* (quasi inverse of A) then satisfies the matrix equations (11).

Proof. (12) is deduced directly from Property 3.2.3 since, from the commutativity
of ®, itispossibleto consider any circuit asaproduct of elementary circuits, without
taking into account the order in which these circuits are traversed.

Therest of the theorem is proved in the same way asfor Theorem1. 0O

The previous result shows that, if the multiplication is commutative and if the
weights of the circuits of G(A) are p-stable elements of E, then the matrix A is np-
stablein Mp(E) (with np < n— 14 pnt wheret isthe number of elementary circuits
of G(A)).

Let us consider now the case where ® is not commutative, but where the set of
entries of matrix A is p-nilpotent.

Let F be asubset of E and p an integer > 0. We will say that F is p-nilpotent
if and only if, for any sequence of p + 1 elements (not necessarily al distinct)
&, a1, &, ... & takenin F, we have:

RN --®a =c¢ (theneutral element of @)

The following result shows then that, due to p-nilpotency, the commutativity of
multiplication is not required to establish the convergence of the sequence A,
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Theorem 3. (Minoux, 1976)
If the set F of entries & of the matrix A is p-nilpotent, then the matrix A® hasa
limit A* which is reached for k < p:

A* = lim A® =A@ — ACP+D _ .

k—+00
A* then satisfies the matrix equations (11).

Proof. It sufficesto observe that al the paths of more than p arcs do not need to be
taken into account in (6). (11) isproved asfor Theorem1. 0O

Theorem 3 thus shows that, if the set of terms of A is p-nilpotent, then the A matrix
is p-stable. We observe that all the elements of a p-nilpotent set are p-stable: the p-
nil potency assumptionisthereforestronger thanthat of p-stability. Animportant class
of problems for which we will have to assume p-nilpotency concerns generalized
path algebras involving endomorphisms (see Sect. 4.4 below). Theorem 3 will be
used there to generalize iterative algorithms to compute quasi-inverses of matrices
of endomorphisms.

3.4. Quasi-Inverse and Solutions of Linear Systems.
Minimality for Dioids

Let us assume that the matrix A has a quasi-inverse A* which satisfies the rela-
tions (11).

The following result shows that A* determines solutions for systems (1) and (2)
of Sect. 1.

Property 3.4.1. Let A € M(E) and let us assume that its quasi-inverse A* exists
and satisfies:
A*=10AQA =1 DA*®A (11)

Then:

(i) For any matrix B € E™*"
(minteger1 <m <n)
Y =B ® A* ¢ E™"isasolution to the linear system:

Y=Y®A®B (15)

(i) For any matrix B € E™™M (minteger 1l <m <n)Z=A*®B € E™Misa
solution to the linear system:

Z=AQ®Z®B (16)

Proof. Weobtain (15) withY = B ® A* by left multiplying (11) by B and (16) with
Z = A* ® B, by right multiplying (11) by B. ©
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In the specia case where m = 1, the above property shows how to construct, using
A*, solutions to systems of type (1) and (2) introduced in Sect. 1.

Let us consider now the case where (E, @, ®) isadioid, i.e. where the preorder
canonical relation < isan order relation.

We have seen in Chap. 2, Sect. 3 that this order relation can be extended naturally
to the vectors of E" and to the matrices of E™*".

The following property then establishes minimality in the sense of this order
relation of the solutions constructed by means of the quasi-inverse.
Property 3.4.2. Let us assume that there exists K € N such that A* = AK) =
AK+D

If (E, ®, ®) is adioid endowed with the canonical order relation <, then Y =
B ® A* (resp. Z = A* ® B) is the minimal solution in the set of solutions to (15)
(resp. in the set of solutionsto (16)) ordered by the order relation induced by <.

Proof. LetY bean arbitrary solution of (15)
We can write:

Y=BOBOPYRA)®A
=BRIOA) DY QA2
and, generally, for any k € N:
Y=BR(®A® - - oA Hpy Ak
We therefore have for k > K:
Y=B@A*®Y ®AK

which showsthat B®@ A* <Y
Consequently B ® A* isthe minimal solution in the set of solutionsto (15).
We would prove, similarly, that A* ® B isthe minimal solution to (16). O

One thus again finds, in a generalized form, the property of minimality already
encountered in Sect. 2.4 in relation to the shortest path problem in a graph.

For example, taking for B the row-vector b" (viewed asa 1 x n matrix) with all
components ¢ except the component of index i, equal to e, it can be observed that
b" ® A*, which is none other than the row of index i, of A*, isthe minimal solution
to the equation:

y=y®A®b'
Thus, when E is a dioid, it is equivalent to compute A* or to determine minimal
solutions for each of the n linear system of type (1) obtained successively taking b
equal to the n unitary vectors:

(e ¢, s,...s)T
(e, €, e....s)T

(8,8,...,6)T



4 |terative Algorithms for Solving Linear Systems 129

4. Iterative Algorithmsfor Solving Linear Systems

For agiven A € Mp(E), we have shown in Sect. 3 how solving linear systems of
the type:
y=y®Aah' )

or
z=A®z3&b 2

(and moregenerally linear matrix systemsof type (15) or (16)) reducesto determining
the quasi-inverse A* of A.

The computation of A* can be performed, depending on the case, rowwise,
columnwise or globaly.

4.1. Generalized Jacobi Algorithm

Let us assume, to set the ideas, that we wish to determine the first row of the A*
matrix. In other words, we are seekingy = b' @ A* withb" = (e ¢, ¢, ..., ¢).
From Sect. 3, we know that y solves the equation (of the “fixed point” type):

y=y®A®b' 1)

Algorithm 1 below can then be seen as the direct analogue to Jacobi’s method, in
classical linear algebra, to solve a system of type (1).

Algorithm 1 (Generalized Jacobi)
Determination of the first row of A*, or proof that A®K) £ A*

(@) sety®=b" = (e, ¢,...e); t < O;
(b) Atiteration t, let y' be the current solution. Compute

Yy Vi@ A @b

If ytt1 = y!, the algorithm terminates and y! = b ® A* (the first row of A*)
Ifyt*1 £ ytand t < K thensett < t + 1 and return to (b).
If yt*1 = ytand t = K then interrupt the computation: A* £ AK),

Theorem 4. (i) Ifthere exists an integer K suchthat A* = A®), then the generalized
Jacobi algorithm constructs, in at most K iterations, the first row of A*. In the
opposite case, the algorithm proves in at most K iterations that A* = A®).

(i) If A* exists and if (E, @, ®) is a topological dioid, then the generalized Jacobi
algorithm generates a nondecreasing and convergent sequence (in the sense of
the sup-topology) towards the first row of A*.
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Proof. Let usfirst prove (i), i.e. the case when finite convergence occurs.
Wehavey® = b" hencey! =b" ® (1 @ A)
y2=b' @ (I & A ® A?) and, by induction, Vt € N:

V=b @ (I®A®BA’®---aA) =b @ AV

which shows that the sequence of the solutions generated by the algorithm is
monotone nondecreasing.

If there exists K € N such that AK) = A* then thisyields: yX = bT @ A* =
yRHL =

Consequently, if yK+1 = yK itisbecause A* # AK),

Let us now prove (ii), i.e. convergence in topological dioids.

According to the abovewe have, vt: y' = b" ® A®. Since A* exists, the sequence
A® jsnondecreasing and convergent towardsA*. Sincetaking thelimitiscompatible
with the laws @ and ® (since we are dealing with a topologica dioid, see Chap. 3
Sect. 6), we deduce that y! convergesto b” @ A*, thefirst row of A*. O

In practice, it is often possible to obtain an upper bound on the number K such
that A®) = A* with additional assumptions. For example:

— Inthe absence of a 0-absorbing circuit (see Sect. 3, Theorem 1) thenK < n — 1;

— If themultiplication ® iscommutative and in the absence of a p-absorbing circuit
(see Sect. 3, Theorem 2) then K < n— 1+ pnt, wheret is the total number of
elementary circuits of G(A);

— If the set F of the entries of A is p-nilpotent (see Sect. 3, Theorem 3) thenK < p.

In the case where the algorithm terminates at iteration t = K with yK+1 £ yK we
end up at asituation which isinconsistent with the hypotheses. The Jacobi algorithm
canthereforealso be considered asameansof algorithmically checking therelevance
of the assumptions used.

The following result states the complexity of Algorithm 1.

Proposition 4.1.1. Assuming that the complexity of each of the operations @ and ®
is O (1) the generalized Jacobi algorithm has complexity O(Kn?) if all the entries
of the matrix A are distinct from ¢, and O(KM) if M is the number of entries of A
different from .

Proof. Each iteration requires amatrix-vector product (n? operations & and ®) and
asum of two vectors (n operations @). The complexity is therefore O(Kn?). If the
number of entries of A distinct frome isM <« n?, this complexity can be reduced to
O(K.M) by using a compact representation of A. O

In the case of the shortest path problem (E = R U {+00},® = Min,® = +),
Algorithm 1 is recognized as Bellman's agorithm (1958).

4.2. Generalized Gauss-Seidel Algorithm

By analogy with the classical version of the Gauss-Seidel algorithm, the ideais to
decompose matrix A by expressing it as the sum of alower triangular matrix L and
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an upper triangular matrix U. To simplify the presentation, we will first assume that
the diagonal elements of A are all equal to . We therefore have:

A=UaL

The basic iteration of the generalized Jacobi algorithm (see Sect. 4.1) then takes
the form:

yt-‘rl:bT @yt ® U@yt®|_
+1

Thus, for any componentj = 1, ... n, the computation of % isachieved viathe
relation:

j-1 n
yr=pne) yveae ) ves
i—1 i=j+1
During the computation of y;*+1, all thetermsy; 2, y,t*+1, ... yj_1""! haveaready

been determined. Theideaof the Gauss-Seidel algorithmisthentoreplacethevalues
y;t in the first summation by the new values y;'** already determined, which leads
to the recurrence:

-1 n
yrt=pe) y'eae ) yies
i=1 i=j+1
or equivaently, in matrix notation:

yl=b" ay* @UeYy' oL (17)
This givesrise to the following agorithm:

Algorithm 2 (Generalized Gauss—Seidel)
Determination of the first row of A* or proof that AK) £ A*

(@) Setb" = (e,¢,---e)T and y° = (e, e, ¢, ---€); t < O;
(b) At iteration t, let y* be the current solution. Compute: y*+? satisfying:

yt+1:bT @yt+l ®U®yt®|_

If y+1 = y*, the algorithm terminates and y' = b" ® A* (the first row of A*)
If y"1 £ ytand t < K then, sett < t + 1 and return to (b)
If y**1 £ ytand t = K then terminate the computations: A* # A®,

Theorem 5. (i) If there exists K € N such that AK) = A*, then the generalized
Gauss—Seidel algorithm constructs, in at most K iterations, the first row of A*. In
the opposite case, the algorithm proves, in at most K iterations, that A* = A®K),

(if) If A* exists and if (E, @, ®) is a topological dioid, then the generalized Gauss—
Seidel algorithm generates a nondecreasing and convergent (in the sense of the
Sup-Topology) sequence towards the first row of A*,
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Proof. Let usfirst prove (i), i.e. the case where finite convergence occurs.
In order to do so, let us consider ¥! to be the solution obtained from y° =
(e, ¢, ...¢) at thet’” iteration of Jacobi’s method, i.e. by:

-1

AJH_l—b]@Z)’, ®aij@ Z y, ®a”
i=1 i=j+1

Let usrecall that, by construction §t+1 > 1.
Let us prove then by induction that, Vt: andvj =1, ..., n: )7; <yt
Thisrelationistruefort = 0. Let ustherefore assumeit to betrue for an arbitrary
t € N and assumethat for an arbitrary givenj(2 < j < n),foranyi <j— 1, wehave

yittl > yt+l
Thenwecanwrite, Vi =1,...,n

n
t+1_b @Zyt“@aj@ Z yit®a”
i=j+1

n
> by @Zy‘”@aaj@ Y 9i®s;
i=j+1
j—1
=he) Jioae Z ¥l ®ay
i=1 i=j+1

hence the we deduce y;*t1 > yt+l By induction on j we therefore deduce y't1 >

91 which proves the property for t+ 1

Therefore, in the case where the Jacobi a gorithm converges finitely, the general-
ized Gauss-Seidel algorithm cannot require more iterations. We deduce (i).

Let usnow prove (ii), i.e. convergence in topological dioids. The matrix U being

upper triangular, it isn-nilpotent, i.e. U" = U™ = U™2 = ... = ¥ (n x n matrix
where all the entries are equal to €). Then, the quasi-inverse U* of U exists, and is
equal to UMD,

Moreover, because of the form of the iteration (17), we observe that y'+1 is a
minimal solution in'y of the equation:

y=yeUab ay'®L

We therefore have:
H=p oy ®Ll)®U* (18)

which provides the expression of y'* in terms of y! only.
One can then interpret (18) as an iteration of the Jacobi type applied to the
equation:
y=b'®U*@y® L ®U* (19)
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By using the proof of Theorem 4, and sincey® = (e, ¢, .. ., g), we can write, Vt:
y=0'eUHeleoLleUHeLeUH?e & LU

Since A* = (U@ L)* exists, according to Proposition 6.2.5 of Chap. 3, (L ® U*)*
exists and thisyields:

UssL)*=U" @ (LQU"™

The sequence y! generated by the generalized Gauss-Seidel algorithm is therefore
nondecreasing and bounded from above with limit:

b’ ® U*® (L ® U*)*
=b'@UaL)*=b" ®A*

which is recognized as the minimal solution to the equationy =y @ A@b'. O

Appliedto the shortest path problemin agraph, Algorithm 2 isnone other than Ford’s
algorithm (1956). In this case, we have finite convergence.

Remark. In the case where the diagonal elements of A are not all equal to ¢ but are
quasi-invertible, the computation of y** from y! at each iteration must be modified,
and be carried out according to the following procedure:

forj=1,2,...,n

j-1 n
t+1 t+1 *
y" :(bj@Elyﬁ R3O ) y}@a,-)@aﬂ
1=

i=j+1

(where aj"Jf denotes the quasi inverse of the diagonal term &). ||

4.3. Generalized Dijkstra Algorithm (“ Greedy Algorithm”)
in Some Selective Dioids

We are going to show now that one can obtain an a gorithm generally more efficient
than those described in the previous paragraphs by restricting to a special class of
dioids.

We will thus assume, throughout this section, that (E, &, ®) is a selective dioid
inwhich e (the neutral element of ®) isthe largest element (in the sense of the order
relation of the dioid), in other words: Va € E: e® a = e. The order relation being
compatible with multiplication, we therefore have, in such adioid:

VacE,b>c=>be>ca=b>c®a (20)

(R4 U {+00}, Min, 4+),([0, 1], Max, x) ({0, 1}, Max, Min), (R U {+o0}, Max, Min)
are examples of selective dioidsin which e isthe largest element.
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Let usrecal that, in adioid where e is the largest element, any element of E is
O-stable. Any matrix A € M (E) is therefore quasi-invertible since G(A) then has
no 0-absorbing circuit (see Theorem 1, Sect. 3.3).

Algorithm 3, described hereafter, uses the following result.

Theorem 6. (Gondran, 1975b)
Let (E, @, ®) be a selective dioid in which e is the largest element.
Given A € Mp(E), let us consider the linear system:

z=2QA®Db (21)

where b is a given row-vector with n components and let Z = b® A* be the minimal
solution to this system. Then there exists ip € [1, n] such that z;, = b, and this index
io satisfies:

n
b, =Y by (22)
i=1
Proof. (a) Let iy be defined as satisfying (22). Let us show first of al that there

existsasolution 2 to (21) such that z;, = by,
By setting z, = by, the equations (21) are written, for i # io:

n
z=Y z®a ® (b @ bio® a,) (23)
o
andfori = iq:
n
Zi, =) 7 ® 3, db (24)

=1

By denoting A the matrix deduced from A by deleting the row i and the column
io, Z the vector deduced from z by deleting the component iy, the relations (23)
are written in the form of the system:

7=72QA®b (25)

where b isthe vector with components (b @ b, ® &) fori # io. Thissystem
hasZ = b® A* as minimal solution. Then let 2 be the n- vector such that
2;, = b, and where the components Z; (i # io) arethose of Z = bg A*.

By construction, z satisfies (23). Let us show that it also satisfies (24).

In order to do so, and due to the idempotency of @, it is enough to show that:

Vi £iot by, > 5 ®a, (26)

According to (22): bj, > by, hence, it follows from (20): b, > b ® (A*)ij.

Still using (20), one can also write:

bi, > bi, ® &, ® (A*>”
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Then, Z; being defined, Vj # io, by the relation:

n

=) (@b, ®a:)e (A*)ij
i=1
il

we deduce from the above: bj, > Z;

which, by (20), implies (26). Thus, 2 defined above solves (21).
(b) It remainsto show that 2 isthe minimal solution to (21).

For any solution z to (21) we have (24) therefore z, > b, = ..

Moreover, (deduced from z by deleting the component i,) solves

—30A0b 7)

where b isthe vector W|th components (bj @ zj, ® &) fori # io.
Since b > 7, and since b ® A* isthe minimal solution to (27) thisyields:

R >bA*=12

Nn
c'n

Wededucez > 2, i.e. theminimality of 2. O

The previous result can be used to determine the matrix A* row by row. For
example, to determine the first row of A*, we will chooseb = (e ¢,¢,...,¢). The
computation of zZ = (Al ATy .Ain> can then be carried out step by step, as
follows.

We determine an index ig € [1, n] such that:

bi, = Z bi  (sum to be understood in the sense of @).

By Theorem 6, we deduce the component i, of the desired solution: z;, = bj,.
With this information, one can then reduce the problem to the determination of
the minimal solution to the reduced linear system:

z7=720A®b (25)
with, Vi # ig: b= b @ bi, ® &, and where A is the matrix deduced from A by
deletion of row ig and column io.

By again applying Theorem 6 to the latter problem, we determine an index i1 €
[1, n]\{io} satisfying:
b= > b

ie[L.n]\{io}

and we obtain zj, = by,, and so on.

At each step, we obtain the value of a new component of the solution zZ and the
dimension of the problem is decreased by one unit. After n steps, the solution vector
is therefore obtained.
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Oneisthuslead to the following a gorithm:

Algorithm 3 (generalized Dijkstra)
Determination of a row of A* corresponding a chosen index r(r € [1, n])

(a) Initialization:

n(r) < e
(i) < ¢ fori € [1, n]\{r}
T={12,..., n}

(b) Current step:

(b1) Determine an index i € T satisfying:

(i) = Z m(j) (sum to be understood in the sense of &)
jeT
then set: T «— T\{i}
If T = ¢, end of algorithm: the vector (rt(1), n(2), ... m(n)) is the row r
of A*.
If T#@goto(by).
(bp) Forallj e T set:

() < () & n(i) ® g
and return to (b).

The following result states the complexity of Algorithm 3.

Proposition 4.3.1. Algorithm 3 requires O(n?) operations @ and O(n?) opera-
tions ®.

Proof. For iteration k where |T| = n — k + 1, the computation of the index i in step
(b1) requires n — k + 1 operations @ and the updating of the wt(j) values in step
(bp) requiresn — k operations @ and n — k operations ®. The result is deduced by
summing up for k fromlton. O

In the special case of the shortest path problem in a graph with all nonnegative
lengths, we find again DIJKSTRA's classical agorithm (1959).

4.4. Extensions of Iterative Algorithmsto Algebras
of Endomorphisms

We are going to show in this section that the iterative algorithms of Sects. 4.1 and 4.2
aswell asthe generalized Dijkstra Algorithm of Sect. 4.3 (“greedy” agorithm) can
(under appropriate assumptions to be specified) be generalized for the “point wise”
computation of the quasi-inverse ®* of amatrix ® = (ij )}:f’”’ﬂ where the entries
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are endomorphisms of amonoid (S, @). Aswill be seen, this extension opens up the
way to solving new problems, among which a huge variety of “non classical” path-
finding problems in graphs. A typical example concerns the shortest path problem
with time dependent lengths on the arcs, which can be stated as follows. With each
arc (i, ]) of agraph G we associate afunction g;; giving thetimetj = gj; (t) of arrival
inj when starting at i at the instant t;.

Starting from vertex 1 at a given instant t1, we want to determine a path reaching
vertex i in minimum time. Without special assumptions on the form of the functions
@jj, such aproblem does not fit into the framework of the classical model introduced
in Sect. 2. If one analyzes the causes of the difficulty, it can be observed that, in the
classical shortest path problem, the information attached to the verticesand theinfor-
mation attached to the arcs of the graph are of the same nature: these are elementsof a
same basic set, the dioid (R, Min, 4). On the contrary, in the shortest path with time
dependent lengthsonthearcs, theinformation attached totheverticesi € X aretimes,
i.e. real numbers, whereastheinformation attached to the arcsarefunctions: R — R.

Starting then from the idea that a good algebraic model for this type of problem
must take thisdistinction into account, Minoux (1976, 1977) introduced very general
algebraic structures which will be called algebras of endomorphisms.

Clearly, when such an algebra has the properties of a semiring (resp. of adioid),
wewill refer to of asemiring of endomorphisms (resp. to adioid of endomorphisms).

4.4.1. Endomorphism Algebra — Definition
An algebra of endomorphisms (of a monoid) is defined as a given quadruple:
(S, H, &, x), where:

— Sistheground set, endowed with aninternal law @ which inducesacommutative
monoid structure with neutral element ¢ (in the case of a path-finding problem,
its elements correspond to the information attached to the vertices of the graph).

— Histhe set of mappings: S — S, satisfying:

h(adb)=h@ e®h(b) YVheH,aecSbeS
h(e) = ¢ Vh e H.

H is therefore the set of endomorphisms of (S, @) satisfying h(s) = ¢. The unit
endomorphism will be denoted e e(a) = a, Vae S.
— The ® law on Sinduces on H an operation also denoted &, defined as:

(h@g)@=h@®g@ VYheH,geH,aecS.

Observethat @ isaninternal law on H. The neutral element of @ in H isthe endo-
morphism denoted h® which, with any a € S, associates e € S; we clearly have:

h®* @h=h@&h®*=h VheH.
— Hismoreover endowed with a second law, denoted * defined as:
heH, geH hxg=goh

where o isthe classical product mapping.
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* 1S therefore an internal, associative law on H which has the unit endomor-
phism e as neutral element.

Furthermore, * isright and left distributive with respect to the & law. It hash® as
absorbing element because:

(g*h®)(a = h°(g(a)) =« YVaeS, VgeH.
(h*xg)(@ =gh*(@]=9g(c) =¢ Vae$S, VgeH.

We deduce that (H, @, x) isasemiring.

4.4.2. Quasi-Inverse of a Matrix of Endomorphisms

Given asemiring of endomorphisms (S, H, &, ), let usconsider now an x n matrix:

® isamatrix of endomorphisms, we will have to make it clear in what sense one
can speak of the computation of ®*.
Let usfirst of all address the question of existence.
If itisassumed, for example, that all the endomorphisms ¢;; corresponding to the
entries of ® satisfy:
YVaeS ad gj@=a

in other words that, Vi, j:
ed ¢j=¢€

it isthen easy to see that the graph G associated with & has no 0-absorbing circuit,
which implies the existence of the matrix ®* = ((pﬁ)g:;L _____ n quasi-inverse of ® (see
Theorem 1 Sect. 3.3). J=hen

Let us observe, however, that, as opposed to the classical case dealt with above,
thefact that ®* exists does not necessarily guarantee that the computation of ®* can
be performed explicitly and efficiently. Indeed, the entries (pi’j are endomorphisms,
therefore mappings: S — S, which, apart from special cases, can only be exactly
known through the set of images of all the elements of S. Thus, from the point of
view of computation and information storage this poses a problem whenever (and
thisis the most frequent case) |S| = +oo.

Moreover, in many applications:

— Either each endomorphism ¢;; (each entry of the @ matrix) is only known by its
effect on each element of S;

— Or the product of two endomorphisms g;; * ;i is known only by its effect on
each element of S.

Indeed, the algorithms to be described in Sect. 4.4.4 will be limited to efficiently
computing each endomorphism (pi’] point-wise, i.e. they will compute (pi”j (8 for a
given arbitrary a € S.
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We first provide below afew typical examples of problems that can be modeled
as the point-wise computation of the elements of ®*, quasi-inverse of a matrix of
endomorphisms ®.

4.4.3. Some Examples

Example 1. Shortest path with time dependent lengths on the arcs (see Chap. 1,
Sect. 6.2.)

We will take here S = R, @® = Min, e = +o0. The set H will be the set of
endomorphismsh of Ssatisfyingh(4-00) = +00. Sincehere® = Min, thecondition
of endomorphism amounts to:

h(Min{t, t'}) = Min{h(t), h(t')}

which is equivalent to requiring that the functions h: R — R be nondecreasing.

With each arc (i, j) of the graph we associate ¢;; € H having the following
meaning:

ti = ¢j(ti) istheinstant of arrival at the vertex j when starting fromi at theinstant
tj through arc (i, j).

If one starts from vertex ig chosen as the origin at the instant tp, one wishes to
determine, for every vertex j # ig, an optimum path in order to arrivein j asearly as
possible. The aim therefore isto determine all the values (pi*o’ i (to) which correspond
to therow ig of the quasi-inverse ®*.

Example 2. Shortest path with discounting (see Chap. 1, Sect. 6.2.)

With each arc (i, j) of agraph G, we associate alength which depends, in a path,
on the number of arcs previously taken. If weinterpret, for example, the transversal
of thearc (i, j) as corresponding to an annual investment program, the cost of the arc
(i,j)iscj/(1+ )t if tisthe number of arcs previously taken by the path, that isto
say, the year of the expenditure ¢;j (t is agiven parameter referred to asthe discount
rate). For every arc (i, j) the value Cjj, assumed to be given, therefore represents the
amount of the investment corresponding to the arc (i, j) assuming that thisisthefirst
arc of the path to be determined.

We seek the shortest path with discounting from a given vertex 1 to each of the
other vertices.

If T is the number of time intervals under consideration, we will take for S the
set of (T + 1)-vectors with components in Ry U {+o0}. If a = (a9, &, ..., a7)
and b = (bg,by,...,br), wedefined = ad b = (dp,dq, ..., dr) by setting
de = min (&, by), foral tfrom0to T. ¢ = (400, ..., +00). Then we define the
endomorphism ¢j; as:

gj@=">b
b0=+OO

with Cij t=1,...,T
br=a 1+ — ( )

A+ot?
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We observe that such endomorphisms are T-nilpotent (see Sect. 3.3) and the matrix
®* therefore exists (as a consequence of Theorem 3, Sect. 3.3).
Theinitial state of the vertex 1 being taken as equal to o = (0, +00, +00, ...,
+00), the problem is reduced to the determination of (pjj ()forj=2,3,...,n
The shortest path with discounting between 1 and | has the value

Min {[ 1] ]

.....

Example 3. Shortest path with time constraints
With each arc (i, j) of agraph G, we associate:

— aduration dij > 0 measuring the transit time on arc (i, j),
— aset of intervals Vj; C [0, +oo[ representing the set of instants of possible
departure from vertex i towards vertex j using arc (i, j).

With each vertex i, we associate aset of intervalsW; C [0, +oo[ representing the
set of instants where parking is authorized in vertex i.

The problem isto determine the shortest path joining two specified vertices x and
y (in the sense of the transit time) compatible with the time constraints specified by
the Vjj (on the arcs) and the W (on the vertices).

The information associated with avertex i isthe set E; of the instants of possible
arrival in i from the origin x. An element of S will therefore be a set of intervals
C [0, +o0[. We define on S the operation & (union of two sets of intervals) by:

adb={t/t eaorteb} VabeS

The empty set ¢ is the neutral element of &. To define the endomorphisms ¢;;, we
define the transition between i and j in several steps:

— If Ej corresponds to the set of instants of possible arrival in i, then the set D; of
the instants of possible departure fromi will be:

D; =E LW,

where the operation L is defined as follows:

IfEiz{[al,oc’l],[ocz,oc’z],. [ ]}
Wi={ (B B1). [B2.B5] - [ Bq- B ]
then:
Di = [v1.vi] @ [va V2] @ [vp, v},]
where, for k from 1 to p:
[a, o ] if o ¢ Wi

[y vid] = (o ] if o < B8] for somej
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— The set of instants of possible departure from i towards j using arc (i, j) will
be then:
Di N Vjj
— Let usdefineon San externa operation T (translation) as:
aeS teRy, =tTa={t+rt/teal.

The set of instants of possiblearrival inj fromi through arc (i, j) will therefore be:

dijT(Di NVij).

Finally we define g;; as:

@i (B = dij TI(Ei LWj) N Vjjl.

It is easily checked that ¢;; is an endomorphism of (S, ®).

We observe that the endomorphism ¢;; is entirely determined by the triple
(Wi, Vjj, dij) but the product of two such endomorphisms will not generally cor-
respond to such atriple.

One can then show that for some p € N deduced from the problem data, the set
of endomorphisms ¢;; is ap-nilpotent set (see Exercise 1 at the end of the chapter),

which implies the existence of A* (Theorem 3, Sect. 3.3).
Theminimumtimetoreachy will bethentheminimum element of Ey, = <p;‘;’y(Ex).

4.4.4. A Few Solution Algorithms (Minoux, 1976)

We now turn to show how the classical Jacobi, Gauss-Seidel (see Sects. 4.1 and 4.2)
and Greedy algorithms (Sect. 4.3) can be generalized to the problem of (point-wise)
computation of the quasi-inverse ®* of amatrix of endomorphisms ®. Here we will
focus on paths of origin 1 for example, i.e. on the (point-wise) computation of the
first row of ®*.

The generalization of the Jacobi algorithm readily leads to the following.

Algorithm 1’ (Generalized Jacobi algorithm)

(a) Initialization of the states of the various vertices. E? is the initial state of vertex 1.
EJ-O<—£,Vj =2,...,n. k<0

(b) Repeat (current iteration)

k < k+1;
n
B = o (B7) @ ED
I:nl
Ef = igl @ (B

While (3 i such that: EX # E*~1)
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(c) When the iterations terminate, the current state of each vertex i is the desired
result: E = ¢} ;(ED)

If we have @) = &* (Theorem 1, 2 or 3), then the previous agorithm converges
inat most K steps.

When & isidempotent, the previous a gorithm can be improved by transforming
it into an algorithm of the Gauss-Seidel type to obtain Algorithm 2" below.

Algorithm 2 (Generalized Gauss—Seidel algorithm)
(Case where @ is idempotent)

(a) Initialization of the states of the various vertices: E; = E(l) initial state of vertex 1.
Ei < ¢ for i=2,...,n; k<0

Test < FALSE.
(b) Repeat (current iteration)
k < k +1; Test < FALSE;
For (any arc u = (i, j) € U such that E; # ¢) proceed as follows:
Compute E' = Ej @ @ij (Ei);
If (Ej/ # Ej) then
Test <— TRUE;
Endif
Ej <~ EJ-/;
Endfor
While (Test = TRUE)
(c) When the iterations terminate, the state of each vertex i is the desired result
Ei = ¢} | (ED).

Just asin algorithm 1/, if A®K) = A* then algorithm 2’ converges in at most K
iterations.

We are now going to make animprovement to algorithm 2/, till in the case where
@ isidempotent. A vertex i will bereferred to aslabelled at iteration k if its state E;
was modified by thisiteration. A vertex i will be referred to as examined at iteration
kif for all the verticesj e I'j, we have carried out the transformations:

EJ-/ <~ B @ g;(E)
E « EJf

We then observe that it is unnecessary in algorithm 2’ to examine, at iteration k, a
vertex i examined at some iteration ¢ < k and not labelled since then.
Indeed, at iteration ¢, we calculated:

2 1 1
E =E & ¢;(E)
for all j € T, and thus at iteration k, the state of j can be written in full generality:

E}=E @ ¢j(E) ®F;
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(F; isthe contribution of the new labellings which have taken place between iteration
| and iteration k from vertices other thani).
Since, in iteration k, the state of i is till E;*, the labelling of j will give:

E'=E © ¢j(E) = B @ ¢;(E) @ F @ ¢ (E) = E}

since @ isidempotent. ThisistrueVj € I'; and the property thus follows.
Taking thisremark into account, and denoting at the current step, the set of 1 abelled
vertices by X5, we obtain the generalized Moore agorithm.

Algorithm 2" (Generalized Moore algorithm)
(Case where @ is idempotent)

(a) Initialization: Ey <« E9
E < ¢ for i=2,...n
Xo < {1}; k < 0;
(b) Repeat (current iteration)
k <~ k+1;
Select an arbitrary vertex i € X».
Set: X2 < Xo\{i};
For (j running through I';) do:
compute Ej’ =E @ ¢;(E)
If (Ej’ # Ej), then:
X2 < XU {j}
Endif
E « Ej/
Endfor
While (X2 # @)
(c) When the iterations terminate, the state of each vertex i is the desired result:
Ei = ¢}; (ED.

Let us now assume that there exists on S a total preorder relation® denoted «,
compatible with &, and such that:

@jj (@ xa V|,] (26)

We observe that arelation of thiskind is not necessarily antisymmetrical: a o« b and
b o a does not necessarily imply a = b.
In the case of the shortest path with discounting (see Sect. 4.4.3 above), the
preorder relation will be defined as.
a = (a,a&,...,ar) « b = (bg,byg,...,by) if and only if: I\élinT{a;} <
|

.....

.....

1 Let us recall that atotal preorder relation is a binary relation o reflexive (a o« a), transitive
(axxb,boc= acc)andsuchthat: Va,b e S= aoxborb o a Itiscompatiblewith @ if,
Va,b,ce S, wehave acxxb=a®cuxbdc.
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In the case of the shortest path with time constraints (see Sect. 4.4.3 above), the
preorder relation will be;

E o« F & min{t/t € E} < min{t/t € F}.

Itisclear that these two relations are not antisymmetrical.

In the case of the shortest path with time dependent lengths on the arcs, the
preorder relation will be the usual order relation defined on R.

Now, the total preorder relation together with (26) will be used to remove the
indetermination existing with regard to which vertex of X5 should be selected in
algorithm 2”. This leads to the following algorithm which generalizes Algorithm 3
of Sect. 4.3 (“greedy” agorithm).

Algorithm 3 (Generalized Dijkstra Algorithm)
(Case where @ is idempotent and where there exists a total preorder relation o<
on S).

(a) Initialization: E; < EY,
Ei < efori=2,...,n.
X1« 0; Xo < {1}; k<« 0.
(b) Repeat (current iteration)
K <~ k+1;
Select r € X5, such that:
Er « Ei, Vi € Xo.
If (r ¢ X1) then
X1 <« XU {r}
X2 < Xa\{r}
Endif
If (X1 # X) then
For (j running through I'y) do:
Compute §' # E @ ¢y (Er)
If (Ej/ # Ej) then:
X2 < X2 U {j}
Endif
g <~ Ej,
Endfor
Endif
While (X2 # @) or (X1 # X))
(c) When the iterations terminate, the state of each vertex i is the desired result:
Ei = ¢} (ED).

The finite convergence of Algorithm 3’ follows from that of Algorithm 2”. Indeed,
it only differs from the previous one by:

— A selection rule for the node to be examined;
— An additional stopping criterion.
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Clearly, the selection rule of r does not influence the convergence. M oreover, an addi-
tional stopping criterion can only reduce the number of iterations; henceAlgorithm 3’
will be preferred whenever the required properties are present.

To show that Algorithm 3" indeed achieves aminimal label Ej for every vertex |,
it isenough to check that E; isminimal in Swhenr istransferred for thefirst timeto
X1 (see proof in Exercise 2).

In the special case where o isatotal order relation (thisis the case for example
for the shortest path problem with time dependent lengths on the arcs), it will always
hold true that X1 N X2 = @ (see proof in Exercise 2).

Each vertex is then examined once at step (b) and the maximum time taken by
Algorithm 3’ isthen © (N?) assuming that each computation of E @ ¢; (Ei) takes
place in time O (1). Algorithm 3’ then appears as a generalization of Dijkstra's
Algorithm or of agorithm 3 of Sect. 4.3 (greedy algorithm).

5. Direct Algorithms: Generalized Gauss-Jordan Method
and Variations

In this section, we generalize the classical computation of theinverse of amatrix via
Gaussian elimination to the computation of the quasi-inverse of amatrix A € Mp(E)
inasemiring or in adioid, when this quasi-inverse exists.

We know then (see Sect. 3.4) that the quasi-inverse A* satisfies the linear system
(11) and that, moreover, if (E, ®, ®) isadioid, A* is the minima solution to the
matrix systems:

Y=YQA®I (28)

and
Z=AQ®Z®I (29)

whereY = (yjj) € Mp(E)andZ = (zjj) € Mn(E) denote, ineach case, the (unknown)
matrix to be determined. | denotes the identity matrix of My (E).

5.1. Generalized Gauss-Jordan Method: Principle

We will describe the generalized Gauss-Jordan method by considering system (28)':
Y=YQA®B (28)y

where B = (bjj) € Mn(E) isagiven arbitrary matrix.

We will assume that A* exists, therefore, implying that (28)' has a minimal
solution B @ A*

Note that we will be able to obtain similar formulas to solve the system:

Z=AQZaoB (29y
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In the sequel, it will be assumed that (E, @, ®) isatopologica dioid; we recall
that in such a dioid, any nondecreasing sequence bounded from above has a limit
(see Chap. 3, Sect. 6).

Aswill be seen, this assumption will enableto show that at each step, the method
calculates expressions leading to minimal solutions. In the case where (E, @, ®) is
not a dioid, but only a semiring, the method will possibly yield a solution to (28)
which does not necessarily have the property of minimality.

In the specia case where B = | (the identity matrix of My(E)) and where
(E, ®, ®) is a dioid, the generalized Gauss—Jordan method therefore yields the
minimal solution to (28) i.e. the quasi-inverse A* of A.

Thefirst equation of (28)" iswritten:

n
yu=yn®au® Z y1j @ &1 @ b (30)
=2

Since (E, @, ®) isatopological dioid we deduce that the entry a;1 has a quasi-
inverse aj; (see Chap. 3, Proposition 6.2.6) and consequently from (30) we obtain
the expression of y1; in terms of the other variablesyyj (j = 2,...n):

yi1 = Zylj ® g1 ®a; ® by ® ay;
=2

We proceed similarly with all the other equations of (28) corresponding to the first
column of Y. We therefore have, forany i = 1, .

n
Yir =VYi1 ® a1 @ Zy”‘ ® g1 @ biz
j=2
which, by using aj;, enables oneto expressy;; intermsof the other variablesyjj (j =
2,....N):

n
Yir= Y Yij ® 1 ®aj & by ®af (31
j=2

Oncetheexpressionsof yj1 (i = 1...n) givenby (31) areobtained, onecan substitute
them in the other equations of system (28)’, which gives, for i arbitrary and k > 2:

n
Yik = ZYij ® 8k @ bik
=1

n
= Vil ® ak @ZYij ® gk @ bik
j=2
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By using (31), the above expression takes the form:

n
Yik =) Yi®@1®a; @ax®ak ®bi®a) ®akdbk (32
j=2

Let usdenote Y™ the matrix deduced from Y by replacing al the entriesin the first
column by ¢ and let us introduce the square n x n matrices

Alll — (a]_[j1]> and B = (bi[jl]>

definedforanyj=1---nandk =1.-.-nas

"’ﬁ[

&] =aK ® g1 a); ®ak (33)
and L
bj[k] =bjx ®bjp ®a; ®aw (34)

It can be observed that the equations (31), which define the first column of Y can
also be written:

RN
Y21
[1] [1]
. 81 b3
Yle| e | (35)
' .1 .1
Yo | a7 ] 6]

Indeed, fori =1, ... n, the expression of y;; given by (35) reads:
n
Yi1 = ZYij ® éﬁl ® bi[i]
j=2

n
= ZYij R@ELDFL®a, ®an) ®b @ bi1®a) ®an
i—2

Now, since aj; isthe quasi-inverse of aj;, we have that:
g1 ®a1Qa; ®an=3g1 @ (ed a; ®ai) =g ay

and similarly:
b1 ®bi1® a; ®ai1 =hi1 ®aj;

from which we can write:
n
Yi1 = Zyij ® &1 ® ay; @ by ® aj,;
j=2

which is exactly expression (31).
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The relations (32) and (35) therefore show that after elimination of the variables
yi1 (i = 1---n), system (28) takesthe form:

Y =Y g aAlll g gl (36)
Moreover (33) and (34) can be written in matrix terms:
A = A @M 37

and
BY =B oMM (38)

where the matrix MM € My, (E) is the transformation matrix defined as:

a; ay®ar ay®as . . . & ®an
€ e € . . . €
M[l] _ € e
€ € ) S e

i.e. the matrix deduced from the identity matrix of M (E) by replacing the entriesin

the first row by:

1 *
m[11] =3,

m[ljllza’i"l@alj(jzz...,n)

(for the entriesin thefirst column of Al (33) yields: a].[ll] = g1 ®(eda ®an) =

31 ® ajp; in the same way (34) yields b} = by @ &)

By analogy with the classical Gauss—Jordan method, we will say that (36) is
deduced from (28)’ via a pivot operation on the first row and the first column (the
entry a1 isreferred to as the pivot element).

Itisnow easy to seethat the elimination technique explained above can beiterated:
since A* exists, aglzl is quasi-invertible (see remark below) and the element a[212] can
be used as a pivot element to eliminate all the variables of the second column of Y.
By denoting Y2 the matrix deduced from Y by replacing al the terms of the
second column with ¢, the system obtained at the second iteration reads:

Y =Y oAl gl
where

Al2l — Al o 12
B2 — gl g M2
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M2l being the matrix deduced from the identity matrix | by replacing the second
row by:

mi3 = (&)
A =@gred! (£2

my =
Remark. The fact that the existence of A* impliesthat aby has aquasi-inverse can
be derived as follows.

Consider A = [azi g;ﬂ corresponding to the first two rows and columns. Since

A* exists, we know (from Proposition 6.2.6 in Chapter 3) that A has aquasi-inverse
A* which solvesthe 2 x 2 system:
e ¢
o7 |

U Uiz _ Unn U2 ® A
U1 U22 U1 U22
carrying out on the above system a pivot operation with pivot element a3 yieldsthe

relation

Up=Ux® (@1®a; ®a®axn)de
=U22®8£12]€Be

For the solution Uy = (~ the above implies, Yk € N:

‘o ()"

0
(6[212]) = Up2.
[\ ®

Thus the sequence <a22 ) is nondecreasing and bounded from above in atopolog-

)22

U2z =U2® (8[212]>

hence:

ical dioid, hence the existence of (a[212]> follows. ||

In ageneral way, the matrices Akl and BIX! are defined recursively as:

Al =pa B0 =B (39)
and,Vk=1,2,....n:

A[k] — A[kfl] ® M[k] (40)

gkl — glk=1 ® MK (42)

with M deduced from | by replacing the row k by:

My = (akk s (42)

mid = @ D ed ™ (#£k 43)
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(Thefact that (ai[(kk’ll)* existsisobtained along the sameline asin the aboveremark,

considering the principal submatrix induced by the first k rows and columns and
carrying out k—1 pivot operations).
We then have:

Theorem 7. Let A € Mp(E) where (E, @, ®) is a topological dioid. It is assumed
that A has a quasi-inverse A*.
Then Y = BI" obtained by (39)—(43) is the minimal solution to the system

Y=Y®A®B (28
In the special case where B = BI% = |, then BI" is the quasi-inverse A* of A.

Proof. All theintermediate operationsperformedin applying therecurrencerelations
(39)—(43) comply with each equation of ((28)'). Thematrix Y = B!"l obtained at the
n' iteration is therefore clearly asolution.

Thefact that it isindeed aminimal solution can be easily proved by induction as
follows.

LetY = (Vij) bean arbitrary solutionto (28'). Atiteration 1, Y therefore satisfies:

Vi=1...n:

n
yii=Yi1®an® Y Vi ® a1 ®bi (44)
j=2

Y istherefore a solution to (44)
Thus i1 solves:

n
Viit=Yi1® a1 ® Z)_/ij ® a1 @ big
=2
and consequently:
n
Vi1 > (Z Vij ® 1 @ bil) ® aj;
i—2

Thisshowsthat Y satisfies system (36) obtained at the end of the first iteration with
the inequality, in other words that:

Y >V @Al gl = YU ¢ Alll g B @ MUY
There therefore exists amatrix H!Y! € M, (E) such that Y satisfies

The second iteration, corresponding to the elimination of al the variables yio,
performed on system (45) would lead, similarly, to showing that Y satisfies:
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There therefore exists amatrix H2! € M (E) such that:

Y =Y? oAl g (B oMU g H[ll) oM@ g HI

One can therefore deduce, by induction, the existence of matrices HIM HI21 . .. HINI
suchtha: Y = Y @ Al @ (((---(BeoMU g HI) ... ME o H?) g .. )
M g H[”])
€€ €
€
Since YN = we deduce

€ €
Y>BaMUgmg...gMmM =g

This proves that BI"! isaminimal solutionto (28)'. O
5.2. Generalized Gauss-Jordan Method: Algorithms

Letusconsider herethecasewhereB = |. Applying theinductionformulae (39)—(43)
we then construct the quasi-inverse A* of A.
We have, in this case:

BN —a* = MU g M2 g ...@ MM
and:

ANl A oMY oM & ... MM
=A®BM
=A®A*
=A"t

It is seen that to compute A[" = A+ wejust have to use the induction formula (40).
A* isthen directly deduced from A+ by: A* =1 @ A+,

Since MX! only depends on A%—11 this remark shows that one can compute A*
by only working on each iteration with a single matrix Al

We then have:

Algorithm 4 (Generalized Gauss—Jordan)
Computation of the matrices A* and A*

(a) Set Al0 = A
(b) Fork =1, 2,...nsuccessively do:

(K _ ( [k=1\*.
akk_(akk )
Fori=1...n



152 4 Solving Linear Systemsin Dioids

Forj=1...n

If (i #korj #Kk) do:
(K] k

[ [k-1]
aij <~ aij

Tod oqf o4
Endfor
Endfor
Endfor
(c) Atthe end of step (b) we obtain At = AN, A* is then deduced by:

Ax = Al g,

The following result states the complexity of Algorithm 4.

Proposition 5.2.1. Algorithm 4 requires n computations of the quasi-inverse of an
element, and O(n3) operations @ and ®.

[k—1]

Proof. Each iteration requires the computation of (akk )* (quasi-inverse of the

pivot element) and O(n?) operations @ and ®. From thisthe result follows. o

A special case of interest is the one where the graph G(A) does not contain a

0-absorbing circuit. In this case, aEf;l] is a O-stable element (see chap. 3 Sect. 7)
[K] [k—=11\*
A = (akk ) =€

therefore
Algorithm 4 then specializes as follows:

Algorithm 4 Computation of A™ and A* in the case where G(A) does not contain
a 0-absorbing circuit

(@ AP =A
(b) Fork=1...n
Fori=1...n
Forj=1...n
%[jk] - %[jk 1 @ 31[|k< 1] ® q[('.‘ 1];
Endfor
Endfor
Endfor

(c) AT =AM and A* =1 @ AIN

In the case of the shortest path problem in a graph without negative length circuits
(® = Min, ® = +) algorithm 4’ is none other than Floyd's algorithm (1962).

5.3. Generalized “ Escalator” Method

A being an x n matrix with elements in adioid E, for any k € [1,...,n] let us
denote Ay the sub-matrix of A formed by thefirst k rows and thefirst k columns of
A. With this notation this yields: A = A,
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The principle of the “escalator” method is to determine (Az;)* from (Ag1))* =
aj; then (Az)* from (Az))*, and so on, until one obtains A* = (An)* from
(Apn-1p"-

To implement this recursion in the form of an agorithm, we will use the formula
of quasi-inversion by blocks given by the following result.

Proposition 5.3.1. Let (E, &, ®) be a dioid and U € Mg (E)(k > 2) ak x k matrix
assumed to be partitioned into blocks in the form:

U— Un Uz
Uo1 U

with U1 € Mg_1(E) and where:

U12 has dimensions (k — 1) x 1, U1 has dimensions 1 x (k—1) and U2, € E. Itis
assumed that the sub-matrix Uy is quasi-invertible with quasi-inverse U7, that the
entry Uz is quasi-invertible in E, and that the element u = U1 ® U3} ® U12 @ U2z
is quasi-invertible in E.

Then U is quasi-invertible in My(E) and U* = [;i iz] is given by the
formulae:

X1 =Uj; & U ® U ® n* @ Uy @ Uj (46)

X12=Uj; @U@ p* (47)

Xo1 =p* ® Uz ® Up; (48)

X2o = ¥ = (U1 ® Uj; ® Uz @ Upp)* (49)

Proof. Let us show the existence of aminimal solution to the matrix equations:

X=UX® Il (50)
X=X®U® Ik (51)

where X € M (E) can be partitioned into blocks:
X — [Xn X12:|
Xo1 X22
(50) implies, in particular:

X12=U11 ® X12® U1 ® X2 (52)
Xo=Un®@Xpo®dUx@Xnde (53)
Since U11 is quasi-invertible, (52) has a minimal solution in X1» for any value of

X292, which reads:
X2 =U} ® U2 ® X5,
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By using thisrelation, (53) iswritten:
X2=Ua®U ®@UpdUn) @ Xxde

or, equivaently:
Xz=n ®@X2 ®e

p being assumed to be quasi-invertible, the equation above has a minimal solution
which reads:
Xz = p* (49)

from which we deduce:
X12 =Uj; @ Uz @ p* (47)

Similarly (51) leadsto the four relations:

X1 =X11 ®U11 & X12® U1 @ k1 (54
X21 = X21 ® U1 @ X22 ® U2y (55)
X122 =X ®U12 ® X12 ® U (56)
X2 =X21QUp®dXn@Uxde (57)

By using (47), (54) isrewritten:
Xuu=Xu®Uun®Uj; @U@ n" @ U @ lk-1

and, since U11 is quasi-invertible, the latter equation has aminimal solutionin X1,
which iswritten:

X11=U; @U@ n" ®Ux ®lk-1) ® Uy
=Uj;®Uj; @ Uz @ n* ® Uz ® U3, (46)

Finally, by using (49) and the quasi-invertibility of U1, through (55) one obtainsthe
minimal solution in Xo1:

Xo1 =p* ® Uz ® Up; (48)

We have thus obtained the expressions (46)—(49) by exploiting two of the relations
resulting from (50) and two of the relations resulting from (51). It remains to verify
that X thus obtained satisfies for example the two other relations (56) and (57)
deduced from (51). The expression X11 ® U12 @ X12 ® U iswritten:

U ®eU @U@ p* @ Uz ®UL) @U@ Ul @ U @ u* @ Uz
=U;; ®Up @ (U ® Uiz ® n*) ® (U ® U] ® Uz @ Upp)

=Uh 0Up@Edpn’ opn)

=U; ®@Upep*

= X12 according to (47)
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The expression X21 ® U2 @ X22 @ Uoo P eiswritten

Uz ® U @Upp@p™ @Ux @e
=pn*®Ux ® U;; @U@ Ux) de
=pn*® n de=pn* =Xy accordingto (49).
X given by (46)—(49) therefore clearly satisfies (51).
Furthermore, by construction, it is clearly aminimal solution. We deduce that U
isquasi-invertiblewithU* = X. 0O

To determine the quasi-inverse of amatrix A (assumed to be quasi-invertible) one
can then deduce directly from Proposition 5.3.1 the following general algorithm.

Algorithm 5 (generalized “escalator’” method)
Determination of A* for A € M,(E) assumed to be quasi-invertible.
Set A?‘l} =ay
Fork=2,...,ndo:

Ak—1) 1 Vk—-1
Al = | —— — — ——
Wk—1 | Sk
where:
* Vi_1 is the column-vector formed by the k — 1 first entries of the k"
column of A.
* Wwy_1 is the row-vector formed by the k — 1 first entries of the k' row
of A.
Compute:
W= (Wk1 ® Afy 1) ® Vk—1 ® ak)”*
Vk—1 = Azkk_l} ® Vk-1 (58)
Wi-1=Wk_1® A?k_l} (59)

then deduce:

N Ak ®Vk-1@ R @Wi—1 | V-1 ® *
K= = === — =
I @ Wi—1 | T
Endfor
At the end of the iterations, we obtain A* = Af,,.

Let usobservethat in theexpression of Ay, , thevectorsvy_1 ® u* and u* @ Wg 1
deduced from (58) and (59) correspond to (47) and (48) respectively. Moreover, the
expression A?kfl} P Vk_1 ® ™ ® Wk_1 can be rewritten:

A?k—l} (&3] A?k—l} ®Vk-1® M* R Wk_1® A?k—l}
which is none other than relation (46).
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Proposition 5.3.2. Algorithm 5 requires O(n3) operations @ and ®, as well as n
computations of the quasi-inverse of an element of E.

Proof. On the whole, the algorithm performs atotal of n computations of the quasi-
inverse of an element of E. Moreover, at each iteration k the algorithm performs on
matrices of order k — 1 and vectors of dimension k — 1:

— Three matrix-vector multiplications requiring © (k?) operations @ and ®;

— A scalar product of two vectors requiring O (k) operations @ and ®;

— A product of a column-vector- (Vkx_1) by arow-vector (u* ® wg_1) followed by
asum of two matrices, which requires O (k?) operations @ and ®.

Theresult is deduced by summationonk from2ton. O

A interesting specia case is the one where the graph G(A), associated with matrix
A, has no O-absorbing circuit.

In this case at each iteration of Algorithm 5, we have n* = e, and Algorithm 5
can be reformulated in the following simplified form:

Algorithm 5 Computation of A* starting from A by the generalized “escalator”
method (case where G(A) has no 0-absorbing circuit).

a1 < €
For k = 2tondo:
(@) ak < e
(b) Fori=1,..., k-1
k—1
gk < Za,j ® g k;
=1
k—1
i < Zaq ® §i;
=1
Endfor

() Fori=1,...,k—-1
Forj=1,...,k—1
Gj < aj © ak ® aj;
Endfor

Endfor
Endfor

In the case of the shortest path problem (& = Min,® = +) algorithm 5 is
recognized as Dantzig's algorithm (1966).

6. Examples of Application: An Overview of Path-finding
Problemsin Graphs

In this section we discuss some interesting examples of applications of the compu-
tation of the quasi-inverse of a matrix related to path-finding problemsin graphs.
Table 1 on the following page summarizes the main features of these examples.



Table 1 Main features of path-finding problemsin graphs

Problem types | Problems solved E &) ® € e
Existence Problems of connectivity {0,1} Max Min 0 1

Enumeration of elementary P(X*) Union Latin multiplication X

paths

Multicriteria problems P(RP) Set of efficient paths | Set of efficient paths | (+-00)7 | (0)P

of the union of the sum

Enumeration Generation of regular Set of words Union Concatenation % The empty word

languages (Kleene)

Maximum capacity path R4 U {400} Max Min 0 400

Minimum spanning tree, R, Ry Min Max 400 |—00,0

Hierarchical classification

Minimum cardinality path N U {400} Min + +o0o |0

Shortest path R U {400} Min + 400 |0

Longest path RU M — 0
Optimization | oc P (oo} & * >

Maximum reliability path {a0<a< 1} Max X 0 1

Reliability of a network Idempotent polynomials |symmetrica difference | x 0 1
Counting Path counting N + X 0 1

Markov chains {a0<a<1l} + X 0 1
Optimization kth-shortest path problem Cone of Ek k smallest terms of the 2 |k smallest terms of the | (+00)¥ | (0, +o0, . . ., +00)
and vectors sums of pairs
Post- n-optimal paths Ordered sequence of Sequence formed by the | Sequence formed by the|(+o00) |(0)
optimization terms of R of amplitude n [n-smallest terms of the |n-smallest sums of pairs

two sequences of elements of the two
sequences

sydelo u1swB|go.id Buipuij-yed Jo MBIABAQ UY :Uoiedlddy Jo sajdwexg 9

/ST
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6.1. Problems of Existence and Connectivity

To solveexistence problems, wewill useclassical Boolean algebra, i.e. the structure:
E=1{0,1, ®&=max, ®=min, ¢=0 and e=1.
For agiven graph G = [X, U], the matrix A is defined as:
gp=1 if (,))eU, a; =0 otherwise
By interpreting the results of Sect. 3, we then obtain the following properties:

— There exists a path containing k arcs betweeni and j, if and only if (Ak)ij =1

— Thereexistsapath taking at most k arcsbetweeni andj, if and only if (A®);; = 1.

— Foranyac E,e®a=max(1l,a) = 1= e thereforeany circuit isO-stable; from
this we deduce (theorem I) the existence of A*, which can be interpreted as the
incidence matrix of the transitive closure of the graph G.

6.2. Path Enumeration Problems

To solve enumeration problems, we typically have to take for E the power set of
some associated set, with set union as addition &.

To be more specific, suppose we want to enumerate al the elementary paths of a
graph (Kaufmann and Malgrange, 1963).

Givenagraph G = [X, U], let X* be the set of ordered sequences of elements of
X ={1,2...,n} satisfying agiven property P. Each element of X* will be referred
to as a path. Here we require that the paths be elementary (property P).

The empty set ¥ will be considered as an element of X*. We will take as ground
set E the power set of X*,i.e. E = P(X*).

The @ law istaken asthe set union, hencee = ¢. The ® law will be the so-called
Latin multiplication defined as:

s URVW=0RuU Yue S
o ifuy = (Uy) withuy € X*
ug = (ugj) Wwith ugj € X*
then:
Uy ® Ug = {(Uyi ® Ugj)}
with:
if Uy, = (izi2, ... 1k)
and up = (a2, .- Q1)
S (E T P R P P - N S B | B P
Uy ® Ug; = § and if this sequence satisfies property P
-@  otherwise
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The neutral element for ® is the set formed of al the individual elements of X,
i.e.e=X.

With each arc (i, j) we associate aj = {i, j} € E.

By interpreting the results of Sect. 3, we deduce the following properties:

- (Ak)i,- represents the set of elementary paths between i and j containing exactly
k arcs.

— Theweight of any circuitisequa to @, therefore thereisno zero-absorbing circuit.
We deduce (Theorem |) the existence of A* = A"

- (An_l)ij represents the set of all Hamiltonian paths betweeni and j.

6.3. The Maximum Capacity Path Problem and the Minimum
Spanning Tree Problem

Here we consider the following lattice (doubly idempotent dioid):
E=R; U {40}, @=max, ® =min, ¢=0 and e= +oo.

With each arc (i, j), we associate its capacity aj > 0. The capacity represents
the maximum flow which can be sent on arc (i, j). The problem is to find a path
fromitoj: (i,i1,i2,...,ik,}), say such that o(n) = Min{a i, &,.i,, ..., &j} iS
maximized. The quantity o () isalso referred to as the inf-section of the path . By
interpreting the results of Sect. 3, we deduce the following properties:

— The maximum capacity of a path containing k arcs betweeni and j is (Ak)ij.

— Forany a € E,e® a = max(4+o0,a) = 400 = e, therefore there is no zero-
absorbing circuit. We deduce (Theorem |) the existence of A* = A1),

— The maximum capacity of a path betweeni and j is (A*);;.

A problem closely related to the above concernsthe search of apath i minimizing
the sup-section () = Max{g ,, &,.i,, &,j}. In the search for a path minimizing
5(), thedioid (R, Min, Max) will be considered.

From aclassical result (Hu, 1961) inthe symmetric case (i.e.: aj = g; foral i, j),
the minimum spanning tree of a graph provides the set of optimal paths minimizing
the sup-section for all pairs of nodes.

6.4. Minimum Cardinality Paths

Here we consider the following structure:
E=NU{4+00}, &@=min &=+, eg=+occ and e=0.

With each arc (i, j), we associate a; = 1.
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By interpreting the results of Sect. 3, we obtain the following properties:

- (A")ij = k if there existsapath taking k arcsfromi toj, (A")ij = +o0 otherwise.

— Foranyac E,e®d a=min(0,a) = 0 = e, therefore there is no zero-absorbing
circuit. We deduce (Theorem 1) the existence of A* = AM—D,

— (A%);; represents the number of arcs in the minimum cardinaity path between i
andj.

We observe that the resulting matrix A* contains the relevant information required

to determine the centre, radius, diameter, etc. of agraph.

6.5. The Shortest Path Problem

For this example, which has aready been extensively discussed (see Sect. 2 above),
we take:

E=RU{+00}, ®&=min, ® =+, e=+0c0 and e=0.

With each arc (i, j), we associate its length &;.
By interpreting the results of Sect. 3, we obtain the following properties:

- (A")ij represents the length of the shortest path between i and j taking k arcs.

— If aisnonnegative, e ® a = min(0, a) = 0 = eand ais O-regular. Therefore if
there does not exist a negative length circuit, A* exists (Theorem I) and (A*);;
correspond to the length of the shortest path between i and j.

6.6. Maximum Reliability Path

E={a/0<a<l, ®d=max, ®=x, e6=0 and e=1

Witheach arc (i, j) weassociate the probability 0 < pj; < 1 of being ableto passfrom
i toj. The problem is, given two arbitrary vertices ip and jo, to find the probability
of the path from i to jo which isthe most likely to exist. (We assume independence
of the random events attached to the various arcs).

By interpreting the results of Sect. 3, we obtain the following properties:

— Themaximum reliability of a path taking k arcs betweeni andj is (Ak)ij.

— Foranyac E, e® a=max(1,a = 1 = e, therefore there is no zero-absorbing
circuit. We deduce (Theorem 1) the existence of A* = A1,

— The maximum reliability of a path betweeni and j is (A*);;.

6.7. Multicriteria Path Problems

For the various optimization problems addressed in the previous sub-sections
(6.3-6.6) one can define amulticriteria version of the problem which we formulate
hereinthe case of the shortest path problem (one can define an equival ent formulation
for the other optimization problems of Sects. 6.3-6.6).
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Given adirected graph G = [X, U], with each arc (i, j), we associate p lengths

vl v2 vk ...vﬁ,with,‘v’k:l,...,p:

ij’ ”7'--9 ”7

v!}eR:R U {4-o0}.

Avector v € RP issaid to beefficient with respect to asubset F of IRP if there does
not exist in F a vector v/ # v which has al its components smaller than or equal
to the corresponding components of v. The problem is then to find al the efficient
paths between two arbitrarily fixed verticesi and j, of G. We will therefore take for
E: P(IRP), the power set of RP. The operations & and ® will be defined as follows:

if Uy ={uy} with uy e RP  and ug = {ug} with ug e RP
then:

Uy @ Ug = set of efficient vectors of u, U ug
Uy ® Ug = set of efficient vectorsin the set of vectors of the form uy, + ug.

It is easily verified that these two laws endow E with a dioid structure having
neutral elements:
e=(+00)’ and e= (0)P.

By interpreting the results of Sect. 3, we then obtain the following properties:

- (Ak)i,- represents the set of values of the efficient paths fromi to j taking exactly
k arcs.

— Foranyv e RP where all the components are positive, we havee @ v = e and
v is O-regular. Therefore, if there does not exist a circuit of negative length with
respect to each of the p valuations of the graph, we deduce from Theorem 1 the
existence of A* = A("—D,

— Inthiscase, (A%)j; represents the set of values of the efficient paths between i and
jinG.

One can generalize the multicriteria problems thus defined in many ways. For exam-

ple, one can consider multicriteria problems mixing various criteriasuch as capacity,

length, reliability of a path, etc.

More generally, considering a partial order relation on a set T and an operation
endowing T with acommutative monoid structure compatiblewith the order relation,
one will be able to determinein E = P(T) the efficient paths which correspond to
the minimal pathsin the sense of the order relation.

6.8. The K" Shortest Path Problem

For the various optimization problems discussed in Sects. 6.3-6.6., one can al so seek
to determine the k best paths between two given verticesi and j.

We consider here the case of the search for the k shortest paths (similar models
for the other optimization problems of Sects. 6.3-6.6 could easily be defined).
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Let usdenote R = R U {400} and let E be the cone of R defined as follows:
U= (U, U, ..., U,...,u) € E

if and only if, forany i, u; e Rand: uy < Up... < U.

With each arc (i, j), we associate the k-tuple vjj = (ljj, +00, +00, ..., +00) € E
where [jj represents the length of the arc (i, j).

In the case where a multigraph is being considered, there could exist several arcs
from i to j. One then associates with arc (i, j) the vector vj; where the components
correspond to the lengths of the k smallest lengths of the arcs from i to j ordered
according to nondecreasing val ues (and compl eted if necessary by components equal
to 400).

The operéation @ is the operation Min, (see Chap. 8, Sect. 1.3.1) defined as
follows

if Uy = (Uyy, Uay, ..., Ug) With Uy € R

Ug = (Up1, Up,, - .-, Ug,) With ug € R

then:

Uy @ Ug = Uy = (Up;, Uyys ooy Uy, )
where the components of u, are the k smallest terms of (Uy,, Uy, - - ., Uy, Up, ,
Ug,., - - - Ug,)) ordered according to non-decreasing val ues.

The operation ® isthe operation ﬂ‘) (see Chap. 8, Sect. 1.1.5) defined as:
Uy ® Ug = Uy = (Uyy, Uy, o ooy Uy, )

where the components of u, are the k smallest terms of the form uy; + ug; with
i=1...,kandj=1,...,k

Thesetwo lawsendow E with adioid structurewith neutral elements; ¢ = (+o00)¥
and e = (0, 400, +00, ..., +00,) (see Chap. 8, Sect. 4.3.1).

Note that the operation & is not idempotent. For example if u = (2, 3, 4, 4) then
ubu=(223,3) #u.

Concerning computational complexity issues, it iseasy to show that the operation
@ requires k comparisons and that the operation ® can beimplemented with k log, k
comparisons and ordinary additions.

By interpreting the results of Sect. 3, we then deduce the following properties:

— (AP); represents the values of the k shortest paths fromi to j traversing exactly
p arcs.
— (AP); ; represents the values of the k shortest paths between i and j traversing at
most p arcs.
(Observe that the k shortest paths thus obtained are not all necessarily
elementary).
— If u € E hasdl its components nonnegative, then uis (k — ) stable (see Chap. 3
Sect. 7). Therefore if the graph does not contain a circuit of negative length,
the weight of each circuit is (k — 1) stable and since the multiplication ® is
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commutative, we deduce from Theorem 2 of the present chapter the existence
of A* = A1 Here nc_; denotes the maximum number of arcs in a path
traversing each elementary circuit of G(A) no more than k-1 times (see Sect. 3.3,
Theorem 2).

— (A™)jj represents the values of the k best paths from i toj if there is no negative
length circuit in the graph.

6.9. The Network Reliability Problem

Let G=[X, U] be a directed graph. With each arc (i, j) € U, we associate the
Boolean variable yjj, and the probability pjj of the existence of arc (i, j). Assuming
that the random variables associated with the various arcs are independent, we wish
to determine the probability that two arbitrary given verticesi, and o are linked by
apath.

Wewill takefor E the set of polynomialswith entriesin Z, idempotent for ordinary
multiplication (therefore these are polynomials in Boolean variables); addition is
taken asthe symmetrical difference (a® b = a+ b — ab), and multiplication isjust
ordinary multiplication. We thereforehaves = Oand e = 1.

Let us quickly verify that these two laws endow E with a dioid structure. Two
properties are not straight forward: the closure of & and the distributivity of ® with
respect to @. Let usfirst check theclosure of @: if P € Eand Q € E, wehaveP? = P
and Q? = Q; then:

PO Q?=(P+Q—P Q2 =P+ Q+ PPQ? + 2PQ — 2P?Q — 2PQ?
=P+Q+PQ+2PQ-2PQ-2PQ=P+Q-PQ=P@®Q.

Let us then check the distributivity of ®:

PR Q&R =PQ+R-0QR) =PQ+PR-POR=PQ+PR—-PQ-PR
=PQ® PR.

Each polynomial Pin E will be represented by its reduced form, i.e. such that each
monomial of P be of degree at most 1 with respect to each Boolean variable yj;.
By interpreting the results of Sect. 3, we then obtain:

— (A isapolynomial in'y, denoted (AK)jj (y), such that (AK);(p) represents the
probability that j islinked to i by a path of length k;

— (A®);i(p) is a polynomial representing the probability that j is linked to i by a
path of length at most k;

— Forany P e E,e® P =1+ P— P = g, therefore there is no zero-absorbing
circuit. We deduce (Theorem 1) the existence of A* = AM-D;

— (A¥)jj isapolynomial in p such that (A*);j(p) represents the probability that j is
linked toi.
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6.10. The n-Optimal Path Problem

For all optimization problemsin Sects. 6.3-6.6 one can search for the set of n-optimal
paths (i.e. optimal to within ) between two given verticesi and j.

We consider here the case of the search for the n-shortest path, leaving it to
the reader to extend this model to the other optimization problems addressed in
Sects. 6.3-6.6.

Let usdenote R = R U {+o0} and let E be the set of nondecreasing sequences of
elements of R defined as follows:

U= (Ug,...,U...,Ug € E ifandonly if:

q=>1uy ef&andulg b <...<U <--- <ugandug < up +nwherenisa
given positive constant.

n = O will correspond to the problem of determining the set of optimal paths.

With each arc (i, ), we associate the sequence (consisting of asingle term) vjj; =
(lij) € E, where [jj represents the length of arc (i, ).

In the case where the graph under consideration isamultigraph, several arcsfrom
i to] could exist. We then associate with the pair (i, j) the sequence vj; of the lengths
of the arcs from i to j with length deviating by at most n from the length of the
shortest arc fromi toj.

The operation @ is the operation Min( <, (see Chap. 8, Sect. 1.3.2) defined as
follows:

if Uy =(uy) €E
Ug = (qu) ek

then: u, ® ug = u, where u,, represents the ordered sequence of the terms of the
sequences (Uy;) and (Uﬁj) smaller than or equal to min (Uy,, Ug,) + 1.

The operation ® isthe operation (i]) (see Chap. 8, Sect. 1.1.6) defined as: uy ®
Ug = Uy, Whereu, represents the ordered sequence of the terms of the form ug; + ug,
smaller than or equal to uy, + Ug, + .

We verify (see Chap. 8, Sect. 4.3.2) that these two laws endow E with a dioid
structure with ¢ = (4+00) (the sequence formed of a single term equal to +o00) and
e = (0) (the sequence formed of asingle term equal to 0).

By interpreting the results of Sect. 3, we obtain the following properties:

- (Ak)i,- represents the lengths of the paths from i to j taking k arcs and having a
length deviating by at most n from that of the shortest path from i to j taking k
arcs. (Let usobserve, aspreviously, that the paths thus obtained are not necessarily
elementary).

If u e Eissuchthat u; > 0O, then uis p-stable with p = [n/u1], see Chap. 3
Sect. 7.
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Thereforeif the graph does not contain acircuit of length negative or zero, the
value of each circuit is p-stable (with p = integer rounding of [n/the length of the
shortest circuit]) and since the multiplication ® iscommutative, we deduce from
Theorem 2 the existence of A* = A,

— (A™)jj represents the lengths of the n-shortest paths fromi to j if there does not
exist acircuit of negative or zero length in the graph.

Let usfinally discuss afew additional examples related to specific applications.

6.11. The Multiplier Effect in Economy

Let us consider Leontief’s model of global balance by sectors (Leontief 1963). Each
of the industrial sectorsj = 1, 2, ..., n of an economy is associated with a type of
product.

Let A = (aj) bethe matrix of the technical coefficients (or “input-output” coef-
ficients): &; units of product i are required to manufacture a unit quantity of product
in sector j.

If d = (d)) is the vector representing the final demand, the production x must
satisfy the equation:

X=Ax+d

therefore
X=(01-A"ld=(0+A+A%+...)d=A*d

A* isthe quasi-inverse of the matrix A (transitive closure). A similar regularization
is observed in the multiplier effect of investment according to Keynes.

The underlying algebraic structure in thisexample hereis (R, +, x), thefield of
real numbers endowed with the standard operations of addition and multiplication.

6.12. Markov Chains and the Theory of Potential

Let us consider a Markov chain having transient states T and a recurrent class C,.
Then if x; is the probability of being absorbed in the class C,, when starting from
state j, the vector x = (Xj)jeT must verify the equation:

X=0Qx+r

where Q isthe restriction of the transition matrix P of the Markov chain to transient
states T and where, Vj € T:
= Z Pik

keCsy
Then x = Q*r where Q* isthe so-called matrix of potentials.
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The underlying algebraic structure hereis ([0, 1], +, x).

A more complex case is that of semi-Markovian processes. If x;j(t) is the prob-
ability of being in state i at time t knowing that we were in state j at time O, the
matrix

X(t) = (xjj(t)) satisfies the equations.

n
Xjj(t) = Z ag (b) * Xk (t) + 3jbi (1)
k=1

where * corresponds to the convol ution product of two functions, aj (t) corresponds
to the joint probability of leaving state j in the interval [0, t] and of passing to state
i inasingletransition, /-bj(t) corresponds to the unconditional distribution function
of thetimein statei.

Therefore:

X(t) = b(t) * (1 + At) + A%(t) + - --) = b(t) x A*(t).

The underlying algebraic structure hereis (L1(R))*, +, %) and the matrix A*(t) is
the so-called potential function.

6.13. Fuzzy Graphs and Relations

It is said that we have the graph of a fuzzy relation whenever we are given a graph
G valued on a set E, set on which we have defined two laws @ and ® corresponding
respectively to set union and to set intersection. We associate with each arc (i, j) of G
avauerepresented by agiven element a;j € E. Inmany cases(see Table2) (E, @, ®)
isadioid, and the closure of the fuzzy relation isthe matrix A*, the quasi-inverse of
the matrix A = (&j).

For an extensive presentation of fuzzy systems and possibility theory, see for
example Dubois and Prade (1980, 1987). For the extension to fuzzy integrals, see
Sugeno (1977) who extends Choquet’s capacity theory (1953). A survey of connec-
tions between dioids and fuzzy set theory can be found in Gondran and Minoux
(2007).

Table 2 Examples of dioids associated with fuzzy relations

E ® ® € e
[0, 1] Max Min 0 1
[0, 1] Max X 0 1

Distributive lattice  Sup Inf Smallest element  Largest element
P([0, 1) U N 0 [0,1]
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6.14. The Algebraic Structure of Hierarchical Clustering

Let usconsider nobjects. It issaid that we have adissimilarity index on these objects
if we have assigned to each pair (i, j) anumber dij € R which will be all the larger
that the objectsi and j are dissimilar (djj = Oif and only if i isidentical to j).

This index is referred to as an ultrametric distance if it satisfies the triangular
ultrametric inequality, i.e. if and only if, Vi, j, k:

dij < max{dik, dyj}
Considering the dioid (E, ®, ®) = (R, min, max), we can state:

Proposition 6.14.1. Amatrix A > 0 with zero diagonal corresponds to an ultramet-
ric distance distance if and only if we have, in the dioid (R4, min, max):

A =A?
Proof. Indeed, A will represent an ultrametric distanceif and only if Vi, j, k:
8j < 8k ® &j
therefore, since g; = O, if and only if Vi, j:

(&)
i = min i) = : |
aj = min(a ® aq) Xk:a,kcaak,

A classification tree corresponds to a nested set of partitions of the set of objects (for
an example, refer to Chap. 6, Sect. 6.1).

One can then show (see for example Benzecri (1974)) that there in a one-to-one
correspondence between ultrametricsand their associated indexed classificationtrees
(or indexed hierarchical clustering).

To construct a classification tree of n objects from agiven dissimilarity matrix D,
we therefore have to approximate the dissimilarity index by an ultrametric distance.
There are many ways of constructing such an approximation. Let us consider lower
ultrametric distances, i.e. such that:

A<D

where A isamatrix corresponding to an ultrametric. We will say that A isthe matrix
associated with a lower ultrametric distance.

Proposition 6.14.2. (Gondran, 1976a,b)
The set of lower ultrametric distances has a largest element D*, called sub-
dominant ultrametric distance, which satisfies:

D¥=D"1_ph=p"1_...
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Proof. Any lower ultrametric distance A satisfies, by definition, A < D, hence we
deduce AX < DK for any k.

Now according to Theorem 1, in the dioid (R, Min, Max), the sequence DX
convergesas soon ask = n — 1 towards:

D*=D"1_p"=—p™tl_...

A being an ultrametric distance, thisyields, according to Proposition 6.14.1: AK = A.
We deduce for any A, A < D*.
Since:
(D*)Z — DZn—Z — Dn—l — D*
D* corresponds to an ultrametric which is therefore larger than any other
ultrametric. O

Thus, through algebraic means, we find again a property well known in classification
theory (see for example Benzecri, 1974).

Further properties of this algebraic structure in clustering, will be investigated
in Chap. 6 Sect. 6.1, where the levels of a hierarchical clustering are interpreted in
terms of eigenvalues and eigenvectors of the dissimilarity matrix on the dioid (R,
Min, Max).

Exercises

Exercise 1. p-nilpotency for the shortest path problem with time constraints
Consider again the definitionsin Example 3 of Sect. 4.4.3.
Let us define on S the following total preorder relation:

E<F& min{t/tc E) <min{t/t e F).
We will denote H' the set of given endomorphisms, i.e.:
H = {¢;/(.}) € U}
and we set: dyin = min{d;j/(i, ) € U}.
(1) Show that for any ¢;; € H" and for any E € S, the following holds:
¢ij(E) > dmin TE.

(2) Let tmax be the largest of the coefficients involved in Vj; and W;.
Show that one can always assume tmax < +00.

Let p = [tmax/dmin]
Show then that Vhy, hy, ..., hy € H”
h(E) = (hhohzo---ohy)(E) >t TE.
Deduce the p-nilpotency of the endomorphisms of H'.
[Answers: see Minoux (1976)].
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Exercise 2. Convergence of Algorithm 3 of Sect. 4.4.4

(1) Show that E isminimal as soon asr istransferred into Xj.
(2) Show that in the case where the total preorder relation is atotal order relation,
we aways have X1 N X = .

[Answers: see Minoux (1976)].

Exercise 3. Constrained shortest path problem

Let G = [X, U] be adirected graph where each arc u € U is endowed with two
numbers, and oy (e.g. Iy will be adistance, and o, atransit time). Let Q be the set
of all the elementary paths between two particular verticessand t. For p, agiven real
number, let Q' C Q be the subset of paths 7t satisfying the additional constraint:

a(m) = ) oy <P

uem

We wish to solve the shortest path problem with constraint between s and t:

(P): Mm{an) Zzu}.

uem

It isassumed that for any circuit . of G we have:
(W) >0 and a(pn) > 0.

(1) Provide an algorithm to test whether Q' # @. Assuming this condition fulfilled,
show that an optimal solution to (P) is necessarily an elementary path.

(2) A possible approach to problem (P) consistsin associating with each vertexj € X
alist Lj of vj pairs of real numbers

pj" = {(my), csj" =a(my), for v=1 ...,y

Clearly, all theoj“ satisfy: cj“ <B
If v dominates vy, i.e. if
ot <o and o <o)

then v, can be eliminated from the list: we obtain areduced list. A list that can
no longer be reduced is said to be irreducible.

Let £ be the set of al the finite irreducible lists endowed with the law of
internal composition & defined as:

Lie L, Ly e L= L;®Ly=reduced union of thelistsL1 and L.

Thislaw isidempotent, and the zero element is the empty list: ¢ = @.
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With each arc u = (i, j) of G we associate the endomorphism ¢;; of (£, @)
whereL;j = ¢;;(Lj) isdefined as:

L= <pj",oj") v=1...,Y
L; isthe reduced list formed by all the pairs (p} + £y, 0¥ + o) such that
of +ay <B.

If F is the set of endomorphisms of £, show that (L, F, @, o) is an algebra
of endomorphisms on £. Show next that one can use a Generalized Dijkstra's
Algorithm on this structure to solve the problem (P).

State precisely this algorithm, and show that one can deduce (by limiting the
size of the lists) afamily of approximate methods.

[Answers: see Minoux (1975, 1976)].

Exercise 4. Right dioid and shortest path with gains or losses
Let G = [X, U] be adirected graph on which a given type of product circulates.
With each arc u = (i, j) € U two numbers are associated:

* Gjj representing the unit transportation cost of the product between i and .

* mj; > 0 representing the loss coefficient (if mjj < 1) or gain (if mj; > 1) of the
product during transport fromi to j; in other words, if g; isthe quantity of product
availablein i, the quantity availablein j after traversing arc (i, j) is mjj g.

Let us consider two arbitrary verticesi € X andj € X and . € Pjj apath joining
these two vertices:

W= {0, i) (i, i2). ... (p_1.ip)} (With i=ip and j=ip).

Let us denote ¢ () the transport cost of a product unit between i and j viathe path
i, and m () the overall gain (or loss) coefficient along the path .
These quantities are defined by induction as follows:
fpu=0:c) =0 m(p) =1
If wisapath betweeniandjand p'= n U {(j, k)} apath between i and k, then

c(n) = c() + m(p)Gjk
m(p) = m() - M

The shortest path problem with gains (or losses) is to determine the path of min-
imum unit cost between two given verticesi and j, in other words to minimize the
ratio b on the set P; of paths u fromi toj.

(1) We consider the set E = R x (R4 \{0}) endowed with the operations & and ®
defined as follows:
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v (;)if %<% orif%:% and m = Max{m, m’}
c
We=te . . . .

(m)lf <> orif =% and m = Max{m, m'}

()2 () = (o)

It will be observed that ® is not commutative and only right distributive with

respect to @.
Verify that (E, @, ®) is a right dioid. We will denote ¢ and e the neutral

elements of @ and ®, respectively.
(2) Theincidence matrix A of Gisthe N x N matrix (N = |X|) defined as:

ajz(ﬁqij) it (.j)eu
aj=e if (.)¢U
ai=¢€ Vie X

The weight w () of an arbitrary path p € PBj,nw = {(io,i1), (i1,i2)...
(ip—1, ip)} is defined as the product (in this order):

W(M) = aio,il & ail,iz Q@ ® ap,l,ip

By using only right distributivity of ® with respect to &, show that we

indeed have: ;
(A )i,j = Zk W(L)
WEp;;
and:
(A(k))i,j _ Zk)w(u)
nER;j

(3) Gissaid to have no right O-absorbing circuit if, for every elementary circuit y of
G, wehave, Vac E:adaw(y) =a
G being assumed to have no right 0-absorbing circuit, show that the following

holds:
(Ak>ij: Z W)
T nerdfo
and
(A) = 3w
" nep;j(0)

(where P:j (0) isthe set of elementary paths with exactly k arcs and P;; (0) the
set of elementary paths between i and j).
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Deduce from the above:

AMD — jim A® — A%
k—o00
where A* satisfies:
A=A A I

(4) Show that, when some ¢j; can be < 0, G has no right 0-absorbing circuit if and
only if any circuit y satisfiesc (y) > Oand m (y) = 1.

When all the ¢jj are > 0, show that G has no right 0-absorbing circuit, if and
only any circuit y satisfiesm (y) < 1.

(5) Verify then that the generalized algorithms of Jacobi, Gauss-Seidel and Gauss
Jordan (see Sect. 4.1, 4.2 and 5 of Chap. 4) can be used to solve the shortest path
problem with gains (or losses) in a graph without right O-absorbing circuit.

(6) Taking into account thefact that @ is selective and, under the additional assump-
tionthat e = (?) isthe largest element of E (Va € E: a® e = e), show that the
generalized Dijkstra Algorithm (see Sect. 4.3) also applies.

Verify that the above assumptions are satisfied when, for every arc (i, j) of G:

Gj>0
O<mij§1.

[Answers: see Charnes and Raike (1966), Bako (1974), Gondran (1976b)].



Chapter 5

Linear Dependence and Independence
in Semi-M odules and M oduloids

1. Introduction

The present chapter is devoted to problems of linear dependence and independence
in semi-modules (and moduloids). The semi-module structure (resp. the moduloid
structure) is the one which arises naturally in the properties of sets of vectors with
entriesinasemiring (resp. inadioid). Thus, they turn out to be anal oguesfor algebraic
structures on semirings and dioids to the concept of a module for rings.

Section 2 introduces the main basi ¢ notions such as morphisms of semi-modules,
definitions of linear dependence and independence, generating families and basesin
semi-modules. As opposed to the classical case, it will be shown that, in many cases,
when a semi-module has abasis, it is unique.

Section 3 is then devoted to studying the links between the bideterminant of a
matrix and the concepts of linear dependence and independence previously intro-
duced. Several classical results of linear algebra over vector fields are generalized
hereto semi-modulesand moduloids, in particul ar thoserel ated to selective-invertible
dioids and MAX-MIN dioids.

2. Semi-Modules and M oduloids

The concept of semi-module generalizes that of module when the reference setis a
semiring instead of aring.

2.1. Definitions

Definition 2.1.1. (semi-module)
Let (E, @, ®) be a commutative semiring where ¢ and e denote the neutral
elements of @& and ®, respectively. We refer to as a semi-module on E a set M

173



174 5 Linear Dependence and Independence in Semi-Modules and Moduloids
endowed with an internal law [0 and an external law _L satisfying the following
conditions:

(a) (M, O) is a commutative monoid where the neutral element is denoted O;
(b) L is an external law on M which, with any » € E, x € M associates A L x € M
satisfying:

(b1) Vi € E,V(X,y) € M?:
ALxOy) =0 Lx) O Ly)
(b2) VO, ) € B2V, x € M:
@ Lx=0Llx)O@Lx)
(b3) Y(n, ) € E2, ¥, x e M
AL(Lx)y=0 @ p)Lx
(b4) Vx € M,

elx=x
elx=0

(b5) Vi e E % L0=0

When the reference set (E, @, ®) isanon-commutative semiring, it is necessary to
distinguish between the concept of left semi-module (where the operation L repre-
sents the multiplication on the left of a vector by a scalar) and the concept of right
semi-module (where the operation L represents the multiplication on the right of a
vector by a scalar). When ® is commutative, the concepts of left semi-module and
right semi-module coincide.

The following definition corresponds to the generalization of the concept of
module when the reference set isadioid instead of aring.

Definition 2.1.2. (moduloid)
A semi-module on E is referred to as a moduloid when (E, @, ®) is a dioid and
(M, 0O) is a canonically ordered commutative monoid.

Example 2.1.3. (E, ®, ®) being a semiring, let us consider E", the set of n-vectors
with components on E endowed with the operations [0 and L defined as:

reE ALX=U=(U)i=1..n
where, Vi: U =\ ® X;.

It is easily verified that the set (E", O, 1) thus defined is a semi-module.
According to common practice regarding modules on Z and vector fields on R,
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thelaw O (addition of vectors) introduced above, will be denoted & and the external
law L (left multiplication of avector by ascalar) will be denoted ®.

Let us also observe that, in reference to this classical example, the elements of a
semi-module M are referred to as vectors. ||

Example 2.1.4. Let us consider again Example 2.1.3. above, but now assuming that
(E, ®) isadioid. Then (E", OJ) iscanonically ordered and (E", [J, L) isamoduloid. ||

Example 2.1.5. Let (M, @) be a commutative monoid, with neutral element ¢, and
let us consider the dioid (N, 4, x) (see Chap. 8, Sect. 4.4.1).

Let us define the external law L operating on the elements of N by:

YVne N,VYX e M,nLX =x®dXD...dx (ntimes) with the convention that
OLx=ct.

It is easily verified that (M, &, 1) isasemi-module on (N, +, x). If (M, ®) is
canonically ordered, it is recognized as a moduloid. ||

Example 2.1.6. Let (E, ®, ®) be acommutative semiring, and A € Mn(E) asquare
n x n matrix with entriesin E. Let . € Eand V e E" such that:

ARV =LA@V

(V issaid to be an eigenvector of A for the eigenvalue 1).
Theset ), of al the eigenvectors of A for the eigenvalue \ € Eisasemi-module.
Indeed, YV € V,, W € V., (a, B) € EZ:

ARQRAVEPBRIW)=0@OMNQIVOEPERIN QW
=A@V EBRIW)

Hencewe deducethata @ V @ B @ W € V.
Chapter 6 will be devoted to the detailed study of eigen-semi-modules or eigen-
modul oids associated with matrices. ||

2.2. Morphisms of Semi-Modules or Moduloids. Endomorphisms

Definition 2.2.1. Let U and V be two semi-modules on the same semiring (E, &, ®).
The internal laws are denoted (1 and [’ respectively and the external laws L and 1’
respectively. We call morphism of semi-modulesfrom U to V any mapping ¢: U — V
satisfying the following conditions:

() Vx,y) e U?  oxOy) = o) O gy)
(i) YO, X) e Ex U: (v LX) =N L' @(X)

A morphism of semi-modules from U to itself is referred to as an endomorphism
(of a semi-module).

When the reference set is a dioid we refer to morphisms or endomorphisms of
moduloids.

According to common practice, morphisms of semi-modules can also be referred
to as linear mappings.
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2.3. Sub-Semi-Module. Quotient Semi-Module

Definition 2.3.1. (sub-semi-module)

Let (M, O, L) be a semi-module on a semiring (E, &, ®). We refer to as a sub-
semi-module of M any subset M’ c M containing 0 and stable for the laws induced
by O and L.

Definition 2.3.2. (quotient semi-module)
Let (M, O, L) be a semi-module on E, (M’, J, L) a sub-semi-module of M and
M /M’ the quotient set of M with respect to the equivalence relation )i defined as:

XMy < AU, v) e M?
suchthat: xOu=yOv

M /M’ is referred to as the quotient semi-module of M by M’.

Itiseasily verified that the equivalence relation i is compatible with the laws [
and L of M. Indeed:

X1hyr e xidup =y dvy with upe M, vy e M’
XoMyr & xoOup =yo0vy with up e M, vo e M/

hence we deduce (x1 O x2) R (y1 dy») sinceu; Odup € M and vy vy € M.
Moreover, for A € E,

XNy e xOu=yOv with ueM,veM
hence we deduce:
L) O0Lu)y=0Ly)OOLv)

which showsthat (A Lx) R (A Ly)sincex Lue M and\ Lv e M’

It followsfrom the above that the canonical surjection ¢ (which, to any element x
of M, letscorrespond itsequivalence classin M /M’) is a morphism of semi-modules
(or: linear mapping).

2.4. Generated Sub-Semi-Module. Generating Family
of a (Sub-) Semi-Module

Definition 2.4.1. (sub-semi-module generated by a family of elements)

Let (M, O, 1) be a semi-module on E and X = (Xj)ijc an arbitrary non-empty
family (whether finite or infinite) of elements of M. We call a sub-semi-module
generated by X, denoted Sp(X), the smallest sub-semi-module of M containing X.
If Sp(X) = M, X is said to be a generating family (or: generator) of M.
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We easily prove:

Proposition 2.4.2. Let (M, [, L) be a semi-module on E and X = (Xj)ic| an
arbitrary non-empty family (whether finite or infinite) of elements of M.
Then Sp(X) is the set Y of all the elements y € M of the form:

y:ijJ_xj D

jed

(summation in the sense of (J) where J C | is a finite subset of indices and, V, j € J,
N\ eE

Proof. Clearly Y, the set of y’s obtained by (1), is a semi-module, the axioms (@)
and (b1) — (b5) being satisfied. This set contains X (to obtain x; it suffices to take
J={i}and; = €) and Otheneutra element of M (for that it sufficesto takearbitrary
i elandJd={i} N =¢).Y istherefore a sub-semi-module of M containing X and
conseguently Sp(X) C Y.

Moreover, it can be observed that any sub-semi-module of M containing X =
(X)iel contains al the linear combinations of the x;’s. Therefore

Y < Sp(X)

We deduce that Y = Sp(X) and Y is the smallest sub-semi-module of M contain-
ingX. O

2.5. Concept of Linear Dependence and I ndependence
in Semi-Modules

In this section we propose a definition of the concepts of linear dependence and
independence in semi-modul es, which constitutes an extension of the corresponding
concepts in standard linear algebra. Links with alternative definitions suggested by
other authors, will also be mentioned.

Let us consider an arbitrary non-empty family (whether finite or infinite) X =
(X)iel Of elementsin asemi-module (M, [, L).

For any subset of indicesJ C | we will denote X the sub-family of X restricted
to the elements xj, j € J, and Sp(X ;) the sub-semi-module generated by X .

Definition 2.5.1. The family X = (Xj)i¢ is said to be dependent if and only if, there
exist two finite disjoint subsets of indices I1 C | and I, C | together with values
A € E\{e} (i € 11 U l2), such that:

Z)\iJ_XiZZ)\iJ_Xi 2

i€|1 i€|2
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A family which is not dependent will be said to be independent, this property being
expressed by the condition:

ViiCcl, V.l ClilinNnly=0:
Sp(x|1) N Sp(X|2) = {0}

It followsdirectly from the previous definition that any sub-family of an independent
family is independent.

The concept of dependence in semi-modul es as defined by (2) wasintroduced and
studied by Gondran and Minoux (1977, 1978, 1984).

©)

Remark: concepts of redundant and quasi-redundant families

Alternative concepts related to dependence and independence in semi-modules
have been studied by other authors (Cuninghame-Green 1979; Cohen et a. 1985;
Moller 1987; Wagneur 1991) who proposed them as possible definitions of depen-
dence and independence. Nonetheless, these concepts correspond to much stronger
notionsof dependencethan (2), whichlimitstherangeof applications(e.g. they would
not make it possible to obtain the equivalent of our Theorem 2 Sect. 3.4 below). This
iswhy, in what follows, we have chosen to give these concepts different names.

We will say that the family X = (Xj)i¢ is redundant if and only if there exists
ielandly C (i ¢ l7) suchthat:

Xj € Sp(x|1) (4)

In the opposite case, the family X will be said to be non-redundant.
We will say that the family X = (X;)i¢| is quasi-redundant if and only if there
existsi e I, e E\{e}and 11 C | (i ¢ I1) such that:

~Lx e Sp(Xi,) ®)

In the opposite case, X will be said to be non-quasi-redundant.

The concept of quasi-redundancy (corresponding to (5)) was proposed as a
definition of dependence by Wagneur (1991) and the concepts of redundancy and non-
redundancy corresponding to (4) were introduced and studied first by Cuninghame-
Green (1979), then by Cohen et al. (1985), Moller (1987) and Wagneur (1991).

It is easy to see that for a family X = (Xj)i¢; of elements in a semi-module,
independencein the sense of Definition 2.5.1. implies non-quasi-redundancy, which
implies non-redundancy (see Exercise 1). Moreover, when (E, ®) has a group
structure, then the concepts of redundancy and quasi-redundancy coincide. ||

Definition 2.5.2. We refer to as a basis of a semi-module (M, [J, 1) an independent
generating family.

We are going to show that, under specific conditions, if asemi-module (M, (1, L)
has a basis, the latter is unique.
In order to do so let usfirst introduce the concept of reducibility.
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Definition 2.5.3. Let (M, O, L) be a semi-module on (E, @, ®).

Given a set of vectors V = (Vk), k € K, with Vi € M(Vk), it is said that a
vector X € M is reducible on Sp(V) if and only if there existsy # xand z # X,y €
Sp(V), z € Sp(V) such that: x =y Oz

In the opposite case, x will be said to be irreducible.

Remark: x reducible on Sp(V) = x € Sp(V) ||
As an immediate consequence of this definition, we have the following property.

Property 2.5.4. If x isirreducible on Sp(V) then one (and only one) of the two fol-
lowing conditions is satisfied:

(i) x ¢ Sp(V)
(i) x =yUOzwithy € Sp(V) and z € Sp(V)
=S y=X0rz=X

We can now establish:

Proposition 2.5.5. Let (E, @, ®) be a dioid. £ and e denoting the neutral elements
for @ and ® respectively, it is assumed thata® b = e = a = eor b = e (observe
that this assumption holds in selective dioids).

Let (M, OJ, L) be a moduloid on E, canonically ordered by []. We denote o< the
canonical order relation on M.

It is assumed moreover that for u € M,v € M, » € Ewithv 2 uandv # 0

v=xlvOu= h=-e (seeremark 2.5.6 below)

Under the above assumptions, if X = (Xj)i¢ is an independent family of elements of
M (with xj # 0, V, i € 1), then V] e |, x; is irreducible on Sp(X).

Proof. Clearly, foral j e I, x; € Sp(X). We thus have to prove 2.5.4 (ii).
Let usassumethat x; =y O zwithy € Sp(X) and z € Sp(X). Observe that this
implies:

y o Xj and z oc Xj. Now:

y € p(X) =
InieB\e, Il Cliy= Zx[ Lx; (summation in the sense of 0J).
iel
Similarly
ze SpX) =
I € BE\{e}, 312 C I:Z:Zmlxi

iel
By agreeingto set \j = e fori € Ip\l1 and u; = ¢ for i € 11\l we therefore have:

Xj = Z (M @) Lx

el Uly
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L et usobservethat, necessarily, j € 11 U I, (otherwisethe hypothesisof independence
would be contradicted). Consequently:

Xi=0Ojou)Lxd Z (@) Lx

iel1Uly

i#]j
With)xj@lkj#S.Bysetting}\:'}\,j@ujandu: > (xi@ui)lxie
ieUlp
. i#j
Sp(X\{xj}), we obtain:
Xp=x1lxOu (6)

withu e Sp(X\{xj}).

We have x; # 0, and, because of the independence, we must have x; # u, hence
. # ¢ follows. The hypotheses of Proposition 2.5.5 then imply A = e.

Since h =\ @ pj, we must have either ij = g, or p; = e.

Let us assume for example \j = e.

Theny isrewritten:

Y =X O Z N Lx;
ieh\{j}

hence one can deduce: xj o y and, given that oc is an order relation, this implies
y =X.

In the case where 1; = e, we would similarly deduce that z = ;.

We deduce the irreducibility of x; .

Remark 2.5.6. The assumption:

v=ilvDOu r—e
V#U V#O o

issatisfied in many modul oids, in particular those associated with sel ective-invertible
or selective-cancellative dioids.

For instance, let us consider a moduloid in which the elements are n-component
vectorson (E, &, ®) with the usual laws.

Xi=1.n L (Yi)iz1..n = Xi @ VYi)i=1. n
AL (X)i=1.n = (A ® X)i=1..n
€

o=|°

€

The hypothesis v # u implies that there existsi such that v; # u;, and the relation
v=>xlvOuimplies: vi = A Q Vi & U;.

Necessarily in this case v; # ¢. (vj = ¢ would imply u; = ¢ and contradict
Vi # Uj).
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Similarly, \ # ¢. If @ is selective, then we havevi = A ® v; withv; # ¢.
Consequently, if (E, ®) isagroup or acancellative monoid, one can simplify with
Vi # ¢, whichimpliesh = e. ||

Proposition 2.5.7. Assume that the assumptions of Proposition 2.5.5 hold and, more-
over,that: a€ E,be Ea®@ b=e = a=eand b = e (see Remark 2.5.8 below)
Then, if (M, O, L) has a basis, it is unique.

Proof. We use the property of irreducibility of the elements of a basis (Proposi-
tion 2.5.5).
Consider X = (Xj)jeg and Y = (yj)jeJ two bases of M.

Vx; € X thisyields: _
Xi= Y Ly

jeld
But Sp(X) = Sp(Y) = M.
The independence of X impliesthat, V; € I, x; isirreducible on Sp(X), therefore
irreducible on Sp(Y). Consequently: there existsj € J such that:

x,-:u}J_yj for u}eE and y;eY.

In the same way, we prove that y; = e,"( L xg for elj( e Eand xg € X.
Hencex; = M} ® 0, L X and since X is an independent family, necessarily i = k
and (in view of the assumptions of Proposition 2.5.5) pLJi ® e,‘( =e

We deduce u} =eand Oij( = e, which shows that: x; =y;.
Thus, for any xj € X, onecanfindy; € Y suchthat xj = yj. Wededuce X =Y,
which proves uniqueness. [

Remark 2.5.8. The assumptiona ® b = e = a = eand b = e is satisfied in
particular: (1) indioidsfor which eisthe greatest element and where: a® b < aand
a®b < b;(2) when @ isselective(@®@b=e=a=eorb=e= a=-eand
b=e). ||

3. Bideterminant and Linear Independence

In this section we discuss links between linear dependence and independence, and
the concept of bideterminant for square matrices with elements in a semiring or a
dioid. Thus, inamuch more general framework, extensionsto various known results
of classical linear algebrawill be obtained.

It is interesting to observe that, given that (E, @) is not a group, the proofs are
very different from those known in classical linear algebra and generally require the
use of combinatorial arguments and graph theoretical properties. In particular, the
graph G(A) associated with amatrix A € Mp(E) will play an essential role.
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3.1. Permanent, Bideterminant and Alternating Linear Mappings

Given amatrix A € My(E), A = (a,,). Ln, and o a permutation of {1, ..., n}, we
refer to as the weight of o, denoted W(G) theelement of E defined as:

W(0) = &,5(1) ® B,5(2) D - -+ ® 8nyon)
We recall (see Chap. 2, Sect. 4.2) that the bideterminant of A isthe pair

det™(A)
AR) = (der(A))
(&)
where: dettA)= > w(o)
oePert(n)
D
det=(A) = Z w(o)

oePer—(n)

Per™(n) (resp. Per~(n)) denoting the set of permutationsof {1, ..., n} with signature

+1 (resp. with signature —1). Since sign(o—1) = sign (o), it can be observed that A

and AT (the transposed matrix of A) have the same bideterminant: A(AT) = A(A)
The permanent of A is defined as:

®
Perm(A) = det™ (A) @ det” (A) = Y w(o)
oePer(n)

Observethat if one multipliesacolumn (arow) j by Aj € E (\j # ¢), the permanent
isthen multiplied by ;.

As opposed to the case of standard linear algebra, the permanent of a matrix
in a semiring or a dioid can often be efficiently computed and have interesting
combinatorial interpretations, as the following examples show:

Example 3.1.1. (The permanent and the assignment problem)
E=RU{4o0},® =min,® = +.

The permanent of amatrix A € Mp(E) can be obtained in this case by solving the
classical assignment problem.

Indeed, theweight of an arbitrary permutation o isthe sum (inthe sense of ordinary
addition on the reals) of the terms of the matrix A corresponding to the permutation
o and, since @ = Min, the vaue of the permanent corresponds to the weight of
the permutation of minimum weight, i.e. to the optimal solution of the assignment
problem: how to select one and only one term of the matrix in each row and in each
column while minimizing the sum of the selected terms. The assignment problemis
aclassical problem of graph theory which is solved efficiently (in polynomial time)
by the so-called “Hungarian algorithm” or network flow algorithms (see for example
Gondran and Minoux 1995, chap. 5; Ahuja, Magnanti and Orlin, 1993). ||
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Example 3.1.2. (Permanent and bottleneck assignment)
E=RU{+00}, ® = min, ® = max.

The permanent of a matrix A € Mnp(E) can be obtained in this case by solving a
“bottleneck” assignment problem.

Indeed, the weight of an arbitrary permutation o is then the largest value of the
terms of the matrix A corresponding to the permutation. The value of the permanent
therefore corresponds to the permutation for which the largest of the terms covered
by the permutation is the smallest possible. Like the classical assignment problem,
the “bottleneck” assignment problem is solved efficiently (in polynomial time) by
network flow algorithms (seefor example Gondran and Minoux 1995, chap. 5; Ahuja,
Magnanti and Orlin 1993). ||

Definition 3.1.3. (Alternating linear mapping)

Given x%, x2, ... x", n vectors of E", an application f: E™ — E2 is said to be an
aternating linear mapping if and only if the mapping:

f(xl,XZ’.an>= (fl(xl,XZ,....,xn))

fa (x1,x2,...,x")
is such that:
« fy and f, are linear mappings: E™® — E
. . fl
. f(xl,...,x',...,xJ,...,x”)=<f2)
e - i fa
implies: f (Xl,---,XJ,...,X',...,x”):<f1>_

+
Proposition 3.1.4. The bideterminant A(A) = <S§Eﬁ;
mapping.

Proof. It readily follows from the fact that one transposition changes the sign of a
permutation. O

) is an alternating linear

As for the determinant in standard linear algebra, one can establish a formula of
expansion of the bideterminant with respect to a row or a column of the matrix.

For amatrix A € Mp(E) let us denote Aji then x n matrix obtained (from A) by
replacing all the terms of the ith row and the jth column by ¢ (neutral element of ®)
except the term a; which is replaced by e (neutral element of ®)

i

mole | M mf—
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Given the linearity of the mappings det*(A) and det™(A), one can then write
(expansion with respect to the ith row):

n .
det™(A) =) & @ det™(A)
j=1

n
det™(A) = > aj @ det™ (Al)
j=1

or equivalently, in vector notation:

n
AA) =) & ® AA])
j=1
An analogous formulawould clearly be obtained by expanding with respect to a

given column.
From the above, we easily deduce:

Property 3.1.5. If the matrix A € Mnp(E) has a column (or a row) with all entries
equal to e (neutral element of @) then det™ (A) = det™ (A) = .

Proof. Perform the expansion of the bideterminant with respect to the column (with
respect to the row) and use the fact that ¢ is absorbing for ®. 0O

The converse of Property 3.1.5, isfalse as can be clearly seen from the following
example:
A e My(S (n=4)

o o [x |x [~
o [x [ oo o
X | | (o |
X | feo feo [

A WOWDN P

Only the terms marked by acrossare different frome. We clearly have: A1(A) =
A2(A) = ¢, but there exists an entry different from ¢ in each row and each column.

3.2. Bideterminant of Matriceswith Linearly Dependent Rows
or Columns. General Results

In this section, we study generalizations of the property, well known in standard
linear algebra, stating that if the columns of amatrix are linearly dependent, then its
determinant iszero. For the various conceptsof independenceintroducedin Sect. 2.5,
ageneralized version of this property will be shown to hold, expressed here by the
equality of the two terms of the bideterminant.
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Let us state first the following elementary property:

Property 3.2.1. Let (E, &, ®) be asemiring, and consider amatrix A € Mp(E). If
the matrix A hastwo identical columns (or rows) then:

det™(A) = det™(A)

Proof. Forj = 1...n, let us denote Al the j™ column of A and let us assume for
examplethat A' = Al withi # j. Given that the bideterminant A(A) isaalternating
linear mapping thisyields:

. . +
A(Al,AZ,...A',.,_AJ““An):(det (A)>

det= (A)
and: )
Since Al = Al thisimplies clearly:

det™(A) = det~(A). O

Proposition 3.2.2. Let (E, @, ®) be a semiring, A € M, (E) and let us assume that
the columns of A form a redundant family of E" (see Sect. 2.5).

Then det™ (A) = det™ (A).

Proof. Since the columns A1, A2, ... A" form a redundant family, there exists a
column, Al say, which is alinear combination of the others. We therefore have:

n
Al=> "% @Al
j=2

with)je E(j=2... n)
By using the linearity of the bideterminant:

n
AR =Y @AM, AZAS AL AY
j=2

Using Property 3.2.1, for any j = 2,...n we obtain: dett(Al,AZ .. A" =
det=(Al, A2, ... AM from which we can deduce: det™ (A) = det—(A). O

Proposition 3.2.3. Let (E, @, ®) be a semiring, A € M, (E) and let us assume that
the columns (the rows) of A form a quasi-redundant family of elements of E".
Then:

(i) There exists a € E, a # ¢, such that:

a @ dett(A) = a ® det™ (A).
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(i) If (E, &, ®) is such that all the elements of E\{e} are cancellative for ®, then
det™(A) = det™(A)

Proof. The quasi-redundancy of the family of columns Al ... A" implies the
existenceof acolumnof A, e.g. A, and of asubset of indicesJ {2, ... n} suchthat:

Sp(Ah) NSp(AY)
€
contains a vector different from 0 =

€

This vector is necessarily of the form a ® Al with a € E\{e} and there exists

Aj € E(j € J) such that:
) Al = Z A ® Al
jed

Thecolumnsof matrix A’ = (a®AL, A2, ... A" thereforeform aredundant family,
thus, according to Proposition 3.2.2, we have: det™ (A’) = det™ (A").

Hence: o ® det™ (A) = a ® det™ (A) which proves (i). (i) is then immediately
deduced. O

L et usnow study the case wherethe columnsof thematrix A arelinearly dependent
in the sense of Definition 2.5.1.

We first establish an initial result modulo quite restrictive assumptions (regu-
larity of the elements of E for @ and ®) to obtain the equality of the two terms
of the bideterminant. Thereafter, we will investigate other types of less restrictive
assumptions.

Proposition 3.2.4. Let us assume that (E, &, ®) is a semiring such that all the
elements of E are cancellative for @ and all the elements of E\{e} are cancellative
for®

If the columns of A € Mp(E) are linearly dependent, then:

det™(A) = det™ (A).

Proof. Sincethe columnsof A arelinearly dependent, thereexist 17 C {1, ...n} and
lo c{l,...n} 11 £0, 12 # @, 11Nl = @ such that:

Y NeA =) "3eA

jel1 jelo

withj € E\{e} forj el Ul2
Itisnot restrictive to assumethat 1 € 1;. Let A’ be the matrix deduced from A by
replacing the column A by 3~ % ® Al.
jely
Thematrix A" issuch that itsfirst columnisalinear combination of other columns,
Al forj € I,. According to Proposition 3.2.2, we therefore have:
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det™(A") = det™(A)
Moreover, by using the linearity of the bideterminant, we can write:
det(A) =n@det(A) e Y yedett(AlLAZ AL AT
jeli\{1}
and:

det™(A) =n@det (Ao Y »det (AlLAZ AL A"
jeli\{1}

Since, Vj € J\{1},detT(Al,AZ .. Al .. A" = det"(Al,A2 .. Al ...AD)
(see Property 3.2.1) and that any element is cancellative for &, we deduce that:

M dett(A) =r @ det™ (A)
Since h1 # ¢ is cancellative for ®, thisimplies: det™ (A) = det™(A). O

There exist however many examples of semirings and dioids for which the assump-
tions of Proposition 3.2.4 do not hold. We study in the following section the links
between linear dependence and bideterminant for the sub-class of selective dioids.

3.3. Bideterminant of Matriceswith Linearly Dependent Rows
or Columns; The Case of Selective Dioids

In this section, it will be assumed that (E, @, ®) is a selective dioid, i.e. that the
operation @ issuch that, Va € E, Vb € E:

adb=aorb

We recall that, in this case, the canonica preorder relation < is a total order
relation. (see Chap. 1, Sect. 3.4).

LetA € Mp(E), | = {1, 2, ...n} betheset of indicesof therows,J = {1, 2, ...n}
the set of indices of the columns, and let us consider a dependence relation among
the columns, of the form:

YA =y

jeh iek

wWithhh #0 L #0 hnk=0

We observe that one can aways assume that A does not have a column (or a
row) with al entriesequal to ¢. (Indeed, if that was the case, one would immediately
deduce det™ (A) = ¢ = det™ (A), see Sect. 3.1, Property 3.1.5).
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Sincea®b=aorb (Vae E, Vb € E), for any row i of A, we will have:
Giji) = Zaj for someindex j1(i) € Ji
jeq

Similarly:
3 j.i) = Zaj for someindex j5(i) € B
jek

Let us consider now the bipartite graph G (equality graph) where the set of vertices
is: X UY with:

X ={X1,....,Xn} (corresponding to the set of rows)
Y ={y1,Y2,...,¥n} (corresponding to the set of columns)

and where there exists an edge (xj, yj) if and only if
j=i10) or j=ja).

Example 3.3.1. Let thefollowing 5 x 5 matrix (where we have marked with across
thetermsj1(i) and jo(i) for every row i).

1 X X
2 X X
3 X X
4 X X
5 X X
~—
], I,

The corresponding equality graph Gisshownin Fig. 1. ||

We observe that the graph G is not necessarily connected (as in Example 3.3.1
above where the vertex y, isisolated).

We will denote: Y1 = {yj/j € i} and Y2 = {yj/j € B}

Let us consider the complete bipartite graph G(A) constructed on the sets of
vertices X and Y. Each arc (x;, yj) of G(A) correspondsto aterm g; of the matrix A,
and conversely.

Withany permutationo of {1, 2, . . ., n} one can associate oneand only one perfect
matching (see Berge, 1970) of G(A) and conversely (one-to-one correspondence).

Given two permutations o1, o2 of {1, ..., n}, K1 and K3 the corresponding (per-
fect) matchings of G(A), the set of edges (K1\K2) U (K2\K1) formsapartial graph
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Fig. 1 Example of an equality graph associated with a dependence relation

of G(A) where each connected component is an even elementary cycle alternating
in K1 and K> (see Berge 1970; Lemmap. 118).

Denote y4, 5, - - ., ¥, these connected components having cardinalities: |y,| =
201, vl = 202, - . -, |v¢| = 20

Now, consider the permutation o = o, Lo 01

To each cycle y;(i = 1...r) there corresponds a cycle p; of G(o) (the graph
associated with the permutation o, see Chap. 2 Sect. 4) of cardinality:

lvil
1] 2 =
(the cycles of G(o) which do not correspond to acycley; areloops, of cardinality 1).

The parity of o istherefore the parity of:

Z(nm—l) Z(@—l)

i=1

o1 and o2 are of opposite parity if and only if the permutation o isodd, i.e. if and only
if the associated graph G(o) contains an odd number of circuits of even cardinality.
We deduce:

Lemma 3.3.2. A necessary and sufficient condition for ¢ = 02_1 0 o1 to be odd (i.e.
for o1 and o to have opposite parities) is that, in G(A), the partial graph generated
by (K1\K2) U (K2\K3) contains an odd number of cycles of cardinality multiple
of 4.
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One can then state:

Theorem 1. (Gondran and Minoux, 1977)

Let (E, ®, ®) be a selective dioid (i.e. in which the & law satisfiesa® b = a
orb, VacE,Ybe E)andlet A € Mn(E).

If the columns of A satisfy a dependence relation of the form:

ZAJ = ZAj
jeh jek
with: 1 #dand b 0. N B =,
then: det™(A) = det™(A).

Proof. Let o beapermutation of {1, ..., n} such that:
W(o) = T18 ) = perm(A) = det* (A) @ det™ (A)
|

(product in the sense of ®)
We observe that we have:

w(o) = nle\ﬂpgfn){w(ﬂ)}

where the maximum is taken in the sense of the (total) order relation of the dioid
(E, ®, ®). (In other words, ¢ isan optimal solution to aproblem of the “assignment”
type. See Examples 3.1.1 and 3.1.2 above).

Let us consider the equality graph G and add to G the edges of the matching K of
G(A) associated with the permutation o. We obtain the graph G'.

Let usconsider in G’ the following path construction.

We start from a vertex yi, in Yi(ki € J); Yk, isthe endpoint of an edge in K
and let x;, be the other endpoint.

There exists an edge of G incident to x;, and having as its other endpoint yy, €
Yo(ko = ja(i1)). Observe that, necessarily, the edge (X, , yk,) is not in K. (since
ki e Jhandks e Jz)

When oneisin yy,, there exists an edge of K incident to yy,. Let x;, be the other
endpoint. Necessarily xi, # Xj,. Andsoon. ..

At some stage, we have constructed a sequence of vertices of G':

Yk Xiz> Yoo Xizs - - - Xip_15 Yk

We thus reach yy, right after visiting x;,_, using an edge ¢ K. Moreover, kp € J; if
pisodd, kp € X if piseven.

Then there exists an edge of K incident to Yk, and let Xiy be the other endpoaint.
Necessarily Xiy 7 Xip 1 since Xip_1» Vi) ¢ K.

From i, there exists an edge of Gincident to Xi, and such that the other endpoint
is Yip1 with Ykpr1 € Yo if Yip, € Y; and Yipra € Y, if Yip € Y 2. Necessarily,
Xips Ykpya) € K.

We can therefore seethat this path construction can be pursued indefinitely. There-
fore, in afinite number of steps, one necessarily finds oneself back at avertex already
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visited, and this vertex can only be one of the y.. One has then detected acycle y of
G’ and y contains as many vertices of Y1 as of Y. Let g be this number. It is seen
that:

Iyl = 44q.
Moreover, when onerunsthroughthecycley, onealternatively traversesedgeswhich
arein K and edges which are not in K.

Consider then the matching K’ obtained from K by replacing the edgesof K Ny
by the edges of y\K: K" = (K\y) U (y\K).

Let o’ be the permutation associated with K’. According to Lemma 3.3.2., ¢ and
o’ have opposite parity.

Moreover, each term g ;) is replaced in the permutation o’ by aterm of greater
or equal weight: indeed: &,y )= &,0() for any i such that o(i) ¢ J1 U % and
3,0 () > &,0() for o(i) € 31 U J because: &,y = Max {a j}

jehud
We therefore have:
w(o') > w(o).
But since o was chosen as a permutation of maximum weight and since > isatotal
order relation, this necessarily yields:

w(o’) = w(o) and consequently, if one had for example: w(c) = det™ (A) then
w(o’) = det™(A). From all thiswe can deduces det™ (A) = det™(A).

(Observe that the cycle y exhibited in the above proof is not necessarily unique)

O

Corollary 3.3.3. (i) In a selective dioid (E, ®, ®), if A € Mp(E) has linearly
dependent columns, then there exists o € E\{e} such that o ® dett(A) =
a®det™ (A)

(ii) If, moreover, any element of E\{e} is regular for ® (case of selective-regular
dioids) then: det™ (A) = det™ (A).

Proof. By hypothesis, thereexistshand (h Nk =¥ andrj #e (j € LU L)
such that: . '

YA =>"1eA

jeq jek
Let us consider the matrix A = (AL, ..., A") such that:

Al=yeAl, jelUd,

Al=Al, Vi¢ghud

Letussetta= TI A
jehUk

We obtain; det™ (A) = o @ det™ (A)
det™(A) = a @ det™ (A)
Matrix A therefore satisfies the assumptions of Theorem 1, hence: det™(A) =
det™ (A) and the first part of the corollary is deduced.

If a # ¢ is regular, we deduce the second part of the corollary: det™(A) =
det™(A). O
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3.4. Bideterminant and Linear | ndependence
in Selective-1 nvertible Dioids

Selective-invertible dioids form an interesting sub-class of dioids which Corol-
lary 3.3.3 of Sect. 3.3 applies to: for a matrix A with linearly dependent columns,
the two terms of the bideterminant are equal. In this paragraph, we prove a con-
verse of thisresult: if A isamatrix with entriesin acommutative selective-invertible
dioid satisfying det™ (A) = det™ (A), then one can construct a linear dependence
relation involving the columns of A (see Theorem 2 below). Throughout this sec-
tion, we therefore consider that @ is selective and that (E, ®) is a commutative
group. Let us observe that, in this case, the canonical preorder on E is a tota
order (this property is used in the sequel). As in Sect.3.3, for a given matrix
A € Mu(E), the weight w(c) of a permutation of {1, 2, ..., n} is defined as the
product W(o) = a1,6(1) ® 8,6(2) ® - - - ® 8n,o(n)- We begin by establishing two useful
preliminary results.

Lemma3.4.l. Let 67 € Per—(n) and o2 € Per™(n) be two permutations of
{1, 2,...,n} of opposite parities such that:

W(o1) = W(o) = pZerj() W(o) = Max (w(o))

(maximum taken in the sense of the total order relation of the dioid).
There exists then an even permutation 6 € Per™(n) such that:

(i) w(52) = w(o2)

(if) The permutations o1 and o> only differ by a cycle in G(A), in other words the
graph associated with 651 o o1 only contains one even circuit of length > 2
and loops.

Proof. Letusconsider thecompletebipartitegraph G(A) and K1 and K, the (perfect)
matchings of G(A) associated with the permutations o1 and o2. We recall that X
denotes the set of vertices of G(A) corresponding to the rows of A, and Y, the set of
vertices corresponding to the columns of A.

Since o1 and o are of opposite parities, the partial graph of G(A) induced by
(K1\K2) U (K2\K1) contains at least one connected component which isacycle .
of cardinality multiple of 4: || = 4qQ.

Let X’ C X bethe set of vertices x;j (rows) belongingtow, and Y’ C Y the set of
verticesy;j (columns) belonging to . Let us set:

X" =X\X'" Y =Y\Y".
Observe that:
IX'I'=2q |Y'|=29 and |u|=|X"|+ Y|

Let us consider the partial graph G of G(A) induced by K1 U K> (corresponding to
the set of elements of the matrix appearing in at least one of the two permutations
01 Or 62). i isaconnected component of G.
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The permutation o1 may then be decomposed into two one-to-one correspon-
dencesoy: X' — Y’ andof: X" — Y”.
We denote o1 = (07, 07) and similarly o2 = (05, 07)
According to Lemma3.3.2., o} and o, have opposite parities.
Let us show that:
w(oh) = W(o5)

We can write: w(o1) = w(o}) ® w(a?)
W(02) = W(05) ® W(07)

If one had, for example:
W(G’l) < W(O'/Z)

then the permutation:

o = (05, o) would have aweight w(c) > w(o1), in contradiction with the fact
that o1 is of maximum weight.

Similarly we cannot have: w(o’) > w(o5).

Consequently, w(c}) = w(o5) (because > isatotal order relation).

The desired permutation 2 isthus

62 = (05,07). O

Lemma 3.4.2. Leto; € Per—(n)and o, € Pert(n) be two permutations of maximum
weight w(o1) = w(o2) and let us denote K1 and Ky the associated matchings of
G(A). We assume:

— That & o,¢) = agipi) fori=1,2,...,n

— Thatthe partial graph G induced by (K1\K2) U (K»\K1) is connected and formed
by a cycle . of cardinality 4q (q integer) possibly with pendent arborescences of
even cardinality.

Then for any x; € . and for any yi € p.:
9 k = di,61() = Gi,00()

Proof. The proof is given by contradiction, assuming that there exists x; € . and
Yk € p such that:
Ak > & o1() = G,020)

and then showing that we can exhibit a permutation ¢* such that
w(c™) > w(o1) = W(o2).

Itiseasy to see (refer to Fig. 2) that there exists a perfect matching for the vertices
of i using the edge (X;, k) and such that the other edges all belong to . (indeed,
the cardinalities of the two paths between arow i and a column k on the cycle
are odd).
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¢ i °/°° X
/ c / c

Y I
c Vg ; c /
Yk
o——0
/ c / c
/= "row" I ="row"
¢ = "column" ¢ = "column"
(5a) Cycle u (5b) Perfect matching

Fig. 2 Illustration of the proof of Lemma 3.4.2

There therefore exists a perfect matching for the vertices of Gus ng the edge

(Xi, Yk) and such that the other edgesall belong to G (the even pendent arborescences
do not create any problem).
Let o* be the permutation corresponding to this perfect matching.
We then have:
8k = 8i,6*()) > 8i,01() = &,02()
andforany ¢ = {1...n}\{i}

A o%(6) = A ,01(0) = N,05(0)

We deduce:
w(o™) > w(o1) = W(o2)

which contradicts the optimality of 67 and of 2. O

(Remark: above we have used the fact that, in aselective-invertible dioid, for any
c#conecanwritta<b=a®c<b®ec.

Indeed, < iscompatible with thelaw ® therefore;a<b=a®c<b®c.

But we cannot have equality becausec # e beingregular,a® c=b®c=a=Db
which is contrary to the hypothesis. Therefore:a ® ¢ < b ® c).

We can then state:

Theorem 2. (Gondran and Minoux, 1977)
Let (E, &, ®) be a commutative selective-invertible dioid and A € Mp(E).

If dett(A) =det™(A)

then the columns of A (and similarly the rows of A) are linearly dependent. In other
words, there exist Jy and J(J1 # @, 1 # 0, J1NJ = @) and coefficients %j € E\{e}
(for j € J1 U &) such that:

Y oneA =3 "1yeA )

jeh jex
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Proof. (1) Since isselective, thereexist two permutationsc; and o2 with opposite
parities, such that:

W(o1) = W(op) = cera:(mW(G) = Max (w(o)

We observe that the permutations o1 and o remain optimal when one or several
columns Al of A are multiplied by Aj(%j # ¢).
FromLemma3.4.1onecanassumethat o, differsfromo1 only by oneevencycle.

(2) If one uses a cross (x) to represent the elements a;; of the matrix A such that
j = o1(i) orj = o>(i) and after apossiblerearrangement of the rowsand columns,
we obtain a configuration such as the one shown below:

Let usthen consider the sub-matrix A’ of A formed by the 2q first lines (X’), the
2q first columns (Y’) and by the elements marked by a cross (the other elements
of A’ being ¢). In the example below, the cycle u of Lemma 3.4.1 successively
encounters X1, Y1, X2, Y2, X3, Y3, X4, Y4, X1 (its cardinality is || = 8).

Y1 Y2 VY3 Ya
X1| a1 € € A

X2| @1 @ax € €
X3 € azo ass €
Xa| € € 43 am
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Let us try and determine A1, 2, A3, A4 € E\{e} and the sets J; and 1, C
{1,2,...,2q} sothat we have, for the matrix A’:

Y A=) oA ®)
jeh jek
We can choose one of the )j values arbitrarily (since ® isinvertible), e.g. .y = e.
We construct the sets J; and J,, by running through the cycle i while placing
the columns (vertices y) successively encountered alternatively in J; and in J,.
Thus, inthe example, starting from x; we arrive at y; which we assign to Ji;
then from x2 we arrive at y» which we assign to Jp; then from x3 we arrive at y3
which we assign to Jg; finally from x4 we arrive at y4 which we assign to J,. We
therefore obtain: J; = {1, 3} J = {2, 4}. The \j values are then determined
so asto satisfy the relation (8). If A1 = e, we must necessarily have:

M®an = 4Q@a hence hg=an ® (agq)
then Ma®au=>r3@as hence k3= h4®au® (a3) "
then A3@as=r2®a hence hy=h3®aw® (ag) *

Sincew (o) = W(o%,) weobtainap ® e ® a3 ® aus = a4 ® a1 ® 832 ® a3
and we check that the second relation:

AN ®ap =N Qan

isautomatically satisfied.

The above readily generalizesto the case where i hasacardinality || = 4q
with arbitrary q(q > 1).
Denote A;f the sub-matrix of A induced by the subset of rows X’ and the subset
of columns Y’. Now, let us multiply each column j of AY, by the value %j thus
determined. We obtain amatrix A = (&j) of dimensions (2q x 2q) such that:

Vi: éj’(;l(i) = ai’gz(i) with 0]_(i) e and 02(i) e b.

By this transformation an optimal permutation remains optimal, o1 and o2
therefore remain permutations of maximum weight.
Let us now prove that we clearly have:

LTI
jen =
In order to do so, it suffices to observe that in view of Lemma 3.4.2., any term
&j of A islessthan or equal t0 & o, = &0y, -
Let us now return to the initial matrix A.
For every row x; € X", thereforefori =2q+ 1, ..., n, let:

b._max i@} =) a®)
yi€ yieY’
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©)

Let us then show that there exists n — 2q coefficients ; associated with the
columns of Y” (and the rows of X”) such that, Vx; € X”:

gGQh= ) &N €)
yieY”
J#i
System (9) is equivaent to the system:
M=) a®8 ®N®a eb vxeX’ (10)
ijY”
J#i

Since the identity permutation is an optimal permutation for the matrix AY, it
followsthat the graph associated with the matrix (& ®31-Tl)iex” hasall itscircuits
jGYN

of weight smaller than or equal to e. This property remains true if one replaces

all the diagonal terms of this matrix by ¢, i.e. for the matrix of system (10).
Then, according to Theorem 1 of Chap. 4, the matrix of system (10) isquasi-

invertible and system (10) has a smallest solution .

With the values \ thus determined, we have, Vx; € X”:

ai®)\i=zaj®)\j (11)
yjeY
J#i
Foreveryi = 29+ 1, ...n, there therefore exists an index ¢(i) # i such that:
&i @ N = 8,¢()) ® hg(i) = Z Gj ® \j (12)
yjeY
J#

Let us denote G the partia graph of G(A) defined as follows:

- VxjeX, (Ni contains the two edges of the cycle . incident to x;.
— V¥x; € X, G contains the two edges (x;, y;) and (x;, Yo(i)-

SinceG hasas many edgesasvertices, each of itsconnected componentscontains
exactly one elementary cycle and possibly pendent arborescences. L et us show
that it is not restrictive to assume that G is connected.

If G is not connected, it contains a connected component 7 having al its
verticesin X" UY”,
For any x; € 7 we cannot have the strict inequality.

8i ® Ni =8 g() ® hoi) > D & ® ) (13)
yieY
WET
Indeed, if (13) issatisfied Vx; € 7, then it would be possible to reduce al the ),
values, fory; € 7, while satisfying (9), which would contradict the fact that
isthe minimal solution to (9).
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Consequently, there existsx; € 7 and yx ¢ 7 such that:
Gi @ Ni = & () ® ho(i) = Gk ® Mk

One can then replacein G the edge (x;, Yoy BY (Xi, Yk), which reduces by one
unit the connectivity number of G.If necessary, the previous reasoning will be
repeated aslong as the connectivity conditionisnot satisfied, to obtainin afinite
number of steps a connected graph G. ~

Figure4b shows the (connected) graph G corresponding to the matrix of
Fig. 4awhere, in each row, the crosses correspond to the terms &; and &y of
relation (12).

() Yi|va|vs|ya|ys|Ys|yr|vs]|Yo|¥0
X1 | x

X3
X4 | x

X6 X X

X8 X X

Xg X X

(J2)ys

X10 ;()6\0
(J1) Y10

Fig. 4 Anexampleillustrating equation (12) in the proof of Theorem 2

Yo (J1)
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(6) Since each vertex of G associated with a row has degree exactly 2, it can be
observed that:

—  The pendent arborescences of G are necessarily attached to p in vertices
yj € Y’ (columns);

— The pendent vertices (i.e. those having degree 1) of these pendent arbores-
cence are necessarily verticesy; € Y” (columns).

The columnsof Y” can then easily be assigned either to J; or to J, by proceeding
asfollows.

Each pendent arborescence is run through starting from its vertex of attach-
ment to ., which aready belongs either to J;, or to J,. Between this vertex
and each pendent vertex, the vertices y; are alternatively assigned to J; and J.
Thus, for the example of Fig. 4b (where we aready know that J; = {1, 3} and
J = {2, 4}) running through the branch attached to y3, column 8 is added to J,
and columns 6 and 10 to J;.

We finally obtain:

h=1{1,36,7,910 X} =1{245,8}

(7) Withthevalues ) and the sets J; and J, resulting from the above, we satisfy the
relations:
Vi=12...20:

Y gen= > a®) (14)
jeqny’ jehbny’
andvi=2q+1...n:
Yaeny=) aeny (15)
jeq jek

It remains to check that the relation:
vVi=1...2q

Da®r=) 8 ®) (16)
jehn iek

is satisfied and to do so, we are going to show that:

vxj € X" andyg € Y”:

Max 1gjt = Max & > ak
Mag (@) = Ma (75} = %
This will be obtained through an argument similar to the one used in the proof
of Lemma 3.4.2. Let us assume that for xj € X’ and yx € Y”, we have that
8ik > 8igy(i) = dig,(i)- Theedge (X, Yk) joinsavertex xj € L to avertex yi ¢ .
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OeOs \y]_ Xq /
X1 / \‘m
1 1 S~ o
1 1
Y2
\ s X3
X -
2 y}\
Xg
//
Y8 ¢\
1
: X
"
Y10

Fig. 5 Illustration of part 7 of the proof of Theorem 2

O,

~

Lety; e p bethe point of attachment of the arborescent branch of G containi ng
Yk We construct a perfect matching of G U {(x;, yk)} by selecting:

— All the edges of the maximum matching of . leaving x; and y; unsaturated;

—  Themaximum matching of the chain L joining y; and yi leaving the vertex
Yk unsaturated;

— Theedge (xi, yk);

— All theedges of theform (x;, y;) for al the verticesi not belonging to ., nor
toL.

Let o* be the permutation corresponding to this perfect matching (Fig. 5 illus-
trates the matching obtained on the example of Fig. 4, taking xj = x3 and
Yk = Ye)- _

We then have &k = & o+() > &.6,() = 8.0, ) @, VI € {1, ..., n}\{i}:

o (l) = &,01(1) = N,00()

hence we deduce w(c*) > w(o1) = W(o2), which contradicts the optimality of
o1 and of 02.
Thus relation (16) is deduced and the theorem isproven. O

A direct consequence of this result and of Corollary 3.3.3 is the characterization
of singular matrices on commutative selective-invertible dioids:

Corollary 3.4.3. Let (E, ®,®) be a commutative selective-invertible dioid.
A e Mp(E) is singular if and only if det™ (A) = det™(A).

3.5. Bideterminant and Linear I ndependencein Max-Min
or Min-Max Dioids

In this section we investigate properties of the bideterminant for another important
sub-class of dioids, namely MAX-MIN dioids (or MIN-MAX dioids). Thissub-class
belongs to the intersection of doubly selective dioids and distributive lattices.



3 Bideterminant and Linear Independence 201

A MAX-MIN dioid is therefore a selective dioid (E, ®, ®) with the additional
property:
Vae E,Vb € E: a® b = Min{a, b}
(the minimum above is to be understood in the sense of the total order relation
deriving from the law & on E).
It is therefore seen that a MAX-MIN dioid can be defined more directly from a
totally ordered set E endowed with the laws & and ® as follows:

Yac E,be E:a® b= Max{a, b}
a® b = Min{a, b}

Itisalso observed that it isaspecia type of doubly selective dioid. The definition of
a MIN-MAX dioid is analogous, with the roles of MIN and MAX interchanged.
In the literature, MAX-MIN or MIN-MAX dioids have aso been investigated
under the names of “Minimax algebras’ (Cuninghame-Geene, 1979) or “Bottleneck
algebras’ (see e.g. Cechlarova, 1992, Cechlarova & Plavka, 1996).

The following example shows that, for amatrix A with elementsinaMAX-MIN
dioid (E, @, ®), the existence of arelation of linear dependence of the form:

doyeA =) yeAl

jeq jek
(withdy # 0, #0, 1 NJ =P and )j # e forj € J U J) does not necessarily
imply det™(A) = det™ (A).

Example 3.5.1. On the dioid (R4, Max, Min) let us consider the matrix:

For %2 = 2 and A3 = 2 we clearly have the dependence relation:

1
MRAZ=13 QA% = (2)

2

However it can be observed that: det™ (A) = 3 (the weight of the even permutation
o of maximumweight defined as: o(1) = 1; 0(2) = 2; 6(3) = 3), and: det™ (A) = 2
(the weight of the odd permutation ¢’ of maximum weight defined as: ¢/(1) =
1; 0/(2) = 3;0'(3) = 2).

We therefore have in this example, det™(A) # det™ (A), despite the linear
dependence of the columns. ||

It will be observed that the situation highlighted in the previous example can be
explained by the fact that the coefficients .., and \3 were chosen too small.
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More generaly, if Al and AK are two arbitrary distinct columns where all the
terms are > 0, by choosing % and . satisfying.

O<)ij=)h = ii/lli”rjn{Min{a‘-,j; ak}}

thenthisyields: ,j @ Al = 1 ®AK, evenfor an arbitrary matrix suchthat det™ (A) #
det™(A).

Thefollowing result showsthat choosing all the % > perm(A) in the dependence
relation is sufficient to guarantee the equality of the two terms of the bideterminant.

Property 3.5.2. Let (E, ®, ®) beaMAX-MIN dioid and A € Mp(E).
If the columns of A satisfy alinear dependence relation of the form:

Yoo =Y oAl
jehn iek
with, Vj: % > perm(A) = det™ (A) @ det™ (A) then det* (A) = det™ (A).
Proof. LetA = (A1, A2 .. A" bethe matrix suchthat Al = Al if j ¢ J; U J, and
Al=)3eAifje LU
By using the Corollary 3.3.3. of Sect. 3.3, we obtain:
det™(A) = o ® det™(A)
det™(A) = a @ det™ (A)

with det™ (A) = det™(A) and o = l_[ % (product in the sense of ®).
jehUk
The condition:

— i . _ + —
oc_jel\J/IllurBZ{xJ} > perm(A) = Max{det *(A), det ~(A)}

then implies:

o ® det™ (A) = det™ (A)
o ® det™ (A) = det™ (A)

which yieldsthe desired result. O

Let us now study the converse of the previous property.

The example below shows that, as opposed to the case of selective-invertible
dioids (see Sect. 3.4) det™ (A) = det™ (A) does not necessarily imply the existence
of arelation of linear dependence of the form

Yoo A =) ye Al 1)
jeq jek
with,  Vj, Aj > perm(A) (18)
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Example 3.5.3. Inthe dioid (R, Max, Min) let us consider the matrix

210
A=1|1 2 2
1 2 2

which satisfies det™ (A) = det™ (A) = 2 and perm(A) = 2. _ _
It can be observed that, forany j = 1,...,3,if & > 2, thenj ® Al = Al
Consequently, if there exists a dependence relation satisfying (17) and (18), it is

necessarily of the form
LD I
jeq jek
withdy #8, o #B, NI =0.

We easily observe for our example that this is impossible if |Ji| = || = 1
(because the three columns of A are distinct) and also impossible if |J;| = 1 and
|Jl| = 2 (because, in thefirst row, none of the coefficientsis equal to the maximum
of the two others). ||

From the previous example, it is seen that inaMAX-MIN dioid the singularity of a
matrix A € M (E) cannot be characterized by the equality det™ (A) = det™ (A).
We now proceed to show that for matrices A € M (E) satisfying an additional
condition, referred to as non-degeneracy, it is nonetheless possible to characterize
singularity of matricesin MAX-MIN dioidsin terms of coloration of hypergraphs.

Definition 3.5.4. A € Mp(E) is said to be non-degenerate if there does not exist a
row i containing two terms &; and ajx such that a; = ax < perm(A)

Remark. We observe that the non-degeneracy of a matrix can be checked in poly-
nomial time since the computation of perm(A) can be reduced to a“Max-Min” or
“bottleneck” assignment problem. (refer to Example 3.1.2) ||

For non-degenerate matrices, we can state the following property.

Property 3.5.5. Let A € M(E) be a non-degenerate matrix on aMAX-MIN dioid
(E @, ®).

If there exists a dependence relation implying a subset of columns of A, then
there exists a complete dependence relation, i.e. one in which all the columns of A
areinvolved.

Proof. Let us assume that there exists a dependence relation of the form
doyeA =) yeAl
jeh jek

withdt #0, % #0 N =0, hUk #J={1,...,n},and}j > perm(A),Vj €
HhUdb.
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By multiplying both sides of theaboverelation by & = perm(A) and by observing
that for \j > perm(A)  ® %j = » we obtain:

Viel={12...,n

Z X®aij=2 L ® aj = Vi

jeh jek

We necessarily havev; < \. Indeed, if for i € |, we have that: vi < X, thisimplies
that there existsj1 € J; and j2 € J such that:

G =8, =Vi< A
which implies a contradiction with the non degeneracy assumption. )
We therefore have, Vi € |: v; = \ and consequently by setting xj/ =\ (for any
jed
J=h J=J30Xh wehavetherelation:

Viel: Yy Meaj=) \eg
i€y i€,

which isacomplete dependence relation on the set of columnsof A. O
Let us now introduce the concept of the skeleton-hypergraph of a given matrix A:

Definition 3.5.6. Let A € My (E) and k = perm(A).
We refer to as the skeleton-hypergraph of A the hypergraph H(A) = [J, S(A)]
having J= {1, ..., n} as set of vertices and where the set of edges is:

S(A) = {S1(A), S (A), ... Si(A)}
where, Vi el,S(A) = {j/L®aj =1} = {j/a; > perm(A)}.

In H(A), each edge corresponds to arow of A, and contains at least one vertex.
Indeed, since . = perm(A), there exists at least one permutation o of {1, ..., n}
such that:

W(0) = 81,01 ® 8,062 @ .- ® 8nom) = M

Which implies that, Vi € I: g 46 > » hence h ® & i) = * which shows that
o(i) € S(A).

The chromatic number of a hypergraph H (see Berge, 1970) is the minimum
number of colors required to color the vertices of H so that for every edge having
at least two vertices, al the vertices do not have the same color. A hypergraph with
chromatic number 2 is said to be bicolorable. One can then state the following
characterization of non-degenerate singular matricesin a MAX-MIN dioid:

Theorem 3. (Minoux, 1982)

Let (E, ®, ®) be a MAX-MIN dioid. A necessary and sufficient condition for a
non-degenerate matrix A € Mp(E) to be singular is that the skeleton-hypergraph
H(A) satisfies the two conditions:
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(i) Each edge of H(A) has at least two vertices
(ii) H(A) is bicolorable.

Proof. (8) For A € Mn(E) with x = perm(A), let us denote A = (&j) the matrix

(b)

where the coefficients are: )
8 =\ ® gj
Clearly, A is non-degenerate if and only if A is non-degenerate.
Consequently, using Property 3.5.5 a non-degenerate matrix A € Mp(E) is

singular (has a subset of dependent columns) if and only if there exists J; and
J, such that:

jeh i€k

with (19
H#ED #D: hNh=10

Hhulb=1J

Let us now assume that A is singular. (19) then shows that each edge of H(A)
contains at least two vertices, onein J; and one in J,. Moreover, by attributing
acolor to the vertices of H(A) corresponding to the columnsj € J; and another
color to the vertices of H(A) corresponding to the columnsj € J» we obtain a
bicoloring of H(A).

Conversely, let usassumethat H(A) isbicolorable and that each edge contains
at least two vertices. This means that J = {1, ..., n} can be partitioned into
J1 # ¢ (the set of vertices having color 1) and J, # ¢ (the set of vertices having
color 2), so that each row i of A contains at least two terms &, and &, equal to
x withj; € Jy and 2 € J.

We therefore have a complete dependence relation of the form (19) for the
columns of A, and this showsthat A issingular. O

The problem of 2-colorability of a hypergraph being NP-complete (see Garey and
Johnson, 1979, Appendix A3, p. 221), Theorem 3 therefore shows that testing the
singularity of a (non-degenerate) matrix in a MAX-MIN dioid is a difficult prob-
lem. If, moreover, we recall that the computation of the permanent in such a dioid
is easy (it reduces to solving a “bottleneck” assignment problem, see Sect. 3.1,
Example 3.1.2), one can observe anotabl e difference from the point of view of com-
putation, with standard algebra (where checking singularity of amatrix can be done
in polynomial time, whereas computing the permanent is difficult).

Exercises

Exercisel. Let X = (Xj)ic) beafamily of elementsin asemi-module (M, [, L) on
(E, &, ®).
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(a) Show that if X isindependent, then it is non-quasi-redundant.

(b) Show that if X is non-quasi-redundant, then it is non-redundant.

(c) Show that if (E, ®) has a group structure, the concepts of non-redundancy and
non-quasi-redundancy are equivalent.

Exercise 2. Let (E, ®, ®) bethedioid (N, Max, x) withe = 0,e=1,and M = E?,
the set of vectors with two components on E.
For \ > linteger, let us define:

a=(5) = () w =)o (3)=()

Show that the family X = [x1, X2, X3] is non-redundant but that it is quasi-
redundant.

Exercise 3. Let M = E*, the set of vectors with four components on (R, Max, x)
and let us consider X = [X1, X2, X3, X4] wWhere:

1 1 0 0
1 0 1 0
X1 = 0 X2 = 1 X3 = 0 X4 = 1
0 0 1 1

Show that this family is non-quasi-redundant but not independent (in the sense of
Definition 2.5.1).

Exercise 4. Show that the result of Proposition 2.5.5 remains valid, under the same
assumptions, for non-redundant families X = (X;)ie; or similarly for non-quasi-
redundant families.

Deducethat if (M, [J, L) hasanon-redundant generating family (resp. non-quasi-
redundant), then the latter is unique.

[Indication: verify that the proofs of Propositions 2.5.5 and 2.5.7 apply].



Chapter 6

Eigenvalues and Eigenvectors
of Endomor phisms

1. Introduction

The celebrated Perron—Frobenius theorem, which applies to real nonnegative matri-
ces, may be viewed as the first result stating the existence of an eigenvalue and
associated eigenvector on matriceswith coefficientsinthedioid (R4, 4, x). Indeed,
it assertsthat such amatrix has an eigenvaluein thisdioid, with an associated eigen-
vector having all componentsin the dioid; moreover, it establishesaspecial property
for this eigenvalue, as compared with the other eigenvalues on the field of complex
numbers: it is actually the one having the largest modulus.

The importance of this largest eigenvalue is well-known as it is often related
to stability issues for dynamical systems (Lyapounov coefficient), or to asymptotic
behavior of systems (see, e.g. Exercise 2 at the end of this chapter).

The present chapter is devoted to the characterization of eigenvalues and eigen-
vectors for endomorphisms of semi-modules and of moduloidsin finite dimensions.
Extension to functional operatorsin infinite dimensionswill be studied in Exercise 3
of this chapter (for Max+ dioids) and in Chap. 7, Sect. 4 (for Min—-Max dioids).

Conditionsguaranteei ng the existence of eigenvaluesand el genvectorsarestudied
in Sect. 2. These conditionsinvolve the quasi-inverse A* of the matrix A associated
with the endomorphism under consideration.

In Sect. 3, we present for various classes of idempotent dioids, results character-
izing the eigen-semi-modul e associated with a given eigenvalue.

Section 4 focuses on the important special case of dioids with multiplicative
group structure. An analogue to the classical Perron—Frobenius theorem is obtained
for asubclass of selective-invertible dioids. Section 5 investigates the links between
eigenvalues and the characteristic bipolynomial of a matrix.

A number of noteworthy applications of eigenvalues and eigenvectors in dioids
are presented in detail in Sects. 6 and 7: hierarchical clustering, preference analysis,
theory of linear dynamical systemsinthedioid (RU {—o0}, Max, +). Aninteresting
application to the Ising model in statistical Physicsis also presented in Exercise 2.

207
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2. Existence of Eigenvalues and Eigenvectors. General Results

Let (E, ®, ®) beasemiring (where ¢ isthe zero element and e the unit element) and
denote M = E" the semi-module formed by the set of vectors with n componentsin
E. Theinternal operation of M isthe operation & defined as:

X1 Y1 X1 @Y1
X2 Y2

e ] . | =
Xn Yn Xn @ Yn

and the external operation, denoted ®, is defined as:

X1 A ® X1
vieEae || =|"®%
Xn )\.@Xn

Leth:M — M beanendomorphism of M. Sinceany vector x € M can bewritten as:
X=X1®e®X2®€d... 0 Xy ® ey (where, ¥j = 1,...n, g denotes the vector
whose jth component ise and all the other componentse) it is seen than his perfectly
defined by specifying the n vectors h(ey), h(e2) .. . h(ey), or, equivalently, by the
matrix A = (aij)}:%_“2 with columns h(ey), . .. h(ep).

X1
Thuswecanwrite, VX =| ~ | e M:h(X) = A ®X

Xn
where the product of the matrix A € Mp(E) by the vector x € M is defined by:

n
Vi: A®X)i =) aj®X
j=1

(where the sum above isin terms of the operation @ of the semiring). Therefore, for
finite dimensional semi-modules, there is a one-to-one correspondence between the
endomorphisms and n x n sguare matrices with coefficientsin E.
Now, givenamatrix A € Mp(E) (i.e. an endomorphism of E"), we say that . € E
€
€
isan eigenvalue of A if there existsV € E", V # | - | such that:

AV =\V

V isreferred to as the eigenvector of A for the eigenvalue .
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If the operation ® iscommutative, it iseasily checked that the set of eigenvectors
of A for a given eigenvalue %, denoted V()), is a sub-semi-module of E" called
eigen-semi-module. If the operation ® is not commutative, then V()) is a right
sub-semi-module, in other words, Va € E,B € E,V € V(M) W € V(M)

VRadW®B e V).

Property 2.1. Assuming that the operation ® isidempotent and commutative, if V
isan eigenvector of A for the eigenvalue e, then \. ® V isan eigenvector of A for the
eigenvalue \.

Proof. WehaveA @ V =V

thus AR (A ®V) =LA (A®V)
=rQV
=2°QV
=2 (A®V) O

We recall (see Chap. 4, Sect. 3.2) that the graph G(A) associated with a matrix
A € Mp(E) isthedirected graph having X = {1, 2, ... n} asitsvertex set, and where
(i,j) isanarcif and only if &;j # e. For every arc (i,]) in G(A), the coefficient a; is
called the weight of arc (i, j).

For k € N, wewill denote AK the kth power of A and:

A —A@AZg ... @AK

When the matrices Akl have alimit ask — oo, this limit will be denoted A+ and
we define A* = | @ AT (I denotes the identity matrix in Mn(E)). It is easily seen
that the matrices A* and A™ satisfy:

AQA"=A*QA =A" 1)

We also recall that the term (i, i) of A™ can be expressed as:

[AThii= " w(y) @)

Y€Pi

where P;; denotes the set of circuits of cardinality >1 containing nodei in G(A) and
w(y) theweight of circuit y € B (see Chap. 4, Property 3.2.1).

We recall that, if ® is not commutative, the weight of a circuit depends on which
node is chosen as the starting node to traverse the circuit and we need to refer to the
notion of pointed circuit (see Chap. 4, Sect. 3.2). In this case, P;; in (2) will denote
the set of pointed circuits having i as starting node.
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Below, we denote [AT] and [A*] the i’" column of matrices At and A*
respectively. We can then state:

Theorem 1. (Gondran and Minoux 1977)
Assuming that A* exists (note that in this case the existence of AT = A @ A*
follows) then the two following conditions are equivalent:

(i) (Z W(y)) QADN= (Z w(v)) ® © ©)

veR;i y€ePi

forsomei e [1,n]and » € E.
(i) [A*]' ® n (together with [A*]' ® ) is an eigenvector of A for the eigenvalue e.

Proof. Let usshow that (i) = (ii)
From (1) we get:

AT =A®[A"]
=A® [ ®AT])

where[1]' denotes the ith column of the identity matrix .
From condition (3) we can write:

AT @r=({T® AT
=A@
from which (1) impliesthat [AT]' ® % = [A*]' ® 2 is an eigenvector of A for the
eigenvalue e.
Now we show that (ii) = (i).

Assume that [A*]' ® 2 isan eigenvector of A for the eigenvalue e.
Thus:

AQIA* T @n=[A"T® (4)
=T @ AT @
Since A ® A* = AT we deduce from (4):
A @r=[AT] ®@%
which then implies that:
At @r=(TeoATHenr
For the ith component, the above equality implies:
ATl i@r=r®[AT]®xr
which isnone other than (3). O

Several interesting results will now be deduced from this theorem.
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Corollary 2.2. If A* exists and if there exists i € E and a pointed circuit y origina-
ting at i such that:
W) @p @ p=wy) ®p

then [A*]' ® w is an eigenvector of A for the eigenvalue e.

Proof. We need simply observe that in view of the assumptions of Corollary 2.2,
relation (3) issatisfied. O

Theorem 1 and Corollary 2.2 will often be used in the special situation where k. = e
orpu=e

Corollary 2.3. If A*existsand if I®&A = A, then all columns of A* are eigenvectors
of A for the eigenvalue e.

Proof. It followsdirectly from Corollary 2.2 takingu = eandw(y) = gj. O

Corollary 2.4 below is a consegquence of Theorem 1 in the case where (E, ®) isa
group (the inverse of an element ) € E for ® being denoted %~ 1).

Corollary 2.4. (i) If (E, ®) is a group, if (.~ ® A)* exists and if:

1 * 1 *
A = A
(1en), o= (- 0n) ®
then [(» 1 ® A)*]' is an eigenvector of A for the eigenvalue X.
(i) If, furthermore, ® is commutative, then condition (5) can be replaced by:

Iyl Iyl
Swyee™d se=Y wmend (6)

veP; veP;

where |y| denotes the number of arcs of circuit y and where P;; denotes the set
of circuits of G(A) containing i.

Proof. (i) Relation (5) shows that Theorem 1 applies to the matrix = ® A and
that, asaresult, [(» "1 ® A)*]' isan eigenvector of ».~1 @ A for the eigenvalue
e. It follows that this vector is also an eigenvector of A for the eigenvalue '\

(i) Inthe case where ® is commutative, the weight of acircuit y of G(L."1 ® A)
is none other than w(y) ® (x~ 1!Vl where w(y) is the weight of this circuit in
G(A). O

The following result concerns another important special case, in which both opera-
tions @ and ® are idempotent.

Corollary 2.5. Assume that @ and ® are both idempotent, that A™ exists, and define
n € Eas:

w=I[A%li= ) w(y) (7)

Y€Pi

Then [A*]' ® p is an eigenvector of A for the eigenvalue e.
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Proof. Since @ and ® are idempotent, we have pn? @ u = p? and, u being defined
by (7), we observe that relation (3) is satisfied with . = ; the result then follows
fromTheorem1. 0O

In the case where, in addition to the idempotency of @ and ®, we assume the
commutativity of ®, the existence of A™ is guaranteed and we obtain the following
corollary.

Corollary 2.6. If @ is idempotent, ® idempotent and commutative, then:

(i) AT and A* exist:
(ii) by setting:
w=I[A%li= Y wy

veRi
forany . € E, » ® p ® [A*]' is an eigenvector of A for the eigenvalue .

Proof. (i) Inthecasewhere® and ® areidempotent, any element a € Eis 1-stable
and hasaquasi-inverse a* = e a(see Sect. 7 in Chap. 3). If, furthermore, the
law ® is commutative, according to Theorem 2 of Chap. 4, any square matrix A
has a quasi-inverse A*: the existence of A* and A* istherefore guaranteed.

(ii) By applying Corollary 2.5 we immediately deduce that [A*]' @ p = p @ [A*]'
is an eigenvector of A for the eigenvalue e. It then follows from Property 2.1,
that Vi € E, . @ u ® [A*]' isan eigenvector of A for the eigenvalue .. O

3. Eigenvalues and Eigenvectorsin |dempotent Dioids:
Characterization of Eigenmoduloids

Inthissectionwewill present anumber of results characterizing eigen-semi-modules
V() associated with eigenvalues .

All these results will be obtained by assuming that @ is either idempotent or
selective, in other words, correspond to cases where (E, ®, ®) are dioids (either
idempotent or selective). The eigen-semi-modulesunder considerationin thissection
are therefore moduloids.

We start by studying V(€). Thereafter we will show how results for V(), for
arbitrary X, can be deduced.

Lemma 3.1. Let (E, &, ®) be an idempotent dioid and A € Mp(E) having the eigen-
value e, and such that A* exists with A* = AP = | @A @...® AP for some integer
peN.

Then:VeVeEe =V =A*QV

Proof. We can write:
V=V
ARV =V
A2QV=AQV =V

AKeV=AQV=V
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forany k € N. It followsthat: | A& ... AV = AW @V =V and
consequently if A* = A® for p e N, we deduce:

A*@V=V. O

Thepreviousresult thusshowsthat, whenthereference setisanidempotent dioid (and
even moresointhecaseof aselective dioid), any vector of V(€) isalinear combination
of the columns of A*. Nevertheless, the columns of A* do not necessarily belong to
V(e) themselves (see Theorem 1 of Sect. 2 and its corollaries).

With the stronger assumption of selectivity for @, we now show that the set of
vectors of theform [A*]' ® ; which belong to V(e) form a generator for V(e).

Theorem 2. (Gondran and Minoux 1977)

Let (E, @, ®) be a selective dioid and A € My (E) having the eigenvalue e and
such that A* exists with A* = AP for some integer p € N.

Then there exists a subset {iy, iz, ..., ik} of {1,2,..., n} and coefficients ; €
E(k =1...K) such that

K .
Veve=V=> [A]au,
=1

k
with, vk: [A*]* @, € V(e

Proof. & isidempotent, thusV = A* ® V from Lemma 3.1 and consequently:
n .
v=>[A"T eV ®)
i=1
Moreover, sinceV € V(e):
n
Vi=1,...n: Zaj ® V)=V,
j=1

Since® isselective, withevery indexi € {1, ...n}wecanassociateanindexj = ¢(i)
such that: g i) ® Vi) = Vi (if several indicesj exist such that &; ® Vj = Vi, we
arbitrarily choose one of these indices for ¢(i)).

The partial graph H of G(A), formed by the subset of arcs of the form (i, ¢(i))
fori = 1,...n, contains n vertices and n arcs. Its cyclomatic number is therefore
equal to its connectivity number. Moreover, as any vertex of H has an out-degree
exactly equal to 1, each connected component of H contains a unique circuit. Let us
denote H1, H2, ... HK the connected components of H, and, for k € {1, ...K}, let
us denote yK the circuit contained in H¥. Any vertex i € HK either belongs to y¥ or
is connected to yX by aunique path originating at i and terminating at j € vX.

Let us assume that v has vertex set {i1, iz, . . .ig}.
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We have:
8, ® Vi, =Vj,
dsig ® Vi3 = Vi2
i, ® Vi, = Vi,

thus we deduce, for any vertex i of y* (for examplei = i1):
W) @ Vi =V,
We can thus write:
W) ® Vi Vi=Vi =w") 8 Vi
We then observe that, as a result, the assumptions of Theorem 1 are satisfied with

» = Vi, whichimplies:

[A*]'® Vi € V(e)

Let us now consider an arbitrary vertex j of HK, j ¢ yX, and show that, in expression
(8), theterm [A*] ® V; is absorbed by the term [A*]' ® V; (i € ¥¥).
In HX there exists a unique path ji joining j toi. On each arc (s, t) of this path
we have the relation:
ag ® Vi = Vs

thus we deduce:
w(mji) ® Vi =V

We can thus write:
AP @ V@ [A*] ® Vi = [[A*] @ W(rj) ® [A*]1® V]

w(mji) comesinto play in theterm (j, i) of the matrix A", wherer is the number of
arcs of the path mj;. From the elementary property: A* @ A* ® A" = A* (which
follows from the idempotency of &) we deduce that:

[A) @ w(mj) @ [A*] = [A*]
which shows that:
AT @Vi® AT ® V) = [A*] @V,

Asaresult, it isenough in expression (8) to retain aunique term of theform [A*]ik ®
Vi, with iy € K, for each connected component H* of H, and we have:

K .
V= AT eV,
k=1

and [A*]ik ® Vi, € V(e fork = 1...K, which provesthe theorem. O
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We can deduce from Theorem 2 the following consequences.

Corollary 3.2. Let (E, &, ®) be a selective-invertible dioid and A € Mp(E) such
that A* exists with A* = AP (p e N)

Then, if eis an eigenvalue of A, V(e) is the (right) moduloid generated by those
columns of A* which are eigenvectors of A for e.

Proof. Accordingto Theorem 2, if V € V(e), then V hasthe form:
V=) AT @y

with, Vk, [A*1¥ ® p, € V(e) (sum on asubset of indices from {1, 2, ..., n}).
Since (E, ®) isagroup, | # ¢ hasaninversefor ® and:
A ® [A* ¥ @ ug = [A*]K ® py shows (viaright-multiplication by () 1) that
we also have [A*]K € V(e)
Hence, Corollary 3.2 follows. O

In Corollary 3.3 and Theorem 3 below, we will assumethat & is selective, that ® is
idempotent and that e is the greatest element of E. Then, we know that the set E is
totally ordered by the canonical order relation and it is easy to see that:

Vae E,be E,a® b= Min{a, b} 9
Indeed, we have:

aRbda=a (boe =a
abdb=(@de)b=>b

whichimpliesa@ b<aanda®@b <b
If now we assume a > b, we have:
a® b = aand we can write:

a®b=(adb)b=abob

thus we deduce a® b > b and (by the antisymmetry of >) a® b = b. Similarly:
a<b=a®b=a

Corollary 3.3. Let (E, &, ®) be a selective dioid for which:

— the ® law is idempotent;
— elisthe greatest element (i.e. Vac E,e® a=¢)

Let A € Mp(E) having eas an eigenvalue. Then A* exists and V' (e) is the (right)
moduloid generated by the set of vectors of the form [AT]' ® w,; (fori = 1...n)
where, Vi: = > w(y) = [AT];;

YR
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Proof. Inview of the assumptions, for any pointed circuit y of G(A) we have:
w(y) de=e

which shows that G(A) is without O-absorbing circuit.

According to Theorem 1 of Chap. 4, we deduce the existence of A* (note that
here we do not assume the commutativity of ®). Furthermore, A* = A1,

According to Corollary 2.5, thevectors[A] @u; (withp; = [AT]; ;) areelements
of V(e).

Let us now apply Theorem 2: any vector V € V(e) can be written as:

V=Y A ®a (10)

with [A* 1K @ ok € V(e).
(Sum on asubset of indicesfrom {1, 2, ..., n}).
According to Theorem 1, ay satisfies (3) in other words:

Mk ® ok D ak = g ® ok
Moreover:

Mk @ ak @ ok = (LK D ) @ ak
=ax (becausep, e=e)

Thus, we have: 11, ® ax = ax and (10) can be rewritten:
V=23 (AT @) ®

This shows that the set of vectors of the form [A*]' ® pi(i =1, ...n)isagenerator
of V(e). O

According to Corollary 3.3, the set of distinct vectors of theform [A*] ® [AT]i
isagenerator of V(e). Thefollowing result is fundamental, because, under the same
assumptions, it showsthat it is aminimal generator, and that it is unique.

Theorem 3. Let (E, @, ®) be a selective dioid for which the ® law is idempotent
and where e s the greatest element. Let A € M (E) having e as eigenvalue.

Then A* existsand G = U {Vi } the set of distinct vectors of the form V' =
i=1l.n

A*] ® [A*]ij (fori = 1,...n), is the only minimal generator of V(e).

Proof. The existence of A* and the fact that V'(i =1,...,n) form a generator of
V(e) follow from Corollary 3.3.

Let us show, therefore, that G is a minimal generator and that it is unique. Let
us proceed by contradiction and assume that there exists another minimal generator
G = S {WK} of V(€) composed of vectors WK, k running through a finite set of

€
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indicesK. SomevectorsV' cancoi ncidewithvectorsof G', however therenecessarily
exists at least oneindex i such as: V' = Wk for all k € K. Since G’ is agenerator of

V(e), there exist coefficients y, € E such that:

VI = ZWk ®yk
keK

The component i of V'is [AT]
(Indeed, we have:

ii

[A] @ [AT] = (@ ATl @ [AT], = [AT];

since e isthe greatest element of E).

As @ is selective, there exists anindex k/ € K such that:

V: = [A+]i,i = Wlk/ ® Yk’

AsWK' e V(e), from Lemma 3.1, it can be expressed as:
n .
Wk — Z [A*]] ® WJk
=1

thus we deduce: ) : )

W > [AT] @ W
Since, according to (12), WK > [A*]
we deduce:

i
i

W = [ o [A*], =V

Furthermore, from relation (11) we can write:

Vi > Wk, ® Yk

and furthermore, by noting that (from (12)) vy, > [AT];i:

Vi>wKe [A"];;

(11)

(12)

(13)

(14)

Now multiplying (13) by [A™]; i and noting that, asaresult of theidempotency of ®:

Ve [AT]i = v

we obtain: :

WK @ AT =V
The inequalities (14) and (15) then imply:

V' =WK @ [AT]i;

(15)

(16)
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The above reasoning shows that, for any vector V' not coincidi ng with one of the

vectors WK, there exists an index k' e K such that the vectors V' and WX’ satisfy
(16) (in other words are “colinear”).

Furthermore, as the set of WX(k e K) was assumed to be minimal, it cannot
contain any vector W(t e K) which does not correspond to one of the V' (indeed,
in this case, a generator strictly smaller in the sense of inclusion would be obtained
by eliminating the vector WY).

Fromthe abovewededucethat the sets G and G’ arein one-to-one correspondence.
For any k € K, let us denote a(k) = i, the index of the vector V corresponding to
WK, Thus we have, Yk € K:

k _ ok k + k)
Wi =V o W'®[A ]a(k),a(k) =
In all cases, we thus have:
wk > V*® forany k.

This shows that, anong all minimal generators (in the sense of inclusion) in one-

to-one correspondence with G = LlJ [V' ] G is the one which contains the |east
1=1...n
vectors (in the sense of the order relation on the vectors of E"). G is therefore the

unique minimal generator with this property. 0O

Let us note that Theorem 3 above generalizes a result obtained by Gondran
(19764a,b) for the special case of the dioid (R, Min, Max).

In Chap. 7, Sect. 6.4, an extension of Theorem 3 to infinite dimensions (functional
semi-modules) will be found for the case where the basic dioid is (R, Min, Max)
(see also Gondran and Minoux 1997, 1998).

The following results characterize V() for A # ein the case of selective dioids
with idempotent multiplication.

Lemma 3.4. Let (E, @, ®) be a dioid with ® commutative and assuming eto be the
greatest element of E(Vaec E:ed a=e). Let A € Mp(E).
Then A* exists, and if \. € E is an eigenvalue of A:

VeV =V=A*®V
Proof. By using the commutativity of ®, A @ V =X ® V implies, Yk € N:
AkoVv =1kgvV
Since eisthe greatest element of E, wehave: e ® A ® 22 @ ... ® 1K = ethus, Vk:
leAdA’®...0AN®V =V

As A® = A* assoon ask > n — 1 (see Chap. 4, Theorem 1) we deduce the
result. O
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We can then state:

Corollary 3.5. (Gondran and Minoux 1977)
Let (E, @, ®) be a selective dioid for which:

— the ® law is idempotent and commutative;
— eisthe greatest element (i.e. Vac E:e®a=¢€)

Let A € Mp(E). Then:

(i) A* exists and any » € E is an eigenvalue of A;
K .
([HVeVv) =V=73 [A T oL,
k=1
with K < nand vk: [A*]% @ % ® p;, € V(L)
with Wi, = [A+]ik,ik

Proof. (i) followsdirectly from Corollary 2.6. Let us therefore prove (ii).
The assumptions of Lemma 3.1 being satisfied, we have: V. = A* @ V =
n .
Y [A* T ®Vi
i=1
On the other hand, we have:

n
Vi=1l..n ) g®Vi=18V
j=1

Asin the proof of Theorem 2, we can construct the partial graph H of G(A) whose
arcs havetheform (i, ¢(i)) where, Vi=1,...n:

.9() ® Vi =r®V; (13)

Each connected component HX contains a circuit yX. By writing the relations (13)
aong the circuit y¥, and by taking into account the fact that ® is idempotent, we
obtain for i € yK:

W) ®Vi=1®V

We can then write:

WO @ALRVi@r®Vi =W @1V,

thus we deduce, from Corollary 1, that: [A*]' ® . ® V; € V(e)

Wethen notethat wealsohave[A*] @ .®V; € V(1) (indeed, ® beingidempotent
and commutative, AQU = Uimplies AQ (2. ®U) = A\QA®U = AU = 22QU,
which showsthat U € V(e) = L ® U € V())).

Asin the proof of Theorem 2 we also show that any term of theform [A*] @ x ®
Vi (j #1,j € H¥) isabsorbed by [A*]' ® . ® V.
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Then by choosing avertex ix € v in each connected component HK of H, we can
write, denoting by K the connectivity number of H:

K .
V=>[AT"@re Vi
k=1

with, vk, [A*]’ @ % ® V;, € V(1), which proves (ii). O

4. Eigenvalues and Eigenvectorsin Dioidswith Multiplicative
Group Structure

Inthissectionwewill investigatethe special case, whichisimportant for applications,
of dioids (E, &, ®) for which (E, ®) isagroup.

For matrices with entries in such dioids, we will see that well-known proper-
ties of irreducible matrices with positive entries in ordinary algebra will thus be
found again. We will then use these properties to establish an analogue to the classi-
cal Perron—Frobenius theorem for matrices with entries in some selective-invertible
dioids.

We recall that a matrix A € My(R;) issaid to be irreducible if and only if the
associated graph G(A) isstrongly connected. In classical linear algebra, the Perron—
Frobenius theorem is stated as:

Theorem. (Perron, Frobenius) Let A € Mn(R4) be an irreducible matrix and p(A)
its spectral radius (the modulus of the eigenvalue having the largest modulus). Then
p(A) is an eigenvalue of A, and the associated eigenspace is generated by an eigen-
vector whose components are all positive.

For a proof and further discussion of this theorem, see Exercise 1.
In the case of dioids featuring multiplicative group structure we start Sect. 4.1 by
establishing afew preliminary results.

4.1. Eigenvalues and Eigenvectors. General Properties

Lemma4.1.1. Let (E, ®, ®) be a dioid. Then:
adb=ct=a=b=c¢ (14)
If furthermore, (E, ®) is a group, then:

a®b=c¢t=a=¢or b=¢ (15)
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Proof. Equation (14) follows from Proposition 3.4.8 of Chap. 1.

Let usnow assumethat (E, ®) isagroup andthata® b = ¢.

Let usshow that a # € and b # ¢ isimpossible. If a # ¢, then a~1, the inverse of
afor ® exists, from which we deduceb = a1 ® ¢ = ¢ (because of the property of
absorption), which exhibits a contradiction. From the above (15) isdeduced. 0O

Lemma 4.1.2. (Gondran and Minoux 1977)

Let (E, @, ®) be a dioid such that (E, ®) is a group, and A € Mu(E) be an
irreducible matrix (G(A) strongly connected). Then, if V. = (Vj)i=1.n iS an
eigenvector of A for the eigenvalue \ we have:

A>c¢ (16)
and:
Vi=1...n: Vj>ce a7

Proof. Let usfirst prove (16). We necessarily havee < '\ (e isthe least element in
the sense of the order relation). If A = ¢ then we have:

€

AV =]|°

therefore, Vi=1...n:
n
D oaj®V=¢
j=1
According to Lemma4.1.1, thisimplies:
Vi,Vi:a;®Vj=¢

and therefore:
gj=¢ o Vj=ce.

SinceV isan eigenvector, V # 8 there hence exists jo such that Vj, # e.

€

Thentherelation gj, ® Vj, = e implies gj, = ¢, and thisissofor al i. Thisleads
to a contradiction with the strong connectivity of G(A). Consequently, we cannot
have \ = ¢, and (16) is proven.

To prove (17) let us again proceed by contradiction. Let us assume that V has
some components Vj = e. Theset X = {1, 2, ... n} can then be partitioned into:

X1 = {j/Vj = &} and X2 = X\X1 and we have that X1 # @ X # 0.

By reordering the rows and columns of A and the components of V if nec-

essary, we can put V into the form V. = (&;) (where V1 corresponds to the
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components of V equal to e and V, to the components of V different frome) and A in

the form:
A1 A
A=
<A21 Azz)
where VI € {1,2} and Vk € {1, 2} A isthe submatrix induced by the subset of

rows X; and the subset of columns X. Therelation A ® V = A ® V then implies
€

ApQRVo = 8 . V2 having all itscomponents £ ¢, we can deduce, inaway similar

€
to the above, that all the terms of the submatrix A12 are equal to ¢. This contradicts
theirreducibility of the matrix A, and proves (17). O

This result will now be used to study the properties of the eigenvalues of matrices
with entries in dioids featuring multiplicative group structure.

Lemma 4.1.3. (Gondran and Minoux 1977)
Let (E, @, ®) be a dioid where (E, ®) is a commutative group, A € Mp(E) an
irreducible matrix and \ € E an eigenvalue of A. Then:

(i) For any circuit y of G(A) we have:
w(y) < al (18)

(where |y| denotes the cardinality of circuit ).
(ii) If @ is selective, there exists an elementary circuit y of G(A) such that:

w(y) = (19)
(iii) If @ is idempotent, the matrix (x~1 ® A)* exists.

Proof. (i) Letusconsider anarbitrary circuity = {i1, io, ...ik, i1} of G(A) where

If V = (Vj)j=1..n isan eigenvector associated with the eigenvalue x, we have:

Y a®Vi=1e Vi
j
Y a; V=18V,
j

j
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(i)

Thisimplies:
aiji, ® Vi, =L ® Vi,
Sisig & Vi3 <A® Viz (20)
8,0, ® Vi, = ARV,
By multiplying the first inequality by % (and by using the compatibility of <
with ®) we obtain:
By, ® Ay ® Vig <@, @A ® Vi, <2 @ V),
Similarly, by multiplying the latter inequality by % and by using the relation:
aizi, ® Vi, <k ® Vi, we obtain:
B0, ® 8y is ® Aigiy @ Vi, < 2@ Vi,
and by iterating this process k times:
8.0, ®...0 a0, ® Vi, < eV, (21)

SinceAisirreduciblewehavel # eandVj #¢(j = 1...n) (seeLemma4.1.2)
therefore Vi, # e. Then by multiplying the two sides of the above inequality

by (Vil)_1 we obtain:

Biy ® Byiy ® ... @ &yiy < AV

which proves (18).
If V = (Vj)j=1..n isan eigenvector of A for the eigenvalue ), we have,

Vi=1...n: Za;J-@Vj:)\@Vi
j

Since @ is assumed to be selective, with each index i € {1,...n} we can
associate an index (i) such as:

8,9 @ Vei) =1V

(if thereexist several indicesj suchthat g j ® Vj = A ®V;, wearbitrarily choose
one of these indicesfor ¢ (i)).

The partial graph H of G(A) formed by the subset of arcsin theform (i,¢(i))
contains n vertices and n arcs. In H, each vertex has an out-degree equal to 1,
hence there exists an elementary circuit y. Along this circuit, relations (20) are
satisfied with equality, and relation (21) reads:

w(y) ® Vi, =" e Vi,

Since Vj, isinvertible (Vi, # ¢ inview of Lemma4.1.2) we can deduce from
thisrelation (19).
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(iii) The existence of (=1 ® A)* follows directly from (18). Indeed, let y be an
arbitrary circuit of G(A). Itsweight with respect to .1 @ A is:

8(y) = w(y) ® (" HY

(18) then implies that 6 (y) < e and, consequently, for any circuit y of G(A)
we have:

Oyy be<ede=e As 6(y)de>e wededuce 6(y)de=e

which shows that 8(y) is O-stable. The existence of (A~ ® A)* can then be
directly deduced from Theorem 1 of Chap. 4. O

From Lemma4.1.3 above we can then deduce:

Corollary 4.1.4. Let (E, @, ®) be a selective-invertible dioid with ® commutative,
and A € Mp(E) an irreducible matrix. Then if A has an eigenvalue X, this eigenvalue
is unique.

Proof. Let \1 and X2 betwo distinct eigenvalues of A.
From Lemma4.1.3thereexist two elementary circuitsy; andy, in G(A) suchthat:

W(yp) = hq'"!

W(yz) = ol 7!
In addition, again from Lemma 4.1.3, we can write;

W(yy) < nql72!

and

W(yg) < a1l
which leads to:

)\1\?1| < )\z\yl\ (22)
and:

ol V2l < g qlv2l (23)

Since @ isselective, < isatotal order relation, therefore if A1 # A2 we have, either
N < A2 Ol A2 < \1.
If, for example, we have \1 < \» then we can deduce:

)\1|Y2| < )\2|Y2|

which isincompatible with (23).
Similarly, if A2 < 1 it follows:

)\2|Y1| < )\1|V1|

which isincompatible with (22).
2 # \ therefore leads to a contradiction, which proves the property. O
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For amatrix A with entriesin aselective-invertible dioid having aunique eigenvalue
., the following result characterizes the minimal generators of the eigenmoduloid
V().

Theorem 4. Let (E, 8, ®) be a selective-invertible-dioid with ® commutative, and
A € Mp(E) be an irreducible matrix having \ as unique eigenvalue. Let us denote
Gc(A) (critical graph) the partial subgraph of G(A) induced by the set of vertices and
arcs belonging to at least one circuit y of weight w(y) = A!Y! (critical circuit). Let
H1, Ha, ... Hp be the strongly connected components of G¢(A) and in each compo-
nent let us choose a particular vertex j; € Hi, j2 € Ha, ... jp € Hp. Then denoting
A = ("1 ®A, the family of vectors F = {[A*}1, [A*]i2, ... [A*]p} is a minimal
generator of the eigenmoduloid V().

Proof. Wewill provide the proof for the case . = e. The general case of amatrix A
with aunique eigenvalue s € E, \ # e, iseaslly deduced by considering the matrix
A = (»"1) ® A. Let us aso observe that, according to Lemma 4.1.3, there exists
at least one critical circuit, therefore G¢ contains at least one non empty strongly
connected component.

(a) Firstlet us show that Fisagenerator of V(e).
Let us denote y, a critical circuit of Hy containing vertex j1, y» a critical
circuit of Hy containing vertex jo, €tc.
LetV = (Vj)j =1..n, be an eigenvector corresponding to the eigenvalue e.
Let usnotethat, A being irreducible, accordingtoLemma4.1.2:vVj=1,...n
Vi > e.
: By using the proof of Lemma 4.1.3 we have, along each of the circuits
Y1« yp:
i, ® Vi, = Vi,
i, ® Viy < Vi, (24)
iy ® Vi; = Vi,
(i1, 12, ...k, i1 denoting the succession of vertices visited along the circuit). If
we had strict inequality in at least one of the relations above, this would imply:

ai1i2®ai2i3®~"®aiki17ée

thus a contradiction would result with the fact that the circuits y1, y, ...y, ae
critical (W(y1) = W(yp) =...W(yp) = ©).

For each of the circuits 4, vy, . .. v, the relations (24) are therefore all
equalities.
Then, by using the proof of Theorem 2 we first deduce:

[A*J1 ® Vi1 € V(e)
[A*]2 ® Vjp € V(e)

[A*P ® V), € V(e)
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and, since (E, ®) is a group and each component of V is distinct from ¢, this
implies: _ . _
[A*]t e V(e), [A*]2 e V(B)...[A*]P € V(e).
Furthermore, again according to the proof of Theorem 2, weknow that relation

n .

(8) issatisfied and that, in the expression > [A*]' ® V;j, itisenough to retain a
i=1

single term of the form [A*Jk @ Vij, for eachcircuit y(k =1,..., p).

From the above we deduce that V € V(e) can be written as the expression:

p
V=Y A"k @V,
k=1

which proves that F is a generator of V(€).
(b) Let usnow check that Fisaminimal generator of V(e).

Todoso, wewill showthatforanya € [1, ... p], noneof thevectors[A*]',i €
H.., can beexpressed asalinear combination of thevectors[A*} withj € Hqg, 0 #
.

L et us proceed by contradiction and et usassumethat [A*]', i € H,, isalinear
combination of other columnsof A* takenin strongly connected componentsdis-
tinct from one another and distinct from H,, and let usdenoteK c {1, 2, ..., n}
the set of indices of these columns.

Let us then consider the submatrix B deduced from A* by eliminating all the
rows and columns whose indices do not belong to K U {i}.

It is clear that, by construction, the columns of submatrix B are linearly
dependent, so in view of Corollary 3.3.3 of Chap. 5 (Sect. 3.3):

det™ (B) = det™ (B) (25)

Moreover, each diagonal term of B correspondsto adiagonal term [A*]; ; where
j isavertex of the critical graph G¢(A). Consequently [A*]; j (the weight of the
maximum weight circuit through j) isequal toeand [A*]j; = e® [A*]jj = e.
It follows that all the diagonal terms of B are equal to e and det* (B) = e.

From relation (25) we then deduce the existence of an odd permutation of the
indices of K U {i} with weight equal to e. The decomposition into circuits of this
odd permutationthen features at | east one elementary circuit (whichisnot aloop)
and having weight e in G(B). This circuit would correspond to a critical circuit
(of weight €) in G(A) joining vertices belonging to distinct strongly connected
components of the critical graph. We are thus lead to a contradiction, which
provesthetheorem. O

We are now going to use the above properties to derive an analogue to the Perron—
Frobenius theorem in some selective-invertible dioids.
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4.2. The Perron—Frobenius Theorem for Some
Selective-l nvertible Dioids

In this section we consider a special class of selective-invertible dioids: those in
which the calculation of the p™ root of an element (for anatural number p) isalways
possible.

We therefore assume, throughout this section, that (E, @, ®) is a selective-
invertible-dioid with ® commutative having the following additional property (m):

Vpe N,Vae E, theeguation:
(m){ xP=a
has a unique solution in E, denoted a'/P

Example 4.2.1. A typical example of aselective invertible-dioid enjoying the above
property isthe dioid (R, Max, +). The operation ® being the addition of real num-
bers, for any a € R theequation xP = a (p € N, p # 0) has a unique solution which
isthe real number a/p (usual quotient of the real number a by the integer p). ||

We can now define the spectral radius p(A) of amatrix A € M (E).

Definition 4.2.2. (spectral radius)
Let (E, @, ®) be a selective invertible-dioid with the property (). The spectral
radius of A € Mp(E) is the quantity:

=

n

p(A) = Y (r(A) (26)

k=1

(sum in the sense of @) where tr(A¥) denotes the trace of the matrix AK, in other
words the sum (in the sense of @) of its diagonal elements.

The following property shows that the spectral radius thus defined can be
re-expressed simply in terms of the weights of the elementary circuits of the graph
G(A).

Property 4.2.3. Let (E, ®, ®) be a selective-invertible-dioid with the property ().
Let A € My(E) and p(A) beits spectral radius. Then:

1

o(A) =3 wiy)”

yell

(27)

where I" denotes the set of elementary circuits of G(A).

Proof. Theithdiagonal term of thematrix AX isthe sum of theweights of the circuits
of length k (whether elementary or not) throughi in G(A). As & isselective, (AK);; is
therefore the weight of the maximum weight circuit of length k through i (maximum
in the sense of the total order relation of the dioid).
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Consequently tr(AK) is the weight of the maximum weight circuit of length k
in G(A).
We can therefore rewrite p(A) in the form:

1

o(A) = wiy)” (28)

where the sum extends to all circuitsy of G(A) with cardinality between 1 and n.
Let us show that, in this sum, only the elementary circuits have to be taken into
account.
Let us assume that y is a hon-elementary circuit which can be decomposed into
two elementary circuits y; and ys.
Since < isatotal order relation, we can always assume that
1 1

Ivq1
\‘/2\ 1

w(y,) © =w(yy)

L et us then show that:

i
<w(y,)

Il\
w(y)

1 o L
Let usdenote a=w (y) v a = W(yq) " a = W(yy) E
Since:
W(y) = W(yp) ® W(ys)

we have:
a’l = gl @ a7

and asa < ay, thisimplies:
aVl < a1l @ a7

thus. a < a.
1

7l

Consequently, in the expression (28), any term of the formw(y) = wherey isa
1

Tql
non-elementary circuit is dominated by aterm of the form w(y,) " Wwhere ypisan
elementary circuit. We thus deduce the desired property. 0O

Remark 4.2.4. Thedefinition given abovefor the spectral radiusof amatrix of M (E)
is consistent with the usual definition for real matrices. Indeed, in standard algebra,
for amatrix A whose eigenvalues are positive reals, the spectral radius of A is equal

1
to inm (trA")E (aswe can clearly see by putting A in diagonal form).
— 00

Furthermore, in expression (26) the sum can be extended fromk = 1tok = 400
as demonstrated by the proof of Property 4.2.3 (the sum of the weights of the non-
elementary circuitsthusaddedisabsorbed by the sum of theweightsof theelementary
circuits).
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Hence, we observethat expression (26) isclearly theanal ogueto the usual spectral
radius. ||

We can then state the following result which is an analogue to the Perron—
Frobenius theorem.

Theorem 5. Let (E, @, ®) be a selective invertible-dioid with ® commutative and
satisfying the property (). If A € Mp(E) is an irreducible matrix with spectral

radius
n 1

p(A) = 3 (trak))"
k=1
(i) p(A) is an eigenvalue of A
(ii) p(A) is the unique eigenvalue of A
(iii) if V = (Vj)i=1._n is an eigenvector of A for the eigenvalue p(A), then p(A) > ¢
andVi=1...n:Vj >«

Proof. (i) Accordingto Property 4.2.3thereexistsanelementary circuit y, of G(A)
such that: )
Tvol
p(A) = (W (vo))
and, for any circuit y of G(A)

1 1
™l [vol

wy)” < (Wiyp) (29)

We are going to see that the Corollary 2.4 appliesfor X = p(A).

Let us show first that (.~ ® A)* exists, and, in order to do so, let us show
thatin G(.~1® A) theweight of any circuit is 0-stable (see Chap. 4, Sect. 3.3).
Let y be an arbitrary circuit of G(A). Itsweight with respect to A"t @ A is:

[yl

1 1 vol
6) = w(y) ® 07HY = wy) @ [wiry) ]

According to inequality (29) we have:

[yl

w(y) < wiy,) ™

[yl

[vol

“/Ol 1
and consequently 6(y) < (W(yp)) ® [w(yp) '] ~ =e
Therefore, for any circuit y of GO 1 ®@ A):

vl

b(y) de=e

and consequently 6(y) is O-stable. From this we deduce that [» 1 ® A]* exists
(see Theorem 1 in Chap. 4).

Now let us show that if i isavertex of yg, then relation (6) of Corollary 2.4
(Sect. 2) is satisfied.
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According to the above, the left hand side of (6) is equal to e and we have:

[yl
Ywmen) e

Y€Pi

Moreover, for circuit yq through i we have: w(yg) ® (A~Hlvel = xlvl @
(" HIvol = ewhich shows that the right hand side of (6) is also equal to e.
This shows that ». = p (A) is an eigenvalue of A and that, for any i €
Yo, [~ ® A)*]' isan associated eigenvector.
(if) The uniqueness of the eigenvalue p(A) follows from Corollary 4.1.4.
(iii) Thisfollowsdirectly fromLemma4.1.2. O

Among the applications of Theorem 5, we can mention those which concernthedioid

(fg, Max, +), which is at the basis of new models in automatic control for discrete
event systems (these will be discussed in more detail in Sect. 7 at the end of the
present chapter).

Example 4.2.1. (continued) Calculation of theeigenvaluein thedioid (HVQ,M ax,+)

In the dioid (ﬁ, Max, +), an irreducible matrix A = (gj) has thus a unique
eigenvalue \ = p(A) whose value, according to Property 4.2.3 can be written as:

A =pA) = MaX{VM}
vel | |yl

where I is the set of elementary circuits of G(A), and where, for each elementary

circuity, M denotestheaverage weight of circuit y (weight divided by the number

of arcsin th\(/e circuit, with division in the sense of ordinary algebra).

The calculation of the eigenvalue \ is therefore reduced to the determination in
G(A) of the (elementary) circuit of maximum average weight.

The problem of determining acircuit of average minimal length has been studied
by Dantzig et al. (1967) and by Karp (1978) who described apolynomial a gorithm of
complexity © (mn). Thisagorithm can be directly adapted to the maximum average
weight circuit problem thus leading, for the calculation of the eigenvaluein thedioid

(ﬂv& Max, +), to the following algorithm.

\%
Algorithm 1 Calculation of the eigenvalue of a matrix on the dioid (R, Max, +):

(@) Let A = (&) be an irreducible matrix on (fg, Max, +) and G(A) its (strongly
connected) associated graph.
Initialize the labels of the verticesi = 1...n of G(A) by:

n°(1) =0
(i) = {

aj iIf el
—oo otherwise
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(b) For (k=1,2,...n)do:
ComputeVj =1,2,...n:

Koy k-1 .

End for
(c) Determine the eigenvalue ) by:

. o k.

j=1..n 0<k<n—1 n—k

The complexity of the above algorithm is O(m n), where m is the number of arcs of
the graph G(A) associated with matrix A.

The justification of this algorithm is based on the following result, due to
Karp (1978):

For any fixedi (1 <i < n):

n—k

ANy — Ak .
L= Max Min {—( Jij = AT }
j=1..n O<k=<n-1

where A¥ denotesthe kth power of Ain (fg, Max, +) and wherethedivision by n—k
isthe ordinary division of real numbers.

5. Eigenvalues, Bideterminant and Characteristic Bipolynomial

In this section we investigate the links between the notions of eigenvalues/
eigenvectors and:

— the notion of dependence (in the sense of definition 2.5.1, Chap. 5);
— the concepts of bideterminant and of characteristic bipolynomial.

Let us begin by stating a general result valid in dioids:

Theorem 6. Let (E, ®, ®) be a dioid with ® comn]utative and A € Mp(E). |
denoting the n x n identity matrix, for any » € E, let A(\) be the 2n x 2n matrix:

Al

A(\) =

Then  is an eigenvalue of A if and only if the columns of A(.) are dependent.
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Proof. (i) If V = (V1,Va,...,Vn)T € E"isan eigenvector of A for the eigen-
value \, then by choosing J; = [1,2,...n}, = {n+ 1,...,2n} and the
coefficients:

MJ:VJ G=1,...,n)
MJ:VJ_n (j:n+1,...,2n)

therelation A ® V = % ® V implies, on the columns of A (), the dependence

relation:
e Am) =Y yelAw] (30)

jeh iek

(ii) Conversely, let us assume the columns of A (%) to belinearly dependent (in the
sense of definition 2.5.1 in Chap. 5).

By denoting the weights associated with the columns of A()) as (1, 2, . - - Ins
Mnits - - - Won), We have arelation of type (30) withJy #d b # 0 NJ = P and
n #eforje U (weagreeto set, pj = eforj ¢ Jh U Jp).

By using (30) on the componentsn + 1 to 2n, we observe that, for any j € [1, n],
theindices j and n + j cannot both belong to Ji, nor both to J, (indeed, assuming
the contrary, we would have p; @ w4 = ¢; (E, @) being canonically ordered, from
Proposition 3.4.3 of Chap. 1 thiswould imply pj = pp4j = €).

Consequently, if j € J; then necessarily n + j € J» and the dependence relation
(30) implies: 4 = -

Asaresult, in the dependencerelation (30), theindicesj and n—+j areinterchange-
able and we can therefore alwaysassume J; C {1, 2, ...n}.

Then, by setting:

Vj = for jed,1<j<n
Vj=8 for je[l,n\J)

relation (30) on the first n components of the columns of A() reads:

A Q® V1

i ARV
ZMJ@’A’ LTI
=1 »® Vi

which shows that '\ is an eigenvalue of A and V = [V1...Vn]" an associated
eigenvector. 0O

Remark 5.1. In the case of usual linear algebrawhere (E, @) isagroup:

A 1ol A—x 1Al
det | —— — —— | =det| — — —— — — | = det(A — )

| I o . 1
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the condition of Theorem 6 clearly yields the classical result: \ is an eigenvalue of
Aifandonlyif det (A — A1) =0]]

Now, by considering )\ as a variable, each term of the bideterminant of the
matrix A() can be considered as a polynomia in %. The characteristic bipoly-
nomial of A € My, (E) introduced in Sect. 4.3 in Chap. 2, isthen defined as the pair:
(Pt(\), P~(\)) where:

PT(h) = det™ (A(L))
P~(\) = det™ (A(L))

By using the characteristic bipolynomial, we can then state the following result,
which extends, to some classes of selective dioids, the classical characterization of
eigenvalues asroots of the characteristic polynomial.

Proposition 5.2. Let (E, &, ®) be aselective dioid, with ® commutative, A € M,(E)
and (P*(n), P~ () its characteristic bipolynomial.

(i) If every element of E\{e} is cancellative for ®, then any eigenvalue » of A
satisfies the characteristic equation P+ (\) = P~ ())

(i) If (E, ®) is a commutative group, then any  satisfying the characteristic
equation:
PT(n) = P~ () is an eigenvalue.

Proof. (i) If » isan eigenvalue of A, in view of Theorem 6, the columns of A (%)
are linearly dependent, and, according to Corollary 3.3.3 of Chap. 5 (Sect. 3.3)
we have:

det™ (A(n)) = det~ (A (V)

(i) If (E, &, ®) is a commutative selective-invertible dioid, then by using Theo-
rem 2 of Chap. 5, det™ (A(»)) = det™ (A(r)) implies the existence of alinear
dependence relation on the columns of A()); according to Theorem 6 we can
then deduce that '\ isan eigenvalueof A. O

6. Applicationsin Data Analysis

This section is devoted to the presentation of some important applications in Data
Analysis of the calculation of eigen-elementsin dioids.

In hierarchical clustering the starting point is to assume that we are given a
dissimilarity matrix between objects. Then, considering the dioid (R U {400},
Min, Max), we show in Sect. 6.1 that, with each level \ of the clustering, we
can associate a set of eigenvectors of the dissimilarity matrix associated with the
eigenvalue ; furthermore, this set constitutes the (unique) minimal generator of
the eigen-semi-module V(3\.). This exhibits an interesting link with another classical
approach to DataAnalysis, namely Factor Analysis.
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In Preference Analysis the aim is to order a set of objects given a matrix of
preferences (deduced from pairwise comparisons). We show in Sect. 6.2. that several
approachesto this problem can then beinterpreted, in aunifying framework, in terms
of the search for the eigenvalues and eigenvectors of the preference matrix in dioids
suchas (R4, +, x) (R4 U {400}, Max, Min), (R} U {+00}, Max, x).

6.1. Applicationsin Hierarchical Clustering

Givenaset of nobjects X = {1, 2, ... n}, let usassume that, for each pair of objects
(i,]), we can define an index or a measure of dissimilarity dj € R, (let us note that
this index does not necessarily satisfy the axioms of a distance). The dissimilarity
dij will take on small valuesiif the two objectsi and j are very similar (in particular,
dij = 0if i and j areidentical); conversely, d;; will take on large valuesif the objects
i and j are very dissimilar.

Thus, with any set of objects X = {1, 2, ...n}, we can associate a dissimilarity
matrix

Observe that this matrix is symmetric with zero diagona (Vi € X: dij = 0).

A clustering of the n objects in X consists in determining a partition of X into
subsets (classes) so that within the same class, objects are as similar as possible, and
that on the contrary, objects belonging to distinct classes are strongly dissimilar.

Aswe can give many different meanings to the notion of the proximity or homo-
geneity of asubset of objects, there existsavery wide variety of clustering methods.
In hierarchical clustering one proceeds as follows. The matrix D = (djj) can be
considered as the adjacency matrix of an undirected complete graph G = [X, U]
whose vertices correspond to objects, and whose edges are assigned the djj values.

For any real number \ > 0 we consider the partial graph of G at threshold X,
denoted: Gy = [X, Uy ] where Uy = {(i, j) € U/djj < \}.

The connected components of G, form a partition of the set of objects X. The
elements of this partition form the classes of the clustering of X at threshold .

In view of the above, two verticesi and j are in a same class at threshold \ if
and only if there existsin G achain joining i and j with all edges having valuations
<. Equivaently, i and j arein asame class at threshold  if and only if there exists
in G a path of sup-section <X from i to j, the sup-section of a path = = {ip =
i,i1,12,...ip =]} being defined as:

o(m) = g/la)é l{dikik+l}

.....

(see Gondran and Minoux 1995 Chap. 4, Sect. 2.9).
Thus, fori andj to bein asame class at threshold X, it is necessary and sufficient
that dff = Min {6(m)} <
neR;

(where Pjj denotes the set of paths betweeni and j in G).
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®
Since djj can be written: dff = g (1%[ dikik+1) (with @ = Min and ® = Max)
TepRj
we observe that the matrix D* = (di*j‘) is none other than the quasi-inverse of D in
thedioid (R U {400}, Min, Max).

According to aresult due to Hu (1961), a chain of minimal sup-section between
two vertices in G corresponds to the chain of the minimum weight spanning tree
of G joining these two vertices. The matrix D* can therefore be efficiently deter-
mined using a minimum spanning tree agorithm (see for example Collomb and
Gondran 1977).

The clustering tree is then directly deduced by considering al possible values
of the threshold \ (at most n — 1 distinct values are to be considered, those which
correspond to the valuations of the n — 1 edges of the minimum spanning tree).

If we have p distinct values: k1 > %2 > ... > kp (p < n — 1), the classes
of the partition of level \j+1 are included in the classes of the partition of level
N (i=1,...,p—1) (hencethe name of hierarchical clustering).

Example 1. On the set of 7 objects X = {1,2,3,4,5,6, 7}, let us consider the
following dissimilarity matrix:

0 7 5 810 8 10]

7 0 210 9 910

5 2 0 71110 9
D=|810 7 0 8 4 11
0 911 8 0 9 5

8 910 4 9 010

10 10 9 11 5 10 O]

The corresponding minimum spanning treeisgivenin Fig. 1. Thematrix D* iseasily
deduced from this spanning tree.

For example, d; is the sup-section of the unique chain of the tree joining the
vertices 2 and 7, therefore:

d§7 = Max{do3, d34, dgs, ds7} = 8

Fig. 1 Minimum weight spanning tree corresponding to the dissimilarity matrix D
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We obtain: _
0
5
5
D*= |7
8
7
8
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~Noo~NOoON O

8

At threshold » = 5, we have, for example:

O r~OOONNN

dz < djz<h

U100 O 0 0 0

OO0~ ~NNN

dze <™

O 00 U1 00 00 0O 00

(31)

which shows that the vertices 1, 2, 3 belong to the same class; in the same way,

vertices 4 and 6 are in a same class.

By contrast, the vertices 3 and 5 are not in a same class because

The hierarchical clustering tree for the above example is shown in Fig. 2.

To obtain the partition into classes corresponding to agiven level 1, it is enough
to “cut” the clustering tree of Fig. 2 by a horizontal line with ordinate . Thus, for
example, the clustering on the level \ = 5isthepartition{1, 2, 3} {4, 6} {5, 7}; on
thelevel » = 4: {1} (2,3} {4,6} {5} {7}. |

y
A=38
A=7
A=35
A=4
A=12-
@D E) Y O N— G

Fig. 2 Clustering tree corresponding to Example 1
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Asall the diagonal terms of D are equal to e = 0 (the zero element of ®) thisyields
D = | ® D and consequently:
D* — anl

(see Chap. 4 Sect. 3 Proposition 1).
In the dioid (R U {400}, Min, Max) this therefore yields: (D*)2 = D* which
shows that D* isan ultrametric distance, i.e. that it satisfies, Vi, j, k:

di < Max{di*k,d,fj}

We recall that D* is the subdominant ultrametric distance, i.e. the greatest element
of the set of ultrametrics less than or equal to D (see Chap. 4, Sect. 6.14).

We are now going to see that there exist interesting links between hierarchical
clustering and the structure of the eigenvectors of the dissimilarity matrix D. The
dioid (R U {+o00}, Min, Max) is selective with commutative and idempotent mul-
tiplication. Moreover, e = 0 is the greatest element (in the sense of the canonical
order relation) for, Vae R,: e® a= Min{0,a} = e.

The main results from Sect. 3 (Theorem 3 and Corollary 8) can thus be applied.
In particular (taking into account that, Vi: dif = e = 0):

— Theset of distinct vectorsof theform V' = [D*]' constitutesthe (unique) minimal
generator of V(e);

— Any » € R} isan eigenvaue of D; ‘

— Forany » € R, the set of distinct vectors of the form % ® [D*]' contitutes the
(unique) minimal generator of V().

The following result shows that, for each level . of the clustering, the set of eigen-
vectorsfor theeigenvalue ' containsall theinformation required to definethe classes
at level \.

Theorem 7. (Gondran 1976)

At each level ) of a hierarchical clustering w.r.t. a dissimilarity matrix D = (dj),
two objects i and j belong to a same class if and only if the two eigenvectors » ® [D*]'
and % ® [D*} are equal. The distinct vectors of the form x ® [D*]' fori = 1,...,n
form the unique minimal generator of V().

Example 1. (continued)
Let usillustrate the above results on the matrix D* given by (31).
Onthelevel ) = 5for example, afirst classisformed by the objects{1, 2, 3}.
We then check that we have:

Lo D] =re[D* ] =re D]’ = (32)

00 N0~ o1or ol
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A second classis formed by the objects {4, 6}, and we check that:

-
7
7
ro[D]'=re[D]°=|5 (33)
8
5
_8_
Thethird classisformed by {5, 7}, and thisyields:
o
8
8
re[D ] =re[D*]" = |8 (34)
5
8
._5_

The three vectors given by (32)—(34) constitute (the unique) minimal generator
of the eigenmoduloid V(5). ||

The interpretation of the classes on an arbitrary level X in terms of generators
of the eigenmoduloid associated with the eigenvalue A, establishes an interesting
analogy to another classical approach to Data Analysis, namely: Factor Analysis
(see Benzecri 1974, for example).

In both cases, the relevant information serving as the basis of the analysis is
provided by the eigen-elements of the dissimilarity matrix. Only the underlying
algebraic structures are different.

6.2. Applicationsin Preference Analysis:
A Few Answers to the Condorcet Paradox

Given n objects, we seek to establish a preference order on these objects through
pairwise comparisons of objects produced, for example, by referees or judges (the
case of atournament) or by consumers (the case of a market analysis).

We therefore assume as given the matrix of preferences on the pairs of objects,
denoted A = (a)i=1..n

=1...n

Thus, for any (ordered) pair of objects (i,]), a; is equal to the number of judges
(consumers) having preferred i to j. We agree that the weight of a judge is counted
as — in both gj and &; in the case of indifference between the objects i and j. In

the case of atournament, a; will be equal to the number of games won on j during
meetings between i and j.
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Various approaches to ordering objects from a matrix of preferences have been
proposed, each constituting a possible answer to the Condorcet paradox. We are
going to see that, for each of them, the relevant information used to compare the
objectsis provided by the eigenvalues and eigenvectors of the preference matrix in
a well chosen dioid.

The“Mean Order” Method and the Dioid (R4, +, x)

Thismethod, proposedin Berge (1958), consistsin ordering the objects (theplayersin
atournament, in the exampl e studied by Berge) according to the val ues of the compo-
nentsof theel genvector associated withthe (real) eigenval ue having greatest modulus
of the matrix A (this eigenvalue being simple, the associated eigen-subspace has
dimension 1 (see Berge 1958, Chap. 14). Since, according to the Perron—Frobenius
theorem, this eigenvector has components that are all positive, the proposed order —
also referred to as the mean order — simply corresponds to that of nonincreasing
values of the components.

Example 2. Let usconsider, for aset of 4 objects, and 6 judges, the following matrix
of preferences:

0 3 4 35
3 04 1
A=12 20 5
2551 0

A being areal matrix whose coefficients are all nonnegative, its spectral radius p(A)
isegual to the largest real positive eigenvalue, here . = 8.92.
We cheek that the associated eigenvector is:

0.56
0.46
0.50
0.47

The resulting mean order on the objectsis: 1, 3, 4, 2 (object 1 isthefirst, object 3is
the second one, etc.). ||

The “mean order” method thus exploits the information provided by a particular
eigenvector (the one corresponding to the largest real nonnegative eigenvalue) inthe
dioid (R4, +, x).

TheMethod of Partial Ordersand the Dioid (R4 U {+o0}, Max, Min)

A second method, proposed by Defays (1978) proceeds by determining a hierarchy
of (partial) order relations on the obj ects, whose equival ence classes are nested. More
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precisely, for any . € R, the classes of level \ are defined as the strongly connected
components of the graph:
G, = [X, U, ], where X isthe set of objects and where the set of arcsis:

U =1{(,D/aj = M}
If we denote C, (i) the class of level '\ containing i, then for any %' < X,
C () D C().

By denoting R, the equivalence relation: i Rx j < i and j belong to the same
class of level ) then, for each level ), the quotient graph G, /R, is a circuitless
graph, therefore the graph associated with a (partial) order relation. When \ takes
al possible real values we then obtain a set of partial orders on nested classes.

As in hierarchical clustering (see Sect. 6.1), the classes obtained on each level
. (therefore the clustering tree) are deduced from the structure of the eigenvectors
associated with the eigenvalue \ in the dioid (R U {400}, Max, Min).

The following example illustrates the method, and shows that the matrix A*
actually contains more useful information than required to construct the clustering
tree alone: it can be used to obtain in addition the quotient graphs, in other wordsthe
partial orders on each level. This information may be quite useful for interpreting
the results of the analysis.

Example 3. Take the same matrix asin Example 2, thistime considered in the dioid
(R4 U {+o00}, Max, Min). Thematrix At = A @ A2 Adis

0 4 4 4
3 0 4 4
3 50 5
3 5 4 0

At =

The clustering thus contains three levels k1 = 5, A, = 4and A3 = 3.

Figure 3 displays the graphs G, ; G,, and G, , and the quotient graphs obtained
on the various levels of this clustering.

On the level n1 = 5 we have four classes {1} {2} {3} {4}. On the level X\, = 4,
we have the two classes {1} {234} and on the level A3 = 3, we have aunique class
{1,2,3,4,}.

Observethat onlevel \3 = 3, thefour objects appear as being equivalent. Never-
theless, examininglevel \o = 4refinestheanalysis, withthequotient graph G, , /R,
showing that on this level, object 1 is preferred to the other three. On level '\, the
three objects 2, 3, 4 appear as being equivalent, but on the lowest level (A1 = 5)
they can be further differentiated: 3 is preferred to 4, which itself is preferred to 2. ||

The“Circuit of Least Consensus’ Method and the Dioid
(R4 U {+00}, Max, x)

This method uses the information provided by the eigenvalue and the associated
eigenvectors of the matrix of preferences A in the dioid (R U {400}, Max, x).
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Ay =5

Quotient graph Gy, /R,
Ao =4

Quotient graph Gy,/ ® 1,
da=3

Graph G 2 Quotient graph Gy, /R4

Fig. 3 Thegraphs G, and the quotient graphs G, /R, obtained on the different levels of clustering
in Example 3

According to Lemma4.1.3 and Corollary 4.1.4 of Sect. 4, A hasaunique eigenvalue
which corresponds to the circuit y,, of G(A) such that:

1

1
= W(yo) frol _ Man{W(y) \yl}

(maximum taken on the set of elementary circuits of the graph) where, for each
circuit vy, |y| denotes the number of arcs of the circuit and w(y) the product of the
valuations & of the arcs of y.

The circuit v, is therefore the circuit of the graph G(A) for which the geometric
mean of the valuations is the largest. This circuit can be interpreted as the set of
objects for which the consensus is the worst (see Gondran 1995).
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Example 4. For the preference matrix in Example 1, now considered in the dioid
(R4 U {+00}, Max, x), we have:

9 175 12 20

A2_| 8 9 12 2
“l125 5 8 7
15 75 20 875
525 100 70 60
A3_| 50 100 36 60
= | 75 375 100 4375
40 4375 60 100
300 300 400 350
A4 _ | 300 300 400 180
~ 1200 225 300 500

250 500 175 300

Conseguently, the eigenvalue of A is:
. = Max|+/8; ¥/100; ¥/300} = V100 = 4.64
and this eigenval ue corresponds to the circuit
v=1{(23)(3,4)(4,2)} of weight w(y) =4 x5x 5= 100.

From the point of view of preference analysis, this circuit of least consensus
representsasubset of objectsor individua swhich appear to bedifficult to distinguish.
We note on the examplethat thisresult is consistent with the one previously deduced
from Max-Min analysis (see Fig. 3, for the case \o = 4). ||

7. Applicationsto Automatic Systems. Dynamic Linear System
Theory in the Dioid (R U {—o0}, Max, +)

Dynamic linear system theory isaclassical and very active branch of the automation
field. Many problems of observability, controllability, stability and optimal control
are well-solved in this class of systems. This contrasts with the case of nonlinear
systems where theory is often lacking.

Nevertheless, one of the remarkable results obtained in recent years has been to
exhibit particular subclasses of non-linear problems (in the sense of classical theory)
that can be tackled by linear algebraic techniques, provided their state equations are
written in appropriate algebraic structures, other than standard algebraon R.

A characteristic example is that of the dioid (R U {—o0c}, Max, +) which has
turned out to bethe basi c al gebrai c structurefor modeling sometypesof discrete event
systems. This has thus made possible to transpose many classical results concerning
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automatic systems into this new context and to set up a theoretical framework of
system theory in the dioid “(Max, +).”

After abrief reminder of classical modelsin linear system theory (Sect. 7.1) and
Petri nets (Sect. 7.3), we show in Sect. 7.4 how the dynamic behavior of aparticular
class of Petri nets (more specifically: timed event graphs) can be modeled by linear
state equationsin thedioids (R, Max, +) or (R, Min, 4). In Sect. 7.5, welook at
the maximum possible performances that can be obtained from such systems when
operating in autonomous mode. We show that the maximum productionrateisrelated
to the unique eigenvaluein thedioid (R U {—o0}, Max, +) of thematrix involved in
the explicit expression of the solution for the state equation.

7.1. Classical Linear Dynamic Systemsin Automation

Dynamic linear system theory isconcerned with systemswhose behavior over timeis
described (in the case of adiscretetime model) by an evolution equation of theform:

{x(t) =A-xX(t—1)+B-u() (35)
y(t) = C- x(t) (36)
where:
[ x1(t)
X2(1)
X(t) = ’ denotes the state vector of the system at the instant t;
| Xn(D)
[ 1)
y2(t)
y(t) = ' denotes the observation vector on the system at the instant t;
| ym () ]
[u1 ()]
uz(t)
ut) = ’ denotes the control vector applied to the system at the instant t;
Lup(®) |

A, B, C arerea matrices of dimensionsn x n, n x p, m x n respectively (when
the coefficients of these matrices are varying over time, we have the case of a non-
stationary system. When they do not depend on time, we then say that the systemis
stationary).
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The evolution equations (35) and (36), which use the operations of standard alge-
brainR", constitute one of the basic models for the theory of dynamic systems, and
they have numerous applications: control of industrial processes, trajectory control
problems, signal processing, etc. (see for example Kwakernaak and Sivan 1972;
Kailath 1980).

There exist however many other applications which cannot be encompassed by
theseclassical linear models. Thisisthe case, in particular, for “dynamic scheduling”
problems.

7.2. Dynamic Scheduling Problems

Dynamic scheduling problems appear in many applications, such as industria
automation (optimization of flexible manufacturing processes, for example) or the
architecture of parallel or distributed computer systems (compilation of parallel
applications, task placement, etc.).

With such problems, the aim is typically to process a flow of input tasks, by
assigning these tasks to processing units (machines, manufacturing processes) under
various constraints (mutual exclusion, synchronization, maximum processing time,
etc.). Among all the possible solutions, we often consider:

— Particular solutions (cyclic scheduling, for example);
— Solutions optimizing a criterion such as production rate (number of units pro-
cessed per unit of time).

Problems of thiskind cannot be reduced to linear equations of the form (35), (36) in
standard algebra. On the contrary, many studies such asthose of Cuninghame-Green
(1962, 1979, 1991), Cuninghame-Green and Meijer (1988), Cohen and co-authors
(1983, 1985, 1989), Baccelli and co-authors (1992), Gaubert (1992, 19953, b) have
shown that some dynamic scheduling problems could be represented by appropriate
linear models in dioids such that (R U {—oo}, Max, +) or (R U {+o0}, Min, +).As
will be seen in Sect. 7.4, these are essentially systems whose evolution over time
correspond to the behavior of Petri netsof aspecial kind, namely: timed event graphs.
We first recall below some basic notions concerning Petri nets.

7.3. Modeling Discrete Event Systems Using Petri Nets

Werecall (seefor instance Peterson 1981, Brams 1983) that a Petri net isan oriented
and valued bipartite graph R = [PU T, U], where the set of verticesis formed by
a set of places P and a set of transitions T, and where the set of arcs U includes
arcs joining places to transitions and arcs joining transitions to places (the graph
being bipartite, there is no arc joining a place to another place, nor any arc joining
a transition to another transition). A valuation « (i, j) € N is associated with each
arcu = (i,]) of R. Figure 4 gives an example of a Petri net where, according to
common practice, the places areindicated by circles and the transitions by elongated
rectangles.
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A Petri net R is said to be labeled when a natural number M(p), called label of p,
is associated with each placep € P.

In applications, the label of a place typically corresponds to the amount of a
resource available at a certain point in the system. The label of a place is often
represented by tokens, we then say that the place p contains M (p) tokens.

The evolution over time of place labels in a Petri net occurs according to the
process of the activation (or firing) of the transitions.

A transitiont € T is said to be activable (or fireable) w.r.t. a given labeling M if
and only if:

VpeI'"(t) ={i/ieP, (i,t) e U}, wehave: M(p) > a(p,t)
When this condition is satisfied, the activation (or firing) of transition t leads to a
new labeling M’ defined, Vp € P, by:
M'(p) =M(p) if p¢gT (OUTHD)
M'(p) =M@ —ap.t) if pel ()
M'(p) =M(p) +at,p) if pel* ()
Thus, for example, in the case of the net in Fig. 4, starting from the labeling M =

3
(3) (where M(p1) = 3, M(p2) = 3, M(p3) = 1), we reach, through the firing of
1

N

transition t; the labeling M” = (4) then from M’, through the firing of transition

1
to, we obtain the labeling M” = (2) and so on.

Q

[ & ]
N

2

Fig. 4 An example of a Petri net where P = {p1, pz, ps} isthe set of placesand T = {t3, to, t3} is
the set of transitions. The valuations are indicated next to each arc
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(@ % (b)

Fig. 5 Two characteristic examples of behavior that can be modeled using a Petri net. Fig. 5(a)
shows a situation of conflict between two transitions t; and tz: only one of these two transitions
can be activated. Fig. 5(b) shows an example of a situation of mutual exclusion where a common
resource has to be shared between two subsystems S; and S

The formalism of general Petri nets is very powerful, in the sense that it can
accurately and appropriately represent a huge variety of types of behavior in real
systems. Without being exhaustive, we mention:

— Conflict betweentwo (or several) seriesof actions. Figure 5aprovidesan example:
from the indicated |abeling, each of the two transitions t; and t» is activable, but
one and only one of the two transitionst; and to can be activated.

— Mutual exclusion (sharing of resources, for exampl€). Figure5b providesan exam-
ple where the two subsystems S; and S, cannot evolve independently from each
other, given that they share the resource represented by the central place po. One
of the two subsystems starts operating and consumes the token initially present
in po; the other subsystem must therefore wait until atoken has returned to po to
start operating.

— Synchronization between several processes (this will be explained into detail in
Sect. 7.4 below).

Obvioudly, the expressive power enjoyed by the formalism of general Petri nets
has one counterpart: the difficulty in solving many basic problems such as:

— Accessibility: does a sequence of transitions exist where the transitions can be
activated sequentially in order to reach some labeling M’ starting from a given
labeling M?

— Liveness: from any accessiblelabeling, isit possible, for any transition t, to reach
astate wheret is activable?

— Boundedness: does a natural integer B exist such that, for any place p € P and
any accessible labeling M, we have M (p) < B?

For all these problems (and a few more), no practical, efficient algorithms exist,
except for particular subclasses of Petri nets such as: state machines, event graphs,
free choice and extended free choi ce networks (see for instance Peterson, 1981). We
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are going to see that, among these particular subclasses, the dynamic behavior of
timed event graphs can be represented by linear equations in dioids.

7.4. Timed Event Graphsand Their Linear Representation
in (RU{—o0}, Max, +) and (R U {+00}, min, +)

We refer to an event graph as a Petri net having the special property that each place
has a single input arc and a single output arc (we are limiting ourselves to the case
where all the arcs have valuation 1).

Figure 6 shows an example of an event graph (drawn from Baccelli et al. 1992)
which will subsequently serve as an illustration.

Observe that event graphs cannot be used to model situations of conflict or
mutual exclusion such asthoseillustrated by Fig. 5a,b. Nevertheless, this subclass of
Petri netsis interesting for many applications where the aim is essentially to model
synchronization constraints between several processes.

We say that an event graph istimed if we associate with each placep € Patime
0(p) interpreted as the minimal time a token has to stay in the place. (We can also
associate with each transitiont € T atime 0(t) — the minimal activation duration
of the transition t — but it is easy to show that it is always possible to reduce this to
the case where only the places are timed). Figure 6 provides an example of atimed
event graph.

The dynamic behavior of a system such as the one in Fig. 6 can be represented
algebraically in different ways.

A natural way consistsin associating with each transition t an increasing function
xi: N — Ry where, for any n € N, x;(n) denotes the date on which the nth firing
of transition t occurs (date counted from the instant 0, considered as the instant the
system starts operating). We are going to see that the variables x;(n) must satisfy a
set of inequalities know as “equations of timers.”

Let usillustrate first the basic ideas for writing the state equations on the small
examples of Fig. 7, where we have three transitions and two places p; and p; timed
with 6(p1) = 2and 6(p2) = 3.

In Fig. 7a, no token is present initially in the places. The earliest termination
date for the n' activation of transition t3 therefore depends on the date of the nth
activation of t; and the date of the n" activation of t,. If we take into account the
minimal residence time of atoken in p; we must have:

X3(N) > 2+ Xx1(n)
and in the same way, taking into account the time delay of pa:
X3(n) > 3+ X2(n)

We obtain therefore for x3(n) the inequality x3(n) > Max{2 + x1(n); 3+ x2(n)}.



248 6 Eigenvalues and Eigenvectors of Endomorphisms

@

y

Fig. 6 Example of a(timed) event graph. The time delays indicated between brackets next to each
place, represent the minimal time atoken hasto stay in the place. We have also indicated the tokens
intheinitial labeling considered

Figure 7b represents a more general situation where tokens can be present in
some places at the initial instant. In this case, the earliest termination date of the nt
activation of t3 depends on the earliest termination date of the (n — 1) activation
of t1 (because atoken is present initially in p1) and on the earliest termination date
of the (n — 2)™ activation of t, (because two tokens areinitially present in py). The
inequality on x3(n) can then be written:

x3(N) > Max{2 + x1(n — 1); 3+ Xx2(n—2)}
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Fig. 7 Writing the state equation of a timed event graph. (a) The state equation for this example
isxz(n) > Max{2 + x1(n); 3 + x2(n)}. (b) The state equation for this example is. xz(n) >
Max{2 + X1 (n — 1); 3+ X2(n — 2)}

Now, by applying this principle to the whole network of Fig. 6, we obtain the
System:

X1(nN) > Max{4 + xa(n — 1); 1+ ug(n)}
X2(N) > Max{3 + x1(n); 5+ Uz(n)}
X3(N) > Max{3 + x1(n); 4 + X2(N); 2+ X3(n — 1)}
y(n) > Max{xa(n — 1); 2+ x3(n)}
(wheretheinequalitiesshould beunderstoodinthe senseof the standard order relation

on R). Observethat, in the above set of relations, we obtain earliest termination dates
by ensuring that each inequality is satisfied with equality.
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Inthedioid (RU{—o0}, Max, +) where® = Maxand ® = +,& = —o0,e=0,
the above system takes the form:
X1(N) > 4@ X2(n— 1) & 1 ® u1(n)
X2(N) > 3® X1(N) & 5® uz(Nn)
X3(N) > 3@ X1(N) & 4 X2(N) 2R X3(n — 1)
y(n) > 2@ x3(n) ® e® xa(n — 1)

or equivalently, expressed in matrix form:

x(N) > Ao ®@x(N) ®A1®Xx(N—1) & B ® u(n) (37)
y(n) > Co@x(n) »C1 ® X(n—1) (38)
with:
e ¢ ¢ e 4 ¢
Ag=1[3 ¢ = Ai=|e ¢ =
_3 4 ¢ e ¢ 2
1 ¢
B=|¢g 5
e ¢

Coz[s € 2] Clz[s e 8]

By analogy totheclassical case((35) and (36) of Sect. 7.1) matrix equation (37) isthe
state equation, (38) isthe so-called equation of observation, x isthe state vector (here
having three components), u the control vector (here having two components) and y
the vector of observations or output of the system (here having one component).

To solve the state equation (37), we can use the general results of Chap. 4 con-
cerning the resolution of linear systems of the form X = A ® X & B, by applying
it to:

X(N) =Ag®@x(N) ®A1 ®@X(n—1) ®B®un) (37)

(in other words (37) in which all inequalities are replaced by equalities).
Modulo the existence of Ajj, quasi-inverse of Ag (in other words, by assuming the
absence of apositive circuit in G(A)) the minimal solution of (37)" can be written:

x(N) =Ag@A1®x(Nn—1) & Aj @B ® u(n) (39)

Since x(n) given by (39) aso satisfies (37), we observe that it is aso the mini-
mal solution to (37). In this solution, all the inequalities are satisfied at equality:
(39) therefore defines the set of earliest termination dates when running the system.
Therefore, given the sequence of control vectors u(1) u(2) ... and the “initial state”
x(0), (39) successively determines all the values x(1), x(2), . . . of the state vector.

Each component i of the state vector corresponds to atransition t; of the system
and, in the solution expressed by (39), xj(1) represents the earliest termination date
of thefirst activation of transition t;, xj(2) the earliest termination date of the second
activation of t;, etc.
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Timed event graphs can al so be represented asdynamic linear systemsinthedioid
(RU {400}, Min, +) by considering another form of state equation called “equation
of counters” instead of “the equation of timers’ (37)—(38). Thus, for the example
of Fig. 6, by associating with each transition x; (resp. u;j, y) avariable x;(t) (resp.
Ui (1), (1)) representing the number of firings of the transition x; (resp. u;, y) up to
the instant t, we obtain the following system of inequalities:

X1(1) < Min{l1 +xa(t — 4); ur(t — 1)}

X2(t) < Min{xy(t — 3); Uz(t — 5)}

X3(1) < Min{1 + x3(t — 2); X1(t — 3); Xa(t — 4)}
y(t) < Min{1+ X2(1); X3(t — 2)}

Itisalinear system similar to (37)—(38), but in the dioid (R U {+o0}, Min, +).

7.5. Eigenvalues and Maximum Throughput
of an Autonomous System

Let us consider a timed event graph whose state equation is of the form (37)
and, consequently, whose minimal solution (earliest termination dates) is expressed
by (39):
x(N) =A1®x(n—1) @B ®u(n)
with A;=A®A; and B=A} ®B.
Let us study the evolutions of this system operating in autonomous mode, in
other words with controls u (n) not constraining the evolutions of the system (this

—00
corresponds to choosing for example Vn: u(n) = _f)o ).
—0
Thus we can write, Vn:
x(n) = A1 ® x(n— 1) (40)
thus: .
x(n) = (A" ® x(0) (41)

By assuming, for the sake of simplicity, that the matrix A1 is irreducible (G(A1)
strongly connected) we know from Theorem 4 (Sect. 4.1 of this chapter) that it
has a unique eigenvalue . = p(A1) (spectral radius). Then, for any eigenvector w
associated with % = p(A1), by choosing x(0) = w we obtain from (40):

X(n) =A@ x(n—1)
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We therefore have, for any transition i the network:
Xi(n) = A +xi(n— 1) (42)

which showsthat an additional activation of eachtransition of the network takesplace
every \ unitsof time. If the system represents, for example, a production workshop,
(42) can then be interpreted as the production of anew unit every '\ units of time; A
istherefore the inverse of the production rate.

According to the results of Sect. 4, the eigenvalue \ = p(A1) corresponds, in the
graph G(A1), to the average weight of the circuit of maximum average weight (the
weight of acircuit being the sum of the weights of the arcs which compose it). By
analogy to the notion of critical path (for standard scheduling problems of the PERT
type), such acircuitiscalled acritical circuit of the system. Critical circuitsarethose

1 1
whichlimit the performancesof thesystemandthevalue — = 7% isthemaximum
pP(AL
production rate which can be obtained. In addition, the eigenvectors associated with

theeigenvalue ». = p(A1) providethe various possibleinitial conditions enabling to
obtain these maximum performances from the system.
For the effective calculation of X, we can use Karp's algorithm (1978) to find the
circuit of maximum average weight in G(A1) (see above, Algorithm 1, Sect. 4.2).
For further details concerning the applications of the dioid (R U {—oo}, Max, +)
to discrete dynamic systems that can be represented by event graphs, we refer to
Baccelli and co-authors (1992) and to Gaubert (1992, 1994, 1995a,b).

Exercises

Exercise 1. Proof of the Perron—Frobenius Theorem

A real square matrix A = (g;j) is said to be nonnegative (denoted A > 0) or
positive (denoted A > 0) if all its entries are nonnegative (g; > 0) or positive
(&j > 0).

(D An x nmatrix A = (gj) is said to be reducible if there exists a permutation

matrix P such that:
T [(BO
PAP' = [C D

where B and D are square matrices. Otherwise A is said to be irreducible.
(&) Lemma 1
Show that A > Oisanirreducible n x n matrix if and only if we have:
(I+A"1so

(b) Deduce from the above that if we denote AP = (q(jp)) the pth power of A,
A > Oisirreducible if and only if, for any i and j, there exists an integer
q < nsuch asai(jq) > 0.
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(c) We denote G(A) the directed graph associated with the matrix A; thisis a
graphhavingnverticess, s, ..., sywithanarc (s, §) ifandonly if g; # O.

Show that A isirreducibleif and only if G(A) is strongly connected.
(2) Perron Theorem (1907)
We define an order relation onthen x nmatricesby A > Bif and only if &; > by
for any i and j. We denote A > B if and only if &; > bjj for any i and j.
To study the spectrum of an irreducible matrix A > 0, let us consider for any
vector X = (X1, ..., Xp) > 0 (X # 0), the number

ry = min{ (AX)i }
XiZ0 X
Itisclear that ry > 0 and that ry isthe greatest real number p for which:

pX < AX.

(a) Show that thefunction: x — ry hasamaximum valuer for at |east one vector
z> 0.

(b) Letr =r; = Maxx~o {rx}. Show that
r-0, Az=rz and z>0.
(c) Show that the modules of all the eigenvalues of A are not greater than.

Deduce that there exists a unique eigenvector associated with r.
(3) Frobenius Theorem (1912)

For any complex matrix B, let |B| denote the matrix whose entries are |bjj|.
(&) Lemma 2

If Aisirreducibleand A > |B|, show that for any eigenvaluey of B, we have

r> |yl
Show that we have the equality r = |y| if and only if,
B=—€é*DAD '
where €9 = y/r and D is a diagona matrix whose diagonal elements have
modulesequal to 1 (i.e. |D| = 1).
(b) If amatrix A > Qisirreducible and has h eigenvalues of modulus p(A) =,

show that these values are equal to Ay = r d %" (for k running from O to
h—1).

These are the roots of the equation A" = M.
(c) Finally, show that if h > 1, there exists a permutation matrix P such that

0 Ap O ... 0

_ 0 0 Axp ... 0

PAP = :
0 oo ... 0 An_in

Amn O ... ... 0
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[Answers: see Gantmacher (1966), Chap. 13.

(1) (a) A possible way is to show that, for any column vectory > 0 (y # 0), the
inequality (I + A)" 1y > 0is satisfied and that it is equivalent to the fact
that the vector z = (I + A) y always hasanumber of zero components|ower
than the number of zero components of .

(2) (a) Usethe fact that while ry is not necessarily continuous on the set of x > 0
and inz = 1, onthecontrary, ry withy = (I + A)"~! x is continuous (see
Lemma 1) on this set.

(b) Just consider ry withu = (1,1, ..., 1).
(3) (a) Consider y suchthat By =y y. Then show successively that

lvllyl < ICllyl < Alyl, lyl <r, and when|y| =, |C| = A,
yj = lyjl€¥ yieldsD = {&¥1,...,e""}.
(b) UseLemma2withAz =rz,z > 0andy® = Dyz]

Exercise 2. Asymptotics of the Perron Eigenvalues and Eigenvectors

Let Ap bean x nrea matrix with nonnegative entries dependent on alarge reel
parameter p.

We consider the spectral problem

(l) ApUp = )\.pUp, Up € (R+)n\{0}, )\.p € R+.

In the case where Ay isirreducible, the Perron Frobenius theorem shows that X
is unique and that there exists a unique Up satisfying > " (Up)i = 1. Theamin this
exercise is to determine the asymptotic values of ., and Uy from those of Aj,.

(1) We assumethat, when p tendsto +oo, (Ap)%/IO hasforanyi,j=1,...,n,alimit
Ajj andthat A = (Ajj) isirreducible.

() Show then that (.p)¥/P has as a limit py(A), the eigenvalue of A in
(R4, Max, x), in other words the maximum value of the geometric mean of
the weights of the circuits of the graph G(A) associated with A.

(b) Wecall critical circuit, acircuit for which thisweight isreached. Thecritical
graph CG(A) is the subgraph of G(A) restricted to the vertices and to the
arcs which belong to acritical circuit. Weset A = (pyac(A)) "L A.

Show that if the critical graph CG(A) is strongly connected, then

A
lim (Up)" = ——%
p—+00 Man(A)ﬁj

where j is an arbitrary vertex of this critical class and where (5\)* is the
quasi-inverse of A in (R, Max, x).

(2) We consider now the case where the nonzero coefficients of A, have an asymp-
totic expansion of the form

2 (Apij ~ aiin’}

whereA isirreducible.
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(a) Show that we have
@ rp~o(a") (omaA)”

where pya(A) isthe eigenvalue of A in (R, Max, x), a®C®) the matrix
obtained from the matrix a = (&) by substituting O to the coefficients g;
such that the arc (i,j) is not in the critical graph CG(A), and where p(-)
denotes the Perron eigenvalue.

(b) Show on an example, that in general, (3) does not imply the convergence of

(Up)"'P when p — +oo.
(c) Show that if a®CA) has only one basic class, then

@) (Up), ~ G

whereU = (U;) isacolumn of (ﬂ)* corresponding to avertex of the critical
graph and where u = (u;) is the unique Perron eigenvector of aCA)

(3) Consider the transfer matrix of the simplest one-dimensional Ising model, (see
Baxter 1982, Chap. 2):

exp((J+H)/T)  exp(=J/T)

Al/T:|:eXp(—J/T) exp((J—H)/T)}’ with J>0,HeR

where T is the temperature that we let decrease downwardsto 0.

Show that:
J+H J-—H
Ayr ~ Maxgexp — , ExXp )

When H > 0, show that
oo~ (on(20)
Uy ~ (e"p (#» .

andwhenH < 0

1
[Answers: see Akian et a. (1998).

(1) From the spectral problemin (R4, Max, x).
(2) (a) From the spectral problem in the semi-field Jyax.

—p a2
1
liminf (5332) P e
1

. 1/p
< Imsup(iﬂﬁii) =e
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(c) From the following theorem: anirreducible matrix A = (a, A) € (Jyax)™"
has a unique eigenvector (up to agiven factor) if and only if it has a unique
basic class.

The generalization to the case of several basic classes can be found in the above
quoted reference.]

Exercise 3. Eigenvalues and Eigenvectors of Some Endomorphismsin Infinite
Dimensions

The aim of this exercise is to extend to infinite dimensions the characterization
of the eigenvalues and eigenvectors studied in this chapter for idempotent dioids
featuring multiplicative group structure, such as the dioids (R U {—oc0}, Max, +)
and {R U {+o00}, Max, -}. We consider herethedioid D = (R U {—o0}, Max, +).

Let X beatotally bounded metric space (in other words, for any ¢ > Othereexists
afinite covering of X with ballswith radiuse).

We consider then the semi-module C(X, D) of continuous and bounded functions
f: X — D, wherethedioid D isendowed with the metric p(a, b) = |€* — €?|, aswell
as an “integral operator of kernel a’ by:

(Af)(x) = supfa(x,y) + f(y)}
yeX

where & X x X — D is supposed to be given. In the case where the element

supa(y, y) exists, it will be called trace of A and denoted Tr(A).

yeX

(1) Show that if the kernel a: X x X — D of the integral operator is a uniformly
continuous bounded function of the first argument and equicontinuous w.r.t. the
second argument, then A is a continuous endomorphism of the semi-module
C (X, D).

(2) Show that if we assume that X is atotally bounded metric space and that the
kernel a2 X x X — D of theendomorphismA isauniformly continuous bounded
function of the first argument and equicontinuous w.r.t. the second, then there
exists a sub-semi-module J of the semi-module C (X, D) (J # 0) and an element
. € D such that:

(AH)YX) =n+T(x)

forany f € J, and that the maximal element of the set of such \ isdefined as
= Supr(i)
ieN
where \(i) = (Tr A)T.

[Answer: see Lesin and Samborskii (1992) (difficult).

For a similar study of eigenvalues and eigenvectors in infinite dimensions on
the dioid (R, Min, Max), see Gondran and Minoux (1997, 1998) and also Chap. 7,
Sect. 6.4.]



Chapter 7
Dioids and Nonlinear Analysis

1. Introduction

Most of the problems dealt with in the preceding chapters have concerned finite
dimensional or discrete problems. The aim of the present chapter is to show that
the structures of dioids lend themselves to defining, in the continuous domain, new
branches of nonlinear analysis.

Thebasicideaistoreplacetheclassical field structureon therealsby adioid struc-
ture. Thus, anew branch of nonlinear analysiswill correspond to each type of dioid.
This approach was pioneered by Maslov (1987b), Maslov and Samborskii (1992),
under the name of idempotent analysis. (The underlying dioid structure considered
being (R U {+o00}, Min, +), the so-called MINPLUS dioid).

From an historical point of view, the concept of capacity due to Choquet (1953)
may aso be viewed as a starting point. We recall the definition of the Choquet
capacity of afunctionf: E — R onasubset A C E:

Ca(f) =ir€1§\ {f 0}

Now, we observe that the above may be considered as an analogue to the Rieman
integral, when the operation inf is taken in place of addition and the operation + is
taken in place of multiplication. Indeed, the Rieman integral f f(x) dx onaninterval

= [a, B] of R, may beviewed asthelimit of flnltesumsoftheforme(x.) A(Xi)
=1
(withXo = a, Xn = B, A(Xj)) = Xj — Xj_1) When n tends to infinity and A(X;) tends

to 0.
In the suggested substitution, the above expression becomes:

lim { inf {f(x) + A(xi)}} = inf {f(X)} = Ca(f).
AXj—0 li=1,...,n XeA
After Choquet this approach has been further developed in the context of fuzzy

set theory with the introduction of the concept of fuzzy measures and the Sugeno
integral (Sugeno 1977).

.....
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Special emphasis will be placed in the present chapter on the analyses related
to the dioids MIN-PLUS (R U {400}, Min, +) and MIN-MAX (R U {+00, —o0},
Min, Max). It will be seen that, in a sense, the proposed approach bears a close
similarity to the theory of distributions for the nonlinear case; here, the operator is
“linear” and continuous with respect to the dioid structure, though nonlinear with
respect to the classical structure (R, +, x).

The main interest of such extensions lies in the fact that the structures of adioid
and moduloid will turn out to play arole similar to the one played by fields and
vector fields when proceeding from linear to nonlinear problems. This idea can be
illustrated by considering three classical problemsin Physics, namely:

— The heat transfer equation: find u(x, t) such that:

au 92U
[———:0 t>0,xelR

ot ox2 1

uix,0) =up(x) xeR

where up(X) is supposed to be given for al x € R.
— The Halmilton-Jacobi equation in classical mechanics: find u(x, t) such that:

au  1/4u\?
—+>(=) =0 t>0 R
at+2<w> ekt @
u(x, 0) = up(x) xeR

where up(X) is supposed to be given for al x € R.
— The following variant of the Birgers equation in fluid mechanics: find u(x, t)

such that:
8u+1u
ot 2 |ox

u(x, 0) = up(x) xeR

9
Y_0 t=0xeR

©)

where up(x) isgiven for all x € R.

For all the above equations, it is easily checked that, if ui(x, t) and ux(x, t) are
any two solutionsto (1) (resp. (2), (3)) and if X and . are two real constants, then:

AUL(X, 1) + pua(X, t)
isasolution to the heat transfer equation (1);
Min{x + ur(X, t); p + Uz(X, 1)}
isasolution to the Hamilton—Jacobi equation (2);
Min{Max{x; ur(x, O}; Max{p; uz(x, H}}

isasolution to the Blrgers equation (3).
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It istherefore realized that the solution sets for the Hamilton—Jacobi and Birgers
equationsare nolonger vector (sub)fields (asin the case of the heat transfer equation)
but (sub) moduloids based on the MIN-PLUS and MIN-MAX dioids respectively.
Thisisfurther confirmed by considering the various explicit solutions corresponding
to (1)—(3), stated below:

1 _<><—y>2
uex.t) = / w5 =e Eay ()
. x—y)?
ux,t) = Igf {uO(y) t— } )
ux, t) = ir;/f {Max{uo(y); ‘(x;_y)‘ H (6)

(4) isthe classical solution to the heat transfer equation (see e.g. Dautray and Lions

1985); (5) isthe so-called Hopf solution to Hamilton—Jacobi (see e.g. Lions 1982).
In each casg, it is observed that the general solution is the convolution product

of up(x) with the so-called “elementary solution” to the corresponding equation

1 2
( e /4 for(1); % for(2); |ti| for(3)>. Indeed, (5) isobtained by using the

24/ 7t )
MIN-PLUS convolution product:

f®gx) = igf {gy) + iy —x}
and (6) is obtained by using the MIN-MAX convolution product:
f ®gx) = iryn‘ {Max{g(y); f(y —x)}}

More generally, taking & = Min and ® as the ordinary addition for real numbers,
and considering the functional space RX (the set of functions: X — R) (5) can be
seen as a special case of amapping of the form:

(AgQ(x) = yig‘( {k(x,y) +a(y)} (7)

Such functional mappings are “linear” with respect to the MIN-PLUS dioid since,
in this case:

ALRfON®QY =rQAf ®p®Ag
(Vh, € R, Vf, g e RY).

Indeed, relation (7) may be viewed as the application to g of an integral operator
with kernel k, and could be formally denoted:

(&%)
/ K(X,y) ® g(y)dy
X
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Going one step further, in the functional space R*, we can define the MIN-PLUS
scalar product:

(&)
(.9) = inf (F 0 +g00} = / f(X) ® 9Ok
X

which can be taken as a starting point to construct an analogue to Hilbert analysis,
derive analogues to the Riesz and Hahn-Banach theorems, to Fourier transforms, to
distributions and measure theory, etc.

In particular, an analogue to the Fourier transform in MIN-PLUS analysis is
recognized as the so-called L egendre—Fenchel transform:

fp = sup{(p, ) —f 00}

Thistransform is known to have many applicationsin Physics: thisisthe one which
sets the correspondence between the Lagrangian and the Hamiltonian of a physical
system; which sets the correspondence between microscopic and macroscopic mod-
els, whichisalso at the basis of multifractal analysis relevant to modeling turbulence
in fluid mechanics, etc.

Another useful transform, called the Cramer transform (for details, see Sect. 8
below) has been investigated, in particular by Quadrat (1990) and later Quadrat et al.
(1994, 1995) who have exhibited the analogy between optimization and probability
(thisissueisthe subject of Exercise 5 at the end of the present chapter). Thisanalogy
hasitsorigininthefact that the dioid (R, +, x) isthe one underlying measure and
probability theory.

In Sect. 2 based on the MINPLUS scalar product, a special concept of equiva
lence among functions (the so-called inf-$-equivalence) is introduced, which may
be viewed as an analogue to almost everywhere equality (a.e. equality) of measur-
able functions. It is shown that a new derivation of lower-semi-continuous (1.s.c.)
functions and convex analysis can be deduced.

In Sect. 3, we show how MINPLUS analysis turns out to provide an appropriate
framework for the development of nonlinear wavelet analysis. This generalizes the
classical linear wavelet analysis for L2 functions to “linear” (in the sense of the
MIN-PLUS dioid) wavelet analysisfor |.s.c. and convex |.s.c. functions.

In Sect. 4, it is shown how the MINPLUS scalar product lends itself to defining
weak convergence concepts, and to exhibiting their links to the so-called epicon-
vergence (or I'-convergence) which turn out to be increasingly used in Physics and
Applied Mathematics.

In Sect. 5, MINPLUS analysisis used to define weak solution concepts for first
and second order partial differential equations. Some explicit (weak) solutions to
first order nonlinear partial differential equations will then be derived in Sect. 6 in
the context of MINPLUS analysis through the use of the so-called inf-convolution.

MINMAX analysisisconsidered in Sect. 7, whereit isshown how, by introducing
the MINMAX scalar product, the whole approach may be extended to account for
quasi-convex analysis. The Infmax-affine transform isintroduced which playsarole
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in MINMAX analysis which is similar to the one played by the L egendre—Fenchel
transform in MINPLUS analysis.

Finally, relations between MINPLUS analysis, the Cramer transform and the
theory of large deviations are studied in Sect. 8.

2. MINPLUS Analysis

Our primary aim will be to show that, by taking (f, g) = igf {f (X) + g(x)} asthe
“scalar product” of two functions, onecan reconstruct and synthesizean entire branch
of nonlinear analysis by means of a new formalism of the “variational” kind for
generalized functions, and, in particular, for Isc (lower semi-continuous) and usc
(upper semi-continuous) functions.

Let X be aBanach space having R as underlying set of scalars. Wewill denote |.|
the norm on X, X* the topological dual of X and < ., . > the product in the duality
X*, X. When X is a Hilbert space, we will identify X* and X. We denote by 2 a
locally compact open set of X.

We consider functionsf: @ — R = RU {+o0}. We will say that such afunction
isproper if it is bounded from below (f (x) > m, Vx € ©) and not identically equal
to +o0.

Definition 2.1. (Maslov 1987a,b)
For two functions f and g: 2 — R, we define the “MINPLUS scalar product”
denoted (f, g) as:
(f,9) = inf {f(x) +9()}.
XeQ

Definition 2.2. For any family ¢ of functions: @ — R (¢ C R"), we define the
inf-¢- equivalence of two functions f and g as:

¢
frge f,9)=(00,¢ Yoeo
and the bi-conjugate of f with respect to ¢, denoted P,f, as:

Pof (x) = sup[(f, ) — o(x)].
ped

Our approach differs from that of Maslov in that we consider families ¢ of test-
functions not limited to continuous or usc functions.

Also note that P,f can be considered as the bi-conjugate of f with respect to ¢ in
the sense of Moreau (1970).

Given aproper function f, we consider the solutions u of the equation:

Qe

u~f

where i denotes inf-$-equivalence.
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For any family of test functions ¢, we can state:

Theorem 1. (Gondran 1996)
The set of functions inf-®- equivalent to a given proper function f has a smallest
element which will be referred to as the inf-solution, equal to P,f.

Proof. The proof will be given in three stages:

(@ The set of functions inf-¢- equivalent to f has a smallest element; (b) Pyf is
inf-¢- equivalent tof, (c) it isthe smallest element.
(& Letui,i € 1, bethe set of functions inf-¢- equivalent to f, in other words such

that (Ui, ¢) = (f, 9)V¢ € ¢.
Let us show that the function u defined for any x as:

ux) = inf u;(x)
i€l
isalso inf-¢- equivalent to f.

Asu(x) < ui(xX)vx, wehave (U, ¢) < (Ui, ¢) = (f, ¢), Vo € ¢. If uisnotinf-¢-
equivalent to f, there exists ¢ € ¢ and ¢ > 0 such that:

(U, o) + ¢ = (f, 9p)

There then exists Xg, such that:
LX)+ 9o(x0) = (U, go) + 7
and for this xg, there existsig € | such that:
Ui (X0) < U(Xo) + %

Thus, finally, we have:
€

(f, 99) = Uiy, ¢g) < Uix(X0) + o(X0) < U(Xp) + @o(Xo) + 3

< U o)+E < (g — &
= (U, 9o 3 = » Po 3

Theinconsistency of the above shows that u isinf-¢- equivalent to f.
(b) Forany ¢ € ¢, we have:

(f, @) — o(x) = {fO) + o)} — o(X) <T(X) + o(X) — o(X) =T (X),

inf

yeQ

therefore:

Pof (x) = sup{(f, ¢) — ¢(X)} < f(x),
PED

from which we deduce;
(Pof, @) < (f, o).
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Conversely, we have:

(Pof, @) = inf {Pyf (%) + @00}

inf
XeQ2
= inf { sup [(F, @) — 9100] + @(X)}
XeQ 9160
< inf{(f, 9) — o) + @0} = inf (f, ¢) = (f, ¢),
XeQ XeQ
which completes the proof that Pof isinf-¢- equivalent tof.

(c) AsPof isinf-¢- equivalent to f, to show that u = Pyf it suffices to show that
there cannot exist xg € © such that

U(xo) < Pyf(x0)
Let us assume that there exists such an xo and let us set
e = Pyf (Xo) — U(Xg) > 0
Asuisinf-¢- equivalent to f, we have, asin (b), Pyu(x) < u(x) and asuisthe
smallest element of the set of functionsinf-¢- equivalent to f, Pyu = u.
By definition of Pyf (Xo) there then exists ¢q € ¢ such that:
Pof (x0) = (F. 90) — 90(x0) +
From the above we deduce:
(f. ¢0) = 9o0x0) + 5 = Pyf (X0) = U(x0) + & = Pou(xo) +¢
= (U, ¢o) — ¢o(Xo) + €
= (f, 90) — ¢o(X0) +¢
the inconsistency of the above impliesthat u = Pyf. O
This smallest element of the equivalence class of proper functionsinf-¢- equivalent

to f as defined by the equation u ,j;f , Will be referred to asthe inf-¢- representative.
Let us now study some particular classes of test functions.

Example 2.3. Let A be the set of Dirac inf-functions 8y, defined as:

0 ifx:xo}

B0 (X) = {+oo otherwise

We then have:
(f, 8x) = inf {00 + 85,00} =f0x0)

and the inf-A-equivalence corresponds to the classical pointwise equality between
functions.

Thefollowing examples concern Isc functions whose definition and some rel ated
properties are recalled [see Berge (1959) for further developments on these Isc
functiong].
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Definition 2.4. A function f is lower semi-continuous (Isc) at x if, for every sequence
Xp converging towards X, we have:

liminf f(xn) > f(X)
Xn—>X

We recall that the limit inferior (lim inf) of a sequence of reals corresponds to the
smallest accumulation point of this sequence.

Proposition 2.5. Let f be a function: X — R. The following conditions are equiva-
lent:

(i) fisIsc for all x € X,
(ii) the set {x|f (x) < a} is closed for any a € R,
(iii) the epigraph of f, {(x, a)|f(X) < a}isaclosed setof X x R. O

Definition 2.6. For any function f: X — R, there exists a largest Isc function with f
as upper bound.
We will refer to it as the Isc closure of f and we will denote it f,:

f.(x) = sup{g(x): glscand g < f}

In the same way, there exists a smallest upper semi-continuous (usc) function with f
as lower bound; this is the usc closure of f, which we will denote f* :

f*(x) = inf{g(x): guscand g > f}

Remark 2.7. We verify that f, isthelsc closure of f if and only if, for any x, we have
the two properties:

YXn — X, liminf f(xp) > f.(X).
IXn, — x such that liminf f(X,) = f.(X). ||

For p > 0, let us denote:

of ) =inf{f(y): ly — x| < p},
’f(x) = sup{f (y): ly — x| < p}.

Proposition 2.8. ,f (x) (resp. °f(x)) is nonincreasing (resp. nondecreasing) with
respect to p, and for every p > O:

of () < fu() < f(X) <f*(x) < Pf(X)
and

.00 = lim () =sup,f(x), F*x) = lim Pf(x) = inf °f ().
(X) erQ+p(X) ?:gp (X) (X) Jim, 00 = inf*f 0. o
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Remark 2.9. The continuity of f in x can be expressed as.
Ve >0, 3Jp(x,e) suchthat Pf(x)—e <f(x) <, f(X)+e.
The lower semi-continuity of f in x can be expressed as:
Ve >0, 3Jp(x,e) suchthat f(x) <,f(x)+e.
Example 2.10. Let A be the set of functions 3y, defined as:

0 if|X—y|<p}

By,p(x) = { +o0o0 otherwise

We then have
(F, 8xo,0) = INF{F (X): X = Xo| < p} = pf (X0).
Proposition 2.11. Two functions f and g are said to be inf- A-equivalent if for every x:
of (X) =, 9(X)Vp > 0, ¥

this then yields:

Proof. For every p > 0, we have:
Pif(x) = suy{(f, By.p) — 8y, (¥}
P,
=sp{,f(y) = 8,00} = sup ,fy).
p.y y/IX=yl<p

Since, if X —y| < p:
2of (X) < pf (%)

and sup 2,f (x) = f.(x), we have:

>0
f*(X) < PAf.
On the other hand,
Pif = sup {pf(¥)} = sup,f(x) = f.(x)
[X=yl<p P
from which we deduce:
PAf = f* O

Example 2.12. Let C be the set of continuous functionson 2. ||

Proposition 2.13. The smallest element inf-C-equivalent to a proper function f is f,,
its Isc closure. We therefore have Pcf = f,.

From the above we deduce that two functions f and g are inf-C-equivalent if and
only if they have the same Isc closure: f, = g,.
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Proof.
Pcf (X) = sup {(f, ¢) — @(X)}
¢eC

Now (f, ) — ¢(x) isacontinuous function bounded from above by f(x) and of the
form —@(x) + constant. From this we deduce that:

Pcf(x) =sup{y(x): y € C and Y(x) <f(X)}
i
is the largest continuous function bounded from above by f, and therefore that Pcf
isthelscclosureof f. O

Remark 2.14. We obtain the same result by taking the Isc functions instead of the
continuous functions as the set of test functions.
Indeed, inthis case (f, ) — ¢(X) isthelargest Isc function of the form —(x) +
constant and bounded from above by f(x); see for example Moreau (1970).
Therefore, we have:
Piscf (X) = f,.

Definition 2.15. For any function f: @ — R, we refer to as the inf and sup Moreau-
Yosida transforms the functions f, and f* defined for » > 0 as:
1
f,.(x) = inf {f —x—y?
2 (X) )I/QQ { () + > X —yl } )
1
f*(x) = sup {f(y) — o Ix —y|2} :
yeQ 2\
We have the following classical properties:
F.00 < .00 < o0 < F700 < £ (0,
f1.(x) (resp. f*(x)) is nonincreasing (resp. nondecreasing) with x and
lim f,.(x) = supfy(x) = f,(x); lim f*x) = inf f*(x) = f*(%).
A—>0+ %>0 r—>0+ 2>0
Let usrecall another property of the Moreau-Yosidatransform which is extensively
used in nondifferentiable optimization:
Vh > 0: inf f(x) = inf f
7 00 F00 = I .0
and, if f islsc convex, f, isdifferentiablein any x € © with

1 ) _ _ 1 5
fo(X)zz(X—y(X)) and y(k)=argmym f(y)+ﬂl><—y|

(see Exercise 3 at the end of the present chapter).

Thus, at least in theory, one can replace the minimization of f whichis not every-
where differentiable with the minimization of f, which is differentiable. Thisis the
basis of a new class of efficient optimization algorithms for Isc convex functions,
namely proximal algorithms, see Exercise 4.
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Example 2.16. Let Q be the set of quadratic (strictly) convex functions on €.

Proposition 2.17. The smallest element inf-Q-equivalent to a proper function f is f,,
its Isc closure.

1 ~
Proof. The functions ¢, ,(X) = > Ix — y|2 form aspecial class Q of Q and:

1
f, oy = {f(x)+5|X—Y|2} =fi.(y).

inf

XeQ

According to Definition 2.2, if ¢, C ¢, then Py, f < Py, f.
SinceQ ¢ Q c C, thisyields:

P () = Pof(x) = Pcf(x) =f.(x)

(according to Proposition 2.13). Now:

1
Paf ) = sup [fx(y) — 5 IX— ylz] > sup[f(¥)] = £, (%)
r>0,yeQ 2) >0

from which we deduce: P@f =Pof=f,. O

Example 2.18. Let C be the set of continuous and inf-compact functions, i.e. such
that the level set {x]o(x) < N} iscompact for any finite \.

Thisyieldsé cCcc. WededucePéf <Pzf <Pcfandas
P@f =Pcf =f,, thisimplies Pxf =f,.

In the above examples, we considered the functions of an open set 2 of X in R. For
the following example, we consider the case of functions: X — R.

Definition 2.19. For any proper function f: X —>_R we refer to as the Legendre—
Fenchel transform the function f = F(f): X* — R defined as:

fy) =Fd)y) = sug{(x, y) —f(x)}.
Xe

This Legendre—Fenchel (or Fenchel) transform corresponds to the analogue of the
Fourier transform when one goes from the space of the functions L2(R") to the
space of the Isc convex proper functions. For more details on this transform, see
Rockafellar (1970), Attouch and Wets (1986) and Exercise 3.

The property to be highlighted hereisthat F(F(f)) isnone other than the convex Isc
closure of f which we will denotef .. The Legendre—Fenchel transform istherefore
an involution on the set of convex Isc proper functions.

Example 2.20. Let L be the set of continuous linear functions on X.

Proposition 2.21. Two functions are inf-L-equivalent if they have the same
Legendre—Fenchel transform and the smallest element inf-L-equivalent to a given
proper function f is f,,, its Isc convex closure, P_f = f,,.
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Proof. If ¢(x) € L iswritten p(x) = — (py. X) with p, € X*, then:

(f, ) =inf (F00 = Py, X)) = =3P [Py X) = F00) = —F (py)

wheref isthe Fenchel transform of f; this yields the first part of the proposition.
Furthermore, we have P f (x) = sup [—f (Py) + (pq,, x)] an expression equal
pyeX*
to f.., the Isc convex closure of f, f.,(X) = sup{Y(x) : y(Xx) < f(x), and
P (x) convex and Isc}, see for example Rockafellar (1970), Sect. 12. O

Remark 2.22. By observing that the Hamiltonian of a physical systemisequal tothe
L egendre—Fenchel transform of its Lagrangian, one can say that two Lagrangians are
inf-L-equivalent if they have the same Hamiltonian. One can therefore understand
the importance of thisinf-L-equivalence in Physics.

An interesting problem is to determine the set of various distinct equivalence
classes which one can define from MINPLUS analysis. We have highlighted three
of them: Example 2.3 with pointwise equality, the Examples 2.10, 2.12 and 2.16
corresponding to equality of Isc closures and Example 2.18 corresponding to the
equality of Isc convex closures.

3. Waveletsin MINPLUS Analysis

Through wavelet transform, as introduced by Morlet (1983), we can analyze signals
presenting several characteristic scales.

This wavelet transform of a function f: R — R isgiven for any a € R, and
b e R by:

+oo
1 —b
Tf(&@Zﬁ[f(X)‘P(—Xa )dx

where {r is the mother “wavelet” function also referred to as “analyzing function”;
this is a function with zero mean and featuring some oscillations, see Grossmann
and Morlet (1984).

These wavelet transforms thus enable a multiresol ution analysis of L2 functions,
seefor example Mallat (1989) and Meyer (1992). Wediscuss bel ow amultiresolution
analysis of Isc functions thanks to the introduction of new transforms analogous to
the wavelets, but in anonlinear framework.

Definition 3.1. The MINPLUS-wavelet transform of a function f: R" — R is given
forany ae Ry and b € R" by:

. b—x
Ti(a, b) :xlenﬂgn (f(x)+h( 3 ))

where h is an inf-compact usc function which, similarly to classical wavelet trans-
forms, will be referred to as an ““analyzing” function.
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Remark 3.2. Examples 2.10 and 2.16 correspond to the cases where the set ¢ of test
functionsis defined from an “analyzing” function h, equal respectively to

1
he) =802 and h(x) = 2 [x|?.

Theorem 1 and Propositions 2.11 and 2.21 provide the reconstruction formulafor an
Isc function f for Examples 2.10 and 2.16:

b_
f(x)= sup <Tf(ab)—h< X)) I
acR,beRn a

1
Remark 3.3. We show that, in addition, we have for h(x) = 80.1(X), h(x) = > NE
and h(x) = x|,

fo0) = sup Tr@x). ||
acR
In a way similar to the MINPLUS analysis, it is possible to introduce the
MAXPLUS analysis based on the MAXPLUS scalar product defined as:

(. 9+ = sup (F(x) +g(x)).
xeRN
Wethen obtain anal ogousresults, the | sc functions being replaced by usc functions
and the convex functions by concave functions.
Finally, by simultaneously using MINPLUS analysisand MAXPLUS analysis, we
now introduce new classes of generalized functions.

Definition 3.4. Fortwo functionsf and g: R" — R, we introduce the scalar biproduct
by:

(o) ={f,9-.F 94} = { inf {f(x) +9g(x)}, sup{f(x) — Q(X)}}
xeRN XxeRN

Definition 3.5. For any family ¢ of functions: R" — R, we define the ¢-equivalence
of two functions bounded on R" as:

1296 ((F.9)=(0¢) Yeocd

We easily verify that the function f and g are C-equivalent if and only if f, = g, and
f* = g*, and are L-equivaent if and only if f,, = g and f** = g**.

The classes of ¢-equivaent functions can be considered as distributions in
nonlinear analysis.

With every bounded function f and every usc inf-compact function h we can
associate, for every a € R, and b € R" a simultaneous analysis of the lower
envelopes of f represented as:

T, (ab) = Xienﬂgn{f(x) +h(b;X)}
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and of the upper envelopes of f represented as:

Tf+(a,b)= sup {f(x)—h(b;X>}.

xeRN

Thus for each of the analyzing functions
1
h(x) = = [x|* with a>1and h(x) = 3p1(X)
[0
we verify that:

T (@x) <f.00 <foo <f*x) < T (@%).

We canthen definethe | nf-Sup-Wavel etstransform of abounded functionf: R" — R,
forany a€ Ry and b € R", by the scalar biproduct:

.—b -
= (100 (52)) = [Fab T )

It is seen that the non invertibility of the MIN operator is compensated for by
considering the pair {T;, T;"}.

Now, by considering Wyf (x) = T;r (& x) — T¢ (a x), we can analyze the global
and local regularity of the function f.

Proposition 3.6. (Gondran, 1997)
The function f is Holderian of exponent H, 0 < H < 1, if and only if there exists
a constant C such that for any a, we have one of the following conditions:

(IYWaf (x) <Ca? if h(x) = 8p.1(X)
(ii) Waf (x) < Cas-R  if h(x):§|x|°‘ and o> H.

Proof. Case (i) is dealt with in Tricot et al. (1988). It corresponds to the limit
1
of h(x) = = |X|* when a — +oo, Waf(x) = @ (X) — af (X) corresponding to

o
the oscillation of f on {y: |y — X| < a}, named the a-oscillation and denoted osc
A(X). O

1

We will denote W3 (x) the value of Waf (x) for h(x) = — [x|* and o > 1.
o

The function f is said to be fractal if and only if we have:

0sCaf (X) _
a—0t 2a o

uniformly with respect to x (see Tricot 1993) or if we have:

waf
jim el _ o

a—0t Zaﬁ

uniformly with respect to x.
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Proposition 3.7. The function f is Holderian in the point X, with exponent H,
0 < H < 1, if and only if there exists a constant C such that for any a, we have
one of the following conditions:

(iii) Waf (x) < C(a" + |x — xo|") if  h(x) = 80,1(X)
(iv) Wof (x) < C(aﬁ + X —xo|H) if hXx) = % X|]* and o> H.

Here we obtain a converse ((iii) or (iv) implies f Holderian in Xg) which does not
exactly hold with wavelets, see Jaffard (1989).

4. Inf-Convergencein MINPLUS Analysis

We shall see that thanksto the MINPLUS (resp. MAXPLUS) scalar product we can
define concepts of weak convergence, then show the equivalence of some of these
convergences with the epiconvergence (or I'-convergence) introduced by De Giorgi
(1975) and increasingly used in continuum mechanics (small parameter problems,
homogeni zation of composite environments, thin films, phase transitions and so on)
stochastic optimization, theories of optimization and approximation, etc. See for
example Attouch (1984), Attouch et a. (1989), Attouch and Thera (1993), and Dal
Maso (1993).

Definition 4.1. For any family ¢ of functions: 2 — R, we define the semi-inf-¢-
convergence of a sequence of proper functions f,, uniformly bounded from below
(fn > m, Vn) towards proper f as:

liminf (fn, @) = (f, 9) Vo€ ¢
n—+o00

Definition 4.2. For any family ¢ of functions: @ — R, we define the inf-¢-
convergence of a sequence of proper functions fj,, uniformly bounded from below,
towards the proper function f as:

lim (fh, @ =, @) Yoeo
n—+o00

Inthecaseof Example2.3, whered = A, theinf- A-convergence correspondsexactly
to the simple, classical convergence since we then have:

(fn, 8y) =fn(y) = f(y) = (f,8y) Vye Q.

Examples2.10,2.12, 2.16, 2.18 and 2.20 will lead usto retrieve two important classi-
cal convergence conceptsin nonlinear analysis: epiconvergence (or I'-convergence)
and the M osco-epiconvergence.

Definition 4.3. Given a sequence of proper functions f, uniformly bounded from
below, we call Isc envelope of f,, the function:

£00 =liminf f(y),

n—+o00
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the limit inf being taken when y and n tend simultaneously towards x and +oo
respectively. This lower limit will also be denoted liminf ,fj.
Similarly, we call usc envelope of f,, assumed to be uniformly upper bounded, the
function:
f(x) = limsupfa(y)

n—-+o0o
y—X

We then prove, see for example Barles (1994), that the following holds:
. . . . 1
f(x)= lim {lnf {fn(y) with n>j and |x—y]| ST}}.
j= oo I

Example 4.4. Consider the sequence of continuous functions f,(x) = e™" <,

We have: .
oo _Jo if x#0
it 00 = {3t 375

However, thelsc envelopef (x) = liminf ,f,, isequal to O for any x. For thisexample
we have a different result for the usc envelope of fj:

0 if X;AO}

1 if x=0 = limsupfy(x).

n—-+oo

f(x) = limsup*f (x) = {
Example 4.5. On Q2 = [0, 1] the sequence of continuous functionsf,(X) = a(x) cos
n X, where a(x) is a continuous bounded function, has as Isc envel ope:
£ = —lax|

and as usc envelope: )
f(x) = laX)].

Theorem 2. Every sequence of uniformly lower bounded proper functions fr, semi-
inf-C converges towards f, the Isc envelope of the fy,, i.e. for any ¢ € C,

liminf (fn, @) = (£, ¢)
Proof. Refer to Maslov (19874) and Gondran (1996). O

Corollary 4.6. If the sequence {fn} inf-E-converges towards the Isc function f, then
f is the Isc envelope of {f,},i.e. f =f.

Proof. Theorem 2 leadsto:
(£, @) = liminf (fo, ¢) =lim(fn, ¢) = (F,¢) Vo eC
and Proposition 2.13 gives usthe uniquenessf =f. O

Corollary 4.7. If the sequence f, inf—f:—converges towards f, then it inf—CNQ-converges
and also inf-A-converges towards f.
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Proof. Thisisstraightforward, as(~2 c Cand Theorem 2isvalid for the usc functions
and: A ¢ USC, where USC denotes the set of inf-compact usc functions on 2.
The uniquenessisthen deduced respectively from Propositions2.11and 2.17. O

Definition 4.8. (De Giorgi and Attouch 1984; Dal Maso 1993)
A sequence {fn; n € N} epiconverges towards f, Isc, if for any x we have the
following two properties:

(i) For any sequence {xn; n € N} converging towards X, lim inf fn(xn) > f (X),
(ii) There exists a sequence Xp converging towards x such that f (x) > lim sup f,(Xp).

This definition can be again written, denoting {S*} the set of sequences S* = {x}
converging towards x:

f(x) = {IQJ} (ler%p_l)gf fn(xn)>
We then have the following theorem:

Theorem 3. (Gondran 1996,b) ~
In a Banach space, the epiconvergence implies the inf-C-convergence.

Proof. Given ¢ € 6, it must be shown that (fn, ¢) tends towards (f, ¢). Sincef is
Isc and ¢ compact, there exists xg such that:

(f, @) =f(X0) + ¢(Xo0).
Since f,, converges towards f, there exists X, — Xo such that:
limsup fr(Xn) < f (Xo).

Now:
(fn, @) < fa(Xn) + @(Xn)

and taking the lim sup of thisinequality, we find:

limsup (fn, @) < limsup [fa(Xn) + lim @(Xn)] < f(X0) + ¢(Xo)

and consequently:
limsup (fn, @) < (f, ).

ThehypothesisVx, — X, liminf f,(x,) > f(x) impliesthat f (x) = liminf, fy(x) >
f(x).
Theorem 2 then implies that:

liminf (fn, @) = (£, ¢) = (f, ¢).

Findly, we clearly have:
limfn, @) =, ). O
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Theorem 4. (Gondran 1996,b) ~ y
In RN, the inf-C-convergence, inf-Q-convergence, inf-Q-convergence, inf-A-
convergence coincide with the epiconvergence.

Proof. (@) First let usshow that if fj, inf —(NQ—convergestowgrdsf Iscthenf =f.
Theorem 2 shows that lim inf (fn, ¢) = (f, ¢)V¢ € C, hencevVgp C Q C C.
Therefore if fn inf-Q-converges towards f Isc, we have lim (fn, ) = (£, ¢) =
(f, ¢) Yo € Qand according to Proposition 2.17 we have uniqueness, i.e.f =f.

(b) Corollary 2.67 by Attouch (1984) shows that if fn inf-Q-converges towards f,
then f, epiconverges towards f. Theorem 3 then shows that f,, inf -C-converges
towards f . We therefore clearly have the desired equivalence for Q and Q.

(c) If f, inf-A-converges towards f Isc, then f = f (same proof as in a)). It
remains to be shown that if f, inf-A-converges towards f, then f,, epiconverges
towardsf.

Let us first show that for every sequence x, converging towards Xg, lim inf
fa(xn) = f(Xo).
We know that Ve > 0, there exists pg such that:

)
(£, dxo.00) = pf_(xo) 5

Indeed, as
(f_v 8Xo,po) = pf_(XO) Vp > O

and as ,f (xg) converges towards f (xg) when p — O™ (f being Isc), 3pq such that:
p > pgimplies:

of (Xo) = f(X0) — %

We will denote dx,, o, by ¢o:
After Theorem 2, since:

liminf (fn, o) = (£, ¢o)
assoon asn > N(g) we have:
€
(fn, @) = (., @g) — 5

hence:

fa(Xn) + @o(Xn) > (fn, ¢g) = (f. 9g) — = = f(X0) —&.

NI ™

Taking the inf limit of the inequality we have:
liminf fa(xn) + @o(X0) = f(x0) — ¢

in other words:
liminf fa(xn) > f(Xg) —¢ Ve>0
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hence the desired inequality is obtained.

— Let us now show that for any xp, 3 a sequence X,, converging towards xo and
satisfying:
limsup fr(Xn) < f(xo)
If f (X0) = +o0, theresult istrue. If f (Xg) < 400, then for sufficiently large n the
fn(X) are bounded in a neighborhood of xg.

For al p € N, consider SXO .- We have (fn, SX ) which converges towards

P
f, SX
For flxed pande > 0, 3 therefore N(p, €) such that for n > N(p, ¢), we have:

(fne82) = (£8,1) +e.

Let xn, = ag min{fn(x) + SXO’ 10 } From this we deduce that:

1
|an _X0| < 5

S0 that (fn, 8X ) is not infinite, and therefore we have:
'p

fn(xnp)z(fn,SXO’%) (fn,SX )+e<f(x0)+8

By adiagonal method, we then extract from the double sequence X, a sequence X,
converging towards xg and such that

fn(Xn) <f(xo0) +¢
which yields the desired conclusion. O

Closely related results can be found in Attouch (1984) and in Akian et al. (1995).
These theorems are very important because they form the link between the con-
cepts of inf-convergence and epiconvergence and play a key role in the transfer of
many properties studied in nonlinear analysisto MINPLUS analysis.
Conversely, let us demonstrate on an example how one can very simply derive
properties on epiconvergence by proofsin MINPLUS analysis.

Proposition 4.9. The inf—f:—convergence is preserved in the Moreau-Yosida trans-
form,ie: ~
If f,, inf-C-converges towards f, then (fy),. inf-C-converges towards f;. 0O

Proof. First we verify that for every pair of functions g and ¢ we have VA > 0,
(f, ¢;) = (fx, ¢). From this we deduce that Vo, ((fn)y, ) = (fn, ¢;) and that
according to the assumption (fy, ¢, ) convergestowards (f, ¢, ) = (fy, ¢); fromthis
we deduce that ((f,))y., @) convergestowards (fy, ¢). O
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Let us now study the case ¢ = L, in other words the inf-L-convergence.

Proposition 4.10. The sequence {f,} inf-L-converges towards the function g if and
only if the sequence {fn} of the Legendre transforms of f, converges simply towards
0, the Legendre transform of g.

Proof. Straightforward, since:

(fr, — (0, X)) = —fn(p). O

Lemma4.11. In a Hilbert space, for any proper function f, for any linear form
@(X) = — (py, x) and for any » > 0, we have:

)‘|p<o|2.

(f}u(p):(f’ (P)_ 2

Proof.

(fr, @) = inf mf (f ) + o |x - y|2) — (pg. X)
= inf _f y) + 5 X — Y12 — (Pq, x)]

. , 1
—inf _f () + inf (5 X — yI? = (pg, X))

mf[f(y) (Py. )]—x|p;| =, ¢ —n |p(p|' O

Proposition 4.12. In a Hilbert space, the inf-L-convergence of a sequence is equiv-
alent to the inf-L-convergence of the Moreau-Yosida transform, i.e.:

fr 5N o () TS T,
Proof. Straightforward in view of Lemma 4.11 because for any ¢ € L, (fy, ¢) —
(f, @) if andonly if ((fn)w, @) = (i, ). O

Definition 4.13. (see Attouch 1984)

In a reflexive Banach space, a sequence f,, of convex Isc proper functions Maosco-
epiconverges towards f if in all points x € €, the following two properties are
satisfied:

(i) for any sequence x, weakly converging (in the Banach topology) towards
X, liminf fo(Xp) > f(X);

(ii) there exists a sequence Xy, strongly converging towards x, such that f(x) >
limsupfn(Xn).
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Definition 4.14. (Attouch 1984)
In a Hilbert space, we will say that a sequence f, of convex Isc proper functions
is equicoercive if it satisfies the following relation:
. . c(r
fa(x) > c(Ix]) with lim Q = 400
r—-o00 [
From the above we deduce the following theorem which corresponds to a reformu-
lation of a theorem by Attouch (1984) in terms of inf-L-convergence.

Theorem 5. In a Hilbert space, the Mosco-epiconvergence implies the inf-L-
convergence. Conversely, if the functions f,« are equicovercive and inf-L-convergent
towards f, then the f, Mosco-epiconverge towards f.

Proof. SeeAttouch (1984) and Gondran (1996b). O

Remark 4.15. One can generalize the MINPLUS analysis to point-to-set maps with
valuesin R. B

Thus, with the point-to-set map X — H(x) we can associate the function H(x) =
inf {y : y € H(x)} and we define the MINPLUS scalar product as:

(H g =inf (Ho) +g00) = H. 9).

Such apoint-to-set mapisliscif andonly if Hislsc, in other wordsif for any sequence
Xp converging towards x, we have:

liminf H(xy) > HX). ||
Xn—>X

The epiconvergence (and the M osco-epiconvergence) towards an Isc function (resp.
convex Isc function) extendsin the same way, aswell asthe inf-$-convergences and
the equivalence Theorems 3-5. _

In addition to the epiconvergence (inf-C-convergence) and the Mosco-
epiconvergence (inf-L-convergence), we can define a new type of convergence,
which we will call semi-continuous convergence (or semi-convergence) by simul-
taneously using the MINPLUS and MAXPLUS dioids, and therefore by using the
“scalar biproduct” (Definition 3.4).

Definition 4.16. For any family ¢ of test functions: @ — TR, we define the
¢-convergence towards f of a sequence of functions f,, uniformly upper and lower
bounded by:

Nim ((fn, ) = ((F, ¢)) Voeod

where, by definition, we set
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Definition 4.17. A sequence of functions f,, uniformly upper and lower bound semi-
converges towards f if for any x we have the following two properties:

(i) VXn — X, lim inf f_(xn) > f..(x),
(if) Vxn — x, lim sup f3(xn) < f*(x).

We can then deduce the following result from Theorem 4:

Proposition 4.18. InRN, the A-convergence, the a-convergence, the (Ng-convergence
are equivalent to the semi-convergence.

In the case where the functions f,, and f are continuous, then the semi-convergence
is reduced to the following property:

VX — X, lim fa(n) =fX).
n—+o00

5. Weak Solutionsin MINPLUS Analysis, Viscosity Solutions

Let us consider an equation with partial derivativesin u: Q — R; for example the
following Dirichet problem of second order:

H(x,u,Du,D?u) =0 inQ

5
u=g onoQ ©)
where Q isanopensetof RN, @ = QU 3K, H (X, u, p, M) acontinuous function on

Q xR x RN x SN, where SN isthe set of symmetric N x N matrices, Du the vector
2

au . o“u
— ) and D?u the matrix

0Xi 0X; 9X;
Moreover, we assume that H satisfies the following conditions of monotony:

), and g a continuous function on 9<2.

H(X, U1, p, M1) < H(X, Uz, p, M2)

whenu; < upand M1 < M, wheretheorder < on SN isthe partial order correspond-
ing to the condition: M, — M1 positive definite. Thefirst order equations correspond
to the case where H does not depend on D2u.

We will write the above system in the form:

G(X,u,Du,D?u) =0 onQ (6)

where the function G is defined as:

HXx,u,p,M) inQ

G(X,u,p,M) = { ux) —g(x) onoaQ.

In the case of more general boundary condition of the form:

F(x,u,Duy=0 onaoQ
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where F is a continuous function on 32 x R x RN and nondecreasing in u, we set:

HXx,u,p,M) inQ

G(x, u,p,M) = { Fo,up)  onoo.

When H isnonlinear (w.r.t. u, p, M), the solution to such a problem is not differen-
tiable and therefore it is necessary to consider a notion of generalized solution. The
solution in the sense of the distributions is not sufficient and not well suited since H
is nonlinear. Nor is the other classica answer considering solutions in W,loc(sz)
and satisfying (5) almost everywhere suitable here. We recall that WP(Q) =
{v € LP(Q), Du € LP(Q)}, and WP (@) = {v e WLP(), V6 open compact
set of Q).

We are going to define several notions of weak solutions to (6) and for one of them
wewill show its connections with the viscosity solutionsintroduced by Crandall and
Lions(1983); see Crandall et al. (1992) and Barles(1994) for asummary on viscosity
solutions. For this link, we first introduce the sub and upper-differentials as well as
new functional spaces.

L et usbegin by recalling the definition of generalized subdifferentials and upper-
differentials introduced by De Giorgi et a. (1980) and Lions (1985).

Definition 5.1. We refer to as the subdifferential of a functionf: @ — R = RU{+00}
inthe pointx e €, the set, denoted aé" f(x),ofall p € RN suchthatwhenn — +o0:

(Xn) = F(X) — (P, Xn — X)

U |
VXn — Xin Q, liminf
[Xn — X]

> 0;

pe aé'_ f (x) is referred to as a subgradient.

We refer to as the upper-differential of a function f: @ — R U {—o0} in the point
x € Q, the set, denoted aé* f(x), of all p € RN such that when n — +o0:

f(Xn) —F(X) — (P, Xn — %) -

Vxn — X in Q, limsup I | <
Xn — X

0;

pe 8é’+ f (x) is referred to as an upper-gradient.

We observe that the sub and upper-differentials depend only on the function f
for the interior points (x € ) but also depend on © for the points of the border
(X € 9Q).

We observe that if afunction has a subgradient (resp. an upper-gradient) in x, it
islsc (resp. usc) in x.

In the case wheref is convex, the above definition of the subdifferential coincides
with the standard one defined in convex analysis, seefor example Rockafellar (1970)
and Aubin and Frankowska (1990), as:

5100 = [p e RN/My: T ) = 00 + (p.y — )]
Finally, let us note that a continuous function can have neither a subgradient nor an

1
upper-gradient asin the case of thefunctionx — /x| sin (F) extended in 0 by O.
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Definition 5.2. We will say that an Isc function f: 6 — IR is order 1 lower semi-
differentiable, denoted LSD(6), if the function f has a non empty subdifferential in
any point x € 6.

We will say that an usc function f: 6 — R U {—o0o} is order 1 upper semi-
differentiable, denoted USD(6), if the function f has a non empty super-differential
in any point x € 6.

We will say that a continuous function f: 6 — R is order 1 semi-differentiable,
denoted SD(6), if for any x € 6 the function f has an super-gradient or a subgradient,
ie. if 35" fo0 UBy ™ f(x) # 0.

If the function f is not continuous, we will say that it is order 1 semi-differentiable
denoted SD1(0), if for any x the |.s.c. function f,. has a subgradient or the usc closure
f* has a super-gradient, in other words if:

9y R0 Uay T (x) # 0.

The class of LSD?! functions is important. It of course contains the convex Isc
functions and functions such as f (x) = x — [x] (|[x] = the integer part of x). and

—x if x=<0
f(x)={1 it x>0,

We easily verify that it also contains semi-convex functions, i.e. the functions f for
which there exists k > 0 such that f (x) + k |x|2 is convex.

More generally, LSD? contains functions of the form sup g(x, b) where g (x, b)
beB
is continuous w.r.t. b and LSD w.r.t. X (and, in particular, differentiable in x); other

examples will be discussed in Exercise 8.

Definition 5.3. We refer to as the order 2 subdifferential of a function f: & — R in
the point x € €, the set, denoted aé* f (x), of the pairs (p, Y) with p € RN and
Y e SV, the set of symmetrical N x N matrices, such that:

VXp — X in Q,

f(Xn) — () = (P, Xn — X) — 3 (Y (S — %), Xn — X)
X — Xnl?

liminf >0

(p, Y) is called the order 2 subgradient. .
We refer to as the order 2 upper-differential of a function f: @ — R U {—o0}
in the point x € €, the set, denoted aé* (x), of the pairs (p, Y) with p € RN and

Y e SN such that:

’ f(Xn) — F(X) = (P, Xn — X) — 3 (Y (Sn — X), Xn — X)
imsup X—x P <0
— An

(p, Y) is called the order 2 super-gradient.

Aspreviously, the order 2 sub and upper-differentials only depend on the function
f for theinterior points (x € 2) but also depend on 2 for the border points (x € 9€2),
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see for example Crandall et al. (1992) who call them sub and upper “jets’ of second
order and denoted them JSZ;F and Jé’. To make the notation easier to use, one can
delete the index 6 when 6 is an open set and the upper index. Thus we will replace
ag'Jrf (x) with 97f (x) if 6 is an open set, and we clearly return, in this case, to the
standard notation.

Definition 5.4. We will say that a function f: 6 — R (resp. 6 — R U {—oo}) is order
2 lower semi-differentiable, denoted LSD?(6), (order 2 upper semi-differentiable,
denoted USD?(9)) if the function f has a nonempty order 2 subdifferential (resp.
upper-differential) in any point x € 6.

We have of course the inclusions:

LSD?%(0) € LSDY(0) € LSC(®) and USD?(0) € USDL(0) € USC(H).

We will say that a bounded function is order 2 semi-differentiable, denoted SD2(9),
if for any X, either the Isc closure f,. has an order 2 subgradient, or the usc closure
f* has an order 2 upper-gradient, i.e. if 8(;2’_ f.(x) U 892’+ f*(x) # 0.

Proposition 5.5. If f; and f, € LSD(6) (resp. € LSD?(6)) then f = sup{fs, f2},
€ LSD(6) (resp. sup{fy, fo} € LSD?(6)).

Proof. Inthe point x € RN we have either f (x) = f1(x) or f(x) = f2(x). Let us
consider the first case. We then have for any p; € -~ f1(x) and for any y # X,

fO=FfO=Pry =% _ 11y =f1(0 = (Pr.y = X)

ly — x| ly — x|
and therefore
liminf fly) —f(¥) —(pr,y — %) > liminf f1(y) — 1) — (p1,y — X) >0
y>X ly — X| y—X ly — x|

which showsthat p; € 8%~ f(x) and thusthat 9%~ f (x) isnot empty. O

LSD(6), LSD(6) and LSD?(8) (resp. USD(6), USD(9), USD?(6)) will con-
sequently play a similar role to the spaces L2(0), H1(6) and H?(6) of Hilbertian
analysis.

_ Wewill use the semi-inf-®-convergence defined in 84, Definition 4.1 and the set
C of inf-compact continuous functions.

Definition 5.6. We will say that a function u is a semi-inf- C-solution (resp. semi-
sup- C-solutlon) of (6) if there exists a sequence of functions un € LSD? () (resp.
u" € USD? (£2)) such that up, inf-C- -converges (resp. u" sup- C-converges) towards u
and such that the point-to-set map H(x, un(X), pn. |rmYn) (resp. H(X, u”(x) p", YM
with (pn, Yn) € 82+ Un(x)) (resp. (p", Y™ € a- u"(x)) semi-inf-C-converges

(resp. semi-sup- -C- converges) towards 0.
A C-solution is at the same time a semi-inf-C-solution and a semi- sup- C-solution.
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Theorem 6 will link the various classes of solutions to the viscosity solutions
whose definition isrecalled in the general case of discontinuous viscosity solutions.
We denote G, and G* the Isc and usc closures of G(x, u, p, M) with respect to the
variables x, u, p, M and we will assume that G, and G* are continuous w.r.t. M.
For the case of (5) we have:

H(x, u, p, M) inQ

G*(Xa uy paM) = -
min(HXX, u,p,M),u—g) onaJ2

H(x, u, p, M) inQ

G*'(x,u,p,M) =
max (H(x, u,p, M),u—g) ona

Definition 5.7. (Crandall et al. 1992)
A viscosity subsolution to

G(X,u,Du,D?u) =0 on®Q
is a locally bounded function u such that:

G, (U, U*(X),p,M) <0 ¥xeQ and (p,M)e 8é’+u*(x)

where 8 * u*(x) is the order 2 upper-differential of u* (the usc closure of u) in x.
A VISCOSIty upper-solution to (6) is a locally bounded function u such that:

G*(U,uy(X),p,M) >0 V¥xeQ and (p,M)e ag’u*(x).

Finally, a viscosity solution to (6) is both a viscosity subsolution and upper-solution
to (6).

Theorem 6. If u is a semi-inf-C-solution (resp. semi—sup—é-solution, é—solution) of
(6), then u is a viscosity upper-solution (resp. subsolution, viscosity solution) of (6).
Conversely, if u is a viscosity upper-solution (resp. subsolution, viscosity solution)
of (6) and if G is continuous w.r.t. u, p, M and uniformly continuous w.r.t. x, then u
is a semi-inf-C-solution (resp. semi-sup- C-solution, C- solution).

Proof. (see Gondran 1998) 0O
We will now study a few special viscosity solutions, the inf-¢-solutions and the
episolutions.

Definition 5.8. For any family ¢ of function: @ — R, we will say that u is an
inf-¢-solution (resp. sup-¢-solution) of (6) if, for the sequence of functions un(X) =

i Ny x2 Nix) — My xe int-to-
n;f (u(y) + 2Iy X| )(resp.u x) _St;p(u(y) 2|y X| ),thepomt to-setmap

G(X, Un(X), Pn, Yn) (resp. G(x, u"(x), p", Y") with (pn, Yn) € aé” Un(X) (resp.
P",Y" e 8é’+ u"(x)) inf-d-converges (resp. sup-®-converges) towards O.
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Definition 5.9. A proper function u € LSD? () is an episolution to (6) if and only
if, for every x € Q:

Y(p,Y) €92 u().  G(x.u,p,Y) =0
Ap,Y) € aé’_u(x) suchthat G(x,u,p,Y)=0.

An upper-bounded function u € USD? () is a hypasolution to (6) if and only if for
every x € Q:

¥(p.Y) € 927 u), G u.p.Y) <0
AP, Y) € a§~+u(x) suchthat G(x,u,p,Y) = 0.
We verify that an episolution (resp. hyposolution) is a viscosity solution.

Proposition 5.10. u € LSD2 () is an inf-C-solution to (6) if and only if u is an
episolution to (6).

Proof. See Gondran (1998). O

6. Explicit Solutionsto Nonlinear PDEsin MINPLUS Analysis

We recall afew classical results for explicit solutions to the first order Hamilton-
Jacobi equation. For asummary and the proofs of theseresults, one canrefer to Lions
(1982).

The objective is to show that such solutions can be naturally expressed with
MINPLUS and MAXPLUS scalar products and the solutions belong to the
LSD!, USD?, LSD? and USD? spaces which we have just defined in Sect. 5.

These spaces will play a similar role to the L2, H! and H2 spaces in Hilbertian
analysis.

This will be illustrated successively on the Dirichlet problem and then on the
Cauchy problem of the Hamilton—Jacobi equation.

6.1. The Dirichlet Problem for Hamilton—Jacobi

Theaimisto find afunction u: Q — R satisfying the equations:

{H(x, uDuy=f inQ

u=g on a2 )

where Q is a regular open set of RN, H is a continuous numerical function on

— au au
Q x R x RN, generally referred to as the Hamiltonian, Du = | —, ..., — | is
dX1 OXN

the gradient u, f afunction defined on 5_2 (closure of ©2) and g afunction defined on
92 (boundary of ). Ingeneral f € (Q)andg e (09Q).
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We will consider several special cases.

In each case, we will define a class of elementary solutions, then we will define
the general solution from these specia solutions.

Case 1. Solving the problem

IDul =f(x) in(Q)
{ u=g(x) on (082) ®)

wheref € C(Q)andf > 0in Q.
Let usdefineL(x,y) on Q x Q asL(x,y) = inf {foT f(@(9) ds}, the inf being
taken on all the ¢ and T such that ¢ is amost everywhere (a.e.) differentiable and

such that

(p(O):X,(p(T)=y,’d—(p <1 ae in[0,T],¢(t) € QVtel0,T]

at

Proposition 6.1.1. L defined above satisfies the following properties:
(i) L is a semi-distance on Q: L(x, x) = 0.

Lix,y) =L(y,x) and L y) <Lxn+Lry VYXyreQ
(ii) L(., z) is a solution to the problem

Dul =f inQ\{z}
uz) =0

L (., z) is a special solution to (8). We now turn to show the solutions to (8) can
be expressed in terms of the special solutions L(., z).

Proposition 6.1.2. If the condition:
gx) —g(y) <L(X,y) VX, ye€aQ
is satisfied, then:
ux) = yienafs2 {9(y) + Lx, y)}

V(X) = sup {g(y) — L(y,x)}
yeoQ

are respectively the USD* and LSD? solutions to (8). Furthermore, u (resp. v) is the
maximum element (resp. minimal element) of the set U (resp. V) of the subsolutions
(resp. upper-solutions) to (8):

U={weW-®@Q), Dw| <f, aein w<gonaQ)}

V ={weW-®(Q), |Dw| >f, aein,w>gonai}

We recall that W->° () isthe set of functions u, bounded and Lipschitzian.
For aproof of Propositions 6.1.1 and 6.1.2 see Lions (1982).
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Remark 6.1.3. If Qisconvex andif f = 1, wehavelL(x,y) = [x —y|. L istherefore
the distance between x and y and thisyields:

ux) = yienafQ {g(y) + [x =y}

V(X) = sup {g(y) — Ix —yl}.
yeoa2

In dimension 1, problem (8) becomes:

U =1 on]-1,1]
u—-1) =u@ =0

and we have the USD? and LSD? solutions:
ux)=1—1|x| and v(x)=|x]—1

Case 2. Solving the problem

€)

HMDu) =f inQ
u=g on 92

where H is convex, continuous and satisfiesH(p) — +oo whenp — +oo (H(p) >
alp] — Cwith a, C positive constants). )
In addition, we assume that f (x) > ian H(p) forany x € Q.
pe R

Let usdefineL(x,y) on Q x Q as.

.
L(x,y) = inf {/ {f((p(s)) +H <—‘;—‘p>}ds}
0 S

the inf being taken on the set of all the a.e. differentiable ¢ and T such that:
9(0) =X, o(T) =y, H(~%) = +ocaein[0, Tl e @ Ve [0,TIand

where H is the Legendre—Fenchel transform of H (see Definition 2.19).
Another equivalent definition of L can be:

L(x,y) =inf /1 max <d(p >dt
= o et |\ dt P

the inf being taken on the set of all the a.e. differentiable ¢ such that:
_ d(p .
9(0) =x,9(1) =y, p) e 2 Vte[0,1], O eL™(0,1.

Proposition 6.1.4. L defined above satisfies:

Lx,x) =0 and L(x,y) <L(y.n+L(r.y) V¥xy.reQ



286 7 Dioids and Nonlinear Analysis

and L(-, z) (resp. L(z, -)) is a solution to the problem
HMDu) =f inQ\{z}
uiz) =0

(resp. H(—Du) = f in Q\{z}, u(z) = 0).
If the condition

gxX) —g(y) <L(x,y) VX,y €99
is satisfied, then

ux) = yienafQ [a(y) + L(x,y)]

V(x) = sup [g(y) — L(y,x)]
yedQ
are respectively USD' and LSD? solutions to (9).
(see Lions (1982) for a proof).

Case 3. Solving the problem

{H(x, Duy=0 inQ

u=g on g (10)

where H(x, p) € C (£ x RN) is convex in p, satisfies H(x, p) > alp| — Cwhere o

and C are positive constants and where ian HX,p) <0in Q.
peR

Let us denote H(x, p) the Lagrangian of H(x, p), i.e. the Fenchel transform in p
of H:

H(x,q) = sup {(p,q) — H(X, p)} -
peRN

We define a new function L (x, y) for x,y € Q:

. T ./ dt
L(x,y):{mf/O H(E,d—s>ds}

the inf being taken on all the pairs (T, £) such that £(0) = x,&(T) = vy, &(t) €

QVvtel0,TI, 3—% € L™ (0, T) or, equivalently:

L(x,y) =inf /1 max {—<d—§ >}dt
= o Hemp-o| \atP
3

the inf being taken on the £ such that£(0) = x, (1) =y, £(t) € €, Vt € [0, 1], (:i_t €
L (0, 1).
Proposition 6.4 is still valid and for (10) we have the two following USD?! and
LSD? solutions:
ux) = inf {g(y) + L, y)}
yeo2

V(x) = sup {g(y) — L(y, X)}.
yeo2
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Case 4. Solving the problem

{H(x, uDuy=0 inQ

u=g on g (11)

where H(x, u,p) € C(Q x R x RN) is convex in u and p, satisfies the following
properties:

H(x, u, p) — +oo when |p| — oo uniformly for x € Q and bounded u,

H(x, u, p) is nondecreasing in u, for any x € Q,p € RN,

We introduce the Lagrangian H(x, s, q), Fenchel transform in u and p of H:

H(x,s q) = sup {su+ (p,q) — H(x, u, p)}
ueR
peRN

and we define for x € Q,y = 9% a function:

T . dE t
L(x,y) = inf {/ H <§(t),v(t), ——(t)) exp{—/ v(s)ds} dt
0 dt 0
T
+9(y) exp {— /O V(S)dSH

the inf being taken on all the triples (T, v, &) such that £(0) = x, &(T) =,

Etye Q VtelOT], 3—% e L0, T),v e L®0,T).

Example 6.1.5. If H(x, u, p) = H(X, p) = u (x > 0), then H(x, u, p) = H(x, p) if

u=">xHX up) =+4ooifu#n.
In this case we then obtain:

T d
Lx,y) = (iTm;){/o H <E(t), —d—f(t)> e Mdt + g(y) e—xT} '

Proposition 6.1.6. Under the conditions of Case 4 on H, L(-, z) is a solution to the
problem:
H(x,u,Du) =0 inQ\{z}
{ uiz) =0
If the condition
gx) <L, y) VWX ye 9Q

is satisfied, then
= inf L
u(x) yler;)Q X, y)

V(X) = sup L(x,y)
yeaIQ

are respectively the USD? and LSD? solutions to (11). In addition, u (resp. v) is
the maximum element (resp. minimum element) of the set of subsolutions (resp.
upper-solutions) to (8).
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6.2. The Cauchy Problem for Hamilton—Jacobi:
The Hopf—-Lax Formula

The aim is to find a scalar solution u(x,t) ((x,t) € ©x]0, T[) satisfying the
equations:

0 .
—u+H(x,t,u,Du)=O inQ x]0,T[

at
ux,t) = gx, t) on a2 x 10, T[ (12)
u(x, 0) = ug(x) inQ

If H does not depend exclusively on Du, we will see in this section how to obtain
explicit “linear” solutions in the MINPLUS dioid. Other solutions will be given in
Sect. 8.

In the case where H depends on u and on Du, we will seein Sect. 7.3 how to
obtain explicit “linear” solutionsin the MINMAX dioid.

L et us consider the following problem:

au +HMDu) =f(x) inQx[0,T]

ot
u(x,t) = gx, t) on a2 x [0, T] (13)
u(x, 0) = up(x) inQ

where Q isaregular, bounded, convex open set, f € WL2(Q), g e C(OQX[T,0]),
Up € C (), Ug(X) = g(x,0) on 32, H € C (RV), H convex on RN and verifying
(H(p) = alp| — C(a > 0). ~

Forany s, tsuchthat0 <s<t<Tandx,y € £, let usdefine:

. { 1 . (dE
Lx,t;y,s) =inf f {f EM)+H <F)\(>\)) } dx
S

the inf being taken on the & such that:

£ =V, EN) =X, EO) € Q Vi elst], dd—i e Lo(s, t)

and where H, the Lagrangian, is the Fenchel transform of H:

H(Q) = sup {(p,q) — H(p)} .
peRN

Formally, we have for any solution to (16):
td
ux. D~ uy. 9 = [ 09 )
S

t d%
=/S DA, 1)

t(/du ~ [ dE
S/s {(ﬁ +H(Dxu)> EMN), N +H (a)}d)\

=Lx ty,s).

ou n), Mda
+ 5600 M)
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Theorem 7. Under the above conditions, we have:
(i) foranyx € Q,t > 0: L(x,t;y,8) — 0ifst t,y — X,
L, t;y,9) <L tz,0)+Lz uy,9VXYy,ze QV0<s<t<t<T,
(i) L(-, -;y, S (resp. L(x, t;-, -) is a solution to

3
MU HOW=f in@x[st] ad limugy.t =0
ot tls

(resp. — 2—:' +H(-=Du)=f inQx][01t] and Iim ux, s) = 0,
S
(iii) if the following conditions are satisfied:
gx,t) —g(y,s) <L(X,t;y,s) V(X 1),(y,s) €dx[0,T],s<t
g, t) —Uo(y) <L(X,t;y,0) V(1) €92 x [0, TL,y € Q
then, for (x,t) € Q@ x [0, T1:

u(x,t)y =inf {inf {up(y) + L(x,t;y,0)}, inf {g(y,s)+L(X t;y,9)}
yea 355

(14)
is the USD? solution to the problem,

(iv) if the following conditions are satisfied:
gxX, ) —g(y,s) <L(X, ty,s) V(X t),(y,s) €dQx[0,T],s>t
W(X) —g(y.s) <L(x,0y,9 V(.9 € 02 x[0,TLye Q

then, for (x,t) € © x [0, T]

v(x,t) =inf { sup{ug(y) — L(y,0; x, )}, sup {g(y,s) — L(y,s; X, 1)}
yea e

is the LSD? solution to the problem

ux,t) =g, t) on 92 x [0, T]

—W 4+ H-Du =fx) in Qx[0,T]
u(x, 0) = up(x) in Q.

Formula (14) is interesting because it generalizes to the MINPLUS case the
following formula related to the heat transfer equation, see Quadrat (1995):

t
u,t) = qu(y) L(x,t;y,0) dy+//g(y, S L(x,t;y,s) dsdy

Q 0 9Q
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Remark. In the specia case where f = fg constant and where 2 is convex, the
following holds:

Lo t:y, s)_fo(t—s)+(t—s)H< _Z)

If one considers the case where @ = RN and f = 0, then (14) becomes the Hopf
(1965) and Lax (1957) formula:

ux,t) = Inf <uo(y) +1 H(—y>
yeRN

Let usrecall afew special cases of thisformula.
The equation:

at

8—+|Du|_o inRN x [0, T]
u(x,0) = ugp(x) inRN

has the usc solution:
ux,t)y = inf ug(y).
ly—x|<t
The equation:
d
—a—l: 4+Du=0 inRN x[0,T]
ux,0) =up(x) inRN

has the Isc solution:
V(X,t) = sup Uop(y).

ly—x|<t
For any real p > 0, the equation:
{;—t + -|Du|p =0 inRNx[0,T]
u(x, 0) = Up(X) in RN

has the solution: X P
. -y
VX, t) = Ir)lf {Uo(y) + ot P } :

In the case where p = 2, then the eguation:

5 .
al: Louz=0 inRVx[0.T]
u(x, 0) = Ug(X) in RN

has the USD? solution:

. X —yI?
u(x,t)_lr))f[uo(y)Jr o }
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and the equation:

ot

au 1
——u+§|Du|2:O in RN x [0, 7]
u(x, 0) = up(x) in RN

has the LSD? solution:

V(X, 1) = sup { uo(y) — x—yEl
Y 2t

7. MINMAX Analysis

We have shown in the previous sections how MINPLUS analysis, based on the
“scalar product” ir)1(f (f(X) + g(x)), is used to synthesize and extend a branch of

nonlinear analysis (Isc analysis and convex analysis, epiconvergence and Mosco-
epiconvergence, viscosity solutions). In this section we will show that in a similar
way one can construct aMINMAX analysis based on the “ scalar product” i|;1(f (max

(f(x), 9(x)) and thus extend the previous method to quasi-convex analysis, developed
in particular by Crouzeix (1977), Volle (1985), and Elquortobi (1992).

In particular, weintroducetheinfmax linear transform (see Gondran 1996b) which
plays a role analogous in MINMAX analysis to the Legendre-Fenchel transform
in MINPLUS analysis. Except for Theorem 9, the proofs are similar to those of
MINPLUS analysis.

7.1. Inf-Solutions and I nf-Waveletsin MINMAX Analysis

Let X be a Banach space. We will denote |.| is horm, X* its topological dual and
< -»+ > the scalar product in the duality X*, X.

When X is aHilbert Space, we identify X and X*.

We refer to as a proper function afunction f: X — R U {400}, lower bounded
and non identical to +oo.

Definition 7.1.1. For two proper functions f and g, the “MINMAX scalar product™
(f, g) is defined as:
(f,g) = inf {max (f (x), 9(x))}

In this whole section, we will denote (- -) the Minmax scalar product.

Definition 7.1.2. For any family ¢ of functions: X — R (test functions), we define
the infmax-¢-equivalence of two functions f and g by the equalities:

f.o9=0@. 9 Voeod
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and the infmax-bi-conjugate of f with respect to ¢, denoted Pyf, as:

Ppf (X) = sug{(f, ¢)/under the condition ¢(x) < (f, ¢)}.

ge

Theorem 8. The set of functions infmax-¢$-equivalent to a proper function f has a
smallest element (inf-solution) equal to Pyf.
Proof. (see Gondran 1997) O
Consider afew interesting examples of test functions.

Example 7.1.3. If ¢ = A, theset of Dirac dy inf-functions, defined asdy (x) = —ooif
X =Y, +oo otherwise, the infmax- A-equivalence correspondsto pointwise equality.

Example 7.1.4. If ¢ = A, the set of 8y, functions, defined as:
dye(X) =—o0 if [x—y|<eg +oo otherwise,

then Pxf = f,, the Isc closure of f, and two functions are infmax-A-equivalent if
and only if:
Ve >0, VxeX:fX) =:0X).

where we recall that (f (x) = inf{f(y): |y — X| < ¢}

Example 7.1.5. If ¢ = C, the set of continuous and infcompact functions, then
Pzf = f, and two functions are infmax-C-equivalent if and only if they have the
same Isc closure.

We obtain the same result by taking the infcompact usc functions on X.

For any eigenfunction f, we refer to as infmax-regularized the function:

. 1 2
frqg= )'/2]; (max <f ), b ly — x|+ q))

Example 7.1.6. If ¢ = Q, the set of quadratic functions of the form ¢, y 4(X) =

1
> ly — x|2 + q, then for any function f, Pof = f,, and two functions f and

g are infmax-Q-equivalent if and only if al the infmax-regularized functions are
pointwise equal.

flgX) =0gX) YA>0, VgeR; WxeX.
Definition 7.1.7. For any proper function f, we refer to as infmax linear transform
the function fo(p, q) defined for any p € X and any g € R as:
f(p.a) =0, (p.X) + .

Thistransformwill play thesameroleinMINMAX analysisasthe L egendre—Fenchel
transform in MINPLUS analysis.
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Theorem 9. The quasi convex Isc closure of a function f, denoted fg is equal to:

fe(X) = sup F(p, —(p, X) +m)
peX*

or again to:

fex)= sup {(f,(p,.)+0q with (p,x)+qg<(f,(p,.)+a)}.
peX,qeR

where m is a lower bound of f.

The proof (see Gondran 1997) is provided by using the Hahn-Banach theorem
and by following a proof by Elquortobi (1992). It is shown that the result does not
depend on m.

Example 7.1.8. If A is the set of continuous linear functions on X of the form
(p, X) + q, then for any proper function f, Paf = fg and two proper functions f
ag areinfmax-A-equivaent if they have the same infmax linear transform.

Now we have introduced in Sect. 3 the MINPLUS wavelet transforms: likewise
we define the MINMAX wavelet transforms for the multi-resolution analysis of Isc
functions as:

Definition 7.1.9. The MINMAX wavelet transform of a function f is provided for any
acRy,beR"by:

. b—x b—
Tf(h,a,b)=X|€n]1£n<max<f(x),h< a ))) = (f(-),h(T))

where h is an inf-compact usc function which will be referred to as an “analyzing™
function.
Examples 7.1.4 and 7.1.6 correspond respectively to h(x) = 8q,1(x) and

h(x) = % XI? +q.
Theorem 8 ensures the reconstruction formula of Isc f through the formula:
f(x)= sup {Tf (h; a, b)/under the condition h (u) < T (a b)} .
acR, beR" a
7.2. Inf-Convergence in MINMAX Analysis

Definition 7.2.1. For any family ¢ of test functions, we will say that a sequence of
proper functions f,, semi infmax-¢-converges towards f if

liminf (fa, @) = (f, @) Vo € ¢.
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Definition 7.2.2. A sequence of proper functions f,, infmax-¢$-converges towards f if

lim(fa, ) = (f. ¢) Vo € ¢.
In the case of Example 7.1.3, & = A and the infmax- A-convergence corresponds
exactly to the simple convergence and f,, semi infmax-A-converges towards f if
f(x) = liminf fu(x).

Examples 7.1.4—7.1.6 correspond to one of the main convergences in nonlinear
analysis, epiconvergence, and Example 7.1.8 corresponds to a new convergence in
nonlinear analysis, comparable to the M osco-epiconvergence, but for quasi-convex
functions.

We will next take into consideration that the f,, sequences are uniformly locally
bounded.

Theorem 10. Any sequence of proper functions f,, semi infmax—f:—converges towards

f, the Isc envelope of f, being defined by f,(x) = liminf f,(y) fory — x and

n — oo. For any sequence fn converging towards x, we have liminf fn(xn) > ().
If a sequence of proper functions f, infmax-C-converges towards f, then f, = f.

Theorem 11. In a Banach space, the epiconvergence implies the infmax-C-
convergence.

Definition 7.2.3. A sequence of Isc quasi convex proper functions f, Mosco-
epiconverges towards f, a quasi convex proper function if, in all points x € X,
we have:

— for any sequence x, converging weakly towards x, liminf fy(xn) > f(X);
— there exists a sequence Xp converging strongly towards x such that limsup
fa(Xn) < f(x).

Theorem 12. In a Hilbert space, the Mosco-epiconvergence implies the infmax-A-
convergence and we have the converse if the f« functions are equicoercive.

Theorem 13. In RN, the infmax-A-convergence, the infmax-C-convergence and the
infmax-Q-convergence are identical to the epiconvergence.

Theorems 12 and 13 are adaptations of results by Attouch (1984). Results closely
related to these theorems can be found in Akian et al. (1994).

Remark 7.2.4. All of the above results also apply to the dioid (R, max, min) by
replacing Isc with usc, quasi-convex with quasi-concave, inf with sup.

7.3. Explicit Solutionsto Nonlinear PDEsin MINMAX Analysis

Let us consider the following Hamilton—-Jacobi problem:

%+ Hu,Du) =0 inQ=1]0,+oo x RN

u(x, 0) = g(x) on RN (19
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where the Hamiltonian H(r, p) is continuous in r and p, nondecreasing in r for any
y € RN, sublinear in p for any r € R, and where g is Lipschitzian and bounded.

We then show, see Barron et al. (1996) that the only viscosity solution to problem
(15) isthe function u(x, t) € USD? defined as:

ux,t) = min (max <g(y), h (ﬂ>)) (16)
yeRN t

where, for any x € RN, h(x) = inf(r € R/v¥y € RN, we have H(r,y) > (x,y))
is the conjugated function of H. We verify that h is quasi-convex and Isc on RN
and that:

H(r, p) = sup((p, g) such that h(q) = ).

Inthecasewheregisquasi-convex continuous (instead of Lipschitzianand bounded),
solution (16) is, in addition, quasi-convex, see Volle (1997).
Let us give afew examples of formula (16).

Definition 7.3.1. Let us consider the problem:

2—?+e“|Du| =0 in Q=]0,4+00[ xR
ux,0) =|x| onR.
We verify that h(x) = log |x], then that the problem has the solution:
ux, =0 if x| <t
ux,ty=y if |x] >t
where y > 0 is the only solution to % =+ ¥

Definition 7.3.2. Let us consider the problem:

ot

%+U|Du|:0 inQ2 =10,+o00[ xR
u(x, 0) = g(x) on R

We have h(x) = |x| and the problem allows the solution:

u(x t)—min(max ) ‘ﬂ)
’ _yeR 9. t '

7.4. Eigenvalues and Eigenfunctions for Endomorphisms
in MINMAX Analysis

Anextensioninto thecontinuousfield of resultson el genval uesand eigenvectorsfrom
the discrete case for the dioid (R U {400}, Min, +) was carried out by Dudnikov
and Samborskii (1989), see Exercise 3 of Chap. 6.
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Here we will present the extension into the continuous field of results obtained
on eigenval ues and eigenvectors from the discrete case for the dioid (R, Min, Max),
see Gondran and Minoux (1997, 1998).

It will be seen (Theorem 14) that in this case one obtains a complete explicit
characterization of the eigenvalues and eigenvectors of endomorphisms based on
thedioid (R, Min, Max).

Let X be areal, reflexive Banach space. Let F be the set of functions: X — R,
bounded from below and inf-compact.

By endowing F with the laws & and ® defined as:

f ® 9)(x) = Min(f (x), g(x)) vi,geF, VxeX
a®f(x) =Max(a, f(x))Vf e F, VaeR, VX € X

F hasthe structure of asemi-module, called aMinMax functional semi-module, on
thedioid (R, Min, Max) with as neutral element the function h® defined as:

h*(X) = +00 VX € X.

We then define the “scalar product” (f, g) of two functions f and g in the MinMax
functional semi-module as:

(f,9) = Min{Max (f (x), g(x))} .
XxeX

Let A betheset of inf-compact functionsA: X x X — R, satisfying thefollowing
conditions:

(i) thereexistsfp > —oo suchthat A(X, X) = 6a VX € X;
(i) AX,y) >0a VX, y e X x X.

Conditions (i) and (ii) correspond in MinMax analysis to the classical concept
of diagonal dominance in the sense of the order relation of the dioid

(X Axy) =AKX).
y#X
We then define theimage of f € F, denoted Af, as:

Af (X) = Mi)?{Max{A(x, v),fY} wxeX.
ye

We easily verify that the functional Af is bounded from below and inf-compact and
that the mapping f — Af is“linear” inthe dioid (R, Min, Max):

A®f PRy =0@Af ®B®Ag Vf.geF, Va,pcR.

A therefore correspondsto a set of endomorphisms on the MinMax functional semi-
module. The product of two endomorphisms A and B of A isthe endomorphism C,
denoted AB, defined as:

Cx,y) = Mi)?{Max{A(x, 2),B(z,y)}} V(X y)eXxX.
VAS
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One easily verifiesthat C € A and that the product is associative.

AsA2(x,y) < A(X,y), thesequence A(x, y), A%(X, y), ..., A"(x, y) isbounded
is monotone nonincreasing and bounded from bel ow, and the endomorphism A* can
be defined as:

A*(X,y) = limA"(x, y).

We can then state:

Proposition 7.4.1.
(A%)? = A* = AA* = A*A.

Given asub-semi-module H of F, werefer to asgenerator of H any mapping G € HX
(which with every z € X associates G* € H c F), such that, for every { € H, there
exists ¢ € F, such that for any x € X,

P00 = (¢0). G 00) = Min {Max (¢(2). G*(0)}

The following theorem provides a complete characterization of eigenvalues and
eigenvectors for endomorphisms with a*“dominant diagonal” in MinMax analysis.

Theorem 14. (Gondran and Minoux (2007)
Let A € A be an endomorphism with a “dominant diagonal”” Then any » > 6a
is an eigenvalue of A, and for any y € X, @{ defined as:

(p{(x) =% ®A*(x,y) ¥x € X isaproper function for the eigenvalue .

Let G, = |J {¢]} be the set of distinct elements of {¢) /y € X}, then G, is a
yeX
generator of the MinMax functional semi-module of the set of eigenfunctions F,
(eigen-semi-module) corresponding to the eigenvalue X, i.e. every eigenfunction f e
F,. is written:
fx) = (h(), ¢;(x)) with heF.

Moreover, G,, is the unique minimal generator of F.

Proof. Herewe only provide a sketch of proof, see Gondran and Minoux (2007) for
amore detailed proof.

— First we show that for any X, (.p))( isan eigenfunction.

Indeed, A 9] (X) = AL®A*(X, ) = A@AA* (X) = L@A* (X,¥) = L ¢ (X)
taking into account Proposition 7.4.1 and the idempotency of ®.

— Thenwe show that for any » > 65 andf € F,wehavef = A @ f = Af = A*f.
Indeed, Af = A ®f impliesMax(A(x, X), f (x)) > Max(f (x), ») which, together
with A > 64, makesit possible to concludef (x) > A and thereforef = A @ f =
Af > A*f. Thereverseinequality A*f > f is obtained by showing that for any
x and any £ > 0, we can obtain the inequality A*f (X) + ¢ > f(X).
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— We deduce from the above result that for any f € F, with A > 64 we have
fF=A*L@f) = (@A ie:

f00 = Min IMax | (%), T }} = (f (), ;).

— Theproof of theminimality and the uniquenessof G, isshown through contradic-
tion by assuming that cp{(x) decomposes into the form (p{ X) = MiZn{Max{h(z),
Ze

W2(x)}} with W% € F, and W2 # ¢! .
First one has to show that there exists Z € Z such that ¢} < W2. It is the one
for which ¢/ = Max {A*(y.y). \} = Max {6a. %} = A = Max{h(z’), \Ilz/(x)};
indeed, we then have h(z) < ), W% =\ ® ¥? and therefore:

¢ (x) < Max(h(z), ¥ (x)) < Max(%, WZ (X)) = WZ ().

Now, it just remains to show that W% < (p{; indeed, we have:

w7 00 = Min {Max {100, w7 @} = Max {00, w7 )] < Max {00, 2]
=¢l(x) O

The uniqueness of the minimal generator is an interesting property becauseit will

enable one to provide interpretations to the eigenfunctions of this generator, as was

the case with matrices in Chap. 6, Sect. 6: see for example Gondran and Minoux

(1998) where generating proper functions G, are identified with the aggregates of a
of percolation process at threshold .

8. The Cramer Transform

Historically, the Cramer transform was introduced to study the theory of large
deviations. Let usrecall the principle.
Let X; (i=1,2,...) berandom independent variables of the same law and uni-

1
formly distributed. Thenthesequence S, = - 2 _i—1.n Xi convergesalmost definitely

towards the mean X of the X; by the strong law of large numbers. Thetheory of large
deviations will give us an estimation of the probability that S, is close to x, for x
different from X in O(1) in relation to n.

Leth(n;a b)=—-InProb{a< S, < b}.
The function h(n + n’; g, b) is nonnegative and subadditive, i.e.:

h(n+n';a b) < h(n;a b) +h(n’; a b).
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Indeed, the independence of the X entalils:

1
Prob{a< = Z Xi <b}

i=1,n+n’

1 1
zF’rOb{a<ﬁZXi<b].F’rob{a<W Z Xi<b}

i=1n i=n+1n4n
hence the announced relation.
A consequence of the subadditivity is that the limit
h . .
(njab) inf h(n; & b)
n n

n

s(a, b)y= lim
n

— 400

exists. Just take two integers n and ng, do the Euclidian divison n = ngq + r, apply
the subadditvity and successively extend n and ng towards +oc. We then set:

S(x) = inf s(a b).
a<x<b

The function S(X) is positive or zero and it is easy to show that it is convex. The
theorem of large deviations is then written:

1

Prob {x <= 'Z Xi <X+ dx] = e "5 gy, (17)
i=1,n

Aswe will again see through heuristic reasoning, this theorem is used in statistical

mechanics to reach the thermodynamic limit. In this context, S(x) isidentified with

entropy. For a precise proof, see for example Lanfort (1973).
Let Z(B) be the Laplace transform of X.

Zp) = <e+ﬁx> = f e p(x) dx

where p(x) isthe density of the probability of X.
We have Z"() = (e"PX1+-+Xn) Through the theorem of large deviations, for

large n, the sum X1 + X2 + ... Xp is near nx with the probability ~e~"S®, Thus
the contribution to Z"(B) from the sums of nx is ~&"Px=SX1 \When one integrates
with respect to all the x variables, the dominant contribution comes from the x which
maximizes px — S(x), hence

Zn (B) ~ ANPBX—=S(x)).

and
InZ) = Slép(BX —InZ)). (18)

We obtain S(x) through the inverted L egendre transform
S(x) = sup(Bx — In Z(B)) (19
p
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Definition 8.1. The Cramer transform C is a function of M, the set of positive
measures on E = R", in Cy, the set of convex Isc proper functions, defined by
C =FologoL where L is the Laplace transform and F the Fenchel transform.

The Cramer transform possesses alarge number of properties such asthetransfor-
mation of the product of convolution into inf-convolution, see for example Azencott
et a. (1978) and Akian (1995).

Theuse of thistransformation in thefield of partial differential equations (PDE’s)
is particularly interesting as the following theorem shows:

Theorem 15. (Akian et al. (1995)
The Cramer transform v of the solution uto the PDEon E = R

au a
(== = D) = 2
P +c< 8x) (wW=0, u@)=3 (20)
(with € € Cy) satisfies the Hamilton—Jacobi equation:
av [ dV
o+ (&) (w=0, v(O,)=x. (21)

The latter equation is the HIB equation of a problem of dynamic control x’ = u, of
instantaneous cost c(u) and of initial cost .

Proof. The Laplace transform of u, denoted q, satisfies:
-2 0 +6@ a9 =0, 0 =1
Sow = log(q) satisfies:
—%—Vtv(t, 0) +¢0) =0 w(,)=0

which yields w(t, 6) = €(0) t. As € is Isc convex, w is usc convex and can be
considered as the Fenchel transform of afunction v:

w(t, 0) = sup(6x — Vv(t, X)).

av ow ov
We deduce from the aboved = — and — = ——.
X ot ot

So v satisfies (21).

Thisequationisthe HIB equation of aproblem of control withthedynamicx’ = u,
of instantaneous cost c(u) and of initial cost ¥, since € is the Fenchel transform of ¢
and the HJB equation of the problem of control is:

v

. 0
+mm{c(u)—u—v}=o, v(i0,)=x. O
at u

X
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If € is time-independent, the optimal trajectories are straight lines with v(x) =
tc(x/t).

The solution to a linear PDE with constant coefficients is classically calculated
with the Fourier transform: this is the case of (20) if € is a polynomial. The pre-
vious theorem shows that a first order nonlinear PDE with constant coefficients is
isomorphicto alinear PDE with constant coefficients and therefore can be cal cul ated
explicitly. Such explicit solutions are known by the name of Hopf, Bardi and Evans
formulas (1984), see also Sects. 6.2 and 7.3.

Example 8.2. Let us consider the HIB equation

8v+1 av|P
at  p|ox

=0, Vv(0,Xx)=vyX).

ot 1/p and finally

1
We deduce from the above w(t, 6) = tIB 6P, thenv(x,t) =

V(X, 1) = vo(X) O —— |xp| |nf (vo(y) + M)

where [ corresponds to the inf-convolution on x.
Example 8.3. Let us consider the HIB equation

2 3/2
3_V + 1' <8_V> + g (Q) =0, v, =voX).

ot 2\ ox 3\ ox
We deduce from the above w(t, 6) = t(z |6|3/2> and finally v(t,x) =
Vo(X) D | 3'2 where [J corresponds to the inf-convolution on x.
Exercises

Exercise 1. Proximity and duality in a Hilbert space

Let H be a rea Hilbert space and I'g(H) the set of functions with values in
]—00, +00] defined everywhere on H, convex, lower semi-continuous, not every-
where equal to +oco.

(1) Show that for any f € I'g(H), x € H, the function
1
2z~ @+ lz —x|?
has a strict minimum.

We will denote f (x) this minimum and z* = prox; z (“proximal point”) the
unique point where the minimum is reached:

f(x) = min (f (z) + % lz — x||2>, 5 = argmm (f (2)+ = ! ||z - x||2>
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(2) Determine the proximal point for an affine function f (z) = (a, z) — p (where
a € H, B € R); for the characteristic function of a closed convex set C, f(z) =
Ve (z) =0ifz e C,+o0if x ¢ C;forf(z) = (a,z) — B + ¥ (2); for a
quadratic function f (z) = k||z||2.

(3) For any function f € I'g(H), we define its dual function

aly) = sug{(x, y)—f(x)} VyeH
Xe

Show that g € I'p(H) and that

f(x) =sup{(x,y) —gx)}.
xeH

If two points x and y are such that we have the equality

fX) +9x) = (X, y)

we say that they are conjugated with respect to the pair of dual function f and g.
Show that y is asubgradient of f at the point X, i.e.:
fu) =100+, u—x

and that the subdifferential (set of the subgradients) af (x) isaclosed convex set.
Show that ian(x) = —g(0) and arg min f (x) = 9g(0).
Xe

xeH
(4 Iff € To(H) and g € I'g(H) are two dual functions of each other; let x, y, z be

three elements of H. Show that the following properties are equivalent:

() z=x+y.f00+9y) = X.y)
(i) x = proxs z,y = proxg x

Deduce that for every z and z’ in H, we have:
|lproxsz — proxs z'[| < ||z — 2|

so that the application prox; is continuou: H — H in the strong sense.
(5) Show that f is convex differentiable (in the Fréchet sense) and that

vf (X) = x — ¥ = X — prox; x
[Indications: Moreau (1965)].

Exercise 2. Properties of the Moreau-Yosida transform
Letf: R" — R U {+oo} beaconvex, Isc function, finitein at least one point. We
denote (., .) the scalar product and |.| the associated norm.

(1) For any » > O, we consider the function f,, the so-called Moreau-Yosida
transform, defined on R" by: f, (x) = inﬂg {f(y) + %|x — y|2} .
ye n

(a) Show that the inf of the previous definition is reached in a unique point x;. .
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(b) Write f,, as the inf-convolution of two convex functions. Verify that the inf-
convolution is exact and that f;_ isdifferentiablein any x € R" with

Vi (X) = M(X — X)) € 9f (Xy).

(c) Show that:
1. i ot ; ; n n
I+ Iaf isasurjective multi valued mapping: R" — R";
1 _1
VxeR”,<I+Iaf) (X) = Xy,

(2) Determinef; (x) and x,, for any x € R" in each of the following special cases:

@ f(x) = (a, x) + b, whereac R", b € R.

(b) f indicator function of a closed non empty convex set C of R".
1

() f(x) = > (AX, x) with A self-adjoint.

(3) Show that x;, can becharacterized by oneor the other of thefollowing conditions:

foyY) —F) 0 (X =Xy —%)>0 VyeR"
fy) —fo)+Xy—%xy—x)>0 VyeR"

(4) () Show that the mapping X — X, is Lipschitzian with Lipschitz constant 1.
(b) Show that the mapping x — V f, (X) = A(X — X;,) is Lipschitzian with
Lipschitz constant .
(c) Provetheinequality:

0< fi(y) — 00 = A (X =X,y —X) < Ax —y[2.

(5) What is the (Legendre—Fenchel) conjugate of
N
N = 5 [x[*2

Deduce the expression of the conjugate fy of f,.

Compare inf {f(x)} with inf {f, (X)}.
xeRN xeRN

(6) (@) Show that f (x;) < fy.(x) < f(x).
(b) Establish the equivalence of the following statements:
(i) x minimizesf on R"
(ii) x minimizesf, on R"
(i) X = Xy,
(iv) F0 = f(x)
W) Fx) =)
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(7) (@ Letx € dom f: = {x|f (X) < 4+00}. Show that x;, - X whenx — +o0.
Deduce that {x € R"|of (x) # ¥} isdensein dom f and that f; (X) — f(X)
when \ = +oo.

(b) Let x ¢ dom f. Show that ) (x) — +o0o when » — +o0.

[Indications: see for example Hiriart-Urruty (1998).

(1) (b) One can use the classical result: if the inf-convolution (f1 (I f2) of two Isc
convex proper functionsf; and fo isexact in x (i.e. if there exists x; and xo
with X = X1 + X2 such that (f; 0 f2)(X) = f1(X1) + f2(x2) then

A(f1 O f2)(x) = af1(xq) N af2(x2).

(c) from the characterization of the point x,:

Ocadf + %" —X[%)(X3).

al? a
@ @00 =@x) +b- o x =x- 2
(b) f(x) = %dg(x) where d. is the functional distanceto C.
—1 1

A 1 _ A
(©) xy = '+I (X),fx(X)=§<Axx,X>WIthAx=A '+I

(3) Optimality conditions for an objective function of the form f + g, f convex Isc
and g convex differentiable.

. 1
N = —|p
(5) Nw.(p) o [Pl .
sincef, =fo Ny fo = + Ky and (o) = () + Il
In particular f, (0)(= —inf f,(x)) =f(0)(= —inf f(x)).
xRN xRN

(7) (a) First use an affine lower bound of f to prove that |x;, — X| — 0, then that
X5, € dom of = {x|af (x) # @} to prove the density of dom af in dom f.
(b) Can be proved by contradiction assuming “{f, (x)}, bounded from above.”]

Exercise 3. A few L egendre-Fenchel transforms
With every proper function f: R" — R U {400}, we associate its Legendre—
Fenchel transform f: R" — R U {+o0} defined as:

y e R"f(y) = sup {(x,y) —f(x)}.

xRN
(1) Check that f is convex Isc, and that the Fenchel inequality
fo)+f00 = (x.y) V(X y) € R"x R"

is satisfied with equality if and only if y € of (x), where 9f (x) is the sub-
differential of fin x.
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Show that if f is 1-coercive on R" (i.e. if f (x)/||X|| — +oo when ||X|| —
+00), then f isfinite everywhere on R". Show that if f is strictly convex, differ-
entiable and 1-coercive on R", then f is also finite everywhere, strictly convex,
differentiable and 1-coercive on R".

(2) Calculus of some Fenchel transforms.

e If 15 istheindicator function of a non empty subset A of R" (Ia(x) = 0 if
X € A, +oo otherwise), show that

Ta(y) = sup(y, x) (support function A)
XeA

e IfAisaclosed nonempty subset of R" andfa thefunctiondefinedasfa (x) =
1 i i A 1
Z|Ix||? if x € A, 4oo otherwise, show that fa(y) = > (lylI? — dZ (v))

where da designates the function distance to A.
e Fora> 0andc> 0, letusset
fac:Xx € R — fac(X) = —y/a2— (x—0)2if [x — ¢| < a, +oo therwise.
Calculatefy ¢, thenfy, ¢, [1f4, ¢, where[ correspondsto theinf-convolution.
e Forgivenreasmand o, let us set:
1/Xx—m

qm,cf: XeR — Qm,a(X) = E

(function of Dirac type centered in m)
Cdlculate m,q, then gm; .6, Gmy.o,-

1 . -
f(x) = =x? = qo.1(x) isits own Fenchel transform. Show that it is the only
function with this property.

2
) if o % 0, Gmo0) = dm(X)

[Indications:

(1) SeeExercise 1, question 3.
(2) facy) =ay/1+y2+ oy, T4 ¢, Ofac, = fata,cite-

. 1,5
Im.o(y) = 507 Y+ MY, Omy oy DOm0 =0 Joi+od

~ 1 A 1
f(x)+f(y) = (x,y) withx =y, thereforeif f(x) > é||x||2,f<y> < 5"y"2']

Exercise 4. “Proximal” algorithm
Thetask isto solve the problem

(P) Minimizef (x) withx e C = {y/y € R"; Ax < b}

wheref: R" — R isaconvex nonsmooth function, where A isam x n real matrix,
andb € R™M.

We assume that C # ¢ and that we either have bounded C (condition c¢;) or
f (X) = 400 when |X| — 400 (condition cy).

Under each of these conditions, the problem (P) has afinite optimal solution.
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We recall that the Moreau-Yosida regularization
A
fa(X) = Mkn <f (2) + > |z — x|? ), defined for any » > O (see Exercise 2), is
zeR"

convex and continuously differentiable with gradient:
Vi (X) = —h (X — x)

where
. A 2
Xy = argmin {f(z2) + §|z — X|

zeRN

(1) Consider the problem
(P,) Minimizef, (x) with x € R".

Show that the values of the objective optimal function and that the optimal
solutions of (P) and (P,.) are the same.
The proximal point algorithm (Martinet 1970; Rockafellar 1976a,b) then
consistsin using (P,,) to solve (P).
Proximal point Algorithm
Let x¢ be the current point and . > 0. Solve (exactly or approximately)
the sub-problem

SP(xK): Minimiser (f (2) + ﬂ|z — xk|2>
zeC 2
Take xK*1 as the (exact or approximate) solution to SP(xX).

Prove that if L is chosen at each iteration such that A € [Amin, Amax] With
0 < Mmin < hmax < +00 and 0 < Ak < +oo and x*1 istaken to be the exact
solution to SP(x¥), then the sequence {xK} converges toward an optimal solution
to (P).

(2) SP(x*) will besolved iteratively using tangential approximation of f based onthe
sub-gradients of f which are generated during the calculations. Thus tangential
approximations wo(z), wi(z), ..., w;j(z) of f will be successively constructed.
The it approximation w; (z) is constructed from the values of the function f
and the sub-gradients obtained in the previous iterations at the points z2° =

1 .
xK, z°, ..., 7 by:

Wi (2) =0Ma><1{f(z")+<gj,2—zj>}

<j<i—
whereZ € C, ¢ € af (2).

For each stage|i, the sub-problem SP(xK) is replaced with the following approx-
imated sub-problem:

SPi(x) = Min {mlfi(z, X) = wi(2) + %|z = xk|2}
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SP:(xK) can be reformulated as the following quadratic problem with linear
constraints:

Minn + 2|z — x> under the contraintes

QXY =1n>f@) +(g.z-2) G=0.1.....i -1
zeC.

Let (', ') be the unique optimal solution to Q; (x¥).
ItisthisZz' whichis used to construct the next approximation:

Wi11(2) = max {wi(z),f(zi) + (gi, z— zi> }

Let z* be the only optimal solution to SP(x¥) and ®* = ®(z*, x¥), where,
vz, ®(z,xK) = (2) + 2 |z - xk|2.
Show that:
i)z — z*
(i) ®(Z, x€) — @®* and furthermore:

Ak

—|Z 2
2

-

Vi: d(Z, xK) > o* +
(iii) ; (Z, xK) - @* and furthermore:
Vic g (2, x9) < 4 @ X6) < @F < o2, X9).

(3) The procedure of approximate solution to SP(xK) will be stopped as soon as
gi = ©(Z, x)—;(Z, x) = f (Z)—w; (Z') becomessufficiently small (therefore
when @* — ;4 (271, xK) issmall, see question 2 iii).

For ¢, ¢ two positive reals, we propose the proximal algorithm (see Dodu et al.

1994) whose current step k is the following:
Let xK be the current point.

(@) Initialization.
Qo(x¥) has solution z° = x*. Takeg® € af (%) and seti = 1.

(b) Solve the problem Q; (x¥). Let (z', n') bethe optimal solution, calculate f (')
and g € af (7). . S . .
Calculate w; () = ol\f@fl{f(zj) +(d.7 — Z)} and g = f(Z') — wi(Z)

If & < 212 — x|, goto c)

If 2|z' —x¥|2 < ¢ < e, END of iterationk and end of the proximal iterations.
If 2|z — x|? < ¢ and & > e, then add to Q;(x¥) the new constraint 1 >
f(Z)+(d',z—2'), seti < i + Land gointob).

(© If |z — x¥| < ¢/, END of the proximal iterations. Otherwise terminate the
current stage k by setting xk+1 « 7.
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Show that:

() (@) < FOX) + e — w2 — X2

(i) Ife > 0,¢ > 0and VKk: Ak € [Amin, Amax] With Amin > O, then the algorithm
endsin afinite number of proximal iterations by satisfying one of the following
two conditions (C1) or (C2):

N .
(C1) 7k|z' _xK2 < <
(C2) |7 —x¥| <&

In the case (C1), we have | Vf,, (xX)| < 2/2ige;

In the case (C2), we have | Vf,, (xK)| < 2x ¢
which shows that x¥ is, in both cases, an approximate solution to (P, ) and therefore
to (P).
[Indications:

(1) SeeMartinet (1970) and Rockafellar (1976a,b). For further discussion concerning
the case where x**1 is not the exact optimal solution to SP(x¥), see Auslender
(1984).

(2) (ii) follows from the strong convexity of ®(z, x¥) (see Dodu et al. 1994); (i) and
(iii) are well-known sproperties of the “ cutting-plane method” Kelley (1960).

(3) SeeDodu et al. (1994). Onewill aso find there stopping rulesto further improve
the efficiency of thisalgorithm (the computational results reported show that itis
one of themost efficient algorithmsavail ablefor convex nonsmooth optimization
to linear constraints).]

Exercise 5. Duality between probability and optimization
Werefer to asdecision space thetriple (U, A, K) wherel/ isatopological space,
A the set of open subsets of ¢/ and K afunctional: A — R such that:

() Kwu) =0

(i) K@) = 400

The mapping K is called a cost measure.
Afunctionc: u e U — c(u) € Ry suchthat K(A) = inL c(u) VA Cc Uiscaled

ue
acost density of the cost measure K.
(1) Let area positive Isc function ¢ such that iraf c(u) = 0, then K(A) = ian c(u)
ue

for any open set of U defines a cost measure. Show that, conversely, each cost
measure defined on an open set of a Polish space (topologica space with a

countable base of open sets) has a unique minimal extension K, to P(f) (the
power set of U) having an Isc density ¢ on ¢/ such that irl}f c(u) = 0. The most

classical cost densities will be:

Xm(X) = +ooif X #m, 0if X =m;

1 P,
Mh o = 5 Ho‘l(x - m)H withp > 1and M, g = Xpn.
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(2) By anaogy withtherandom variables, wedefineadecisionvector X on (i, A, K)
asafunctional: / — R". We use the term decision variable (DV).

Thisdecision vector induces acost measure Kx on (R", B) (B being the set of
open set of R") defined by Kx (A) = K,(X~1 (A)), VA € B. This cost measure
Kyx hasan Isc density Cx.

We then define the characteristic function [F(X) of a decision variable X as
the Fenchel transform of the cost density Cx, F(X) = F(Cx), and the optimum
O(X) of the DV of X by O(X) = argminx Cx(X) if the minimum exists. When
the optimality is unique and in the vicinity of the optimum, thisyields:

1 P

Cx(X) = [3 LO)(X)

+ o (Ix = OX)P).

Prove that if Cx isconvex and has a unique minimum of order p, then we have:

(FX)'(0) = O(X), FX—0X)PO) =T(@[SX)]

1 1
with — + — = 1.

P q
(3) By analogy with conditional probabilities, we define the conditional excess cost
of taking the best decision in A knowing the best one taken in B by:

K(A/B) = K(A NB) — K(B).
Two decision variables X and Y are said to be independent if:

Cx,y (X, y) = Cx(X) + Cy (y).

The conditional excess cost of X knowing Y is defined as:

Cx,y(X,y) =KX =X/Y =y) = Cx y(X,y) — Cy(y).

For two independent decision variables X and Y of order p and for every real k, show
that we have:

Cx+y =Cx ® Cy, F(X +Y) =F(X) +F(Y), [F(kX)](6) = [F(X)](k6),
OX +Y) = O0X) +O(Y), OkX) = kO(X), SP(kX) = | k| SP(X),
SPOX + Y)3 4 [SP(X)19 4 [SP(Y)
where Cx ® Cy istheinf-convolution of Cx and Cy:
Cx ®Cvy(2) = ixn;[CX(x) + Cy(y) withx +y = z] and % + é =1

[Indications: see Akian et al. (1992).]
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Exercise 6. Characterization of the super and subdifferentials of a function
onR
Let © bean open set of R™" and u € C (2). Show that:

(@ p € atu(x) (resp. p € 9~ u(x)) if and only if there exists ¢ € C! () such that
Do(x) = pandthat u — ¢ hasalocal maximum (resp. minimum) in x;

(b) dFu(x) and 3~ u(x) are convex closed (possibly empty) subsets of R";

(o) If uisdifferentiablein x, then {Du(x)} = dTu(x) = a3~ u(x);

(d) If for ax, we have both non empty au(x) and 8 ~u(x), then 3t u(x) = 3~ u(x) =
{Du)}

(€) Thesets AT = {x € Q: dTu(X) # B}, A~ = {X € Q: 9~ U(X) # @} are dense.

[Indications: See Crandall et a. (1984) and Barles (1994).
(@) Let p e 3T u(x). Then there exists § > 0 and a continuous increasing function ¢
on [0, +oo[with (0) = 0 such that
uy) <uX) +(p,y —x) +o(ly =xDly — x| Vy € B(x, 6)

where B (x, d) isthe ball of radius & centered in x.
Then p, the function C! defined as

r

o(r) = fc(t)dt
0

verifies p(0) = p’(0) = 0and p(2r) > o(r) 1.
We deduce from the above that the function

@(Y) =u() + (p.y —X) + p(2ly — X])

belongsto CL(R"), verifies Dg(x) = p and that u — ¢ hasamaximum in x in B
(x, 9).

. . 1
(b) Letx e Qandletusconsider thefunction ¢, (x) = =|x—X|2.Foranye > 0, U—@,
€

has amaximum on B = B(X, R) at the point x,. We deduce

Ixe — X|? < 2e sup [u(x)|.
xeB

If ¢ is sufficiently small, x, is not on the boundary of B and, according to a)
Do, (Us) = 2(X, — X)/e € 37U (X). AT istherefore dense)]

Exercise 7. Marginal functions
Let us consider the function u(x) defined as:

ux) = LQE g(x, b)

whereg: Q@ x B — R, R"isan open set and B isatopological space. Functions
of thistype are often referred to as marginal functions.
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The most classical exampleisthe distance functiontoaset S ¢ R",

dx,S) =inf |[x — 9.
seS
Another example isthe “regularized Yosida function.”
f,.(x) = inf (u(y) + ! X —y[?)
M= yeQ y 2\ yi-.

() It is assumed that g (x, B) is bounded for any x € € and that x — g(x, b) is
continuous in x uniformly with respect to b € B; i.e. that

(@ |g(x, b) — g(y, b) < w(|x — y|, R), for x|, ly| <R, b € B, for amodule w.
We denote M(x) the set (which may be empty):

M(x) = argming(x, b): = {b € B:u(x) = g(x, b)}.
beB

Itisnon empty if B is compact.
Show that under the hypothesis (1), we haveu € C (©2) and

dTu(x) 2 g(x, b) forany b € M(x), and
9y 9(X, b) 2 7 u(x).

(2) Assumenow that g (-, b) isdifferentiablein x uniformly for bi.e. there existsfor
amodule w; such that:

(b) 19(x + h, b) — g(x, b) — (Dx g(x, b), b) | < [hjwy(|h|) for any b € B and
small h.
We also assume that:

(c) b — Dy g(x, b) is continuous,

(d) b — g(x, b) islsc. We further denote Y (x): = {Dx g(x, b): b e M (x)}.
Show that under the hypotheses (1), (2), (3), (4) and B compact, we have:

@Y A0 _

(f) 9Tu(x) = CoY (x)

_ iy} if Y=y
9 =
@07 uto {Q) if Y (x)isnotsingleton
and therefore that u € SDS?.

(3) Itisnow assumed that B is compact, g continuous on 2 x B, differentiable with
respect to x with Dy g continuous on Q x B. Show that u is SDS! and locally
Lipschitz (u € Lipjoc (£2)) and that we still have (€), (f) and (g).

[Indications: see Bardi and Capuzzo-Dolcetta (1997), Chap. 2. (1) Lemma2.11. (2)
Proposition 2.13. (3) Proposition 4.4.]
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Exercise 8. Crandall, Ishii and Lionslemma

Let 6 c R" belocally compact, u € LSC (6),z € 6 and (p, X) € 3, V(2).

Show that for any sequence u, € LSC(6) which epiconverges toward u, there
existsforany 6 > 0

Xm € 0, (Pm, Xm) € 9, Um (Xn) such that

(Xn, Un(Xn), Pn, Xn) converge toward (z, u(z), p, X — 43l).
[Indications:

Taking z = 0, we will seek to minimize the function a(x) — (p, x) — % (XX, X) +
28|x|2 in the compact B = {x € 6: |x| < r} wherer > 0 is chosen in relation to
z = 0and d. X, will be the argument of this minimum. see Crandall et a. (1992).]

Exercise 9. Solutions of nonlinear PDE by separ ation of variables
(1) Consider the following HIB problem:

au 1_ 5 . N
— 4+ =|Vul© = 01in]0 R
8t+2| ul 10, +[x

u(x, 0) = malx{ax + b} on RN
le

whereg € RN, b € R.
Show that the solution SDI* (and convex) is equal to

1
u(x, t) = max{ax — >|a’t + by}
iel 2
(2) What happens to this solution if we now consider the HIB problem:

W+ H(VW) = in 10, +-o0o[ xRN
u(x, 0) = max{ax + b}~ on RN
le

whereg € RN, bj € R, f (1) increasing in t and H(p) convex.

[Indications: (2) u(x, t) = malx{a X + jéf(s)ds— H@@)t+ bi}.]
le



Chapter 8

Collected Examples of Monoids,
(Pre)-Semirings and Dioids

The present chapter is intended as a catalogue of examples covering the various
algebraic structures studied throughout this book.

The successive items to be found in this chapter are: in Sect. 1, examples of
monoids with emphasis on canonically ordered monoids; in Sect. 2, examplesof pre-
semirings and pre-dioids which are not semirings; in Sect. 3, examples of semirings
(and rings) which are not dioids; and in Sect. 4, examples of dioids.

Using the many examples stated in this chapter, a virtually unlimited number of
other examplesmay, of course, bederived by homomorphism, but also by considering
matrices, polynomials, formal series on these algebraic structures. Verification of the
main propertiesenjoyed by the various examples stated hereiseither explicitly stated
in the text of the chapter, or can be found in the previous chapters.

Throughout this chapter, for most of the examples considered, we provide ref-
erences to the chapters (in bold character) and sections or subsections dealing with
each particular example.

1. Monoids

The typology of monoidsisrecalled in Fig. 1 below.
Thefirst level of the classification contains:

— Groups (see Sect. 1.2);

— Canonically ordered monoids (see Sect. 1.3-1.6);

— “General” monoids which belong to none of the previous categories (see
Sect. 1.1).

Werecall that, by virtue of Theorem 1 of chapter 1 (Sect. 3.4), amonoid cannot both
be a group and be canonically ordered, the corresponding subclasses are therefore
disjoint.

Table 1 recalls the main definitions concerning monoids.

313
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MONOIDS

OTHER
MONOIDS
§11

CANONICALLY
ORDERED
MONOIDS

IDEMPOTENT OTHER CANONICALLY
MONOIDS ORDERED
= SEMI-LATTICE MONOIDS

§13

NON SELECTIVE
IDEMPOTENT
MONOIDS
§15

SELECTIVE

MONOIDS
§16

Fig. 1 Typology of monoids

Table1 Basic terminology concerning monoids

Monoid

Set E endowed with an associative internal law @

Cancellative monoid

Monoid in which & is cancellative every element is cancellative

Group

There exists aneutral element ¢ and every element of E has an inverse
for &

Canonically ordered
monoid

The canonical preorder relation < (defined asa < b < 3c such that
b = a® c) isan order relation

|dempotent monoid

@ isidempotent (Vac Ea® a=a)

Selective monoid

@ isselective(Vvac E,be E: ab=aorb)

Hemi-group

Every element is cancellative (property of hemi-group) and the
canonical preorder relation is an order relation

1.1. General Monoids

The examples presented in this section are monoids which are neither groups (see
Sect. 1.2), nor canonically ordered monoids (see Sects. 1.3-1.6).

After the presentation of each example, we indicate, whenever appropriate, the
chapters and sections where the example is discussed (chapter number in bold
followed by section numbers). If opportune, additional references are pointed out.
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1.1.1. (Int(R), +)

We consider the set Int (R) of theintervalsof R of theforma = [a, a] witha,ae R
and a < a. This set is endowed with the addition of intervals:

adb=[a+ba+bh

The operation @ is associative, commutative and has [0, 0] as neutral element.
If £(a) = a— aisthelength of theinterval, thisyields £(a@® b) = £(a) + ¢(b).
Since £([0, O]) = O, the only invertible elements are the intervals of length 0.
(Int(R), &) is not canonically ordered because a < b and b < a implies
¢(@ = ¢(b), but not a = b; thus for example: [1, 3] [1,1] = [2,4] and
2,41, -1 =11, 3].

1.1.2. (P(RX), 4), (Conv (R¥), +), (Conv¢ (R¥), +)

These are more general cases than Example 1.1.1. P(RX) is the power set of RK
(k integer > 1).

The addition + of two subsetsA and B of R¥ (Minkowski addition) is defined as:
C=A +Bwith

C={x/xeRX and x=a+b with acA, beB}

Thisoperation isassociative, commutative and has neutral element {(0)¥}, the subset
reduced to the zero vector of RX.

The set of convex subsets of R¥, Conv(R¥), is a submonoid of P(R¥) for the
above-defined addition. To be convinced of this, just check that the addition operation
on subsetsisinternal in Conv (RX).

The same is true for all the subsets of P(RK) for which addition is an internal
operation. A typical exampleis Conv, (R¥), the set of compact convex subsets of RX.

113. (P(R),.)

The set P(R) isthe power set of thereal line.
Thelaw @ isthe product of two subsets of R defined as:

C=A.B={x/x=a.b with aeA and beB}

This operation is associative, commutative and has neutral element {1}, the subset
reduced to the real number 1.
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1.1.4. (Conv (R™K), @)

We consider the set of the convex subsets of R"K endowed with the generalized
sum & defined for any A and B € Conv (R"X) by:

A®B={(y,z1+22) e R"xR¥/(y,21) €A, (y, 22) € B).

One verifiesthat @ isan internal associative, commutative operation having neutral
element P(R") x {(0)¥}.
[Reference: Rockafellar (1970), Chap. 3]

1.15 (Rk (-If-))

The elements of R¥ are ordered k-tuples of real numbers of the form:

a®

4@
a =

a®

withvi:a® e R = RU {+oo}anda® <a? < ... <a®

(9]
The operation + is defined as:

c®
(2) (k)
c= C_ =a+b
c®

wherec®, c@ | ... ¢c® arethek smallest values considered in nondecreasing order
out of the set:

Z={z/z=a" +b¥, 1<i<k, 1<j<k)

This operation is commutative, associative and has neutral element
0
Thismonoid is not canonically ordered, asillustrated by the following example:

1 3
Letustakek =2, a= <3> b= <5>

Thisyields:
1\@ /2 3
<3) + (6) = (5> thereforea < b
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3\@ /=2 1
<5)+( 2>:<3) therefore b <a
andyeta#b

[References: 4 (Sect. 6.8), 8 (Sect. 4.3.1)]

and

~ (=n)
1.1.6. (R+[O, ™, +>

Let > 0 beagiven positive real number.

We consider the set E of sequences of real numbers of R = R U {400} havi ng
variable finite length, and with extreme values differing by at most .

For a € E we denote v(a) the number of terms of the sequence a, and a can be
written:

a= <a(1), a?, ... a"(""))

with a® = Min {a(i)} a"® = Max [a(i)}
i=1...v(@ i=1.v(@)

Thus E can be considered as a subset of R + [0, n]™ where [0, n]™) denotes the
set of finite sequences of elementsin thereal interval [0, n].

. (=m) .
We consider on Ethelaw + defined asfollows:
a= (a(l), a®?, ..., a"(a))

b= (b®.b?,.....0"")
then c=a + b= (c(l), c@, ..., c“(°)>

with: . _
c® =a® 4 p® = Min {a(') + Min {b(')}
i=1...v(a) i=1...v(b)

and where ¢ is the sequence formed by all the values of the form a® + b® (i =
1,...v(@;] =1, ...v(b)) suchthat:

c® <a® b9 <c® 4
Thisthereforeimplies v(c) < v(a) . v(b).

(=n)
Example. Forn=3: (2,3,5) + (1, 4) = (34,6, 6)

(=m)
One verifiesthat J: iscommutative, associative and has neutral element ¢ = (0)
(the sequence formed by a single term equal to 0).
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(=)
However 4? is not idempotent as shown by the following examplewheren = 2:

(=)
(1,2,3) + (1,2,3) = (2.3.3. 4,4, 4.
[References: 4 (Sect. 6;10), 8 (Sect. 4.3.2)]

1.1.7. Qualitative Multiplication

On the set of signsE = {4, —, 0}, we consider the product of signs ® defined by
the table;

— 0
— 0
+ 0
0 0

It isreadily checked that (E, ®) isamonoid with neutral element +.

E can be augmented with the indeterminate sign (denoted: ?) such that: ?® + =
2,79 -=??7®0=0,?79 ?="

We still have a monoid structure with neutral element +. The element denoted
+ can be interpreted as representing the real interval 10, +oc[, — as representing
]—o0, O[, ? asrepresenting ]—oo, +oc[, and 0 as representing the set {0}.

Observethat, contrary to qualitative addition (see Sect. 1.5.5), ® isnot idempotent
and the monoid (E, ®) is not canonically ordered.

[References: 1 (Sect. 3.4), 1 (Sect. 6.1.3)]

| +|®
|+

o
o

1.2. Groups

121 R, +), (Z,+), (C, +)

The set of real numbers (the set of signed integers, of complex numbers) endowed
with ordinary addition. + is commutative, associative and has as neutral element O.
Every element has an inverse for +.

1.2.2. (R*, x), (Q*, x), (C*, x)

The set of nonzero real numbers (the set of nonzero rational humbers, nonzero
complex numbers) endowed with ordinary multiplication x which is commutative,
associative with neutral element 1. Every element has an inverse for x.

1.23. (R\{l},a®b=a+b —ab)

The set R\ {1} endowed with the operation & defined as: a@ b = a+ b —abis

associative, commutative and has 0 as neutral element. Every element aisinvertible:
1 a

al—=

a-1
[Reference: 1 (Sect. 2.1)]
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1.3. Canonically Ordered Monoids

The subclass of canonically ordered monoids includes:

— Hemi-groups (see Sect. 1.4);

— ldempotent monoids and selective monoids (see Sects. 1.5 and 1.6);

— Other canonically ordered monoidswhich are neither semi-groups nor idempotent
monoids, which we introduce in the present section.

1.3.1. (f&k, Min(k))

The elements of R¥ are ordered k-tuples of real numbers e R.

a®
a? s implies gl < 5@ )
If a=|< | €E thisimpliesa® <a? <... <4

a®

Thelaw @ on E isthe operation Min, defined for:

a® p@
@l ¢
a=|2"|b=|P
a® p®)
c@®
©) .
as c=|° =aMingy b
ck)

wherec® ¢@ ... ¢k arethe k smallest values taken in the set
(a®.a®, ... a® b b . bk}

+00
@ is commutative, associative and has a neutral element ¢ = +_°°
+00
We observe that & is not idempotent but is “k-idempotent,” that isto say:
a® a® a® a® a®
: DD : = : = : DD :
a® a® a® ak a®
k times k+1 times

We deduce from the above that the canonical preorder relation o is an order (see
Chap. 1, Proposition 3.4.6).
[References: 4 (Sect. 4.6.8), 8 (Sect. 4.3.1)]
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132, (R 40, q]™, Min(<y)

Let n > 0 be agiven positive real number. As in Example 1.1.6, we consider the
set E = R + [0, n]™) whose elements are sequences of real numbers € R of finite
(variable) length with extreme values which differ by n at most.

Thelaw @ on E isthe operation Min <, defined as:

a— <a(1)’ a?. .. av(a)), b— (b(l), b .. b(v(b)))

then:
c=aMin,b= <C<1>’ @ c“<°>)

where c is the sequence formed by all the terms a and b satisfying:
aV <z+n and b <z+4y

with

2= winf,_yin [0}, o, [o0)]

Observe that: v(c) < v(a) + v(b)

Example:
let =3 and a=(4,6,7),b=(23,5
0 cP=2 and c=(23,4,5)

@ iscommutative, associative and hasaneutral element ¢ whichistheelement (4-00)
(sequence formed by a single term equal to +00).
Observe that @ is neither idempotent nor cancellative. Thus for example, for
n=2(123&(,23) =(11,2 2, 3,3) (non idempotent)
and:
D@ =12
De249=(@12
(non cancellative).

Let us show that the canonical preorder relation is an order relation. Therefore
consider two elementsa € E, b € Esuchthat thereexistsu € Eandv € E satisfying:

adu=Db and a=bov

as b® =Min{a(l),u(l)} wehave: b®d < a@®

As al = Min{b(l),v(l)} wehave: a <b®

hence we deduce aV = b@,
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Now, given the equality a® = b®:

b=adu = vb) > v@)
and a=bov = v@ > vb)

which implies: v(a) = v(b) = k

For thelatter relation to be satisfied, it isthen necessary that: u® > a® + 1 from
which we deduce that: b = a® u = a. (E, ®) is therefore a canonically ordered
monoid. O

[References: 4 (Sect. 6.10), 8 (Sect. 4.3.2)]

1.3.3. Nilpotent t-Norm: ([0, 1], Max{0,a+ b — 1})

On the set [0, 1], we define the operation ® by: a® b = max{0,a+ b — 1}.

® is associative, commutative and has 1 as neutral element. One verifies that it
induces a structure of canonically ordered monoid. Indeed, a < band b < aimply
that thereexistsc € [0, 1] and d € [0, 1] such that:

max{0,a+c—1}=b and max{0,b+d-1}=a

andifa# 0andb # O, thisyieldsa+c—1 =bandb+d—1 = a hencec+d = 2
and thereforec =d = 1, hencea=b.
One verifies that every element a = lisnilpotent: a® a® --- ® a = 0 as soon
—— ———
n times

1
asn > 1—a Thislaw ® isreferred to as at-norm, (see Exercise 2, Chap. 1).
[References: 1 (Sect. 3.2.5), 1 (Exercise 2)]

1.3.4. Nilpotent t-conorm: ([0, 1], Min {a+ b, 1})

On the set [0, 1], we define the operation a® b = Min{a+ b, 1}.

@ isassociative, commutative and has 0 as neutral element. Oneeasily checksthat
it induces a canonically ordered structure. One verifies that every element a £ O is
nilpotent: na= lassoonasn > é Thisisreferred to asat-conorm, (see Exercise 2,
Chap. 1).

[References: 1 (Sect. 3.2.5), 1 (Exercise 2)]

135 ([0,1]l,a®éb=a+b—ab)
On the set [0, 1], we define the operationa® b = a+ b — ab.

@ is associative, commutative and has 0 as neutral element. One easily checks
that it induces the structure of a canonically ordered monoid.
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The antisymmetry of the canonical preorder relationisproved asfollows. Assum-
ing that both a > b and a < b hold, there exist ¢ € [0, 1] and d € [0, 1] such
that

a=b+c—bc and b=a+d-ad

Eliminating b from these two relations yields:
(1-9a[d(1-c)+c]=0

Ifax1,d(l—c)+c=0impliesc=0andd =0, hencea=b.
If a=1,thenb = 1andinthiscase, too, a= b.

1.3.6. Order of Magnitude Monoid

Ontheset E of pairs (a, o) € (R+\{0}) x R, to which we add the pair (0, +00), we
define the operation & by:

(@ o) & (b, B) = (c, min(a, B))

withc=aifa <p,c=bifp <a,c=a+bifa =B.

@ is associative, commutative and has (0, +00) as neutral element and induces
the structure of a canonically ordered monoid.

The elements (a, a) arein 1 — 1 correspondence with the numbers of the form a
% when e tends towards 0.

[Reference: 1 (Sect. 3.4)]

1.3.7. Nonstandard Number Monoid

Ontheset E of triples (a, b, o) € (R4 \{0}) to which we add the triple (0, 0, +00),
we define the operation & by:

(a1, by, a1) ® (ag, by, ap) = (a1 + &, b, min{ag, az})

withb=byifas <ap,b=hyifar <a,b=by +byif a; = ay.
Thisisacanonically ordered monoid, product of (R, +) with the order of mag-
nitude monoid (Sect. 1.3.6). It is isomorphic to the set of nonstandard numbers of
the form a+ be* endowed with ordinary addition when ¢ tendsto 0.
[Reference: 1 (Sect. 6.1.6)]

1.3.8. Power Monoid

Onthe set E of pairs (a, A) € (R \{0})? to which we add the pair (0, 0), we define
the operation @ as
(@A) @ (b, B) = (c, max{A, B})

withc=aifA >B,c=bifA<B,c=a+bif A =B.
This monoid isisomorphic to the onein Sect. 1.3.7 by setting A = e™“.
This canonically ordered monoid is, moreover, isomorphic to the set of numbers
of the form a AP when p tends to +oo, endowed with ordinary addition.
[Reference: 1 (Sect. 3.4.4)]
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1.4. Hemi-Groups

Such monoids are both canonically ordered and cancellative (see Chap. 1, Sect. 3.5).

141 R4, +), (N, 4)

The set of nonnegative real numbers (resp. set of natural numbers) endowed with
ordinary addition +.

+ is associative, commutative and has neutral element 0. Every element is
cancellative and the canonical preorder relation is an order.

A virtually unlimited number of hemi-groups can be deduced by isomorphism
from (R4, +). Thus, with every one-to-one correspondence ¢ of M C RinR4, one
can associate the hemi-group (M, @), where @ isdefined as: a® b = ¢~ 1 (p(a) +
o(b)).

Examples will be found in sections 1.4.5, 1.4.7, 1.4.8 bel ow.

1.4.2. (10, 1], x)

The set of real numbers of the interval]0, 1] endowed with ordinary multiplication.
x s associative, commutative and has neutral element 1. Every element is
cancellative and the canonical preorder relation is an order.
Note that (]0, 1], x) and (R, +) are isomorphic through ¢ defined as: ¢(X) =
—In(x).

143. R+ \{0}, x), (Ny, x)

The set of dtrictly positive real numbers (resp. strictly positive natural numbers)
endowed with ordinary multiplication. x is associative, commutative and has neu-
tral element 1. Every element is cancellative and the canonical preorder relation is
an order.

1.4.4. The Free Monoid

Let A be aset (called “alphabet”) whose elements are called letters.
We take for E the set of finite sequences of elements of A which we call words,
and we define the operation ® as concatenation i.e.:

if meEm=s5%...5
mzeEimzztltz...tq
ML M= $1% ... Hlatz ... tg
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The set of words on A endowed with the operation of concatenation, denoted A*, is
called the free monoid on A.
The canonical preorder relation is an order:

my < my < maisaprefix of mo.

The operation ® isnot commutative. Finally, we observethat in E, every element
isright-cancellative and left-cancellative. Indeed:

mem=mom’ = m =m"

and
mMam=m"@m = m =m".
[References: 1 (Sect. 2.1.13), 1 (Sect. 2.3.2)]

b
145 R4\l a@b= 1" 1), (Re,a@b=a(L+b)Y2 +b 1+a)"2)
. . ) a+b .
The set R, \{1} endowed with the operation @ defined asa® b = 1T isa

hemi-group (see Example 2.3.3, Chap. 1), because it is isomorphic to (R, +) by
the hyperbolic tangent transform; we have indeed:

th(wy) + th(ws)
1+ th(wy) - th(ws)
The same istrue for R, endowed with the operation & defined asa® b =a (1 +
b%)Y2 + b (1 + a?)Y/2 because it is isomorphic to (R, +) by the hyperbolic sine
transform.

[Reference: 1 (Exercise 1)]

th(wg + wp) =

1.4.6. (Int (R4+), +)

Thisis the set of intervals on R, that isto say elements a of the form a = [a, a]
with 0 < a < aand endowed with the addition of intervals:

a®b=[a+ba+b].

As for Int (R) (see Example 1.1.1), the operation & is associative, commutative
and has [0, O] as neutral element. But one easily checks that Int (R,.) is moreover
canonically ordered by @ and that each element (interval) is cancellative.

14.7. (Ry,ad®p b= (a +bP)/P)

This is the set of nonnegative reals endowed with the operation @, (with p € R,),
defined as: a®p b = (& + bP)/P.

This is a hemi-group which isisomorphic to (R4, +). Moreover, it is observed
that: p—liToo (a®p b) = max {a, b}.

[Reference: 1 (Sect. 3.2.5)]
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1.4.8. (R,a®"b=hin /" + /M)

For any real number h # 0, R endowed withtheoperationa@" b = hin (€¥/"+&"/M)
is ahemi-group which isisomorphic to (R, +).

When h tends to 0T, this yields lim(a®" b) = max{a, b}, and when h tends to
0~, we havelim@a®" b) = min{a, b}.

[Reference: 1 (Sect. 3.2.5)]

1.5. Idempotent Monoids (Semi-L attices)

The subclass of idempotent monoids includes:

— Selective monoids (see Sect. 1.6);
— Other idempotent monoids which are not selective monoids and which we
introduce in the present section.

We observe that, for al these examples, the operation & being idempotent, the
canonical preorder relation is an order.

1.5.1. (N, gcd)

The set of natural numbers endowed with the gcd operation (“greatest common
divisor”) which associates gcd (a, b) with every pair of integers a, b.

This operation is associative, commutative, idempotent and has neutral element
¢ = 400, by viewing ¢ as the (infinite) product of all the prime numbers raised to
the power +oc.

15.2. (N, lcm)

The set of natural numbers endowed with the lcm operation (“least common
multiple”) which associates Icm(a, b) with every pair of integers a, b.

This operation is associative, commutative, idempotent and has as neutral
element 1.

15.3. (P (X),U)

The power set of agiven set X endowed with the union operation.
Thisoperationisassociative, commutative, idempotent and has asneutral element
the empty subset ¢.

154. (P (X),N)

The power set of agiven set X endowed with the operation intersection. This oper-
ation is associative, commutative, idempotent and has as neutral element the set X
itself.
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1.5.5. Qualitative Addition
Theset E = {+, —, 0, ?} endowed with the idempotent operation & defined as

® |

RS
| N
wo | +|lo

ESEESEUNEEN] N

+
0
?

isacanonically ordered monoid, with neutral element 0 and absorbing element .
Thefollowing relationshold: ? > + > 0and ? > — > 0, which can beillustrated
by the following graphic representation:

AN
N,

By identifying E, with {0, 1}2, ?= (1, 1), + = (1,0), — = (0, 1) and 0 = (0, 0),
it isobserved that (E, @) isisomorphic to the square of the monoid ({ O, 1}, max).
[Reference: 1 (Sect. 3.4.2)]

1.5.6. (Conv (R"), A@B = Conv (AUB)), (Conv. (R"), A@B = Conv (AUB))

We consider the set of the convex subsets of R", conv (R"), endowed with the
operation @ defined as:
A & B =conv(AUB)

where conv (X) denotes the convex hull of a subset X.
Thisoperationisassociative, commutative, idempotent and has as neutral element
the empty subset @.
The set of compact convex setsof R", Conv, (R"), isan idempotent sub-monoid
of Conv (R") for @.

1.5.7. (Conv (R"), N), (Conve (R™M), N)

Here we consider the set of the convex subsets of R", Conv (R™), endowed with the
operation intersection. This operation is associative, commutative, idempotent and
has as neutral element, the set R" itself.

The set of compact convex sets of R", Conv, (R"), is aidempotent sub-monoid
of Conv (R") for intersection.
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15.8. (Int (R), N)
Thisisthe special case of (conv (R™), N) withn = 1, (see Sect. 1.5.7 above).

15.9. (Int (R), Conv (A UB))

Thisis the special case of (conv (R"), A @ B = conv (A U B)) withn = 1, (see
Sect. 1.5.6).

L et uscompl ete this presentation of idempotent monoidswith examplesinvolving
vectors “monitored” by the first component.

15.10. (R x P(R), Min)

P(R) denoting the power set of R, we consider the set R x P(R) of elements
a= (a,a) suchthat &y € R and & € P(R), endowed with the Min operation
defined asfollows:

a if ag<by
Min(a by =3b if by <a
(&, Uby) if a=Db

This operation is associative, commutative, idempotent and has (400, #) as neutral
element.

This type of monoid can be used to define a minimum operation for complex
numbers.

Case 1. if z1 = X141y, and zz = X2 +iy, aretwo complex numbers, wewill take

Z1 if X1 < X2
Min(z1,z0) =3z if Xp <Xq
{z1,22} If x1=Xx2

where {21, o} denotesthe set of complex numberswith real component x1 = x and
y1 U y2 asimaginary component.
Observe that we only keep a single value for the real component, but that the
imaginary component can take multiple values.
Case 2. If z; and z, are two complex numbers (| . | denoting the modulus), we
will take:
z; if |z1] < |z
Min(zy, z2) = {22 if  |z2] < |z
{z1, 22} it |z1] = |22}
Observe that we only keep asingle value for the modulus, but that the argument can
take multiple values.
[References: this type of monoid appears to be useful for studying complex
Hamilton—Jacobi equations arising in quantum mechanics (see Gondran 1999b,
2001a,b)].
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1.6. Selective Monoids

For all the examples in this section, the operation @ being selective, the canonical
preorder relation is atotal order (see Chap. 1, Proposition 3.4.7).

1.6.1. (R, Min), (Z, Min)

The set of real numbers (resp. signed integers) endowed with the operation Minimum
of two numbers.
Thisoperationisassociative, commutative, selective and hasneutral element +oo.

1.6.2. (R, Max), (Z, Max)

Theset of real numbers(resp. signed integers) endowed with the operation Maximum
of two numbers.
Thisoperationisassociative, commutative, selective and hasneutral element —oc.

16.3. (R4, Max), (N, Max)

The set of nonnegative reals (resp. natural numbers) endowed with the operation
“maximum of two numbers.”
This operation isassociative, commutative, selective and has neutral element O.

1.6.4. (R4, Min), (N, Min)

The set of nonnegative reals (resp. of natural numbers) endowed with the operation
“Minimum of two numbers.” This operation is associative, commutative, selective
and has as neutral element +-oco.

1.6.5. (R", Min-L exicographic)
We consider the set of vectors of R (totally) ordered by the lexicographic order:
axhb if a<b
o a=b ad a<b
oo aa=b; and a=hy, ..., ag-1=bp_1, and a, <by

The operation Min-lexicographic is associative, commutative and selective and has
(+00)" neutral element.

Thistype of monoid can be used for example to define the minimum of complex
numbers: z; = X1 + iyq, Zo = X2 + iYo.

77 if Xp<Xo orif xp=x2 and y; <y2

Mm(zl’ZZ):{Zz if Xp<xp orif xp=x» and Yo <VY1
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Table 2 Recapitulatory list of monoids
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Properties of & | Neutral Canonical | Additional
General Monoids element preorder < | properties and
comments
(PR"), +) Associative (0%} Preorder
Commutative
(Int(R), +) Associative [0,0Q] Preorder
Commutative
(Conv(R¥), +) Associative {(0)k} Preorder
Commutative
(Conv(R™¥), @) Associative PR x Preorder
Commutative | {(0)}
(P(R), -) Associative {1} Preorder
Commutative
(K, ‘_'f_)) Associative (0K Preorder
Commutative
- ™) Associative 0 Preorder
(R + (0., +) Commutative ©
Qualitative multiplication Associative + Preorder
Commutative
Groups
R, +), (Q,+), (C, +) Associative 0 Preorder
Commutative
R*, x), (Q*, x), (C*, x) | Associative 1 Preorder
Commutative
(R\{1},a+b—ab) Associative 0 Preorder
Commutative
Canonically Ordered Monoids
(Rk, Min(k)) Associative (+o0)k Order
Commutative
(R 10, ™, Min(n)) Associgtive | (+00) Order
Commutative
([0, 1], min (a+ b; 1)) Associative 0 Order Every element is
Commutative nilpotent
([0, 1], max (0; a+ b — 1)) | Associative 1 Order Every element is
Commutative nilpotent
([0, 1], a+ b — ab) Associative 0 Order
Commutative
Order of magnitude monoid | Associative (0, +00) Order
Commutative
Nonstandard number Associative (0,0, +0c0) | Order
monoid Commutative
Power monoid Associative (0,0 Order
Commutative
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Table 2 (continued)

Hemi-groups Properties of @ |Neutral Canonical  |Additional
element preorder < |properties and
comments

Ry, +) Associative 0 Total order
Commutative
N, +) Every element is
cancellative
(10, 11, x) Associative 1 Total order
Commutative
Every elementis
cancellative
(Ny, x) Associative 1 Total order
Commutative
(R\{0}, x) Every element is
cancellative
Free monoid Concatenation | Order Concatenation is
Associative (empty word) not commutative
Every elementis
cancellative
a+b Associative 0 Total order
B ) Commutative
Every element is
cancellative
Ry, a(l+bP)Y2 4 Associative 0 Total order
b(1 + a2)1/2) Commutative
Every elementis
cancellative
(nt (Ry), +) Associative [0, Q] Order
Commutative
Every elementis
cancellative
(Ry, ®p) Associative 0 Total order
a®p b= (@ +b°)/P Commutative
Every element is
cancellative
Ry, ®") Associative —oo (if h > 0) [Total order
a ®" b= hin " + /M) |Commutative |+oo (if h < 0)
Every elementis
cancellative

Idempotent Monoids

(N, ged) Associative +00 Order
Commutative
| dempotent
(N, lem) Associative 1 Order
Commutative
| dempotent
(P (X), V) Associative [ Order Sup-semi lattice
Commutative
| dempotent
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Table 2 (continued)

| dempotent Monoids Properties of @ | Neutral Canonical | Additional
(continued) element preorder < | properties and
comments

(P (X),N) Associative X Order Inf-semi-lattice
Commutative
| dempotent
Qualititative addition Associative 0 Order
Commutative
|dempotent
(Conv(R"M), Conv (A UB)) | Associative ] Order
Commutative
|dempotent
(Conv(R™), N) Associative R" Total order
Commutative
| dempotent
(Int(R), N) Associative R Total order
Commutative
| dempotent
(Int(R), Conv(A U B)) Associative [ Total order
Commutative
| dempotent

@& x P (R), Min) Associative {+00, ¥} Order
Commutative
| dempotent

Selective Monoids

R, Min) (Z, Min) Associative +00 Total order
Commutative
Selective

(]lv& Max) (2 Max) Associative —00 Total order
Commutative
Selective
(R4, Max) (N, Max) Associative 0 Total order
Commutative
Selective
R4, Min) (N, Min) Associative +00 Total order
Commutative
Selective
(R, Min-lexico) Associative (+00)" Total order
Commutative
Selective

2. Pre-Semirings and Pre-Dioids

Pre-semirings and pre-dioids are algebraic structures with two operations which do
not enjoy all the properties of semirings and dioids. In this section we present afew
typical examples of such structures. Table 3 recalls the basic definitions. Figure 2
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Table 3 Definition of pre-semirings and pre-dioids

Pre-semiring | A set E endowed with two internal laws of & and ® where
(E &, ® @ is associative

® is associative and right and/or |eft distributive with respect to @
Pre-dioid Pre-semiring for which (E, &) isacanonically ordered monoid
(E, &, ®)

shows the place of pre-semirings and pre-dioids in the typology. We limit ourselves
to the case where there is at least right or left distributivity of ® with respect to @,
see Sect. 4.1.2, Chap. 1.

2.1. Right or Left Pre-Semirings and Pre-Dioids
2.1.1. The Set of Mappings of a Commutative Monoid onto Itself

Let (E, -T—) beacommutative monoid, and H the set of mappingsE — E. Oneendows
H with the operations @ and ® defined as:

f ©g)@ =f(@+g@
f®g)@ =gof(@

where o denotesthe usual composition of mappings. One verifies (see Example4.1.3
of Chap. 1) that (H, @, ®) is aleft pre-semiring.
[Reference: 1 (Sect. 4.1.3)]

2.1.2. Monotone Data Flow Algebra (L eft Pre-Dioid)

Let (L, A) be an idempotent monoid. A data flow agebra is formed by a set F of
functions defined on L and with valuein L.

L being idempotent, we know (see Chap. 1 Sect. 3.4) that the canonical preorder
relation < isan order relation, and that, in this case, an equivalent definition of < is:

a<b & anb=b

(see Chap. 1 Proposition 3.6.2).
We do not assume the existence of aneutral element for A but only the existence
of alargest element Q2 (necessarily unique), i.e. of an element such that:

VaelL:aAnQ =Q

Observe that the monoid L endowed with A has the structure of a sup-semi-lattice.
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Table4 Recapitulatory list of main pre-semirings and pre-dioids

Right and left Property of the |Property of the Distributivity of |Comments,
pre-semirings monoid (E, ®) |monoid (E, ®) ® with respect to | additional
&) properties
Endomorphisms of | Commutative, |Non commutative, |Right and left Pre-semiring
acommutative neutral element: |neutral element =
monoid (S, ®) h® identity
endomorphism
Mappings of a Commutative, |Non commutative |Left only Pre-semiring
monoid onto itself |neutral element: |neutral element =
(S @) he identity
endomorphism
Product of a Commutative Right and left Pre-semiring
pre-dioid and a (neither pre-dioid
ring nor semiring)
Monotone data Commutative  |Non commutative |Left only Left pre-dioid (the
flow algebra idempotent e=he® canonical preorder
isan order)
Pre-dioids
Ry, Max, +) Commutative  |Commutative Right and left The canonical
selectivee = 0 |hemi-group preorder is atotal
order
(N, lem, x) Commutative  |Commutative Right and left The canonical
idempotent e= 1. Every preorder isan
e=1 element of E\{O} is order. € non
cancellative absorbing for ®
(Int (R), Conv Commutative  |Commutative Right and left The canonical
(AUB), +) idempotent e=[0,0] preorder isan
¢ = [0, 0] order. ¢
non-absorbing
for ®

We now consider the set F of functions: L — L, endowed with the internal laws
@ and ® defined as follows:

vf,ge F,vaelL:
fog@ =f(@ Ag@)

feg@=gof(@

where o isthe usual law of composition of mappings.
One verifies that @ is commutative, associative and idempotent.
One verifiesthat ® is associative, in general non commutative, and has a neutral
element which is the identity mapping h® (defined as. Va: h® (a) = a).
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RIGHT (LEFT)
PRE-SEMIRINGS
§2.1

RIGHT (LEFT)
PRE-DIOIDS
§2.1

PRE-SEMIRINGS
88221023

PRE-DIOIDS
§24

SEMIRINGS
§31

OTHER
SEMIRINGS
§3.1

DIOIDS
§4

Fig. 2 Typology of pre-semirings and semirings

Moreover, the law ® is left distributive with respect to & because:

VacL:h@fdg@=(f®g oh@ = Fag(h@a)
=foh(@ ®goh(a
=hf®dh®Qg@)

(F, @, ®) istherefore aleft pre-dioid.

In the so-called monotone data flow problems (see for example Kam and Ullman

1977), we assume moreover that F is the subset of monotone functions: L — L,
i.e. satisfying:

Vabel,a<b = f(a <f(b
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In this case, only the property of left distributivity of ® with respect to & issatisfied
and consequently the algebraic structure (F, &, ®) isonly aleft pre-dioid.

Remark. Intheso-called continuous dataflow problems(Kildall 1973), Fisassumed
to be the subset of functions satisfying the property of endomorphism on L:

Vabel: f(anb)y=f@ Af(b)

(this property is known under the name of continuity in the literature devoted to
dataflow problems). In this case, the structure obtained corresponds to an algebra of
endomorphisms of a monoid (see Sect. 2.2 below). ||

[References: Thealgebraof monotone dataflow has been studied by many authors
in the framework of Data Flow Analysis models of computer programs, and finds
applications in the optimization of compilers, the verification of programs, and the
transformation of programs (in particular, cancellation through the elimination of
common subexpressions). Refer for example to Graham and Wegman (1976), Kam
and Ullman (1976, 1977), and Tarjan (1981)].

2.2. Pre-Semiring of Endomorphisms of a Commutative Monoid

Let (E, +) be a commutative monoid with neutral element ¢ and H the set of
endomorphisms of E, that isto say the set of mappings: h: E — E such that:

Va,be E h(a+b) =h() +h(b)
On H we define the operation & by:
vh,f eH, g=h@f issuchthat g(a@ =h() +f(@ (forall a)
Moreover, H is endowed with the law ® defined as:
Vh,f e H:h®f =foh

where o denotes the usual law of composition for mappings.
One verifiesthat @ has aneutral element, namely the endomorphism h®: E — E
defined as:
VacE h'(a)=c¢

One aso verifies that ® is right and left distributive with respect to & and with
neutral element the identity endomorphism h€ defined as:

Vae E:h%@) = a

Note that the property of right distributivity follows from the property of endomor-
phism:

[f ®gl®h(@ =hif @ ®g@] =hf (@) +hg@) =[f eh®gehl@

Also observe that the multiplication ® defined aboveis not commutative in general.
Moreover, without further assumption, the element h® is not absorbing for ®.
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Indeed, we have that:
YVheH h®h®=h°

(because, Va € E: h* (h(a)) = ¢) but we do not necessarily have h®* ® h = h® (indeed,
h (h® (a)) = h (g) which, without an explicit assumption, has no reason to be equal
toe).

The structure (H, @, ®) istherefore a pre-semiring.

Remark. The above example can easily be generalized by no longer considering a
single monoid (E, +) but two monoids (E, +) and (F, ) and taking for H the set of
homomorphisms. E — F. ||

[References: 1 (Sect. 4.2.2), 4 (Sect. 4.4)

Thisalgebraic structure was suggested independently by Kildall (1973) inthecon-
text of data flow analysis of programs (so-called “continuous’ data flow problems)
and by Minoux (1976) as a generalization of the path algebras of Carréet a. (1971)
and Gondran (1974, 1975) in order to model complex and non-standard path-finding
problemsin graphs (for exampl e finding the shortest path with time constraints, refer
to Chap. 4 Sect. 4.4 of the present book).]

2.3. Pre-Semiring, Product of a Pre-Dioid and a Ring

We consider E = E; x Ep where: E1, endowed with the operations @1 and ®1 isa
pre-dioid; and E,, endowed with the operations @, and ®» isaring.

(E1, ®1) is therefore a canonically ordered monoid whereas (Ep, @2) is not
canonically ordered.

The operations @ and ® on E are defined as the product operations:

v() cE (y> cE:

X2 Y2
X1 o y1) _ (x1@1y1
X2 Y2 X2 D2Y2

()e(6)-(22n)
X2 Y2 X2 ®2Y2

Asthe operations @ and ® inherit basic propertiesof (E1, ®1, ®1) and (Ez, @2, ®2)
one easily seesthat:

@ is commutative, associative
® isassociative and right and left distributive with respect to &.

However (E, @) is neither a canonically ordered monoid, nor a group.
The structure (E, @, ®), a product of a pre-dioid and a ring, is therefore the
example of a pre-semiring which is neither a pre-dioid nor a ring.
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A typical example of such astructureisthe product of the pre-dioid (R, Max, +)
(see Sect. 2.4) and thering (Z, +, x).

Another closely related example is that of the product of the pre-dioid
(R4, Max, +) by (R, 4+, x) which isafield (therefore also aring).

In the latter case, E is the set of pairs <))((,> with x € R4 and X’ € R endowed
with the laws @ and ® defined as:

(4)e ()= (74)
(e ()=(5)

2.4. Pre-Dioids

24.1. Pre-Dioid (R4, Max, +)

Eisthe set R, of nonnegative reals.

@ istheoperation Max (maximum of two real numbers) with neutral elemente = 0
® isthe operation + (sum of two real numbers) with unit elemente =0

One easily verifies the distributivity of ® with respect to &.
However, ¢ is not absorbing for ® because:

VaecEaRe=¢®a=a

(R4, Max, +) is therefore a pre-semiring. As (R, Max) is a canonically ordered
monoid, it isapre-dioid.

2.4.2. Pre-Dioid of the Natural Numbers Endowed with lcm and Product
(N, lem, x)

We take for E the set of natural numbers.
Thelaw @ is defined as:

a® b = lcm(a, b) (least common multiple)

Thislaw isassociative, commutative and idempotent, has neutral elemente = 1, and
endows N with a structure of canonically ordered monoid.

Thelaw ® isassociative, commutative, hasunit element e = 1, and isdistributive
with respect to &.

(N, lem, x) istherefore a pre-dioid.
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However, observe that ¢ = 1 is not absorbing for ® (indeed, for a € E, a # 1,
ax 1=a#1).(N,lcm, x) istherefore neither a semiring nor a dioid.

Let us observe that, if one replaces the lcm operation by the gcd operation we
obtain (N, ged, x) which isadioid (an idempotent-cancellative dioid actually) (see
Sect. 4.7.4).

2.4.3. Pre-Dioid of Intervals (Int (R), Conv (A UB), +)

Let ustake for E the set Int (R) of the intervals of thereal line R of the form [a, a]
witha<O0anda> 0.
Let us define the operation @ as the union of two intervals, in other words:

[a &l @ [b, b] = [Min[a, b], Max[&, b]]

@ is commutative and idempotent and has for neutral element the interval [0, 0]. It
endows Int (R) with a structure of canonically ordered monoid.
Moreover, let us define the operation ® by:

[a, 8l ®[b bl =[a+b,a+b]

The operation ® has for neutral element [0, O].
Thedistributivity of ® with respect to & is deduced from the obvious properties:

Min[a, bl 4+ ¢ = Min[a+c, b+ ]
Max[&, b] + & = Max[a+ &, b + ¢

Remark. This example is one of the few cases where distributivity holds with
intervals. Thisisnot thecasefor (int (R), Conv (AUB), N) nor for (Int (R), N, +). ||

However, (E, &, ®) is not a semiring because ¢ is not absorbing for ®. Indeed,
for an arbitrary element [a, a] # ¢ we havethat [a, 8] ® [0, 0] = [a, a] # «.

The structure [E, @, ®] defined above is therefore a pre-dioid but it is not a
semiring.

Note that this exampleillustrates the fact that assuming < to be an order relation
is not sufficient to guarantee the absorption property.

3. Semiringsand Rings

The class of semirings includes:

— Rings (see the examples of Sect. 3.2);
— Dioids (dealt with in Sect. 4);
— Other semirings (see the examples of Sect. 3.1).

Werecall that, since amonoid cannot both be agroup and be canonically ordered,
the subclass of rings and the subclass of dioids are disjoint.

Figure 2 indicates the place of semirings and rings in the typology.

Table 5 recalls the basic definitions concerning semirings and rings.
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Table5 Definitions of semirings and rings

Semiring (E, @) monoid with neutral element ¢; (E, ®) monoid with neutral element e
(E, ®, ®) ® right and/or left distributive with respect to @; ¢ is absorbing for ®
(ile:VacE aQe=¢e®a=¢)

Ring (E, ®, ®) [Semiring such that (E, ®) isagroup

3.1. General Semirings

These are semirings which are neither rings nor dioids.

3.1.1. Semiring, Product of a Dioid and of a Ring

We consider E = E; x E, where:
E; endowed with the laws @1 and ®1 isadioid.
E> endowed with the laws @, and ®» isaring.
Thelaws @ and ® on E are defined as the product laws:

V(Xl) cE (y1> cE:

X2 Y2

()2 )= (222
X2 Y2 X2 D2Y2

() e Ga) = Cacas)
X2 Y2 X2 ®2Y2

Thelaws @ and ® inherit the basic properties of (E1, ®1, ®1) and (E2, ®2, ®2),
one therefore easily checks that:

@ is communicative, associative and has neutral element ¢ = (;) where g1

(resp. ¢2) isthe neutral element of E; for @1 (resp. Ex for @>).
® is associative and distributive (on the right and on the left) with respect to &.

£ = (;) is absorbing for @ .
We deduce from the above that the product structure (E, @, ®) is a semiring.
However, it is neither adioid, nor aring.

A typical example of the above isthe product of the dioid (R4 U {+00}, Min, +}
and thering (Z, +, x) with the laws @ and ® defined as:

(Xl> © <y1> _ (Min{xl,yﬂ)

X2 y2 X2 +Y2

()2 G2 = Cax3a)
X2 Y2 X2 X'y2

One verifiesthat e = (§°°) isabsorbing for ®.
[Reference: 1 (Sect. 5.4)]
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3.1.2. Semiring of Signed Numbers

Let us consider the pair (a,s) € R x Swhere S = {+, —, 0, ?} is the set of signs
of qualitative algebra (see Chap. 1, Example 6.1.3 and Chap. 8, Sect. 4.5.3 for the
presentation of this dioid).

With every real number a, we thus associate four signed numbersat, a-, a° and
a’ corresponding respectively to: a obtained as the limit of a sequence of numbers
> a(a"); of asequence of numbers < a(a~); of asequence of numbersall equal to
a(a°); of asequence of numbers only convergent towards a (a7).

We define the addition & of two signed numbers (g, s) and (b, o) as: (a,9) @
(b, o) = (a+ b, s+0) and the multiplication ® by:

(@, 9® (b, o) = (ab, (57 (a) xo) + (sg (b) xS) + (sx0)) where+ and x areaddi-
tion and the multiplication of qualitative algebra (see below Sect. 4.5.3) and sg (a)
the sign of a (with the convention sg (0) = 0).

One verifiesthat (R x S, @, ®) isasemiring. It isnot a dioid however, because
theset R x Sisnot canonically ordered by ®.

[References: 1 (Sect. 6.1.3), 8 (Sect. 4.5.3)]

3.2. Rings

3.2.1. Ring (Z, +, x)

The set of signed integers endowed with standard addition and multiplication.

3.2.2. Ring (R [X], +, x)

The set of polynomials with real coefficients of areal variable x endowed with the
sum and the product of polynomials.

3.2.3. Ring My (R), +, x)

The set of square n x n matriceswith real entries endowed with the sum and product
of matrices.

3.24. Ring (P (E), A, N)

Thepower set of aset E, endowed withthesymmetric difference A (AAB = (AUB)\
(A N B) and the intersection N.
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Table 6 Recapitulatory list of semirings and rings
Property of the  |Property of the Distributivity of |Comments,
monoid (E, &) monoid (E, ®) ® with respect | additional
to® properties
Semiring product |Commutative Neutral element  |Right and left £ = zl
of adioidanda |neutral element |, _ (€1 absorbizn for @
ring (E1 x Ep, e— (& €2 9
D, ®) &2
Ring (Z, +, x) Groupe =0 Commutative Right and left ¢ absorbing for ®
e=1
Ring of Group Commutative Right and left ¢ absorbing for ®
polynomials ¢ =0 (zero e=1
(R[X], +, x) polynomial)
Ring of matrices |Group e=Ip(nxn Right and left ¢ absorbing for ®
nxn(Mnp(R), e =0 (zero identity matrix)
+, x) matrix)
(P(E), A, N) Commutative Commutative Right and left ¢ absorbing for ®
group, € = ¢ idempotent
4. Dioids

The typology of dioids is recalled in Fig. 3 below. The second level of the
classification contains:

— Symmetrizable dioids (see Sect. 4.4);
— ldempotent dioids (see Sect. 4.54.8);
— “General” dioids which do not belong to any of the previous categories (see

Sect. 4.3);

Table 7 recalls the main definitions concerning dioids.

Before presenting examples of each of these classes, wefirst provide afew exam-
ples of right or left dioids (Sect. 4.1), then examples of the general class formed by
the endomorphisms of a canonically ordered commutative monoid (Sect. 4.2).

4.1. Right or Left Dioids

4.1.1. Right Dioid and Shortest Path with Gainsor L osses

Ontheset E =R x R \{0}, we define the following operations & and ®:

@k if 2<@ orif 8=2 and k=K
@k & @.K)=
@, k’y otherwise

(ak)® @, k) = (a+kd, kk)
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RIGHT OR LEFT
DIOIDS
§4.1

DIOIDS

IDEMPOTENT
DIOIDS
§§4.5t04.8

OTHER DIOIDS
88§4.2and 4.3

SYMMETRI-
ZABLE
DIOIDS § 4.4

IDEMPOTENT-

INVERTIBLE
DIOIDS

§4.8

IDEMPOTENT-
CANCELLATIVE DIOIDS
§4.7

OTHER IDEMPOTENT
DIOIDS
§45

DOUBLY-IDEMPOTENT
DIOIDS § 4.6

SELECTIVE-
INVERTIBLE
DIOIDS

SELECTIVE-
DISTRIBUTIVE CANCELLATIVE DIOIDS

LATTICES

Fig. 3 Classification of dioids

@ has for neutral element ¢ any element of the form (400, k) and ® has neutral

elemente= (0, 1).
Oneverifies(seeExample6.1.4 Chap. 1), that (E, @, ®) isarightdioid. Thisisthe

algebraic structure required to solve the shortest path problem with gains or losses.
[Reference: 4 (Exercise 4)]
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Table 7 Basic terminology relating to dioids

Dioid (E, @, ®) (E, @) isacanonicaly ordered monoid with neutral element «.
(E, ®) isamonoid with neutral element e

® isright and/or left distributive with respect to &

¢ isabsorbing for ®

Symmetrizable dioid Dioid for which (E, &) is ahemi-group
|dempotent dioid Dioid with an idempotent law &
Doubly idempotent dioid Dioid with two idempotent laws @ and ®

(distributive lattices)
|dempotent-cancellative dioid |ldempotent dioid for which (E, ®) is a cancellative monoid
Selective-cancellative dioid |dempotent-cancellative dioid with the @ law selective
|dempotent-invertible dioid Idempotent dioid for which (E, ®) isagroup
Selective-invertible dioid Idempotent-invertible dioid with the & law selective

4.1.2. A Right Dioid
Ontheset E =R x Ry, we define the following operations & and ®:
(ak) if a<d, orif a=a and k>KkK
@k e @ k)=
@, k’) otherwise
(a k) ® @, k) = (a+ka, kk")

@ has for neutral element ¢ any element of the form (400, k) and ® has neutral
demente= (0, 1).

4.1.3. Left Dioid of Semi-Cancellative Fractions

In automatic control, the study of the stability of a system through the analysis of
transfer functions (Laplacetransform of theinput-output function) presentsinconsis-

b
tencies when the (rational) transfer function g issimplified through polynomials

with unstable poles (roots lying in the right half-plane, Re (s) > 0). To illustrate
. . b(s) s—1 .
this, if we consider the examplewhere — = ————  the system isunsta-
as (s—-1)(s+1

1 1
bilizable; but since, on the ring of rational fractions, S = , one
(s—1(s+1) s+1
b 1
can rewrite b© = —— and the system would be (incorrectly) considered as
a(s) s+1

stabilizable if it were impossible to distinguish these two fractions.

To eliminate this risk of inconsistency, one must therefore prevent cancellation
using unstable zeros and thus instead of the ring of rational fractions we have to
consider the left dioid of semi-cancellative fractions (SCF) introduced by Bourlés
(1994).
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To obtain this, we consider the set of pairs (b(s), a(s)) where b(s) (resp. a(s)) isa
polynomial inthering R[s] of polynomialswith real coefficients (resp. apolynomial
inRR*[s] = R[s]\{0}).

Let P(C) (resp. P(C_) bethe subset of R*[s] formed by the polynomials having
roots in the closed right half-plane C (resp. open left half-plane C_).

Any polynomial a(s) may be decomposed (in a unique way) into the form

a(s) =a’ (9 a (s)witha™ (s) e P(C,),a (s e P(C_).

On the pairs of R[s] x R*[s], we define the equivalence relation (b, a)~ (b, &)
if and only if wehave: b (s) & (s) = a(s) b’ () andat(s) = a™ (s).

The set of semi-cancellative fractions (SCF) will be the quotient set of the set of
pairsR[s] x R* [s] by this equivalence relation.

We denote [b, a] the class of (b, @ modulo ~ ([b, g istherefore a SCF).

We then define on R[s] x R* [s] the operations & and ® by:

(1) b, @ (0, d) = (ba' + ba, paa’)
wherep =ged (8, @), a= pa, @ = po’ (hencepa o’ = lcm (a, &))
(2) (b,ay® (b, d) = (B, aa’)
wherem = ged(b, @) NP (Cy),b=np,d = nd'.
Proposition 1. The operations (1) and (2) are compatible with the equivalence
relation .

Proof. It is enough to check that if (by, a1)~ (b1, a'1) and (by, &)~ (b, &) we
have:

(b1, a1) @ (bp, &) ~ (b'1,d1) & (W2, d2)
(b1, &) ® (b, &) ~ (W'1,d1) @ (b'2,&2). O

One can therefore define on the set SCF an addition and a multiplication by setting:

[b1, &1 @ [b2, @] = [(by, &) & (b2, &)]
[b1, a1] ® [, &] = [(b1, &) ® (b1, &)].

Proposition 2. The set SCF endowed with the laws @ and ® is a left dioid.

Proof. One verifies first of all that the addition & is associative and commutative
(it corresponds to the connection of two systems in paraléel). [0, 1] is the neutral
element for the addition because [b, a] @ [0, 1] = [b, a].

The multiplication ® is associative (it corresponds to the connection of two
systems in sequence). [1, 1] is the neutral element for the multiplication. But the
multiplication is not commutative.

We observe that [0, 1], the neutral element of &, is left-absorbing but not right-
absorbing ®; indeed, we clearly have:

[0,1]®[b,a] =[0,a]=1[0,1] and
[b,a] ®[0,1] = [0,a] # [0,1] if a¢P(Cy).
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The multiplication is left distributive, because:

(b1, &] ® ([b2, &] @ [bs, ag]) = ([b1, a1] ® [b2, &]) & ([b1, a1] ® [bg, &g)
but not right distributive, as shown by the following example:
(1,1 — (1, 9]1,s—1] =[], but
[1,1](1,s—1]1—[1,98][l,s— 1] =[s—1,s(s— D]
SCF istherefore clearly aleft dioid. O

Onecanrefer to Bourlés (1994) for ageneralization of semi-cancellativefractions
to general unitary commutative rings.

The following results then show that these SCF can indeed be used to rigorously
study the stability of a system described by its transfer function.

Indeed, considering (b, @) and (r, s) two elements of R [s] x R*[s], such that a
s+ br # 0, then the SCF [c, d] where (c,d) = (b's, as+ br) only depends on the
SCF [b, @ and [r, s] (and not on the particular pairs (b, a) and (r, 9)).

We will refer to as anegative feedback operator the operator I' : SCF x SCF —
SCF defined as:

I ([b,al,[r,s]) =[bs as+br]
for all SCF [b, a and[r, s] suchthatas+br # 0.
Then one can state:

Proposition 3. (Bourlés 1994)

Consider a SCF [b, a]; then there exists a SCF [r, ] such that " ([b, &, [r, 9]) is
stable, if and only if [b, & is stabilizable.

[Reference: for more detail, see Bourlés 1994]

4.2. Dioid of Endomorphisms of a Canonically Ordered
Commutative Monoid. Examples.

Let (E, ®) be acanonically ordered commutative monoid with neutral element «.
Asin Sect. 2.2. of this chapter, we consider the set H of endomorphisms on E
verifying, Yh € H:
h@eby =h@aehMm VabeE
h(e) =c¢
endowed with the laws @ and ® defined as: Yh, g € H

(heg@=h@®g@ VvackE
(heg@ =goh@ VaeE
where° isthelaw of composition of mappings. One verifiesthat (H, &, ®) isadioid
(pre-semiring of Sect. 2.2 with the extra property h (e) = &, which guarantees that
h¢ is absorbing).
Thisisavery important class of dioids, in particular for studying complex path-
finding problemsin graphs such as those corresponding to the following examples.
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4.2.1. Dioid of Nondecreasing Functions

On the monoid (E, ®) WithE = R = R U {+00},® = minand ¢ = +o0, we
consider the set H of nondecreasing functions h: E — E, with h(t) tending to oo
when t tends to +o0.

These functions satisfy the equations

h (mint, t')) = min(h (t), h ()
h (+00) = +00

andthe set (H, @, ®) isadioid.

This dioid is the algebraic structure required to solve the shortest path problem
with time dependent lengths on the arcs, see Example 6.2.1 of Chap. 1 and the
generalized algorithms 1/, 2/, 2", 3 of Chap. 4, Sect. 4.4.

[References: Minoux (1976), 1 (Sect. 6.2), 4 (Sect. 4.4)]

4.2.2. A Dioid for the Shortest Path with Discounting Problem (Minoux 1976)

With each arc (i, j) of a graph G, we associate a length which will depend, in a
path, on the number of arcs taken previously. For example, if we interpret the path-
traversal along the arc (i, j) as the completion of an annual investment program,
the cost of the arc (i, j) is Cjj/(1 + )t if t is the number of arcs previously tra-
versed along by the path, that is to say the year of the expenditure Cjj (t being the
discounting rate).

We seek the shortest path with discounting from vertex 1 to the other vertices.

If Tisthefinal period, wewill takefor Sthe set of vectorswith (T + 1) components
inRy U{+oc}. Ifa= (ag,a,...,ar) and b = (bg, by, ..., br), we will define
d=adb = (dy,di,...,dr) by setting di = min(a, by), fort =0, 1,...,T.
¢ = (400, ..., +00). Thus to each arc (i, j) in G we let correspond the function
hij: S — Sdefined as:

hij(@ =b with: bp = +oc0

Cij
=a_1+——— fort=1,..., T.
o= At e

We observethat such endomorphismsare T-nil potent (which guaranteesthe existence
of the quasi-inverse (h;;*) of the matrix of endomorphisms (hjj)).

Knowing the “state” a = th (0) of avertex j, we can deduce the shortest path
with discounting from vertex 1 to this vertex, whose valueis equal to 0mti nT(at).

The various generalized algorithms of Chap. 4, Sect. 4.4 can be applied to solve

this problem.
[References: Minoux (1976), 1 (Sect. 6.2), 4 (Sect. 4.4)]
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4.2.3. A Dioid for the Shortest Path Problem with Time Constraints

(Halpern and Priess 1974; Minoux 1976)
With each arc (i, j) of agraph G, we associate:

— Aduration djj > 0 measuring the traversal time on arc (i, j),
— AsetofintervalsVj; C [0, +oo[ representing the set of instantsat which departure
ispossiblefromi toj viaarc (i, j);

With each node i we associate a set of intervals denoted W; C [0, +o0[
representing the set of instants at which parking at nodei is allowed.

The problem is to find between two given vertices x and y the shortest path (in
the sense of the traversal time) compatible with the temporal constraints induced by
Vjj (on the arcs) and W; (on the vertices).

We define the state E;j, of avertex i as the set of possible instants of arrival at i
when starting from the origin x. We denote S the set of states. An element of Swill
therefore be aset of intervals C [0, +oco[. We define in S the operation & (union of
two sets of intervals) as.

adb={t/tea o teb}VabeS

The empty set ¢ is the neutral element of &. We define the transition between i and
j (i.e. the endomorphism hjj) in several stages.

— If Ej corresponds to the set of possible time instants of arrival at i, then the set D;
of the possible instants of departure fromi will be:

Di=E LW,

where the operation L is defined as follows:

if E= {[(x1, apl, [ag, 5], .. ., [ap, oc/p]}
Wi = {181, BLL. B2 B2, . 1By Bl
then:

Di = [y1. Vi1 ® [y2, V2l & - - @ [vp. vp]
with, for k from 1 to p:

lak, o ] if o & W,

[vi: Vi = .
Yo Y [[ak, B if o < [, B()
— The set of possible instants of departure from i towards j using arc (i, j) will
then be:
Di N Vjj
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— Let usdefine on S an external operation T (“translation”) by:
aeSteRy,tTa={t+ 1/t €al.
The set of possible instants of arrival at j fromi using arc (i, j) will therefore be:
dij T (Di NVijj).

— Thus, with each arc (i, j) of the graph, we associate an endomorphism ;:
(S &) — (S o)
@i (Bi) = dij TI(Ei L W) N Vjj].
Let us observe that @ is entirely determined by the triple (W, Vjj, d;j) but that
the product of two such endomorphisms cannot be described by such atriple.

One can then show that the set of endomorphisms ¢;; is a p-nilpotent set which
impliesthe existence of ®*, the quasi-inverse of the matrix of endomorphisms ® =
(@ij)-

J'I'heearliest timeto reach y will then be the minimum element of Ey, = d>j‘(y (Ex).

This problem can be solved by applying one of the generalized a gorithms from
Chap. 4, Sect. 4.4, e.g. algorithm 3’ (generalized Dijkstra's algorithm).

[References: Minoux (1976), Halpern and Priess (1974), 4 (Sect. 4.4)]

4.3. General Dioids

~ (k)
4.3.1. K Shortest Path Dioid (R¥, Min), +)

The elements of E are ordered k-tuples of real numbers chosen in R =R U {+o0}.
The @ law is the operation Min, introduced in Sect. 1.3.1. It endows E with a

+00
structure of canonically ordered monoid, with neutral element ¢ = +_oo
+00
. L . .
The ® law is the operation + introduced in Sect. 1.1.5. It has unit element
0
e |7
+00

One verifiesthe distributivity of ® with respect to &, and the absorption property
for e.

(E, @, ®) thus defined is therefore clearly adioid.

The use of this dioid as amodel to state and solve the k* shortest path problem
in agraph isdiscussed in Chap. 4 Sect. 6.8.

[References: 4 (Sect. 6.8), 8 (Sect. 1.1.5), 8 (Sect. 1.3.1)]
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A (=n)
4.3.2. n-Optimal Path Dioid (]R+ [0, nI™, Min<y, + )

n > 0 being a given nonnegative real number, the elements of E arefinite (variable
length) sequences of real numbersin R = R U {+00}, with extreme val ues differi ng
by n at most.

If a € E, we denote v (a) the number of terms of the sequence corresponding to
a, and a can be written:

a—= (aa)’ a?, .. a(v(a»)

with a® = Min {a(i)}
i=1...v(a)

'@ = Max {a(i)}
i=1...v(a)
and: '@ —ab <y

The @ law is the operation Min <y introduced in Sect. 1.3.2. It endows E with a
structure of canonically ordered monoid, with neutral element ¢ = (+00) (sequence
formed by asingle term equal to +00).

(=m)
The ® law is the operation +TI introduced in Sect. 1.1.6. It has unit element
e = (0) (the sequence formed by a single term equal to 0).
The distributivity of ® with respect to @ is verified by observing that if

(@adb®c=u= (u(l), u®@, ...u“(“))

u® = Min { al. b(l)} 4+ c®

and u isthe sequence of al the terms of the form:

a® 4+ c® and b® 4+ c® (fori =1,...v@); j=1,...v(b); k = 1,...v(c)
which do not exceed u® + 1. On the other hand, evaluating the expression (a® ¢) ®
(b ® c) yields the same resullt.

Finally, if we agree to identify ¢ with any finite sequence of the form
(400, +00, ... + 00), the element ¢ is absorbing for ® since

VacE, aQe=cQa=c¢
Thusthisyields, for example:

2 400
3| ®(Ho0)=|+o0 | =¢
5 400

The structure (E, @, ®) thus defined is therefore a dioid.

The use of this dioid as a model to represent and solve n-optimal path problems
in graphsis discussed in Chap. 4 Sect. 6.10.

[References: 4 (Sect. 6.10), 8 (Sect. 1.1.6), 8 (Sect. 1.3.2)]
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4.3.3. Order of Magnitude Dioid (Semi-Field)

On the set E of pairs (a, a) witha € R, \{0} and o € R, to which we add the pair
(0, 400), we define the two laws @ and ® as:

(a @) & (b, ) = (c, min(a, B))
with c=a if a<B,c=b if a>p,c=a+b if a=8p,
(@ o) ® (b,p) = (@b, a+p).

One verifiesthat (E, &, ®) isa(non idempotent) dioid.

This dioid is isomorphic to the set of elements of the form a ¢* endowed with
ordinary addition and multiplication when ¢ > 0 tends towards 0™.

We obtain a dioid isomorphic to the previous one by setting A = e~ and by
considering the set E of pairs (a, A) € (R, \{0})? to which we append the pair
(O, 0); this set is endowed with the laws & and ® defined as:

(@& A) @ (b, B) = (c, Max(A, B))
with c=a if A>B,c=b if A<B,c=a+b if A=B,
(@A) ® (b, B) = (ab, AB)

Moreover, the elements (a, A) of this dioid are in 1 — 1 correspondence with the
elements of the form a AP endowed with ordinary addition and multiplication when
p tends towards +oc.

One can interpret (a, A) as the coding of an asymptotic expansion of the form
aAP + 0(AP) whenp — +oo.

The latter dioid was introduced by Finkelstein and Roytberg (1993) to calculate
theasymptotic expansion of probability distribution functionsinthe study of biopoly-
mers. It was also used by Akian et al. (1998) for the calculus of the eigenvalues of a
matrix with entries of the form exp(—ajj/e) where e isasmall positive parameter.

[References: 1 (Sect. 6.1.5), 8 (Sect. 1.3.6)]

4.3.4. Nonstandard Number Dioid (Semi-Field)

Ontheset E of triples (a, b, a) € (R \{0})3 to which we add thetriples (0, 0, +00)
and (1, 0, +00), we define the two laws @ and ® by:

(a1, by, 1) @ (8, bp, a2) = (&1 + @, b, min(ay, a2))
with b=by if ag<oap,b=by if a1 >ax,b=b1+by if a;=n0qo,
(ay, by, a1) ® (8. b2, a2) = (a1 &, b, min(ay, a2))
with b=ab; if ag<ap,b=aby if o>y,

b=aby+ab if ar=an.
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Oneverifiesthat (E, @, ®) isadioid. Thisdioid isisomorphic to the set of nonstan-
dard numbers of theforma+ b ¢*, (a > 0, b > 0), endowed with ordinary addition
and multiplication, when ¢ > O tends towards 0.

This nonstandard number dioid can be related to the field PR of nonstandard
numbers introduced by Robinson (1973).

These are the numbers one can represent by the series

x=a+apt+ap?+- - (O<vi<vz<--)

where ag, a1, @ . . . are classical real numbers and where p isan infinitesimal.
X represents the sequence of the real numbers

Xe=a+a et @+ (O<vi<vp<-)

when ¢ > 0 tends towards 0" (one can thus identify p with 0™).
[References: 1 (Sect. 6.1.6), 8 (Sect. 1.3.7)]

4.4, Symmetrizable Dioids

4.4.1. Dioid (R4, +, x)

The set EisR,, the set of nonnegative reals.

@ isordinary addition with neutral element 0O;

® isordinary multiplication with unit element 1.
(R4, +) isahemi-group (see Chap. 1, Sect. 3.5)
(R4+\{0}, x) isahemi-group.

The canonical preorder relation is a (total) order: it is the usua order on the
nonnegative real numbers.
[Reference: 1 (Sect. 6.3.2)]

4.4.2. Dioid of Intervals of Ry with the Operations Sum and Product
(Int (R+)’ +, X)

Consider the set E of al thereal intervals of theform [a, 8l withO <a < a
The operation & is defined as:

[a,a @ [b,b] = [a+b,a+ Db]

which has neutral element ¢ = [0, O]. In E, every element is regular for &.
The operation ® is defined as:

[a 8l ® [b, b] = [ab, ab]

which has neutral element e = [1, 1].
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One easily verifies:

— The commutativity and the associativity of &
— The commutativity and the associativity of ®
— Theright and left distributivity of ® with respect to &.

¢ isabsorbing for ® because, V[a, al:
[a, 8] ®[0,0] =[0,0] =e.
The canonical preorder relation is defined as:
[a a] < [b, b] « thereexists[c, €] such that: [b, b] = [a+ ¢, a+ T

which is equivalent to the conditions:

IAIA

oo

o

—a>b-a

To verify that it is an order relation, let us assume that [a, & < [b, b] and [b, b] <

[a al.
From the above we deduce:

S TN
S TN
vV v
O oo

v

and

IN IV

o oo
i

—a>b-a

a-b

Thisimplies: a = b and 2 = b therefore [a, a] = [b, b] which proves the property

and [E, @, ®] isindeed adioid.

(=2

443. (Ry, ®p, ®p)

Thisisthe set of nonnegative reals endowed with the operation @, (with p € R,.)
defined as a @p b = (& + bP)/P and the operation ®, defined as a®p b =
(@ - bP)L/P = a. b (®p istherefore the standard multiplication).

When p tends towards +-oco (resp. —oo), (R4, ®p, ®p) “tends’ towardsthe dioid
(R4, Max, x) (resp. R, Min, x). (see Sect. 4.8.2).

[References: 1 (Sect. 3.2.5) 8 (Sect. 1.4.7)]

4.44. Ry, d", ®")

Thisis the set of nonnegative reals endowed with the operation @" (with h € R,)
defined asa@®" b = h £n (¥" + €M) and the operation ®" defined asa®" b =
h£n (€¥". /M) = a+ b (®" isthus the usual addition).

When h tends to 0T (resp. 07), (R,,®", ®" “tends’ towards the dioid
(R4, Max, +) (resp. R4, Min, +)

[References: 1 (Sect. 3.2.5) 8 (Sect. 1.4.8)]
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445, (L2 RMT, +,*)

We consider the set of functions: R" — R, , square integrable, endowed with the
addition of functions and the convolution product. Thisis a symmetrizable dioid.

4.5. Idempotent Dioids

The subclass of idempotent dioids includes (see Fig. 3):

Doubly idempotent dioids (see Sect. 4.6);

| dempotent-cancel lative dioids (see Sect. 4.7);

|dempotent-invertible dioids (see Sect. 4.8);

Other idempotent dioids which do not belong to any of the previous categories,
and which are dealt with in the present section.

45.1. Dioid (P(R"), U, +)

n € N being a given integer, we consider E = P(R") the power set of R". The law
@ isdefined as the union of two subsets of R" (neutral element ).
Thelaw ® istaken asthe sum of two subsets of R" defined as:

AcCR"BcR"
A+B={z/zeR",z=x+y with xeA,yeB}

The neutral element of ® isthe subset reduced to the zero vector (0, O, ... 0) of R".
One easily verifiesthat (P(R™), U, +) possesses all the properties of an idempo-
tent dioid.

4.5.2. Dioid P(R) Endowed with the Union and the Product (P(R), U, .)

The set E isthe power set of R.
The law & isthe union of two subsets of R (neutral element ¢).
Thelaw ® isthe product of two subsets of R defined as:

ACR,BCR:
A -B={z/zeR,z=x-y with xeA,yeB}

The neutral element of ® isthe subset { 1} .
Oneeasily verifiesthat (P(R), U, .) possesses all the properties of an idempotent
dioid.



354 8 Collected Examples of Monoids, (Pre)-Semirings and Dioids
4.5.3. Qualitative Algebra
On the set of signs, augmented with the indeterminate ?, S = {+, —, 0, ?}, we

consider the qualitative addition @ and qualitative multiplication ® defined in the
following tables (see Sects. 1.5.5 and 1.1.7):

|+ - 0 2 ® |+ - 0 2
+1+ 2 + 2 +|+ - 0 2
-7 - - 2 - |- + 0 2
o|+ - 0 2 o0 0 0 O
20?2 2 2 2 21?2 2 0 2

Asaresult, an idempotent dioid is obtained.
[References: 1 (Sect. 3.4.2), 1 (Sect. 3.4.3), 1 (Sect. 6.1.3)]

45.4. (Conv(RK), Conv(A U B), +), (Convc(R¥), Conv(A UB), +)

We consider Conv(R¥), the set of convex subsets of R¥, endowed with the two
following operations (see Sects. 1.5.6 and 1.1.2):

A & B = Conv(A UB)
ARB=A+B

where conv(X) denotes the convex hull of X and A + B the vector sum of A and B.
(see Sect. 1.1.2).

To show that thisisadioid, the nontrivial property of the distributivity of ® with
respect to @ remainsto be proven, i.e.:

conv(AUB) +C=Conv[(A+C)uU B+ C)].

Let usfirst of all check the following property:
V convex = for any subset U, Conv(U + V) = Conv(U) + V.
Indeed, Conv(U) +V isaconvex set containing U +V, therefore Conv(U+V) C
Conv(U) + V.
n

Conversely, every element w of Conv(U) + V iswrittenw = > o Uj + v with
i=1

aj > 0, Za. =1 u e U, v eV, hencew = Zoc. (U +v) € Conv (U +V),
i=1

which prov& the expected property.

This therefore yields Conv(A U B) + C = Conv((A U B) 4+ C) = Conv[(A +
C) U (B + ©)], which proves distributivity.

Conv(R¥) the set formed by all convex subsets of R, istherefore an idempotent
dioid.

The set Convc(RK) of compact convex subsets of RK forms a subdioid of
Conv(RK).
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Let us show that this dioid is idempotent-cancellative. Indeed, let the support
mapping, which characterizes a closed convex subset, be defined as:

oa (p) = sup <p, x> for pe]Rk

X eA

and which, in view of the compactness of A, is finite. One verifies that dp15 =
da + dg. If A + B = C, B is the unique convex subset having support function
dg = d¢c — 0a. It follows that the application B — A + B isinjective, and therefore
the dioid Convc(R¥) is idempotent-cancellative.

[References: Rockafellar (1970), and 8 (Sect. 1.1.2), 8 (Sect. 1.5.6)]

45.5. Dioid of Relations

Let Ebeaset and R (E) the set of binary relations on E. One verifies that R (E),
endowed with the two following laws:

ROR:x(ReR)yiff xRy or xRy,
RoR:x(R®R)yiff 3ze E with xRz and zR'y

is an idempotent dioid.
The canonical order relation correspondsto: R < R’ if and only if x Ry implies
x Ry, i.e iff Risfiner than R'.

N
4.5.6. Dioid of Mappingswith Max and Convolution (Rﬁax)

The set of mappings: R" — R, endowed with the operation “ pointwise maximum”
(hg) (x) = max {(h(x), g (x))}) and with the sup-convolution product defined as:

fex = suFEJ {f Xx=y)+ay)}
yeR"

(wherewe agreeto set (+00) + (—00) = —oo) isacompleteidempotent dioid (refer
to Chap. 1 Sect. 6.1.8 for the definition of acomplete dioid). The neutral element for
the product is the function e defined as: e(x) = o0 if X # 0 and e(0) = 0.

4.5.7. Dioid (R x P(R), Min, +)

Thisisan extension of the“Min-Plus’ dioid (see Sect. 4.8.3 below) to sets of vectors
“monitored” by the first component. .

Eistheset R x P(R); itselementsareintheforma = (a, a) witha € R and
a € P(R).
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@ isthe Min operation defined on R x P(R) in Sect. 1.5.10:

a if < b1
Min(a by =3b if & > b
(ag,aUby) if ag=Db

® isthe operation defined as:

ar + b

a®b=
a+ by

(22 + bz denotes the set of realsin the form a + 8, for al values of a € ap, B € by)

® is associative, commutative and endows E with a monoid structure with unit
element e = (0, 0). Onead so verifiestheright and left distributivity of ® with respect
to &.

Finally, e = (+00, ¥) isabsorbing (Vac E:a® e = e ®@ a=7¢).

(E, @, ®) thus defined is an idempotent dioid. Thisis an extension to dimension
2 of the “Min-Plus’ dioid.

Finally, let us mention two interesting specializations of the above in connection
with complex numbers.

4.5.8. Dioid (Cr, Min, +)

E is the set of elements of the forma = a1 + i ap with g € R and a € P(R).
An element a of E is therefore a set of complex numbers all having the same real
component a;. @ and ® are then defined asin Sect. 4.5.7.

4.5.9. Dioid (C,, Min, x)

E is the set of elements of the form a = p(a) € *@ with p(a) € R, and 6(a) €
P(R). An element aof E istherefore a set of complex numbers all having the same
modulus p. A

@ isthe Min operation defined on R x P(R) by:

a if p@ < pb)
Min(a, b) = {b if p(b) < p(a
(r(@, 0@ U 6(b)) if p@ =pb)

® isthe “multiplication” operation defined on R+ x P(R) by:

p(@a®b) = p(@) p(b)
6(a® b) = 6(a) + 6(b) (Minkowski sum of the setsf(a) and 6(b)).
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(6(a) + 6(b) isthe set of real numbers of theform o + B, o running through 6(a) and
B running through 6(b)).

[The two previous idempotent dioids appear to be relevant to the so-called
complex Min-Plusanalysiswhich has application in the study of complex Hamilton—
Jacobi equations in quantum mechanics (see Gondran 1999b).]

4.6. Doubly I dempotent Dioids, Distributive Lattices

4.6.1. Dioid ({0, 1} , Max, Min): Boole Algebra
Eisthe set {0, 1} endowed with the operations @ and ® defined as:

ad b= Max{a, b}
a® b= Min{a b}

¢ = listhe neutral element of & and e = 0 the neutral element of ®.

We thus have that E = {¢, €}.

One easily checks al the properties necessary for (E, ®, ®) to enjoy a dioid
structure. In particular, the canonical preorder relation is an order relation because
@ isidempotent (see Chap. 1, Sect. 3.4).

Observe that the Boole algebra (E, @, ®) as defined above is an ordered set in
which any pair a, b of elements has an upper bound given by:

sup(a, by =adb

and alower bound given by
inf(ab)=a®hb

This is therefore a distributive lattice. As, moreover, there is a finite number of
elements, thisis a complete lattice.
[Reference: see e.g. Birkhoff, 1979]

4.6.2. Dioids (N, lcm, gcd) and (N, ged, Icm)

Here wetake E = N, the set of natural numbers.

Thelcm operation on N is associative, commutative, idempotent and has as neu-
tral element 1. Similarly, the gcd operation on N is associative, commutative and
idempotent. It has as neutral element +oo by viewing this element as the infinite
product of al the prime numbers raised to the power +oco. One easily verifies the
distributivity of lcm with respect to gcd and of ged with respect to lem.

Finally, 1 isabsorbing for gcd in the structure (N, lcm, ged) and+oc is absorbing
for Icm in the structure (N, gcd, Icm).

Each of these structures is therefore adoubly idempotent dioid. Moreover, since,
Proposition 6.5.7 of Chap. 1 holds, these are distributive lattices.
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4.6.3. Dioids (R, Max, Min), (R, Min, Max)

We take as our basic set E the set R of real numbers augmented with the elements
¢ = —oo and e = 400, the operations @ and ® being defined as:

a® b = Max{a, b}
a® b= Min{a, b}

The element ¢ is absorbing because, Va € E, a® ¢ = Min{a, —00) = —0c0 = &.
Oneeasily verifiesthat (E, @, ®) enjoysall the propertiesof adioid. In particular
the operation & being idempotent, the canonical preorder relation is an order (it is
the usual total order on the set of real numbers).
Moreover, E can aso be considered as a lattice taking as the upper bound of two
arbitrary elementsaand b sup (a, b) = a® b = Max{a, b} and as the lower bound
of two arbitrary elementsaand b

inf(a, b) =a® b= Min{a b}

One indeed verifies that all the axioms of the algebraic definition of a distribu-
tive lattice are satisfied: idempotence, commutativity, the associativity of each law,
distributivity, as well as the absorption properties:

ad@®b)=a

a® (adb)=a
Onerecognizesadoubly idempotent dioid structure. By exchanging theMax and Min
operations, we obtain the lattice-dioid (R, Min, M ax) which has similar properties.
The (R, Max, Min) structure defined above is the one underlying the algebraic
formulation of the maximal capacity path problem in a graph or equivalently (see
Gondran and Minoux 1995) the problem of finding a path with maximal inf-section.
Similarly, the structure (R, Min, Max) isthe one underlying the algebraic formu-

lation of the minimal sup-section path problem.
[References: 1 (Sect. 6.5), 4 (Sect. 6.3)]

4.6.4. Latticeof the Power Set of a Given Set (P(X), U, N), (P(X), N, V)

X being agiven set, we take E = P(X), the power set of X. Thelaw & isthe union
of two subsets (neutral element: ) and the law ® is the intersection of two subsets
(neutral element: X). Oneeasily verifiesthat (P (X), U, N) satisfiesall the properties
of adistributive lattice. The sameistrue for (P(X), N, V).

4.7. Idempotent-Cancellative and Selective-Cancellative Dioids

4.7.1. Dioids (R, Min, +), (N, Min, +)

The set E isthe set of nonnegative reals augmented with +oc.
@ is the Min operation (minimum of two real numbers). It is associative,
commutative, selective, and has neutral element ¢ = +oco.
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® isthe operation + (sum of two real numbers). It is associative, commutative,
and has unit element e = 0. It endows the set E with a hemi-group structure (see
Sect. 1.4.1.).

One easily verifiestheright and left distributivity of ® with respect to &@. Finally
¢ = oo isabsorbingfor ® (Vace E,a® e =e® a=¢).

(R4 U {+o0}, Min, +) |stherefore aselective-cancellative dioid.

(N Min, +) isasubdioid of (R Min, +). It issometimesreferred to asthe “ trop-
ical dioid” and has been used to solve some problems of enumeration in language
theory (see for example Simon 1994).

[Reference: 1 (Sect. 6.6.4)]

4.7.2. Regular Language Dioid

A being aset of letters (“aphabet”), the free monoid (sets of wordsformed by afinite
number of letterson A) is denoted A* (see Sect. 1.4.4). It includes the empty word,
denoted ¢.

Every subset (whether finite or infinite) of A*, L C A*, iscalled alanguage on
A. We denote £ = P(A*) the set of all the languages on A.

The sum of two languages L1 @ L is defined as the set union of the words of L
and the words of L.

The product of two languages L1 ® L» is the set of words formed by the
concatenation of aword my of L1 and aword my of Lo (in this order).

The two following dioids are relevant to language theory:

(Piinite (A™), @, ®), thedioid of finite languages (finite subsets of A*) formed on
the alphabet A.

(P(A*), &, ®) the dioid of arbitrary languages formed on the alphabet A.

(P(A*), &, ®) hastheempty language ¥ asneutral element of & and {¢} asneutral
element for ®. It has (Prinite (A™), &, ®) as subdioid.

In the case where the aphabet is finite, (Prinite (A*), ®, ®) corresponds to the
dioid of the polynomialson A, and (P(A*), &, ®) to the dioid of the formal series
OnA.

The structure defined above is that of regular languages (see e.g. Salomaa 1969).
However, we observe that in addition to the dioid structure, the axioms of regular
languages include the so-called closure operation denoted *.

[Reference: 1 (Sect. 6.6.2)]

4.7.3. Dioid of Integer Sequenceswith Min and Sum Operations (NN, Min, +)

Here we take E = NN asthe set of (infinite) sequences of nonnegative integers.
The operation & is the term by term minimum operation of two sequences of
integers, in other words for two sequencesa = (§); ¢ y and b = (by)j < v, we set:

adb=c=(¢)iecny With ¢ =Min{g,b;} (Vi).
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Thelaw & isassociative, commutative and idempotent and its neutral element isthe
sequencee = (g)j ¢ y With, Vi € N: gj = 4-00.

The operation ® isthe term by term sum operation of two sequences of integers,
in other wordsfor a = (g)j ¢ y and b = (by); ¢ v, We set:

adb=c=(g)icy Wwith ¢ =g + bj(Vi).

Theoperation ® isassociative, commutative and itsunit element isthe zero sequence
e=(§)jenyWithVi: g =0.
We observe that every element of E is cancellative for . Moreover, one easily
verifiesthat ® is distributive with respect to & and that ¢ is absorbing for ®.
Consequently (NN, Min, +) is an idempotent-cancellative dioid.

4.7.4. Dioid (N*, gcd, x)

Wetake E = N* = N\ {0} asthe set of strictly positive integers.

The operation @ is the ged of two numbers. This operation is associative, com-
mutative and idempotent. The neutral element of @ ise = +o0, by viewing ¢ asthe
(infinite) product of all the prime numbers, raised to the power +oco.

The operation ® is the product of two integers (neutral element e = 1). We
observe that every element of N* is cancellative for ®.

One aso verifies that ® is distributive with respect to & and that ¢ is absorbing
for ®.

(N*, gcd, x) istherefore an idempotent dioid.

Thedioid (N*, ged, x) isisomorphic to the dioid (NN, Min, +) (see Sect. 4.7.3)

Indeed, if we denote py, p2. .. the (infinite) sequence of prime numbers, every
integer n € N may be decomposed into prime factors and expressed in the form:

n= 1‘1 pi™ (qisthe rank of the largest prime number not greater than /n).
One therefore sees that with every integer n € N one can associate a sequence:
N =Ny ...Nn) € NN

If n € Nisdefined as the sequence (n) and m € N by the sequence (m), the gcd of n
and m is defined as the sequence (r) such that:

Vi € N :rj = min{nj, m;}
We denote:
(r =) & (m)
Similarly, the product n x m is defined as the sequence (s) such that:
Vi:s =n +m;

The ged and x operations on N therefore clearly correspond to the operations Min
and + of thedioid (NV, Min, +).

Finally, let usobservethat, if onereplacestheged operation withthelcm operation,
weobtain (N, lcm, x) whichisonly apre-dioid (the property of absorption not being
satisfied) see Sect. 2.4.2.
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4.8. Idempotent-I nvertible and Selective-1nvertible Dioids

4.8.1. Dioid (R", Min, +)

The set E is R" and we take @ as the Min operation (component-wise minimum,
of two vectors of R"). It is associative, commutative, and has neutral element
+00
_ | too
+00
This operation is idempotent but not selective.
® isthe operation + (sum of two vectors of R"). It is associative, commutative,
0

and has unit element e = O . It endows E with agroup structure.

0
One easily verifiesthe right and left distributivity of ® with respect to @ and the
absorption property of ¢.
(R", Min, +) istherefore an idempotent-invertible dioid.

4.8.2. Dioid (R4, Max, x)

E isthe set R, of nonnegative reals.

@ is the operation Max (maximum of two real numbers) with neutral element
e =0.

® isthe operation x (product of two real numbers) with unit element e = 1.

@ is selective and ® endows R4\ {0} with a group structure.

It istherefore a selective-invertible dioid.

Thedioid (R, Max, x) isisomorphictothedioid (RU {—oc}, Max, +) through
the one-to-one correspondence: x — €X.

We observe that if we take ® to be the addition of real numbers instead of the
multiplication of real numbers, we obtain the structure (R, Max, +) which is a
pre-dioid (see Sect. 2.4.1).

4.8.3. “Min-Plus’ Dioid (R, Min, +)

Eistheset R = R U {+o0}

@ isthe Min operation (minimum of two real numbers).

@ is associative, commutative, selective and has neutral element ¢ = +ooc.

® isthe operation + (sum of two real numbers).

® is associative, commutative and endows E with a group structure with unit
elemente = 0.
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One also verifies the right and | eft distributivity of ® with respect to &.

Finally e = +oo isabsorbing (Vae E:a® e = e ® a=¢).

(E, @, ®) thus defined is therefore a selective-invertible dioid.

The MIN-PLUS dioid is the agebraic structure underlying the shortest path
problem in a graph (see for example Gondran and Minoux 1995, Chap. 3).

[References: 4 (Sect. 2), 4 (Sect. 6.5)]

4.8.4. “Max-Plus’ dioid (R, Max, +)

Eistheset R = R U {—o0)

@ is the Min operation (minimum of two real numbers) with neutral element
£ = —0OQ.

® isthe operation + (sum of two real numbers).

This dioid isisomorphic to the MIN-PLUS dioid.

The MAX-PLUS dioid is the appropriate structure to express in algebraic terms
the behavior of some discrete event dynamic systems and thus generalize many
classical resultsin automatic control of linear systems.

[References: 6 (Sect. 7); Baccelli et al. 1992; Gaubert 1992, 1995a,b.]

4.85. Dioid (R2, Min-lexico, +), (R", Min-lexico, +)

E isthe set of vectors of R? (totally) ordered by the lexicographic order.
@ isthe lexicographic minimum on R? defined as:

a if ag<by orif ag=b; and a <hby

adb=
® {b if bp<a orif agy=b; and b <a

® isthe component-wise addition:

_f(a+by
a®b_(a2+b2>

Oneverifiesthat (E, @, ®) isaselective-invertibledioid. Thisisanother possible
extension to dimension 2 of the “Min-Plus’ dioid.

More generally, for arbitrary n > 2 the dioid (R", Min-lexico, +) would be
defined in asimilar way.
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Property of the monoid Property of the monoid Distributivity of ® Comments, additional
(E, ®) (E, ®) with respect to @ properties
General dioids
Dioid of the k shortest paths (see| Commutative, neutral Commutative, unit element e Right and left
Sect. 4.3.1.) element ¢
Dioid of the n-optimal path (see | Commutative, neutral Commutative, unit element e Right and left
Sect. 4.3.2) element ¢
Order of magnitude dioid Commutative, neutral Commutative, unit element Right and left
element (0, +o0) (1,0
Nonstandard number dioid Commutative, neutral Commutative, unit element Right and left
element (0, 0, +00) (1,0, +00)
Symmetrizable dioids
Ry, +, x) Commutative, neutral Commutative, unit element Right and left Every element is
elemente =0 e=1 cancellative for @
Intervalsin Ry (Int (Ry), +, x) Commuitative, ¢ = [0, 0] Commutative, e = [1, 1] Right and left Every element is
cancellative for @
Idempotent dioids
(PR, U, +) Commutative, idempotent, Commutative, Right and left
€= 0 —+00
+0o0
e= )
+00
(P(R), U, ) Commutative, idempotent, Commutative, e = {1} Right and left

spoia v

€9¢e



e=10

Property of the monoid Property of the monoid Distributivity of ® Comments, additional
(E, ®) (E,®) with respect to & properties
Qualitative algebra Commutative, idempotent, Commutative, e = + Right and left
e=0
(Conv(R¥), U, +) Commutative, neutral Commutative, unit element {0} | Right and left
element ¢
Dioid of relations Commutative Commutative Right and left
Doubly idempotent dioids
({0,1} , Max, Min) Commutative, idempotent, Commutative, idempotent, Right and left (distributive | attice)
Boole algebra e=0 e=1
(N, Iem, ged) (N, ged, Iem) Commutative, idempotent, Commutative, idempotent, Right and left (distributive lattice)
e=1(e=4o00) e=+4oo0(e=1)
(@”, Max, Min) (ﬁ”, Min, Max) | Commutative, idempotent, Commutative, idempotent, Right and left (distributive lattice)
€= —00 (¢ = 400) e=+4o0(e=—)
(P(X),U,N) Commutative, idempotent, Commutative, idempotent, Right and left (distributive lattice)
e=10 e=X
I dempotent-cancellative and selective-cancellative dioids
(@i, Min, +) Commutative, selective, Commutative, e =0 Right and left Every element is
g =400 cancellative for ®
Regular languages Commutative, idempotent, e=Ly Right and left Every element is

cancellative on the right and
on theleft for ®
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Property of the monoid Property of the monoid Distributivity of ® Comments, additional
(E, ®) (E, ®) with respect to @ properties
(NN, Min, +) Commutative, idempotent, Commutative, e = 1 Right and left Every element is
g = (400, +00...) cancellative for ®
(N*, gcd, x) Commutative, idempotent, Commutative, e = 1 Right and left Every element is
£ = +00 cancellative for ®
| dempotent-invertible and selective-invertible dioids
(R4, Max, x) Commutative, selective, Abelian group,e=1 Right and left Every element has an
e=0 inverse for ®
(R, Min, 4) Commutative, selective, Abelian group,e=0 Right and left Every element has an
£ = +00 inverse for ®
“Max-Plus’ dioid Commutative, selective, Abelien group,e=0 Right and left Every element has an
(R U {—o00}, Max, +) g = —00 inversefor ®
®", Min, +) commutative, idempotent, commutative, Right and left Every element has an
400 0 inverse for ®
0
N e= |
+00 0
(R", Min-lexico, +) Commutative, selective, Group, Right and left Every element has an
+00 0 inversefor ®
400 0
e = ) e=|
+00 0
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Mean weight circuit, 226-228, 230
m-idempotency, 15, 16
Minimum(al)
element, 11, 111, 284
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MINMAX
analysis, 291-295
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scalar product, 260, 291
wavelet transform, 293
MINPLUS
analysis, 260, 357
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wavelet transform, 268
Moduloid, 173, 174
Monoid of nonstandard numbers, 322
Monotone
data-flow, 334, 335
agebra, 332-335
Moreau-Yosida
regularization, 306
sup-transform, 266
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294
Multicriteria
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problem, 157, 161
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Nonlinear
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Observation vector, 243
Open set, 261, 267, 278, 281, 283, 288,
308-310
n—Optimal path, 99, 157, 164, 349, 363
n—Optimal path dioid, 349
Order 1
lower semi-differentiable, 280
upper semi-differentiable, 280
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Order 2
lower semi-differentiable, 281
subdifferential, 280, 281
upper-differential, 280, 282
upper-gradient, 280, 281
upper semi-differentiable, 281
Ordered
monoid, 1, 9, 11-20, 24, 27, 28, 313, 314,
319, 321, 322, 326, 329, 332, 336-338,
343, 348, 349
set, 9-11, 31, 44, 45, 83-108, 110-112, 121,
201, 357
Orders
of magnitude dioid, 29, 350, 363
of magnitude monoid, 15, 322, 329
Oscillation, 268, 270

p-absorbing circuit, 123-126, 130
Parity of a permutation, 56
Partially ordered set, 9, 11, 83, 112
Partial order method, 239
Partial permutation, 57, 58, 60, 66, 67, 7072,
78
Path enumeration, 158
Path with minimum number of arcs, 160
Perfect matching, 188, 192-194, 200
Permanent, 182, 183, 205
Permutation, 56-58, 62—64, 66, 67, 7072, 78,
81, 182, 183
graph, 56
Perron-Frobenius theorem, 2, 207, 220, 226,
227, 229, 239, 252
Petri net, 243-247
Pivot, 148-150, 152
Place, 143, 145, 244-248, 252, 257, 332, 338
p-nilpotency, 125-127, 168
Pointed circuit, 123, 124, 209, 211, 216
Point-to-set map, 277
Polynomial, 52, 53, 61, 102, 104-106, 163,
182, 183, 203, 205, 230, 233, 301, 341,
344
Positive
dioid, 30, 44
element of commutative group, 9
Positivity condition, 16
Possibility theory, 166
Potential theory, 165, 166
Power
monoid, 322, 329
set lattice, 35, 358
Pre-dioid, 20, 22, 23, 25, 27, 313, 331-338,
360, 361
of natural numbers, 337
Preference analysis, 207, 234, 238, 242
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Prefix, 13, 324
Preorder, 9, 12, 13, 15-17, 19, 25, 27, 28, 39
Pre-semiring, 25, 27, 334
Product
dioid, 38, 40
and ring, 39, 341
pre-dioid and ring, 333, 336
semiring, 26
Production rate, 243, 244, 252
Proximal
agorithm, 305, 307
point, 301, 302, 306
p-stable, 83, 97-107, 111, 123, 126, 127, 164
element, 83, 97, 100, 103, 107, 123

Qualitative
addition, 14, 28, 318, 326, 354
algebra, 28, 38, 39, 340, 354, 364
multiplication, 14, 28, 318, 326, 354
Quasi-convex
analysis, 260, 291
Isc closure, 293
Quasi-inverse, 83, 9299, 101, 115, 116, 118,
120
of matrix, 118, 120-127, 138, 139, 145, 156
square root, 103
Quasi-n"-root, 106, 107
Quasi-redundant family, 185
Quotient semi-module, 176

Reachability, 32, 125-127, 137, 141, 190, 245,
246, 254, 299, 301, 302

Reducibility, 178
Reducible matrix, 252
Redundant family, 185, 186
Regular language dioid, 359
Reliability, of network, 100, 157
Residuable

closure, 110

function, 109

mapping, 107, 108, 110, 111
Residuation, 83, 107, 115
Residue mapping, 108-111
Right and left pre-semiring, 333
Right canonical preorder, 13
Right dioid, 28, 29, 341-343
Right inverse, 8
Right pre-dioid, 22, 335
Right pre-semiring, 20
Right-regular, 7
Right-semi-module, 174
Right semiring, 23
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Ring, 20, 24, 26-28, 33, 39, 75, 173, 174, 333,
336, 337, 339-341, 343, 344
of matrices, 341
of polynomials, 341

Scalar biproduct, 269, 270, 277
Selective
dioid, 33, 34, 40, 91, 92, 133, 134, 179, 187,
190, 191, 200, 201, 213, 215, 216, 218,
219, 233,
monoid, 18, 19, 34, 37, 38, 40, 314, 319,
325, 328, 331
Selective-invertible dioid, 34, 37, 38, 173,
192-200, 202, 207, 215, 220, 224-231,
233, 343, 361365,
Selective-regular dioid, 191
Semi-cancellative fraction, 343-345
Semi-continuity, 83, 89, 265
Semi-continuous convergence, 277
Semi-convergence, 277, 278
Semi-field, 25, 37, 44, 45, 255, 350, 351
Semi-inf-C-solution, 281, 282
Semi-infmax- A-convergence, 294
Semi-inf-¢-convergence, 271, 281
Semi-infmax-¢$-convergence, 293
Semi-lattice, 9, 17-19, 21, 34, 35, 44, 314,
325-327, 331, 332
Semi-module, 173-209, 212, 218, 233, 256,
296, 297
Semiring
of endomorphisms, 137, 138
of signed numbers, 340
Semi-sup-C-solution, 281, 282
Separated topology, 84-86
Set of natural numbers, 323, 325, 337, 357
Shortest path
with gains or losses, 29, 170, 341
with time constraint, 140, 144, 168, 336,
347, 348
dioid, 347, 348
with time dependent lengths on arcs, 32,
137, 139, 144, 145, 346
Signature of permutation, 57
Signed nonstandard number dioid, 350, 351,
363
Singular matrix, 200, 204
Spanned subsemi-module, 176, 177, 209, 256,
297
Spectral radius, 220, 227-229, 239, 251
Squeleton hypergraph, 204
Stable element, 83, 97-107, 123, 125, 126, 152
State
equation, 242, 243, 247, 249-251
vector, 243, 250

Index

Strict order, 10

Strongly connected, 220, 221, 225, 226, 240,
251, 253, 254

component, 225, 226, 240

Subadditivity, 298, 299

Subdifferential, 279-281, 302, 304, 310

Subdioid, 354, 359

Subgradient, 279-281, 302

Sup section of path, 234

Sub semi-module, 176, 177, 209, 256, 297

Sup-convergence, 86-88

Sup-¢-solution, 282

Sup-pseudo-inverse, 108, 109

Sup-semi-lattice, 17-19, 34, 35, 44, 332

Sup-topology, 83-92, 94, 97, 121, 129, 131

Symmetrizable dioid, 33, 41, 45, 341-343,
351, 353, 363

Synchronization, 244, 246, 247

t-conorm, 42, 43, 321
Timed event graph, 243, 244, 247-251
T-nilpotent, endomorphism, 33, 140, 346
t-norm, 42, 43, 321
Token (in Petri net), 245-248
Top element, 31
Topological
dioid, 83-113, 121, 129-132, 146,
149, 150
space, 86, 308, 310
Totally ordered set, 9, 83, 86, 201
Total order, 9, 16, 17, 19, 28, 40, 145, 1609, 187,
190-193
Transition, 140, 165, 166, 244-247, 250-252,
271, 347
Transitive closure of agraph, 158, 165
Tropical dioid, 359

Ultrametric
distance, 167, 168, 237
triangle inequality, 167
Upper
bound, 10, 18, 19, 34, 44, 86-91, 93, 94,
107-110, 130, 264, 272, 283, 357, 358
differential, 279-282
gradient, 279-281
limit, 84, 88, 121
semi-continuity (USC), 89, 107, 261, 264,
268, 269, 272, 273, 279-282, 290,
292-294, 300
viscosity solution, 279-283
USC closure, 264, 280282

Viscosity solution, 278-283, 291, 295
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Wavel et
function, 268
transform, 268, 293
Weak
solution, 260, 278-283
symmetrization, 33
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Weakly symmetrized dioid, 33
Weight
of circuit (or: circuit weight), 122, 209, 211,
252

of path (or: path weight), 116
of permutation, 182
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